--- tags: - mteb model-index: - name: l3_wordllama_256 results: - task: type: Classification dataset: type: None name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 65.97014925373134 - type: ap value: 27.33017285839569 - type: f1 value: 59.04330619047924 - task: type: Classification dataset: type: None name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 63.248250000000006 - type: ap value: 58.695642654646576 - type: f1 value: 62.98826255412888 - task: type: Classification dataset: type: None name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 31.689999999999998 - type: f1 value: 31.106666192619258 - task: type: Retrieval dataset: type: None name: MTEB ArguAna config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: map_at_1 value: 19.986 - type: map_at_10 value: 34.634 - type: map_at_100 value: 35.937000000000005 - type: map_at_1000 value: 35.954 - type: map_at_3 value: 29.742 - type: map_at_5 value: 32.444 - type: mrr_at_1 value: 20.341 - type: mrr_at_10 value: 34.763 - type: mrr_at_100 value: 36.065999999999995 - type: mrr_at_1000 value: 36.083 - type: mrr_at_3 value: 29.872 - type: mrr_at_5 value: 32.574999999999996 - type: ndcg_at_1 value: 19.986 - type: ndcg_at_10 value: 43.074 - type: ndcg_at_100 value: 48.819 - type: ndcg_at_1000 value: 49.26 - type: ndcg_at_3 value: 32.934000000000005 - type: ndcg_at_5 value: 37.830999999999996 - type: precision_at_1 value: 19.986 - type: precision_at_10 value: 7.02 - type: precision_at_100 value: 0.958 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 14.059 - type: precision_at_5 value: 10.825 - type: recall_at_1 value: 19.986 - type: recall_at_10 value: 70.199 - type: recall_at_100 value: 95.804 - type: recall_at_1000 value: 99.21799999999999 - type: recall_at_3 value: 42.176 - type: recall_at_5 value: 54.125 - task: type: Clustering dataset: type: None name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 39.64176717184799 - task: type: Clustering dataset: type: None name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 29.06122250673383 - task: type: Reranking dataset: type: None name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 55.808484614132844 - type: mrr value: 71.09121487930351 - task: type: STS dataset: type: None name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 74.96889982129713 - type: cos_sim_spearman value: 70.34256665852179 - type: euclidean_pearson value: 73.59375229907496 - type: euclidean_spearman value: 70.34256665852179 - type: manhattan_pearson value: 72.38820178677287 - type: manhattan_spearman value: 69.3919425882689 - task: type: Classification dataset: type: None name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 73.56818181818181 - type: f1 value: 72.78107232170503 - task: type: Clustering dataset: type: None name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 33.10380086081637 - task: type: Clustering dataset: type: None name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 25.238238325966222 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: map_at_1 value: 20.294999999999998 - type: map_at_10 value: 27.535999999999998 - type: map_at_100 value: 28.803 - type: map_at_1000 value: 28.971000000000004 - type: map_at_3 value: 25.029 - type: map_at_5 value: 26.526 - type: mrr_at_1 value: 24.893 - type: mrr_at_10 value: 32.554 - type: mrr_at_100 value: 33.504 - type: mrr_at_1000 value: 33.583 - type: mrr_at_3 value: 30.091 - type: mrr_at_5 value: 31.535999999999998 - type: ndcg_at_1 value: 24.893 - type: ndcg_at_10 value: 32.495000000000005 - type: ndcg_at_100 value: 38.288 - type: ndcg_at_1000 value: 41.559000000000005 - type: ndcg_at_3 value: 28.321 - type: ndcg_at_5 value: 30.401 - type: precision_at_1 value: 24.893 - type: precision_at_10 value: 6.109 - type: precision_at_100 value: 1.142 - type: precision_at_1000 value: 0.179 - type: precision_at_3 value: 13.447999999999999 - type: precision_at_5 value: 9.927999999999999 - type: recall_at_1 value: 20.294999999999998 - type: recall_at_10 value: 42.129 - type: recall_at_100 value: 67.709 - type: recall_at_1000 value: 89.534 - type: recall_at_3 value: 30.148999999999997 - type: recall_at_5 value: 35.804 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 16.426 - type: map_at_10 value: 22.461000000000002 - type: map_at_100 value: 23.424 - type: map_at_1000 value: 23.559 - type: map_at_3 value: 20.643 - type: map_at_5 value: 21.602 - type: mrr_at_1 value: 20.701 - type: mrr_at_10 value: 26.734 - type: mrr_at_100 value: 27.516000000000002 - type: mrr_at_1000 value: 27.594 - type: mrr_at_3 value: 24.936 - type: mrr_at_5 value: 25.901000000000003 - type: ndcg_at_1 value: 20.701 - type: ndcg_at_10 value: 26.381 - type: ndcg_at_100 value: 30.731 - type: ndcg_at_1000 value: 33.603 - type: ndcg_at_3 value: 23.336000000000002 - type: ndcg_at_5 value: 24.644 - type: precision_at_1 value: 20.701 - type: precision_at_10 value: 5.006 - type: precision_at_100 value: 0.9339999999999999 - type: precision_at_1000 value: 0.14200000000000002 - type: precision_at_3 value: 11.315999999999999 - type: precision_at_5 value: 8.14 - type: recall_at_1 value: 16.426 - type: recall_at_10 value: 33.593 - type: recall_at_100 value: 52.746 - type: recall_at_1000 value: 72.15899999999999 - type: recall_at_3 value: 24.712 - type: recall_at_5 value: 28.233000000000004 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackGamingRetrieval config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 24.46 - type: map_at_10 value: 33.292 - type: map_at_100 value: 34.437 - type: map_at_1000 value: 34.534 - type: map_at_3 value: 30.567 - type: map_at_5 value: 32.202 - type: mrr_at_1 value: 28.276 - type: mrr_at_10 value: 36.235 - type: mrr_at_100 value: 37.173 - type: mrr_at_1000 value: 37.234 - type: mrr_at_3 value: 33.783 - type: mrr_at_5 value: 35.237 - type: ndcg_at_1 value: 28.276 - type: ndcg_at_10 value: 38.202000000000005 - type: ndcg_at_100 value: 43.634 - type: ndcg_at_1000 value: 45.894 - type: ndcg_at_3 value: 33.19 - type: ndcg_at_5 value: 35.798 - type: precision_at_1 value: 28.276 - type: precision_at_10 value: 6.332 - type: precision_at_100 value: 1.008 - type: precision_at_1000 value: 0.127 - type: precision_at_3 value: 14.671000000000001 - type: precision_at_5 value: 10.571 - type: recall_at_1 value: 24.46 - type: recall_at_10 value: 50.156 - type: recall_at_100 value: 74.648 - type: recall_at_1000 value: 91.269 - type: recall_at_3 value: 36.937999999999995 - type: recall_at_5 value: 43.15 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackGisRetrieval config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: map_at_1 value: 14.052999999999999 - type: map_at_10 value: 18.287 - type: map_at_100 value: 19.137 - type: map_at_1000 value: 19.258 - type: map_at_3 value: 16.79 - type: map_at_5 value: 17.618000000000002 - type: mrr_at_1 value: 15.254000000000001 - type: mrr_at_10 value: 19.88 - type: mrr_at_100 value: 20.71 - type: mrr_at_1000 value: 20.812 - type: mrr_at_3 value: 18.23 - type: mrr_at_5 value: 19.185 - type: ndcg_at_1 value: 15.254000000000001 - type: ndcg_at_10 value: 21.183 - type: ndcg_at_100 value: 25.972 - type: ndcg_at_1000 value: 29.271 - type: ndcg_at_3 value: 18.046 - type: ndcg_at_5 value: 19.570999999999998 - type: precision_at_1 value: 15.254000000000001 - type: precision_at_10 value: 3.288 - type: precision_at_100 value: 0.614 - type: precision_at_1000 value: 0.094 - type: precision_at_3 value: 7.5329999999999995 - type: precision_at_5 value: 5.379 - type: recall_at_1 value: 14.052999999999999 - type: recall_at_10 value: 28.599999999999998 - type: recall_at_100 value: 51.815 - type: recall_at_1000 value: 77.04299999999999 - type: recall_at_3 value: 20.238999999999997 - type: recall_at_5 value: 23.837 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: map_at_1 value: 8.475000000000001 - type: map_at_10 value: 12.898000000000001 - type: map_at_100 value: 13.950000000000001 - type: map_at_1000 value: 14.063999999999998 - type: map_at_3 value: 10.965 - type: map_at_5 value: 11.905000000000001 - type: mrr_at_1 value: 10.323 - type: mrr_at_10 value: 15.431000000000001 - type: mrr_at_100 value: 16.442 - type: mrr_at_1000 value: 16.526 - type: mrr_at_3 value: 13.288 - type: mrr_at_5 value: 14.382 - type: ndcg_at_1 value: 10.323 - type: ndcg_at_10 value: 16.325 - type: ndcg_at_100 value: 21.831999999999997 - type: ndcg_at_1000 value: 25.079 - type: ndcg_at_3 value: 12.372 - type: ndcg_at_5 value: 14.011999999999999 - type: precision_at_1 value: 10.323 - type: precision_at_10 value: 3.197 - type: precision_at_100 value: 0.6930000000000001 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 5.970000000000001 - type: precision_at_5 value: 4.627 - type: recall_at_1 value: 8.475000000000001 - type: recall_at_10 value: 24.651999999999997 - type: recall_at_100 value: 49.63 - type: recall_at_1000 value: 73.35000000000001 - type: recall_at_3 value: 13.852 - type: recall_at_5 value: 17.813000000000002 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: map_at_1 value: 18.278 - type: map_at_10 value: 24.852 - type: map_at_100 value: 26.308999999999997 - type: map_at_1000 value: 26.450000000000003 - type: map_at_3 value: 22.183 - type: map_at_5 value: 23.493 - type: mrr_at_1 value: 22.522000000000002 - type: mrr_at_10 value: 29.554000000000002 - type: mrr_at_100 value: 30.705 - type: mrr_at_1000 value: 30.774 - type: mrr_at_3 value: 26.821 - type: mrr_at_5 value: 28.288000000000004 - type: ndcg_at_1 value: 22.522000000000002 - type: ndcg_at_10 value: 29.79 - type: ndcg_at_100 value: 36.473 - type: ndcg_at_1000 value: 39.440999999999995 - type: ndcg_at_3 value: 24.915000000000003 - type: ndcg_at_5 value: 26.941 - type: precision_at_1 value: 22.522000000000002 - type: precision_at_10 value: 5.707 - type: precision_at_100 value: 1.076 - type: precision_at_1000 value: 0.153 - type: precision_at_3 value: 11.645999999999999 - type: precision_at_5 value: 8.584999999999999 - type: recall_at_1 value: 18.278 - type: recall_at_10 value: 40.150999999999996 - type: recall_at_100 value: 68.978 - type: recall_at_1000 value: 89.295 - type: recall_at_3 value: 26.548 - type: recall_at_5 value: 31.772 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: map_at_1 value: 14.634 - type: map_at_10 value: 21.377 - type: map_at_100 value: 22.522000000000002 - type: map_at_1000 value: 22.657 - type: map_at_3 value: 19.292 - type: map_at_5 value: 20.278 - type: mrr_at_1 value: 18.151 - type: mrr_at_10 value: 25.263999999999996 - type: mrr_at_100 value: 26.156000000000002 - type: mrr_at_1000 value: 26.247 - type: mrr_at_3 value: 23.154 - type: mrr_at_5 value: 24.188000000000002 - type: ndcg_at_1 value: 18.151 - type: ndcg_at_10 value: 25.773000000000003 - type: ndcg_at_100 value: 31.130999999999997 - type: ndcg_at_1000 value: 34.452 - type: ndcg_at_3 value: 21.975 - type: ndcg_at_5 value: 23.36 - type: precision_at_1 value: 18.151 - type: precision_at_10 value: 4.829 - type: precision_at_100 value: 0.894 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 10.693 - type: precision_at_5 value: 7.648000000000001 - type: recall_at_1 value: 14.634 - type: recall_at_10 value: 35.433 - type: recall_at_100 value: 58.617 - type: recall_at_1000 value: 82.364 - type: recall_at_3 value: 24.59 - type: recall_at_5 value: 28.217 - task: type: Retrieval dataset: type: mteb/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 14.736583333333334 - type: map_at_10 value: 20.393 - type: map_at_100 value: 21.42775 - type: map_at_1000 value: 21.560666666666666 - type: map_at_3 value: 18.52958333333333 - type: map_at_5 value: 19.509249999999998 - type: mrr_at_1 value: 17.61366666666667 - type: mrr_at_10 value: 23.522250000000003 - type: mrr_at_100 value: 24.424166666666668 - type: mrr_at_1000 value: 24.512166666666666 - type: mrr_at_3 value: 21.64875 - type: mrr_at_5 value: 22.648916666666665 - type: ndcg_at_1 value: 17.61366666666667 - type: ndcg_at_10 value: 24.16458333333333 - type: ndcg_at_100 value: 29.305916666666672 - type: ndcg_at_1000 value: 32.52291666666667 - type: ndcg_at_3 value: 20.732 - type: ndcg_at_5 value: 22.223333333333333 - type: precision_at_1 value: 17.61366666666667 - type: precision_at_10 value: 4.33925 - type: precision_at_100 value: 0.8296666666666666 - type: precision_at_1000 value: 0.12933333333333333 - type: precision_at_3 value: 9.6265 - type: precision_at_5 value: 6.921666666666666 - type: recall_at_1 value: 14.736583333333334 - type: recall_at_10 value: 32.46958333333333 - type: recall_at_100 value: 55.94050000000001 - type: recall_at_1000 value: 79.17466666666667 - type: recall_at_3 value: 22.765749999999997 - type: recall_at_5 value: 26.614583333333336 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackStatsRetrieval config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: map_at_1 value: 11.152 - type: map_at_10 value: 16.052 - type: map_at_100 value: 16.892 - type: map_at_1000 value: 17.0 - type: map_at_3 value: 14.677999999999999 - type: map_at_5 value: 15.424 - type: mrr_at_1 value: 12.883 - type: mrr_at_10 value: 17.871000000000002 - type: mrr_at_100 value: 18.694 - type: mrr_at_1000 value: 18.793000000000003 - type: mrr_at_3 value: 16.641000000000002 - type: mrr_at_5 value: 17.262 - type: ndcg_at_1 value: 12.883 - type: ndcg_at_10 value: 18.981 - type: ndcg_at_100 value: 23.704 - type: ndcg_at_1000 value: 26.810000000000002 - type: ndcg_at_3 value: 16.361 - type: ndcg_at_5 value: 17.507 - type: precision_at_1 value: 12.883 - type: precision_at_10 value: 3.221 - type: precision_at_100 value: 0.612 - type: precision_at_1000 value: 0.095 - type: precision_at_3 value: 7.4639999999999995 - type: precision_at_5 value: 5.244999999999999 - type: recall_at_1 value: 11.152 - type: recall_at_10 value: 26.22 - type: recall_at_100 value: 48.870000000000005 - type: recall_at_1000 value: 72.328 - type: recall_at_3 value: 18.838 - type: recall_at_5 value: 21.693 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackTexRetrieval config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: map_at_1 value: 8.338 - type: map_at_10 value: 12.315 - type: map_at_100 value: 13.086 - type: map_at_1000 value: 13.214 - type: map_at_3 value: 11.032 - type: map_at_5 value: 11.691 - type: mrr_at_1 value: 10.255 - type: mrr_at_10 value: 14.723 - type: mrr_at_100 value: 15.528 - type: mrr_at_1000 value: 15.626000000000001 - type: mrr_at_3 value: 13.289000000000001 - type: mrr_at_5 value: 14.047 - type: ndcg_at_1 value: 10.255 - type: ndcg_at_10 value: 15.058 - type: ndcg_at_100 value: 19.326 - type: ndcg_at_1000 value: 22.972 - type: ndcg_at_3 value: 12.565999999999999 - type: ndcg_at_5 value: 13.603000000000002 - type: precision_at_1 value: 10.255 - type: precision_at_10 value: 2.815 - type: precision_at_100 value: 0.597 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 6.045 - type: precision_at_5 value: 4.405 - type: recall_at_1 value: 8.338 - type: recall_at_10 value: 21.125 - type: recall_at_100 value: 40.936 - type: recall_at_1000 value: 67.984 - type: recall_at_3 value: 14.018 - type: recall_at_5 value: 16.725 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackUnixRetrieval config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: map_at_1 value: 13.575000000000001 - type: map_at_10 value: 18.967 - type: map_at_100 value: 19.924 - type: map_at_1000 value: 20.06 - type: map_at_3 value: 17.101 - type: map_at_5 value: 18.142 - type: mrr_at_1 value: 16.418 - type: mrr_at_10 value: 22.131 - type: mrr_at_100 value: 22.993 - type: mrr_at_1000 value: 23.101 - type: mrr_at_3 value: 20.288999999999998 - type: mrr_at_5 value: 21.282999999999998 - type: ndcg_at_1 value: 16.418 - type: ndcg_at_10 value: 22.625 - type: ndcg_at_100 value: 27.676000000000002 - type: ndcg_at_1000 value: 31.41 - type: ndcg_at_3 value: 19.136 - type: ndcg_at_5 value: 20.748 - type: precision_at_1 value: 16.418 - type: precision_at_10 value: 3.9739999999999998 - type: precision_at_100 value: 0.743 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 8.924 - type: precision_at_5 value: 6.381 - type: recall_at_1 value: 13.575000000000001 - type: recall_at_10 value: 30.794 - type: recall_at_100 value: 54.02400000000001 - type: recall_at_1000 value: 81.634 - type: recall_at_3 value: 21.095 - type: recall_at_5 value: 25.25 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 14.915999999999999 - type: map_at_10 value: 20.976 - type: map_at_100 value: 22.127 - type: map_at_1000 value: 22.329 - type: map_at_3 value: 19.62 - type: map_at_5 value: 20.247999999999998 - type: mrr_at_1 value: 18.379 - type: mrr_at_10 value: 24.822 - type: mrr_at_100 value: 25.765 - type: mrr_at_1000 value: 25.852000000000004 - type: mrr_at_3 value: 23.551 - type: mrr_at_5 value: 24.193 - type: ndcg_at_1 value: 18.379 - type: ndcg_at_10 value: 24.956999999999997 - type: ndcg_at_100 value: 30.224 - type: ndcg_at_1000 value: 33.883 - type: ndcg_at_3 value: 23.094 - type: ndcg_at_5 value: 23.659 - type: precision_at_1 value: 18.379 - type: precision_at_10 value: 4.802 - type: precision_at_100 value: 1.105 - type: precision_at_1000 value: 0.2 - type: precision_at_3 value: 11.462 - type: precision_at_5 value: 7.826 - type: recall_at_1 value: 14.915999999999999 - type: recall_at_10 value: 31.902 - type: recall_at_100 value: 57.296 - type: recall_at_1000 value: 82.107 - type: recall_at_3 value: 25.013 - type: recall_at_5 value: 27.281 - task: type: Retrieval dataset: type: None name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 12.237 - type: map_at_10 value: 15.703 - type: map_at_100 value: 16.522000000000002 - type: map_at_1000 value: 16.631999999999998 - type: map_at_3 value: 14.455000000000002 - type: map_at_5 value: 14.982000000000001 - type: mrr_at_1 value: 13.309000000000001 - type: mrr_at_10 value: 17.068 - type: mrr_at_100 value: 17.904 - type: mrr_at_1000 value: 18.004 - type: mrr_at_3 value: 15.712000000000002 - type: mrr_at_5 value: 16.285 - type: ndcg_at_1 value: 13.309000000000001 - type: ndcg_at_10 value: 18.205 - type: ndcg_at_100 value: 22.68 - type: ndcg_at_1000 value: 25.901000000000003 - type: ndcg_at_3 value: 15.472 - type: ndcg_at_5 value: 16.436 - type: precision_at_1 value: 13.309000000000001 - type: precision_at_10 value: 2.791 - type: precision_at_100 value: 0.538 - type: precision_at_1000 value: 0.086 - type: precision_at_3 value: 6.346 - type: precision_at_5 value: 4.324999999999999 - type: recall_at_1 value: 12.237 - type: recall_at_10 value: 24.88 - type: recall_at_100 value: 46.017 - type: recall_at_1000 value: 71.029 - type: recall_at_3 value: 17.197000000000003 - type: recall_at_5 value: 19.6 - task: type: Retrieval dataset: type: None name: MTEB ClimateFEVER config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: map_at_1 value: 6.732 - type: map_at_10 value: 12.674 - type: map_at_100 value: 14.257 - type: map_at_1000 value: 14.463999999999999 - type: map_at_3 value: 10.355 - type: map_at_5 value: 11.524 - type: mrr_at_1 value: 15.831000000000001 - type: mrr_at_10 value: 25.972 - type: mrr_at_100 value: 27.107999999999997 - type: mrr_at_1000 value: 27.167 - type: mrr_at_3 value: 22.637999999999998 - type: mrr_at_5 value: 24.319 - type: ndcg_at_1 value: 15.831000000000001 - type: ndcg_at_10 value: 19.244 - type: ndcg_at_100 value: 26.329 - type: ndcg_at_1000 value: 30.270999999999997 - type: ndcg_at_3 value: 14.966 - type: ndcg_at_5 value: 16.377 - type: precision_at_1 value: 15.831000000000001 - type: precision_at_10 value: 6.404 - type: precision_at_100 value: 1.403 - type: precision_at_1000 value: 0.212 - type: precision_at_3 value: 11.64 - type: precision_at_5 value: 9.134 - type: recall_at_1 value: 6.732 - type: recall_at_10 value: 24.855 - type: recall_at_100 value: 49.730000000000004 - type: recall_at_1000 value: 72.214 - type: recall_at_3 value: 14.299000000000001 - type: recall_at_5 value: 18.363 - task: type: Retrieval dataset: type: None name: MTEB DBPedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: map_at_1 value: 4.529 - type: map_at_10 value: 9.075999999999999 - type: map_at_100 value: 12.394 - type: map_at_1000 value: 13.272999999999998 - type: map_at_3 value: 6.688 - type: map_at_5 value: 7.803 - type: mrr_at_1 value: 36.25 - type: mrr_at_10 value: 46.867 - type: mrr_at_100 value: 47.654 - type: mrr_at_1000 value: 47.679 - type: mrr_at_3 value: 43.791999999999994 - type: mrr_at_5 value: 45.742 - type: ndcg_at_1 value: 26.75 - type: ndcg_at_10 value: 21.146 - type: ndcg_at_100 value: 25.113999999999997 - type: ndcg_at_1000 value: 31.873 - type: ndcg_at_3 value: 23.142 - type: ndcg_at_5 value: 22.273 - type: precision_at_1 value: 36.25 - type: precision_at_10 value: 18.25 - type: precision_at_100 value: 6.16 - type: precision_at_1000 value: 1.34 - type: precision_at_3 value: 27.250000000000004 - type: precision_at_5 value: 23.75 - type: recall_at_1 value: 4.529 - type: recall_at_10 value: 13.442000000000002 - type: recall_at_100 value: 32.534 - type: recall_at_1000 value: 55.346 - type: recall_at_3 value: 7.771999999999999 - type: recall_at_5 value: 10.061 - task: type: Classification dataset: type: None name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 37.89000000000001 - type: f1 value: 34.12692942265391 - task: type: Retrieval dataset: type: None name: MTEB FEVER config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: map_at_1 value: 16.28 - type: map_at_10 value: 24.729 - type: map_at_100 value: 25.785999999999998 - type: map_at_1000 value: 25.855 - type: map_at_3 value: 22.083 - type: map_at_5 value: 23.534 - type: mrr_at_1 value: 17.462 - type: mrr_at_10 value: 26.358999999999998 - type: mrr_at_100 value: 27.412 - type: mrr_at_1000 value: 27.473 - type: mrr_at_3 value: 23.615 - type: mrr_at_5 value: 25.115 - type: ndcg_at_1 value: 17.462 - type: ndcg_at_10 value: 29.885 - type: ndcg_at_100 value: 35.268 - type: ndcg_at_1000 value: 37.203 - type: ndcg_at_3 value: 24.397 - type: ndcg_at_5 value: 26.995 - type: precision_at_1 value: 17.462 - type: precision_at_10 value: 4.851 - type: precision_at_100 value: 0.77 - type: precision_at_1000 value: 0.095 - type: precision_at_3 value: 10.666 - type: precision_at_5 value: 7.762 - type: recall_at_1 value: 16.28 - type: recall_at_10 value: 44.554 - type: recall_at_100 value: 69.736 - type: recall_at_1000 value: 84.654 - type: recall_at_3 value: 29.529 - type: recall_at_5 value: 35.789 - task: type: Retrieval dataset: type: None name: MTEB FiQA2018 config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: map_at_1 value: 7.406 - type: map_at_10 value: 12.162 - type: map_at_100 value: 13.501 - type: map_at_1000 value: 13.700000000000001 - type: map_at_3 value: 10.282 - type: map_at_5 value: 11.182 - type: mrr_at_1 value: 14.969 - type: mrr_at_10 value: 21.453 - type: mrr_at_100 value: 22.579 - type: mrr_at_1000 value: 22.665 - type: mrr_at_3 value: 19.084 - type: mrr_at_5 value: 20.233999999999998 - type: ndcg_at_1 value: 14.969 - type: ndcg_at_10 value: 17.022000000000002 - type: ndcg_at_100 value: 23.415 - type: ndcg_at_1000 value: 27.811000000000003 - type: ndcg_at_3 value: 14.191999999999998 - type: ndcg_at_5 value: 15.026 - type: precision_at_1 value: 14.969 - type: precision_at_10 value: 4.954 - type: precision_at_100 value: 1.133 - type: precision_at_1000 value: 0.191 - type: precision_at_3 value: 9.516 - type: precision_at_5 value: 7.191 - type: recall_at_1 value: 7.406 - type: recall_at_10 value: 22.404 - type: recall_at_100 value: 47.351 - type: recall_at_1000 value: 74.701 - type: recall_at_3 value: 13.108 - type: recall_at_5 value: 16.531000000000002 - task: type: Retrieval dataset: type: None name: MTEB HotpotQA config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: map_at_1 value: 20.662 - type: map_at_10 value: 28.956 - type: map_at_100 value: 29.942999999999998 - type: map_at_1000 value: 30.052 - type: map_at_3 value: 26.767999999999997 - type: map_at_5 value: 28.011000000000003 - type: mrr_at_1 value: 41.323 - type: mrr_at_10 value: 49.242999999999995 - type: mrr_at_100 value: 49.97 - type: mrr_at_1000 value: 50.016000000000005 - type: mrr_at_3 value: 47.207 - type: mrr_at_5 value: 48.364000000000004 - type: ndcg_at_1 value: 41.323 - type: ndcg_at_10 value: 36.756 - type: ndcg_at_100 value: 41.189 - type: ndcg_at_1000 value: 43.667 - type: ndcg_at_3 value: 32.690999999999995 - type: ndcg_at_5 value: 34.703 - type: precision_at_1 value: 41.323 - type: precision_at_10 value: 8.015 - type: precision_at_100 value: 1.155 - type: precision_at_1000 value: 0.148 - type: precision_at_3 value: 20.612 - type: precision_at_5 value: 13.961000000000002 - type: recall_at_1 value: 20.662 - type: recall_at_10 value: 40.074 - type: recall_at_100 value: 57.745000000000005 - type: recall_at_1000 value: 74.24 - type: recall_at_3 value: 30.918 - type: recall_at_5 value: 34.902 - task: type: Classification dataset: type: None name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 64.62239999999998 - type: ap value: 59.505106899987936 - type: f1 value: 64.39587267286105 - task: type: Retrieval dataset: type: None name: MTEB MSMARCO config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: map_at_1 value: 6.507000000000001 - type: map_at_10 value: 11.542 - type: map_at_100 value: 12.542 - type: map_at_1000 value: 12.658 - type: map_at_3 value: 9.67 - type: map_at_5 value: 10.631 - type: mrr_at_1 value: 6.705 - type: mrr_at_10 value: 11.857 - type: mrr_at_100 value: 12.863 - type: mrr_at_1000 value: 12.974 - type: mrr_at_3 value: 9.957 - type: mrr_at_5 value: 10.933 - type: ndcg_at_1 value: 6.705 - type: ndcg_at_10 value: 14.764 - type: ndcg_at_100 value: 20.258000000000003 - type: ndcg_at_1000 value: 23.685000000000002 - type: ndcg_at_3 value: 10.809000000000001 - type: ndcg_at_5 value: 12.543000000000001 - type: precision_at_1 value: 6.705 - type: precision_at_10 value: 2.579 - type: precision_at_100 value: 0.543 - type: precision_at_1000 value: 0.084 - type: precision_at_3 value: 4.771 - type: precision_at_5 value: 3.734 - type: recall_at_1 value: 6.507000000000001 - type: recall_at_10 value: 24.842 - type: recall_at_100 value: 51.697 - type: recall_at_1000 value: 79.081 - type: recall_at_3 value: 13.828 - type: recall_at_5 value: 18.009 - task: type: Classification dataset: type: None name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 84.40264477884178 - type: f1 value: 83.43871348215795 - task: type: Classification dataset: type: None name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 54.90196078431372 - type: f1 value: 35.66115135754105 - task: type: Classification dataset: type: None name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.371889710827176 - type: f1 value: 58.91304009131599 - task: type: Classification dataset: type: None name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.52185608607937 - type: f1 value: 66.27921261407421 - task: type: Clustering dataset: type: None name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 30.40912967319626 - task: type: Clustering dataset: type: None name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 26.77476593032722 - task: type: Reranking dataset: type: None name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.522211560565317 - type: mrr value: 31.540554976019745 - task: type: Retrieval dataset: type: None name: MTEB NFCorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: map_at_1 value: 2.871 - type: map_at_10 value: 6.643000000000001 - type: map_at_100 value: 8.801 - type: map_at_1000 value: 9.961 - type: map_at_3 value: 4.862 - type: map_at_5 value: 5.704 - type: mrr_at_1 value: 29.102 - type: mrr_at_10 value: 38.79 - type: mrr_at_100 value: 39.616 - type: mrr_at_1000 value: 39.659 - type: mrr_at_3 value: 35.913000000000004 - type: mrr_at_5 value: 37.74 - type: ndcg_at_1 value: 27.554000000000002 - type: ndcg_at_10 value: 22.215 - type: ndcg_at_100 value: 21.386 - type: ndcg_at_1000 value: 30.615 - type: ndcg_at_3 value: 25.546000000000003 - type: ndcg_at_5 value: 24.425 - type: precision_at_1 value: 29.102 - type: precision_at_10 value: 17.121 - type: precision_at_100 value: 6.146 - type: precision_at_1000 value: 1.9029999999999998 - type: precision_at_3 value: 24.871 - type: precision_at_5 value: 22.291 - type: recall_at_1 value: 2.871 - type: recall_at_10 value: 10.184999999999999 - type: recall_at_100 value: 24.057000000000002 - type: recall_at_1000 value: 56.788000000000004 - type: recall_at_3 value: 5.606 - type: recall_at_5 value: 7.353 - task: type: Retrieval dataset: type: None name: MTEB NQ config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: map_at_1 value: 10.455 - type: map_at_10 value: 17.904999999999998 - type: map_at_100 value: 19.215 - type: map_at_1000 value: 19.314 - type: map_at_3 value: 15.133 - type: map_at_5 value: 16.624 - type: mrr_at_1 value: 11.906 - type: mrr_at_10 value: 19.595000000000002 - type: mrr_at_100 value: 20.765 - type: mrr_at_1000 value: 20.845 - type: mrr_at_3 value: 16.7 - type: mrr_at_5 value: 18.314 - type: ndcg_at_1 value: 11.906 - type: ndcg_at_10 value: 22.733999999999998 - type: ndcg_at_100 value: 29.179 - type: ndcg_at_1000 value: 31.848 - type: ndcg_at_3 value: 16.98 - type: ndcg_at_5 value: 19.695 - type: precision_at_1 value: 11.906 - type: precision_at_10 value: 4.234999999999999 - type: precision_at_100 value: 0.79 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 7.976 - type: precision_at_5 value: 6.286 - type: recall_at_1 value: 10.455 - type: recall_at_10 value: 36.114000000000004 - type: recall_at_100 value: 65.742 - type: recall_at_1000 value: 86.22800000000001 - type: recall_at_3 value: 20.826 - type: recall_at_5 value: 27.165 - task: type: Retrieval dataset: type: None name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 63.336000000000006 - type: map_at_10 value: 76.859 - type: map_at_100 value: 77.679 - type: map_at_1000 value: 77.705 - type: map_at_3 value: 73.681 - type: map_at_5 value: 75.558 - type: mrr_at_1 value: 73.13 - type: mrr_at_10 value: 80.757 - type: mrr_at_100 value: 80.99300000000001 - type: mrr_at_1000 value: 80.99499999999999 - type: mrr_at_3 value: 79.267 - type: mrr_at_5 value: 80.209 - type: ndcg_at_1 value: 73.15 - type: ndcg_at_10 value: 81.693 - type: ndcg_at_100 value: 83.733 - type: ndcg_at_1000 value: 83.943 - type: ndcg_at_3 value: 77.866 - type: ndcg_at_5 value: 79.779 - type: precision_at_1 value: 73.15 - type: precision_at_10 value: 12.603 - type: precision_at_100 value: 1.51 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 34.123 - type: precision_at_5 value: 22.636 - type: recall_at_1 value: 63.336000000000006 - type: recall_at_10 value: 91.36999999999999 - type: recall_at_100 value: 98.831 - type: recall_at_1000 value: 99.901 - type: recall_at_3 value: 80.495 - type: recall_at_5 value: 85.799 - task: type: Clustering dataset: type: None name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 43.4964655583453 - task: type: Clustering dataset: type: None name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 48.31404856068323 - task: type: Retrieval dataset: type: None name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 3.5479999999999996 - type: map_at_10 value: 8.923 - type: map_at_100 value: 11.038 - type: map_at_1000 value: 11.384 - type: map_at_3 value: 6.387 - type: map_at_5 value: 7.646999999999999 - type: mrr_at_1 value: 17.5 - type: mrr_at_10 value: 27.71 - type: mrr_at_100 value: 28.898000000000003 - type: mrr_at_1000 value: 28.96 - type: mrr_at_3 value: 24.282999999999998 - type: mrr_at_5 value: 26.123 - type: ndcg_at_1 value: 17.5 - type: ndcg_at_10 value: 15.831999999999999 - type: ndcg_at_100 value: 24.478 - type: ndcg_at_1000 value: 30.548 - type: ndcg_at_3 value: 14.66 - type: ndcg_at_5 value: 12.969 - type: precision_at_1 value: 17.5 - type: precision_at_10 value: 8.38 - type: precision_at_100 value: 2.103 - type: precision_at_1000 value: 0.356 - type: precision_at_3 value: 13.866999999999999 - type: precision_at_5 value: 11.58 - type: recall_at_1 value: 3.5479999999999996 - type: recall_at_10 value: 16.958000000000002 - type: recall_at_100 value: 42.687999999999995 - type: recall_at_1000 value: 72.173 - type: recall_at_3 value: 8.437999999999999 - type: recall_at_5 value: 11.738 - task: type: STS dataset: type: None name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 77.88215495721286 - type: cos_sim_spearman value: 66.95635868609415 - type: euclidean_pearson value: 71.95058611790435 - type: euclidean_spearman value: 66.95635868609415 - type: manhattan_pearson value: 71.73499967722593 - type: manhattan_spearman value: 66.76136105777387 - task: type: STS dataset: type: None name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 72.56521014258115 - type: cos_sim_spearman value: 64.21841908004934 - type: euclidean_pearson value: 68.51846331737438 - type: euclidean_spearman value: 64.21841908004934 - type: manhattan_pearson value: 68.27567108498233 - type: manhattan_spearman value: 64.09725470920785 - task: type: STS dataset: type: None name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 72.71775862893193 - type: cos_sim_spearman value: 73.28911820172492 - type: euclidean_pearson value: 72.83254599010056 - type: euclidean_spearman value: 73.28922176679981 - type: manhattan_pearson value: 72.56589783996398 - type: manhattan_spearman value: 72.99829341365574 - task: type: STS dataset: type: None name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 73.89757752366668 - type: cos_sim_spearman value: 68.93443322328304 - type: euclidean_pearson value: 71.74950262447223 - type: euclidean_spearman value: 68.93447340804855 - type: manhattan_pearson value: 71.53131355539159 - type: manhattan_spearman value: 68.75571712820332 - task: type: STS dataset: type: None name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 80.97565977782956 - type: cos_sim_spearman value: 81.43311223145955 - type: euclidean_pearson value: 80.99231321031297 - type: euclidean_spearman value: 81.43311223145955 - type: manhattan_pearson value: 80.85980250491755 - type: manhattan_spearman value: 81.28760623160176 - task: type: STS dataset: type: None name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 75.52199164461821 - type: cos_sim_spearman value: 76.00370946904079 - type: euclidean_pearson value: 75.52316904078243 - type: euclidean_spearman value: 76.00370946904079 - type: manhattan_pearson value: 75.3120467704852 - type: manhattan_spearman value: 75.73102913980114 - task: type: STS dataset: type: None name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 84.71078769268394 - type: cos_sim_spearman value: 84.92569102013795 - type: euclidean_pearson value: 84.42768434149738 - type: euclidean_spearman value: 84.92569102013795 - type: manhattan_pearson value: 84.36599569720875 - type: manhattan_spearman value: 84.97627760625926 - task: type: STS dataset: type: None name: MTEB STS22 (en) config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 60.75551853889779 - type: cos_sim_spearman value: 59.56097878013177 - type: euclidean_pearson value: 62.25756001900302 - type: euclidean_spearman value: 59.56097878013177 - type: manhattan_pearson value: 61.56622096305194 - type: manhattan_spearman value: 58.794887940253346 - task: type: STS dataset: type: None name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 78.57502299404004 - type: cos_sim_spearman value: 76.84123747775618 - type: euclidean_pearson value: 78.18263544350317 - type: euclidean_spearman value: 76.84123747775618 - type: manhattan_pearson value: 78.06611402413624 - type: manhattan_spearman value: 76.79100666899737 - task: type: Reranking dataset: type: None name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 82.80038681665185 - type: mrr value: 94.90057418978986 - task: type: Retrieval dataset: type: None name: MTEB SciFact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: map_at_1 value: 39.056000000000004 - type: map_at_10 value: 48.714 - type: map_at_100 value: 49.653999999999996 - type: map_at_1000 value: 49.706 - type: map_at_3 value: 45.806000000000004 - type: map_at_5 value: 47.5 - type: mrr_at_1 value: 41.0 - type: mrr_at_10 value: 50.104000000000006 - type: mrr_at_100 value: 50.859 - type: mrr_at_1000 value: 50.903 - type: mrr_at_3 value: 47.556 - type: mrr_at_5 value: 48.972 - type: ndcg_at_1 value: 41.0 - type: ndcg_at_10 value: 54.144999999999996 - type: ndcg_at_100 value: 58.269999999999996 - type: ndcg_at_1000 value: 59.648 - type: ndcg_at_3 value: 48.451 - type: ndcg_at_5 value: 51.319 - type: precision_at_1 value: 41.0 - type: precision_at_10 value: 7.7 - type: precision_at_100 value: 0.997 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 19.444 - type: precision_at_5 value: 13.333 - type: recall_at_1 value: 39.056000000000004 - type: recall_at_10 value: 69.61699999999999 - type: recall_at_100 value: 87.922 - type: recall_at_1000 value: 98.667 - type: recall_at_3 value: 54.193999999999996 - type: recall_at_5 value: 61.138999999999996 - task: type: PairClassification dataset: type: None name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.73762376237623 - type: cos_sim_ap value: 91.61413659372461 - type: cos_sim_f1 value: 86.34046890927624 - type: cos_sim_precision value: 88.04573804573805 - type: cos_sim_recall value: 84.7 - type: dot_accuracy value: 99.73762376237623 - type: dot_ap value: 91.61413659372461 - type: dot_f1 value: 86.34046890927624 - type: dot_precision value: 88.04573804573805 - type: dot_recall value: 84.7 - type: euclidean_accuracy value: 99.73762376237623 - type: euclidean_ap value: 91.61413659372461 - type: euclidean_f1 value: 86.34046890927624 - type: euclidean_precision value: 88.04573804573805 - type: euclidean_recall value: 84.7 - type: manhattan_accuracy value: 99.74059405940594 - type: manhattan_ap value: 91.56213824792806 - type: manhattan_f1 value: 86.22502628811776 - type: manhattan_precision value: 90.9090909090909 - type: manhattan_recall value: 82.0 - type: max_accuracy value: 99.74059405940594 - type: max_ap value: 91.61413659372461 - type: max_f1 value: 86.34046890927624 - task: type: Clustering dataset: type: None name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 53.09338784502622 - task: type: Clustering dataset: type: None name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 32.57087655180163 - task: type: Reranking dataset: type: None name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 41.59188785875835 - type: mrr value: 41.92390024191495 - task: type: Summarization dataset: type: None name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 29.69015090602311 - type: cos_sim_spearman value: 30.124791626004075 - type: dot_pearson value: 29.69015070868056 - type: dot_spearman value: 30.09621990241238 - task: type: Retrieval dataset: type: None name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.186 - type: map_at_10 value: 1.2149999999999999 - type: map_at_100 value: 6.516 - type: map_at_1000 value: 14.704999999999998 - type: map_at_3 value: 0.469 - type: map_at_5 value: 0.701 - type: mrr_at_1 value: 72.0 - type: mrr_at_10 value: 80.238 - type: mrr_at_100 value: 80.622 - type: mrr_at_1000 value: 80.622 - type: mrr_at_3 value: 79.667 - type: mrr_at_5 value: 79.667 - type: ndcg_at_1 value: 64.0 - type: ndcg_at_10 value: 57.147000000000006 - type: ndcg_at_100 value: 40.5 - type: ndcg_at_1000 value: 33.954 - type: ndcg_at_3 value: 62.754 - type: ndcg_at_5 value: 59.933 - type: precision_at_1 value: 72.0 - type: precision_at_10 value: 60.6 - type: precision_at_100 value: 42.1 - type: precision_at_1000 value: 15.512 - type: precision_at_3 value: 67.333 - type: precision_at_5 value: 64.0 - type: recall_at_1 value: 0.186 - type: recall_at_10 value: 1.385 - type: recall_at_100 value: 9.332 - type: recall_at_1000 value: 31.922 - type: recall_at_3 value: 0.503 - type: recall_at_5 value: 0.759 - task: type: Retrieval dataset: type: None name: MTEB Touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: map_at_1 value: 2.0660000000000003 - type: map_at_10 value: 9.783999999999999 - type: map_at_100 value: 16.005 - type: map_at_1000 value: 17.694 - type: map_at_3 value: 4.524 - type: map_at_5 value: 6.651 - type: mrr_at_1 value: 32.653 - type: mrr_at_10 value: 49.26 - type: mrr_at_100 value: 49.791000000000004 - type: mrr_at_1000 value: 49.791000000000004 - type: mrr_at_3 value: 45.238 - type: mrr_at_5 value: 47.177 - type: ndcg_at_1 value: 29.592000000000002 - type: ndcg_at_10 value: 26.35 - type: ndcg_at_100 value: 38.078 - type: ndcg_at_1000 value: 49.222 - type: ndcg_at_3 value: 28.749000000000002 - type: ndcg_at_5 value: 28.156 - type: precision_at_1 value: 32.653 - type: precision_at_10 value: 25.306 - type: precision_at_100 value: 8.449 - type: precision_at_1000 value: 1.559 - type: precision_at_3 value: 31.293 - type: precision_at_5 value: 30.203999999999997 - type: recall_at_1 value: 2.0660000000000003 - type: recall_at_10 value: 17.009 - type: recall_at_100 value: 50.065000000000005 - type: recall_at_1000 value: 84.247 - type: recall_at_3 value: 6.223 - type: recall_at_5 value: 10.062 - task: type: Classification dataset: type: None name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 65.9572 - type: ap value: 11.472412091038306 - type: f1 value: 50.25348253932964 - task: type: Classification dataset: type: None name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 49.60384833050367 - type: f1 value: 49.6458985672963 - task: type: Clustering dataset: type: None name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 32.85259172670649 - task: type: PairClassification dataset: type: None name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 79.30500089408118 - type: cos_sim_ap value: 48.463983264840934 - type: cos_sim_f1 value: 49.28199791883455 - type: cos_sim_precision value: 40.687285223367695 - type: cos_sim_recall value: 62.48021108179419 - type: dot_accuracy value: 79.30500089408118 - type: dot_ap value: 48.463988663433994 - type: dot_f1 value: 49.28199791883455 - type: dot_precision value: 40.687285223367695 - type: dot_recall value: 62.48021108179419 - type: euclidean_accuracy value: 79.30500089408118 - type: euclidean_ap value: 48.463983264840934 - type: euclidean_f1 value: 49.28199791883455 - type: euclidean_precision value: 40.687285223367695 - type: euclidean_recall value: 62.48021108179419 - type: manhattan_accuracy value: 79.2811587292126 - type: manhattan_ap value: 48.38522593516497 - type: manhattan_f1 value: 49.11896465903435 - type: manhattan_precision value: 39.440447641886486 - type: manhattan_recall value: 65.09234828496042 - type: max_accuracy value: 79.30500089408118 - type: max_ap value: 48.463988663433994 - type: max_f1 value: 49.28199791883455 - task: type: PairClassification dataset: type: None name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 86.58167423448597 - type: cos_sim_ap value: 80.70276946703169 - type: cos_sim_f1 value: 73.6376389338513 - type: cos_sim_precision value: 69.10146492945385 - type: cos_sim_recall value: 78.81121034801355 - type: dot_accuracy value: 86.58167423448597 - type: dot_ap value: 80.70276237270826 - type: dot_f1 value: 73.6376389338513 - type: dot_precision value: 69.10146492945385 - type: dot_recall value: 78.81121034801355 - type: euclidean_accuracy value: 86.58167423448597 - type: euclidean_ap value: 80.70277058558774 - type: euclidean_f1 value: 73.6376389338513 - type: euclidean_precision value: 69.10146492945385 - type: euclidean_recall value: 78.81121034801355 - type: manhattan_accuracy value: 86.47882951061435 - type: manhattan_ap value: 80.56146544234434 - type: manhattan_f1 value: 73.43608995415659 - type: manhattan_precision value: 69.1267414203194 - type: manhattan_recall value: 78.31844779796735 - type: max_accuracy value: 86.58167423448597 - type: max_ap value: 80.70277058558774 - type: max_f1 value: 73.6376389338513 ---