--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-portuguese-cased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test args: conll2003 metrics: - name: Precision type: precision value: 0.8545598048360479 - name: Recall type: recall value: 0.8687723393391202 - name: F1 type: f1 value: 0.8616074658178399 - name: Accuracy type: accuracy value: 0.9646568001175846 --- # bert-base-portuguese-cased-finetuned-ner This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1869 - Precision: 0.8546 - Recall: 0.8688 - F1: 0.8616 - Accuracy: 0.9647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.265 | 1.0 | 878 | 0.1812 | 0.8254 | 0.8378 | 0.8316 | 0.9576 | | 0.0709 | 2.0 | 1756 | 0.1843 | 0.8367 | 0.8592 | 0.8478 | 0.9611 | | 0.048 | 3.0 | 2634 | 0.1869 | 0.8546 | 0.8688 | 0.8616 | 0.9647 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1