File size: 3,646 Bytes
90b5d2e edb64f8 90b5d2e edb64f8 90b5d2e edb64f8 90b5d2e 57c5e01 90b5d2e edb64f8 a672315 90b5d2e edb64f8 424afad 90b5d2e 424afad 820052c 90b5d2e 820052c 90b5d2e 424afad 90b5d2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
language: Chinese
widget:
- text: "最美的不是下雨天,是曾与你躲过雨的屋檐"
---
# Chinese GPT2 Lyric Model
## Model description
The model is used to generate Chinese lyrics. You can download the model either from the [GPT2-Chinese Github page](https://github.com/Morizeyao/GPT2-Chinese), or via HuggingFace from the link [gpt2-chinese-lyric](https://huggingface.co/uer/gpt2-chinese-lyric)
## How to use
You can use the model directly with a pipeline for text generation:
```python
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-lyric")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-lyric")
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator("最美的不是下雨天,是曾与你躲过雨的屋檐", max_length=100, do_sample=True)
[{'generated_text': '最美的不是下雨天,是曾与你躲过雨的屋檐 , 下 课 铃 声 响 起 的 瞬 间 , 我 们 的 笑 脸 , 有 太 多 回 忆 在 浮 现 , 是 你 总 在 我 身 边 , 不 知 道 会 不 会 再 见 , 从 现 在 开 始 到 永 远 , 想 说 的 语 言 凝 结 成 一 句 , 不 管 我 们 是 否 能 够 兑 现 , 想 说 的 语 言 凝 结'}]
```
## Training data
Training data contains 150,000 Chinese lyrics which are collected by [Chinese-Lyric-Corpus](https://github.com/gaussic/Chinese-Lyric-Corpus) and [MusicLyricChatbot](https://github.com/liuhuanyong/MusicLyricChatbot).
## Training procedure
The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud TI-ONE](https://cloud.tencent.com/product/tione/). We pre-train 100,000 steps with a sequence length of 512 on the basis of the pre-trained model [gpt2-base-chinese-cluecorpussmall](https://huggingface.co/uer/gpt2-base-chinese-cluecorpussmall)
```
python3 preprocess.py --corpus_path corpora/lyric.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path lyric_dataset.pt --processes_num 32 \
--seq_length 512 --target lm
```
```
python3 pretrain.py --dataset_path lyric_dataset.pt \
--pretrained_model_path models/cluecorpussmall_gpt2_seq1024_model.bin-250000 \
--vocab_path models/google_zh_vocab.txt \
--output_model_path models/lyric_gpt2_model.bin \
--config_path models/gpt2/config.json \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 100000 --save_checkpoint_steps 10000 --report_steps 5000 \
--learning_rate 5e-5 --batch_size 64 \
--embedding word_pos --remove_embedding_layernorm \
--encoder transformer --mask causal --layernorm_positioning pre \
--target lm --tie_weight
```
Finally, we convert the pre-trained model into Huggingface's format:
```
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path lyric_gpt2_model.bin-100000 \
--output_model_path pytorch_model.bin \
--layers_num 12
```
### BibTeX entry and citation info
```
@article{zhao2019uer,
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},
pages={241},
year={2019}
}
``` |