|
import tokenize_uk |
|
import torch |
|
|
|
def get_word_predictions(model, tokenizer, texts, is_split_to_words=False, device='cpu'): |
|
words_res = [] |
|
y_res = [] |
|
|
|
if not is_split_to_words: |
|
texts = [tokenize_uk.tokenize_words(text) for text in texts] |
|
|
|
for text in texts: |
|
size = len(text) |
|
idx_list = [idx + 1 for idx, val in enumerate(text) if val in ['.', '?', '!']] |
|
if len(idx_list): |
|
sents = [text[i: j] for i, j in zip([0] + idx_list, idx_list + ([size] if idx_list[-1] != size else []))] |
|
else: |
|
sents = [text] |
|
|
|
y_res_x = [] |
|
words_res_x = [] |
|
for sent_tokens in sents: |
|
tokenized_inputs = [101] |
|
word_ids = [None] |
|
for word_id, word in enumerate(sent_tokens): |
|
word_tokens = tokenizer.encode(word)[1:-1] |
|
tokenized_inputs += word_tokens |
|
word_ids += [word_id]*len(word_tokens) |
|
tokenized_inputs = tokenized_inputs[:(tokenizer.model_max_length-1)] |
|
word_ids = word_ids[:(tokenizer.model_max_length-1)] |
|
tokenized_inputs += [102] |
|
word_ids += [None] |
|
|
|
torch_tokenized_inputs = torch.tensor(tokenized_inputs).unsqueeze(0) |
|
torch_attention_mask = torch.ones(torch_tokenized_inputs.shape) |
|
predictions = model.forward(input_ids=torch_tokenized_inputs.to(device), attention_mask=torch_attention_mask.to(device)) |
|
predictions = torch.argmax(predictions.logits.squeeze(), axis=1).numpy() |
|
predictions = [model.config.id2label[i] for i in predictions] |
|
|
|
previous_word_idx = None |
|
sent_words = [] |
|
predictions_words = [] |
|
word_tokens = [] |
|
first_pred = None |
|
for i, word_idx in enumerate(word_ids): |
|
if word_idx != previous_word_idx: |
|
sent_words.append(tokenizer.decode(word_tokens)) |
|
word_tokens = [tokenized_inputs[i]] |
|
predictions_words.append(first_pred) |
|
first_pred = predictions[i] |
|
else: |
|
word_tokens.append(tokenized_inputs[i]) |
|
previous_word_idx = word_idx |
|
|
|
words_res_x.extend(sent_words[1:]) |
|
y_res_x.extend(predictions_words[1:]) |
|
|
|
words_res.append(words_res_x) |
|
y_res.append(y_res_x) |
|
|
|
return words_res, y_res |