--- library_name: transformers license: mit language: - en metrics: - accuracy - f1 base_model: - FacebookAI/roberta-base pipeline_tag: text-classification --- # Model Card for Model ID LoRA-based fine-tuned RoBERTa model for multi-intent classification in natural language utterances. --- ## Model Details ### Model Description - **Developed by:** Taewook Kang (Github: [@twkang43](https://github.com/twkang43)) - **Model type:** Fine-tuned [RoBERTa](https://arxiv.org/abs/1907.11692) model with [Low-Rank Adaptation](https://arxiv.org/abs/2106.09685) (LoRA) for multiple intent classification. - **Language(s) (NLP):** English - **License:** MIT License - **Finetuned from model:** [RoBERTa-base](https://huggingface.co/FacebookAI/roberta-base) ## Uses ## How to Get Started with the Model Use the code below to download the tokenizer and fine-tuned model with LoRA. ```python from transformers import AutoTokenizer,AutoModelForSequenceClassification from peft import PeftModel tokenizer = AutoTokenizer.from_pretrained("twkang43/lora-roberta-cse4057") base_model = AutoModelForSequenceClassification.from_pretrained( MODEL_NAME, problem_type="multi_label_classification", num_labels=num_labels, id2label=id2label, label2id=label2id ).to(DEVICE) model = PeftModel.from_pretrained(base_model, "twkang43/lora-roberta-cse4057") ``` ## Training Details ### Training Data Fine-tuned on the [BlendX](https://arxiv.org/abs/2403.18277) dataset ("train" dataset was split into training and validation datasets with a 9:1 ratio). ### Training Procedure This model is primarily fine-tuned with LoRA. #### Training Hyperparameters - **Training regime:** fp16 mixed precision - **Training epochs:** 10 - **Batch size:** 16 - **Learning rate:** 1e-3 - **Max gradient norm:** 1.0 - **Weight decay:** 0.0 - **Lr scheduler:** cosine - **Warmup ratio:** 0.1 ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data The model was tested on the [BlendX](https://arxiv.org/abs/2403.18277) dataset ("dev" data). #### Metrics - Accuracy with micro - F1 score with micro ### Results - **Accuracy = 0.87** - **F1 score = 0.93** #### Summary ### Compute Infrastructure This model was primarily trained using Google Colab (free tier). #### Hardware - GPU: NVIDIA T4 with 16GB VRAM - RAM: 16GB - Processor: Shared virtual CPUs (details depend on Google Colab free tier allocations) #### Software - PyTorch - Jupyter Notebook - Tensorboard ## Model Card Contact - twkang43@hanyang.ac.kr