Update README.md
Browse files
README.md
CHANGED
@@ -35,64 +35,70 @@ You can use the model directly with a pipeline for text generation:
|
|
35 |
|
36 |
## Training procedure
|
37 |
|
38 |
-
The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud
|
39 |
|
40 |
Stage1:
|
41 |
|
42 |
```
|
43 |
-
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt
|
44 |
-
--vocab_path models/google_zh_vocab.txt
|
45 |
-
--dataset_path cluecorpussmall_lm_seq128_dataset.pt
|
46 |
--seq_length 128 --processes_num 32 --target lm
|
47 |
```
|
48 |
|
49 |
```
|
50 |
-
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq128_dataset.pt
|
51 |
-
--vocab_path models/google_zh_vocab.txt
|
52 |
-
--config_path models/gpt2/config.json
|
53 |
-
--output_model_path models/cluecorpussmall_gpt2_seq128_model.bin
|
54 |
-
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7
|
55 |
-
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000
|
56 |
-
--learning_rate 1e-4 --batch_size 64
|
57 |
-
--embedding word_pos --remove_embedding_layernorm
|
58 |
-
--encoder transformer --mask causal --layernorm_positioning pre
|
59 |
--target lm --tie_weight
|
60 |
```
|
61 |
|
62 |
Stage2:
|
63 |
|
64 |
```
|
65 |
-
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt
|
66 |
-
--vocab_path models/google_zh_vocab.txt
|
67 |
-
--dataset_path cluecorpussmall_lm_seq1024_dataset.pt
|
68 |
--seq_length 1024 --processes_num 32 --target lm
|
69 |
```
|
70 |
|
71 |
```
|
72 |
-
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq1024_dataset.pt
|
73 |
-
--pretrained_model_path models/cluecorpussmall_gpt2_seq128_model.bin-1000000
|
74 |
-
--vocab_path models/google_zh_vocab.txt
|
75 |
-
--config_path models/gpt2/config.json
|
76 |
-
--output_model_path models/cluecorpussmall_gpt2_seq1024_model.bin
|
77 |
-
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7
|
78 |
-
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000
|
79 |
-
--learning_rate 5e-5 --batch_size 16
|
80 |
-
--embedding word_pos --remove_embedding_layernorm
|
81 |
-
--encoder transformer --mask causal --layernorm_positioning pre
|
82 |
--target lm --tie_weight
|
83 |
```
|
84 |
|
85 |
Finally, we convert the pre-trained model into Huggingface's format:
|
86 |
|
87 |
```
|
88 |
-
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path cluecorpussmall_gpt2_seq1024_model.bin-250000
|
89 |
-
--output_model_path pytorch_model.bin
|
90 |
--layers_num 12
|
91 |
```
|
92 |
|
93 |
### BibTeX entry and citation info
|
94 |
|
95 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
@article{zhao2019uer,
|
97 |
title={UER: An Open-Source Toolkit for Pre-training Models},
|
98 |
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
|
|
|
35 |
|
36 |
## Training procedure
|
37 |
|
38 |
+
The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 1024.
|
39 |
|
40 |
Stage1:
|
41 |
|
42 |
```
|
43 |
+
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \\
|
44 |
+
--vocab_path models/google_zh_vocab.txt \\
|
45 |
+
--dataset_path cluecorpussmall_lm_seq128_dataset.pt \\
|
46 |
--seq_length 128 --processes_num 32 --target lm
|
47 |
```
|
48 |
|
49 |
```
|
50 |
+
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq128_dataset.pt \\
|
51 |
+
--vocab_path models/google_zh_vocab.txt \\
|
52 |
+
--config_path models/gpt2/config.json \\
|
53 |
+
--output_model_path models/cluecorpussmall_gpt2_seq128_model.bin \\
|
54 |
+
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \\
|
55 |
+
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \\
|
56 |
+
--learning_rate 1e-4 --batch_size 64 \\
|
57 |
+
--embedding word_pos --remove_embedding_layernorm \\
|
58 |
+
--encoder transformer --mask causal --layernorm_positioning pre \\
|
59 |
--target lm --tie_weight
|
60 |
```
|
61 |
|
62 |
Stage2:
|
63 |
|
64 |
```
|
65 |
+
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \\
|
66 |
+
--vocab_path models/google_zh_vocab.txt \\
|
67 |
+
--dataset_path cluecorpussmall_lm_seq1024_dataset.pt \\
|
68 |
--seq_length 1024 --processes_num 32 --target lm
|
69 |
```
|
70 |
|
71 |
```
|
72 |
+
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \\
|
73 |
+
--pretrained_model_path models/cluecorpussmall_gpt2_seq128_model.bin-1000000 \\
|
74 |
+
--vocab_path models/google_zh_vocab.txt \\
|
75 |
+
--config_path models/gpt2/config.json \\
|
76 |
+
--output_model_path models/cluecorpussmall_gpt2_seq1024_model.bin \\
|
77 |
+
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \\
|
78 |
+
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \\
|
79 |
+
--learning_rate 5e-5 --batch_size 16 \\
|
80 |
+
--embedding word_pos --remove_embedding_layernorm \\
|
81 |
+
--encoder transformer --mask causal --layernorm_positioning pre \\
|
82 |
--target lm --tie_weight
|
83 |
```
|
84 |
|
85 |
Finally, we convert the pre-trained model into Huggingface's format:
|
86 |
|
87 |
```
|
88 |
+
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path cluecorpussmall_gpt2_seq1024_model.bin-250000 \\
|
89 |
+
--output_model_path pytorch_model.bin \\
|
90 |
--layers_num 12
|
91 |
```
|
92 |
|
93 |
### BibTeX entry and citation info
|
94 |
|
95 |
```
|
96 |
+
@article{radford2019language,
|
97 |
+
title={Language Models are Unsupervised Multitask Learners},
|
98 |
+
author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
|
99 |
+
year={2019}
|
100 |
+
}
|
101 |
+
|
102 |
@article{zhao2019uer,
|
103 |
title={UER: An Open-Source Toolkit for Pre-training Models},
|
104 |
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
|