--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-portuguese-cased-finetuned-ner results: [] --- # bert-base-portuguese-cased-finetuned-ner This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0060 - Precision: 0.8894 - Recall: 0.9253 - F1: 0.9070 - Accuracy: 0.9985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 444 | 0.0190 | 0.6522 | 0.8078 | 0.7217 | 0.9950 | | 0.0813 | 2.0 | 888 | 0.0088 | 0.856 | 0.9168 | 0.8853 | 0.9981 | | 0.0111 | 3.0 | 1332 | 0.0060 | 0.8894 | 0.9253 | 0.9070 | 0.9985 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.14.7 - Tokenizers 0.15.0