uboza10300 commited on
Commit
d81bc9d
·
verified ·
1 Parent(s): 1315bad

End of training

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -26,16 +26,16 @@ model-index:
26
  metrics:
27
  - name: Accuracy
28
  type: accuracy
29
- value: 0.6980249480249481
30
  - name: Precision
31
  type: precision
32
- value: 0.6910661008340158
33
  - name: Recall
34
  type: recall
35
- value: 0.6980249480249481
36
  - name: F1
37
  type: f1
38
- value: 0.6930951127781922
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
45
 
46
  This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the hatexplain dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.7560
49
- - Accuracy: 0.6980
50
- - Precision: 0.6911
51
- - Recall: 0.6980
52
- - F1: 0.6931
53
 
54
  ## Model description
55
 
@@ -68,11 +68,11 @@ More information needed
68
  ### Training hyperparameters
69
 
70
  The following hyperparameters were used during training:
71
- - learning_rate: 2e-05
72
- - train_batch_size: 8
73
- - eval_batch_size: 8
74
  - seed: 42
75
- - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
  - lr_scheduler_type: linear
77
  - num_epochs: 3
78
 
@@ -80,9 +80,9 @@ The following hyperparameters were used during training:
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
82
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
83
- | 0.6426 | 1.0 | 1923 | 0.7613 | 0.6686 | 0.6613 | 0.6686 | 0.6581 |
84
- | 0.7264 | 2.0 | 3846 | 0.7503 | 0.6842 | 0.6784 | 0.6842 | 0.6802 |
85
- | 0.7134 | 3.0 | 5769 | 0.7898 | 0.6831 | 0.6770 | 0.6831 | 0.6786 |
86
 
87
 
88
  ### Framework versions
 
26
  metrics:
27
  - name: Accuracy
28
  type: accuracy
29
+ value: 0.7001039501039501
30
  - name: Precision
31
  type: precision
32
+ value: 0.6918647538029303
33
  - name: Recall
34
  type: recall
35
+ value: 0.7001039501039501
36
  - name: F1
37
  type: f1
38
+ value: 0.6920044305899404
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
45
 
46
  This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the hatexplain dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.7758
49
+ - Accuracy: 0.7001
50
+ - Precision: 0.6919
51
+ - Recall: 0.7001
52
+ - F1: 0.6920
53
 
54
  ## Model description
55
 
 
68
  ### Training hyperparameters
69
 
70
  The following hyperparameters were used during training:
71
+ - learning_rate: 5e-05
72
+ - train_batch_size: 16
73
+ - eval_batch_size: 16
74
  - seed: 42
75
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
  - lr_scheduler_type: linear
77
  - num_epochs: 3
78
 
 
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
82
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
83
+ | 0.7621 | 1.0 | 962 | 0.7321 | 0.6805 | 0.6755 | 0.6805 | 0.6690 |
84
+ | 0.6306 | 2.0 | 1924 | 0.7410 | 0.6863 | 0.6775 | 0.6863 | 0.6767 |
85
+ | 0.5825 | 3.0 | 2886 | 0.7928 | 0.6868 | 0.6800 | 0.6868 | 0.6819 |
86
 
87
 
88
  ### Framework versions