OpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installedOpenCLIP not installedOpenCLIP not installedOpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installedOpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installed OpenCLIP not installedOpenCLIP not installedOpenCLIP not installed OpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installed OpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installedOpenCLIP not installed OpenCLIP not installedOpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installed OpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installedOpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed OpenCLIP not installed [2025-02-19 20:00:07,091] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,091] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,092] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,091] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,091] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,091] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,092] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,092] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,092] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,092] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,092] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,092] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,092] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,092] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,092] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,092] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,122] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,122] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,122] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,122] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,122] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,122] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,122] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,123] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,130] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,130] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,130] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,130] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,130] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,130] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,130] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,131] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,132] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,132] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,132] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,132] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,132] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,132] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,132] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,132] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,142] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,142] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,142] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,142] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,142] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,142] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,142] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,142] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,180] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,180] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,180] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,180] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,180] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,180] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,180] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,181] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,186] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,186] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,186] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,186] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,186] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,186] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,186] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,187] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,192] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,192] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,192] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,192] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,192] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,192] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,192] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,192] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,239] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,239] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,239] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,239] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,239] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,239] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,239] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,239] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,318] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,318] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,318] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,318] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,318] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,318] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,318] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,318] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,387] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,387] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,387] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,387] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,387] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,387] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,387] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,388] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,433] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,433] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,433] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,433] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,433] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,434] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,434] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,434] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,440] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,440] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,440] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,440] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,440] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,440] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,440] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:07,441] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:09,145] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:09,145] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:09,145] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:09,145] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:09,145] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:09,145] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:09,145] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:09,145] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:11,040] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:11,040] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:11,040] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:11,040] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:11,040] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:11,040] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:11,040] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:11,040] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,274] [INFO] [comm.py:683:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,274] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,274] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,273] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,274] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,274] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,274] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,274] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,274] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,274] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,274] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,274] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,274] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,274] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,274] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,276] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,276] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,276] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,276] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,276] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,276] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,277] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,277] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,277] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,277] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,277] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,277] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,277] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,277] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,277] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,277] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,277] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,277] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,277] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,277] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,277] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,277] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,278] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,279] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,279] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,279] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,280] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,280] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,280] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,280] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,280] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,280] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,282] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,283] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,283] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,283] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,283] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,283] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,283] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,283] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,285] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,285] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,287] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,287] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,287] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,287] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,287] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,287] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,287] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,287] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,290] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,290] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,324] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,324] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,324] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,324] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,324] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,324] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,324] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:13,324] [INFO] [comm.py:652:init_distributed] cdb=None ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-29, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-389, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-363, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-101, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-364, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-390, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-30, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspload_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-56, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-100, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-31, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-99, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-58, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-44, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-365, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) [2025-02-19 20:00:14,382] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:14,382] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:14,382] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:14,382] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:14,382] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:14,382] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:14,382] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:14,382] [INFO] [comm.py:652:init_distributed] cdb=None ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=4, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-29, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-390, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_asppush_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspload_best_model_at_end=False, local_rank=6, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-29, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-389, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-29, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_tModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspype='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, length_column_name=length, load_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-29, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, load_best_model_at_end=False, local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-389, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=5, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-29, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=7, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-29, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-29, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=5, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-389, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-363, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-56, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-100, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=5, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-100, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=6, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-100, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=6, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-389, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=7, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-389, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=4, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-389, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-389, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=5, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-101, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=5, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-390, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_asplocal_rank=7, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-390, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-58, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-58, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspeval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, load_best_model_at_end=False, local_rank=6, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-390, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspload_best_model_at_end=False, local_rank=5, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-56, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, ect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_tpush_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ype='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspeval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, ect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_tlength_column_name=length, load_best_model_at_end=False, local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-101, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, ype='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_asplength_column_name=length, load_best_model_at_end=False, local_rank=4, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-56, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, ect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_tpush_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, ype='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, load_best_model_at_end=False, local_rank=4, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-101, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) length_column_name=length, load_best_model_at_end=False, local_rank=7, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-100, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4')ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_featulocal_rank=7, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-56, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) re='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_tquant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, ype='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_asplocal_rank=7, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-101, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-100, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, length_column_name=length, load_best_model_at_end=False, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-390, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, )TrainingArguments( _n_gpu=1, load_best_model_at_end=False, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-56, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4')ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_featuaccelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) re='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square')DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_tyadam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_asppe='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-390, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, length_column_name=length, load_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-100, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, )TrainingArguments( _n_gpu=1, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspeval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, load_best_model_at_end=False, local_rank=6, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-101, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=4, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-100, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspload_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-56, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspload_best_model_at_end=False, local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-364, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, ect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_tpush_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, ype='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, load_best_model_at_end=False, local_rank=6, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-56, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) length_column_name=length, load_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-101, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-101, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=6, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-58, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspeval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-44, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=4, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-363, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, load_best_model_at_end=False, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-30, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, load_best_model_at_end=False, local_rank=4, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-390, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) load_best_model_at_end=False, local_rank=4, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-44, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=6, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-363, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, load_best_model_at_end=False, local_rank=6, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-44, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-363, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=5, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-30, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-30, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-44, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=7, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-30, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-30, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspTrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, local_rank=4, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-30, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, load_best_model_at_end=False, local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-58, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspload_best_model_at_end=False, local_rank=5, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-44, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, load_best_model_at_end=False, local_rank=6, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-364, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) load_best_model_at_end=False, local_rank=7, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-44, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_asppush_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_tModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspype='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, length_column_name=length, load_best_model_at_end=False, local_rank=7, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-364, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, load_best_model_at_end=False, local_rank=7, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-363, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-364, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=6, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-31, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspload_best_model_at_end=False, local_rank=5, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-363, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=6, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-30, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=5, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-31, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, load_best_model_at_end=False, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-44, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_asppush_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspeval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, ect_ratio='square')ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_tload_best_model_at_end=False, local_rank=4, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-58, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspype='mix', image_aspect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_imagepush_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) _folder=None, data_type='mix', image_aspect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacoModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, mp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_imageect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, _folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-363, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, load_best_model_at_end=False, local_rank=7, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-58, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-31, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspTrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-31, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, load_best_model_at_end=False, local_rank=5, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-58, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-31, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=7, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-31, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspeval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, ect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, local_rank=4, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-31, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, load_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-364, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, ) push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=4, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-364, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=5, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-364, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-365, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=4, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-365, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-365, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-365, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=5, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-99, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=7, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-365, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=6, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-365, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=5, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-365, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-99, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=4, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-99, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-99, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=6, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-99, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-99, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=7, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-13_h100-st-p548xlarge-99, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-14_h100-st-p548xlarge-98, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4')ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=6, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-14_h100-st-p548xlarge-98, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=4, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-14_h100-st-p548xlarge-98, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-14_h100-st-p548xlarge-98, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=5, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-14_h100-st-p548xlarge-98, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=7, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-14_h100-st-p548xlarge-98, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-14_h100-st-p548xlarge-98, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-14_h100-st-p548xlarge-98, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) [2025-02-19 20:00:16,148] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:16,148] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:16,148] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:16,148] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:16,148] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:16,148] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:16,148] [INFO] [comm.py:652:init_distributed] cdb=None [2025-02-19 20:00:16,148] [INFO] [comm.py:652:init_distributed] cdb=None ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-16_h100-st-p548xlarge-57, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-16_h100-st-p548xlarge-57, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=4, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-16_h100-st-p548xlarge-57, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=5, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-16_h100-st-p548xlarge-57, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=6, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-16_h100-st-p548xlarge-57, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-16_h100-st-p548xlarge-57, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=7, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-16_h100-st-p548xlarge-57, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) ModelArguments(model_name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', version='qwen', freeze_backbone=True, tune_mm_mlp_adapter=False, vision_tower=None, gen_vision_tower='eva-clip-E-14-plus', mm_vision_select_layer=-2, pretrain_mm_mlp_adapter=None, pretrain_gen_mlp_adapter=None, vision_tower_pretrained=None, mm_projector_type='mlp2x_gelu', gen_projector_type='mlp2x_gelu', mm_use_im_start_end=False, mm_use_im_patch_token=False, mm_patch_merge_type='flat', mm_vision_select_feature='patch', n_query=64, n_und_query=729, gen_pooling='early_pool2d_4') DataArguments(data_path='/fsx_0/user/zhaojiang/data/ShareGPT4V/pixelporse_sharegpt4v_text_image_both.json', lazy_preprocess=True, is_multimodal=False, image_folder='/fsx_0/user/zhaojiang/data/LLaVA-Instruct-150K', pixelprose_image_folder='/fsx_0/user/zhaojiang/models/hub/datasets--tomg-group-umd--pixelprose-shards/snapshots/36facc0ec7ff5ee9bdde1c2e217b3d7999b58411', datacomp_shortcaption_image_folder=None, datacomp_longcaption_image_folder=None, data_type='mix', image_aspect_ratio='square') TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=True, bf16_full_eval=False, bits=16, cache_dir=None, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=4, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=./scripts/zero1.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=False, double_quant=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=False, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, freeze_mm_mlp_adapter=False, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, group_by_modality_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=zhaojiang/llava-clip-text-image-16-nodes, hub_private_repo=None, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name=length, load_best_model_at_end=False, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen/runs/Feb19_20-00-16_h100-st-p548xlarge-57, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=steps, lora_alpha=16, lora_bias=none, lora_dropout=0.05, lora_enable=False, lora_r=64, lora_weight_path=, lr_scheduler_kwargs={}, lr_scheduler_type=constant_with_warmup, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mm_projector_lr=None, model_max_length=2048, mp_parameters=, mpt_attn_impl=triton, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=3.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=/fsx_0/user/zhaojiang/models/qwen-vl-gen, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=4, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, quant_type=nf4, ray_scope=last, remove_unused_columns=False, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=qwen-vl-diff-clip-16-nodes_early_pool2d_4, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=steps, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=True, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.01, warmup_steps=0, weight_decay=0.0, ) Using conversation format: qwen Using conversation format: qwen Using conversation format: qwen Using conversation format: qwen Using conversation format: qwen Using conversation format: qwen Using conversation format: qwen Using conversation format: qwen Using conversation format: qwen Using conversation format: qwen Using conversation format: qwen Using conversation format: qwen Using conversation format: qwen Using conversation format: qwen Using conversation format: qwen Using conversation format: qwen Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plusPretrained: NonePretrained: NoneLoading EVA ViT: eva-clip-E-14-plus Pretrained: NonePretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Pretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Pretrained: NoneLoading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plusPretrained: None Loading EVA ViT: eva-clip-E-14-plusPretrained: None Loading EVA ViT: eva-clip-E-14-plusPretrained: NonePretrained: None Pretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plusPretrained: NonePretrained: NonePretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plusPretrained: NonePretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plusPretrained: None Pretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Pretrained: None Pretrained: None Pretrained: NonePretrained: None Pretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plusPretrained: None Pretrained: None Pretrained: None Pretrained: NoneLoading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Pretrained: NonePretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: NoneLoading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plusPretrained: None Pretrained: NonePretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plusPretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Pretrained: NonePretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: NoneLoading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plusPretrained: None Pretrained: None Pretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Pretrained: NonePretrained: None Pretrained: NonePretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Pretrained: NonePretrained: None Pretrained: None Pretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Loading EVA ViT: eva-clip-E-14-plusPretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plusLoading EVA ViT: eva-clip-E-14-plus Pretrained: NonePretrained: None Pretrained: None Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None Loading EVA ViT: eva-clip-E-14-plus Pretrained: None EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: EVA-CLIP incompatible_keys: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: Loaded image processor: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: Loaded image processor: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: Loaded image processor: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Loaded image processor: random initiation the down_projector !!! random initiation the latent_queries !!! Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Total parameters: 12868467523 Trainable parameters: 1365239712 Totoal number of training instance: 194420624 Totoal number of training instance: 194420624 Totoal number of training instance: 194420624 [2025-02-19 20:18:25,420] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 128 [2025-02-19 20:18:26,358] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 128 Totoal number of training instance: 194420624 [2025-02-19 20:18:27,344] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 128 Totoal number of training instance: 194420624 Totoal number of training instance: 194420624 Totoal number of training instance: 194420624 [2025-02-19 20:18:29,452] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 128 [2025-02-19 20:18:30,280] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 128 [2025-02-19 20:18:30,656] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 128 [2025-02-19 20:18:31,953] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 128 Totoal number of training instance: 194420624 Totoal number of training instance: 194420624 Totoal number of training instance: 194420624 Totoal number of training instance: 194420624 [2025-02-19 20:18:35,883] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 128 [2025-02-19 20:18:36,096] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 128 [2025-02-19 20:18:36,328] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 128 [2025-02-19 20:18:37,248] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 128 Totoal number of training instance: 194420624 Totoal number of training instance: 194420624 Totoal number of training instance: 194420624 Totoal number of training instance: 194420624 idx name shape trainable ----- -------------------------------------------------------------------- -------------------------------- ----------- 0 visual.patch_embed.proj.weight torch.Size([1280, 3, 2, 14, 14]) False 1 visual.blocks.0.norm1.weight torch.Size([1280]) False 2 visual.blocks.0.norm2.weight torch.Size([1280]) False 3 visual.blocks.0.attn.qkv.weight torch.Size([3840, 1280]) False 4 visual.blocks.0.attn.qkv.bias torch.Size([3840]) False 5 visual.blocks.0.attn.proj.weight torch.Size([1280, 1280]) False 6 visual.blocks.0.attn.proj.bias torch.Size([1280]) False 7 visual.blocks.0.mlp.gate_proj.weight torch.Size([3420, 1280]) False 8 visual.blocks.0.mlp.gate_proj.bias torch.Size([3420]) False 9 visual.blocks.0.mlp.up_proj.weight torch.Size([3420, 1280]) False 10 visual.blocks.0.mlp.up_proj.bias torch.Size([3420]) False 11 visual.blocks.0.mlp.down_proj.weight torch.Size([1280, 3420]) False 12 visual.blocks.0.mlp.down_proj.bias torch.Size([1280]) False 13 visual.blocks.1.norm1.weight torch.Size([1280]) False 14 visual.blocks.1.norm2.weight torch.Size([1280]) False 15 visual.blocks.1.attn.qkv.weight torch.Size([3840, 1280]) False 16 visual.blocks.1.attn.qkv.bias torch.Size([3840]) False 17 visual.blocks.1.attn.proj.weight torch.Size([1280, 1280]) False 18 visual.blocks.1.attn.proj.bias torch.Size([1280]) False 19 visual.blocks.1.mlp.gate_proj.weight torch.Size([3420, 1280]) False 20 visual.blocks.1.mlp.gate_proj.bias torch.Size([3420]) False 21 visual.blocks.1.mlp.up_proj.weight torch.Size([3420, 1280]) False 22 visual.blocks.1.mlp.up_proj.bias torch.Size([3420]) False 23 visual.blocks.1.mlp.down_proj.weight torch.Size([1280, 3420]) False 24 visual.blocks.1.mlp.down_proj.bias torch.Size([1280]) False 25 visual.blocks.2.norm1.weight torch.Size([1280]) False 26 visual.blocks.2.norm2.weight torch.Size([1280]) False 27 visual.blocks.2.attn.qkv.weight torch.Size([3840, 1280]) False 28 visual.blocks.2.attn.qkv.bias torch.Size([3840]) False 29 visual.blocks.2.attn.proj.weight torch.Size([1280, 1280]) False 30 visual.blocks.2.attn.proj.bias torch.Size([1280]) False 31 visual.blocks.2.mlp.gate_proj.weight torch.Size([3420, 1280]) False 32 visual.blocks.2.mlp.gate_proj.bias torch.Size([3420]) False 33 visual.blocks.2.mlp.up_proj.weight torch.Size([3420, 1280]) False 34 visual.blocks.2.mlp.up_proj.bias torch.Size([3420]) False 35 visual.blocks.2.mlp.down_proj.weight torch.Size([1280, 3420]) False 36 visual.blocks.2.mlp.down_proj.bias torch.Size([1280]) False 37 visual.blocks.3.norm1.weight torch.Size([1280]) False 38 visual.blocks.3.norm2.weight torch.Size([1280]) False 39 visual.blocks.3.attn.qkv.weight torch.Size([3840, 1280]) False 40 visual.blocks.3.attn.qkv.bias torch.Size([3840]) False 41 visual.blocks.3.attn.proj.weight torch.Size([1280, 1280]) False 42 visual.blocks.3.attn.proj.bias torch.Size([1280]) False 43 visual.blocks.3.mlp.gate_proj.weight torch.Size([3420, 1280]) False 44 visual.blocks.3.mlp.gate_proj.bias torch.Size([3420]) False 45 visual.blocks.3.mlp.up_proj.weight torch.Size([3420, 1280]) False 46 visual.blocks.3.mlp.up_proj.bias torch.Size([3420]) False 47 visual.blocks.3.mlp.down_proj.weight torch.Size([1280, 3420]) False 48 visual.blocks.3.mlp.down_proj.bias torch.Size([1280]) False 49 visual.blocks.4.norm1.weight torch.Size([1280]) False 50 visual.blocks.4.norm2.weight torch.Size([1280]) False 51 visual.blocks.4.attn.qkv.weight torch.Size([3840, 1280]) False 52 visual.blocks.4.attn.qkv.bias torch.Size([3840]) False 53 visual.blocks.4.attn.proj.weight torch.Size([1280, 1280]) False 54 visual.blocks.4.attn.proj.bias torch.Size([1280]) False 55 visual.blocks.4.mlp.gate_proj.weight torch.Size([3420, 1280]) False 56 visual.blocks.4.mlp.gate_proj.bias torch.Size([3420]) False 57 visual.blocks.4.mlp.up_proj.weight torch.Size([3420, 1280]) False 58 visual.blocks.4.mlp.up_proj.bias torch.Size([3420]) False 59 visual.blocks.4.mlp.down_proj.weight torch.Size([1280, 3420]) False 60 visual.blocks.4.mlp.down_proj.bias torch.Size([1280]) False 61 visual.blocks.5.norm1.weight torch.Size([1280]) False 62 visual.blocks.5.norm2.weight torch.Size([1280]) False 63 visual.blocks.5.attn.qkv.weight torch.Size([3840, 1280]) False 64 visual.blocks.5.attn.qkv.bias torch.Size([3840]) False 65 visual.blocks.5.attn.proj.weight torch.Size([1280, 1280]) False 66 visual.blocks.5.attn.proj.bias torch.Size([1280]) False 67 visual.blocks.5.mlp.gate_proj.weight torch.Size([3420, 1280]) False 68 visual.blocks.5.mlp.gate_proj.bias torch.Size([3420]) False 69 visual.blocks.5.mlp.up_proj.weight torch.Size([3420, 1280]) False 70 visual.blocks.5.mlp.up_proj.bias torch.Size([3420]) False 71 visual.blocks.5.mlp.down_proj.weight torch.Size([1280, 3420]) False 72 visual.blocks.5.mlp.down_proj.bias torch.Size([1280]) False 73 visual.blocks.6.norm1.weight torch.Size([1280]) False 74 visual.blocks.6.norm2.weight torch.Size([1280]) False 75 visual.blocks.6.attn.qkv.weight torch.Size([3840, 1280]) False 76 visual.blocks.6.attn.qkv.bias torch.Size([3840]) False 77 visual.blocks.6.attn.proj.weight torch.Size([1280, 1280]) False 78 visual.blocks.6.attn.proj.bias torch.Size([1280]) False 79 visual.blocks.6.mlp.gate_proj.weight torch.Size([3420, 1280]) False 80 visual.blocks.6.mlp.gate_proj.bias torch.Size([3420]) False 81 visual.blocks.6.mlp.up_proj.weight torch.Size([3420, 1280]) False 82 visual.blocks.6.mlp.up_proj.bias torch.Size([3420]) False 83 visual.blocks.6.mlp.down_proj.weight torch.Size([1280, 3420]) False 84 visual.blocks.6.mlp.down_proj.bias torch.Size([1280]) False 85 visual.blocks.7.norm1.weight torch.Size([1280]) False 86 visual.blocks.7.norm2.weight torch.Size([1280]) False 87 visual.blocks.7.attn.qkv.weight torch.Size([3840, 1280]) False 88 visual.blocks.7.attn.qkv.bias torch.Size([3840]) False 89 visual.blocks.7.attn.proj.weight torch.Size([1280, 1280]) False 90 visual.blocks.7.attn.proj.bias torch.Size([1280]) False 91 visual.blocks.7.mlp.gate_proj.weight torch.Size([3420, 1280]) False 92 visual.blocks.7.mlp.gate_proj.bias torch.Size([3420]) False 93 visual.blocks.7.mlp.up_proj.weight torch.Size([3420, 1280]) False 94 visual.blocks.7.mlp.up_proj.bias torch.Size([3420]) False 95 visual.blocks.7.mlp.down_proj.weight torch.Size([1280, 3420]) False 96 visual.blocks.7.mlp.down_proj.bias torch.Size([1280]) False 97 visual.blocks.8.norm1.weight torch.Size([1280]) False 98 visual.blocks.8.norm2.weight torch.Size([1280]) False 99 visual.blocks.8.attn.qkv.weight torch.Size([3840, 1280]) False 100 visual.blocks.8.attn.qkv.bias torch.Size([3840]) False 101 visual.blocks.8.attn.proj.weight torch.Size([1280, 1280]) False 102 visual.blocks.8.attn.proj.bias torch.Size([1280]) False 103 visual.blocks.8.mlp.gate_proj.weight torch.Size([3420, 1280]) False 104 visual.blocks.8.mlp.gate_proj.bias torch.Size([3420]) False 105 visual.blocks.8.mlp.up_proj.weight torch.Size([3420, 1280]) False 106 visual.blocks.8.mlp.up_proj.bias torch.Size([3420]) False 107 visual.blocks.8.mlp.down_proj.weight torch.Size([1280, 3420]) False 108 visual.blocks.8.mlp.down_proj.bias torch.Size([1280]) False 109 visual.blocks.9.norm1.weight torch.Size([1280]) False 110 visual.blocks.9.norm2.weight torch.Size([1280]) False 111 visual.blocks.9.attn.qkv.weight torch.Size([3840, 1280]) False 112 visual.blocks.9.attn.qkv.bias torch.Size([3840]) False 113 visual.blocks.9.attn.proj.weight torch.Size([1280, 1280]) False 114 visual.blocks.9.attn.proj.bias torch.Size([1280]) False 115 visual.blocks.9.mlp.gate_proj.weight torch.Size([3420, 1280]) False 116 visual.blocks.9.mlp.gate_proj.bias torch.Size([3420]) False 117 visual.blocks.9.mlp.up_proj.weight torch.Size([3420, 1280]) False 118 visual.blocks.9.mlp.up_proj.bias torch.Size([3420]) False 119 visual.blocks.9.mlp.down_proj.weight torch.Size([1280, 3420]) False 120 visual.blocks.9.mlp.down_proj.bias torch.Size([1280]) False 121 visual.blocks.10.norm1.weight torch.Size([1280]) False 122 visual.blocks.10.norm2.weight torch.Size([1280]) False 123 visual.blocks.10.attn.qkv.weight torch.Size([3840, 1280]) False 124 visual.blocks.10.attn.qkv.bias torch.Size([3840]) False 125 visual.blocks.10.attn.proj.weight torch.Size([1280, 1280]) False 126 visual.blocks.10.attn.proj.bias torch.Size([1280]) False 127 visual.blocks.10.mlp.gate_proj.weight torch.Size([3420, 1280]) False 128 visual.blocks.10.mlp.gate_proj.bias torch.Size([3420]) False 129 visual.blocks.10.mlp.up_proj.weight torch.Size([3420, 1280]) False 130 visual.blocks.10.mlp.up_proj.bias torch.Size([3420]) False 131 visual.blocks.10.mlp.down_proj.weight torch.Size([1280, 3420]) False 132 visual.blocks.10.mlp.down_proj.bias torch.Size([1280]) False 133 visual.blocks.11.norm1.weight torch.Size([1280]) False 134 visual.blocks.11.norm2.weight torch.Size([1280]) False 135 visual.blocks.11.attn.qkv.weight torch.Size([3840, 1280]) False 136 visual.blocks.11.attn.qkv.bias torch.Size([3840]) False 137 visual.blocks.11.attn.proj.weight torch.Size([1280, 1280]) False 138 visual.blocks.11.attn.proj.bias torch.Size([1280]) False 139 visual.blocks.11.mlp.gate_proj.weight torch.Size([3420, 1280]) False 140 visual.blocks.11.mlp.gate_proj.bias torch.Size([3420]) False 141 visual.blocks.11.mlp.up_proj.weight torch.Size([3420, 1280]) False 142 visual.blocks.11.mlp.up_proj.bias torch.Size([3420]) False 143 visual.blocks.11.mlp.down_proj.weight torch.Size([1280, 3420]) False 144 visual.blocks.11.mlp.down_proj.bias torch.Size([1280]) False 145 visual.blocks.12.norm1.weight torch.Size([1280]) False 146 visual.blocks.12.norm2.weight torch.Size([1280]) False 147 visual.blocks.12.attn.qkv.weight torch.Size([3840, 1280]) False 148 visual.blocks.12.attn.qkv.bias torch.Size([3840]) False 149 visual.blocks.12.attn.proj.weight torch.Size([1280, 1280]) False 150 visual.blocks.12.attn.proj.bias torch.Size([1280]) False 151 visual.blocks.12.mlp.gate_proj.weight torch.Size([3420, 1280]) False 152 visual.blocks.12.mlp.gate_proj.bias torch.Size([3420]) False 153 visual.blocks.12.mlp.up_proj.weight torch.Size([3420, 1280]) False 154 visual.blocks.12.mlp.up_proj.bias torch.Size([3420]) False 155 visual.blocks.12.mlp.down_proj.weight torch.Size([1280, 3420]) False 156 visual.blocks.12.mlp.down_proj.bias torch.Size([1280]) False 157 visual.blocks.13.norm1.weight torch.Size([1280]) False 158 visual.blocks.13.norm2.weight torch.Size([1280]) False 159 visual.blocks.13.attn.qkv.weight torch.Size([3840, 1280]) False 160 visual.blocks.13.attn.qkv.bias torch.Size([3840]) False 161 visual.blocks.13.attn.proj.weight torch.Size([1280, 1280]) False 162 visual.blocks.13.attn.proj.bias torch.Size([1280]) False 163 visual.blocks.13.mlp.gate_proj.weight torch.Size([3420, 1280]) False 164 visual.blocks.13.mlp.gate_proj.bias torch.Size([3420]) False 165 visual.blocks.13.mlp.up_proj.weight torch.Size([3420, 1280]) False 166 visual.blocks.13.mlp.up_proj.bias torch.Size([3420]) False 167 visual.blocks.13.mlp.down_proj.weight torch.Size([1280, 3420]) False 168 visual.blocks.13.mlp.down_proj.bias torch.Size([1280]) False 169 visual.blocks.14.norm1.weight torch.Size([1280]) False 170 visual.blocks.14.norm2.weight torch.Size([1280]) False 171 visual.blocks.14.attn.qkv.weight torch.Size([3840, 1280]) False 172 visual.blocks.14.attn.qkv.bias torch.Size([3840]) False 173 visual.blocks.14.attn.proj.weight torch.Size([1280, 1280]) False 174 visual.blocks.14.attn.proj.bias torch.Size([1280]) False 175 visual.blocks.14.mlp.gate_proj.weight torch.Size([3420, 1280]) False 176 visual.blocks.14.mlp.gate_proj.bias torch.Size([3420]) False 177 visual.blocks.14.mlp.up_proj.weight torch.Size([3420, 1280]) False 178 visual.blocks.14.mlp.up_proj.bias torch.Size([3420]) False 179 visual.blocks.14.mlp.down_proj.weight torch.Size([1280, 3420]) False 180 visual.blocks.14.mlp.down_proj.bias torch.Size([1280]) False 181 visual.blocks.15.norm1.weight torch.Size([1280]) False 182 visual.blocks.15.norm2.weight torch.Size([1280]) False 183 visual.blocks.15.attn.qkv.weight torch.Size([3840, 1280]) False 184 visual.blocks.15.attn.qkv.bias torch.Size([3840]) False 185 visual.blocks.15.attn.proj.weight torch.Size([1280, 1280]) False 186 visual.blocks.15.attn.proj.bias torch.Size([1280]) False 187 visual.blocks.15.mlp.gate_proj.weight torch.Size([3420, 1280]) False 188 visual.blocks.15.mlp.gate_proj.bias torch.Size([3420]) False 189 visual.blocks.15.mlp.up_proj.weight torch.Size([3420, 1280]) False 190 visual.blocks.15.mlp.up_proj.bias torch.Size([3420]) False 191 visual.blocks.15.mlp.down_proj.weight torch.Size([1280, 3420]) False 192 visual.blocks.15.mlp.down_proj.bias torch.Size([1280]) False 193 visual.blocks.16.norm1.weight torch.Size([1280]) False 194 visual.blocks.16.norm2.weight torch.Size([1280]) False 195 visual.blocks.16.attn.qkv.weight torch.Size([3840, 1280]) False 196 visual.blocks.16.attn.qkv.bias torch.Size([3840]) False 197 visual.blocks.16.attn.proj.weight torch.Size([1280, 1280]) False 198 visual.blocks.16.attn.proj.bias torch.Size([1280]) False 199 visual.blocks.16.mlp.gate_proj.weight torch.Size([3420, 1280]) False 200 visual.blocks.16.mlp.gate_proj.bias torch.Size([3420]) False 201 visual.blocks.16.mlp.up_proj.weight torch.Size([3420, 1280]) False 202 visual.blocks.16.mlp.up_proj.bias torch.Size([3420]) False 203 visual.blocks.16.mlp.down_proj.weight torch.Size([1280, 3420]) False 204 visual.blocks.16.mlp.down_proj.bias torch.Size([1280]) False 205 visual.blocks.17.norm1.weight torch.Size([1280]) False 206 visual.blocks.17.norm2.weight torch.Size([1280]) False 207 visual.blocks.17.attn.qkv.weight torch.Size([3840, 1280]) False 208 visual.blocks.17.attn.qkv.bias torch.Size([3840]) False 209 visual.blocks.17.attn.proj.weight torch.Size([1280, 1280]) False 210 visual.blocks.17.attn.proj.bias torch.Size([1280]) False 211 visual.blocks.17.mlp.gate_proj.weight torch.Size([3420, 1280]) False 212 visual.blocks.17.mlp.gate_proj.bias torch.Size([3420]) False 213 visual.blocks.17.mlp.up_proj.weight torch.Size([3420, 1280]) False 214 visual.blocks.17.mlp.up_proj.bias torch.Size([3420]) False 215 visual.blocks.17.mlp.down_proj.weight torch.Size([1280, 3420]) False 216 visual.blocks.17.mlp.down_proj.bias torch.Size([1280]) False 217 visual.blocks.18.norm1.weight torch.Size([1280]) False 218 visual.blocks.18.norm2.weight torch.Size([1280]) False 219 visual.blocks.18.attn.qkv.weight torch.Size([3840, 1280]) False 220 visual.blocks.18.attn.qkv.bias torch.Size([3840]) False 221 visual.blocks.18.attn.proj.weight torch.Size([1280, 1280]) False 222 visual.blocks.18.attn.proj.bias torch.Size([1280]) False 223 visual.blocks.18.mlp.gate_proj.weight torch.Size([3420, 1280]) False 224 visual.blocks.18.mlp.gate_proj.bias torch.Size([3420]) False 225 visual.blocks.18.mlp.up_proj.weight torch.Size([3420, 1280]) False 226 visual.blocks.18.mlp.up_proj.bias torch.Size([3420]) False 227 visual.blocks.18.mlp.down_proj.weight torch.Size([1280, 3420]) False 228 visual.blocks.18.mlp.down_proj.bias torch.Size([1280]) False 229 visual.blocks.19.norm1.weight torch.Size([1280]) False 230 visual.blocks.19.norm2.weight torch.Size([1280]) False 231 visual.blocks.19.attn.qkv.weight torch.Size([3840, 1280]) False 232 visual.blocks.19.attn.qkv.bias torch.Size([3840]) False 233 visual.blocks.19.attn.proj.weight torch.Size([1280, 1280]) False 234 visual.blocks.19.attn.proj.bias torch.Size([1280]) False 235 visual.blocks.19.mlp.gate_proj.weight torch.Size([3420, 1280]) False 236 visual.blocks.19.mlp.gate_proj.bias torch.Size([3420]) False 237 visual.blocks.19.mlp.up_proj.weight torch.Size([3420, 1280]) False 238 visual.blocks.19.mlp.up_proj.bias torch.Size([3420]) False 239 visual.blocks.19.mlp.down_proj.weight torch.Size([1280, 3420]) False 240 visual.blocks.19.mlp.down_proj.bias torch.Size([1280]) False 241 visual.blocks.20.norm1.weight torch.Size([1280]) False 242 visual.blocks.20.norm2.weight torch.Size([1280]) False 243 visual.blocks.20.attn.qkv.weight torch.Size([3840, 1280]) False 244 visual.blocks.20.attn.qkv.bias torch.Size([3840]) False 245 visual.blocks.20.attn.proj.weight torch.Size([1280, 1280]) False 246 visual.blocks.20.attn.proj.bias torch.Size([1280]) False 247 visual.blocks.20.mlp.gate_proj.weight torch.Size([3420, 1280]) False 248 visual.blocks.20.mlp.gate_proj.bias torch.Size([3420]) False 249 visual.blocks.20.mlp.up_proj.weight torch.Size([3420, 1280]) False 250 visual.blocks.20.mlp.up_proj.bias torch.Size([3420]) False 251 visual.blocks.20.mlp.down_proj.weight torch.Size([1280, 3420]) False 252 visual.blocks.20.mlp.down_proj.bias torch.Size([1280]) False 253 visual.blocks.21.norm1.weight torch.Size([1280]) False 254 visual.blocks.21.norm2.weight torch.Size([1280]) False 255 visual.blocks.21.attn.qkv.weight torch.Size([3840, 1280]) False 256 visual.blocks.21.attn.qkv.bias torch.Size([3840]) False 257 visual.blocks.21.attn.proj.weight torch.Size([1280, 1280]) False 258 visual.blocks.21.attn.proj.bias torch.Size([1280]) False 259 visual.blocks.21.mlp.gate_proj.weight torch.Size([3420, 1280]) False 260 visual.blocks.21.mlp.gate_proj.bias torch.Size([3420]) False 261 visual.blocks.21.mlp.up_proj.weight torch.Size([3420, 1280]) False 262 visual.blocks.21.mlp.up_proj.bias torch.Size([3420]) False 263 visual.blocks.21.mlp.down_proj.weight torch.Size([1280, 3420]) False 264 visual.blocks.21.mlp.down_proj.bias torch.Size([1280]) False 265 visual.blocks.22.norm1.weight torch.Size([1280]) False 266 visual.blocks.22.norm2.weight torch.Size([1280]) False 267 visual.blocks.22.attn.qkv.weight torch.Size([3840, 1280]) False 268 visual.blocks.22.attn.qkv.bias torch.Size([3840]) False 269 visual.blocks.22.attn.proj.weight torch.Size([1280, 1280]) False 270 visual.blocks.22.attn.proj.bias torch.Size([1280]) False 271 visual.blocks.22.mlp.gate_proj.weight torch.Size([3420, 1280]) False 272 visual.blocks.22.mlp.gate_proj.bias torch.Size([3420]) False 273 visual.blocks.22.mlp.up_proj.weight torch.Size([3420, 1280]) False 274 visual.blocks.22.mlp.up_proj.bias torch.Size([3420]) False 275 visual.blocks.22.mlp.down_proj.weight torch.Size([1280, 3420]) False 276 visual.blocks.22.mlp.down_proj.bias torch.Size([1280]) False 277 visual.blocks.23.norm1.weight torch.Size([1280]) False 278 visual.blocks.23.norm2.weight torch.Size([1280]) False 279 visual.blocks.23.attn.qkv.weight torch.Size([3840, 1280]) False 280 visual.blocks.23.attn.qkv.bias torch.Size([3840]) False 281 visual.blocks.23.attn.proj.weight torch.Size([1280, 1280]) False 282 visual.blocks.23.attn.proj.bias torch.Size([1280]) False 283 visual.blocks.23.mlp.gate_proj.weight torch.Size([3420, 1280]) False 284 visual.blocks.23.mlp.gate_proj.bias torch.Size([3420]) False 285 visual.blocks.23.mlp.up_proj.weight torch.Size([3420, 1280]) False 286 visual.blocks.23.mlp.up_proj.bias torch.Size([3420]) False 287 visual.blocks.23.mlp.down_proj.weight torch.Size([1280, 3420]) False 288 visual.blocks.23.mlp.down_proj.bias torch.Size([1280]) False 289 visual.blocks.24.norm1.weight torch.Size([1280]) False 290 visual.blocks.24.norm2.weight torch.Size([1280]) False 291 visual.blocks.24.attn.qkv.weight torch.Size([3840, 1280]) False 292 visual.blocks.24.attn.qkv.bias torch.Size([3840]) False 293 visual.blocks.24.attn.proj.weight torch.Size([1280, 1280]) False 294 visual.blocks.24.attn.proj.bias torch.Size([1280]) False 295 visual.blocks.24.mlp.gate_proj.weight torch.Size([3420, 1280]) False 296 visual.blocks.24.mlp.gate_proj.bias torch.Size([3420]) False 297 visual.blocks.24.mlp.up_proj.weight torch.Size([3420, 1280]) False 298 visual.blocks.24.mlp.up_proj.bias torch.Size([3420]) False 299 visual.blocks.24.mlp.down_proj.weight torch.Size([1280, 3420]) False 300 visual.blocks.24.mlp.down_proj.bias torch.Size([1280]) False 301 visual.blocks.25.norm1.weight torch.Size([1280]) False 302 visual.blocks.25.norm2.weight torch.Size([1280]) False 303 visual.blocks.25.attn.qkv.weight torch.Size([3840, 1280]) False 304 visual.blocks.25.attn.qkv.bias torch.Size([3840]) False 305 visual.blocks.25.attn.proj.weight torch.Size([1280, 1280]) False 306 visual.blocks.25.attn.proj.bias torch.Size([1280]) False 307 visual.blocks.25.mlp.gate_proj.weight torch.Size([3420, 1280]) False 308 visual.blocks.25.mlp.gate_proj.bias torch.Size([3420]) False 309 visual.blocks.25.mlp.up_proj.weight torch.Size([3420, 1280]) False 310 visual.blocks.25.mlp.up_proj.bias torch.Size([3420]) False 311 visual.blocks.25.mlp.down_proj.weight torch.Size([1280, 3420]) False 312 visual.blocks.25.mlp.down_proj.bias torch.Size([1280]) False 313 visual.blocks.26.norm1.weight torch.Size([1280]) False 314 visual.blocks.26.norm2.weight torch.Size([1280]) False 315 visual.blocks.26.attn.qkv.weight torch.Size([3840, 1280]) False 316 visual.blocks.26.attn.qkv.bias torch.Size([3840]) False 317 visual.blocks.26.attn.proj.weight torch.Size([1280, 1280]) False 318 visual.blocks.26.attn.proj.bias torch.Size([1280]) False 319 visual.blocks.26.mlp.gate_proj.weight torch.Size([3420, 1280]) False 320 visual.blocks.26.mlp.gate_proj.bias torch.Size([3420]) False 321 visual.blocks.26.mlp.up_proj.weight torch.Size([3420, 1280]) False 322 visual.blocks.26.mlp.up_proj.bias torch.Size([3420]) False 323 visual.blocks.26.mlp.down_proj.weight torch.Size([1280, 3420]) False 324 visual.blocks.26.mlp.down_proj.bias torch.Size([1280]) False 325 visual.blocks.27.norm1.weight torch.Size([1280]) False 326 visual.blocks.27.norm2.weight torch.Size([1280]) False 327 visual.blocks.27.attn.qkv.weight torch.Size([3840, 1280]) False 328 visual.blocks.27.attn.qkv.bias torch.Size([3840]) False 329 visual.blocks.27.attn.proj.weight torch.Size([1280, 1280]) False 330 visual.blocks.27.attn.proj.bias torch.Size([1280]) False 331 visual.blocks.27.mlp.gate_proj.weight torch.Size([3420, 1280]) False 332 visual.blocks.27.mlp.gate_proj.bias torch.Size([3420]) False 333 visual.blocks.27.mlp.up_proj.weight torch.Size([3420, 1280]) False 334 visual.blocks.27.mlp.up_proj.bias torch.Size([3420]) False 335 visual.blocks.27.mlp.down_proj.weight torch.Size([1280, 3420]) False 336 visual.blocks.27.mlp.down_proj.bias torch.Size([1280]) False 337 visual.blocks.28.norm1.weight torch.Size([1280]) False 338 visual.blocks.28.norm2.weight torch.Size([1280]) False 339 visual.blocks.28.attn.qkv.weight torch.Size([3840, 1280]) False 340 visual.blocks.28.attn.qkv.bias torch.Size([3840]) False 341 visual.blocks.28.attn.proj.weight torch.Size([1280, 1280]) False 342 visual.blocks.28.attn.proj.bias torch.Size([1280]) False 343 visual.blocks.28.mlp.gate_proj.weight torch.Size([3420, 1280]) False 344 visual.blocks.28.mlp.gate_proj.bias torch.Size([3420]) False 345 visual.blocks.28.mlp.up_proj.weight torch.Size([3420, 1280]) False 346 visual.blocks.28.mlp.up_proj.bias torch.Size([3420]) False 347 visual.blocks.28.mlp.down_proj.weight torch.Size([1280, 3420]) False 348 visual.blocks.28.mlp.down_proj.bias torch.Size([1280]) False 349 visual.blocks.29.norm1.weight torch.Size([1280]) False 350 visual.blocks.29.norm2.weight torch.Size([1280]) False 351 visual.blocks.29.attn.qkv.weight torch.Size([3840, 1280]) False 352 visual.blocks.29.attn.qkv.bias torch.Size([3840]) False 353 visual.blocks.29.attn.proj.weight torch.Size([1280, 1280]) False 354 visual.blocks.29.attn.proj.bias torch.Size([1280]) False 355 visual.blocks.29.mlp.gate_proj.weight torch.Size([3420, 1280]) False 356 visual.blocks.29.mlp.gate_proj.bias torch.Size([3420]) False 357 visual.blocks.29.mlp.up_proj.weight torch.Size([3420, 1280]) False 358 visual.blocks.29.mlp.up_proj.bias torch.Size([3420]) False 359 visual.blocks.29.mlp.down_proj.weight torch.Size([1280, 3420]) False 360 visual.blocks.29.mlp.down_proj.bias torch.Size([1280]) False 361 visual.blocks.30.norm1.weight torch.Size([1280]) False 362 visual.blocks.30.norm2.weight torch.Size([1280]) False 363 visual.blocks.30.attn.qkv.weight torch.Size([3840, 1280]) False 364 visual.blocks.30.attn.qkv.bias torch.Size([3840]) False 365 visual.blocks.30.attn.proj.weight torch.Size([1280, 1280]) False 366 visual.blocks.30.attn.proj.bias torch.Size([1280]) False 367 visual.blocks.30.mlp.gate_proj.weight torch.Size([3420, 1280]) False 368 visual.blocks.30.mlp.gate_proj.bias torch.Size([3420]) False 369 visual.blocks.30.mlp.up_proj.weight torch.Size([3420, 1280]) False 370 visual.blocks.30.mlp.up_proj.bias torch.Size([3420]) False 371 visual.blocks.30.mlp.down_proj.weight torch.Size([1280, 3420]) False 372 visual.blocks.30.mlp.down_proj.bias torch.Size([1280]) False 373 visual.blocks.31.norm1.weight torch.Size([1280]) False 374 visual.blocks.31.norm2.weight torch.Size([1280]) False 375 visual.blocks.31.attn.qkv.weight torch.Size([3840, 1280]) False 376 visual.blocks.31.attn.qkv.bias torch.Size([3840]) False 377 visual.blocks.31.attn.proj.weight torch.Size([1280, 1280]) False 378 visual.blocks.31.attn.proj.bias torch.Size([1280]) False 379 visual.blocks.31.mlp.gate_proj.weight torch.Size([3420, 1280]) False 380 visual.blocks.31.mlp.gate_proj.bias torch.Size([3420]) False 381 visual.blocks.31.mlp.up_proj.weight torch.Size([3420, 1280]) False 382 visual.blocks.31.mlp.up_proj.bias torch.Size([3420]) False 383 visual.blocks.31.mlp.down_proj.weight torch.Size([1280, 3420]) False 384 visual.blocks.31.mlp.down_proj.bias torch.Size([1280]) False 385 visual.merger.ln_q.weight torch.Size([1280]) False 386 visual.merger.mlp.0.weight torch.Size([5120, 5120]) False 387 visual.merger.mlp.0.bias torch.Size([5120]) False 388 visual.merger.mlp.2.weight torch.Size([3584, 5120]) False 389 visual.merger.mlp.2.bias torch.Size([3584]) False 390 model.latent_queries torch.Size([1, 64, 3584]) True 391 model.embed_tokens.weight torch.Size([151668, 3584]) False 392 model.layers.0.self_attn.q_proj.weight torch.Size([3584, 3584]) False 393 model.layers.0.self_attn.q_proj.bias torch.Size([3584]) False 394 model.layers.0.self_attn.k_proj.weight torch.Size([512, 3584]) False 395 model.layers.0.self_attn.k_proj.bias torch.Size([512]) False 396 model.layers.0.self_attn.v_proj.weight torch.Size([512, 3584]) False 397 model.layers.0.self_attn.v_proj.bias torch.Size([512]) False 398 model.layers.0.self_attn.o_proj.weight torch.Size([3584, 3584]) False 399 model.layers.0.mlp.gate_proj.weight torch.Size([18944, 3584]) False 400 model.layers.0.mlp.up_proj.weight torch.Size([18944, 3584]) False 401 model.layers.0.mlp.down_proj.weight torch.Size([3584, 18944]) False 402 model.layers.0.input_layernorm.weight torch.Size([3584]) False 403 model.layers.0.post_attention_layernorm.weight torch.Size([3584]) False 404 model.layers.1.self_attn.q_proj.weight torch.Size([3584, 3584]) False 405 model.layers.1.self_attn.q_proj.bias torch.Size([3584]) False 406 model.layers.1.self_attn.k_proj.weight torch.Size([512, 3584]) False 407 model.layers.1.self_attn.k_proj.bias torch.Size([512]) False 408 model.layers.1.self_attn.v_proj.weight torch.Size([512, 3584]) False 409 model.layers.1.self_attn.v_proj.bias torch.Size([512]) False 410 model.layers.1.self_attn.o_proj.weight torch.Size([3584, 3584]) False 411 model.layers.1.mlp.gate_proj.weight torch.Size([18944, 3584]) False 412 model.layers.1.mlp.up_proj.weight torch.Size([18944, 3584]) False 413 model.layers.1.mlp.down_proj.weight torch.Size([3584, 18944]) False 414 model.layers.1.input_layernorm.weight torch.Size([3584]) False 415 model.layers.1.post_attention_layernorm.weight torch.Size([3584]) False 416 model.layers.2.self_attn.q_proj.weight torch.Size([3584, 3584]) False 417 model.layers.2.self_attn.q_proj.bias torch.Size([3584]) False 418 model.layers.2.self_attn.k_proj.weight torch.Size([512, 3584]) False 419 model.layers.2.self_attn.k_proj.bias torch.Size([512]) False 420 model.layers.2.self_attn.v_proj.weight torch.Size([512, 3584]) False 421 model.layers.2.self_attn.v_proj.bias torch.Size([512]) False 422 model.layers.2.self_attn.o_proj.weight torch.Size([3584, 3584]) False 423 model.layers.2.mlp.gate_proj.weight torch.Size([18944, 3584]) False 424 model.layers.2.mlp.up_proj.weight torch.Size([18944, 3584]) False 425 model.layers.2.mlp.down_proj.weight torch.Size([3584, 18944]) False 426 model.layers.2.input_layernorm.weight torch.Size([3584]) False 427 model.layers.2.post_attention_layernorm.weight torch.Size([3584]) False 428 model.layers.3.self_attn.q_proj.weight torch.Size([3584, 3584]) False 429 model.layers.3.self_attn.q_proj.bias torch.Size([3584]) False 430 model.layers.3.self_attn.k_proj.weight torch.Size([512, 3584]) False 431 model.layers.3.self_attn.k_proj.bias torch.Size([512]) False 432 model.layers.3.self_attn.v_proj.weight torch.Size([512, 3584]) False 433 model.layers.3.self_attn.v_proj.bias torch.Size([512]) False 434 model.layers.3.self_attn.o_proj.weight torch.Size([3584, 3584]) False 435 model.layers.3.mlp.gate_proj.weight torch.Size([18944, 3584]) False 436 model.layers.3.mlp.up_proj.weight torch.Size([18944, 3584]) False 437 model.layers.3.mlp.down_proj.weight torch.Size([3584, 18944]) False 438 model.layers.3.input_layernorm.weight torch.Size([3584]) False 439 model.layers.3.post_attention_layernorm.weight torch.Size([3584]) False 440 model.layers.4.self_attn.q_proj.weight torch.Size([3584, 3584]) False 441 model.layers.4.self_attn.q_proj.bias torch.Size([3584]) False 442 model.layers.4.self_attn.k_proj.weight torch.Size([512, 3584]) False 443 model.layers.4.self_attn.k_proj.bias torch.Size([512]) False 444 model.layers.4.self_attn.v_proj.weight torch.Size([512, 3584]) False 445 model.layers.4.self_attn.v_proj.bias torch.Size([512]) False 446 model.layers.4.self_attn.o_proj.weight torch.Size([3584, 3584]) False 447 model.layers.4.mlp.gate_proj.weight torch.Size([18944, 3584]) False 448 model.layers.4.mlp.up_proj.weight torch.Size([18944, 3584]) False 449 model.layers.4.mlp.down_proj.weight torch.Size([3584, 18944]) False 450 model.layers.4.input_layernorm.weight torch.Size([3584]) False 451 model.layers.4.post_attention_layernorm.weight torch.Size([3584]) False 452 model.layers.5.self_attn.q_proj.weight torch.Size([3584, 3584]) False 453 model.layers.5.self_attn.q_proj.bias torch.Size([3584]) False 454 model.layers.5.self_attn.k_proj.weight torch.Size([512, 3584]) False 455 model.layers.5.self_attn.k_proj.bias torch.Size([512]) False 456 model.layers.5.self_attn.v_proj.weight torch.Size([512, 3584]) False 457 model.layers.5.self_attn.v_proj.bias torch.Size([512]) False 458 model.layers.5.self_attn.o_proj.weight torch.Size([3584, 3584]) False 459 model.layers.5.mlp.gate_proj.weight torch.Size([18944, 3584]) False 460 model.layers.5.mlp.up_proj.weight torch.Size([18944, 3584]) False 461 model.layers.5.mlp.down_proj.weight torch.Size([3584, 18944]) False 462 model.layers.5.input_layernorm.weight torch.Size([3584]) False 463 model.layers.5.post_attention_layernorm.weight torch.Size([3584]) False 464 model.layers.6.self_attn.q_proj.weight torch.Size([3584, 3584]) False 465 model.layers.6.self_attn.q_proj.bias torch.Size([3584]) False 466 model.layers.6.self_attn.k_proj.weight torch.Size([512, 3584]) False 467 model.layers.6.self_attn.k_proj.bias torch.Size([512]) False 468 model.layers.6.self_attn.v_proj.weight torch.Size([512, 3584]) False 469 model.layers.6.self_attn.v_proj.bias torch.Size([512]) False 470 model.layers.6.self_attn.o_proj.weight torch.Size([3584, 3584]) False 471 model.layers.6.mlp.gate_proj.weight torch.Size([18944, 3584]) False 472 model.layers.6.mlp.up_proj.weight torch.Size([18944, 3584]) False 473 model.layers.6.mlp.down_proj.weight torch.Size([3584, 18944]) False 474 model.layers.6.input_layernorm.weight torch.Size([3584]) False 475 model.layers.6.post_attention_layernorm.weight torch.Size([3584]) False 476 model.layers.7.self_attn.q_proj.weight torch.Size([3584, 3584]) False 477 model.layers.7.self_attn.q_proj.bias torch.Size([3584]) False 478 model.layers.7.self_attn.k_proj.weight torch.Size([512, 3584]) False 479 model.layers.7.self_attn.k_proj.bias torch.Size([512]) False 480 model.layers.7.self_attn.v_proj.weight torch.Size([512, 3584]) False 481 model.layers.7.self_attn.v_proj.bias torch.Size([512]) False 482 model.layers.7.self_attn.o_proj.weight torch.Size([3584, 3584]) False 483 model.layers.7.mlp.gate_proj.weight torch.Size([18944, 3584]) False 484 model.layers.7.mlp.up_proj.weight torch.Size([18944, 3584]) False 485 model.layers.7.mlp.down_proj.weight torch.Size([3584, 18944]) False 486 model.layers.7.input_layernorm.weight torch.Size([3584]) False 487 model.layers.7.post_attention_layernorm.weight torch.Size([3584]) False 488 model.layers.8.self_attn.q_proj.weight torch.Size([3584, 3584]) False 489 model.layers.8.self_attn.q_proj.bias torch.Size([3584]) False 490 model.layers.8.self_attn.k_proj.weight torch.Size([512, 3584]) False 491 model.layers.8.self_attn.k_proj.bias torch.Size([512]) False 492 model.layers.8.self_attn.v_proj.weight torch.Size([512, 3584]) False 493 model.layers.8.self_attn.v_proj.bias torch.Size([512]) False 494 model.layers.8.self_attn.o_proj.weight torch.Size([3584, 3584]) False 495 model.layers.8.mlp.gate_proj.weight torch.Size([18944, 3584]) False 496 model.layers.8.mlp.up_proj.weight torch.Size([18944, 3584]) False 497 model.layers.8.mlp.down_proj.weight torch.Size([3584, 18944]) False 498 model.layers.8.input_layernorm.weight torch.Size([3584]) False 499 model.layers.8.post_attention_layernorm.weight torch.Size([3584]) False 500 model.layers.9.self_attn.q_proj.weight torch.Size([3584, 3584]) False 501 model.layers.9.self_attn.q_proj.bias torch.Size([3584]) False 502 model.layers.9.self_attn.k_proj.weight torch.Size([512, 3584]) False 503 model.layers.9.self_attn.k_proj.bias torch.Size([512]) False 504 model.layers.9.self_attn.v_proj.weight torch.Size([512, 3584]) False 505 model.layers.9.self_attn.v_proj.bias torch.Size([512]) False 506 model.layers.9.self_attn.o_proj.weight torch.Size([3584, 3584]) False 507 model.layers.9.mlp.gate_proj.weight torch.Size([18944, 3584]) False 508 model.layers.9.mlp.up_proj.weight torch.Size([18944, 3584]) False 509 model.layers.9.mlp.down_proj.weight torch.Size([3584, 18944]) False 510 model.layers.9.input_layernorm.weight torch.Size([3584]) False 511 model.layers.9.post_attention_layernorm.weight torch.Size([3584]) False 512 model.layers.10.self_attn.q_proj.weight torch.Size([3584, 3584]) False 513 model.layers.10.self_attn.q_proj.bias torch.Size([3584]) False 514 model.layers.10.self_attn.k_proj.weight torch.Size([512, 3584]) False 515 model.layers.10.self_attn.k_proj.bias torch.Size([512]) False 516 model.layers.10.self_attn.v_proj.weight torch.Size([512, 3584]) False 517 model.layers.10.self_attn.v_proj.bias torch.Size([512]) False 518 model.layers.10.self_attn.o_proj.weight torch.Size([3584, 3584]) False 519 model.layers.10.mlp.gate_proj.weight torch.Size([18944, 3584]) False 520 model.layers.10.mlp.up_proj.weight torch.Size([18944, 3584]) False 521 model.layers.10.mlp.down_proj.weight torch.Size([3584, 18944]) False 522 model.layers.10.input_layernorm.weight torch.Size([3584]) False 523 model.layers.10.post_attention_layernorm.weight torch.Size([3584]) False 524 model.layers.11.self_attn.q_proj.weight torch.Size([3584, 3584]) False 525 model.layers.11.self_attn.q_proj.bias torch.Size([3584]) False 526 model.layers.11.self_attn.k_proj.weight torch.Size([512, 3584]) False 527 model.layers.11.self_attn.k_proj.bias torch.Size([512]) False 528 model.layers.11.self_attn.v_proj.weight torch.Size([512, 3584]) False 529 model.layers.11.self_attn.v_proj.bias torch.Size([512]) False 530 model.layers.11.self_attn.o_proj.weight torch.Size([3584, 3584]) False 531 model.layers.11.mlp.gate_proj.weight torch.Size([18944, 3584]) False 532 model.layers.11.mlp.up_proj.weight torch.Size([18944, 3584]) False 533 model.layers.11.mlp.down_proj.weight torch.Size([3584, 18944]) False 534 model.layers.11.input_layernorm.weight torch.Size([3584]) False 535 model.layers.11.post_attention_layernorm.weight torch.Size([3584]) False 536 model.layers.12.self_attn.q_proj.weight torch.Size([3584, 3584]) False 537 model.layers.12.self_attn.q_proj.bias torch.Size([3584]) False 538 model.layers.12.self_attn.k_proj.weight torch.Size([512, 3584]) False 539 model.layers.12.self_attn.k_proj.bias torch.Size([512]) False 540 model.layers.12.self_attn.v_proj.weight torch.Size([512, 3584]) False 541 model.layers.12.self_attn.v_proj.bias torch.Size([512]) False 542 model.layers.12.self_attn.o_proj.weight torch.Size([3584, 3584]) False 543 model.layers.12.mlp.gate_proj.weight torch.Size([18944, 3584]) False 544 model.layers.12.mlp.up_proj.weight torch.Size([18944, 3584]) False 545 model.layers.12.mlp.down_proj.weight torch.Size([3584, 18944]) False 546 model.layers.12.input_layernorm.weight torch.Size([3584]) False 547 model.layers.12.post_attention_layernorm.weight torch.Size([3584]) False 548 model.layers.13.self_attn.q_proj.weight torch.Size([3584, 3584]) False 549 model.layers.13.self_attn.q_proj.bias torch.Size([3584]) False 550 model.layers.13.self_attn.k_proj.weight torch.Size([512, 3584]) False 551 model.layers.13.self_attn.k_proj.bias torch.Size([512]) False 552 model.layers.13.self_attn.v_proj.weight torch.Size([512, 3584]) False 553 model.layers.13.self_attn.v_proj.bias torch.Size([512]) False 554 model.layers.13.self_attn.o_proj.weight torch.Size([3584, 3584]) False 555 model.layers.13.mlp.gate_proj.weight torch.Size([18944, 3584]) False 556 model.layers.13.mlp.up_proj.weight torch.Size([18944, 3584]) False 557 model.layers.13.mlp.down_proj.weight torch.Size([3584, 18944]) False 558 model.layers.13.input_layernorm.weight torch.Size([3584]) False 559 model.layers.13.post_attention_layernorm.weight torch.Size([3584]) False 560 model.layers.14.self_attn.q_proj.weight torch.Size([3584, 3584]) False 561 model.layers.14.self_attn.q_proj.bias torch.Size([3584]) False 562 model.layers.14.self_attn.k_proj.weight torch.Size([512, 3584]) False 563 model.layers.14.self_attn.k_proj.bias torch.Size([512]) False 564 model.layers.14.self_attn.v_proj.weight torch.Size([512, 3584]) False 565 model.layers.14.self_attn.v_proj.bias torch.Size([512]) False 566 model.layers.14.self_attn.o_proj.weight torch.Size([3584, 3584]) False 567 model.layers.14.mlp.gate_proj.weight torch.Size([18944, 3584]) False 568 model.layers.14.mlp.up_proj.weight torch.Size([18944, 3584]) False 569 model.layers.14.mlp.down_proj.weight torch.Size([3584, 18944]) False 570 model.layers.14.input_layernorm.weight torch.Size([3584]) False 571 model.layers.14.post_attention_layernorm.weight torch.Size([3584]) False 572 model.layers.15.self_attn.q_proj.weight torch.Size([3584, 3584]) False 573 model.layers.15.self_attn.q_proj.bias torch.Size([3584]) False 574 model.layers.15.self_attn.k_proj.weight torch.Size([512, 3584]) False 575 model.layers.15.self_attn.k_proj.bias torch.Size([512]) False 576 model.layers.15.self_attn.v_proj.weight torch.Size([512, 3584]) False 577 model.layers.15.self_attn.v_proj.bias torch.Size([512]) False 578 model.layers.15.self_attn.o_proj.weight torch.Size([3584, 3584]) False 579 model.layers.15.mlp.gate_proj.weight torch.Size([18944, 3584]) False 580 model.layers.15.mlp.up_proj.weight torch.Size([18944, 3584]) False 581 model.layers.15.mlp.down_proj.weight torch.Size([3584, 18944]) False 582 model.layers.15.input_layernorm.weight torch.Size([3584]) False 583 model.layers.15.post_attention_layernorm.weight torch.Size([3584]) False 584 model.layers.16.self_attn.q_proj.weight torch.Size([3584, 3584]) False 585 model.layers.16.self_attn.q_proj.bias torch.Size([3584]) False 586 model.layers.16.self_attn.k_proj.weight torch.Size([512, 3584]) False 587 model.layers.16.self_attn.k_proj.bias torch.Size([512]) False 588 model.layers.16.self_attn.v_proj.weight torch.Size([512, 3584]) False 589 model.layers.16.self_attn.v_proj.bias torch.Size([512]) False 590 model.layers.16.self_attn.o_proj.weight torch.Size([3584, 3584]) False 591 model.layers.16.mlp.gate_proj.weight torch.Size([18944, 3584]) False 592 model.layers.16.mlp.up_proj.weight torch.Size([18944, 3584]) False 593 model.layers.16.mlp.down_proj.weight torch.Size([3584, 18944]) False 594 model.layers.16.input_layernorm.weight torch.Size([3584]) False 595 model.layers.16.post_attention_layernorm.weight torch.Size([3584]) False 596 model.layers.17.self_attn.q_proj.weight torch.Size([3584, 3584]) False 597 model.layers.17.self_attn.q_proj.bias torch.Size([3584]) False 598 model.layers.17.self_attn.k_proj.weight torch.Size([512, 3584]) False 599 model.layers.17.self_attn.k_proj.bias torch.Size([512]) False 600 model.layers.17.self_attn.v_proj.weight torch.Size([512, 3584]) False 601 model.layers.17.self_attn.v_proj.bias torch.Size([512]) False 602 model.layers.17.self_attn.o_proj.weight torch.Size([3584, 3584]) False 603 model.layers.17.mlp.gate_proj.weight torch.Size([18944, 3584]) False 604 model.layers.17.mlp.up_proj.weight torch.Size([18944, 3584]) False 605 model.layers.17.mlp.down_proj.weight torch.Size([3584, 18944]) False 606 model.layers.17.input_layernorm.weight torch.Size([3584]) False 607 model.layers.17.post_attention_layernorm.weight torch.Size([3584]) False 608 model.layers.18.self_attn.q_proj.weight torch.Size([3584, 3584]) False 609 model.layers.18.self_attn.q_proj.bias torch.Size([3584]) False 610 model.layers.18.self_attn.k_proj.weight torch.Size([512, 3584]) False 611 model.layers.18.self_attn.k_proj.bias torch.Size([512]) False 612 model.layers.18.self_attn.v_proj.weight torch.Size([512, 3584]) False 613 model.layers.18.self_attn.v_proj.bias torch.Size([512]) False 614 model.layers.18.self_attn.o_proj.weight torch.Size([3584, 3584]) False 615 model.layers.18.mlp.gate_proj.weight torch.Size([18944, 3584]) False 616 model.layers.18.mlp.up_proj.weight torch.Size([18944, 3584]) False 617 model.layers.18.mlp.down_proj.weight torch.Size([3584, 18944]) False 618 model.layers.18.input_layernorm.weight torch.Size([3584]) False 619 model.layers.18.post_attention_layernorm.weight torch.Size([3584]) False 620 model.layers.19.self_attn.q_proj.weight torch.Size([3584, 3584]) False 621 model.layers.19.self_attn.q_proj.bias torch.Size([3584]) False 622 model.layers.19.self_attn.k_proj.weight torch.Size([512, 3584]) False 623 model.layers.19.self_attn.k_proj.bias torch.Size([512]) False 624 model.layers.19.self_attn.v_proj.weight torch.Size([512, 3584]) False 625 model.layers.19.self_attn.v_proj.bias torch.Size([512]) False 626 model.layers.19.self_attn.o_proj.weight torch.Size([3584, 3584]) False 627 model.layers.19.mlp.gate_proj.weight torch.Size([18944, 3584]) False 628 model.layers.19.mlp.up_proj.weight torch.Size([18944, 3584]) False 629 model.layers.19.mlp.down_proj.weight torch.Size([3584, 18944]) False 630 model.layers.19.input_layernorm.weight torch.Size([3584]) False 631 model.layers.19.post_attention_layernorm.weight torch.Size([3584]) False 632 model.layers.20.self_attn.q_proj.weight torch.Size([3584, 3584]) False 633 model.layers.20.self_attn.q_proj.bias torch.Size([3584]) False 634 model.layers.20.self_attn.k_proj.weight torch.Size([512, 3584]) False 635 model.layers.20.self_attn.k_proj.bias torch.Size([512]) False 636 model.layers.20.self_attn.v_proj.weight torch.Size([512, 3584]) False 637 model.layers.20.self_attn.v_proj.bias torch.Size([512]) False 638 model.layers.20.self_attn.o_proj.weight torch.Size([3584, 3584]) False 639 model.layers.20.mlp.gate_proj.weight torch.Size([18944, 3584]) False 640 model.layers.20.mlp.up_proj.weight torch.Size([18944, 3584]) False 641 model.layers.20.mlp.down_proj.weight torch.Size([3584, 18944]) False 642 model.layers.20.input_layernorm.weight torch.Size([3584]) False 643 model.layers.20.post_attention_layernorm.weight torch.Size([3584]) False 644 model.layers.21.self_attn.q_proj.weight torch.Size([3584, 3584]) False 645 model.layers.21.self_attn.q_proj.bias torch.Size([3584]) False 646 model.layers.21.self_attn.k_proj.weight torch.Size([512, 3584]) False 647 model.layers.21.self_attn.k_proj.bias torch.Size([512]) False 648 model.layers.21.self_attn.v_proj.weight torch.Size([512, 3584]) False 649 model.layers.21.self_attn.v_proj.bias torch.Size([512]) False 650 model.layers.21.self_attn.o_proj.weight torch.Size([3584, 3584]) False 651 model.layers.21.mlp.gate_proj.weight torch.Size([18944, 3584]) False 652 model.layers.21.mlp.up_proj.weight torch.Size([18944, 3584]) False 653 model.layers.21.mlp.down_proj.weight torch.Size([3584, 18944]) False 654 model.layers.21.input_layernorm.weight torch.Size([3584]) False 655 model.layers.21.post_attention_layernorm.weight torch.Size([3584]) False 656 model.layers.22.self_attn.q_proj.weight torch.Size([3584, 3584]) False 657 model.layers.22.self_attn.q_proj.bias torch.Size([3584]) False 658 model.layers.22.self_attn.k_proj.weight torch.Size([512, 3584]) False 659 model.layers.22.self_attn.k_proj.bias torch.Size([512]) False 660 model.layers.22.self_attn.v_proj.weight torch.Size([512, 3584]) False 661 model.layers.22.self_attn.v_proj.bias torch.Size([512]) False 662 model.layers.22.self_attn.o_proj.weight torch.Size([3584, 3584]) False 663 model.layers.22.mlp.gate_proj.weight torch.Size([18944, 3584]) False 664 model.layers.22.mlp.up_proj.weight torch.Size([18944, 3584]) False 665 model.layers.22.mlp.down_proj.weight torch.Size([3584, 18944]) False 666 model.layers.22.input_layernorm.weight torch.Size([3584]) False 667 model.layers.22.post_attention_layernorm.weight torch.Size([3584]) False 668 model.layers.23.self_attn.q_proj.weight torch.Size([3584, 3584]) False 669 model.layers.23.self_attn.q_proj.bias torch.Size([3584]) False 670 model.layers.23.self_attn.k_proj.weight torch.Size([512, 3584]) False 671 model.layers.23.self_attn.k_proj.bias torch.Size([512]) False 672 model.layers.23.self_attn.v_proj.weight torch.Size([512, 3584]) False 673 model.layers.23.self_attn.v_proj.bias torch.Size([512]) False 674 model.layers.23.self_attn.o_proj.weight torch.Size([3584, 3584]) False 675 model.layers.23.mlp.gate_proj.weight torch.Size([18944, 3584]) False 676 model.layers.23.mlp.up_proj.weight torch.Size([18944, 3584]) False 677 model.layers.23.mlp.down_proj.weight torch.Size([3584, 18944]) False 678 model.layers.23.input_layernorm.weight torch.Size([3584]) False 679 model.layers.23.post_attention_layernorm.weight torch.Size([3584]) False 680 model.layers.24.self_attn.q_proj.weight torch.Size([3584, 3584]) False 681 model.layers.24.self_attn.q_proj.bias torch.Size([3584]) False 682 model.layers.24.self_attn.k_proj.weight torch.Size([512, 3584]) False 683 model.layers.24.self_attn.k_proj.bias torch.Size([512]) False 684 model.layers.24.self_attn.v_proj.weight torch.Size([512, 3584]) False 685 model.layers.24.self_attn.v_proj.bias torch.Size([512]) False 686 model.layers.24.self_attn.o_proj.weight torch.Size([3584, 3584]) False 687 model.layers.24.mlp.gate_proj.weight torch.Size([18944, 3584]) False 688 model.layers.24.mlp.up_proj.weight torch.Size([18944, 3584]) False 689 model.layers.24.mlp.down_proj.weight torch.Size([3584, 18944]) False 690 model.layers.24.input_layernorm.weight torch.Size([3584]) False 691 model.layers.24.post_attention_layernorm.weight torch.Size([3584]) False 692 model.layers.25.self_attn.q_proj.weight torch.Size([3584, 3584]) False 693 model.layers.25.self_attn.q_proj.bias torch.Size([3584]) False 694 model.layers.25.self_attn.k_proj.weight torch.Size([512, 3584]) False 695 model.layers.25.self_attn.k_proj.bias torch.Size([512]) False 696 model.layers.25.self_attn.v_proj.weight torch.Size([512, 3584]) False 697 model.layers.25.self_attn.v_proj.bias torch.Size([512]) False 698 model.layers.25.self_attn.o_proj.weight torch.Size([3584, 3584]) False 699 model.layers.25.mlp.gate_proj.weight torch.Size([18944, 3584]) False 700 model.layers.25.mlp.up_proj.weight torch.Size([18944, 3584]) False 701 model.layers.25.mlp.down_proj.weight torch.Size([3584, 18944]) False 702 model.layers.25.input_layernorm.weight torch.Size([3584]) False 703 model.layers.25.post_attention_layernorm.weight torch.Size([3584]) False 704 model.layers.26.self_attn.q_proj.weight torch.Size([3584, 3584]) False 705 model.layers.26.self_attn.q_proj.bias torch.Size([3584]) False 706 model.layers.26.self_attn.k_proj.weight torch.Size([512, 3584]) False 707 model.layers.26.self_attn.k_proj.bias torch.Size([512]) False 708 model.layers.26.self_attn.v_proj.weight torch.Size([512, 3584]) False 709 model.layers.26.self_attn.v_proj.bias torch.Size([512]) False 710 model.layers.26.self_attn.o_proj.weight torch.Size([3584, 3584]) False 711 model.layers.26.mlp.gate_proj.weight torch.Size([18944, 3584]) False 712 model.layers.26.mlp.up_proj.weight torch.Size([18944, 3584]) False 713 model.layers.26.mlp.down_proj.weight torch.Size([3584, 18944]) False 714 model.layers.26.input_layernorm.weight torch.Size([3584]) False 715 model.layers.26.post_attention_layernorm.weight torch.Size([3584]) False 716 model.layers.27.self_attn.q_proj.weight torch.Size([3584, 3584]) False 717 model.layers.27.self_attn.q_proj.bias torch.Size([3584]) False 718 model.layers.27.self_attn.k_proj.weight torch.Size([512, 3584]) False 719 model.layers.27.self_attn.k_proj.bias torch.Size([512]) False 720 model.layers.27.self_attn.v_proj.weight torch.Size([512, 3584]) False 721 model.layers.27.self_attn.v_proj.bias torch.Size([512]) False 722 model.layers.27.self_attn.o_proj.weight torch.Size([3584, 3584]) False 723 model.layers.27.mlp.gate_proj.weight torch.Size([18944, 3584]) False 724 model.layers.27.mlp.up_proj.weight torch.Size([18944, 3584]) False 725 model.layers.27.mlp.down_proj.weight torch.Size([3584, 18944]) False 726 model.layers.27.input_layernorm.weight torch.Size([3584]) False 727 model.layers.27.post_attention_layernorm.weight torch.Size([3584]) False 728 model.norm.weight torch.Size([3584]) False 729 model.dit.model.caption_projection.linear_1.weight torch.Size([1792, 3584]) True 730 model.dit.model.caption_projection.linear_1.bias torch.Size([1792]) True 731 model.dit.model.caption_projection.linear_2.weight torch.Size([1792, 1792]) True 732 model.dit.model.caption_projection.linear_2.bias torch.Size([1792]) True 733 model.dit.model.patch_embedder.proj.weight torch.Size([1792, 1792]) True 734 model.dit.model.patch_embedder.proj.bias torch.Size([1792]) True 735 model.dit.model.time_caption_embed.timestep_embedder.linear_1.weight torch.Size([1024, 256]) True 736 model.dit.model.time_caption_embed.timestep_embedder.linear_1.bias torch.Size([1024]) True 737 model.dit.model.time_caption_embed.timestep_embedder.linear_2.weight torch.Size([1024, 1024]) True 738 model.dit.model.time_caption_embed.timestep_embedder.linear_2.bias torch.Size([1024]) True 739 model.dit.model.time_caption_embed.caption_embedder.0.weight torch.Size([1792]) True 740 model.dit.model.time_caption_embed.caption_embedder.0.bias torch.Size([1792]) True 741 model.dit.model.time_caption_embed.caption_embedder.1.weight torch.Size([1024, 1792]) True 742 model.dit.model.time_caption_embed.caption_embedder.1.bias torch.Size([1024]) True 743 model.dit.model.layers.0.gate torch.Size([28]) True 744 model.dit.model.layers.0.attn1.norm_q.weight torch.Size([1792]) True 745 model.dit.model.layers.0.attn1.norm_q.bias torch.Size([1792]) True 746 model.dit.model.layers.0.attn1.norm_k.weight torch.Size([1792]) True 747 model.dit.model.layers.0.attn1.norm_k.bias torch.Size([1792]) True 748 model.dit.model.layers.0.attn1.to_q.weight torch.Size([1792, 1792]) True 749 model.dit.model.layers.0.attn1.to_k.weight torch.Size([1792, 1792]) True 750 model.dit.model.layers.0.attn1.to_v.weight torch.Size([1792, 1792]) True 751 model.dit.model.layers.0.attn2.norm_q.weight torch.Size([1792]) True 752 model.dit.model.layers.0.attn2.norm_q.bias torch.Size([1792]) True 753 model.dit.model.layers.0.attn2.norm_k.weight torch.Size([1792]) True 754 model.dit.model.layers.0.attn2.norm_k.bias torch.Size([1792]) True 755 model.dit.model.layers.0.attn2.to_q.weight torch.Size([1792, 1792]) True 756 model.dit.model.layers.0.attn2.to_k.weight torch.Size([1792, 1792]) True 757 model.dit.model.layers.0.attn2.to_v.weight torch.Size([1792, 1792]) True 758 model.dit.model.layers.0.attn2.to_out.0.weight torch.Size([1792, 1792]) True 759 model.dit.model.layers.0.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 760 model.dit.model.layers.0.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 761 model.dit.model.layers.0.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 762 model.dit.model.layers.0.norm1.linear.weight torch.Size([7168, 1024]) True 763 model.dit.model.layers.0.norm1.linear.bias torch.Size([7168]) True 764 model.dit.model.layers.0.norm1.norm.weight torch.Size([1792]) True 765 model.dit.model.layers.0.ffn_norm1.weight torch.Size([1792]) True 766 model.dit.model.layers.0.norm2.weight torch.Size([1792]) True 767 model.dit.model.layers.0.ffn_norm2.weight torch.Size([1792]) True 768 model.dit.model.layers.0.norm1_context.weight torch.Size([1792]) True 769 model.dit.model.layers.1.gate torch.Size([28]) True 770 model.dit.model.layers.1.attn1.norm_q.weight torch.Size([1792]) True 771 model.dit.model.layers.1.attn1.norm_q.bias torch.Size([1792]) True 772 model.dit.model.layers.1.attn1.norm_k.weight torch.Size([1792]) True 773 model.dit.model.layers.1.attn1.norm_k.bias torch.Size([1792]) True 774 model.dit.model.layers.1.attn1.to_q.weight torch.Size([1792, 1792]) True 775 model.dit.model.layers.1.attn1.to_k.weight torch.Size([1792, 1792]) True 776 model.dit.model.layers.1.attn1.to_v.weight torch.Size([1792, 1792]) True 777 model.dit.model.layers.1.attn2.norm_q.weight torch.Size([1792]) True 778 model.dit.model.layers.1.attn2.norm_q.bias torch.Size([1792]) True 779 model.dit.model.layers.1.attn2.norm_k.weight torch.Size([1792]) True 780 model.dit.model.layers.1.attn2.norm_k.bias torch.Size([1792]) True 781 model.dit.model.layers.1.attn2.to_q.weight torch.Size([1792, 1792]) True 782 model.dit.model.layers.1.attn2.to_k.weight torch.Size([1792, 1792]) True 783 model.dit.model.layers.1.attn2.to_v.weight torch.Size([1792, 1792]) True 784 model.dit.model.layers.1.attn2.to_out.0.weight torch.Size([1792, 1792]) True 785 model.dit.model.layers.1.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 786 model.dit.model.layers.1.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 787 model.dit.model.layers.1.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 788 model.dit.model.layers.1.norm1.linear.weight torch.Size([7168, 1024]) True 789 model.dit.model.layers.1.norm1.linear.bias torch.Size([7168]) True 790 model.dit.model.layers.1.norm1.norm.weight torch.Size([1792]) True 791 model.dit.model.layers.1.ffn_norm1.weight torch.Size([1792]) True 792 model.dit.model.layers.1.norm2.weight torch.Size([1792]) True 793 model.dit.model.layers.1.ffn_norm2.weight torch.Size([1792]) True 794 model.dit.model.layers.1.norm1_context.weight torch.Size([1792]) True 795 model.dit.model.layers.2.gate torch.Size([28]) True 796 model.dit.model.layers.2.attn1.norm_q.weight torch.Size([1792]) True 797 model.dit.model.layers.2.attn1.norm_q.bias torch.Size([1792]) True 798 model.dit.model.layers.2.attn1.norm_k.weight torch.Size([1792]) True 799 model.dit.model.layers.2.attn1.norm_k.bias torch.Size([1792]) True 800 model.dit.model.layers.2.attn1.to_q.weight torch.Size([1792, 1792]) True 801 model.dit.model.layers.2.attn1.to_k.weight torch.Size([1792, 1792]) True 802 model.dit.model.layers.2.attn1.to_v.weight torch.Size([1792, 1792]) True 803 model.dit.model.layers.2.attn2.norm_q.weight torch.Size([1792]) True 804 model.dit.model.layers.2.attn2.norm_q.bias torch.Size([1792]) True 805 model.dit.model.layers.2.attn2.norm_k.weight torch.Size([1792]) True 806 model.dit.model.layers.2.attn2.norm_k.bias torch.Size([1792]) True 807 model.dit.model.layers.2.attn2.to_q.weight torch.Size([1792, 1792]) True 808 model.dit.model.layers.2.attn2.to_k.weight torch.Size([1792, 1792]) True 809 model.dit.model.layers.2.attn2.to_v.weight torch.Size([1792, 1792]) True 810 model.dit.model.layers.2.attn2.to_out.0.weight torch.Size([1792, 1792]) True 811 model.dit.model.layers.2.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 812 model.dit.model.layers.2.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 813 model.dit.model.layers.2.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 814 model.dit.model.layers.2.norm1.linear.weight torch.Size([7168, 1024]) True 815 model.dit.model.layers.2.norm1.linear.bias torch.Size([7168]) True 816 model.dit.model.layers.2.norm1.norm.weight torch.Size([1792]) True 817 model.dit.model.layers.2.ffn_norm1.weight torch.Size([1792]) True 818 model.dit.model.layers.2.norm2.weight torch.Size([1792]) True 819 model.dit.model.layers.2.ffn_norm2.weight torch.Size([1792]) True 820 model.dit.model.layers.2.norm1_context.weight torch.Size([1792]) True 821 model.dit.model.layers.3.gate torch.Size([28]) True 822 model.dit.model.layers.3.attn1.norm_q.weight torch.Size([1792]) True 823 model.dit.model.layers.3.attn1.norm_q.bias torch.Size([1792]) True 824 model.dit.model.layers.3.attn1.norm_k.weight torch.Size([1792]) True 825 model.dit.model.layers.3.attn1.norm_k.bias torch.Size([1792]) True 826 model.dit.model.layers.3.attn1.to_q.weight torch.Size([1792, 1792]) True 827 model.dit.model.layers.3.attn1.to_k.weight torch.Size([1792, 1792]) True 828 model.dit.model.layers.3.attn1.to_v.weight torch.Size([1792, 1792]) True 829 model.dit.model.layers.3.attn2.norm_q.weight torch.Size([1792]) True 830 model.dit.model.layers.3.attn2.norm_q.bias torch.Size([1792]) True 831 model.dit.model.layers.3.attn2.norm_k.weight torch.Size([1792]) True 832 model.dit.model.layers.3.attn2.norm_k.bias torch.Size([1792]) True 833 model.dit.model.layers.3.attn2.to_q.weight torch.Size([1792, 1792]) True 834 model.dit.model.layers.3.attn2.to_k.weight torch.Size([1792, 1792]) True 835 model.dit.model.layers.3.attn2.to_v.weight torch.Size([1792, 1792]) True 836 model.dit.model.layers.3.attn2.to_out.0.weight torch.Size([1792, 1792]) True 837 model.dit.model.layers.3.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 838 model.dit.model.layers.3.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 839 model.dit.model.layers.3.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 840 model.dit.model.layers.3.norm1.linear.weight torch.Size([7168, 1024]) True 841 model.dit.model.layers.3.norm1.linear.bias torch.Size([7168]) True 842 model.dit.model.layers.3.norm1.norm.weight torch.Size([1792]) True 843 model.dit.model.layers.3.ffn_norm1.weight torch.Size([1792]) True 844 model.dit.model.layers.3.norm2.weight torch.Size([1792]) True 845 model.dit.model.layers.3.ffn_norm2.weight torch.Size([1792]) True 846 model.dit.model.layers.3.norm1_context.weight torch.Size([1792]) True 847 model.dit.model.layers.4.gate torch.Size([28]) True 848 model.dit.model.layers.4.attn1.norm_q.weight torch.Size([1792]) True 849 model.dit.model.layers.4.attn1.norm_q.bias torch.Size([1792]) True 850 model.dit.model.layers.4.attn1.norm_k.weight torch.Size([1792]) True 851 model.dit.model.layers.4.attn1.norm_k.bias torch.Size([1792]) True 852 model.dit.model.layers.4.attn1.to_q.weight torch.Size([1792, 1792]) True 853 model.dit.model.layers.4.attn1.to_k.weight torch.Size([1792, 1792]) True 854 model.dit.model.layers.4.attn1.to_v.weight torch.Size([1792, 1792]) True 855 model.dit.model.layers.4.attn2.norm_q.weight torch.Size([1792]) True 856 model.dit.model.layers.4.attn2.norm_q.bias torch.Size([1792]) True 857 model.dit.model.layers.4.attn2.norm_k.weight torch.Size([1792]) True 858 model.dit.model.layers.4.attn2.norm_k.bias torch.Size([1792]) True 859 model.dit.model.layers.4.attn2.to_q.weight torch.Size([1792, 1792]) True 860 model.dit.model.layers.4.attn2.to_k.weight torch.Size([1792, 1792]) True 861 model.dit.model.layers.4.attn2.to_v.weight torch.Size([1792, 1792]) True 862 model.dit.model.layers.4.attn2.to_out.0.weight torch.Size([1792, 1792]) True 863 model.dit.model.layers.4.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 864 model.dit.model.layers.4.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 865 model.dit.model.layers.4.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 866 model.dit.model.layers.4.norm1.linear.weight torch.Size([7168, 1024]) True 867 model.dit.model.layers.4.norm1.linear.bias torch.Size([7168]) True 868 model.dit.model.layers.4.norm1.norm.weight torch.Size([1792]) True 869 model.dit.model.layers.4.ffn_norm1.weight torch.Size([1792]) True 870 model.dit.model.layers.4.norm2.weight torch.Size([1792]) True 871 model.dit.model.layers.4.ffn_norm2.weight torch.Size([1792]) True 872 model.dit.model.layers.4.norm1_context.weight torch.Size([1792]) True 873 model.dit.model.layers.5.gate torch.Size([28]) True 874 model.dit.model.layers.5.attn1.norm_q.weight torch.Size([1792]) True 875 model.dit.model.layers.5.attn1.norm_q.bias torch.Size([1792]) True 876 model.dit.model.layers.5.attn1.norm_k.weight torch.Size([1792]) True 877 model.dit.model.layers.5.attn1.norm_k.bias torch.Size([1792]) True 878 model.dit.model.layers.5.attn1.to_q.weight torch.Size([1792, 1792]) True 879 model.dit.model.layers.5.attn1.to_k.weight torch.Size([1792, 1792]) True 880 model.dit.model.layers.5.attn1.to_v.weight torch.Size([1792, 1792]) True 881 model.dit.model.layers.5.attn2.norm_q.weight torch.Size([1792]) True 882 model.dit.model.layers.5.attn2.norm_q.bias torch.Size([1792]) True 883 model.dit.model.layers.5.attn2.norm_k.weight torch.Size([1792]) True 884 model.dit.model.layers.5.attn2.norm_k.bias torch.Size([1792]) True 885 model.dit.model.layers.5.attn2.to_q.weight torch.Size([1792, 1792]) True 886 model.dit.model.layers.5.attn2.to_k.weight torch.Size([1792, 1792]) True 887 model.dit.model.layers.5.attn2.to_v.weight torch.Size([1792, 1792]) True 888 model.dit.model.layers.5.attn2.to_out.0.weight torch.Size([1792, 1792]) True 889 model.dit.model.layers.5.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 890 model.dit.model.layers.5.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 891 model.dit.model.layers.5.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 892 model.dit.model.layers.5.norm1.linear.weight torch.Size([7168, 1024]) True 893 model.dit.model.layers.5.norm1.linear.bias torch.Size([7168]) True 894 model.dit.model.layers.5.norm1.norm.weight torch.Size([1792]) True 895 model.dit.model.layers.5.ffn_norm1.weight torch.Size([1792]) True 896 model.dit.model.layers.5.norm2.weight torch.Size([1792]) True 897 model.dit.model.layers.5.ffn_norm2.weight torch.Size([1792]) True 898 model.dit.model.layers.5.norm1_context.weight torch.Size([1792]) True 899 model.dit.model.layers.6.gate torch.Size([28]) True 900 model.dit.model.layers.6.attn1.norm_q.weight torch.Size([1792]) True 901 model.dit.model.layers.6.attn1.norm_q.bias torch.Size([1792]) True 902 model.dit.model.layers.6.attn1.norm_k.weight torch.Size([1792]) True 903 model.dit.model.layers.6.attn1.norm_k.bias torch.Size([1792]) True 904 model.dit.model.layers.6.attn1.to_q.weight torch.Size([1792, 1792]) True 905 model.dit.model.layers.6.attn1.to_k.weight torch.Size([1792, 1792]) True 906 model.dit.model.layers.6.attn1.to_v.weight torch.Size([1792, 1792]) True 907 model.dit.model.layers.6.attn2.norm_q.weight torch.Size([1792]) True 908 model.dit.model.layers.6.attn2.norm_q.bias torch.Size([1792]) True 909 model.dit.model.layers.6.attn2.norm_k.weight torch.Size([1792]) True 910 model.dit.model.layers.6.attn2.norm_k.bias torch.Size([1792]) True 911 model.dit.model.layers.6.attn2.to_q.weight torch.Size([1792, 1792]) True 912 model.dit.model.layers.6.attn2.to_k.weight torch.Size([1792, 1792]) True 913 model.dit.model.layers.6.attn2.to_v.weight torch.Size([1792, 1792]) True 914 model.dit.model.layers.6.attn2.to_out.0.weight torch.Size([1792, 1792]) True 915 model.dit.model.layers.6.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 916 model.dit.model.layers.6.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 917 model.dit.model.layers.6.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 918 model.dit.model.layers.6.norm1.linear.weight torch.Size([7168, 1024]) True 919 model.dit.model.layers.6.norm1.linear.bias torch.Size([7168]) True 920 model.dit.model.layers.6.norm1.norm.weight torch.Size([1792]) True 921 model.dit.model.layers.6.ffn_norm1.weight torch.Size([1792]) True 922 model.dit.model.layers.6.norm2.weight torch.Size([1792]) True 923 model.dit.model.layers.6.ffn_norm2.weight torch.Size([1792]) True 924 model.dit.model.layers.6.norm1_context.weight torch.Size([1792]) True 925 model.dit.model.layers.7.gate torch.Size([28]) True 926 model.dit.model.layers.7.attn1.norm_q.weight torch.Size([1792]) True 927 model.dit.model.layers.7.attn1.norm_q.bias torch.Size([1792]) True 928 model.dit.model.layers.7.attn1.norm_k.weight torch.Size([1792]) True 929 model.dit.model.layers.7.attn1.norm_k.bias torch.Size([1792]) True 930 model.dit.model.layers.7.attn1.to_q.weight torch.Size([1792, 1792]) True 931 model.dit.model.layers.7.attn1.to_k.weight torch.Size([1792, 1792]) True 932 model.dit.model.layers.7.attn1.to_v.weight torch.Size([1792, 1792]) True 933 model.dit.model.layers.7.attn2.norm_q.weight torch.Size([1792]) True 934 model.dit.model.layers.7.attn2.norm_q.bias torch.Size([1792]) True 935 model.dit.model.layers.7.attn2.norm_k.weight torch.Size([1792]) True 936 model.dit.model.layers.7.attn2.norm_k.bias torch.Size([1792]) True 937 model.dit.model.layers.7.attn2.to_q.weight torch.Size([1792, 1792]) True 938 model.dit.model.layers.7.attn2.to_k.weight torch.Size([1792, 1792]) True 939 model.dit.model.layers.7.attn2.to_v.weight torch.Size([1792, 1792]) True 940 model.dit.model.layers.7.attn2.to_out.0.weight torch.Size([1792, 1792]) True 941 model.dit.model.layers.7.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 942 model.dit.model.layers.7.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 943 model.dit.model.layers.7.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 944 model.dit.model.layers.7.norm1.linear.weight torch.Size([7168, 1024]) True 945 model.dit.model.layers.7.norm1.linear.bias torch.Size([7168]) True 946 model.dit.model.layers.7.norm1.norm.weight torch.Size([1792]) True 947 model.dit.model.layers.7.ffn_norm1.weight torch.Size([1792]) True 948 model.dit.model.layers.7.norm2.weight torch.Size([1792]) True 949 model.dit.model.layers.7.ffn_norm2.weight torch.Size([1792]) True 950 model.dit.model.layers.7.norm1_context.weight torch.Size([1792]) True 951 model.dit.model.layers.8.gate torch.Size([28]) True 952 model.dit.model.layers.8.attn1.norm_q.weight torch.Size([1792]) True 953 model.dit.model.layers.8.attn1.norm_q.bias torch.Size([1792]) True 954 model.dit.model.layers.8.attn1.norm_k.weight torch.Size([1792]) True 955 model.dit.model.layers.8.attn1.norm_k.bias torch.Size([1792]) True 956 model.dit.model.layers.8.attn1.to_q.weight torch.Size([1792, 1792]) True 957 model.dit.model.layers.8.attn1.to_k.weight torch.Size([1792, 1792]) True 958 model.dit.model.layers.8.attn1.to_v.weight torch.Size([1792, 1792]) True 959 model.dit.model.layers.8.attn2.norm_q.weight torch.Size([1792]) True 960 model.dit.model.layers.8.attn2.norm_q.bias torch.Size([1792]) True 961 model.dit.model.layers.8.attn2.norm_k.weight torch.Size([1792]) True 962 model.dit.model.layers.8.attn2.norm_k.bias torch.Size([1792]) True 963 model.dit.model.layers.8.attn2.to_q.weight torch.Size([1792, 1792]) True 964 model.dit.model.layers.8.attn2.to_k.weight torch.Size([1792, 1792]) True 965 model.dit.model.layers.8.attn2.to_v.weight torch.Size([1792, 1792]) True 966 model.dit.model.layers.8.attn2.to_out.0.weight torch.Size([1792, 1792]) True 967 model.dit.model.layers.8.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 968 model.dit.model.layers.8.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 969 model.dit.model.layers.8.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 970 model.dit.model.layers.8.norm1.linear.weight torch.Size([7168, 1024]) True 971 model.dit.model.layers.8.norm1.linear.bias torch.Size([7168]) True 972 model.dit.model.layers.8.norm1.norm.weight torch.Size([1792]) True 973 model.dit.model.layers.8.ffn_norm1.weight torch.Size([1792]) True 974 model.dit.model.layers.8.norm2.weight torch.Size([1792]) True 975 model.dit.model.layers.8.ffn_norm2.weight torch.Size([1792]) True 976 model.dit.model.layers.8.norm1_context.weight torch.Size([1792]) True 977 model.dit.model.layers.9.gate torch.Size([28]) True 978 model.dit.model.layers.9.attn1.norm_q.weight torch.Size([1792]) True 979 model.dit.model.layers.9.attn1.norm_q.bias torch.Size([1792]) True 980 model.dit.model.layers.9.attn1.norm_k.weight torch.Size([1792]) True 981 model.dit.model.layers.9.attn1.norm_k.bias torch.Size([1792]) True 982 model.dit.model.layers.9.attn1.to_q.weight torch.Size([1792, 1792]) True 983 model.dit.model.layers.9.attn1.to_k.weight torch.Size([1792, 1792]) True 984 model.dit.model.layers.9.attn1.to_v.weight torch.Size([1792, 1792]) True 985 model.dit.model.layers.9.attn2.norm_q.weight torch.Size([1792]) True 986 model.dit.model.layers.9.attn2.norm_q.bias torch.Size([1792]) True 987 model.dit.model.layers.9.attn2.norm_k.weight torch.Size([1792]) True 988 model.dit.model.layers.9.attn2.norm_k.bias torch.Size([1792]) True 989 model.dit.model.layers.9.attn2.to_q.weight torch.Size([1792, 1792]) True 990 model.dit.model.layers.9.attn2.to_k.weight torch.Size([1792, 1792]) True 991 model.dit.model.layers.9.attn2.to_v.weight torch.Size([1792, 1792]) True 992 model.dit.model.layers.9.attn2.to_out.0.weight torch.Size([1792, 1792]) True 993 model.dit.model.layers.9.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 994 model.dit.model.layers.9.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 995 model.dit.model.layers.9.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 996 model.dit.model.layers.9.norm1.linear.weight torch.Size([7168, 1024]) True 997 model.dit.model.layers.9.norm1.linear.bias torch.Size([7168]) True 998 model.dit.model.layers.9.norm1.norm.weight torch.Size([1792]) True 999 model.dit.model.layers.9.ffn_norm1.weight torch.Size([1792]) True 1000 model.dit.model.layers.9.norm2.weight torch.Size([1792]) True 1001 model.dit.model.layers.9.ffn_norm2.weight torch.Size([1792]) True 1002 model.dit.model.layers.9.norm1_context.weight torch.Size([1792]) True 1003 model.dit.model.layers.10.gate torch.Size([28]) True 1004 model.dit.model.layers.10.attn1.norm_q.weight torch.Size([1792]) True 1005 model.dit.model.layers.10.attn1.norm_q.bias torch.Size([1792]) True 1006 model.dit.model.layers.10.attn1.norm_k.weight torch.Size([1792]) True 1007 model.dit.model.layers.10.attn1.norm_k.bias torch.Size([1792]) True 1008 model.dit.model.layers.10.attn1.to_q.weight torch.Size([1792, 1792]) True 1009 model.dit.model.layers.10.attn1.to_k.weight torch.Size([1792, 1792]) True 1010 model.dit.model.layers.10.attn1.to_v.weight torch.Size([1792, 1792]) True 1011 model.dit.model.layers.10.attn2.norm_q.weight torch.Size([1792]) True 1012 model.dit.model.layers.10.attn2.norm_q.bias torch.Size([1792]) True 1013 model.dit.model.layers.10.attn2.norm_k.weight torch.Size([1792]) True 1014 model.dit.model.layers.10.attn2.norm_k.bias torch.Size([1792]) True 1015 model.dit.model.layers.10.attn2.to_q.weight torch.Size([1792, 1792]) True 1016 model.dit.model.layers.10.attn2.to_k.weight torch.Size([1792, 1792]) True 1017 model.dit.model.layers.10.attn2.to_v.weight torch.Size([1792, 1792]) True 1018 model.dit.model.layers.10.attn2.to_out.0.weight torch.Size([1792, 1792]) True 1019 model.dit.model.layers.10.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 1020 model.dit.model.layers.10.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 1021 model.dit.model.layers.10.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 1022 model.dit.model.layers.10.norm1.linear.weight torch.Size([7168, 1024]) True 1023 model.dit.model.layers.10.norm1.linear.bias torch.Size([7168]) True 1024 model.dit.model.layers.10.norm1.norm.weight torch.Size([1792]) True 1025 model.dit.model.layers.10.ffn_norm1.weight torch.Size([1792]) True 1026 model.dit.model.layers.10.norm2.weight torch.Size([1792]) True 1027 model.dit.model.layers.10.ffn_norm2.weight torch.Size([1792]) True 1028 model.dit.model.layers.10.norm1_context.weight torch.Size([1792]) True 1029 model.dit.model.layers.11.gate torch.Size([28]) True 1030 model.dit.model.layers.11.attn1.norm_q.weight torch.Size([1792]) True 1031 model.dit.model.layers.11.attn1.norm_q.bias torch.Size([1792]) True 1032 model.dit.model.layers.11.attn1.norm_k.weight torch.Size([1792]) True 1033 model.dit.model.layers.11.attn1.norm_k.bias torch.Size([1792]) True 1034 model.dit.model.layers.11.attn1.to_q.weight torch.Size([1792, 1792]) True 1035 model.dit.model.layers.11.attn1.to_k.weight torch.Size([1792, 1792]) True 1036 model.dit.model.layers.11.attn1.to_v.weight torch.Size([1792, 1792]) True 1037 model.dit.model.layers.11.attn2.norm_q.weight torch.Size([1792]) True 1038 model.dit.model.layers.11.attn2.norm_q.bias torch.Size([1792]) True 1039 model.dit.model.layers.11.attn2.norm_k.weight torch.Size([1792]) True 1040 model.dit.model.layers.11.attn2.norm_k.bias torch.Size([1792]) True 1041 model.dit.model.layers.11.attn2.to_q.weight torch.Size([1792, 1792]) True 1042 model.dit.model.layers.11.attn2.to_k.weight torch.Size([1792, 1792]) True 1043 model.dit.model.layers.11.attn2.to_v.weight torch.Size([1792, 1792]) True 1044 model.dit.model.layers.11.attn2.to_out.0.weight torch.Size([1792, 1792]) True 1045 model.dit.model.layers.11.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 1046 model.dit.model.layers.11.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 1047 model.dit.model.layers.11.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 1048 model.dit.model.layers.11.norm1.linear.weight torch.Size([7168, 1024]) True 1049 model.dit.model.layers.11.norm1.linear.bias torch.Size([7168]) True 1050 model.dit.model.layers.11.norm1.norm.weight torch.Size([1792]) True 1051 model.dit.model.layers.11.ffn_norm1.weight torch.Size([1792]) True 1052 model.dit.model.layers.11.norm2.weight torch.Size([1792]) True 1053 model.dit.model.layers.11.ffn_norm2.weight torch.Size([1792]) True 1054 model.dit.model.layers.11.norm1_context.weight torch.Size([1792]) True 1055 model.dit.model.layers.12.gate torch.Size([28]) True 1056 model.dit.model.layers.12.attn1.norm_q.weight torch.Size([1792]) True 1057 model.dit.model.layers.12.attn1.norm_q.bias torch.Size([1792]) True 1058 model.dit.model.layers.12.attn1.norm_k.weight torch.Size([1792]) True 1059 model.dit.model.layers.12.attn1.norm_k.bias torch.Size([1792]) True 1060 model.dit.model.layers.12.attn1.to_q.weight torch.Size([1792, 1792]) True 1061 model.dit.model.layers.12.attn1.to_k.weight torch.Size([1792, 1792]) True 1062 model.dit.model.layers.12.attn1.to_v.weight torch.Size([1792, 1792]) True 1063 model.dit.model.layers.12.attn2.norm_q.weight torch.Size([1792]) True 1064 model.dit.model.layers.12.attn2.norm_q.bias torch.Size([1792]) True 1065 model.dit.model.layers.12.attn2.norm_k.weight torch.Size([1792]) True 1066 model.dit.model.layers.12.attn2.norm_k.bias torch.Size([1792]) True 1067 model.dit.model.layers.12.attn2.to_q.weight torch.Size([1792, 1792]) True 1068 model.dit.model.layers.12.attn2.to_k.weight torch.Size([1792, 1792]) True 1069 model.dit.model.layers.12.attn2.to_v.weight torch.Size([1792, 1792]) True 1070 model.dit.model.layers.12.attn2.to_out.0.weight torch.Size([1792, 1792]) True 1071 model.dit.model.layers.12.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 1072 model.dit.model.layers.12.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 1073 model.dit.model.layers.12.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 1074 model.dit.model.layers.12.norm1.linear.weight torch.Size([7168, 1024]) True 1075 model.dit.model.layers.12.norm1.linear.bias torch.Size([7168]) True 1076 model.dit.model.layers.12.norm1.norm.weight torch.Size([1792]) True 1077 model.dit.model.layers.12.ffn_norm1.weight torch.Size([1792]) True 1078 model.dit.model.layers.12.norm2.weight torch.Size([1792]) True 1079 model.dit.model.layers.12.ffn_norm2.weight torch.Size([1792]) True 1080 model.dit.model.layers.12.norm1_context.weight torch.Size([1792]) True 1081 model.dit.model.layers.13.gate torch.Size([28]) True 1082 model.dit.model.layers.13.attn1.norm_q.weight torch.Size([1792]) True 1083 model.dit.model.layers.13.attn1.norm_q.bias torch.Size([1792]) True 1084 model.dit.model.layers.13.attn1.norm_k.weight torch.Size([1792]) True 1085 model.dit.model.layers.13.attn1.norm_k.bias torch.Size([1792]) True 1086 model.dit.model.layers.13.attn1.to_q.weight torch.Size([1792, 1792]) True 1087 model.dit.model.layers.13.attn1.to_k.weight torch.Size([1792, 1792]) True 1088 model.dit.model.layers.13.attn1.to_v.weight torch.Size([1792, 1792]) True 1089 model.dit.model.layers.13.attn2.norm_q.weight torch.Size([1792]) True 1090 model.dit.model.layers.13.attn2.norm_q.bias torch.Size([1792]) True 1091 model.dit.model.layers.13.attn2.norm_k.weight torch.Size([1792]) True 1092 model.dit.model.layers.13.attn2.norm_k.bias torch.Size([1792]) True 1093 model.dit.model.layers.13.attn2.to_q.weight torch.Size([1792, 1792]) True 1094 model.dit.model.layers.13.attn2.to_k.weight torch.Size([1792, 1792]) True 1095 model.dit.model.layers.13.attn2.to_v.weight torch.Size([1792, 1792]) True 1096 model.dit.model.layers.13.attn2.to_out.0.weight torch.Size([1792, 1792]) True 1097 model.dit.model.layers.13.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 1098 model.dit.model.layers.13.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 1099 model.dit.model.layers.13.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 1100 model.dit.model.layers.13.norm1.linear.weight torch.Size([7168, 1024]) True 1101 model.dit.model.layers.13.norm1.linear.bias torch.Size([7168]) True 1102 model.dit.model.layers.13.norm1.norm.weight torch.Size([1792]) True 1103 model.dit.model.layers.13.ffn_norm1.weight torch.Size([1792]) True 1104 model.dit.model.layers.13.norm2.weight torch.Size([1792]) True 1105 model.dit.model.layers.13.ffn_norm2.weight torch.Size([1792]) True 1106 model.dit.model.layers.13.norm1_context.weight torch.Size([1792]) True 1107 model.dit.model.layers.14.gate torch.Size([28]) True 1108 model.dit.model.layers.14.attn1.norm_q.weight torch.Size([1792]) True 1109 model.dit.model.layers.14.attn1.norm_q.bias torch.Size([1792]) True 1110 model.dit.model.layers.14.attn1.norm_k.weight torch.Size([1792]) True 1111 model.dit.model.layers.14.attn1.norm_k.bias torch.Size([1792]) True 1112 model.dit.model.layers.14.attn1.to_q.weight torch.Size([1792, 1792]) True 1113 model.dit.model.layers.14.attn1.to_k.weight torch.Size([1792, 1792]) True 1114 model.dit.model.layers.14.attn1.to_v.weight torch.Size([1792, 1792]) True 1115 model.dit.model.layers.14.attn2.norm_q.weight torch.Size([1792]) True 1116 model.dit.model.layers.14.attn2.norm_q.bias torch.Size([1792]) True 1117 model.dit.model.layers.14.attn2.norm_k.weight torch.Size([1792]) True 1118 model.dit.model.layers.14.attn2.norm_k.bias torch.Size([1792]) True 1119 model.dit.model.layers.14.attn2.to_q.weight torch.Size([1792, 1792]) True 1120 model.dit.model.layers.14.attn2.to_k.weight torch.Size([1792, 1792]) True 1121 model.dit.model.layers.14.attn2.to_v.weight torch.Size([1792, 1792]) True 1122 model.dit.model.layers.14.attn2.to_out.0.weight torch.Size([1792, 1792]) True 1123 model.dit.model.layers.14.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 1124 model.dit.model.layers.14.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 1125 model.dit.model.layers.14.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 1126 model.dit.model.layers.14.norm1.linear.weight torch.Size([7168, 1024]) True 1127 model.dit.model.layers.14.norm1.linear.bias torch.Size([7168]) True 1128 model.dit.model.layers.14.norm1.norm.weight torch.Size([1792]) True 1129 model.dit.model.layers.14.ffn_norm1.weight torch.Size([1792]) True 1130 model.dit.model.layers.14.norm2.weight torch.Size([1792]) True 1131 model.dit.model.layers.14.ffn_norm2.weight torch.Size([1792]) True 1132 model.dit.model.layers.14.norm1_context.weight torch.Size([1792]) True 1133 model.dit.model.layers.15.gate torch.Size([28]) True 1134 model.dit.model.layers.15.attn1.norm_q.weight torch.Size([1792]) True 1135 model.dit.model.layers.15.attn1.norm_q.bias torch.Size([1792]) True 1136 model.dit.model.layers.15.attn1.norm_k.weight torch.Size([1792]) True 1137 model.dit.model.layers.15.attn1.norm_k.bias torch.Size([1792]) True 1138 model.dit.model.layers.15.attn1.to_q.weight torch.Size([1792, 1792]) True 1139 model.dit.model.layers.15.attn1.to_k.weight torch.Size([1792, 1792]) True 1140 model.dit.model.layers.15.attn1.to_v.weight torch.Size([1792, 1792]) True 1141 model.dit.model.layers.15.attn2.norm_q.weight torch.Size([1792]) True 1142 model.dit.model.layers.15.attn2.norm_q.bias torch.Size([1792]) True 1143 model.dit.model.layers.15.attn2.norm_k.weight torch.Size([1792]) True 1144 model.dit.model.layers.15.attn2.norm_k.bias torch.Size([1792]) True 1145 model.dit.model.layers.15.attn2.to_q.weight torch.Size([1792, 1792]) True 1146 model.dit.model.layers.15.attn2.to_k.weight torch.Size([1792, 1792]) True 1147 model.dit.model.layers.15.attn2.to_v.weight torch.Size([1792, 1792]) True 1148 model.dit.model.layers.15.attn2.to_out.0.weight torch.Size([1792, 1792]) True 1149 model.dit.model.layers.15.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 1150 model.dit.model.layers.15.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 1151 model.dit.model.layers.15.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 1152 model.dit.model.layers.15.norm1.linear.weight torch.Size([7168, 1024]) True 1153 model.dit.model.layers.15.norm1.linear.bias torch.Size([7168]) True 1154 model.dit.model.layers.15.norm1.norm.weight torch.Size([1792]) True 1155 model.dit.model.layers.15.ffn_norm1.weight torch.Size([1792]) True 1156 model.dit.model.layers.15.norm2.weight torch.Size([1792]) True 1157 model.dit.model.layers.15.ffn_norm2.weight torch.Size([1792]) True 1158 model.dit.model.layers.15.norm1_context.weight torch.Size([1792]) True 1159 model.dit.model.layers.16.gate torch.Size([28]) True 1160 model.dit.model.layers.16.attn1.norm_q.weight torch.Size([1792]) True 1161 model.dit.model.layers.16.attn1.norm_q.bias torch.Size([1792]) True 1162 model.dit.model.layers.16.attn1.norm_k.weight torch.Size([1792]) True 1163 model.dit.model.layers.16.attn1.norm_k.bias torch.Size([1792]) True 1164 model.dit.model.layers.16.attn1.to_q.weight torch.Size([1792, 1792]) True 1165 model.dit.model.layers.16.attn1.to_k.weight torch.Size([1792, 1792]) True 1166 model.dit.model.layers.16.attn1.to_v.weight torch.Size([1792, 1792]) True 1167 model.dit.model.layers.16.attn2.norm_q.weight torch.Size([1792]) True 1168 model.dit.model.layers.16.attn2.norm_q.bias torch.Size([1792]) True 1169 model.dit.model.layers.16.attn2.norm_k.weight torch.Size([1792]) True 1170 model.dit.model.layers.16.attn2.norm_k.bias torch.Size([1792]) True 1171 model.dit.model.layers.16.attn2.to_q.weight torch.Size([1792, 1792]) True 1172 model.dit.model.layers.16.attn2.to_k.weight torch.Size([1792, 1792]) True 1173 model.dit.model.layers.16.attn2.to_v.weight torch.Size([1792, 1792]) True 1174 model.dit.model.layers.16.attn2.to_out.0.weight torch.Size([1792, 1792]) True 1175 model.dit.model.layers.16.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 1176 model.dit.model.layers.16.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 1177 model.dit.model.layers.16.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 1178 model.dit.model.layers.16.norm1.linear.weight torch.Size([7168, 1024]) True 1179 model.dit.model.layers.16.norm1.linear.bias torch.Size([7168]) True 1180 model.dit.model.layers.16.norm1.norm.weight torch.Size([1792]) True 1181 model.dit.model.layers.16.ffn_norm1.weight torch.Size([1792]) True 1182 model.dit.model.layers.16.norm2.weight torch.Size([1792]) True 1183 model.dit.model.layers.16.ffn_norm2.weight torch.Size([1792]) True 1184 model.dit.model.layers.16.norm1_context.weight torch.Size([1792]) True 1185 model.dit.model.layers.17.gate torch.Size([28]) True 1186 model.dit.model.layers.17.attn1.norm_q.weight torch.Size([1792]) True 1187 model.dit.model.layers.17.attn1.norm_q.bias torch.Size([1792]) True 1188 model.dit.model.layers.17.attn1.norm_k.weight torch.Size([1792]) True 1189 model.dit.model.layers.17.attn1.norm_k.bias torch.Size([1792]) True 1190 model.dit.model.layers.17.attn1.to_q.weight torch.Size([1792, 1792]) True 1191 model.dit.model.layers.17.attn1.to_k.weight torch.Size([1792, 1792]) True 1192 model.dit.model.layers.17.attn1.to_v.weight torch.Size([1792, 1792]) True 1193 model.dit.model.layers.17.attn2.norm_q.weight torch.Size([1792]) True 1194 model.dit.model.layers.17.attn2.norm_q.bias torch.Size([1792]) True 1195 model.dit.model.layers.17.attn2.norm_k.weight torch.Size([1792]) True 1196 model.dit.model.layers.17.attn2.norm_k.bias torch.Size([1792]) True 1197 model.dit.model.layers.17.attn2.to_q.weight torch.Size([1792, 1792]) True 1198 model.dit.model.layers.17.attn2.to_k.weight torch.Size([1792, 1792]) True 1199 model.dit.model.layers.17.attn2.to_v.weight torch.Size([1792, 1792]) True 1200 model.dit.model.layers.17.attn2.to_out.0.weight torch.Size([1792, 1792]) True 1201 model.dit.model.layers.17.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 1202 model.dit.model.layers.17.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 1203 model.dit.model.layers.17.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 1204 model.dit.model.layers.17.norm1.linear.weight torch.Size([7168, 1024]) True 1205 model.dit.model.layers.17.norm1.linear.bias torch.Size([7168]) True 1206 model.dit.model.layers.17.norm1.norm.weight torch.Size([1792]) True 1207 model.dit.model.layers.17.ffn_norm1.weight torch.Size([1792]) True 1208 model.dit.model.layers.17.norm2.weight torch.Size([1792]) True 1209 model.dit.model.layers.17.ffn_norm2.weight torch.Size([1792]) True 1210 model.dit.model.layers.17.norm1_context.weight torch.Size([1792]) True 1211 model.dit.model.layers.18.gate torch.Size([28]) True 1212 model.dit.model.layers.18.attn1.norm_q.weight torch.Size([1792]) True 1213 model.dit.model.layers.18.attn1.norm_q.bias torch.Size([1792]) True 1214 model.dit.model.layers.18.attn1.norm_k.weight torch.Size([1792]) True 1215 model.dit.model.layers.18.attn1.norm_k.bias torch.Size([1792]) True 1216 model.dit.model.layers.18.attn1.to_q.weight torch.Size([1792, 1792]) True 1217 model.dit.model.layers.18.attn1.to_k.weight torch.Size([1792, 1792]) True 1218 model.dit.model.layers.18.attn1.to_v.weight torch.Size([1792, 1792]) True 1219 model.dit.model.layers.18.attn2.norm_q.weight torch.Size([1792]) True 1220 model.dit.model.layers.18.attn2.norm_q.bias torch.Size([1792]) True 1221 model.dit.model.layers.18.attn2.norm_k.weight torch.Size([1792]) True 1222 model.dit.model.layers.18.attn2.norm_k.bias torch.Size([1792]) True 1223 model.dit.model.layers.18.attn2.to_q.weight torch.Size([1792, 1792]) True 1224 model.dit.model.layers.18.attn2.to_k.weight torch.Size([1792, 1792]) True 1225 model.dit.model.layers.18.attn2.to_v.weight torch.Size([1792, 1792]) True 1226 model.dit.model.layers.18.attn2.to_out.0.weight torch.Size([1792, 1792]) True 1227 model.dit.model.layers.18.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 1228 model.dit.model.layers.18.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 1229 model.dit.model.layers.18.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 1230 model.dit.model.layers.18.norm1.linear.weight torch.Size([7168, 1024]) True 1231 model.dit.model.layers.18.norm1.linear.bias torch.Size([7168]) True 1232 model.dit.model.layers.18.norm1.norm.weight torch.Size([1792]) True 1233 model.dit.model.layers.18.ffn_norm1.weight torch.Size([1792]) True 1234 model.dit.model.layers.18.norm2.weight torch.Size([1792]) True 1235 model.dit.model.layers.18.ffn_norm2.weight torch.Size([1792]) True 1236 model.dit.model.layers.18.norm1_context.weight torch.Size([1792]) True 1237 model.dit.model.layers.19.gate torch.Size([28]) True 1238 model.dit.model.layers.19.attn1.norm_q.weight torch.Size([1792]) True 1239 model.dit.model.layers.19.attn1.norm_q.bias torch.Size([1792]) True 1240 model.dit.model.layers.19.attn1.norm_k.weight torch.Size([1792]) True 1241 model.dit.model.layers.19.attn1.norm_k.bias torch.Size([1792]) True 1242 model.dit.model.layers.19.attn1.to_q.weight torch.Size([1792, 1792]) True 1243 model.dit.model.layers.19.attn1.to_k.weight torch.Size([1792, 1792]) True 1244 model.dit.model.layers.19.attn1.to_v.weight torch.Size([1792, 1792]) True 1245 model.dit.model.layers.19.attn2.norm_q.weight torch.Size([1792]) True 1246 model.dit.model.layers.19.attn2.norm_q.bias torch.Size([1792]) True 1247 model.dit.model.layers.19.attn2.norm_k.weight torch.Size([1792]) True 1248 model.dit.model.layers.19.attn2.norm_k.bias torch.Size([1792]) True 1249 model.dit.model.layers.19.attn2.to_q.weight torch.Size([1792, 1792]) True 1250 model.dit.model.layers.19.attn2.to_k.weight torch.Size([1792, 1792]) True 1251 model.dit.model.layers.19.attn2.to_v.weight torch.Size([1792, 1792]) True 1252 model.dit.model.layers.19.attn2.to_out.0.weight torch.Size([1792, 1792]) True 1253 model.dit.model.layers.19.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 1254 model.dit.model.layers.19.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 1255 model.dit.model.layers.19.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 1256 model.dit.model.layers.19.norm1.linear.weight torch.Size([7168, 1024]) True 1257 model.dit.model.layers.19.norm1.linear.bias torch.Size([7168]) True 1258 model.dit.model.layers.19.norm1.norm.weight torch.Size([1792]) True 1259 model.dit.model.layers.19.ffn_norm1.weight torch.Size([1792]) True 1260 model.dit.model.layers.19.norm2.weight torch.Size([1792]) True 1261 model.dit.model.layers.19.ffn_norm2.weight torch.Size([1792]) True 1262 model.dit.model.layers.19.norm1_context.weight torch.Size([1792]) True 1263 model.dit.model.layers.20.gate torch.Size([28]) True 1264 model.dit.model.layers.20.attn1.norm_q.weight torch.Size([1792]) True 1265 model.dit.model.layers.20.attn1.norm_q.bias torch.Size([1792]) True 1266 model.dit.model.layers.20.attn1.norm_k.weight torch.Size([1792]) True 1267 model.dit.model.layers.20.attn1.norm_k.bias torch.Size([1792]) True 1268 model.dit.model.layers.20.attn1.to_q.weight torch.Size([1792, 1792]) True 1269 model.dit.model.layers.20.attn1.to_k.weight torch.Size([1792, 1792]) True 1270 model.dit.model.layers.20.attn1.to_v.weight torch.Size([1792, 1792]) True 1271 model.dit.model.layers.20.attn2.norm_q.weight torch.Size([1792]) True 1272 model.dit.model.layers.20.attn2.norm_q.bias torch.Size([1792]) True 1273 model.dit.model.layers.20.attn2.norm_k.weight torch.Size([1792]) True 1274 model.dit.model.layers.20.attn2.norm_k.bias torch.Size([1792]) True 1275 model.dit.model.layers.20.attn2.to_q.weight torch.Size([1792, 1792]) True 1276 model.dit.model.layers.20.attn2.to_k.weight torch.Size([1792, 1792]) True 1277 model.dit.model.layers.20.attn2.to_v.weight torch.Size([1792, 1792]) True 1278 model.dit.model.layers.20.attn2.to_out.0.weight torch.Size([1792, 1792]) True 1279 model.dit.model.layers.20.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 1280 model.dit.model.layers.20.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 1281 model.dit.model.layers.20.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 1282 model.dit.model.layers.20.norm1.linear.weight torch.Size([7168, 1024]) True 1283 model.dit.model.layers.20.norm1.linear.bias torch.Size([7168]) True 1284 model.dit.model.layers.20.norm1.norm.weight torch.Size([1792]) True 1285 model.dit.model.layers.20.ffn_norm1.weight torch.Size([1792]) True 1286 model.dit.model.layers.20.norm2.weight torch.Size([1792]) True 1287 model.dit.model.layers.20.ffn_norm2.weight torch.Size([1792]) True 1288 model.dit.model.layers.20.norm1_context.weight torch.Size([1792]) True 1289 model.dit.model.layers.21.gate torch.Size([28]) True 1290 model.dit.model.layers.21.attn1.norm_q.weight torch.Size([1792]) True 1291 model.dit.model.layers.21.attn1.norm_q.bias torch.Size([1792]) True 1292 model.dit.model.layers.21.attn1.norm_k.weight torch.Size([1792]) True 1293 model.dit.model.layers.21.attn1.norm_k.bias torch.Size([1792]) True 1294 model.dit.model.layers.21.attn1.to_q.weight torch.Size([1792, 1792]) True 1295 model.dit.model.layers.21.attn1.to_k.weight torch.Size([1792, 1792]) True 1296 model.dit.model.layers.21.attn1.to_v.weight torch.Size([1792, 1792]) True 1297 model.dit.model.layers.21.attn2.norm_q.weight torch.Size([1792]) True 1298 model.dit.model.layers.21.attn2.norm_q.bias torch.Size([1792]) True 1299 model.dit.model.layers.21.attn2.norm_k.weight torch.Size([1792]) True 1300 model.dit.model.layers.21.attn2.norm_k.bias torch.Size([1792]) True 1301 model.dit.model.layers.21.attn2.to_q.weight torch.Size([1792, 1792]) True 1302 model.dit.model.layers.21.attn2.to_k.weight torch.Size([1792, 1792]) True 1303 model.dit.model.layers.21.attn2.to_v.weight torch.Size([1792, 1792]) True 1304 model.dit.model.layers.21.attn2.to_out.0.weight torch.Size([1792, 1792]) True 1305 model.dit.model.layers.21.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 1306 model.dit.model.layers.21.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 1307 model.dit.model.layers.21.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 1308 model.dit.model.layers.21.norm1.linear.weight torch.Size([7168, 1024]) True 1309 model.dit.model.layers.21.norm1.linear.bias torch.Size([7168]) True 1310 model.dit.model.layers.21.norm1.norm.weight torch.Size([1792]) True 1311 model.dit.model.layers.21.ffn_norm1.weight torch.Size([1792]) True 1312 model.dit.model.layers.21.norm2.weight torch.Size([1792]) True 1313 model.dit.model.layers.21.ffn_norm2.weight torch.Size([1792]) True 1314 model.dit.model.layers.21.norm1_context.weight torch.Size([1792]) True 1315 model.dit.model.layers.22.gate torch.Size([28]) True 1316 model.dit.model.layers.22.attn1.norm_q.weight torch.Size([1792]) True 1317 model.dit.model.layers.22.attn1.norm_q.bias torch.Size([1792]) True 1318 model.dit.model.layers.22.attn1.norm_k.weight torch.Size([1792]) True 1319 model.dit.model.layers.22.attn1.norm_k.bias torch.Size([1792]) True 1320 model.dit.model.layers.22.attn1.to_q.weight torch.Size([1792, 1792]) True 1321 model.dit.model.layers.22.attn1.to_k.weight torch.Size([1792, 1792]) True 1322 model.dit.model.layers.22.attn1.to_v.weight torch.Size([1792, 1792]) True 1323 model.dit.model.layers.22.attn2.norm_q.weight torch.Size([1792]) True 1324 model.dit.model.layers.22.attn2.norm_q.bias torch.Size([1792]) True 1325 model.dit.model.layers.22.attn2.norm_k.weight torch.Size([1792]) True 1326 model.dit.model.layers.22.attn2.norm_k.bias torch.Size([1792]) True 1327 model.dit.model.layers.22.attn2.to_q.weight torch.Size([1792, 1792]) True 1328 model.dit.model.layers.22.attn2.to_k.weight torch.Size([1792, 1792]) True 1329 model.dit.model.layers.22.attn2.to_v.weight torch.Size([1792, 1792]) True 1330 model.dit.model.layers.22.attn2.to_out.0.weight torch.Size([1792, 1792]) True 1331 model.dit.model.layers.22.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 1332 model.dit.model.layers.22.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 1333 model.dit.model.layers.22.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 1334 model.dit.model.layers.22.norm1.linear.weight torch.Size([7168, 1024]) True 1335 model.dit.model.layers.22.norm1.linear.bias torch.Size([7168]) True 1336 model.dit.model.layers.22.norm1.norm.weight torch.Size([1792]) True 1337 model.dit.model.layers.22.ffn_norm1.weight torch.Size([1792]) True 1338 model.dit.model.layers.22.norm2.weight torch.Size([1792]) True 1339 model.dit.model.layers.22.ffn_norm2.weight torch.Size([1792]) True 1340 model.dit.model.layers.22.norm1_context.weight torch.Size([1792]) True 1341 model.dit.model.layers.23.gate torch.Size([28]) True 1342 model.dit.model.layers.23.attn1.norm_q.weight torch.Size([1792]) True 1343 model.dit.model.layers.23.attn1.norm_q.bias torch.Size([1792]) True 1344 model.dit.model.layers.23.attn1.norm_k.weight torch.Size([1792]) True 1345 model.dit.model.layers.23.attn1.norm_k.bias torch.Size([1792]) True 1346 model.dit.model.layers.23.attn1.to_q.weight torch.Size([1792, 1792]) True 1347 model.dit.model.layers.23.attn1.to_k.weight torch.Size([1792, 1792]) True 1348 model.dit.model.layers.23.attn1.to_v.weight torch.Size([1792, 1792]) True 1349 model.dit.model.layers.23.attn2.norm_q.weight torch.Size([1792]) True 1350 model.dit.model.layers.23.attn2.norm_q.bias torch.Size([1792]) True 1351 model.dit.model.layers.23.attn2.norm_k.weight torch.Size([1792]) True 1352 model.dit.model.layers.23.attn2.norm_k.bias torch.Size([1792]) True 1353 model.dit.model.layers.23.attn2.to_q.weight torch.Size([1792, 1792]) True 1354 model.dit.model.layers.23.attn2.to_k.weight torch.Size([1792, 1792]) True 1355 model.dit.model.layers.23.attn2.to_v.weight torch.Size([1792, 1792]) True 1356 model.dit.model.layers.23.attn2.to_out.0.weight torch.Size([1792, 1792]) True 1357 model.dit.model.layers.23.feed_forward.linear_1.weight torch.Size([4864, 1792]) True 1358 model.dit.model.layers.23.feed_forward.linear_2.weight torch.Size([1792, 4864]) True 1359 model.dit.model.layers.23.feed_forward.linear_3.weight torch.Size([4864, 1792]) True 1360 model.dit.model.layers.23.norm1.linear.weight torch.Size([7168, 1024]) True 1361 model.dit.model.layers.23.norm1.linear.bias torch.Size([7168]) True 1362 model.dit.model.layers.23.norm1.norm.weight torch.Size([1792]) True 1363 model.dit.model.layers.23.ffn_norm1.weight torch.Size([1792]) True 1364 model.dit.model.layers.23.norm2.weight torch.Size([1792]) True 1365 model.dit.model.layers.23.ffn_norm2.weight torch.Size([1792]) True 1366 model.dit.model.layers.23.norm1_context.weight torch.Size([1792]) True 1367 model.dit.model.norm_out.linear_1.weight torch.Size([1792, 1024]) True 1368 model.dit.model.norm_out.linear_1.bias torch.Size([1792]) True 1369 model.dit.model.norm_out.linear_2.weight torch.Size([1792, 1792]) True 1370 model.dit.model.norm_out.linear_2.bias torch.Size([1792]) True 1371 model.vae.encoder.conv_in.weight torch.Size([128, 3, 3, 3]) False 1372 model.vae.encoder.conv_in.bias torch.Size([128]) False 1373 model.vae.encoder.down_blocks.0.resnets.0.norm1.weight torch.Size([128]) False 1374 model.vae.encoder.down_blocks.0.resnets.0.norm1.bias torch.Size([128]) False 1375 model.vae.encoder.down_blocks.0.resnets.0.conv1.weight torch.Size([128, 128, 3, 3]) False 1376 model.vae.encoder.down_blocks.0.resnets.0.conv1.bias torch.Size([128]) False 1377 model.vae.encoder.down_blocks.0.resnets.0.norm2.weight torch.Size([128]) False 1378 model.vae.encoder.down_blocks.0.resnets.0.norm2.bias torch.Size([128]) False 1379 model.vae.encoder.down_blocks.0.resnets.0.conv2.weight torch.Size([128, 128, 3, 3]) False 1380 model.vae.encoder.down_blocks.0.resnets.0.conv2.bias torch.Size([128]) False 1381 model.vae.encoder.down_blocks.0.resnets.1.norm1.weight torch.Size([128]) False 1382 model.vae.encoder.down_blocks.0.resnets.1.norm1.bias torch.Size([128]) False 1383 model.vae.encoder.down_blocks.0.resnets.1.conv1.weight torch.Size([128, 128, 3, 3]) False 1384 model.vae.encoder.down_blocks.0.resnets.1.conv1.bias torch.Size([128]) False 1385 model.vae.encoder.down_blocks.0.resnets.1.norm2.weight torch.Size([128]) False 1386 model.vae.encoder.down_blocks.0.resnets.1.norm2.bias torch.Size([128]) False 1387 model.vae.encoder.down_blocks.0.resnets.1.conv2.weight torch.Size([128, 128, 3, 3]) False 1388 model.vae.encoder.down_blocks.0.resnets.1.conv2.bias torch.Size([128]) False 1389 model.vae.encoder.down_blocks.0.downsamplers.0.conv.weight torch.Size([128, 128, 3, 3]) False 1390 model.vae.encoder.down_blocks.0.downsamplers.0.conv.bias torch.Size([128]) False 1391 model.vae.encoder.down_blocks.1.resnets.0.norm1.weight torch.Size([128]) False 1392 model.vae.encoder.down_blocks.1.resnets.0.norm1.bias torch.Size([128]) False 1393 model.vae.encoder.down_blocks.1.resnets.0.conv1.weight torch.Size([256, 128, 3, 3]) False 1394 model.vae.encoder.down_blocks.1.resnets.0.conv1.bias torch.Size([256]) False 1395 model.vae.encoder.down_blocks.1.resnets.0.norm2.weight torch.Size([256]) False 1396 model.vae.encoder.down_blocks.1.resnets.0.norm2.bias torch.Size([256]) False 1397 model.vae.encoder.down_blocks.1.resnets.0.conv2.weight torch.Size([256, 256, 3, 3]) False 1398 model.vae.encoder.down_blocks.1.resnets.0.conv2.bias torch.Size([256]) False 1399 model.vae.encoder.down_blocks.1.resnets.0.conv_shortcut.weight torch.Size([256, 128, 1, 1]) False 1400 model.vae.encoder.down_blocks.1.resnets.0.conv_shortcut.bias torch.Size([256]) False 1401 model.vae.encoder.down_blocks.1.resnets.1.norm1.weight torch.Size([256]) False 1402 model.vae.encoder.down_blocks.1.resnets.1.norm1.bias torch.Size([256]) False 1403 model.vae.encoder.down_blocks.1.resnets.1.conv1.weight torch.Size([256, 256, 3, 3]) False 1404 model.vae.encoder.down_blocks.1.resnets.1.conv1.bias torch.Size([256]) False 1405 model.vae.encoder.down_blocks.1.resnets.1.norm2.weight torch.Size([256]) False 1406 model.vae.encoder.down_blocks.1.resnets.1.norm2.bias torch.Size([256]) False 1407 model.vae.encoder.down_blocks.1.resnets.1.conv2.weight torch.Size([256, 256, 3, 3]) False 1408 model.vae.encoder.down_blocks.1.resnets.1.conv2.bias torch.Size([256]) False 1409 model.vae.encoder.down_blocks.1.downsamplers.0.conv.weight torch.Size([256, 256, 3, 3]) False 1410 model.vae.encoder.down_blocks.1.downsamplers.0.conv.bias torch.Size([256]) False 1411 model.vae.encoder.down_blocks.2.resnets.0.norm1.weight torch.Size([256]) False 1412 model.vae.encoder.down_blocks.2.resnets.0.norm1.bias torch.Size([256]) False 1413 model.vae.encoder.down_blocks.2.resnets.0.conv1.weight torch.Size([512, 256, 3, 3]) False 1414 model.vae.encoder.down_blocks.2.resnets.0.conv1.bias torch.Size([512]) False 1415 model.vae.encoder.down_blocks.2.resnets.0.norm2.weight torch.Size([512]) False 1416 model.vae.encoder.down_blocks.2.resnets.0.norm2.bias torch.Size([512]) False 1417 model.vae.encoder.down_blocks.2.resnets.0.conv2.weight torch.Size([512, 512, 3, 3]) False 1418 model.vae.encoder.down_blocks.2.resnets.0.conv2.bias torch.Size([512]) False 1419 model.vae.encoder.down_blocks.2.resnets.0.conv_shortcut.weight torch.Size([512, 256, 1, 1]) False 1420 model.vae.encoder.down_blocks.2.resnets.0.conv_shortcut.bias torch.Size([512]) False 1421 model.vae.encoder.down_blocks.2.resnets.1.norm1.weight torch.Size([512]) False 1422 model.vae.encoder.down_blocks.2.resnets.1.norm1.bias torch.Size([512]) False 1423 model.vae.encoder.down_blocks.2.resnets.1.conv1.weight torch.Size([512, 512, 3, 3]) False 1424 model.vae.encoder.down_blocks.2.resnets.1.conv1.bias torch.Size([512]) False 1425 model.vae.encoder.down_blocks.2.resnets.1.norm2.weight torch.Size([512]) False 1426 model.vae.encoder.down_blocks.2.resnets.1.norm2.bias torch.Size([512]) False 1427 model.vae.encoder.down_blocks.2.resnets.1.conv2.weight torch.Size([512, 512, 3, 3]) False 1428 model.vae.encoder.down_blocks.2.resnets.1.conv2.bias torch.Size([512]) False 1429 model.vae.encoder.down_blocks.2.downsamplers.0.conv.weight torch.Size([512, 512, 3, 3]) False 1430 model.vae.encoder.down_blocks.2.downsamplers.0.conv.bias torch.Size([512]) False 1431 model.vae.encoder.down_blocks.3.resnets.0.norm1.weight torch.Size([512]) False 1432 model.vae.encoder.down_blocks.3.resnets.0.norm1.bias torch.Size([512]) False 1433 model.vae.encoder.down_blocks.3.resnets.0.conv1.weight torch.Size([512, 512, 3, 3]) False 1434 model.vae.encoder.down_blocks.3.resnets.0.conv1.bias torch.Size([512]) False 1435 model.vae.encoder.down_blocks.3.resnets.0.norm2.weight torch.Size([512]) False 1436 model.vae.encoder.down_blocks.3.resnets.0.norm2.bias torch.Size([512]) False 1437 model.vae.encoder.down_blocks.3.resnets.0.conv2.weight torch.Size([512, 512, 3, 3]) False 1438 model.vae.encoder.down_blocks.3.resnets.0.conv2.bias torch.Size([512]) False 1439 model.vae.encoder.down_blocks.3.resnets.1.norm1.weight torch.Size([512]) False 1440 model.vae.encoder.down_blocks.3.resnets.1.norm1.bias torch.Size([512]) False 1441 model.vae.encoder.down_blocks.3.resnets.1.conv1.weight torch.Size([512, 512, 3, 3]) False 1442 model.vae.encoder.down_blocks.3.resnets.1.conv1.bias torch.Size([512]) False 1443 model.vae.encoder.down_blocks.3.resnets.1.norm2.weight torch.Size([512]) False 1444 model.vae.encoder.down_blocks.3.resnets.1.norm2.bias torch.Size([512]) False 1445 model.vae.encoder.down_blocks.3.resnets.1.conv2.weight torch.Size([512, 512, 3, 3]) False 1446 model.vae.encoder.down_blocks.3.resnets.1.conv2.bias torch.Size([512]) False 1447 model.vae.encoder.mid_block.attentions.0.group_norm.weight torch.Size([512]) False 1448 model.vae.encoder.mid_block.attentions.0.group_norm.bias torch.Size([512]) False 1449 model.vae.encoder.mid_block.attentions.0.to_q.weight torch.Size([512, 512]) False 1450 model.vae.encoder.mid_block.attentions.0.to_q.bias torch.Size([512]) False 1451 model.vae.encoder.mid_block.attentions.0.to_k.weight torch.Size([512, 512]) False 1452 model.vae.encoder.mid_block.attentions.0.to_k.bias torch.Size([512]) False 1453 model.vae.encoder.mid_block.attentions.0.to_v.weight torch.Size([512, 512]) False 1454 model.vae.encoder.mid_block.attentions.0.to_v.bias torch.Size([512]) False 1455 model.vae.encoder.mid_block.attentions.0.to_out.0.weight torch.Size([512, 512]) False 1456 model.vae.encoder.mid_block.attentions.0.to_out.0.bias torch.Size([512]) False 1457 model.vae.encoder.mid_block.resnets.0.norm1.weight torch.Size([512]) False 1458 model.vae.encoder.mid_block.resnets.0.norm1.bias torch.Size([512]) False 1459 model.vae.encoder.mid_block.resnets.0.conv1.weight torch.Size([512, 512, 3, 3]) False 1460 model.vae.encoder.mid_block.resnets.0.conv1.bias torch.Size([512]) False 1461 model.vae.encoder.mid_block.resnets.0.norm2.weight torch.Size([512]) False 1462 model.vae.encoder.mid_block.resnets.0.norm2.bias torch.Size([512]) False 1463 model.vae.encoder.mid_block.resnets.0.conv2.weight torch.Size([512, 512, 3, 3]) False 1464 model.vae.encoder.mid_block.resnets.0.conv2.bias torch.Size([512]) False 1465 model.vae.encoder.mid_block.resnets.1.norm1.weight torch.Size([512]) False 1466 model.vae.encoder.mid_block.resnets.1.norm1.bias torch.Size([512]) False 1467 model.vae.encoder.mid_block.resnets.1.conv1.weight torch.Size([512, 512, 3, 3]) False 1468 model.vae.encoder.mid_block.resnets.1.conv1.bias torch.Size([512]) False 1469 model.vae.encoder.mid_block.resnets.1.norm2.weight torch.Size([512]) False 1470 model.vae.encoder.mid_block.resnets.1.norm2.bias torch.Size([512]) False 1471 model.vae.encoder.mid_block.resnets.1.conv2.weight torch.Size([512, 512, 3, 3]) False 1472 model.vae.encoder.mid_block.resnets.1.conv2.bias torch.Size([512]) False 1473 model.vae.encoder.conv_norm_out.weight torch.Size([512]) False 1474 model.vae.encoder.conv_norm_out.bias torch.Size([512]) False 1475 model.vae.encoder.conv_out.weight torch.Size([32, 512, 3, 3]) False 1476 model.vae.encoder.conv_out.bias torch.Size([32]) False 1477 model.vae.decoder.conv_in.weight torch.Size([512, 16, 3, 3]) False 1478 model.vae.decoder.conv_in.bias torch.Size([512]) False 1479 model.vae.decoder.up_blocks.0.resnets.0.norm1.weight torch.Size([512]) False 1480 model.vae.decoder.up_blocks.0.resnets.0.norm1.bias torch.Size([512]) False 1481 model.vae.decoder.up_blocks.0.resnets.0.conv1.weight torch.Size([512, 512, 3, 3]) False 1482 model.vae.decoder.up_blocks.0.resnets.0.conv1.bias torch.Size([512]) False 1483 model.vae.decoder.up_blocks.0.resnets.0.norm2.weight torch.Size([512]) False 1484 model.vae.decoder.up_blocks.0.resnets.0.norm2.bias torch.Size([512]) False 1485 model.vae.decoder.up_blocks.0.resnets.0.conv2.weight torch.Size([512, 512, 3, 3]) False 1486 model.vae.decoder.up_blocks.0.resnets.0.conv2.bias torch.Size([512]) False 1487 model.vae.decoder.up_blocks.0.resnets.1.norm1.weight torch.Size([512]) False 1488 model.vae.decoder.up_blocks.0.resnets.1.norm1.bias torch.Size([512]) False 1489 model.vae.decoder.up_blocks.0.resnets.1.conv1.weight torch.Size([512, 512, 3, 3]) False 1490 model.vae.decoder.up_blocks.0.resnets.1.conv1.bias torch.Size([512]) False 1491 model.vae.decoder.up_blocks.0.resnets.1.norm2.weight torch.Size([512]) False 1492 model.vae.decoder.up_blocks.0.resnets.1.norm2.bias torch.Size([512]) False 1493 model.vae.decoder.up_blocks.0.resnets.1.conv2.weight torch.Size([512, 512, 3, 3]) False 1494 model.vae.decoder.up_blocks.0.resnets.1.conv2.bias torch.Size([512]) False 1495 model.vae.decoder.up_blocks.0.resnets.2.norm1.weight torch.Size([512]) False 1496 model.vae.decoder.up_blocks.0.resnets.2.norm1.bias torch.Size([512]) False 1497 model.vae.decoder.up_blocks.0.resnets.2.conv1.weight torch.Size([512, 512, 3, 3]) False 1498 model.vae.decoder.up_blocks.0.resnets.2.conv1.bias torch.Size([512]) False 1499 model.vae.decoder.up_blocks.0.resnets.2.norm2.weight torch.Size([512]) False 1500 model.vae.decoder.up_blocks.0.resnets.2.norm2.bias torch.Size([512]) False 1501 model.vae.decoder.up_blocks.0.resnets.2.conv2.weight torch.Size([512, 512, 3, 3]) False 1502 model.vae.decoder.up_blocks.0.resnets.2.conv2.bias torch.Size([512]) False 1503 model.vae.decoder.up_blocks.0.upsamplers.0.conv.weight torch.Size([512, 512, 3, 3]) False 1504 model.vae.decoder.up_blocks.0.upsamplers.0.conv.bias torch.Size([512]) False 1505 model.vae.decoder.up_blocks.1.resnets.0.norm1.weight torch.Size([512]) False 1506 model.vae.decoder.up_blocks.1.resnets.0.norm1.bias torch.Size([512]) False 1507 model.vae.decoder.up_blocks.1.resnets.0.conv1.weight torch.Size([512, 512, 3, 3]) False 1508 model.vae.decoder.up_blocks.1.resnets.0.conv1.bias torch.Size([512]) False 1509 model.vae.decoder.up_blocks.1.resnets.0.norm2.weight torch.Size([512]) False 1510 model.vae.decoder.up_blocks.1.resnets.0.norm2.bias torch.Size([512]) False 1511 model.vae.decoder.up_blocks.1.resnets.0.conv2.weight torch.Size([512, 512, 3, 3]) False 1512 model.vae.decoder.up_blocks.1.resnets.0.conv2.bias torch.Size([512]) False 1513 model.vae.decoder.up_blocks.1.resnets.1.norm1.weight torch.Size([512]) False 1514 model.vae.decoder.up_blocks.1.resnets.1.norm1.bias torch.Size([512]) False 1515 model.vae.decoder.up_blocks.1.resnets.1.conv1.weight torch.Size([512, 512, 3, 3]) False 1516 model.vae.decoder.up_blocks.1.resnets.1.conv1.bias torch.Size([512]) False 1517 model.vae.decoder.up_blocks.1.resnets.1.norm2.weight torch.Size([512]) False 1518 model.vae.decoder.up_blocks.1.resnets.1.norm2.bias torch.Size([512]) False 1519 model.vae.decoder.up_blocks.1.resnets.1.conv2.weight torch.Size([512, 512, 3, 3]) False 1520 model.vae.decoder.up_blocks.1.resnets.1.conv2.bias torch.Size([512]) False 1521 model.vae.decoder.up_blocks.1.resnets.2.norm1.weight torch.Size([512]) False 1522 model.vae.decoder.up_blocks.1.resnets.2.norm1.bias torch.Size([512]) False 1523 model.vae.decoder.up_blocks.1.resnets.2.conv1.weight torch.Size([512, 512, 3, 3]) False 1524 model.vae.decoder.up_blocks.1.resnets.2.conv1.bias torch.Size([512]) False 1525 model.vae.decoder.up_blocks.1.resnets.2.norm2.weight torch.Size([512]) False 1526 model.vae.decoder.up_blocks.1.resnets.2.norm2.bias torch.Size([512]) False 1527 model.vae.decoder.up_blocks.1.resnets.2.conv2.weight torch.Size([512, 512, 3, 3]) False 1528 model.vae.decoder.up_blocks.1.resnets.2.conv2.bias torch.Size([512]) False 1529 model.vae.decoder.up_blocks.1.upsamplers.0.conv.weight torch.Size([512, 512, 3, 3]) False 1530 model.vae.decoder.up_blocks.1.upsamplers.0.conv.bias torch.Size([512]) False 1531 model.vae.decoder.up_blocks.2.resnets.0.norm1.weight torch.Size([512]) False 1532 model.vae.decoder.up_blocks.2.resnets.0.norm1.bias torch.Size([512]) False 1533 model.vae.decoder.up_blocks.2.resnets.0.conv1.weight torch.Size([256, 512, 3, 3]) False 1534 model.vae.decoder.up_blocks.2.resnets.0.conv1.bias torch.Size([256]) False 1535 model.vae.decoder.up_blocks.2.resnets.0.norm2.weight torch.Size([256]) False 1536 model.vae.decoder.up_blocks.2.resnets.0.norm2.bias torch.Size([256]) False 1537 model.vae.decoder.up_blocks.2.resnets.0.conv2.weight torch.Size([256, 256, 3, 3]) False 1538 model.vae.decoder.up_blocks.2.resnets.0.conv2.bias torch.Size([256]) False 1539 model.vae.decoder.up_blocks.2.resnets.0.conv_shortcut.weight torch.Size([256, 512, 1, 1]) False 1540 model.vae.decoder.up_blocks.2.resnets.0.conv_shortcut.bias torch.Size([256]) False 1541 model.vae.decoder.up_blocks.2.resnets.1.norm1.weight torch.Size([256]) False 1542 model.vae.decoder.up_blocks.2.resnets.1.norm1.bias torch.Size([256]) False 1543 model.vae.decoder.up_blocks.2.resnets.1.conv1.weight torch.Size([256, 256, 3, 3]) False 1544 model.vae.decoder.up_blocks.2.resnets.1.conv1.bias torch.Size([256]) False 1545 model.vae.decoder.up_blocks.2.resnets.1.norm2.weight torch.Size([256]) False 1546 model.vae.decoder.up_blocks.2.resnets.1.norm2.bias torch.Size([256]) False 1547 model.vae.decoder.up_blocks.2.resnets.1.conv2.weight torch.Size([256, 256, 3, 3]) False 1548 model.vae.decoder.up_blocks.2.resnets.1.conv2.bias torch.Size([256]) False 1549 model.vae.decoder.up_blocks.2.resnets.2.norm1.weight torch.Size([256]) False 1550 model.vae.decoder.up_blocks.2.resnets.2.norm1.bias torch.Size([256]) False 1551 model.vae.decoder.up_blocks.2.resnets.2.conv1.weight torch.Size([256, 256, 3, 3]) False 1552 model.vae.decoder.up_blocks.2.resnets.2.conv1.bias torch.Size([256]) False 1553 model.vae.decoder.up_blocks.2.resnets.2.norm2.weight torch.Size([256]) False 1554 model.vae.decoder.up_blocks.2.resnets.2.norm2.bias torch.Size([256]) False 1555 model.vae.decoder.up_blocks.2.resnets.2.conv2.weight torch.Size([256, 256, 3, 3]) False 1556 model.vae.decoder.up_blocks.2.resnets.2.conv2.bias torch.Size([256]) False 1557 model.vae.decoder.up_blocks.2.upsamplers.0.conv.weight torch.Size([256, 256, 3, 3]) False 1558 model.vae.decoder.up_blocks.2.upsamplers.0.conv.bias torch.Size([256]) False 1559 model.vae.decoder.up_blocks.3.resnets.0.norm1.weight torch.Size([256]) False 1560 model.vae.decoder.up_blocks.3.resnets.0.norm1.bias torch.Size([256]) False 1561 model.vae.decoder.up_blocks.3.resnets.0.conv1.weight torch.Size([128, 256, 3, 3]) False 1562 model.vae.decoder.up_blocks.3.resnets.0.conv1.bias torch.Size([128]) False 1563 model.vae.decoder.up_blocks.3.resnets.0.norm2.weight torch.Size([128]) False 1564 model.vae.decoder.up_blocks.3.resnets.0.norm2.bias torch.Size([128]) False 1565 model.vae.decoder.up_blocks.3.resnets.0.conv2.weight torch.Size([128, 128, 3, 3]) False 1566 model.vae.decoder.up_blocks.3.resnets.0.conv2.bias torch.Size([128]) False 1567 model.vae.decoder.up_blocks.3.resnets.0.conv_shortcut.weight torch.Size([128, 256, 1, 1]) False 1568 model.vae.decoder.up_blocks.3.resnets.0.conv_shortcut.bias torch.Size([128]) False 1569 model.vae.decoder.up_blocks.3.resnets.1.norm1.weight torch.Size([128]) False 1570 model.vae.decoder.up_blocks.3.resnets.1.norm1.bias torch.Size([128]) False 1571 model.vae.decoder.up_blocks.3.resnets.1.conv1.weight torch.Size([128, 128, 3, 3]) False 1572 model.vae.decoder.up_blocks.3.resnets.1.conv1.bias torch.Size([128]) False 1573 model.vae.decoder.up_blocks.3.resnets.1.norm2.weight torch.Size([128]) False 1574 model.vae.decoder.up_blocks.3.resnets.1.norm2.bias torch.Size([128]) False 1575 model.vae.decoder.up_blocks.3.resnets.1.conv2.weight torch.Size([128, 128, 3, 3]) False 1576 model.vae.decoder.up_blocks.3.resnets.1.conv2.bias torch.Size([128]) False 1577 model.vae.decoder.up_blocks.3.resnets.2.norm1.weight torch.Size([128]) False 1578 model.vae.decoder.up_blocks.3.resnets.2.norm1.bias torch.Size([128]) False 1579 model.vae.decoder.up_blocks.3.resnets.2.conv1.weight torch.Size([128, 128, 3, 3]) False 1580 model.vae.decoder.up_blocks.3.resnets.2.conv1.bias torch.Size([128]) False 1581 model.vae.decoder.up_blocks.3.resnets.2.norm2.weight torch.Size([128]) False 1582 model.vae.decoder.up_blocks.3.resnets.2.norm2.bias torch.Size([128]) False 1583 model.vae.decoder.up_blocks.3.resnets.2.conv2.weight torch.Size([128, 128, 3, 3]) False 1584 model.vae.decoder.up_blocks.3.resnets.2.conv2.bias torch.Size([128]) False 1585 model.vae.decoder.mid_block.attentions.0.group_norm.weight torch.Size([512]) False 1586 model.vae.decoder.mid_block.attentions.0.group_norm.bias torch.Size([512]) False 1587 model.vae.decoder.mid_block.attentions.0.to_q.weight torch.Size([512, 512]) False 1588 model.vae.decoder.mid_block.attentions.0.to_q.bias torch.Size([512]) False 1589 model.vae.decoder.mid_block.attentions.0.to_k.weight torch.Size([512, 512]) False 1590 model.vae.decoder.mid_block.attentions.0.to_k.bias torch.Size([512]) False 1591 model.vae.decoder.mid_block.attentions.0.to_v.weight torch.Size([512, 512]) False 1592 model.vae.decoder.mid_block.attentions.0.to_v.bias torch.Size([512]) False 1593 model.vae.decoder.mid_block.attentions.0.to_out.0.weight torch.Size([512, 512]) False 1594 model.vae.decoder.mid_block.attentions.0.to_out.0.bias torch.Size([512]) False 1595 model.vae.decoder.mid_block.resnets.0.norm1.weight torch.Size([512]) False 1596 model.vae.decoder.mid_block.resnets.0.norm1.bias torch.Size([512]) False 1597 model.vae.decoder.mid_block.resnets.0.conv1.weight torch.Size([512, 512, 3, 3]) False 1598 model.vae.decoder.mid_block.resnets.0.conv1.bias torch.Size([512]) False 1599 model.vae.decoder.mid_block.resnets.0.norm2.weight torch.Size([512]) False 1600 model.vae.decoder.mid_block.resnets.0.norm2.bias torch.Size([512]) False 1601 model.vae.decoder.mid_block.resnets.0.conv2.weight torch.Size([512, 512, 3, 3]) False 1602 model.vae.decoder.mid_block.resnets.0.conv2.bias torch.Size([512]) False 1603 model.vae.decoder.mid_block.resnets.1.norm1.weight torch.Size([512]) False 1604 model.vae.decoder.mid_block.resnets.1.norm1.bias torch.Size([512]) False 1605 model.vae.decoder.mid_block.resnets.1.conv1.weight torch.Size([512, 512, 3, 3]) False 1606 model.vae.decoder.mid_block.resnets.1.conv1.bias torch.Size([512]) False 1607 model.vae.decoder.mid_block.resnets.1.norm2.weight torch.Size([512]) False 1608 model.vae.decoder.mid_block.resnets.1.norm2.bias torch.Size([512]) False 1609 model.vae.decoder.mid_block.resnets.1.conv2.weight torch.Size([512, 512, 3, 3]) False 1610 model.vae.decoder.mid_block.resnets.1.conv2.bias torch.Size([512]) False 1611 model.vae.decoder.conv_norm_out.weight torch.Size([128]) False 1612 model.vae.decoder.conv_norm_out.bias torch.Size([128]) False 1613 model.vae.decoder.conv_out.weight torch.Size([3, 128, 3, 3]) False 1614 model.vae.decoder.conv_out.bias torch.Size([3]) False 1615 model.gen_vision_tower.vision_tower.model.cls_token torch.Size([1, 1, 1792]) False 1616 model.gen_vision_tower.vision_tower.model.pos_embed torch.Size([1, 1025, 1792]) False 1617 model.gen_vision_tower.vision_tower.model.patch_embed.proj.weight torch.Size([1792, 3, 14, 14]) False 1618 model.gen_vision_tower.vision_tower.model.patch_embed.proj.bias torch.Size([1792]) False 1619 model.gen_vision_tower.vision_tower.model.blocks.0.norm1.weight torch.Size([1792]) False 1620 model.gen_vision_tower.vision_tower.model.blocks.0.norm1.bias torch.Size([1792]) False 1621 model.gen_vision_tower.vision_tower.model.blocks.0.attn.qkv.weight torch.Size([5376, 1792]) False 1622 model.gen_vision_tower.vision_tower.model.blocks.0.attn.qkv.bias torch.Size([5376]) False 1623 model.gen_vision_tower.vision_tower.model.blocks.0.attn.proj.weight torch.Size([1792, 1792]) False 1624 model.gen_vision_tower.vision_tower.model.blocks.0.attn.proj.bias torch.Size([1792]) False 1625 model.gen_vision_tower.vision_tower.model.blocks.0.norm2.weight torch.Size([1792]) False 1626 model.gen_vision_tower.vision_tower.model.blocks.0.norm2.bias torch.Size([1792]) False 1627 model.gen_vision_tower.vision_tower.model.blocks.0.mlp.fc1.weight torch.Size([15360, 1792]) False 1628 model.gen_vision_tower.vision_tower.model.blocks.0.mlp.fc1.bias torch.Size([15360]) False 1629 model.gen_vision_tower.vision_tower.model.blocks.0.mlp.fc2.weight torch.Size([1792, 15360]) False 1630 model.gen_vision_tower.vision_tower.model.blocks.0.mlp.fc2.bias torch.Size([1792]) False 1631 model.gen_vision_tower.vision_tower.model.blocks.1.norm1.weight torch.Size([1792]) False 1632 model.gen_vision_tower.vision_tower.model.blocks.1.norm1.bias torch.Size([1792]) False 1633 model.gen_vision_tower.vision_tower.model.blocks.1.attn.qkv.weight torch.Size([5376, 1792]) False 1634 model.gen_vision_tower.vision_tower.model.blocks.1.attn.qkv.bias torch.Size([5376]) False 1635 model.gen_vision_tower.vision_tower.model.blocks.1.attn.proj.weight torch.Size([1792, 1792]) False 1636 model.gen_vision_tower.vision_tower.model.blocks.1.attn.proj.bias torch.Size([1792]) False 1637 model.gen_vision_tower.vision_tower.model.blocks.1.norm2.weight torch.Size([1792]) False 1638 model.gen_vision_tower.vision_tower.model.blocks.1.norm2.bias torch.Size([1792]) False 1639 model.gen_vision_tower.vision_tower.model.blocks.1.mlp.fc1.weight torch.Size([15360, 1792]) False 1640 model.gen_vision_tower.vision_tower.model.blocks.1.mlp.fc1.bias torch.Size([15360]) False 1641 model.gen_vision_tower.vision_tower.model.blocks.1.mlp.fc2.weight torch.Size([1792, 15360]) False 1642 model.gen_vision_tower.vision_tower.model.blocks.1.mlp.fc2.bias torch.Size([1792]) False 1643 model.gen_vision_tower.vision_tower.model.blocks.2.norm1.weight torch.Size([1792]) False 1644 model.gen_vision_tower.vision_tower.model.blocks.2.norm1.bias torch.Size([1792]) False 1645 model.gen_vision_tower.vision_tower.model.blocks.2.attn.qkv.weight torch.Size([5376, 1792]) False 1646 model.gen_vision_tower.vision_tower.model.blocks.2.attn.qkv.bias torch.Size([5376]) False 1647 model.gen_vision_tower.vision_tower.model.blocks.2.attn.proj.weight torch.Size([1792, 1792]) False 1648 model.gen_vision_tower.vision_tower.model.blocks.2.attn.proj.bias torch.Size([1792]) False 1649 model.gen_vision_tower.vision_tower.model.blocks.2.norm2.weight torch.Size([1792]) False 1650 model.gen_vision_tower.vision_tower.model.blocks.2.norm2.bias torch.Size([1792]) False 1651 model.gen_vision_tower.vision_tower.model.blocks.2.mlp.fc1.weight torch.Size([15360, 1792]) False 1652 model.gen_vision_tower.vision_tower.model.blocks.2.mlp.fc1.bias torch.Size([15360]) False 1653 model.gen_vision_tower.vision_tower.model.blocks.2.mlp.fc2.weight torch.Size([1792, 15360]) False 1654 model.gen_vision_tower.vision_tower.model.blocks.2.mlp.fc2.bias torch.Size([1792]) False 1655 model.gen_vision_tower.vision_tower.model.blocks.3.norm1.weight torch.Size([1792]) False 1656 model.gen_vision_tower.vision_tower.model.blocks.3.norm1.bias torch.Size([1792]) False 1657 model.gen_vision_tower.vision_tower.model.blocks.3.attn.qkv.weight torch.Size([5376, 1792]) False 1658 model.gen_vision_tower.vision_tower.model.blocks.3.attn.qkv.bias torch.Size([5376]) False 1659 model.gen_vision_tower.vision_tower.model.blocks.3.attn.proj.weight torch.Size([1792, 1792]) False 1660 model.gen_vision_tower.vision_tower.model.blocks.3.attn.proj.bias torch.Size([1792]) False 1661 model.gen_vision_tower.vision_tower.model.blocks.3.norm2.weight torch.Size([1792]) False 1662 model.gen_vision_tower.vision_tower.model.blocks.3.norm2.bias torch.Size([1792]) False 1663 model.gen_vision_tower.vision_tower.model.blocks.3.mlp.fc1.weight torch.Size([15360, 1792]) False 1664 model.gen_vision_tower.vision_tower.model.blocks.3.mlp.fc1.bias torch.Size([15360]) False 1665 model.gen_vision_tower.vision_tower.model.blocks.3.mlp.fc2.weight torch.Size([1792, 15360]) False 1666 model.gen_vision_tower.vision_tower.model.blocks.3.mlp.fc2.bias torch.Size([1792]) False 1667 model.gen_vision_tower.vision_tower.model.blocks.4.norm1.weight torch.Size([1792]) False 1668 model.gen_vision_tower.vision_tower.model.blocks.4.norm1.bias torch.Size([1792]) False 1669 model.gen_vision_tower.vision_tower.model.blocks.4.attn.qkv.weight torch.Size([5376, 1792]) False 1670 model.gen_vision_tower.vision_tower.model.blocks.4.attn.qkv.bias torch.Size([5376]) False 1671 model.gen_vision_tower.vision_tower.model.blocks.4.attn.proj.weight torch.Size([1792, 1792]) False 1672 model.gen_vision_tower.vision_tower.model.blocks.4.attn.proj.bias torch.Size([1792]) False 1673 model.gen_vision_tower.vision_tower.model.blocks.4.norm2.weight torch.Size([1792]) False 1674 model.gen_vision_tower.vision_tower.model.blocks.4.norm2.bias torch.Size([1792]) False 1675 model.gen_vision_tower.vision_tower.model.blocks.4.mlp.fc1.weight torch.Size([15360, 1792]) False 1676 model.gen_vision_tower.vision_tower.model.blocks.4.mlp.fc1.bias torch.Size([15360]) False 1677 model.gen_vision_tower.vision_tower.model.blocks.4.mlp.fc2.weight torch.Size([1792, 15360]) False 1678 model.gen_vision_tower.vision_tower.model.blocks.4.mlp.fc2.bias torch.Size([1792]) False 1679 model.gen_vision_tower.vision_tower.model.blocks.5.norm1.weight torch.Size([1792]) False 1680 model.gen_vision_tower.vision_tower.model.blocks.5.norm1.bias torch.Size([1792]) False 1681 model.gen_vision_tower.vision_tower.model.blocks.5.attn.qkv.weight torch.Size([5376, 1792]) False 1682 model.gen_vision_tower.vision_tower.model.blocks.5.attn.qkv.bias torch.Size([5376]) False 1683 model.gen_vision_tower.vision_tower.model.blocks.5.attn.proj.weight torch.Size([1792, 1792]) False 1684 model.gen_vision_tower.vision_tower.model.blocks.5.attn.proj.bias torch.Size([1792]) False 1685 model.gen_vision_tower.vision_tower.model.blocks.5.norm2.weight torch.Size([1792]) False 1686 model.gen_vision_tower.vision_tower.model.blocks.5.norm2.bias torch.Size([1792]) False 1687 model.gen_vision_tower.vision_tower.model.blocks.5.mlp.fc1.weight torch.Size([15360, 1792]) False 1688 model.gen_vision_tower.vision_tower.model.blocks.5.mlp.fc1.bias torch.Size([15360]) False 1689 model.gen_vision_tower.vision_tower.model.blocks.5.mlp.fc2.weight torch.Size([1792, 15360]) False 1690 model.gen_vision_tower.vision_tower.model.blocks.5.mlp.fc2.bias torch.Size([1792]) False 1691 model.gen_vision_tower.vision_tower.model.blocks.6.norm1.weight torch.Size([1792]) False 1692 model.gen_vision_tower.vision_tower.model.blocks.6.norm1.bias torch.Size([1792]) False 1693 model.gen_vision_tower.vision_tower.model.blocks.6.attn.qkv.weight torch.Size([5376, 1792]) False 1694 model.gen_vision_tower.vision_tower.model.blocks.6.attn.qkv.bias torch.Size([5376]) False 1695 model.gen_vision_tower.vision_tower.model.blocks.6.attn.proj.weight torch.Size([1792, 1792]) False 1696 model.gen_vision_tower.vision_tower.model.blocks.6.attn.proj.bias torch.Size([1792]) False 1697 model.gen_vision_tower.vision_tower.model.blocks.6.norm2.weight torch.Size([1792]) False 1698 model.gen_vision_tower.vision_tower.model.blocks.6.norm2.bias torch.Size([1792]) False 1699 model.gen_vision_tower.vision_tower.model.blocks.6.mlp.fc1.weight torch.Size([15360, 1792]) False 1700 model.gen_vision_tower.vision_tower.model.blocks.6.mlp.fc1.bias torch.Size([15360]) False 1701 model.gen_vision_tower.vision_tower.model.blocks.6.mlp.fc2.weight torch.Size([1792, 15360]) False 1702 model.gen_vision_tower.vision_tower.model.blocks.6.mlp.fc2.bias torch.Size([1792]) False 1703 model.gen_vision_tower.vision_tower.model.blocks.7.norm1.weight torch.Size([1792]) False 1704 model.gen_vision_tower.vision_tower.model.blocks.7.norm1.bias torch.Size([1792]) False 1705 model.gen_vision_tower.vision_tower.model.blocks.7.attn.qkv.weight torch.Size([5376, 1792]) False 1706 model.gen_vision_tower.vision_tower.model.blocks.7.attn.qkv.bias torch.Size([5376]) False 1707 model.gen_vision_tower.vision_tower.model.blocks.7.attn.proj.weight torch.Size([1792, 1792]) False 1708 model.gen_vision_tower.vision_tower.model.blocks.7.attn.proj.bias torch.Size([1792]) False 1709 model.gen_vision_tower.vision_tower.model.blocks.7.norm2.weight torch.Size([1792]) False 1710 model.gen_vision_tower.vision_tower.model.blocks.7.norm2.bias torch.Size([1792]) False 1711 model.gen_vision_tower.vision_tower.model.blocks.7.mlp.fc1.weight torch.Size([15360, 1792]) False 1712 model.gen_vision_tower.vision_tower.model.blocks.7.mlp.fc1.bias torch.Size([15360]) False 1713 model.gen_vision_tower.vision_tower.model.blocks.7.mlp.fc2.weight torch.Size([1792, 15360]) False 1714 model.gen_vision_tower.vision_tower.model.blocks.7.mlp.fc2.bias torch.Size([1792]) False 1715 model.gen_vision_tower.vision_tower.model.blocks.8.norm1.weight torch.Size([1792]) False 1716 model.gen_vision_tower.vision_tower.model.blocks.8.norm1.bias torch.Size([1792]) False 1717 model.gen_vision_tower.vision_tower.model.blocks.8.attn.qkv.weight torch.Size([5376, 1792]) False 1718 model.gen_vision_tower.vision_tower.model.blocks.8.attn.qkv.bias torch.Size([5376]) False 1719 model.gen_vision_tower.vision_tower.model.blocks.8.attn.proj.weight torch.Size([1792, 1792]) False 1720 model.gen_vision_tower.vision_tower.model.blocks.8.attn.proj.bias torch.Size([1792]) False 1721 model.gen_vision_tower.vision_tower.model.blocks.8.norm2.weight torch.Size([1792]) False 1722 model.gen_vision_tower.vision_tower.model.blocks.8.norm2.bias torch.Size([1792]) False 1723 model.gen_vision_tower.vision_tower.model.blocks.8.mlp.fc1.weight torch.Size([15360, 1792]) False 1724 model.gen_vision_tower.vision_tower.model.blocks.8.mlp.fc1.bias torch.Size([15360]) False 1725 model.gen_vision_tower.vision_tower.model.blocks.8.mlp.fc2.weight torch.Size([1792, 15360]) False 1726 model.gen_vision_tower.vision_tower.model.blocks.8.mlp.fc2.bias torch.Size([1792]) False 1727 model.gen_vision_tower.vision_tower.model.blocks.9.norm1.weight torch.Size([1792]) False 1728 model.gen_vision_tower.vision_tower.model.blocks.9.norm1.bias torch.Size([1792]) False 1729 model.gen_vision_tower.vision_tower.model.blocks.9.attn.qkv.weight torch.Size([5376, 1792]) False 1730 model.gen_vision_tower.vision_tower.model.blocks.9.attn.qkv.bias torch.Size([5376]) False 1731 model.gen_vision_tower.vision_tower.model.blocks.9.attn.proj.weight torch.Size([1792, 1792]) False 1732 model.gen_vision_tower.vision_tower.model.blocks.9.attn.proj.bias torch.Size([1792]) False 1733 model.gen_vision_tower.vision_tower.model.blocks.9.norm2.weight torch.Size([1792]) False 1734 model.gen_vision_tower.vision_tower.model.blocks.9.norm2.bias torch.Size([1792]) False 1735 model.gen_vision_tower.vision_tower.model.blocks.9.mlp.fc1.weight torch.Size([15360, 1792]) False 1736 model.gen_vision_tower.vision_tower.model.blocks.9.mlp.fc1.bias torch.Size([15360]) False 1737 model.gen_vision_tower.vision_tower.model.blocks.9.mlp.fc2.weight torch.Size([1792, 15360]) False 1738 model.gen_vision_tower.vision_tower.model.blocks.9.mlp.fc2.bias torch.Size([1792]) False 1739 model.gen_vision_tower.vision_tower.model.blocks.10.norm1.weight torch.Size([1792]) False 1740 model.gen_vision_tower.vision_tower.model.blocks.10.norm1.bias torch.Size([1792]) False 1741 model.gen_vision_tower.vision_tower.model.blocks.10.attn.qkv.weight torch.Size([5376, 1792]) False 1742 model.gen_vision_tower.vision_tower.model.blocks.10.attn.qkv.bias torch.Size([5376]) False 1743 model.gen_vision_tower.vision_tower.model.blocks.10.attn.proj.weight torch.Size([1792, 1792]) False 1744 model.gen_vision_tower.vision_tower.model.blocks.10.attn.proj.bias torch.Size([1792]) False 1745 model.gen_vision_tower.vision_tower.model.blocks.10.norm2.weight torch.Size([1792]) False 1746 model.gen_vision_tower.vision_tower.model.blocks.10.norm2.bias torch.Size([1792]) False 1747 model.gen_vision_tower.vision_tower.model.blocks.10.mlp.fc1.weight torch.Size([15360, 1792]) False 1748 model.gen_vision_tower.vision_tower.model.blocks.10.mlp.fc1.bias torch.Size([15360]) False 1749 model.gen_vision_tower.vision_tower.model.blocks.10.mlp.fc2.weight torch.Size([1792, 15360]) False 1750 model.gen_vision_tower.vision_tower.model.blocks.10.mlp.fc2.bias torch.Size([1792]) False 1751 model.gen_vision_tower.vision_tower.model.blocks.11.norm1.weight torch.Size([1792]) False 1752 model.gen_vision_tower.vision_tower.model.blocks.11.norm1.bias torch.Size([1792]) False 1753 model.gen_vision_tower.vision_tower.model.blocks.11.attn.qkv.weight torch.Size([5376, 1792]) False 1754 model.gen_vision_tower.vision_tower.model.blocks.11.attn.qkv.bias torch.Size([5376]) False 1755 model.gen_vision_tower.vision_tower.model.blocks.11.attn.proj.weight torch.Size([1792, 1792]) False 1756 model.gen_vision_tower.vision_tower.model.blocks.11.attn.proj.bias torch.Size([1792]) False 1757 model.gen_vision_tower.vision_tower.model.blocks.11.norm2.weight torch.Size([1792]) False 1758 model.gen_vision_tower.vision_tower.model.blocks.11.norm2.bias torch.Size([1792]) False 1759 model.gen_vision_tower.vision_tower.model.blocks.11.mlp.fc1.weight torch.Size([15360, 1792]) False 1760 model.gen_vision_tower.vision_tower.model.blocks.11.mlp.fc1.bias torch.Size([15360]) False 1761 model.gen_vision_tower.vision_tower.model.blocks.11.mlp.fc2.weight torch.Size([1792, 15360]) False 1762 model.gen_vision_tower.vision_tower.model.blocks.11.mlp.fc2.bias torch.Size([1792]) False 1763 model.gen_vision_tower.vision_tower.model.blocks.12.norm1.weight torch.Size([1792]) False 1764 model.gen_vision_tower.vision_tower.model.blocks.12.norm1.bias torch.Size([1792]) False 1765 model.gen_vision_tower.vision_tower.model.blocks.12.attn.qkv.weight torch.Size([5376, 1792]) False 1766 model.gen_vision_tower.vision_tower.model.blocks.12.attn.qkv.bias torch.Size([5376]) False 1767 model.gen_vision_tower.vision_tower.model.blocks.12.attn.proj.weight torch.Size([1792, 1792]) False 1768 model.gen_vision_tower.vision_tower.model.blocks.12.attn.proj.bias torch.Size([1792]) False 1769 model.gen_vision_tower.vision_tower.model.blocks.12.norm2.weight torch.Size([1792]) False 1770 model.gen_vision_tower.vision_tower.model.blocks.12.norm2.bias torch.Size([1792]) False 1771 model.gen_vision_tower.vision_tower.model.blocks.12.mlp.fc1.weight torch.Size([15360, 1792]) False 1772 model.gen_vision_tower.vision_tower.model.blocks.12.mlp.fc1.bias torch.Size([15360]) False 1773 model.gen_vision_tower.vision_tower.model.blocks.12.mlp.fc2.weight torch.Size([1792, 15360]) False 1774 model.gen_vision_tower.vision_tower.model.blocks.12.mlp.fc2.bias torch.Size([1792]) False 1775 model.gen_vision_tower.vision_tower.model.blocks.13.norm1.weight torch.Size([1792]) False 1776 model.gen_vision_tower.vision_tower.model.blocks.13.norm1.bias torch.Size([1792]) False 1777 model.gen_vision_tower.vision_tower.model.blocks.13.attn.qkv.weight torch.Size([5376, 1792]) False 1778 model.gen_vision_tower.vision_tower.model.blocks.13.attn.qkv.bias torch.Size([5376]) False 1779 model.gen_vision_tower.vision_tower.model.blocks.13.attn.proj.weight torch.Size([1792, 1792]) False 1780 model.gen_vision_tower.vision_tower.model.blocks.13.attn.proj.bias torch.Size([1792]) False 1781 model.gen_vision_tower.vision_tower.model.blocks.13.norm2.weight torch.Size([1792]) False 1782 model.gen_vision_tower.vision_tower.model.blocks.13.norm2.bias torch.Size([1792]) False 1783 model.gen_vision_tower.vision_tower.model.blocks.13.mlp.fc1.weight torch.Size([15360, 1792]) False 1784 model.gen_vision_tower.vision_tower.model.blocks.13.mlp.fc1.bias torch.Size([15360]) False 1785 model.gen_vision_tower.vision_tower.model.blocks.13.mlp.fc2.weight torch.Size([1792, 15360]) False 1786 model.gen_vision_tower.vision_tower.model.blocks.13.mlp.fc2.bias torch.Size([1792]) False 1787 model.gen_vision_tower.vision_tower.model.blocks.14.norm1.weight torch.Size([1792]) False 1788 model.gen_vision_tower.vision_tower.model.blocks.14.norm1.bias torch.Size([1792]) False 1789 model.gen_vision_tower.vision_tower.model.blocks.14.attn.qkv.weight torch.Size([5376, 1792]) False 1790 model.gen_vision_tower.vision_tower.model.blocks.14.attn.qkv.bias torch.Size([5376]) False 1791 model.gen_vision_tower.vision_tower.model.blocks.14.attn.proj.weight torch.Size([1792, 1792]) False 1792 model.gen_vision_tower.vision_tower.model.blocks.14.attn.proj.bias torch.Size([1792]) False 1793 model.gen_vision_tower.vision_tower.model.blocks.14.norm2.weight torch.Size([1792]) False 1794 model.gen_vision_tower.vision_tower.model.blocks.14.norm2.bias torch.Size([1792]) False 1795 model.gen_vision_tower.vision_tower.model.blocks.14.mlp.fc1.weight torch.Size([15360, 1792]) False 1796 model.gen_vision_tower.vision_tower.model.blocks.14.mlp.fc1.bias torch.Size([15360]) False 1797 model.gen_vision_tower.vision_tower.model.blocks.14.mlp.fc2.weight torch.Size([1792, 15360]) False 1798 model.gen_vision_tower.vision_tower.model.blocks.14.mlp.fc2.bias torch.Size([1792]) False 1799 model.gen_vision_tower.vision_tower.model.blocks.15.norm1.weight torch.Size([1792]) False 1800 model.gen_vision_tower.vision_tower.model.blocks.15.norm1.bias torch.Size([1792]) False 1801 model.gen_vision_tower.vision_tower.model.blocks.15.attn.qkv.weight torch.Size([5376, 1792]) False 1802 model.gen_vision_tower.vision_tower.model.blocks.15.attn.qkv.bias torch.Size([5376]) False 1803 model.gen_vision_tower.vision_tower.model.blocks.15.attn.proj.weight torch.Size([1792, 1792]) False 1804 model.gen_vision_tower.vision_tower.model.blocks.15.attn.proj.bias torch.Size([1792]) False 1805 model.gen_vision_tower.vision_tower.model.blocks.15.norm2.weight torch.Size([1792]) False 1806 model.gen_vision_tower.vision_tower.model.blocks.15.norm2.bias torch.Size([1792]) False 1807 model.gen_vision_tower.vision_tower.model.blocks.15.mlp.fc1.weight torch.Size([15360, 1792]) False 1808 model.gen_vision_tower.vision_tower.model.blocks.15.mlp.fc1.bias torch.Size([15360]) False 1809 model.gen_vision_tower.vision_tower.model.blocks.15.mlp.fc2.weight torch.Size([1792, 15360]) False 1810 model.gen_vision_tower.vision_tower.model.blocks.15.mlp.fc2.bias torch.Size([1792]) False 1811 model.gen_vision_tower.vision_tower.model.blocks.16.norm1.weight torch.Size([1792]) False 1812 model.gen_vision_tower.vision_tower.model.blocks.16.norm1.bias torch.Size([1792]) False 1813 model.gen_vision_tower.vision_tower.model.blocks.16.attn.qkv.weight torch.Size([5376, 1792]) False 1814 model.gen_vision_tower.vision_tower.model.blocks.16.attn.qkv.bias torch.Size([5376]) False 1815 model.gen_vision_tower.vision_tower.model.blocks.16.attn.proj.weight torch.Size([1792, 1792]) False 1816 model.gen_vision_tower.vision_tower.model.blocks.16.attn.proj.bias torch.Size([1792]) False 1817 model.gen_vision_tower.vision_tower.model.blocks.16.norm2.weight torch.Size([1792]) False 1818 model.gen_vision_tower.vision_tower.model.blocks.16.norm2.bias torch.Size([1792]) False 1819 model.gen_vision_tower.vision_tower.model.blocks.16.mlp.fc1.weight torch.Size([15360, 1792]) False 1820 model.gen_vision_tower.vision_tower.model.blocks.16.mlp.fc1.bias torch.Size([15360]) False 1821 model.gen_vision_tower.vision_tower.model.blocks.16.mlp.fc2.weight torch.Size([1792, 15360]) False 1822 model.gen_vision_tower.vision_tower.model.blocks.16.mlp.fc2.bias torch.Size([1792]) False 1823 model.gen_vision_tower.vision_tower.model.blocks.17.norm1.weight torch.Size([1792]) False 1824 model.gen_vision_tower.vision_tower.model.blocks.17.norm1.bias torch.Size([1792]) False 1825 model.gen_vision_tower.vision_tower.model.blocks.17.attn.qkv.weight torch.Size([5376, 1792]) False 1826 model.gen_vision_tower.vision_tower.model.blocks.17.attn.qkv.bias torch.Size([5376]) False 1827 model.gen_vision_tower.vision_tower.model.blocks.17.attn.proj.weight torch.Size([1792, 1792]) False 1828 model.gen_vision_tower.vision_tower.model.blocks.17.attn.proj.bias torch.Size([1792]) False 1829 model.gen_vision_tower.vision_tower.model.blocks.17.norm2.weight torch.Size([1792]) False 1830 model.gen_vision_tower.vision_tower.model.blocks.17.norm2.bias torch.Size([1792]) False 1831 model.gen_vision_tower.vision_tower.model.blocks.17.mlp.fc1.weight torch.Size([15360, 1792]) False 1832 model.gen_vision_tower.vision_tower.model.blocks.17.mlp.fc1.bias torch.Size([15360]) False 1833 model.gen_vision_tower.vision_tower.model.blocks.17.mlp.fc2.weight torch.Size([1792, 15360]) False 1834 model.gen_vision_tower.vision_tower.model.blocks.17.mlp.fc2.bias torch.Size([1792]) False 1835 model.gen_vision_tower.vision_tower.model.blocks.18.norm1.weight torch.Size([1792]) False 1836 model.gen_vision_tower.vision_tower.model.blocks.18.norm1.bias torch.Size([1792]) False 1837 model.gen_vision_tower.vision_tower.model.blocks.18.attn.qkv.weight torch.Size([5376, 1792]) False 1838 model.gen_vision_tower.vision_tower.model.blocks.18.attn.qkv.bias torch.Size([5376]) False 1839 model.gen_vision_tower.vision_tower.model.blocks.18.attn.proj.weight torch.Size([1792, 1792]) False 1840 model.gen_vision_tower.vision_tower.model.blocks.18.attn.proj.bias torch.Size([1792]) False 1841 model.gen_vision_tower.vision_tower.model.blocks.18.norm2.weight torch.Size([1792]) False 1842 model.gen_vision_tower.vision_tower.model.blocks.18.norm2.bias torch.Size([1792]) False 1843 model.gen_vision_tower.vision_tower.model.blocks.18.mlp.fc1.weight torch.Size([15360, 1792]) False 1844 model.gen_vision_tower.vision_tower.model.blocks.18.mlp.fc1.bias torch.Size([15360]) False 1845 model.gen_vision_tower.vision_tower.model.blocks.18.mlp.fc2.weight torch.Size([1792, 15360]) False 1846 model.gen_vision_tower.vision_tower.model.blocks.18.mlp.fc2.bias torch.Size([1792]) False 1847 model.gen_vision_tower.vision_tower.model.blocks.19.norm1.weight torch.Size([1792]) False 1848 model.gen_vision_tower.vision_tower.model.blocks.19.norm1.bias torch.Size([1792]) False 1849 model.gen_vision_tower.vision_tower.model.blocks.19.attn.qkv.weight torch.Size([5376, 1792]) False 1850 model.gen_vision_tower.vision_tower.model.blocks.19.attn.qkv.bias torch.Size([5376]) False 1851 model.gen_vision_tower.vision_tower.model.blocks.19.attn.proj.weight torch.Size([1792, 1792]) False 1852 model.gen_vision_tower.vision_tower.model.blocks.19.attn.proj.bias torch.Size([1792]) False 1853 model.gen_vision_tower.vision_tower.model.blocks.19.norm2.weight torch.Size([1792]) False 1854 model.gen_vision_tower.vision_tower.model.blocks.19.norm2.bias torch.Size([1792]) False 1855 model.gen_vision_tower.vision_tower.model.blocks.19.mlp.fc1.weight torch.Size([15360, 1792]) False 1856 model.gen_vision_tower.vision_tower.model.blocks.19.mlp.fc1.bias torch.Size([15360]) False 1857 model.gen_vision_tower.vision_tower.model.blocks.19.mlp.fc2.weight torch.Size([1792, 15360]) False 1858 model.gen_vision_tower.vision_tower.model.blocks.19.mlp.fc2.bias torch.Size([1792]) False 1859 model.gen_vision_tower.vision_tower.model.blocks.20.norm1.weight torch.Size([1792]) False 1860 model.gen_vision_tower.vision_tower.model.blocks.20.norm1.bias torch.Size([1792]) False 1861 model.gen_vision_tower.vision_tower.model.blocks.20.attn.qkv.weight torch.Size([5376, 1792]) False 1862 model.gen_vision_tower.vision_tower.model.blocks.20.attn.qkv.bias torch.Size([5376]) False 1863 model.gen_vision_tower.vision_tower.model.blocks.20.attn.proj.weight torch.Size([1792, 1792]) False 1864 model.gen_vision_tower.vision_tower.model.blocks.20.attn.proj.bias torch.Size([1792]) False 1865 model.gen_vision_tower.vision_tower.model.blocks.20.norm2.weight torch.Size([1792]) False 1866 model.gen_vision_tower.vision_tower.model.blocks.20.norm2.bias torch.Size([1792]) False 1867 model.gen_vision_tower.vision_tower.model.blocks.20.mlp.fc1.weight torch.Size([15360, 1792]) False 1868 model.gen_vision_tower.vision_tower.model.blocks.20.mlp.fc1.bias torch.Size([15360]) False 1869 model.gen_vision_tower.vision_tower.model.blocks.20.mlp.fc2.weight torch.Size([1792, 15360]) False 1870 model.gen_vision_tower.vision_tower.model.blocks.20.mlp.fc2.bias torch.Size([1792]) False 1871 model.gen_vision_tower.vision_tower.model.blocks.21.norm1.weight torch.Size([1792]) False 1872 model.gen_vision_tower.vision_tower.model.blocks.21.norm1.bias torch.Size([1792]) False 1873 model.gen_vision_tower.vision_tower.model.blocks.21.attn.qkv.weight torch.Size([5376, 1792]) False 1874 model.gen_vision_tower.vision_tower.model.blocks.21.attn.qkv.bias torch.Size([5376]) False 1875 model.gen_vision_tower.vision_tower.model.blocks.21.attn.proj.weight torch.Size([1792, 1792]) False 1876 model.gen_vision_tower.vision_tower.model.blocks.21.attn.proj.bias torch.Size([1792]) False 1877 model.gen_vision_tower.vision_tower.model.blocks.21.norm2.weight torch.Size([1792]) False 1878 model.gen_vision_tower.vision_tower.model.blocks.21.norm2.bias torch.Size([1792]) False 1879 model.gen_vision_tower.vision_tower.model.blocks.21.mlp.fc1.weight torch.Size([15360, 1792]) False 1880 model.gen_vision_tower.vision_tower.model.blocks.21.mlp.fc1.bias torch.Size([15360]) False 1881 model.gen_vision_tower.vision_tower.model.blocks.21.mlp.fc2.weight torch.Size([1792, 15360]) False 1882 model.gen_vision_tower.vision_tower.model.blocks.21.mlp.fc2.bias torch.Size([1792]) False 1883 model.gen_vision_tower.vision_tower.model.blocks.22.norm1.weight torch.Size([1792]) False 1884 model.gen_vision_tower.vision_tower.model.blocks.22.norm1.bias torch.Size([1792]) False 1885 model.gen_vision_tower.vision_tower.model.blocks.22.attn.qkv.weight torch.Size([5376, 1792]) False 1886 model.gen_vision_tower.vision_tower.model.blocks.22.attn.qkv.bias torch.Size([5376]) False 1887 model.gen_vision_tower.vision_tower.model.blocks.22.attn.proj.weight torch.Size([1792, 1792]) False 1888 model.gen_vision_tower.vision_tower.model.blocks.22.attn.proj.bias torch.Size([1792]) False 1889 model.gen_vision_tower.vision_tower.model.blocks.22.norm2.weight torch.Size([1792]) False 1890 model.gen_vision_tower.vision_tower.model.blocks.22.norm2.bias torch.Size([1792]) False 1891 model.gen_vision_tower.vision_tower.model.blocks.22.mlp.fc1.weight torch.Size([15360, 1792]) False 1892 model.gen_vision_tower.vision_tower.model.blocks.22.mlp.fc1.bias torch.Size([15360]) False 1893 model.gen_vision_tower.vision_tower.model.blocks.22.mlp.fc2.weight torch.Size([1792, 15360]) False 1894 model.gen_vision_tower.vision_tower.model.blocks.22.mlp.fc2.bias torch.Size([1792]) False 1895 model.gen_vision_tower.vision_tower.model.blocks.23.norm1.weight torch.Size([1792]) False 1896 model.gen_vision_tower.vision_tower.model.blocks.23.norm1.bias torch.Size([1792]) False 1897 model.gen_vision_tower.vision_tower.model.blocks.23.attn.qkv.weight torch.Size([5376, 1792]) False 1898 model.gen_vision_tower.vision_tower.model.blocks.23.attn.qkv.bias torch.Size([5376]) False 1899 model.gen_vision_tower.vision_tower.model.blocks.23.attn.proj.weight torch.Size([1792, 1792]) False 1900 model.gen_vision_tower.vision_tower.model.blocks.23.attn.proj.bias torch.Size([1792]) False 1901 model.gen_vision_tower.vision_tower.model.blocks.23.norm2.weight torch.Size([1792]) False 1902 model.gen_vision_tower.vision_tower.model.blocks.23.norm2.bias torch.Size([1792]) False 1903 model.gen_vision_tower.vision_tower.model.blocks.23.mlp.fc1.weight torch.Size([15360, 1792]) False 1904 model.gen_vision_tower.vision_tower.model.blocks.23.mlp.fc1.bias torch.Size([15360]) False 1905 model.gen_vision_tower.vision_tower.model.blocks.23.mlp.fc2.weight torch.Size([1792, 15360]) False 1906 model.gen_vision_tower.vision_tower.model.blocks.23.mlp.fc2.bias torch.Size([1792]) False 1907 model.gen_vision_tower.vision_tower.model.blocks.24.norm1.weight torch.Size([1792]) False 1908 model.gen_vision_tower.vision_tower.model.blocks.24.norm1.bias torch.Size([1792]) False 1909 model.gen_vision_tower.vision_tower.model.blocks.24.attn.qkv.weight torch.Size([5376, 1792]) False 1910 model.gen_vision_tower.vision_tower.model.blocks.24.attn.qkv.bias torch.Size([5376]) False 1911 model.gen_vision_tower.vision_tower.model.blocks.24.attn.proj.weight torch.Size([1792, 1792]) False 1912 model.gen_vision_tower.vision_tower.model.blocks.24.attn.proj.bias torch.Size([1792]) False 1913 model.gen_vision_tower.vision_tower.model.blocks.24.norm2.weight torch.Size([1792]) False 1914 model.gen_vision_tower.vision_tower.model.blocks.24.norm2.bias torch.Size([1792]) False 1915 model.gen_vision_tower.vision_tower.model.blocks.24.mlp.fc1.weight torch.Size([15360, 1792]) False 1916 model.gen_vision_tower.vision_tower.model.blocks.24.mlp.fc1.bias torch.Size([15360]) False 1917 model.gen_vision_tower.vision_tower.model.blocks.24.mlp.fc2.weight torch.Size([1792, 15360]) False 1918 model.gen_vision_tower.vision_tower.model.blocks.24.mlp.fc2.bias torch.Size([1792]) False 1919 model.gen_vision_tower.vision_tower.model.blocks.25.norm1.weight torch.Size([1792]) False 1920 model.gen_vision_tower.vision_tower.model.blocks.25.norm1.bias torch.Size([1792]) False 1921 model.gen_vision_tower.vision_tower.model.blocks.25.attn.qkv.weight torch.Size([5376, 1792]) False 1922 model.gen_vision_tower.vision_tower.model.blocks.25.attn.qkv.bias torch.Size([5376]) False 1923 model.gen_vision_tower.vision_tower.model.blocks.25.attn.proj.weight torch.Size([1792, 1792]) False 1924 model.gen_vision_tower.vision_tower.model.blocks.25.attn.proj.bias torch.Size([1792]) False 1925 model.gen_vision_tower.vision_tower.model.blocks.25.norm2.weight torch.Size([1792]) False 1926 model.gen_vision_tower.vision_tower.model.blocks.25.norm2.bias torch.Size([1792]) False 1927 model.gen_vision_tower.vision_tower.model.blocks.25.mlp.fc1.weight torch.Size([15360, 1792]) False 1928 model.gen_vision_tower.vision_tower.model.blocks.25.mlp.fc1.bias torch.Size([15360]) False 1929 model.gen_vision_tower.vision_tower.model.blocks.25.mlp.fc2.weight torch.Size([1792, 15360]) False 1930 model.gen_vision_tower.vision_tower.model.blocks.25.mlp.fc2.bias torch.Size([1792]) False 1931 model.gen_vision_tower.vision_tower.model.blocks.26.norm1.weight torch.Size([1792]) False 1932 model.gen_vision_tower.vision_tower.model.blocks.26.norm1.bias torch.Size([1792]) False 1933 model.gen_vision_tower.vision_tower.model.blocks.26.attn.qkv.weight torch.Size([5376, 1792]) False 1934 model.gen_vision_tower.vision_tower.model.blocks.26.attn.qkv.bias torch.Size([5376]) False 1935 model.gen_vision_tower.vision_tower.model.blocks.26.attn.proj.weight torch.Size([1792, 1792]) False 1936 model.gen_vision_tower.vision_tower.model.blocks.26.attn.proj.bias torch.Size([1792]) False 1937 model.gen_vision_tower.vision_tower.model.blocks.26.norm2.weight torch.Size([1792]) False 1938 model.gen_vision_tower.vision_tower.model.blocks.26.norm2.bias torch.Size([1792]) False 1939 model.gen_vision_tower.vision_tower.model.blocks.26.mlp.fc1.weight torch.Size([15360, 1792]) False 1940 model.gen_vision_tower.vision_tower.model.blocks.26.mlp.fc1.bias torch.Size([15360]) False 1941 model.gen_vision_tower.vision_tower.model.blocks.26.mlp.fc2.weight torch.Size([1792, 15360]) False 1942 model.gen_vision_tower.vision_tower.model.blocks.26.mlp.fc2.bias torch.Size([1792]) False 1943 model.gen_vision_tower.vision_tower.model.blocks.27.norm1.weight torch.Size([1792]) False 1944 model.gen_vision_tower.vision_tower.model.blocks.27.norm1.bias torch.Size([1792]) False 1945 model.gen_vision_tower.vision_tower.model.blocks.27.attn.qkv.weight torch.Size([5376, 1792]) False 1946 model.gen_vision_tower.vision_tower.model.blocks.27.attn.qkv.bias torch.Size([5376]) False 1947 model.gen_vision_tower.vision_tower.model.blocks.27.attn.proj.weight torch.Size([1792, 1792]) False 1948 model.gen_vision_tower.vision_tower.model.blocks.27.attn.proj.bias torch.Size([1792]) False 1949 model.gen_vision_tower.vision_tower.model.blocks.27.norm2.weight torch.Size([1792]) False 1950 model.gen_vision_tower.vision_tower.model.blocks.27.norm2.bias torch.Size([1792]) False 1951 model.gen_vision_tower.vision_tower.model.blocks.27.mlp.fc1.weight torch.Size([15360, 1792]) False 1952 model.gen_vision_tower.vision_tower.model.blocks.27.mlp.fc1.bias torch.Size([15360]) False 1953 model.gen_vision_tower.vision_tower.model.blocks.27.mlp.fc2.weight torch.Size([1792, 15360]) False 1954 model.gen_vision_tower.vision_tower.model.blocks.27.mlp.fc2.bias torch.Size([1792]) False 1955 model.gen_vision_tower.vision_tower.model.blocks.28.norm1.weight torch.Size([1792]) False 1956 model.gen_vision_tower.vision_tower.model.blocks.28.norm1.bias torch.Size([1792]) False 1957 model.gen_vision_tower.vision_tower.model.blocks.28.attn.qkv.weight torch.Size([5376, 1792]) False 1958 model.gen_vision_tower.vision_tower.model.blocks.28.attn.qkv.bias torch.Size([5376]) False 1959 model.gen_vision_tower.vision_tower.model.blocks.28.attn.proj.weight torch.Size([1792, 1792]) False 1960 model.gen_vision_tower.vision_tower.model.blocks.28.attn.proj.bias torch.Size([1792]) False 1961 model.gen_vision_tower.vision_tower.model.blocks.28.norm2.weight torch.Size([1792]) False 1962 model.gen_vision_tower.vision_tower.model.blocks.28.norm2.bias torch.Size([1792]) False 1963 model.gen_vision_tower.vision_tower.model.blocks.28.mlp.fc1.weight torch.Size([15360, 1792]) False 1964 model.gen_vision_tower.vision_tower.model.blocks.28.mlp.fc1.bias torch.Size([15360]) False 1965 model.gen_vision_tower.vision_tower.model.blocks.28.mlp.fc2.weight torch.Size([1792, 15360]) False 1966 model.gen_vision_tower.vision_tower.model.blocks.28.mlp.fc2.bias torch.Size([1792]) False 1967 model.gen_vision_tower.vision_tower.model.blocks.29.norm1.weight torch.Size([1792]) False 1968 model.gen_vision_tower.vision_tower.model.blocks.29.norm1.bias torch.Size([1792]) False 1969 model.gen_vision_tower.vision_tower.model.blocks.29.attn.qkv.weight torch.Size([5376, 1792]) False 1970 model.gen_vision_tower.vision_tower.model.blocks.29.attn.qkv.bias torch.Size([5376]) False 1971 model.gen_vision_tower.vision_tower.model.blocks.29.attn.proj.weight torch.Size([1792, 1792]) False 1972 model.gen_vision_tower.vision_tower.model.blocks.29.attn.proj.bias torch.Size([1792]) False 1973 model.gen_vision_tower.vision_tower.model.blocks.29.norm2.weight torch.Size([1792]) False 1974 model.gen_vision_tower.vision_tower.model.blocks.29.norm2.bias torch.Size([1792]) False 1975 model.gen_vision_tower.vision_tower.model.blocks.29.mlp.fc1.weight torch.Size([15360, 1792]) False 1976 model.gen_vision_tower.vision_tower.model.blocks.29.mlp.fc1.bias torch.Size([15360]) False 1977 model.gen_vision_tower.vision_tower.model.blocks.29.mlp.fc2.weight torch.Size([1792, 15360]) False 1978 model.gen_vision_tower.vision_tower.model.blocks.29.mlp.fc2.bias torch.Size([1792]) False 1979 model.gen_vision_tower.vision_tower.model.blocks.30.norm1.weight torch.Size([1792]) False 1980 model.gen_vision_tower.vision_tower.model.blocks.30.norm1.bias torch.Size([1792]) False 1981 model.gen_vision_tower.vision_tower.model.blocks.30.attn.qkv.weight torch.Size([5376, 1792]) False 1982 model.gen_vision_tower.vision_tower.model.blocks.30.attn.qkv.bias torch.Size([5376]) False 1983 model.gen_vision_tower.vision_tower.model.blocks.30.attn.proj.weight torch.Size([1792, 1792]) False 1984 model.gen_vision_tower.vision_tower.model.blocks.30.attn.proj.bias torch.Size([1792]) False 1985 model.gen_vision_tower.vision_tower.model.blocks.30.norm2.weight torch.Size([1792]) False 1986 model.gen_vision_tower.vision_tower.model.blocks.30.norm2.bias torch.Size([1792]) False 1987 model.gen_vision_tower.vision_tower.model.blocks.30.mlp.fc1.weight torch.Size([15360, 1792]) False 1988 model.gen_vision_tower.vision_tower.model.blocks.30.mlp.fc1.bias torch.Size([15360]) False 1989 model.gen_vision_tower.vision_tower.model.blocks.30.mlp.fc2.weight torch.Size([1792, 15360]) False 1990 model.gen_vision_tower.vision_tower.model.blocks.30.mlp.fc2.bias torch.Size([1792]) False 1991 model.gen_vision_tower.vision_tower.model.blocks.31.norm1.weight torch.Size([1792]) False 1992 model.gen_vision_tower.vision_tower.model.blocks.31.norm1.bias torch.Size([1792]) False 1993 model.gen_vision_tower.vision_tower.model.blocks.31.attn.qkv.weight torch.Size([5376, 1792]) False 1994 model.gen_vision_tower.vision_tower.model.blocks.31.attn.qkv.bias torch.Size([5376]) False 1995 model.gen_vision_tower.vision_tower.model.blocks.31.attn.proj.weight torch.Size([1792, 1792]) False 1996 model.gen_vision_tower.vision_tower.model.blocks.31.attn.proj.bias torch.Size([1792]) False 1997 model.gen_vision_tower.vision_tower.model.blocks.31.norm2.weight torch.Size([1792]) False 1998 model.gen_vision_tower.vision_tower.model.blocks.31.norm2.bias torch.Size([1792]) False 1999 model.gen_vision_tower.vision_tower.model.blocks.31.mlp.fc1.weight torch.Size([15360, 1792]) False 2000 model.gen_vision_tower.vision_tower.model.blocks.31.mlp.fc1.bias torch.Size([15360]) False 2001 model.gen_vision_tower.vision_tower.model.blocks.31.mlp.fc2.weight torch.Size([1792, 15360]) False 2002 model.gen_vision_tower.vision_tower.model.blocks.31.mlp.fc2.bias torch.Size([1792]) False 2003 model.gen_vision_tower.vision_tower.model.blocks.32.norm1.weight torch.Size([1792]) False 2004 model.gen_vision_tower.vision_tower.model.blocks.32.norm1.bias torch.Size([1792]) False 2005 model.gen_vision_tower.vision_tower.model.blocks.32.attn.qkv.weight torch.Size([5376, 1792]) False 2006 model.gen_vision_tower.vision_tower.model.blocks.32.attn.qkv.bias torch.Size([5376]) False 2007 model.gen_vision_tower.vision_tower.model.blocks.32.attn.proj.weight torch.Size([1792, 1792]) False 2008 model.gen_vision_tower.vision_tower.model.blocks.32.attn.proj.bias torch.Size([1792]) False 2009 model.gen_vision_tower.vision_tower.model.blocks.32.norm2.weight torch.Size([1792]) False 2010 model.gen_vision_tower.vision_tower.model.blocks.32.norm2.bias torch.Size([1792]) False 2011 model.gen_vision_tower.vision_tower.model.blocks.32.mlp.fc1.weight torch.Size([15360, 1792]) False 2012 model.gen_vision_tower.vision_tower.model.blocks.32.mlp.fc1.bias torch.Size([15360]) False 2013 model.gen_vision_tower.vision_tower.model.blocks.32.mlp.fc2.weight torch.Size([1792, 15360]) False 2014 model.gen_vision_tower.vision_tower.model.blocks.32.mlp.fc2.bias torch.Size([1792]) False 2015 model.gen_vision_tower.vision_tower.model.blocks.33.norm1.weight torch.Size([1792]) False 2016 model.gen_vision_tower.vision_tower.model.blocks.33.norm1.bias torch.Size([1792]) False 2017 model.gen_vision_tower.vision_tower.model.blocks.33.attn.qkv.weight torch.Size([5376, 1792]) False 2018 model.gen_vision_tower.vision_tower.model.blocks.33.attn.qkv.bias torch.Size([5376]) False 2019 model.gen_vision_tower.vision_tower.model.blocks.33.attn.proj.weight torch.Size([1792, 1792]) False 2020 model.gen_vision_tower.vision_tower.model.blocks.33.attn.proj.bias torch.Size([1792]) False 2021 model.gen_vision_tower.vision_tower.model.blocks.33.norm2.weight torch.Size([1792]) False 2022 model.gen_vision_tower.vision_tower.model.blocks.33.norm2.bias torch.Size([1792]) False 2023 model.gen_vision_tower.vision_tower.model.blocks.33.mlp.fc1.weight torch.Size([15360, 1792]) False 2024 model.gen_vision_tower.vision_tower.model.blocks.33.mlp.fc1.bias torch.Size([15360]) False 2025 model.gen_vision_tower.vision_tower.model.blocks.33.mlp.fc2.weight torch.Size([1792, 15360]) False 2026 model.gen_vision_tower.vision_tower.model.blocks.33.mlp.fc2.bias torch.Size([1792]) False 2027 model.gen_vision_tower.vision_tower.model.blocks.34.norm1.weight torch.Size([1792]) False 2028 model.gen_vision_tower.vision_tower.model.blocks.34.norm1.bias torch.Size([1792]) False 2029 model.gen_vision_tower.vision_tower.model.blocks.34.attn.qkv.weight torch.Size([5376, 1792]) False 2030 model.gen_vision_tower.vision_tower.model.blocks.34.attn.qkv.bias torch.Size([5376]) False 2031 model.gen_vision_tower.vision_tower.model.blocks.34.attn.proj.weight torch.Size([1792, 1792]) False 2032 model.gen_vision_tower.vision_tower.model.blocks.34.attn.proj.bias torch.Size([1792]) False 2033 model.gen_vision_tower.vision_tower.model.blocks.34.norm2.weight torch.Size([1792]) False 2034 model.gen_vision_tower.vision_tower.model.blocks.34.norm2.bias torch.Size([1792]) False 2035 model.gen_vision_tower.vision_tower.model.blocks.34.mlp.fc1.weight torch.Size([15360, 1792]) False 2036 model.gen_vision_tower.vision_tower.model.blocks.34.mlp.fc1.bias torch.Size([15360]) False 2037 model.gen_vision_tower.vision_tower.model.blocks.34.mlp.fc2.weight torch.Size([1792, 15360]) False 2038 model.gen_vision_tower.vision_tower.model.blocks.34.mlp.fc2.bias torch.Size([1792]) False 2039 model.gen_vision_tower.vision_tower.model.blocks.35.norm1.weight torch.Size([1792]) False 2040 model.gen_vision_tower.vision_tower.model.blocks.35.norm1.bias torch.Size([1792]) False 2041 model.gen_vision_tower.vision_tower.model.blocks.35.attn.qkv.weight torch.Size([5376, 1792]) False 2042 model.gen_vision_tower.vision_tower.model.blocks.35.attn.qkv.bias torch.Size([5376]) False 2043 model.gen_vision_tower.vision_tower.model.blocks.35.attn.proj.weight torch.Size([1792, 1792]) False 2044 model.gen_vision_tower.vision_tower.model.blocks.35.attn.proj.bias torch.Size([1792]) False 2045 model.gen_vision_tower.vision_tower.model.blocks.35.norm2.weight torch.Size([1792]) False 2046 model.gen_vision_tower.vision_tower.model.blocks.35.norm2.bias torch.Size([1792]) False 2047 model.gen_vision_tower.vision_tower.model.blocks.35.mlp.fc1.weight torch.Size([15360, 1792]) False 2048 model.gen_vision_tower.vision_tower.model.blocks.35.mlp.fc1.bias torch.Size([15360]) False 2049 model.gen_vision_tower.vision_tower.model.blocks.35.mlp.fc2.weight torch.Size([1792, 15360]) False 2050 model.gen_vision_tower.vision_tower.model.blocks.35.mlp.fc2.bias torch.Size([1792]) False 2051 model.gen_vision_tower.vision_tower.model.blocks.36.norm1.weight torch.Size([1792]) False 2052 model.gen_vision_tower.vision_tower.model.blocks.36.norm1.bias torch.Size([1792]) False 2053 model.gen_vision_tower.vision_tower.model.blocks.36.attn.qkv.weight torch.Size([5376, 1792]) False 2054 model.gen_vision_tower.vision_tower.model.blocks.36.attn.qkv.bias torch.Size([5376]) False 2055 model.gen_vision_tower.vision_tower.model.blocks.36.attn.proj.weight torch.Size([1792, 1792]) False 2056 model.gen_vision_tower.vision_tower.model.blocks.36.attn.proj.bias torch.Size([1792]) False 2057 model.gen_vision_tower.vision_tower.model.blocks.36.norm2.weight torch.Size([1792]) False 2058 model.gen_vision_tower.vision_tower.model.blocks.36.norm2.bias torch.Size([1792]) False 2059 model.gen_vision_tower.vision_tower.model.blocks.36.mlp.fc1.weight torch.Size([15360, 1792]) False 2060 model.gen_vision_tower.vision_tower.model.blocks.36.mlp.fc1.bias torch.Size([15360]) False 2061 model.gen_vision_tower.vision_tower.model.blocks.36.mlp.fc2.weight torch.Size([1792, 15360]) False 2062 model.gen_vision_tower.vision_tower.model.blocks.36.mlp.fc2.bias torch.Size([1792]) False 2063 model.gen_vision_tower.vision_tower.model.blocks.37.norm1.weight torch.Size([1792]) False 2064 model.gen_vision_tower.vision_tower.model.blocks.37.norm1.bias torch.Size([1792]) False 2065 model.gen_vision_tower.vision_tower.model.blocks.37.attn.qkv.weight torch.Size([5376, 1792]) False 2066 model.gen_vision_tower.vision_tower.model.blocks.37.attn.qkv.bias torch.Size([5376]) False 2067 model.gen_vision_tower.vision_tower.model.blocks.37.attn.proj.weight torch.Size([1792, 1792]) False 2068 model.gen_vision_tower.vision_tower.model.blocks.37.attn.proj.bias torch.Size([1792]) False 2069 model.gen_vision_tower.vision_tower.model.blocks.37.norm2.weight torch.Size([1792]) False 2070 model.gen_vision_tower.vision_tower.model.blocks.37.norm2.bias torch.Size([1792]) False 2071 model.gen_vision_tower.vision_tower.model.blocks.37.mlp.fc1.weight torch.Size([15360, 1792]) False 2072 model.gen_vision_tower.vision_tower.model.blocks.37.mlp.fc1.bias torch.Size([15360]) False 2073 model.gen_vision_tower.vision_tower.model.blocks.37.mlp.fc2.weight torch.Size([1792, 15360]) False 2074 model.gen_vision_tower.vision_tower.model.blocks.37.mlp.fc2.bias torch.Size([1792]) False 2075 model.gen_vision_tower.vision_tower.model.blocks.38.norm1.weight torch.Size([1792]) False 2076 model.gen_vision_tower.vision_tower.model.blocks.38.norm1.bias torch.Size([1792]) False 2077 model.gen_vision_tower.vision_tower.model.blocks.38.attn.qkv.weight torch.Size([5376, 1792]) False 2078 model.gen_vision_tower.vision_tower.model.blocks.38.attn.qkv.bias torch.Size([5376]) False 2079 model.gen_vision_tower.vision_tower.model.blocks.38.attn.proj.weight torch.Size([1792, 1792]) False 2080 model.gen_vision_tower.vision_tower.model.blocks.38.attn.proj.bias torch.Size([1792]) False 2081 model.gen_vision_tower.vision_tower.model.blocks.38.norm2.weight torch.Size([1792]) False 2082 model.gen_vision_tower.vision_tower.model.blocks.38.norm2.bias torch.Size([1792]) False 2083 model.gen_vision_tower.vision_tower.model.blocks.38.mlp.fc1.weight torch.Size([15360, 1792]) False 2084 model.gen_vision_tower.vision_tower.model.blocks.38.mlp.fc1.bias torch.Size([15360]) False 2085 model.gen_vision_tower.vision_tower.model.blocks.38.mlp.fc2.weight torch.Size([1792, 15360]) False 2086 model.gen_vision_tower.vision_tower.model.blocks.38.mlp.fc2.bias torch.Size([1792]) False 2087 model.gen_vision_tower.vision_tower.model.blocks.39.norm1.weight torch.Size([1792]) False 2088 model.gen_vision_tower.vision_tower.model.blocks.39.norm1.bias torch.Size([1792]) False 2089 model.gen_vision_tower.vision_tower.model.blocks.39.attn.qkv.weight torch.Size([5376, 1792]) False 2090 model.gen_vision_tower.vision_tower.model.blocks.39.attn.qkv.bias torch.Size([5376]) False 2091 model.gen_vision_tower.vision_tower.model.blocks.39.attn.proj.weight torch.Size([1792, 1792]) False 2092 model.gen_vision_tower.vision_tower.model.blocks.39.attn.proj.bias torch.Size([1792]) False 2093 model.gen_vision_tower.vision_tower.model.blocks.39.norm2.weight torch.Size([1792]) False 2094 model.gen_vision_tower.vision_tower.model.blocks.39.norm2.bias torch.Size([1792]) False 2095 model.gen_vision_tower.vision_tower.model.blocks.39.mlp.fc1.weight torch.Size([15360, 1792]) False 2096 model.gen_vision_tower.vision_tower.model.blocks.39.mlp.fc1.bias torch.Size([15360]) False 2097 model.gen_vision_tower.vision_tower.model.blocks.39.mlp.fc2.weight torch.Size([1792, 15360]) False 2098 model.gen_vision_tower.vision_tower.model.blocks.39.mlp.fc2.bias torch.Size([1792]) False 2099 model.gen_vision_tower.vision_tower.model.blocks.40.norm1.weight torch.Size([1792]) False 2100 model.gen_vision_tower.vision_tower.model.blocks.40.norm1.bias torch.Size([1792]) False 2101 model.gen_vision_tower.vision_tower.model.blocks.40.attn.qkv.weight torch.Size([5376, 1792]) False 2102 model.gen_vision_tower.vision_tower.model.blocks.40.attn.qkv.bias torch.Size([5376]) False 2103 model.gen_vision_tower.vision_tower.model.blocks.40.attn.proj.weight torch.Size([1792, 1792]) False 2104 model.gen_vision_tower.vision_tower.model.blocks.40.attn.proj.bias torch.Size([1792]) False 2105 model.gen_vision_tower.vision_tower.model.blocks.40.norm2.weight torch.Size([1792]) False 2106 model.gen_vision_tower.vision_tower.model.blocks.40.norm2.bias torch.Size([1792]) False 2107 model.gen_vision_tower.vision_tower.model.blocks.40.mlp.fc1.weight torch.Size([15360, 1792]) False 2108 model.gen_vision_tower.vision_tower.model.blocks.40.mlp.fc1.bias torch.Size([15360]) False 2109 model.gen_vision_tower.vision_tower.model.blocks.40.mlp.fc2.weight torch.Size([1792, 15360]) False 2110 model.gen_vision_tower.vision_tower.model.blocks.40.mlp.fc2.bias torch.Size([1792]) False 2111 model.gen_vision_tower.vision_tower.model.blocks.41.norm1.weight torch.Size([1792]) False 2112 model.gen_vision_tower.vision_tower.model.blocks.41.norm1.bias torch.Size([1792]) False 2113 model.gen_vision_tower.vision_tower.model.blocks.41.attn.qkv.weight torch.Size([5376, 1792]) False 2114 model.gen_vision_tower.vision_tower.model.blocks.41.attn.qkv.bias torch.Size([5376]) False 2115 model.gen_vision_tower.vision_tower.model.blocks.41.attn.proj.weight torch.Size([1792, 1792]) False 2116 model.gen_vision_tower.vision_tower.model.blocks.41.attn.proj.bias torch.Size([1792]) False 2117 model.gen_vision_tower.vision_tower.model.blocks.41.norm2.weight torch.Size([1792]) False 2118 model.gen_vision_tower.vision_tower.model.blocks.41.norm2.bias torch.Size([1792]) False 2119 model.gen_vision_tower.vision_tower.model.blocks.41.mlp.fc1.weight torch.Size([15360, 1792]) False 2120 model.gen_vision_tower.vision_tower.model.blocks.41.mlp.fc1.bias torch.Size([15360]) False 2121 model.gen_vision_tower.vision_tower.model.blocks.41.mlp.fc2.weight torch.Size([1792, 15360]) False 2122 model.gen_vision_tower.vision_tower.model.blocks.41.mlp.fc2.bias torch.Size([1792]) False 2123 model.gen_vision_tower.vision_tower.model.blocks.42.norm1.weight torch.Size([1792]) False 2124 model.gen_vision_tower.vision_tower.model.blocks.42.norm1.bias torch.Size([1792]) False 2125 model.gen_vision_tower.vision_tower.model.blocks.42.attn.qkv.weight torch.Size([5376, 1792]) False 2126 model.gen_vision_tower.vision_tower.model.blocks.42.attn.qkv.bias torch.Size([5376]) False 2127 model.gen_vision_tower.vision_tower.model.blocks.42.attn.proj.weight torch.Size([1792, 1792]) False 2128 model.gen_vision_tower.vision_tower.model.blocks.42.attn.proj.bias torch.Size([1792]) False 2129 model.gen_vision_tower.vision_tower.model.blocks.42.norm2.weight torch.Size([1792]) False 2130 model.gen_vision_tower.vision_tower.model.blocks.42.norm2.bias torch.Size([1792]) False 2131 model.gen_vision_tower.vision_tower.model.blocks.42.mlp.fc1.weight torch.Size([15360, 1792]) False 2132 model.gen_vision_tower.vision_tower.model.blocks.42.mlp.fc1.bias torch.Size([15360]) False 2133 model.gen_vision_tower.vision_tower.model.blocks.42.mlp.fc2.weight torch.Size([1792, 15360]) False 2134 model.gen_vision_tower.vision_tower.model.blocks.42.mlp.fc2.bias torch.Size([1792]) False 2135 model.gen_vision_tower.vision_tower.model.blocks.43.norm1.weight torch.Size([1792]) False 2136 model.gen_vision_tower.vision_tower.model.blocks.43.norm1.bias torch.Size([1792]) False 2137 model.gen_vision_tower.vision_tower.model.blocks.43.attn.qkv.weight torch.Size([5376, 1792]) False 2138 model.gen_vision_tower.vision_tower.model.blocks.43.attn.qkv.bias torch.Size([5376]) False 2139 model.gen_vision_tower.vision_tower.model.blocks.43.attn.proj.weight torch.Size([1792, 1792]) False 2140 model.gen_vision_tower.vision_tower.model.blocks.43.attn.proj.bias torch.Size([1792]) False 2141 model.gen_vision_tower.vision_tower.model.blocks.43.norm2.weight torch.Size([1792]) False 2142 model.gen_vision_tower.vision_tower.model.blocks.43.norm2.bias torch.Size([1792]) False 2143 model.gen_vision_tower.vision_tower.model.blocks.43.mlp.fc1.weight torch.Size([15360, 1792]) False 2144 model.gen_vision_tower.vision_tower.model.blocks.43.mlp.fc1.bias torch.Size([15360]) False 2145 model.gen_vision_tower.vision_tower.model.blocks.43.mlp.fc2.weight torch.Size([1792, 15360]) False 2146 model.gen_vision_tower.vision_tower.model.blocks.43.mlp.fc2.bias torch.Size([1792]) False 2147 model.gen_vision_tower.vision_tower.model.blocks.44.norm1.weight torch.Size([1792]) False 2148 model.gen_vision_tower.vision_tower.model.blocks.44.norm1.bias torch.Size([1792]) False 2149 model.gen_vision_tower.vision_tower.model.blocks.44.attn.qkv.weight torch.Size([5376, 1792]) False 2150 model.gen_vision_tower.vision_tower.model.blocks.44.attn.qkv.bias torch.Size([5376]) False 2151 model.gen_vision_tower.vision_tower.model.blocks.44.attn.proj.weight torch.Size([1792, 1792]) False 2152 model.gen_vision_tower.vision_tower.model.blocks.44.attn.proj.bias torch.Size([1792]) False 2153 model.gen_vision_tower.vision_tower.model.blocks.44.norm2.weight torch.Size([1792]) False 2154 model.gen_vision_tower.vision_tower.model.blocks.44.norm2.bias torch.Size([1792]) False 2155 model.gen_vision_tower.vision_tower.model.blocks.44.mlp.fc1.weight torch.Size([15360, 1792]) False 2156 model.gen_vision_tower.vision_tower.model.blocks.44.mlp.fc1.bias torch.Size([15360]) False 2157 model.gen_vision_tower.vision_tower.model.blocks.44.mlp.fc2.weight torch.Size([1792, 15360]) False 2158 model.gen_vision_tower.vision_tower.model.blocks.44.mlp.fc2.bias torch.Size([1792]) False 2159 model.gen_vision_tower.vision_tower.model.blocks.45.norm1.weight torch.Size([1792]) False 2160 model.gen_vision_tower.vision_tower.model.blocks.45.norm1.bias torch.Size([1792]) False 2161 model.gen_vision_tower.vision_tower.model.blocks.45.attn.qkv.weight torch.Size([5376, 1792]) False 2162 model.gen_vision_tower.vision_tower.model.blocks.45.attn.qkv.bias torch.Size([5376]) False 2163 model.gen_vision_tower.vision_tower.model.blocks.45.attn.proj.weight torch.Size([1792, 1792]) False 2164 model.gen_vision_tower.vision_tower.model.blocks.45.attn.proj.bias torch.Size([1792]) False 2165 model.gen_vision_tower.vision_tower.model.blocks.45.norm2.weight torch.Size([1792]) False 2166 model.gen_vision_tower.vision_tower.model.blocks.45.norm2.bias torch.Size([1792]) False 2167 model.gen_vision_tower.vision_tower.model.blocks.45.mlp.fc1.weight torch.Size([15360, 1792]) False 2168 model.gen_vision_tower.vision_tower.model.blocks.45.mlp.fc1.bias torch.Size([15360]) False 2169 model.gen_vision_tower.vision_tower.model.blocks.45.mlp.fc2.weight torch.Size([1792, 15360]) False 2170 model.gen_vision_tower.vision_tower.model.blocks.45.mlp.fc2.bias torch.Size([1792]) False 2171 model.gen_vision_tower.vision_tower.model.blocks.46.norm1.weight torch.Size([1792]) False 2172 model.gen_vision_tower.vision_tower.model.blocks.46.norm1.bias torch.Size([1792]) False 2173 model.gen_vision_tower.vision_tower.model.blocks.46.attn.qkv.weight torch.Size([5376, 1792]) False 2174 model.gen_vision_tower.vision_tower.model.blocks.46.attn.qkv.bias torch.Size([5376]) False 2175 model.gen_vision_tower.vision_tower.model.blocks.46.attn.proj.weight torch.Size([1792, 1792]) False 2176 model.gen_vision_tower.vision_tower.model.blocks.46.attn.proj.bias torch.Size([1792]) False 2177 model.gen_vision_tower.vision_tower.model.blocks.46.norm2.weight torch.Size([1792]) False 2178 model.gen_vision_tower.vision_tower.model.blocks.46.norm2.bias torch.Size([1792]) False 2179 model.gen_vision_tower.vision_tower.model.blocks.46.mlp.fc1.weight torch.Size([15360, 1792]) False 2180 model.gen_vision_tower.vision_tower.model.blocks.46.mlp.fc1.bias torch.Size([15360]) False 2181 model.gen_vision_tower.vision_tower.model.blocks.46.mlp.fc2.weight torch.Size([1792, 15360]) False 2182 model.gen_vision_tower.vision_tower.model.blocks.46.mlp.fc2.bias torch.Size([1792]) False 2183 model.gen_vision_tower.vision_tower.model.blocks.47.norm1.weight torch.Size([1792]) False 2184 model.gen_vision_tower.vision_tower.model.blocks.47.norm1.bias torch.Size([1792]) False 2185 model.gen_vision_tower.vision_tower.model.blocks.47.attn.qkv.weight torch.Size([5376, 1792]) False 2186 model.gen_vision_tower.vision_tower.model.blocks.47.attn.qkv.bias torch.Size([5376]) False 2187 model.gen_vision_tower.vision_tower.model.blocks.47.attn.proj.weight torch.Size([1792, 1792]) False 2188 model.gen_vision_tower.vision_tower.model.blocks.47.attn.proj.bias torch.Size([1792]) False 2189 model.gen_vision_tower.vision_tower.model.blocks.47.norm2.weight torch.Size([1792]) False 2190 model.gen_vision_tower.vision_tower.model.blocks.47.norm2.bias torch.Size([1792]) False 2191 model.gen_vision_tower.vision_tower.model.blocks.47.mlp.fc1.weight torch.Size([15360, 1792]) False 2192 model.gen_vision_tower.vision_tower.model.blocks.47.mlp.fc1.bias torch.Size([15360]) False 2193 model.gen_vision_tower.vision_tower.model.blocks.47.mlp.fc2.weight torch.Size([1792, 15360]) False 2194 model.gen_vision_tower.vision_tower.model.blocks.47.mlp.fc2.bias torch.Size([1792]) False 2195 model.gen_vision_tower.vision_tower.model.blocks.48.norm1.weight torch.Size([1792]) False 2196 model.gen_vision_tower.vision_tower.model.blocks.48.norm1.bias torch.Size([1792]) False 2197 model.gen_vision_tower.vision_tower.model.blocks.48.attn.qkv.weight torch.Size([5376, 1792]) False 2198 model.gen_vision_tower.vision_tower.model.blocks.48.attn.qkv.bias torch.Size([5376]) False 2199 model.gen_vision_tower.vision_tower.model.blocks.48.attn.proj.weight torch.Size([1792, 1792]) False 2200 model.gen_vision_tower.vision_tower.model.blocks.48.attn.proj.bias torch.Size([1792]) False 2201 model.gen_vision_tower.vision_tower.model.blocks.48.norm2.weight torch.Size([1792]) False 2202 model.gen_vision_tower.vision_tower.model.blocks.48.norm2.bias torch.Size([1792]) False 2203 model.gen_vision_tower.vision_tower.model.blocks.48.mlp.fc1.weight torch.Size([15360, 1792]) False 2204 model.gen_vision_tower.vision_tower.model.blocks.48.mlp.fc1.bias torch.Size([15360]) False 2205 model.gen_vision_tower.vision_tower.model.blocks.48.mlp.fc2.weight torch.Size([1792, 15360]) False 2206 model.gen_vision_tower.vision_tower.model.blocks.48.mlp.fc2.bias torch.Size([1792]) False 2207 model.gen_vision_tower.vision_tower.model.blocks.49.norm1.weight torch.Size([1792]) False 2208 model.gen_vision_tower.vision_tower.model.blocks.49.norm1.bias torch.Size([1792]) False 2209 model.gen_vision_tower.vision_tower.model.blocks.49.attn.qkv.weight torch.Size([5376, 1792]) False 2210 model.gen_vision_tower.vision_tower.model.blocks.49.attn.qkv.bias torch.Size([5376]) False 2211 model.gen_vision_tower.vision_tower.model.blocks.49.attn.proj.weight torch.Size([1792, 1792]) False 2212 model.gen_vision_tower.vision_tower.model.blocks.49.attn.proj.bias torch.Size([1792]) False 2213 model.gen_vision_tower.vision_tower.model.blocks.49.norm2.weight torch.Size([1792]) False 2214 model.gen_vision_tower.vision_tower.model.blocks.49.norm2.bias torch.Size([1792]) False 2215 model.gen_vision_tower.vision_tower.model.blocks.49.mlp.fc1.weight torch.Size([15360, 1792]) False 2216 model.gen_vision_tower.vision_tower.model.blocks.49.mlp.fc1.bias torch.Size([15360]) False 2217 model.gen_vision_tower.vision_tower.model.blocks.49.mlp.fc2.weight torch.Size([1792, 15360]) False 2218 model.gen_vision_tower.vision_tower.model.blocks.49.mlp.fc2.bias torch.Size([1792]) False 2219 model.gen_vision_tower.vision_tower.model.blocks.50.norm1.weight torch.Size([1792]) False 2220 model.gen_vision_tower.vision_tower.model.blocks.50.norm1.bias torch.Size([1792]) False 2221 model.gen_vision_tower.vision_tower.model.blocks.50.attn.qkv.weight torch.Size([5376, 1792]) False 2222 model.gen_vision_tower.vision_tower.model.blocks.50.attn.qkv.bias torch.Size([5376]) False 2223 model.gen_vision_tower.vision_tower.model.blocks.50.attn.proj.weight torch.Size([1792, 1792]) False 2224 model.gen_vision_tower.vision_tower.model.blocks.50.attn.proj.bias torch.Size([1792]) False 2225 model.gen_vision_tower.vision_tower.model.blocks.50.norm2.weight torch.Size([1792]) False 2226 model.gen_vision_tower.vision_tower.model.blocks.50.norm2.bias torch.Size([1792]) False 2227 model.gen_vision_tower.vision_tower.model.blocks.50.mlp.fc1.weight torch.Size([15360, 1792]) False 2228 model.gen_vision_tower.vision_tower.model.blocks.50.mlp.fc1.bias torch.Size([15360]) False 2229 model.gen_vision_tower.vision_tower.model.blocks.50.mlp.fc2.weight torch.Size([1792, 15360]) False 2230 model.gen_vision_tower.vision_tower.model.blocks.50.mlp.fc2.bias torch.Size([1792]) False 2231 model.gen_vision_tower.vision_tower.model.blocks.51.norm1.weight torch.Size([1792]) False 2232 model.gen_vision_tower.vision_tower.model.blocks.51.norm1.bias torch.Size([1792]) False 2233 model.gen_vision_tower.vision_tower.model.blocks.51.attn.qkv.weight torch.Size([5376, 1792]) False 2234 model.gen_vision_tower.vision_tower.model.blocks.51.attn.qkv.bias torch.Size([5376]) False 2235 model.gen_vision_tower.vision_tower.model.blocks.51.attn.proj.weight torch.Size([1792, 1792]) False 2236 model.gen_vision_tower.vision_tower.model.blocks.51.attn.proj.bias torch.Size([1792]) False 2237 model.gen_vision_tower.vision_tower.model.blocks.51.norm2.weight torch.Size([1792]) False 2238 model.gen_vision_tower.vision_tower.model.blocks.51.norm2.bias torch.Size([1792]) False 2239 model.gen_vision_tower.vision_tower.model.blocks.51.mlp.fc1.weight torch.Size([15360, 1792]) False 2240 model.gen_vision_tower.vision_tower.model.blocks.51.mlp.fc1.bias torch.Size([15360]) False 2241 model.gen_vision_tower.vision_tower.model.blocks.51.mlp.fc2.weight torch.Size([1792, 15360]) False 2242 model.gen_vision_tower.vision_tower.model.blocks.51.mlp.fc2.bias torch.Size([1792]) False 2243 model.gen_vision_tower.vision_tower.model.blocks.52.norm1.weight torch.Size([1792]) False 2244 model.gen_vision_tower.vision_tower.model.blocks.52.norm1.bias torch.Size([1792]) False 2245 model.gen_vision_tower.vision_tower.model.blocks.52.attn.qkv.weight torch.Size([5376, 1792]) False 2246 model.gen_vision_tower.vision_tower.model.blocks.52.attn.qkv.bias torch.Size([5376]) False 2247 model.gen_vision_tower.vision_tower.model.blocks.52.attn.proj.weight torch.Size([1792, 1792]) False 2248 model.gen_vision_tower.vision_tower.model.blocks.52.attn.proj.bias torch.Size([1792]) False 2249 model.gen_vision_tower.vision_tower.model.blocks.52.norm2.weight torch.Size([1792]) False 2250 model.gen_vision_tower.vision_tower.model.blocks.52.norm2.bias torch.Size([1792]) False 2251 model.gen_vision_tower.vision_tower.model.blocks.52.mlp.fc1.weight torch.Size([15360, 1792]) False 2252 model.gen_vision_tower.vision_tower.model.blocks.52.mlp.fc1.bias torch.Size([15360]) False 2253 model.gen_vision_tower.vision_tower.model.blocks.52.mlp.fc2.weight torch.Size([1792, 15360]) False 2254 model.gen_vision_tower.vision_tower.model.blocks.52.mlp.fc2.bias torch.Size([1792]) False 2255 model.gen_vision_tower.vision_tower.model.blocks.53.norm1.weight torch.Size([1792]) False 2256 model.gen_vision_tower.vision_tower.model.blocks.53.norm1.bias torch.Size([1792]) False 2257 model.gen_vision_tower.vision_tower.model.blocks.53.attn.qkv.weight torch.Size([5376, 1792]) False 2258 model.gen_vision_tower.vision_tower.model.blocks.53.attn.qkv.bias torch.Size([5376]) False 2259 model.gen_vision_tower.vision_tower.model.blocks.53.attn.proj.weight torch.Size([1792, 1792]) False 2260 model.gen_vision_tower.vision_tower.model.blocks.53.attn.proj.bias torch.Size([1792]) False 2261 model.gen_vision_tower.vision_tower.model.blocks.53.norm2.weight torch.Size([1792]) False 2262 model.gen_vision_tower.vision_tower.model.blocks.53.norm2.bias torch.Size([1792]) False 2263 model.gen_vision_tower.vision_tower.model.blocks.53.mlp.fc1.weight torch.Size([15360, 1792]) False 2264 model.gen_vision_tower.vision_tower.model.blocks.53.mlp.fc1.bias torch.Size([15360]) False 2265 model.gen_vision_tower.vision_tower.model.blocks.53.mlp.fc2.weight torch.Size([1792, 15360]) False 2266 model.gen_vision_tower.vision_tower.model.blocks.53.mlp.fc2.bias torch.Size([1792]) False 2267 model.gen_vision_tower.vision_tower.model.blocks.54.norm1.weight torch.Size([1792]) False 2268 model.gen_vision_tower.vision_tower.model.blocks.54.norm1.bias torch.Size([1792]) False 2269 model.gen_vision_tower.vision_tower.model.blocks.54.attn.qkv.weight torch.Size([5376, 1792]) False 2270 model.gen_vision_tower.vision_tower.model.blocks.54.attn.qkv.bias torch.Size([5376]) False 2271 model.gen_vision_tower.vision_tower.model.blocks.54.attn.proj.weight torch.Size([1792, 1792]) False 2272 model.gen_vision_tower.vision_tower.model.blocks.54.attn.proj.bias torch.Size([1792]) False 2273 model.gen_vision_tower.vision_tower.model.blocks.54.norm2.weight torch.Size([1792]) False 2274 model.gen_vision_tower.vision_tower.model.blocks.54.norm2.bias torch.Size([1792]) False 2275 model.gen_vision_tower.vision_tower.model.blocks.54.mlp.fc1.weight torch.Size([15360, 1792]) False 2276 model.gen_vision_tower.vision_tower.model.blocks.54.mlp.fc1.bias torch.Size([15360]) False 2277 model.gen_vision_tower.vision_tower.model.blocks.54.mlp.fc2.weight torch.Size([1792, 15360]) False 2278 model.gen_vision_tower.vision_tower.model.blocks.54.mlp.fc2.bias torch.Size([1792]) False 2279 model.gen_vision_tower.vision_tower.model.blocks.55.norm1.weight torch.Size([1792]) False 2280 model.gen_vision_tower.vision_tower.model.blocks.55.norm1.bias torch.Size([1792]) False 2281 model.gen_vision_tower.vision_tower.model.blocks.55.attn.qkv.weight torch.Size([5376, 1792]) False 2282 model.gen_vision_tower.vision_tower.model.blocks.55.attn.qkv.bias torch.Size([5376]) False 2283 model.gen_vision_tower.vision_tower.model.blocks.55.attn.proj.weight torch.Size([1792, 1792]) False 2284 model.gen_vision_tower.vision_tower.model.blocks.55.attn.proj.bias torch.Size([1792]) False 2285 model.gen_vision_tower.vision_tower.model.blocks.55.norm2.weight torch.Size([1792]) False 2286 model.gen_vision_tower.vision_tower.model.blocks.55.norm2.bias torch.Size([1792]) False 2287 model.gen_vision_tower.vision_tower.model.blocks.55.mlp.fc1.weight torch.Size([15360, 1792]) False 2288 model.gen_vision_tower.vision_tower.model.blocks.55.mlp.fc1.bias torch.Size([15360]) False 2289 model.gen_vision_tower.vision_tower.model.blocks.55.mlp.fc2.weight torch.Size([1792, 15360]) False 2290 model.gen_vision_tower.vision_tower.model.blocks.55.mlp.fc2.bias torch.Size([1792]) False 2291 model.gen_vision_tower.vision_tower.model.blocks.56.norm1.weight torch.Size([1792]) False 2292 model.gen_vision_tower.vision_tower.model.blocks.56.norm1.bias torch.Size([1792]) False 2293 model.gen_vision_tower.vision_tower.model.blocks.56.attn.qkv.weight torch.Size([5376, 1792]) False 2294 model.gen_vision_tower.vision_tower.model.blocks.56.attn.qkv.bias torch.Size([5376]) False 2295 model.gen_vision_tower.vision_tower.model.blocks.56.attn.proj.weight torch.Size([1792, 1792]) False 2296 model.gen_vision_tower.vision_tower.model.blocks.56.attn.proj.bias torch.Size([1792]) False 2297 model.gen_vision_tower.vision_tower.model.blocks.56.norm2.weight torch.Size([1792]) False 2298 model.gen_vision_tower.vision_tower.model.blocks.56.norm2.bias torch.Size([1792]) False 2299 model.gen_vision_tower.vision_tower.model.blocks.56.mlp.fc1.weight torch.Size([15360, 1792]) False 2300 model.gen_vision_tower.vision_tower.model.blocks.56.mlp.fc1.bias torch.Size([15360]) False 2301 model.gen_vision_tower.vision_tower.model.blocks.56.mlp.fc2.weight torch.Size([1792, 15360]) False 2302 model.gen_vision_tower.vision_tower.model.blocks.56.mlp.fc2.bias torch.Size([1792]) False 2303 model.gen_vision_tower.vision_tower.model.blocks.57.norm1.weight torch.Size([1792]) False 2304 model.gen_vision_tower.vision_tower.model.blocks.57.norm1.bias torch.Size([1792]) False 2305 model.gen_vision_tower.vision_tower.model.blocks.57.attn.qkv.weight torch.Size([5376, 1792]) False 2306 model.gen_vision_tower.vision_tower.model.blocks.57.attn.qkv.bias torch.Size([5376]) False 2307 model.gen_vision_tower.vision_tower.model.blocks.57.attn.proj.weight torch.Size([1792, 1792]) False 2308 model.gen_vision_tower.vision_tower.model.blocks.57.attn.proj.bias torch.Size([1792]) False 2309 model.gen_vision_tower.vision_tower.model.blocks.57.norm2.weight torch.Size([1792]) False 2310 model.gen_vision_tower.vision_tower.model.blocks.57.norm2.bias torch.Size([1792]) False 2311 model.gen_vision_tower.vision_tower.model.blocks.57.mlp.fc1.weight torch.Size([15360, 1792]) False 2312 model.gen_vision_tower.vision_tower.model.blocks.57.mlp.fc1.bias torch.Size([15360]) False 2313 model.gen_vision_tower.vision_tower.model.blocks.57.mlp.fc2.weight torch.Size([1792, 15360]) False 2314 model.gen_vision_tower.vision_tower.model.blocks.57.mlp.fc2.bias torch.Size([1792]) False 2315 model.gen_vision_tower.vision_tower.model.blocks.58.norm1.weight torch.Size([1792]) False 2316 model.gen_vision_tower.vision_tower.model.blocks.58.norm1.bias torch.Size([1792]) False 2317 model.gen_vision_tower.vision_tower.model.blocks.58.attn.qkv.weight torch.Size([5376, 1792]) False 2318 model.gen_vision_tower.vision_tower.model.blocks.58.attn.qkv.bias torch.Size([5376]) False 2319 model.gen_vision_tower.vision_tower.model.blocks.58.attn.proj.weight torch.Size([1792, 1792]) False 2320 model.gen_vision_tower.vision_tower.model.blocks.58.attn.proj.bias torch.Size([1792]) False 2321 model.gen_vision_tower.vision_tower.model.blocks.58.norm2.weight torch.Size([1792]) False 2322 model.gen_vision_tower.vision_tower.model.blocks.58.norm2.bias torch.Size([1792]) False 2323 model.gen_vision_tower.vision_tower.model.blocks.58.mlp.fc1.weight torch.Size([15360, 1792]) False 2324 model.gen_vision_tower.vision_tower.model.blocks.58.mlp.fc1.bias torch.Size([15360]) False 2325 model.gen_vision_tower.vision_tower.model.blocks.58.mlp.fc2.weight torch.Size([1792, 15360]) False 2326 model.gen_vision_tower.vision_tower.model.blocks.58.mlp.fc2.bias torch.Size([1792]) False 2327 model.gen_vision_tower.vision_tower.model.blocks.59.norm1.weight torch.Size([1792]) False 2328 model.gen_vision_tower.vision_tower.model.blocks.59.norm1.bias torch.Size([1792]) False 2329 model.gen_vision_tower.vision_tower.model.blocks.59.attn.qkv.weight torch.Size([5376, 1792]) False 2330 model.gen_vision_tower.vision_tower.model.blocks.59.attn.qkv.bias torch.Size([5376]) False 2331 model.gen_vision_tower.vision_tower.model.blocks.59.attn.proj.weight torch.Size([1792, 1792]) False 2332 model.gen_vision_tower.vision_tower.model.blocks.59.attn.proj.bias torch.Size([1792]) False 2333 model.gen_vision_tower.vision_tower.model.blocks.59.norm2.weight torch.Size([1792]) False 2334 model.gen_vision_tower.vision_tower.model.blocks.59.norm2.bias torch.Size([1792]) False 2335 model.gen_vision_tower.vision_tower.model.blocks.59.mlp.fc1.weight torch.Size([15360, 1792]) False 2336 model.gen_vision_tower.vision_tower.model.blocks.59.mlp.fc1.bias torch.Size([15360]) False 2337 model.gen_vision_tower.vision_tower.model.blocks.59.mlp.fc2.weight torch.Size([1792, 15360]) False 2338 model.gen_vision_tower.vision_tower.model.blocks.59.mlp.fc2.bias torch.Size([1792]) False 2339 model.gen_vision_tower.vision_tower.model.blocks.60.norm1.weight torch.Size([1792]) False 2340 model.gen_vision_tower.vision_tower.model.blocks.60.norm1.bias torch.Size([1792]) False 2341 model.gen_vision_tower.vision_tower.model.blocks.60.attn.qkv.weight torch.Size([5376, 1792]) False 2342 model.gen_vision_tower.vision_tower.model.blocks.60.attn.qkv.bias torch.Size([5376]) False 2343 model.gen_vision_tower.vision_tower.model.blocks.60.attn.proj.weight torch.Size([1792, 1792]) False 2344 model.gen_vision_tower.vision_tower.model.blocks.60.attn.proj.bias torch.Size([1792]) False 2345 model.gen_vision_tower.vision_tower.model.blocks.60.norm2.weight torch.Size([1792]) False 2346 model.gen_vision_tower.vision_tower.model.blocks.60.norm2.bias torch.Size([1792]) False 2347 model.gen_vision_tower.vision_tower.model.blocks.60.mlp.fc1.weight torch.Size([15360, 1792]) False 2348 model.gen_vision_tower.vision_tower.model.blocks.60.mlp.fc1.bias torch.Size([15360]) False 2349 model.gen_vision_tower.vision_tower.model.blocks.60.mlp.fc2.weight torch.Size([1792, 15360]) False 2350 model.gen_vision_tower.vision_tower.model.blocks.60.mlp.fc2.bias torch.Size([1792]) False 2351 model.gen_vision_tower.vision_tower.model.blocks.61.norm1.weight torch.Size([1792]) False 2352 model.gen_vision_tower.vision_tower.model.blocks.61.norm1.bias torch.Size([1792]) False 2353 model.gen_vision_tower.vision_tower.model.blocks.61.attn.qkv.weight torch.Size([5376, 1792]) False 2354 model.gen_vision_tower.vision_tower.model.blocks.61.attn.qkv.bias torch.Size([5376]) False 2355 model.gen_vision_tower.vision_tower.model.blocks.61.attn.proj.weight torch.Size([1792, 1792]) False 2356 model.gen_vision_tower.vision_tower.model.blocks.61.attn.proj.bias torch.Size([1792]) False 2357 model.gen_vision_tower.vision_tower.model.blocks.61.norm2.weight torch.Size([1792]) False 2358 model.gen_vision_tower.vision_tower.model.blocks.61.norm2.bias torch.Size([1792]) False 2359 model.gen_vision_tower.vision_tower.model.blocks.61.mlp.fc1.weight torch.Size([15360, 1792]) False 2360 model.gen_vision_tower.vision_tower.model.blocks.61.mlp.fc1.bias torch.Size([15360]) False 2361 model.gen_vision_tower.vision_tower.model.blocks.61.mlp.fc2.weight torch.Size([1792, 15360]) False 2362 model.gen_vision_tower.vision_tower.model.blocks.61.mlp.fc2.bias torch.Size([1792]) False 2363 model.gen_vision_tower.vision_tower.model.blocks.62.norm1.weight torch.Size([1792]) False 2364 model.gen_vision_tower.vision_tower.model.blocks.62.norm1.bias torch.Size([1792]) False 2365 model.gen_vision_tower.vision_tower.model.blocks.62.attn.qkv.weight torch.Size([5376, 1792]) False 2366 model.gen_vision_tower.vision_tower.model.blocks.62.attn.qkv.bias torch.Size([5376]) False 2367 model.gen_vision_tower.vision_tower.model.blocks.62.attn.proj.weight torch.Size([1792, 1792]) False 2368 model.gen_vision_tower.vision_tower.model.blocks.62.attn.proj.bias torch.Size([1792]) False 2369 model.gen_vision_tower.vision_tower.model.blocks.62.norm2.weight torch.Size([1792]) False 2370 model.gen_vision_tower.vision_tower.model.blocks.62.norm2.bias torch.Size([1792]) False 2371 model.gen_vision_tower.vision_tower.model.blocks.62.mlp.fc1.weight torch.Size([15360, 1792]) False 2372 model.gen_vision_tower.vision_tower.model.blocks.62.mlp.fc1.bias torch.Size([15360]) False 2373 model.gen_vision_tower.vision_tower.model.blocks.62.mlp.fc2.weight torch.Size([1792, 15360]) False 2374 model.gen_vision_tower.vision_tower.model.blocks.62.mlp.fc2.bias torch.Size([1792]) False 2375 model.gen_vision_tower.vision_tower.model.blocks.63.norm1.weight torch.Size([1792]) False 2376 model.gen_vision_tower.vision_tower.model.blocks.63.norm1.bias torch.Size([1792]) False 2377 model.gen_vision_tower.vision_tower.model.blocks.63.attn.qkv.weight torch.Size([5376, 1792]) False 2378 model.gen_vision_tower.vision_tower.model.blocks.63.attn.qkv.bias torch.Size([5376]) False 2379 model.gen_vision_tower.vision_tower.model.blocks.63.attn.proj.weight torch.Size([1792, 1792]) False 2380 model.gen_vision_tower.vision_tower.model.blocks.63.attn.proj.bias torch.Size([1792]) False 2381 model.gen_vision_tower.vision_tower.model.blocks.63.norm2.weight torch.Size([1792]) False 2382 model.gen_vision_tower.vision_tower.model.blocks.63.norm2.bias torch.Size([1792]) False 2383 model.gen_vision_tower.vision_tower.model.blocks.63.mlp.fc1.weight torch.Size([15360, 1792]) False 2384 model.gen_vision_tower.vision_tower.model.blocks.63.mlp.fc1.bias torch.Size([15360]) False 2385 model.gen_vision_tower.vision_tower.model.blocks.63.mlp.fc2.weight torch.Size([1792, 15360]) False 2386 model.gen_vision_tower.vision_tower.model.blocks.63.mlp.fc2.bias torch.Size([1792]) False 2387 lm_head.weight torch.Size([151668, 3584]) False [2025-02-19 20:18:40,482] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 128 [2025-02-19 20:18:40,634] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 128 [2025-02-19 20:18:41,406] [INFO] [logging.py:128:log_dist] [Rank 0] DeepSpeed info: version=0.16.3, git-hash=unknown, git-branch=unknown [2025-02-19 20:18:41,406] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 128 [2025-02-19 20:18:41,424] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 128 Totoal number of training instance: 194420624 [2025-02-19 20:18:46,387] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 128 [2025-02-19 20:20:41,336] [INFO] [logging.py:128:log_dist] [Rank 0] DeepSpeed Flops Profiler Enabled: False [2025-02-19 20:20:41,342] [INFO] [logging.py:128:log_dist] [Rank 0] Using client Optimizer as basic optimizer [2025-02-19 20:20:41,342] [INFO] [logging.py:128:log_dist] [Rank 0] Removing param_group that has no 'params' in the basic Optimizer [2025-02-19 20:20:41,421] [INFO] [logging.py:128:log_dist] [Rank 0] DeepSpeed Basic Optimizer = AdamW [2025-02-19 20:20:41,422] [INFO] [utils.py:59:is_zero_supported_optimizer] Checking ZeRO support for optimizer=AdamW type= [2025-02-19 20:20:41,423] [INFO] [logging.py:128:log_dist] [Rank 0] Creating torch.bfloat16 ZeRO stage 1 optimizer [2025-02-19 20:20:41,424] [INFO] [stage_1_and_2.py:149:__init__] Reduce bucket size 500000000 [2025-02-19 20:20:41,424] [INFO] [stage_1_and_2.py:150:__init__] Allgather bucket size 500000000 [2025-02-19 20:20:41,424] [INFO] [stage_1_and_2.py:151:__init__] CPU Offload: False [2025-02-19 20:20:41,424] [INFO] [stage_1_and_2.py:152:__init__] Round robin gradient partitioning: False [2025-02-19 20:20:44,293] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:20:44,325] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:20:44,335] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:20:44,339] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:20:44,356] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:20:44,367] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:20:44,372] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:20:44,394] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:20:44,411] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:20:44,467] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:20:44,475] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:20:44,503] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:20:44,516] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:20:44,523] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:20:44,525] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:20:46,235] [INFO] [utils.py:781:see_memory_usage] Before initializing optimizer states [2025-02-19 20:20:46,239] [INFO] [utils.py:782:see_memory_usage] MA 26.33 GB Max_MA 26.33 GB CA 27.03 GB Max_CA 27 GB [2025-02-19 20:20:46,239] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory: used = 340.01 GB, percent = 17.0% [2025-02-19 20:20:47,640] [INFO] [utils.py:781:see_memory_usage] After initializing optimizer states [2025-02-19 20:20:47,641] [INFO] [utils.py:782:see_memory_usage] MA 26.33 GB Max_MA 26.37 GB CA 27.07 GB Max_CA 27 GB [2025-02-19 20:20:47,641] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory: used = 339.08 GB, percent = 17.0% [2025-02-19 20:20:47,641] [INFO] [stage_1_and_2.py:545:__init__] optimizer state initialized [2025-02-19 20:20:49,010] [INFO] [utils.py:781:see_memory_usage] After initializing ZeRO optimizer [2025-02-19 20:20:49,011] [INFO] [utils.py:782:see_memory_usage] MA 26.33 GB Max_MA 26.33 GB CA 27.07 GB Max_CA 27 GB [2025-02-19 20:20:49,011] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory: used = 342.08 GB, percent = 17.1% [2025-02-19 20:20:49,013] [INFO] [logging.py:128:log_dist] [Rank 0] DeepSpeed Final Optimizer = DeepSpeedZeroOptimizer [2025-02-19 20:20:49,013] [INFO] [logging.py:128:log_dist] [Rank 0] DeepSpeed using configured LR scheduler = None [2025-02-19 20:20:49,013] [INFO] [logging.py:128:log_dist] [Rank 0] DeepSpeed LR Scheduler = None [2025-02-19 20:20:49,014] [INFO] [logging.py:128:log_dist] [Rank 0] step=0, skipped=0, lr=[0.0, 0.0], mom=[(0.9, 0.999), (0.9, 0.999)] [2025-02-19 20:20:49,020] [INFO] [config.py:999:print] DeepSpeedEngine configuration: [2025-02-19 20:20:49,020] [INFO] [config.py:1003:print] activation_checkpointing_config { "partition_activations": false, "contiguous_memory_optimization": false, "cpu_checkpointing": false, "number_checkpoints": null, "synchronize_checkpoint_boundary": false, "profile": false } [2025-02-19 20:20:49,020] [INFO] [config.py:1003:print] aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True, 'use_gds': False} [2025-02-19 20:20:49,020] [INFO] [config.py:1003:print] amp_enabled .................. False [2025-02-19 20:20:49,020] [INFO] [config.py:1003:print] amp_params ................... False [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] autotuning_config ............ { "enabled": false, "start_step": null, "end_step": null, "metric_path": null, "arg_mappings": null, "metric": "throughput", "model_info": null, "results_dir": "autotuning_results", "exps_dir": "autotuning_exps", "overwrite": true, "fast": true, "start_profile_step": 3, "end_profile_step": 5, "tuner_type": "gridsearch", "tuner_early_stopping": 5, "tuner_num_trials": 50, "model_info_path": null, "mp_size": 1, "max_train_batch_size": null, "min_train_batch_size": 1, "max_train_micro_batch_size_per_gpu": 1.024000e+03, "min_train_micro_batch_size_per_gpu": 1, "num_tuning_micro_batch_sizes": 3 } [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] bfloat16_enabled ............. True [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] bfloat16_immediate_grad_update False [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] checkpoint_parallel_write_pipeline False [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] checkpoint_tag_validation_enabled True [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] checkpoint_tag_validation_fail False [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] comms_config ................. [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] communication_data_type ...... None [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] compression_config ........... {'weight_quantization': {'shared_parameters': {'enabled': False, 'quantizer_kernel': False, 'schedule_offset': 0, 'quantize_groups': 1, 'quantize_verbose': False, 'quantization_type': 'symmetric', 'quantize_weight_in_forward': False, 'rounding': 'nearest', 'fp16_mixed_quantize': False, 'quantize_change_ratio': 0.001}, 'different_groups': {}}, 'activation_quantization': {'shared_parameters': {'enabled': False, 'quantization_type': 'symmetric', 'range_calibration': 'dynamic', 'schedule_offset': 1000}, 'different_groups': {}}, 'sparse_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'row_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'head_pruning': {'shared_parameters': {'enabled': False, 'method': 'topk', 'schedule_offset': 1000}, 'different_groups': {}}, 'channel_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'layer_reduction': {'enabled': False}} [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] curriculum_enabled_legacy .... False [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] curriculum_params_legacy ..... False [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] data_efficiency_config ....... {'enabled': False, 'seed': 1234, 'data_sampling': {'enabled': False, 'num_epochs': 1000, 'num_workers': 0, 'curriculum_learning': {'enabled': False}}, 'data_routing': {'enabled': False, 'random_ltd': {'enabled': False, 'layer_token_lr_schedule': {'enabled': False}}}} [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] data_efficiency_enabled ...... False [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] dataloader_drop_last ......... False [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] disable_allgather ............ False [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] dump_state ................... False [2025-02-19 20:20:49,021] [INFO] [config.py:1003:print] dynamic_loss_scale_args ...... None [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] eigenvalue_enabled ........... False [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] eigenvalue_gas_boundary_resolution 1 [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] eigenvalue_layer_name ........ bert.encoder.layer [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] eigenvalue_layer_num ......... 0 [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] eigenvalue_max_iter .......... 100 [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] eigenvalue_stability ......... 1e-06 [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] eigenvalue_tol ............... 0.01 [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] eigenvalue_verbose ........... False [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] elasticity_enabled ........... False [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] flops_profiler_config ........ { "enabled": false, "recompute_fwd_factor": 0.0, "profile_step": 1, "module_depth": -1, "top_modules": 1, "detailed": true, "output_file": null } [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] fp16_auto_cast ............... None [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] fp16_enabled ................. False [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] fp16_master_weights_and_gradients False [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] global_rank .................. 0 [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] grad_accum_dtype ............. None [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] gradient_accumulation_steps .. 1 [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] gradient_clipping ............ 1.0 [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] gradient_predivide_factor .... 1.0 [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] graph_harvesting ............. False [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] hybrid_engine ................ enabled=False max_out_tokens=512 inference_tp_size=1 release_inference_cache=False pin_parameters=True tp_gather_partition_size=8 [2025-02-19 20:20:49,022] [INFO] [config.py:1003:print] initial_dynamic_scale ........ 1 [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] load_universal_checkpoint .... False [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] loss_scale ................... 1.0 [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] memory_breakdown ............. False [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] mics_hierarchial_params_gather False [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] mics_shard_size .............. -1 [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] monitor_config ............... tensorboard=TensorBoardConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') comet=CometConfig(enabled=False, samples_log_interval=100, project=None, workspace=None, api_key=None, experiment_name=None, experiment_key=None, online=None, mode=None) wandb=WandbConfig(enabled=False, group=None, team=None, project='deepspeed') csv_monitor=CSVConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] nebula_config ................ { "enabled": false, "persistent_storage_path": null, "persistent_time_interval": 100, "num_of_version_in_retention": 2, "enable_nebula_load": true, "load_path": null } [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] optimizer_legacy_fusion ...... False [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] optimizer_name ............... None [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] optimizer_params ............. None [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0, 'pipe_partitioned': True, 'grad_partitioned': True} [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] pld_enabled .................. False [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] pld_params ................... False [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] prescale_gradients ........... False [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] scheduler_name ............... None [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] scheduler_params ............. None [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] seq_parallel_communication_data_type torch.float32 [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] sparse_attention ............. None [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] sparse_gradients_enabled ..... False [2025-02-19 20:20:49,023] [INFO] [config.py:1003:print] steps_per_print .............. inf [2025-02-19 20:20:49,024] [INFO] [config.py:1003:print] timers_config ................ enabled=True synchronized=True [2025-02-19 20:20:49,024] [INFO] [config.py:1003:print] train_batch_size ............. 1024 [2025-02-19 20:20:49,024] [INFO] [config.py:1003:print] train_micro_batch_size_per_gpu 8 [2025-02-19 20:20:49,024] [INFO] [config.py:1003:print] use_data_before_expert_parallel_ False [2025-02-19 20:20:49,024] [INFO] [config.py:1003:print] use_node_local_storage ....... False [2025-02-19 20:20:49,024] [INFO] [config.py:1003:print] wall_clock_breakdown ......... False [2025-02-19 20:20:49,024] [INFO] [config.py:1003:print] weight_quantization_config ... None [2025-02-19 20:20:49,024] [INFO] [config.py:1003:print] world_size ................... 128 [2025-02-19 20:20:49,024] [INFO] [config.py:1003:print] zero_allow_untested_optimizer True [2025-02-19 20:20:49,024] [INFO] [config.py:1003:print] zero_config .................. stage=1 contiguous_gradients=True reduce_scatter=True reduce_bucket_size=500000000 use_multi_rank_bucket_allreduce=True allgather_partitions=True allgather_bucket_size=500000000 overlap_comm=False load_from_fp32_weights=True elastic_checkpoint=False offload_param=None offload_optimizer=None sub_group_size=1000000000 cpu_offload_param=None cpu_offload_use_pin_memory=None cpu_offload=None prefetch_bucket_size=50000000 param_persistence_threshold=100000 model_persistence_threshold=9223372036854775807 max_live_parameters=1000000000 max_reuse_distance=1000000000 gather_16bit_weights_on_model_save=False module_granularity_threshold=0 use_all_reduce_for_fetch_params=False stage3_gather_fp16_weights_on_model_save=False ignore_unused_parameters=True legacy_stage1=False round_robin_gradients=False zero_hpz_partition_size=1 zero_quantized_weights=False zero_quantized_nontrainable_weights=False zero_quantized_gradients=False zeropp_loco_param=None mics_shard_size=-1 mics_hierarchical_params_gather=False memory_efficient_linear=True pipeline_loading_checkpoint=False override_module_apply=True [2025-02-19 20:20:49,024] [INFO] [config.py:1003:print] zero_enabled ................. True [2025-02-19 20:20:49,024] [INFO] [config.py:1003:print] zero_force_ds_cpu_optimizer .. True [2025-02-19 20:20:49,024] [INFO] [config.py:1003:print] zero_optimization_stage ...... 1 [2025-02-19 20:20:49,024] [INFO] [config.py:989:print_user_config] json = { "fp16": { "enabled": false, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "bf16": { "enabled": true }, "zero_optimization": { "stage": 1 }, "gradient_accumulation_steps": 1, "gradient_clipping": 1.0, "steps_per_print": inf, "train_batch_size": 1.024000e+03, "train_micro_batch_size_per_gpu": 8, "wall_clock_breakdown": false, "zero_allow_untested_optimizer": true } [2025-02-19 20:20:49,030] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:25,791] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:25,997] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:26,000] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:26,009] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:26,026] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:26,737] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:26,931] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:26,953] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:27,004] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:27,082] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:27,641] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:27,692] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:27,831] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:27,881] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:28,917] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:28,984] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:29,965] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:30,041] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:30,168] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:30,181] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:30,210] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:30,833] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:31,054] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:31,123] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:31,131] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:31,338] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:31,654] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:31,828] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:32,059] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:32,111] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:33,092] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:33,160] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt... [2025-02-19 20:21:43,064] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:43,991] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:44,092] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:44,116] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:44,338] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:44,349] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:44,712] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:44,724] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:45,088] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:45,298] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:45,581] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:45,713] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:45,956] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:45,972] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:47,099] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:47,437] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/mp_rank_00_model_states.pt. [2025-02-19 20:21:49,501] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_48_mp_rank_00_optim_states.pt... [2025-02-19 20:21:49,822] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_48_mp_rank_00_optim_states.pt. [2025-02-19 20:21:49,822] [INFO] [engine.py:3112:_get_all_zero_checkpoint_state_dicts] successfully read 128 ZeRO state_dicts for rank 48 [2025-02-19 20:21:49,842] [INFO] [engine.py:3062:_load_zero_checkpoint] loading 128 zero partition checkpoints for rank 48 [2025-02-19 20:21:50,814] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_16_mp_rank_00_optim_states.pt... [2025-02-19 20:21:51,095] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_16_mp_rank_00_optim_states.pt. [2025-02-19 20:21:51,096] [INFO] [engine.py:3112:_get_all_zero_checkpoint_state_dicts] successfully read 128 ZeRO state_dicts for rank 16 [2025-02-19 20:21:51,110] [INFO] [engine.py:3062:_load_zero_checkpoint] loading 128 zero partition checkpoints for rank 16 [2025-02-19 20:21:51,116] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_64_mp_rank_00_optim_states.pt... [2025-02-19 20:21:51,401] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_64_mp_rank_00_optim_states.pt. [2025-02-19 20:21:51,402] [INFO] [engine.py:3112:_get_all_zero_checkpoint_state_dicts] successfully read 128 ZeRO state_dicts for rank 64 [2025-02-19 20:21:51,416] [INFO] [engine.py:3062:_load_zero_checkpoint] loading 128 zero partition checkpoints for rank 64 [2025-02-19 20:21:51,913] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_32_mp_rank_00_optim_states.pt... [2025-02-19 20:21:52,214] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_32_mp_rank_00_optim_states.pt. [2025-02-19 20:21:52,214] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_80_mp_rank_00_optim_states.pt... [2025-02-19 20:21:52,215] [INFO] [engine.py:3112:_get_all_zero_checkpoint_state_dicts] successfully read 128 ZeRO state_dicts for rank 32 [2025-02-19 20:21:52,233] [INFO] [engine.py:3062:_load_zero_checkpoint] loading 128 zero partition checkpoints for rank 32 [2025-02-19 20:21:52,356] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_112_mp_rank_00_optim_states.pt... [2025-02-19 20:21:52,489] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_80_mp_rank_00_optim_states.pt. [2025-02-19 20:21:52,490] [INFO] [engine.py:3112:_get_all_zero_checkpoint_state_dicts] successfully read 128 ZeRO state_dicts for rank 80 [2025-02-19 20:21:52,505] [INFO] [engine.py:3062:_load_zero_checkpoint] loading 128 zero partition checkpoints for rank 80 [2025-02-19 20:21:52,582] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_104_mp_rank_00_optim_states.pt... [2025-02-19 20:21:52,609] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_88_mp_rank_00_optim_states.pt... [2025-02-19 20:21:52,696] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_112_mp_rank_00_optim_states.pt. [2025-02-19 20:21:52,696] [INFO] [engine.py:3112:_get_all_zero_checkpoint_state_dicts] successfully read 128 ZeRO state_dicts for rank 112 [2025-02-19 20:21:52,711] [INFO] [engine.py:3062:_load_zero_checkpoint] loading 128 zero partition checkpoints for rank 112 [2025-02-19 20:21:52,719] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_96_mp_rank_00_optim_states.pt... [2025-02-19 20:21:52,829] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_72_mp_rank_00_optim_states.pt... [2025-02-19 20:21:52,892] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_88_mp_rank_00_optim_states.pt. [2025-02-19 20:21:52,893] [INFO] [engine.py:3112:_get_all_zero_checkpoint_state_dicts] successfully read 128 ZeRO state_dicts for rank 88 [2025-02-19 20:21:52,910] [INFO] [engine.py:3062:_load_zero_checkpoint] loading 128 zero partition checkpoints for rank 88 [2025-02-19 20:21:52,952] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_120_mp_rank_00_optim_states.pt... [2025-02-19 20:21:52,986] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_104_mp_rank_00_optim_states.pt. [2025-02-19 20:21:52,987] [INFO] [engine.py:3112:_get_all_zero_checkpoint_state_dicts] successfully read 128 ZeRO state_dicts for rank 104 [2025-02-19 20:21:52,987] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_96_mp_rank_00_optim_states.pt. [2025-02-19 20:21:52,987] [INFO] [engine.py:3112:_get_all_zero_checkpoint_state_dicts] successfully read 128 ZeRO state_dicts for rank 96 [2025-02-19 20:21:53,001] [INFO] [engine.py:3062:_load_zero_checkpoint] loading 128 zero partition checkpoints for rank 104 [2025-02-19 20:21:53,002] [INFO] [engine.py:3062:_load_zero_checkpoint] loading 128 zero partition checkpoints for rank 96 [2025-02-19 20:21:53,021] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt... [2025-02-19 20:21:53,102] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_72_mp_rank_00_optim_states.pt. [2025-02-19 20:21:53,103] [INFO] [engine.py:3112:_get_all_zero_checkpoint_state_dicts] successfully read 128 ZeRO state_dicts for rank 72 [2025-02-19 20:21:53,167] [INFO] [engine.py:3062:_load_zero_checkpoint] loading 128 zero partition checkpoints for rank 72 [2025-02-19 20:21:53,187] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_56_mp_rank_00_optim_states.pt... [2025-02-19 20:21:53,238] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_120_mp_rank_00_optim_states.pt. [2025-02-19 20:21:53,238] [INFO] [engine.py:3112:_get_all_zero_checkpoint_state_dicts] successfully read 128 ZeRO state_dicts for rank 120 [2025-02-19 20:21:53,252] [INFO] [engine.py:3062:_load_zero_checkpoint] loading 128 zero partition checkpoints for rank 120 [2025-02-19 20:21:53,291] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt. [2025-02-19 20:21:53,292] [INFO] [engine.py:3112:_get_all_zero_checkpoint_state_dicts] successfully read 128 ZeRO state_dicts for rank 0 [2025-02-19 20:21:53,306] [INFO] [engine.py:3062:_load_zero_checkpoint] loading 128 zero partition checkpoints for rank 0 [2025-02-19 20:21:53,418] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt... [2025-02-19 20:21:53,468] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_56_mp_rank_00_optim_states.pt. [2025-02-19 20:21:53,469] [INFO] [engine.py:3112:_get_all_zero_checkpoint_state_dicts] successfully read 128 ZeRO state_dicts for rank 56 [2025-02-19 20:21:53,483] [INFO] [engine.py:3062:_load_zero_checkpoint] loading 128 zero partition checkpoints for rank 56 [2025-02-19 20:21:53,702] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt. [2025-02-19 20:21:53,702] [INFO] [engine.py:3112:_get_all_zero_checkpoint_state_dicts] successfully read 128 ZeRO state_dicts for rank 8 [2025-02-19 20:21:53,716] [INFO] [engine.py:3062:_load_zero_checkpoint] loading 128 zero partition checkpoints for rank 8 [2025-02-19 20:21:54,682] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_24_mp_rank_00_optim_states.pt... [2025-02-19 20:21:54,944] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_24_mp_rank_00_optim_states.pt. [2025-02-19 20:21:54,944] [INFO] [engine.py:3112:_get_all_zero_checkpoint_state_dicts] successfully read 128 ZeRO state_dicts for rank 24 [2025-02-19 20:21:54,959] [INFO] [engine.py:3062:_load_zero_checkpoint] loading 128 zero partition checkpoints for rank 24 [2025-02-19 20:21:55,296] [INFO] [torch_checkpoint_engine.py:27:load] [Torch] Loading checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_40_mp_rank_00_optim_states.pt... [2025-02-19 20:21:55,561] [INFO] [torch_checkpoint_engine.py:29:load] [Torch] Loaded checkpoint from /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-48000/global_step48000/bf16_zero_pp_rank_40_mp_rank_00_optim_states.pt. [2025-02-19 20:21:55,561] [INFO] [engine.py:3112:_get_all_zero_checkpoint_state_dicts] successfully read 128 ZeRO state_dicts for rank 40 [2025-02-19 20:21:55,576] [INFO] [engine.py:3062:_load_zero_checkpoint] loading 128 zero partition checkpoints for rank 40 img loss 1.3680044412612915 img loss 1.2404017448425293 img loss 1.2393641471862793img loss 1.301283597946167 img loss 1.2384743690490723 img loss 1.2178739309310913 img loss 1.3439037799835205 img loss 1.305206537246704 img loss 1.236692190170288 img loss 1.3357081413269043 img loss 1.2582248449325562 img loss 1.210618019104004 img loss 1.3808735609054565 img loss 1.2805134057998657 img loss 1.253936529159546 img loss 1.2569702863693237 img loss 1.233159065246582 img loss 1.3046584129333496 img loss 1.2339324951171875 img loss 1.344286561012268 img loss 1.2475523948669434 img loss 1.2274329662322998 img loss 1.2435764074325562 img loss 1.3184378147125244 img loss 1.1819591522216797 img loss 1.3080015182495117 img loss 1.2625439167022705 img loss 1.2966400384902954 img loss 1.2925280332565308 img loss 1.3278378248214722 img loss 1.2518746852874756img loss 1.232041835784912 img loss 1.2930094003677368 img loss 1.2583744525909424 img loss 1.2662009000778198 img loss 1.2626662254333496 img loss 1.3433926105499268 img loss 1.223724603652954 img loss 1.2855603694915771 img loss 1.2371259927749634 img loss 1.2654461860656738 img loss 1.328108787536621 img loss 1.3127896785736084 img loss 1.3023027181625366 img loss 1.2385354042053223 img loss 1.3292278051376343 img loss 1.2368764877319336 img loss 1.3016901016235352 img loss 1.3205506801605225 img loss 1.26926589012146 img loss 1.2135761976242065 img loss 1.2335729598999023 img loss 1.275568962097168 img loss 1.2561249732971191 img loss 1.206743597984314 img loss 1.2853931188583374 img loss 1.1924337148666382 img loss 1.2754042148590088 img loss 1.1928937435150146 img loss 1.2858872413635254 img loss 1.2246959209442139 img loss 1.3382678031921387 img loss 1.3138622045516968 img loss 1.2418231964111328 img loss 1.2793757915496826 img loss 1.3143560886383057 img loss 1.2226346731185913 img loss 1.2658575773239136 img loss 1.3279012441635132 img loss 1.2299305200576782 img loss 1.3244578838348389 img loss 1.324755072593689 img loss 1.2664813995361328 img loss 1.2473223209381104 img loss 1.275242805480957 img loss 1.2465417385101318 img loss 1.215636968612671 img loss 1.2083344459533691 img loss 1.3871384859085083 img loss 1.3337904214859009 img loss 1.241544246673584 img loss 1.1777606010437012 img loss 1.2579599618911743 img loss 1.3558146953582764 img loss 1.2437762022018433 img loss 1.2676136493682861 img loss 1.188230037689209 img loss 1.2715301513671875 img loss 1.3392422199249268 img loss 1.2770360708236694 img loss 1.2166842222213745 img loss 1.2352951765060425 img loss 1.2901657819747925 img loss 1.3122066259384155 img loss 1.189530849456787 img loss 1.2036170959472656 img loss 1.1865227222442627 img loss 1.203028917312622 img loss 1.2197332382202148 img loss 1.2677580118179321 img loss 1.2823736667633057 img loss 1.3074215650558472 img loss 1.2324903011322021 img loss 1.3534791469573975 img loss 1.3128999471664429 img loss 1.2957524061203003 img loss 1.2438198328018188 img loss 1.2479543685913086 img loss 1.2614281177520752 img loss 1.3892594575881958 img loss 1.317823886871338 img loss 1.2988409996032715 img loss 1.330584168434143 img loss 1.2143378257751465 img loss 1.319696068763733 img loss 1.2965049743652344 img loss 1.2384179830551147 img loss 1.2920407056808472 img loss 1.2548264265060425 img loss 1.2240415811538696 img loss 1.2475793361663818 img loss 1.2225255966186523 img loss 1.237428903579712 img loss 1.2491352558135986 img loss 1.1917178630828857 img loss 1.22412109375 img loss 1.2153983116149902 img loss 1.1956710815429688 {'loss': 1.268, 'grad_norm': 0.3143707811832428, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2536256313323975 img loss 1.207444667816162 img loss 1.2006926536560059 img loss 1.1372658014297485 img loss 1.17118239402771 img loss 1.2268941402435303 img loss 1.2351363897323608 img loss 1.1680840253829956 img loss 1.173315405845642 img loss 1.170950174331665 img loss 1.1100348234176636 img loss 1.1799436807632446 img loss 1.268094778060913 img loss 1.1935104131698608 img loss 1.220650315284729 img loss 1.2027618885040283 img loss 1.3000649213790894 img loss 1.2433980703353882 img loss 1.4124619960784912 img loss 1.194546103477478 img loss 1.2172257900238037 img loss 1.2654564380645752 img loss 1.218087077140808 img loss 1.2206203937530518 img loss 1.1777918338775635 img loss 1.234167456626892 img loss 1.1921744346618652 img loss 1.183490514755249 img loss 1.2511329650878906 img loss 1.1560734510421753 img loss 1.156461477279663 img loss 1.2178207635879517 img loss 1.2106475830078125 img loss 1.2206511497497559 img loss 1.2267121076583862 img loss 1.2105286121368408 img loss 1.2233225107192993 img loss 1.2605912685394287 img loss 1.2173327207565308 img loss 1.2701542377471924 img loss 1.3006788492202759 img loss 1.20457124710083 img loss 1.241600751876831 img loss 1.22152841091156 img loss 1.3079915046691895 img loss 1.1884849071502686 img loss 1.2579021453857422 img loss 1.2413052320480347 img loss 1.2703819274902344 img loss 1.2017168998718262 img loss 1.2630947828292847 img loss 1.23240327835083 img loss 1.288167953491211 img loss 1.2606757879257202 img loss 1.1855499744415283 img loss 1.2217159271240234 img loss 1.3188278675079346 img loss 1.2505344152450562 img loss 1.2406567335128784 img loss 1.2646878957748413 img loss 1.2309707403182983 img loss 1.2067149877548218 img loss 1.2390742301940918 img loss 1.2341631650924683 img loss 1.2377747297286987 img loss 1.2087799310684204 img loss 1.2141369581222534 img loss 1.1892610788345337 img loss 1.2691606283187866 img loss 1.1228502988815308 img loss 1.2251757383346558 img loss 1.2145880460739136 img loss 1.261892557144165 img loss 1.2189557552337646 img loss 1.2579152584075928 img loss 1.22123122215271 img loss 1.2246958017349243 img loss 1.2664625644683838 img loss 1.1445387601852417 img loss 1.285029649734497 img loss 1.242571473121643 img loss 1.1798406839370728 img loss 1.2469043731689453 img loss 1.1860889196395874 img loss 1.2154250144958496 img loss 1.2330238819122314 img loss 1.2849136590957642 img loss 1.2043577432632446 img loss 1.1764529943466187 img loss 1.3251934051513672 img loss 1.2811322212219238 img loss 1.2979761362075806 img loss 1.3541128635406494 img loss 1.19411039352417 img loss 1.2175495624542236 img loss 1.184468150138855 img loss 1.273716926574707 img loss 1.1797653436660767 img loss 1.3164043426513672 img loss 1.2928004264831543 img loss 1.174800157546997 img loss 1.2825779914855957 img loss 1.2762874364852905 img loss 1.2046618461608887 img loss 1.2572826147079468 img loss 1.1639420986175537 img loss 1.2139137983322144 img loss 1.243773341178894 img loss 1.26283597946167 img loss 1.269150733947754 img loss 1.2893657684326172 img loss 1.309432029724121 img loss 1.1648404598236084 img loss 1.1626230478286743 img loss 1.240118384361267 img loss 1.2519302368164062 img loss 1.2097870111465454 img loss 1.1822195053100586 img loss 1.1997220516204834 img loss 1.1918981075286865 img loss 1.2245506048202515 img loss 1.2829567193984985 img loss 1.2283775806427002 img loss 1.2167842388153076 img loss 1.2890527248382568 img loss 1.2002092599868774 img loss 1.203080415725708 img loss 1.2931034564971924 {'loss': 1.2298, 'grad_norm': 0.3231310546398163, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3020942211151123 img loss 1.2548801898956299 img loss 1.3449375629425049 img loss 1.2740528583526611 img loss 1.2059446573257446 img loss 1.1678121089935303 img loss 1.1981065273284912 img loss 1.1623245477676392 img loss 1.174249529838562 img loss 1.271278738975525 img loss 1.296086072921753 img loss 1.1265017986297607 img loss 1.1355605125427246 img loss 1.2441725730895996 img loss 1.2124452590942383 img loss 1.1450611352920532 img loss 1.116951823234558 img loss 1.2919502258300781 img loss 1.2451566457748413 img loss 1.1603143215179443 img loss 1.2343039512634277 img loss 1.0406978130340576 img loss 1.2083309888839722 img loss 1.1502578258514404 img loss 1.1929842233657837 img loss 1.1518501043319702 img loss 1.1502964496612549 img loss 1.2971519231796265 img loss 1.3001723289489746 img loss 1.2262077331542969 img loss 1.2864859104156494 img loss 1.21030592918396 img loss 1.2318859100341797 img loss 1.3139041662216187 img loss 1.1550569534301758 img loss 1.1386010646820068 img loss 1.1580537557601929 img loss 1.1364781856536865 img loss 1.3015002012252808 img loss 1.2099535465240479 img loss 1.1769828796386719 img loss 1.2050764560699463 img loss 1.152357578277588 img loss 1.190572738647461 img loss 1.1963905096054077 img loss 1.1741749048233032 img loss 1.2482960224151611 img loss 1.2167085409164429 img loss 1.184303641319275 img loss 1.1661279201507568 img loss 1.1532793045043945 img loss 1.1139614582061768 img loss 1.154026746749878 img loss 1.189152479171753 img loss 1.2039070129394531 img loss 1.1313340663909912 img loss 1.2439905405044556 img loss 1.2136898040771484 img loss 1.2514524459838867 img loss 1.1437344551086426 img loss 1.2063286304473877 img loss 1.2439584732055664 img loss 1.2929203510284424 img loss 1.153599739074707 img loss 1.103433609008789 img loss 1.2554810047149658 img loss 1.0913312435150146 img loss 1.190764307975769 img loss 1.1508222818374634 img loss 1.2672021389007568 img loss 1.1998531818389893 img loss 1.287626028060913 img loss 1.1952126026153564 img loss 1.2509527206420898 img loss 1.1633437871932983 img loss 1.2275424003601074 img loss 1.2551006078720093 img loss 1.13425612449646 img loss 1.2723495960235596 img loss 1.159507393836975 img loss 1.2461662292480469 img loss 1.2348663806915283 img loss 1.233398199081421 img loss 1.1317092180252075 img loss 1.148199439048767 img loss 1.2433738708496094 img loss 1.2419458627700806 img loss 1.0712732076644897 img loss 1.1513545513153076 img loss 1.1395004987716675 img loss 1.2481716871261597 img loss 1.1197271347045898 img loss 1.222490668296814 img loss 1.233170986175537 img loss 1.2130093574523926 img loss 1.3164037466049194 img loss 1.2688701152801514 img loss 1.171423316001892 img loss 1.2198505401611328 img loss 1.128977656364441 img loss 1.133103370666504 img loss 1.1946797370910645 img loss 1.1260359287261963 img loss 1.1978117227554321 img loss 1.0941985845565796 img loss 1.213179111480713 img loss 1.1677665710449219 img loss 1.2328341007232666 img loss 1.1893507242202759 img loss 1.2228628396987915 img loss 1.2067152261734009 img loss 1.1007380485534668 img loss 1.245993971824646 img loss 1.1715377569198608 img loss 1.2445931434631348 img loss 1.2592458724975586 img loss 1.161831259727478 img loss 1.2422823905944824 img loss 1.1988024711608887 img loss 1.1162924766540527 img loss 1.3054404258728027 img loss 1.2457821369171143 img loss 1.2654361724853516 img loss 1.20356023311615 img loss 1.2192367315292358 img loss 1.1607884168624878 img loss 1.2920643091201782 img loss 1.1599174737930298 {'loss': 1.2015, 'grad_norm': 0.3218602240085602, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2149183750152588 img loss 1.2138079404830933 img loss 1.1943918466567993 img loss 1.263008713722229 img loss 1.3142298460006714 img loss 1.181593894958496 img loss 1.2393262386322021 img loss 1.3455816507339478 img loss 1.1841602325439453 img loss 1.242551565170288 img loss 1.2625670433044434 img loss 1.2075328826904297 img loss 1.2739388942718506 img loss 1.3137295246124268 img loss 1.3225133419036865 img loss 1.324479579925537 img loss 1.242466926574707 img loss 1.177323818206787 img loss 1.203947901725769 img loss 1.2996841669082642 img loss 1.221152663230896 img loss 1.2231724262237549 img loss 1.298250436782837 img loss 1.2303777933120728 img loss 1.1834197044372559 img loss 1.3259944915771484 img loss 1.2089247703552246 img loss 1.2463066577911377 img loss 1.2538375854492188 img loss 1.2771050930023193 img loss 1.2192013263702393 img loss 1.3106333017349243 img loss 1.2625080347061157 img loss 1.23946213722229 img loss 1.179634690284729 img loss 1.2124230861663818 img loss 1.265803337097168 img loss 1.2184613943099976 img loss 1.219982624053955 img loss 1.31504225730896 img loss 1.3473824262619019 img loss 1.3361672163009644 img loss 1.2274112701416016 img loss 1.2294164896011353 img loss 1.2020784616470337 img loss 1.343612790107727 img loss 1.3346105813980103 img loss 1.214463472366333 img loss 1.2716320753097534 img loss 1.1410188674926758 img loss 1.1994014978408813 img loss 1.2403243780136108 img loss 1.3343247175216675 img loss 1.2827812433242798 img loss 1.3585450649261475 img loss 1.2703819274902344 img loss 1.289286494255066 img loss 1.2699474096298218 img loss 1.2203819751739502 img loss 1.268554449081421 img loss 1.2277495861053467 img loss 1.3344544172286987 img loss 1.2642964124679565 img loss 1.2988224029541016 img loss 1.2524594068527222 img loss 1.1909222602844238 img loss 1.2368216514587402 img loss 1.2848418951034546img loss 1.322580337524414 img loss 1.284075140953064 img loss 1.361971139907837 img loss 1.3008253574371338 img loss 1.2404942512512207 img loss 1.2179718017578125 img loss 1.2450652122497559 img loss 1.2017792463302612 img loss 1.400276780128479 img loss 1.3479492664337158 img loss 1.2813972234725952 img loss 1.2874325513839722 img loss 1.2952584028244019 img loss 1.229246735572815 img loss 1.2937763929367065 img loss 1.2609381675720215 img loss 1.18746817111969 img loss 1.272388219833374 img loss 1.3893579244613647 img loss 1.2988927364349365 img loss 1.33067786693573 img loss 1.2584435939788818 img loss 1.213679313659668 img loss 1.305796504020691 img loss 1.1470476388931274 img loss 1.3364626169204712 img loss 1.2537987232208252 img loss 1.2584128379821777 img loss 1.3382748365402222 img loss 1.2151994705200195 img loss 1.2689098119735718 img loss 1.1871778964996338 img loss 1.2492072582244873 img loss 1.1873148679733276 img loss 1.3501213788986206 img loss 1.2028133869171143 img loss 1.2552082538604736 img loss 1.2185693979263306 img loss 1.2816526889801025 img loss 1.256608009338379 img loss 1.2279831171035767 img loss 1.265514850616455 img loss 1.3212008476257324 img loss 1.1911777257919312 img loss 1.3139747381210327 img loss 1.2419954538345337 img loss 1.2816095352172852 img loss 1.221698522567749 img loss 1.2922102212905884 img loss 1.3034271001815796 img loss 1.2269721031188965 img loss 1.271028995513916 img loss 1.240756869316101 img loss 1.26974618434906 img loss 1.3162174224853516 img loss 1.2620582580566406 img loss 1.224330186843872 img loss 1.202643632888794 img loss 1.2874120473861694 img loss 1.220768928527832 {'loss': 1.2611, 'grad_norm': 0.40730181336402893, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2433743476867676 img loss 1.2929859161376953 img loss 1.2372230291366577 img loss 1.2418079376220703 img loss 1.2339807748794556 img loss 1.2818800210952759 img loss 1.2855644226074219 img loss 1.2152249813079834 img loss 1.2077853679656982 img loss 1.2418755292892456 img loss 1.2966448068618774 img loss 1.3664510250091553 img loss 1.2787985801696777 img loss 1.216288447380066 img loss 1.2081317901611328 img loss 1.2590233087539673 img loss 1.2720146179199219 img loss 1.245031714439392 img loss 1.2358086109161377 img loss 1.404556393623352 img loss 1.2640330791473389 img loss 1.293509840965271 img loss 1.2755424976348877 img loss 1.3545573949813843 img loss 1.1940457820892334 img loss 1.2841802835464478 img loss 1.1752153635025024 img loss 1.2138817310333252 img loss 1.2361515760421753 img loss 1.1300901174545288 img loss 1.3033592700958252 img loss 1.182827353477478 img loss 1.273955225944519 img loss 1.2124249935150146 img loss 1.216788649559021 img loss 1.228122353553772 img loss 1.3094850778579712 img loss 1.1920700073242188 img loss 1.2934973239898682 img loss 1.1990073919296265 img loss 1.4043773412704468 img loss 1.217851996421814 img loss 1.2286171913146973 img loss 1.261838436126709 img loss 1.2062801122665405 img loss 1.2590880393981934 img loss 1.2769190073013306 img loss 1.2623577117919922 img loss 1.2510919570922852 img loss 1.2159963846206665 img loss 1.2478208541870117 img loss 1.2705295085906982 img loss 1.330419898033142 img loss 1.288665533065796 img loss 1.2898586988449097 img loss 1.3169487714767456 img loss 1.3186087608337402 img loss 1.2667986154556274 img loss 1.2392157316207886 img loss 1.2709510326385498 img loss 1.2853882312774658 img loss 1.196272611618042 img loss 1.2098623514175415 img loss 1.230821132659912 img loss 1.2439486980438232 img loss 1.1986711025238037 img loss 1.2274553775787354 img loss 1.33794105052948 img loss 1.3056423664093018 img loss 1.2213819026947021 img loss 1.298194408416748 img loss 1.349281907081604 img loss 1.3154722452163696 img loss 1.2182819843292236 img loss 1.230130910873413 img loss 1.2893720865249634 img loss 1.2028528451919556 img loss 1.264106035232544 img loss 1.199215292930603 img loss 1.2368097305297852 img loss 1.2769705057144165 img loss 1.1847076416015625 img loss 1.2250497341156006 img loss 1.2566699981689453 img loss 1.2799116373062134 img loss 1.244244933128357 img loss 1.2303088903427124 img loss 1.1942837238311768 img loss 1.2759182453155518 img loss 1.222191572189331 img loss 1.23361074924469 img loss 1.2509076595306396 img loss 1.2067909240722656 img loss 1.284837007522583 img loss 1.2477359771728516 img loss 1.2327609062194824 img loss 1.2975406646728516 img loss 1.2886497974395752 img loss 1.2056862115859985 img loss 1.3241322040557861 img loss 1.2642449140548706 img loss 1.2932546138763428 img loss 1.217405080795288 img loss 1.1909717321395874 img loss 1.2635164260864258 img loss 1.2944778203964233 img loss 1.2496838569641113 img loss 1.2569087743759155 img loss 1.2216699123382568 img loss 1.2016417980194092 img loss 1.2374441623687744 img loss 1.3202921152114868 img loss 1.2188732624053955 img loss 1.2021583318710327 img loss 1.1713703870773315 img loss 1.2884854078292847 img loss 1.300220012664795 img loss 1.292358160018921 img loss 1.2372539043426514 img loss 1.1996617317199707 img loss 1.251544713973999 img loss 1.18764066696167 img loss 1.2635143995285034 img loss 1.2832382917404175 img loss 1.2361646890640259 img loss 1.1774038076400757 img loss 1.1457183361053467 img loss 1.2374486923217773 {'loss': 1.252, 'grad_norm': 0.48820891976356506, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1789178848266602 img loss 1.1512348651885986 img loss 1.1897549629211426 img loss 1.2687042951583862 img loss 1.2804632186889648 img loss 1.169689416885376 img loss 1.307586431503296 img loss 1.251555323600769 img loss 1.1434882879257202 img loss 1.1544538736343384 img loss 1.2064987421035767 img loss 1.173530101776123 img loss 1.2534412145614624 img loss 1.1274222135543823 img loss 1.2357791662216187 img loss 1.2932394742965698 img loss 1.1783640384674072 img loss 1.2108097076416016 img loss 1.1888478994369507 img loss 1.1783498525619507 img loss 1.1940944194793701 img loss 1.3379043340682983 img loss 1.1861168146133423 img loss 1.1963918209075928 img loss 1.2588458061218262 img loss 1.2695062160491943img loss 1.3703551292419434 img loss 1.2144312858581543 img loss 1.2088828086853027 img loss 1.2124264240264893 img loss 1.257896065711975 img loss 1.1591143608093262 img loss 1.1736096143722534 img loss 1.2286224365234375 img loss 1.1873111724853516 img loss 1.2138490676879883 img loss 1.2457643747329712 img loss 1.2086389064788818 img loss 1.2186486721038818 img loss 1.1801531314849854 img loss 1.2200982570648193 img loss 1.32479727268219 img loss 1.2029489278793335 img loss 1.1821205615997314 img loss 1.2001092433929443 img loss 1.1474379301071167 img loss 1.226452112197876 img loss 1.1866453886032104 img loss 1.16693913936615 img loss 1.2696508169174194 img loss 1.2265552282333374 img loss 1.1678404808044434 img loss 1.2591440677642822 img loss 1.196398138999939 img loss 1.3947408199310303 img loss 1.1564377546310425 img loss 1.1944365501403809 img loss 1.2089847326278687 img loss 1.2517907619476318 img loss 1.2359294891357422 img loss 1.225836157798767 img loss 1.3164782524108887 img loss 1.2327854633331299 img loss 1.2593868970870972 img loss 1.2860279083251953 img loss 1.2589564323425293 img loss 1.158995509147644 img loss 1.204376459121704 img loss 1.2084232568740845 img loss 1.1771042346954346 img loss 1.177870273590088 img loss 1.2581961154937744 img loss 1.3026862144470215 img loss 1.2796714305877686 img loss 1.1818079948425293 img loss 1.1903414726257324 img loss 1.234768271446228 img loss 1.2155656814575195 img loss 1.2015188932418823 img loss 1.2501194477081299 img loss 1.2575206756591797 img loss 1.2674200534820557 img loss 1.1622527837753296 img loss 1.2912476062774658 img loss 1.1839815378189087 img loss 1.2355698347091675 img loss 1.269589900970459 img loss 1.1765228509902954 img loss 1.1265711784362793 img loss 1.2329416275024414 img loss 1.20988929271698 img loss 1.1970659494400024 img loss 1.2774028778076172 img loss 1.140669822692871 img loss 1.1975687742233276 img loss 1.2601871490478516 img loss 1.2265866994857788 img loss 1.1735981702804565 img loss 1.2170041799545288 img loss 1.1928125619888306 img loss 1.1719807386398315 img loss 1.1941406726837158 img loss 1.154654860496521 img loss 1.2115445137023926 img loss 1.3064517974853516 img loss 1.2009094953536987 img loss 1.2491562366485596 img loss 1.1503701210021973 img loss 1.1418752670288086 img loss 1.2072288990020752 img loss 1.170447826385498 img loss 1.2266881465911865 img loss 1.1977407932281494 img loss 1.2536953687667847 img loss 1.216099500656128 img loss 1.2212704420089722 img loss 1.2931206226348877 img loss 1.2221685647964478 img loss 1.1442573070526123 img loss 1.1473536491394043 img loss 1.2438325881958008 img loss 1.1779091358184814 img loss 1.3414490222930908 img loss 1.2434030771255493 img loss 1.3015083074569702 img loss 1.2271571159362793 img loss 1.1226685047149658 img loss 1.1760315895080566 {'loss': 1.2181, 'grad_norm': 0.2330871820449829, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2331624031066895 img loss 1.2095493078231812 img loss 1.251361608505249 img loss 1.3037810325622559 img loss 1.271695613861084 img loss 1.268004059791565 img loss 1.1848032474517822 img loss 1.2216198444366455 img loss 1.1954700946807861 img loss 1.2347749471664429 img loss 1.1677230596542358 img loss 1.1780619621276855 img loss 1.226963758468628 img loss 1.2029473781585693 img loss 1.2150166034698486 img loss 1.231368899345398 img loss 1.1713078022003174 img loss 1.3395541906356812 img loss 1.315679907798767 img loss 1.234826922416687 img loss 1.2265818119049072 img loss 1.295422911643982 img loss 1.197493314743042 img loss 1.251320481300354 img loss 1.3130955696105957 img loss 1.2718555927276611 img loss 1.2463191747665405 img loss 1.2441071271896362 img loss 1.3238239288330078 img loss 1.234432578086853 img loss 1.1929237842559814 img loss 1.253508448600769 img loss 1.2499080896377563 img loss 1.200571894645691 img loss 1.2781600952148438 img loss 1.2561739683151245 img loss 1.280868411064148 img loss 1.183854579925537 img loss 1.1964441537857056 img loss 1.222776174545288 img loss 1.172403335571289 img loss 1.2239127159118652 img loss 1.2207210063934326 img loss 1.2289748191833496 img loss 1.2031491994857788 img loss 1.2941722869873047 img loss 1.1805428266525269 img loss 1.1540541648864746 img loss 1.224372386932373 img loss 1.314343810081482 img loss 1.2394745349884033 img loss 1.2352625131607056 img loss 1.2586888074874878 img loss 1.23671293258667 img loss 1.2940126657485962 img loss 1.2795966863632202 img loss 1.2614349126815796 img loss 1.220291018486023 img loss 1.282947063446045 img loss 1.1931078433990479 img loss 1.277397871017456 img loss 1.3417277336120605 img loss 1.27690589427948 img loss 1.214787244796753 img loss 1.3562477827072144 img loss 1.3285212516784668 img loss 1.320029854774475 img loss 1.2281525135040283 img loss 1.1696429252624512 img loss 1.2556076049804688 img loss 1.2058438062667847 img loss 1.2265580892562866 img loss 1.2315802574157715 img loss 1.2042564153671265 img loss 1.1966650485992432 img loss 1.193859577178955 img loss 1.1910204887390137 img loss 1.1876901388168335 img loss 1.1441618204116821 img loss 1.1615588665008545 img loss 1.2614917755126953 img loss 1.2350386381149292 img loss 1.205245018005371 img loss 1.2417864799499512 img loss 1.249866008758545 img loss 1.171400547027588 img loss 1.2686008214950562 img loss 1.2019437551498413 img loss 1.1606645584106445 img loss 1.1890318393707275 img loss 1.2366100549697876 img loss 1.24724543094635 img loss 1.2496752738952637 img loss 1.2981458902359009 img loss 1.2716894149780273 img loss 1.2150791883468628 img loss 1.2687108516693115 img loss 1.2328077554702759 img loss 1.209183931350708 img loss 1.1850566864013672 img loss 1.212175965309143 img loss 1.2176051139831543 img loss 1.151050329208374 img loss 1.2203127145767212 img loss 1.2369428873062134 img loss 1.2321016788482666 img loss 1.1513084173202515img loss 1.2041634321212769 img loss 1.2314373254776 img loss 1.2809746265411377 img loss 1.2650539875030518 img loss 1.1861743927001953 img loss 1.2120717763900757 img loss 1.1935404539108276 img loss 1.2365033626556396 img loss 1.2387357950210571 img loss 1.242856740951538 img loss 1.2611477375030518 img loss 1.2542760372161865 img loss 1.2591462135314941 img loss 1.250788688659668 img loss 1.2429386377334595 img loss 1.2624043226242065 img loss 1.1964548826217651 img loss 1.1693073511123657 img loss 1.2079962491989136 img loss 1.2644827365875244 img loss 1.216388463973999 {'loss': 1.2336, 'grad_norm': 0.3460822105407715, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3003194332122803 img loss 1.2458561658859253 img loss 1.2313467264175415 img loss 1.2073612213134766 img loss 1.283386468887329 img loss 1.2114312648773193 img loss 1.2088980674743652 img loss 1.2849929332733154 img loss 1.3092777729034424 img loss 1.2236870527267456 img loss 1.3988722562789917 img loss 1.323017954826355 img loss 1.3056674003601074 img loss 1.2352824211120605 img loss 1.2506526708602905 img loss 1.2035728693008423 img loss 1.1873935461044312 img loss 1.2300153970718384 img loss 1.1775367259979248 img loss 1.316126823425293 img loss 1.2864725589752197 img loss 1.3144822120666504 img loss 1.2466676235198975 img loss 1.4362280368804932 img loss 1.2633832693099976 img loss 1.2333086729049683 img loss 1.3292012214660645 img loss 1.275809645652771 img loss 1.3461155891418457 img loss 1.2379107475280762 img loss 1.207465410232544 img loss 1.2597204446792603 img loss 1.3522963523864746 img loss 1.2819912433624268 img loss 1.310380220413208 img loss 1.2248306274414062 img loss 1.3023197650909424 img loss 1.2635457515716553 img loss 1.280241847038269 img loss 1.3024108409881592 img loss 1.2862833738327026 img loss 1.3537042140960693 img loss 1.3004299402236938 img loss 1.261000156402588 img loss 1.294424295425415 img loss 1.3204740285873413 img loss 1.238030195236206 img loss 1.2359020709991455 img loss 1.3052499294281006 img loss 1.1729587316513062 img loss 1.2480968236923218 img loss 1.212146282196045 img loss 1.2378864288330078 img loss 1.3148531913757324 img loss 1.346462607383728 img loss 1.3155007362365723 img loss 1.3263463973999023 img loss 1.3351770639419556 img loss 1.3184103965759277 img loss 1.236261248588562 img loss 1.3806995153427124 img loss 1.2772659063339233 img loss 1.1717554330825806 img loss 1.3253533840179443 img loss 1.2534030675888062 img loss 1.4350285530090332 img loss 1.294089913368225 img loss 1.2977573871612549 img loss 1.3818293809890747 img loss 1.3003259897232056 img loss 1.269569754600525 img loss 1.2689690589904785 img loss 1.2026466131210327 img loss 1.2335419654846191 img loss 1.302159309387207 img loss 1.2970815896987915 img loss 1.3310766220092773 img loss 1.3152871131896973 img loss 1.2752799987792969 img loss 1.2398080825805664 img loss 1.2655489444732666 img loss 1.2428191900253296 img loss 1.1937222480773926 img loss 1.2502620220184326 img loss 1.2843945026397705 img loss 1.2271504402160645 img loss 1.218977451324463 img loss 1.2487156391143799 img loss 1.1963504552841187 img loss 1.2352646589279175 img loss 1.1943659782409668 img loss 1.2977004051208496 img loss 1.2287323474884033 img loss 1.2573555707931519 img loss 1.1573435068130493 img loss 1.2668709754943848 img loss 1.2364251613616943 img loss 1.2686115503311157 img loss 1.2459129095077515 img loss 1.3696800470352173 img loss 1.2476470470428467img loss 1.3169052600860596 img loss 1.3100254535675049 img loss 1.2704272270202637 img loss 1.3516137599945068 img loss 1.2659578323364258 img loss 1.404258370399475 img loss 1.215674877166748 img loss 1.2386951446533203 img loss 1.213724970817566 img loss 1.3718115091323853 img loss 1.3627293109893799 img loss 1.4135688543319702 img loss 1.3737022876739502 img loss 1.2341639995574951 img loss 1.1918014287948608 img loss 1.3658391237258911 img loss 1.306841492652893 img loss 1.2787071466445923 img loss 1.2950998544692993 img loss 1.3041107654571533 img loss 1.2455756664276123 img loss 1.2397581338882446 img loss 1.2241616249084473 img loss 1.189509630203247 img loss 1.2592989206314087 img loss 1.2319105863571167 img loss 1.1508800983428955 {'loss': 1.2747, 'grad_norm': 0.3763652741909027, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2862799167633057 img loss 1.1482990980148315 img loss 1.2140754461288452 img loss 1.212214469909668 img loss 1.1581671237945557 img loss 1.1404733657836914 img loss 1.2927026748657227 img loss 1.2250394821166992 img loss 1.1260617971420288 img loss 1.2541923522949219 img loss 1.2333563566207886 img loss 1.1547980308532715 img loss 1.1197980642318726 img loss 1.1967805624008179 img loss 1.1893649101257324 img loss 1.2824406623840332 img loss 1.252661108970642 img loss 1.2675098180770874 img loss 1.1587389707565308 img loss 1.215467095375061 img loss 1.1121195554733276 img loss 1.2299957275390625 img loss 1.1428189277648926 img loss 1.1374634504318237 img loss 1.1439927816390991 img loss 1.1895605325698853 img loss 1.2306642532348633 img loss 1.2082014083862305 img loss 1.1900243759155273 img loss 1.1612377166748047 img loss 1.173681616783142 img loss 1.138582468032837 img loss 1.203580617904663 img loss 1.2077324390411377 img loss 1.1886833906173706 img loss 1.2003535032272339 img loss 1.1896800994873047 img loss 1.240957498550415 img loss 1.295836329460144 img loss 1.2028961181640625 img loss 1.289955735206604 img loss 1.1390522718429565 img loss 1.2678498029708862 img loss 1.2448937892913818 img loss 1.094934344291687 img loss 1.2363462448120117 img loss 1.1803948879241943 img loss 1.151692271232605 img loss 1.2709945440292358 img loss 1.1701254844665527 img loss 1.2038440704345703 img loss 1.214561939239502 img loss 1.2985732555389404 img loss 1.2033956050872803 img loss 1.2334399223327637 img loss 1.204668402671814 img loss 1.1795257329940796 img loss 1.1302359104156494 img loss 1.2026115655899048 img loss 1.2032417058944702 img loss 1.116763949394226 img loss 1.223476767539978 img loss 1.1807200908660889 img loss 1.1886221170425415 img loss 1.163596749305725 img loss 1.2780624628067017 img loss 1.2267946004867554 img loss 1.251268982887268 img loss 1.1917076110839844 img loss 1.103755235671997 img loss 1.2402353286743164 img loss 1.1177773475646973 img loss 1.2043302059173584 img loss 1.2393124103546143 img loss 1.1814172267913818 img loss 1.1108402013778687 img loss 1.2365387678146362 img loss 1.2366604804992676 img loss 1.1380054950714111 img loss 1.1240366697311401 img loss 1.1805799007415771 img loss 1.1850823163986206 img loss 1.2770365476608276 img loss 1.1409562826156616 img loss 1.1758712530136108 img loss 1.2118432521820068 img loss 1.3115917444229126 img loss 1.1724600791931152 img loss 1.3055789470672607 img loss 1.1676137447357178 img loss 1.2434792518615723 img loss 1.2235221862792969 img loss 1.2106513977050781 img loss 1.239114761352539 img loss 1.1660516262054443 img loss 1.2316200733184814 img loss 1.2816723585128784 img loss 1.175331950187683 img loss 1.1137605905532837 img loss 1.1728616952896118 img loss 1.2488346099853516 img loss 1.143929123878479 img loss 1.1837929487228394 img loss 1.2232701778411865 img loss 1.2402517795562744 img loss 1.1494998931884766 img loss 1.2612144947052002 img loss 1.1552462577819824 img loss 1.2433286905288696 img loss 1.198118805885315 img loss 1.2692638635635376 img loss 1.211153507232666 img loss 1.2354516983032227 img loss 1.256466269493103 img loss 1.197231650352478 img loss 1.1300454139709473 img loss 1.156973123550415 img loss 1.214026927947998 img loss 1.1407594680786133 img loss 1.2104837894439697 img loss 1.198096513748169 img loss 1.193554162979126 img loss 1.2105873823165894 img loss 1.3110603094100952 img loss 1.1492018699645996 img loss 1.2224900722503662 img loss 1.2154759168624878 img loss 1.2329269647598267 {'loss': 1.2014, 'grad_norm': 0.18721845746040344, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2963074445724487 img loss 1.3413684368133545 img loss 1.3028736114501953 img loss 1.3095967769622803 img loss 1.285268783569336 img loss 1.2295786142349243 img loss 1.2252105474472046 img loss 1.1832540035247803 img loss 1.2562155723571777 img loss 1.2812849283218384 img loss 1.1952242851257324 img loss 1.2403888702392578 img loss 1.3036524057388306 img loss 1.2351938486099243 img loss 1.4058138132095337 img loss 1.2301994562149048 img loss 1.2897590398788452 img loss 1.3565037250518799 img loss 1.2572637796401978 img loss 1.3040034770965576 img loss 1.3457785844802856 img loss 1.2952969074249268 img loss 1.2677704095840454 img loss 1.2373006343841553 img loss 1.2551181316375732 img loss 1.3888458013534546 img loss 1.2844245433807373 img loss 1.2424818277359009 img loss 1.217567801475525 img loss 1.2533003091812134 img loss 1.268996238708496 img loss 1.3095248937606812 img loss 1.2350527048110962 img loss 1.2688446044921875 img loss 1.2253350019454956 img loss 1.310102105140686 img loss 1.2425962686538696 img loss 1.262843132019043 img loss 1.3270812034606934 img loss 1.2831308841705322 img loss 1.2426060438156128 img loss 1.2758524417877197 img loss 1.2971034049987793 img loss 1.3745986223220825 img loss 1.2988709211349487 img loss 1.2264893054962158 img loss 1.386541485786438 img loss 1.2474935054779053 img loss 1.2260491847991943 img loss 1.3102595806121826 img loss 1.3289825916290283 img loss 1.2766573429107666 img loss 1.2656517028808594 img loss 1.2975860834121704 img loss 1.2507307529449463 img loss 1.308685064315796 img loss 1.1923027038574219 img loss 1.2504541873931885 img loss 1.2658910751342773 img loss 1.3138444423675537 img loss 1.3515230417251587 img loss 1.302843451499939 img loss 1.2480942010879517 img loss 1.3478500843048096 img loss 1.230223536491394 img loss 1.2438092231750488 img loss 1.2487764358520508 img loss 1.2996909618377686 img loss 1.2719618082046509 img loss 1.2326196432113647 img loss 1.3195396661758423 img loss 1.2763017416000366 img loss 1.2353674173355103 img loss 1.2373476028442383 img loss 1.2137068510055542 img loss 1.2934069633483887 img loss 1.3188320398330688 img loss 1.2758498191833496 img loss 1.261017084121704 img loss 1.2723262310028076 img loss 1.3304799795150757 img loss 1.3095155954360962 img loss 1.3481625318527222 img loss 1.2670073509216309 img loss 1.2597907781600952 img loss 1.3495053052902222 img loss 1.222244143486023 img loss 1.2377440929412842 img loss 1.2569774389266968 img loss 1.2215626239776611 img loss 1.2066410779953003 img loss 1.344938039779663 img loss 1.4082999229431152 img loss 1.282832384109497 img loss 1.2688835859298706 img loss 1.2909343242645264 img loss 1.2923386096954346 img loss 1.2973028421401978 img loss 1.3262535333633423 img loss 1.3097753524780273 img loss 1.2577999830245972 img loss 1.2384562492370605 img loss 1.2348878383636475 img loss 1.271426796913147 img loss 1.2530150413513184 img loss 1.2884565591812134 img loss 1.3055003881454468 img loss 1.296207070350647 img loss 1.3278231620788574 img loss 1.2160062789916992 img loss 1.2969584465026855 img loss 1.2114169597625732 img loss 1.2975153923034668 img loss 1.3256592750549316 img loss 1.2746353149414062 img loss 1.2384976148605347 img loss 1.2645214796066284 img loss 1.2026087045669556 img loss 1.2161078453063965 img loss 1.2401834726333618 img loss 1.242645025253296 img loss 1.3435015678405762 img loss 1.2570289373397827 img loss 1.297849178314209 img loss 1.2119386196136475 img loss 1.2578375339508057 img loss 1.2536972761154175 img loss 1.3009761571884155 {'loss': 1.2767, 'grad_norm': 0.24892273545265198, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.40277898311615 img loss 1.254920244216919 img loss 1.3072831630706787 img loss 1.341969609260559 img loss 1.310593605041504 img loss 1.3649390935897827 img loss 1.4907615184783936 img loss 1.301767110824585 img loss 1.3922951221466064 img loss 1.305100917816162 img loss 1.300582766532898 img loss 1.4632389545440674 img loss 1.4205995798110962 img loss 1.3725167512893677 img loss 1.435127854347229 img loss 1.3678433895111084 img loss 1.338722825050354 img loss 1.3385899066925049 img loss 1.347184419631958 img loss 1.3757474422454834 img loss 1.3700827360153198 img loss 1.4125984907150269 img loss 1.237713098526001 img loss 1.3563168048858643 img loss 1.4077972173690796 img loss 1.3741892576217651 img loss 1.3850191831588745 img loss 1.4158904552459717 img loss 1.3085228204727173 img loss 1.2917897701263428 img loss 1.326934814453125 img loss 1.3541836738586426 img loss 1.4034579992294312img loss 1.4342482089996338 img loss 1.2110066413879395 img loss 1.3421664237976074 img loss 1.4322320222854614 img loss 1.3857136964797974 img loss 1.414089322090149 img loss 1.3043549060821533 img loss 1.338640570640564 img loss 1.3646303415298462 img loss 1.3669251203536987 img loss 1.4266029596328735 img loss 1.3240818977355957 img loss 1.354756236076355 img loss 1.3505274057388306 img loss 1.4329826831817627 img loss 1.4098213911056519 img loss 1.4329420328140259 img loss 1.3926081657409668 img loss 1.4494224786758423 img loss 1.2985442876815796 img loss 1.2817461490631104 img loss 1.3652225732803345 img loss 1.340417504310608 img loss 1.3649238348007202 img loss 1.4044357538223267 img loss 1.291738510131836 img loss 1.4849246740341187img loss 1.5253304243087769 img loss 1.3247133493423462 img loss 1.249346137046814 img loss 1.38551664352417 img loss 1.3797277212142944 img loss 1.3646718263626099 img loss 1.458451509475708 img loss 1.23665452003479 img loss 1.4134525060653687 img loss 1.5185140371322632 img loss 1.3600488901138306 img loss 1.454361081123352 img loss 1.312964677810669 img loss 1.3386732339859009 img loss 1.3854247331619263 img loss 1.4170029163360596 img loss 1.3469756841659546 img loss 1.3488887548446655 img loss 1.376279592514038 img loss 1.3365424871444702 img loss 1.3577349185943604 img loss 1.3568063974380493 img loss 1.4387967586517334 img loss 1.3625843524932861 img loss 1.4550057649612427 img loss 1.4279769659042358 img loss 1.3483654260635376 img loss 1.3738665580749512 img loss 1.3593658208847046 img loss 1.3326467275619507 img loss 1.5080921649932861 img loss 1.452354073524475 img loss 1.360872745513916 img loss 1.4556432962417603 img loss 1.4053785800933838 img loss 1.408576250076294 img loss 1.3721166849136353 img loss 1.4003736972808838 img loss 1.4215967655181885 img loss 1.4226216077804565 img loss 1.3794548511505127 img loss 1.3674994707107544 img loss 1.3666194677352905 img loss 1.2785133123397827 img loss 1.419184923171997 img loss 1.265672206878662 img loss 1.4001544713974 img loss 1.2976821660995483 img loss 1.3277193307876587 img loss 1.4313867092132568 img loss 1.3115293979644775 img loss 1.3543972969055176 img loss 1.414974570274353 img loss 1.3448948860168457 img loss 1.3946596384048462 img loss 1.5862658023834229 img loss 1.3165292739868164 img loss 1.4243090152740479 img loss 1.4144028425216675 img loss 1.4398140907287598 img loss 1.3055226802825928 img loss 1.4176602363586426 img loss 1.3264062404632568 img loss 1.3943978548049927 img loss 1.3289246559143066 img loss 1.3757054805755615 img loss 1.3393828868865967 img loss 1.3344063758850098 {'loss': 1.3734, 'grad_norm': 0.4618622660636902, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1930148601531982 img loss 1.2357192039489746 img loss 1.1998051404953003 img loss 1.2136162519454956 img loss 1.2516453266143799 img loss 1.1752946376800537 img loss 1.20254385471344 img loss 1.2881263494491577 img loss 1.2376489639282227 img loss 1.1982450485229492 img loss 1.2545479536056519 img loss 1.2391221523284912 img loss 1.2476654052734375 img loss 1.2582550048828125 img loss 1.2508013248443604 img loss 1.2069309949874878 img loss 1.1866872310638428 img loss 1.2183070182800293 img loss 1.1912811994552612 img loss 1.2229363918304443 img loss 1.2715039253234863 img loss 1.193388819694519 img loss 1.3137801885604858 img loss 1.1888164281845093 img loss 1.2510290145874023 img loss 1.2673356533050537 img loss 1.212247610092163 img loss 1.2056078910827637 img loss 1.1855887174606323 img loss 1.203618049621582 img loss 1.1491003036499023 img loss 1.3390408754348755 img loss 1.1467195749282837 img loss 1.2272372245788574 img loss 1.2216476202011108 img loss 1.2632036209106445 img loss 1.2725833654403687 img loss 1.3135597705841064 img loss 1.2111492156982422 img loss 1.3025057315826416 img loss 1.2447588443756104 img loss 1.2100194692611694 img loss 1.1837528944015503 img loss 1.2444002628326416 img loss 1.1805951595306396 img loss 1.1894139051437378 img loss 1.2482941150665283 img loss 1.2520490884780884 img loss 1.2361125946044922 img loss 1.2142846584320068 img loss 1.2002836465835571 img loss 1.2683027982711792 img loss 1.2140318155288696 img loss 1.1808868646621704 img loss 1.1869087219238281 img loss 1.2326539754867554 img loss 1.2561790943145752 img loss 1.2676582336425781 img loss 1.199272871017456 img loss 1.2364057302474976 img loss 1.183318018913269 img loss 1.1814521551132202 img loss 1.2414562702178955 img loss 1.2322901487350464 img loss 1.2300382852554321 img loss 1.1660943031311035 img loss 1.2310243844985962 img loss 1.2134073972702026 img loss 1.1845190525054932 img loss 1.2441909313201904 img loss 1.3027788400650024 img loss 1.2524433135986328 img loss 1.2038183212280273 img loss 1.2812886238098145 img loss 1.2397371530532837 img loss 1.2675179243087769 img loss 1.2151516675949097 img loss 1.2288002967834473 img loss 1.2289127111434937 img loss 1.1805599927902222 img loss 1.228972315788269 img loss 1.2409050464630127 img loss 1.2950142621994019 img loss 1.2391786575317383 img loss 1.230131983757019 img loss 1.2303004264831543 img loss 1.2479171752929688 img loss 1.1972432136535645 img loss 1.3100581169128418 img loss 1.2026623487472534 img loss 1.1921610832214355 img loss 1.226510763168335 img loss 1.2650803327560425 img loss 1.2478290796279907 img loss 1.1417654752731323 img loss 1.2444171905517578 img loss 1.1806373596191406 img loss 1.1814956665039062 img loss 1.205182433128357 img loss 1.253771185874939 img loss 1.248157024383545 img loss 1.2147932052612305 img loss 1.2239181995391846 img loss 1.2200170755386353 img loss 1.2018245458602905 img loss 1.179250717163086 img loss 1.283891201019287 img loss 1.201407790184021 img loss 1.3045347929000854 img loss 1.21642005443573 img loss 1.2613050937652588 img loss 1.2118923664093018 img loss 1.2282298803329468 img loss 1.1448129415512085 img loss 1.1683659553527832 img loss 1.3303394317626953 img loss 1.184354543685913 img loss 1.2018859386444092 img loss 1.1834533214569092 img loss 1.2524430751800537 img loss 1.2359751462936401 img loss 1.188867211341858 img loss 1.1470694541931152 img loss 1.2388033866882324 img loss 1.3285030126571655 img loss 1.2713754177093506 img loss 1.1928421258926392 img loss 1.1728190183639526 {'loss': 1.2263, 'grad_norm': 0.2947375476360321, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2319364547729492 img loss 1.2556651830673218 img loss 1.086344599723816 img loss 1.1685402393341064 img loss 1.2875893115997314 img loss 1.2203031778335571 img loss 1.1751292943954468 img loss 1.2615216970443726 img loss 1.2043185234069824 img loss 1.1606121063232422 img loss 1.151934266090393 img loss 1.2043437957763672 img loss 1.2367682456970215 img loss 1.1466875076293945 img loss 1.2573699951171875 img loss 1.2283676862716675 img loss 1.2533239126205444 img loss 1.187527060508728 img loss 1.1718783378601074 img loss 1.2734484672546387 img loss 1.1784698963165283 img loss 1.173654556274414 img loss 1.2483651638031006 img loss 1.2022340297698975 img loss 1.2628300189971924 img loss 1.25417959690094 img loss 1.1282634735107422 img loss 1.1523774862289429 img loss 1.2135536670684814 img loss 1.2237732410430908 img loss 1.2012228965759277 img loss 1.1752289533615112 img loss 1.2164652347564697 img loss 1.2262988090515137img loss 1.1949341297149658 img loss 1.2354780435562134 img loss 1.2138445377349854 img loss 1.2395703792572021 img loss 1.1943624019622803 img loss 1.2469984292984009 img loss 1.158758521080017 img loss 1.1666138172149658 img loss 1.2160980701446533 img loss 1.2454897165298462 img loss 1.2497433423995972 img loss 1.1617497205734253 img loss 1.2870157957077026 img loss 1.1998885869979858 img loss 1.2491211891174316 img loss 1.1236404180526733 img loss 1.2792457342147827 img loss 1.3236433267593384 img loss 1.1630510091781616 img loss 1.1869033575057983 img loss 1.142810583114624 img loss 1.1895633935928345 img loss 1.1565814018249512 img loss 1.203758716583252 img loss 1.2098171710968018 img loss 1.1674343347549438 img loss 1.2383418083190918 img loss 1.1434024572372437 img loss 1.161367654800415 img loss 1.1941907405853271 img loss 1.1984801292419434 img loss 1.1905657052993774 img loss 1.2629841566085815 img loss 1.2922139167785645 img loss 1.2797306776046753 img loss 1.1280440092086792img loss 1.1833418607711792 img loss 1.2593311071395874 img loss 1.1620020866394043 img loss 1.2251323461532593 img loss 1.2276973724365234 img loss 1.2519607543945312 img loss 1.1960874795913696 img loss 1.2112212181091309img loss 1.1860995292663574 img loss 1.2288919687271118 img loss 1.1678404808044434 img loss 1.2199804782867432 img loss 1.1579407453536987 img loss 1.1417242288589478 img loss 1.1959905624389648 img loss 1.2260751724243164 img loss 1.2022380828857422 img loss 1.2674381732940674 img loss 1.1624764204025269 img loss 1.188124656677246 img loss 1.1845954656600952 img loss 1.2279547452926636 img loss 1.2407336235046387 img loss 1.2431190013885498 img loss 1.2221192121505737 img loss 1.2317843437194824 img loss 1.1607393026351929 img loss 1.2472255229949951 img loss 1.1872555017471313 img loss 1.2868469953536987 img loss 1.2172380685806274 img loss 1.249644160270691 img loss 1.1536228656768799 img loss 1.2417843341827393 img loss 1.2189992666244507 img loss 1.2533820867538452 img loss 1.1522400379180908 img loss 1.1982358694076538 img loss 1.1951677799224854 img loss 1.1756553649902344 img loss 1.172868251800537 img loss 1.2749032974243164 img loss 1.1623833179473877 img loss 1.240251898765564 img loss 1.1831125020980835 img loss 1.2564404010772705 img loss 1.22357976436615 img loss 1.2763640880584717 img loss 1.1707584857940674 img loss 1.1824030876159668 img loss 1.1686428785324097 img loss 1.2863826751708984 img loss 1.1994266510009766 img loss 1.1943272352218628 img loss 1.1611464023590088 img loss 1.2165122032165527 img loss 1.2728266716003418 img loss 1.194388747215271 {'loss': 1.2086, 'grad_norm': 0.41464993357658386, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2342569828033447 img loss 1.132095456123352 img loss 1.0752522945404053 img loss 1.236067533493042 img loss 1.3878792524337769 img loss 1.2284367084503174 img loss 1.1879395246505737 img loss 1.214813232421875 img loss 1.2091305255889893 img loss 1.2156208753585815 img loss 1.2488921880722046 img loss 1.2005248069763184 img loss 1.1131501197814941 img loss 1.1892822980880737 img loss 1.2229236364364624 img loss 1.2167764902114868 img loss 1.2609227895736694 img loss 1.221198558807373 img loss 1.1615619659423828 img loss 1.2343652248382568 img loss 1.1383216381072998 img loss 1.3004344701766968 img loss 1.2606762647628784 img loss 1.3021068572998047 img loss 1.1882376670837402 img loss 1.278489112854004 img loss 1.2198429107666016 img loss 1.1593633890151978 img loss 1.2939186096191406 img loss 1.1454979181289673 img loss 1.1976531744003296 img loss 1.2172554731369019 img loss 1.1792693138122559 img loss 1.3638590574264526 img loss 1.317507266998291 img loss 1.2418426275253296 img loss 1.1967408657073975 img loss 1.2323832511901855 img loss 1.1713930368423462 img loss 1.1897220611572266 img loss 1.1718475818634033 img loss 1.1648660898208618 img loss 1.2262659072875977 img loss 1.2920860052108765 img loss 1.139025092124939 img loss 1.252323031425476 img loss 1.19839346408844 img loss 1.1786553859710693 img loss 1.2471204996109009 img loss 1.2007097005844116 img loss 1.1768707036972046 img loss 1.1982090473175049 img loss 1.2590994834899902 img loss 1.1657499074935913 img loss 1.1808412075042725 img loss 1.190182089805603 img loss 1.2562458515167236 img loss 1.1331449747085571 img loss 1.1530016660690308 img loss 1.1760289669036865 img loss 1.2223628759384155 img loss 1.1652076244354248 img loss 1.2604621648788452 img loss 1.1568028926849365 img loss 1.234405517578125 img loss 1.2082624435424805 img loss 1.2140926122665405 img loss 1.2455368041992188 img loss 1.1182911396026611 img loss 1.2626503705978394 img loss 1.1192805767059326 img loss 1.2063859701156616 img loss 1.139818549156189 img loss 1.2246421575546265 img loss 1.337920069694519 img loss 1.2489351034164429 img loss 1.1994962692260742 img loss 1.2531273365020752 img loss 1.2435882091522217 img loss 1.129852533340454 img loss 1.2054067850112915 img loss 1.2010999917984009 img loss 1.2184257507324219 img loss 1.165735125541687 img loss 1.2550495862960815 img loss 1.247679591178894 img loss 1.2825415134429932 img loss 1.0939874649047852 img loss 1.2583746910095215 img loss 1.2451531887054443 img loss 1.1635559797286987 img loss 1.2397712469100952 img loss 1.2379764318466187 img loss 1.2625423669815063 img loss 1.211824655532837 img loss 1.243257999420166 img loss 1.248897910118103 img loss 1.2031563520431519 img loss 1.2036880254745483 img loss 1.1861013174057007 img loss 1.2298409938812256 img loss 1.1616333723068237 img loss 1.2557390928268433 img loss 1.1776093244552612 img loss 1.2288737297058105 img loss 1.1805243492126465 img loss 1.249067783355713 img loss 1.1205493211746216 img loss 1.3124332427978516 img loss 1.2165495157241821 img loss 1.184688925743103 img loss 1.2015691995620728 img loss 1.1861038208007812 img loss 1.1786011457443237 img loss 1.1762384176254272 img loss 1.1723783016204834 img loss 1.117218017578125 img loss 1.2016141414642334 img loss 1.41392982006073 img loss 1.2140767574310303 img loss 1.164202094078064 img loss 1.24774968624115 img loss 1.1638906002044678 img loss 1.1926753520965576 img loss 1.1703630685806274 img loss 1.154620885848999 img loss 1.2225298881530762 img loss 1.2230875492095947 {'loss': 1.2112, 'grad_norm': 0.3311198353767395, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4689209461212158 img loss 1.2644113302230835 img loss 1.2881677150726318 img loss 1.3382470607757568 img loss 1.2915500402450562 img loss 1.339645504951477 img loss 1.292784333229065 img loss 1.2944116592407227 img loss 1.2675288915634155 img loss 1.3483811616897583 img loss 1.3036068677902222 img loss 1.3399945497512817 img loss 1.3922752141952515 img loss 1.3668038845062256 img loss 1.3548353910446167 img loss 1.3495705127716064 img loss 1.3840383291244507 img loss 1.2590372562408447 img loss 1.2995604276657104 img loss 1.4222996234893799 img loss 1.2879396677017212 img loss 1.2737901210784912 img loss 1.3874093294143677 img loss 1.3561314344406128 img loss 1.2535855770111084 img loss 1.3576856851577759 img loss 1.3982354402542114 img loss 1.2785413265228271 img loss 1.3643581867218018 img loss 1.3907045125961304 img loss 1.3825047016143799 img loss 1.4067937135696411 img loss 1.2346616983413696 img loss 1.3053410053253174 img loss 1.516749620437622 img loss 1.3601421117782593 img loss 1.3271137475967407 img loss 1.3732823133468628 img loss 1.3998147249221802 img loss 1.2956428527832031 img loss 1.2759296894073486 img loss 1.310815453529358 img loss 1.3665516376495361 img loss 1.3252315521240234 img loss 1.2944103479385376 img loss 1.3590527772903442 img loss 1.417775273323059 img loss 1.360357642173767 img loss 1.2529375553131104 img loss 1.3126254081726074 img loss 1.3278236389160156 img loss 1.2327661514282227 img loss 1.324560523033142 img loss 1.3260338306427002 img loss 1.3234447240829468 img loss 1.2921984195709229 img loss 1.2236407995224 img loss 1.3587772846221924 img loss 1.2725179195404053 img loss 1.22536039352417 img loss 1.3341881036758423 img loss 1.326028823852539 img loss 1.2522404193878174 img loss 1.3761745691299438 img loss 1.345319390296936 img loss 1.4066177606582642 img loss 1.3590573072433472 img loss 1.32063627243042 img loss 1.334723949432373 img loss 1.396340012550354 img loss 1.2680463790893555 img loss 1.3104485273361206 img loss 1.3586156368255615 img loss 1.279996395111084 img loss 1.243980050086975 img loss 1.3173927068710327 img loss 1.240443468093872 img loss 1.2541942596435547 img loss 1.2936277389526367 img loss 1.304436206817627 img loss 1.4387553930282593 img loss 1.2793840169906616 img loss 1.431888222694397 img loss 1.2519155740737915 img loss 1.4013183116912842 img loss 1.338784098625183 img loss 1.3040294647216797 img loss 1.161985158920288 img loss 1.3441898822784424 img loss 1.353063702583313 img loss 1.2881441116333008 img loss 1.2741440534591675 img loss 1.3282426595687866 img loss 1.2545344829559326 img loss 1.2032711505889893 img loss 1.2491455078125 img loss 1.433430790901184 img loss 1.3135735988616943 img loss 1.3428024053573608 img loss 1.3690358400344849 img loss 1.3064885139465332 img loss 1.27299964427948 img loss 1.2636604309082031 img loss 1.3229002952575684 img loss 1.378822922706604 img loss 1.3541806936264038 img loss 1.3060340881347656 img loss 1.336726427078247 img loss 1.3731287717819214 img loss 1.3143547773361206 img loss 1.406627893447876 img loss 1.2622394561767578 img loss 1.4483811855316162 img loss 1.3292691707611084 img loss 1.3025944232940674 img loss 1.3810871839523315 img loss 1.385569453239441 img loss 1.21634840965271 img loss 1.3773654699325562 img loss 1.3516669273376465 img loss 1.3734462261199951 img loss 1.1457455158233643 img loss 1.406054973602295 img loss 1.2399330139160156 img loss 1.403075933456421 img loss 1.2907015085220337 img loss 1.2796871662139893 img loss 1.2735410928726196 {'loss': 1.3249, 'grad_norm': 0.28718283772468567, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2477327585220337 img loss 1.3166828155517578 img loss 1.314690113067627 img loss 1.2339321374893188 img loss 1.3330378532409668 img loss 1.3054885864257812 img loss 1.2359873056411743 img loss 1.2965507507324219 img loss 1.2514278888702393 img loss 1.241080641746521 img loss 1.2993781566619873 img loss 1.2914575338363647 img loss 1.2272753715515137 img loss 1.2473785877227783 img loss 1.2811062335968018 img loss 1.2912849187850952 img loss 1.2625643014907837 img loss 1.2372715473175049 img loss 1.2613625526428223 img loss 1.2309010028839111 img loss 1.2261600494384766 img loss 1.265318512916565 img loss 1.4784318208694458 img loss 1.267096996307373 img loss 1.3473153114318848 img loss 1.2306265830993652 img loss 1.2357285022735596 img loss 1.2724767923355103 img loss 1.2207412719726562 img loss 1.2912557125091553 img loss 1.2944481372833252 img loss 1.2709789276123047 img loss 1.2490527629852295 img loss 1.28287935256958 img loss 1.2577589750289917 img loss 1.261617660522461 img loss 1.258163332939148 img loss 1.3180807828903198 img loss 1.2970902919769287 img loss 1.2836174964904785 img loss 1.2813563346862793 img loss 1.2567554712295532 img loss 1.3137003183364868 img loss 1.2618446350097656 img loss 1.2714097499847412 img loss 1.2833895683288574 img loss 1.3054461479187012 img loss 1.2994935512542725 img loss 1.3109161853790283 img loss 1.3221229314804077 img loss 1.2490973472595215 img loss 1.3028147220611572 img loss 1.2776429653167725 img loss 1.272560954093933 img loss 1.216288447380066 img loss 1.2429766654968262 img loss 1.3087393045425415 img loss 1.3224598169326782 img loss 1.2778481245040894 img loss 1.3107651472091675 img loss 1.3851319551467896 img loss 1.2335923910140991 img loss 1.3215423822402954 img loss 1.25412118434906 img loss 1.211199402809143 img loss 1.304736614227295 img loss 1.300752878189087 img loss 1.2725818157196045 img loss 1.2463314533233643 img loss 1.2050460577011108 img loss 1.385536789894104 img loss 1.2497223615646362 img loss 1.3253151178359985 img loss 1.2233517169952393 img loss 1.2075023651123047 img loss 1.2346584796905518 img loss 1.2297453880310059 img loss 1.3160103559494019 img loss 1.3271681070327759 img loss 1.3034933805465698 img loss 1.1830158233642578 img loss 1.2660927772521973 img loss 1.2005926370620728 img loss 1.2085089683532715 img loss 1.282527208328247 img loss 1.2251344919204712 img loss 1.2664486169815063 img loss 1.2856791019439697 img loss 1.3050731420516968 img loss 1.2536245584487915 img loss 1.3683888912200928 img loss 1.249030590057373 img loss 1.2896912097930908 img loss 1.2587287425994873 img loss 1.2232928276062012 img loss 1.297985553741455 img loss 1.242619276046753 img loss 1.2897824048995972 img loss 1.330755591392517 img loss 1.2553305625915527 img loss 1.2443327903747559 img loss 1.3159756660461426 img loss 1.2092461585998535 img loss 1.2841039896011353 img loss 1.2627675533294678 img loss 1.184857726097107 img loss 1.24163019657135 img loss 1.30382239818573 img loss 1.3157814741134644 img loss 1.3680167198181152 img loss 1.331343173980713 img loss 1.2832971811294556 img loss 1.300912618637085 img loss 1.3036855459213257 img loss 1.3359566926956177 img loss 1.244856357574463 img loss 1.230306625366211 img loss 1.2412554025650024 img loss 1.2282023429870605 img loss 1.3972671031951904 img loss 1.3027968406677246 img loss 1.3354569673538208 img loss 1.338999629020691 img loss 1.2609729766845703 img loss 1.2298283576965332 img loss 1.296363115310669 img loss 1.3277814388275146 img loss 1.1840741634368896 {'loss': 1.2768, 'grad_norm': 0.5741990804672241, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.33202064037323 img loss 1.3166368007659912 img loss 1.5329324007034302 img loss 1.4156118631362915 img loss 1.4070050716400146 img loss 1.480394959449768 img loss 1.420960545539856 img loss 1.298448085784912 img loss 1.410386562347412 img loss 1.3887468576431274 img loss 1.3292629718780518 img loss 1.252888560295105 img loss 1.4387151002883911 img loss 1.401500940322876 img loss 1.2702163457870483 img loss 1.4865317344665527 img loss 1.4496601819992065 img loss 1.3220545053482056 img loss 1.3708492517471313 img loss 1.5569895505905151 img loss 1.4507043361663818 img loss 1.3852496147155762 img loss 1.4677479267120361 img loss 1.3581061363220215 img loss 1.4382933378219604 img loss 1.3398138284683228 img loss 1.2908204793930054 img loss 1.4196053743362427 img loss 1.4556633234024048 img loss 1.3539944887161255 img loss 1.3700052499771118 img loss 1.4281634092330933 img loss 1.2646994590759277 img loss 1.5791550874710083 img loss 1.413499355316162 img loss 1.3486369848251343 img loss 1.270400047302246 img loss 1.4333949089050293 img loss 1.2531371116638184 img loss 1.256683111190796 img loss 1.5779474973678589 img loss 1.2373440265655518 img loss 1.3339852094650269 img loss 1.2422641515731812 img loss 1.4349217414855957 img loss 1.450743317604065 img loss 1.401323676109314 img loss 1.3882964849472046 img loss 1.3270509243011475 img loss 1.5178166627883911 img loss 1.3557473421096802img loss 1.3855063915252686 img loss 1.370829701423645 img loss 1.4019074440002441 img loss 1.4110289812088013 img loss 1.35439932346344 img loss 1.518320918083191 img loss 1.4355931282043457 img loss 1.4848538637161255 img loss 1.4192166328430176 img loss 1.3352547883987427 img loss 1.3519082069396973 img loss 1.4700649976730347 img loss 1.4537605047225952 img loss 1.3532594442367554 img loss 1.2397960424423218 img loss 1.4594991207122803 img loss 1.3611260652542114 img loss 1.3695005178451538 img loss 1.5359605550765991 img loss 1.4352679252624512 img loss 1.3457533121109009 img loss 1.346079707145691 img loss 1.4453216791152954 img loss 1.3547418117523193 img loss 1.559952974319458 img loss 1.5147489309310913 img loss 1.4744173288345337 img loss 1.4173657894134521 img loss 1.3769316673278809 img loss 1.4910547733306885 img loss 1.2957309484481812 img loss 1.3820490837097168 img loss 1.2563053369522095 img loss 1.4668809175491333 img loss 1.3461288213729858 img loss 1.351235032081604 img loss 1.4598528146743774 img loss 1.4591161012649536 img loss 1.482219934463501 img loss 1.4151557683944702 img loss 1.4231046438217163 img loss 1.432697057723999 img loss 1.313706636428833 img loss 1.3201950788497925 img loss 1.4476455450057983 img loss 1.5081779956817627 img loss 1.3816215991973877 img loss 1.313245177268982 img loss 1.3331247568130493 img loss 1.4485100507736206 img loss 1.4410306215286255 img loss 1.3269777297973633 img loss 1.2714860439300537 img loss 1.4812073707580566 img loss 1.4007542133331299 img loss 1.4244787693023682 img loss 1.4001489877700806 img loss 1.2889829874038696 img loss 1.3514668941497803 img loss 1.387461543083191 img loss 1.4808424711227417 img loss 1.4228336811065674 img loss 1.4303300380706787 img loss 1.4847832918167114 img loss 1.2731454372406006 img loss 1.4268449544906616 img loss 1.4460338354110718 img loss 1.4737142324447632 img loss 1.2505499124526978 img loss 1.3931214809417725 img loss 1.259141206741333 img loss 1.433205008506775 img loss 1.473254919052124 img loss 1.373624563217163 img loss 1.454484224319458 img loss 1.4704725742340088 img loss 1.3541308641433716 {'loss': 1.3962, 'grad_norm': 0.41769328713417053, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2680755853652954 img loss 1.3279893398284912 img loss 1.246192455291748 img loss 1.3119409084320068 img loss 1.2560436725616455 img loss 1.2907110452651978 img loss 1.2542290687561035 img loss 1.2811510562896729 img loss 1.2819687128067017 img loss 1.2869888544082642 img loss 1.2721503973007202 img loss 1.2809664011001587 img loss 1.2783650159835815 img loss 1.282249093055725 img loss 1.275560975074768 img loss 1.2747700214385986 img loss 1.2544845342636108 img loss 1.2570362091064453 img loss 1.2808995246887207 img loss 1.2646214962005615 img loss 1.2769979238510132 img loss 1.248258113861084 img loss 1.2739332914352417 img loss 1.2562241554260254 img loss 1.2511719465255737 img loss 1.3182979822158813 img loss 1.305472731590271 img loss 1.2389042377471924 img loss 1.3225122690200806 img loss 1.281014084815979 img loss 1.2218024730682373 img loss 1.3142764568328857 img loss 1.2518844604492188 img loss 1.2586052417755127 img loss 1.253543496131897 img loss 1.252277135848999 img loss 1.2688136100769043 img loss 1.3415223360061646 img loss 1.2527728080749512 img loss 1.230829119682312 img loss 1.2703312635421753 img loss 1.2910597324371338 img loss 1.251362681388855 img loss 1.2867380380630493 img loss 1.2515729665756226 img loss 1.3041369915008545 img loss 1.271003246307373 img loss 1.2482287883758545 img loss 1.3037631511688232 img loss 1.2555420398712158 img loss 1.2551205158233643 img loss 1.2256132364273071 img loss 1.2555279731750488 img loss 1.258266806602478 img loss 1.2522764205932617 img loss 1.3040851354599 img loss 1.288116455078125 img loss 1.3234171867370605 img loss 1.2620476484298706 img loss 1.2856937646865845 img loss 1.2285778522491455 img loss 1.2887252569198608 img loss 1.265306830406189 img loss 1.2582738399505615 img loss 1.2613236904144287 img loss 1.250353217124939 img loss 1.2659125328063965 img loss 1.2361881732940674 img loss 1.2288718223571777 img loss 1.2249876260757446 img loss 1.2900731563568115 img loss 1.3088970184326172 img loss 1.2626713514328003 img loss 1.261373519897461 img loss 1.2355597019195557 img loss 1.2604845762252808 img loss 1.2687705755233765 img loss 1.3977487087249756 img loss 1.25242280960083 img loss 1.2232707738876343 img loss 1.2483738660812378 img loss 1.2891161441802979 img loss 1.2305628061294556 img loss 1.2739486694335938 img loss 1.312135100364685 img loss 1.3459413051605225 img loss 1.2477264404296875 img loss 1.2616652250289917 img loss 1.3244397640228271 img loss 1.295416235923767 img loss 1.332546591758728 img loss 1.2867200374603271 img loss 1.2489445209503174 img loss 1.2392486333847046 img loss 1.2433223724365234 img loss 1.2500253915786743 img loss 1.2239205837249756 img loss 1.3045072555541992 img loss 1.2421902418136597 img loss 1.2883678674697876 img loss 1.2752478122711182 img loss 1.2522468566894531 img loss 1.2918508052825928 img loss 1.23614501953125 img loss 1.2576441764831543 img loss 1.350371241569519 img loss 1.2341723442077637 img loss 1.288329839706421 img loss 1.2539479732513428 img loss 1.238263726234436 img loss 1.2444639205932617 img loss 1.2571063041687012 img loss 1.2490698099136353 img loss 1.281928300857544 img loss 1.2772157192230225 img loss 1.246835470199585 img loss 1.2487913370132446 img loss 1.2550710439682007 img loss 1.2441022396087646 img loss 1.2224282026290894 img loss 1.2873748540878296 img loss 1.269995093345642 img loss 1.2529144287109375 img loss 1.2493054866790771 img loss 1.2697114944458008 img loss 1.2852102518081665 img loss 1.2715697288513184 img loss 1.2813838720321655 {'loss': 1.2697, 'grad_norm': 0.24568112194538116, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2241251468658447 img loss 1.2740552425384521 img loss 1.2403314113616943 img loss 1.1647677421569824 img loss 1.2862061262130737 img loss 1.2193617820739746 img loss 1.231052279472351 img loss 1.2778013944625854 img loss 1.1994915008544922 img loss 1.2260069847106934 img loss 1.3175376653671265 img loss 1.2462948560714722 img loss 1.3069050312042236 img loss 1.2283979654312134 img loss 1.248335599899292 img loss 1.2320035696029663 img loss 1.296324372291565 img loss 1.221228837966919 img loss 1.3004825115203857 img loss 1.2006034851074219 img loss 1.1368128061294556 img loss 1.2194314002990723 img loss 1.2149807214736938 img loss 1.2493019104003906 img loss 1.2036707401275635 img loss 1.1371591091156006 img loss 1.2584882974624634 img loss 1.2440166473388672 img loss 1.195115566253662 img loss 1.2007020711898804 img loss 1.2307096719741821 img loss 1.3950446844100952 img loss 1.2939825057983398 img loss 1.231523871421814 img loss 1.256966471672058 img loss 1.2340437173843384 img loss 1.2355884313583374 img loss 1.3887298107147217 img loss 1.293394684791565 img loss 1.2271935939788818 img loss 1.208086371421814 img loss 1.3395940065383911 img loss 1.3411794900894165 img loss 1.2734029293060303 img loss 1.3288936614990234 img loss 1.2744296789169312 img loss 1.3780885934829712 img loss 1.1989786624908447 img loss 1.300958275794983 img loss 1.1899617910385132 img loss 1.2065701484680176 img loss 1.3229597806930542 img loss 1.2151011228561401 img loss 1.3038990497589111 img loss 1.2544865608215332img loss 1.2968757152557373 img loss 1.2120842933654785 img loss 1.173680067062378 img loss 1.266334891319275 img loss 1.2411222457885742 img loss 1.2844146490097046 img loss 1.3090360164642334 img loss 1.291276216506958 img loss 1.2491041421890259 img loss 1.3172054290771484 img loss 1.2168073654174805 img loss 1.2244075536727905 img loss 1.295896053314209 img loss 1.3067855834960938 img loss 1.2395976781845093 img loss 1.3345345258712769 img loss 1.2595174312591553 img loss 1.192258358001709 img loss 1.2596070766448975 img loss 1.2253074645996094 img loss 1.2137378454208374 img loss 1.1860567331314087 img loss 1.248046636581421 img loss 1.2640089988708496 img loss 1.2547842264175415 img loss 1.1946693658828735 img loss 1.2095966339111328 img loss 1.2905528545379639 img loss 1.1620193719863892 img loss 1.28340482711792 img loss 1.2117953300476074 img loss 1.1643491983413696 img loss 1.2189396619796753 img loss 1.3342792987823486 img loss 1.3010387420654297 img loss 1.243255853652954 img loss 1.2238154411315918 img loss 1.2292066812515259 img loss 1.260351538658142 img loss 1.2793854475021362 img loss 1.257537603378296 img loss 1.2532838582992554 img loss 1.208778738975525 img loss 1.3173611164093018 img loss 1.1722086668014526 img loss 1.327852487564087 img loss 1.2693299055099487 img loss 1.274925708770752 img loss 1.3470101356506348 img loss 1.2435767650604248 img loss 1.2920948266983032 img loss 1.3212246894836426 img loss 1.1968817710876465 img loss 1.249914526939392 img loss 1.1915696859359741 img loss 1.2895625829696655 img loss 1.2911851406097412 img loss 1.2264307737350464 img loss 1.1867594718933105 img loss 1.2593733072280884 img loss 1.2316207885742188 img loss 1.2372549772262573 img loss 1.202906608581543 img loss 1.3052314519882202 img loss 1.2189714908599854 img loss 1.2692124843597412 img loss 1.1937003135681152 img loss 1.2367043495178223 img loss 1.2333943843841553 img loss 1.3108057975769043 img loss 1.287819743156433 img loss 1.225258469581604 img loss 1.2444432973861694 {'loss': 1.2521, 'grad_norm': 0.6724967360496521, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4374585151672363 img loss 1.3265196084976196 img loss 1.4395053386688232 img loss 1.3746918439865112 img loss 1.3522751331329346 img loss 1.2884418964385986 img loss 1.3326044082641602 img loss 1.460394263267517 img loss 1.338026523590088 img loss 1.3751137256622314 img loss 1.5943214893341064 img loss 1.2981960773468018 img loss 1.3961856365203857 img loss 1.2787634134292603 img loss 1.3764584064483643 img loss 1.4624146223068237 img loss 1.2861363887786865 img loss 1.3007831573486328 img loss 1.3679478168487549 img loss 1.3642479181289673 img loss 1.395456075668335 img loss 1.2785974740982056 img loss 1.3362544775009155 img loss 1.296968698501587 img loss 1.2595218420028687 img loss 1.3328046798706055 img loss 1.3025257587432861 img loss 1.3527511358261108 img loss 1.2768677473068237 img loss 1.3801218271255493 img loss 1.4461190700531006 img loss 1.3722158670425415 img loss 1.2508395910263062 img loss 1.32964289188385 img loss 1.379333734512329 img loss 1.3296401500701904 img loss 1.3477712869644165 img loss 1.3462399244308472 img loss 1.3147515058517456 img loss 1.32512366771698 img loss 1.370546579360962 img loss 1.2974450588226318 img loss 1.3657878637313843 img loss 1.3727844953536987 img loss 1.3519632816314697 img loss 1.2428756952285767 img loss 1.217501163482666 img loss 1.3237357139587402 img loss 1.3596957921981812 img loss 1.3481595516204834 img loss 1.2427927255630493 img loss 1.4205790758132935 img loss 1.3827910423278809 img loss 1.2448194026947021 img loss 1.2689927816390991 img loss 1.3826276063919067 img loss 1.3346822261810303 img loss 1.2990673780441284 img loss 1.3294435739517212 img loss 1.485999584197998 img loss 1.3770010471343994 img loss 1.2886579036712646 img loss 1.3367588520050049 img loss 1.2845796346664429 img loss 1.209930658340454 img loss 1.336057186126709 img loss 1.2999436855316162 img loss 1.3547505140304565 img loss 1.3058990240097046 img loss 1.380460500717163 img loss 1.3159840106964111 img loss 1.336248755455017 img loss 1.4126631021499634 img loss 1.373234510421753 img loss 1.403939962387085 img loss 1.2844427824020386 img loss 1.4389151334762573 img loss 1.3461048603057861 img loss 1.404201865196228 img loss 1.3116387128829956 img loss 1.3130062818527222 img loss 1.3428330421447754 img loss 1.292954921722412 img loss 1.3986440896987915 img loss 1.347272515296936 img loss 1.356317162513733 img loss 1.360135555267334 img loss 1.325967788696289 img loss 1.2482099533081055 img loss 1.3467400074005127 img loss 1.322827696800232 img loss 1.4088780879974365 img loss 1.3392822742462158 img loss 1.2304348945617676 img loss 1.3359401226043701 img loss 1.309454321861267 img loss 1.2512493133544922 img loss 1.4343618154525757 img loss 1.2779473066329956 img loss 1.505182147026062 img loss 1.4137589931488037 img loss 1.3401329517364502 img loss 1.409613847732544 img loss 1.3179374933242798 img loss 1.42937171459198 img loss 1.3646676540374756 img loss 1.4004292488098145 img loss 1.3364640474319458 img loss 1.3356517553329468 img loss 1.3660944700241089 img loss 1.236155390739441 img loss 1.485668420791626 img loss 1.394315481185913 img loss 1.2976224422454834 img loss 1.2719367742538452 img loss 1.303453803062439 img loss 1.2090246677398682 img loss 1.3425430059432983 img loss 1.290464997291565 img loss 1.3666139841079712 img loss 1.3683983087539673 img loss 1.3414390087127686 img loss 1.4079387187957764 img loss 1.2716766595840454 img loss 1.3677964210510254 img loss 1.345431923866272 img loss 1.3894819021224976 img loss 1.299202561378479 {'loss': 1.3437, 'grad_norm': 0.3228718638420105, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2866127490997314 img loss 1.1666840314865112 img loss 1.2490978240966797 img loss 1.1582481861114502 img loss 1.2673176527023315 img loss 1.243211030960083 img loss 1.252318024635315 img loss 1.271665334701538 img loss 1.2992690801620483 img loss 1.2402677536010742 img loss 1.2487858533859253 img loss 1.2233508825302124 img loss 1.2225944995880127 img loss 1.2178360223770142 img loss 1.2361944913864136 img loss 1.182267427444458 img loss 1.213836669921875 img loss 1.2256540060043335 img loss 1.3231632709503174 img loss 1.2781977653503418 img loss 1.1838977336883545 img loss 1.2019604444503784 img loss 1.3002983331680298 img loss 1.2667261362075806 img loss 1.1877086162567139 img loss 1.2652634382247925 img loss 1.2248882055282593 img loss 1.298006296157837 img loss 1.204978346824646 img loss 1.2355931997299194 img loss 1.1377320289611816 img loss 1.2814252376556396 img loss 1.2244213819503784 img loss 1.3131155967712402 img loss 1.2692705392837524 img loss 1.2224544286727905 img loss 1.1525871753692627 img loss 1.1797090768814087 img loss 1.2051358222961426 img loss 1.2375630140304565 img loss 1.2583507299423218 img loss 1.1790860891342163 img loss 1.1604328155517578 img loss 1.3002369403839111 img loss 1.2555515766143799 img loss 1.2514171600341797 img loss 1.2341551780700684 img loss 1.1645698547363281 img loss 1.2360237836837769 img loss 1.4008649587631226 img loss 1.2144924402236938 img loss 1.2183279991149902 img loss 1.3056997060775757 img loss 1.2340903282165527 img loss 1.2866723537445068 img loss 1.2949497699737549 img loss 1.2469853162765503 img loss 1.1504392623901367 img loss 1.23287832736969 img loss 1.290749430656433 img loss 1.1987526416778564 img loss 1.2549957036972046 img loss 1.2136077880859375 img loss 1.199723720550537 img loss 1.2109991312026978 img loss 1.2684221267700195 img loss 1.2710144519805908 img loss 1.1417055130004883 img loss 1.3072068691253662 img loss 1.2825287580490112 img loss 1.3687033653259277 img loss 1.2234857082366943 img loss 1.249447226524353 img loss 1.2175307273864746 img loss 1.2442353963851929 img loss 1.3096013069152832 img loss 1.1927599906921387 img loss 1.2475788593292236 img loss 1.251715064048767 img loss 1.2049384117126465 img loss 1.240955114364624 img loss 1.1560312509536743 img loss 1.247233271598816 img loss 1.1934343576431274 img loss 1.1659162044525146 img loss 1.210823893547058 img loss 1.1840832233428955 img loss 1.2101166248321533 img loss 1.2057499885559082 img loss 1.2974742650985718 img loss 1.2773405313491821 img loss 1.294871211051941 img loss 1.266883134841919 img loss 1.2162649631500244 img loss 1.1921253204345703 img loss 1.2755663394927979 img loss 1.28107488155365 img loss 1.1983718872070312 img loss 1.1863402128219604 img loss 1.2880083322525024 img loss 1.2103347778320312 img loss 1.1896569728851318 img loss 1.2335684299468994 img loss 1.2819817066192627 img loss 1.235899567604065 img loss 1.236357569694519 img loss 1.3346867561340332 img loss 1.2971851825714111 img loss 1.234992504119873 img loss 1.2547250986099243 img loss 1.2783935070037842 img loss 1.269487738609314 img loss 1.1990419626235962 img loss 1.2270735502243042 img loss 1.2476071119308472 img loss 1.2031093835830688 img loss 1.1791982650756836 img loss 1.1735714673995972 img loss 1.2170765399932861 img loss 1.256980299949646 img loss 1.28171968460083 img loss 1.2053425312042236 img loss 1.1849446296691895 img loss 1.2851295471191406 img loss 1.2354390621185303 img loss 1.2682167291641235 img loss 1.2056635618209839 img loss 1.2025954723358154 {'loss': 1.2374, 'grad_norm': 0.34812799096107483, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.190768837928772 img loss 1.247344732284546 img loss 1.3149120807647705 img loss 1.2970434427261353 img loss 1.2059004306793213 img loss 1.2760555744171143 img loss 1.2009549140930176 img loss 1.235416293144226 img loss 1.3212013244628906 img loss 1.2257721424102783 img loss 1.2347310781478882 img loss 1.2051982879638672 img loss 1.161088466644287 img loss 1.2305988073349 img loss 1.2407431602478027 img loss 1.211087703704834 img loss 1.2718794345855713 img loss 1.1419721841812134 img loss 1.2895864248275757 img loss 1.2120298147201538 img loss 1.2373875379562378 img loss 1.2838773727416992 img loss 1.2797088623046875 img loss 1.2448562383651733 img loss 1.3216907978057861 img loss 1.254656434059143 img loss 1.2920849323272705 img loss 1.1566767692565918 img loss 1.2256736755371094 img loss 1.141398310661316 img loss 1.2039896249771118 img loss 1.2665972709655762 img loss 1.4384219646453857 img loss 1.271396517753601 img loss 1.27877676486969 img loss 1.2645583152770996 img loss 1.206742763519287 img loss 1.2445954084396362 img loss 1.2507281303405762 img loss 1.156511902809143 img loss 1.172597885131836 img loss 1.186248779296875 img loss 1.1417816877365112 img loss 1.2463709115982056 img loss 1.1880747079849243 img loss 1.1526548862457275 img loss 1.1897891759872437 img loss 1.1911591291427612 img loss 1.2960113286972046 img loss 1.192788004875183 img loss 1.3405059576034546 img loss 1.2156180143356323 img loss 1.154618740081787 img loss 1.2072843313217163 img loss 1.1868906021118164 img loss 1.250084638595581 img loss 1.2006964683532715 img loss 1.31989324092865 img loss 1.2159249782562256 img loss 1.21453857421875 img loss 1.3147157430648804 img loss 1.2732709646224976 img loss 1.2734564542770386 img loss 1.2199372053146362 img loss 1.2610869407653809 img loss 1.234068512916565 img loss 1.3218820095062256 img loss 1.2359188795089722 img loss 1.2342668771743774 img loss 1.2563927173614502 img loss 1.14352285861969 img loss 1.2672781944274902 img loss 1.3185428380966187 img loss 1.2752642631530762 img loss 1.162757158279419 img loss 1.3379005193710327 img loss 1.2190732955932617 img loss 1.186300277709961 img loss 1.2790286540985107 img loss 1.3286141157150269 img loss 1.307223916053772 img loss 1.2294232845306396 img loss 1.2248808145523071 img loss 1.239817500114441 img loss 1.1113632917404175 img loss 1.2808212041854858 img loss 1.257814884185791 img loss 1.124454140663147 img loss 1.2458219528198242 img loss 1.2307746410369873 img loss 1.2888615131378174 img loss 1.2038636207580566 img loss 1.2502150535583496 img loss 1.2076174020767212 img loss 1.0974763631820679 img loss 1.1912858486175537 img loss 1.227945327758789 img loss 1.3427735567092896 img loss 1.1820663213729858 img loss 1.1859214305877686 img loss 1.1979659795761108 img loss 1.16769278049469 img loss 1.2814395427703857 img loss 1.1821470260620117 img loss 1.250575304031372 img loss 1.2448177337646484 img loss 1.1738300323486328 img loss 1.2027052640914917 img loss 1.179840087890625 img loss 1.1644142866134644 img loss 1.219927191734314 img loss 1.2021386623382568 img loss 1.1420272588729858 img loss 1.1953346729278564 img loss 1.1011576652526855 img loss 1.1872832775115967 img loss 1.2081512212753296 img loss 1.1998896598815918 img loss 1.220993995666504 img loss 1.1962287425994873 img loss 1.1322870254516602 img loss 1.2339975833892822 img loss 1.2123773097991943 img loss 1.197668433189392 img loss 1.211952567100525 img loss 1.2008857727050781 img loss 1.185084581375122 img loss 1.2253239154815674 {'loss': 1.2273, 'grad_norm': 0.3028160631656647, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.437139868736267 img loss 1.5137258768081665 img loss 1.4844356775283813 img loss 1.4063422679901123 img loss 1.5153599977493286 img loss 1.390610933303833 img loss 1.3627636432647705 img loss 1.3303192853927612 img loss 1.385159969329834 img loss 1.3853715658187866 img loss 1.5087201595306396 img loss 1.506179928779602 img loss 1.2955381870269775 img loss 1.292834997177124 img loss 1.4129846096038818 img loss 1.3823884725570679 img loss 1.3780248165130615 img loss 1.4451639652252197 img loss 1.4083552360534668 img loss 1.4818884134292603 img loss 1.337891936302185 img loss 1.4333670139312744 img loss 1.487800121307373 img loss 1.5454434156417847 img loss 1.357166051864624 img loss 1.4374330043792725 img loss 1.3284449577331543 img loss 1.4256036281585693 img loss 1.336119294166565 img loss 1.4529298543930054 img loss 1.3831883668899536 img loss 1.3233000040054321 img loss 1.3926979303359985 img loss 1.374295711517334 img loss 1.534493327140808 img loss 1.2447426319122314 img loss 1.4043850898742676 img loss 1.3305898904800415 img loss 1.5589978694915771img loss 1.3781206607818604 img loss 1.5162473917007446 img loss 1.411276936531067 img loss 1.35151207447052 img loss 1.4519002437591553 img loss 1.475451111793518 img loss 1.4265421628952026 img loss 1.482115387916565 img loss 1.4469200372695923 img loss 1.4146162271499634 img loss 1.4315741062164307 img loss 1.3660614490509033 img loss 1.4446946382522583 img loss 1.4126840829849243 img loss 1.4610024690628052 img loss 1.4562441110610962 img loss 1.4222066402435303 img loss 1.5343682765960693 img loss 1.3383748531341553 img loss 1.4750173091888428 img loss 1.4621392488479614 img loss 1.411769151687622 img loss 1.398007869720459 img loss 1.3457742929458618 img loss 1.3534741401672363 img loss 1.4675620794296265 img loss 1.483383297920227 img loss 1.4960678815841675 img loss 1.4361646175384521 img loss 1.3470990657806396 img loss 1.3475852012634277 img loss 1.4389996528625488 img loss 1.4417825937271118 img loss 1.4828212261199951 img loss 1.3557599782943726 img loss 1.4268641471862793 img loss 1.4174782037734985 img loss 1.4725595712661743 img loss 1.5187801122665405 img loss 1.3723292350769043 img loss 1.3284039497375488 img loss 1.4482711553573608 img loss 1.3754594326019287 img loss 1.4185670614242554 img loss 1.4500725269317627 img loss 1.3501217365264893 img loss 1.4484074115753174 img loss 1.4103337526321411 img loss 1.4186984300613403 img loss 1.2443573474884033 img loss 1.4038552045822144 img loss 1.4715076684951782 img loss 1.3290457725524902 img loss 1.3817007541656494 img loss 1.4231456518173218 img loss 1.5243879556655884 img loss 1.4237083196640015 img loss 1.2832176685333252 img loss 1.3794691562652588 img loss 1.3895665407180786 img loss 1.4077197313308716 img loss 1.43216073513031 img loss 1.4580903053283691 img loss 1.442033052444458 img loss 1.4683080911636353 img loss 1.4409924745559692 img loss 1.4011280536651611 img loss 1.477653980255127 img loss 1.3962348699569702 img loss 1.3566969633102417 img loss 1.3998315334320068 img loss 1.4192650318145752 img loss 1.3874651193618774 img loss 1.2569950819015503 img loss 1.4491370916366577 img loss 1.559099555015564 img loss 1.2907339334487915 img loss 1.3831297159194946 img loss 1.2842069864273071 img loss 1.4083342552185059 img loss 1.4287949800491333 img loss 1.4168649911880493 img loss 1.4096547365188599 img loss 1.283426284790039 img loss 1.4296635389328003 img loss 1.3415371179580688 img loss 1.5237923860549927 img loss 1.4498181343078613 img loss 1.44197678565979 {'loss': 1.4135, 'grad_norm': 0.23649364709854126, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2224159240722656 img loss 1.2916591167449951 img loss 1.216074824333191 img loss 1.2100540399551392 img loss 1.2438526153564453 img loss 1.267356276512146 img loss 1.196533203125 img loss 1.225706696510315 img loss 1.2014870643615723 img loss 1.2255611419677734 img loss 1.2401129007339478 img loss 1.257617712020874 img loss 1.2485198974609375 img loss 1.2064909934997559 img loss 1.2559679746627808 img loss 1.2479828596115112 img loss 1.2071993350982666 img loss 1.2177941799163818 img loss 1.3269989490509033 img loss 1.278786063194275 img loss 1.2658216953277588 img loss 1.2778459787368774 img loss 1.1951398849487305 img loss 1.2925251722335815 img loss 1.2080552577972412 img loss 1.263245940208435 img loss 1.2810992002487183 img loss 1.2976921796798706 img loss 1.2802530527114868 img loss 1.3116108179092407 img loss 1.2687873840332031 img loss 1.2350656986236572 img loss 1.2661073207855225 img loss 1.2574447393417358 img loss 1.2892723083496094 img loss 1.2734512090682983 img loss 1.2636539936065674 img loss 1.2269123792648315 img loss 1.210829257965088 img loss 1.2932953834533691 img loss 1.4195764064788818 img loss 1.2741162776947021 img loss 1.2607109546661377 img loss 1.2740957736968994 img loss 1.200483798980713 img loss 1.2087455987930298 img loss 1.2112020254135132 img loss 1.2691959142684937 img loss 1.259230136871338 img loss 1.247356653213501 img loss 1.24811589717865 img loss 1.2231425046920776 img loss 1.235551357269287 img loss 1.2686996459960938 img loss 1.3169559240341187 img loss 1.2022316455841064 img loss 1.2912043333053589 img loss 1.258889079093933 img loss 1.225441336631775 img loss 1.2521055936813354 img loss 1.2061337232589722 img loss 1.2214078903198242 img loss 1.2987167835235596 img loss 1.287771463394165 img loss 1.2964237928390503 img loss 1.2596222162246704 img loss 1.1752113103866577 img loss 1.2733007669448853 img loss 1.2158873081207275 img loss 1.2706236839294434 img loss 1.2550578117370605 img loss 1.2457098960876465 img loss 1.248447060585022 img loss 1.1951767206192017 img loss 1.2059046030044556 img loss 1.2728198766708374 img loss 1.2165378332138062 img loss 1.3063675165176392 img loss 1.2694251537322998 img loss 1.2680020332336426 img loss 1.3310903310775757 img loss 1.3006987571716309 img loss 1.27708101272583 img loss 1.2725685834884644 img loss 1.2463281154632568 img loss 1.2291148900985718 img loss 1.2601131200790405 img loss 1.2671501636505127 img loss 1.2160805463790894 img loss 1.2926197052001953 img loss 1.2085117101669312 img loss 1.2361068725585938 img loss 1.234989881515503 img loss 1.2522538900375366 img loss 1.293154239654541 img loss 1.2040705680847168 img loss 1.3312705755233765 img loss 1.261212706565857 img loss 1.2690603733062744 img loss 1.2574437856674194 img loss 1.274362325668335 img loss 1.3276114463806152 img loss 1.2718671560287476 img loss 1.2709290981292725 img loss 1.1947424411773682 img loss 1.2708046436309814 img loss 1.246448040008545 img loss 1.2733333110809326 img loss 1.3168834447860718 img loss 1.2533193826675415 img loss 1.1817787885665894 img loss 1.254757285118103 img loss 1.2115037441253662 img loss 1.198290467262268 img loss 1.2119801044464111 img loss 1.1964354515075684 img loss 1.234070062637329 img loss 1.2139595746994019 img loss 1.2109692096710205 img loss 1.2896350622177124 img loss 1.2808904647827148 img loss 1.269187569618225 img loss 1.3583629131317139 img loss 1.2947096824645996 img loss 1.291630506515503 img loss 1.1965608596801758 img loss 1.27347731590271 img loss 1.2348583936691284 {'loss': 1.2541, 'grad_norm': 0.2525039613246918, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2539366483688354 img loss 1.2040666341781616 img loss 1.1619324684143066 img loss 1.1576383113861084 img loss 1.1639118194580078 img loss 1.1626914739608765 img loss 1.231921911239624 img loss 1.17192542552948 img loss 1.2097938060760498 img loss 1.2306016683578491 img loss 1.2387313842773438 img loss 1.2574291229248047 img loss 1.15139639377594 img loss 1.1980137825012207 img loss 1.3269609212875366 img loss 1.2081607580184937 img loss 1.2154220342636108 img loss 1.258445143699646 img loss 1.2283754348754883 img loss 1.135680913925171 img loss 1.258521556854248 img loss 1.1879974603652954 img loss 1.2613991498947144 img loss 1.2877088785171509 img loss 1.2030452489852905 img loss 1.2014403343200684 img loss 1.1771408319473267 img loss 1.2703574895858765 img loss 1.1705893278121948 img loss 1.1458990573883057 img loss 1.1897637844085693 img loss 1.2580870389938354 img loss 1.1909153461456299 img loss 1.2224711179733276 img loss 1.2549495697021484 img loss 1.1460163593292236 img loss 1.3073383569717407 img loss 1.154367208480835 img loss 1.319119930267334 img loss 1.224053144454956 img loss 1.2555569410324097 img loss 1.0949974060058594 img loss 1.2259912490844727 img loss 1.1891345977783203 img loss 1.2442247867584229 img loss 1.2208058834075928 img loss 1.2317148447036743 img loss 1.2095484733581543 img loss 1.1757093667984009 img loss 1.2373815774917603 img loss 1.305044174194336 img loss 1.1748799085617065 img loss 1.1952060461044312 img loss 1.2069838047027588 img loss 1.264290690422058 img loss 1.285580039024353 img loss 1.2219884395599365 img loss 1.2620280981063843 img loss 1.2272584438323975 img loss 1.2073369026184082 img loss 1.1951022148132324 img loss 1.2401576042175293 img loss 1.2378785610198975 img loss 1.2124953269958496 img loss 1.2657678127288818 img loss 1.2395603656768799 img loss 1.2236227989196777 img loss 1.154337763786316 img loss 1.2587957382202148 img loss 1.2489113807678223 img loss 1.2709498405456543 img loss 1.2481682300567627 img loss 1.225314736366272 img loss 1.2597540616989136 img loss 1.1754791736602783 img loss 1.2965410947799683 img loss 1.2331390380859375 img loss 1.1868823766708374 img loss 1.2276121377944946 img loss 1.2303533554077148 img loss 1.2848682403564453 img loss 1.2278934717178345 img loss 1.2191938161849976 img loss 1.1902774572372437 img loss 1.2197349071502686 img loss 1.175870418548584 img loss 1.2736119031906128 img loss 1.1758933067321777 img loss 1.22787344455719 img loss 1.2931156158447266 img loss 1.17857825756073 img loss 1.2313551902770996 img loss 1.2434120178222656 img loss 1.2075504064559937 img loss 1.248337745666504 img loss 1.2814481258392334 img loss 1.221500039100647 img loss 1.226367473602295 img loss 1.2125896215438843 img loss 1.2386635541915894 img loss 1.2073464393615723 img loss 1.2875175476074219 img loss 1.238195776939392 img loss 1.2289576530456543 img loss 1.2338378429412842 img loss 1.148789644241333 img loss 1.2764087915420532 img loss 1.2523729801177979 img loss 1.2151588201522827 img loss 1.2244385480880737 img loss 1.2237372398376465 img loss 1.23808753490448 img loss 1.2234916687011719 img loss 1.2777907848358154 img loss 1.2021052837371826 img loss 1.280405044555664 img loss 1.230894923210144 img loss 1.2521476745605469 img loss 1.1979178190231323 img loss 1.2853201627731323 img loss 1.2496296167373657 img loss 1.2287859916687012 img loss 1.1998226642608643 img loss 1.2556228637695312 img loss 1.2181555032730103 img loss 1.179293155670166 img loss 1.1861262321472168 img loss 1.2432571649551392 {'loss': 1.2244, 'grad_norm': 0.3719521760940552, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2968864440917969 img loss 1.272358775138855 img loss 1.2326186895370483 img loss 1.195197343826294 img loss 1.2255206108093262 img loss 1.1848485469818115 img loss 1.2202699184417725 img loss 1.263925313949585 img loss 1.2134040594100952 img loss 1.2262998819351196 img loss 1.2001419067382812 img loss 1.1398122310638428 img loss 1.1546969413757324 img loss 1.2399128675460815 img loss 1.253344178199768 img loss 1.2657169103622437 img loss 1.1852376461029053 img loss 1.303200602531433 img loss 1.2543529272079468 img loss 1.235640048980713 img loss 1.1637524366378784 img loss 1.1752331256866455 img loss 1.221815824508667 img loss 1.151761531829834 img loss 1.1506855487823486 img loss 1.2044084072113037 img loss 1.2308642864227295 img loss 1.129384994506836 img loss 1.1666159629821777 img loss 1.140346884727478 img loss 1.206054449081421 img loss 1.2108533382415771 img loss 1.1563268899917603 img loss 1.214585542678833 img loss 1.3042762279510498 img loss 1.2286800146102905 img loss 1.2581572532653809 img loss 1.1465013027191162 img loss 1.2177075147628784 img loss 1.3999296426773071 img loss 1.179999828338623 img loss 1.238617181777954 img loss 1.1998265981674194 img loss 1.2519508600234985 img loss 1.171834945678711 img loss 1.200598955154419 img loss 1.1791152954101562 img loss 1.2733522653579712 img loss 1.2475686073303223 img loss 1.218077301979065 img loss 1.169664740562439 img loss 1.2373892068862915 img loss 1.1736911535263062 img loss 1.2833836078643799 img loss 1.2540689706802368 img loss 1.267071008682251 img loss 1.1864155530929565 img loss 1.159018874168396 img loss 1.1502043008804321 img loss 1.1154837608337402 img loss 1.189522385597229 img loss 1.1730544567108154 img loss 1.259326457977295 img loss 1.1536827087402344 img loss 1.2311595678329468 img loss 1.2204334735870361 img loss 1.1670423746109009 img loss 1.152584433555603 img loss 1.2059848308563232 img loss 1.1987762451171875 img loss 1.2053059339523315 img loss 1.2235922813415527 img loss 1.2023885250091553 img loss 1.2529197931289673 img loss 1.231490135192871 img loss 1.2245639562606812 img loss 1.176041603088379 img loss 1.1639630794525146 img loss 1.2543882131576538 img loss 1.229765772819519 img loss 1.2597105503082275 img loss 1.26921546459198 img loss 1.1607826948165894 img loss 1.205770492553711 img loss 1.2507126331329346 img loss 1.1427464485168457 img loss 1.1579065322875977 img loss 1.1511242389678955 img loss 1.1683709621429443 img loss 1.380786418914795 img loss 1.1446857452392578 img loss 1.183717131614685 img loss 1.1779074668884277 img loss 1.2441391944885254 img loss 1.233986496925354 img loss 1.1747772693634033 img loss 1.1884965896606445 img loss 1.3067317008972168 img loss 1.146249771118164 img loss 1.1486945152282715 img loss 1.1923227310180664 img loss 1.1571881771087646 img loss 1.1794259548187256 img loss 1.1753368377685547 img loss 1.1568386554718018 img loss 1.1586196422576904 img loss 1.2238680124282837 img loss 1.1700180768966675 img loss 1.170290231704712 img loss 1.1494263410568237 img loss 1.2036628723144531 img loss 1.20793879032135 img loss 1.2115740776062012 img loss 1.1972441673278809 img loss 1.2275584936141968 img loss 1.161306381225586 img loss 1.2247742414474487 img loss 1.18817138671875 img loss 1.245914340019226 img loss 1.2390927076339722 img loss 1.2369111776351929 img loss 1.1774394512176514 img loss 1.2662312984466553 img loss 1.212348222732544 img loss 1.3395154476165771 img loss 1.1784672737121582 img loss 1.1797935962677002 img loss 1.1898044347763062 {'loss': 1.2081, 'grad_norm': 0.1793840527534485, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.171890139579773 img loss 1.1527966260910034 img loss 1.2179263830184937 img loss 1.1367483139038086 img loss 1.2423076629638672 img loss 1.2038500308990479 img loss 1.2654980421066284 img loss 1.1653598546981812 img loss 1.2026718854904175 img loss 1.2302608489990234 img loss 1.2598274946212769 img loss 1.266895055770874 img loss 1.241943359375 img loss 1.2687424421310425 img loss 1.2319297790527344 img loss 1.2337015867233276 img loss 1.24834406375885 img loss 1.216796875 img loss 1.2017258405685425 img loss 1.2576534748077393 img loss 1.2340717315673828 img loss 1.1475168466567993 img loss 1.2105306386947632 img loss 1.1665620803833008 img loss 1.252265214920044 img loss 1.1664693355560303 img loss 1.3057198524475098 img loss 1.1962822675704956 img loss 1.2444977760314941 img loss 1.1392990350723267 img loss 1.1861406564712524 img loss 1.141754388809204 img loss 1.2378166913986206 img loss 1.1857393980026245 img loss 1.2085994482040405 img loss 1.237971544265747 img loss 1.2398957014083862 img loss 1.178332805633545 img loss 1.2293472290039062 img loss 1.2078685760498047 img loss 1.2177625894546509 img loss 1.2248280048370361 img loss 1.2307566404342651 img loss 1.1713440418243408 img loss 1.1865839958190918 img loss 1.313077688217163 img loss 1.1993367671966553 img loss 1.2796838283538818 img loss 1.1887035369873047 img loss 1.2494534254074097 img loss 1.1452206373214722 img loss 1.170691728591919 img loss 1.2258505821228027 img loss 1.170499563217163 img loss 1.1659190654754639 img loss 1.179362177848816 img loss 1.210995078086853 img loss 1.255064606666565 img loss 1.1618560552597046 img loss 1.2651643753051758 img loss 1.3057401180267334 img loss 1.1986987590789795 img loss 1.1576181650161743 img loss 1.2143993377685547 img loss 1.1598966121673584 img loss 1.208106279373169 img loss 1.248246669769287 img loss 1.1737005710601807 img loss 1.2500807046890259 img loss 1.1841528415679932 img loss 1.2646530866622925 img loss 1.1530767679214478 img loss 1.1722592115402222 img loss 1.221078634262085 img loss 1.2278037071228027 img loss 1.2902679443359375 img loss 1.2490037679672241 img loss 1.2563509941101074 img loss 1.2552727460861206 img loss 1.2106595039367676 img loss 1.2383078336715698 img loss 1.248368501663208 img loss 1.17208993434906 img loss 1.2833573818206787 img loss 1.2620010375976562 img loss 1.2229418754577637 img loss 1.1719791889190674 img loss 1.2546948194503784 img loss 1.1695009469985962 img loss 1.2298412322998047 img loss 1.182183861732483 img loss 1.1338798999786377 img loss 1.2696433067321777 img loss 1.1553019285202026 img loss 1.1438229084014893 img loss 1.2285009622573853 img loss 1.2251081466674805 img loss 1.2258529663085938 img loss 1.1570075750350952 img loss 1.1571296453475952 img loss 1.2028964757919312 img loss 1.1935791969299316 img loss 1.2114852666854858 img loss 1.237290859222412 img loss 1.1684684753417969 img loss 1.2337251901626587 img loss 1.1842386722564697 img loss 1.255624771118164 img loss 1.2127031087875366 img loss 1.2021719217300415 img loss 1.186155080795288 img loss 1.2331091165542603 img loss 1.2327673435211182 img loss 1.1422706842422485 img loss 1.2057740688323975 img loss 1.1796793937683105 img loss 1.189822793006897 img loss 1.2236632108688354 img loss 1.195351004600525 img loss 1.2123217582702637 img loss 1.2311763763427734 img loss 1.1823177337646484 img loss 1.1885210275650024 img loss 1.1713072061538696 img loss 1.1824510097503662 img loss 1.1873290538787842 img loss 1.132941484451294 img loss 1.26539945602417 {'loss': 1.2103, 'grad_norm': 0.3279210329055786, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.505858302116394 img loss 1.4624072313308716 img loss 1.580359697341919 img loss 1.539537787437439 img loss 1.5964778661727905 img loss 1.4707762002944946 img loss 1.5212029218673706 img loss 1.761695384979248 img loss 1.5503838062286377 img loss 1.449571967124939 img loss 1.4283254146575928 img loss 1.506952166557312 img loss 1.5786157846450806 img loss 1.4508392810821533 img loss 1.5320361852645874 img loss 1.5435452461242676 img loss 1.4924538135528564 img loss 1.48759925365448 img loss 1.4614139795303345 img loss 1.5210057497024536 img loss 1.6198251247406006 img loss 1.4594435691833496 img loss 1.5655471086502075 img loss 1.5909945964813232 img loss 1.4417730569839478 img loss 1.5125352144241333 img loss 1.5462297201156616 img loss 1.5337779521942139 img loss 1.5236890316009521 img loss 1.5136135816574097 img loss 1.6759780645370483 img loss 1.6420315504074097 img loss 1.6250132322311401 img loss 1.5037375688552856 img loss 1.6166175603866577 img loss 1.5721853971481323 img loss 1.6002942323684692 img loss 1.589583158493042 img loss 1.5417882204055786 img loss 1.5074403285980225 img loss 1.564276933670044 img loss 1.6036064624786377 img loss 1.5719064474105835 img loss 1.5314425230026245 img loss 1.39139723777771 img loss 1.507697343826294 img loss 1.518592357635498 img loss 1.467957854270935 img loss 1.5016570091247559 img loss 1.552274465560913 img loss 1.5379351377487183 img loss 1.5295902490615845 img loss 1.5894713401794434 img loss 1.5406510829925537 img loss 1.4373763799667358 img loss 1.487391710281372 img loss 1.3854701519012451 img loss 1.5967795848846436 img loss 1.569435715675354 img loss 1.4506219625473022 img loss 1.734384298324585 img loss 1.5313982963562012 img loss 1.4758751392364502 img loss 1.5556334257125854 img loss 1.5830820798873901 img loss 1.5728756189346313 img loss 1.558700442314148 img loss 1.4638723134994507 img loss 1.4047397375106812 img loss 1.6114847660064697 img loss 1.5911959409713745 img loss 1.627734899520874 img loss 1.3984607458114624 img loss 1.6242412328720093 img loss 1.5367668867111206 img loss 1.620944857597351 img loss 1.4615684747695923 img loss 1.510919451713562 img loss 1.5162084102630615 img loss 1.619064450263977 img loss 1.66447913646698 img loss 1.6670124530792236 img loss 1.5154575109481812 img loss 1.6111339330673218 img loss 1.58071768283844 img loss 1.448453664779663 img loss 1.4889663457870483 img loss 1.432173252105713 img loss 1.4830641746520996 img loss 1.5779063701629639 img loss 1.4670361280441284 img loss 1.5055352449417114 img loss 1.5373286008834839 img loss 1.598580241203308 img loss 1.6308163404464722 img loss 1.573671579360962 img loss 1.47657310962677 img loss 1.4799284934997559 img loss 1.5605608224868774 img loss 1.5465447902679443 img loss 1.4303251504898071 img loss 1.5739825963974 img loss 1.464636206626892 img loss 1.5794960260391235 img loss 1.692177176475525 img loss 1.553646206855774 img loss 1.5390746593475342 img loss 1.4984608888626099 img loss 1.6474287509918213 img loss 1.4329122304916382 img loss 1.6223289966583252 img loss 1.5521513223648071 img loss 1.512668251991272 img loss 1.513984203338623 img loss 1.735286831855774 img loss 1.521114468574524 img loss 1.5463252067565918 img loss 1.655150055885315 img loss 1.5000444650650024 img loss 1.3584977388381958 img loss 1.5132611989974976 img loss 1.5052953958511353 img loss 1.5539367198944092 img loss 1.6242365837097168 img loss 1.5997517108917236 img loss 1.5354076623916626 img loss 1.5394492149353027 img loss 1.6530975103378296 {'loss': 1.5411, 'grad_norm': 0.3041912317276001, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.5553488731384277 img loss 1.5200306177139282 img loss 1.5319198369979858 img loss 1.5031697750091553 img loss 1.5296213626861572 img loss 1.5096029043197632 img loss 1.5328010320663452 img loss 1.5461020469665527 img loss 1.4300055503845215 img loss 1.5497562885284424 img loss 1.5286928415298462 img loss 1.5427383184432983 img loss 1.597610592842102 img loss 1.580889344215393 img loss 1.4321510791778564 img loss 1.3576271533966064 img loss 1.5928157567977905 img loss 1.4387441873550415 img loss 1.4658291339874268 img loss 1.5847315788269043 img loss 1.5779035091400146 img loss 1.475135087966919 img loss 1.6117558479309082 img loss 1.5122262239456177 img loss 1.5394017696380615 img loss 1.6214295625686646 img loss 1.5815223455429077 img loss 1.6095786094665527 img loss 1.5501525402069092 img loss 1.3959068059921265 img loss 1.5034079551696777 img loss 1.4360162019729614 img loss 1.6011053323745728 img loss 1.544481635093689 img loss 1.5835950374603271 img loss 1.5322282314300537 img loss 1.6226019859313965 img loss 1.6626617908477783 img loss 1.5348286628723145 img loss 1.532039761543274 img loss 1.4856641292572021 img loss 1.5776114463806152 img loss 1.6700903177261353 img loss 1.483912706375122 img loss 1.6328939199447632 img loss 1.51740300655365 img loss 1.3927253484725952 img loss 1.5005033016204834 img loss 1.5923508405685425 img loss 1.5091376304626465 img loss 1.62639319896698 img loss 1.4927327632904053 img loss 1.463515043258667 img loss 1.5617601871490479 img loss 1.5586549043655396 img loss 1.5788429975509644 img loss 1.5718995332717896 img loss 1.5846574306488037 img loss 1.4959684610366821 img loss 1.5155518054962158 img loss 1.475753903388977 img loss 1.817490816116333 img loss 1.5313944816589355 img loss 1.62601637840271 img loss 1.5985463857650757 img loss 1.4589663743972778 img loss 1.6602972745895386 img loss 1.5535428524017334 img loss 1.614207148551941 img loss 1.5180751085281372 img loss 1.5423341989517212 img loss 1.542141079902649 img loss 1.4540597200393677 img loss 1.50857675075531 img loss 1.5337492227554321 img loss 1.6591647863388062 img loss 1.4979546070098877 img loss 1.4000157117843628 img loss 1.5710378885269165 img loss 1.574806809425354 img loss 1.5812039375305176 img loss 1.560157299041748 img loss 1.5270675420761108 img loss 1.4618037939071655 img loss 1.5393203496932983 img loss 1.482663631439209 img loss 1.565606951713562 img loss 1.4866554737091064 img loss 1.5916016101837158 img loss 1.732612133026123 img loss 1.4801889657974243 img loss 1.4078654050827026 img loss 1.6223466396331787 img loss 1.519050121307373 img loss 1.5870574712753296 img loss 1.6139365434646606 img loss 1.7395470142364502 img loss 1.6824003458023071 img loss 1.5322277545928955 img loss 1.493733286857605 img loss 1.6643203496932983 img loss 1.443041443824768 img loss 1.5006916522979736 img loss 1.4302823543548584 img loss 1.5500352382659912 img loss 1.718349575996399 img loss 1.6482694149017334 img loss 1.4236031770706177 img loss 1.625736117362976 img loss 1.5015207529067993 img loss 1.779710292816162 img loss 1.7045562267303467 img loss 1.6140507459640503 img loss 1.4508588314056396 img loss 1.7549058198928833 img loss 1.6413226127624512 img loss 1.4783892631530762 img loss 1.47421133518219 img loss 1.612320065498352 img loss 1.5519516468048096 img loss 1.4916657209396362 img loss 1.455755591392517 img loss 1.5455644130706787 img loss 1.6471318006515503 img loss 1.461255669593811 img loss 1.6856446266174316 img loss 1.6010578870773315 img loss 1.5136421918869019 {'loss': 1.5507, 'grad_norm': 0.34290850162506104, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2321021556854248 img loss 1.2272104024887085 img loss 1.2412190437316895 img loss 1.2086639404296875 img loss 1.2873026132583618 img loss 1.226161241531372 img loss 1.2039676904678345 img loss 1.2285734415054321 img loss 1.2462774515151978 img loss 1.221320390701294 img loss 1.2466309070587158 img loss 1.249534010887146 img loss 1.2229485511779785 img loss 1.2550106048583984 img loss 1.2571295499801636 img loss 1.253896713256836 img loss 1.2692713737487793 img loss 1.230639100074768 img loss 1.2040162086486816 img loss 1.2119544744491577 img loss 1.2192189693450928 img loss 1.22700834274292 img loss 1.2262920141220093 img loss 1.2542150020599365 img loss 1.2228901386260986 img loss 1.2155154943466187 img loss 1.2402911186218262 img loss 1.2640268802642822 img loss 1.214127779006958 img loss 1.2658389806747437 img loss 1.2619431018829346 img loss 1.2586201429367065 img loss 1.246029257774353 img loss 1.2201178073883057 img loss 1.2509212493896484 img loss 1.202802062034607 img loss 1.2285724878311157 img loss 1.1785545349121094 img loss 1.2453666925430298 img loss 1.3026845455169678 img loss 1.2064213752746582 img loss 1.2195097208023071 img loss 1.2642449140548706 img loss 1.2425405979156494 img loss 1.2728207111358643 img loss 1.2559764385223389 img loss 1.2630550861358643 img loss 1.181735873222351 img loss 1.166747808456421 img loss 1.239268183708191 img loss 1.2086843252182007 img loss 1.2730625867843628 img loss 1.2378273010253906 img loss 1.2569851875305176 img loss 1.2239865064620972 img loss 1.1857352256774902 img loss 1.2118523120880127 img loss 1.2698982954025269 img loss 1.2710089683532715 img loss 1.2605527639389038 img loss 1.2439284324645996 img loss 1.1614387035369873 img loss 1.2695057392120361 img loss 1.2759720087051392 img loss 1.2003906965255737 img loss 1.201401710510254 img loss 1.2086988687515259 img loss 1.261229395866394 img loss 1.295505404472351 img loss 1.2540063858032227 img loss 1.2388684749603271 img loss 1.2010166645050049 img loss 1.2871119976043701 img loss 1.2286990880966187 img loss 1.2586827278137207 img loss 1.2237770557403564 img loss 1.2750141620635986 img loss 1.250007152557373 img loss 1.2493003606796265 img loss 1.2743439674377441 img loss 1.2198597192764282 img loss 1.231972336769104 img loss 1.2154316902160645 img loss 1.2203295230865479 img loss 1.2788788080215454 img loss 1.187437653541565 img loss 1.1815567016601562 img loss 1.2093595266342163 img loss 1.223698377609253 img loss 1.2524027824401855 img loss 1.306954026222229 img loss 1.1910301446914673 img loss 1.2517948150634766 img loss 1.2533628940582275 img loss 1.2636221647262573 img loss 1.3176522254943848 img loss 1.226686716079712 img loss 1.196296215057373 img loss 1.221818447113037 img loss 1.2856861352920532 img loss 1.1647447347640991 img loss 1.2226712703704834 img loss 1.2121517658233643 img loss 1.239148736000061 img loss 1.2545571327209473 img loss 1.247333288192749 img loss 1.234263300895691 img loss 1.2237108945846558 img loss 1.2179577350616455 img loss 1.255348801612854 img loss 1.2303621768951416 img loss 1.2566444873809814 img loss 1.2224993705749512 img loss 1.1854782104492188 img loss 1.2424089908599854 img loss 1.2188137769699097 img loss 1.2572277784347534 img loss 1.2403409481048584 img loss 1.2705731391906738 img loss 1.284409761428833 img loss 1.2480121850967407 img loss 1.2364200353622437 img loss 1.2567803859710693 img loss 1.2031903266906738 img loss 1.2558512687683105 img loss 1.2470051050186157 img loss 1.2207081317901611 img loss 1.2242887020111084 {'loss': 1.2371, 'grad_norm': 0.28165945410728455, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.408897876739502 img loss 1.4440258741378784 img loss 1.3727535009384155 img loss 1.4398484230041504 img loss 1.4174293279647827 img loss 1.406562089920044 img loss 1.368492841720581 img loss 1.3801621198654175 img loss 1.3910068273544312 img loss 1.364825963973999 img loss 1.3652116060256958 img loss 1.4388811588287354 img loss 1.383914828300476 img loss 1.4284799098968506 img loss 1.3546241521835327 img loss 1.4020498991012573 img loss 1.3740003108978271 img loss 1.4413098096847534 img loss 1.4235875606536865 img loss 1.4239064455032349 img loss 1.4309289455413818 img loss 1.4368860721588135 img loss 1.3533519506454468 img loss 1.394349455833435 img loss 1.4379156827926636 img loss 1.3877886533737183 img loss 1.3437062501907349 img loss 1.3048027753829956 img loss 1.3760584592819214 img loss 1.4037187099456787 img loss 1.4444893598556519 img loss 1.3846043348312378 img loss 1.450799822807312 img loss 1.3680249452590942 img loss 1.4325861930847168 img loss 1.3805978298187256 img loss 1.3453911542892456 img loss 1.3868519067764282 img loss 1.4629719257354736 img loss 1.3851354122161865 img loss 1.4873701333999634 img loss 1.398914098739624 img loss 1.4851759672164917 img loss 1.3941738605499268 img loss 1.4220616817474365 img loss 1.6255394220352173 img loss 1.3351476192474365 img loss 1.3613123893737793 img loss 1.3576185703277588 img loss 1.4088990688323975img loss 1.474625825881958 img loss 1.3548438549041748 img loss 1.3565949201583862 img loss 1.4161309003829956 img loss 1.3997819423675537 img loss 1.3962092399597168 img loss 1.3827831745147705 img loss 1.3437062501907349 img loss 1.3699586391448975 img loss 1.406158208847046 img loss 1.44058096408844 img loss 1.5023366212844849 img loss 1.535992980003357 img loss 1.4554553031921387 img loss 1.414784550666809 img loss 1.4524482488632202 img loss 1.3646658658981323 img loss 1.3610748052597046 img loss 1.42178213596344 img loss 1.461409091949463 img loss 1.3700777292251587 img loss 1.362756371498108 img loss 1.4958025217056274 img loss 1.3862098455429077 img loss 1.3537094593048096 img loss 1.3753281831741333 img loss 1.405758261680603 img loss 1.3888468742370605 img loss 1.396392583847046 img loss 1.4528769254684448 img loss 1.3554847240447998 img loss 1.4001133441925049 img loss 1.3431798219680786 img loss 1.493068814277649 img loss 1.3451249599456787 img loss 1.399889349937439 img loss 1.4511998891830444 img loss 1.3374611139297485 img loss 1.3521941900253296 img loss 1.4264165163040161 img loss 1.4596285820007324 img loss 1.3430752754211426 img loss 1.3889422416687012 img loss 1.3147199153900146 img loss 1.3765400648117065 img loss 1.4315487146377563 img loss 1.4221417903900146 img loss 1.311821699142456 img loss 1.3834278583526611 img loss 1.3052253723144531 img loss 1.5684021711349487 img loss 1.4474260807037354 img loss 1.3395612239837646 img loss 1.3252838850021362 img loss 1.410559058189392 img loss 1.3493674993515015 img loss 1.37528395652771 img loss 1.3232440948486328 img loss 1.4680320024490356 img loss 1.3998454809188843 img loss 1.487396001815796 img loss 1.3911877870559692 img loss 1.5512025356292725 img loss 1.4392341375350952 img loss 1.361957311630249 img loss 1.3403609991073608 img loss 1.3731688261032104 img loss 1.463681936264038 img loss 1.4487621784210205 img loss 1.4004051685333252 img loss 1.318678379058838 img loss 1.3787274360656738 img loss 1.406459927558899 img loss 1.4094849824905396 img loss 1.322733759880066 img loss 1.4864754676818848 img loss 1.3209948539733887 img loss 1.516525387763977 {'loss': 1.403, 'grad_norm': 0.3937450349330902, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4432446956634521 img loss 1.5181413888931274 img loss 1.2869060039520264 img loss 1.3163299560546875 img loss 1.4667582511901855 img loss 1.3807851076126099 img loss 1.4231526851654053 img loss 1.312989592552185 img loss 1.6239174604415894 img loss 1.4272973537445068 img loss 1.4512330293655396 img loss 1.496740698814392 img loss 1.4087837934494019 img loss 1.3872507810592651 img loss 1.440641164779663 img loss 1.4887830018997192 img loss 1.3897861242294312 img loss 1.4860279560089111 img loss 1.4071639776229858 img loss 1.369055986404419 img loss 1.2992733716964722 img loss 1.3584831953048706 img loss 1.526009440422058 img loss 1.375352144241333 img loss 1.4362761974334717 img loss 1.4746826887130737 img loss 1.475233554840088 img loss 1.404395341873169 img loss 1.417578935623169 img loss 1.4790987968444824 img loss 1.3848851919174194 img loss 1.4305338859558105 img loss 1.2507328987121582 img loss 1.3228975534439087 img loss 1.428167700767517 img loss 1.4570115804672241 img loss 1.4170105457305908 img loss 1.4622162580490112 img loss 1.3622039556503296 img loss 1.4967973232269287 img loss 1.4497599601745605 img loss 1.3392924070358276 img loss 1.520098090171814 img loss 1.3857131004333496 img loss 1.4286733865737915 img loss 1.3783947229385376 img loss 1.3971571922302246 img loss 1.3711704015731812 img loss 1.354746699333191 img loss 1.4234164953231812 img loss 1.4071494340896606 img loss 1.5427473783493042 img loss 1.4454175233840942 img loss 1.3407032489776611 img loss 1.4028247594833374 img loss 1.3818763494491577 img loss 1.4565678834915161 img loss 1.4441779851913452 img loss 1.4234267473220825 img loss 1.4052304029464722 img loss 1.4608789682388306 img loss 1.353068232536316 img loss 1.3631428480148315 img loss 1.3435178995132446 img loss 1.4122918844223022 img loss 1.4198222160339355 img loss 1.2672780752182007 img loss 1.337816834449768 img loss 1.4232022762298584 img loss 1.4409615993499756 img loss 1.5310496091842651 img loss 1.4174342155456543 img loss 1.4400309324264526 img loss 1.4547919034957886 img loss 1.444079875946045 img loss 1.4102994203567505 img loss 1.4115865230560303 img loss 1.496230959892273 img loss 1.2958121299743652 img loss 1.408429503440857 img loss 1.333064317703247 img loss 1.294790267944336 img loss 1.3388783931732178 img loss 1.4418972730636597 img loss 1.3454736471176147 img loss 1.4021843671798706 img loss 1.4244091510772705 img loss 1.349288821220398 img loss 1.4090174436569214 img loss 1.3856626749038696 img loss 1.4390943050384521 img loss 1.4406163692474365 img loss 1.3893029689788818 img loss 1.449426293373108 img loss 1.403389811515808 img loss 1.3984609842300415 img loss 1.6053892374038696 img loss 1.4171960353851318 img loss 1.4211176633834839 img loss 1.3500609397888184 img loss 1.408141016960144 img loss 1.5371763706207275 img loss 1.4669439792633057 img loss 1.4002715349197388 img loss 1.4840242862701416 img loss 1.4158604145050049 img loss 1.4839272499084473 img loss 1.2072663307189941 img loss 1.4918843507766724 img loss 1.38737952709198 img loss 1.3693068027496338 img loss 1.3198745250701904 img loss 1.4075168371200562 img loss 1.3326640129089355 img loss 1.512032389640808 img loss 1.370134711265564 img loss 1.5191065073013306 img loss 1.469693899154663 img loss 1.3907091617584229 img loss 1.432352900505066 img loss 1.5308213233947754 img loss 1.3658068180084229 img loss 1.2632365226745605 img loss 1.2719018459320068 img loss 1.3919214010238647 img loss 1.5261733531951904 img loss 1.3482353687286377 img loss 1.4728015661239624 {'loss': 1.4127, 'grad_norm': 0.2902454435825348, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.6363760232925415 img loss 1.754738211631775 img loss 1.8116461038589478 img loss 1.7318840026855469 img loss 1.743878722190857 img loss 1.7484455108642578 img loss 1.7762601375579834 img loss 1.8945926427841187 img loss 1.665087103843689 img loss 1.7303777933120728 img loss 1.8637431859970093 img loss 1.7658276557922363 img loss 1.6855663061141968 img loss 1.7518402338027954 img loss 1.7298426628112793 img loss 1.7303506135940552 img loss 1.9430679082870483 img loss 1.7665941715240479 img loss 1.8528740406036377 img loss 1.7838040590286255 img loss 1.8242430686950684 img loss 2.0215322971343994 img loss 1.6486252546310425 img loss 1.9426074028015137 img loss 1.9408055543899536 img loss 1.7504199743270874 img loss 1.8146573305130005 img loss 1.8159444332122803 img loss 1.9597285985946655 img loss 1.7960344552993774 img loss 1.8956587314605713 img loss 1.8212370872497559 img loss 1.7224950790405273 img loss 1.7348439693450928 img loss 1.6869479417800903 img loss 1.993638277053833 img loss 1.8456555604934692 img loss 1.8088836669921875 img loss 1.968562364578247 img loss 1.8154493570327759 img loss 1.8345880508422852 img loss 1.9167852401733398 img loss 1.6050732135772705 img loss 1.8929238319396973 img loss 1.9748378992080688 img loss 1.9392949342727661 img loss 1.782264232635498 img loss 1.7383935451507568 img loss 1.772907018661499 img loss 1.8355469703674316 img loss 1.8108354806900024 img loss 1.799802303314209 img loss 1.6740498542785645 img loss 1.6658281087875366 img loss 1.880724549293518 img loss 1.8732011318206787 img loss 1.8712706565856934 img loss 1.8792915344238281 img loss 1.8805803060531616 img loss 1.6297346353530884 img loss 1.7934165000915527 img loss 1.7694942951202393 img loss 1.7201299667358398 img loss 1.9412784576416016 img loss 1.930283784866333 img loss 1.9351941347122192 img loss 1.78738272190094 img loss 2.183915376663208 img loss 1.905800223350525 img loss 1.686774730682373 img loss 1.8570165634155273 img loss 1.8054887056350708 img loss 1.9362878799438477 img loss 1.6318331956863403 img loss 1.9060478210449219 img loss 1.7838388681411743 img loss 1.8143943548202515 img loss 1.7179975509643555 img loss 1.706186056137085 img loss 1.7049498558044434 img loss 1.9126859903335571 img loss 2.0981879234313965 img loss 1.8461443185806274 img loss 2.030834674835205 img loss 1.7597541809082031 img loss 1.6014199256896973 img loss 1.8581712245941162 img loss 1.8512576818466187 img loss 1.8329682350158691 img loss 1.6896291971206665 img loss 1.770612120628357 img loss 1.8886747360229492 img loss 1.757086992263794 img loss 1.7430270910263062 img loss 1.9808192253112793 img loss 1.8308993577957153 img loss 1.7723861932754517img loss 1.7800228595733643 img loss 1.8717968463897705 img loss 1.656962275505066 img loss 1.873684287071228 img loss 1.7467780113220215 img loss 1.8245749473571777 img loss 1.8970341682434082 img loss 1.9850208759307861 img loss 1.8026810884475708 img loss 1.8666868209838867 img loss 1.8043112754821777 img loss 1.6192024946212769 img loss 1.6928004026412964 img loss 1.9135406017303467 img loss 1.7115534543991089 img loss 1.9499784708023071 img loss 1.6289182901382446 img loss 1.8137000799179077 img loss 1.7381417751312256 img loss 1.9441978931427002 img loss 1.5715659856796265 img loss 1.8052785396575928 img loss 1.9640733003616333 img loss 1.873572587966919 img loss 1.8004742860794067 img loss 1.8358373641967773 img loss 1.839404582977295 img loss 1.7837365865707397 img loss 1.9758994579315186 img loss 1.8029075860977173 img loss 1.8560726642608643 {'loss': 1.8157, 'grad_norm': 0.8945974707603455, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.0965007543563843 img loss 1.2719645500183105 img loss 1.1886792182922363 img loss 1.215531587600708 img loss 1.250282883644104 img loss 1.2502515316009521 img loss 1.2477079629898071 img loss 1.2285287380218506 img loss 1.2718732357025146 img loss 1.188701868057251 img loss 1.245387315750122 img loss 1.227889895439148 img loss 1.264261245727539 img loss 1.2005178928375244 img loss 1.193194031715393 img loss 1.2921816110610962 img loss 1.2278180122375488 img loss 1.1458200216293335 img loss 1.179813265800476 img loss 1.2091305255889893 img loss 1.2208048105239868 img loss 1.1837058067321777 img loss 1.2692813873291016 img loss 1.2188431024551392 img loss 1.2999913692474365 img loss 1.290293574333191 img loss 1.2673320770263672 img loss 1.2662994861602783 img loss 1.254154920578003 img loss 1.2269551753997803 img loss 1.2407200336456299 img loss 1.247282862663269 img loss 1.2321875095367432 img loss 1.228606104850769 img loss 1.1941032409667969 img loss 1.1675653457641602 img loss 1.1908234357833862 img loss 1.228092908859253 img loss 1.2891039848327637 img loss 1.2257951498031616 img loss 1.249924898147583 img loss 1.2130759954452515 img loss 1.2391382455825806 img loss 1.164354920387268 img loss 1.2470383644104004 img loss 1.207314133644104 img loss 1.2926931381225586 img loss 1.207002878189087 img loss 1.1660369634628296 img loss 1.216220736503601 img loss 1.2166364192962646 img loss 1.238817572593689 img loss 1.214605689048767 img loss 1.2412632703781128 img loss 1.1966243982315063 img loss 1.2115885019302368 img loss 1.2082241773605347 img loss 1.2382252216339111 img loss 1.2069555521011353 img loss 1.187874674797058 img loss 1.355977177619934 img loss 1.1825499534606934 img loss 1.2374217510223389 img loss 1.2324926853179932 img loss 1.2213947772979736 img loss 1.3070969581604004 img loss 1.2689870595932007 img loss 1.2425259351730347 img loss 1.296532154083252 img loss 1.3463438749313354 img loss 1.2879465818405151 img loss 1.1758780479431152 img loss 1.1845812797546387 img loss 1.2226008176803589 img loss 1.283883810043335 img loss 1.2614264488220215 img loss 1.2343974113464355 img loss 1.27498459815979 img loss 1.247536301612854 img loss 1.2446627616882324 img loss 1.2008419036865234 img loss 1.191657543182373 img loss 1.2035999298095703 img loss 1.2893246412277222 img loss 1.2513668537139893 img loss 1.2540240287780762 img loss 1.3168179988861084 img loss 1.2202768325805664 img loss 1.257157564163208 img loss 1.1855820417404175 img loss 1.2594667673110962 img loss 1.330021619796753 img loss 1.3051927089691162 img loss 1.2717078924179077 img loss 1.2558692693710327 img loss 1.2407376766204834 img loss 1.2004945278167725 img loss 1.2856124639511108 img loss 1.1335439682006836 img loss 1.1686971187591553 img loss 1.2782796621322632 img loss 1.2509310245513916 img loss 1.244383454322815 img loss 1.26903235912323 img loss 1.2256778478622437 img loss 1.2252306938171387 img loss 1.2214996814727783 img loss 1.2917250394821167 img loss 1.2920511960983276 img loss 1.2255951166152954 img loss 1.2462937831878662 img loss 1.2459115982055664 img loss 1.3147846460342407 img loss 1.2911860942840576 img loss 1.1574475765228271 img loss 1.2930560111999512 img loss 1.206533432006836 img loss 1.1704164743423462 img loss 1.240385890007019 img loss 1.24910569190979 img loss 1.299634575843811 img loss 1.2524875402450562 img loss 1.254272222518921 img loss 1.176534652709961 img loss 1.2429635524749756 img loss 1.3229988813400269 img loss 1.2329317331314087 img loss 1.2155320644378662 {'loss': 1.2373, 'grad_norm': 0.3563142418861389, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.6646325588226318 img loss 1.4581243991851807 img loss 1.5980969667434692 img loss 1.5610073804855347 img loss 1.473732352256775 img loss 1.5505353212356567 img loss 1.4405162334442139 img loss 1.6151983737945557 img loss 1.4915090799331665 img loss 1.5801395177841187 img loss 1.6480830907821655 img loss 1.4594547748565674 img loss 1.5962337255477905 img loss 1.5358998775482178 img loss 1.6094063520431519 img loss 1.6410176753997803 img loss 1.5909473896026611 img loss 1.6985477209091187 img loss 1.4829719066619873 img loss 1.4206830263137817 img loss 1.6332488059997559 img loss 1.6592332124710083 img loss 1.523376226425171 img loss 1.4913657903671265 img loss 1.653822422027588 img loss 1.483742356300354 img loss 1.3988368511199951 img loss 1.486267328262329 img loss 1.4774196147918701 img loss 1.5529850721359253 img loss 1.617256760597229 img loss 1.5499870777130127 img loss 1.4068294763565063 img loss 1.5322870016098022img loss 1.587302327156067 img loss 1.6132371425628662 img loss 1.5753884315490723 img loss 1.595873475074768 img loss 1.5658022165298462 img loss 1.5588781833648682 img loss 1.7148351669311523 img loss 1.4921908378601074 img loss 1.5257084369659424 img loss 1.6170628070831299 img loss 1.6478081941604614 img loss 1.4617124795913696 img loss 1.4507659673690796 img loss 1.4755489826202393 img loss 1.5270699262619019 img loss 1.5334032773971558 img loss 1.6730549335479736 img loss 1.607359528541565 img loss 1.6223684549331665 img loss 1.5158636569976807 img loss 1.4001128673553467 img loss 1.517219066619873 img loss 1.6211806535720825 img loss 1.5000033378601074 img loss 1.8061637878417969 img loss 1.5619875192642212 img loss 1.5339694023132324 img loss 1.4662078619003296 img loss 1.5894569158554077 img loss 1.6367146968841553 img loss 1.6746033430099487 img loss 1.4853894710540771 img loss 1.4181625843048096 img loss 1.4935333728790283 img loss 1.5099586248397827 img loss 1.6955703496932983 img loss 1.6043554544448853 img loss 1.7093558311462402 img loss 1.537176251411438 img loss 1.6481326818466187 img loss 1.6457877159118652 img loss 1.4739184379577637 img loss 1.5079869031906128 img loss 1.5348771810531616 img loss 1.5631835460662842 img loss 1.5132482051849365 img loss 1.4549059867858887 img loss 1.4456576108932495 img loss 1.426174283027649 img loss 1.7731330394744873 img loss 1.6098055839538574 img loss 1.5581570863723755 img loss 1.6442984342575073 img loss 1.4558511972427368 img loss 1.5914552211761475 img loss 1.732668399810791 img loss 1.5927618741989136 img loss 1.5397213697433472 img loss 1.5586543083190918 img loss 1.6386033296585083 img loss 1.5141769647598267 img loss 1.6755175590515137 img loss 1.463478684425354 img loss 1.403916597366333 img loss 1.6102893352508545 img loss 1.5725761651992798 img loss 1.5394093990325928 img loss 1.4408586025238037 img loss 1.510807752609253 img loss 1.5761864185333252 img loss 1.6035441160202026 img loss 1.6078603267669678 img loss 1.4697479009628296 img loss 1.554255723953247 img loss 1.6189504861831665 img loss 1.5228934288024902 img loss 1.5135352611541748 img loss 1.6057240962982178 img loss 1.4906535148620605 img loss 1.4421427249908447 img loss 1.4124714136123657 img loss 1.38197660446167 img loss 1.627137303352356 img loss 1.6293526887893677 img loss 1.536238193511963 img loss 1.4841077327728271 img loss 1.560046911239624 img loss 1.556322455406189 img loss 1.5797089338302612 img loss 1.4256385564804077 img loss 1.5412418842315674 img loss 1.685197114944458 img loss 1.5289982557296753 img loss 1.7191004753112793 {'loss': 1.5548, 'grad_norm': 0.37975507974624634, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1798769235610962 img loss 1.2069857120513916 img loss 1.1804779767990112 img loss 1.1880375146865845 img loss 1.19949209690094 img loss 1.1475942134857178 img loss 1.1784969568252563 img loss 1.1454647779464722 img loss 1.1237212419509888 img loss 1.1862244606018066 img loss 1.1640976667404175 img loss 1.2094568014144897 img loss 1.1701340675354004 img loss 1.1532466411590576 img loss 1.172324776649475 img loss 1.1821510791778564 img loss 1.077214002609253 img loss 1.226360559463501 img loss 1.2340580224990845 img loss 1.1985509395599365 img loss 1.1636360883712769 img loss 1.1327790021896362 img loss 1.1760938167572021 img loss 1.2247551679611206 img loss 1.1839313507080078 img loss 1.1847161054611206 img loss 1.2001259326934814 img loss 1.227521300315857 img loss 1.2048876285552979 img loss 1.16550612449646 img loss 1.1750338077545166 img loss 1.2454261779785156 img loss 1.2128961086273193 img loss 1.126612901687622 img loss 1.1272343397140503 img loss 1.1691436767578125 img loss 1.2148523330688477 img loss 1.1461399793624878 img loss 1.1857744455337524 img loss 1.157884120941162 img loss 1.1374409198760986 img loss 1.144399642944336 img loss 1.2001312971115112 img loss 1.2035770416259766 img loss 1.1785154342651367 img loss 1.1544302701950073 img loss 1.2288246154785156 img loss 1.2533965110778809 img loss 1.1857001781463623 img loss 1.2647312879562378 img loss 1.1982183456420898 img loss 1.195290207862854 img loss 1.2257989645004272 img loss 1.1752172708511353 img loss 1.2237154245376587 img loss 1.157397747039795 img loss 1.1672829389572144 img loss 1.1950610876083374 img loss 1.1638541221618652 img loss 1.2063181400299072 img loss 1.20157790184021 img loss 1.2202646732330322 img loss 1.1764352321624756 img loss 1.1612002849578857 img loss 1.1818854808807373 img loss 1.2073721885681152 img loss 1.1550670862197876 img loss 1.1649746894836426 img loss 1.138035774230957 img loss 1.1454432010650635 img loss 1.1852076053619385 img loss 1.130010962486267 img loss 1.2535841464996338 img loss 1.188236117362976 img loss 1.18085515499115 img loss 1.2548984289169312 img loss 1.1242148876190186 img loss 1.1822030544281006 img loss 1.117098093032837 img loss 1.1799968481063843 img loss 1.1810352802276611 img loss 1.2148345708847046 img loss 1.1781630516052246 img loss 1.1846221685409546 img loss 1.2248070240020752 img loss 1.1718868017196655 img loss 1.208135962486267 img loss 1.2014243602752686 img loss 1.1540330648422241 img loss 1.2001961469650269 img loss 1.142625093460083 img loss 1.1240977048873901 img loss 1.1568009853363037 img loss 1.2077182531356812 img loss 1.2003830671310425 img loss 1.1778112649917603 img loss 1.186377763748169 img loss 1.2611591815948486 img loss 1.2556171417236328 img loss 1.2098305225372314 img loss 1.1972064971923828 img loss 1.20440673828125 img loss 1.2307324409484863 img loss 1.2689940929412842 img loss 1.1286487579345703 img loss 1.3302525281906128 img loss 1.2255289554595947 img loss 1.1706056594848633 img loss 1.1854513883590698 img loss 1.2238507270812988 img loss 1.1456117630004883 img loss 1.1601614952087402 img loss 1.161497950553894 img loss 1.2575006484985352 img loss 1.1999738216400146 img loss 1.2670409679412842 img loss 1.195085883140564 img loss 1.1744036674499512 img loss 1.1971524953842163 img loss 1.16299307346344 img loss 1.2925264835357666 img loss 1.1790387630462646 img loss 1.1218680143356323 img loss 1.177449107170105 img loss 1.2371572256088257 img loss 1.1452693939208984 img loss 1.1327507495880127 img loss 1.168176531791687 {'loss': 1.187, 'grad_norm': 0.27045437693595886, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2459169626235962 img loss 1.197819471359253 img loss 1.2537201642990112 img loss 1.2132338285446167 img loss 1.1806410551071167 img loss 1.1720161437988281 img loss 1.2075691223144531 img loss 1.1279423236846924 img loss 1.0953218936920166 img loss 1.2655291557312012 img loss 1.2626289129257202 img loss 1.3831027746200562 img loss 1.1831660270690918 img loss 1.1803520917892456 img loss 1.1332414150238037 img loss 1.2432483434677124 img loss 1.220069169998169 img loss 1.2024742364883423 img loss 1.2657649517059326 img loss 1.2160745859146118 img loss 1.2111289501190186 img loss 1.1861321926116943 img loss 1.2136157751083374 img loss 1.1514639854431152 img loss 1.2159744501113892 img loss 1.1391396522521973 img loss 1.207253098487854 img loss 1.1420799493789673 img loss 1.2689895629882812 img loss 1.3676812648773193 img loss 1.2744232416152954 img loss 1.1963293552398682 img loss 1.2027724981307983 img loss 1.1858876943588257 img loss 1.202581763267517 img loss 1.0701497793197632 img loss 1.211595892906189 img loss 1.1657580137252808 img loss 1.2312920093536377 img loss 1.1756269931793213 img loss 1.149375557899475 img loss 1.1714740991592407 img loss 1.190828561782837 img loss 1.2130650281906128 img loss 1.2071583271026611 img loss 1.279198408126831 img loss 1.0854403972625732 img loss 1.2110637426376343 img loss 1.1832529306411743 img loss 1.1823161840438843 img loss 1.1849092245101929 img loss 1.281593680381775 img loss 1.1883797645568848 img loss 1.2040154933929443 img loss 1.149004340171814 img loss 1.1928820610046387 img loss 1.1282998323440552 img loss 1.2928528785705566 img loss 1.216597318649292 img loss 1.228716492652893 img loss 1.2296135425567627 img loss 1.2543588876724243 img loss 1.3856197595596313 img loss 1.2734835147857666 img loss 1.3133128881454468 img loss 1.1329020261764526 img loss 1.052673578262329 img loss 1.0889582633972168 img loss 1.2996498346328735 img loss 1.089368462562561 img loss 1.3403407335281372 img loss 1.1600955724716187 img loss 1.101121425628662 img loss 1.1799609661102295 img loss 1.227211356163025 img loss 1.2222826480865479 img loss 1.2200344800949097 img loss 1.1666245460510254 img loss 1.2578215599060059 img loss 1.1497802734375 img loss 1.1572598218917847 img loss 1.1839096546173096 img loss 1.2010406255722046 img loss 1.2607166767120361 img loss 1.2736228704452515 img loss 1.2165507078170776 img loss 1.1848423480987549 img loss 1.274914026260376 img loss 1.1788294315338135 img loss 1.1990498304367065 img loss 1.1701630353927612 img loss 1.2155380249023438 img loss 1.2324119806289673 img loss 1.1874382495880127 img loss 1.1368104219436646 img loss 1.1257879734039307 img loss 1.2404621839523315 img loss 1.28523588180542 img loss 1.2325477600097656 img loss 1.0973767042160034 img loss 1.2181062698364258 img loss 1.1793859004974365 img loss 1.233559012413025 img loss 1.158510446548462 img loss 1.1534212827682495 img loss 1.1643723249435425 img loss 1.151240587234497 img loss 1.1689344644546509 img loss 1.3535115718841553 img loss 1.211411476135254 img loss 1.1855270862579346 img loss 1.1732701063156128 img loss 1.2704483270645142 img loss 1.1620662212371826 img loss 1.2465496063232422 img loss 1.2416439056396484 img loss 1.2480159997940063 img loss 1.2163903713226318 img loss 1.283083438873291 img loss 1.1424956321716309 img loss 1.186257004737854 img loss 1.277522325515747 img loss 1.292406439781189 img loss 1.2087736129760742 img loss 1.201614260673523 img loss 1.1632126569747925 img loss 1.2464194297790527 img loss 1.233141541481018 {'loss': 1.2061, 'grad_norm': 0.45074841380119324, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.241664171218872 img loss 1.174986481666565 img loss 1.1854498386383057 img loss 1.2420368194580078 img loss 1.2102075815200806 img loss 1.2468593120574951 img loss 1.3207061290740967 img loss 1.2201883792877197 img loss 1.2226482629776 img loss 1.2101056575775146 img loss 1.157002329826355 img loss 1.261034369468689 img loss 1.2611560821533203 img loss 1.2233275175094604 img loss 1.1779446601867676 img loss 1.2086414098739624 img loss 1.183203101158142 img loss 1.2327995300292969 img loss 1.2380167245864868 img loss 1.2687019109725952 img loss 1.2149674892425537 img loss 1.2354114055633545 img loss 1.2408580780029297 img loss 1.1903643608093262 img loss 1.2622207403182983 img loss 1.202441692352295 img loss 1.1668974161148071 img loss 1.2254219055175781 img loss 1.1952342987060547 img loss 1.2562280893325806 img loss 1.1899011135101318 img loss 1.2800592184066772 img loss 1.23739492893219 img loss 1.186399221420288 img loss 1.2341701984405518 img loss 1.2309139966964722 img loss 1.2136597633361816 img loss 1.1928060054779053 img loss 1.1882591247558594 img loss 1.18776273727417 img loss 1.2153481245040894 img loss 1.2575411796569824 img loss 1.2016550302505493 img loss 1.2301222085952759 img loss 1.2726770639419556 img loss 1.1944912672042847 img loss 1.2198988199234009 img loss 1.213938593864441 img loss 1.2070282697677612 img loss 1.2858370542526245 img loss 1.3472189903259277 img loss 1.2524523735046387 img loss 1.1513813734054565 img loss 1.204758882522583 img loss 1.180539608001709 img loss 1.2400681972503662 img loss 1.2069365978240967 img loss 1.2249069213867188 img loss 1.150214672088623 img loss 1.2189760208129883 img loss 1.2106770277023315 img loss 1.129316806793213 img loss 1.2507318258285522 img loss 1.214723825454712 img loss 1.1982944011688232 img loss 1.177288293838501 img loss 1.1866962909698486 img loss 1.2706432342529297 img loss 1.2082124948501587 img loss 1.1914218664169312 img loss 1.1575887203216553 img loss 1.2583640813827515 img loss 1.2234628200531006 img loss 1.3087058067321777 img loss 1.200661540031433 img loss 1.1802128553390503 img loss 1.273068904876709 img loss 1.3571288585662842 img loss 1.2346758842468262 img loss 1.220315933227539 img loss 1.2121456861495972 img loss 1.1923308372497559 img loss 1.1507623195648193 img loss 1.2043242454528809 img loss 1.2291343212127686 img loss 1.1770700216293335 img loss 1.2322170734405518 img loss 1.2213647365570068 img loss 1.2352598905563354 img loss 1.2033675909042358 img loss 1.1995481252670288 img loss 1.2522351741790771 img loss 1.176709771156311 img loss 1.227407455444336 img loss 1.2029976844787598 img loss 1.2145593166351318 img loss 1.217902660369873 img loss 1.2592113018035889 img loss 1.225544810295105 img loss 1.225926399230957 img loss 1.2772058248519897 img loss 1.276479959487915 img loss 1.14037024974823 img loss 1.2023406028747559 img loss 1.1817409992218018 img loss 1.2231554985046387 img loss 1.268944501876831 img loss 1.1994295120239258 img loss 1.207891821861267 img loss 1.177130103111267 img loss 1.1860828399658203 img loss 1.2013030052185059 img loss 1.2454540729522705 img loss 1.1654574871063232 img loss 1.1369985342025757 img loss 1.1816014051437378 img loss 1.2392711639404297 img loss 1.2851810455322266 img loss 1.2031701803207397 img loss 1.2382464408874512 img loss 1.2049652338027954 img loss 1.2761439085006714 img loss 1.2166743278503418 img loss 1.2798800468444824 img loss 1.2602390050888062 img loss 1.2168316841125488 img loss 1.2398674488067627 img loss 1.1786532402038574 {'loss': 1.2197, 'grad_norm': 0.20387768745422363, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2594349384307861 img loss 1.210301399230957 img loss 1.193284273147583 img loss 1.2334859371185303 img loss 1.1735599040985107 img loss 1.29287850856781 img loss 1.27338445186615 img loss 1.2409740686416626 img loss 1.1313509941101074 img loss 1.2464786767959595 img loss 1.2220442295074463 img loss 1.1590442657470703 img loss 1.1675376892089844 img loss 1.2228684425354004 img loss 1.2018234729766846 img loss 1.2430578470230103 img loss 1.3300632238388062 img loss 1.135817527770996 img loss 1.1983659267425537 img loss 1.2093274593353271 img loss 1.1146076917648315 img loss 1.1935275793075562 img loss 1.2178897857666016 img loss 1.2139991521835327 img loss 1.2037214040756226 img loss 1.1711061000823975 img loss 1.1786078214645386 img loss 1.2288143634796143 img loss 1.1341612339019775 img loss 1.325907588005066 img loss 1.133870005607605 img loss 1.2119560241699219 img loss 1.1339277029037476 img loss 1.2214927673339844 img loss 1.2086641788482666 img loss 1.3450629711151123 img loss 1.2281216382980347 img loss 1.178710699081421 img loss 1.267519474029541 img loss 1.1772215366363525 img loss 1.2091634273529053 img loss 1.2053512334823608 img loss 1.170623779296875 img loss 1.208591103553772 img loss 1.195311188697815 img loss 1.2237573862075806 img loss 1.1854275465011597 img loss 1.1576976776123047 img loss 1.2163723707199097 img loss 1.23753023147583 img loss 1.1824121475219727 img loss 1.1540706157684326 img loss 1.2908676862716675 img loss 1.1612173318862915 img loss 1.2128973007202148 img loss 1.2152036428451538 img loss 1.1774736642837524 img loss 1.161954641342163 img loss 1.1268383264541626 img loss 1.225226879119873 img loss 1.173298716545105 img loss 1.155505657196045 img loss 1.1597440242767334 img loss 1.18841552734375 img loss 1.2075636386871338 img loss 1.2060520648956299 img loss 1.2137380838394165 img loss 1.1933338642120361 img loss 1.1772807836532593 img loss 1.2473150491714478img loss 1.2137410640716553 img loss 1.2517019510269165 img loss 1.257588267326355 img loss 1.1442514657974243 img loss 1.2093480825424194 img loss 1.242154598236084 img loss 1.2590785026550293 img loss 1.2024191617965698 img loss 1.2011655569076538 img loss 1.2755491733551025 img loss 1.1820907592773438 img loss 1.262290358543396 img loss 1.1667274236679077 img loss 1.2180808782577515 img loss 1.2371323108673096 img loss 1.1899551153182983 img loss 1.2336457967758179 img loss 1.1482653617858887 img loss 1.165984034538269 img loss 1.21004056930542 img loss 1.2223318815231323 img loss 1.194854497909546 img loss 1.2048243284225464 img loss 1.1556564569473267 img loss 1.1803925037384033 img loss 1.2065999507904053 img loss 1.2609328031539917 img loss 1.182678461074829 img loss 1.1662644147872925 img loss 1.2644767761230469 img loss 1.2243142127990723 img loss 1.1930845975875854 img loss 1.246446132659912 img loss 1.1798957586288452 img loss 1.273237705230713 img loss 1.2080330848693848 img loss 1.267332673072815 img loss 1.267316460609436 img loss 1.3404432535171509 img loss 1.2172647714614868 img loss 1.181281328201294 img loss 1.199242115020752 img loss 1.1994956731796265 img loss 1.2957919836044312 img loss 1.2338237762451172 img loss 1.111648678779602 img loss 1.3067152500152588 img loss 1.2168363332748413 img loss 1.2203013896942139 img loss 1.1620025634765625 img loss 1.3031713962554932 img loss 1.206072449684143 img loss 1.2591397762298584 img loss 1.2537122964859009 img loss 1.1861971616744995 img loss 1.1925842761993408 img loss 1.220393419265747 img loss 1.2052805423736572 {'loss': 1.2106, 'grad_norm': 0.2286752164363861, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.284649133682251 img loss 1.200488567352295 img loss 1.2728495597839355 img loss 1.3276615142822266 img loss 1.2459673881530762 img loss 1.2170771360397339 img loss 1.173116683959961 img loss 1.1583755016326904 img loss 1.1664576530456543 img loss 1.3063267469406128 img loss 1.189399003982544 img loss 1.2353023290634155 img loss 1.35887610912323 img loss 1.2193764448165894 img loss 1.3186721801757812 img loss 1.198434829711914 img loss 1.2403877973556519 img loss 1.2722288370132446 img loss 1.3156851530075073 img loss 1.1555107831954956 img loss 1.2376723289489746 img loss 1.2310535907745361 img loss 1.3081518411636353 img loss 1.1487585306167603 img loss 1.1101958751678467 img loss 1.2851322889328003 img loss 1.1643673181533813 img loss 1.1654715538024902 img loss 1.1892337799072266 img loss 1.2999026775360107 img loss 1.191411018371582 img loss 1.2669084072113037 img loss 1.2532896995544434 img loss 1.220812439918518 img loss 1.176865577697754 img loss 1.2411810159683228 img loss 1.1024293899536133 img loss 1.2413147687911987 img loss 1.3267686367034912 img loss 1.255449652671814 img loss 1.292378306388855 img loss 1.2058988809585571 img loss 1.2112717628479004 img loss 1.2079075574874878 img loss 1.271008014678955 img loss 1.2184443473815918 img loss 1.271915078163147 img loss 1.2089612483978271 img loss 1.2828381061553955 img loss 1.263305902481079 img loss 1.199204683303833 img loss 1.2056913375854492 img loss 1.1778287887573242 img loss 1.1855676174163818 img loss 1.2587766647338867 img loss 1.2633285522460938img loss 1.1753649711608887 img loss 1.311868667602539 img loss 1.1330379247665405 img loss 1.2548929452896118 img loss 1.2718642950057983 img loss 1.2584013938903809 img loss 1.285119652748108 img loss 1.2398872375488281 img loss 1.2268826961517334 img loss 1.1595038175582886 img loss 1.2043163776397705 img loss 1.1686820983886719 img loss 1.1394160985946655 img loss 1.218198299407959 img loss 1.2503726482391357 img loss 1.183274745941162 img loss 1.2053059339523315 img loss 1.2896766662597656 img loss 1.2315000295639038 img loss 1.2845876216888428 img loss 1.2434059381484985 img loss 1.2071975469589233 img loss 1.2755396366119385 img loss 1.3174872398376465 img loss 1.2267212867736816 img loss 1.29193913936615 img loss 1.220168948173523 img loss 1.2047996520996094 img loss 1.2076168060302734 img loss 1.2571016550064087 img loss 1.2201781272888184 img loss 1.2180955410003662 img loss 1.2239692211151123 img loss 1.262081503868103 img loss 1.2862552404403687 img loss 1.1941980123519897 img loss 1.25459623336792 img loss 1.2234141826629639 img loss 1.3708831071853638 img loss 1.2310017347335815 img loss 1.195412278175354 img loss 1.1827760934829712 img loss 1.272284746170044 img loss 1.237264633178711 img loss 1.1636807918548584 img loss 1.1973179578781128 img loss 1.2220783233642578 img loss 1.3054468631744385 img loss 1.2312798500061035 img loss 1.1733325719833374 img loss 1.184162974357605 img loss 1.2122694253921509 img loss 1.2019612789154053 img loss 1.185731291770935 img loss 1.3003737926483154 img loss 1.3192132711410522 img loss 1.2421387434005737 img loss 1.2317126989364624 img loss 1.2557741403579712 img loss 1.1757268905639648 img loss 1.2615000009536743 img loss 1.234739065170288 img loss 1.277552843093872 img loss 1.1894423961639404 img loss 1.314291000366211 img loss 1.2956082820892334 img loss 1.3968645334243774 img loss 1.2146862745285034 img loss 1.2001755237579346 img loss 1.239012360572815 img loss 1.293280839920044 img loss 1.2114008665084839 {'loss': 1.2347, 'grad_norm': 0.506329357624054, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.186170220375061 img loss 1.1787375211715698 img loss 1.1859444379806519 img loss 1.220773458480835 img loss 1.2224361896514893 img loss 1.2445170879364014 img loss 1.202117919921875 img loss 1.2152268886566162 img loss 1.2064026594161987 img loss 1.2341150045394897 img loss 1.1141021251678467 img loss 1.2464377880096436 img loss 1.162319540977478 img loss 1.147681713104248 img loss 1.23957097530365 img loss 1.1802729368209839 img loss 1.1650093793869019 img loss 1.1779875755310059 img loss 1.2064727544784546 img loss 1.2102869749069214 img loss 1.179213523864746 img loss 1.2264559268951416 img loss 1.1675536632537842 img loss 1.1587178707122803 img loss 1.1897591352462769 img loss 1.2234277725219727 img loss 1.1889355182647705 img loss 1.1832823753356934 img loss 1.1410987377166748 img loss 1.216978669166565 img loss 1.1983850002288818 img loss 1.1257522106170654 img loss 1.218201994895935 img loss 1.1750366687774658 img loss 1.2549389600753784 img loss 1.2128397226333618 img loss 1.2899051904678345 img loss 1.166567087173462 img loss 1.1504833698272705 img loss 1.2034821510314941 img loss 1.28562593460083 img loss 1.1730804443359375 img loss 1.1798903942108154 img loss 1.19773268699646 img loss 1.2844704389572144 img loss 1.16030752658844 img loss 1.2176721096038818 img loss 1.180320382118225 img loss 1.1694884300231934 img loss 1.2073363065719604 img loss 1.1908557415008545 img loss 1.2110004425048828 img loss 1.2447788715362549 img loss 1.2104735374450684 img loss 1.1862255334854126 img loss 1.1516844034194946 img loss 1.2116488218307495 img loss 1.2407386302947998 img loss 1.1976902484893799 img loss 1.2603918313980103 img loss 1.198502540588379 img loss 1.1841614246368408 img loss 1.2073607444763184 img loss 1.1922749280929565 img loss 1.2233073711395264 img loss 1.2471864223480225 img loss 1.2092807292938232 img loss 1.2698276042938232 img loss 1.152945876121521 img loss 1.1929749250411987 img loss 1.1485127210617065 img loss 1.2292723655700684 img loss 1.1389822959899902 img loss 1.2819088697433472 img loss 1.160374641418457 img loss 1.2247415781021118 img loss 1.2573845386505127 img loss 1.2121024131774902 img loss 1.2593884468078613 img loss 1.1704509258270264 img loss 1.1868304014205933 img loss 1.2058687210083008 img loss 1.2154815196990967 img loss 1.1732783317565918 img loss 1.1961753368377686img loss 1.158055067062378 img loss 1.1668827533721924 img loss 1.1886141300201416 img loss 1.2813018560409546 img loss 1.1793136596679688 img loss 1.2296985387802124 img loss 1.174809217453003 img loss 1.1561399698257446 img loss 1.2753914594650269 img loss 1.2176337242126465 img loss 1.1873830556869507 img loss 1.1753780841827393 img loss 1.2095952033996582 img loss 1.2228902578353882 img loss 1.1417039632797241 img loss 1.1979126930236816 img loss 1.2647212743759155 img loss 1.216001272201538 img loss 1.1825398206710815 img loss 1.1486705541610718 img loss 1.2031887769699097 img loss 1.1990665197372437 img loss 1.1705472469329834 img loss 1.225832462310791 img loss 1.174039363861084 img loss 1.1837022304534912 img loss 1.2346922159194946 img loss 1.1541194915771484 img loss 1.1513866186141968 img loss 1.2216637134552002 img loss 1.1442638635635376 img loss 1.2610371112823486 img loss 1.2822550535202026 img loss 1.1266427040100098 img loss 1.1842076778411865 img loss 1.2302616834640503 img loss 1.2441260814666748 img loss 1.1608214378356934 img loss 1.1679390668869019 img loss 1.1862461566925049 img loss 1.2392563819885254 img loss 1.1819303035736084 img loss 1.2194805145263672 {'loss': 1.2003, 'grad_norm': 0.21170549094676971, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2787708044052124 img loss 1.4113656282424927 img loss 1.5230841636657715 img loss 1.257240891456604 img loss 1.3508126735687256 img loss 1.3142155408859253 img loss 1.4829975366592407 img loss 1.442105770111084 img loss 1.563096523284912 img loss 1.4371823072433472 img loss 1.4223355054855347 img loss 1.4540411233901978 img loss 1.355812668800354 img loss 1.2863200902938843 img loss 1.3656468391418457 img loss 1.4628225564956665 img loss 1.5085384845733643 img loss 1.3587294816970825 img loss 1.2942109107971191 img loss 1.4912384748458862 img loss 1.4340031147003174 img loss 1.2798477411270142 img loss 1.4717631340026855 img loss 1.3943427801132202 img loss 1.4828088283538818 img loss 1.421202540397644 img loss 1.4064743518829346 img loss 1.3830678462982178 img loss 1.318633794784546 img loss 1.367523431777954 img loss 1.4728102684020996 img loss 1.5438246726989746 img loss 1.509360671043396 img loss 1.2200713157653809 img loss 1.441053032875061 img loss 1.3531415462493896 img loss 1.4560967683792114 img loss 1.4108132123947144 img loss 1.6512757539749146 img loss 1.3812452554702759 img loss 1.337386965751648 img loss 1.387978434562683 img loss 1.6326251029968262 img loss 1.360114336013794 img loss 1.4196953773498535 img loss 1.4309583902359009 img loss 1.370766282081604 img loss 1.405595302581787 img loss 1.4127601385116577 img loss 1.4549705982208252 img loss 1.4576342105865479 img loss 1.3008701801300049 img loss 1.5761276483535767 img loss 1.5044381618499756 img loss 1.3921678066253662 img loss 1.5507816076278687 img loss 1.4209502935409546 img loss 1.3140743970870972 img loss 1.460107445716858 img loss 1.3555090427398682 img loss 1.3453125953674316 img loss 1.2366366386413574 img loss 1.3436535596847534 img loss 1.4737170934677124 img loss 1.5023987293243408 img loss 1.419502854347229 img loss 1.5429223775863647 img loss 1.2886337041854858 img loss 1.2977145910263062 img loss 1.314795970916748 img loss 1.5041147470474243 img loss 1.4086750745773315 img loss 1.3875128030776978 img loss 1.315364122390747 img loss 1.4301893711090088 img loss 1.4002907276153564 img loss 1.3618203401565552 img loss 1.5273741483688354 img loss 1.3014434576034546 img loss 1.541198492050171 img loss 1.4621018171310425 img loss 1.4010220766067505 img loss 1.3730156421661377 img loss 1.345853328704834 img loss 1.3033878803253174 img loss 1.4583700895309448 img loss 1.4737271070480347 img loss 1.374031662940979 img loss 1.3845207691192627 img loss 1.5900684595108032 img loss 1.376726746559143 img loss 1.4307440519332886 img loss 1.1963990926742554 img loss 1.5731463432312012 img loss 1.4292596578598022 img loss 1.3971161842346191 img loss 1.4029195308685303 img loss 1.4331952333450317 img loss 1.331809639930725 img loss 1.3593695163726807 img loss 1.3205877542495728 img loss 1.4325298070907593 img loss 1.408017635345459 img loss 1.3697487115859985 img loss 1.505248785018921 img loss 1.538962960243225 img loss 1.51852285861969 img loss 1.4314854145050049 img loss 1.5139909982681274 img loss 1.368585228919983 img loss 1.3853036165237427 img loss 1.2954038381576538 img loss 1.5476080179214478 img loss 1.4161946773529053 img loss 1.358590006828308 img loss 1.3629413843154907 img loss 1.3387961387634277 img loss 1.2693535089492798 img loss 1.4485528469085693 img loss 1.451678991317749 img loss 1.274980902671814 img loss 1.4867408275604248 img loss 1.4709018468856812 img loss 1.445115566253662 img loss 1.4036222696304321 img loss 1.2590854167938232 img loss 1.4462946653366089 img loss 1.418869137763977 {'loss': 1.4104, 'grad_norm': 0.2674402892589569, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2011120319366455 img loss 1.241255521774292 img loss 1.3008431196212769 img loss 1.205440878868103 img loss 1.2539474964141846 img loss 1.2443840503692627 img loss 1.250559687614441 img loss 1.2436336278915405 img loss 1.2402031421661377 img loss 1.2320420742034912 img loss 1.2302502393722534 img loss 1.20522940158844 img loss 1.2627580165863037 img loss 1.2117056846618652 img loss 1.2461975812911987 img loss 1.168656587600708 img loss 1.2689850330352783 img loss 1.266316294670105 img loss 1.2861034870147705 img loss 1.3401442766189575 img loss 1.1933536529541016 img loss 1.232785701751709 img loss 1.1996283531188965 img loss 1.1820909976959229 img loss 1.280630111694336 img loss 1.214980959892273 img loss 1.2213330268859863 img loss 1.1662547588348389 img loss 1.3224796056747437 img loss 1.234222412109375 img loss 1.2600568532943726 img loss 1.24951171875 img loss 1.2947630882263184 img loss 1.278846263885498 img loss 1.2063140869140625 img loss 1.2543426752090454 img loss 1.2334544658660889 img loss 1.1874827146530151 img loss 1.2449357509613037img loss 1.3090885877609253 img loss 1.1680622100830078 img loss 1.2050652503967285 img loss 1.3024535179138184 img loss 1.3186869621276855 img loss 1.2556275129318237 img loss 1.2271137237548828 img loss 1.271540880203247 img loss 1.22566556930542 img loss 1.2392324209213257 img loss 1.256066083908081 img loss 1.2506755590438843 img loss 1.223713755607605 img loss 1.1883187294006348 img loss 1.287928581237793 img loss 1.3043150901794434 img loss 1.3135035037994385 img loss 1.2336678504943848 img loss 1.1927025318145752 img loss 1.2461775541305542 img loss 1.2159817218780518 img loss 1.2513262033462524 img loss 1.2237179279327393 img loss 1.2034144401550293 img loss 1.2569074630737305 img loss 1.2040190696716309 img loss 1.2135741710662842 img loss 1.2230669260025024 img loss 1.2059849500656128 img loss 1.17534339427948 img loss 1.2256295680999756 img loss 1.2841830253601074 img loss 1.2266559600830078 img loss 1.2317986488342285 img loss 1.2560995817184448 img loss 1.2722790241241455 img loss 1.1940656900405884 img loss 1.1959259510040283 img loss 1.2180233001708984 img loss 1.2239415645599365 img loss 1.2687556743621826 img loss 1.2372692823410034 img loss 1.2099971771240234 img loss 1.2177727222442627 img loss 1.2123851776123047 img loss 1.2986341714859009 img loss 1.2341035604476929 img loss 1.237169623374939 img loss 1.240731120109558 img loss 1.26177978515625 img loss 1.1587624549865723 img loss 1.222076177597046 img loss 1.1994221210479736 img loss 1.2241007089614868 img loss 1.23689603805542 img loss 1.2277946472167969 img loss 1.2202287912368774 img loss 1.278529405593872 img loss 1.2293870449066162 img loss 1.2112298011779785 img loss 1.2287954092025757 img loss 1.1911457777023315 img loss 1.2254647016525269 img loss 1.1980857849121094 img loss 1.2299693822860718 img loss 1.2699902057647705 img loss 1.2294377088546753 img loss 1.2483322620391846 img loss 1.3014248609542847 img loss 1.248300552368164 img loss 1.1670693159103394 img loss 1.2801045179367065 img loss 1.242049217224121 img loss 1.2098338603973389 img loss 1.2592055797576904 img loss 1.1958767175674438 img loss 1.2236002683639526 img loss 1.2029236555099487 img loss 1.200278878211975 img loss 1.2404011487960815 img loss 1.181557536125183 img loss 1.206861138343811 img loss 1.2218583822250366 img loss 1.198992133140564 img loss 1.1979491710662842 img loss 1.1608233451843262 img loss 1.2165473699569702 img loss 1.275354266166687 img loss 1.1568092107772827 {'loss': 1.2337, 'grad_norm': 0.29383882880210876, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4742175340652466 img loss 1.4761462211608887 img loss 1.328040599822998 img loss 1.5459263324737549 img loss 1.4857007265090942 img loss 1.3585991859436035 img loss 1.471299409866333 img loss 1.451884388923645 img loss 1.5629180669784546 img loss 1.338904619216919 img loss 1.299586534500122 img loss 1.4725873470306396 img loss 1.5632262229919434 img loss 1.4968831539154053 img loss 1.5400948524475098 img loss 1.506968379020691 img loss 1.424444556236267 img loss 1.4163358211517334 img loss 1.4798697233200073 img loss 1.4237744808197021 img loss 1.4620168209075928 img loss 1.5359708070755005 img loss 1.4374759197235107 img loss 1.3419870138168335 img loss 1.3945558071136475 img loss 1.3644214868545532 img loss 1.4625734090805054 img loss 1.3976658582687378 img loss 1.535917043685913 img loss 1.4891283512115479 img loss 1.5437980890274048 img loss 1.629064679145813 img loss 1.5035927295684814 img loss 1.4254107475280762 img loss 1.4086414575576782 img loss 1.434070348739624 img loss 1.443321704864502 img loss 1.4994032382965088 img loss 1.4708491563796997 img loss 1.5539435148239136 img loss 1.3835787773132324 img loss 1.4507969617843628 img loss 1.553333044052124 img loss 1.4400489330291748 img loss 1.544678807258606 img loss 1.3851155042648315 img loss 1.4197653532028198 img loss 1.4492706060409546 img loss 1.543619990348816 img loss 1.4562714099884033 img loss 1.4482542276382446 img loss 1.4419676065444946 img loss 1.3827359676361084 img loss 1.3402334451675415 img loss 1.4172312021255493 img loss 1.4536231756210327 img loss 1.4273091554641724 img loss 1.3737624883651733 img loss 1.5346928834915161 img loss 1.4441059827804565 img loss 1.4696104526519775 img loss 1.4383033514022827 img loss 1.410630702972412 img loss 1.5696128606796265 img loss 1.5077693462371826 img loss 1.5423367023468018 img loss 1.3985482454299927 img loss 1.4581010341644287 img loss 1.39089834690094 img loss 1.4786407947540283 img loss 1.4281078577041626 img loss 1.390746831893921 img loss 1.4119563102722168 img loss 1.4118731021881104 img loss 1.5016677379608154 img loss 1.5386334657669067 img loss 1.4465117454528809 img loss 1.5546401739120483 img loss 1.42001473903656 img loss 1.5105042457580566 img loss 1.4240349531173706 img loss 1.5524532794952393 img loss 1.344140648841858 img loss 1.4155808687210083 img loss 1.5372949838638306 img loss 1.5190178155899048 img loss 1.5561798810958862 img loss 1.5030437707901 img loss 1.495911717414856 img loss 1.4957090616226196 img loss 1.4805701971054077 img loss 1.4136595726013184 img loss 1.462768793106079 img loss 1.505360722541809 img loss 1.5405019521713257 img loss 1.5334842205047607 img loss 1.4006825685501099 img loss 1.4522967338562012 img loss 1.4473153352737427 img loss 1.4361306428909302 img loss 1.5612303018569946 img loss 1.4330257177352905 img loss 1.4193960428237915 img loss 1.3659911155700684 img loss 1.4424288272857666 img loss 1.5075689554214478 img loss 1.4392629861831665 img loss 1.3598562479019165 img loss 1.471031665802002 img loss 1.5279353857040405 img loss 1.4051403999328613 img loss 1.4861470460891724 img loss 1.482511281967163 img loss 1.5032397508621216 img loss 1.4473110437393188 img loss 1.5380009412765503 img loss 1.425012230873108 img loss 1.4107930660247803 img loss 1.4541316032409668 img loss 1.577327847480774 img loss 1.4131238460540771 img loss 1.5687832832336426 img loss 1.509530782699585 img loss 1.5339463949203491 img loss 1.476857304573059 img loss 1.4936957359313965 img loss 1.55522620677948 img loss 1.3912400007247925 {'loss': 1.4636, 'grad_norm': 0.35384809970855713, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1202616691589355 img loss 1.2402843236923218 img loss 1.1904385089874268 img loss 1.1908079385757446 img loss 1.2223026752471924 img loss 1.2283687591552734 img loss 1.2259933948516846 img loss 1.175893783569336 img loss 1.1906325817108154 img loss 1.1402864456176758 img loss 1.2193195819854736 img loss 1.206789255142212 img loss 1.1759452819824219 img loss 1.173040747642517 img loss 1.1692174673080444 img loss 1.206093430519104 img loss 1.1600254774093628 img loss 1.2145819664001465 img loss 1.1883676052093506 img loss 1.3103408813476562 img loss 1.1654784679412842 img loss 1.1898046731948853 img loss 1.217504858970642 img loss 1.2080894708633423 img loss 1.288011908531189 img loss 1.2234042882919312 img loss 1.237762212753296 img loss 1.274278998374939 img loss 1.262389898300171 img loss 1.230794906616211 img loss 1.1921443939208984 img loss 1.252522349357605 img loss 1.1423923969268799 img loss 1.1994136571884155 img loss 1.2834270000457764 img loss 1.2028234004974365 img loss 1.2148587703704834 img loss 1.220001459121704 img loss 1.2613255977630615 img loss 1.2800577878952026 img loss 1.2044378519058228 img loss 1.31371009349823 img loss 1.2369989156723022 img loss 1.2922868728637695 img loss 1.2362979650497437 img loss 1.2149044275283813 img loss 1.2078826427459717 img loss 1.1884498596191406 img loss 1.2056770324707031 img loss 1.2255054712295532 img loss 1.2420734167099 img loss 1.2314953804016113 img loss 1.234074354171753 img loss 1.2113434076309204 img loss 1.2428650856018066 img loss 1.220542311668396 img loss 1.2208094596862793 img loss 1.2436482906341553 img loss 1.1988167762756348 img loss 1.2129583358764648 img loss 1.2068417072296143 img loss 1.2890310287475586 img loss 1.2349413633346558 img loss 1.2777338027954102 img loss 1.181701421737671 img loss 1.2149832248687744 img loss 1.1608822345733643 img loss 1.170498251914978 img loss 1.211345911026001 img loss 1.190916657447815 img loss 1.2490662336349487 img loss 1.210126280784607 img loss 1.2323007583618164 img loss 1.2004339694976807 img loss 1.1334033012390137 img loss 1.2840321063995361 img loss 1.1709976196289062 img loss 1.1951996088027954 img loss 1.2120898962020874 img loss 1.1737065315246582 img loss 1.241067886352539 img loss 1.2208435535430908 img loss 1.1723499298095703 img loss 1.1590499877929688 img loss 1.2333872318267822 img loss 1.2167154550552368 img loss 1.2294132709503174 img loss 1.2516943216323853 img loss 1.2404863834381104 img loss 1.2252860069274902 img loss 1.2666939496994019 img loss 1.1438007354736328 img loss 1.168742060661316 img loss 1.2478747367858887 img loss 1.3161226511001587 img loss 1.2744524478912354 img loss 1.2727611064910889 img loss 1.221643328666687 img loss 1.194387674331665 img loss 1.2467961311340332 img loss 1.2309095859527588 img loss 1.3001585006713867 img loss 1.2609018087387085 img loss 1.221806526184082 img loss 1.209936499595642 img loss 1.2174478769302368 img loss 1.3693028688430786 img loss 1.1817690134048462 img loss 1.2895567417144775 img loss 1.2384445667266846 img loss 1.271653652191162 img loss 1.2262176275253296 img loss 1.2055996656417847 img loss 1.2393410205841064 img loss 1.1526422500610352 img loss 1.2279157638549805 img loss 1.2213115692138672 img loss 1.1737127304077148 img loss 1.227189064025879 img loss 1.176942229270935 img loss 1.182370662689209 img loss 1.2229218482971191 img loss 1.1687278747558594 img loss 1.279984712600708 img loss 1.2352856397628784 img loss 1.3137779235839844 img loss 1.196154236793518 img loss 1.2034707069396973 {'loss': 1.2209, 'grad_norm': 0.36206895112991333, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1875971555709839 img loss 1.2241079807281494 img loss 1.2483112812042236 img loss 1.1934231519699097 img loss 1.244647741317749 img loss 1.2341876029968262 img loss 1.1443983316421509 img loss 1.1883881092071533 img loss 1.1668837070465088 img loss 1.2095869779586792 img loss 1.1629949808120728 img loss 1.2027933597564697 img loss 1.2483196258544922 img loss 1.2055768966674805 img loss 1.1737861633300781 img loss 1.2638001441955566 img loss 1.2165353298187256 img loss 1.2484749555587769 img loss 1.1783348321914673 img loss 1.173156976699829 img loss 1.207580327987671 img loss 1.28212308883667 img loss 1.1989402770996094 img loss 1.1790565252304077 img loss 1.1725022792816162 img loss 1.2515238523483276 img loss 1.1380152702331543 img loss 1.205399990081787 img loss 1.1563873291015625 img loss 1.2209908962249756 img loss 1.1648842096328735 img loss 1.1509926319122314 img loss 1.2423639297485352 img loss 1.1803550720214844 img loss 1.2335880994796753 img loss 1.2295265197753906 img loss 1.2032089233398438 img loss 1.227294921875 img loss 1.253904104232788 img loss 1.1926684379577637 img loss 1.1758922338485718 img loss 1.220665693283081 img loss 1.195117473602295 img loss 1.1590027809143066 img loss 1.2073948383331299 img loss 1.1745375394821167 img loss 1.223541259765625 img loss 1.2670536041259766 img loss 1.1951675415039062 img loss 1.2625740766525269 img loss 1.1325381994247437 img loss 1.153134822845459 img loss 1.3214542865753174 img loss 1.2644070386886597 img loss 1.17256760597229 img loss 1.1847747564315796 img loss 1.2046611309051514 img loss 1.2030136585235596 img loss 1.2241947650909424 img loss 1.2022926807403564 img loss 1.214271903038025 img loss 1.1639246940612793 img loss 1.1644282341003418 img loss 1.218449354171753 img loss 1.2037309408187866 img loss 1.2539336681365967 img loss 1.2656276226043701 img loss 1.2254822254180908 img loss 1.1618595123291016 img loss 1.2997467517852783 img loss 1.1681352853775024 img loss 1.2557690143585205 img loss 1.177860140800476 img loss 1.2374436855316162 img loss 1.2857418060302734 img loss 1.2576841115951538 img loss 1.1663528680801392 img loss 1.2114578485488892 img loss 1.3076118230819702 img loss 1.1690326929092407 img loss 1.2098064422607422 img loss 1.2148100137710571 img loss 1.2958166599273682 img loss 1.1858201026916504 img loss 1.1426899433135986 img loss 1.2200006246566772 img loss 1.1855577230453491 img loss 1.191873550415039 img loss 1.1896374225616455 img loss 1.248512864112854 img loss 1.1492363214492798 img loss 1.297158122062683 img loss 1.2491645812988281 img loss 1.2610597610473633 img loss 1.2166779041290283 img loss 1.2041431665420532 img loss 1.2883565425872803 img loss 1.2016222476959229 img loss 1.211037516593933 img loss 1.1893526315689087 img loss 1.2179985046386719 img loss 1.2352603673934937 img loss 1.2543009519577026 img loss 1.2211778163909912 img loss 1.1961792707443237 img loss 1.2595990896224976 img loss 1.23524808883667 img loss 1.1606941223144531 img loss 1.2239024639129639 img loss 1.1554077863693237 img loss 1.2421211004257202 img loss 1.196970820426941 img loss 1.2054661512374878 img loss 1.1790688037872314 img loss 1.2695536613464355 img loss 1.248755693435669 img loss 1.2095582485198975 img loss 1.200027346611023 img loss 1.189723253250122 img loss 1.2254914045333862 img loss 1.2586606740951538 img loss 1.1931310892105103 img loss 1.191210389137268 img loss 1.1687982082366943 img loss 1.2203869819641113 img loss 1.1647052764892578 img loss 1.3423408269882202 img loss 1.2377375364303589 {'loss': 1.2126, 'grad_norm': 0.19785058498382568, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3817089796066284 img loss 1.5430556535720825 img loss 1.4615591764450073 img loss 1.3910077810287476 img loss 1.506642460823059 img loss 1.4976142644882202 img loss 1.5344854593276978 img loss 1.3238153457641602 img loss 1.4929454326629639 img loss 1.4136165380477905 img loss 1.4784934520721436 img loss 1.4410700798034668 img loss 1.5069197416305542 img loss 1.4394620656967163 img loss 1.454215407371521 img loss 1.382689118385315 img loss 1.4280210733413696 img loss 1.4503477811813354 img loss 1.4350409507751465 img loss 1.5165055990219116 img loss 1.583135724067688 img loss 1.3303152322769165 img loss 1.4465774297714233 img loss 1.3616883754730225 img loss 1.3873730897903442 img loss 1.4850391149520874 img loss 1.3823015689849854 img loss 1.321049451828003 img loss 1.4912772178649902 img loss 1.3994392156600952 img loss 1.42168128490448 img loss 1.3911528587341309 img loss 1.3300749063491821 img loss 1.4025957584381104 img loss 1.490283489227295 img loss 1.3501734733581543 img loss 1.5205814838409424 img loss 1.5098391771316528 img loss 1.3902121782302856 img loss 1.5167123079299927 img loss 1.4632130861282349 img loss 1.494574785232544 img loss 1.5096732378005981 img loss 1.4493070840835571 img loss 1.4480785131454468 img loss 1.454443097114563 img loss 1.388545274734497 img loss 1.4104832410812378 img loss 1.4520199298858643 img loss 1.3712360858917236 img loss 1.421864628791809 img loss 1.4467003345489502 img loss 1.420522928237915 img loss 1.535154104232788 img loss 1.4050047397613525 img loss 1.4659209251403809 img loss 1.3625848293304443 img loss 1.3830374479293823 img loss 1.6108475923538208 img loss 1.4086729288101196 img loss 1.6186264753341675 img loss 1.417842149734497 img loss 1.4265614748001099 img loss 1.4277256727218628 img loss 1.4167239665985107 img loss 1.365199327468872 img loss 1.3882910013198853 img loss 1.4561344385147095 img loss 1.4099911451339722 img loss 1.5045021772384644 img loss 1.3634194135665894 img loss 1.3967410326004028 img loss 1.3267688751220703 img loss 1.3211784362792969 img loss 1.428602933883667 img loss 1.4130445718765259 img loss 1.3077154159545898 img loss 1.3753679990768433 img loss 1.5096417665481567 img loss 1.4637004137039185 img loss 1.4604618549346924 img loss 1.3566298484802246 img loss 1.4293488264083862 img loss 1.4832197427749634 img loss 1.5067458152770996 img loss 1.4743895530700684 img loss 1.3338868618011475 img loss 1.3157662153244019 img loss 1.4007680416107178 img loss 1.4794069528579712 img loss 1.359566569328308 img loss 1.4252294301986694 img loss 1.33296537399292 img loss 1.396883249282837 img loss 1.45448637008667 img loss 1.4549462795257568 img loss 1.358866572380066 img loss 1.4114640951156616 img loss 1.562633752822876 img loss 1.3494032621383667 img loss 1.3730958700180054 img loss 1.4330297708511353 img loss 1.4146711826324463 img loss 1.4464943408966064 img loss 1.479082703590393 img loss 1.5223854780197144 img loss 1.3644359111785889 img loss 1.4056645631790161 img loss 1.4971086978912354 img loss 1.4643781185150146 img loss 1.4141639471054077 img loss 1.4486647844314575 img loss 1.3509646654129028 img loss 1.4879189729690552 img loss 1.4531086683273315 img loss 1.4580761194229126 img loss 1.3734010457992554 img loss 1.3333556652069092 img loss 1.4462968111038208 img loss 1.5126736164093018 img loss 1.4074032306671143 img loss 1.3928793668746948 img loss 1.4334864616394043 img loss 1.4191035032272339 img loss 1.3835316896438599 img loss 1.422890305519104 img loss 1.4608234167099 img loss 1.493584156036377 {'loss': 1.4318, 'grad_norm': 0.3826289474964142, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4413491487503052 img loss 1.4550474882125854 img loss 1.4196479320526123 img loss 1.488200306892395 img loss 1.4409525394439697 img loss 1.409590244293213 img loss 1.3809233903884888 img loss 1.344840407371521 img loss 1.4644163846969604 img loss 1.4259943962097168 img loss 1.4420098066329956 img loss 1.3171005249023438 img loss 1.3838770389556885 img loss 1.385008692741394 img loss 1.5448310375213623 img loss 1.490966558456421 img loss 1.5110498666763306 img loss 1.5234719514846802 img loss 1.465624451637268 img loss 1.4591013193130493 img loss 1.498284101486206 img loss 1.293089747428894 img loss 1.4589447975158691 img loss 1.416197657585144 img loss 1.3363120555877686 img loss 1.342908501625061 img loss 1.4323443174362183 img loss 1.4528340101242065 img loss 1.4560999870300293 img loss 1.3353582620620728 img loss 1.371019959449768 img loss 1.4717967510223389 img loss 1.5431292057037354 img loss 1.4939115047454834 img loss 1.4393471479415894 img loss 1.4818291664123535 img loss 1.4276937246322632 img loss 1.4729721546173096 img loss 1.4288604259490967 img loss 1.4470419883728027 img loss 1.4560656547546387 img loss 1.3377605676651 img loss 1.4583333730697632 img loss 1.4026166200637817 img loss 1.4374066591262817 img loss 1.4332005977630615 img loss 1.3909965753555298 img loss 1.4254580736160278 img loss 1.4630684852600098 img loss 1.3830616474151611 img loss 1.5333342552185059 img loss 1.4387282133102417 img loss 1.3364204168319702 img loss 1.3458173274993896 img loss 1.4090410470962524 img loss 1.4459445476531982 img loss 1.4475635290145874 img loss 1.4314240217208862 img loss 1.334765911102295 img loss 1.3198330402374268 img loss 1.4539320468902588img loss 1.5623365640640259 img loss 1.3405925035476685 img loss 1.510528802871704 img loss 1.5095007419586182 img loss 1.4773122072219849 img loss 1.2791690826416016 img loss 1.5372663736343384 img loss 1.370217204093933 img loss 1.3421396017074585 img loss 1.3800088167190552 img loss 1.4117825031280518 img loss 1.4340131282806396 img loss 1.3288090229034424 img loss 1.4192553758621216 img loss 1.380038857460022 img loss 1.431801676750183 img loss 1.3283714056015015 img loss 1.4361504316329956 img loss 1.459162950515747 img loss 1.3981125354766846 img loss 1.4630128145217896 img loss 1.3197345733642578 img loss 1.3802812099456787 img loss 1.4826968908309937 img loss 1.3051810264587402 img loss 1.5236989259719849 img loss 1.3840559720993042 img loss 1.3817076683044434 img loss 1.4023388624191284 img loss 1.5208877325057983 img loss 1.4698978662490845 img loss 1.3684576749801636 img loss 1.4317485094070435 img loss 1.5570658445358276 img loss 1.285992980003357 img loss 1.378567099571228 img loss 1.3902230262756348 img loss 1.2965657711029053 img loss 1.515076756477356 img loss 1.4328868389129639 img loss 1.5076617002487183 img loss 1.4456861019134521 img loss 1.6518893241882324 img loss 1.258651614189148 img loss 1.411180019378662 img loss 1.568244457244873 img loss 1.4022928476333618 img loss 1.4559614658355713 img loss 1.4508776664733887 img loss 1.5325838327407837 img loss 1.4924036264419556 img loss 1.5309375524520874 img loss 1.4387640953063965 img loss 1.4181358814239502 img loss 1.3081731796264648 img loss 1.3576185703277588 img loss 1.4312618970870972 img loss 1.4020893573760986 img loss 1.3506003618240356 img loss 1.3671720027923584 img loss 1.3661648035049438 img loss 1.4654887914657593 img loss 1.4683473110198975 img loss 1.3689488172531128 img loss 1.4036078453063965 img loss 1.394938349723816 img loss 1.4738887548446655 {'loss': 1.4252, 'grad_norm': 0.2822544276714325, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2396559715270996 img loss 1.1894378662109375 img loss 1.1097546815872192 img loss 1.2349791526794434 img loss 1.1849828958511353 img loss 1.2727372646331787 img loss 1.2168394327163696 img loss 1.215405821800232 img loss 1.2609847784042358 img loss 1.1971668004989624 img loss 1.2093276977539062 img loss 1.1646077632904053 img loss 1.218819260597229 img loss 1.2332720756530762 img loss 1.155188798904419 img loss 1.2123686075210571 img loss 1.2247759103775024 img loss 1.2126916646957397 img loss 1.242653250694275 img loss 1.227036952972412 img loss 1.206276535987854 img loss 1.2188860177993774 img loss 1.1721731424331665 img loss 1.1909736394882202 img loss 1.1732347011566162 img loss 1.3275160789489746 img loss 1.1594762802124023 img loss 1.1925404071807861 img loss 1.1133978366851807 img loss 1.2089805603027344 img loss 1.1220424175262451 img loss 1.1570675373077393 img loss 1.124025583267212 img loss 1.1409351825714111 img loss 1.2423231601715088 img loss 1.2135179042816162 img loss 1.2693462371826172 img loss 1.145355463027954 img loss 1.172170877456665 img loss 1.1336376667022705 img loss 1.2255859375 img loss 1.2062299251556396 img loss 1.1536610126495361 img loss 1.2220419645309448 img loss 1.1999471187591553 img loss 1.1998904943466187 img loss 1.2858432531356812 img loss 1.142578125 img loss 1.240877628326416 img loss 1.1862038373947144 img loss 1.1724028587341309 img loss 1.2271827459335327 img loss 1.1141804456710815 img loss 1.198869228363037 img loss 1.1966427564620972 img loss 1.2599953413009644 img loss 1.176513671875 img loss 1.2704086303710938 img loss 1.1537015438079834 img loss 1.150621771812439 img loss 1.1978425979614258 img loss 1.1910690069198608 img loss 1.2199859619140625 img loss 1.1391890048980713 img loss 1.1992079019546509 img loss 1.1737173795700073 img loss 1.2953834533691406 img loss 1.2265633344650269 img loss 1.2287949323654175 img loss 1.1705173254013062 img loss 1.1731147766113281 img loss 1.1415126323699951 img loss 1.16648530960083 img loss 1.2537339925765991 img loss 1.194312334060669 img loss 1.246636152267456 img loss 1.2584428787231445 img loss 1.1634820699691772 img loss 1.2341628074645996 img loss 1.1576805114746094 img loss 1.1856629848480225 img loss 1.1721248626708984 img loss 1.163504958152771 img loss 1.1785008907318115 img loss 1.2312644720077515 img loss 1.1720951795578003 img loss 1.1250957250595093 img loss 1.2981886863708496 img loss 1.1890289783477783 img loss 1.2121081352233887 img loss 1.1965125799179077 img loss 1.2277069091796875 img loss 1.339595913887024 img loss 1.1641184091567993 img loss 1.215522289276123 img loss 1.2010854482650757 img loss 1.2492153644561768 img loss 1.1489081382751465 img loss 1.1132378578186035 img loss 1.167000651359558 img loss 1.1530393362045288 img loss 1.1672543287277222 img loss 1.2054722309112549 img loss 1.1818318367004395 img loss 1.1970876455307007 img loss 1.2423644065856934 img loss 1.244408369064331 img loss 1.2078356742858887 img loss 1.1982324123382568 img loss 1.1419093608856201 img loss 1.146685242652893 img loss 1.1724201440811157 img loss 1.1431652307510376 img loss 1.1903471946716309 img loss 1.181434988975525 img loss 1.1785935163497925 img loss 1.1939692497253418 img loss 1.2378971576690674 img loss 1.1931941509246826 img loss 1.2604596614837646 img loss 1.2068763971328735 img loss 1.203111171722412 img loss 1.1780169010162354 img loss 1.1583696603775024 img loss 1.2105152606964111 img loss 1.1682820320129395 img loss 1.1908291578292847 img loss 1.160356044769287 {'loss': 1.1968, 'grad_norm': 0.2942259907722473, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3592764139175415 img loss 1.3696290254592896 img loss 1.50090491771698 img loss 1.387353539466858 img loss 1.4610192775726318 img loss 1.3686670064926147 img loss 1.4479469060897827 img loss 1.4243777990341187 img loss 1.5435963869094849 img loss 1.4194287061691284 img loss 1.3099474906921387 img loss 1.5019371509552002 img loss 1.4685070514678955 img loss 1.4038478136062622 img loss 1.3998371362686157 img loss 1.5147230625152588 img loss 1.4243171215057373 img loss 1.241291880607605 img loss 1.4577161073684692 img loss 1.4047497510910034 img loss 1.4616695642471313 img loss 1.2911908626556396 img loss 1.575807809829712 img loss 1.4424840211868286 img loss 1.5072025060653687 img loss 1.2921717166900635 img loss 1.3870272636413574 img loss 1.4192951917648315 img loss 1.438848853111267 img loss 1.4175854921340942 img loss 1.4689151048660278 img loss 1.3964784145355225 img loss 1.4081814289093018 img loss 1.4607293605804443 img loss 1.4704080820083618 img loss 1.4362881183624268 img loss 1.3586703538894653 img loss 1.353766679763794 img loss 1.4087331295013428 img loss 1.352913498878479 img loss 1.379252552986145 img loss 1.3761687278747559 img loss 1.4680241346359253 img loss 1.380136251449585 img loss 1.3553082942962646 img loss 1.2988064289093018 img loss 1.291662573814392 img loss 1.4567692279815674 img loss 1.4696091413497925 img loss 1.454802393913269 img loss 1.379554271697998 img loss 1.4222208261489868 img loss 1.2996715307235718 img loss 1.3319447040557861 img loss 1.4705421924591064 img loss 1.4479680061340332 img loss 1.3631298542022705 img loss 1.4676367044448853 img loss 1.3392446041107178 img loss 1.4131035804748535 img loss 1.3027613162994385 img loss 1.3248672485351562 img loss 1.3776365518569946 img loss 1.4764418601989746 img loss 1.3182637691497803 img loss 1.3872675895690918 img loss 1.4823086261749268 img loss 1.4061086177825928 img loss 1.333677887916565 img loss 1.4268521070480347 img loss 1.470791220664978 img loss 1.575173258781433 img loss 1.4464191198349 img loss 1.513129472732544 img loss 1.4548556804656982 img loss 1.488186001777649 img loss 1.4263570308685303 img loss 1.4242841005325317 img loss 1.2958420515060425 img loss 1.4652105569839478 img loss 1.4973409175872803 img loss 1.4538828134536743 img loss 1.4278513193130493 img loss 1.4919030666351318 img loss 1.4514869451522827 img loss 1.4181532859802246 img loss 1.4732813835144043 img loss 1.3841850757598877 img loss 1.306401014328003 img loss 1.3978501558303833 img loss 1.4490419626235962 img loss 1.4039753675460815 img loss 1.3614643812179565 img loss 1.3745325803756714 img loss 1.448339581489563 img loss 1.4045519828796387 img loss 1.3942033052444458 img loss 1.3601469993591309 img loss 1.403178095817566 img loss 1.2926239967346191 img loss 1.3720619678497314 img loss 1.4888039827346802 img loss 1.4538310766220093 img loss 1.4814115762710571 img loss 1.4697786569595337 img loss 1.440110445022583 img loss 1.5561524629592896 img loss 1.3167548179626465 img loss 1.4309009313583374 img loss 1.3814749717712402 img loss 1.445170283317566 img loss 1.4103201627731323 img loss 1.3878741264343262 img loss 1.4028239250183105 img loss 1.4133731126785278 img loss 1.359710931777954 img loss 1.3963643312454224 img loss 1.3812768459320068 img loss 1.4216134548187256 img loss 1.4428011178970337 img loss 1.3019216060638428 img loss 1.4567980766296387 img loss 1.358312726020813 img loss 1.3765513896942139 img loss 1.4328114986419678 img loss 1.2825732231140137 img loss 1.3380160331726074 img loss 1.4132503271102905 {'loss': 1.4111, 'grad_norm': 0.42239105701446533, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3799166679382324 img loss 1.28782057762146 img loss 1.2630373239517212 img loss 1.306196928024292 img loss 1.3034284114837646 img loss 1.3492625951766968 img loss 1.3831597566604614 img loss 1.2829561233520508 img loss 1.2325036525726318 img loss 1.3466887474060059 img loss 1.362067699432373 img loss 1.2717406749725342 img loss 1.3949311971664429 img loss 1.392696738243103 img loss 1.2782700061798096 img loss 1.3355097770690918 img loss 1.3309624195098877 img loss 1.3539949655532837 img loss 1.2509583234786987 img loss 1.2611559629440308 img loss 1.2613118886947632 img loss 1.3661892414093018 img loss 1.285949945449829 img loss 1.4011971950531006 img loss 1.2950490713119507 img loss 1.4029698371887207 img loss 1.2903908491134644 img loss 1.2471294403076172 img loss 1.3193891048431396 img loss 1.366552472114563 img loss 1.3114012479782104 img loss 1.3070485591888428 img loss 1.2216936349868774 img loss 1.3632099628448486 img loss 1.295255422592163 img loss 1.4211077690124512 img loss 1.3020776510238647 img loss 1.3040529489517212 img loss 1.4303556680679321 img loss 1.2907427549362183 img loss 1.337927222251892 img loss 1.4055277109146118 img loss 1.4205034971237183 img loss 1.3135621547698975 img loss 1.3753632307052612 img loss 1.267897129058838 img loss 1.3073086738586426 img loss 1.3077324628829956 img loss 1.3341710567474365 img loss 1.3833125829696655 img loss 1.4290261268615723 img loss 1.2874360084533691 img loss 1.35877525806427 img loss 1.3038861751556396 img loss 1.3291277885437012 img loss 1.3384259939193726img loss 1.369882345199585 img loss 1.3647922277450562 img loss 1.3701207637786865 img loss 1.3683836460113525 img loss 1.4081624746322632img loss 1.4264765977859497 img loss 1.2971233129501343 img loss 1.4088631868362427 img loss 1.302112340927124 img loss 1.339810848236084 img loss 1.2823848724365234 img loss 1.3104946613311768 img loss 1.3455318212509155 img loss 1.2884658575057983 img loss 1.2969707250595093 img loss 1.3086909055709839 img loss 1.3368051052093506 img loss 1.3756016492843628 img loss 1.3248536586761475 img loss 1.31737220287323 img loss 1.280525803565979 img loss 1.3123455047607422 img loss 1.290271282196045 img loss 1.3655503988265991 img loss 1.47324538230896 img loss 1.3236351013183594 img loss 1.3220185041427612 img loss 1.3103359937667847 img loss 1.368916630744934 img loss 1.3162983655929565 img loss 1.3233516216278076 img loss 1.3938078880310059 img loss 1.489990472793579 img loss 1.3336926698684692 img loss 1.3689799308776855 img loss 1.2899470329284668 img loss 1.3227550983428955 img loss 1.2883141040802002 img loss 1.2751356363296509 img loss 1.369628667831421 img loss 1.2609591484069824 img loss 1.4584342241287231 img loss 1.2988742589950562 img loss 1.3687338829040527 img loss 1.2306809425354004 img loss 1.345157265663147 img loss 1.2790189981460571 img loss 1.3243919610977173 img loss 1.2939438819885254 img loss 1.3164801597595215 img loss 1.3017659187316895 img loss 1.3119953870773315 img loss 1.407039761543274 img loss 1.281653642654419 img loss 1.3441338539123535 img loss 1.3109022378921509 img loss 1.306788444519043 img loss 1.3737647533416748 img loss 1.3356400728225708 img loss 1.305873155593872 img loss 1.3399454355239868 img loss 1.4072259664535522 img loss 1.344907522201538 img loss 1.3495326042175293 img loss 1.2602205276489258 img loss 1.282732605934143 img loss 1.3400002717971802 img loss 1.438048005104065 img loss 1.444618582725525 img loss 1.4228880405426025 img loss 1.3141359090805054 img loss 1.3671082258224487 {'loss': 1.3342, 'grad_norm': 0.24984155595302582, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3914951086044312 img loss 1.489738941192627 img loss 1.4363343715667725 img loss 1.4991834163665771 img loss 1.4489444494247437 img loss 1.4141427278518677 img loss 1.338569164276123 img loss 1.4215084314346313 img loss 1.4169484376907349 img loss 1.4599192142486572 img loss 1.4643752574920654 img loss 1.3779466152191162 img loss 1.3305420875549316 img loss 1.469536304473877 img loss 1.3756296634674072 img loss 1.3957215547561646 img loss 1.380403995513916 img loss 1.4659603834152222 img loss 1.3594715595245361 img loss 1.4536421298980713 img loss 1.4319120645523071 img loss 1.436387538909912 img loss 1.4346938133239746 img loss 1.4658329486846924 img loss 1.4495043754577637 img loss 1.4876545667648315 img loss 1.4241859912872314 img loss 1.4358009099960327 img loss 1.4108853340148926 img loss 1.365077257156372 img loss 1.488155484199524 img loss 1.4958140850067139 img loss 1.3777490854263306 img loss 1.4635498523712158 img loss 1.4058457612991333 img loss 1.5605000257492065 img loss 1.463469386100769 img loss 1.4742306470870972 img loss 1.4383654594421387 img loss 1.468364953994751 img loss 1.3854749202728271 img loss 1.533511757850647 img loss 1.4544512033462524 img loss 1.3870317935943604 img loss 1.394548773765564 img loss 1.4024473428726196 img loss 1.369728446006775 img loss 1.3755618333816528 img loss 1.4071333408355713 img loss 1.4661000967025757 img loss 1.4645984172821045 img loss 1.4581042528152466 img loss 1.4674807786941528 img loss 1.3957915306091309 img loss 1.4509526491165161 img loss 1.454733967781067 img loss 1.352941632270813 img loss 1.3591035604476929 img loss 1.4462319612503052 img loss 1.4046283960342407 img loss 1.4508910179138184 img loss 1.420471429824829 img loss 1.5148441791534424 img loss 1.45121431350708 img loss 1.4883331060409546 img loss 1.471828818321228 img loss 1.3594841957092285 img loss 1.274475336074829 img loss 1.3683276176452637 img loss 1.3803054094314575 img loss 1.5449870824813843 img loss 1.3367756605148315 img loss 1.4535337686538696 img loss 1.3658872842788696 img loss 1.472135066986084 img loss 1.3719885349273682 img loss 1.3363350629806519 img loss 1.360427975654602 img loss 1.4260075092315674 img loss 1.5464847087860107 img loss 1.4121493101119995 img loss 1.492207646369934 img loss 1.3929067850112915 img loss 1.4247101545333862 img loss 1.3843529224395752 img loss 1.301124095916748 img loss 1.5339725017547607 img loss 1.4682661294937134 img loss 1.4454162120819092 img loss 1.335293173789978 img loss 1.4545724391937256 img loss 1.42025625705719 img loss 1.3095531463623047 img loss 1.4743380546569824 img loss 1.5273125171661377 img loss 1.601914882659912 img loss 1.4626634120941162 img loss 1.4076025485992432 img loss 1.4252235889434814 img loss 1.389833688735962 img loss 1.460038661956787 img loss 1.3916504383087158 img loss 1.4292017221450806 img loss 1.5072267055511475 img loss 1.4598098993301392 img loss 1.5137823820114136 img loss 1.5252563953399658 img loss 1.4724146127700806 img loss 1.3577302694320679 img loss 1.4136029481887817 img loss 1.3936856985092163 img loss 1.4190341234207153 img loss 1.4552228450775146 img loss 1.3666688203811646 img loss 1.516956090927124 img loss 1.474138617515564 img loss 1.51284658908844 img loss 1.5305982828140259 img loss 1.3247607946395874 img loss 1.4980041980743408 img loss 1.3600623607635498 img loss 1.3315547704696655 img loss 1.345934510231018 img loss 1.4977672100067139 img loss 1.3974573612213135 img loss 1.4806931018829346 img loss 1.3800851106643677 img loss 1.4589722156524658 {'loss': 1.4307, 'grad_norm': 0.3464510142803192, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2354464530944824 img loss 1.175940752029419 img loss 1.2148799896240234 img loss 1.2043356895446777 img loss 1.3233494758605957 img loss 1.2103275060653687 img loss 1.2123697996139526 img loss 1.2346196174621582 img loss 1.179956078529358 img loss 1.2435302734375 img loss 1.282335638999939 img loss 1.2204196453094482 img loss 1.2188555002212524 img loss 1.2427423000335693 img loss 1.2520501613616943 img loss 1.191359519958496 img loss 1.152684211730957 img loss 1.1995189189910889 img loss 1.166986346244812 img loss 1.2575218677520752 img loss 1.160321593284607 img loss 1.1760642528533936 img loss 1.2030400037765503 img loss 1.2253074645996094 img loss 1.2555174827575684 img loss 1.2503383159637451 img loss 1.2786705493927002 img loss 1.1975128650665283 img loss 1.23549222946167 img loss 1.1852775812149048 img loss 1.1952266693115234 img loss 1.1894466876983643 img loss 1.2430360317230225 img loss 1.2567458152770996 img loss 1.2155184745788574 img loss 1.2265393733978271 img loss 1.2108796834945679 img loss 1.242537260055542 img loss 1.2303625345230103 img loss 1.3418176174163818 img loss 1.2280004024505615 img loss 1.2213096618652344 img loss 1.2393673658370972 img loss 1.2601746320724487 img loss 1.2302860021591187 img loss 1.2608795166015625 img loss 1.1960855722427368 img loss 1.234529972076416 img loss 1.2212494611740112 img loss 1.1890820264816284 img loss 1.15216064453125 img loss 1.2119712829589844 img loss 1.1865887641906738 img loss 1.2377655506134033 img loss 1.2247860431671143 img loss 1.2251312732696533 img loss 1.2820968627929688 img loss 1.1775230169296265 img loss 1.2521071434020996 img loss 1.1991195678710938 img loss 1.1638654470443726 img loss 1.2239387035369873 img loss 1.2022236585617065 img loss 1.242136836051941 img loss 1.1987264156341553 img loss 1.2182226181030273 img loss 1.2418960332870483 img loss 1.1670383214950562 img loss 1.2404667139053345 img loss 1.2433676719665527 img loss 1.186690330505371 img loss 1.1615023612976074 img loss 1.2147058248519897 img loss 1.1996145248413086 img loss 1.2492910623550415 img loss 1.2274374961853027 img loss 1.1784542798995972 img loss 1.2618002891540527 img loss 1.2566145658493042 img loss 1.2348551750183105 img loss 1.2211394309997559 img loss 1.2474472522735596 img loss 1.279915452003479 img loss 1.2714589834213257 img loss 1.165534496307373 img loss 1.222609519958496 img loss 1.190312147140503 img loss 1.2106618881225586 img loss 1.1614364385604858 img loss 1.2370307445526123 img loss 1.2908003330230713 img loss 1.2348917722702026 img loss 1.1731363534927368 img loss 1.21685791015625 img loss 1.2131696939468384 img loss 1.2389780282974243 img loss 1.218714714050293 img loss 1.208808183670044 img loss 1.2150185108184814 img loss 1.228281021118164 img loss 1.2006759643554688 img loss 1.2324159145355225 img loss 1.262027621269226 img loss 1.1927284002304077 img loss 1.228942632675171 img loss 1.1974327564239502 img loss 1.1467912197113037 img loss 1.2797561883926392 img loss 1.223915457725525 img loss 1.217759370803833 img loss 1.272306203842163 img loss 1.273315191268921 img loss 1.189140796661377 img loss 1.246140956878662 img loss 1.2043399810791016 img loss 1.2195332050323486 img loss 1.3222445249557495 img loss 1.163859248161316 img loss 1.1963176727294922 img loss 1.2403621673583984 img loss 1.2650097608566284 img loss 1.2543357610702515 img loss 1.2245301008224487 img loss 1.2144354581832886 img loss 1.2168760299682617 img loss 1.157724380493164 img loss 1.2596250772476196 img loss 1.1971324682235718 {'loss': 1.2221, 'grad_norm': 0.24616673588752747, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.419045090675354 img loss 1.3523622751235962 img loss 1.3648494482040405 img loss 1.4613746404647827 img loss 1.3850045204162598 img loss 1.4786874055862427 img loss 1.4436872005462646 img loss 1.3555470705032349 img loss 1.4632536172866821 img loss 1.4771630764007568 img loss 1.2967060804367065 img loss 1.4446388483047485 img loss 1.3603484630584717 img loss 1.464821696281433 img loss 1.6187680959701538 img loss 1.4017727375030518 img loss 1.3154842853546143 img loss 1.4644083976745605 img loss 1.4587479829788208 img loss 1.521862268447876 img loss 1.5010344982147217 img loss 1.291167974472046 img loss 1.4341126680374146 img loss 1.4922891855239868 img loss 1.3349697589874268 img loss 1.3973125219345093 img loss 1.4152106046676636 img loss 1.374221920967102 img loss 1.3202548027038574 img loss 1.3358397483825684 img loss 1.273871660232544 img loss 1.3035006523132324 img loss 1.3603014945983887 img loss 1.415265440940857 img loss 1.4276440143585205 img loss 1.445216417312622 img loss 1.3728760480880737 img loss 1.3887574672698975 img loss 1.4184238910675049 img loss 1.4677231311798096 img loss 1.5107916593551636 img loss 1.3574625253677368 img loss 1.4598619937896729 img loss 1.384358525276184 img loss 1.2305046319961548 img loss 1.4812732934951782 img loss 1.3132479190826416 img loss 1.449159860610962 img loss 1.5200045108795166 img loss 1.396938443183899 img loss 1.4629319906234741 img loss 1.329028844833374 img loss 1.429809331893921 img loss 1.2928612232208252 img loss 1.4314626455307007 img loss 1.2730215787887573 img loss 1.4358395338058472 img loss 1.5728167295455933 img loss 1.449466347694397 img loss 1.4160996675491333 img loss 1.4123244285583496 img loss 1.3193879127502441 img loss 1.4337211847305298 img loss 1.4637846946716309 img loss 1.3652472496032715 img loss 1.2687190771102905 img loss 1.41261625289917img loss 1.2789969444274902 img loss 1.4963955879211426 img loss 1.3946244716644287 img loss 1.2983696460723877 img loss 1.5621987581253052 img loss 1.3828518390655518 img loss 1.3968602418899536 img loss 1.5553032159805298 img loss 1.4050776958465576 img loss 1.3502565622329712 img loss 1.4554184675216675 img loss 1.325656771659851 img loss 1.3417026996612549 img loss 1.3471181392669678 img loss 1.4676270484924316 img loss 1.3444567918777466 img loss 1.4751622676849365 img loss 1.3950953483581543 img loss 1.4506725072860718 img loss 1.3318207263946533 img loss 1.3799490928649902 img loss 1.4490994215011597 img loss 1.3501651287078857 img loss 1.337083339691162 img loss 1.426471471786499 img loss 1.4147058725357056 img loss 1.334823727607727 img loss 1.3360073566436768 img loss 1.4443409442901611 img loss 1.4027217626571655 img loss 1.3745882511138916 img loss 1.4447522163391113 img loss 1.3783363103866577 img loss 1.4424736499786377 img loss 1.4058526754379272 img loss 1.427990198135376 img loss 1.363785982131958 img loss 1.4082353115081787 img loss 1.4484646320343018 img loss 1.3021843433380127 img loss 1.4403014183044434 img loss 1.4057154655456543 img loss 1.35912024974823 img loss 1.4640660285949707 img loss 1.3493177890777588 img loss 1.3127256631851196 img loss 1.3258510828018188 img loss 1.3947412967681885 img loss 1.4135569334030151 img loss 1.2975425720214844 img loss 1.4475280046463013 img loss 1.448311448097229 img loss 1.4213722944259644 img loss 1.4972113370895386 img loss 1.610474944114685 img loss 1.4077277183532715 img loss 1.3491424322128296 img loss 1.3629859685897827 img loss 1.3530148267745972 img loss 1.4082157611846924 img loss 1.4656199216842651 {'loss': 1.4035, 'grad_norm': 0.38774794340133667, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.463011384010315 img loss 1.5049604177474976 img loss 1.3503669500350952 img loss 1.4426897764205933 img loss 1.4259178638458252 img loss 1.3966468572616577 img loss 1.362335443496704 img loss 1.340088129043579 img loss 1.4241688251495361 img loss 1.386454701423645 img loss 1.4208112955093384 img loss 1.3742982149124146 img loss 1.5814324617385864 img loss 1.520809292793274 img loss 1.4754339456558228 img loss 1.4388134479522705 img loss 1.4123917818069458 img loss 1.4652093648910522 img loss 1.5296179056167603 img loss 1.480375051498413 img loss 1.35127592086792 img loss 1.4099297523498535 img loss 1.438401699066162 img loss 1.4718949794769287 img loss 1.4184777736663818 img loss 1.5775586366653442 img loss 1.438065767288208 img loss 1.561327338218689 img loss 1.337483286857605 img loss 1.5444914102554321 img loss 1.4284406900405884 img loss 1.394290566444397 img loss 1.512395977973938 img loss 1.4869827032089233 img loss 1.5463813543319702 img loss 1.3925203084945679 img loss 1.5472491979599 img loss 1.4145541191101074 img loss 1.4845366477966309 img loss 1.5441781282424927 img loss 1.4500130414962769 img loss 1.5364716053009033 img loss 1.4164633750915527 img loss 1.3845778703689575 img loss 1.4296317100524902 img loss 1.3835937976837158 img loss 1.4485996961593628 img loss 1.517677903175354 img loss 1.5036404132843018 img loss 1.3515759706497192 img loss 1.4084504842758179 img loss 1.4436665773391724 img loss 1.4687743186950684 img loss 1.3785194158554077 img loss 1.3885124921798706 img loss 1.5049082040786743 img loss 1.6141369342803955 img loss 1.4044280052185059 img loss 1.304267406463623 img loss 1.4441170692443848 img loss 1.5412777662277222 img loss 1.4601620435714722 img loss 1.4155594110488892 img loss 1.5122244358062744 img loss 1.4037991762161255 img loss 1.527785062789917 img loss 1.336622953414917 img loss 1.3388159275054932 img loss 1.386772632598877 img loss 1.4016640186309814 img loss 1.4692730903625488 img loss 1.4747729301452637 img loss 1.522457480430603 img loss 1.5432730913162231 img loss 1.483839750289917 img loss 1.3776271343231201 img loss 1.3562579154968262 img loss 1.4161899089813232 img loss 1.3703534603118896 img loss 1.3287146091461182img loss 1.3408657312393188 img loss 1.4422982931137085 img loss 1.4569498300552368 img loss 1.3669793605804443 img loss 1.3712363243103027 img loss 1.427802324295044 img loss 1.4100745916366577 img loss 1.4391697645187378 img loss 1.5662366151809692 img loss 1.4420669078826904 img loss 1.324717402458191 img loss 1.3260667324066162 img loss 1.415623426437378 img loss 1.433620572090149 img loss 1.4624241590499878 img loss 1.5268410444259644 img loss 1.4070988893508911 img loss 1.4083244800567627 img loss 1.544870138168335 img loss 1.467354655265808 img loss 1.3947901725769043 img loss 1.3781993389129639 img loss 1.4795621633529663 img loss 1.331384301185608 img loss 1.361082911491394 img loss 1.404321312904358 img loss 1.5799336433410645 img loss 1.4073541164398193 img loss 1.4077576398849487 img loss 1.3933786153793335 img loss 1.3548409938812256 img loss 1.4242913722991943 img loss 1.4318108558654785 img loss 1.396523118019104 img loss 1.4506081342697144 img loss 1.4896825551986694 img loss 1.5027239322662354 img loss 1.3411256074905396 img loss 1.3996707201004028 img loss 1.4597866535186768 img loss 1.420520305633545 img loss 1.3804775476455688 img loss 1.4770218133926392 img loss 1.4112451076507568 img loss 1.386999249458313 img loss 1.6599539518356323 img loss 1.588663935661316 img loss 1.4208260774612427 {'loss': 1.4395, 'grad_norm': 0.29553696513175964, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1819043159484863 img loss 1.1844654083251953 img loss 1.2253172397613525 img loss 1.2462925910949707 img loss 1.147270679473877 img loss 1.1494040489196777 img loss 1.18363618850708 img loss 1.2209389209747314 img loss 1.200499415397644 img loss 1.1655595302581787 img loss 1.2172268629074097 img loss 1.2248666286468506 img loss 1.2262709140777588 img loss 1.2288864850997925 img loss 1.1568083763122559 img loss 1.1376641988754272 img loss 1.181938648223877 img loss 1.1758781671524048 img loss 1.1737723350524902 img loss 1.180124282836914 img loss 1.1593208312988281 img loss 1.1946419477462769 img loss 1.1587600708007812 img loss 1.1873188018798828 img loss 1.183600664138794 img loss 1.2035974264144897 img loss 1.24253249168396 img loss 1.1645835638046265 img loss 1.1929184198379517 img loss 1.1939136981964111 img loss 1.180816411972046 img loss 1.186316967010498 img loss 1.126025915145874 img loss 1.1871918439865112 img loss 1.2024742364883423 img loss 1.2425518035888672 img loss 1.1837023496627808 img loss 1.232991099357605 img loss 1.2006977796554565 img loss 1.2533280849456787 img loss 1.207276701927185 img loss 1.1825202703475952 img loss 1.1848289966583252 img loss 1.2112081050872803 img loss 1.2643895149230957 img loss 1.1950527429580688 img loss 1.2427682876586914 img loss 1.1658426523208618 img loss 1.184809923171997 img loss 1.2532002925872803 img loss 1.202202558517456 img loss 1.1885191202163696 img loss 1.200023889541626 img loss 1.1958602666854858 img loss 1.1916146278381348 img loss 1.1737226247787476 img loss 1.2252695560455322 img loss 1.2047741413116455 img loss 1.2339766025543213 img loss 1.2300628423690796 img loss 1.210801601409912 img loss 1.1782711744308472 img loss 1.1963995695114136 img loss 1.1911247968673706 img loss 1.2534067630767822 img loss 1.2249069213867188 img loss 1.1801894903182983 img loss 1.2018482685089111 img loss 1.185346245765686 img loss 1.2287462949752808 img loss 1.1988346576690674 img loss 1.2521308660507202 img loss 1.1895217895507812 img loss 1.1709074974060059 img loss 1.2242687940597534 img loss 1.3013442754745483 img loss 1.2116498947143555 img loss 1.2165764570236206 img loss 1.1492424011230469 img loss 1.2089000940322876 img loss 1.2414623498916626 img loss 1.2169418334960938 img loss 1.1890027523040771 img loss 1.2065664529800415 img loss 1.236146330833435 img loss 1.2236850261688232 img loss 1.1980160474777222 img loss 1.2071102857589722 img loss 1.1889703273773193 img loss 1.2111879587173462 img loss 1.202822208404541 img loss 1.1985507011413574 img loss 1.170257329940796 img loss 1.215238332748413 img loss 1.1328814029693604 img loss 1.1552331447601318 img loss 1.1932724714279175 img loss 1.1814969778060913 img loss 1.2262061834335327 img loss 1.1648157835006714 img loss 1.2086615562438965 img loss 1.2328929901123047 img loss 1.2050141096115112 img loss 1.1969321966171265 img loss 1.1871799230575562 img loss 1.238695740699768 img loss 1.1655269861221313 img loss 1.2434908151626587 img loss 1.2089697122573853 img loss 1.1750895977020264 img loss 1.2045773267745972 img loss 1.2338032722473145 img loss 1.2269692420959473 img loss 1.1705436706542969 img loss 1.166867733001709 img loss 1.2136868238449097 img loss 1.1915596723556519 img loss 1.229137659072876 img loss 1.1182467937469482 img loss 1.1658672094345093 img loss 1.1744580268859863 img loss 1.1907482147216797 img loss 1.2302907705307007 img loss 1.206437587738037 img loss 1.179991364479065 img loss 1.148430347442627 img loss 1.1828420162200928 img loss 1.1862831115722656 {'loss': 1.1988, 'grad_norm': 0.37724921107292175, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.372646450996399 img loss 1.556835651397705 img loss 1.560843825340271 img loss 1.3153170347213745 img loss 1.6168982982635498 img loss 1.584356665611267 img loss 1.5377057790756226 img loss 1.4379627704620361 img loss 1.5302261114120483 img loss 1.3845089673995972 img loss 1.4910619258880615 img loss 1.5017750263214111 img loss 1.6139025688171387 img loss 1.4772578477859497 img loss 1.4847350120544434 img loss 1.4577475786209106 img loss 1.6427143812179565 img loss 1.4636244773864746 img loss 1.4453136920928955 img loss 1.4566136598587036 img loss 1.5131598711013794 img loss 1.558689832687378 img loss 1.5171678066253662 img loss 1.5086495876312256 img loss 1.542316198348999 img loss 1.5625650882720947 img loss 1.5074131488800049 img loss 1.492689609527588 img loss 1.423400640487671 img loss 1.414267897605896 img loss 1.4055893421173096 img loss 1.6279561519622803 img loss 1.3602499961853027 img loss 1.395325779914856 img loss 1.4631179571151733 img loss 1.4293208122253418 img loss 1.5249966382980347 img loss 1.418404221534729 img loss 1.5789577960968018 img loss 1.4869292974472046 img loss 1.3383625745773315 img loss 1.5315661430358887 img loss 1.5485886335372925 img loss 1.4619271755218506 img loss 1.415749430656433 img loss 1.546309232711792 img loss 1.4395967721939087 img loss 1.4771755933761597 img loss 1.3676244020462036 img loss 1.6364866495132446 img loss 1.4867329597473145 img loss 1.4722721576690674 img loss 1.5223891735076904 img loss 1.590389370918274 img loss 1.429381012916565 img loss 1.4255443811416626 img loss 1.3718866109848022 img loss 1.4816080331802368 img loss 1.5379490852355957 img loss 1.4914886951446533 img loss 1.4905362129211426 img loss 1.4517196416854858 img loss 1.4710725545883179 img loss 1.5119760036468506 img loss 1.5174171924591064 img loss 1.5269159078598022 img loss 1.5692808628082275 img loss 1.5114091634750366 img loss 1.6037887334823608 img loss 1.5737801790237427 img loss 1.5018490552902222 img loss 1.594448447227478 img loss 1.5570323467254639 img loss 1.4641339778900146 img loss 1.322474718093872 img loss 1.4680956602096558 img loss 1.4468060731887817 img loss 1.4214006662368774 img loss 1.5183247327804565 img loss 1.3833463191986084 img loss 1.4280140399932861 img loss 1.5197738409042358 img loss 1.5583733320236206 img loss 1.544226884841919 img loss 1.478942632675171 img loss 1.4488869905471802 img loss 1.3857368230819702 img loss 1.4232183694839478 img loss 1.5168116092681885 img loss 1.5525944232940674 img loss 1.4040015935897827 img loss 1.472053050994873 img loss 1.444074034690857 img loss 1.5280977487564087 img loss 1.3407763242721558 img loss 1.440509557723999 img loss 1.4087358713150024 img loss 1.4366049766540527 img loss 1.5155574083328247 img loss 1.465368628501892 img loss 1.5630277395248413 img loss 1.5268980264663696img loss 1.6369534730911255 img loss 1.6314095258712769 img loss 1.4395815134048462 img loss 1.3714739084243774 img loss 1.6278398036956787 img loss 1.4852612018585205 img loss 1.5557758808135986 img loss 1.485473871231079 img loss 1.6323498487472534 img loss 1.4407848119735718 img loss 1.5001953840255737 img loss 1.5108002424240112 img loss 1.4776232242584229 img loss 1.5378462076187134 img loss 1.5204217433929443 img loss 1.5358504056930542 img loss 1.6066774129867554 img loss 1.5879520177841187 img loss 1.458737850189209 img loss 1.5128098726272583 img loss 1.4541360139846802 img loss 1.4115546941757202 img loss 1.396384835243225 img loss 1.5122160911560059 img loss 1.5335888862609863 img loss 1.5807594060897827 {'loss': 1.4921, 'grad_norm': 0.39110714197158813, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3508120775222778 img loss 1.323208212852478 img loss 1.3776061534881592 img loss 1.3945577144622803 img loss 1.3719578981399536 img loss 1.5076396465301514 img loss 1.4424744844436646 img loss 1.3510591983795166 img loss 1.4245374202728271 img loss 1.3382182121276855 img loss 1.4090931415557861 img loss 1.3517930507659912 img loss 1.3222469091415405 img loss 1.460050106048584 img loss 1.3649039268493652 img loss 1.3760809898376465 img loss 1.2967971563339233 img loss 1.4620251655578613 img loss 1.4309083223342896 img loss 1.3880146741867065 img loss 1.431536078453064 img loss 1.5302664041519165 img loss 1.3997009992599487 img loss 1.3840651512145996 img loss 1.4114323854446411 img loss 1.330541968345642 img loss 1.4383107423782349 img loss 1.4104737043380737 img loss 1.394329309463501 img loss 1.4432933330535889 img loss 1.4174189567565918 img loss 1.4111533164978027 img loss 1.445502519607544 img loss 1.4464672803878784 img loss 1.4292919635772705 img loss 1.374334692955017 img loss 1.4390900135040283 img loss 1.6453197002410889 img loss 1.2325282096862793 img loss 1.3783386945724487 img loss 1.3889063596725464 img loss 1.3827358484268188 img loss 1.3829481601715088 img loss 1.3991763591766357 img loss 1.425491452217102 img loss 1.2631458044052124 img loss 1.529239535331726 img loss 1.3593504428863525 img loss 1.4571329355239868 img loss 1.4185682535171509 img loss 1.365902304649353 img loss 1.3273652791976929 img loss 1.3719960451126099 img loss 1.400783896446228 img loss 1.414138913154602 img loss 1.443314790725708 img loss 1.4386502504348755 img loss 1.3706692457199097 img loss 1.4200797080993652 img loss 1.4769803285598755 img loss 1.3645751476287842 img loss 1.4243638515472412 img loss 1.338620901107788 img loss 1.3823983669281006 img loss 1.38960862159729 img loss 1.3954700231552124 img loss 1.2766220569610596 img loss 1.5084058046340942 img loss 1.4402695894241333 img loss 1.446824312210083 img loss 1.3882324695587158 img loss 1.5474385023117065 img loss 1.5064141750335693 img loss 1.4169350862503052 img loss 1.4401819705963135 img loss 1.4265295267105103 img loss 1.3734984397888184 img loss 1.436956524848938 img loss 1.5040926933288574 img loss 1.3939777612686157 img loss 1.4832637310028076 img loss 1.3643898963928223 img loss 1.4375656843185425 img loss 1.394254207611084 img loss 1.3641360998153687 img loss 1.444823980331421 img loss 1.4553391933441162 img loss 1.296181082725525 img loss 1.4039890766143799 img loss 1.4198404550552368 img loss 1.414392113685608 img loss 1.4886077642440796 img loss 1.3007709980010986 img loss 1.52621591091156 img loss 1.3542399406433105 img loss 1.4365184307098389 img loss 1.321337342262268 img loss 1.3571943044662476 img loss 1.2725788354873657 img loss 1.2719597816467285 img loss 1.396497368812561 img loss 1.3728631734848022 img loss 1.5410706996917725 img loss 1.4942452907562256 img loss 1.5937762260437012 img loss 1.4213353395462036 img loss 1.417478084564209 img loss 1.3177504539489746 img loss 1.4436458349227905 img loss 1.4488033056259155 img loss 1.3652527332305908 img loss 1.468762993812561 img loss 1.4687339067459106 img loss 1.4744354486465454 img loss 1.4739936590194702 img loss 1.4975391626358032 img loss 1.3680440187454224 img loss 1.3860552310943604 img loss 1.4297164678573608 img loss 1.5471875667572021 img loss 1.3988312482833862 img loss 1.3380893468856812 img loss 1.4678776264190674 img loss 1.4287619590759277 img loss 1.395210862159729 img loss 1.398485541343689 img loss 1.4162566661834717 img loss 1.358518362045288 {'loss': 1.4103, 'grad_norm': 0.29295626282691956, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2308979034423828 img loss 1.44028902053833 img loss 1.4992892742156982 img loss 1.5069987773895264 img loss 1.466781735420227 img loss 1.4363919496536255 img loss 1.374936580657959 img loss 1.3895896673202515 img loss 1.4083898067474365 img loss 1.3386619091033936 img loss 1.5005723237991333 img loss 1.3757073879241943 img loss 1.3535130023956299 img loss 1.4925141334533691 img loss 1.364546298980713 img loss 1.3914525508880615 img loss 1.415748119354248 img loss 1.4609984159469604 img loss 1.515568494796753 img loss 1.3320953845977783 img loss 1.4266666173934937 img loss 1.4109911918640137 img loss 1.3715192079544067 img loss 1.40971839427948 img loss 1.3492170572280884 img loss 1.4708034992218018 img loss 1.495439052581787 img loss 1.4036787748336792 img loss 1.387264370918274 img loss 1.5326417684555054 img loss 1.3401620388031006 img loss 1.375313639640808 img loss 1.3651249408721924 img loss 1.4367241859436035 img loss 1.453072428703308 img loss 1.408300757408142 img loss 1.597289800643921 img loss 1.3764187097549438 img loss 1.4147709608078003 img loss 1.312890887260437 img loss 1.4767773151397705 img loss 1.392492651939392 img loss 1.4842807054519653 img loss 1.6789437532424927 img loss 1.5327454805374146 img loss 1.325343132019043 img loss 1.5197536945343018 img loss 1.4434758424758911 img loss 1.5666652917861938 img loss 1.48125422000885 img loss 1.4388755559921265 img loss 1.4386509656906128 img loss 1.433721661567688 img loss 1.5054048299789429 img loss 1.4902803897857666 img loss 1.3884351253509521 img loss 1.4540692567825317 img loss 1.3102524280548096 img loss 1.3635135889053345 img loss 1.2868188619613647 img loss 1.4959529638290405 img loss 1.4203537702560425 img loss 1.6568658351898193 img loss 1.4805750846862793 img loss 1.3005508184432983 img loss 1.4364359378814697 img loss 1.5135976076126099 img loss 1.3195050954818726 img loss 1.371874213218689 img loss 1.4596730470657349 img loss 1.5246394872665405 img loss 1.3900620937347412 img loss 1.447547197341919 img loss 1.4499785900115967 img loss 1.5036627054214478 img loss 1.407540202140808 img loss 1.5465419292449951 img loss 1.4587571620941162 img loss 1.3691221475601196 img loss 1.4143903255462646 img loss 1.4545475244522095 img loss 1.4526679515838623 img loss 1.590772271156311 img loss 1.486404538154602 img loss 1.277870774269104 img loss 1.4344924688339233 img loss 1.4761651754379272 img loss 1.3890278339385986 img loss 1.4950649738311768 img loss 1.4721580743789673 img loss 1.455287218093872 img loss 1.3517353534698486 img loss 1.4365564584732056 img loss 1.4451607465744019 img loss 1.4301199913024902 img loss 1.3954914808273315 img loss 1.554194688796997 img loss 1.383399248123169 img loss 1.44017493724823 img loss 1.5763016939163208 img loss 1.447143793106079 img loss 1.3029675483703613 img loss 1.3869816064834595 img loss 1.4181151390075684 img loss 1.3797649145126343 img loss 1.4496886730194092 img loss 1.486761212348938 img loss 1.360093593597412 img loss 1.4364326000213623 img loss 1.6139740943908691 img loss 1.4288479089736938 img loss 1.4377485513687134 img loss 1.3623175621032715 img loss 1.464030146598816 img loss 1.3304506540298462 img loss 1.4623044729232788 img loss 1.4480326175689697 img loss 1.3421274423599243 img loss 1.3064522743225098 img loss 1.3866475820541382 img loss 1.4110532999038696 img loss 1.4091728925704956 img loss 1.3986023664474487 img loss 1.3224525451660156 img loss 1.448482632637024 img loss 1.6275475025177002 img loss 1.3798962831497192 img loss 1.5639852285385132 {'loss': 1.433, 'grad_norm': 0.528200626373291, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3685829639434814 img loss 1.3745720386505127 img loss 1.348058819770813 img loss 1.2738808393478394 img loss 1.285073161125183 img loss 1.331010103225708 img loss 1.2730613946914673 img loss 1.2141573429107666 img loss 1.3595483303070068 img loss 1.3181343078613281 img loss 1.3517361879348755 img loss 1.2549796104431152 img loss 1.3201745748519897 img loss 1.2306216955184937 img loss 1.2107599973678589 img loss 1.244819164276123 img loss 1.2714964151382446 img loss 1.4085910320281982 img loss 1.3177297115325928 img loss 1.3404699563980103 img loss 1.3320763111114502 img loss 1.2917484045028687 img loss 1.3141454458236694 img loss 1.2597846984863281 img loss 1.256753921508789 img loss 1.252882719039917 img loss 1.2139132022857666 img loss 1.2192051410675049 img loss 1.223273754119873 img loss 1.2542757987976074 img loss 1.3530685901641846 img loss 1.3223711252212524 img loss 1.3110058307647705 img loss 1.337229609489441 img loss 1.3594889640808105 img loss 1.2385221719741821 img loss 1.4054187536239624 img loss 1.4286638498306274 img loss 1.2740103006362915 img loss 1.2862911224365234 img loss 1.3420748710632324 img loss 1.3028407096862793 img loss 1.3192905187606812 img loss 1.2973536252975464 img loss 1.3111330270767212 img loss 1.3372492790222168 img loss 1.3284696340560913 img loss 1.269842505455017 img loss 1.33599054813385 img loss 1.44294011592865 img loss 1.3624036312103271 img loss 1.2705707550048828 img loss 1.2946542501449585 img loss 1.3171204328536987 img loss 1.366014838218689 img loss 1.2574659585952759 img loss 1.4156781435012817 img loss 1.3140438795089722 img loss 1.3808521032333374 img loss 1.3487451076507568 img loss 1.245168685913086 img loss 1.2960278987884521 img loss 1.2809149026870728 img loss 1.3966070413589478 img loss 1.3355021476745605 img loss 1.2659494876861572 img loss 1.3466953039169312 img loss 1.320507287979126 img loss 1.2317348718643188 img loss 1.4174238443374634 img loss 1.2990128993988037 img loss 1.3099350929260254 img loss 1.398530125617981 img loss 1.2843998670578003 img loss 1.372170090675354 img loss 1.3312853574752808 img loss 1.3324623107910156 img loss 1.3549689054489136 img loss 1.3994487524032593 img loss 1.2930071353912354 img loss 1.2703179121017456 img loss 1.3686691522598267 img loss 1.2764294147491455 img loss 1.3378679752349854 img loss 1.4224709272384644 img loss 1.4075204133987427 img loss 1.2498682737350464 img loss 1.1742676496505737 img loss 1.3847626447677612 img loss 1.3234140872955322 img loss 1.3490633964538574 img loss 1.2013307809829712 img loss 1.2803672552108765 img loss 1.3560703992843628 img loss 1.3847516775131226 img loss 1.2144830226898193 img loss 1.3442260026931763 img loss 1.3896926641464233 img loss 1.3497540950775146 img loss 1.4172941446304321 img loss 1.2540836334228516 img loss 1.3988938331604004 img loss 1.3503443002700806 img loss 1.2615803480148315 img loss 1.4406083822250366 img loss 1.3304909467697144 img loss 1.3236632347106934 img loss 1.3604036569595337 img loss 1.3249220848083496 img loss 1.3647581338882446 img loss 1.32413911819458 img loss 1.302237868309021 img loss 1.3204095363616943 img loss 1.375673770904541 img loss 1.3467800617218018 img loss 1.2091604471206665 img loss 1.34580397605896 img loss 1.4121623039245605 img loss 1.284942626953125 img loss 1.2733772993087769 img loss 1.3034952878952026 img loss 1.301682949066162 img loss 1.3568485975265503 img loss 1.3039917945861816 img loss 1.3339027166366577 img loss 1.3723456859588623 img loss 1.1598602533340454 img loss 1.3501569032669067 {'loss': 1.3183, 'grad_norm': 0.3487236797809601, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.243228793144226 img loss 1.2079293727874756 img loss 1.2171413898468018 img loss 1.2250597476959229 img loss 1.265581488609314 img loss 1.263204574584961 img loss 1.2222059965133667 img loss 1.1577374935150146 img loss 1.1602541208267212 img loss 1.2312434911727905 img loss 1.183342456817627 img loss 1.2031322717666626 img loss 1.2184314727783203 img loss 1.2769688367843628 img loss 1.2315787076950073 img loss 1.2053272724151611 img loss 1.1600403785705566 img loss 1.1450499296188354 img loss 1.2581374645233154 img loss 1.2061848640441895 img loss 1.1349427700042725 img loss 1.2805116176605225 img loss 1.2691389322280884 img loss 1.2188677787780762 img loss 1.3151459693908691 img loss 1.2496337890625 img loss 1.261673927307129 img loss 1.3306221961975098 img loss 1.2399370670318604 img loss 1.1627260446548462 img loss 1.1965446472167969 img loss 1.212428331375122 img loss 1.240874171257019 img loss 1.2073991298675537 img loss 1.2067453861236572 img loss 1.2915502786636353 img loss 1.1745935678482056 img loss 1.2045214176177979 img loss 1.2508658170700073 img loss 1.214510440826416 img loss 1.284717321395874 img loss 1.2202681303024292 img loss 1.1760920286178589 img loss 1.2340739965438843 img loss 1.2101587057113647 img loss 1.1423170566558838 img loss 1.2811508178710938 img loss 1.2401938438415527 img loss 1.209044098854065 img loss 1.1807777881622314 img loss 1.2576580047607422 img loss 1.1442298889160156 img loss 1.295295000076294 img loss 1.2993710041046143 img loss 1.1990766525268555 img loss 1.2083648443222046 img loss 1.1640657186508179 img loss 1.2468498945236206 img loss 1.2975660562515259 img loss 1.2075088024139404 img loss 1.1631723642349243 img loss 1.2420278787612915 img loss 1.2526572942733765 img loss 1.259345293045044 img loss 1.29872465133667 img loss 1.2131106853485107 img loss 1.2235478162765503 img loss 1.2192462682724 img loss 1.1813161373138428 img loss 1.2151132822036743 img loss 1.2913434505462646 img loss 1.2447868585586548 img loss 1.2090065479278564 img loss 1.2512731552124023 img loss 1.2190483808517456 img loss 1.2216579914093018 img loss 1.2364357709884644 img loss 1.222952127456665 img loss 1.2022842168807983 img loss 1.1984190940856934 img loss 1.2659215927124023 img loss 1.2181090116500854 img loss 1.1856101751327515 img loss 1.2050526142120361 img loss 1.1612670421600342 img loss 1.1399688720703125 img loss 1.2981690168380737 img loss 1.2522804737091064 img loss 1.2354674339294434 img loss 1.271757960319519 img loss 1.2157762050628662 img loss 1.251097559928894 img loss 1.2347736358642578 img loss 1.21431303024292 img loss 1.2628517150878906 img loss 1.1805416345596313 img loss 1.288755178451538 img loss 1.2249729633331299 img loss 1.248800277709961img loss 1.279325008392334 img loss 1.2468860149383545 img loss 1.2570539712905884 img loss 1.2697021961212158 img loss 1.2258390188217163 img loss 1.2303928136825562 img loss 1.2499921321868896 img loss 1.161920428276062 img loss 1.2222260236740112 img loss 1.1891090869903564 img loss 1.211366891860962 img loss 1.2259800434112549 img loss 1.133167028427124 img loss 1.2116293907165527 img loss 1.2422126531600952 img loss 1.2196868658065796 img loss 1.2394109964370728 img loss 1.2179903984069824 img loss 1.193315029144287 img loss 1.201554775238037 img loss 1.2514493465423584 img loss 1.2241857051849365 img loss 1.2561054229736328 img loss 1.1886295080184937 img loss 1.2116007804870605 img loss 1.2010515928268433 img loss 1.193785548210144 img loss 1.2073978185653687 img loss 1.2153657674789429 {'loss': 1.2246, 'grad_norm': 0.21419093012809753, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3948760032653809 img loss 1.2269070148468018 img loss 1.4161045551300049 img loss 1.3892027139663696 img loss 1.3154916763305664 img loss 1.3745249509811401 img loss 1.3458073139190674 img loss 1.2875012159347534 img loss 1.3864542245864868 img loss 1.2704590559005737 img loss 1.3851401805877686 img loss 1.408945918083191 img loss 1.4617111682891846 img loss 1.4278892278671265 img loss 1.327193021774292 img loss 1.4673866033554077 img loss 1.4977673292160034 img loss 1.3774429559707642 img loss 1.3941686153411865 img loss 1.4173119068145752 img loss 1.4635282754898071 img loss 1.4536842107772827 img loss 1.351387619972229 img loss 1.4822688102722168 img loss 1.406903624534607 img loss 1.3760541677474976 img loss 1.5184271335601807 img loss 1.3856676816940308 img loss 1.4794764518737793 img loss 1.5521903038024902 img loss 1.3445582389831543 img loss 1.404731273651123 img loss 1.40778386592865 img loss 1.3416450023651123 img loss 1.4244799613952637 img loss 1.3571363687515259 img loss 1.3689106702804565 img loss 1.405832052230835 img loss 1.2760374546051025 img loss 1.3698651790618896 img loss 1.5213438272476196 img loss 1.3978583812713623 img loss 1.3405095338821411 img loss 1.4332355260849 img loss 1.3354697227478027 img loss 1.5596355199813843 img loss 1.3873546123504639img loss 1.3753761053085327 img loss 1.3160271644592285 img loss 1.3793127536773682 img loss 1.3600080013275146 img loss 1.4623931646347046 img loss 1.4201443195343018 img loss 1.4056469202041626 img loss 1.444811463356018 img loss 1.4032429456710815 img loss 1.3659169673919678 img loss 1.386340618133545 img loss 1.3991217613220215 img loss 1.411403775215149 img loss 1.440355658531189 img loss 1.5167020559310913 img loss 1.4135072231292725 img loss 1.3192373514175415 img loss 1.345910906791687 img loss 1.296028733253479 img loss 1.4652016162872314 img loss 1.3909660577774048 img loss 1.4087251424789429 img loss 1.3368890285491943 img loss 1.3286529779434204 img loss 1.5060828924179077 img loss 1.4290134906768799 img loss 1.4077012538909912 img loss 1.3669699430465698 img loss 1.3576502799987793 img loss 1.4147772789001465 img loss 1.3732950687408447 img loss 1.380188226699829 img loss 1.529840111732483 img loss 1.4560476541519165 img loss 1.4879415035247803 img loss 1.512561321258545 img loss 1.4907058477401733 img loss 1.4366239309310913 img loss 1.4946284294128418 img loss 1.3610321283340454 img loss 1.3588030338287354 img loss 1.4484065771102905 img loss 1.4344407320022583 img loss 1.4364770650863647 img loss 1.536528468132019 img loss 1.371277093887329 img loss 1.5116381645202637 img loss 1.364650011062622 img loss 1.4037009477615356 img loss 1.469107985496521 img loss 1.3057502508163452 img loss 1.4849134683609009 img loss 1.3553718328475952 img loss 1.235026240348816 img loss 1.3623178005218506 img loss 1.3665095567703247 img loss 1.5042787790298462 img loss 1.4308606386184692 img loss 1.4623253345489502 img loss 1.2866891622543335 img loss 1.4293806552886963 img loss 1.4867913722991943 img loss 1.4733184576034546 img loss 1.3768929243087769 img loss 1.449842929840088 img loss 1.39241623878479 img loss 1.2345319986343384 img loss 1.37595796585083 img loss 1.232987880706787 img loss 1.3692972660064697 img loss 1.3174241781234741 img loss 1.4286574125289917 img loss 1.2359097003936768 img loss 1.4032946825027466 img loss 1.400336742401123 img loss 1.3938946723937988 img loss 1.3197979927062988 img loss 1.3493837118148804 img loss 1.4005440473556519 img loss 1.32744300365448 img loss 1.4415488243103027 {'loss': 1.3991, 'grad_norm': 0.36753466725349426, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2335013151168823 img loss 1.2312819957733154 img loss 1.264647126197815 img loss 1.2810139656066895 img loss 1.2117010354995728 img loss 1.216709017753601 img loss 1.2252764701843262 img loss 1.1716728210449219 img loss 1.2226781845092773 img loss 1.2131439447402954 img loss 1.2942142486572266 img loss 1.1940157413482666 img loss 1.1816327571868896 img loss 1.224313497543335 img loss 1.2272086143493652 img loss 1.3286926746368408 img loss 1.2881219387054443 img loss 1.2288297414779663 img loss 1.2790560722351074 img loss 1.2129826545715332 img loss 1.24076247215271 img loss 1.2363611459732056 img loss 1.2058117389678955 img loss 1.265404224395752 img loss 1.2599639892578125 img loss 1.2667179107666016 img loss 1.284778356552124 img loss 1.2419780492782593 img loss 1.261371374130249 img loss 1.2075153589248657 img loss 1.2644977569580078 img loss 1.2516260147094727 img loss 1.1956253051757812 img loss 1.2453488111495972 img loss 1.2126808166503906 img loss 1.2338576316833496 img loss 1.2915146350860596 img loss 1.231032371520996 img loss 1.21784245967865 img loss 1.2246805429458618 img loss 1.2954108715057373 img loss 1.195993185043335 img loss 1.281408667564392 img loss 1.203469157218933 img loss 1.2318445444107056 img loss 1.1567972898483276 img loss 1.253072738647461 img loss 1.2280025482177734 img loss 1.214992880821228 img loss 1.2335537672042847 img loss 1.3067941665649414 img loss 1.2425867319107056 img loss 1.237284541130066 img loss 1.3591159582138062 img loss 1.2546542882919312 img loss 1.2058552503585815 img loss 1.1899394989013672 img loss 1.2045847177505493 img loss 1.2453781366348267 img loss 1.2687089443206787 img loss 1.2732551097869873 img loss 1.2416826486587524 img loss 1.23899507522583 img loss 1.2264378070831299 img loss 1.2436745166778564 img loss 1.2757554054260254 img loss 1.2725584506988525 img loss 1.1913913488388062 img loss 1.2226746082305908 img loss 1.2457911968231201 img loss 1.2538597583770752 img loss 1.282877802848816 img loss 1.1884973049163818 img loss 1.3791583776474 img loss 1.2110786437988281 img loss 1.2830032110214233 img loss 1.217414140701294 img loss 1.2832287549972534 img loss 1.2927303314208984 img loss 1.2721296548843384 img loss 1.2736711502075195 img loss 1.21353280544281 img loss 1.1612576246261597 img loss 1.2168164253234863 img loss 1.2482569217681885 img loss 1.1895782947540283 img loss 1.2253087759017944 img loss 1.265150547027588 img loss 1.249800205230713 img loss 1.3010222911834717 img loss 1.2971254587173462 img loss 1.2390496730804443 img loss 1.2582676410675049 img loss 1.228606104850769 img loss 1.267769455909729 img loss 1.2424935102462769 img loss 1.2006632089614868 img loss 1.231135606765747 img loss 1.2312018871307373 img loss 1.204121470451355 img loss 1.2397475242614746 img loss 1.2211604118347168 img loss 1.2525125741958618 img loss 1.219752550125122 img loss 1.2712029218673706 img loss 1.1987643241882324 img loss 1.2440093755722046 img loss 1.2625999450683594 img loss 1.2638683319091797 img loss 1.2456014156341553 img loss 1.2432116270065308 img loss 1.2925002574920654 img loss 1.1894159317016602 img loss 1.2543598413467407 img loss 1.1960991621017456 img loss 1.268986463546753 img loss 1.194281816482544 img loss 1.255806565284729 img loss 1.3237024545669556 img loss 1.2352033853530884 img loss 1.262070894241333 img loss 1.2983025312423706 img loss 1.266653299331665 img loss 1.2178785800933838 img loss 1.1954624652862549 img loss 1.2201064825057983 img loss 1.2233790159225464 img loss 1.1915147304534912 {'loss': 1.2419, 'grad_norm': 0.30087804794311523, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3298755884170532 img loss 1.270141363143921 img loss 1.300278902053833 img loss 1.2589046955108643 img loss 1.2826762199401855 img loss 1.269631266593933 img loss 1.3480902910232544 img loss 1.2531049251556396 img loss 1.2718729972839355 img loss 1.3431713581085205 img loss 1.2549748420715332 img loss 1.3122276067733765 img loss 1.3239402770996094 img loss 1.4055298566818237 img loss 1.3248870372772217 img loss 1.2563313245773315 img loss 1.3082141876220703 img loss 1.2208656072616577 img loss 1.3630661964416504 img loss 1.33649742603302 img loss 1.286364197731018 img loss 1.331734299659729 img loss 1.2958134412765503 img loss 1.2307870388031006 img loss 1.367414951324463img loss 1.2279255390167236 img loss 1.3206090927124023 img loss 1.2466998100280762 img loss 1.3066322803497314 img loss 1.2082546949386597 img loss 1.3723031282424927 img loss 1.3079742193222046 img loss 1.2208951711654663 img loss 1.3005977869033813 img loss 1.279801845550537 img loss 1.2095694541931152 img loss 1.272564172744751 img loss 1.3403228521347046 img loss 1.3010990619659424 img loss 1.3498541116714478 img loss 1.2689831256866455 img loss 1.2894748449325562 img loss 1.31141996383667 img loss 1.2986892461776733 img loss 1.3101119995117188 img loss 1.294479250907898 img loss 1.329042911529541 img loss 1.2535254955291748 img loss 1.3263864517211914 img loss 1.3323503732681274 img loss 1.252335548400879 img loss 1.2785837650299072 img loss 1.3781120777130127 img loss 1.327929139137268 img loss 1.3319714069366455 img loss 1.3179216384887695 img loss 1.3036773204803467 img loss 1.3057136535644531 img loss 1.2684834003448486 img loss 1.2769832611083984 img loss 1.261427402496338 img loss 1.368354320526123 img loss 1.286637544631958 img loss 1.3290483951568604 img loss 1.2654907703399658 img loss 1.2376763820648193 img loss 1.2961615324020386 img loss 1.335331678390503 img loss 1.3478208780288696 img loss 1.2930835485458374 img loss 1.2573764324188232 img loss 1.2709951400756836 img loss 1.2671148777008057 img loss 1.3379437923431396 img loss 1.3057913780212402 img loss 1.3528313636779785 img loss 1.2590473890304565 img loss 1.2623817920684814 img loss 1.2893035411834717 img loss 1.3752304315567017 img loss 1.3057339191436768 img loss 1.2510837316513062 img loss 1.2693305015563965 img loss 1.3312981128692627 img loss 1.2325724363327026 img loss 1.2573007345199585 img loss 1.2523729801177979 img loss 1.3643907308578491 img loss 1.303593635559082 img loss 1.3123373985290527 img loss 1.2248034477233887 img loss 1.3023813962936401 img loss 1.2863295078277588 img loss 1.308887243270874 img loss 1.319079875946045 img loss 1.2596415281295776 img loss 1.2790613174438477 img loss 1.2605664730072021 img loss 1.2373275756835938 img loss 1.2996652126312256 img loss 1.30881929397583 img loss 1.338855266571045 img loss 1.3121886253356934 img loss 1.286731481552124 img loss 1.240686058998108img loss 1.240136981010437 img loss 1.2664343118667603 img loss 1.3278242349624634 img loss 1.272377848625183img loss 1.286914348602295 img loss 1.264108657836914 img loss 1.2523714303970337 img loss 1.2750723361968994 img loss 1.2841099500656128 img loss 1.2457759380340576 img loss 1.249616026878357 img loss 1.2553346157073975 img loss 1.3166550397872925 img loss 1.3020826578140259 img loss 1.352402925491333 img loss 1.3442388772964478 img loss 1.2977062463760376 img loss 1.2498953342437744 img loss 1.261022925376892 img loss 1.3190563917160034 img loss 1.3456610441207886 img loss 1.2910492420196533 img loss 1.2489511966705322 {'loss': 1.2934, 'grad_norm': 0.2361081838607788, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.350297451019287 img loss 1.4763702154159546 img loss 1.4242442846298218 img loss 1.3431026935577393 img loss 1.351509928703308 img loss 1.317155122756958 img loss 1.3338820934295654 img loss 1.378123164176941 img loss 1.288806438446045 img loss 1.490627646446228 img loss 1.2909278869628906 img loss 1.270048975944519 img loss 1.331514596939087 img loss 1.3435759544372559 img loss 1.2730306386947632 img loss 1.3638098239898682 img loss 1.356187105178833 img loss 1.3379204273223877 img loss 1.3231760263442993 img loss 1.4120914936065674 img loss 1.3131356239318848 img loss 1.3999943733215332 img loss 1.2400567531585693 img loss 1.3143553733825684 img loss 1.3419591188430786 img loss 1.3851678371429443 img loss 1.3784806728363037 img loss 1.2854666709899902 img loss 1.383825421333313 img loss 1.326147437095642 img loss 1.3106634616851807 img loss 1.3244913816452026 img loss 1.2621599435806274 img loss 1.3793948888778687 img loss 1.4696563482284546 img loss 1.3547805547714233 img loss 1.275623083114624 img loss 1.288228988647461 img loss 1.368470311164856 img loss 1.3038352727890015 img loss 1.360785722732544 img loss 1.4175797700881958 img loss 1.2764296531677246 img loss 1.4265004396438599 img loss 1.3156040906906128 img loss 1.3315094709396362 img loss 1.3255038261413574 img loss 1.320574402809143 img loss 1.3778901100158691 img loss 1.3680726289749146 img loss 1.3087965250015259 img loss 1.3812130689620972 img loss 1.5053493976593018 img loss 1.41974675655365 img loss 1.2650842666625977 img loss 1.2930799722671509 img loss 1.3226960897445679img loss 1.327516794204712 img loss 1.3243566751480103 img loss 1.3101084232330322 img loss 1.36308753490448 img loss 1.2811568975448608 img loss 1.5009008646011353 img loss 1.4030171632766724 img loss 1.3405592441558838 img loss 1.4048265218734741 img loss 1.3771783113479614 img loss 1.367905855178833 img loss 1.2875303030014038 img loss 1.3726965188980103 img loss 1.3185638189315796 img loss 1.3463326692581177 img loss 1.3227542638778687 img loss 1.3421252965927124 img loss 1.362720251083374 img loss 1.2988176345825195 img loss 1.365127682685852 img loss 1.279639482498169 img loss 1.4196404218673706 img loss 1.4713259935379028 img loss 1.324816107749939 img loss 1.3102123737335205 img loss 1.3260259628295898 img loss 1.3476841449737549 img loss 1.38343346118927 img loss 1.3334681987762451 img loss 1.3708757162094116 img loss 1.4052999019622803 img loss 1.3236278295516968 img loss 1.2388547658920288 img loss 1.3312933444976807 img loss 1.3954012393951416 img loss 1.3312995433807373 img loss 1.3840924501419067 img loss 1.3667353391647339 img loss 1.3649903535842896 img loss 1.4178723096847534 img loss 1.2866504192352295 img loss 1.2714550495147705 img loss 1.4295117855072021 img loss 1.3987072706222534 img loss 1.3477072715759277 img loss 1.3260473012924194 img loss 1.3745267391204834 img loss 1.3196029663085938 img loss 1.3527089357376099 img loss 1.4047999382019043 img loss 1.3746706247329712 img loss 1.2690937519073486 img loss 1.5067230463027954 img loss 1.292193055152893 img loss 1.4065425395965576 img loss 1.4910998344421387 img loss 1.3880836963653564 img loss 1.3354309797286987 img loss 1.3127444982528687 img loss 1.3722857236862183 img loss 1.3359416723251343 img loss 1.2642407417297363 img loss 1.3680472373962402 img loss 1.3289895057678223 img loss 1.3488199710845947 img loss 1.3734477758407593 img loss 1.3026282787322998 img loss 1.3300141096115112 img loss 1.2516720294952393 img loss 1.4067825078964233 img loss 1.3229023218154907 {'loss': 1.3501, 'grad_norm': 0.4519549310207367, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3311660289764404 img loss 1.3437141180038452 img loss 1.2884540557861328 img loss 1.2475297451019287 img loss 1.2734489440917969 img loss 1.204734444618225 img loss 1.4197481870651245 img loss 1.3547863960266113 img loss 1.2808027267456055 img loss 1.3589904308319092 img loss 1.2533358335494995 img loss 1.302567481994629 img loss 1.2946739196777344 img loss 1.3098092079162598 img loss 1.2706860303878784 img loss 1.212216854095459 img loss 1.2630383968353271 img loss 1.2843570709228516 img loss 1.395932912826538 img loss 1.270222544670105 img loss 1.301263689994812 img loss 1.2662702798843384 img loss 1.282806396484375 img loss 1.332953691482544 img loss 1.230690598487854 img loss 1.3114876747131348 img loss 1.274350881576538 img loss 1.2598876953125 img loss 1.3331161737442017 img loss 1.265340805053711 img loss 1.2492845058441162 img loss 1.2836979627609253 img loss 1.2418653964996338 img loss 1.2654386758804321 img loss 1.3469094038009644 img loss 1.2681782245635986 img loss 1.2952200174331665 img loss 1.3347944021224976 img loss 1.2148704528808594 img loss 1.394924283027649 img loss 1.2900810241699219 img loss 1.2507147789001465 img loss 1.272038459777832 img loss 1.3472378253936768 img loss 1.3339871168136597 img loss 1.3422383069992065 img loss 1.3504811525344849 img loss 1.2232359647750854 img loss 1.3070589303970337 img loss 1.285481333732605 img loss 1.3294142484664917 img loss 1.359307050704956 img loss 1.3702642917633057 img loss 1.3045175075531006 img loss 1.2878159284591675 img loss 1.269304633140564 img loss 1.219409465789795 img loss 1.2355483770370483 img loss 1.3053770065307617 img loss 1.314743995666504 img loss 1.221840500831604 img loss 1.237748384475708 img loss 1.2275633811950684img loss 1.298003911972046 img loss 1.3042548894882202 img loss 1.3489536046981812 img loss 1.2556730508804321 img loss 1.3088783025741577 img loss 1.3091360330581665 img loss 1.203927755355835 img loss 1.2452504634857178 img loss 1.3224912881851196 img loss 1.3657253980636597 img loss 1.2897766828536987 img loss 1.3502733707427979 img loss 1.2898437976837158 img loss 1.2512094974517822 img loss 1.3060635328292847 img loss 1.2968921661376953 img loss 1.2760953903198242 img loss 1.404057264328003 img loss 1.3722901344299316 img loss 1.2799040079116821 img loss 1.3459511995315552 img loss 1.263712763786316 img loss 1.201526165008545 img loss 1.3711504936218262 img loss 1.2119930982589722 img loss 1.277418851852417 img loss 1.288673996925354 img loss 1.281571626663208 img loss 1.211392879486084 img loss 1.2322406768798828 img loss 1.3066242933273315 img loss 1.2302956581115723 img loss 1.1919349431991577 img loss 1.3734756708145142 img loss 1.3044700622558594 img loss 1.3020665645599365 img loss 1.2303365468978882 img loss 1.2431496381759644 img loss 1.2763603925704956 img loss 1.3382302522659302 img loss 1.2236274480819702 img loss 1.2821002006530762 img loss 1.1813637018203735 img loss 1.3046222925186157 img loss 1.3328509330749512 img loss 1.2414659261703491 img loss 1.2671936750411987 img loss 1.3144890069961548 img loss 1.2715133428573608 img loss 1.3354307413101196 img loss 1.249744176864624 img loss 1.3056294918060303 img loss 1.365891933441162 img loss 1.370153784751892 img loss 1.342854619026184 img loss 1.3373255729675293 img loss 1.2355917692184448 img loss 1.2099733352661133 img loss 1.3203151226043701 img loss 1.2535227537155151 img loss 1.2804386615753174 img loss 1.3204600811004639 img loss 1.2873775959014893 img loss 1.2251300811767578 img loss 1.2813026905059814 {'loss': 1.2898, 'grad_norm': 0.2653250992298126, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3959487676620483 img loss 1.3772120475769043 img loss 1.2770323753356934 img loss 1.4394123554229736 img loss 1.3056526184082031 img loss 1.3147919178009033 img loss 1.3572824001312256 img loss 1.3718162775039673 img loss 1.3361494541168213 img loss 1.3811248540878296 img loss 1.3007683753967285 img loss 1.344390630722046 img loss 1.3755180835723877 img loss 1.3587491512298584 img loss 1.3185901641845703 img loss 1.3393679857254028 img loss 1.3639436960220337 img loss 1.3252613544464111 img loss 1.416446566581726 img loss 1.3755062818527222 img loss 1.3277027606964111 img loss 1.311090350151062 img loss 1.3377068042755127 img loss 1.3474211692810059 img loss 1.3718804121017456 img loss 1.342913269996643 img loss 1.2972015142440796 img loss 1.285326361656189 img loss 1.3188015222549438 img loss 1.2951064109802246 img loss 1.4196927547454834 img loss 1.3354847431182861 img loss 1.363205075263977 img loss 1.2542680501937866 img loss 1.2800194025039673 img loss 1.278133749961853 img loss 1.2774906158447266 img loss 1.3275303840637207 img loss 1.2986074686050415 img loss 1.428356409072876 img loss 1.3039129972457886 img loss 1.3363083600997925 img loss 1.3396022319793701 img loss 1.3174364566802979 img loss 1.3831403255462646 img loss 1.4154541492462158 img loss 1.3946508169174194 img loss 1.3697937726974487 img loss 1.3457123041152954 img loss 1.3266220092773438 img loss 1.4014748334884644 img loss 1.3194739818572998 img loss 1.3548516035079956 img loss 1.3892208337783813 img loss 1.3695846796035767 img loss 1.3799976110458374 img loss 1.3095126152038574 img loss 1.3980743885040283 img loss 1.377323031425476 img loss 1.2163338661193848 img loss 1.332932949066162 img loss 1.4052339792251587 img loss 1.3447368144989014 img loss 1.359193205833435 img loss 1.2873557806015015 img loss 1.3418785333633423 img loss 1.323725700378418 img loss 1.404312252998352 img loss 1.3841335773468018 img loss 1.4125560522079468 img loss 1.4664855003356934 img loss 1.3808284997940063 img loss 1.395524501800537 img loss 1.3869956731796265 img loss 1.3748949766159058 img loss 1.326669692993164 img loss 1.363052248954773 img loss 1.344618558883667 img loss 1.373238444328308 img loss 1.2844164371490479 img loss 1.3654744625091553 img loss 1.3350697755813599 img loss 1.3302501440048218 img loss 1.3636671304702759 img loss 1.4273037910461426 img loss 1.3955332040786743 img loss 1.3682876825332642 img loss 1.4045405387878418 img loss 1.341784119606018 img loss 1.3069846630096436 img loss 1.359078288078308 img loss 1.3542115688323975 img loss 1.3421626091003418 img loss 1.2798988819122314 img loss 1.343499779701233 img loss 1.4558346271514893 img loss 1.3274362087249756 img loss 1.3753300905227661 img loss 1.3828825950622559 img loss 1.3106122016906738 img loss 1.4403516054153442 img loss 1.3208616971969604 img loss 1.3556691408157349 img loss 1.4043431282043457 img loss 1.410356879234314 img loss 1.3517709970474243 img loss 1.4054380655288696 img loss 1.3305238485336304 img loss 1.33297860622406 img loss 1.3534855842590332 img loss 1.2871063947677612 img loss 1.4124897718429565 img loss 1.3574364185333252 img loss 1.3220365047454834 img loss 1.3013862371444702 img loss 1.3268332481384277 img loss 1.3082654476165771 img loss 1.3075597286224365 img loss 1.3565367460250854 img loss 1.3615453243255615 img loss 1.3438142538070679 img loss 1.4394400119781494 img loss 1.373955249786377 img loss 1.375450611114502 img loss 1.3192065954208374 img loss 1.3345495462417603 img loss 1.293757677078247 img loss 1.2343409061431885 {'loss': 1.3504, 'grad_norm': 0.28003790974617004, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2211540937423706 img loss 1.2088406085968018 img loss 1.281399130821228 img loss 1.18766188621521 img loss 1.2321938276290894 img loss 1.1354255676269531 img loss 1.2513253688812256 img loss 1.2105449438095093 img loss 1.1383888721466064 img loss 1.230607032775879 img loss 1.2800031900405884 img loss 1.3352590799331665 img loss 1.1780006885528564 img loss 1.190765142440796 img loss 1.2034852504730225 img loss 1.179480791091919 img loss 1.249098777770996 img loss 1.2843072414398193 img loss 1.262775182723999 img loss 1.3602131605148315 img loss 1.2833963632583618 img loss 1.1553322076797485 img loss 1.2741751670837402 img loss 1.221639633178711 img loss 1.2166838645935059 img loss 1.2224175930023193 img loss 1.2924753427505493 img loss 1.2325071096420288img loss 1.2490403652191162 img loss 1.2082993984222412 img loss 1.2337348461151123 img loss 1.3866468667984009 img loss 1.2468528747558594 img loss 1.278875708580017 img loss 1.213663101196289 img loss 1.2274894714355469 img loss 1.1712560653686523 img loss 1.2206242084503174 img loss 1.2650086879730225 img loss 1.1910645961761475 img loss 1.2391645908355713 img loss 1.2114509344100952 img loss 1.1932997703552246 img loss 1.2314307689666748 img loss 1.2283309698104858 img loss 1.3880703449249268 img loss 1.2748029232025146 img loss 1.1953022480010986 img loss 1.2221122980117798 img loss 1.212046504020691 img loss 1.2541357278823853 img loss 1.2044156789779663 img loss 1.253294587135315 img loss 1.2528610229492188 img loss 1.2153570652008057 img loss 1.2573126554489136 img loss 1.220585823059082 img loss 1.1641950607299805 img loss 1.2354600429534912 img loss 1.208078145980835 img loss 1.3246495723724365 img loss 1.282735824584961 img loss 1.118604302406311 img loss 1.3222967386245728 img loss 1.2225451469421387 img loss 1.270740032196045 img loss 1.3088138103485107 img loss 1.2439384460449219 img loss 1.2170214653015137 img loss 1.2745436429977417 img loss 1.2218608856201172 img loss 1.429351568222046 img loss 1.3116683959960938 img loss 1.288806438446045 img loss 1.2445331811904907 img loss 1.3538976907730103 img loss 1.2571907043457031 img loss 1.2380703687667847 img loss 1.2332700490951538 img loss 1.3070027828216553 img loss 1.1893717050552368 img loss 1.1793816089630127 img loss 1.1538269519805908 img loss 1.275207281112671 img loss 1.3296937942504883img loss 1.3135603666305542 img loss 1.1902592182159424 img loss 1.1840686798095703 img loss 1.2127958536148071 img loss 1.1356201171875 img loss 1.2105605602264404 img loss 1.1999852657318115 img loss 1.321610450744629 img loss 1.1432690620422363 img loss 1.3331584930419922 img loss 1.2209609746932983 img loss 1.2405575513839722 img loss 1.3497464656829834 img loss 1.1880067586898804 img loss 1.2587696313858032 img loss 1.3967725038528442 img loss 1.2545629739761353 img loss 1.2042912244796753 img loss 1.2121293544769287 img loss 1.2857846021652222 img loss 1.2213382720947266 img loss 1.2868906259536743 img loss 1.2036675214767456 img loss 1.2545169591903687 img loss 1.1592764854431152 img loss 1.2109893560409546 img loss 1.2505712509155273 img loss 1.395819902420044 img loss 1.3271926641464233 img loss 1.1996780633926392 img loss 1.2754955291748047 img loss 1.1847652196884155 img loss 1.2277843952178955 img loss 1.2408208847045898 img loss 1.2009981870651245 img loss 1.3069711923599243 img loss 1.1266474723815918 img loss 1.2797454595565796 img loss 1.1619346141815186 img loss 1.1354506015777588 img loss 1.2256227731704712 img loss 1.2299778461456299 img loss 1.2794415950775146 {'loss': 1.2415, 'grad_norm': 0.3951927721500397, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4366859197616577 img loss 1.4058820009231567 img loss 1.2893562316894531 img loss 1.2777116298675537 img loss 1.3043651580810547 img loss 1.439418077468872 img loss 1.435492992401123 img loss 1.3945794105529785 img loss 1.4776495695114136 img loss 1.4190102815628052 img loss 1.3026237487792969 img loss 1.412335991859436 img loss 1.4127339124679565 img loss 1.2525447607040405 img loss 1.4286444187164307 img loss 1.3084992170333862 img loss 1.3012584447860718 img loss 1.381471872329712 img loss 1.2582401037216187 img loss 1.24485182762146 img loss 1.354753017425537 img loss 1.304778814315796 img loss 1.3842276334762573 img loss 1.2565027475357056 img loss 1.368904709815979 img loss 1.2687053680419922 img loss 1.3506380319595337 img loss 1.3514885902404785 img loss 1.337338924407959 img loss 1.288223147392273 img loss 1.3063474893569946 img loss 1.2838910818099976 img loss 1.3774421215057373 img loss 1.362620234489441 img loss 1.3204196691513062 img loss 1.3309046030044556 img loss 1.3058048486709595 img loss 1.3346171379089355 img loss 1.3356508016586304 img loss 1.4083126783370972 img loss 1.3435513973236084 img loss 1.349413514137268 img loss 1.4379277229309082 img loss 1.2902100086212158 img loss 1.262834072113037 img loss 1.402891755104065 img loss 1.380767583847046 img loss 1.3917127847671509 img loss 1.3442988395690918 img loss 1.3044403791427612 img loss 1.4457640647888184 img loss 1.5202938318252563 img loss 1.4218374490737915 img loss 1.2415831089019775 img loss 1.4812475442886353 img loss 1.3804572820663452 img loss 1.282623291015625 img loss 1.4237534999847412 img loss 1.3273124694824219 img loss 1.3193907737731934 img loss 1.3318049907684326 img loss 1.4678456783294678 img loss 1.3181986808776855 img loss 1.363418698310852 img loss 1.482948899269104 img loss 1.3078155517578125 img loss 1.371306300163269 img loss 1.3659127950668335 img loss 1.3695276975631714 img loss 1.3872286081314087 img loss 1.395504117012024 img loss 1.483506441116333 img loss 1.3590725660324097 img loss 1.2397949695587158 img loss 1.3742622137069702 img loss 1.3440299034118652 img loss 1.320880651473999 img loss 1.2896627187728882 img loss 1.4391932487487793 img loss 1.2604069709777832 img loss 1.3742940425872803 img loss 1.3749072551727295 img loss 1.3321270942687988 img loss 1.3745466470718384 img loss 1.3956048488616943 img loss 1.3780518770217896 img loss 1.4604542255401611 img loss 1.322110652923584 img loss 1.4123765230178833 img loss 1.4078127145767212 img loss 1.3572262525558472 img loss 1.397602915763855 img loss 1.3644334077835083 img loss 1.398324728012085 img loss 1.3235782384872437 img loss 1.486138105392456 img loss 1.3458906412124634 img loss 1.4322093725204468 img loss 1.3515183925628662 img loss 1.4341961145401 img loss 1.3043543100357056 img loss 1.398462176322937 img loss 1.2410324811935425 img loss 1.3847498893737793 img loss 1.3250327110290527 img loss 1.266243577003479 img loss 1.4422374963760376 img loss 1.3487721681594849 img loss 1.3094635009765625 img loss 1.3365485668182373 img loss 1.2809767723083496 img loss 1.2338411808013916 img loss 1.37204909324646 img loss 1.3386743068695068 img loss 1.3144142627716064 img loss 1.2994085550308228 img loss 1.3734499216079712 img loss 1.3453404903411865 img loss 1.3632205724716187 img loss 1.37102210521698 img loss 1.3981386423110962 img loss 1.4009253978729248 img loss 1.445846438407898 img loss 1.457011342048645 img loss 1.4079934358596802 img loss 1.3662922382354736 img loss 1.2914584875106812 img loss 1.316943645477295 {'loss': 1.3586, 'grad_norm': 0.24814267456531525, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3148095607757568 img loss 1.396622896194458 img loss 1.2577158212661743 img loss 1.2885290384292603 img loss 1.395668387413025 img loss 1.3829712867736816 img loss 1.3946081399917603 img loss 1.3361283540725708 img loss 1.3098591566085815 img loss 1.2588896751403809 img loss 1.3735543489456177 img loss 1.316827416419983 img loss 1.4055057764053345 img loss 1.2987041473388672 img loss 1.3135676383972168 img loss 1.322063684463501 img loss 1.465049386024475 img loss 1.2306760549545288 img loss 1.3603198528289795 img loss 1.3629993200302124 img loss 1.3879406452178955 img loss 1.3321651220321655img loss 1.2726454734802246 img loss 1.3883020877838135 img loss 1.37690269947052 img loss 1.391379714012146img loss 1.2938518524169922 img loss 1.3147035837173462 img loss 1.2273221015930176 img loss 1.268109917640686 img loss 1.3315681219100952 img loss 1.2794548273086548 img loss 1.31752347946167 img loss 1.2035119533538818 img loss 1.3314310312271118 img loss 1.3050265312194824 img loss 1.318093180656433 img loss 1.2994388341903687 img loss 1.4158216714859009 img loss 1.425714135169983 img loss 1.3587461709976196 img loss 1.418945550918579 img loss 1.3763813972473145 img loss 1.3677173852920532 img loss 1.2896143198013306 img loss 1.3081105947494507 img loss 1.3031227588653564 img loss 1.4047058820724487 img loss 1.382292628288269 img loss 1.3762403726577759 img loss 1.2651901245117188 img loss 1.4219825267791748 img loss 1.4612581729888916 img loss 1.3429253101348877 img loss 1.301558494567871 img loss 1.3391655683517456 img loss 1.227651596069336 img loss 1.2915369272232056 img loss 1.3770793676376343 img loss 1.380694031715393 img loss 1.4303756952285767 img loss 1.3734303712844849 img loss 1.3571282625198364 img loss 1.3111270666122437 img loss 1.4198400974273682 img loss 1.27179753780365 img loss 1.3769551515579224 img loss 1.2325634956359863img loss 1.281168818473816 img loss 1.3534265756607056 img loss 1.3312950134277344 img loss 1.2602417469024658 img loss 1.3990803956985474 img loss 1.2955564260482788 img loss 1.2466896772384644 img loss 1.3802849054336548 img loss 1.2162895202636719 img loss 1.28153395652771 img loss 1.3524059057235718 img loss 1.3894246816635132 img loss 1.3309261798858643 img loss 1.3062692880630493 img loss 1.2363240718841553 img loss 1.480838418006897 img loss 1.330045461654663 img loss 1.3833956718444824 img loss 1.3894749879837036 img loss 1.4217442274093628 img loss 1.2618201971054077 img loss 1.3781062364578247 img loss 1.223911166191101 img loss 1.2725307941436768 img loss 1.3515784740447998 img loss 1.479511022567749 img loss 1.364691138267517 img loss 1.2107861042022705 img loss 1.3941457271575928 img loss 1.4670789241790771 img loss 1.2831710577011108 img loss 1.3615823984146118 img loss 1.3052786588668823 img loss 1.4211968183517456 img loss 1.3571494817733765 img loss 1.3937346935272217 img loss 1.277108907699585 img loss 1.2962251901626587 img loss 1.384032964706421 img loss 1.3031507730484009 img loss 1.3483113050460815 img loss 1.2364826202392578 img loss 1.3165740966796875 img loss 1.3057221174240112 img loss 1.3428235054016113 img loss 1.4326533079147339 img loss 1.2794623374938965 img loss 1.3660862445831299 img loss 1.3173907995224 img loss 1.4127334356307983 img loss 1.3111283779144287 img loss 1.3134211301803589 img loss 1.3394229412078857 img loss 1.3248629570007324 img loss 1.2403020858764648 img loss 1.2801750898361206 img loss 1.353964924812317 img loss 1.349992036819458 img loss 1.3412582874298096 img loss 1.2748630046844482 {'loss': 1.3357, 'grad_norm': 0.289286732673645, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2704055309295654 img loss 1.3516258001327515 img loss 1.3959934711456299 img loss 1.3165936470031738 img loss 1.4201991558074951 img loss 1.2601277828216553 img loss 1.2619640827178955 img loss 1.4401334524154663 img loss 1.3342617750167847 img loss 1.2794971466064453 img loss 1.263540267944336 img loss 1.3136059045791626 img loss 1.336484670639038 img loss 1.2294669151306152 img loss 1.2712109088897705 img loss 1.3913015127182007 img loss 1.3127716779708862 img loss 1.4053312540054321 img loss 1.2968831062316895 img loss 1.460693120956421 img loss 1.3725284337997437 img loss 1.4129140377044678 img loss 1.401955485343933 img loss 1.374814510345459 img loss 1.2985681295394897 img loss 1.2735528945922852 img loss 1.3437854051589966 img loss 1.3026622533798218 img loss 1.369120478630066 img loss 1.331938624382019 img loss 1.2285619974136353 img loss 1.3173032999038696 img loss 1.2988818883895874 img loss 1.394239068031311 img loss 1.3901907205581665 img loss 1.278390645980835 img loss 1.360968828201294 img loss 1.4176955223083496 img loss 1.256239652633667 img loss 1.3671715259552002 img loss 1.3744655847549438 img loss 1.2748816013336182 img loss 1.4456722736358643 img loss 1.3067079782485962 img loss 1.3694931268692017 img loss 1.1972172260284424 img loss 1.3695069551467896 img loss 1.3465639352798462 img loss 1.304423213005066 img loss 1.369651198387146 img loss 1.3254708051681519 img loss 1.3099483251571655 img loss 1.3899730443954468 img loss 1.3377121686935425 img loss 1.3919788599014282 img loss 1.454055666923523 img loss 1.3017677068710327 img loss 1.4243884086608887 img loss 1.3387593030929565 img loss 1.3434487581253052 img loss 1.2641044855117798 img loss 1.4158470630645752 img loss 1.3004326820373535 img loss 1.2712944746017456 img loss 1.3280166387557983 img loss 1.3870580196380615 img loss 1.3241982460021973 img loss 1.306658387184143 img loss 1.3052020072937012 img loss 1.4776575565338135 img loss 1.4223798513412476 img loss 1.3842740058898926 img loss 1.2849256992340088 img loss 1.3736757040023804 img loss 1.319422960281372 img loss 1.3105804920196533 img loss 1.3280900716781616 img loss 1.376918077468872 img loss 1.3844828605651855 img loss 1.3078306913375854 img loss 1.2618212699890137 img loss 1.281359076499939 img loss 1.2666667699813843 img loss 1.3947784900665283 img loss 1.3363947868347168 img loss 1.3492047786712646 img loss 1.4208167791366577 img loss 1.281686544418335 img loss 1.3682188987731934 img loss 1.3672080039978027 img loss 1.3020501136779785 img loss 1.3807157278060913 img loss 1.3196769952774048 img loss 1.3139957189559937 img loss 1.3820370435714722 img loss 1.3817516565322876 img loss 1.301928162574768 img loss 1.3337947130203247 img loss 1.385880708694458 img loss 1.3526055812835693 img loss 1.291245937347412 img loss 1.326064944267273 img loss 1.2177906036376953 img loss 1.2789076566696167 img loss 1.2724500894546509img loss 1.2719614505767822img loss 1.2851073741912842 img loss 1.3461840152740479 img loss 1.435420274734497 img loss 1.3311805725097656 img loss 1.2301174402236938 img loss 1.2168902158737183 img loss 1.3755894899368286img loss 1.3035656213760376 img loss 1.313377857208252img loss 1.371436595916748img loss 1.3217134475708008 img loss 1.3178986310958862 img loss 1.306284785270691 img loss 1.3516398668289185 img loss 1.3365867137908936 img loss 1.247719407081604 img loss 1.2981739044189453 img loss 1.3818937540054321 img loss 1.3499687910079956 img loss 1.2925195693969727 img loss 1.3051544427871704 img loss 1.3577615022659302 {'loss': 1.3341, 'grad_norm': 0.2899620532989502, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1971707344055176 img loss 1.143986463546753 img loss 1.2428861856460571 img loss 1.2221180200576782 img loss 1.2127175331115723 img loss 1.1851060390472412 img loss 1.196835994720459 img loss 1.222507119178772 img loss 1.2706043720245361 img loss 1.2372629642486572 img loss 1.1328831911087036 img loss 1.1732687950134277 img loss 1.1881334781646729 img loss 1.2163914442062378 img loss 1.2061858177185059 img loss 1.1852415800094604 img loss 1.2217414379119873 img loss 1.2495231628417969 img loss 1.1825751066207886 img loss 1.2476738691329956 img loss 1.2509002685546875 img loss 1.2299190759658813 img loss 1.231139898300171 img loss 1.138091802597046 img loss 1.2258590459823608 img loss 1.1901118755340576 img loss 1.2305958271026611 img loss 1.2002893686294556 img loss 1.145458459854126 img loss 1.137075424194336 img loss 1.1770298480987549 img loss 1.1782984733581543 img loss 1.280185341835022 img loss 1.17556893825531 img loss 1.2425380945205688 img loss 1.2201712131500244 img loss 1.2782173156738281 img loss 1.1868923902511597 img loss 1.174591302871704 img loss 1.2321429252624512 img loss 1.1766667366027832 img loss 1.198313593864441 img loss 1.1859978437423706 img loss 1.2090975046157837 img loss 1.3118022680282593 img loss 1.213550329208374img loss 1.2342380285263062 img loss 1.2098900079727173 img loss 1.284583568572998 img loss 1.1813005208969116 img loss 1.207828402519226 img loss 1.1886790990829468 img loss 1.2301743030548096 img loss 1.2117862701416016 img loss 1.249307632446289 img loss 1.2133013010025024 img loss 1.15366792678833 img loss 1.1672108173370361 img loss 1.182441234588623 img loss 1.1861419677734375 img loss 1.2546582221984863 img loss 1.1914682388305664 img loss 1.1771987676620483 img loss 1.217829942703247 img loss 1.274107813835144 img loss 1.2332916259765625 img loss 1.1990898847579956 img loss 1.1953926086425781 img loss 1.2206480503082275 img loss 1.1105467081069946 img loss 1.2382183074951172 img loss 1.190171718597412 img loss 1.235816478729248 img loss 1.2230113744735718 img loss 1.1867202520370483 img loss 1.3142286539077759 img loss 1.1818774938583374 img loss 1.2249822616577148 img loss 1.2268612384796143 img loss 1.1633374691009521 img loss 1.2252200841903687 img loss 1.226433515548706 img loss 1.192678451538086 img loss 1.1998498439788818 img loss 1.1833529472351074 img loss 1.194732666015625 img loss 1.1614246368408203 img loss 1.2559394836425781 img loss 1.2562302350997925 img loss 1.1570849418640137 img loss 1.1608221530914307 img loss 1.2866246700286865 img loss 1.189348578453064 img loss 1.2616983652114868 img loss 1.1781584024429321 img loss 1.1868833303451538 img loss 1.2694698572158813 img loss 1.1987990140914917 img loss 1.2854944467544556 img loss 1.1468318700790405 img loss 1.2441115379333496 img loss 1.1704175472259521 img loss 1.16986083984375 img loss 1.2039353847503662 img loss 1.2102702856063843 img loss 1.2277352809906006 img loss 1.193326711654663 img loss 1.2314945459365845 img loss 1.1735258102416992 img loss 1.2415341138839722 img loss 1.1850532293319702 img loss 1.263488531112671 img loss 1.1353269815444946 img loss 1.1640013456344604 img loss 1.207955241203308 img loss 1.1904096603393555 img loss 1.2423769235610962 img loss 1.1235569715499878 img loss 1.1401853561401367 img loss 1.1745160818099976 img loss 1.2659504413604736 img loss 1.2186943292617798 img loss 1.2381638288497925 img loss 1.1914652585983276 img loss 1.2347378730773926 img loss 1.2432193756103516 img loss 1.1880289316177368 img loss 1.2703787088394165 {'loss': 1.2084, 'grad_norm': 0.2812126874923706, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3819944858551025 img loss 1.4061038494110107 img loss 1.4204668998718262 img loss 1.3499857187271118 img loss 1.3833180665969849 img loss 1.4605365991592407 img loss 1.3175349235534668 img loss 1.3774371147155762 img loss 1.5397756099700928 img loss 1.347923994064331 img loss 1.3766624927520752 img loss 1.4579188823699951 img loss 1.3808419704437256 img loss 1.456684947013855 img loss 1.4385075569152832 img loss 1.3802520036697388 img loss 1.3646985292434692 img loss 1.4466458559036255 img loss 1.515010952949524 img loss 1.3718751668930054 img loss 1.3952769041061401 img loss 1.3605554103851318 img loss 1.387368083000183 img loss 1.4101917743682861 img loss 1.5457208156585693 img loss 1.5386440753936768 img loss 1.323805332183838 img loss 1.4140652418136597 img loss 1.5563409328460693 img loss 1.375166416168213 img loss 1.3615456819534302 img loss 1.5356260538101196 img loss 1.4483678340911865 img loss 1.4569119215011597 img loss 1.5323454141616821 img loss 1.4216210842132568 img loss 1.4453167915344238 img loss 1.471422791481018 img loss 1.4211783409118652 img loss 1.3191417455673218 img loss 1.3067505359649658 img loss 1.5061793327331543 img loss 1.4885904788970947 img loss 1.3493636846542358 img loss 1.291603446006775 img loss 1.3308719396591187 img loss 1.4817646741867065 img loss 1.4500672817230225 img loss 1.5241684913635254 img loss 1.4588574171066284 img loss 1.4442400932312012 img loss 1.4536134004592896 img loss 1.336317777633667 img loss 1.4873064756393433 img loss 1.4265697002410889 img loss 1.4310301542282104 img loss 1.2762874364852905 img loss 1.3829419612884521 img loss 1.4675740003585815 img loss 1.4114315509796143 img loss 1.3259838819503784 img loss 1.4001059532165527 img loss 1.4672795534133911 img loss 1.340908408164978 img loss 1.5037389993667603 img loss 1.3968647718429565 img loss 1.5390979051589966 img loss 1.3334904909133911 img loss 1.4284965991973877 img loss 1.4196804761886597 img loss 1.6083643436431885 img loss 1.3307464122772217 img loss 1.4933756589889526 img loss 1.3785185813903809 img loss 1.2754454612731934 img loss 1.4176838397979736 img loss 1.4369086027145386 img loss 1.2167341709136963 img loss 1.4186749458312988 img loss 1.4835742712020874 img loss 1.4746330976486206 img loss 1.3744111061096191 img loss 1.3949217796325684 img loss 1.4077249765396118 img loss 1.4987095594406128 img loss 1.3634194135665894 img loss 1.3559849262237549 img loss 1.368070125579834 img loss 1.438219428062439 img loss 1.3777940273284912 img loss 1.6367770433425903 img loss 1.4420191049575806 img loss 1.4156540632247925 img loss 1.5245707035064697 img loss 1.4881319999694824 img loss 1.5547560453414917 img loss 1.3095258474349976 img loss 1.4512962102890015 img loss 1.42618989944458 img loss 1.3737605810165405 img loss 1.3298487663269043 img loss 1.5902012586593628 img loss 1.3793771266937256 img loss 1.3544851541519165 img loss 1.4654983282089233 img loss 1.3661175966262817 img loss 1.613817572593689 img loss 1.3423612117767334 img loss 1.4486401081085205 img loss 1.3688737154006958 img loss 1.44843327999115 img loss 1.5455310344696045 img loss 1.4936047792434692 img loss 1.3363662958145142 img loss 1.4490326642990112 img loss 1.4141143560409546 img loss 1.4479566812515259 img loss 1.3667269945144653 img loss 1.3758434057235718 img loss 1.3736531734466553 img loss 1.3545597791671753 img loss 1.4272321462631226 img loss 1.5429109334945679 img loss 1.3624509572982788 img loss 1.4113638401031494 img loss 1.4086498022079468 img loss 1.3590234518051147 img loss 1.4050034284591675 {'loss': 1.4209, 'grad_norm': 0.27471843361854553, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2064850330352783 img loss 1.1769832372665405 img loss 1.1622947454452515 img loss 1.192795753479004 img loss 1.1915805339813232 img loss 1.2946102619171143 img loss 1.3111240863800049 img loss 1.2141413688659668 img loss 1.1038148403167725 img loss 1.2216852903366089 img loss 1.0919599533081055 img loss 1.2329554557800293 img loss 1.2288131713867188 img loss 1.2976267337799072 img loss 1.2800461053848267 img loss 1.1107112169265747 img loss 1.266394019126892 img loss 1.0908119678497314 img loss 1.197153925895691 img loss 1.2484726905822754 img loss 1.2731263637542725 img loss 1.2967109680175781 img loss 1.2797565460205078 img loss 1.2637439966201782 img loss 1.2119683027267456 img loss 1.2077558040618896 img loss 1.3465043306350708 img loss 1.2867581844329834 img loss 1.2380436658859253 img loss 1.1758027076721191 img loss 1.2032684087753296 img loss 1.2298799753189087 img loss 1.2890170812606812 img loss 1.1920561790466309 img loss 1.2355494499206543 img loss 1.3605389595031738 img loss 1.3317440748214722 img loss 1.3124008178710938 img loss 1.1524842977523804 img loss 1.190244436264038 img loss 1.330422043800354 img loss 1.1830565929412842 img loss 1.23907470703125 img loss 1.275977611541748 img loss 1.330690622329712 img loss 1.1657816171646118 img loss 1.2416914701461792 img loss 1.3126286268234253 img loss 1.2508827447891235 img loss 1.2473493814468384 img loss 1.1612420082092285 img loss 1.3026604652404785 img loss 1.2743602991104126 img loss 1.259394884109497 img loss 1.3024790287017822 img loss 1.2688641548156738 img loss 1.1666001081466675 img loss 1.25807523727417 img loss 1.3415025472640991 img loss 1.3058527708053589 img loss 1.2677338123321533 img loss 1.2288464307785034 img loss 1.2570202350616455 img loss 1.2168176174163818 img loss 1.2185394763946533 img loss 1.2580056190490723 img loss 1.2344486713409424 img loss 1.2209279537200928 img loss 1.2455155849456787 img loss 1.3480325937271118 img loss 1.1415060758590698 img loss 1.2045153379440308 img loss 1.2774996757507324 img loss 1.1665325164794922 img loss 1.2552480697631836 img loss 1.1989847421646118 img loss 1.2950031757354736 img loss 1.2784230709075928 img loss 1.2399084568023682 img loss 1.2611721754074097 img loss 1.3251956701278687 img loss 1.3343827724456787 img loss 1.1485962867736816 img loss 1.2110588550567627 img loss 1.2210144996643066 img loss 1.2238491773605347 img loss 1.214675784111023 img loss 1.294763445854187 img loss 1.1357991695404053 img loss 1.2723366022109985 img loss 1.194498896598816 img loss 1.2332806587219238 img loss 1.351948618888855 img loss 1.1517066955566406 img loss 1.2489922046661377 img loss 1.1503825187683105 img loss 1.168454885482788 img loss 1.2368637323379517 img loss 1.2896864414215088 img loss 1.2660589218139648 img loss 1.3739138841629028 img loss 1.1542670726776123 img loss 1.2338435649871826 img loss 1.3455727100372314 img loss 1.2959593534469604 img loss 1.2699917554855347 img loss 1.2826035022735596 img loss 1.2478396892547607 img loss 1.3246259689331055 img loss 1.2800238132476807 img loss 1.1774415969848633 img loss 1.2322885990142822 img loss 1.2036453485488892 img loss 1.2637659311294556 img loss 1.2198607921600342 img loss 1.3041328191757202 img loss 1.3276089429855347 img loss 1.2381608486175537 img loss 1.1692014932632446 img loss 1.309875249862671 img loss 1.2401602268218994 img loss 1.203987717628479 img loss 1.3088245391845703 img loss 1.2079607248306274 img loss 1.2267106771469116 img loss 1.2514891624450684 img loss 1.231839656829834 img loss 1.2135727405548096 {'loss': 1.2425, 'grad_norm': 0.23475931584835052, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2587541341781616 img loss 1.3157365322113037 img loss 1.189483404159546 img loss 1.2340573072433472 img loss 1.2840576171875 img loss 1.3785054683685303 img loss 1.2196135520935059 img loss 1.3422138690948486 img loss 1.3176409006118774 img loss 1.3103889226913452 img loss 1.2757930755615234 img loss 1.2714190483093262 img loss 1.3230834007263184 img loss 1.2990213632583618 img loss 1.2610397338867188 img loss 1.2629307508468628 img loss 1.2900817394256592 img loss 1.254642367362976 img loss 1.2956780195236206 img loss 1.4218214750289917 img loss 1.1871025562286377 img loss 1.3099850416183472 img loss 1.2691303491592407 img loss 1.3169959783554077 img loss 1.3751559257507324 img loss 1.3609672784805298 img loss 1.293147087097168 img loss 1.1700654029846191 img loss 1.2794073820114136 img loss 1.2691904306411743 img loss 1.3419655561447144 img loss 1.3273184299468994 img loss 1.346778154373169 img loss 1.4091980457305908 img loss 1.320614218711853 img loss 1.1713825464248657 img loss 1.2522251605987549 img loss 1.2484289407730103 img loss 1.2526640892028809 img loss 1.2530725002288818 img loss 1.234413504600525 img loss 1.2041723728179932 img loss 1.2874141931533813 img loss 1.2607214450836182 img loss 1.2792785167694092 img loss 1.2745749950408936 img loss 1.2972214221954346 img loss 1.277164101600647 img loss 1.3410781621932983 img loss 1.2687523365020752 img loss 1.2171096801757812 img loss 1.2150068283081055 img loss 1.2282671928405762 img loss 1.3167750835418701 img loss 1.3321727514266968 img loss 1.2238421440124512 img loss 1.2841930389404297 img loss 1.2522701025009155 img loss 1.2667680978775024 img loss 1.1409571170806885 img loss 1.30907142162323 img loss 1.3439335823059082 img loss 1.3588099479675293 img loss 1.202539324760437 img loss 1.20146644115448 img loss 1.261535882949829 img loss 1.2189686298370361 img loss 1.236133337020874 img loss 1.307214379310608 img loss 1.2339434623718262 img loss 1.2704015970230103 img loss 1.4438000917434692 img loss 1.2219185829162598 img loss 1.3569235801696777 img loss 1.3230749368667603 img loss 1.3381880521774292 img loss 1.221158504486084 img loss 1.3034166097640991 img loss 1.288665533065796 img loss 1.190427541732788 img loss 1.2333006858825684 img loss 1.2280936241149902 img loss 1.3736213445663452 img loss 1.3367364406585693 img loss 1.3379653692245483 img loss 1.277593970298767 img loss 1.1981146335601807 img loss 1.2652859687805176 img loss 1.2790868282318115 img loss 1.3345540761947632 img loss 1.2423533201217651 img loss 1.3270822763442993 img loss 1.178929090499878 img loss 1.2921528816223145 img loss 1.2504894733428955 img loss 1.280413269996643 img loss 1.2625536918640137 img loss 1.2571367025375366 img loss 1.3661694526672363 img loss 1.244996428489685 img loss 1.2247562408447266 img loss 1.2458560466766357 img loss 1.2731809616088867 img loss 1.232603669166565 img loss 1.2628848552703857 img loss 1.2658277750015259 img loss 1.218778133392334 img loss 1.3449432849884033 img loss 1.2976633310317993 img loss 1.3537633419036865 img loss 1.3165373802185059 img loss 1.31448495388031 img loss 1.2630817890167236 img loss 1.2520207166671753 img loss 1.3690321445465088 img loss 1.2409108877182007 img loss 1.210593581199646 img loss 1.3348313570022583 img loss 1.2994916439056396 img loss 1.413926601409912 img loss 1.243765115737915 img loss 1.264551043510437 img loss 1.3391526937484741 img loss 1.2873871326446533 img loss 1.3013006448745728 img loss 1.2073866128921509 img loss 1.245342493057251 img loss 1.1921322345733643 {'loss': 1.2795, 'grad_norm': 0.2564050853252411, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1481683254241943 img loss 1.2248514890670776 img loss 1.234545111656189 img loss 1.2568676471710205 img loss 1.2725390195846558 img loss 1.2573251724243164 img loss 1.233361005783081img loss 1.2303104400634766 img loss 1.2793959379196167 img loss 1.1855262517929077 img loss 1.3416880369186401 img loss 1.2248895168304443 img loss 1.2002357244491577 img loss 1.2017124891281128 img loss 1.2586272954940796 img loss 1.2570157051086426 img loss 1.159128189086914 img loss 1.395680546760559 img loss 1.21761953830719 img loss 1.2039520740509033 img loss 1.2602829933166504 img loss 1.2286943197250366 img loss 1.1732823848724365 img loss 1.2542511224746704 img loss 1.2272080183029175 img loss 1.3372883796691895 img loss 1.2548717260360718 img loss 1.2317980527877808 img loss 1.2604913711547852 img loss 1.2074410915374756 img loss 1.2517807483673096 img loss 1.1451002359390259 img loss 1.2057468891143799 img loss 1.2568085193634033 img loss 1.1925033330917358 img loss 1.2074229717254639 img loss 1.2882121801376343 img loss 1.1842870712280273 img loss 1.2897498607635498 img loss 1.3458985090255737 img loss 1.2229208946228027 img loss 1.3105804920196533 img loss 1.2870075702667236 img loss 1.2488106489181519 img loss 1.1238329410552979 img loss 1.2023169994354248 img loss 1.2084258794784546 img loss 1.2335785627365112 img loss 1.2421433925628662 img loss 1.2415930032730103 img loss 1.306753158569336 img loss 1.2192769050598145 img loss 1.2310422658920288 img loss 1.2815369367599487 img loss 1.177242636680603 img loss 1.2086490392684937 img loss 1.2479349374771118 img loss 1.1896883249282837 img loss 1.1607385873794556 img loss 1.2396905422210693 img loss 1.3390557765960693 img loss 1.2130751609802246 img loss 1.2344393730163574 img loss 1.2200443744659424 img loss 1.1576589345932007 img loss 1.2834256887435913 img loss 1.1867741346359253 img loss 1.2213655710220337 img loss 1.2326714992523193 img loss 1.1663622856140137 img loss 1.2559007406234741 img loss 1.2015482187271118 img loss 1.2781126499176025 img loss 1.2725340127944946 img loss 1.198310136795044 img loss 1.1743693351745605 img loss 1.2143046855926514 img loss 1.1053305864334106 img loss 1.256943702697754 img loss 1.190161943435669 img loss 1.147141933441162 img loss 1.146116852760315 img loss 1.1765183210372925 img loss 1.3299636840820312 img loss 1.2885746955871582 img loss 1.2453774213790894 img loss 1.1426234245300293 img loss 1.346450924873352 img loss 1.2391821146011353 img loss 1.2294737100601196 img loss 1.2468070983886719img loss 1.2272436618804932 img loss 1.146451473236084 img loss 1.2876427173614502 img loss 1.3152079582214355 img loss 1.2805836200714111 img loss 1.265764832496643 img loss 1.255974292755127 img loss 1.2816383838653564 img loss 1.219405174255371 img loss 1.2073017358779907 img loss 1.2717050313949585 img loss 1.1394166946411133 img loss 1.175808310508728 img loss 1.188947081565857 img loss 1.2664315700531006 img loss 1.3271280527114868 img loss 1.2014694213867188 img loss 1.2181363105773926 img loss 1.3271472454071045 img loss 1.2204415798187256 img loss 1.1915240287780762 img loss 1.3921281099319458 img loss 1.2810940742492676 img loss 1.2281922101974487 img loss 1.263885498046875 img loss 1.2534232139587402 img loss 1.257395625114441 img loss 1.2342437505722046 img loss 1.2027149200439453 img loss 1.2236483097076416 img loss 1.2080116271972656 img loss 1.3281800746917725 img loss 1.2893396615982056 img loss 1.2252506017684937 img loss 1.3238359689712524 img loss 1.2346055507659912 img loss 1.2115013599395752 {'loss': 1.2366, 'grad_norm': 0.23998522758483887, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3901817798614502 img loss 1.3869292736053467 img loss 1.5376408100128174 img loss 1.3962327241897583 img loss 1.3083503246307373 img loss 1.4421398639678955 img loss 1.4462370872497559 img loss 1.41250479221344 img loss 1.2876118421554565 img loss 1.4355849027633667 img loss 1.646053433418274 img loss 1.5880500078201294 img loss 1.515744924545288 img loss 1.5350385904312134 img loss 1.3317286968231201 img loss 1.51908278465271 img loss 1.3547917604446411 img loss 1.3646982908248901 img loss 1.4621509313583374 img loss 1.404853105545044 img loss 1.2567514181137085 img loss 1.28419828414917 img loss 1.416580080986023 img loss 1.4048506021499634 img loss 1.3838602304458618 img loss 1.419649362564087 img loss 1.5017715692520142 img loss 1.3945130109786987 img loss 1.4445551633834839 img loss 1.482383370399475 img loss 1.4225666522979736 img loss 1.4001585245132446 img loss 1.3349336385726929 img loss 1.4928609132766724 img loss 1.3972680568695068 img loss 1.4599134922027588 img loss 1.3707926273345947 img loss 1.5109714269638062 img loss 1.3578492403030396 img loss 1.5064793825149536 img loss 1.4849607944488525 img loss 1.350759744644165 img loss 1.5113965272903442 img loss 1.35598886013031 img loss 1.497226595878601 img loss 1.436487078666687 img loss 1.577217936515808 img loss 1.3560868501663208 img loss 1.512235403060913 img loss 1.454911470413208 img loss 1.4783059358596802 img loss 1.3663458824157715 img loss 1.4035536050796509 img loss 1.3700261116027832 img loss 1.27568519115448 img loss 1.44029700756073 img loss 1.4202488660812378 img loss 1.2949975728988647 img loss 1.351572871208191 img loss 1.3336005210876465 img loss 1.6282538175582886 img loss 1.3426750898361206 img loss 1.5244412422180176 img loss 1.411220908164978 img loss 1.3979471921920776 img loss 1.5359318256378174 img loss 1.4686018228530884 img loss 1.386473536491394 img loss 1.5091625452041626 img loss 1.3410307168960571 img loss 1.6099088191986084 img loss 1.3934438228607178 img loss 1.5412166118621826 img loss 1.4336880445480347 img loss 1.4697309732437134 img loss 1.297980785369873 img loss 1.3932439088821411 img loss 1.407650351524353 img loss 1.4521125555038452 img loss 1.376189112663269 img loss 1.428083062171936 img loss 1.5451265573501587 img loss 1.488618016242981 img loss 1.3671635389328003 img loss 1.3568930625915527 img loss 1.458628535270691 img loss 1.3455965518951416 img loss 1.3969414234161377 img loss 1.4206236600875854 img loss 1.3972790241241455 img loss 1.4785304069519043 img loss 1.3062690496444702 img loss 1.5648858547210693 img loss 1.4613348245620728 img loss 1.512878656387329 img loss 1.412851095199585 img loss 1.4262902736663818 img loss 1.3800829648971558 img loss 1.499921202659607 img loss 1.5276143550872803 img loss 1.5259528160095215 img loss 1.2680078744888306 img loss 1.344518780708313 img loss 1.4315378665924072 img loss 1.4405866861343384 img loss 1.3886981010437012 img loss 1.385617971420288 img loss 1.5273985862731934 img loss 1.3966012001037598 img loss 1.2503865957260132 img loss 1.3255020380020142 img loss 1.372732400894165 img loss 1.4661736488342285 img loss 1.3682591915130615 img loss 1.4644399881362915 img loss 1.468153476715088 img loss 1.547156810760498 img loss 1.500136137008667 img loss 1.3901749849319458 img loss 1.4316895008087158 img loss 1.4711581468582153 img loss 1.2994422912597656 img loss 1.4416251182556152 img loss 1.4791837930679321 img loss 1.5078822374343872 img loss 1.4001630544662476 img loss 1.5441851615905762 img loss 1.4179061651229858 {'loss': 1.4284, 'grad_norm': 0.27449965476989746, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1996266841888428 img loss 1.1183995008468628 img loss 1.1931979656219482 img loss 1.2151732444763184 img loss 1.1201584339141846 img loss 1.1588314771652222 img loss 1.2133973836898804 img loss 1.1333608627319336 img loss 1.1498754024505615 img loss 1.1401094198226929 img loss 1.1898657083511353 img loss 1.128361701965332 img loss 1.2091926336288452 img loss 1.2126089334487915 img loss 1.1605230569839478 img loss 1.2165353298187256 img loss 1.0744651556015015 img loss 1.146921992301941 img loss 1.2341774702072144 img loss 1.1615231037139893 img loss 1.1438422203063965 img loss 1.07124924659729 img loss 1.1327158212661743 img loss 1.219517469406128 img loss 1.113933801651001 img loss 1.1771082878112793 img loss 1.1819523572921753 img loss 1.1413811445236206 img loss 1.171120285987854 img loss 1.2227625846862793 img loss 1.1770663261413574 img loss 1.1797775030136108 img loss 1.1618410348892212 img loss 1.1403145790100098 img loss 1.1864745616912842 img loss 1.220691442489624 img loss 1.0903584957122803 img loss 1.1366382837295532 img loss 1.1598427295684814 img loss 1.1333595514297485 img loss 1.1322284936904907 img loss 1.1380870342254639 img loss 1.1588300466537476 img loss 1.1534172296524048 img loss 1.1866340637207031 img loss 1.188120722770691 img loss 1.1987037658691406 img loss 1.2160682678222656 img loss 1.1661382913589478 img loss 1.2416114807128906 img loss 1.1962120532989502 img loss 1.1764025688171387 img loss 1.1354966163635254 img loss 1.2284810543060303 img loss 1.1857610940933228 img loss 1.1593525409698486 img loss 1.141538381576538 img loss 1.1238781213760376 img loss 1.1773662567138672 img loss 1.2632668018341064 img loss 1.1536896228790283 img loss 1.1970757246017456 img loss 1.1474699974060059 img loss 1.2076634168624878 img loss 1.155106544494629 img loss 1.1930283308029175 img loss 1.184435248374939 img loss 1.1142668724060059 img loss 1.1219542026519775 img loss 1.1764086484909058 img loss 1.191977858543396 img loss 1.1742703914642334 img loss 1.1887996196746826 img loss 1.1656616926193237 img loss 1.2496041059494019 img loss 1.1508222818374634 img loss 1.0853720903396606 img loss 1.253283977508545 img loss 1.148257851600647 img loss 1.1919550895690918 img loss 1.2157492637634277 img loss 1.138009786605835 img loss 1.180601954460144 img loss 1.1821627616882324 img loss 1.2066364288330078 img loss 1.1863150596618652 img loss 1.1358705759048462 img loss 1.1747654676437378 img loss 1.1322420835494995 img loss 1.1438719034194946 img loss 1.0742262601852417 img loss 1.1314538717269897 img loss 1.1428295373916626 img loss 1.2372605800628662 img loss 1.1683534383773804 img loss 1.1720499992370605 img loss 1.1682542562484741 img loss 1.2675530910491943 img loss 1.1516151428222656 img loss 1.1176823377609253 img loss 1.1329913139343262 img loss 1.160365104675293 img loss 1.1852777004241943 img loss 1.1661224365234375 img loss 1.1993541717529297 img loss 1.2443790435791016 img loss 1.160271406173706 img loss 1.1660343408584595 img loss 1.172760009765625 img loss 1.1159162521362305 img loss 1.2166435718536377 img loss 1.1470863819122314 img loss 1.1505283117294312 img loss 1.2244395017623901 img loss 1.1837437152862549 img loss 1.1998623609542847 img loss 1.1340669393539429 img loss 1.092454195022583 img loss 1.1663341522216797 img loss 1.2615469694137573 img loss 1.1420329809188843 img loss 1.1961654424667358 img loss 1.1454551219940186 img loss 1.178575873374939 img loss 1.174599051475525 img loss 1.1748746633529663 img loss 1.2338167428970337 img loss 1.2396210432052612 {'loss': 1.1707, 'grad_norm': 0.27254921197891235, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2838616371154785 img loss 1.1876224279403687 img loss 1.2463003396987915 img loss 1.3461194038391113 img loss 1.1420987844467163 img loss 1.2672011852264404 img loss 1.2010836601257324 img loss 1.1577188968658447 img loss 1.203532099723816 img loss 1.2487523555755615 img loss 1.2028319835662842 img loss 1.265829086303711 img loss 1.2092567682266235 img loss 1.2134335041046143 img loss 1.2083253860473633 img loss 1.1909452676773071 img loss 1.1851624250411987 img loss 1.1276425123214722 img loss 1.2543623447418213 img loss 1.2193870544433594 img loss 1.223900318145752 img loss 1.348049283027649 img loss 1.2112400531768799 img loss 1.1717299222946167 img loss 1.2308690547943115 img loss 1.2149748802185059 img loss 1.176084280014038 img loss 1.2194786071777344 img loss 1.201948881149292 img loss 1.2367498874664307 img loss 1.2608520984649658 img loss 1.245073914527893 img loss 1.2465240955352783 img loss 1.1654317378997803 img loss 1.134294867515564 img loss 1.2119338512420654 img loss 1.206400752067566 img loss 1.2619297504425049 img loss 1.251822829246521 img loss 1.1077812910079956 img loss 1.2519164085388184 img loss 1.17547607421875 img loss 1.2165732383728027 img loss 1.2578909397125244 img loss 1.2254523038864136 img loss 1.1801249980926514 img loss 1.182920217514038 img loss 1.2329597473144531 img loss 1.1895461082458496 img loss 1.2010635137557983 img loss 1.223588228225708 img loss 1.1119041442871094 img loss 1.2021726369857788 img loss 1.2328685522079468 img loss 1.193511724472046 img loss 1.215976595878601 img loss 1.2381607294082642 img loss 1.1844373941421509 img loss 1.132886290550232 img loss 1.175199270248413 img loss 1.2046550512313843 img loss 1.1489588022232056 img loss 1.2039211988449097 img loss 1.1989978551864624 img loss 1.107347011566162 img loss 1.1503050327301025 img loss 1.2217719554901123 img loss 1.2142469882965088 img loss 1.1708745956420898 img loss 1.2295547723770142 img loss 1.2324182987213135 img loss 1.3125089406967163 img loss 1.186724305152893 img loss 1.253761649131775 img loss 1.196984887123108 img loss 1.2768864631652832 img loss 1.2934379577636719 img loss 1.2075179815292358 img loss 1.1670979261398315 img loss 1.231122612953186 img loss 1.3090572357177734 img loss 1.226625680923462 img loss 1.2128009796142578 img loss 1.2357546091079712 img loss 1.2241286039352417 img loss 1.183129906654358 img loss 1.2462297677993774 img loss 1.2245204448699951 img loss 1.198277473449707 img loss 1.2383933067321777 img loss 1.1689655780792236 img loss 1.1342144012451172 img loss 1.282745361328125 img loss 1.2940938472747803 img loss 1.185455083847046 img loss 1.1435962915420532 img loss 1.2206252813339233 img loss 1.180399775505066 img loss 1.2891327142715454 img loss 1.2344112396240234 img loss 1.2360084056854248 img loss 1.161507248878479 img loss 1.1558310985565186 img loss 1.213131308555603 img loss 1.1774450540542603 img loss 1.2064855098724365 img loss 1.2333769798278809 img loss 1.165558099746704 img loss 1.2366522550582886 img loss 1.2456613779067993 img loss 1.1970643997192383 img loss 1.2736408710479736 img loss 1.3778408765792847 img loss 1.2998363971710205 img loss 1.1988356113433838 img loss 1.2125861644744873 img loss 1.2393020391464233 img loss 1.1940109729766846 img loss 1.264445185661316 img loss 1.2176815271377563 img loss 1.1909469366073608 img loss 1.2259812355041504 img loss 1.211216926574707 img loss 1.2165935039520264 img loss 1.2418941259384155 img loss 1.1776807308197021 img loss 1.2321393489837646 img loss 1.2691090106964111 {'loss': 1.2158, 'grad_norm': 0.26663938164711, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1500109434127808 img loss 1.133081316947937 img loss 1.2059029340744019 img loss 1.325253963470459 img loss 1.2245396375656128 img loss 1.2068084478378296 img loss 1.1615910530090332 img loss 1.217888355255127 img loss 1.2021472454071045 img loss 1.2341551780700684 img loss 1.170571208000183 img loss 1.209607481956482 img loss 1.247809886932373 img loss 1.2785590887069702 img loss 1.2184278964996338 img loss 1.2194464206695557 img loss 1.0920957326889038 img loss 1.204222559928894 img loss 1.26609468460083 img loss 1.2046486139297485 img loss 1.2492072582244873 img loss 1.287644863128662 img loss 1.134861707687378 img loss 1.2564300298690796 img loss 1.2211377620697021 img loss 1.2696192264556885 img loss 1.2573161125183105 img loss 1.2532529830932617 img loss 1.2275216579437256 img loss 1.2565460205078125 img loss 1.182930588722229 img loss 1.2208516597747803 img loss 1.2251938581466675 img loss 1.2382320165634155 img loss 1.2254718542099 img loss 1.1729148626327515 img loss 1.2054094076156616 img loss 1.1737791299819946 img loss 1.172637701034546 img loss 1.2012051343917847 img loss 1.1603301763534546 img loss 1.2378404140472412 img loss 1.2372827529907227 img loss 1.2423381805419922 img loss 1.18015456199646 img loss 1.202990174293518 img loss 1.2605650424957275 img loss 1.1747488975524902 img loss 1.2244799137115479 img loss 1.1309003829956055 img loss 1.3016602993011475 img loss 1.1704232692718506 img loss 1.2107107639312744 img loss 1.1723965406417847 img loss 1.2358086109161377 img loss 1.2213592529296875 img loss 1.180801272392273 img loss 1.2173326015472412 img loss 1.2829235792160034 img loss 1.2799530029296875 img loss 1.149404764175415 img loss 1.2740683555603027 img loss 1.3221793174743652 img loss 1.2081561088562012 img loss 1.1454553604125977 img loss 1.1724121570587158 img loss 1.1978123188018799 img loss 1.1415019035339355 img loss 1.265265941619873 img loss 1.173887014389038 img loss 1.163965106010437 img loss 1.1958954334259033 img loss 1.2752920389175415 img loss 1.2146145105361938 img loss 1.207360863685608 img loss 1.2623176574707031 img loss 1.2428337335586548 img loss 1.156603217124939 img loss 1.167559266090393 img loss 1.1776528358459473 img loss 1.1544930934906006 img loss 1.1846426725387573 img loss 1.2156498432159424 img loss 1.223929762840271 img loss 1.2505935430526733 img loss 1.1319445371627808 img loss 1.2380826473236084 img loss 1.1490696668624878 img loss 1.2571182250976562 img loss 1.2401765584945679 img loss 1.2114226818084717 img loss 1.1485419273376465 img loss 1.1869182586669922 img loss 1.15658700466156 img loss 1.2502453327178955 img loss 1.306536078453064 img loss 1.1753677129745483 img loss 1.1596503257751465 img loss 1.1883788108825684 img loss 1.380454182624817 img loss 1.2331898212432861 img loss 1.21610426902771 img loss 1.2033547163009644 img loss 1.1940189599990845 img loss 1.162496566772461 img loss 1.2778624296188354 img loss 1.1567587852478027 img loss 1.2492785453796387 img loss 1.165300726890564 img loss 1.1357965469360352 img loss 1.2285656929016113 img loss 1.1516506671905518 img loss 1.2300163507461548 img loss 1.2323616743087769 img loss 1.1543617248535156 img loss 1.2839444875717163 img loss 1.2433112859725952 img loss 1.2170579433441162 img loss 1.2483876943588257 img loss 1.1893577575683594 img loss 1.1895248889923096 img loss 1.1539791822433472 img loss 1.2375911474227905 img loss 1.1764779090881348 img loss 1.1573606729507446 img loss 1.203595757484436 img loss 1.197339653968811 img loss 1.208201289176941 {'loss': 1.2106, 'grad_norm': 0.2131078541278839, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2681148052215576 img loss 1.2727043628692627 img loss 1.4010924100875854 img loss 1.2507336139678955 img loss 1.3811436891555786 img loss 1.235949158668518 img loss 1.3965059518814087 img loss 1.3095301389694214 img loss 1.3850414752960205 img loss 1.2843525409698486 img loss 1.3767439126968384 img loss 1.3390240669250488 img loss 1.3326442241668701 img loss 1.2923719882965088 img loss 1.3340719938278198 img loss 1.2572048902511597 img loss 1.2803958654403687 img loss 1.2516775131225586 img loss 1.320107340812683 img loss 1.3734872341156006 img loss 1.2579240798950195 img loss 1.2978875637054443 img loss 1.36212956905365 img loss 1.2781072854995728 img loss 1.2635204792022705 img loss 1.2614357471466064 img loss 1.30487060546875 img loss 1.3620153665542603 img loss 1.347556710243225 img loss 1.3230184316635132 img loss 1.4415819644927979 img loss 1.3025773763656616 img loss 1.3426756858825684 img loss 1.2895774841308594 img loss 1.3391315937042236 img loss 1.317819356918335 img loss 1.2993382215499878 img loss 1.257544755935669 img loss 1.3604636192321777 img loss 1.3783470392227173 img loss 1.1795330047607422 img loss 1.312528371810913 img loss 1.4412788152694702 img loss 1.294912338256836 img loss 1.410813808441162 img loss 1.2840197086334229 img loss 1.3567472696304321 img loss 1.1878188848495483 img loss 1.2954777479171753 img loss 1.4171773195266724 img loss 1.274176836013794 img loss 1.4219553470611572 img loss 1.3234179019927979 img loss 1.3288097381591797 img loss 1.3540493249893188 img loss 1.448879599571228 img loss 1.2301266193389893 img loss 1.3395532369613647 img loss 1.2363567352294922 img loss 1.3215935230255127 img loss 1.2231714725494385 img loss 1.262397289276123 img loss 1.2034553289413452 img loss 1.3521201610565186 img loss 1.3093878030776978img loss 1.4504262208938599 img loss 1.3016265630722046 img loss 1.330729365348816 img loss 1.241591453552246 img loss 1.2516438961029053 img loss 1.308118224143982 img loss 1.3098070621490479 img loss 1.3766915798187256 img loss 1.3005516529083252 img loss 1.2960535287857056 img loss 1.3837414979934692 img loss 1.3189448118209839 img loss 1.341869831085205 img loss 1.3849272727966309 img loss 1.2569221258163452 img loss 1.3390276432037354 img loss 1.3430936336517334 img loss 1.2396488189697266 img loss 1.4071160554885864 img loss 1.2543448209762573 img loss 1.2946445941925049 img loss 1.3155869245529175 img loss 1.51193106174469 img loss 1.3464443683624268 img loss 1.2490333318710327 img loss 1.2954987287521362 img loss 1.3688849210739136 img loss 1.2504222393035889 img loss 1.285291075706482 img loss 1.491921305656433 img loss 1.3331059217453003 img loss 1.3163833618164062 img loss 1.419843316078186 img loss 1.3286113739013672 img loss 1.404200792312622 img loss 1.3804690837860107 img loss 1.2794170379638672 img loss 1.3217495679855347 img loss 1.3316296339035034 img loss 1.2975709438323975 img loss 1.339343786239624 img loss 1.3304646015167236 img loss 1.3135933876037598 img loss 1.2613561153411865 img loss 1.3198215961456299 img loss 1.2850620746612549 img loss 1.328701376914978 img loss 1.3885151147842407 img loss 1.2796581983566284 img loss 1.2938581705093384 img loss 1.1900122165679932 img loss 1.2467683553695679 img loss 1.3254828453063965 img loss 1.3128581047058105 img loss 1.407951831817627 img loss 1.2573153972625732 img loss 1.3664734363555908 img loss 1.3172669410705566 img loss 1.2438507080078125 img loss 1.3351490497589111 img loss 1.4652361869812012 img loss 1.3963624238967896 img loss 1.2922091484069824 {'loss': 1.3211, 'grad_norm': 0.2750832736492157, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2735925912857056 img loss 1.2020583152770996 img loss 1.2738370895385742 img loss 1.1970065832138062 img loss 1.3408770561218262 img loss 1.2099344730377197 img loss 1.2070072889328003 img loss 1.2200037240982056 img loss 1.1286661624908447 img loss 1.2414939403533936 img loss 1.2922292947769165 img loss 1.2291494607925415 img loss 1.1619348526000977 img loss 1.2335498332977295 img loss 1.2170836925506592 img loss 1.2955012321472168 img loss 1.2493565082550049 img loss 1.183721899986267 img loss 1.3203376531600952 img loss 1.3056409358978271 img loss 1.2696504592895508 img loss 1.1665914058685303 img loss 1.1579509973526 img loss 1.2328732013702393 img loss 1.2361977100372314 img loss 1.3619744777679443 img loss 1.2710250616073608 img loss 1.2334859371185303 img loss 1.248293399810791 img loss 1.1819522380828857 img loss 1.2400853633880615 img loss 1.2196903228759766 img loss 1.2213846445083618 img loss 1.2013338804244995 img loss 1.1897008419036865 img loss 1.2710689306259155 img loss 1.2027281522750854 img loss 1.2273225784301758 img loss 1.2662906646728516 img loss 1.2518278360366821 img loss 1.31982421875 img loss 1.1631256341934204 img loss 1.1251217126846313 img loss 1.2583560943603516 img loss 1.2768362760543823 img loss 1.15762197971344 img loss 1.2897402048110962 img loss 1.2292966842651367 img loss 1.2107555866241455 img loss 1.2739980220794678 img loss 1.1740832328796387 img loss 1.285563349723816 img loss 1.1436405181884766 img loss 1.3846430778503418 img loss 1.252237319946289 img loss 1.130596399307251 img loss 1.3082951307296753 img loss 1.232359528541565 img loss 1.297368049621582 img loss 1.215801477432251 img loss 1.2784792184829712 img loss 1.3304121494293213 img loss 1.1243559122085571 img loss 1.2725274562835693 img loss 1.2213134765625 img loss 1.2048320770263672 img loss 1.2814521789550781 img loss 1.2222614288330078 img loss 1.2441622018814087 img loss 1.1456186771392822 img loss 1.201115369796753 img loss 1.154163122177124 img loss 1.252035140991211 img loss 1.2992970943450928 img loss 1.2765945196151733 img loss 1.3051742315292358 img loss 1.304970383644104 img loss 1.1878324747085571 img loss 1.2784429788589478 img loss 1.3048635721206665 img loss 1.1936845779418945 img loss 1.2587941884994507 img loss 1.1697773933410645 img loss 1.2032160758972168 img loss 1.2857019901275635 img loss 1.2593951225280762 img loss 1.19864821434021 img loss 1.1968743801116943 img loss 1.3712527751922607 img loss 1.2814029455184937 img loss 1.3011531829833984 img loss 1.2266998291015625 img loss 1.2595094442367554 img loss 1.2541158199310303 img loss 1.3206974267959595 img loss 1.273843765258789 img loss 1.218026876449585 img loss 1.3343437910079956 img loss 1.2111506462097168 img loss 1.24676513671875 img loss 1.2154810428619385 img loss 1.1411265134811401 img loss 1.3594772815704346 img loss 1.2965805530548096 img loss 1.286921739578247 img loss 1.3431037664413452 img loss 1.3106811046600342 img loss 1.2456762790679932 img loss 1.2571862936019897 img loss 1.2167567014694214 img loss 1.2242435216903687 img loss 1.2056090831756592 img loss 1.2304214239120483 img loss 1.1422638893127441 img loss 1.1962387561798096 img loss 1.3400689363479614 img loss 1.332061767578125 img loss 1.2242164611816406 img loss 1.1578235626220703 img loss 1.1756013631820679 img loss 1.3677074909210205 img loss 1.223027229309082 img loss 1.1676504611968994 img loss 1.2093713283538818 img loss 1.1553478240966797 img loss 1.2110610008239746 img loss 1.3135714530944824 img loss 1.2405617237091064 {'loss': 1.2415, 'grad_norm': 0.2511640191078186, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.321987509727478 img loss 1.3216596841812134 img loss 1.2603250741958618 img loss 1.2028487920761108 img loss 1.2814857959747314 img loss 1.310917615890503 img loss 1.2863850593566895 img loss 1.3852678537368774 img loss 1.3529530763626099 img loss 1.2700337171554565 img loss 1.2520955801010132 img loss 1.321672797203064 img loss 1.3023172616958618 img loss 1.2663803100585938 img loss 1.2710926532745361 img loss 1.2717840671539307 img loss 1.3586971759796143 img loss 1.3555083274841309 img loss 1.3646234273910522 img loss 1.4616440534591675 img loss 1.3920599222183228 img loss 1.245875597000122 img loss 1.2709801197052002 img loss 1.3686162233352661 img loss 1.3544284105300903 img loss 1.3114651441574097 img loss 1.4173520803451538 img loss 1.2918046712875366 img loss 1.3989033699035645 img loss 1.3457915782928467 img loss 1.2449216842651367 img loss 1.3029494285583496 img loss 1.3337255716323853 img loss 1.3987534046173096 img loss 1.2521297931671143 img loss 1.31382417678833 img loss 1.3941041231155396 img loss 1.4285962581634521 img loss 1.2792555093765259 img loss 1.3155837059020996 img loss 1.3817174434661865 img loss 1.3533740043640137 img loss 1.4146655797958374 img loss 1.3330621719360352 img loss 1.229262113571167 img loss 1.397578477859497 img loss 1.2749093770980835 img loss 1.3878387212753296 img loss 1.3193727731704712 img loss 1.2194288969039917 img loss 1.325437307357788 img loss 1.2489311695098877 img loss 1.3319419622421265 img loss 1.3245844841003418 img loss 1.3449465036392212 img loss 1.3056970834732056 img loss 1.3804515600204468 img loss 1.3470219373703003 img loss 1.2681611776351929 img loss 1.3196226358413696 img loss 1.3432592153549194 img loss 1.2779860496520996 img loss 1.3597553968429565 img loss 1.3295249938964844 img loss 1.3475892543792725 img loss 1.3329646587371826 img loss 1.2830418348312378 img loss 1.2328258752822876 img loss 1.286771297454834 img loss 1.339779257774353 img loss 1.3083451986312866 img loss 1.2757991552352905 img loss 1.3391516208648682 img loss 1.2754971981048584 img loss 1.3922641277313232 img loss 1.2364050149917603 img loss 1.2888925075531006 img loss 1.3828686475753784 img loss 1.3542168140411377 img loss 1.4290496110916138 img loss 1.328133463859558 img loss 1.2566819190979004 img loss 1.3388571739196777 img loss 1.2870450019836426 img loss 1.312364101409912 img loss 1.2879621982574463 img loss 1.322964072227478 img loss 1.3453973531723022 img loss 1.31963312625885 img loss 1.332479476928711 img loss 1.3680516481399536 img loss 1.238798975944519 img loss 1.3015564680099487 img loss 1.355879545211792 img loss 1.2265212535858154 img loss 1.3183367252349854 img loss 1.291391134262085 img loss 1.2720502614974976 img loss 1.2566356658935547 img loss 1.2272230386734009 img loss 1.2249199151992798 img loss 1.3332700729370117 img loss 1.321417212486267 img loss 1.3314743041992188 img loss 1.3398149013519287 img loss 1.327732801437378 img loss 1.3226972818374634 img loss 1.3113359212875366 img loss 1.3335658311843872 img loss 1.2356027364730835 img loss 1.388425588607788 img loss 1.2614524364471436 img loss 1.3061959743499756 img loss 1.363797903060913 img loss 1.345384955406189 img loss 1.2684438228607178 img loss 1.2898473739624023 img loss 1.3319414854049683 img loss 1.339423656463623 img loss 1.3225711584091187 img loss 1.3016235828399658 img loss 1.2766742706298828 img loss 1.3610351085662842 img loss 1.2683051824569702 img loss 1.3227498531341553 img loss 1.1855592727661133 img loss 1.329264521598816 img loss 1.357241153717041 {'loss': 1.3164, 'grad_norm': 0.3086933195590973, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1749298572540283 img loss 1.253562569618225 img loss 1.176837682723999 img loss 1.223568320274353 img loss 1.243124008178711 img loss 1.150399923324585 img loss 1.153826355934143 img loss 1.2519034147262573 img loss 1.213313102722168 img loss 1.2517257928848267 img loss 1.2425470352172852 img loss 1.1708074808120728 img loss 1.2676291465759277 img loss 1.2628246545791626 img loss 1.2677874565124512 img loss 1.2609065771102905 img loss 1.2010090351104736 img loss 1.1911773681640625 img loss 1.2791361808776855 img loss 1.2035942077636719 img loss 1.2251777648925781 img loss 1.1752861738204956 img loss 1.3056715726852417 img loss 1.2778263092041016 img loss 1.2209763526916504 img loss 1.2502954006195068 img loss 1.212052583694458 img loss 1.2092950344085693 img loss 1.2108691930770874 img loss 1.199649453163147 img loss 1.117914080619812 img loss 1.206133484840393 img loss 1.2080399990081787 img loss 1.2427570819854736 img loss 1.209605097770691 img loss 1.2833057641983032 img loss 1.2330458164215088 img loss 1.1409997940063477 img loss 1.201924204826355 img loss 1.1910014152526855 img loss 1.1933724880218506 img loss 1.2322065830230713 img loss 1.1876814365386963 img loss 1.1638472080230713 img loss 1.207265853881836 img loss 1.210450530052185 img loss 1.2215553522109985 img loss 1.2822105884552002 img loss 1.2241528034210205 img loss 1.2649046182632446 img loss 1.2210578918457031 img loss 1.1762709617614746 img loss 1.2230470180511475 img loss 1.2277264595031738 img loss 1.1514304876327515 img loss 1.281435251235962 img loss 1.115422010421753 img loss 1.1544336080551147 img loss 1.183039665222168 img loss 1.2954423427581787 img loss 1.1774441003799438 img loss 1.1743580102920532 img loss 1.2299444675445557 img loss 1.2070841789245605 img loss 1.2313644886016846 img loss 1.1857564449310303 img loss 1.2551573514938354 img loss 1.2042211294174194 img loss 1.292974829673767 img loss 1.249845266342163 img loss 1.2463207244873047 img loss 1.2234543561935425 img loss 1.211320400238037 img loss 1.2133506536483765 img loss 1.1251498460769653 img loss 1.186968207359314 img loss 1.275445818901062 img loss 1.1509029865264893 img loss 1.2672100067138672 img loss 1.2325265407562256 img loss 1.2084410190582275 img loss 1.1665047407150269 img loss 1.153625726699829 img loss 1.260796070098877 img loss 1.1961749792099 img loss 1.1916866302490234 img loss 1.2083582878112793 img loss 1.2353699207305908 img loss 1.2293671369552612 img loss 1.204442024230957 img loss 1.111045479774475 img loss 1.138777494430542 img loss 1.1640880107879639 img loss 1.1847209930419922 img loss 1.1917351484298706 img loss 1.2750318050384521 img loss 1.1906485557556152 img loss 1.2146729230880737 img loss 1.2168911695480347 img loss 1.1888010501861572 img loss 1.2285627126693726 img loss 1.214846134185791 img loss 1.292235255241394 img loss 1.2106595039367676 img loss 1.2568458318710327 img loss 1.2485617399215698 img loss 1.172079086303711 img loss 1.1723934412002563 img loss 1.2546535730361938 img loss 1.163333773612976 img loss 1.2048735618591309 img loss 1.1659927368164062 img loss 1.3441673517227173 img loss 1.209418535232544 img loss 1.1770179271697998 img loss 1.1584221124649048 img loss 1.2021331787109375 img loss 1.2730889320373535 img loss 1.2168712615966797 img loss 1.194313883781433 img loss 1.2235931158065796 img loss 1.1650280952453613 img loss 1.324221134185791 img loss 1.161172866821289 img loss 1.2447534799575806 img loss 1.131474256515503 img loss 1.2474265098571777 img loss 1.2405848503112793 {'loss': 1.2137, 'grad_norm': 0.24878020584583282, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2772266864776611 img loss 1.247506022453308 img loss 1.2703452110290527 img loss 1.2514166831970215 img loss 1.257027506828308 img loss 1.2740459442138672 img loss 1.1871856451034546 img loss 1.350553035736084 img loss 1.3030776977539062 img loss 1.3179452419281006 img loss 1.3054425716400146 img loss 1.252361536026001 img loss 1.2318919897079468 img loss 1.364202857017517 img loss 1.3090128898620605 img loss 1.286577820777893 img loss 1.2677620649337769 img loss 1.171990990638733 img loss 1.3188215494155884 img loss 1.2778246402740479 img loss 1.2969295978546143 img loss 1.2004599571228027 img loss 1.1825392246246338 img loss 1.301785945892334 img loss 1.3941298723220825 img loss 1.2827097177505493 img loss 1.292173147201538 img loss 1.26200532913208 img loss 1.2683711051940918 img loss 1.3370548486709595 img loss 1.2737679481506348 img loss 1.3525326251983643 img loss 1.1631479263305664 img loss 1.2475874423980713 img loss 1.3058545589447021 img loss 1.2527319192886353 img loss 1.1634330749511719 img loss 1.2387911081314087 img loss 1.3095765113830566 img loss 1.2066566944122314 img loss 1.2557272911071777 img loss 1.3909982442855835 img loss 1.3650314807891846 img loss 1.283258080482483 img loss 1.3163995742797852 img loss 1.360685110092163 img loss 1.1893476247787476 img loss 1.350948452949524 img loss 1.2124722003936768 img loss 1.2315775156021118 img loss 1.2858562469482422 img loss 1.2914693355560303 img loss 1.2887276411056519 img loss 1.2277790307998657 img loss 1.2261673212051392 img loss 1.2897676229476929 img loss 1.2051924467086792 img loss 1.2377249002456665 img loss 1.264717936515808 img loss 1.278728723526001 img loss 1.2531964778900146 img loss 1.2375571727752686 img loss 1.2528809309005737 img loss 1.3107517957687378 img loss 1.3590120077133179 img loss 1.1978000402450562 img loss 1.3031295537948608 img loss 1.1769789457321167 img loss 1.1990547180175781 img loss 1.2372992038726807 img loss 1.2685019969940186 img loss 1.2417534589767456 img loss 1.3075412511825562 img loss 1.3148058652877808 img loss 1.286461591720581 img loss 1.2314738035202026 img loss 1.2531782388687134 img loss 1.368780255317688 img loss 1.235305666923523 img loss 1.3113389015197754 img loss 1.2942861318588257 img loss 1.212475061416626 img loss 1.286325454711914 img loss 1.261030673980713 img loss 1.2433671951293945 img loss 1.3221096992492676 img loss 1.2126003503799438 img loss 1.2460129261016846 img loss 1.2603954076766968 img loss 1.2627843618392944 img loss 1.2522083520889282 img loss 1.2351431846618652 img loss 1.2995355129241943 img loss 1.2713921070098877 img loss 1.2287752628326416 img loss 1.3717408180236816 img loss 1.2535011768341064 img loss 1.2965803146362305 img loss 1.3065801858901978 img loss 1.278425931930542 img loss 1.208566665649414 img loss 1.3827059268951416 img loss 1.4712269306182861 img loss 1.2920249700546265 img loss 1.2786977291107178 img loss 1.359287977218628 img loss 1.2508583068847656 img loss 1.2816590070724487 img loss 1.3156845569610596 img loss 1.2697157859802246 img loss 1.2613804340362549 img loss 1.3212454319000244 img loss 1.230171799659729 img loss 1.2529199123382568 img loss 1.291462779045105 img loss 1.195117712020874 img loss 1.2534490823745728 img loss 1.3433119058609009 img loss 1.2631468772888184 img loss 1.2940008640289307 img loss 1.2886812686920166 img loss 1.3373433351516724 img loss 1.2022002935409546 img loss 1.2027397155761719 img loss 1.343962550163269 img loss 1.2556531429290771 img loss 1.3075013160705566 img loss 1.1890226602554321 {'loss': 1.2742, 'grad_norm': 0.2543332874774933, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2392566204071045 img loss 1.1819270849227905 img loss 1.1444438695907593 img loss 1.3060073852539062 img loss 1.1728694438934326 img loss 1.218177080154419 img loss 1.2103086709976196 img loss 1.1662559509277344 img loss 1.2371028661727905 img loss 1.1850906610488892 img loss 1.1212390661239624 img loss 1.2451927661895752 img loss 1.130010724067688 img loss 1.1793771982192993 img loss 1.206146001815796 img loss 1.1540498733520508 img loss 1.265247106552124 img loss 1.1958179473876953 img loss 1.168639063835144 img loss 1.276503324508667 img loss 1.2413238286972046 img loss 1.1871087551116943 img loss 1.1395801305770874 img loss 1.191351294517517 img loss 1.1539642810821533 img loss 1.1448709964752197 img loss 1.2362607717514038 img loss 1.1913962364196777 img loss 1.2818598747253418 img loss 1.1836357116699219 img loss 1.1917695999145508 img loss 1.179639220237732 img loss 1.1523441076278687 img loss 1.1906973123550415 img loss 1.1801948547363281 img loss 1.1831762790679932 img loss 1.2020481824874878 img loss 1.1905548572540283 img loss 1.1760746240615845 img loss 1.1471556425094604 img loss 1.1841405630111694 img loss 1.1857579946517944 img loss 1.172905683517456 img loss 1.164458155632019 img loss 1.1427741050720215 img loss 1.166598916053772 img loss 1.1379201412200928 img loss 1.1409530639648438 img loss 1.2755274772644043 img loss 1.207853078842163 img loss 1.2024258375167847 img loss 1.120434045791626 img loss 1.1407108306884766 img loss 1.2603505849838257 img loss 1.2467074394226074 img loss 1.2318795919418335 img loss 1.223001480102539 img loss 1.1876766681671143 img loss 1.2348291873931885 img loss 1.245888352394104 img loss 1.1174300909042358 img loss 1.1423925161361694 img loss 1.2546466588974 img loss 1.1705491542816162 img loss 1.135127305984497 img loss 1.1586185693740845 img loss 1.2445793151855469 img loss 1.2502225637435913 img loss 1.1315706968307495 img loss 1.1762850284576416 img loss 1.1811050176620483 img loss 1.1980432271957397 img loss 1.1818499565124512 img loss 1.3343157768249512 img loss 1.239638328552246 img loss 1.2302403450012207 img loss 1.2864489555358887 img loss 1.2047697305679321 img loss 1.160552740097046 img loss 1.2509474754333496 img loss 1.191725730895996 img loss 1.170952558517456 img loss 1.239903450012207 img loss 1.1720513105392456 img loss 1.2540215253829956 img loss 1.1930711269378662 img loss 1.2159627676010132 img loss 1.2447155714035034 img loss 1.1650521755218506 img loss 1.2577236890792847 img loss 1.1824871301651 img loss 1.1456310749053955 img loss 1.1989398002624512 img loss 1.240222454071045 img loss 1.1746772527694702 img loss 1.2537128925323486 img loss 1.1965235471725464 img loss 1.1876944303512573 img loss 1.2003551721572876 img loss 1.194825530052185 img loss 1.2491168975830078 img loss 1.197054147720337 img loss 1.1697968244552612 img loss 1.2070682048797607 img loss 1.1953929662704468 img loss 1.2599185705184937 img loss 1.1346077919006348 img loss 1.149819016456604 img loss 1.1548222303390503 img loss 1.2409780025482178 img loss 1.2314811944961548 img loss 1.2119144201278687 img loss 1.1284459829330444 img loss 1.2602920532226562 img loss 1.1759696006774902 img loss 1.1590267419815063 img loss 1.2880229949951172 img loss 1.1905364990234375 img loss 1.2102999687194824 img loss 1.2095868587493896 img loss 1.1683717966079712 img loss 1.2395342588424683 img loss 1.2055609226226807 img loss 1.1424221992492676 img loss 1.1958444118499756 img loss 1.311539649963379 img loss 1.1735374927520752 img loss 1.2021868228912354 {'loss': 1.1985, 'grad_norm': 0.4194827675819397, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2503619194030762 img loss 1.3345749378204346 img loss 1.318286657333374 img loss 1.3079971075057983 img loss 1.2680580615997314 img loss 1.273323893547058 img loss 1.3340023756027222 img loss 1.3180545568466187 img loss 1.1863155364990234 img loss 1.287259817123413 img loss 1.373728632926941 img loss 1.268369197845459 img loss 1.2974038124084473 img loss 1.2526739835739136 img loss 1.2925533056259155 img loss 1.2247943878173828 img loss 1.2844518423080444 img loss 1.2670773267745972 img loss 1.2336387634277344 img loss 1.2422837018966675 img loss 1.301649570465088 img loss 1.2579052448272705 img loss 1.3345893621444702 img loss 1.2927712202072144 img loss 1.2871023416519165 img loss 1.2488497495651245 img loss 1.2556087970733643 img loss 1.2499488592147827 img loss 1.311832308769226 img loss 1.287710189819336 img loss 1.289773941040039 img loss 1.4411120414733887 img loss 1.2886862754821777 img loss 1.2727270126342773 img loss 1.3130278587341309 img loss 1.2659002542495728 img loss 1.315432071685791 img loss 1.2664579153060913 img loss 1.3647106885910034 img loss 1.2761240005493164 img loss 1.2960189580917358 img loss 1.2339636087417603 img loss 1.3232122659683228 img loss 1.244269847869873 img loss 1.3525135517120361 img loss 1.2069511413574219 img loss 1.2656474113464355 img loss 1.2304730415344238 img loss 1.3122676610946655 img loss 1.280709147453308 img loss 1.350420594215393 img loss 1.234161138534546 img loss 1.200553297996521 img loss 1.396701455116272 img loss 1.2794386148452759 img loss 1.250597596168518 img loss 1.247680425643921 img loss 1.230690836906433 img loss 1.3458130359649658 img loss 1.2523138523101807 img loss 1.2299164533615112 img loss 1.2010760307312012 img loss 1.3002817630767822 img loss 1.2848533391952515 img loss 1.3709625005722046 img loss 1.24436354637146 img loss 1.3317192792892456 img loss 1.341141939163208 img loss 1.1980341672897339 img loss 1.3054817914962769 img loss 1.355185866355896 img loss 1.3304895162582397 img loss 1.2478700876235962 img loss 1.2589510679244995 img loss 1.2715281248092651 img loss 1.2631343603134155 img loss 1.3391011953353882 img loss 1.2425113916397095 img loss 1.206148624420166 img loss 1.3105583190917969 img loss 1.3130898475646973 img loss 1.2166883945465088 img loss 1.248856782913208 img loss 1.2955617904663086 img loss 1.2922754287719727 img loss 1.2263017892837524 img loss 1.3230173587799072 img loss 1.317667007446289 img loss 1.2625632286071777 img loss 1.326914668083191 img loss 1.333382248878479 img loss 1.2554043531417847 img loss 1.3560794591903687 img loss 1.2563471794128418 img loss 1.3489453792572021 img loss 1.2625350952148438 img loss 1.295233130455017 img loss 1.286785364151001 img loss 1.3895882368087769 img loss 1.393231987953186 img loss 1.2973636388778687 img loss 1.3165194988250732 img loss 1.2952005863189697 img loss 1.2944321632385254 img loss 1.3771001100540161 img loss 1.2998872995376587 img loss 1.2657054662704468 img loss 1.2620493173599243 img loss 1.2953450679779053 img loss 1.2920548915863037 img loss 1.2648738622665405 img loss 1.2765706777572632 img loss 1.2629084587097168 img loss 1.3371226787567139 img loss 1.2701297998428345 img loss 1.2231734991073608 img loss 1.2394828796386719 img loss 1.458158254623413 img loss 1.280199408531189 img loss 1.2715613842010498 img loss 1.2508957386016846 img loss 1.2702473402023315 img loss 1.2583415508270264 img loss 1.2951276302337646 img loss 1.2790132761001587 img loss 1.233873963356018 img loss 1.3134491443634033 img loss 1.244192361831665 {'loss': 1.287, 'grad_norm': 0.2592727243900299, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2456079721450806 img loss 1.3019134998321533 img loss 1.2856743335723877 img loss 1.2378478050231934 img loss 1.3064205646514893 img loss 1.2906490564346313 img loss 1.2896416187286377 img loss 1.2759517431259155 img loss 1.3524268865585327 img loss 1.3175595998764038 img loss 1.1848076581954956 img loss 1.2544373273849487 img loss 1.2264630794525146 img loss 1.3887070417404175 img loss 1.2247872352600098 img loss 1.247464656829834 img loss 1.2098162174224854 img loss 1.2091693878173828 img loss 1.2696025371551514 img loss 1.2927970886230469 img loss 1.2897266149520874 img loss 1.2198896408081055 img loss 1.260016679763794 img loss 1.2066564559936523 img loss 1.2609268426895142 img loss 1.437345027923584 img loss 1.3069941997528076 img loss 1.2130680084228516 img loss 1.2358559370040894 img loss 1.2075144052505493 img loss 1.2940857410430908 img loss 1.2798335552215576 img loss 1.4060391187667847 img loss 1.2572754621505737 img loss 1.3096929788589478 img loss 1.2890512943267822 img loss 1.3597396612167358 img loss 1.2755851745605469 img loss 1.2644251585006714 img loss 1.3747919797897339 img loss 1.3076132535934448 img loss 1.2052429914474487 img loss 1.3993865251541138 img loss 1.2985990047454834 img loss 1.294809103012085 img loss 1.2585844993591309 img loss 1.2755173444747925 img loss 1.2482914924621582 img loss 1.331460952758789 img loss 1.2551846504211426 img loss 1.3195698261260986 img loss 1.2721400260925293 img loss 1.1846987009048462 img loss 1.272891879081726 img loss 1.2219080924987793 img loss 1.2614548206329346 img loss 1.2877569198608398 img loss 1.2524094581604004 img loss 1.251914381980896 img loss 1.2995622158050537 img loss 1.2563526630401611 img loss 1.2410262823104858 img loss 1.350180745124817 img loss 1.23912513256073 img loss 1.3171868324279785 img loss 1.2899487018585205 img loss 1.2291438579559326 img loss 1.2696971893310547 img loss 1.258123755455017 img loss 1.2988700866699219 img loss 1.2977157831192017 img loss 1.2753992080688477 img loss 1.3479992151260376 img loss 1.2583999633789062 img loss 1.3031452894210815 img loss 1.3199031352996826 img loss 1.2802293300628662 img loss 1.2122259140014648 img loss 1.2152669429779053 img loss 1.2411011457443237 img loss 1.310809850692749 img loss 1.3188469409942627 img loss 1.4104117155075073 img loss 1.392410159111023 img loss 1.2658424377441406 img loss 1.3090019226074219 img loss 1.2737784385681152 img loss 1.292448878288269 img loss 1.37375807762146 img loss 1.2836284637451172 img loss 1.3053147792816162 img loss 1.2551988363265991 img loss 1.364518642425537 img loss 1.2365349531173706 img loss 1.245666265487671 img loss 1.2606149911880493 img loss 1.2123312950134277 img loss 1.2471859455108643 img loss 1.3022998571395874 img loss 1.238656997680664 img loss 1.3269953727722168 img loss 1.3067916631698608 img loss 1.366029143333435 img loss 1.2060108184814453 img loss 1.264109492301941 img loss 1.2732962369918823 img loss 1.2495354413986206 img loss 1.3238024711608887 img loss 1.1958520412445068 img loss 1.43617582321167 img loss 1.353208065032959 img loss 1.2250503301620483 img loss 1.3514840602874756 img loss 1.2477420568466187 img loss 1.31479012966156 img loss 1.1873180866241455 img loss 1.2248331308364868 img loss 1.250864028930664 img loss 1.316780924797058 img loss 1.2589919567108154 img loss 1.3005551099777222 img loss 1.2450273036956787 img loss 1.2758519649505615 img loss 1.2704006433486938 img loss 1.279086709022522 img loss 1.3812329769134521 img loss 1.286353588104248 img loss 1.2357299327850342 {'loss': 1.2814, 'grad_norm': 0.3451220691204071, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1984401941299438 img loss 1.149064540863037 img loss 1.2557895183563232 img loss 1.1927117109298706 img loss 1.3474568128585815 img loss 1.210418462753296 img loss 1.2479355335235596 img loss 1.2455195188522339 img loss 1.2442049980163574 img loss 1.2205233573913574 img loss 1.1896905899047852 img loss 1.1926405429840088 img loss 1.2066787481307983 img loss 1.216738224029541 img loss 1.2268288135528564 img loss 1.2287346124649048 img loss 1.2284380197525024 img loss 1.1755084991455078 img loss 1.2775548696517944 img loss 1.2870960235595703 img loss 1.2493481636047363 img loss 1.1472556591033936 img loss 1.2654056549072266 img loss 1.2998627424240112 img loss 1.2775228023529053 img loss 1.1769640445709229 img loss 1.2197039127349854 img loss 1.1498663425445557 img loss 1.2620586156845093 img loss 1.3260531425476074 img loss 1.2231603860855103 img loss 1.2229127883911133 img loss 1.1811368465423584 img loss 1.197995662689209 img loss 1.3313602209091187 img loss 1.2356274127960205 img loss 1.2355077266693115 img loss 1.1959532499313354 img loss 1.2263054847717285 img loss 1.2072418928146362 img loss 1.2089966535568237 img loss 1.1557868719100952 img loss 1.2078595161437988 img loss 1.182775855064392 img loss 1.2167119979858398 img loss 1.2622990608215332 img loss 1.2793649435043335 img loss 1.1455340385437012 img loss 1.180219292640686 img loss 1.3020224571228027 img loss 1.3480972051620483 img loss 1.169438362121582 img loss 1.2162235975265503 img loss 1.2535730600357056 img loss 1.2431857585906982 img loss 1.2489798069000244 img loss 1.268112063407898 img loss 1.2233448028564453 img loss 1.1641336679458618 img loss 1.2360236644744873 img loss 1.2161495685577393 img loss 1.2080577611923218 img loss 1.2855734825134277 img loss 1.2340763807296753 img loss 1.2661221027374268 img loss 1.2445590496063232 img loss 1.1590840816497803 img loss 1.1907634735107422 img loss 1.349214792251587 img loss 1.220920205116272 img loss 1.2242271900177002 img loss 1.2440707683563232 img loss 1.268020510673523 img loss 1.164499044418335 img loss 1.2164676189422607 img loss 1.1528431177139282 img loss 1.2745517492294312 img loss 1.2312357425689697 img loss 1.3646156787872314 img loss 1.182328462600708 img loss 1.269554615020752 img loss 1.1871380805969238 img loss 1.263472080230713 img loss 1.270815134048462 img loss 1.1843080520629883 img loss 1.223185420036316 img loss 1.2263721227645874 img loss 1.1787761449813843 img loss 1.2595360279083252 img loss 1.2193456888198853 img loss 1.1576099395751953 img loss 1.203680396080017 img loss 1.2283462285995483 img loss 1.2380777597427368 img loss 1.1927992105484009 img loss 1.2799928188323975 img loss 1.3200242519378662 img loss 1.1648555994033813 img loss 1.3231449127197266 img loss 1.214261531829834 img loss 1.2595237493515015 img loss 1.255033254623413 img loss 1.2232999801635742 img loss 1.3182166814804077 img loss 1.2740097045898438 img loss 1.2082133293151855 img loss 1.198262095451355 img loss 1.2667186260223389 img loss 1.2499175071716309 img loss 1.2531551122665405 img loss 1.1714437007904053 img loss 1.2581504583358765 img loss 1.1616606712341309 img loss 1.2299435138702393 img loss 1.1977379322052002 img loss 1.4656729698181152 img loss 1.30778968334198 img loss 1.1684303283691406 img loss 1.2972533702850342 img loss 1.372860312461853 img loss 1.1727077960968018 img loss 1.2371647357940674 img loss 1.2188987731933594 img loss 1.2386711835861206 img loss 1.2629406452178955 img loss 1.2640923261642456 img loss 1.1431373357772827 img loss 1.1879448890686035 {'loss': 1.2332, 'grad_norm': 0.5106155872344971, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3258336782455444 img loss 1.262612223625183 img loss 1.2650574445724487 img loss 1.2761812210083008 img loss 1.3424181938171387 img loss 1.3549593687057495 img loss 1.323728084564209 img loss 1.31270170211792 img loss 1.3260854482650757 img loss 1.3164000511169434 img loss 1.3513023853302002 img loss 1.3021968603134155 img loss 1.398341417312622 img loss 1.2525479793548584 img loss 1.2154642343521118 img loss 1.2809444665908813 img loss 1.2740496397018433 img loss 1.3110072612762451 img loss 1.2720201015472412 img loss 1.2591196298599243 img loss 1.2746275663375854 img loss 1.2358893156051636 img loss 1.2147012948989868 img loss 1.2906500101089478 img loss 1.3200011253356934 img loss 1.3541260957717896 img loss 1.2239898443222046 img loss 1.2444628477096558 img loss 1.3287090063095093 img loss 1.2223312854766846 img loss 1.3909943103790283 img loss 1.3295912742614746 img loss 1.3371526002883911 img loss 1.3368638753890991 img loss 1.332761287689209 img loss 1.2756656408309937 img loss 1.2146652936935425 img loss 1.3023722171783447 img loss 1.2412651777267456 img loss 1.3627022504806519 img loss 1.2761911153793335 img loss 1.2339682579040527 img loss 1.3055485486984253 img loss 1.266274333000183 img loss 1.3181369304656982 img loss 1.3085205554962158 img loss 1.2562282085418701 img loss 1.3848515748977661 img loss 1.349746584892273 img loss 1.3220405578613281 img loss 1.4480831623077393 img loss 1.2750451564788818 img loss 1.3341630697250366 img loss 1.3269214630126953 img loss 1.308967113494873 img loss 1.25715970993042 img loss 1.290649652481079 img loss 1.3149515390396118 img loss 1.2840582132339478 img loss 1.3235161304473877 img loss 1.3229877948760986 img loss 1.32030189037323 img loss 1.3125 img loss 1.3149824142456055 img loss 1.333832025527954 img loss 1.3942819833755493 img loss 1.241329550743103 img loss 1.3105157613754272 img loss 1.2692737579345703 img loss 1.270504355430603 img loss 1.3955636024475098 img loss 1.3192838430404663 img loss 1.2951887845993042 img loss 1.3817299604415894 img loss 1.3570473194122314 img loss 1.299095869064331 img loss 1.2883589267730713 img loss 1.369554042816162 img loss 1.324894666671753 img loss 1.2967251539230347 img loss 1.301499843597412 img loss 1.304357886314392 img loss 1.2823519706726074 img loss 1.3419668674468994 img loss 1.3569939136505127 img loss 1.3367422819137573 img loss 1.2882879972457886 img loss 1.359768271446228 img loss 1.2344887256622314 img loss 1.3276163339614868 img loss 1.2411943674087524 img loss 1.3055298328399658 img loss 1.3374167680740356 img loss 1.3761464357376099 img loss 1.3421825170516968 img loss 1.3493893146514893 img loss 1.3642512559890747 img loss 1.3027540445327759 img loss 1.2567667961120605 img loss 1.2460505962371826 img loss 1.3031100034713745 img loss 1.3323780298233032 img loss 1.3056648969650269 img loss 1.2449947595596313 img loss 1.4652005434036255 img loss 1.357854962348938 img loss 1.3204540014266968 img loss 1.2327325344085693 img loss 1.4361039400100708 img loss 1.3435719013214111 img loss 1.3001676797866821 img loss 1.3315958976745605 img loss 1.200568675994873 img loss 1.1977146863937378 img loss 1.3172707557678223 img loss 1.3368933200836182 img loss 1.293621301651001 img loss 1.3296579122543335 img loss 1.3602383136749268 img loss 1.4011321067810059 img loss 1.3622524738311768 img loss 1.2275208234786987 img loss 1.3224632740020752 img loss 1.3516755104064941 img loss 1.2355804443359375 img loss 1.2702677249908447 img loss 1.345112681388855 img loss 1.3756927251815796 {'loss': 1.3095, 'grad_norm': 0.3896403908729553, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.159014105796814 img loss 1.308213710784912 img loss 1.1701180934906006 img loss 1.242374062538147 img loss 1.265420913696289 img loss 1.174639105796814 img loss 1.2416070699691772 img loss 1.2676457166671753 img loss 1.2030534744262695 img loss 1.2535804510116577 img loss 1.2805887460708618 img loss 1.2432525157928467 img loss 1.3287638425827026 img loss 1.2928330898284912 img loss 1.2969337701797485 img loss 1.2051517963409424 img loss 1.2206257581710815 img loss 1.1946983337402344 img loss 1.1593801975250244 img loss 1.2645972967147827 img loss 1.2417259216308594 img loss 1.1920816898345947 img loss 1.2119805812835693 img loss 1.1700494289398193 img loss 1.2269604206085205 img loss 1.302368402481079 img loss 1.2051887512207031 img loss 1.2704490423202515 img loss 1.2028716802597046 img loss 1.290037989616394 img loss 1.2128684520721436 img loss 1.2589939832687378 img loss 1.252051830291748 img loss 1.3407341241836548 img loss 1.223333716392517 img loss 1.365776777267456 img loss 1.2211413383483887 img loss 1.2344660758972168 img loss 1.299961805343628 img loss 1.268847107887268 img loss 1.3399969339370728 img loss 1.2151787281036377 img loss 1.2182778120040894 img loss 1.2342605590820312 img loss 1.2160335779190063 img loss 1.255192756652832 img loss 1.162820816040039 img loss 1.2410902976989746 img loss 1.1662451028823853 img loss 1.2171653509140015 img loss 1.1557402610778809 img loss 1.2163842916488647 img loss 1.2247055768966675 img loss 1.2695121765136719 img loss 1.2590564489364624 img loss 1.2858219146728516 img loss 1.2781152725219727 img loss 1.2696102857589722 img loss 1.3282266855239868 img loss 1.1967962980270386 img loss 1.1789906024932861 img loss 1.205890417098999 img loss 1.2777972221374512 img loss 1.2787350416183472 img loss 1.2461305856704712 img loss 1.256883978843689 img loss 1.2775940895080566 img loss 1.3151787519454956 img loss 1.2113089561462402 img loss 1.2240066528320312 img loss 1.288520097732544 img loss 1.2330764532089233 img loss 1.3123900890350342 img loss 1.229017734527588 img loss 1.0943924188613892 img loss 1.1701682806015015 img loss 1.1223993301391602 img loss 1.2285346984863281 img loss 1.1941115856170654 img loss 1.235215425491333 img loss 1.3033490180969238 img loss 1.2775280475616455 img loss 1.2640255689620972 img loss 1.257244348526001 img loss 1.2265393733978271 img loss 1.23256516456604 img loss 1.2365608215332031 img loss 1.2052712440490723 img loss 1.1502914428710938 img loss 1.3594021797180176 img loss 1.2292916774749756 img loss 1.2607393264770508 img loss 1.2472466230392456 img loss 1.318108081817627 img loss 1.161419153213501 img loss 1.1955013275146484 img loss 1.2130345106124878 img loss 1.2882952690124512 img loss 1.308836817741394 img loss 1.229783058166504 img loss 1.2601659297943115 img loss 1.3657253980636597 img loss 1.171834945678711 img loss 1.1617445945739746 img loss 1.2311015129089355img loss 1.192923903465271 img loss 1.2671127319335938 img loss 1.1571701765060425 img loss 1.2736930847167969 img loss 1.2950395345687866 img loss 1.2435753345489502 img loss 1.2005093097686768 img loss 1.3496143817901611 img loss 1.3343924283981323 img loss 1.2409451007843018 img loss 1.1952500343322754 img loss 1.2581185102462769 img loss 1.2641571760177612 img loss 1.2398964166641235 img loss 1.3085685968399048 img loss 1.1922606229782104 img loss 1.23367440700531 img loss 1.233877420425415 img loss 1.2405495643615723 img loss 1.2801350355148315 img loss 1.2392466068267822 img loss 1.2616915702819824 img loss 1.3247686624526978 {'loss': 1.2428, 'grad_norm': 0.5288044214248657, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2687658071517944 img loss 1.2822511196136475 img loss 1.2510719299316406 img loss 1.2701473236083984 img loss 1.2264909744262695 img loss 1.179085373878479 img loss 1.2044538259506226 img loss 1.206459641456604 img loss 1.2421677112579346 img loss 1.2098139524459839 img loss 1.3563176393508911 img loss 1.290858507156372 img loss 1.253075361251831 img loss 1.2588801383972168 img loss 1.2646467685699463 img loss 1.2192882299423218 img loss 1.3015987873077393 img loss 1.3678181171417236 img loss 1.2215549945831299 img loss 1.1645746231079102 img loss 1.2209758758544922 img loss 1.259799838066101 img loss 1.2275093793869019 img loss 1.2334364652633667 img loss 1.3139739036560059 img loss 1.1772226095199585 img loss 1.178036093711853 img loss 1.181130051612854 img loss 1.2399271726608276 img loss 1.229519248008728 img loss 1.1914455890655518 img loss 1.1819132566452026 img loss 1.2851738929748535 img loss 1.2915912866592407 img loss 1.257869005203247 img loss 1.2383148670196533 img loss 1.3397506475448608 img loss 1.236716628074646 img loss 1.2526963949203491 img loss 1.2323659658432007 img loss 1.2512353658676147 img loss 1.2038094997406006 img loss 1.2614796161651611 img loss 1.2478256225585938 img loss 1.2242611646652222 img loss 1.328286051750183 img loss 1.292338252067566 img loss 1.1598106622695923 img loss 1.301449179649353 img loss 1.273262619972229 img loss 1.2531620264053345 img loss 1.257730484008789 img loss 1.2961115837097168 img loss 1.2113184928894043 img loss 1.2014620304107666 img loss 1.2107442617416382 img loss 1.3033418655395508 img loss 1.2679907083511353 img loss 1.2427937984466553 img loss 1.2373698949813843 img loss 1.2050269842147827 img loss 1.2992057800292969 img loss 1.223310112953186 img loss 1.2146952152252197 img loss 1.3037383556365967 img loss 1.1921449899673462 img loss 1.2479008436203003 img loss 1.2037103176116943 img loss 1.256081223487854 img loss 1.2267796993255615 img loss 1.3258414268493652 img loss 1.2688062191009521 img loss 1.36258864402771 img loss 1.2257390022277832 img loss 1.2447354793548584 img loss 1.186194896697998 img loss 1.1821928024291992 img loss 1.2891826629638672 img loss 1.2247923612594604 img loss 1.1684064865112305 img loss 1.2044686079025269 img loss 1.1780678033828735 img loss 1.2679134607315063 img loss 1.2291167974472046 img loss 1.136324405670166 img loss 1.2180688381195068 img loss 1.2599400281906128 img loss 1.2067269086837769 img loss 1.2274707555770874 img loss 1.204494833946228 img loss 1.359468936920166 img loss 1.2788854837417603 img loss 1.2729440927505493img loss 1.1686159372329712 img loss 1.2178459167480469 img loss 1.2604846954345703 img loss 1.2385995388031006 img loss 1.216360330581665 img loss 1.2159565687179565 img loss 1.2481729984283447 img loss 1.209919810295105 img loss 1.216525912284851 img loss 1.3280915021896362 img loss 1.2140004634857178 img loss 1.2095043659210205 img loss 1.1934670209884644 img loss 1.2360180616378784 img loss 1.2604355812072754 img loss 1.185570240020752 img loss 1.266424536705017 img loss 1.2135121822357178 img loss 1.1699832677841187 img loss 1.2037209272384644 img loss 1.2582170963287354 img loss 1.2191007137298584 img loss 1.1726821660995483 img loss 1.186594009399414 img loss 1.2045987844467163 img loss 1.2560582160949707 img loss 1.2018495798110962 img loss 1.2101579904556274 img loss 1.1905250549316406 img loss 1.2823119163513184 img loss 1.155464768409729 img loss 1.2412896156311035 img loss 1.3456981182098389 img loss 1.207362413406372 img loss 1.302449107170105 {'loss': 1.2394, 'grad_norm': 0.6407555341720581, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2007194757461548 img loss 1.2927614450454712 img loss 1.3115087747573853 img loss 1.316386103630066 img loss 1.2837718725204468 img loss 1.1850308179855347 img loss 1.1964343786239624 img loss 1.1974066495895386 img loss 1.1823554039001465 img loss 1.2816083431243896 img loss 1.2223446369171143 img loss 1.2880960702896118 img loss 1.2001389265060425 img loss 1.2066415548324585 img loss 1.2898118495941162 img loss 1.3048286437988281 img loss 1.3038543462753296 img loss 1.2400429248809814 img loss 1.1489447355270386 img loss 1.2561784982681274 img loss 1.2136690616607666 img loss 1.2749805450439453 img loss 1.2036100625991821 img loss 1.2221673727035522 img loss 1.2582721710205078 img loss 1.239302635192871 img loss 1.2468907833099365 img loss 1.2620209455490112 img loss 1.191957950592041 img loss 1.2073997259140015 img loss 1.184014916419983 img loss 1.2245306968688965 img loss 1.1664862632751465 img loss 1.2226454019546509 img loss 1.1715137958526611 img loss 1.3053539991378784 img loss 1.2845333814620972 img loss 1.2366398572921753 img loss 1.2656278610229492 img loss 1.2685858011245728 img loss 1.2558561563491821 img loss 1.2148561477661133 img loss 1.272306203842163 img loss 1.1901882886886597 img loss 1.2190850973129272 img loss 1.2756290435791016 img loss 1.1848564147949219 img loss 1.2567157745361328 img loss 1.1722702980041504 img loss 1.2036014795303345 img loss 1.206207275390625 img loss 1.2727248668670654 img loss 1.2523335218429565 img loss 1.2302449941635132 img loss 1.1680200099945068 img loss 1.2823829650878906 img loss 1.234810471534729 img loss 1.2470223903656006 img loss 1.2352769374847412 img loss 1.2100574970245361 img loss 1.2374873161315918 img loss 1.3289563655853271 img loss 1.25380277633667 img loss 1.1538219451904297img loss 1.3232437372207642 img loss 1.2286920547485352 img loss 1.2928540706634521 img loss 1.246130347251892 img loss 1.2905018329620361 img loss 1.266019582748413 img loss 1.2413311004638672 img loss 1.2212151288986206 img loss 1.2817909717559814 img loss 1.2802777290344238 img loss 1.2496469020843506 img loss 1.2450205087661743 img loss 1.2241672277450562 img loss 1.3371403217315674 img loss 1.2652809619903564 img loss 1.2496254444122314 img loss 1.1745216846466064 img loss 1.1755034923553467 img loss 1.1925692558288574 img loss 1.2810701131820679 img loss 1.1614192724227905 img loss 1.1443290710449219 img loss 1.196810245513916 img loss 1.2423160076141357 img loss 1.2724698781967163 img loss 1.2385053634643555 img loss 1.2378690242767334 img loss 1.2624975442886353 img loss 1.139664649963379 img loss 1.3000233173370361 img loss 1.2159345149993896 img loss 1.2968339920043945 img loss 1.3116668462753296 img loss 1.2610241174697876 img loss 1.2725189924240112 img loss 1.2313506603240967 img loss 1.2115782499313354 img loss 1.3164297342300415 img loss 1.223066806793213 img loss 1.1893458366394043 img loss 1.268028974533081 img loss 1.2519973516464233 img loss 1.1525696516036987 img loss 1.2739171981811523 img loss 1.2410032749176025 img loss 1.1389861106872559 img loss 1.2855114936828613 img loss 1.2611786127090454 img loss 1.2569926977157593 img loss 1.2157849073410034 img loss 1.1705868244171143 img loss 1.1942243576049805 img loss 1.1911181211471558 img loss 1.305285096168518 img loss 1.2354018688201904 img loss 1.270029067993164 img loss 1.3275597095489502 img loss 1.1767891645431519 img loss 1.26506507396698 img loss 1.3775746822357178 img loss 1.2578315734863281 img loss 1.2789831161499023 img loss 1.1672720909118652 img loss 1.171475887298584 {'loss': 1.2394, 'grad_norm': 0.24217170476913452, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.304207682609558 img loss 1.4902416467666626 img loss 1.3316121101379395 img loss 1.2890942096710205 img loss 1.3911248445510864 img loss 1.522219181060791 img loss 1.3376299142837524 img loss 1.3936066627502441 img loss 1.3525691032409668 img loss 1.4982293844223022 img loss 1.5138828754425049 img loss 1.256978988647461 img loss 1.387963891029358 img loss 1.3611053228378296 img loss 1.4550751447677612 img loss 1.4384636878967285 img loss 1.3764599561691284 img loss 1.5080145597457886 img loss 1.4682214260101318 img loss 1.4885461330413818 img loss 1.4647356271743774 img loss 1.3627440929412842 img loss 1.3180761337280273 img loss 1.3368299007415771 img loss 1.3358784914016724 img loss 1.382424235343933 img loss 1.4015488624572754 img loss 1.2980091571807861 img loss 1.3660262823104858 img loss 1.3104779720306396 img loss 1.3141610622406006 img loss 1.33120596408844img loss 1.3141777515411377 img loss 1.3045529127120972 img loss 1.3901515007019043 img loss 1.2945053577423096 img loss 1.3298190832138062 img loss 1.3764742612838745 img loss 1.392386794090271 img loss 1.3256797790527344 img loss 1.2972294092178345 img loss 1.296557903289795 img loss 1.304327368736267 img loss 1.3305296897888184 img loss 1.4627808332443237 img loss 1.3573914766311646 img loss 1.3251290321350098 img loss 1.3059691190719604 img loss 1.3033409118652344 img loss 1.204707145690918 img loss 1.3988826274871826 img loss 1.460517168045044 img loss 1.341709852218628 img loss 1.4533991813659668 img loss 1.322112798690796 img loss 1.3863835334777832 img loss 1.412553071975708 img loss 1.4061400890350342 img loss 1.365352749824524 img loss 1.385072112083435 img loss 1.35938560962677 img loss 1.3975132703781128 img loss 1.362107515335083 img loss 1.2884094715118408 img loss 1.3391969203948975 img loss 1.4288609027862549 img loss 1.3338029384613037 img loss 1.4118329286575317 img loss 1.3895156383514404 img loss 1.3802506923675537 img loss 1.4164268970489502 img loss 1.3785582780838013 img loss 1.3514153957366943 img loss 1.346009373664856 img loss 1.3458069562911987 img loss 1.3566962480545044 img loss 1.3160349130630493 img loss 1.348732352256775 img loss 1.3941988945007324 img loss 1.314164638519287 img loss 1.4990159273147583 img loss 1.3405712842941284 img loss 1.3074225187301636 img loss 1.3941723108291626 img loss 1.3050363063812256 img loss 1.4089776277542114 img loss 1.269403100013733 img loss 1.2694212198257446 img loss 1.3661773204803467 img loss 1.3042407035827637 img loss 1.2986973524093628 img loss 1.331903338432312 img loss 1.3750836849212646 img loss 1.3122594356536865 img loss 1.3725804090499878 img loss 1.4353567361831665 img loss 1.401261806488037 img loss 1.3189672231674194 img loss 1.3154804706573486 img loss 1.3345181941986084 img loss 1.345212697982788 img loss 1.3188047409057617 img loss 1.3430209159851074 img loss 1.3461796045303345 img loss 1.4353867769241333 img loss 1.360846757888794 img loss 1.2563481330871582 img loss 1.3644999265670776 img loss 1.4044426679611206 img loss 1.3127155303955078 img loss 1.4449843168258667 img loss 1.3516523838043213 img loss 1.2353485822677612 img loss 1.352091670036316 img loss 1.3322489261627197 img loss 1.4296272993087769 img loss 1.3517191410064697 img loss 1.4776999950408936 img loss 1.5251052379608154 img loss 1.38383948802948 img loss 1.3692834377288818 img loss 1.3897643089294434 img loss 1.2613251209259033 img loss 1.3799856901168823 img loss 1.3287702798843384 img loss 1.315967082977295 img loss 1.4333630800247192 img loss 1.254972219467163 {'loss': 1.3637, 'grad_norm': 0.5478426218032837, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4037448167800903 img loss 1.4470248222351074 img loss 1.3951441049575806 img loss 1.4185748100280762 img loss 1.4057543277740479 img loss 1.406660795211792 img loss 1.439794898033142 img loss 1.5226572751998901 img loss 1.3476499319076538 img loss 1.4208848476409912 img loss 1.3592259883880615 img loss 1.3738545179367065 img loss 1.4187949895858765 img loss 1.6403400897979736 img loss 1.5079599618911743 img loss 1.4551007747650146 img loss 1.597593903541565 img loss 1.7427493333816528 img loss 1.421518087387085 img loss 1.4251302480697632 img loss 1.5252424478530884 img loss 1.4635587930679321 img loss 1.3201537132263184 img loss 1.5112519264221191 img loss 1.3453528881072998 img loss 1.375704288482666 img loss 1.5592014789581299 img loss 1.4676220417022705 img loss 1.3923197984695435 img loss 1.434528112411499 img loss 1.527887225151062 img loss 1.468647837638855 img loss 1.5099204778671265 img loss 1.3968786001205444 img loss 1.451011300086975 img loss 1.4914954900741577 img loss 1.4655793905258179 img loss 1.5242321491241455 img loss 1.4276167154312134 img loss 1.3011677265167236 img loss 1.268265962600708 img loss 1.4211596250534058 img loss 1.5133719444274902 img loss 1.5348448753356934 img loss 1.3411809206008911 img loss 1.394476056098938 img loss 1.4475131034851074 img loss 1.5237430334091187 img loss 1.425220251083374 img loss 1.3499475717544556 img loss 1.371558666229248 img loss 1.459816575050354 img loss 1.4166311025619507 img loss 1.4905058145523071 img loss 1.3874871730804443 img loss 1.3105146884918213 img loss 1.5064818859100342 img loss 1.5095158815383911 img loss 1.3397953510284424 img loss 1.4325679540634155 img loss 1.6155682802200317 img loss 1.4410574436187744 img loss 1.3074766397476196 img loss 1.3358607292175293 img loss 1.3974875211715698 img loss 1.315897822380066 img loss 1.508208155632019 img loss 1.4339159727096558 img loss 1.500189185142517 img loss 1.4016441106796265 img loss 1.3735764026641846 img loss 1.2832813262939453 img loss 1.409312129020691 img loss 1.376306176185608 img loss 1.3532803058624268 img loss 1.4748013019561768 img loss 1.3578702211380005 img loss 1.3654849529266357 img loss 1.4012138843536377 img loss 1.4466103315353394 img loss 1.4375554323196411 img loss 1.3144291639328003 img loss 1.4254788160324097 img loss 1.3738969564437866 img loss 1.3973591327667236 img loss 1.4313453435897827 img loss 1.3761436939239502 img loss 1.4880385398864746 img loss 1.2133879661560059 img loss 1.4415771961212158 img loss 1.483426570892334 img loss 1.3909958600997925 img loss 1.2513439655303955 img loss 1.4285187721252441 img loss 1.3382418155670166 img loss 1.4805939197540283 img loss 1.285744309425354 img loss 1.478137493133545 img loss 1.3289730548858643 img loss 1.4279913902282715 img loss 1.5192675590515137 img loss 1.524402141571045 img loss 1.5046695470809937 img loss 1.2920860052108765 img loss 1.330039381980896 img loss 1.4387444257736206 img loss 1.375148892402649 img loss 1.4771215915679932 img loss 1.4127603769302368 img loss 1.262176752090454 img loss 1.4836851358413696 img loss 1.3536056280136108 img loss 1.545445203781128 img loss 1.635943055152893 img loss 1.477270245552063 img loss 1.4644473791122437 img loss 1.624772548675537 img loss 1.3703677654266357 img loss 1.4510530233383179 img loss 1.352479338645935 img loss 1.2827565670013428 img loss 1.4350308179855347 img loss 1.3431334495544434 img loss 1.3685883283615112 img loss 1.4861732721328735 img loss 1.3561054468154907 img loss 1.6251150369644165 img loss 1.469255805015564 {'loss': 1.4274, 'grad_norm': 0.9306272268295288, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4695706367492676 img loss 1.5614006519317627 img loss 1.4787667989730835 img loss 1.3323229551315308 img loss 1.4316761493682861 img loss 1.4185315370559692 img loss 1.4893524646759033 img loss 1.3293242454528809 img loss 1.3404351472854614 img loss 1.3480137586593628 img loss 1.3326895236968994 img loss 1.2737791538238525 img loss 1.414110779762268 img loss 1.36384916305542 img loss 1.4532538652420044 img loss 1.472652554512024 img loss 1.4574863910675049 img loss 1.4116319417953491 img loss 1.4028661251068115 img loss 1.4173390865325928 img loss 1.4985307455062866 img loss 1.3924438953399658 img loss 1.3853830099105835 img loss 1.368672490119934 img loss 1.361395239830017 img loss 1.372575283050537 img loss 1.5256332159042358 img loss 1.5598939657211304 img loss 1.4221500158309937 img loss 1.3618525266647339 img loss 1.5092864036560059 img loss 1.3003946542739868img loss 1.358517050743103 img loss 1.3420106172561646 img loss 1.4543389081954956 img loss 1.3810452222824097img loss 1.534655213356018 img loss 1.3816314935684204 img loss 1.3977501392364502 img loss 1.4607189893722534 img loss 1.3760513067245483 img loss 1.3170700073242188 img loss 1.5106292963027954 img loss 1.319169521331787 img loss 1.412889838218689 img loss 1.460066318511963 img loss 1.44083571434021 img loss 1.4497462511062622 img loss 1.4885268211364746 img loss 1.4853352308273315 img loss 1.4822450876235962 img loss 1.3466931581497192 img loss 1.4553887844085693 img loss 1.3970506191253662 img loss 1.4407261610031128 img loss 1.4469343423843384 img loss 1.4993420839309692 img loss 1.471565842628479 img loss 1.5441786050796509 img loss 1.3895777463912964 img loss 1.3827592134475708 img loss 1.5085231065750122 img loss 1.581766963005066 img loss 1.395405650138855 img loss 1.354561686515808 img loss 1.4115420579910278 img loss 1.3156660795211792 img loss 1.502021074295044 img loss 1.4716079235076904 img loss 1.3554831743240356 img loss 1.3665965795516968 img loss 1.3398985862731934 img loss 1.4248316287994385 img loss 1.3714128732681274 img loss 1.5571969747543335 img loss 1.4566880464553833 img loss 1.3834019899368286 img loss 1.641842007637024 img loss 1.503438115119934 img loss 1.328001618385315 img loss 1.5424848794937134 img loss 1.354643702507019 img loss 1.4010010957717896 img loss 1.398964285850525 img loss 1.400107979774475 img loss 1.3587502241134644img loss 1.3729785680770874 img loss 1.5584290027618408 img loss 1.4239764213562012 img loss 1.503827691078186 img loss 1.4701149463653564 img loss 1.4108623266220093 img loss 1.5178724527359009 img loss 1.4916794300079346 img loss 1.245812177658081 img loss 1.4433538913726807 img loss 1.29452383518219 img loss 1.407204031944275 img loss 1.4516607522964478 img loss 1.3815804719924927 img loss 1.4625097513198853 img loss 1.337942361831665 img loss 1.473212480545044 img loss 1.5795167684555054 img loss 1.427011251449585 img loss 1.4744871854782104 img loss 1.5666927099227905 img loss 1.3423317670822144 img loss 1.4132691621780396 img loss 1.4005262851715088 img loss 1.355393648147583 img loss 1.4268876314163208 img loss 1.4375540018081665 img loss 1.230913519859314 img loss 1.391576886177063 img loss 1.4551961421966553 img loss 1.5595475435256958 img loss 1.4919089078903198 img loss 1.5680867433547974 img loss 1.4411295652389526 img loss 1.380968451499939 img loss 1.4644626379013062 img loss 1.4536863565444946 img loss 1.389960765838623 img loss 1.4052170515060425 img loss 1.5141996145248413 img loss 1.4313607215881348 img loss 1.539220929145813 {'loss': 1.4281, 'grad_norm': 0.7374278903007507, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.384356141090393 img loss 1.2974615097045898 img loss 1.2692139148712158 img loss 1.3035447597503662 img loss 1.3744795322418213 img loss 1.3483150005340576 img loss 1.3410680294036865 img loss 1.3452328443527222 img loss 1.396339774131775 img loss 1.305190086364746 img loss 1.3522964715957642 img loss 1.2747552394866943 img loss 1.3007744550704956 img loss 1.3101897239685059 img loss 1.4440505504608154 img loss 1.2451114654541016 img loss 1.234383225440979 img loss 1.3700459003448486 img loss 1.305397868156433 img loss 1.4200854301452637 img loss 1.3546442985534668 img loss 1.3168885707855225 img loss 1.2883657217025757 img loss 1.3247137069702148 img loss 1.3722913265228271 img loss 1.328857421875 img loss 1.3129831552505493 img loss 1.2669609785079956 img loss 1.4357668161392212 img loss 1.3382335901260376 img loss 1.23190176486969 img loss 1.3994776010513306 img loss 1.4153529405593872 img loss 1.3960604667663574 img loss 1.3613899946212769 img loss 1.3497178554534912 img loss 1.3179348707199097 img loss 1.2178616523742676 img loss 1.3155052661895752 img loss 1.285508632659912 img loss 1.3231451511383057 img loss 1.265547752380371 img loss 1.322003722190857 img loss 1.2256149053573608 img loss 1.3179937601089478 img loss 1.3463271856307983 img loss 1.4298444986343384 img loss 1.3031355142593384 img loss 1.3084028959274292 img loss 1.405903935432434 img loss 1.4113287925720215 img loss 1.316097617149353 img loss 1.2473578453063965 img loss 1.3603099584579468 img loss 1.3670952320098877 img loss 1.324009895324707 img loss 1.292875051498413 img loss 1.34306001663208 img loss 1.2551956176757812 img loss 1.2715566158294678 img loss 1.268319845199585 img loss 1.3220083713531494 img loss 1.3083733320236206 img loss 1.2527122497558594 img loss 1.396125078201294 img loss 1.3092951774597168 img loss 1.2862430810928345 img loss 1.2933342456817627 img loss 1.2856786251068115 img loss 1.3782265186309814 img loss 1.291107177734375 img loss 1.36142897605896 img loss 1.4003536701202393 img loss 1.443658709526062 img loss 1.4608699083328247 img loss 1.2700181007385254 img loss 1.3866393566131592 img loss 1.3555283546447754 img loss 1.2331082820892334 img loss 1.3941560983657837 img loss 1.297660231590271 img loss 1.3367737531661987 img loss 1.2797741889953613 img loss 1.2777965068817139 img loss 1.3193365335464478 img loss 1.3904815912246704 img loss 1.4118152856826782 img loss 1.2810429334640503 img loss 1.344193935394287 img loss 1.3059850931167603 img loss 1.2924164533615112 img loss 1.3434473276138306 img loss 1.3643690347671509 img loss 1.2828720808029175 img loss 1.323216199874878 img loss 1.328677773475647 img loss 1.3988898992538452 img loss 1.3642668724060059 img loss 1.3012542724609375 img loss 1.3053128719329834 img loss 1.269509196281433 img loss 1.263214111328125 img loss 1.3689348697662354 img loss 1.4333480596542358 img loss 1.3459631204605103 img loss 1.3612360954284668 img loss 1.3345078229904175 img loss 1.4300886392593384 img loss 1.4112637042999268 img loss 1.3263070583343506 img loss 1.3076014518737793 img loss 1.3702646493911743 img loss 1.3051801919937134 img loss 1.2844008207321167 img loss 1.2638773918151855 img loss 1.2872737646102905 img loss 1.3396344184875488 img loss 1.2652400732040405 img loss 1.2383407354354858 img loss 1.4055360555648804 img loss 1.3268991708755493 img loss 1.3612490892410278 img loss 1.374408483505249 img loss 1.3061935901641846 img loss 1.335249662399292 img loss 1.276719093322754 img loss 1.330100655555725 img loss 1.228081464767456 {'loss': 1.3288, 'grad_norm': 0.5263535976409912, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1971296072006226 img loss 1.2472747564315796 img loss 1.18100106716156 img loss 1.139204502105713 img loss 1.2550044059753418 img loss 1.2093647718429565 img loss 1.1272101402282715 img loss 1.1633480787277222 img loss 1.2119420766830444 img loss 1.2388927936553955 img loss 1.2111258506774902 img loss 1.1376807689666748 img loss 1.2477566003799438 img loss 1.1866306066513062 img loss 1.3430968523025513 img loss 1.2242478132247925 img loss 1.1830337047576904 img loss 1.197325587272644 img loss 1.3023499250411987 img loss 1.1632620096206665 img loss 1.19752836227417 img loss 1.2025659084320068 img loss 1.2007863521575928 img loss 1.165220022201538 img loss 1.2296913862228394 img loss 1.1841617822647095 img loss 1.0754823684692383img loss 1.1610420942306519 img loss 1.2150312662124634 img loss 1.1348285675048828 img loss 1.1557159423828125 img loss 1.237287163734436 img loss 1.1815893650054932 img loss 1.1909812688827515 img loss 1.2880243062973022 img loss 1.30653715133667 img loss 1.2067887783050537 img loss 1.1181840896606445 img loss 1.1784706115722656 img loss 1.1697900295257568 img loss 1.2365258932113647 img loss 1.1835987567901611 img loss 1.1768548488616943 img loss 1.1522260904312134 img loss 1.208388090133667 img loss 1.2471272945404053 img loss 1.2024784088134766 img loss 1.1837494373321533 img loss 1.2033917903900146 img loss 1.200140357017517 img loss 1.2209174633026123 img loss 1.3338849544525146 img loss 1.1620652675628662 img loss 1.1870448589324951 img loss 1.1919409036636353 img loss 1.2719076871871948 img loss 1.2107129096984863 img loss 1.2657610177993774 img loss 1.1445186138153076 img loss 1.2748149633407593 img loss 1.158050537109375 img loss 1.1575206518173218 img loss 1.1616871356964111 img loss 1.3210954666137695 img loss 1.2130488157272339 img loss 1.257261872291565 img loss 1.208975076675415 img loss 1.2623203992843628 img loss 1.1713416576385498 img loss 1.267859697341919 img loss 1.1774461269378662 img loss 1.2509071826934814 img loss 1.1426944732666016 img loss 1.1832098960876465 img loss 1.2735832929611206 img loss 1.1424658298492432 img loss 1.2497766017913818 img loss 1.2828433513641357 img loss 1.2066755294799805 img loss 1.1356666088104248 img loss 1.1692835092544556 img loss 1.1363734006881714 img loss 1.155686378479004 img loss 1.2551703453063965 img loss 1.2607005834579468 img loss 1.1585129499435425 img loss 1.1868942975997925 img loss 1.2334206104278564 img loss 1.1616623401641846 img loss 1.2101716995239258 img loss 1.233559489250183 img loss 1.1777362823486328 img loss 1.2777456045150757 img loss 1.1993541717529297 img loss 1.1937134265899658 img loss 1.1354308128356934 img loss 1.221332311630249 img loss 1.1826648712158203 img loss 1.2841253280639648 img loss 1.1984459161758423 img loss 1.1419862508773804 img loss 1.129594326019287 img loss 1.2201075553894043 img loss 1.1840660572052002 img loss 1.293728232383728 img loss 1.223883032798767 img loss 1.2030136585235596 img loss 1.1959856748580933 img loss 1.1702903509140015 img loss 1.2024860382080078 img loss 1.2698780298233032 img loss 1.18564772605896 img loss 1.1719791889190674 img loss 1.1890592575073242 img loss 1.2101103067398071 img loss 1.1114259958267212 img loss 1.2299917936325073 img loss 1.274763822555542 img loss 1.177215576171875 img loss 1.1664478778839111 img loss 1.1463154554367065 img loss 1.2105070352554321 img loss 1.246941328048706 img loss 1.2197002172470093 img loss 1.1055182218551636 img loss 1.1957963705062866 img loss 1.2482105493545532 img loss 1.1616405248641968 {'loss': 1.2029, 'grad_norm': 0.2667132318019867, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2982494831085205 img loss 1.182991862297058 img loss 1.23403799533844 img loss 1.2874259948730469 img loss 1.2361505031585693 img loss 1.2407312393188477 img loss 1.1728579998016357 img loss 1.2488634586334229 img loss 1.1993786096572876 img loss 1.2579293251037598 img loss 1.2262409925460815 img loss 1.2657655477523804 img loss 1.1683095693588257 img loss 1.2469828128814697 img loss 1.2270894050598145 img loss 1.175645112991333 img loss 1.1832150220870972 img loss 1.20973539352417 img loss 1.2575963735580444 img loss 1.263372778892517 img loss 1.1989983320236206 img loss 1.2235726118087769 img loss 1.2351319789886475 img loss 1.1638977527618408 img loss 1.2610955238342285 img loss 1.3100335597991943 img loss 1.2135921716690063 img loss 1.2457579374313354img loss 1.271176815032959 img loss 1.212683916091919 img loss 1.2461183071136475 img loss 1.2197320461273193 img loss 1.285610556602478 img loss 1.1957981586456299 img loss 1.2267649173736572 img loss 1.2183027267456055 img loss 1.3119627237319946 img loss 1.1637282371520996 img loss 1.2053163051605225 img loss 1.1970157623291016 img loss 1.2120490074157715 img loss 1.157085657119751 img loss 1.3069438934326172 img loss 1.2448376417160034 img loss 1.246409296989441 img loss 1.1747115850448608 img loss 1.2098727226257324 img loss 1.2730989456176758 img loss 1.1682510375976562 img loss 1.203449010848999 img loss 1.1396758556365967 img loss 1.2030372619628906 img loss 1.2729953527450562 img loss 1.2430378198623657 img loss 1.237983226776123 img loss 1.2647526264190674 img loss 1.2000927925109863 img loss 1.2048299312591553 img loss 1.3017200231552124 img loss 1.1668576002120972 img loss 1.2541002035140991 img loss 1.2259788513183594 img loss 1.2324583530426025 img loss 1.2302532196044922 img loss 1.2135119438171387 img loss 1.282010793685913 img loss 1.2504048347473145 img loss 1.1748144626617432 img loss 1.2009022235870361 img loss 1.1602219343185425 img loss 1.1720695495605469 img loss 1.167764663696289 img loss 1.177201509475708 img loss 1.148126482963562 img loss 1.2642037868499756 img loss 1.241424322128296 img loss 1.2112241983413696 img loss 1.250894546508789 img loss 1.2480663061141968 img loss 1.236251711845398 img loss 1.1674906015396118 img loss 1.2629326581954956 img loss 1.1604102849960327 img loss 1.2766773700714111 img loss 1.2727100849151611 img loss 1.196661353111267 img loss 1.2042440176010132 img loss 1.2628706693649292 img loss 1.1963471174240112 img loss 1.2331690788269043 img loss 1.1977577209472656 img loss 1.16863214969635 img loss 1.1163926124572754 img loss 1.2082149982452393 img loss 1.273139476776123 img loss 1.161435604095459 img loss 1.1544530391693115 img loss 1.2701612710952759 img loss 1.1816232204437256 img loss 1.2844711542129517 img loss 1.1776123046875 img loss 1.1618162393569946 img loss 1.2055010795593262 img loss 1.2263790369033813 img loss 1.2907241582870483 img loss 1.3275747299194336 img loss 1.1997588872909546 img loss 1.2363722324371338 img loss 1.3488534688949585 img loss 1.157160997390747 img loss 1.218973159790039 img loss 1.2711963653564453 img loss 1.159433126449585 img loss 1.2445886135101318 img loss 1.1985183954238892 img loss 1.1547348499298096 img loss 1.21300208568573img loss 1.2256834506988525 img loss 1.2482880353927612 img loss 1.2240384817123413 img loss 1.2329849004745483 img loss 1.2453371286392212 img loss 1.2116172313690186 img loss 1.2400641441345215 img loss 1.2761342525482178 img loss 1.25809907913208 img loss 1.2452409267425537 img loss 1.2749533653259277 {'loss': 1.2241, 'grad_norm': 0.4391542375087738, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2651106119155884 img loss 1.280037522315979 img loss 1.3061940670013428 img loss 1.30683171749115 img loss 1.2467665672302246 img loss 1.2594902515411377 img loss 1.220619559288025 img loss 1.2455453872680664 img loss 1.3451677560806274 img loss 1.3376644849777222 img loss 1.2530750036239624 img loss 1.3018701076507568 img loss 1.2729032039642334 img loss 1.3061589002609253 img loss 1.2674808502197266 img loss 1.2773329019546509 img loss 1.2612298727035522 img loss 1.2768782377243042 img loss 1.190460443496704 img loss 1.3017011880874634 img loss 1.2056219577789307 img loss 1.2887036800384521 img loss 1.3032459020614624 img loss 1.2519677877426147 img loss 1.232357382774353 img loss 1.2406651973724365 img loss 1.2755029201507568 img loss 1.3194111585617065 img loss 1.2637383937835693 img loss 1.2738713026046753 img loss 1.300837516784668 img loss 1.267898440361023 img loss 1.2506290674209595 img loss 1.2512807846069336 img loss 1.2652329206466675 img loss 1.205201506614685 img loss 1.230056643486023 img loss 1.3078179359436035 img loss 1.285011649131775 img loss 1.3248964548110962 img loss 1.2860907316207886 img loss 1.2963669300079346 img loss 1.3490420579910278 img loss 1.3680236339569092 img loss 1.316455364227295 img loss 1.238183617591858 img loss 1.2310278415679932 img loss 1.3256118297576904 img loss 1.2424530982971191 img loss 1.2884033918380737 img loss 1.3403985500335693 img loss 1.3142057657241821 img loss 1.3044131994247437 img loss 1.2602310180664062 img loss 1.2467212677001953 img loss 1.232580542564392 img loss 1.3093773126602173 img loss 1.2617988586425781 img loss 1.2862193584442139 img loss 1.3964554071426392 img loss 1.38131582736969 img loss 1.2591500282287598 img loss 1.2461864948272705 img loss 1.2244791984558105 img loss 1.2742884159088135 img loss 1.3281329870224 img loss 1.2168006896972656 img loss 1.3354370594024658 img loss 1.314361572265625 img loss 1.293190598487854 img loss 1.308868408203125 img loss 1.2802600860595703 img loss 1.2870912551879883 img loss 1.233055830001831 img loss 1.2272557020187378 img loss 1.232161045074463 img loss 1.2316678762435913 img loss 1.1531238555908203 img loss 1.4257771968841553 img loss 1.2657461166381836 img loss 1.30659818649292 img loss 1.3751510381698608 img loss 1.2841756343841553 img loss 1.3504502773284912 img loss 1.325963020324707 img loss 1.225416660308838 img loss 1.211035132408142 img loss 1.2831789255142212 img loss 1.3201144933700562 img loss 1.269558310508728 img loss 1.3216530084609985 img loss 1.3332161903381348 img loss 1.3239545822143555 img loss 1.3244529962539673 img loss 1.2829570770263672 img loss 1.2136471271514893 img loss 1.4028429985046387 img loss 1.2950232028961182 img loss 1.3040533065795898 img loss 1.374140977859497 img loss 1.2646139860153198 img loss 1.2117946147918701 img loss 1.2454705238342285 img loss 1.1640121936798096 img loss 1.191809892654419 img loss 1.3154436349868774 img loss 1.2156641483306885 img loss 1.2631860971450806 img loss 1.245979905128479 img loss 1.2174862623214722 img loss 1.3550779819488525 img loss 1.275498867034912 img loss 1.24918794631958 img loss 1.2861562967300415 img loss 1.3758963346481323 img loss 1.2459077835083008 img loss 1.3683664798736572 img loss 1.3242100477218628 img loss 1.3069206476211548 img loss 1.3327391147613525 img loss 1.3438470363616943 img loss 1.15446138381958 img loss 1.3474427461624146 img loss 1.2301925420761108 img loss 1.2663487195968628 img loss 1.2289083003997803 img loss 1.2836445569992065 img loss 1.2719204425811768 {'loss': 1.2812, 'grad_norm': 0.24402345716953278, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1768152713775635 img loss 1.2178865671157837 img loss 1.233189582824707 img loss 1.2077155113220215 img loss 1.2314037084579468 img loss 1.1794991493225098 img loss 1.2038010358810425 img loss 1.2061465978622437 img loss 1.231810212135315 img loss 1.2228927612304688 img loss 1.2288891077041626 img loss 1.1418968439102173 img loss 1.1711993217468262 img loss 1.1940243244171143 img loss 1.141238808631897 img loss 1.2498096227645874 img loss 1.1607564687728882 img loss 1.2040585279464722 img loss 1.295788049697876 img loss 1.197688341140747 img loss 1.2314656972885132 img loss 1.2540005445480347 img loss 1.2027937173843384 img loss 1.1986138820648193 img loss 1.212958812713623 img loss 1.2502570152282715 img loss 1.2188934087753296 img loss 1.245053768157959 img loss 1.2113687992095947 img loss 1.1399697065353394 img loss 1.2273739576339722 img loss 1.157388687133789 img loss 1.2540708780288696 img loss 1.1874897480010986 img loss 1.1777148246765137 img loss 1.2685476541519165 img loss 1.2464542388916016 img loss 1.1929664611816406 img loss 1.1408121585845947 img loss 1.2148116827011108 img loss 1.2906758785247803 img loss 1.2854177951812744 img loss 1.223516821861267 img loss 1.189166784286499 img loss 1.1850101947784424 img loss 1.1672481298446655 img loss 1.2120487689971924 img loss 1.179358959197998 img loss 1.230878472328186 img loss 1.1592426300048828 img loss 1.1782821416854858 img loss 1.2131097316741943 img loss 1.2260903120040894 img loss 1.1232450008392334 img loss 1.224434733390808 img loss 1.2389885187149048 img loss 1.2881495952606201 img loss 1.222457766532898 img loss 1.2241299152374268 img loss 1.2224113941192627 img loss 1.269378662109375 img loss 1.198320746421814 img loss 1.1777493953704834 img loss 1.2591699361801147 img loss 1.2278287410736084 img loss 1.190434455871582 img loss 1.1552400588989258 img loss 1.2174233198165894 img loss 1.233609914779663 img loss 1.1813896894454956 img loss 1.1952857971191406 img loss 1.167920470237732 img loss 1.180025577545166 img loss 1.1709182262420654 img loss 1.1782115697860718 img loss 1.1904600858688354 img loss 1.2060457468032837 img loss 1.1409872770309448 img loss 1.184483528137207 img loss 1.234678864479065 img loss 1.240100622177124 img loss 1.2123374938964844 img loss 1.1828216314315796 img loss 1.1417206525802612 img loss 1.179747462272644 img loss 1.2011865377426147 img loss 1.2392736673355103 img loss 1.1642577648162842 img loss 1.172776460647583 img loss 1.353824257850647 img loss 1.3114278316497803 img loss 1.2610481977462769 img loss 1.190584659576416 img loss 1.1914280652999878 img loss 1.1908602714538574 img loss 1.2345898151397705 img loss 1.2230660915374756 img loss 1.144357681274414 img loss 1.2329258918762207 img loss 1.208756923675537 img loss 1.2856838703155518 img loss 1.2229589223861694 img loss 1.2640511989593506 img loss 1.1951594352722168 img loss 1.1823618412017822 img loss 1.2577910423278809 img loss 1.1963424682617188 img loss 1.1672111749649048 img loss 1.2041633129119873 img loss 1.2058368921279907 img loss 1.2241668701171875 img loss 1.1716322898864746 img loss 1.1526918411254883 img loss 1.2362464666366577 img loss 1.2579056024551392 img loss 1.2310758829116821 img loss 1.1668552160263062 img loss 1.2631077766418457 img loss 1.157777190208435 img loss 1.2676100730895996 img loss 1.1925911903381348 img loss 1.2399243116378784 img loss 1.1742677688598633 img loss 1.2011420726776123 img loss 1.206346869468689 img loss 1.2442715167999268 img loss 1.1923043727874756 img loss 1.286602258682251 {'loss': 1.2101, 'grad_norm': 0.33109885454177856, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.438417673110962 img loss 1.5375431776046753 img loss 1.456436038017273 img loss 1.5601478815078735 img loss 1.3704322576522827 img loss 1.4121315479278564 img loss 1.5685545206069946 img loss 1.509915828704834 img loss 1.3959816694259644 img loss 1.5667668581008911 img loss 1.5235188007354736 img loss 1.550186038017273 img loss 1.453385591506958 img loss 1.4986199140548706 img loss 1.4924601316452026 img loss 1.399253249168396 img loss 1.501547932624817 img loss 1.5630921125411987 img loss 1.447630524635315 img loss 1.392383098602295 img loss 1.4213367700576782 img loss 1.4729560613632202 img loss 1.421371579170227 img loss 1.5403883457183838 img loss 1.4609100818634033 img loss 1.4602665901184082 img loss 1.4686179161071777 img loss 1.5465598106384277 img loss 1.5036274194717407 img loss 1.4896246194839478 img loss 1.5787880420684814 img loss 1.4339936971664429 img loss 1.4628924131393433 img loss 1.4782990217208862 img loss 1.5402729511260986 img loss 1.460020899772644 img loss 1.5319069623947144 img loss 1.4561517238616943 img loss 1.5318329334259033 img loss 1.465542197227478 img loss 1.381194829940796 img loss 1.4483675956726074 img loss 1.6903672218322754 img loss 1.65497624874115 img loss 1.474921703338623 img loss 1.4446444511413574 img loss 1.5020947456359863 img loss 1.478664755821228 img loss 1.379711389541626 img loss 1.3996962308883667 img loss 1.4847294092178345 img loss 1.574808955192566 img loss 1.5184329748153687 img loss 1.483027696609497 img loss 1.4829968214035034 img loss 1.4843343496322632 img loss 1.4364572763442993 img loss 1.447783350944519 img loss 1.518553376197815 img loss 1.4871209859848022 img loss 1.5513077974319458 img loss 1.5588921308517456 img loss 1.3466393947601318 img loss 1.4338914155960083 img loss 1.3247904777526855 img loss 1.3941673040390015 img loss 1.545986294746399 img loss 1.4086754322052002 img loss 1.5448464155197144 img loss 1.5602654218673706 img loss 1.4449330568313599 img loss 1.5513768196105957 img loss 1.4299843311309814 img loss 1.37466299533844 img loss 1.488542079925537 img loss 1.509641170501709 img loss 1.4758813381195068 img loss 1.5413687229156494 img loss 1.50910222530365 img loss 1.4442564249038696 img loss 1.5578768253326416 img loss 1.527400255203247 img loss 1.4326002597808838 img loss 1.496444821357727 img loss 1.702471375465393 img loss 1.470282793045044 img loss 1.5010720491409302 img loss 1.3511712551116943 img loss 1.423115611076355 img loss 1.478472352027893 img loss 1.4519050121307373 img loss 1.4320766925811768 img loss 1.3958364725112915 img loss 1.5078184604644775 img loss 1.3908580541610718 img loss 1.5234681367874146 img loss 1.3550951480865479 img loss 1.3933414220809937 img loss 1.484696865081787 img loss 1.5161267518997192 img loss 1.519662618637085 img loss 1.5647560358047485 img loss 1.6271899938583374 img loss 1.5812057256698608 img loss 1.5116685628890991 img loss 1.548325777053833 img loss 1.5410521030426025 img loss 1.6542143821716309 img loss 1.5448094606399536 img loss 1.624651551246643 img loss 1.4960815906524658 img loss 1.3600507974624634 img loss 1.6470636129379272 img loss 1.4848015308380127 img loss 1.507273554801941 img loss 1.4090226888656616 img loss 1.5807995796203613 img loss 1.4453762769699097 img loss 1.503811001777649 img loss 1.4451253414154053 img loss 1.7740285396575928 img loss 1.5342203378677368 img loss 1.3854347467422485 img loss 1.3342400789260864 img loss 1.4978506565093994 img loss 1.4566991329193115 img loss 1.5309261083602905 img loss 1.4425880908966064 {'loss': 1.4884, 'grad_norm': 0.38094988465309143, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2300524711608887 img loss 1.2968153953552246 img loss 1.2936960458755493 img loss 1.3177289962768555 img loss 1.2187612056732178 img loss 1.2296333312988281 img loss 1.3442034721374512 img loss 1.2861477136611938 img loss 1.1344263553619385 img loss 1.321399450302124 img loss 1.2272566556930542 img loss 1.2873646020889282 img loss 1.2313965559005737 img loss 1.2819255590438843 img loss 1.1939520835876465 img loss 1.3661398887634277 img loss 1.3239316940307617 img loss 1.30464768409729 img loss 1.353593111038208 img loss 1.3209762573242188 img loss 1.1819698810577393img loss 1.366946816444397 img loss 1.2099512815475464 img loss 1.2171249389648438 img loss 1.1709741353988647 img loss 1.2543588876724243 img loss 1.318402647972107 img loss 1.2065229415893555 img loss 1.368342638015747img loss 1.291264533996582 img loss 1.2896625995635986 img loss 1.192909598350525 img loss 1.2483271360397339 img loss 1.2052983045578003 img loss 1.34837806224823 img loss 1.2082548141479492 img loss 1.1978460550308228 img loss 1.3315463066101074 img loss 1.2901207208633423 img loss 1.2107481956481934 img loss 1.1805437803268433 img loss 1.3393141031265259 img loss 1.1013619899749756 img loss 1.2762936353683472 img loss 1.187424898147583 img loss 1.2663891315460205 img loss 1.2582863569259644 img loss 1.2655959129333496 img loss 1.2335623502731323 img loss 1.23464834690094 img loss 1.3892900943756104 img loss 1.279759168624878 img loss 1.2181494235992432 img loss 1.2742761373519897 img loss 1.2504932880401611 img loss 1.2054882049560547 img loss 1.2438371181488037 img loss 1.117520809173584 img loss 1.2225549221038818 img loss 1.2149763107299805 img loss 1.2292050123214722 img loss 1.3023998737335205 img loss 1.2734830379486084 img loss 1.1156914234161377 img loss 1.2699463367462158 img loss 1.3071705102920532 img loss 1.2048580646514893 img loss 1.3637398481369019 img loss 1.32476806640625 img loss 1.3086613416671753 img loss 1.3343852758407593 img loss 1.3486276865005493 img loss 1.2891567945480347 img loss 1.344468593597412 img loss 1.2673444747924805 img loss 1.2299773693084717 img loss 1.1781402826309204 img loss 1.333309531211853 img loss 1.2959513664245605 img loss 1.2278625965118408 img loss 1.3543744087219238 img loss 1.1948585510253906 img loss 1.276038646697998 img loss 1.2654225826263428 img loss 1.2929273843765259 img loss 1.2199598550796509 img loss 1.2480309009552002 img loss 1.25614333152771 img loss 1.3228840827941895 img loss 1.2929819822311401 img loss 1.2597062587738037 img loss 1.1642745733261108 img loss 1.2960622310638428 img loss 1.302049160003662 img loss 1.2503324747085571 img loss 1.297794222831726 img loss 1.2971476316452026 img loss 1.2080808877944946 img loss 1.1967294216156006 img loss 1.261980652809143 img loss 1.2041985988616943 img loss 1.305379867553711 img loss 1.1749992370605469 img loss 1.212066411972046 img loss 1.2234530448913574 img loss 1.25351881980896 img loss 1.281175971031189 img loss 1.265864372253418 img loss 1.274399995803833 img loss 1.2178528308868408 img loss 1.24236261844635 img loss 1.265928030014038 img loss 1.2765557765960693 img loss 1.250435709953308 img loss 1.245571494102478 img loss 1.2179231643676758 img loss 1.300266146659851 img loss 1.2466673851013184 img loss 1.1851229667663574 img loss 1.322874903678894 img loss 1.316667079925537 img loss 1.212321162223816 img loss 1.2322431802749634 img loss 1.2633569240570068 img loss 1.2802882194519043 img loss 1.2500883340835571 img loss 1.1885826587677002 img loss 1.3051576614379883 {'loss': 1.2598, 'grad_norm': 0.26499924063682556, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3949916362762451 img loss 1.4126571416854858 img loss 1.4316328763961792 img loss 1.3675744533538818 img loss 1.3897582292556763 img loss 1.4388917684555054 img loss 1.4701170921325684 img loss 1.4547044038772583 img loss 1.500871181488037 img loss 1.4894707202911377 img loss 1.4475072622299194 img loss 1.3895193338394165 img loss 1.3744457960128784 img loss 1.4043701887130737 img loss 1.4958690404891968 img loss 1.3646538257598877 img loss 1.4445387125015259 img loss 1.459790587425232 img loss 1.4778848886489868 img loss 1.2634400129318237 img loss 1.421622395515442 img loss 1.3163831233978271 img loss 1.3060874938964844 img loss 1.323944091796875 img loss 1.4177870750427246 img loss 1.3301149606704712 img loss 1.488169550895691 img loss 1.4668171405792236img loss 1.3339699506759644 img loss 1.4475170373916626 img loss 1.398181676864624 img loss 1.4386003017425537 img loss 1.324593186378479 img loss 1.3828760385513306 img loss 1.4577833414077759 img loss 1.2676475048065186 img loss 1.287921667098999 img loss 1.3791753053665161 img loss 1.3577873706817627 img loss 1.4349831342697144 img loss 1.5262420177459717 img loss 1.3443840742111206 img loss 1.271787166595459 img loss 1.4617582559585571 img loss 1.3334556818008423 img loss 1.3669592142105103 img loss 1.3250147104263306 img loss 1.357419729232788 img loss 1.3805441856384277 img loss 1.4106762409210205 img loss 1.395577073097229 img loss 1.3406541347503662 img loss 1.3596493005752563 img loss 1.3986690044403076 img loss 1.3839725255966187 img loss 1.4176560640335083 img loss 1.4272706508636475 img loss 1.3690203428268433 img loss 1.2789556980133057 img loss 1.3603956699371338 img loss 1.358965516090393 img loss 1.3726617097854614 img loss 1.4404224157333374 img loss 1.5452897548675537 img loss 1.3972241878509521 img loss 1.4078398942947388 img loss 1.460151195526123 img loss 1.3476769924163818 img loss 1.3292980194091797 img loss 1.3829001188278198 img loss 1.306098222732544 img loss 1.378435492515564 img loss 1.3534982204437256 img loss 1.4647399187088013 img loss 1.2863050699234009 img loss 1.4539190530776978 img loss 1.3426417112350464 img loss 1.3231658935546875 img loss 1.3797619342803955 img loss 1.3682663440704346 img loss 1.4629236459732056 img loss 1.3671764135360718 img loss 1.4107240438461304 img loss 1.3166483640670776 img loss 1.468562364578247 img loss 1.3569399118423462 img loss 1.3561145067214966 img loss 1.405117392539978 img loss 1.3054308891296387 img loss 1.428065538406372 img loss 1.3043205738067627 img loss 1.3189057111740112 img loss 1.4123011827468872 img loss 1.405794382095337 img loss 1.373606562614441 img loss 1.3479702472686768 img loss 1.405543565750122 img loss 1.4376194477081299 img loss 1.3983500003814697 img loss 1.3349032402038574 img loss 1.463518738746643 img loss 1.3820340633392334 img loss 1.340563416481018 img loss 1.3022360801696777 img loss 1.321482539176941 img loss 1.4909085035324097 img loss 1.4371026754379272 img loss 1.3667911291122437 img loss 1.4880162477493286 img loss 1.3809438943862915 img loss 1.3904255628585815 img loss 1.437740445137024 img loss 1.426491379737854 img loss 1.3421456813812256 img loss 1.4370514154434204 img loss 1.2353670597076416 img loss 1.469826102256775 img loss 1.3928722143173218 img loss 1.4765816926956177 img loss 1.3604693412780762 img loss 1.4807143211364746 img loss 1.2777878046035767 img loss 1.455917477607727 img loss 1.3576611280441284 img loss 1.3707507848739624 img loss 1.4510986804962158 img loss 1.3963543176651 img loss 1.4946388006210327 {'loss': 1.3915, 'grad_norm': 0.31582823395729065, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.183268427848816 img loss 1.233270525932312 img loss 1.277764081954956 img loss 1.2340643405914307 img loss 1.27392578125 img loss 1.2820649147033691 img loss 1.3460242748260498 img loss 1.2427265644073486 img loss 1.2722282409667969 img loss 1.2020714282989502 img loss 1.2572195529937744 img loss 1.2933202981948853 img loss 1.2558839321136475 img loss 1.352374792098999 img loss 1.24643874168396 img loss 1.2608616352081299 img loss 1.2394249439239502 img loss 1.2532508373260498 img loss 1.2129743099212646 img loss 1.1969976425170898 img loss 1.197957992553711 img loss 1.2658216953277588 img loss 1.3331868648529053 img loss 1.3172897100448608 img loss 1.4235154390335083 img loss 1.3066157102584839 img loss 1.300480604171753 img loss 1.2800449132919312 img loss 1.2470035552978516 img loss 1.2522861957550049 img loss 1.2770183086395264 img loss 1.3177833557128906 img loss 1.2833495140075684 img loss 1.2881085872650146 img loss 1.3516881465911865 img loss 1.2409038543701172 img loss 1.309525966644287 img loss 1.3070882558822632 img loss 1.2364739179611206 img loss 1.243415117263794 img loss 1.2137097120285034 img loss 1.245582103729248 img loss 1.2291529178619385 img loss 1.2344592809677124 img loss 1.3660284280776978 img loss 1.228319525718689 img loss 1.2572021484375 img loss 1.2575061321258545 img loss 1.1692466735839844 img loss 1.3330525159835815 img loss 1.2075945138931274 img loss 1.2089976072311401 img loss 1.2462971210479736 img loss 1.2049520015716553 img loss 1.2262663841247559 img loss 1.3370908498764038 img loss 1.3196901082992554 img loss 1.321877360343933 img loss 1.250640630722046 img loss 1.2570316791534424 img loss 1.2513351440429688 img loss 1.3104002475738525 img loss 1.2268149852752686 img loss 1.22636878490448 img loss 1.2625141143798828 img loss 1.3089635372161865 img loss 1.2830886840820312 img loss 1.2690331935882568 img loss 1.1835670471191406 img loss 1.2663559913635254 img loss 1.289065957069397 img loss 1.2693853378295898 img loss 1.3119157552719116 img loss 1.2731170654296875 img loss 1.3150990009307861 img loss 1.2976802587509155 img loss 1.333583950996399 img loss 1.2517534494400024 img loss 1.2663487195968628 img loss 1.3031948804855347 img loss 1.211916208267212 img loss 1.257668137550354 img loss 1.3135534524917603 img loss 1.405933141708374 img loss 1.259137749671936 img loss 1.1937092542648315 img loss 1.2739835977554321 img loss 1.2784054279327393 img loss 1.2229973077774048 img loss 1.2522292137145996 img loss 1.2907397747039795 img loss 1.3030208349227905 img loss 1.3273862600326538 img loss 1.2745827436447144 img loss 1.2737979888916016 img loss 1.2328423261642456 img loss 1.2561793327331543 img loss 1.2397780418395996 img loss 1.212956190109253 img loss 1.2055306434631348 img loss 1.2929683923721313 img loss 1.2833302021026611 img loss 1.3700720071792603 img loss 1.2377691268920898 img loss 1.2395472526550293 img loss 1.2775214910507202 img loss 1.2276051044464111 img loss 1.3148844242095947 img loss 1.2591183185577393 img loss 1.2966095209121704 img loss 1.269498348236084 img loss 1.247106909751892 img loss 1.2435222864151 img loss 1.3331048488616943 img loss 1.23626708984375 img loss 1.2988958358764648 img loss 1.290757656097412 img loss 1.2237818241119385 img loss 1.2809242010116577 img loss 1.2971748113632202 img loss 1.1805237531661987 img loss 1.2681910991668701 img loss 1.1624772548675537 img loss 1.1935958862304688 img loss 1.3087608814239502 img loss 1.2940603494644165 img loss 1.178146243095398 img loss 1.3182729482650757 {'loss': 1.2674, 'grad_norm': 0.2292729616165161, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2449337244033813 img loss 1.2920440435409546 img loss 1.2894535064697266 img loss 1.274238109588623 img loss 1.3599153757095337 img loss 1.2390679121017456 img loss 1.336545705795288 img loss 1.2731367349624634 img loss 1.3276194334030151 img loss 1.3527276515960693 img loss 1.403002142906189 img loss 1.4047648906707764 img loss 1.3487628698349 img loss 1.380810260772705 img loss 1.4268001317977905 img loss 1.3218417167663574 img loss 1.3086506128311157 img loss 1.4732086658477783 img loss 1.511901617050171 img loss 1.3297704458236694 img loss 1.4048711061477661 img loss 1.2617911100387573 img loss 1.3545914888381958 img loss 1.4226372241973877 img loss 1.3952268362045288 img loss 1.3982489109039307 img loss 1.2437559366226196 img loss 1.4293965101242065 img loss 1.3958661556243896 img loss 1.2547698020935059 img loss 1.189244270324707 img loss 1.3866608142852783 img loss 1.4256037473678589 img loss 1.2876369953155518 img loss 1.3366124629974365 img loss 1.2669190168380737 img loss 1.2471961975097656 img loss 1.4051975011825562 img loss 1.3485862016677856 img loss 1.4187957048416138 img loss 1.3759084939956665 img loss 1.3478466272354126 img loss 1.2677955627441406 img loss 1.310576319694519img loss 1.3483999967575073 img loss 1.2660980224609375 img loss 1.343643069267273 img loss 1.3863109350204468 img loss 1.3921366930007935 img loss 1.384271264076233 img loss 1.2697103023529053 img loss 1.244784951210022 img loss 1.4307739734649658 img loss 1.2409123182296753 img loss 1.3326157331466675 img loss 1.2256100177764893 img loss 1.3222299814224243 img loss 1.397915244102478 img loss 1.2138597965240479 img loss 1.32049560546875 img loss 1.3150897026062012 img loss 1.20115065574646 img loss 1.441473126411438 img loss 1.316810131072998 img loss 1.455480933189392 img loss 1.4128930568695068 img loss 1.4096041917800903 img loss 1.494909644126892 img loss 1.2502081394195557 img loss 1.3254964351654053 img loss 1.2801164388656616 img loss 1.3570826053619385 img loss 1.3603953123092651 img loss 1.3962541818618774 img loss 1.2704546451568604 img loss 1.2899909019470215 img loss 1.411845326423645 img loss 1.3757001161575317 img loss 1.2888017892837524 img loss 1.4626115560531616 img loss 1.259062647819519 img loss 1.3407604694366455 img loss 1.3685829639434814 img loss 1.28047513961792 img loss 1.4064885377883911 img loss 1.3217982053756714 img loss 1.2561558485031128 img loss 1.304964542388916 img loss 1.51943838596344 img loss 1.2302583456039429 img loss 1.3124732971191406 img loss 1.349342703819275 img loss 1.36784827709198 img loss 1.2951393127441406 img loss 1.3139431476593018 img loss 1.352647066116333 img loss 1.3604365587234497 img loss 1.3070409297943115 img loss 1.289885401725769 img loss 1.3839219808578491 img loss 1.352455735206604 img loss 1.4301668405532837 img loss 1.4238613843917847 img loss 1.3503825664520264 img loss 1.3015488386154175 img loss 1.2827141284942627 img loss 1.2429122924804688 img loss 1.3264518976211548 img loss 1.3534318208694458 img loss 1.4024269580841064 img loss 1.3430448770523071 img loss 1.2331023216247559 img loss 1.332019567489624 img loss 1.1782768964767456 img loss 1.2547569274902344 img loss 1.404569387435913 img loss 1.2784782648086548 img loss 1.335067868232727 img loss 1.338265299797058 img loss 1.3602769374847412 img loss 1.4520468711853027 img loss 1.3212289810180664 img loss 1.3532887697219849 img loss 1.398270845413208 img loss 1.5149089097976685 img loss 1.2945197820663452 img loss 1.3784754276275635 img loss 1.3367904424667358 {'loss': 1.3399, 'grad_norm': 0.4874689280986786, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2137572765350342 img loss 1.2436692714691162 img loss 1.2551860809326172 img loss 1.2355974912643433 img loss 1.2955973148345947 img loss 1.2850576639175415 img loss 1.1911253929138184 img loss 1.2345118522644043 img loss 1.1921708583831787 img loss 1.249403476715088 img loss 1.2418491840362549 img loss 1.2875200510025024 img loss 1.1414052248001099 img loss 1.2360045909881592 img loss 1.201284408569336 img loss 1.2178558111190796 img loss 1.2186416387557983 img loss 1.2558345794677734 img loss 1.2415691614151 img loss 1.2400870323181152 img loss 1.2235997915267944 img loss 1.1953915357589722 img loss 1.211581826210022 img loss 1.2555127143859863 img loss 1.2177021503448486 img loss 1.1968579292297363 img loss 1.1989550590515137 img loss 1.1790879964828491 img loss 1.189975619316101 img loss 1.2557817697525024 img loss 1.2210197448730469 img loss 1.197235107421875 img loss 1.180783987045288 img loss 1.2069977521896362 img loss 1.2767060995101929 img loss 1.244236946105957 img loss 1.3372952938079834 img loss 1.199950933456421 img loss 1.2102725505828857 img loss 1.2550663948059082 img loss 1.2359118461608887 img loss 1.1658210754394531 img loss 1.1992155313491821 img loss 1.3397574424743652 img loss 1.200987696647644 img loss 1.2144873142242432 img loss 1.2229896783828735 img loss 1.227213740348816 img loss 1.2692160606384277 img loss 1.240647792816162 img loss 1.224221110343933 img loss 1.2440245151519775 img loss 1.2139123678207397 img loss 1.170712947845459 img loss 1.2108399868011475 img loss 1.1960804462432861 img loss 1.1572928428649902 img loss 1.217219591140747 img loss 1.2218945026397705 img loss 1.230767846107483 img loss 1.210334300994873 img loss 1.2178789377212524 img loss 1.1647342443466187 img loss 1.1837745904922485 img loss 1.2249339818954468 img loss 1.247697114944458 img loss 1.1973414421081543 img loss 1.2081857919692993 img loss 1.2435202598571777 img loss 1.1817197799682617 img loss 1.244696021080017 img loss 1.183773398399353 img loss 1.2344926595687866 img loss 1.2028441429138184 img loss 1.2417428493499756 img loss 1.2526071071624756 img loss 1.2363156080245972 img loss 1.2409744262695312 img loss 1.182822585105896 img loss 1.3007258176803589 img loss 1.2347562313079834 img loss 1.3106205463409424 img loss 1.1988362073898315 img loss 1.2301667928695679 img loss 1.2092719078063965 img loss 1.2100368738174438 img loss 1.2419781684875488 img loss 1.2556068897247314 img loss 1.232612133026123 img loss 1.1611765623092651 img loss 1.2782583236694336 img loss 1.2228578329086304 img loss 1.3149088621139526 img loss 1.2134300470352173 img loss 1.2232677936553955 img loss 1.1690919399261475 img loss 1.1706011295318604 img loss 1.2169691324234009 img loss 1.2127594947814941 img loss 1.2726688385009766 img loss 1.2640373706817627 img loss 1.2632155418395996img loss 1.2438791990280151 img loss 1.2080729007720947 img loss 1.1934013366699219 img loss 1.1965727806091309 img loss 1.2009977102279663 img loss 1.1787184476852417 img loss 1.3809109926223755 img loss 1.1811243295669556 img loss 1.2648533582687378 img loss 1.2772505283355713 img loss 1.2525382041931152 img loss 1.2041707038879395 img loss 1.2288563251495361 img loss 1.2597923278808594 img loss 1.1747474670410156 img loss 1.205296277999878 img loss 1.255397081375122 img loss 1.242474913597107 img loss 1.2256454229354858 img loss 1.1781363487243652 img loss 1.224644422531128 img loss 1.2284151315689087 img loss 1.3016918897628784 img loss 1.1536725759506226 img loss 1.2362431287765503 img loss 1.2408103942871094 {'loss': 1.2264, 'grad_norm': 0.2539316713809967, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.217314600944519 img loss 1.1883655786514282 img loss 1.221456527709961 img loss 1.2650964260101318 img loss 1.1631622314453125 img loss 1.1656574010849 img loss 1.216266393661499 img loss 1.1308557987213135 img loss 1.167137622833252 img loss 1.1510026454925537 img loss 1.1609275341033936 img loss 1.1669749021530151 img loss 1.1810673475265503 img loss 1.1379177570343018 img loss 1.213653802871704 img loss 1.2169833183288574 img loss 1.1152663230895996 img loss 1.1671661138534546 img loss 1.125177025794983 img loss 1.185333490371704 img loss 1.1908032894134521 img loss 1.1683881282806396 img loss 1.1670677661895752 img loss 1.2128047943115234 img loss 1.2027184963226318 img loss 1.2414982318878174 img loss 1.1082855463027954 img loss 1.158117651939392 img loss 1.1764004230499268 img loss 1.2036972045898438 img loss 1.2050843238830566 img loss 1.1306424140930176 img loss 1.1871098279953003 img loss 1.2115144729614258 img loss 1.1973479986190796 img loss 1.180050253868103 img loss 1.222551941871643 img loss 1.2009915113449097 img loss 1.1707055568695068 img loss 1.151615858078003 img loss 1.111010193824768 img loss 1.1819909811019897 img loss 1.1907329559326172 img loss 1.208871603012085 img loss 1.2012476921081543 img loss 1.16259765625 img loss 1.1930599212646484 img loss 1.1268138885498047 img loss 1.1375178098678589 img loss 1.209033727645874 img loss 1.1939724683761597 img loss 1.2229222059249878 img loss 1.1963989734649658 img loss 1.1542001962661743 img loss 1.1997809410095215 img loss 1.1823590993881226 img loss 1.165186882019043 img loss 1.2014386653900146 img loss 1.210060954093933 img loss 1.1688283681869507 img loss 1.1635737419128418 img loss 1.1664962768554688 img loss 1.215296983718872 img loss 1.1631293296813965 img loss 1.1459527015686035 img loss 1.210131287574768 img loss 1.183358073234558 img loss 1.159690260887146 img loss 1.1990280151367188 img loss 1.185455322265625 img loss 1.199704885482788 img loss 1.2106177806854248 img loss 1.1994303464889526 img loss 1.1638628244400024 img loss 1.1729402542114258 img loss 1.1957918405532837 img loss 1.178561806678772 img loss 1.2140010595321655 img loss 1.2242612838745117 img loss 1.1543482542037964 img loss 1.2271134853363037 img loss 1.1485595703125 img loss 1.186761498451233 img loss 1.1811268329620361 img loss 1.168769121170044 img loss 1.126593828201294 img loss 1.265846610069275 img loss 1.158111572265625 img loss 1.2507338523864746 img loss 1.1116821765899658 img loss 1.2015929222106934 img loss 1.21160888671875 img loss 1.1794267892837524 img loss 1.1612701416015625 img loss 1.2027051448822021 img loss 1.188575029373169 img loss 1.223078727722168 img loss 1.1069328784942627 img loss 1.1492146253585815 img loss 1.158943772315979 img loss 1.1624369621276855 img loss 1.1737897396087646 img loss 1.18906569480896 img loss 1.2047477960586548 img loss 1.1951379776000977 img loss 1.2082953453063965 img loss 1.1697949171066284 img loss 1.2504326105117798 img loss 1.1527763605117798 img loss 1.1816736459732056 img loss 1.2204830646514893 img loss 1.2511106729507446 img loss 1.2609550952911377 img loss 1.281327724456787 img loss 1.1390854120254517 img loss 1.1895685195922852 img loss 1.1870008707046509 img loss 1.203302025794983 img loss 1.267167568206787 img loss 1.2150988578796387 img loss 1.1849679946899414 img loss 1.1965415477752686 img loss 1.1869347095489502 img loss 1.1601332426071167 img loss 1.2230541706085205 img loss 1.1494661569595337 img loss 1.234501838684082 img loss 1.2102289199829102 {'loss': 1.1861, 'grad_norm': 0.2821166515350342, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.269722580909729 img loss 1.2158465385437012 img loss 1.2211613655090332 img loss 1.304205298423767 img loss 1.206560730934143 img loss 1.2742220163345337 img loss 1.2451090812683105 img loss 1.1865490674972534 img loss 1.2167506217956543 img loss 1.2508924007415771 img loss 1.2223541736602783 img loss 1.2007538080215454 img loss 1.1930118799209595 img loss 1.22220778465271 img loss 1.2070670127868652 img loss 1.1529268026351929 img loss 1.2308772802352905 img loss 1.1860913038253784 img loss 1.2965587377548218 img loss 1.2121957540512085 img loss 1.2295528650283813 img loss 1.1932934522628784 img loss 1.2403442859649658 img loss 1.19365394115448 img loss 1.2291831970214844 img loss 1.265164852142334 img loss 1.2129325866699219 img loss 1.188201665878296 img loss 1.1608186960220337 img loss 1.20628023147583 img loss 1.2142467498779297 img loss 1.2219609022140503 img loss 1.2616182565689087 img loss 1.2094018459320068 img loss 1.228358507156372 img loss 1.2242845296859741 img loss 1.215003490447998 img loss 1.2479232549667358 img loss 1.2483524084091187 img loss 1.1848266124725342 img loss 1.2154728174209595 img loss 1.218759298324585 img loss 1.2150371074676514 img loss 1.234609842300415 img loss 1.2134747505187988 img loss 1.294663667678833 img loss 1.2260582447052002 img loss 1.2980246543884277 img loss 1.2380943298339844 img loss 1.1619534492492676 img loss 1.1819528341293335 img loss 1.1892114877700806 img loss 1.2865585088729858 img loss 1.178515911102295 img loss 1.2502859830856323 img loss 1.1289145946502686 img loss 1.247087001800537 img loss 1.1335179805755615 img loss 1.241093635559082 img loss 1.2285162210464478 img loss 1.2958827018737793 img loss 1.317498803138733 img loss 1.2308697700500488 img loss 1.1617541313171387 img loss 1.2726280689239502 img loss 1.2125802040100098 img loss 1.1617110967636108 img loss 1.1588724851608276 img loss 1.2109808921813965 img loss 1.1619614362716675 img loss 1.1758006811141968 img loss 1.1686413288116455 img loss 1.2580572366714478 img loss 1.3353937864303589 img loss 1.232256293296814 img loss 1.1768686771392822 img loss 1.2154595851898193 img loss 1.2345104217529297 img loss 1.1792072057724 img loss 1.1973724365234375 img loss 1.2040555477142334 img loss 1.223082423210144 img loss 1.2498728036880493 img loss 1.2029054164886475 img loss 1.1959948539733887 img loss 1.1808762550354004 img loss 1.243754267692566 img loss 1.2406193017959595 img loss 1.247291922569275 img loss 1.2072080373764038 img loss 1.170436143875122 img loss 1.2307336330413818 img loss 1.1736929416656494 img loss 1.2236636877059937 img loss 1.2108538150787354 img loss 1.2218337059020996 img loss 1.2380255460739136 img loss 1.29409921169281 img loss 1.2174522876739502 img loss 1.2181320190429688 img loss 1.2410567998886108 img loss 1.1736644506454468 img loss 1.2074048519134521 img loss 1.2114149332046509 img loss 1.19247567653656 img loss 1.2265074253082275 img loss 1.2963900566101074 img loss 1.1852096319198608 img loss 1.2076947689056396 img loss 1.1925568580627441 img loss 1.225475549697876 img loss 1.2336506843566895 img loss 1.26129949092865 img loss 1.228208303451538 img loss 1.3182299137115479 img loss 1.1853253841400146 img loss 1.164175033569336 img loss 1.2639416456222534 img loss 1.1801133155822754 img loss 1.2204303741455078 img loss 1.1743040084838867 img loss 1.2470483779907227 img loss 1.2273050546646118 img loss 1.1849431991577148 img loss 1.28477144241333 img loss 1.1859716176986694 img loss 1.2594828605651855 img loss 1.2365198135375977 {'loss': 1.2206, 'grad_norm': 0.26191020011901855, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1542396545410156 img loss 1.3038742542266846 img loss 1.1676321029663086 img loss 1.3932996988296509 img loss 1.3273344039916992 img loss 1.2796988487243652 img loss 1.2879670858383179 img loss 1.24656343460083 img loss 1.2359718084335327 img loss 1.2620208263397217 img loss 1.1824907064437866 img loss 1.2337392568588257 img loss 1.246171474456787 img loss 1.1797232627868652 img loss 1.1907334327697754 img loss 1.1709911823272705 img loss 1.2289732694625854 img loss 1.2617346048355103 img loss 1.159889817237854 img loss 1.1978145837783813 img loss 1.2276725769042969 img loss 1.2783094644546509 img loss 1.2509360313415527 img loss 1.3272355794906616 img loss 1.295799970626831 img loss 1.2345728874206543 img loss 1.2921247482299805 img loss 1.23665452003479 img loss 1.2472566366195679 img loss 1.1915795803070068 img loss 1.1813158988952637 img loss 1.3210843801498413 img loss 1.2348603010177612 img loss 1.245155692100525 img loss 1.1995980739593506 img loss 1.2977436780929565 img loss 1.203479290008545 img loss 1.2356209754943848 img loss 1.213271975517273 img loss 1.1700561046600342 img loss 1.21535325050354 img loss 1.2435163259506226 img loss 1.2482531070709229 img loss 1.2263848781585693 img loss 1.2074081897735596 img loss 1.191078782081604 img loss 1.1536457538604736 img loss 1.2514985799789429 img loss 1.1392678022384644 img loss 1.1671627759933472 img loss 1.2035293579101562 img loss 1.2404849529266357 img loss 1.271411657333374 img loss 1.1584701538085938 img loss 1.3590489625930786 img loss 1.3387656211853027 img loss 1.1966441869735718 img loss 1.2050702571868896 img loss 1.323622703552246 img loss 1.1714133024215698 img loss 1.2290806770324707 img loss 1.1293394565582275 img loss 1.1921741962432861 img loss 1.230750560760498 img loss 1.2846343517303467 img loss 1.2322410345077515 img loss 1.1337510347366333 img loss 1.277761459350586 img loss 1.110625982284546 img loss 1.2388451099395752 img loss 1.1838139295578003 img loss 1.1941360235214233 img loss 1.2206252813339233 img loss 1.264561653137207 img loss 1.1815757751464844 img loss 1.2755448818206787 img loss 1.252780795097351 img loss 1.1886450052261353 img loss 1.2027857303619385 img loss 1.29741632938385 img loss 1.1760764122009277 img loss 1.2424499988555908 img loss 1.2595100402832031 img loss 1.1541556119918823 img loss 1.2427681684494019 img loss 1.2576507329940796 img loss 1.257462739944458 img loss 1.264836311340332 img loss 1.2158262729644775 img loss 1.1969817876815796 img loss 1.2013130187988281 img loss 1.255590796470642 img loss 1.2391656637191772 img loss 1.1066069602966309 img loss 1.1958425045013428 img loss 1.2924072742462158 img loss 1.226446509361267 img loss 1.2283878326416016 img loss 1.2996996641159058 img loss 1.2943552732467651 img loss 1.2153477668762207 img loss 1.1791845560073853 img loss 1.2357572317123413 img loss 1.268003225326538 img loss 1.2281907796859741 img loss 1.271888017654419 img loss 1.2089338302612305 img loss 1.2527183294296265 img loss 1.2407090663909912 img loss 1.19999361038208 img loss 1.2775243520736694 img loss 1.1804792881011963 img loss 1.1937415599822998 img loss 1.2799291610717773 img loss 1.2709530591964722 img loss 1.148621916770935 img loss 1.204160451889038 img loss 1.24628484249115 img loss 1.2791202068328857 img loss 1.2350776195526123 img loss 1.1775951385498047 img loss 1.268291711807251 img loss 1.27035391330719 img loss 1.1324045658111572 img loss 1.1685161590576172 img loss 1.1842793226242065 img loss 1.28423011302948 img loss 1.096021056175232 {'loss': 1.2284, 'grad_norm': 0.23461446166038513, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2091652154922485 img loss 1.2328319549560547 img loss 1.2167563438415527 img loss 1.2226500511169434 img loss 1.1730296611785889 img loss 1.1664783954620361 img loss 1.179984450340271 img loss 1.1339492797851562 img loss 1.1746711730957031 img loss 1.1725660562515259 img loss 1.1371517181396484 img loss 1.2138888835906982 img loss 1.1916358470916748 img loss 1.2199907302856445 img loss 1.214276909828186 img loss 1.1712620258331299 img loss 1.1402158737182617 img loss 1.235329508781433 img loss 1.156921148300171 img loss 1.1965184211730957 img loss 1.2020480632781982 img loss 1.1891285181045532 img loss 1.2064036130905151 img loss 1.170426368713379 img loss 1.230029582977295 img loss 1.2247741222381592 img loss 1.2039756774902344 img loss 1.2048094272613525 img loss 1.2032349109649658 img loss 1.207911729812622 img loss 1.2712334394454956 img loss 1.1678968667984009 img loss 1.1426167488098145 img loss 1.1854803562164307 img loss 1.2125599384307861 img loss 1.1664063930511475 img loss 1.2101296186447144 img loss 1.2383754253387451 img loss 1.198817491531372 img loss 1.2041610479354858 img loss 1.1768087148666382 img loss 1.1223267316818237 img loss 1.2192493677139282 img loss 1.176337718963623 img loss 1.1545727252960205 img loss 1.140089750289917 img loss 1.2212423086166382 img loss 1.140049934387207 img loss 1.1261779069900513 img loss 1.0884394645690918 img loss 1.2385766506195068 img loss 1.2206921577453613 img loss 1.1216015815734863 img loss 1.2500114440917969 img loss 1.1753275394439697 img loss 1.1441454887390137 img loss 1.1970210075378418 img loss 1.2863283157348633 img loss 1.1412845849990845 img loss 1.1661503314971924 img loss 1.1351861953735352 img loss 1.1809242963790894 img loss 1.1724512577056885 img loss 1.2656147480010986 img loss 1.2791770696640015 img loss 1.2388319969177246 img loss 1.2157071828842163 img loss 1.1801776885986328 img loss 1.1495598554611206 img loss 1.3062901496887207 img loss 1.1446247100830078 img loss 1.2383992671966553 img loss 1.1835485696792603 img loss 1.1928714513778687 img loss 1.234222650527954 img loss 1.172214388847351 img loss 1.1984422206878662 img loss 1.2657402753829956 img loss 1.1783082485198975 img loss 1.2366933822631836 img loss 1.2538537979125977 img loss 1.2453991174697876 img loss 1.217812180519104 img loss 1.2241744995117188 img loss 1.1192320585250854 img loss 1.251124620437622 img loss 1.2331253290176392 img loss 1.2181028127670288 img loss 1.2500520944595337 img loss 1.1470965147018433 img loss 1.1644344329833984 img loss 1.2797510623931885 img loss 1.1744377613067627 img loss 1.1892579793930054 img loss 1.2622734308242798 img loss 1.241402268409729 img loss 1.2176111936569214 img loss 1.2768806219100952 img loss 1.1599489450454712 img loss 1.1903820037841797 img loss 1.246099829673767 img loss 1.2634944915771484 img loss 1.2400317192077637 img loss 1.3216030597686768 img loss 1.2079334259033203 img loss 1.2266788482666016 img loss 1.2022961378097534 img loss 1.177127718925476 img loss 1.193458914756775 img loss 1.2340694665908813 img loss 1.1955597400665283 img loss 1.1766045093536377 img loss 1.1824337244033813 img loss 1.1986651420593262 img loss 1.175971508026123 img loss 1.1156924962997437 img loss 1.2407957315444946 img loss 1.2209964990615845 img loss 1.2261455059051514 img loss 1.303680419921875 img loss 1.246362328529358 img loss 1.2066571712493896 img loss 1.1659655570983887 img loss 1.208800196647644 img loss 1.1708691120147705 img loss 1.19883131980896 img loss 1.2211636304855347 img loss 1.134415626525879 {'loss': 1.2007, 'grad_norm': 0.3236522376537323, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2983973026275635 img loss 1.4295995235443115 img loss 1.2933892011642456 img loss 1.354628086090088 img loss 1.4026275873184204 img loss 1.5029876232147217 img loss 1.486336588859558 img loss 1.3274883031845093 img loss 1.423887848854065 img loss 1.298416018486023 img loss 1.3116793632507324 img loss 1.3572335243225098 img loss 1.4711049795150757 img loss 1.399515986442566 img loss 1.3933637142181396 img loss 1.3024535179138184 img loss 1.277044653892517 img loss 1.460930347442627 img loss 1.3139084577560425 img loss 1.469144344329834 img loss 1.3389419317245483 img loss 1.3575960397720337 img loss 1.377275824546814 img loss 1.3079296350479126 img loss 1.4288023710250854 img loss 1.3459242582321167 img loss 1.3916634321212769 img loss 1.3371598720550537 img loss 1.2732329368591309 img loss 1.5672430992126465 img loss 1.391391634941101 img loss 1.3003733158111572 img loss 1.4866129159927368 img loss 1.3878728151321411 img loss 1.3349511623382568 img loss 1.462571382522583 img loss 1.311392068862915 img loss 1.3891984224319458 img loss 1.4773266315460205 img loss 1.4690144062042236 img loss 1.3535200357437134 img loss 1.3073365688323975 img loss 1.3470920324325562 img loss 1.4113399982452393 img loss 1.374061942100525 img loss 1.4365564584732056 img loss 1.424680471420288 img loss 1.4159406423568726 img loss 1.5553176403045654 img loss 1.3147934675216675 img loss 1.4250916242599487 img loss 1.3541970252990723 img loss 1.400956630706787 img loss 1.4788095951080322 img loss 1.2135876417160034 img loss 1.3462048768997192 img loss 1.442700743675232 img loss 1.3110414743423462 img loss 1.4667035341262817 img loss 1.4517441987991333 img loss 1.4821619987487793 img loss 1.3263202905654907 img loss 1.2901389598846436 img loss 1.3572652339935303 img loss 1.3851161003112793 img loss 1.4291043281555176 img loss 1.4484926462173462 img loss 1.3484021425247192 img loss 1.3109050989151 img loss 1.3498833179473877 img loss 1.3560519218444824 img loss 1.3865838050842285 img loss 1.4599846601486206 img loss 1.306984543800354 img loss 1.4289867877960205 img loss 1.5166765451431274 img loss 1.3145866394042969 img loss 1.3086363077163696 img loss 1.4072667360305786 img loss 1.3576515913009644 img loss 1.3698643445968628 img loss 1.292407512664795 img loss 1.3642284870147705 img loss 1.3918120861053467 img loss 1.3193085193634033 img loss 1.3319586515426636 img loss 1.2920951843261719 img loss 1.4209216833114624 img loss 1.5147119760513306 img loss 1.435459852218628 img loss 1.3793460130691528 img loss 1.3857334852218628 img loss 1.471993088722229 img loss 1.3773090839385986 img loss 1.323798656463623 img loss 1.2795677185058594 img loss 1.4782723188400269 img loss 1.4077545404434204 img loss 1.392072319984436 img loss 1.4476298093795776 img loss 1.2831672430038452 img loss 1.3439772129058838 img loss 1.237830400466919 img loss 1.3859864473342896 img loss 1.3816479444503784 img loss 1.4615814685821533 img loss 1.4220869541168213 img loss 1.480384349822998 img loss 1.3264362812042236 img loss 1.5156654119491577 img loss 1.357435941696167 img loss 1.424301266670227 img loss 1.4165366888046265 img loss 1.4105945825576782 img loss 1.4127687215805054 img loss 1.4451066255569458 img loss 1.451578974723816 img loss 1.3459266424179077 img loss 1.3409370183944702 img loss 1.3738113641738892 img loss 1.3370164632797241 img loss 1.367153525352478 img loss 1.2947957515716553 img loss 1.3515249490737915 img loss 1.3188138008117676 img loss 1.3898106813430786 img loss 1.2984718084335327 img loss 1.4377071857452393 {'loss': 1.3828, 'grad_norm': 0.32334187626838684, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2692524194717407 img loss 1.214765191078186 img loss 1.173346996307373 img loss 1.2279409170150757 img loss 1.266365647315979 img loss 1.2708373069763184 img loss 1.219448447227478 img loss 1.326275110244751 img loss 1.1706604957580566 img loss 1.1913642883300781 img loss 1.3233792781829834 img loss 1.1863322257995605 img loss 1.288201093673706 img loss 1.2694344520568848 img loss 1.2614396810531616 img loss 1.188459038734436 img loss 1.2345969676971436 img loss 1.1800401210784912 img loss 1.2406597137451172 img loss 1.2071739435195923 img loss 1.2174222469329834 img loss 1.3369146585464478 img loss 1.229140043258667 img loss 1.2401013374328613 img loss 1.2149360179901123 img loss 1.2833218574523926 img loss 1.2615875005722046 img loss 1.239846110343933 img loss 1.228217363357544 img loss 1.2545286417007446 img loss 1.2455873489379883 img loss 1.2584335803985596 img loss 1.3008434772491455 img loss 1.246159315109253 img loss 1.2255079746246338 img loss 1.2246718406677246 img loss 1.1564949750900269 img loss 1.2462753057479858 img loss 1.205639123916626 img loss 1.26393461227417 img loss 1.2634915113449097 img loss 1.2637032270431519 img loss 1.2065914869308472 img loss 1.259623408317566 img loss 1.1613320112228394 img loss 1.2055416107177734 img loss 1.2336602210998535 img loss 1.1975719928741455 img loss 1.210651159286499 img loss 1.3106735944747925 img loss 1.1941460371017456 img loss 1.217737078666687 img loss 1.241015911102295 img loss 1.2840585708618164 img loss 1.1549451351165771 img loss 1.160754680633545 img loss 1.1186398267745972 img loss 1.2660117149353027 img loss 1.274584412574768 img loss 1.1638166904449463 img loss 1.2070645093917847 img loss 1.1807472705841064 img loss 1.143593668937683 img loss 1.2174739837646484 img loss 1.206066370010376 img loss 1.2101693153381348 img loss 1.2381548881530762 img loss 1.2291111946105957 img loss 1.2244917154312134 img loss 1.2108051776885986 img loss 1.1972901821136475img loss 1.180312991142273 img loss 1.2241042852401733 img loss 1.2420804500579834 img loss 1.2392648458480835 img loss 1.1608333587646484 img loss 1.2212270498275757 img loss 1.2667558193206787 img loss 1.1798808574676514 img loss 1.1804122924804688 img loss 1.2756725549697876 img loss 1.2261298894882202 img loss 1.2577390670776367 img loss 1.1885979175567627 img loss 1.237657070159912 img loss 1.2276371717453003 img loss 1.2653616666793823 img loss 1.2587889432907104 img loss 1.2656970024108887 img loss 1.277994990348816 img loss 1.2409597635269165 img loss 1.2995176315307617 img loss 1.3060234785079956 img loss 1.2814972400665283 img loss 1.2533433437347412 img loss 1.1786410808563232 img loss 1.211146593093872 img loss 1.1962159872055054 img loss 1.17900550365448 img loss 1.27522611618042 img loss 1.264575719833374 img loss 1.1687246561050415 img loss 1.2263476848602295 img loss 1.233682632446289 img loss 1.2221579551696777 img loss 1.2348392009735107 img loss 1.2946432828903198 img loss 1.2494300603866577 img loss 1.2300219535827637 img loss 1.2557129859924316 img loss 1.2438712120056152 img loss 1.1520179510116577 img loss 1.234121322631836 img loss 1.2994745969772339 img loss 1.2640657424926758 img loss 1.1593821048736572 img loss 1.165480136871338 img loss 1.260448694229126 img loss 1.1721675395965576 img loss 1.2685751914978027 img loss 1.209999918937683 img loss 1.313056230545044 img loss 1.211586594581604 img loss 1.2539408206939697 img loss 1.2256770133972168 img loss 1.2257320880889893 img loss 1.209481954574585 img loss 1.2716896533966064 {'loss': 1.231, 'grad_norm': 0.3442983031272888, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4355061054229736 img loss 1.3301109075546265 img loss 1.4556896686553955 img loss 1.4404739141464233 img loss 1.4632948637008667 img loss 1.3857063055038452 img loss 1.400037169456482 img loss 1.3639706373214722 img loss 1.4213474988937378 img loss 1.487052321434021 img loss 1.3645771741867065 img loss 1.4498437643051147 img loss 1.3973119258880615 img loss 1.4856164455413818 img loss 1.4082882404327393 img loss 1.4314401149749756 img loss 1.4249377250671387 img loss 1.3720030784606934 img loss 1.4017525911331177 img loss 1.3558671474456787 img loss 1.333522915840149 img loss 1.3700000047683716 img loss 1.3660725355148315 img loss 1.4099400043487549 img loss 1.416491985321045 img loss 1.468492031097412 img loss 1.437373399734497 img loss 1.395240068435669 img loss 1.4975303411483765 img loss 1.4274296760559082 img loss 1.3798692226409912 img loss 1.4097009897232056 img loss 1.4162245988845825 img loss 1.2846393585205078 img loss 1.3609662055969238 img loss 1.4156880378723145 img loss 1.4115930795669556 img loss 1.4385789632797241 img loss 1.4547008275985718 img loss 1.3591210842132568 img loss 1.393918514251709 img loss 1.41280996799469 img loss 1.4818532466888428 img loss 1.4742543697357178 img loss 1.4124751091003418 img loss 1.4525247812271118 img loss 1.5197937488555908 img loss 1.3155462741851807 img loss 1.3604395389556885 img loss 1.4571892023086548 img loss 1.460307240486145 img loss 1.5243067741394043 img loss 1.3582192659378052 img loss 1.3650301694869995 img loss 1.3244856595993042 img loss 1.4250524044036865 img loss 1.494027853012085 img loss 1.4231407642364502 img loss 1.3503644466400146 img loss 1.4284733533859253 img loss 1.5452134609222412 img loss 1.4259541034698486 img loss 1.526932954788208 img loss 1.3971436023712158 img loss 1.3655123710632324 img loss 1.3639683723449707 img loss 1.3510745763778687 img loss 1.4506289958953857 img loss 1.3816460371017456 img loss 1.404125452041626 img loss 1.4938275814056396 img loss 1.4092954397201538 img loss 1.3402742147445679 img loss 1.3707327842712402 img loss 1.4902678728103638 img loss 1.4441771507263184 img loss 1.4169895648956299 img loss 1.4354603290557861 img loss 1.3123359680175781 img loss 1.4818674325942993 img loss 1.4161241054534912 img loss 1.4370089769363403 img loss 1.4141453504562378 img loss 1.2964909076690674 img loss 1.388080358505249 img loss 1.3642573356628418 img loss 1.427693247795105 img loss 1.5791375637054443 img loss 1.4875891208648682 img loss 1.4015676975250244 img loss 1.2947238683700562 img loss 1.332964301109314 img loss 1.4511387348175049 img loss 1.4555190801620483 img loss 1.3782202005386353 img loss 1.5632376670837402 img loss 1.369564175605774 img loss 1.4437142610549927 img loss 1.4225467443466187 img loss 1.4065746068954468 img loss 1.4908944368362427 img loss 1.3250577449798584 img loss 1.3810964822769165 img loss 1.3857139348983765 img loss 1.4828565120697021 img loss 1.4624435901641846 img loss 1.362747311592102 img loss 1.4500772953033447 img loss 1.4820486307144165 img loss 1.4108383655548096 img loss 1.4643234014511108 img loss 1.413148045539856 img loss 1.4917360544204712 img loss 1.3527328968048096 img loss 1.4195189476013184 img loss 1.3727576732635498 img loss 1.4546024799346924 img loss 1.4210726022720337 img loss 1.489235281944275 img loss 1.3962664604187012 img loss 1.4676578044891357 img loss 1.394550085067749 img loss 1.4420191049575806 img loss 1.4311411380767822 img loss 1.4630162715911865 img loss 1.5309187173843384 img loss 1.3761013746261597 img loss 1.3475970029830933 {'loss': 1.4177, 'grad_norm': 0.337056040763855, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2178573608398438 img loss 1.1898008584976196 img loss 1.1765049695968628 img loss 1.24039626121521 img loss 1.201411485671997 img loss 1.288460612297058 img loss 1.196596384048462 img loss 1.1503384113311768 img loss 1.230445146560669 img loss 1.1563122272491455 img loss 1.228346347808838 img loss 1.2823410034179688 img loss 1.2137762308120728 img loss 1.1787209510803223 img loss 1.1629972457885742 img loss 1.179484248161316 img loss 1.2702854871749878 img loss 1.1873321533203125 img loss 1.2744005918502808 img loss 1.2320857048034668 img loss 1.2225897312164307 img loss 1.2618147134780884 img loss 1.253385066986084 img loss 1.2264606952667236 img loss 1.252644419670105 img loss 1.2433135509490967 img loss 1.1757264137268066 img loss 1.1381059885025024 img loss 1.2731586694717407 img loss 1.1603561639785767 img loss 1.2350000143051147 img loss 1.2859987020492554 img loss 1.2856338024139404 img loss 1.1431992053985596 img loss 1.2958135604858398 img loss 1.2375799417495728 img loss 1.2875239849090576 img loss 1.2273626327514648 img loss 1.2805255651474 img loss 1.3131183385849 img loss 1.1196391582489014 img loss 1.2350422143936157 img loss 1.153252124786377 img loss 1.168136477470398 img loss 1.2548792362213135 img loss 1.1682840585708618 img loss 1.189727783203125 img loss 1.2055068016052246 img loss 1.1978286504745483 img loss 1.2339569330215454 img loss 1.2402979135513306 img loss 1.1057451963424683 img loss 1.275608777999878 img loss 1.2215166091918945 img loss 1.2652276754379272 img loss 1.1850543022155762 img loss 1.1522223949432373 img loss 1.2052007913589478 img loss 1.2369592189788818 img loss 1.2172437906265259 img loss 1.2212424278259277 img loss 1.3260972499847412 img loss 1.2673882246017456 img loss 1.2856324911117554 img loss 1.32220458984375 img loss 1.1609828472137451 img loss 1.213043212890625 img loss 1.1992098093032837 img loss 1.1898044347763062 img loss 1.1864657402038574 img loss 1.2185958623886108 img loss 1.1610323190689087 img loss 1.2588222026824951 img loss 1.2308405637741089 img loss 1.2112258672714233 img loss 1.226698398590088 img loss 1.1675609350204468 img loss 1.2827332019805908 img loss 1.3042303323745728 img loss 1.2851399183273315 img loss 1.2632062435150146 img loss 1.1451910734176636 img loss 1.2133018970489502 img loss 1.2286601066589355 img loss 1.2706743478775024 img loss 1.163647174835205 img loss 1.2219065427780151 img loss 1.2703367471694946 img loss 1.1874098777770996 img loss 1.1834901571273804 img loss 1.165249228477478 img loss 1.267922043800354 img loss 1.1784448623657227 img loss 1.1653850078582764 img loss 1.250012993812561 img loss 1.2454683780670166 img loss 1.212563395500183 img loss 1.2130264043807983 img loss 1.1958339214324951 img loss 1.183520793914795 img loss 1.1971487998962402 img loss 1.2171876430511475 img loss 1.2602040767669678 img loss 1.2646335363388062 img loss 1.289568305015564 img loss 1.2140902280807495 img loss 1.214086890220642 img loss 1.2546920776367188 img loss 1.2150301933288574 img loss 1.1742218732833862 img loss 1.2450058460235596 img loss 1.1315571069717407 img loss 1.2103906869888306 img loss 1.2270257472991943 img loss 1.2208287715911865 img loss 1.1745551824569702 img loss 1.200006365776062 img loss 1.1878185272216797 img loss 1.2202905416488647 img loss 1.272936224937439 img loss 1.2390087842941284 img loss 1.2387826442718506 img loss 1.215368628501892 img loss 1.306835412979126 img loss 1.2713732719421387 img loss 1.216957926750183 img loss 1.2589929103851318 img loss 1.1560550928115845 {'loss': 1.2213, 'grad_norm': 0.22728599607944489, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3559114933013916 img loss 1.1862894296646118 img loss 1.2731571197509766 img loss 1.3316729068756104 img loss 1.2938753366470337img loss 1.3475576639175415 img loss 1.3438427448272705 img loss 1.18902587890625 img loss 1.3190886974334717 img loss 1.294625997543335 img loss 1.3882133960723877 img loss 1.3407833576202393 img loss 1.3032959699630737 img loss 1.2899584770202637 img loss 1.2591089010238647 img loss 1.2499561309814453 img loss 1.3840886354446411 img loss 1.3056855201721191 img loss 1.3802076578140259 img loss 1.2986987829208374 img loss 1.3369042873382568 img loss 1.2861484289169312 img loss 1.3088490962982178 img loss 1.3200632333755493 img loss 1.2375421524047852 img loss 1.270928144454956 img loss 1.3093993663787842 img loss 1.3742133378982544 img loss 1.23712956905365 img loss 1.2879244089126587 img loss 1.3542653322219849 img loss 1.383453130722046 img loss 1.2988262176513672 img loss 1.2712111473083496 img loss 1.2542158365249634 img loss 1.2232881784439087 img loss 1.351722240447998 img loss 1.2709375619888306 img loss 1.2176843881607056 img loss 1.2508608102798462 img loss 1.3121798038482666 img loss 1.2307651042938232 img loss 1.331512212753296 img loss 1.2417290210723877 img loss 1.274256944656372 img loss 1.4067234992980957 img loss 1.3466618061065674 img loss 1.2734324932098389 img loss 1.2280805110931396 img loss 1.279834508895874 img loss 1.362068772315979 img loss 1.2969719171524048 img loss 1.2722307443618774 img loss 1.2794854640960693 img loss 1.339049220085144 img loss 1.303271770477295 img loss 1.2187827825546265 img loss 1.2086973190307617 img loss 1.1877552270889282 img loss 1.2649953365325928 img loss 1.2372760772705078 img loss 1.414549469947815 img loss 1.4765980243682861 img loss 1.156818151473999 img loss 1.3672584295272827 img loss 1.3222378492355347 img loss 1.2286710739135742 img loss 1.2562977075576782 img loss 1.3310269117355347 img loss 1.3019541501998901 img loss 1.3114579916000366 img loss 1.1821635961532593 img loss 1.378146767616272 img loss 1.2759220600128174 img loss 1.2432196140289307 img loss 1.2480217218399048 img loss 1.2931404113769531 img loss 1.2644766569137573 img loss 1.2973527908325195 img loss 1.223734736442566 img loss 1.3473037481307983 img loss 1.219465732574463 img loss 1.2195377349853516 img loss 1.3732962608337402 img loss 1.4335159063339233 img loss 1.2534558773040771 img loss 1.2556519508361816 img loss 1.405430555343628 img loss 1.3216068744659424 img loss 1.3029378652572632 img loss 1.220344066619873 img loss 1.3444225788116455 img loss 1.4265116453170776 img loss 1.3144229650497437 img loss 1.2538948059082031 img loss 1.2535308599472046 img loss 1.3051248788833618 img loss 1.3462984561920166 img loss 1.4295907020568848 img loss 1.387023687362671 img loss 1.2802695035934448 img loss 1.3897277116775513 img loss 1.3128409385681152 img loss 1.3187700510025024 img loss 1.2680538892745972 img loss 1.3759995698928833 img loss 1.2857481241226196 img loss 1.2268147468566895 img loss 1.4072620868682861 img loss 1.3737529516220093 img loss 1.2953327894210815 img loss 1.291135549545288 img loss 1.3217929601669312 img loss 1.380491852760315 img loss 1.2821300029754639 img loss 1.298681616783142 img loss 1.3223903179168701 img loss 1.2628419399261475 img loss 1.3596606254577637 img loss 1.234088659286499 img loss 1.3950226306915283 img loss 1.221829891204834 img loss 1.347693920135498 img loss 1.239379644393921 img loss 1.2719955444335938 img loss 1.230075478553772 img loss 1.3304882049560547 img loss 1.218773603439331 {'loss': 1.3, 'grad_norm': 0.390010267496109, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2310612201690674 img loss 1.2842352390289307 img loss 1.33493971824646 img loss 1.2782654762268066 img loss 1.244430422782898 img loss 1.3384320735931396 img loss 1.4664018154144287 img loss 1.3456364870071411 img loss 1.3207085132598877 img loss 1.2724664211273193 img loss 1.3382114171981812 img loss 1.4098713397979736 img loss 1.257243037223816 img loss 1.2531954050064087 img loss 1.25102698802948 img loss 1.3534033298492432 img loss 1.274552583694458 img loss 1.424078106880188 img loss 1.2708905935287476 img loss 1.3798941373825073 img loss 1.2638005018234253 img loss 1.2467741966247559 img loss 1.2928179502487183 img loss 1.2618478536605835 img loss 1.3607600927352905 img loss 1.3065487146377563 img loss 1.3716877698898315 img loss 1.3919073343276978 img loss 1.3752521276474 img loss 1.2749544382095337 img loss 1.3579357862472534 img loss 1.3664363622665405 img loss 1.2489479780197144 img loss 1.3906886577606201 img loss 1.3186811208724976 img loss 1.2864078283309937 img loss 1.2879102230072021 img loss 1.3239723443984985 img loss 1.264015555381775 img loss 1.387161374092102 img loss 1.4746127128601074 img loss 1.3593957424163818 img loss 1.352184534072876 img loss 1.2544054985046387 img loss 1.326948881149292 img loss 1.3959733247756958 img loss 1.351104497909546 img loss 1.3306623697280884 img loss 1.2726320028305054 img loss 1.3115204572677612 img loss 1.300074815750122 img loss 1.3251221179962158 img loss 1.3341214656829834 img loss 1.4351439476013184 img loss 1.3657219409942627 img loss 1.302446961402893 img loss 1.2583659887313843 img loss 1.437650442123413 img loss 1.2948644161224365 img loss 1.3894668817520142 img loss 1.2854076623916626 img loss 1.2650736570358276 img loss 1.39652681350708 img loss 1.3435789346694946 img loss 1.3340480327606201 img loss 1.2973129749298096 img loss 1.2612433433532715 img loss 1.2655302286148071 img loss 1.3060510158538818 img loss 1.3474222421646118 img loss 1.2975845336914062 img loss 1.391168236732483 img loss 1.2937164306640625 img loss 1.2524545192718506 img loss 1.3313002586364746 img loss 1.3427157402038574 img loss 1.3398445844650269 img loss 1.3272770643234253 img loss 1.3282231092453003 img loss 1.2122732400894165 img loss 1.3197948932647705 img loss 1.248691201210022 img loss 1.2899936437606812 img loss 1.2847559452056885 img loss 1.3157562017440796 img loss 1.3196828365325928 img loss 1.33021879196167 img loss 1.3689913749694824 img loss 1.3228223323822021 img loss 1.29561448097229 img loss 1.2312523126602173 img loss 1.290053367614746 img loss 1.3011128902435303 img loss 1.2156083583831787 img loss 1.358721375465393 img loss 1.3193539381027222 img loss 1.3191016912460327 img loss 1.2647775411605835 img loss 1.298166275024414 img loss 1.351598858833313 img loss 1.361611247062683 img loss 1.2866132259368896 img loss 1.3565768003463745 img loss 1.3102575540542603 img loss 1.3391506671905518 img loss 1.2953922748565674 img loss 1.3248459100723267 img loss 1.2994688749313354 img loss 1.3270857334136963 img loss 1.3174995183944702 img loss 1.280908226966858 img loss 1.2366037368774414 img loss 1.3177506923675537 img loss 1.2565059661865234 img loss 1.3430999517440796 img loss 1.3968980312347412 img loss 1.3966833353042603 img loss 1.424872636795044 img loss 1.2776087522506714 img loss 1.2538782358169556 img loss 1.316779613494873 img loss 1.2270561456680298 img loss 1.265101432800293 img loss 1.3235113620758057 img loss 1.3095630407333374 img loss 1.4361809492111206 img loss 1.3009732961654663 img loss 1.3654683828353882 {'loss': 1.3187, 'grad_norm': 0.298540323972702, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.311964750289917 img loss 1.362647533416748 img loss 1.2744767665863037 img loss 1.393166184425354 img loss 1.3034262657165527 img loss 1.2634741067886353 img loss 1.258105993270874 img loss 1.244275450706482 img loss 1.217965841293335 img loss 1.2598217725753784 img loss 1.2327593564987183 img loss 1.365251064300537 img loss 1.3293864727020264 img loss 1.4112516641616821 img loss 1.3495838642120361 img loss 1.2552523612976074 img loss 1.4204617738723755 img loss 1.2572669982910156 img loss 1.2632555961608887 img loss 1.2204517126083374 img loss 1.3303866386413574 img loss 1.2557471990585327 img loss 1.3237403631210327 img loss 1.3036640882492065 img loss 1.2197377681732178 img loss 1.310546875 img loss 1.3101396560668945 img loss 1.2598562240600586 img loss 1.3918111324310303 img loss 1.2180765867233276 img loss 1.3068088293075562 img loss 1.2775800228118896 img loss 1.3167736530303955 img loss 1.2571079730987549 img loss 1.333827257156372 img loss 1.324222207069397 img loss 1.4044774770736694 img loss 1.1388224363327026 img loss 1.2153583765029907 img loss 1.2545368671417236 img loss 1.2834230661392212 img loss 1.3076711893081665 img loss 1.2223881483078003 img loss 1.3139482736587524 img loss 1.2774776220321655 img loss 1.273476004600525 img loss 1.258077621459961 img loss 1.2329145669937134 img loss 1.3160873651504517 img loss 1.2653169631958008 img loss 1.22991943359375 img loss 1.2826652526855469 img loss 1.2773149013519287 img loss 1.319736123085022 img loss 1.2589099407196045 img loss 1.2749748229980469 img loss 1.303971767425537 img loss 1.1811366081237793 img loss 1.2421941757202148 img loss 1.2058732509613037 img loss 1.245953917503357 img loss 1.3559821844100952 img loss 1.2446339130401611 img loss 1.2603099346160889 img loss 1.2198388576507568 img loss 1.227656602859497 img loss 1.2282001972198486 img loss 1.343961238861084 img loss 1.2977783679962158 img loss 1.2060656547546387 img loss 1.294295072555542 img loss 1.320570945739746 img loss 1.501857042312622 img loss 1.277241587638855 img loss 1.2838904857635498 img loss 1.1997658014297485 img loss 1.4176287651062012 img loss 1.2683285474777222 img loss 1.2416532039642334 img loss 1.2296531200408936 img loss 1.3356728553771973img loss 1.3402026891708374 img loss 1.2931690216064453 img loss 1.3225724697113037 img loss 1.267799973487854 img loss 1.3214622735977173 img loss 1.3233460187911987 img loss 1.3781098127365112 img loss 1.272779107093811 img loss 1.2910947799682617 img loss 1.3157958984375 img loss 1.3951983451843262 img loss 1.2369402647018433 img loss 1.278502106666565 img loss 1.2966265678405762 img loss 1.3767133951187134 img loss 1.2002251148223877 img loss 1.3736828565597534 img loss 1.2221806049346924 img loss 1.3158077001571655 img loss 1.3856645822525024 img loss 1.3554991483688354 img loss 1.1919039487838745 img loss 1.234670877456665 img loss 1.255407691001892 img loss 1.308867335319519 img loss 1.3082098960876465 img loss 1.2401041984558105 img loss 1.2287518978118896 img loss 1.3111817836761475 img loss 1.2710996866226196 img loss 1.221402883529663 img loss 1.4560638666152954 img loss 1.2734378576278687 img loss 1.413468599319458 img loss 1.2687227725982666 img loss 1.2473137378692627 img loss 1.2121906280517578 img loss 1.2900922298431396 img loss 1.3570924997329712 img loss 1.3745267391204834 img loss 1.2599351406097412 img loss 1.2542957067489624 img loss 1.1883262395858765 img loss 1.1900795698165894 img loss 1.452014446258545 img loss 1.1899094581604004 img loss 1.3301571607589722 {'loss': 1.2888, 'grad_norm': 0.2621178925037384, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1837387084960938 img loss 1.2199913263320923 img loss 1.2816752195358276 img loss 1.2536624670028687 img loss 1.2055673599243164 img loss 1.1705974340438843 img loss 1.2012989521026611 img loss 1.2297760248184204 img loss 1.1759300231933594 img loss 1.275654673576355 img loss 1.2640899419784546 img loss 1.1365392208099365 img loss 1.2111059427261353 img loss 1.2315782308578491 img loss 1.2601248025894165 img loss 1.2347450256347656 img loss 1.2217909097671509 img loss 1.3202470541000366 img loss 1.2547240257263184 img loss 1.205656886100769 img loss 1.2202610969543457 img loss 1.2245672941207886 img loss 1.2329543828964233 img loss 1.3054838180541992 img loss 1.2310731410980225 img loss 1.2433477640151978 img loss 1.166322946548462 img loss 1.2435201406478882 img loss 1.1771953105926514 img loss 1.2427867650985718 img loss 1.2739766836166382 img loss 1.2185826301574707 img loss 1.234088659286499 img loss 1.2408987283706665 img loss 1.208086609840393 img loss 1.2075427770614624 img loss 1.2244504690170288 img loss 1.315255880355835 img loss 1.2401316165924072 img loss 1.2592823505401611 img loss 1.2410862445831299 img loss 1.2181243896484375 img loss 1.2686113119125366 img loss 1.1958016157150269 img loss 1.256724238395691 img loss 1.195350170135498 img loss 1.287584662437439 img loss 1.2512680292129517 img loss 1.2810959815979004 img loss 1.2052358388900757 img loss 1.2336896657943726 img loss 1.2381863594055176 img loss 1.2515485286712646 img loss 1.2597049474716187 img loss 1.2158963680267334 img loss 1.2356077432632446 img loss 1.3166735172271729 img loss 1.2595434188842773 img loss 1.2283657789230347 img loss 1.1929937601089478 img loss 1.2435853481292725 img loss 1.2040095329284668 img loss 1.2108360528945923 img loss 1.2528722286224365 img loss 1.2476623058319092 img loss 1.2790961265563965 img loss 1.2304892539978027 img loss 1.193484902381897 img loss 1.2256176471710205 img loss 1.2491350173950195 img loss 1.2250877618789673 img loss 1.2022711038589478 img loss 1.225563645362854 img loss 1.183176040649414 img loss 1.1734216213226318 img loss 1.2665212154388428 img loss 1.2532463073730469 img loss 1.2094700336456299 img loss 1.2645108699798584 img loss 1.2614858150482178 img loss 1.2146395444869995 img loss 1.2645065784454346 img loss 1.2380822896957397 img loss 1.2357476949691772 img loss 1.2377362251281738 img loss 1.274348258972168 img loss 1.3080910444259644 img loss 1.231060266494751 img loss 1.1732292175292969 img loss 1.274503231048584 img loss 1.1907927989959717 img loss 1.2279751300811768 img loss 1.1960766315460205 img loss 1.2612941265106201 img loss 1.2556564807891846 img loss 1.2901407480239868 img loss 1.2490959167480469 img loss 1.2208771705627441 img loss 1.3226441144943237 img loss 1.196114182472229 img loss 1.1964266300201416 img loss 1.248725414276123 img loss 1.202731728553772 img loss 1.3090800046920776 img loss 1.2384932041168213 img loss 1.2322499752044678 img loss 1.2110041379928589 img loss 1.332981824874878 img loss 1.2800688743591309 img loss 1.2534973621368408 img loss 1.2004135847091675 img loss 1.2024612426757812 img loss 1.2378848791122437 img loss 1.2343733310699463 img loss 1.2547111511230469 img loss 1.1395190954208374 img loss 1.278401255607605 img loss 1.1830613613128662 img loss 1.217189073562622 img loss 1.2573322057724 img loss 1.2610607147216797 img loss 1.185887336730957 img loss 1.278465986251831 img loss 1.2481822967529297 img loss 1.2269209623336792 img loss 1.2305034399032593 img loss 1.2219421863555908 img loss 1.1987107992172241 {'loss': 1.2352, 'grad_norm': 0.2971198558807373, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2521159648895264 img loss 1.2801109552383423 img loss 1.26913321018219 img loss 1.1743711233139038 img loss 1.2551555633544922 img loss 1.1982020139694214 img loss 1.2884238958358765 img loss 1.1833527088165283 img loss 1.1841492652893066 img loss 1.2206053733825684 img loss 1.3579812049865723 img loss 1.2167860269546509 img loss 1.20109224319458 img loss 1.2048650979995728 img loss 1.2543894052505493 img loss 1.2474591732025146 img loss 1.275904893875122 img loss 1.1713818311691284 img loss 1.253051996231079 img loss 1.2248508930206299 img loss 1.2027816772460938 img loss 1.1586458683013916 img loss 1.1930639743804932 img loss 1.2357908487319946 img loss 1.190351963043213 img loss 1.1569656133651733 img loss 1.1712520122528076 img loss 1.1926053762435913 img loss 1.2812061309814453 img loss 1.280150055885315 img loss 1.2284269332885742 img loss 1.1360100507736206 img loss 1.3137372732162476 img loss 1.249204158782959 img loss 1.2297897338867188 img loss 1.2050498723983765 img loss 1.1832540035247803 img loss 1.1641850471496582 img loss 1.174443006515503 img loss 1.1768968105316162 img loss 1.3010883331298828 img loss 1.201391577720642 img loss 1.3754143714904785 img loss 1.2126632928848267 img loss 1.1950231790542603 img loss 1.261429786682129 img loss 1.1174143552780151 img loss 1.1760027408599854 img loss 1.2143617868423462 img loss 1.4043257236480713 img loss 1.186562180519104 img loss 1.2708277702331543 img loss 1.2291988134384155 img loss 1.2187628746032715 img loss 1.3165329694747925 img loss 1.2444523572921753 img loss 1.2828067541122437 img loss 1.2529292106628418 img loss 1.2809456586837769 img loss 1.1816154718399048 img loss 1.1384159326553345 img loss 1.281158208847046 img loss 1.2324539422988892 img loss 1.2001228332519531 img loss 1.184700846672058 img loss 1.1954153776168823 img loss 1.327543020248413 img loss 1.1892223358154297 img loss 1.2807221412658691 img loss 1.2531013488769531 img loss 1.2407978773117065 img loss 1.173262357711792 img loss 1.2157847881317139 img loss 1.1489619016647339 img loss 1.2116702795028687 img loss 1.2710665464401245 img loss 1.209006905555725 img loss 1.32472562789917 img loss 1.2376822233200073 img loss 1.2139344215393066 img loss 1.184048056602478 img loss 1.2224310636520386 img loss 1.184740424156189 img loss 1.253456711769104 img loss 1.3049237728118896 img loss 1.2653707265853882 img loss 1.2424243688583374 img loss 1.2616991996765137 img loss 1.2170931100845337 img loss 1.356028437614441 img loss 1.2230395078659058 img loss 1.2244138717651367 img loss 1.2109177112579346 img loss 1.207608699798584 img loss 1.2247341871261597 img loss 1.2251663208007812 img loss 1.1888421773910522 img loss 1.260610580444336 img loss 1.22940993309021 img loss 1.2611387968063354 img loss 1.2637042999267578 img loss 1.2883622646331787 img loss 1.2034964561462402 img loss 1.2772966623306274 img loss 1.1793992519378662 img loss 1.2585513591766357 img loss 1.2823586463928223 img loss 1.1181656122207642 img loss 1.2678918838500977 img loss 1.2498668432235718 img loss 1.3469704389572144 img loss 1.1883000135421753 img loss 1.1674360036849976 img loss 1.2348229885101318 img loss 1.172878623008728 img loss 1.2451823949813843 img loss 1.2129416465759277 img loss 1.229836344718933 img loss 1.229199767112732 img loss 1.22951078414917 img loss 1.1774580478668213 img loss 1.1939685344696045 img loss 1.2313131093978882 img loss 1.2784544229507446 img loss 1.2393481731414795 img loss 1.256211280822754 img loss 1.1521705389022827 img loss 1.2738559246063232 {'loss': 1.2304, 'grad_norm': 0.21523120999336243, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4444622993469238 img loss 1.3782087564468384 img loss 1.4436323642730713 img loss 1.4324668645858765 img loss 1.4248262643814087 img loss 1.334734320640564 img loss 1.4533694982528687 img loss 1.4806407690048218 img loss 1.438393235206604 img loss 1.532090663909912 img loss 1.4830278158187866 img loss 1.5096861124038696 img loss 1.537014365196228 img loss 1.3652933835983276 img loss 1.5410263538360596 img loss 1.4790351390838623 img loss 1.5023510456085205 img loss 1.3121623992919922 img loss 1.4814132452011108 img loss 1.524027705192566 img loss 1.3641045093536377 img loss 1.5243233442306519 img loss 1.3727184534072876 img loss 1.4102622270584106 img loss 1.5402101278305054 img loss 1.394701361656189 img loss 1.4335371255874634 img loss 1.5058351755142212 img loss 1.5492682456970215 img loss 1.442409873008728 img loss 1.5011078119277954 img loss 1.6166625022888184 img loss 1.371654748916626 img loss 1.4072765111923218 img loss 1.4856011867523193 img loss 1.3953015804290771 img loss 1.5489352941513062 img loss 1.3485685586929321 img loss 1.4693052768707275 img loss 1.2654938697814941 img loss 1.3602690696716309 img loss 1.3262296915054321 img loss 1.3854299783706665 img loss 1.553634762763977 img loss 1.4616113901138306 img loss 1.508319616317749 img loss 1.4940184354782104 img loss 1.4806843996047974 img loss 1.4334031343460083 img loss 1.4801753759384155 img loss 1.4209851026535034 img loss 1.4733339548110962 img loss 1.473469614982605 img loss 1.5456258058547974 img loss 1.494730830192566 img loss 1.2966315746307373 img loss 1.4667609930038452 img loss 1.3221385478973389 img loss 1.3530253171920776 img loss 1.4366997480392456 img loss 1.536447286605835 img loss 1.4791992902755737 img loss 1.4583885669708252 img loss 1.3852084875106812 img loss 1.601768136024475 img loss 1.6173436641693115 img loss 1.356174349784851 img loss 1.4012988805770874 img loss 1.294909119606018 img loss 1.4659969806671143 img loss 1.4091423749923706 img loss 1.4890944957733154 img loss 1.4652507305145264 img loss 1.5481278896331787 img loss 1.3647040128707886 img loss 1.4482117891311646 img loss 1.4833000898361206 img loss 1.4198620319366455 img loss 1.4512859582901 img loss 1.400155782699585 img loss 1.5453689098358154 img loss 1.4757115840911865 img loss 1.551163911819458 img loss 1.4565373659133911 img loss 1.5016562938690186 img loss 1.6159918308258057 img loss 1.4932185411453247 img loss 1.3935000896453857 img loss 1.4850610494613647 img loss 1.5282680988311768 img loss 1.4429413080215454 img loss 1.5043400526046753 img loss 1.4894312620162964 img loss 1.3132202625274658 img loss 1.464118242263794 img loss 1.4816418886184692 img loss 1.5354386568069458 img loss 1.4473918676376343 img loss 1.568203330039978 img loss 1.4666991233825684 img loss 1.4155709743499756 img loss 1.3978840112686157 img loss 1.4483592510223389 img loss 1.549486517906189 img loss 1.4146648645401 img loss 1.5020878314971924 img loss 1.4062755107879639 img loss 1.4601086378097534 img loss 1.4929767847061157 img loss 1.3475178480148315 img loss 1.5312789678573608 img loss 1.5184645652770996 img loss 1.3970261812210083 img loss 1.4674546718597412 img loss 1.393254041671753 img loss 1.5625768899917603 img loss 1.541164517402649 img loss 1.5039916038513184 img loss 1.5360844135284424 img loss 1.4146020412445068 img loss 1.4150662422180176 img loss 1.5596755743026733 img loss 1.4978967905044556 img loss 1.522085428237915 img loss 1.4808963537216187 img loss 1.4813283681869507 img loss 1.479103684425354 img loss 1.34560227394104 {'loss': 1.4588, 'grad_norm': 0.3465126156806946, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1473712921142578 img loss 1.1975178718566895 img loss 1.1454702615737915 img loss 1.1647145748138428 img loss 1.151658058166504 img loss 1.1854796409606934 img loss 1.2205824851989746 img loss 1.1912733316421509 img loss 1.1853700876235962 img loss 1.1941044330596924 img loss 1.2203075885772705 img loss 1.1852940320968628 img loss 1.156032919883728 img loss 1.0753172636032104 img loss 1.1156939268112183 img loss 1.2072651386260986 img loss 1.168821096420288 img loss 1.2364263534545898 img loss 1.166023850440979 img loss 1.1767728328704834 img loss 1.2293498516082764 img loss 1.1467795372009277 img loss 1.2634166479110718 img loss 1.2211408615112305 img loss 1.1968961954116821 img loss 1.316978096961975 img loss 1.190897822380066 img loss 1.204376220703125 img loss 1.1769987344741821 img loss 1.149106502532959 img loss 1.1224173307418823 img loss 1.138617753982544 img loss 1.1719728708267212 img loss 1.2308486700057983 img loss 1.1791199445724487 img loss 1.17837393283844 img loss 1.1176903247833252 img loss 1.190242052078247 img loss 1.1402064561843872 img loss 1.1832013130187988 img loss 1.1823062896728516 img loss 1.1785305738449097 img loss 1.1569230556488037 img loss 1.1967378854751587 img loss 1.2031946182250977 img loss 1.2938556671142578 img loss 1.1579408645629883 img loss 1.2067537307739258 img loss 1.3367516994476318 img loss 1.2271723747253418 img loss 1.1763970851898193 img loss 1.2427986860275269 img loss 1.1782938241958618 img loss 1.2012205123901367 img loss 1.2437107563018799 img loss 1.1691051721572876 img loss 1.1811261177062988 img loss 1.1820894479751587 img loss 1.3013676404953003 img loss 1.247105360031128 img loss 1.155964732170105 img loss 1.121032476425171 img loss 1.1858278512954712 img loss 1.195961594581604 img loss 1.1577200889587402 img loss 1.1667379140853882 img loss 1.1502704620361328 img loss 1.1762832403182983 img loss 1.2162833213806152 img loss 1.2010128498077393 img loss 1.217812418937683 img loss 1.1731408834457397 img loss 1.125108242034912 img loss 1.1507432460784912 img loss 1.1748405694961548 img loss 1.1813989877700806 img loss 1.2033315896987915 img loss 1.1684167385101318 img loss 1.1224323511123657 img loss 1.1068966388702393 img loss 1.1864583492279053 img loss 1.2027580738067627 img loss 1.1969733238220215 img loss 1.1566234827041626 img loss 1.2196359634399414 img loss 1.2352347373962402 img loss 1.1203031539916992 img loss 1.1922003030776978 img loss 1.1827090978622437 img loss 1.2257609367370605 img loss 1.1727428436279297 img loss 1.2565546035766602 img loss 1.157537817955017 img loss 1.2089450359344482 img loss 1.1515047550201416 img loss 1.1957247257232666 img loss 1.1180733442306519 img loss 1.1729841232299805 img loss 1.2241954803466797 img loss 1.1650574207305908 img loss 1.1854597330093384 img loss 1.1690666675567627 img loss 1.2781308889389038 img loss 1.1690940856933594 img loss 1.2889232635498047 img loss 1.1471164226531982 img loss 1.2029736042022705 img loss 1.2447761297225952 img loss 1.2153462171554565 img loss 1.2453380823135376 img loss 1.238847255706787 img loss 1.2092509269714355 img loss 1.2094208002090454 img loss 1.2073345184326172 img loss 1.2445521354675293 img loss 1.1968399286270142 img loss 1.1831698417663574 img loss 1.1692631244659424 img loss 1.1219838857650757 img loss 1.136949896812439 img loss 1.2259471416473389 img loss 1.2275770902633667 img loss 1.2307056188583374 img loss 1.1800822019577026 img loss 1.2529785633087158 img loss 1.1528503894805908 img loss 1.2162494659423828 img loss 1.2240521907806396 {'loss': 1.1904, 'grad_norm': 0.4461023807525635, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2344448566436768 img loss 1.2408369779586792 img loss 1.2311804294586182 img loss 1.3197685480117798 img loss 1.2470629215240479 img loss 1.2382005453109741 img loss 1.29259192943573 img loss 1.222795844078064 img loss 1.2407554388046265 img loss 1.240984320640564 img loss 1.2772130966186523 img loss 1.2138694524765015 img loss 1.2198195457458496 img loss 1.2659330368041992 img loss 1.231237769126892 img loss 1.2351211309432983 img loss 1.2692369222640991 img loss 1.255459189414978 img loss 1.2997937202453613 img loss 1.253399133682251 img loss 1.2594106197357178 img loss 1.2238849401474 img loss 1.3006699085235596 img loss 1.2095774412155151 img loss 1.2190994024276733 img loss 1.1699118614196777 img loss 1.3132526874542236 img loss 1.303726077079773 img loss 1.3264645338058472 img loss 1.3106235265731812 img loss 1.305527687072754 img loss 1.221351146697998 img loss 1.289989948272705 img loss 1.2519512176513672 img loss 1.2754844427108765 img loss 1.2219852209091187 img loss 1.227195143699646 img loss 1.1611137390136719 img loss 1.295149326324463 img loss 1.3019357919692993 img loss 1.3603330850601196 img loss 1.1679532527923584 img loss 1.2909767627716064 img loss 1.2839884757995605 img loss 1.267442226409912 img loss 1.2351707220077515 img loss 1.2673386335372925 img loss 1.3364956378936768 img loss 1.2844985723495483 img loss 1.2687784433364868 img loss 1.1993002891540527 img loss 1.2584829330444336 img loss 1.2583335638046265 img loss 1.2287516593933105 img loss 1.2509636878967285 img loss 1.247544527053833 img loss 1.3384947776794434 img loss 1.3144630193710327 img loss 1.2599685192108154 img loss 1.2900301218032837 img loss 1.2228199243545532 img loss 1.2114732265472412 img loss 1.2232811450958252 img loss 1.334419846534729 img loss 1.1776756048202515 img loss 1.2532316446304321 img loss 1.2151219844818115 img loss 1.238635778427124 img loss 1.2645336389541626 img loss 1.305992841720581 img loss 1.2447590827941895 img loss 1.2176337242126465 img loss 1.2270641326904297 img loss 1.231980562210083 img loss 1.2987685203552246 img loss 1.2484428882598877 img loss 1.2896113395690918 img loss 1.3396871089935303 img loss 1.2867294549942017 img loss 1.2442998886108398 img loss 1.2845710515975952 img loss 1.2006253004074097 img loss 1.2983944416046143 img loss 1.2537599802017212 img loss 1.3263182640075684 img loss 1.2803324460983276 img loss 1.2563490867614746 img loss 1.220726728439331 img loss 1.2570043802261353 img loss 1.2225909233093262 img loss 1.2821604013442993 img loss 1.18919038772583 img loss 1.2090380191802979 img loss 1.2795490026474 img loss 1.2195724248886108 img loss 1.260645866394043 img loss 1.2737165689468384 img loss 1.2476806640625 img loss 1.226754069328308 img loss 1.2202434539794922 img loss 1.3285874128341675 img loss 1.1928184032440186 img loss 1.2504700422286987 img loss 1.2502495050430298 img loss 1.2593857049942017 img loss 1.2106302976608276 img loss 1.2657313346862793 img loss 1.3118232488632202 img loss 1.2493095397949219 img loss 1.3229918479919434 img loss 1.319615364074707 img loss 1.2288737297058105 img loss 1.2543768882751465 img loss 1.271307349205017 img loss 1.2649658918380737 img loss 1.3273487091064453 img loss 1.3055665493011475 img loss 1.2880265712738037 img loss 1.2301805019378662 img loss 1.318021535873413 img loss 1.2778249979019165 img loss 1.2065505981445312 img loss 1.267943263053894 img loss 1.232358455657959 img loss 1.27713942527771 img loss 1.1833949089050293 img loss 1.2237695455551147 img loss 1.2250679731369019 {'loss': 1.2583, 'grad_norm': 0.2602366507053375, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.178436040878296 img loss 1.231788158416748 img loss 1.3181036710739136 img loss 1.213823676109314 img loss 1.2192344665527344 img loss 1.1663671731948853 img loss 1.2144010066986084 img loss 1.2526029348373413 img loss 1.236210823059082 img loss 1.2456963062286377 img loss 1.23491370677948 img loss 1.1900815963745117 img loss 1.1655861139297485 img loss 1.2343469858169556 img loss 1.2842363119125366 img loss 1.315903902053833 img loss 1.2114959955215454 img loss 1.2136411666870117 img loss 1.3336536884307861 img loss 1.2997291088104248 img loss 1.2721705436706543 img loss 1.2325527667999268 img loss 1.2958338260650635 img loss 1.2779004573822021 img loss 1.2467049360275269 img loss 1.206228256225586 img loss 1.2650278806686401 img loss 1.2815093994140625 img loss 1.1518760919570923 img loss 1.2108569145202637 img loss 1.2654911279678345 img loss 1.186431646347046 img loss 1.2678924798965454 img loss 1.3168085813522339 img loss 1.209756851196289 img loss 1.214788794517517 img loss 1.2084476947784424 img loss 1.2384103536605835 img loss 1.1636333465576172 img loss 1.2349395751953125 img loss 1.2190479040145874 img loss 1.2961171865463257 img loss 1.2421387434005737 img loss 1.242222785949707 img loss 1.216069221496582 img loss 1.2071980237960815 img loss 1.311948299407959 img loss 1.2890560626983643 img loss 1.1905131340026855 img loss 1.2638187408447266 img loss 1.179703712463379 img loss 1.2726939916610718 img loss 1.29356849193573 img loss 1.2484873533248901 img loss 1.2264078855514526 img loss 1.2202895879745483 img loss 1.2348191738128662 img loss 1.2561986446380615 img loss 1.2254533767700195 img loss 1.263047218322754 img loss 1.2903430461883545 img loss 1.1488115787506104 img loss 1.2553040981292725 img loss 1.2558472156524658 img loss 1.1823886632919312 img loss 1.2012144327163696 img loss 1.2387815713882446 img loss 1.1715102195739746 img loss 1.2614275217056274 img loss 1.195646047592163 img loss 1.2501633167266846 img loss 1.2104461193084717 img loss 1.2982805967330933 img loss 1.268735408782959 img loss 1.219321608543396 img loss 1.2438523769378662 img loss 1.2397953271865845 img loss 1.2929184436798096 img loss 1.216529130935669 img loss 1.1826558113098145 img loss 1.2766811847686768 img loss 1.2131048440933228 img loss 1.2972687482833862 img loss 1.2668442726135254 img loss 1.1786329746246338 img loss 1.2028204202651978 img loss 1.20217764377594 img loss 1.2031970024108887 img loss 1.1939964294433594 img loss 1.2178443670272827 img loss 1.2068241834640503 img loss 1.2900245189666748 img loss 1.3375269174575806 img loss 1.2237480878829956 img loss 1.2217544317245483 img loss 1.236589789390564 img loss 1.2073490619659424 img loss 1.23210608959198 img loss 1.2371571063995361 img loss 1.2484945058822632 img loss 1.237123966217041 img loss 1.180648684501648 img loss 1.2137600183486938 img loss 1.187804102897644 img loss 1.2613825798034668 img loss 1.257018804550171 img loss 1.234019160270691 img loss 1.2547940015792847 img loss 1.1813853979110718 img loss 1.305892825126648 img loss 1.1814943552017212 img loss 1.2571403980255127 img loss 1.183637261390686 img loss 1.2515474557876587 img loss 1.2394788265228271 img loss 1.2854399681091309 img loss 1.1932435035705566 img loss 1.279100775718689 img loss 1.2264598608016968 img loss 1.1896148920059204 img loss 1.2248845100402832 img loss 1.2597341537475586 img loss 1.2826374769210815 img loss 1.2513316869735718 img loss 1.206581950187683 img loss 1.301475167274475 img loss 1.2929977178573608 img loss 1.238551378250122 {'loss': 1.2374, 'grad_norm': 0.30704236030578613, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3201006650924683 img loss 1.3378100395202637 img loss 1.250610589981079 img loss 1.2869993448257446 img loss 1.3110909461975098 img loss 1.3305256366729736 img loss 1.2643482685089111 img loss 1.3242754936218262 img loss 1.2699133157730103 img loss 1.261310338973999 img loss 1.288145899772644 img loss 1.275651454925537 img loss 1.293588399887085 img loss 1.2591111660003662 img loss 1.3106563091278076 img loss 1.372686505317688 img loss 1.3199691772460938 img loss 1.3594669103622437 img loss 1.2729389667510986 img loss 1.2695770263671875 img loss 1.2872930765151978 img loss 1.2563066482543945 img loss 1.325171947479248 img loss 1.2800402641296387 img loss 1.342771291732788 img loss 1.3748538494110107 img loss 1.2990522384643555 img loss 1.271120548248291 img loss 1.3224531412124634 img loss 1.2649391889572144 img loss 1.3228414058685303 img loss 1.467332363128662 img loss 1.3272825479507446 img loss 1.2823529243469238 img loss 1.1756857633590698 img loss 1.3106822967529297 img loss 1.2297954559326172 img loss 1.3658074140548706 img loss 1.2949271202087402 img loss 1.291951060295105 img loss 1.287635087966919 img loss 1.320481538772583 img loss 1.2238253355026245 img loss 1.3167275190353394 img loss 1.2403299808502197 img loss 1.347506046295166 img loss 1.363085389137268 img loss 1.3422887325286865 img loss 1.3410770893096924 img loss 1.274119257926941 img loss 1.2845439910888672 img loss 1.3114128112792969 img loss 1.319547176361084 img loss 1.2906756401062012 img loss 1.3256886005401611 img loss 1.3878308534622192 img loss 1.4132918119430542 img loss 1.301207423210144 img loss 1.2182546854019165 img loss 1.4318251609802246 img loss 1.2900813817977905 img loss 1.32082200050354 img loss 1.237212061882019 img loss 1.302873969078064 img loss 1.3087633848190308 img loss 1.364283800125122 img loss 1.2271511554718018 img loss 1.2961533069610596 img loss 1.3120640516281128 img loss 1.2535873651504517 img loss 1.2415103912353516 img loss 1.2692084312438965 img loss 1.2690157890319824 img loss 1.318590760231018 img loss 1.3521102666854858 img loss 1.3245253562927246 img loss 1.3189376592636108 img loss 1.278887152671814 img loss 1.2975401878356934 img loss 1.2718620300292969 img loss 1.3392049074172974 img loss 1.270049810409546 img loss 1.2850277423858643 img loss 1.3084219694137573 img loss 1.310973048210144 img loss 1.3486355543136597 img loss 1.2794345617294312 img loss 1.2297385931015015 img loss 1.2394344806671143 img loss 1.2469819784164429 img loss 1.2590272426605225 img loss 1.2924041748046875 img loss 1.3886693716049194 img loss 1.2681576013565063 img loss 1.3149311542510986 img loss 1.2458975315093994 img loss 1.3378692865371704 img loss 1.2711886167526245 img loss 1.2723724842071533 img loss 1.2631785869598389 img loss 1.2743942737579346 img loss 1.273002028465271 img loss 1.320107340812683 img loss 1.2931759357452393 img loss 1.3181711435317993 img loss 1.2695348262786865 img loss 1.2767715454101562 img loss 1.2161511182785034 img loss 1.279728889465332 img loss 1.233854055404663 img loss 1.3063595294952393 img loss 1.3257462978363037 img loss 1.2464741468429565 img loss 1.2976346015930176 img loss 1.2542078495025635 img loss 1.3732473850250244 img loss 1.3067305088043213 img loss 1.3316044807434082 img loss 1.2995665073394775 img loss 1.369750738143921 img loss 1.282076120376587 img loss 1.3361828327178955 img loss 1.2758636474609375 img loss 1.2800434827804565 img loss 1.3284838199615479 img loss 1.3047682046890259 img loss 1.3425501585006714 img loss 1.3326401710510254 {'loss': 1.2999, 'grad_norm': 0.3633825182914734, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.274227499961853 img loss 1.3627450466156006 img loss 1.37201988697052 img loss 1.412969708442688 img loss 1.34786856174469 img loss 1.3679362535476685 img loss 1.448062777519226 img loss 1.5364781618118286 img loss 1.4732451438903809 img loss 1.3555220365524292 img loss 1.2817655801773071 img loss 1.3440207242965698 img loss 1.3572031259536743 img loss 1.307873249053955 img loss 1.335834264755249 img loss 1.503332495689392 img loss 1.3218902349472046 img loss 1.3447877168655396 img loss 1.4343931674957275 img loss 1.4355158805847168 img loss 1.3065330982208252 img loss 1.4782073497772217 img loss 1.4381434917449951 img loss 1.46780264377594 img loss 1.358558177947998 img loss 1.3044812679290771 img loss 1.4425567388534546 img loss 1.3314108848571777 img loss 1.3995583057403564 img loss 1.3456593751907349 img loss 1.4834561347961426 img loss 1.2736053466796875 img loss 1.3307759761810303 img loss 1.3545737266540527 img loss 1.4122849702835083 img loss 1.396947979927063 img loss 1.46048104763031 img loss 1.3390716314315796 img loss 1.4093056917190552 img loss 1.2997995615005493 img loss 1.3702203035354614 img loss 1.4113658666610718 img loss 1.3687065839767456 img loss 1.3923039436340332 img loss 1.4539294242858887 img loss 1.3964307308197021 img loss 1.4747936725616455 img loss 1.2917590141296387 img loss 1.2797043323516846 img loss 1.4620481729507446 img loss 1.3705556392669678 img loss 1.4082367420196533 img loss 1.4531580209732056 img loss 1.3940589427947998 img loss 1.3668198585510254 img loss 1.3994495868682861 img loss 1.3082720041275024 img loss 1.3794782161712646 img loss 1.3398419618606567 img loss 1.4816383123397827 img loss 1.4095723628997803 img loss 1.3803246021270752 img loss 1.3733667135238647 img loss 1.4072855710983276 img loss 1.3184152841567993 img loss 1.417564034461975 img loss 1.3581339120864868 img loss 1.3926255702972412 img loss 1.3615792989730835 img loss 1.4609081745147705 img loss 1.4130619764328003 img loss 1.451697826385498 img loss 1.4213529825210571 img loss 1.4259684085845947 img loss 1.4058144092559814 img loss 1.5288729667663574 img loss 1.4712220430374146 img loss 1.3057211637496948 img loss 1.4609559774398804 img loss 1.3602834939956665 img loss 1.3651909828186035 img loss 1.370234727859497 img loss 1.52778959274292 img loss 1.4309217929840088 img loss 1.3770347833633423 img loss 1.3389065265655518 img loss 1.3346489667892456 img loss 1.1949102878570557 img loss 1.5017105340957642 img loss 1.4286452531814575 img loss 1.404229760169983 img loss 1.4116891622543335 img loss 1.3421950340270996 img loss 1.3250784873962402 img loss 1.4191086292266846 img loss 1.398971676826477 img loss 1.4668816328048706 img loss 1.3383471965789795 img loss 1.5040885210037231 img loss 1.4910131692886353 img loss 1.3757649660110474 img loss 1.3957626819610596 img loss 1.39968740940094 img loss 1.4573986530303955 img loss 1.3929450511932373 img loss 1.3592000007629395 img loss 1.3895801305770874 img loss 1.2638288736343384img loss 1.430666208267212 img loss 1.2969493865966797 img loss 1.3692755699157715 img loss 1.4178940057754517 img loss 1.3866750001907349 img loss 1.439426064491272 img loss 1.2525320053100586 img loss 1.3414303064346313 img loss 1.4511505365371704 img loss 1.4397432804107666 img loss 1.3338751792907715 img loss 1.4993946552276611 img loss 1.4022716283798218 img loss 1.4584558010101318 img loss 1.3309444189071655 img loss 1.2925256490707397 img loss 1.3863164186477661 img loss 1.3957278728485107 img loss 1.3460736274719238 img loss 1.579924464225769 {'loss': 1.3909, 'grad_norm': 0.6539803147315979, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1855545043945312 img loss 1.2053806781768799 img loss 1.1759815216064453 img loss 1.2224400043487549 img loss 1.2849535942077637 img loss 1.155322551727295 img loss 1.1835002899169922 img loss 1.2513970136642456 img loss 1.2309901714324951 img loss 1.2950929403305054 img loss 1.143768310546875 img loss 1.205352783203125 img loss 1.229175329208374 img loss 1.1976585388183594 img loss 1.270726203918457 img loss 1.2366608381271362 img loss 1.1979057788848877 img loss 1.2209014892578125 img loss 1.2496581077575684 img loss 1.2704765796661377 img loss 1.220375657081604 img loss 1.2283769845962524 img loss 1.2947237491607666 img loss 1.290078043937683 img loss 1.2900863885879517 img loss 1.2441643476486206 img loss 1.1352320909500122 img loss 1.198190450668335 img loss 1.212980031967163 img loss 1.2320818901062012 img loss 1.2318111658096313 img loss 1.2476128339767456 img loss 1.22994065284729 img loss 1.2132304906845093 img loss 1.3083758354187012 img loss 1.1938244104385376 img loss 1.1649551391601562 img loss 1.2892754077911377 img loss 1.2227370738983154 img loss 1.2763136625289917 img loss 1.3191826343536377 img loss 1.1832172870635986 img loss 1.2443832159042358 img loss 1.2120552062988281 img loss 1.1575896739959717 img loss 1.2147841453552246 img loss 1.1841497421264648 img loss 1.2054309844970703 img loss 1.206897497177124 img loss 1.2220592498779297 img loss 1.2445392608642578 img loss 1.2344894409179688 img loss 1.192704677581787 img loss 1.157164216041565 img loss 1.2388205528259277 img loss 1.149188756942749 img loss 1.3237953186035156 img loss 1.251248836517334 img loss 1.1588642597198486 img loss 1.2350633144378662 img loss 1.236072063446045 img loss 1.2465567588806152 img loss 1.1507381200790405 img loss 1.2010072469711304 img loss 1.160441279411316 img loss 1.218446969985962 img loss 1.2174491882324219 img loss 1.1958435773849487 img loss 1.2001100778579712 img loss 1.2433639764785767 img loss 1.2783817052841187 img loss 1.2400346994400024 img loss 1.2094123363494873 img loss 1.2164154052734375 img loss 1.1657979488372803 img loss 1.1513936519622803 img loss 1.190057635307312 img loss 1.1551563739776611 img loss 1.2439616918563843 img loss 1.2225826978683472 img loss 1.2536163330078125 img loss 1.1950366497039795 img loss 1.2238163948059082 img loss 1.2190608978271484 img loss 1.2688937187194824 img loss 1.1973637342453003 img loss 1.2533211708068848 img loss 1.2551313638687134 img loss 1.1984905004501343 img loss 1.2010855674743652 img loss 1.1708415746688843 img loss 1.1854366064071655 img loss 1.1946896314620972 img loss 1.1958740949630737 img loss 1.232366919517517 img loss 1.2839406728744507 img loss 1.2769885063171387 img loss 1.2938079833984375 img loss 1.3481827974319458 img loss 1.1948316097259521 img loss 1.2379368543624878 img loss 1.2114067077636719 img loss 1.219940423965454 img loss 1.1951550245285034 img loss 1.23509681224823 img loss 1.2759367227554321 img loss 1.2322170734405518 img loss 1.2592989206314087 img loss 1.2238510847091675 img loss 1.2416006326675415 img loss 1.2274061441421509 img loss 1.2394254207611084 img loss 1.190956711769104 img loss 1.194915533065796 img loss 1.163837194442749 img loss 1.3093191385269165 img loss 1.2144091129302979 img loss 1.2661316394805908 img loss 1.1691961288452148 img loss 1.2787672281265259 img loss 1.1742393970489502 img loss 1.3286250829696655 img loss 1.2451122999191284 img loss 1.287013292312622 img loss 1.2643698453903198 img loss 1.2544524669647217 img loss 1.2265805006027222 img loss 1.1993792057037354 {'loss': 1.2252, 'grad_norm': 0.18137656152248383, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.244394063949585 img loss 1.2586002349853516 img loss 1.2093024253845215 img loss 1.2626036405563354 img loss 1.2920124530792236 img loss 1.2900018692016602 img loss 1.2777076959609985 img loss 1.1901804208755493 img loss 1.2747724056243896 img loss 1.357756495475769 img loss 1.2752635478973389 img loss 1.2135250568389893 img loss 1.268471598625183 img loss 1.295711874961853 img loss 1.2495439052581787 img loss 1.2865314483642578 img loss 1.1955515146255493 img loss 1.1970648765563965 img loss 1.2066082954406738 img loss 1.2838897705078125 img loss 1.2153023481369019 img loss 1.2491728067398071 img loss 1.2645785808563232 img loss 1.2912851572036743 img loss 1.2848795652389526 img loss 1.3597636222839355 img loss 1.233835220336914 img loss 1.2785797119140625 img loss 1.202749252319336 img loss 1.180692195892334 img loss 1.2784171104431152 img loss 1.1441868543624878 img loss 1.2723627090454102 img loss 1.2245311737060547 img loss 1.2746565341949463 img loss 1.1835687160491943 img loss 1.209775447845459 img loss 1.3445745706558228 img loss 1.2041521072387695 img loss 1.165917158126831 img loss 1.2364518642425537 img loss 1.3388270139694214 img loss 1.2998708486557007 img loss 1.242905616760254 img loss 1.2364755868911743 img loss 1.2917283773422241 img loss 1.2394280433654785 img loss 1.2061784267425537 img loss 1.2998547554016113 img loss 1.323594570159912 img loss 1.18035888671875 img loss 1.28518545627594 img loss 1.3126112222671509 img loss 1.2799561023712158 img loss 1.2377991676330566 img loss 1.3414283990859985 img loss 1.1771081686019897 img loss 1.266658067703247 img loss 1.3006352186203003 img loss 1.2786784172058105 img loss 1.306740641593933 img loss 1.184003472328186 img loss 1.224839448928833 img loss 1.170575737953186 img loss 1.23027503490448 img loss 1.2912400960922241 img loss 1.2644394636154175 img loss 1.2525391578674316 img loss 1.2782700061798096 img loss 1.2612686157226562 img loss 1.2711241245269775 img loss 1.3021736145019531 img loss 1.2528748512268066 img loss 1.2640386819839478 img loss 1.255285620689392 img loss 1.2626371383666992 img loss 1.2613787651062012 img loss 1.2333961725234985 img loss 1.2211673259735107 img loss 1.282202959060669 img loss 1.255355715751648 img loss 1.2319424152374268 img loss 1.2828162908554077 img loss 1.2218126058578491 img loss 1.2694084644317627 img loss 1.333136796951294 img loss 1.286081314086914 img loss 1.2371987104415894 img loss 1.238538146018982 img loss 1.2933443784713745 img loss 1.2513474225997925 img loss 1.1722478866577148 img loss 1.223332405090332 img loss 1.2481657266616821 img loss 1.1947402954101562 img loss 1.2568607330322266 img loss 1.203059434890747 img loss 1.2972099781036377 img loss 1.1904419660568237 img loss 1.2609138488769531 img loss 1.257615089416504 img loss 1.1967220306396484 img loss 1.2837352752685547 img loss 1.2520763874053955 img loss 1.2304104566574097 img loss 1.2839516401290894 img loss 1.2991875410079956 img loss 1.2642056941986084 img loss 1.2231006622314453 img loss 1.2290781736373901 img loss 1.227266788482666 img loss 1.2821474075317383 img loss 1.3098665475845337 img loss 1.3137820959091187 img loss 1.3134936094284058 img loss 1.2558940649032593 img loss 1.3220114707946777 img loss 1.3132991790771484 img loss 1.3418594598770142 img loss 1.234554648399353 img loss 1.2602595090866089 img loss 1.2009694576263428 img loss 1.2897865772247314 img loss 1.341427206993103 img loss 1.2350996732711792 img loss 1.1481025218963623 img loss 1.2356374263763428 img loss 1.2659330368041992 {'loss': 1.2562, 'grad_norm': 0.3658806085586548, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2897050380706787 img loss 1.2399123907089233 img loss 1.2874897718429565 img loss 1.2164541482925415 img loss 1.2594985961914062 img loss 1.268829584121704 img loss 1.3747998476028442 img loss 1.24868905544281 img loss 1.2922285795211792 img loss 1.296006679534912 img loss 1.2955082654953003 img loss 1.2472447156906128 img loss 1.348130464553833 img loss 1.2355420589447021 img loss 1.3241106271743774 img loss 1.249283790588379 img loss 1.2974257469177246 img loss 1.3083457946777344 img loss 1.2546944618225098 img loss 1.3006227016448975 img loss 1.2503618001937866 img loss 1.305405616760254 img loss 1.2540860176086426 img loss 1.3500008583068848 img loss 1.2391999959945679 img loss 1.3167393207550049 img loss 1.2379465103149414 img loss 1.2104432582855225 img loss 1.2631815671920776 img loss 1.3011138439178467 img loss 1.140580415725708 img loss 1.2516834735870361 img loss 1.2480666637420654 img loss 1.3034286499023438 img loss 1.2097783088684082 img loss 1.2741163969039917 img loss 1.26041579246521 img loss 1.321305513381958 img loss 1.2427610158920288 img loss 1.231865406036377 img loss 1.252292275428772 img loss 1.2376484870910645 img loss 1.2339398860931396 img loss 1.290393590927124 img loss 1.311182975769043 img loss 1.391410231590271 img loss 1.213435411453247img loss 1.2130374908447266 img loss 1.2561945915222168 img loss 1.2928016185760498 img loss 1.2299292087554932 img loss 1.3240514993667603 img loss 1.1895983219146729 img loss 1.245065450668335 img loss 1.3078932762145996 img loss 1.2018818855285645 img loss 1.2469383478164673 img loss 1.315535068511963 img loss 1.1946778297424316 img loss 1.3631922006607056 img loss 1.2591004371643066 img loss 1.2320526838302612 img loss 1.1544493436813354 img loss 1.3284146785736084 img loss 1.3312383890151978 img loss 1.1562378406524658 img loss 1.2682533264160156 img loss 1.4062811136245728 img loss 1.265560507774353 img loss 1.2304227352142334 img loss 1.2674205303192139 img loss 1.2754645347595215 img loss 1.2177950143814087 img loss 1.3024888038635254 img loss 1.3157964944839478 img loss 1.1993272304534912 img loss 1.3141860961914062 img loss 1.17147696018219 img loss 1.2139157056808472 img loss 1.345456600189209 img loss 1.168180227279663 img loss 1.3292146921157837 img loss 1.2878206968307495 img loss 1.2428812980651855 img loss 1.2812786102294922 img loss 1.2894197702407837 img loss 1.2767853736877441 img loss 1.3200774192810059 img loss 1.1947448253631592 img loss 1.3212794065475464 img loss 1.2244160175323486 img loss 1.3803945779800415 img loss 1.4576042890548706 img loss 1.2963809967041016 img loss 1.3054815530776978 img loss 1.2252088785171509 img loss 1.3014265298843384 img loss 1.2633585929870605 img loss 1.302436351776123 img loss 1.3053098917007446 img loss 1.3335322141647339 img loss 1.2755541801452637 img loss 1.2989931106567383 img loss 1.2601065635681152 img loss 1.3005179166793823 img loss 1.2338584661483765 img loss 1.277500033378601 img loss 1.3573124408721924 img loss 1.2897164821624756 img loss 1.1709235906600952 img loss 1.1866543292999268 img loss 1.2519501447677612 img loss 1.2147053480148315 img loss 1.3253685235977173 img loss 1.195918321609497 img loss 1.2896695137023926 img loss 1.3221964836120605 img loss 1.235021948814392 img loss 1.286615252494812 img loss 1.2166850566864014 img loss 1.2797582149505615 img loss 1.2125107049942017 img loss 1.3159010410308838 img loss 1.2252001762390137 img loss 1.30654776096344 img loss 1.2315287590026855 img loss 1.3812193870544434 img loss 1.2419370412826538 {'loss': 1.2711, 'grad_norm': 0.32305723428726196, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2746965885162354 img loss 1.3417221307754517 img loss 1.3922024965286255 img loss 1.3630048036575317 img loss 1.2878799438476562 img loss 1.2813689708709717 img loss 1.2765527963638306 img loss 1.1802548170089722 img loss 1.2938952445983887 img loss 1.3248300552368164 img loss 1.2103784084320068 img loss 1.2547324895858765 img loss 1.2416250705718994 img loss 1.3269622325897217 img loss 1.3511399030685425 img loss 1.3745129108428955 img loss 1.2929816246032715 img loss 1.272711157798767 img loss 1.2686798572540283 img loss 1.3126333951950073 img loss 1.448423147201538 img loss 1.3084986209869385 img loss 1.2809135913848877 img loss 1.2958072423934937 img loss 1.3536237478256226 img loss 1.2737022638320923 img loss 1.2577999830245972 img loss 1.2338767051696777 img loss 1.3445041179656982 img loss 1.33233642578125 img loss 1.288530945777893 img loss 1.2459518909454346 img loss 1.3455122709274292 img loss 1.2230336666107178 img loss 1.3215746879577637 img loss 1.2991117238998413 img loss 1.282373309135437 img loss 1.1982063055038452 img loss 1.218361735343933 img loss 1.1321959495544434 img loss 1.254590392112732 img loss 1.2743253707885742 img loss 1.2166600227355957 img loss 1.2479671239852905 img loss 1.2826571464538574 img loss 1.3801286220550537 img loss 1.238413691520691 img loss 1.353477120399475 img loss 1.2602684497833252 img loss 1.3480582237243652 img loss 1.3287702798843384 img loss 1.2431654930114746 img loss 1.3367904424667358 img loss 1.3176631927490234 img loss 1.2080650329589844 img loss 1.17486572265625 img loss 1.1964223384857178 img loss 1.2675504684448242 img loss 1.2444672584533691 img loss 1.244924545288086 img loss 1.2948033809661865 img loss 1.2962194681167603 img loss 1.3271421194076538 img loss 1.2832443714141846 img loss 1.3252780437469482 img loss 1.34706449508667 img loss 1.3530418872833252 img loss 1.2433245182037354 img loss 1.3241509199142456 img loss 1.3375229835510254 img loss 1.4774309396743774 img loss 1.2438960075378418 img loss 1.2328965663909912 img loss 1.3480322360992432 img loss 1.3417099714279175 img loss 1.284100890159607 img loss 1.2666852474212646 img loss 1.3668237924575806 img loss 1.2638187408447266 img loss 1.3365083932876587 img loss 1.377113938331604 img loss 1.2765127420425415 img loss 1.2968708276748657 img loss 1.2494752407073975 img loss 1.3234506845474243 img loss 1.2740626335144043 img loss 1.4062162637710571 img loss 1.313615083694458 img loss 1.301890254020691 img loss 1.1930019855499268 img loss 1.175315260887146 img loss 1.215137004852295 img loss 1.282721996307373 img loss 1.25534188747406 img loss 1.2272099256515503 img loss 1.3629677295684814 img loss 1.271728754043579 img loss 1.2734607458114624 img loss 1.2886518239974976 img loss 1.228583812713623 img loss 1.247137427330017 img loss 1.1923507452011108 img loss 1.1923787593841553 img loss 1.27213716506958 img loss 1.3255640268325806 img loss 1.3242939710617065 img loss 1.2995920181274414 img loss 1.3157856464385986 img loss 1.253020167350769 img loss 1.2806872129440308 img loss 1.4820201396942139 img loss 1.2348361015319824 img loss 1.2750247716903687 img loss 1.3060907125473022 img loss 1.2707433700561523 img loss 1.2615251541137695 img loss 1.3104168176651 img loss 1.3179147243499756 img loss 1.2213194370269775 img loss 1.2157633304595947 img loss 1.2851390838623047 img loss 1.2709355354309082 img loss 1.2159490585327148 img loss 1.3232539892196655 img loss 1.2823030948638916 img loss 1.3552170991897583 img loss 1.3184857368469238 img loss 1.2689125537872314 {'loss': 1.2878, 'grad_norm': 0.22909075021743774, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3577468395233154 img loss 1.4246878623962402 img loss 1.3880780935287476 img loss 1.3614410161972046 img loss 1.4132483005523682 img loss 1.3248882293701172 img loss 1.3960822820663452 img loss 1.3117157220840454 img loss 1.459481120109558 img loss 1.3923306465148926 img loss 1.241424322128296 img loss 1.363696575164795 img loss 1.3899821043014526 img loss 1.3924756050109863 img loss 1.471946358680725 img loss 1.3271578550338745 img loss 1.32860267162323 img loss 1.345598578453064 img loss 1.3127644062042236 img loss 1.3829209804534912 img loss 1.4014620780944824 img loss 1.4583356380462646 img loss 1.355413794517517 img loss 1.4817723035812378 img loss 1.4476311206817627 img loss 1.3566677570343018 img loss 1.3023771047592163 img loss 1.31443190574646 img loss 1.2657626867294312 img loss 1.3587076663970947 img loss 1.3357692956924438 img loss 1.437025785446167 img loss 1.3638437986373901 img loss 1.4373446702957153 img loss 1.3175514936447144 img loss 1.434152364730835 img loss 1.514605164527893 img loss 1.332671880722046 img loss 1.4248604774475098 img loss 1.293968915939331 img loss 1.3655078411102295 img loss 1.4331098794937134 img loss 1.359251856803894 img loss 1.3377444744110107 img loss 1.381029725074768 img loss 1.4198088645935059 img loss 1.2999156713485718 img loss 1.4075427055358887 img loss 1.3835008144378662 img loss 1.3412011861801147 img loss 1.3591821193695068 img loss 1.3941681385040283 img loss 1.3404971361160278 img loss 1.33635675907135 img loss 1.4331992864608765 img loss 1.245404601097107 img loss 1.3479138612747192 img loss 1.3444559574127197 img loss 1.25649094581604 img loss 1.3064590692520142 img loss 1.2561883926391602 img loss 1.3840776681900024 img loss 1.3409932851791382 img loss 1.3212411403656006 img loss 1.339356780052185 img loss 1.3859143257141113 img loss 1.4587827920913696 img loss 1.3352901935577393 img loss 1.3033549785614014 img loss 1.4427708387374878 img loss 1.436979055404663 img loss 1.3874772787094116 img loss 1.4110863208770752 img loss 1.3467543125152588 img loss 1.368730068206787 img loss 1.4488931894302368 img loss 1.3599295616149902 img loss 1.3584353923797607 img loss 1.395373821258545 img loss 1.405040979385376 img loss 1.391576886177063 img loss 1.4323350191116333 img loss 1.4486372470855713 img loss 1.4306750297546387 img loss 1.2905645370483398 img loss 1.3567107915878296 img loss 1.3637384176254272 img loss 1.3495553731918335 img loss 1.3344060182571411 img loss 1.4656354188919067 img loss 1.333574891090393 img loss 1.3720347881317139 img loss 1.3806583881378174 img loss 1.2660369873046875 img loss 1.3585249185562134 img loss 1.309473991394043 img loss 1.4088647365570068 img loss 1.3675000667572021 img loss 1.4163596630096436 img loss 1.341800332069397 img loss 1.5152782201766968 img loss 1.460548758506775 img loss 1.3695123195648193 img loss 1.3174251317977905 img loss 1.4206055402755737 img loss 1.2793854475021362 img loss 1.2687631845474243 img loss 1.3103275299072266 img loss 1.2626729011535645 img loss 1.389565110206604 img loss 1.3226234912872314 img loss 1.3636692762374878 img loss 1.2845911979675293 img loss 1.3882791996002197 img loss 1.3297655582427979 img loss 1.2524818181991577 img loss 1.349960446357727 img loss 1.2532551288604736 img loss 1.40648353099823 img loss 1.5801118612289429 img loss 1.3634835481643677 img loss 1.3322539329528809 img loss 1.4071294069290161 img loss 1.3114676475524902 img loss 1.3848999738693237 img loss 1.3947111368179321 img loss 1.3055061101913452 img loss 1.4134925603866577 {'loss': 1.3676, 'grad_norm': 0.24888469278812408, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.326463222503662 img loss 1.2810505628585815 img loss 1.3275188207626343 img loss 1.2470823526382446 img loss 1.1722264289855957 img loss 1.2744845151901245 img loss 1.274019718170166 img loss 1.2770569324493408 img loss 1.3071205615997314 img loss 1.2348854541778564 img loss 1.3286350965499878 img loss 1.2411819696426392 img loss 1.2333734035491943 img loss 1.3162691593170166 img loss 1.186676263809204 img loss 1.2399075031280518 img loss 1.2050729990005493 img loss 1.2231286764144897 img loss 1.2911908626556396 img loss 1.251624584197998 img loss 1.2034190893173218 img loss 1.2658458948135376 img loss 1.2398693561553955 img loss 1.280539870262146 img loss 1.2395188808441162 img loss 1.3000541925430298 img loss 1.2336883544921875img loss 1.2744206190109253 img loss 1.2565629482269287img loss 1.2362715005874634 img loss 1.247564673423767 img loss 1.274794101715088 img loss 1.319657325744629 img loss 1.3350375890731812 img loss 1.218726634979248 img loss 1.2079925537109375 img loss 1.2482788562774658 img loss 1.2336643934249878 img loss 1.2810229063034058 img loss 1.231852412223816 img loss 1.2704083919525146 img loss 1.2932897806167603 img loss 1.2502580881118774 img loss 1.2649919986724854 img loss 1.2620253562927246 img loss 1.2821460962295532 img loss 1.2472206354141235 img loss 1.3060098886489868 img loss 1.2727959156036377 img loss 1.3037782907485962 img loss 1.2901400327682495 img loss 1.2667937278747559 img loss 1.2985082864761353 img loss 1.2975287437438965 img loss 1.2656817436218262 img loss 1.2340238094329834 img loss 1.2914385795593262 img loss 1.295699954032898 img loss 1.198264718055725 img loss 1.2876859903335571 img loss 1.2957344055175781 img loss 1.1612745523452759 img loss 1.2441200017929077 img loss 1.2605332136154175 img loss 1.2231281995773315 img loss 1.2264306545257568 img loss 1.3263968229293823 img loss 1.262886881828308 img loss 1.320906639099121 img loss 1.2719944715499878 img loss 1.2577675580978394 img loss 1.183419108390808 img loss 1.2877060174942017 img loss 1.2410600185394287 img loss 1.2776107788085938 img loss 1.2029463052749634 img loss 1.255145788192749 img loss 1.2542357444763184 img loss 1.2662636041641235 img loss 1.3621199131011963 img loss 1.2729154825210571 img loss 1.2499099969863892 img loss 1.2470864057540894 img loss 1.2846838235855103 img loss 1.2919758558273315 img loss 1.2688617706298828 img loss 1.343746542930603 img loss 1.3298958539962769 img loss 1.23067045211792 img loss 1.2783173322677612 img loss 1.3288439512252808img loss 1.2718404531478882 img loss 1.3998844623565674 img loss 1.2501096725463867 img loss 1.3083471059799194 img loss 1.2053431272506714 img loss 1.2526888847351074 img loss 1.3295769691467285 img loss 1.2487280368804932 img loss 1.225670576095581 img loss 1.2530730962753296 img loss 1.272215723991394 img loss 1.2481392621994019 img loss 1.3033168315887451 img loss 1.2540967464447021 img loss 1.2355111837387085 img loss 1.4291150569915771 img loss 1.3326945304870605 img loss 1.216981291770935 img loss 1.2574652433395386 img loss 1.221677541732788 img loss 1.3256653547286987 img loss 1.263922929763794 img loss 1.3395153284072876 img loss 1.31827712059021 img loss 1.25020432472229 img loss 1.2539341449737549 img loss 1.2647837400436401 img loss 1.1985783576965332 img loss 1.3667393922805786 img loss 1.2452436685562134 img loss 1.2771351337432861 img loss 1.2146438360214233 img loss 1.2122706174850464 img loss 1.4107922315597534 img loss 1.2200355529785156 img loss 1.283660650253296 img loss 1.2541766166687012 {'loss': 1.2685, 'grad_norm': 0.31054726243019104, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3697172403335571 img loss 1.1919716596603394 img loss 1.3779929876327515 img loss 1.3234403133392334 img loss 1.2912921905517578 img loss 1.293603539466858 img loss 1.3387415409088135 img loss 1.2401221990585327 img loss 1.3617960214614868 img loss 1.3303722143173218 img loss 1.420008897781372 img loss 1.3027501106262207 img loss 1.3331631422042847 img loss 1.3161553144454956 img loss 1.3951153755187988 img loss 1.1990673542022705 img loss 1.2600667476654053 img loss 1.3427574634552002 img loss 1.2406420707702637 img loss 1.3439334630966187 img loss 1.3275651931762695 img loss 1.227508544921875 img loss 1.299223780632019 img loss 1.4189611673355103 img loss 1.313575029373169 img loss 1.3012654781341553 img loss 1.2193220853805542 img loss 1.2070960998535156 img loss 1.3679616451263428 img loss 1.3261229991912842 img loss 1.3444082736968994 img loss 1.355425238609314 img loss 1.2856075763702393 img loss 1.380982756614685 img loss 1.3399780988693237 img loss 1.3242661952972412 img loss 1.2940212488174438 img loss 1.3411914110183716 img loss 1.363390564918518 img loss 1.3893457651138306 img loss 1.3540078401565552 img loss 1.2807658910751343 img loss 1.2989383935928345 img loss 1.3814747333526611 img loss 1.4367069005966187 img loss 1.368180751800537 img loss 1.1893646717071533 img loss 1.4199402332305908 img loss 1.2973477840423584 img loss 1.3495136499404907 img loss 1.2650362253189087 img loss 1.2577812671661377 img loss 1.346733570098877 img loss 1.2221801280975342 img loss 1.3517500162124634 img loss 1.284922480583191 img loss 1.3498386144638062 img loss 1.288286805152893 img loss 1.2660942077636719 img loss 1.378745436668396 img loss 1.3249653577804565 img loss 1.269458532333374 img loss 1.2669401168823242 img loss 1.5146557092666626 img loss 1.2830922603607178 img loss 1.3660919666290283 img loss 1.3562510013580322 img loss 1.2479242086410522 img loss 1.2355726957321167 img loss 1.2481651306152344 img loss 1.3440660238265991 img loss 1.2720122337341309 img loss 1.2662174701690674 img loss 1.3398945331573486 img loss 1.4121525287628174 img loss 1.3736441135406494 img loss 1.3052234649658203 img loss 1.2641487121582031 img loss 1.273972988128662 img loss 1.2452709674835205 img loss 1.3536534309387207 img loss 1.4292047023773193 img loss 1.4280273914337158 img loss 1.34763503074646 img loss 1.2642573118209839 img loss 1.2672247886657715 img loss 1.2906382083892822 img loss 1.3029807806015015 img loss 1.2662937641143799 img loss 1.2719497680664062 img loss 1.3489407300949097 img loss 1.4385885000228882 img loss 1.2571613788604736 img loss 1.372362732887268 img loss 1.26816987991333 img loss 1.3398429155349731 img loss 1.4835264682769775 img loss 1.327144980430603 img loss 1.2677302360534668 img loss 1.3892462253570557 img loss 1.2523722648620605 img loss 1.3288463354110718 img loss 1.3153880834579468 img loss 1.3160245418548584 img loss 1.346021294593811 img loss 1.2963426113128662 img loss 1.2953181266784668 img loss 1.3428428173065186 img loss 1.233978509902954 img loss 1.3428786993026733 img loss 1.2309640645980835 img loss 1.275550127029419 img loss 1.3015930652618408 img loss 1.2489759922027588 img loss 1.3519824743270874 img loss 1.341488242149353 img loss 1.2173302173614502 img loss 1.317535161972046 img loss 1.2413272857666016 img loss 1.2631855010986328 img loss 1.3363606929779053 img loss 1.3033521175384521 img loss 1.2904527187347412 img loss 1.3247184753417969 img loss 1.3298542499542236 img loss 1.2930033206939697 img loss 1.3943883180618286 img loss 1.2755861282348633 {'loss': 1.3158, 'grad_norm': 0.42709633708000183, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.474819302558899 img loss 1.670448660850525 img loss 1.6383877992630005 img loss 1.5341248512268066 img loss 1.5937668085098267 img loss 1.3988107442855835 img loss 1.517195463180542 img loss 1.575150728225708 img loss 1.6298725605010986 img loss 1.463934302330017 img loss 1.5164674520492554 img loss 1.6449469327926636 img loss 1.5339661836624146 img loss 1.5075551271438599 img loss 1.564597249031067 img loss 1.511176347732544 img loss 1.7471240758895874 img loss 1.5700592994689941 img loss 1.5651791095733643 img loss 1.582446575164795 img loss 1.5437328815460205 img loss 1.4221585988998413 img loss 1.6241894960403442 img loss 1.4660173654556274 img loss 1.5184922218322754 img loss 1.4589179754257202 img loss 1.476946473121643 img loss 1.545201063156128 img loss 1.5076117515563965 img loss 1.4078032970428467 img loss 1.6078712940216064 img loss 1.7729591131210327 img loss 1.6601964235305786 img loss 1.5773977041244507 img loss 1.412490963935852 img loss 1.571753740310669 img loss 1.5135897397994995 img loss 1.4864846467971802 img loss 1.667569875717163 img loss 1.5306159257888794 img loss 1.4554787874221802 img loss 1.6093238592147827 img loss 1.58126699924469 img loss 1.4883869886398315 img loss 1.518595576286316img loss 1.607194185256958 img loss 1.5754936933517456 img loss 1.5099008083343506 img loss 1.7154566049575806 img loss 1.3301215171813965 img loss 1.593321681022644 img loss 1.6225640773773193 img loss 1.5700795650482178 img loss 1.6349445581436157 img loss 1.4952380657196045 img loss 1.5231950283050537 img loss 1.6269373893737793 img loss 1.4819999933242798 img loss 1.4134976863861084 img loss 1.557564377784729 img loss 1.5789296627044678 img loss 1.639517903327942 img loss 1.53134024143219 img loss 1.5199533700942993 img loss 1.5718239545822144 img loss 1.5924745798110962 img loss 1.5251129865646362 img loss 1.6485766172409058 img loss 1.5079878568649292 img loss 1.6798638105392456 img loss 1.6038240194320679 img loss 1.5309417247772217 img loss 1.45280921459198 img loss 1.5951571464538574 img loss 1.493710994720459 img loss 1.5530041456222534 img loss 1.6125247478485107 img loss 1.5724995136260986 img loss 1.561888337135315 img loss 1.6260943412780762 img loss 1.3789334297180176 img loss 1.582739233970642 img loss 1.4511058330535889 img loss 1.3989768028259277 img loss 1.4541164636611938 img loss 1.4906033277511597 img loss 1.508076548576355 img loss 1.4812992811203003 img loss 1.5393520593643188 img loss 1.540635347366333 img loss 1.5312787294387817 img loss 1.730924367904663 img loss 1.550086498260498 img loss 1.4924412965774536 img loss 1.6299054622650146 img loss 1.4263960123062134 img loss 1.630428433418274 img loss 1.4021542072296143 img loss 1.6217151880264282 img loss 1.6589802503585815 img loss 1.429134726524353 img loss 1.4738699197769165 img loss 1.5592331886291504 img loss 1.5425647497177124 img loss 1.526362657546997 img loss 1.526964545249939 img loss 1.4877088069915771 img loss 1.5306127071380615 img loss 1.540984034538269 img loss 1.6107947826385498 img loss 1.446569800376892 img loss 1.4715276956558228 img loss 1.551604986190796 img loss 1.7068387269973755 img loss 1.47538161277771 img loss 1.5322154760360718 img loss 1.514707326889038 img loss 1.6297833919525146 img loss 1.5714871883392334 img loss 1.4545634984970093 img loss 1.6088773012161255 img loss 1.449340581893921 img loss 1.5225580930709839 img loss 1.462725043296814 img loss 1.524166226387024 img loss 1.466922640800476 img loss 1.4895501136779785 img loss 1.6043776273727417 {'loss': 1.5432, 'grad_norm': 0.39223334193229675, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.184841513633728 img loss 1.1550512313842773 img loss 1.1319739818572998 img loss 1.310099482536316 img loss 1.1959114074707031 img loss 1.2632498741149902 img loss 1.146036982536316 img loss 1.196288824081421 img loss 1.1600195169448853 img loss 1.243671178817749 img loss 1.2009092569351196 img loss 1.2042040824890137 img loss 1.1655895709991455 img loss 1.2422447204589844 img loss 1.291734218597412 img loss 1.2274678945541382 img loss 1.1734230518341064 img loss 1.1650043725967407 img loss 1.1840661764144897 img loss 1.2018542289733887 img loss 1.1665960550308228 img loss 1.1713790893554688 img loss 1.1918342113494873 img loss 1.2208484411239624 img loss 1.1938692331314087 img loss 1.1297152042388916 img loss 1.2596148252487183 img loss 1.1786367893218994 img loss 1.1778366565704346 img loss 1.225891351699829 img loss 1.1818594932556152 img loss 1.3044061660766602 img loss 1.1683318614959717 img loss 1.1810251474380493 img loss 1.1773260831832886 img loss 1.264428734779358 img loss 1.1918045282363892 img loss 1.2597155570983887 img loss 1.158028483390808 img loss 1.2720658779144287 img loss 1.15523099899292 img loss 1.1636446714401245 img loss 1.219834566116333 img loss 1.2225499153137207 img loss 1.1141252517700195 img loss 1.1729004383087158 img loss 1.194689154624939 img loss 1.2169779539108276 img loss 1.1955296993255615 img loss 1.271401286125183 img loss 1.2269797325134277 img loss 1.188778281211853 img loss 1.2183501720428467 img loss 1.2342314720153809 img loss 1.246503233909607 img loss 1.215726613998413 img loss 1.1457599401474 img loss 1.1886615753173828 img loss 1.2145248651504517 img loss 1.1897510290145874 img loss 1.2268681526184082 img loss 1.1796939373016357 img loss 1.13529372215271 img loss 1.1692230701446533 img loss 1.188446044921875 img loss 1.179880976676941 img loss 1.2133722305297852 img loss 1.2120907306671143 img loss 1.1852844953536987 img loss 1.2155895233154297 img loss 1.2439714670181274 img loss 1.2705326080322266 img loss 1.190252661705017 img loss 1.227373719215393 img loss 1.2068208456039429 img loss 1.2124574184417725 img loss 1.174112319946289 img loss 1.1906074285507202 img loss 1.2115981578826904 img loss 1.1690716743469238 img loss 1.15610671043396 img loss 1.1371853351593018 img loss 1.2024989128112793 img loss 1.253969430923462 img loss 1.1273725032806396 img loss 1.2205349206924438 img loss 1.211901068687439 img loss 1.2019288539886475 img loss 1.2463527917861938 img loss 1.1842420101165771 img loss 1.198463797569275 img loss 1.1779942512512207 img loss 1.189571738243103 img loss 1.1946120262145996 img loss 1.1702970266342163 img loss 1.1761205196380615 img loss 1.1319135427474976 img loss 1.1766138076782227 img loss 1.2727444171905518 img loss 1.1762584447860718 img loss 1.1441915035247803 img loss 1.1501765251159668 img loss 1.176871657371521 img loss 1.16615629196167 img loss 1.1528478860855103 img loss 1.1746697425842285 img loss 1.22709059715271 img loss 1.1890314817428589 img loss 1.1774917840957642 img loss 1.2266101837158203 img loss 1.180159330368042 img loss 1.2511444091796875 img loss 1.2139241695404053 img loss 1.2218847274780273 img loss 1.2361475229263306 img loss 1.1591994762420654 img loss 1.2130491733551025 img loss 1.1675971746444702 img loss 1.2651838064193726 img loss 1.1981147527694702 img loss 1.2492365837097168 img loss 1.1945087909698486 img loss 1.2150890827178955 img loss 1.2406774759292603 img loss 1.1971994638442993 img loss 1.1842132806777954 img loss 1.1807831525802612 img loss 1.209143042564392 {'loss': 1.1991, 'grad_norm': 0.2915772497653961, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.627095103263855 img loss 1.4939589500427246 img loss 1.4658236503601074 img loss 1.4478180408477783 img loss 1.510475516319275 img loss 1.5852160453796387 img loss 1.5369168519973755 img loss 1.468237042427063 img loss 1.4427883625030518 img loss 1.5022616386413574 img loss 1.502402424812317 img loss 1.5262521505355835 img loss 1.5349348783493042 img loss 1.4744850397109985 img loss 1.442094326019287 img loss 1.5255132913589478 img loss 1.5850473642349243 img loss 1.4835056066513062 img loss 1.5036653280258179 img loss 1.4242161512374878 img loss 1.5745633840560913 img loss 1.4858723878860474 img loss 1.5688300132751465 img loss 1.423804521560669 img loss 1.468652367591858 img loss 1.3669880628585815 img loss 1.533922791481018 img loss 1.5188696384429932 img loss 1.474870204925537 img loss 1.4594882726669312 img loss 1.475197672843933 img loss 1.5239161252975464 img loss 1.4258431196212769 img loss 1.4158648252487183 img loss 1.4026049375534058 img loss 1.4341222047805786 img loss 1.3658825159072876 img loss 1.8538838624954224 img loss 1.4865423440933228 img loss 1.4789727926254272 img loss 1.32176673412323 img loss 1.4869730472564697 img loss 1.4266499280929565 img loss 1.352668285369873 img loss 1.5087260007858276 img loss 1.5171610116958618 img loss 1.5762076377868652 img loss 1.3275259733200073 img loss 1.4837998151779175 img loss 1.4647208452224731 img loss 1.4699753522872925 img loss 1.4358006715774536 img loss 1.4659092426300049 img loss 1.5467021465301514 img loss 1.6856697797775269 img loss 1.5454579591751099 img loss 1.5279048681259155 img loss 1.474755883216858 img loss 1.4924311637878418 img loss 1.3421961069107056 img loss 1.4477826356887817 img loss 1.5188020467758179 img loss 1.5010968446731567 img loss 1.6680514812469482 img loss 1.54019033908844 img loss 1.4555569887161255 img loss 1.4065576791763306 img loss 1.5590518712997437 img loss 1.3587008714675903 img loss 1.6209348440170288 img loss 1.4748175144195557 img loss 1.4504345655441284 img loss 1.4008241891860962 img loss 1.427124261856079 img loss 1.6502000093460083 img loss 1.3822983503341675 img loss 1.5422238111495972 img loss 1.599690318107605 img loss 1.4458940029144287 img loss 1.4371778964996338 img loss 1.5010417699813843 img loss 1.477799654006958 img loss 1.4160687923431396 img loss 1.32313871383667 img loss 1.5154842138290405 img loss 1.3560734987258911 img loss 1.4540482759475708 img loss 1.428716778755188 img loss 1.4525350332260132 img loss 1.3852735757827759 img loss 1.4189717769622803 img loss 1.520025372505188 img loss 1.6433100700378418 img loss 1.389095425605774 img loss 1.4007188081741333 img loss 1.6072922945022583 img loss 1.5380676984786987 img loss 1.4121688604354858 img loss 1.4140897989273071 img loss 1.5465565919876099 img loss 1.5104262828826904 img loss 1.4212431907653809 img loss 1.5261871814727783 img loss 1.422898530960083 img loss 1.4221603870391846 img loss 1.5709038972854614 img loss 1.5311683416366577 img loss 1.6125794649124146 img loss 1.468881368637085 img loss 1.6227593421936035 img loss 1.5125564336776733 img loss 1.5437772274017334 img loss 1.4449034929275513 img loss 1.5073482990264893 img loss 1.3877304792404175 img loss 1.4896382093429565 img loss 1.5846741199493408 img loss 1.6371912956237793 img loss 1.3393895626068115 img loss 1.5075985193252563 img loss 1.4316118955612183 img loss 1.4796769618988037 img loss 1.4550604820251465 img loss 1.5463770627975464 img loss 1.4317556619644165 img loss 1.4698255062103271 img loss 1.323923945426941 img loss 1.5678406953811646 {'loss': 1.4854, 'grad_norm': 0.27864357829093933, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2708430290222168 img loss 1.2450363636016846 img loss 1.2311140298843384 img loss 1.195403814315796 img loss 1.2712265253067017 img loss 1.2084606885910034 img loss 1.1629612445831299 img loss 1.2683556079864502 img loss 1.2617172002792358 img loss 1.2864272594451904 img loss 1.2527395486831665 img loss 1.2893903255462646 img loss 1.2929925918579102 img loss 1.159534215927124 img loss 1.2399758100509644 img loss 1.3404909372329712 img loss 1.3173624277114868 img loss 1.2085003852844238 img loss 1.2372658252716064 img loss 1.1680195331573486 img loss 1.2356394529342651 img loss 1.2147098779678345 img loss 1.2277380228042603 img loss 1.202330470085144 img loss 1.2429784536361694 img loss 1.1936242580413818 img loss 1.2159757614135742 img loss 1.214794397354126 img loss 1.2685534954071045 img loss 1.2908576726913452 img loss 1.21219003200531 img loss 1.210964560508728 img loss 1.1432445049285889 img loss 1.3040040731430054 img loss 1.225754976272583 img loss 1.2101892232894897 img loss 1.3099365234375 img loss 1.2164121866226196 img loss 1.2581504583358765 img loss 1.214699149131775 img loss 1.172397494316101 img loss 1.2344471216201782 img loss 1.1984888315200806 img loss 1.2356629371643066 img loss 1.1975141763687134 img loss 1.2858555316925049 img loss 1.2480627298355103 img loss 1.2355531454086304 img loss 1.2237309217453003 img loss 1.2715486288070679 img loss 1.2733806371688843 img loss 1.2336721420288086 img loss 1.20348060131073 img loss 1.2786109447479248 img loss 1.2386980056762695 img loss 1.2146635055541992 img loss 1.2470495700836182 img loss 1.2509891986846924 img loss 1.252661108970642 img loss 1.162929892539978 img loss 1.2371485233306885 img loss 1.1906464099884033 img loss 1.2231590747833252 img loss 1.2381614446640015 img loss 1.201547384262085 img loss 1.2097269296646118 img loss 1.239738941192627 img loss 1.3231465816497803 img loss 1.2696232795715332 img loss 1.313186526298523 img loss 1.2516162395477295 img loss 1.293838381767273 img loss 1.2364895343780518 img loss 1.2562650442123413 img loss 1.2615820169448853 img loss 1.2591731548309326 img loss 1.2521488666534424 img loss 1.1894252300262451 img loss 1.3010505437850952 img loss 1.2601845264434814 img loss 1.2355493307113647 img loss 1.2040562629699707 img loss 1.2207863330841064 img loss 1.2435365915298462 img loss 1.203443169593811 img loss 1.2111785411834717 img loss 1.24078369140625 img loss 1.1908321380615234 img loss 1.1919159889221191 img loss 1.1943583488464355 img loss 1.244936227798462 img loss 1.2370980978012085 img loss 1.2488735914230347 img loss 1.2241754531860352 img loss 1.2289245128631592 img loss 1.227006435394287 img loss 1.2444438934326172 img loss 1.2080415487289429 img loss 1.2003659009933472 img loss 1.257190227508545 img loss 1.2121301889419556 img loss 1.1908645629882812 img loss 1.2158268690109253 img loss 1.1956918239593506 img loss 1.1880195140838623 img loss 1.236108660697937 img loss 1.2915571928024292 img loss 1.2537007331848145 img loss 1.2906979322433472 img loss 1.1915853023529053 img loss 1.2291486263275146 img loss 1.208412528038025 img loss 1.187833547592163 img loss 1.2636722326278687 img loss 1.233921766281128 img loss 1.2463229894638062 img loss 1.171069622039795 img loss 1.304163932800293 img loss 1.2408180236816406 img loss 1.2988011837005615 img loss 1.248689889907837 img loss 1.1896898746490479 img loss 1.2215572595596313 img loss 1.2565858364105225 img loss 1.2677959203720093 img loss 1.2749435901641846 img loss 1.1994187831878662 img loss 1.258471965789795 {'loss': 1.236, 'grad_norm': 0.27073436975479126, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1999061107635498 img loss 1.2348229885101318 img loss 1.230515956878662 img loss 1.235054612159729 img loss 1.2364126443862915 img loss 1.2011325359344482 img loss 1.262290596961975 img loss 1.2688835859298706 img loss 1.1895616054534912 img loss 1.2399733066558838 img loss 1.1782755851745605 img loss 1.1753947734832764 img loss 1.1482470035552979 img loss 1.211368441581726 img loss 1.1573002338409424 img loss 1.1516634225845337 img loss 1.2472608089447021 img loss 1.168670654296875 img loss 1.2246594429016113 img loss 1.1991474628448486 img loss 1.2137058973312378 img loss 1.2237422466278076 img loss 1.2536656856536865 img loss 1.230555772781372 img loss 1.2341912984848022 img loss 1.2417739629745483 img loss 1.227445125579834 img loss 1.2494531869888306 img loss 1.2575139999389648 img loss 1.2087194919586182 img loss 1.2104114294052124 img loss 1.2352408170700073 img loss 1.2234702110290527 img loss 1.3505034446716309 img loss 1.2599828243255615 img loss 1.2164382934570312 img loss 1.2830440998077393 img loss 1.2505114078521729 img loss 1.178400993347168 img loss 1.2500524520874023 img loss 1.2338958978652954 img loss 1.2296959161758423 img loss 1.1995893716812134 img loss 1.2703226804733276 img loss 1.235682725906372 img loss 1.1961323022842407 img loss 1.2835643291473389 img loss 1.2351772785186768 img loss 1.2285590171813965 img loss 1.1643388271331787 img loss 1.1664758920669556 img loss 1.202502965927124 img loss 1.211446762084961 img loss 1.2093569040298462 img loss 1.2918248176574707 img loss 1.2579951286315918 img loss 1.273190975189209 img loss 1.2459042072296143 img loss 1.2161353826522827 img loss 1.2222247123718262 img loss 1.2824411392211914 img loss 1.176270842552185 img loss 1.2516281604766846 img loss 1.2400667667388916 img loss 1.1828304529190063 img loss 1.2439866065979004 img loss 1.246814250946045img loss 1.1786655187606812 img loss 1.1613616943359375 img loss 1.2082607746124268 img loss 1.1703952550888062 img loss 1.2928593158721924 img loss 1.2427659034729004 img loss 1.214210033416748 img loss 1.218769907951355 img loss 1.3178365230560303 img loss 1.2453386783599854 img loss 1.2987897396087646 img loss 1.2374014854431152 img loss 1.288935661315918 img loss 1.2367637157440186 img loss 1.2243088483810425 img loss 1.2369396686553955 img loss 1.2520804405212402 img loss 1.2673975229263306img loss 1.253187656402588 img loss 1.2001845836639404 img loss 1.168520212173462 img loss 1.3275096416473389 img loss 1.309564232826233 img loss 1.2192907333374023 img loss 1.2512823343276978 img loss 1.217280626296997 img loss 1.26195228099823 img loss 1.1978893280029297 img loss 1.2166966199874878 img loss 1.2093533277511597 img loss 1.242095947265625 img loss 1.3479243516921997 img loss 1.1890047788619995 img loss 1.1933552026748657 img loss 1.2771222591400146 img loss 1.2020549774169922 img loss 1.2276207208633423 img loss 1.20330810546875 img loss 1.2050023078918457 img loss 1.1841295957565308 img loss 1.1947228908538818 img loss 1.1983642578125 img loss 1.240631341934204 img loss 1.1846020221710205 img loss 1.2053251266479492 img loss 1.1937198638916016 img loss 1.20457923412323 img loss 1.2662075757980347 img loss 1.264560580253601 img loss 1.2543485164642334 img loss 1.1568025350570679 img loss 1.266711711883545 img loss 1.226227045059204 img loss 1.2180323600769043 img loss 1.216227412223816 img loss 1.1612820625305176 img loss 1.1905111074447632 img loss 1.1984140872955322 img loss 1.2201799154281616 img loss 1.229264497756958 img loss 1.2392243146896362 {'loss': 1.2272, 'grad_norm': 0.21628879010677338, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.152183175086975 img loss 1.313963532447815 img loss 1.2566879987716675 img loss 1.1931800842285156 img loss 1.237779140472412 img loss 1.1763806343078613 img loss 1.215340256690979 img loss 1.2930363416671753 img loss 1.172677993774414 img loss 1.1604704856872559 img loss 1.0471439361572266 img loss 1.1698445081710815 img loss 1.1700713634490967 img loss 1.246722936630249 img loss 1.1344239711761475 img loss 1.1957416534423828 img loss 1.178313136100769 img loss 1.2037181854248047 img loss 1.2208770513534546 img loss 1.1262117624282837 img loss 1.1938321590423584 img loss 1.1890054941177368 img loss 1.1911834478378296 img loss 1.1481603384017944 img loss 1.1970696449279785 img loss 1.1965022087097168 img loss 1.1746530532836914 img loss 1.1306877136230469 img loss 1.1469138860702515 img loss 1.1325665712356567 img loss 1.2345829010009766 img loss 1.2441424131393433 img loss 1.2445621490478516 img loss 1.224044680595398 img loss 1.1497132778167725 img loss 1.2580403089523315 img loss 1.1813249588012695 img loss 1.1649091243743896 img loss 1.185749888420105 img loss 1.1364580392837524 img loss 1.1879398822784424 img loss 1.158319354057312 img loss 1.184607982635498 img loss 1.2778037786483765 img loss 1.1544201374053955 img loss 1.1989517211914062 img loss 1.203485131263733 img loss 1.1954319477081299 img loss 1.1863548755645752 img loss 1.1714428663253784 img loss 1.2421330213546753 img loss 1.1377294063568115 img loss 1.1998474597930908 img loss 1.1479920148849487 img loss 1.1742175817489624 img loss 1.249212622642517 img loss 1.1742546558380127 img loss 1.140214443206787 img loss 1.1061289310455322 img loss 1.2844370603561401 img loss 1.06540846824646 img loss 1.158292531967163 img loss 1.2483247518539429 img loss 1.173130989074707 img loss 1.144484043121338 img loss 1.1981174945831299 img loss 1.187535047531128 img loss 1.1933637857437134 img loss 1.23045814037323 img loss 1.2152408361434937 img loss 1.129935622215271 img loss 1.171534538269043 img loss 1.1269562244415283 img loss 1.1835002899169922 img loss 1.1956779956817627 img loss 1.1927154064178467 img loss 1.1723066568374634 img loss 1.175561785697937 img loss 1.1804652214050293 img loss 1.196113109588623 img loss 1.2357221841812134 img loss 1.1900634765625 img loss 1.1849205493927002 img loss 1.1561059951782227 img loss 1.1734623908996582 img loss 1.243094801902771 img loss 1.255232334136963 img loss 1.2128461599349976 img loss 1.1687464714050293 img loss 1.2103899717330933 img loss 1.1380863189697266 img loss 1.1815600395202637 img loss 1.214848518371582 img loss 1.2088205814361572 img loss 1.199046015739441 img loss 1.2041585445404053 img loss 1.1845711469650269 img loss 1.1846723556518555 img loss 1.215559482574463 img loss 1.2143089771270752 img loss 1.2122427225112915 img loss 1.17006254196167 img loss 1.233275294303894 img loss 1.169319748878479 img loss 1.1694424152374268 img loss 1.2341398000717163 img loss 1.1426656246185303 img loss 1.2293086051940918 img loss 1.1367554664611816 img loss 1.2775086164474487 img loss 1.2264509201049805 img loss 1.1820452213287354 img loss 1.1898417472839355 img loss 1.208020567893982 img loss 1.2692954540252686 img loss 1.2321592569351196 img loss 1.2260959148406982 img loss 1.2367719411849976 img loss 1.2066173553466797 img loss 1.226456642150879 img loss 1.293678879737854 img loss 1.149399995803833 img loss 1.1779732704162598 img loss 1.146583914756775 img loss 1.2029757499694824 img loss 1.1895986795425415 img loss 1.22280752658844 img loss 1.1558046340942383 {'loss': 1.1922, 'grad_norm': 0.24311767518520355, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3324123620986938 img loss 1.3157581090927124 img loss 1.2249999046325684 img loss 1.1460217237472534 img loss 1.1959755420684814 img loss 1.2107999324798584 img loss 1.2489981651306152 img loss 1.3008211851119995 img loss 1.454241156578064 img loss 1.2919338941574097 img loss 1.2359862327575684 img loss 1.2215522527694702 img loss 1.2168371677398682 img loss 1.2714890241622925 img loss 1.221864938735962 img loss 1.278135061264038 img loss 1.292493224143982 img loss 1.2915236949920654 img loss 1.2496000528335571 img loss 1.2310587167739868 img loss 1.2423665523529053 img loss 1.2759325504302979 img loss 1.2809700965881348 img loss 1.2235530614852905 img loss 1.1866635084152222 img loss 1.233053207397461 img loss 1.2895944118499756 img loss 1.1582581996917725 img loss 1.288303256034851 img loss 1.3972294330596924 img loss 1.195991039276123 img loss 1.1729344129562378 img loss 1.2408673763275146 img loss 1.205649971961975 img loss 1.2095707654953003 img loss 1.2089803218841553 img loss 1.2274415493011475 img loss 1.1682013273239136 img loss 1.1322096586227417 img loss 1.2319484949111938 img loss 1.2206305265426636 img loss 1.2032133340835571 img loss 1.1992682218551636 img loss 1.2744468450546265img loss 1.248246431350708 img loss 1.2853271961212158 img loss 1.2532297372817993img loss 1.2616218328475952 img loss 1.3590209484100342 img loss 1.2261799573898315 img loss 1.236338496208191 img loss 1.1563115119934082 img loss 1.34571373462677 img loss 1.1877840757369995 img loss 1.2584844827651978 img loss 1.300627589225769 img loss 1.240465760231018 img loss 1.2782083749771118 img loss 1.1743706464767456img loss 1.2426422834396362 img loss 1.2407052516937256 img loss 1.3038051128387451 img loss 1.2477556467056274 img loss 1.2471054792404175 img loss 1.2702953815460205 img loss 1.1437714099884033 img loss 1.410926342010498 img loss 1.2403911352157593 img loss 1.2450512647628784 img loss 1.2576966285705566 img loss 1.2270731925964355 img loss 1.1655056476593018 img loss 1.322115421295166 img loss 1.228516936302185 img loss 1.244208574295044 img loss 1.2248568534851074 img loss 1.1590067148208618 img loss 1.2425873279571533 img loss 1.2072547674179077 img loss 1.2697265148162842 img loss 1.2950853109359741 img loss 1.1695257425308228 img loss 1.2641663551330566 img loss 1.3074082136154175 img loss 1.3331944942474365 img loss 1.207598328590393 img loss 1.2220534086227417 img loss 1.2137813568115234 img loss 1.2889829874038696 img loss 1.427559494972229 img loss 1.2950403690338135 img loss 1.2219892740249634 img loss 1.2188854217529297 img loss 1.199911117553711 img loss 1.2607760429382324 img loss 1.2320486307144165 img loss 1.2771223783493042 img loss 1.2445392608642578 img loss 1.2979457378387451 img loss 1.2419779300689697 img loss 1.2889344692230225 img loss 1.181488037109375 img loss 1.2961372137069702 img loss 1.207265853881836 img loss 1.2494597434997559 img loss 1.2799328565597534 img loss 1.3707823753356934 img loss 1.2221369743347168 img loss 1.20708167552948 img loss 1.1814244985580444 img loss 1.239866852760315 img loss 1.2519077062606812 img loss 1.3687330484390259 img loss 1.3023145198822021 img loss 1.2752426862716675 img loss 1.2310614585876465 img loss 1.3535414934158325 img loss 1.180250883102417 img loss 1.2713514566421509 img loss 1.2597960233688354 img loss 1.2974058389663696 img loss 1.3926547765731812 img loss 1.31643807888031 img loss 1.3056373596191406 img loss 1.3015522956848145 img loss 1.275277853012085 img loss 1.3498653173446655 img loss 1.1407389640808105 {'loss': 1.2537, 'grad_norm': 0.21308539807796478, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.195810317993164 img loss 1.2059986591339111 img loss 1.1711690425872803 img loss 1.285976767539978 img loss 1.1804094314575195 img loss 1.2489962577819824 img loss 1.2078838348388672 img loss 1.189824104309082 img loss 1.2704250812530518 img loss 1.1435661315917969 img loss 1.2117725610733032 img loss 1.1980711221694946 img loss 1.2533496618270874 img loss 1.2081807851791382 img loss 1.2400153875350952 img loss 1.2161301374435425 img loss 1.2886208295822144 img loss 1.178138017654419 img loss 1.179965615272522 img loss 1.2402034997940063 img loss 1.2036625146865845 img loss 1.2096420526504517 img loss 1.2040070295333862 img loss 1.265269160270691 img loss 1.1823089122772217 img loss 1.1970982551574707 img loss 1.2496238946914673 img loss 1.2150146961212158 img loss 1.2382668256759644 img loss 1.2167980670928955 img loss 1.2125047445297241 img loss 1.234615683555603 img loss 1.1534525156021118 img loss 1.2932965755462646 img loss 1.2406222820281982 img loss 1.223183035850525 img loss 1.1960810422897339 img loss 1.1702728271484375 img loss 1.1983460187911987 img loss 1.21127188205719 img loss 1.1932003498077393 img loss 1.2489038705825806 img loss 1.2412571907043457 img loss 1.211669683456421 img loss 1.157762885093689 img loss 1.2555394172668457 img loss 1.1902984380722046 img loss 1.170813798904419 img loss 1.1813172101974487 img loss 1.2150920629501343 img loss 1.233293890953064 img loss 1.288499116897583 img loss 1.2304613590240479 img loss 1.1986545324325562 img loss 1.1882084608078003 img loss 1.2318967580795288 img loss 1.189577579498291 img loss 1.2892712354660034 img loss 1.258981466293335 img loss 1.1519216299057007 img loss 1.1995790004730225 img loss 1.2262009382247925 img loss 1.159745216369629 img loss 1.208585262298584 img loss 1.206072449684143 img loss 1.1777575016021729 img loss 1.2825355529785156 img loss 1.2409085035324097 img loss 1.2659029960632324 img loss 1.1953670978546143 img loss 1.1858175992965698 img loss 1.2516506910324097 img loss 1.2230976819992065 img loss 1.2744600772857666 img loss 1.1813093423843384 img loss 1.1725374460220337 img loss 1.1624170541763306 img loss 1.2023670673370361 img loss 1.2248764038085938 img loss 1.1999690532684326 img loss 1.210120677947998 img loss 1.1907744407653809 img loss 1.226548671722412 img loss 1.2446496486663818 img loss 1.1310696601867676 img loss 1.223949670791626 img loss 1.1996898651123047 img loss 1.2538403272628784 img loss 1.1777095794677734 img loss 1.1757407188415527 img loss 1.244279384613037 img loss 1.2052644491195679 img loss 1.2578169107437134 img loss 1.2537024021148682 img loss 1.1725317239761353 img loss 1.293658971786499 img loss 1.2106627225875854 img loss 1.19118332862854 img loss 1.2491791248321533 img loss 1.2270926237106323 img loss 1.2844074964523315 img loss 1.2248420715332031 img loss 1.2182743549346924 img loss 1.2211865186691284 img loss 1.1946038007736206 img loss 1.2353272438049316 img loss 1.1736047267913818img loss 1.2885115146636963 img loss 1.255397081375122 img loss 1.2117048501968384 img loss 1.2093054056167603 img loss 1.2270863056182861 img loss 1.2439615726470947 img loss 1.2048017978668213 img loss 1.1224696636199951 img loss 1.2612903118133545 img loss 1.1974817514419556 img loss 1.194215178489685 img loss 1.1839170455932617 img loss 1.3019298315048218 img loss 1.1685899496078491 img loss 1.2496289014816284 img loss 1.2937767505645752 img loss 1.2702553272247314 img loss 1.243241786956787 img loss 1.2618845701217651 img loss 1.1846026182174683 img loss 1.2337403297424316 {'loss': 1.2179, 'grad_norm': 0.2519403100013733, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3054355382919312 img loss 1.4871903657913208 img loss 1.4012563228607178 img loss 1.424364447593689 img loss 1.55180025100708 img loss 1.382738471031189 img loss 1.2695337533950806 img loss 1.386425495147705 img loss 1.3384464979171753 img loss 1.4689815044403076 img loss 1.4045310020446777 img loss 1.2390153408050537 img loss 1.3742821216583252 img loss 1.2518672943115234 img loss 1.293261170387268 img loss 1.3597453832626343 img loss 1.2978441715240479 img loss 1.3795716762542725 img loss 1.4557605981826782 img loss 1.3467786312103271 img loss 1.387719988822937 img loss 1.327915072441101 img loss 1.4966806173324585 img loss 1.3408280611038208 img loss 1.4126734733581543 img loss 1.2860525846481323 img loss 1.337268352508545 img loss 1.4694465398788452 img loss 1.2934181690216064 img loss 1.4751454591751099 img loss 1.3815289735794067 img loss 1.5257408618927002 img loss 1.2455837726593018 img loss 1.361613154411316 img loss 1.2336056232452393 img loss 1.2911262512207031 img loss 1.382320761680603 img loss 1.4153603315353394 img loss 1.4705958366394043 img loss 1.4844194650650024 img loss 1.2848705053329468 img loss 1.290107011795044 img loss 1.3075147867202759 img loss 1.298583984375 img loss 1.2904366254806519 img loss 1.3826806545257568 img loss 1.3783265352249146 img loss 1.3786194324493408 img loss 1.4218732118606567 img loss 1.347805142402649 img loss 1.376543402671814 img loss 1.4560925960540771 img loss 1.3448184728622437 img loss 1.2368124723434448 img loss 1.3589684963226318 img loss 1.34727942943573 img loss 1.3194711208343506 img loss 1.4468324184417725 img loss 1.373404860496521 img loss 1.3615642786026 img loss 1.3927819728851318 img loss 1.3112715482711792 img loss 1.4355618953704834 img loss 1.284655213356018 img loss 1.4007834196090698 img loss 1.3320565223693848 img loss 1.3902065753936768 img loss 1.3526742458343506 img loss 1.2424380779266357 img loss 1.4817802906036377 img loss 1.3261103630065918 img loss 1.3201690912246704 img loss 1.3535274267196655 img loss 1.346561312675476 img loss 1.3216795921325684 img loss 1.3144420385360718 img loss 1.357820749282837 img loss 1.3943182229995728 img loss 1.4229456186294556 img loss 1.4838377237319946 img loss 1.2417176961898804 img loss 1.3787691593170166 img loss 1.4656749963760376 img loss 1.1873501539230347 img loss 1.3477709293365479 img loss 1.391182541847229 img loss 1.5072239637374878 img loss 1.4132388830184937 img loss 1.3904204368591309 img loss 1.3399544954299927 img loss 1.430957317352295 img loss 1.2744148969650269 img loss 1.2762397527694702 img loss 1.5277177095413208 img loss 1.3845528364181519 img loss 1.2898385524749756 img loss 1.4825282096862793 img loss 1.4087640047073364 img loss 1.4416288137435913 img loss 1.320737600326538 img loss 1.346267819404602 img loss 1.4761189222335815 img loss 1.3410063982009888 img loss 1.3192542791366577 img loss 1.317016363143921 img loss 1.3088388442993164 img loss 1.5478053092956543 img loss 1.3184326887130737 img loss 1.2690171003341675 img loss 1.2910884618759155 img loss 1.4814196825027466 img loss 1.2630666494369507 img loss 1.4071770906448364 img loss 1.426634430885315 img loss 1.316504955291748 img loss 1.3519113063812256 img loss 1.367469310760498 img loss 1.5369993448257446 img loss 1.3099207878112793 img loss 1.3377145528793335 img loss 1.3274388313293457 img loss 1.3749572038650513 img loss 1.3082215785980225 img loss 1.332858920097351 img loss 1.3009477853775024 img loss 1.3407294750213623 img loss 1.2000073194503784 img loss 1.2912756204605103 {'loss': 1.3642, 'grad_norm': 0.440086305141449, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.221369981765747 img loss 1.3053383827209473 img loss 1.16759192943573 img loss 1.1946814060211182 img loss 1.2848862409591675 img loss 1.2531780004501343 img loss 1.2852751016616821 img loss 1.27201509475708 img loss 1.3358396291732788 img loss 1.2788619995117188 img loss 1.2817131280899048 img loss 1.211760401725769 img loss 1.2759379148483276 img loss 1.2167713642120361 img loss 1.2518033981323242 img loss 1.2312119007110596 img loss 1.164373755455017 img loss 1.2484601736068726 img loss 1.2889854907989502 img loss 1.2421913146972656 img loss 1.1960805654525757 img loss 1.3091506958007812 img loss 1.1577198505401611 img loss 1.17239248752594 img loss 1.2706531286239624 img loss 1.2336612939834595 img loss 1.239641785621643 img loss 1.2349238395690918 img loss 1.2795780897140503 img loss 1.238755702972412 img loss 1.207580327987671 img loss 1.2071422338485718 img loss 1.281736135482788 img loss 1.1756540536880493 img loss 1.384639859199524 img loss 1.1740317344665527 img loss 1.2411842346191406 img loss 1.261052131652832 img loss 1.2433782815933228 img loss 1.2584084272384644 img loss 1.1442688703536987 img loss 1.2408714294433594 img loss 1.2264530658721924 img loss 1.168372631072998 img loss 1.24196457862854 img loss 1.174513578414917 img loss 1.1659047603607178 img loss 1.2144646644592285 img loss 1.2651705741882324 img loss 1.237065076828003 img loss 1.2503513097763062 img loss 1.228130578994751 img loss 1.190616250038147 img loss 1.191253662109375 img loss 1.207392930984497 img loss 1.1507668495178223 img loss 1.2014870643615723 img loss 1.2602131366729736 img loss 1.2459381818771362 img loss 1.2205498218536377 img loss 1.2667136192321777 img loss 1.3446282148361206 img loss 1.2720345258712769 img loss 1.260822057723999 img loss 1.2477867603302002 img loss 1.2432949542999268 img loss 1.2317314147949219 img loss 1.3130264282226562 img loss 1.2452396154403687 img loss 1.318519949913025 img loss 1.2711107730865479 img loss 1.236367106437683 img loss 1.2243239879608154 img loss 1.2454524040222168 img loss 1.1848907470703125 img loss 1.2520807981491089 img loss 1.256327509880066 img loss 1.2417373657226562 img loss 1.2777912616729736 img loss 1.2662590742111206 img loss 1.2231320142745972 img loss 1.1514431238174438 img loss 1.2800449132919312 img loss 1.2293099164962769 img loss 1.2386038303375244 img loss 1.246805191040039 img loss 1.2659791707992554 img loss 1.1694353818893433 img loss 1.285302996635437 img loss 1.1946605443954468 img loss 1.298900842666626 img loss 1.2329161167144775 img loss 1.2341781854629517 img loss 1.2607158422470093 img loss 1.2293579578399658 img loss 1.2711361646652222 img loss 1.2263462543487549 img loss 1.2214620113372803 img loss 1.2003544569015503 img loss 1.2534077167510986 img loss 1.1960506439208984 img loss 1.2003225088119507 img loss 1.195441484451294 img loss 1.2478060722351074 img loss 1.2636849880218506 img loss 1.1970133781433105 img loss 1.3029316663742065 img loss 1.2354130744934082 img loss 1.2337385416030884 img loss 1.2373188734054565 img loss 1.200891375541687 img loss 1.2241322994232178 img loss 1.2564953565597534 img loss 1.228445291519165 img loss 1.2333543300628662 img loss 1.2698692083358765 img loss 1.2676081657409668 img loss 1.254839539527893 img loss 1.1796846389770508 img loss 1.311763048171997 img loss 1.2026798725128174 img loss 1.2457929849624634 img loss 1.207679033279419 img loss 1.1863268613815308 img loss 1.233257532119751 img loss 1.2196271419525146 img loss 1.3458298444747925 img loss 1.1880930662155151 {'loss': 1.2382, 'grad_norm': 0.21947084367275238, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2987751960754395 img loss 1.2937805652618408 img loss 1.2780355215072632 img loss 1.2586008310317993 img loss 1.3844588994979858 img loss 1.3967268466949463 img loss 1.3898571729660034 img loss 1.2131789922714233 img loss 1.2249176502227783 img loss 1.3382421731948853 img loss 1.2679708003997803 img loss 1.2702207565307617 img loss 1.2780088186264038 img loss 1.3182258605957031 img loss 1.3016403913497925 img loss 1.3001117706298828 img loss 1.3350307941436768 img loss 1.343302845954895 img loss 1.3856207132339478 img loss 1.2884156703948975 img loss 1.2862563133239746 img loss 1.2915546894073486 img loss 1.3019533157348633 img loss 1.2247473001480103 img loss 1.3024486303329468 img loss 1.2789056301116943 img loss 1.254047155380249 img loss 1.3488065004348755 img loss 1.1875035762786865 img loss 1.2655855417251587 img loss 1.293919324874878 img loss 1.38286292552948 img loss 1.309545874595642 img loss 1.3952068090438843 img loss 1.2901368141174316 img loss 1.3071186542510986 img loss 1.3229362964630127 img loss 1.261807918548584 img loss 1.2858879566192627 img loss 1.2752872705459595 img loss 1.341439127922058 img loss 1.3475728034973145 img loss 1.2707756757736206 img loss 1.2843742370605469 img loss 1.2965869903564453 img loss 1.2004083395004272 img loss 1.2716940641403198 img loss 1.2639201879501343 img loss 1.3304203748703003 img loss 1.2482223510742188 img loss 1.266100287437439 img loss 1.2467195987701416 img loss 1.3316493034362793 img loss 1.231501817703247 img loss 1.3275164365768433 img loss 1.2892775535583496 img loss 1.2924171686172485 img loss 1.3887370824813843 img loss 1.284116506576538 img loss 1.2376899719238281 img loss 1.3248344659805298 img loss 1.369576334953308 img loss 1.2745897769927979 img loss 1.1719470024108887 img loss 1.269303798675537 img loss 1.3356469869613647 img loss 1.257140874862671 img loss 1.3620259761810303 img loss 1.2779669761657715 img loss 1.3267550468444824 img loss 1.2764021158218384 img loss 1.2943063974380493 img loss 1.26548171043396 img loss 1.3465367555618286 img loss 1.279775857925415 img loss 1.3061407804489136 img loss 1.3342164754867554 img loss 1.2620280981063843 img loss 1.3036997318267822 img loss 1.2730754613876343 img loss 1.261529803276062 img loss 1.2673983573913574 img loss 1.372757077217102 img loss 1.3363566398620605 img loss 1.2920377254486084 img loss 1.2876677513122559 img loss 1.2973402738571167 img loss 1.3304089307785034 img loss 1.2965162992477417 img loss 1.3389939069747925 img loss 1.196819543838501 img loss 1.230421781539917 img loss 1.2703393697738647 img loss 1.4295213222503662 img loss 1.1936395168304443 img loss 1.2659229040145874 img loss 1.4368292093276978 img loss 1.232128620147705 img loss 1.285308837890625 img loss 1.2209161520004272 img loss 1.3386958837509155 img loss 1.2874571084976196 img loss 1.1963083744049072 img loss 1.3068913221359253 img loss 1.3635157346725464 img loss 1.3223049640655518 img loss 1.4771294593811035 img loss 1.3260071277618408 img loss 1.305835485458374 img loss 1.2456989288330078 img loss 1.3716453313827515 img loss 1.4349496364593506 img loss 1.3114746809005737 img loss 1.3234943151474 img loss 1.295408844947815 img loss 1.1765028238296509 img loss 1.2750072479248047 img loss 1.268381118774414 img loss 1.2549302577972412 img loss 1.370562195777893 img loss 1.2366085052490234 img loss 1.269773244857788 img loss 1.2560343742370605 img loss 1.3287729024887085 img loss 1.3541330099105835 img loss 1.2724121809005737 img loss 1.3805326223373413 img loss 1.276963472366333 {'loss': 1.2982, 'grad_norm': 0.27499333024024963, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.43474543094635 img loss 1.4162685871124268 img loss 1.4538639783859253 img loss 1.2771917581558228 img loss 1.3132927417755127 img loss 1.349260687828064 img loss 1.3295037746429443 img loss 1.4004193544387817 img loss 1.4470431804656982 img loss 1.368526816368103 img loss 1.316470980644226 img loss 1.2087246179580688 img loss 1.399402141571045 img loss 1.3684117794036865 img loss 1.4074617624282837 img loss 1.3288542032241821 img loss 1.3434425592422485 img loss 1.515651822090149 img loss 1.36259126663208 img loss 1.3786312341690063 img loss 1.382248044013977 img loss 1.4490307569503784 img loss 1.4094550609588623 img loss 1.3944106101989746img loss 1.3655678033828735 img loss 1.417904257774353 img loss 1.3786370754241943 img loss 1.3944430351257324 img loss 1.385739803314209 img loss 1.4184669256210327 img loss 1.4246429204940796 img loss 1.4784375429153442 img loss 1.350685715675354 img loss 1.3099408149719238 img loss 1.3749537467956543 img loss 1.3659080266952515 img loss 1.4159324169158936 img loss 1.4846436977386475 img loss 1.5332540273666382 img loss 1.330934762954712 img loss 1.3777717351913452 img loss 1.496580958366394 img loss 1.2780609130859375 img loss 1.3202680349349976 img loss 1.345415472984314 img loss 1.34610915184021 img loss 1.4539809226989746 img loss 1.5430611371994019 img loss 1.3862826824188232 img loss 1.323952555656433 img loss 1.2975832223892212 img loss 1.3674923181533813 img loss 1.4076361656188965 img loss 1.2508991956710815 img loss 1.3766133785247803 img loss 1.365167260169983 img loss 1.2996842861175537 img loss 1.3050265312194824 img loss 1.3936010599136353 img loss 1.408668875694275 img loss 1.4150513410568237 img loss 1.4006837606430054 img loss 1.3369327783584595 img loss 1.504473328590393 img loss 1.3322645425796509 img loss 1.3532049655914307 img loss 1.3507179021835327 img loss 1.4081977605819702 img loss 1.2553402185440063 img loss 1.3099867105484009 img loss 1.3548047542572021 img loss 1.4938429594039917 img loss 1.3409430980682373 img loss 1.3034052848815918 img loss 1.4057362079620361 img loss 1.2306556701660156 img loss 1.5006461143493652 img loss 1.3998628854751587 img loss 1.3286819458007812 img loss 1.377498745918274 img loss 1.3380913734436035 img loss 1.3046808242797852 img loss 1.3768565654754639 img loss 1.2451040744781494 img loss 1.3388348817825317 img loss 1.3318430185317993 img loss 1.2710069417953491 img loss 1.397316813468933 img loss 1.356577754020691 img loss 1.437181830406189 img loss 1.299486517906189 img loss 1.4929760694503784 img loss 1.3895207643508911 img loss 1.2926520109176636 img loss 1.3444229364395142 img loss 1.2450684309005737 img loss 1.303687572479248 img loss 1.3812741041183472 img loss 1.4445806741714478 img loss 1.3700177669525146 img loss 1.2481210231781006 img loss 1.405525803565979 img loss 1.4747669696807861 img loss 1.325596570968628 img loss 1.2934684753417969 img loss 1.2846473455429077 img loss 1.4671590328216553 img loss 1.495723009109497 img loss 1.2889543771743774 img loss 1.3021520376205444 img loss 1.4541370868682861 img loss 1.3155832290649414 img loss 1.4264419078826904 img loss 1.4008203744888306 img loss 1.4440417289733887 img loss 1.3496381044387817 img loss 1.3614619970321655 img loss 1.4313112497329712 img loss 1.357969880104065 img loss 1.3953564167022705 img loss 1.3174419403076172 img loss 1.4562476873397827 img loss 1.2673966884613037 img loss 1.318967580795288 img loss 1.398345708847046 img loss 1.3001295328140259 img loss 1.363399863243103 img loss 1.4100186824798584 {'loss': 1.3715, 'grad_norm': 0.5623373985290527, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1542530059814453 img loss 1.151681900024414 img loss 1.2179208993911743 img loss 1.2458637952804565 img loss 1.2455257177352905 img loss 1.1575939655303955 img loss 1.2459858655929565 img loss 1.2629964351654053 img loss 1.17608642578125 img loss 1.1668224334716797 img loss 1.1731500625610352 img loss 1.256233811378479 img loss 1.2216579914093018 img loss 1.2529449462890625 img loss 1.1648321151733398 img loss 1.227609634399414 img loss 1.1840507984161377 img loss 1.2113138437271118 img loss 1.16132390499115 img loss 1.114811658859253 img loss 1.1642694473266602 img loss 1.266377329826355 img loss 1.1902107000350952 img loss 1.1083091497421265 img loss 1.1144558191299438 img loss 1.2401107549667358 img loss 1.21721351146698 img loss 1.2041962146759033 img loss 1.2526508569717407 img loss 1.2201497554779053 img loss 1.2663688659667969 img loss 1.1845924854278564 img loss 1.1473255157470703 img loss 1.2131088972091675 img loss 1.14389967918396 img loss 1.173084020614624 img loss 1.1620811223983765 img loss 1.2579169273376465 img loss 1.161202311515808 img loss 1.2278364896774292 img loss 1.2418456077575684 img loss 1.1581352949142456 img loss 1.1141138076782227 img loss 1.2550849914550781 img loss 1.2391204833984375 img loss 1.2009353637695312 img loss 1.250969648361206 img loss 1.1538499593734741 img loss 1.1891237497329712 img loss 1.2406156063079834 img loss 1.2017961740493774 img loss 1.205969214439392 img loss 1.140199899673462 img loss 1.230975866317749 img loss 1.2379026412963867 img loss 1.2692127227783203 img loss 1.2089508771896362 img loss 1.270888090133667 img loss 1.2121484279632568 img loss 1.1401034593582153 img loss 1.2129863500595093 img loss 1.1644572019577026 img loss 1.1536917686462402 img loss 1.217004418373108 img loss 1.2193753719329834 img loss 1.204314112663269img loss 1.2559845447540283 img loss 1.2195498943328857 img loss 1.1819913387298584 img loss 1.171225905418396 img loss 1.2408058643341064 img loss 1.1709026098251343 img loss 1.1713348627090454 img loss 1.2544430494308472 img loss 1.1995800733566284 img loss 1.1306654214859009 img loss 1.2143878936767578 img loss 1.2555338144302368 img loss 1.1785024404525757 img loss 1.150968074798584 img loss 1.180092692375183 img loss 1.2704836130142212 img loss 1.2056559324264526 img loss 1.23270583152771 img loss 1.210141897201538 img loss 1.2774696350097656 img loss 1.1720094680786133 img loss 1.2202142477035522 img loss 1.1429009437561035 img loss 1.22187077999115 img loss 1.247638463973999 img loss 1.3071367740631104 img loss 1.2310161590576172 img loss 1.1183040142059326 img loss 1.1896817684173584 img loss 1.2929131984710693 img loss 1.2280696630477905 img loss 1.262071132659912 img loss 1.1656121015548706 img loss 1.2330775260925293 img loss 1.1759799718856812 img loss 1.2251561880111694 img loss 1.1296831369400024 img loss 1.2069909572601318 img loss 1.310768723487854 img loss 1.1597683429718018img loss 1.2392843961715698 img loss 1.217618703842163 img loss 1.1540228128433228 img loss 1.1258044242858887 img loss 1.1834521293640137 img loss 1.1069029569625854 img loss 1.2439894676208496 img loss 1.2350260019302368 img loss 1.3060898780822754 img loss 1.1922063827514648 img loss 1.2360442876815796 img loss 1.1862897872924805 img loss 1.1760025024414062 img loss 1.343407154083252 img loss 1.1736036539077759 img loss 1.1598224639892578 img loss 1.15813148021698 img loss 1.260259985923767 img loss 1.2165549993515015 img loss 1.1848597526550293 img loss 1.1825387477874756 img loss 1.2315967082977295 {'loss': 1.2044, 'grad_norm': 0.388322651386261, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1436318159103394 img loss 1.2702863216400146 img loss 1.1933722496032715 img loss 1.2076739072799683 img loss 1.232995629310608 img loss 1.2297935485839844 img loss 1.176055908203125 img loss 1.2008823156356812 img loss 1.260352611541748 img loss 1.2289249897003174 img loss 1.2291982173919678 img loss 1.1615135669708252 img loss 1.2098215818405151 img loss 1.1891378164291382 img loss 1.1665312051773071 img loss 1.225282073020935 img loss 1.266174077987671 img loss 1.1791861057281494 img loss 1.185672640800476 img loss 1.1752221584320068 img loss 1.1717612743377686 img loss 1.2601046562194824 img loss 1.2058197259902954 img loss 1.1477634906768799 img loss 1.3140887022018433 img loss 1.2185944318771362 img loss 1.182444453239441 img loss 1.2356376647949219 img loss 1.2082165479660034 img loss 1.3627914190292358 img loss 1.1894185543060303 img loss 1.2251964807510376 img loss 1.2115092277526855 img loss 1.3053317070007324 img loss 1.1811680793762207 img loss 1.256856918334961 img loss 1.2178094387054443 img loss 1.2561091184616089 img loss 1.2875559329986572 img loss 1.228318691253662 img loss 1.1704806089401245 img loss 1.1564489603042603 img loss 1.1270321607589722 img loss 1.1770232915878296 img loss 1.216125726699829 img loss 1.2392711639404297 img loss 1.1767812967300415 img loss 1.2060046195983887 img loss 1.2123849391937256 img loss 1.265052318572998 img loss 1.219016671180725 img loss 1.3196905851364136 img loss 1.255156397819519 img loss 1.261576533317566 img loss 1.2105345726013184 img loss 1.2238203287124634 img loss 1.2113882303237915 img loss 1.2525670528411865 img loss 1.2167497873306274 img loss 1.1965761184692383 img loss 1.268408179283142 img loss 1.2484455108642578 img loss 1.2309796810150146 img loss 1.2083778381347656 img loss 1.1581357717514038 img loss 1.1905250549316406 img loss 1.2203457355499268 img loss 1.1976250410079956 img loss 1.206112265586853 img loss 1.1936336755752563 img loss 1.2222819328308105 img loss 1.2742289304733276 img loss 1.1281647682189941 img loss 1.1610721349716187 img loss 1.3012278079986572 img loss 1.2450283765792847 img loss 1.2151094675064087 img loss 1.2588609457015991 img loss 1.231723666191101 img loss 1.2044051885604858 img loss 1.2231165170669556 img loss 1.1968579292297363 img loss 1.214319109916687 img loss 1.2449700832366943 img loss 1.2920899391174316 img loss 1.2309824228286743 img loss 1.263674259185791 img loss 1.1817529201507568 img loss 1.189300537109375 img loss 1.271523118019104 img loss 1.241319179534912 img loss 1.23204505443573 img loss 1.238379716873169 img loss 1.2313867807388306 img loss 1.1682024002075195 img loss 1.2521928548812866 img loss 1.2347922325134277 img loss 1.3023982048034668 img loss 1.1576178073883057 img loss 1.2235119342803955 img loss 1.1882244348526 img loss 1.1960715055465698 img loss 1.232607126235962 img loss 1.3049063682556152 img loss 1.189894437789917 img loss 1.2006590366363525 img loss 1.2212971448898315 img loss 1.2197449207305908 img loss 1.1679491996765137 img loss 1.2318741083145142 img loss 1.2112936973571777 img loss 1.2409946918487549 img loss 1.3543556928634644 img loss 1.2321046590805054 img loss 1.1713011264801025 img loss 1.2042827606201172 img loss 1.204463243484497 img loss 1.2845538854599 img loss 1.2703557014465332 img loss 1.2504136562347412 img loss 1.2477192878723145 img loss 1.1836915016174316 img loss 1.232790231704712 img loss 1.186165690422058 img loss 1.3078402280807495 img loss 1.187455177307129 img loss 1.1487830877304077 img loss 1.24765145778656 {'loss': 1.2218, 'grad_norm': 0.24790242314338684, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.556052327156067 img loss 1.5153756141662598 img loss 1.681181788444519 img loss 1.4491856098175049 img loss 1.4799047708511353 img loss 1.431593418121338 img loss 1.4594029188156128 img loss 1.4535832405090332 img loss 1.3740617036819458 img loss 1.5921988487243652 img loss 1.5196629762649536 img loss 1.5831254720687866 img loss 1.6063843965530396 img loss 1.4899665117263794 img loss 1.6155352592468262 img loss 1.4773859977722168 img loss 1.5703256130218506 img loss 1.5532890558242798 img loss 1.5005265474319458 img loss 1.4594149589538574 img loss 1.5588033199310303 img loss 1.5019596815109253 img loss 1.4873970746994019 img loss 1.4463527202606201 img loss 1.4562264680862427 img loss 1.5253361463546753 img loss 1.522090196609497 img loss 1.510382890701294 img loss 1.58041250705719 img loss 1.4555448293685913 img loss 1.4072871208190918 img loss 1.60393226146698 img loss 1.4370286464691162 img loss 1.5513912439346313 img loss 1.430591344833374 img loss 1.4890397787094116 img loss 1.5549882650375366 img loss 1.6914408206939697 img loss 1.36339271068573 img loss 1.5106635093688965 img loss 1.4837067127227783 img loss 1.4535199403762817 img loss 1.4797724485397339 img loss 1.5302432775497437 img loss 1.5692250728607178 img loss 1.412385106086731 img loss 1.6241545677185059 img loss 1.533627986907959 img loss 1.4654639959335327 img loss 1.5877336263656616 img loss 1.5781794786453247 img loss 1.432329773902893 img loss 1.5747621059417725 img loss 1.4852168560028076 img loss 1.414238452911377 img loss 1.555404782295227 img loss 1.5385795831680298 img loss 1.562357783317566 img loss 1.4688222408294678 img loss 1.598856806755066 img loss 1.452704906463623 img loss 1.478157639503479 img loss 1.4850410223007202 img loss 1.522274374961853 img loss 1.4492708444595337 img loss 1.5193198919296265 img loss 1.4923845529556274 img loss 1.4078038930892944 img loss 1.5852175951004028 img loss 1.481879472732544 img loss 1.4917274713516235 img loss 1.502191424369812 img loss 1.5011314153671265 img loss 1.6611037254333496 img loss 1.529561161994934 img loss 1.5394147634506226 img loss 1.6063449382781982 img loss 1.6004691123962402 img loss 1.506266474723816 img loss 1.4308439493179321 img loss 1.5651782751083374 img loss 1.492600679397583 img loss 1.5332716703414917 img loss 1.5980063676834106 img loss 1.512693166732788 img loss 1.4769140481948853 img loss 1.4533202648162842 img loss 1.479894757270813 img loss 1.3608832359313965 img loss 1.4691375494003296 img loss 1.468577265739441 img loss 1.5336182117462158 img loss 1.4322892427444458 img loss 1.599799633026123 img loss 1.4523389339447021 img loss 1.6055066585540771 img loss 1.5155028104782104 img loss 1.4665175676345825 img loss 1.5348265171051025 img loss 1.5577375888824463 img loss 1.3460811376571655 img loss 1.4953434467315674 img loss 1.5156664848327637 img loss 1.4632601737976074 img loss 1.4993656873703003 img loss 1.5491716861724854 img loss 1.6613742113113403 img loss 1.5528175830841064 img loss 1.4549776315689087 img loss 1.6228386163711548 img loss 1.3305271863937378 img loss 1.6787916421890259 img loss 1.6893808841705322 img loss 1.4361668825149536 img loss 1.4578808546066284 img loss 1.7117387056350708 img loss 1.5279499292373657 img loss 1.5336936712265015 img loss 1.378629207611084 img loss 1.5256810188293457 img loss 1.529700756072998 img loss 1.5765570402145386 img loss 1.5683561563491821 img loss 1.4851025342941284 img loss 1.4416307210922241 img loss 1.581529140472412 img loss 1.2184644937515259 img loss 1.4374207258224487 {'loss': 1.5111, 'grad_norm': 0.35309284925460815, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1904702186584473 img loss 1.1854286193847656 img loss 1.2952688932418823 img loss 1.2187198400497437 img loss 1.2023696899414062 img loss 1.2062920331954956 img loss 1.175615668296814 img loss 1.2006049156188965 img loss 1.224892497062683 img loss 1.220144271850586 img loss 1.2242761850357056 img loss 1.2605441808700562 img loss 1.2649037837982178 img loss 1.1731079816818237 img loss 1.2589727640151978 img loss 1.25044584274292 img loss 1.2050751447677612 img loss 1.2446569204330444 img loss 1.2255924940109253 img loss 1.247330665588379 img loss 1.1519306898117065 img loss 1.2322933673858643 img loss 1.1596683263778687 img loss 1.238512635231018 img loss 1.1625785827636719 img loss 1.26712965965271 img loss 1.2431159019470215 img loss 1.2333236932754517 img loss 1.2155768871307373 img loss 1.1833548545837402 img loss 1.1907215118408203 img loss 1.2899655103683472 img loss 1.227240800857544 img loss 1.1758359670639038 img loss 1.2453705072402954 img loss 1.3282288312911987 img loss 1.2300442457199097 img loss 1.2368478775024414 img loss 1.2554943561553955 img loss 1.2118031978607178 img loss 1.1825634241104126 img loss 1.1894052028656006 img loss 1.214240312576294 img loss 1.2316325902938843 img loss 1.2012680768966675 img loss 1.2209738492965698 img loss 1.2560129165649414 img loss 1.2383102178573608 img loss 1.1912637948989868 img loss 1.3031469583511353 img loss 1.2158331871032715 img loss 1.2645595073699951 img loss 1.2186012268066406 img loss 1.2344937324523926 img loss 1.1599345207214355 img loss 1.1788488626480103 img loss 1.2219057083129883 img loss 1.178313136100769 img loss 1.2540918588638306 img loss 1.2192471027374268 img loss 1.22178316116333 img loss 1.196078896522522 img loss 1.191218614578247 img loss 1.2030174732208252 img loss 1.253109335899353 img loss 1.2633216381072998 img loss 1.146543025970459 img loss 1.2262061834335327 img loss 1.3126370906829834 img loss 1.093773365020752 img loss 1.3023818731307983 img loss 1.2297685146331787 img loss 1.2262439727783203 img loss 1.224834680557251 img loss 1.2059035301208496 img loss 1.2268166542053223 img loss 1.1903111934661865 img loss 1.2527812719345093 img loss 1.288979411125183 img loss 1.18648362159729 img loss 1.1993242502212524 img loss 1.2335245609283447 img loss 1.272057294845581 img loss 1.2487090826034546 img loss 1.1886115074157715 img loss 1.3121927976608276 img loss 1.2274891138076782 img loss 1.203296422958374 img loss 1.2047021389007568 img loss 1.2414031028747559 img loss 1.1720644235610962 img loss 1.1960780620574951 img loss 1.2039604187011719 img loss 1.2809216976165771 img loss 1.185559630393982 img loss 1.2604005336761475 img loss 1.2327336072921753 img loss 1.2222497463226318 img loss 1.18732488155365 img loss 1.2503314018249512 img loss 1.1702629327774048 img loss 1.2108973264694214 img loss 1.2166413068771362 img loss 1.1477160453796387 img loss 1.1458983421325684 img loss 1.1538615226745605 img loss 1.1500179767608643 img loss 1.2075680494308472 img loss 1.1959724426269531 img loss 1.1625823974609375 img loss 1.261967420578003 img loss 1.2278083562850952 img loss 1.2621639966964722 img loss 1.2559970617294312 img loss 1.3063093423843384 img loss 1.1785576343536377 img loss 1.24556565284729 img loss 1.1950013637542725 img loss 1.2429699897766113 img loss 1.3655908107757568 img loss 1.234443187713623 img loss 1.2495031356811523 img loss 1.2143391370773315 img loss 1.2585970163345337 img loss 1.2184699773788452 img loss 1.252959966659546 img loss 1.1876401901245117 img loss 1.1265671253204346 {'loss': 1.2214, 'grad_norm': 0.263884961605072, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1937720775604248 img loss 1.1508878469467163 img loss 1.127647876739502 img loss 1.2064452171325684 img loss 1.2219609022140503 img loss 1.1730916500091553 img loss 1.1881414651870728 img loss 1.2011245489120483 img loss 1.203616738319397 img loss 1.167803406715393 img loss 1.1582697629928589 img loss 1.2377538681030273 img loss 1.2208337783813477 img loss 1.1569311618804932 img loss 1.1654407978057861 img loss 1.1897133588790894 img loss 1.237747073173523 img loss 1.202425479888916 img loss 1.1738629341125488 img loss 1.1794981956481934 img loss 1.204999566078186 img loss 1.2311235666275024 img loss 1.200049877166748 img loss 1.1895185708999634 img loss 1.1736646890640259 img loss 1.1646554470062256 img loss 1.1927320957183838 img loss 1.174293875694275 img loss 1.1984566450119019 img loss 1.197125792503357 img loss 1.204912543296814 img loss 1.2442795038223267 img loss 1.2185925245285034 img loss 1.198220133781433 img loss 1.1701500415802002 img loss 1.1767497062683105 img loss 1.236952781677246 img loss 1.2013812065124512 img loss 1.154937982559204 img loss 1.2153515815734863 img loss 1.2417608499526978 img loss 1.1773077249526978 img loss 1.1983436346054077 img loss 1.2234963178634644 img loss 1.228488802909851 img loss 1.25704026222229 img loss 1.1537216901779175 img loss 1.1445860862731934 img loss 1.2275934219360352 img loss 1.1933722496032715 img loss 1.1461015939712524 img loss 1.1945892572402954 img loss 1.2300266027450562 img loss 1.1608072519302368 img loss 1.1936588287353516 img loss 1.1369359493255615 img loss 1.1791290044784546 img loss 1.1276347637176514 img loss 1.1903986930847168 img loss 1.1699445247650146 img loss 1.1120059490203857 img loss 1.2655071020126343 img loss 1.2185304164886475 img loss 1.1882588863372803 img loss 1.1362252235412598 img loss 1.2022022008895874 img loss 1.1896549463272095 img loss 1.1744248867034912 img loss 1.206324577331543 img loss 1.1387437582015991 img loss 1.2248482704162598 img loss 1.1726603507995605 img loss 1.22649085521698 img loss 1.2156224250793457 img loss 1.1916043758392334 img loss 1.1621731519699097 img loss 1.1931618452072144 img loss 1.253913164138794 img loss 1.1611862182617188 img loss 1.1612257957458496 img loss 1.1846504211425781 img loss 1.1960843801498413 img loss 1.1634777784347534 img loss 1.2499414682388306 img loss 1.1887352466583252 img loss 1.1579537391662598 img loss 1.1679433584213257 img loss 1.1662739515304565 img loss 1.2365193367004395 img loss 1.1924355030059814 img loss 1.1568524837493896 img loss 1.171170949935913 img loss 1.1899811029434204 img loss 1.2093822956085205 img loss 1.1020747423171997 img loss 1.1760088205337524 img loss 1.1917580366134644 img loss 1.1648067235946655 img loss 1.2490379810333252 img loss 1.1172153949737549 img loss 1.2122974395751953 img loss 1.2056965827941895 img loss 1.1929165124893188 img loss 1.215693712234497 img loss 1.2408512830734253 img loss 1.1697622537612915 img loss 1.1957292556762695 img loss 1.1592590808868408 img loss 1.2209993600845337 img loss 1.1478832960128784 img loss 1.211207389831543 img loss 1.1854463815689087 img loss 1.1881293058395386 img loss 1.191383719444275 img loss 1.2505106925964355 img loss 1.1743066310882568 img loss 1.192492127418518 img loss 1.1820796728134155 img loss 1.1976699829101562 img loss 1.2139862775802612 img loss 1.2605929374694824 img loss 1.2698900699615479 img loss 1.1962571144104004 img loss 1.2309592962265015 img loss 1.1796573400497437 img loss 1.202589750289917 img loss 1.1674867868423462 img loss 1.2473591566085815 {'loss': 1.1923, 'grad_norm': 0.2928731143474579, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2779803276062012 img loss 1.4542367458343506 img loss 1.399574637413025 img loss 1.4223178625106812 img loss 1.5297026634216309 img loss 1.4260592460632324 img loss 1.4173390865325928 img loss 1.4825050830841064 img loss 1.4131238460540771 img loss 1.387045979499817 img loss 1.522886037826538 img loss 1.3320260047912598 img loss 1.4092642068862915 img loss 1.4129979610443115 img loss 1.4640597105026245 img loss 1.4490150213241577 img loss 1.4156941175460815img loss 1.2826088666915894 img loss 1.4053832292556763 img loss 1.4344924688339233 img loss 1.3547483682632446 img loss 1.4556289911270142 img loss 1.406333565711975 img loss 1.3602319955825806 img loss 1.437510371208191 img loss 1.3516205549240112 img loss 1.4339022636413574 img loss 1.4415866136550903 img loss 1.5425573587417603 img loss 1.473656415939331 img loss 1.3379770517349243 img loss 1.378206491470337 img loss 1.4204717874526978 img loss 1.4351627826690674 img loss 1.4165196418762207 img loss 1.3751014471054077 img loss 1.441508173942566 img loss 1.4312573671340942 img loss 1.3471102714538574 img loss 1.4227114915847778 img loss 1.2885680198669434 img loss 1.3715516328811646 img loss 1.4274687767028809 img loss 1.4626086950302124 img loss 1.4807461500167847 img loss 1.5044972896575928 img loss 1.4175225496292114 img loss 1.381684422492981 img loss 1.3266866207122803 img loss 1.276212453842163 img loss 1.3925633430480957 img loss 1.4564814567565918 img loss 1.355588436126709 img loss 1.4018696546554565 img loss 1.3871588706970215 img loss 1.461778998374939 img loss 1.3996034860610962 img loss 1.3588401079177856 img loss 1.356730341911316 img loss 1.481769323348999 img loss 1.4631493091583252 img loss 1.3671000003814697 img loss 1.349118709564209 img loss 1.4200713634490967 img loss 1.3978809118270874 img loss 1.360683798789978 img loss 1.4209206104278564 img loss 1.3447102308273315 img loss 1.4672884941101074 img loss 1.5013219118118286 img loss 1.4833015203475952 img loss 1.3991230726242065 img loss 1.4651589393615723 img loss 1.4598201513290405 img loss 1.2490007877349854 img loss 1.5208985805511475 img loss 1.361476182937622 img loss 1.366576075553894 img loss 1.4070955514907837 img loss 1.43014395236969 img loss 1.2656476497650146 img loss 1.331809639930725 img loss 1.3454782962799072 img loss 1.4288039207458496 img loss 1.396174669265747 img loss 1.3948181867599487 img loss 1.4912766218185425 img loss 1.4748799800872803 img loss 1.3895074129104614 img loss 1.334253191947937 img loss 1.4077092409133911 img loss 1.5207029581069946 img loss 1.3644238710403442 img loss 1.442199945449829 img loss 1.3809000253677368 img loss 1.5439083576202393 img loss 1.4793237447738647 img loss 1.4962295293807983 img loss 1.4278886318206787 img loss 1.3610131740570068 img loss 1.3702360391616821 img loss 1.356268286705017 img loss 1.4509164094924927 img loss 1.3711936473846436 img loss 1.3421822786331177 img loss 1.3997559547424316 img loss 1.402617335319519 img loss 1.3692666292190552 img loss 1.4342243671417236 img loss 1.4158644676208496 img loss 1.4577027559280396 img loss 1.423287272453308 img loss 1.3835690021514893 img loss 1.385166049003601 img loss 1.4352774620056152 img loss 1.3848336935043335 img loss 1.4249422550201416 img loss 1.3766705989837646 img loss 1.345395803451538 img loss 1.3018289804458618 img loss 1.4583337306976318 img loss 1.5585039854049683 img loss 1.465421438217163 img loss 1.4140045642852783 img loss 1.4617955684661865 img loss 1.4385281801223755 img loss 1.394382357597351 img loss 1.4682271480560303 {'loss': 1.4109, 'grad_norm': 0.2605830430984497, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.175290584564209 img loss 1.1929523944854736 img loss 1.1418997049331665 img loss 1.2304067611694336 img loss 1.195278525352478 img loss 1.213098406791687 img loss 1.2382256984710693 img loss 1.210329532623291 img loss 1.126713514328003 img loss 1.1966310739517212 img loss 1.2974265813827515 img loss 1.0754164457321167 img loss 1.1499557495117188img loss 1.1726436614990234 img loss 1.1686769723892212 img loss 1.2059615850448608 img loss 1.1426247358322144 img loss 1.2478229999542236 img loss 1.2192859649658203 img loss 1.1319524049758911 img loss 1.208077311515808 img loss 1.2273424863815308 img loss 1.1871801614761353 img loss 1.339921474456787 img loss 1.244299292564392 img loss 1.2115812301635742 img loss 1.1645469665527344 img loss 1.151537537574768 img loss 1.2485361099243164 img loss 1.2154468297958374 img loss 1.1461652517318726 img loss 1.1388272047042847 img loss 1.2536629438400269 img loss 1.1370599269866943 img loss 1.2499721050262451 img loss 1.2122113704681396 img loss 1.1238678693771362 img loss 1.1559185981750488 img loss 1.2404998540878296 img loss 1.1465224027633667 img loss 1.2444627285003662 img loss 1.1603487730026245 img loss 1.1272547245025635 img loss 1.203729510307312 img loss 1.1650238037109375 img loss 1.2273170948028564 img loss 1.274869680404663 img loss 1.1780771017074585 img loss 1.199533224105835 img loss 1.2018334865570068img loss 1.1379351615905762 img loss 1.202070951461792 img loss 1.1893163919448853 img loss 1.1592044830322266 img loss 1.2404303550720215 img loss 1.2435959577560425 img loss 1.2740888595581055 img loss 1.2304267883300781 img loss 1.2540085315704346 img loss 1.2064800262451172 img loss 1.2851591110229492 img loss 1.2049251794815063 img loss 1.2089686393737793 img loss 1.171353816986084 img loss 1.1556789875030518 img loss 1.227983832359314img loss 1.2164922952651978 img loss 1.1135079860687256 img loss 1.240719199180603 img loss 1.2643146514892578 img loss 1.1925057172775269 img loss 1.202710747718811 img loss 1.1773498058319092 img loss 1.0905611515045166 img loss 1.1638789176940918 img loss 1.2367141246795654 img loss 1.2136526107788086 img loss 1.247372031211853 img loss 1.256662368774414 img loss 1.279009461402893 img loss 1.2169806957244873 img loss 1.1224255561828613 img loss 1.1680816411972046 img loss 1.1792206764221191 img loss 1.2404494285583496 img loss 1.2116245031356812 img loss 1.235317587852478 img loss 1.2105478048324585 img loss 1.0988678932189941 img loss 1.2299561500549316 img loss 1.1827993392944336 img loss 1.1732957363128662 img loss 1.2584316730499268 img loss 1.2578643560409546 img loss 1.2940031290054321 img loss 1.2103058099746704 img loss 1.2589645385742188 img loss 1.1422460079193115 img loss 1.177097201347351 img loss 1.1974385976791382 img loss 1.2099378108978271 img loss 1.1595730781555176 img loss 1.254677653312683 img loss 1.2130193710327148 img loss 1.1522811651229858 img loss 1.1129441261291504 img loss 1.2434492111206055 img loss 1.2134332656860352 img loss 1.19663405418396 img loss 1.189840316772461 img loss 1.2351826429367065 img loss 1.1831860542297363 img loss 1.1680219173431396 img loss 1.2436268329620361 img loss 1.2180880308151245 img loss 1.0960862636566162 img loss 1.1821978092193604 img loss 1.2042360305786133 img loss 1.2704054117202759 img loss 1.1827125549316406 img loss 1.1795896291732788 img loss 1.1827682256698608 img loss 1.2389037609100342 img loss 1.2158399820327759 img loss 1.1590906381607056 img loss 1.1406571865081787 img loss 1.2038885354995728 img loss 1.2665305137634277 {'loss': 1.1999, 'grad_norm': 0.2690655589103699, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4223295450210571 img loss 1.396553635597229 img loss 1.2516756057739258 img loss 1.20694100856781 img loss 1.2538113594055176 img loss 1.2848211526870728 img loss 1.3209692239761353 img loss 1.310595989227295 img loss 1.32071053981781 img loss 1.2851521968841553 img loss 1.3000140190124512 img loss 1.3258037567138672 img loss 1.268227458000183 img loss 1.258497953414917 img loss 1.3246854543685913 img loss 1.2884644269943237 img loss 1.3369100093841553 img loss 1.3620423078536987 img loss 1.2899885177612305 img loss 1.2674496173858643 img loss 1.2449134588241577 img loss 1.3398350477218628 img loss 1.3110032081604004 img loss 1.2720234394073486 img loss 1.2558923959732056 img loss 1.2134745121002197 img loss 1.2974886894226074 img loss 1.269181489944458 img loss 1.304032802581787 img loss 1.2028212547302246 img loss 1.3648723363876343 img loss 1.2221786975860596 img loss 1.2741570472717285 img loss 1.2409629821777344 img loss 1.2849688529968262 img loss 1.3505772352218628 img loss 1.3088326454162598 img loss 1.3003573417663574 img loss 1.2920341491699219 img loss 1.2580137252807617 img loss 1.3021843433380127 img loss 1.26112699508667 img loss 1.2932668924331665 img loss 1.2423251867294312 img loss 1.4516332149505615 img loss 1.3005746603012085 img loss 1.258825659751892 img loss 1.2776293754577637 img loss 1.3803455829620361 img loss 1.28533935546875 img loss 1.4059287309646606 img loss 1.2847766876220703 img loss 1.3571993112564087 img loss 1.3369871377944946 img loss 1.2821900844573975 img loss 1.2434897422790527 img loss 1.2214677333831787 img loss 1.2653626203536987 img loss 1.3430514335632324 img loss 1.2314715385437012 img loss 1.2930647134780884 img loss 1.2827486991882324 img loss 1.2479934692382812 img loss 1.2748525142669678 img loss 1.2843936681747437 img loss 1.3085145950317383 img loss 1.2913795709609985 img loss 1.3657811880111694 img loss 1.2489019632339478 img loss 1.2956584692001343 img loss 1.2744107246398926img loss 1.2795885801315308 img loss 1.242622971534729 img loss 1.2771106958389282 img loss 1.351711630821228 img loss 1.3068841695785522 img loss 1.3344743251800537 img loss 1.3119556903839111 img loss 1.3039458990097046 img loss 1.2374273538589478 img loss 1.3040083646774292 img loss 1.2253639698028564 img loss 1.2986912727355957 img loss 1.2814925909042358 img loss 1.1761260032653809 img loss 1.2755036354064941img loss 1.345638394355774 img loss 1.2479047775268555 img loss 1.351977825164795 img loss 1.2562458515167236 img loss 1.2686039209365845 img loss 1.2971036434173584 img loss 1.2665096521377563 img loss 1.4024293422698975 img loss 1.1822599172592163 img loss 1.2505576610565186 img loss 1.252165675163269 img loss 1.347594976425171 img loss 1.2563961744308472 img loss 1.2783236503601074 img loss 1.293545126914978 img loss 1.3411860466003418 img loss 1.1630306243896484 img loss 1.2338638305664062 img loss 1.2192920446395874 img loss 1.2518399953842163 img loss 1.3038071393966675 img loss 1.2829035520553589 img loss 1.2523361444473267 img loss 1.2833420038223267 img loss 1.221886396408081 img loss 1.2291195392608643img loss 1.2645432949066162 img loss 1.2504533529281616 img loss 1.3509362936019897 img loss 1.2682710886001587 img loss 1.2894883155822754 img loss 1.3189542293548584 img loss 1.3416695594787598 img loss 1.2323930263519287 img loss 1.2474149465560913 img loss 1.309924840927124 img loss 1.2542346715927124 img loss 1.281381368637085 img loss 1.2321105003356934 img loss 1.415727138519287 img loss 1.2251029014587402 img loss 1.2537482976913452 {'loss': 1.2867, 'grad_norm': 0.39100635051727295, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3816291093826294 img loss 1.4470912218093872 img loss 1.3263919353485107 img loss 1.3320190906524658 img loss 1.375531792640686 img loss 1.4515283107757568 img loss 1.3413375616073608 img loss 1.3500922918319702 img loss 1.5115412473678589 img loss 1.3616636991500854 img loss 1.3085793256759644 img loss 1.3793855905532837 img loss 1.37101411819458 img loss 1.367726445198059 img loss 1.3811019659042358 img loss 1.4476994276046753 img loss 1.2629495859146118 img loss 1.3646219968795776 img loss 1.3106067180633545 img loss 1.3049167394638062 img loss 1.3760725259780884 img loss 1.284090280532837 img loss 1.3721725940704346 img loss 1.3499119281768799 img loss 1.4458022117614746 img loss 1.2889652252197266 img loss 1.3798755407333374 img loss 1.361019253730774 img loss 1.2797179222106934 img loss 1.3581368923187256 img loss 1.3021076917648315 img loss 1.2543771266937256 img loss 1.408699631690979 img loss 1.3637919425964355 img loss 1.3875354528427124 img loss 1.2626460790634155 img loss 1.3668397665023804 img loss 1.354099154472351 img loss 1.3666237592697144 img loss 1.3762017488479614 img loss 1.4015253782272339 img loss 1.3576041460037231 img loss 1.296940565109253 img loss 1.3796788454055786 img loss 1.249558925628662 img loss 1.3305784463882446 img loss 1.4392403364181519 img loss 1.3579411506652832 img loss 1.3525669574737549 img loss 1.3011834621429443 img loss 1.267494559288025 img loss 1.313403844833374 img loss 1.4003528356552124 img loss 1.3465486764907837 img loss 1.2339417934417725 img loss 1.3224880695343018 img loss 1.3476574420928955 img loss 1.3940479755401611 img loss 1.371781587600708 img loss 1.3279314041137695 img loss 1.4486581087112427 img loss 1.4018727540969849 img loss 1.3402304649353027 img loss 1.3301434516906738 img loss 1.3852975368499756 img loss 1.302729845046997 img loss 1.3494279384613037 img loss 1.4232624769210815 img loss 1.2667940855026245 img loss 1.3350437879562378 img loss 1.2622867822647095 img loss 1.4070254564285278 img loss 1.3471773862838745 img loss 1.322327971458435 img loss 1.410258173942566 img loss 1.2938772439956665 img loss 1.3879705667495728 img loss 1.2933671474456787 img loss 1.4027342796325684 img loss 1.3838773965835571 img loss 1.377413272857666 img loss 1.3299200534820557 img loss 1.3547415733337402 img loss 1.3999688625335693 img loss 1.2673357725143433 img loss 1.3948739767074585 img loss 1.4835494756698608 img loss 1.3655083179473877 img loss 1.3951313495635986 img loss 1.2870384454727173 img loss 1.3211400508880615 img loss 1.3623690605163574 img loss 1.4027506113052368 img loss 1.4393247365951538 img loss 1.406033992767334 img loss 1.3369299173355103 img loss 1.2977641820907593 img loss 1.3411533832550049 img loss 1.3490477800369263 img loss 1.3782705068588257 img loss 1.4150902032852173 img loss 1.3171539306640625 img loss 1.3174622058868408 img loss 1.227782130241394 img loss 1.4839961528778076 img loss 1.4022974967956543 img loss 1.3527480363845825 img loss 1.3138656616210938 img loss 1.2885994911193848 img loss 1.3606973886489868 img loss 1.351134181022644 img loss 1.3633559942245483 img loss 1.318571925163269 img loss 1.465988278388977 img loss 1.3724957704544067 img loss 1.331121802330017 img loss 1.4596647024154663 img loss 1.1853783130645752 img loss 1.283830165863037 img loss 1.3660796880722046 img loss 1.313891053199768 img loss 1.3159462213516235 img loss 1.3598886728286743 img loss 1.3873114585876465 img loss 1.26344633102417 img loss 1.3439127206802368 img loss 1.3694851398468018 img loss 1.3339512348175049 {'loss': 1.3528, 'grad_norm': 0.29266688227653503, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4044833183288574 img loss 1.4539504051208496 img loss 1.4239944219589233 img loss 1.4754894971847534 img loss 1.4221837520599365 img loss 1.3755360841751099 img loss 1.4672272205352783 img loss 1.483046293258667 img loss 1.4747347831726074 img loss 1.3832498788833618 img loss 1.3234556913375854 img loss 1.28376042842865 img loss 1.4099618196487427 img loss 1.4513885974884033 img loss 1.4261025190353394 img loss 1.3216609954833984 img loss 1.3354954719543457 img loss 1.4854581356048584 img loss 1.6197022199630737 img loss 1.2443082332611084 img loss 1.3841090202331543 img loss 1.4367060661315918 img loss 1.4775652885437012 img loss 1.3548070192337036 img loss 1.2793850898742676 img loss 1.3507962226867676 img loss 1.3166707754135132 img loss 1.3868128061294556 img loss 1.4708009958267212 img loss 1.3079712390899658 img loss 1.379442572593689 img loss 1.3170169591903687 img loss 1.4920207262039185 img loss 1.3309223651885986 img loss 1.348190426826477 img loss 1.404139757156372 img loss 1.2833342552185059 img loss 1.3734804391860962 img loss 1.3971723318099976 img loss 1.2988598346710205 img loss 1.5023773908615112 img loss 1.3275898694992065 img loss 1.3627959489822388 img loss 1.3494362831115723 img loss 1.374651551246643 img loss 1.3373302221298218 img loss 1.2910571098327637 img loss 1.3179166316986084 img loss 1.3385529518127441 img loss 1.525034785270691 img loss 1.3679234981536865 img loss 1.3331272602081299 img loss 1.3816125392913818 img loss 1.3699641227722168 img loss 1.3490936756134033 img loss 1.5277560949325562 img loss 1.4533073902130127 img loss 1.2964801788330078 img loss 1.4272229671478271 img loss 1.4354207515716553 img loss 1.455492377281189 img loss 1.517170786857605 img loss 1.368691086769104 img loss 1.3304862976074219 img loss 1.4163366556167603 img loss 1.3833216428756714 img loss 1.3530343770980835 img loss 1.5234776735305786 img loss 1.4764935970306396 img loss 1.4519597291946411 img loss 1.3789355754852295 img loss 1.4103859663009644 img loss 1.399546504020691 img loss 1.4200403690338135 img loss 1.3913668394088745 img loss 1.2974287271499634 img loss 1.4224594831466675 img loss 1.4046244621276855 img loss 1.4975625276565552 img loss 1.3368483781814575 img loss 1.481216549873352 img loss 1.434179425239563 img loss 1.3942097425460815 img loss 1.3309056758880615 img loss 1.4257464408874512 img loss 1.3561006784439087 img loss 1.4351357221603394 img loss 1.3794190883636475 img loss 1.3915988206863403 img loss 1.3469223976135254 img loss 1.3671807050704956 img loss 1.4261586666107178 img loss 1.4068034887313843 img loss 1.4776219129562378 img loss 1.3539671897888184 img loss 1.2786929607391357 img loss 1.351702332496643 img loss 1.322023630142212 img loss 1.2974685430526733 img loss 1.414883017539978 img loss 1.4354959726333618 img loss 1.3667658567428589 img loss 1.496612310409546 img loss 1.347546100616455 img loss 1.3471465110778809 img loss 1.515689492225647 img loss 1.360103964805603 img loss 1.4656733274459839 img loss 1.3821271657943726 img loss 1.366495966911316 img loss 1.4858325719833374 img loss 1.3048055171966553 img loss 1.4150112867355347 img loss 1.3861477375030518 img loss 1.5430158376693726 img loss 1.3752487897872925 img loss 1.3429806232452393 img loss 1.4094475507736206 img loss 1.4073827266693115 img loss 1.3545275926589966 img loss 1.4483455419540405 img loss 1.3052387237548828 img loss 1.2189247608184814 img loss 1.3837971687316895 img loss 1.365387201309204 img loss 1.3491939306259155 img loss 1.4494401216506958 img loss 1.3865493535995483 {'loss': 1.3926, 'grad_norm': 0.37267300486564636, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3613771200180054 img loss 1.4521324634552002 img loss 1.274472951889038 img loss 1.3857940435409546 img loss 1.3530402183532715 img loss 1.3128330707550049 img loss 1.4262698888778687 img loss 1.3354718685150146 img loss 1.293595790863037 img loss 1.272348165512085 img loss 1.2455761432647705 img loss 1.3411351442337036 img loss 1.3194454908370972 img loss 1.3614933490753174 img loss 1.3561424016952515 img loss 1.3618241548538208 img loss 1.3011013269424438 img loss 1.277092695236206 img loss 1.4419466257095337 img loss 1.3750191926956177 img loss 1.348499059677124 img loss 1.3098270893096924 img loss 1.2662975788116455 img loss 1.3936645984649658 img loss 1.3520163297653198 img loss 1.352780818939209 img loss 1.2522538900375366 img loss 1.2984066009521484 img loss 1.3058909177780151 img loss 1.4193207025527954 img loss 1.2947783470153809 img loss 1.3670636415481567 img loss 1.233519434928894 img loss 1.3638209104537964 img loss 1.2344917058944702 img loss 1.2518080472946167 img loss 1.311838984489441 img loss 1.3026856184005737 img loss 1.3033674955368042 img loss 1.3688232898712158 img loss 1.2388601303100586 img loss 1.5289356708526611 img loss 1.5193848609924316 img loss 1.3400518894195557 img loss 1.490639328956604 img loss 1.3439838886260986 img loss 1.31416916847229 img loss 1.5115959644317627 img loss 1.4033647775650024 img loss 1.3121578693389893 img loss 1.3330579996109009 img loss 1.3452647924423218 img loss 1.2079145908355713 img loss 1.3131273984909058 img loss 1.3514906167984009 img loss 1.3131417036056519 img loss 1.287764549255371 img loss 1.3632344007492065 img loss 1.431946873664856 img loss 1.3104313611984253 img loss 1.286380410194397 img loss 1.2813198566436768 img loss 1.3509539365768433 img loss 1.243264079093933 img loss 1.316481590270996 img loss 1.3748679161071777 img loss 1.3114022016525269 img loss 1.418418049812317img loss 1.3772169351577759 img loss 1.3341947793960571 img loss 1.2836613655090332 img loss 1.2970709800720215 img loss 1.2510019540786743 img loss 1.2729263305664062 img loss 1.3130218982696533 img loss 1.3632148504257202 img loss 1.3478996753692627 img loss 1.2496145963668823 img loss 1.3989585638046265 img loss 1.3014461994171143 img loss 1.3882302045822144 img loss 1.3935176134109497 img loss 1.2251640558242798 img loss 1.3509232997894287 img loss 1.2863155603408813 img loss 1.3737729787826538 img loss 1.1518751382827759 img loss 1.2498602867126465 img loss 1.3122553825378418 img loss 1.3741271495819092 img loss 1.354731798171997 img loss 1.2244137525558472 img loss 1.34791898727417 img loss 1.4082609415054321 img loss 1.284684658050537 img loss 1.2371439933776855 img loss 1.3520328998565674 img loss 1.339798092842102 img loss 1.3715989589691162 img loss 1.335273265838623 img loss 1.469530701637268 img loss 1.3711769580841064 img loss 1.4204427003860474 img loss 1.3438961505889893 img loss 1.2992746829986572 img loss 1.3699270486831665 img loss 1.3033595085144043 img loss 1.3361222743988037 img loss 1.3966329097747803 img loss 1.3642042875289917 img loss 1.333544135093689 img loss 1.3720953464508057 img loss 1.3426331281661987 img loss 1.3524900674819946 img loss 1.392614483833313 img loss 1.3366389274597168 img loss 1.2931432723999023 img loss 1.264421820640564 img loss 1.28749418258667 img loss 1.4448001384735107 img loss 1.366460919380188 img loss 1.3438241481781006 img loss 1.3578602075576782 img loss 1.3495134115219116 img loss 1.367011308670044 img loss 1.3156412839889526 img loss 1.4766786098480225 img loss 1.3981188535690308 {'loss': 1.3378, 'grad_norm': 0.4184630811214447, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.21038818359375 img loss 1.183803915977478 img loss 1.1774545907974243 img loss 1.288913369178772 img loss 1.2319453954696655 img loss 1.154650330543518 img loss 1.2300399541854858 img loss 1.1970833539962769 img loss 1.1577341556549072 img loss 1.1225417852401733 img loss 1.1865043640136719 img loss 1.1281752586364746 img loss 1.2466812133789062 img loss 1.197076439857483 img loss 1.1916663646697998 img loss 1.173003077507019 img loss 1.183691382408142 img loss 1.2166686058044434 img loss 1.2741990089416504 img loss 1.150400996208191 img loss 1.1801925897598267 img loss 1.1967651844024658 img loss 1.2139692306518555 img loss 1.2723807096481323 img loss 1.2476698160171509 img loss 1.1933616399765015 img loss 1.2113876342773438 img loss 1.2736759185791016 img loss 1.2157608270645142 img loss 1.2202253341674805 img loss 1.20808744430542 img loss 1.252048134803772 img loss 1.2351703643798828 img loss 1.176180362701416 img loss 1.1989887952804565 img loss 1.242867112159729 img loss 1.2325925827026367 img loss 1.268188238143921 img loss 1.1552002429962158 img loss 1.2709136009216309 img loss 1.2448619604110718 img loss 1.2050797939300537 img loss 1.246976375579834 img loss 1.214994192123413 img loss 1.1747881174087524 img loss 1.1671631336212158 img loss 1.2030702829360962 img loss 1.116269588470459 img loss 1.1771248579025269 img loss 1.1895840167999268 img loss 1.2585359811782837 img loss 1.1325124502182007 img loss 1.2080249786376953 img loss 1.23500394821167 img loss 1.1835131645202637 img loss 1.2691307067871094 img loss 1.260334849357605 img loss 1.1400761604309082 img loss 1.1675516366958618 img loss 1.2645299434661865 img loss 1.1758825778961182 img loss 1.2388495206832886 img loss 1.297168254852295 img loss 1.2254129648208618 img loss 1.247983694076538 img loss 1.2086191177368164 img loss 1.2121391296386719 img loss 1.2661186456680298 img loss 1.1358047723770142 img loss 1.2041616439819336 img loss 1.2656238079071045 img loss 1.252481460571289 img loss 1.234649419784546 img loss 1.1920299530029297 img loss 1.199485182762146 img loss 1.1520042419433594 img loss 1.2050703763961792 img loss 1.2842562198638916 img loss 1.253133773803711 img loss 1.2426338195800781 img loss 1.2356036901474 img loss 1.1823997497558594 img loss 1.2074230909347534 img loss 1.2131623029708862 img loss 1.1898504495620728 img loss 1.184702754020691 img loss 1.272615909576416 img loss 1.1740673780441284 img loss 1.205094814300537 img loss 1.2190170288085938 img loss 1.27847158908844 img loss 1.1789894104003906 img loss 1.1782459020614624 img loss 1.1883360147476196 img loss 1.1738427877426147 img loss 1.225833773612976 img loss 1.2342276573181152 img loss 1.2392306327819824 img loss 1.2934696674346924 img loss 1.2017083168029785 img loss 1.216784954071045 img loss 1.1742452383041382 img loss 1.2032575607299805 img loss 1.212423324584961 img loss 1.1364561319351196 img loss 1.2042567729949951 img loss 1.1512701511383057 img loss 1.2458527088165283 img loss 1.2475240230560303 img loss 1.2653225660324097 img loss 1.2124841213226318 img loss 1.15212881565094 img loss 1.155922532081604 img loss 1.271320104598999 img loss 1.2179558277130127 img loss 1.118145227432251 img loss 1.2403682470321655 img loss 1.2349518537521362 img loss 1.2159055471420288 img loss 1.200178623199463 img loss 1.2238010168075562 img loss 1.186913013458252 img loss 1.2592800855636597 img loss 1.1223113536834717 img loss 1.2307499647140503 img loss 1.2293295860290527 img loss 1.1861263513565063 img loss 1.2258358001708984 {'loss': 1.2105, 'grad_norm': 0.24711227416992188, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.202927827835083 img loss 1.3266334533691406 img loss 1.2144962549209595 img loss 1.2212375402450562 img loss 1.28005051612854 img loss 1.3184213638305664 img loss 1.32555091381073 img loss 1.3083481788635254 img loss 1.2686820030212402 img loss 1.3548115491867065 img loss 1.2683236598968506 img loss 1.3750494718551636 img loss 1.2458784580230713 img loss 1.2639559507369995 img loss 1.213160753250122 img loss 1.2340562343597412 img loss 1.279480218887329 img loss 1.3601633310317993 img loss 1.3987642526626587 img loss 1.2447094917297363 img loss 1.23313307762146 img loss 1.3145668506622314 img loss 1.265165090560913 img loss 1.1583894491195679 img loss 1.2914212942123413 img loss 1.3170747756958008 img loss 1.2993220090866089 img loss 1.4131996631622314 img loss 1.26949942111969 img loss 1.2032970190048218 img loss 1.2166237831115723 img loss 1.3137931823730469 img loss 1.2158710956573486 img loss 1.3183544874191284 img loss 1.2514445781707764 img loss 1.164081335067749 img loss 1.2008635997772217img loss 1.2418981790542603 img loss 1.250793218612671 img loss 1.193429708480835 img loss 1.2407158613204956 img loss 1.1880383491516113 img loss 1.2884650230407715 img loss 1.338327169418335 img loss 1.3441364765167236 img loss 1.242551326751709 img loss 1.2173807621002197 img loss 1.2585645914077759 img loss 1.2574542760849 img loss 1.2842390537261963 img loss 1.3851978778839111 img loss 1.315405249595642 img loss 1.2877520322799683 img loss 1.1859586238861084 img loss 1.3488773107528687 img loss 1.2750533819198608 img loss 1.2608193159103394 img loss 1.2658147811889648 img loss 1.3316326141357422 img loss 1.2014286518096924 img loss 1.3910773992538452 img loss 1.2429721355438232 img loss 1.2850679159164429 img loss 1.2121282815933228 img loss 1.2193268537521362 img loss 1.3414725065231323 img loss 1.236275315284729 img loss 1.2598850727081299 img loss 1.2861865758895874 img loss 1.3550045490264893 img loss 1.31963050365448 img loss 1.2914947271347046 img loss 1.2449184656143188 img loss 1.2353100776672363 img loss 1.3597315549850464 img loss 1.2698099613189697 img loss 1.1922041177749634 img loss 1.1766103506088257 img loss 1.2721370458602905 img loss 1.362078070640564 img loss 1.3008205890655518 img loss 1.1747617721557617 img loss 1.3626874685287476 img loss 1.233360767364502 img loss 1.2529196739196777 img loss 1.3189057111740112 img loss 1.2584770917892456 img loss 1.276793360710144 img loss 1.2739765644073486 img loss 1.2480201721191406 img loss 1.2281111478805542 img loss 1.2947734594345093 img loss 1.2510842084884644 img loss 1.3017711639404297 img loss 1.332183599472046 img loss 1.254596471786499 img loss 1.2834439277648926 img loss 1.3326056003570557 img loss 1.3718085289001465 img loss 1.2101093530654907 img loss 1.3176376819610596 img loss 1.3217524290084839 img loss 1.2846558094024658 img loss 1.280583381652832 img loss 1.2926056385040283 img loss 1.2430635690689087 img loss 1.3735398054122925 img loss 1.2393665313720703 img loss 1.2744038105010986 img loss 1.2995774745941162 img loss 1.259883165359497 img loss 1.314123511314392 img loss 1.328086495399475 img loss 1.2939118146896362 img loss 1.2711751461029053 img loss 1.2362542152404785 img loss 1.3085174560546875 img loss 1.2672221660614014 img loss 1.3057029247283936 img loss 1.2441271543502808 img loss 1.260240912437439 img loss 1.3468499183654785 img loss 1.2746272087097168 img loss 1.2786369323730469 img loss 1.2157047986984253 img loss 1.273211121559143 img loss 1.315040946006775 img loss 1.3255913257598877 {'loss': 1.2775, 'grad_norm': 0.31992602348327637, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.146244764328003 img loss 1.1903657913208008 img loss 1.231614589691162 img loss 1.206239938735962 img loss 1.2468256950378418 img loss 1.198410987854004 img loss 1.3310950994491577 img loss 1.1819438934326172 img loss 1.1885349750518799 img loss 1.262047529220581 img loss 1.2249186038970947 img loss 1.1777132749557495 img loss 1.2088581323623657 img loss 1.2148897647857666 img loss 1.302407145500183 img loss 1.2193952798843384 img loss 1.1778099536895752 img loss 1.2368595600128174 img loss 1.2625401020050049 img loss 1.2253015041351318 img loss 1.2297818660736084 img loss 1.2488701343536377 img loss 1.2452083826065063 img loss 1.1533859968185425 img loss 1.2151439189910889 img loss 1.2715946435928345 img loss 1.2481149435043335 img loss 1.197737693786621 img loss 1.2363346815109253 img loss 1.197812557220459 img loss 1.2285833358764648 img loss 1.2198607921600342 img loss 1.2174042463302612 img loss 1.2115520238876343 img loss 1.2242887020111084 img loss 1.2345423698425293 img loss 1.2206108570098877 img loss 1.2087068557739258 img loss 1.2199896574020386 img loss 1.16566801071167 img loss 1.1756304502487183 img loss 1.1723229885101318 img loss 1.2445619106292725 img loss 1.2256340980529785 img loss 1.2574138641357422 img loss 1.2975249290466309 img loss 1.1450952291488647 img loss 1.2574599981307983 img loss 1.254112958908081 img loss 1.2951622009277344 img loss 1.2222484350204468 img loss 1.187011480331421 img loss 1.2362431287765503 img loss 1.2330248355865479 img loss 1.3639918565750122 img loss 1.1982612609863281 img loss 1.15165114402771 img loss 1.1030536890029907 img loss 1.2101587057113647 img loss 1.1982076168060303 img loss 1.205026626586914 img loss 1.2434508800506592 img loss 1.2331966161727905 img loss 1.213305950164795 img loss 1.26210618019104 img loss 1.2127153873443604 img loss 1.1613619327545166 img loss 1.242811679840088 img loss 1.2991284132003784 img loss 1.22568941116333 img loss 1.218690276145935 img loss 1.184173583984375 img loss 1.280615210533142 img loss 1.2144927978515625 img loss 1.2284107208251953 img loss 1.22927987575531 img loss 1.2445342540740967 img loss 1.2329508066177368 img loss 1.2349681854248047 img loss 1.19569993019104 img loss 1.2379701137542725 img loss 1.2007184028625488 img loss 1.1978909969329834 img loss 1.252264380455017 img loss 1.2293895483016968 img loss 1.2275434732437134 img loss 1.1968599557876587 img loss 1.215189814567566 img loss 1.1878180503845215 img loss 1.2660768032073975 img loss 1.1928280591964722 img loss 1.1434986591339111 img loss 1.284604787826538 img loss 1.1976646184921265 img loss 1.2380881309509277 img loss 1.2571985721588135 img loss 1.202278971672058 img loss 1.1580398082733154 img loss 1.2286200523376465 img loss 1.2345468997955322 img loss 1.1364996433258057 img loss 1.264849066734314 img loss 1.2549872398376465 img loss 1.2282646894454956 img loss 1.219562292098999 img loss 1.2226572036743164 img loss 1.1962683200836182 img loss 1.3067951202392578 img loss 1.2256851196289062 img loss 1.1567224264144897 img loss 1.2022778987884521 img loss 1.2285706996917725 img loss 1.2158334255218506 img loss 1.2726716995239258 img loss 1.162687063217163 img loss 1.2031038999557495 img loss 1.2050741910934448 img loss 1.192097544670105 img loss 1.2174042463302612 img loss 1.2120747566223145 img loss 1.1845908164978027 img loss 1.2236571311950684 img loss 1.2370777130126953 img loss 1.2398611307144165 img loss 1.1507307291030884 img loss 1.220960259437561 img loss 1.2454403638839722 img loss 1.1912999153137207 {'loss': 1.2202, 'grad_norm': 0.31013569235801697, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1989065408706665 img loss 1.1534912586212158 img loss 1.227463960647583 img loss 1.2517445087432861 img loss 1.2220886945724487 img loss 1.188904047012329 img loss 1.230568766593933 img loss 1.195525884628296 img loss 1.1998614072799683 img loss 1.2452940940856934 img loss 1.1798737049102783 img loss 1.2487432956695557 img loss 1.2359050512313843 img loss 1.2458760738372803 img loss 1.2188262939453125 img loss 1.1420472860336304 img loss 1.1802905797958374 img loss 1.194345235824585 img loss 1.2343801259994507 img loss 1.2475169897079468 img loss 1.1992244720458984 img loss 1.2352161407470703 img loss 1.2072498798370361 img loss 1.2225522994995117 img loss 1.2522109746932983 img loss 1.1683651208877563 img loss 1.215489387512207 img loss 1.2117105722427368 img loss 1.208003044128418 img loss 1.1501939296722412 img loss 1.2532100677490234 img loss 1.211954116821289 img loss 1.210017442703247 img loss 1.1943161487579346 img loss 1.2439358234405518 img loss 1.1683768033981323 img loss 1.1973437070846558 img loss 1.187457799911499 img loss 1.2198275327682495 img loss 1.1431102752685547 img loss 1.265730619430542 img loss 1.2013955116271973 img loss 1.2440829277038574 img loss 1.2080475091934204 img loss 1.2279183864593506img loss 1.2302360534667969 img loss 1.1838992834091187 img loss 1.2218376398086548 img loss 1.2712633609771729 img loss 1.188646674156189 img loss 1.1950123310089111 img loss 1.3588873147964478 img loss 1.1210496425628662 img loss 1.2585492134094238 img loss 1.1821311712265015 img loss 1.1964539289474487 img loss 1.2341980934143066 img loss 1.2410882711410522 img loss 1.2408621311187744 img loss 1.2025837898254395 img loss 1.2173471450805664 img loss 1.2182762622833252 img loss 1.2669168710708618 img loss 1.273497223854065 img loss 1.182307481765747 img loss 1.2082830667495728 img loss 1.2339838743209839 img loss 1.2347252368927002 img loss 1.1540884971618652 img loss 1.2694724798202515img loss 1.2261244058609009 img loss 1.2769449949264526 img loss 1.1525262594223022 img loss 1.2248375415802002 img loss 1.209341287612915 img loss 1.1791460514068604 img loss 1.2673523426055908 img loss 1.1421548128128052 img loss 1.1848924160003662 img loss 1.227325439453125 img loss 1.2028506994247437 img loss 1.207353115081787 img loss 1.2019541263580322 img loss 1.2089353799819946 img loss 1.2289838790893555 img loss 1.1732033491134644 img loss 1.2479352951049805 img loss 1.2227566242218018 img loss 1.1714893579483032 img loss 1.274038553237915 img loss 1.221034288406372 img loss 1.2646780014038086 img loss 1.2700495719909668 img loss 1.1200072765350342 img loss 1.1985187530517578 img loss 1.2392997741699219 img loss 1.2701994180679321 img loss 1.173088550567627 img loss 1.2462589740753174 img loss 1.2368285655975342 img loss 1.2108066082000732 img loss 1.187669038772583 img loss 1.1694748401641846 img loss 1.193632960319519 img loss 1.1542060375213623 img loss 1.245551586151123 img loss 1.2522664070129395 img loss 1.2736716270446777 img loss 1.2618956565856934 img loss 1.2000150680541992 img loss 1.1893970966339111 img loss 1.2271950244903564 img loss 1.2590736150741577 img loss 1.2651877403259277 img loss 1.2873458862304688 img loss 1.17747962474823 img loss 1.1969574689865112 img loss 1.2256219387054443 img loss 1.2357174158096313 img loss 1.2098280191421509 img loss 1.2094740867614746 img loss 1.1725317239761353 img loss 1.2867310047149658 img loss 1.2201427221298218 img loss 1.2187952995300293 img loss 1.1932443380355835 img loss 1.2704479694366455 img loss 1.1747779846191406 {'loss': 1.2165, 'grad_norm': 0.27708134055137634, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4932210445404053 img loss 1.5062466859817505 img loss 1.4840327501296997 img loss 1.4778850078582764 img loss 1.4806767702102661 img loss 1.6695276498794556 img loss 1.6787835359573364 img loss 1.5715487003326416 img loss 1.5761873722076416 img loss 1.5031815767288208 img loss 1.5797511339187622 img loss 1.6774789094924927 img loss 1.4685311317443848 img loss 1.4676239490509033 img loss 1.5372157096862793 img loss 1.6141468286514282 img loss 1.558717966079712 img loss 1.5582751035690308 img loss 1.4381417036056519 img loss 1.4622384309768677 img loss 1.4527512788772583 img loss 1.6171663999557495 img loss 1.7066255807876587 img loss 1.6015568971633911 img loss 1.58860182762146 img loss 1.5630929470062256 img loss 1.6485202312469482 img loss 1.647594928741455 img loss 1.5387113094329834 img loss 1.4744423627853394 img loss 1.4528714418411255 img loss 1.5256308317184448 img loss 1.5797498226165771 img loss 1.5509676933288574 img loss 1.5898655652999878 img loss 1.6349389553070068 img loss 1.5423060655593872 img loss 1.4889625310897827 img loss 1.5025204420089722 img loss 1.509100317955017 img loss 1.7109606266021729 img loss 1.6278049945831299 img loss 1.5560373067855835 img loss 1.7398860454559326 img loss 1.4912842512130737 img loss 1.5863648653030396 img loss 1.4976153373718262 img loss 1.5483863353729248 img loss 1.5675896406173706 img loss 1.63313627243042 img loss 1.6095126867294312 img loss 1.4588897228240967 img loss 1.457028865814209 img loss 1.5010110139846802 img loss 1.5210907459259033 img loss 1.5658050775527954 img loss 1.4098457098007202 img loss 1.4664638042449951 img loss 1.5123885869979858 img loss 1.6245858669281006 img loss 1.555436611175537 img loss 1.591411828994751 img loss 1.6284425258636475 img loss 1.5988526344299316 img loss 1.7362399101257324 img loss 1.6145246028900146 img loss 1.5042412281036377 img loss 1.5743842124938965 img loss 1.4635382890701294 img loss 1.5689090490341187 img loss 1.5954930782318115 img loss 1.5710947513580322 img loss 1.5831166505813599 img loss 1.5928198099136353 img loss 1.6242834329605103 img loss 1.4274095296859741 img loss 1.6547455787658691 img loss 1.458268642425537 img loss 1.4196165800094604 img loss 1.6009548902511597 img loss 1.6259747743606567 img loss 1.5818959474563599 img loss 1.6448804140090942 img loss 1.6369661092758179 img loss 1.6310514211654663 img loss 1.4234541654586792 img loss 1.527929425239563 img loss 1.5837384462356567 img loss 1.4506218433380127 img loss 1.6303727626800537 img loss 1.6008124351501465 img loss 1.6776796579360962 img loss 1.5234124660491943 img loss 1.6647474765777588 img loss 1.5850913524627686 img loss 1.573383092880249 img loss 1.591744303703308 img loss 1.7249963283538818 img loss 1.6426599025726318 img loss 1.8748960494995117 img loss 1.5025016069412231 img loss 1.5310050249099731 img loss 1.7180018424987793 img loss 1.561745285987854 img loss 1.5554969310760498 img loss 1.687720537185669 img loss 1.5389598608016968 img loss 1.479614019393921 img loss 1.594909906387329 img loss 1.6565173864364624 img loss 1.6048070192337036 img loss 1.650673747062683 img loss 1.5770343542099 img loss 1.5794426202774048 img loss 1.5082608461380005 img loss 1.4848214387893677 img loss 1.4975392818450928 img loss 1.4995652437210083 img loss 1.6772472858428955 img loss 1.4650967121124268 img loss 1.5350548028945923 img loss 1.5635178089141846 img loss 1.479702353477478 img loss 1.6135560274124146 img loss 1.5902354717254639 img loss 1.6709753274917603 img loss 1.6039574146270752 img loss 1.630499005317688 {'loss': 1.5682, 'grad_norm': 0.5102717876434326, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.158909797668457 img loss 1.1719672679901123 img loss 1.18272066116333 img loss 1.167875051498413 img loss 1.1864241361618042 img loss 1.1757515668869019 img loss 1.2741693258285522 img loss 1.1603554487228394 img loss 1.1851990222930908 img loss 1.2097316980361938 img loss 1.228156566619873 img loss 1.241159200668335 img loss 1.2248636484146118 img loss 1.2904093265533447 img loss 1.2639381885528564 img loss 1.2545461654663086 img loss 1.2083088159561157 img loss 1.2327665090560913 img loss 1.198256254196167 img loss 1.196437120437622 img loss 1.210202932357788 img loss 1.2755409479141235 img loss 1.14408278465271 img loss 1.1854180097579956 img loss 1.2262725830078125 img loss 1.2144677639007568 img loss 1.2161353826522827 img loss 1.230393648147583 img loss 1.285474181175232 img loss 1.1674327850341797 img loss 1.1402243375778198 img loss 1.1765990257263184 img loss 1.2492847442626953 img loss 1.2274481058120728 img loss 1.204869031906128 img loss 1.2457300424575806 img loss 1.2431118488311768 img loss 1.2078418731689453 img loss 1.1426523923873901 img loss 1.1737850904464722 img loss 1.3130195140838623 img loss 1.1473770141601562 img loss 1.1468827724456787 img loss 1.2371257543563843 img loss 1.1781065464019775 img loss 1.1165883541107178 img loss 1.1851614713668823 img loss 1.2156217098236084 img loss 1.2102792263031006 img loss 1.2533726692199707 img loss 1.133534550666809 img loss 1.1225992441177368 img loss 1.1552176475524902 img loss 1.1522367000579834 img loss 1.1641992330551147 img loss 1.2324308156967163 img loss 1.2752825021743774 img loss 1.1909205913543701 img loss 1.1868704557418823 img loss 1.1775776147842407 img loss 1.1407839059829712 img loss 1.1773583889007568 img loss 1.2558567523956299 img loss 1.3057312965393066 img loss 1.3054920434951782 img loss 1.2133159637451172 img loss 1.2193171977996826 img loss 1.1736420392990112 img loss 1.1371715068817139 img loss 1.1403392553329468 img loss 1.2714275121688843 img loss 1.1904734373092651 img loss 1.160008430480957img loss 1.131685495376587 img loss 1.2490646839141846 img loss 1.1455272436141968 img loss 1.2732547521591187 img loss 1.234583854675293 img loss 1.1401070356369019 img loss 1.2943884134292603 img loss 1.118773102760315 img loss 1.1544837951660156 img loss 1.2100086212158203 img loss 1.2373847961425781 img loss 1.1043885946273804 img loss 1.1871654987335205 img loss 1.1458320617675781 img loss 1.227537751197815 img loss 1.1853548288345337 img loss 1.239722728729248 img loss 1.1044206619262695 img loss 1.1869897842407227 img loss 1.1719787120819092 img loss 1.2942814826965332 img loss 1.1476948261260986 img loss 1.1914284229278564 img loss 1.2255311012268066 img loss 1.1800869703292847 img loss 1.1819775104522705 img loss 1.200458288192749 img loss 1.1916999816894531 img loss 1.1607849597930908 img loss 1.1085631847381592 img loss 1.1848152875900269 img loss 1.2227962017059326 img loss 1.2147135734558105 img loss 1.187102198600769 img loss 1.1123918294906616 img loss 1.1988152265548706 img loss 1.137700080871582 img loss 1.2484428882598877 img loss 1.2084814310073853 img loss 1.159318447113037 img loss 1.1607497930526733 img loss 1.186741828918457 img loss 1.244438886642456 img loss 1.1702938079833984 img loss 1.1889384984970093 img loss 1.1970951557159424 img loss 1.148376703262329 img loss 1.1391524076461792 img loss 1.2147184610366821 img loss 1.220203161239624 img loss 1.1951978206634521 img loss 1.1656889915466309 img loss 1.239460825920105 img loss 1.121823787689209 img loss 1.1736063957214355 {'loss': 1.1963, 'grad_norm': 0.2318193018436432, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.194617748260498 img loss 1.2289044857025146 img loss 1.2983055114746094 img loss 1.1657606363296509 img loss 1.228198766708374 img loss 1.30710768699646 img loss 1.1849021911621094 img loss 1.1966975927352905 img loss 1.2724781036376953 img loss 1.1597555875778198 img loss 1.267991304397583 img loss 1.2954158782958984 img loss 1.2060871124267578 img loss 1.211108922958374 img loss 1.2358832359313965 img loss 1.169136643409729 img loss 1.1593937873840332 img loss 1.1983003616333008 img loss 1.2437142133712769 img loss 1.2503937482833862 img loss 1.2359936237335205 img loss 1.2328001260757446 img loss 1.2665410041809082 img loss 1.163934350013733 img loss 1.249961256980896 img loss 1.2036418914794922 img loss 1.30985426902771 img loss 1.2023329734802246 img loss 1.172282099723816 img loss 1.1426293849945068 img loss 1.258507490158081 img loss 1.2475632429122925 img loss 1.235196590423584 img loss 1.2161216735839844 img loss 1.2056299448013306 img loss 1.247483730316162 img loss 1.1397161483764648 img loss 1.248395562171936 img loss 1.2020081281661987 img loss 1.322180151939392 img loss 1.3269157409667969 img loss 1.1884998083114624 img loss 1.2297521829605103 img loss 1.363979458808899 img loss 1.1640870571136475 img loss 1.2415488958358765 img loss 1.2236535549163818 img loss 1.3189905881881714 img loss 1.4150487184524536 img loss 1.256829023361206 img loss 1.228297472000122 img loss 1.2001956701278687 img loss 1.1876524686813354 img loss 1.3092701435089111 img loss 1.2173789739608765 img loss 1.164524793624878 img loss 1.2722125053405762 img loss 1.2279201745986938 img loss 1.207940697669983 img loss 1.290244460105896 img loss 1.2961578369140625 img loss 1.2986271381378174 img loss 1.173447847366333 img loss 1.38556969165802 img loss 1.1912578344345093 img loss 1.201292634010315 img loss 1.2029732465744019 img loss 1.238783597946167 img loss 1.2116565704345703 img loss 1.2570948600769043 img loss 1.263436198234558 img loss 1.1411738395690918 img loss 1.2164249420166016 img loss 1.2665245532989502 img loss 1.2043380737304688 img loss 1.1926703453063965 img loss 1.1642711162567139 img loss 1.2812343835830688 img loss 1.3903272151947021 img loss 1.187682032585144 img loss 1.2397630214691162 img loss 1.2246674299240112 img loss 1.2706135511398315 img loss 1.2302464246749878 img loss 1.2306575775146484 img loss 1.1871839761734009 img loss 1.2024816274642944 img loss 1.3325178623199463 img loss 1.2426437139511108 img loss 1.20712149143219 img loss 1.2381101846694946 img loss 1.1973192691802979 img loss 1.2993601560592651 img loss 1.19369637966156 img loss 1.2219340801239014 img loss 1.158201813697815 img loss 1.2397884130477905 img loss 1.2531245946884155 img loss 1.2371915578842163 img loss 1.2652807235717773 img loss 1.2154426574707031 img loss 1.233362078666687 img loss 1.158145546913147 img loss 1.1423773765563965 img loss 1.176735281944275 img loss 1.121812343597412 img loss 1.191559076309204 img loss 1.231650948524475 img loss 1.1940264701843262 img loss 1.2042938470840454 img loss 1.2389793395996094 img loss 1.256740927696228 img loss 1.2509915828704834 img loss 1.3298547267913818 img loss 1.2908821105957031 img loss 1.2069391012191772 img loss 1.2181601524353027 img loss 1.2762880325317383 img loss 1.2384977340698242 img loss 1.306614875793457 img loss 1.1720284223556519 img loss 1.1444032192230225 img loss 1.2672185897827148 img loss 1.2197908163070679 img loss 1.2601436376571655 img loss 1.1996997594833374 img loss 1.2031800746917725 img loss 1.3543274402618408 {'loss': 1.2324, 'grad_norm': 0.38870763778686523, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3635287284851074 img loss 1.4168980121612549 img loss 1.359454870223999 img loss 1.453303575515747 img loss 1.485175609588623 img loss 1.3729578256607056 img loss 1.4316952228546143img loss 1.386395812034607 img loss 1.4671692848205566 img loss 1.3505219221115112 img loss 1.3929718732833862 img loss 1.4229222536087036 img loss 1.364112138748169 img loss 1.5162895917892456 img loss 1.3991878032684326 img loss 1.4270575046539307 img loss 1.4057753086090088 img loss 1.454181432723999 img loss 1.390651822090149 img loss 1.4931349754333496img loss 1.3954294919967651 img loss 1.395556092262268 img loss 1.3417189121246338 img loss 1.3618611097335815 img loss 1.3619446754455566 img loss 1.290897011756897 img loss 1.3859479427337646 img loss 1.417894721031189 img loss 1.3294124603271484 img loss 1.3769747018814087 img loss 1.4094998836517334 img loss 1.3256831169128418 img loss 1.3901150226593018 img loss 1.5583447217941284 img loss 1.3280370235443115 img loss 1.4328646659851074 img loss 1.4846941232681274 img loss 1.4507073163986206 img loss 1.4902064800262451 img loss 1.3763374090194702 img loss 1.4006446599960327 img loss 1.3994563817977905 img loss 1.2709696292877197 img loss 1.3174957036972046 img loss 1.4369752407073975 img loss 1.3232039213180542 img loss 1.3359839916229248 img loss 1.415105938911438 img loss 1.4147849082946777 img loss 1.4564975500106812 img loss 1.4220006465911865 img loss 1.3209141492843628 img loss 1.388121485710144 img loss 1.4982545375823975 img loss 1.4067898988723755 img loss 1.4687000513076782 img loss 1.4214415550231934 img loss 1.3946235179901123 img loss 1.3656439781188965 img loss 1.3612418174743652 img loss 1.2683427333831787 img loss 1.3405038118362427 img loss 1.4057663679122925 img loss 1.3759981393814087 img loss 1.3970154523849487 img loss 1.4058133363723755 img loss 1.4045315980911255 img loss 1.329655408859253 img loss 1.3891141414642334 img loss 1.4226582050323486 img loss 1.3467202186584473 img loss 1.374041199684143 img loss 1.39866042137146 img loss 1.4068471193313599 img loss 1.4763319492340088 img loss 1.3733594417572021 img loss 1.320677638053894 img loss 1.384095549583435 img loss 1.3603383302688599 img loss 1.504956841468811 img loss 1.3798142671585083 img loss 1.4368817806243896 img loss 1.39467453956604 img loss 1.372111201286316 img loss 1.4103419780731201 img loss 1.433342695236206 img loss 1.4685825109481812 img loss 1.3347489833831787 img loss 1.4645768404006958 img loss 1.4345784187316895 img loss 1.3626145124435425 img loss 1.3519898653030396 img loss 1.3601677417755127 img loss 1.4454549551010132 img loss 1.3711439371109009 img loss 1.4681499004364014 img loss 1.3122256994247437 img loss 1.419195294380188 img loss 1.510482907295227 img loss 1.416695237159729 img loss 1.39182448387146 img loss 1.3665820360183716 img loss 1.5053811073303223 img loss 1.519509196281433 img loss 1.337561011314392 img loss 1.3466931581497192 img loss 1.3291034698486328 img loss 1.423795461654663 img loss 1.56035315990448 img loss 1.3702218532562256 img loss 1.4465725421905518 img loss 1.440433144569397 img loss 1.3821206092834473 img loss 1.4609246253967285 img loss 1.421039342880249 img loss 1.4351792335510254 img loss 1.5146347284317017 img loss 1.4576796293258667 img loss 1.3700815439224243 img loss 1.4742554426193237 img loss 1.3715431690216064 img loss 1.3268623352050781 img loss 1.370719313621521 img loss 1.3944941759109497 img loss 1.3101539611816406 img loss 1.3782509565353394 img loss 1.2982540130615234 img loss 1.5708225965499878 {'loss': 1.4022, 'grad_norm': 0.3146616518497467, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2380032539367676 img loss 1.2097805738449097 img loss 1.1694438457489014 img loss 1.1805777549743652 img loss 1.2805001735687256 img loss 1.177550196647644 img loss 1.1938414573669434 img loss 1.2115075588226318 img loss 1.261474847793579 img loss 1.1005486249923706 img loss 1.2656888961791992 img loss 1.1309616565704346 img loss 1.14306640625 img loss 1.1548452377319336 img loss 1.1307423114776611 img loss 1.1808509826660156 img loss 1.1771353483200073 img loss 1.154388189315796 img loss 1.215545415878296 img loss 1.23586106300354 img loss 1.2031898498535156 img loss 1.1892385482788086 img loss 1.2240263223648071 img loss 1.2532724142074585 img loss 1.1502405405044556 img loss 1.1359591484069824 img loss 1.2016876935958862 img loss 1.1826107501983643 img loss 1.0751032829284668 img loss 1.2034683227539062 img loss 1.211506724357605 img loss 1.3227365016937256 img loss 1.2376947402954102 img loss 1.1964409351348877 img loss 1.1497530937194824 img loss 1.1560806035995483 img loss 1.235821008682251 img loss 1.1848340034484863 img loss 1.1571844816207886 img loss 1.13508141040802 img loss 1.191851019859314 img loss 1.2196674346923828 img loss 1.260636806488037 img loss 1.2248750925064087 img loss 1.207265853881836 img loss 1.20718252658844 img loss 1.1673839092254639 img loss 1.1831984519958496 img loss 1.1717357635498047 img loss 1.2049288749694824 img loss 1.1949799060821533 img loss 1.2411268949508667 img loss 1.2282212972640991 img loss 1.247281551361084 img loss 1.196862816810608img loss 1.192857027053833 img loss 1.2925598621368408 img loss 1.1878581047058105 img loss 1.1694809198379517 img loss 1.0479848384857178 img loss 1.1889913082122803 img loss 1.2679094076156616 img loss 1.2688881158828735 img loss 1.230809211730957 img loss 1.2543904781341553 img loss 1.2024402618408203 img loss 1.2168269157409668 img loss 1.268907904624939 img loss 1.240800142288208 img loss 1.2652428150177002 img loss 1.2177600860595703 img loss 1.2389037609100342 img loss 1.2300258874893188 img loss 1.2504310607910156 img loss 1.2599048614501953 img loss 1.185042142868042 img loss 1.316431999206543 img loss 1.1966441869735718 img loss 1.2152910232543945 img loss 1.2015987634658813 img loss 1.1547846794128418 img loss 1.2363182306289673 img loss 1.2282663583755493 img loss 1.3746695518493652 img loss 1.1825608015060425 img loss 1.107150912284851 img loss 1.2165100574493408 img loss 1.1600561141967773 img loss 1.1660875082015991 img loss 1.192965030670166 img loss 1.206842303276062 img loss 1.2692983150482178 img loss 1.240415096282959 img loss 1.1993376016616821 img loss 1.1502244472503662 img loss 1.2601898908615112 img loss 1.166911005973816 img loss 1.1835218667984009 img loss 1.230383276939392 img loss 1.250327467918396 img loss 1.16499662399292 img loss 1.1707491874694824 img loss 1.3308390378952026 img loss 1.2242008447647095 img loss 1.2349668741226196 img loss 1.1038901805877686 img loss 1.1166584491729736 img loss 1.153530478477478 img loss 1.2354949712753296 img loss 1.2380112409591675 img loss 1.2604297399520874 img loss 1.1544790267944336 img loss 1.2551082372665405 img loss 1.1529440879821777 img loss 1.2662498950958252 img loss 1.1881744861602783 img loss 1.1552181243896484 img loss 1.134036898612976 img loss 1.230624794960022 img loss 1.2204598188400269 img loss 1.271349310874939 img loss 1.2620654106140137 img loss 1.2443660497665405 img loss 1.2030527591705322 img loss 1.1775414943695068 img loss 1.2471188306808472 img loss 1.267371654510498 img loss 1.1306034326553345 {'loss': 1.2058, 'grad_norm': 0.6073805689811707, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3254972696304321 img loss 1.2700694799423218 img loss 1.245223045349121 img loss 1.3565914630889893 img loss 1.2523523569107056 img loss 1.1991026401519775 img loss 1.234734058380127 img loss 1.2440603971481323 img loss 1.323981761932373 img loss 1.2484325170516968 img loss 1.2822213172912598 img loss 1.2761790752410889 img loss 1.2314507961273193 img loss 1.3042833805084229 img loss 1.3947471380233765 img loss 1.3179329633712769 img loss 1.2207186222076416 img loss 1.2620989084243774 img loss 1.33083975315094 img loss 1.2834339141845703 img loss 1.3660401105880737 img loss 1.2546613216400146 img loss 1.3457016944885254 img loss 1.273386836051941 img loss 1.2737804651260376 img loss 1.2768058776855469 img loss 1.2850291728973389 img loss 1.2835414409637451 img loss 1.299713373184204 img loss 1.3014881610870361 img loss 1.3755539655685425 img loss 1.1937365531921387 img loss 1.3358572721481323 img loss 1.294157862663269 img loss 1.326555848121643 img loss 1.2919517755508423 img loss 1.397903561592102 img loss 1.2827177047729492 img loss 1.2787525653839111 img loss 1.3516219854354858 img loss 1.2760798931121826 img loss 1.1874498128890991 img loss 1.4217344522476196 img loss 1.2992541790008545 img loss 1.3438493013381958 img loss 1.2547733783721924 img loss 1.3858720064163208 img loss 1.2644188404083252 img loss 1.296067237854004 img loss 1.2998099327087402 img loss 1.3452955484390259 img loss 1.3138755559921265 img loss 1.2202813625335693 img loss 1.3465962409973145 img loss 1.2607953548431396 img loss 1.2542469501495361 img loss 1.2616806030273438 img loss 1.2838895320892334 img loss 1.2806529998779297 img loss 1.256335973739624 img loss 1.284929633140564 img loss 1.1966522932052612 img loss 1.2432202100753784 img loss 1.2734405994415283 img loss 1.3333946466445923 img loss 1.216172456741333 img loss 1.317328691482544 img loss 1.3065217733383179 img loss 1.2181284427642822 img loss 1.3013432025909424 img loss 1.2351359128952026 img loss 1.242531418800354 img loss 1.2241560220718384 img loss 1.2705669403076172 img loss 1.2232210636138916 img loss 1.2849184274673462 img loss 1.311910629272461 img loss 1.295159935951233 img loss 1.231121301651001 img loss 1.2691866159439087 img loss 1.2217190265655518 img loss 1.2426221370697021 img loss 1.2169021368026733 img loss 1.2921618223190308 img loss 1.278135895729065 img loss 1.33291494846344 img loss 1.2579950094223022 img loss 1.2706550359725952 img loss 1.2155721187591553 img loss 1.3084665536880493 img loss 1.1915034055709839 img loss 1.2842377424240112 img loss 1.3117607831954956 img loss 1.2436802387237549 img loss 1.2575701475143433 img loss 1.2386071681976318 img loss 1.2125223875045776 img loss 1.3224425315856934 img loss 1.2160497903823853 img loss 1.2694019079208374 img loss 1.3436253070831299 img loss 1.1754968166351318 img loss 1.2405121326446533 img loss 1.2703073024749756 img loss 1.2663681507110596 img loss 1.2782901525497437 img loss 1.2598495483398438 img loss 1.354379415512085 img loss 1.2348908185958862 img loss 1.2557100057601929 img loss 1.2636765241622925 img loss 1.3112027645111084 img loss 1.2699451446533203 img loss 1.224698543548584 img loss 1.292224645614624 img loss 1.1799715757369995 img loss 1.2950103282928467 img loss 1.314813256263733 img loss 1.2976231575012207 img loss 1.2543858289718628 img loss 1.266542673110962 img loss 1.312816858291626 img loss 1.3372174501419067 img loss 1.2717187404632568 img loss 1.2154796123504639 img loss 1.2772060632705688 img loss 1.2912602424621582 img loss 1.2924813032150269 {'loss': 1.2786, 'grad_norm': 0.2142828106880188, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2150856256484985 img loss 1.2828865051269531 img loss 1.3288547992706299 img loss 1.1736856698989868 img loss 1.1921439170837402 img loss 1.3448026180267334 img loss 1.2070306539535522 img loss 1.1834368705749512 img loss 1.2761341333389282 img loss 1.3192002773284912 img loss 1.1707091331481934 img loss 1.2884860038757324 img loss 1.2785282135009766 img loss 1.2882295846939087 img loss 1.2527278661727905 img loss 1.2088295221328735 img loss 1.2535349130630493 img loss 1.1688096523284912 img loss 1.2985504865646362 img loss 1.268493890762329 img loss 1.2305415868759155 img loss 1.2675930261611938 img loss 1.232710599899292 img loss 1.2802886962890625 img loss 1.2374210357666016 img loss 1.3129838705062866 img loss 1.3189241886138916 img loss 1.289777159690857 img loss 1.3821567296981812 img loss 1.343339443206787 img loss 1.2489389181137085 img loss 1.2483748197555542 img loss 1.216443657875061 img loss 1.2703943252563477 img loss 1.3079893589019775 img loss 1.1493046283721924 img loss 1.2124464511871338 img loss 1.2573612928390503 img loss 1.2843420505523682 img loss 1.2341668605804443 img loss 1.244544506072998 img loss 1.260846734046936 img loss 1.2471497058868408 img loss 1.3089730739593506 img loss 1.1855437755584717 img loss 1.2105072736740112 img loss 1.2335151433944702 img loss 1.233428716659546 img loss 1.2965562343597412 img loss 1.2796549797058105 img loss 1.3291975259780884 img loss 1.2778637409210205 img loss 1.2776893377304077 img loss 1.3312033414840698 img loss 1.3209327459335327 img loss 1.1933984756469727 img loss 1.2649677991867065 img loss 1.2631593942642212 img loss 1.2882107496261597 img loss 1.2672157287597656 img loss 1.2105940580368042 img loss 1.2290301322937012 img loss 1.266308069229126 img loss 1.3442928791046143 img loss 1.1956526041030884 img loss 1.2358251810073853 img loss 1.2748866081237793 img loss 1.259140968322754 img loss 1.2996208667755127 img loss 1.2644073963165283 img loss 1.1658949851989746 img loss 1.3717795610427856 img loss 1.2174307107925415 img loss 1.251232385635376 img loss 1.3018548488616943 img loss 1.2050949335098267 img loss 1.3408753871917725 img loss 1.2620352506637573 img loss 1.3091291189193726 img loss 1.3001329898834229 img loss 1.3134045600891113 img loss 1.3070924282073975 img loss 1.3864080905914307 img loss 1.2417678833007812 img loss 1.1830494403839111 img loss 1.2230497598648071 img loss 1.3262375593185425 img loss 1.325764536857605 img loss 1.3154370784759521 img loss 1.3010162115097046 img loss 1.2532703876495361 img loss 1.2254629135131836 img loss 1.2453426122665405 img loss 1.2567193508148193 img loss 1.246429204940796 img loss 1.2423934936523438 img loss 1.277241587638855 img loss 1.2365221977233887 img loss 1.2548553943634033 img loss 1.1762340068817139 img loss 1.2620868682861328 img loss 1.294493556022644 img loss 1.2723414897918701 img loss 1.2763214111328125 img loss 1.263678789138794 img loss 1.1964460611343384 img loss 1.2542065382003784 img loss 1.28773832321167 img loss 1.3436152935028076 img loss 1.240136742591858 img loss 1.276432752609253 img loss 1.1819584369659424 img loss 1.2371972799301147 img loss 1.2371902465820312 img loss 1.2377963066101074 img loss 1.2492303848266602 img loss 1.2939565181732178 img loss 1.1752601861953735 img loss 1.2164418697357178 img loss 1.2022956609725952 img loss 1.3587276935577393 img loss 1.2290716171264648 img loss 1.2803958654403687 img loss 1.220223307609558 img loss 1.2327743768692017 img loss 1.2507057189941406 img loss 1.301151990890503 img loss 1.2404510974884033 {'loss': 1.2609, 'grad_norm': 0.4714966118335724, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2078640460968018 img loss 1.2758432626724243 img loss 1.3393107652664185 img loss 1.2439026832580566 img loss 1.3424142599105835 img loss 1.2846875190734863 img loss 1.3127917051315308 img loss 1.3188819885253906 img loss 1.2751413583755493 img loss 1.3229084014892578 img loss 1.2330186367034912 img loss 1.312154769897461 img loss 1.2227531671524048 img loss 1.2326244115829468 img loss 1.2364954948425293 img loss 1.2720634937286377 img loss 1.3556492328643799 img loss 1.2168102264404297 img loss 1.3238781690597534 img loss 1.2396273612976074 img loss 1.3157689571380615 img loss 1.2275413274765015 img loss 1.282812476158142 img loss 1.4006427526474 img loss 1.2372615337371826 img loss 1.1940380334854126 img loss 1.2473706007003784 img loss 1.1853125095367432 img loss 1.2692346572875977 img loss 1.2781387567520142 img loss 1.1949069499969482 img loss 1.233329176902771img loss 1.284064531326294 img loss 1.3313994407653809 img loss 1.2820180654525757 img loss 1.283315658569336 img loss 1.3726783990859985 img loss 1.320565938949585 img loss 1.2787394523620605 img loss 1.2685425281524658 img loss 1.3555704355239868 img loss 1.2908177375793457 img loss 1.2203651666641235 img loss 1.2513662576675415 img loss 1.2132811546325684 img loss 1.3134737014770508 img loss 1.3224866390228271 img loss 1.3445502519607544 img loss 1.474453091621399 img loss 1.2854578495025635 img loss 1.2886226177215576 img loss 1.350289225578308 img loss 1.2643077373504639 img loss 1.255112886428833 img loss 1.309122085571289 img loss 1.1859333515167236 img loss 1.3363373279571533 img loss 1.1767518520355225 img loss 1.2309173345565796 img loss 1.278656244277954 img loss 1.277271032333374 img loss 1.2756505012512207 img loss 1.2035713195800781 img loss 1.2633920907974243 img loss 1.220348834991455 img loss 1.3588722944259644 img loss 1.2774672508239746 img loss 1.264620304107666 img loss 1.2779934406280518 img loss 1.424805760383606 img loss 1.2673898935317993 img loss 1.3224732875823975 img loss 1.2578529119491577 img loss 1.2839339971542358 img loss 1.3588508367538452 img loss 1.3713780641555786 img loss 1.3326116800308228 img loss 1.2373703718185425 img loss 1.2966426610946655 img loss 1.2940640449523926 img loss 1.179110050201416 img loss 1.3277100324630737 img loss 1.2100952863693237 img loss 1.2989295721054077 img loss 1.444122076034546 img loss 1.3712354898452759 img loss 1.2749675512313843 img loss 1.319732427597046 img loss 1.3163583278656006img loss 1.2491880655288696 img loss 1.1978697776794434 img loss 1.1910972595214844 img loss 1.2813446521759033 img loss 1.3379185199737549 img loss 1.2488199472427368 img loss 1.3539398908615112 img loss 1.3700461387634277 img loss 1.2505651712417603 img loss 1.2430298328399658 img loss 1.222145915031433 img loss 1.1997231245040894 img loss 1.2103970050811768 img loss 1.27982497215271 img loss 1.3887584209442139 img loss 1.2050141096115112 img loss 1.3067270517349243 img loss 1.2327358722686768 img loss 1.3048267364501953 img loss 1.2878429889678955 img loss 1.3292012214660645 img loss 1.4027609825134277 img loss 1.3208065032958984 img loss 1.3584321737289429 img loss 1.2628897428512573 img loss 1.2342246770858765 img loss 1.2497776746749878 img loss 1.2888963222503662 img loss 1.276139736175537 img loss 1.301757574081421 img loss 1.132077693939209 img loss 1.3226866722106934 img loss 1.3592159748077393 img loss 1.2017054557800293 img loss 1.269865870475769 img loss 1.3254334926605225 img loss 1.4370068311691284 img loss 1.3594938516616821 img loss 1.230665922164917 {'loss': 1.2847, 'grad_norm': 0.4271286725997925, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2159900665283203 img loss 1.2571313381195068 img loss 1.3151671886444092 img loss 1.3412916660308838 img loss 1.2722127437591553 img loss 1.2940170764923096 img loss 1.1484628915786743 img loss 1.2924399375915527 img loss 1.173151969909668 img loss 1.2890700101852417 img loss 1.305457592010498 img loss 1.274969458580017 img loss 1.3548280000686646 img loss 1.381557583808899 img loss 1.2494877576828003 img loss 1.2073043584823608 img loss 1.350501537322998 img loss 1.2872543334960938 img loss 1.2791824340820312 img loss 1.3243820667266846 img loss 1.1823755502700806 img loss 1.34592866897583 img loss 1.284141182899475 img loss 1.2714523077011108 img loss 1.2157018184661865 img loss 1.3646985292434692 img loss 1.3333146572113037 img loss 1.338916540145874 img loss 1.3206977844238281 img loss 1.2407753467559814 img loss 1.2743605375289917 img loss 1.2755991220474243 img loss 1.3272970914840698 img loss 1.295499563217163 img loss 1.2336103916168213 img loss 1.3263591527938843 img loss 1.303812026977539 img loss 1.3396408557891846 img loss 1.295763373374939 img loss 1.302632212638855 img loss 1.325547695159912 img loss 1.2333273887634277 img loss 1.2967132329940796 img loss 1.245302438735962 img loss 1.3356083631515503 img loss 1.3452156782150269 img loss 1.2915520668029785 img loss 1.268286943435669 img loss 1.301274061203003 img loss 1.363461971282959 img loss 1.3191463947296143 img loss 1.2502011060714722 img loss 1.265938639640808 img loss 1.30056893825531 img loss 1.2817074060440063 img loss 1.211227297782898 img loss 1.2311073541641235 img loss 1.3593363761901855 img loss 1.3155381679534912 img loss 1.278322696685791 img loss 1.217413306236267 img loss 1.3537532091140747 img loss 1.2629286050796509 img loss 1.3438351154327393 img loss 1.2821595668792725 img loss 1.3118618726730347 img loss 1.2336843013763428 img loss 1.3003782033920288 img loss 1.2955387830734253 img loss 1.261218547821045 img loss 1.3242144584655762 img loss 1.3784760236740112img loss 1.264780044555664 img loss 1.1941924095153809 img loss 1.2821216583251953 img loss 1.235776424407959 img loss 1.2172597646713257 img loss 1.3173974752426147 img loss 1.308309555053711 img loss 1.3195608854293823 img loss 1.2899411916732788 img loss 1.3358795642852783 img loss 1.2095563411712646 img loss 1.2034157514572144 img loss 1.296993613243103 img loss 1.3262070417404175 img loss 1.2344720363616943 img loss 1.3348809480667114 img loss 1.2343062162399292 img loss 1.1938246488571167 img loss 1.2310041189193726 img loss 1.1976768970489502 img loss 1.3188912868499756 img loss 1.315322756767273 img loss 1.3029078245162964 img loss 1.3359007835388184 img loss 1.2925995588302612 img loss 1.247179627418518 img loss 1.3609652519226074 img loss 1.233737587928772 img loss 1.3135101795196533 img loss 1.2349270582199097 img loss 1.2549798488616943 img loss 1.2682163715362549 img loss 1.259785532951355 img loss 1.3191492557525635 img loss 1.297544002532959 img loss 1.239377737045288 img loss 1.2740007638931274 img loss 1.2464321851730347 img loss 1.2843642234802246 img loss 1.326531171798706 img loss 1.3410824537277222 img loss 1.2687793970108032 img loss 1.2758489847183228 img loss 1.3803346157073975 img loss 1.3361841440200806 img loss 1.3024375438690186 img loss 1.2499498128890991 img loss 1.2294273376464844 img loss 1.2913841009140015 img loss 1.2500038146972656 img loss 1.2873045206069946 img loss 1.2108325958251953 img loss 1.3810559511184692 img loss 1.265777587890625 img loss 1.298907995223999 img loss 1.2514300346374512 {'loss': 1.2847, 'grad_norm': 0.24036887288093567, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.083823561668396 img loss 1.1363245248794556 img loss 1.1755632162094116 img loss 1.2614014148712158 img loss 1.2189891338348389 img loss 1.2187182903289795 img loss 1.2048077583312988 img loss 1.174331545829773 img loss 1.1675766706466675 img loss 1.1807588338851929 img loss 1.2066675424575806 img loss 1.2257896661758423 img loss 1.1671276092529297 img loss 1.149198055267334 img loss 1.2147691249847412 img loss 1.229556679725647 img loss 1.245786190032959 img loss 1.1904544830322266 img loss 1.154173493385315 img loss 1.2213339805603027 img loss 1.1686606407165527 img loss 1.24696683883667 img loss 1.150898814201355 img loss 1.2972854375839233 img loss 1.2361418008804321 img loss 1.1518933773040771 img loss 1.192802906036377 img loss 1.2790539264678955 img loss 1.1503407955169678 img loss 1.204910159111023 img loss 1.2777454853057861 img loss 1.206294059753418 img loss 1.1163575649261475 img loss 1.1671093702316284 img loss 1.249558448791504 img loss 1.2118867635726929 img loss 1.2727609872817993 img loss 1.2182633876800537 img loss 1.2407547235488892 img loss 1.177085280418396 img loss 1.149673342704773 img loss 1.1844611167907715 img loss 1.142014503479004 img loss 1.1694941520690918 img loss 1.2219839096069336 img loss 1.1346927881240845 img loss 1.2231955528259277 img loss 1.2849451303482056 img loss 1.2412755489349365 img loss 1.232471227645874 img loss 1.205030083656311 img loss 1.239544153213501 img loss 1.2707271575927734 img loss 1.2686007022857666 img loss 1.2118778228759766 img loss 1.1666655540466309 img loss 1.1496003866195679 img loss 1.1963046789169312 img loss 1.1806557178497314 img loss 1.259326457977295 img loss 1.2644917964935303 img loss 1.1666885614395142 img loss 1.165060043334961 img loss 1.1715757846832275 img loss 1.1746957302093506 img loss 1.1808278560638428 img loss 1.2105460166931152 img loss 1.2462173700332642 img loss 1.1923058032989502 img loss 1.2008484601974487 img loss 1.1817796230316162 img loss 1.2226297855377197 img loss 1.2874648571014404 img loss 1.217926025390625 img loss 1.1725516319274902 img loss 1.1831098794937134 img loss 1.1117753982543945 img loss 1.2198939323425293 img loss 1.2245410680770874 img loss 1.1686913967132568 img loss 1.168866515159607 img loss 1.1947460174560547 img loss 1.0846750736236572 img loss 1.2079471349716187 img loss 1.2903149127960205 img loss 1.1495596170425415 img loss 1.2286453247070312 img loss 1.184899926185608 img loss 1.175187349319458 img loss 1.1919430494308472 img loss 1.1980879306793213 img loss 1.189490556716919 img loss 1.2194528579711914 img loss 1.1643328666687012 img loss 1.3423895835876465 img loss 1.162745475769043 img loss 1.1906565427780151 img loss 1.1648143529891968 img loss 1.221850037574768 img loss 1.1783455610275269 img loss 1.3206074237823486 img loss 1.2609479427337646 img loss 1.1948835849761963 img loss 1.1897461414337158 img loss 1.2272915840148926 img loss 1.1918766498565674 img loss 1.1716129779815674 img loss 1.236681580543518 img loss 1.2559504508972168 img loss 1.303369164466858 img loss 1.175577163696289 img loss 1.2149498462677002 img loss 1.2225584983825684 img loss 1.1335833072662354 img loss 1.2097842693328857 img loss 1.2000160217285156 img loss 1.1261706352233887 img loss 1.1767292022705078 img loss 1.2162481546401978 img loss 1.2358415126800537 img loss 1.1472381353378296 img loss 1.2157007455825806 img loss 1.223426342010498 img loss 1.2806150913238525 img loss 1.2983976602554321 img loss 1.1784085035324097 img loss 1.2385468482971191 img loss 1.233823299407959 {'loss': 1.2041, 'grad_norm': 0.3098335266113281, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4006602764129639 img loss 1.2575905323028564 img loss 1.358434796333313 img loss 1.2415837049484253 img loss 1.2852659225463867 img loss 1.3690149784088135 img loss 1.4703682661056519 img loss 1.352699637413025 img loss 1.335974931716919 img loss 1.369353175163269 img loss 1.3958508968353271 img loss 1.323254108428955 img loss 1.2740917205810547 img loss 1.4440267086029053 img loss 1.3645737171173096 img loss 1.5318588018417358 img loss 1.2802034616470337 img loss 1.295420527458191 img loss 1.4001573324203491 img loss 1.4284683465957642 img loss 1.3782496452331543 img loss 1.3484396934509277 img loss 1.2981514930725098 img loss 1.4792265892028809 img loss 1.217582106590271 img loss 1.3154724836349487 img loss 1.408129096031189 img loss 1.3543320894241333 img loss 1.3284077644348145 img loss 1.3177965879440308 img loss 1.3501132726669312 img loss 1.4055684804916382 img loss 1.3408255577087402 img loss 1.3030190467834473 img loss 1.3853774070739746 img loss 1.3588134050369263 img loss 1.382286787033081 img loss 1.3069424629211426 img loss 1.329822063446045 img loss 1.3107197284698486 img loss 1.4733830690383911 img loss 1.312164306640625 img loss 1.421779990196228 img loss 1.4698470830917358 img loss 1.4757294654846191 img loss 1.376657247543335 img loss 1.4285351037979126 img loss 1.275999665260315 img loss 1.4011086225509644 img loss 1.5467610359191895img loss 1.493510127067566 img loss 1.400185227394104 img loss 1.378832221031189 img loss 1.3901734352111816 img loss 1.3375061750411987 img loss 1.287106990814209 img loss 1.3245099782943726 img loss 1.4155462980270386 img loss 1.3665717840194702 img loss 1.3524222373962402 img loss 1.357673168182373 img loss 1.332599401473999 img loss 1.3623433113098145 img loss 1.4139457941055298 img loss 1.4219624996185303 img loss 1.3991326093673706 img loss 1.3107938766479492 img loss 1.3786286115646362 img loss 1.3775675296783447 img loss 1.2470200061798096 img loss 1.3386356830596924 img loss 1.3483816385269165 img loss 1.4610008001327515 img loss 1.1800590753555298 img loss 1.2396868467330933 img loss 1.3242597579956055 img loss 1.305001974105835 img loss 1.3723559379577637 img loss 1.3086681365966797 img loss 1.352549433708191 img loss 1.3292872905731201 img loss 1.3574433326721191 img loss 1.4132792949676514 img loss 1.2619985342025757 img loss 1.470710039138794 img loss 1.3289740085601807 img loss 1.4565064907073975 img loss 1.4470436573028564 img loss 1.4007105827331543 img loss 1.428625464439392 img loss 1.3526853322982788 img loss 1.3871464729309082 img loss 1.3522733449935913 img loss 1.3319110870361328 img loss 1.3785045146942139 img loss 1.356592059135437 img loss 1.3181813955307007 img loss 1.3179395198822021 img loss 1.3098033666610718 img loss 1.402526617050171 img loss 1.4401441812515259 img loss 1.3110058307647705 img loss 1.3652671575546265 img loss 1.4027200937271118 img loss 1.363769292831421 img loss 1.259502649307251 img loss 1.3025764226913452 img loss 1.3390100002288818 img loss 1.2570781707763672 img loss 1.3592411279678345 img loss 1.3320201635360718 img loss 1.2686585187911987 img loss 1.3017081022262573 img loss 1.4283608198165894 img loss 1.3015620708465576 img loss 1.3254379034042358 img loss 1.3542892932891846 img loss 1.2676811218261719 img loss 1.2796497344970703 img loss 1.4787437915802002 img loss 1.3631742000579834 img loss 1.244105577468872 img loss 1.3145517110824585 img loss 1.2146018743515015 img loss 1.349260926246643 img loss 1.3357163667678833 img loss 1.31492018699646 img loss 1.2058897018432617 {'loss': 1.3542, 'grad_norm': 0.5667031407356262, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2106825113296509 img loss 1.2970532178878784 img loss 1.1908464431762695 img loss 1.2244343757629395 img loss 1.2331640720367432 img loss 1.2347605228424072 img loss 1.3052524328231812 img loss 1.254983901977539 img loss 1.2845677137374878 img loss 1.153684377670288 img loss 1.2102773189544678 img loss 1.2024110555648804 img loss 1.266870141029358 img loss 1.220885992050171 img loss 1.2441649436950684 img loss 1.1914600133895874 img loss 1.1934306621551514 img loss 1.2093685865402222 img loss 1.1986528635025024 img loss 1.207578182220459 img loss 1.2926898002624512 img loss 1.1920913457870483 img loss 1.2403504848480225 img loss 1.1889817714691162 img loss 1.22689688205719 img loss 1.257040023803711 img loss 1.1770358085632324 img loss 1.2489147186279297 img loss 1.2917629480361938 img loss 1.231095314025879 img loss 1.2809293270111084 img loss 1.1363904476165771 img loss 1.2444050312042236 img loss 1.2732722759246826 img loss 1.2009762525558472 img loss 1.22288978099823 img loss 1.3095587491989136 img loss 1.2091604471206665 img loss 1.264803409576416 img loss 1.1629761457443237 img loss 1.273120641708374 img loss 1.2314385175704956 img loss 1.189621925354004 img loss 1.2042182683944702 img loss 1.231870174407959 img loss 1.1814316511154175 img loss 1.1905441284179688 img loss 1.2313497066497803 img loss 1.207975149154663 img loss 1.2684344053268433 img loss 1.2469805479049683 img loss 1.2187551259994507 img loss 1.2648266553878784 img loss 1.285852313041687 img loss 1.2657078504562378 img loss 1.2075860500335693 img loss 1.1973100900650024 img loss 1.2141807079315186 img loss 1.2798092365264893 img loss 1.327887773513794 img loss 1.288165807723999 img loss 1.3005855083465576 img loss 1.2157177925109863 img loss 1.2143301963806152 img loss 1.2477062940597534 img loss 1.189009428024292 img loss 1.2181882858276367 img loss 1.1925899982452393 img loss 1.2328583002090454 img loss 1.2658779621124268 img loss 1.2071990966796875 img loss 1.2181587219238281 img loss 1.2025976181030273 img loss 1.2161086797714233 img loss 1.226058006286621 img loss 1.2373042106628418 img loss 1.2320497035980225 img loss 1.177428126335144 img loss 1.2100062370300293 img loss 1.1924418210983276 img loss 1.2704590559005737 img loss 1.2985568046569824 img loss 1.2563281059265137 img loss 1.1754567623138428 img loss 1.2228519916534424 img loss 1.2493003606796265 img loss 1.3016033172607422 img loss 1.2719522714614868 img loss 1.2126315832138062 img loss 1.2201697826385498 img loss 1.2270244359970093 img loss 1.2054541110992432 img loss 1.2441223859786987 img loss 1.2654953002929688 img loss 1.212545394897461 img loss 1.1527936458587646 img loss 1.234444499015808 img loss 1.2077558040618896 img loss 1.2837026119232178 img loss 1.1811803579330444 img loss 1.229392409324646 img loss 1.2773518562316895 img loss 1.2346197366714478 img loss 1.2338449954986572 img loss 1.1361843347549438 img loss 1.2901538610458374 img loss 1.2511366605758667 img loss 1.2617924213409424 img loss 1.2860116958618164 img loss 1.2790563106536865 img loss 1.2613675594329834 img loss 1.1760221719741821 img loss 1.2248377799987793 img loss 1.1893692016601562 img loss 1.1932684183120728 img loss 1.2058544158935547 img loss 1.2384085655212402 img loss 1.2108485698699951 img loss 1.2437818050384521 img loss 1.2838046550750732 img loss 1.219881296157837 img loss 1.1838288307189941 img loss 1.1972973346710205 img loss 1.2361952066421509 img loss 1.2330764532089233 img loss 1.2719247341156006 img loss 1.24138343334198 img loss 1.2166630029678345 {'loss': 1.2312, 'grad_norm': 0.20970673859119415, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1660254001617432 img loss 1.1903079748153687 img loss 1.210007667541504 img loss 1.2044817209243774 img loss 1.2426761388778687 img loss 1.3029265403747559 img loss 1.2012733221054077 img loss 1.1540002822875977 img loss 1.228707194328308 img loss 1.176816463470459 img loss 1.1677316427230835 img loss 1.178880214691162 img loss 1.178256630897522 img loss 1.2381635904312134 img loss 1.2674355506896973 img loss 1.2759710550308228 img loss 1.1847646236419678 img loss 1.2199468612670898 img loss 1.1577328443527222 img loss 1.1974223852157593 img loss 1.2248873710632324 img loss 1.1824533939361572 img loss 1.1608577966690063 img loss 1.1976121664047241 img loss 1.1463568210601807 img loss 1.1867986917495728 img loss 1.1601556539535522 img loss 1.2537322044372559 img loss 1.226386547088623 img loss 1.151573657989502 img loss 1.1864328384399414 img loss 1.2320889234542847 img loss 1.2519338130950928 img loss 1.2624143362045288 img loss 1.2080639600753784 img loss 1.2075504064559937 img loss 1.1852339506149292 img loss 1.223423719406128 img loss 1.2565828561782837 img loss 1.2027400732040405 img loss 1.2105810642242432 img loss 1.2323070764541626 img loss 1.2366254329681396 img loss 1.1969120502471924 img loss 1.2603693008422852 img loss 1.105090856552124 img loss 1.1924316883087158 img loss 1.302534580230713 img loss 1.161110520362854 img loss 1.2120922803878784 img loss 1.235528826713562 img loss 1.2269880771636963 img loss 1.2046239376068115 img loss 1.188961386680603 img loss 1.1215965747833252 img loss 1.1806398630142212 img loss 1.0888164043426514 img loss 1.2267197370529175 img loss 1.2601737976074219 img loss 1.304625391960144 img loss 1.165377140045166 img loss 1.1792123317718506 img loss 1.229857087135315 img loss 1.1894451379776 img loss 1.2263891696929932 img loss 1.1485495567321777 img loss 1.1437746286392212 img loss 1.218976378440857 img loss 1.179185390472412 img loss 1.2476927042007446 img loss 1.2224361896514893 img loss 1.1621044874191284 img loss 1.1870880126953125 img loss 1.2038465738296509 img loss 1.2156083583831787 img loss 1.1778385639190674 img loss 1.1840921640396118 img loss 1.1788666248321533 img loss 1.1921513080596924 img loss 1.253296136856079 img loss 1.1921532154083252 img loss 1.1042156219482422 img loss 1.2065443992614746 img loss 1.1667351722717285 img loss 1.1841967105865479 img loss 1.2131075859069824 img loss 1.235811710357666 img loss 1.19404935836792 img loss 1.1648355722427368 img loss 1.2328495979309082 img loss 1.2626662254333496 img loss 1.218853235244751 img loss 1.1729837656021118 img loss 1.2354209423065186 img loss 1.1273306608200073 img loss 1.1403319835662842 img loss 1.1816850900650024 img loss 1.1656473875045776 img loss 1.1904840469360352 img loss 1.1964725255966187 img loss 1.3590432405471802 img loss 1.1638168096542358 img loss 1.239490270614624 img loss 1.2221072912216187 img loss 1.1839796304702759 img loss 1.269647479057312 img loss 1.1596884727478027 img loss 1.1954514980316162 img loss 1.2642133235931396 img loss 1.2174921035766602 img loss 1.2013078927993774 img loss 1.1703325510025024 img loss 1.3338408470153809 img loss 1.2069036960601807 img loss 1.1408758163452148 img loss 1.1730682849884033 img loss 1.117934226989746 img loss 1.2550506591796875 img loss 1.232391357421875 img loss 1.1803423166275024 img loss 1.194037675857544 img loss 1.2566523551940918 img loss 1.136575698852539 img loss 1.1909645795822144 img loss 1.1078541278839111 img loss 1.1276053190231323 img loss 1.173370361328125 img loss 1.215680718421936 {'loss': 1.2014, 'grad_norm': 0.36703306436538696, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3672679662704468 img loss 1.297661304473877 img loss 1.385967493057251 img loss 1.2941718101501465 img loss 1.1997708082199097 img loss 1.359096884727478 img loss 1.4362338781356812 img loss 1.4490454196929932 img loss 1.37101149559021 img loss 1.2411460876464844 img loss 1.2442586421966553 img loss 1.3646314144134521 img loss 1.3624924421310425 img loss 1.3678120374679565 img loss 1.4812549352645874 img loss 1.4151933193206787 img loss 1.3798387050628662 img loss 1.3520225286483765 img loss 1.3664300441741943 img loss 1.4316611289978027 img loss 1.4854954481124878 img loss 1.5340899229049683 img loss 1.3532856702804565 img loss 1.2911790609359741 img loss 1.506720781326294 img loss 1.3782637119293213 img loss 1.367673635482788 img loss 1.3664475679397583 img loss 1.4022318124771118 img loss 1.4091334342956543 img loss 1.265157699584961 img loss 1.30265212059021 img loss 1.422166347503662 img loss 1.4429543018341064 img loss 1.4289510250091553 img loss 1.3873848915100098 img loss 1.3749425411224365 img loss 1.4535458087921143 img loss 1.402781367301941 img loss 1.492287039756775 img loss 1.4062294960021973 img loss 1.387439250946045 img loss 1.33689284324646 img loss 1.3496029376983643 img loss 1.3574506044387817 img loss 1.3398817777633667 img loss 1.3064041137695312img loss 1.3406975269317627 img loss 1.3281164169311523 img loss 1.4331852197647095 img loss 1.3904138803482056 img loss 1.3757823705673218 img loss 1.3236744403839111 img loss 1.3545849323272705 img loss 1.3181328773498535 img loss 1.4263848066329956 img loss 1.3342474699020386 img loss 1.3575530052185059 img loss 1.4518545866012573 img loss 1.3333523273468018 img loss 1.2275452613830566 img loss 1.4100744724273682 img loss 1.3757364749908447 img loss 1.2777069807052612 img loss 1.442810297012329 img loss 1.4400250911712646 img loss 1.3797526359558105 img loss 1.5495918989181519 img loss 1.301890254020691 img loss 1.4942371845245361 img loss 1.3364500999450684 img loss 1.2791458368301392 img loss 1.3610783815383911 img loss 1.4733550548553467 img loss 1.3632131814956665 img loss 1.330635905265808 img loss 1.3614376783370972 img loss 1.3918888568878174 img loss 1.3372676372528076 img loss 1.3970601558685303 img loss 1.2811247110366821 img loss 1.3525079488754272 img loss 1.3046340942382812 img loss 1.3120684623718262 img loss 1.420529842376709 img loss 1.3217575550079346 img loss 1.452104926109314 img loss 1.3332862854003906 img loss 1.3278669118881226 img loss 1.3571759462356567 img loss 1.3520609140396118 img loss 1.4197707176208496 img loss 1.3584660291671753 img loss 1.4181287288665771 img loss 1.224983811378479 img loss 1.4137139320373535 img loss 1.467203974723816 img loss 1.2552038431167603 img loss 1.338435411453247 img loss 1.3835300207138062 img loss 1.3700356483459473 img loss 1.4248274564743042 img loss 1.2618166208267212 img loss 1.349007487297058 img loss 1.3454004526138306 img loss 1.3499544858932495img loss 1.430528163909912 img loss 1.323218822479248 img loss 1.313130259513855 img loss 1.406964898109436 img loss 1.2342637777328491 img loss 1.2242611646652222 img loss 1.385810136795044 img loss 1.2865626811981201 img loss 1.3650219440460205 img loss 1.4714882373809814 img loss 1.4516836404800415 img loss 1.371486783027649 img loss 1.4399091005325317 img loss 1.411014199256897 img loss 1.3921291828155518 img loss 1.2569236755371094 img loss 1.3875880241394043 img loss 1.5669416189193726 img loss 1.390243649482727 img loss 1.383193850517273 img loss 1.3740047216415405 img loss 1.4144694805145264 {'loss': 1.371, 'grad_norm': 0.47251859307289124, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1737332344055176 img loss 1.2444394826889038 img loss 1.1482899188995361 img loss 1.2236058712005615 img loss 1.2698301076889038 img loss 1.1701923608779907 img loss 1.2638776302337646 img loss 1.2680928707122803 img loss 1.144567847251892 img loss 1.2483619451522827 img loss 1.205748438835144 img loss 1.2164767980575562 img loss 1.238521933555603 img loss 1.2683634757995605 img loss 1.1818822622299194 img loss 1.1991667747497559 img loss 1.186265230178833 img loss 1.254694938659668 img loss 1.319010615348816 img loss 1.2693356275558472 img loss 1.2877410650253296 img loss 1.2034575939178467 img loss 1.2696291208267212 img loss 1.2354652881622314 img loss 1.2000573873519897 img loss 1.1942017078399658 img loss 1.2902538776397705 img loss 1.158505916595459 img loss 1.1205527782440186 img loss 1.1988874673843384 img loss 1.1995261907577515 img loss 1.2245725393295288 img loss 1.2393739223480225 img loss 1.296301245689392 img loss 1.3411624431610107 img loss 1.2107266187667847 img loss 1.2441132068634033 img loss 1.2781785726547241 img loss 1.2801216840744019 img loss 1.205788016319275 img loss 1.1194056272506714 img loss 1.1533443927764893 img loss 1.2690362930297852 img loss 1.1896750926971436 img loss 1.23905611038208 img loss 1.1999553442001343 img loss 1.2703065872192383 img loss 1.1693311929702759 img loss 1.2567592859268188 img loss 1.1786381006240845 img loss 1.1297762393951416 img loss 1.1848973035812378 img loss 1.2522830963134766 img loss 1.2095369100570679 img loss 1.1952327489852905 img loss 1.1533963680267334 img loss 1.2076128721237183 img loss 1.1368740797042847 img loss 1.2192120552062988 img loss 1.2380021810531616 img loss 1.2549872398376465 img loss 1.2928829193115234 img loss 1.274267554283142 img loss 1.188586950302124 img loss 1.1799930334091187 img loss 1.278103232383728 img loss 1.199628472328186 img loss 1.139846682548523 img loss 1.2325928211212158 img loss 1.2837464809417725 img loss 1.1760799884796143 img loss 1.2653698921203613 img loss 1.2293518781661987 img loss 1.131339430809021 img loss 1.166831374168396 img loss 1.2160794734954834 img loss 1.2838740348815918 img loss 1.2089288234710693 img loss 1.2496355772018433 img loss 1.2180448770523071 img loss 1.167564868927002 img loss 1.2969417572021484 img loss 1.1858395338058472 img loss 1.1876493692398071 img loss 1.276631236076355 img loss 1.27836012840271 img loss 1.2701187133789062 img loss 1.1878352165222168 img loss 1.2328035831451416 img loss 1.2393215894699097 img loss 1.1834707260131836 img loss 1.1158277988433838 img loss 1.2896370887756348 img loss 1.224503755569458 img loss 1.1559042930603027 img loss 1.191515326499939 img loss 1.174239993095398 img loss 1.2443891763687134 img loss 1.1565685272216797 img loss 1.302211046218872 img loss 1.200724482536316 img loss 1.1649858951568604 img loss 1.1557836532592773 img loss 1.2153786420822144 img loss 1.1332303285598755 img loss 1.1861860752105713 img loss 1.1732287406921387 img loss 1.2566347122192383 img loss 1.2531120777130127 img loss 1.2633901834487915 img loss 1.2587523460388184 img loss 1.2398414611816406 img loss 1.1857194900512695 img loss 1.2206405401229858 img loss 1.1368188858032227 img loss 1.265881896018982 img loss 1.2206697463989258 img loss 1.154592752456665 img loss 1.1558688879013062 img loss 1.2680964469909668 img loss 1.183044195175171 img loss 1.2866395711898804 img loss 1.2752997875213623 img loss 1.2933576107025146 img loss 1.2353254556655884 img loss 1.2407482862472534 img loss 1.268329381942749 img loss 1.2708866596221924 {'loss': 1.2198, 'grad_norm': 0.24640630185604095, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.16196608543396 img loss 1.2461239099502563 img loss 1.1896278858184814 img loss 1.135831594467163 img loss 1.2834506034851074 img loss 1.1782870292663574 img loss 1.17634916305542 img loss 1.2279061079025269 img loss 1.2555452585220337 img loss 1.1555086374282837 img loss 1.14082670211792 img loss 1.1494868993759155 img loss 1.2745399475097656 img loss 1.2127326726913452 img loss 1.2126350402832031 img loss 1.1709156036376953 img loss 1.1916414499282837 img loss 1.2338865995407104 img loss 1.1601167917251587 img loss 1.198853850364685 img loss 1.1415166854858398img loss 1.2109884023666382 img loss 1.2345174551010132 img loss 1.2003587484359741 img loss 1.2867519855499268 img loss 1.2780784368515015 img loss 1.1899199485778809 img loss 1.1784123182296753 img loss 1.1936628818511963 img loss 1.1939295530319214 img loss 1.1874185800552368 img loss 1.2698993682861328 img loss 1.188993215560913 img loss 1.1997302770614624 img loss 1.1969020366668701 img loss 1.1842974424362183 img loss 1.2071402072906494 img loss 1.1720380783081055 img loss 1.2435455322265625 img loss 1.1946995258331299 img loss 1.1949636936187744 img loss 1.2332813739776611 img loss 1.159016489982605 img loss 1.1864864826202393 img loss 1.177214503288269 img loss 1.1492557525634766 img loss 1.1407973766326904 img loss 1.1986134052276611 img loss 1.22588312625885 img loss 1.1483759880065918 img loss 1.2652138471603394 img loss 1.1695125102996826 img loss 1.2994247674942017 img loss 1.1378295421600342 img loss 1.2294631004333496 img loss 1.230303168296814 img loss 1.2240289449691772 img loss 1.1634098291397095 img loss 1.2196552753448486 img loss 1.321272373199463 img loss 1.183501124382019 img loss 1.1638946533203125 img loss 1.2251182794570923 img loss 1.1348567008972168 img loss 1.23947274684906 img loss 1.212132215499878 img loss 1.2844154834747314 img loss 1.1776856184005737 img loss 1.176726222038269 img loss 1.1712703704833984 img loss 1.1461206674575806 img loss 1.196255087852478 img loss 1.1703189611434937 img loss 1.2621040344238281 img loss 1.2508511543273926 img loss 1.2131608724594116 img loss 1.2304511070251465 img loss 1.2068804502487183 img loss 1.2166152000427246 img loss 1.1943479776382446 img loss 1.2233341932296753 img loss 1.2201706171035767 img loss 1.2697103023529053 img loss 1.186999797821045 img loss 1.1649785041809082 img loss 1.2018228769302368 img loss 1.2431433200836182 img loss 1.177035927772522 img loss 1.2446492910385132 img loss 1.2004997730255127 img loss 1.2861628532409668 img loss 1.1314780712127686 img loss 1.1041879653930664 img loss 1.1752545833587646 img loss 1.1625696420669556 img loss 1.3063445091247559 img loss 1.1930480003356934 img loss 1.1533584594726562 img loss 1.2386358976364136 img loss 1.1952766180038452 img loss 1.1861813068389893 img loss 1.183104157447815 img loss 1.21401846408844img loss 1.2290191650390625 img loss 1.1721134185791016 img loss 1.1890569925308228 img loss 1.1343673467636108 img loss 1.1993995904922485 img loss 1.1454648971557617 img loss 1.1592309474945068 img loss 1.1765331029891968 img loss 1.1526416540145874 img loss 1.1483639478683472 img loss 1.1738431453704834 img loss 1.1536040306091309 img loss 1.2207144498825073 img loss 1.2375868558883667 img loss 1.1631557941436768 img loss 1.1870850324630737 img loss 1.3049026727676392 img loss 1.1643052101135254 img loss 1.1335318088531494 img loss 1.2324750423431396 img loss 1.237954020500183 img loss 1.1712322235107422 img loss 1.224064826965332 img loss 1.1862410306930542 img loss 1.186821460723877 {'loss': 1.1999, 'grad_norm': 0.2204299122095108, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3589214086532593 img loss 1.535076379776001 img loss 1.5615864992141724 img loss 1.5866029262542725 img loss 1.428162932395935 img loss 1.359544038772583 img loss 1.4385379552841187 img loss 1.4136773347854614 img loss 1.3975746631622314 img loss 1.4198663234710693 img loss 1.282317876815796 img loss 1.4259129762649536 img loss 1.545725703239441 img loss 1.3486181497573853 img loss 1.57658052444458 img loss 1.4800876379013062 img loss 1.5020395517349243 img loss 1.4320062398910522 img loss 1.4875401258468628 img loss 1.4938713312149048 img loss 1.3593882322311401 img loss 1.5080746412277222 img loss 1.4706628322601318 img loss 1.4550789594650269 img loss 1.429120421409607 img loss 1.3755452632904053 img loss 1.415526270866394 img loss 1.4394011497497559 img loss 1.439719319343567 img loss 1.3632206916809082 img loss 1.3755640983581543 img loss 1.346718430519104 img loss 1.4825233221054077 img loss 1.4227112531661987 img loss 1.4457714557647705 img loss 1.388366460800171 img loss 1.4347984790802002 img loss 1.4154143333435059 img loss 1.450173258781433 img loss 1.4575637578964233 img loss 1.3667089939117432 img loss 1.4244029521942139 img loss 1.6931878328323364 img loss 1.504442572593689 img loss 1.4120358228683472 img loss 1.3836458921432495 img loss 1.4293447732925415 img loss 1.5849661827087402 img loss 1.516598105430603 img loss 1.3234299421310425 img loss 1.452156662940979 img loss 1.3950506448745728 img loss 1.391849398612976 img loss 1.592674970626831 img loss 1.4085688591003418 img loss 1.364182710647583 img loss 1.4416700601577759 img loss 1.3496094942092896 img loss 1.5003619194030762 img loss 1.3579617738723755 img loss 1.4902608394622803 img loss 1.4416441917419434 img loss 1.3638216257095337 img loss 1.5023071765899658 img loss 1.359886884689331 img loss 1.4571945667266846 img loss 1.4465066194534302 img loss 1.4121493101119995 img loss 1.3556963205337524 img loss 1.4172990322113037 img loss 1.4635182619094849 img loss 1.5504343509674072 img loss 1.44593346118927 img loss 1.5062495470046997 img loss 1.3631709814071655 img loss 1.441840410232544 img loss 1.4628865718841553 img loss 1.3787750005722046 img loss 1.3843196630477905 img loss 1.343651533126831 img loss 1.4370163679122925 img loss 1.29628324508667 img loss 1.4103586673736572 img loss 1.5262209177017212 img loss 1.3997751474380493 img loss 1.684202790260315 img loss 1.3557649850845337 img loss 1.6053155660629272 img loss 1.4182627201080322 img loss 1.2695642709732056 img loss 1.472278356552124 img loss 1.4703376293182373 img loss 1.4112465381622314 img loss 1.4124433994293213 img loss 1.5101057291030884 img loss 1.4264681339263916 img loss 1.5588690042495728 img loss 1.3793598413467407 img loss 1.4896489381790161 img loss 1.3793007135391235 img loss 1.4224789142608643 img loss 1.437537431716919 img loss 1.3299378156661987 img loss 1.3736728429794312 img loss 1.4630144834518433 img loss 1.4347341060638428 img loss 1.5706411600112915 img loss 1.4156500101089478 img loss 1.4519879817962646 img loss 1.3801449537277222 img loss 1.4059138298034668 img loss 1.512551188468933 img loss 1.5052434206008911 img loss 1.3786213397979736 img loss 1.416458249092102 img loss 1.4553228616714478 img loss 1.40963876247406 img loss 1.3518227338790894 img loss 1.3614386320114136 img loss 1.5163975954055786 img loss 1.4545866250991821img loss 1.4903464317321777 img loss 1.3405166864395142 img loss 1.4031699895858765 img loss 1.4002100229263306 img loss 1.3166106939315796img loss 1.4667116403579712 img loss 1.527222752571106 {'loss': 1.437, 'grad_norm': 0.26035183668136597, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4476855993270874 img loss 1.292364478111267 img loss 1.4123915433883667 img loss 1.2220780849456787 img loss 1.2557283639907837 img loss 1.4163153171539307 img loss 1.2360835075378418 img loss 1.319069504737854 img loss 1.2838425636291504 img loss 1.382060170173645 img loss 1.366158366203308 img loss 1.387976884841919 img loss 1.3586598634719849 img loss 1.32059645652771img loss 1.3824623823165894 img loss 1.2922241687774658 img loss 1.4402896165847778 img loss 1.2787151336669922 img loss 1.233076572418213 img loss 1.33284330368042 img loss 1.443163275718689 img loss 1.3563786745071411 img loss 1.29679274559021 img loss 1.4085580110549927 img loss 1.3035458326339722 img loss 1.2524619102478027 img loss 1.321676254272461 img loss 1.3254389762878418 img loss 1.2013087272644043 img loss 1.2363866567611694 img loss 1.3057365417480469 img loss 1.2983102798461914 img loss 1.314876914024353 img loss 1.4957550764083862 img loss 1.2093586921691895 img loss 1.3193540573120117 img loss 1.3122929334640503 img loss 1.4065849781036377 img loss 1.3253378868103027 img loss 1.3046092987060547 img loss 1.2044904232025146 img loss 1.2958335876464844 img loss 1.2786606550216675 img loss 1.353585124015808 img loss 1.3146332502365112 img loss 1.2531392574310303 img loss 1.3502758741378784 img loss 1.2666232585906982 img loss 1.413896083831787 img loss 1.3694007396697998 img loss 1.3199430704116821 img loss 1.3500193357467651 img loss 1.2572083473205566 img loss 1.3163368701934814 img loss 1.3147859573364258 img loss 1.291931390762329 img loss 1.3052918910980225 img loss 1.4251360893249512 img loss 1.3920429944992065 img loss 1.175432801246643 img loss 1.3786267042160034 img loss 1.2451887130737305 img loss 1.3564906120300293 img loss 1.2693642377853394 img loss 1.275617241859436 img loss 1.2515523433685303 img loss 1.4867945909500122 img loss 1.2493447065353394 img loss 1.3390601873397827 img loss 1.359788417816162 img loss 1.3517391681671143 img loss 1.3510949611663818 img loss 1.3603777885437012 img loss 1.254381537437439 img loss 1.2303392887115479 img loss 1.3271064758300781 img loss 1.3032509088516235 img loss 1.395158290863037 img loss 1.2457900047302246 img loss 1.2353572845458984 img loss 1.357867956161499 img loss 1.2690675258636475 img loss 1.232634425163269 img loss 1.2682340145111084 img loss 1.2285141944885254 img loss 1.2972018718719482 img loss 1.220868706703186 img loss 1.373367190361023 img loss 1.4177229404449463 img loss 1.2991751432418823 img loss 1.3900333642959595 img loss 1.281162977218628 img loss 1.3925416469573975 img loss 1.2312625646591187 img loss 1.323786973953247 img loss 1.3043454885482788 img loss 1.2619634866714478 img loss 1.2241017818450928 img loss 1.2556884288787842 img loss 1.231838583946228 img loss 1.3020882606506348 img loss 1.305509328842163 img loss 1.389901876449585 img loss 1.3889240026474 img loss 1.2859686613082886 img loss 1.2928320169448853 img loss 1.257735252380371 img loss 1.4754832983016968 img loss 1.4721806049346924 img loss 1.2126308679580688 img loss 1.4052923917770386 img loss 1.2136411666870117 img loss 1.2886791229248047 img loss 1.3698556423187256 img loss 1.2584482431411743 img loss 1.3211416006088257 img loss 1.3053592443466187 img loss 1.2886593341827393 img loss 1.283152461051941 img loss 1.3715131282806396 img loss 1.2836214303970337 img loss 1.4103230237960815 img loss 1.2619861364364624 img loss 1.3354095220565796 img loss 1.4101618528366089 img loss 1.4258347749710083 img loss 1.3046982288360596 img loss 1.412245512008667 {'loss': 1.3188, 'grad_norm': 0.3814389109611511, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1351516246795654 img loss 1.1647584438323975 img loss 1.1764684915542603 img loss 1.188263177871704 img loss 1.1663988828659058 img loss 1.2897167205810547 img loss 1.1880006790161133 img loss 1.258943796157837 img loss 1.2190989255905151 img loss 1.1768807172775269 img loss 1.1996816396713257 img loss 1.158079981803894 img loss 1.2206636667251587 img loss 1.150087833404541 img loss 1.1799627542495728 img loss 1.1977620124816895 img loss 1.1687579154968262 img loss 1.197817087173462 img loss 1.1191754341125488 img loss 1.1531376838684082 img loss 1.2188829183578491 img loss 1.2363848686218262 img loss 1.1399668455123901 img loss 1.3766049146652222 img loss 1.173831820487976 img loss 1.2643520832061768 img loss 1.2150300741195679 img loss 1.1427682638168335 img loss 1.2287945747375488 img loss 1.2299840450286865 img loss 1.1333880424499512 img loss 1.2229814529418945 img loss 1.3113107681274414 img loss 1.247934341430664 img loss 1.1889876127243042 img loss 1.1445038318634033 img loss 1.2132757902145386 img loss 1.2090144157409668 img loss 1.1779625415802002 img loss 1.178245186805725 img loss 1.1070756912231445 img loss 1.1734529733657837 img loss 1.212559700012207 img loss 1.158937692642212 img loss 1.2091898918151855 img loss 1.2702763080596924 img loss 1.2622294425964355 img loss 1.1796807050704956 img loss 1.154797077178955 img loss 1.1331065893173218 img loss 1.2258633375167847 img loss 1.1330925226211548 img loss 1.2596505880355835 img loss 1.2187066078186035 img loss 1.1877964735031128 img loss 1.2569634914398193 img loss 1.2251040935516357 img loss 1.213661789894104 img loss 1.169970989227295 img loss 1.2143226861953735 img loss 1.1882972717285156 img loss 1.2212982177734375 img loss 1.2438980340957642 img loss 1.245782732963562 img loss 1.2604329586029053 img loss 1.202634572982788 img loss 1.1960686445236206 img loss 1.2047789096832275 img loss 1.2486919164657593 img loss 1.1936523914337158 img loss 1.1869815587997437 img loss 1.1912373304367065 img loss 1.203732967376709 img loss 1.1643974781036377 img loss 1.2005462646484375 img loss 1.1877933740615845 img loss 1.1944327354431152 img loss 1.181875467300415 img loss 1.2330082654953003 img loss 1.114391565322876 img loss 1.2049874067306519 img loss 1.2416093349456787 img loss 1.2238481044769287 img loss 1.2489773035049438 img loss 1.1922155618667603 img loss 1.2694638967514038 img loss 1.2670351266860962 img loss 1.153166651725769 img loss 1.204817533493042 img loss 1.130431890487671 img loss 1.1659595966339111 img loss 1.2595001459121704 img loss 1.233487606048584 img loss 1.2020025253295898 img loss 1.1825655698776245 img loss 1.2514199018478394 img loss 1.1161253452301025 img loss 1.1870487928390503 img loss 1.14139986038208 img loss 1.2920680046081543 img loss 1.1851906776428223 img loss 1.2139904499053955 img loss 1.2145020961761475 img loss 1.1262435913085938 img loss 1.2667207717895508 img loss 1.2886786460876465 img loss 1.3038325309753418 img loss 1.1596648693084717 img loss 1.2327556610107422 img loss 1.2844700813293457 img loss 1.1633739471435547 img loss 1.2815368175506592 img loss 1.2732934951782227 img loss 1.137156367301941 img loss 1.188607931137085 img loss 1.2029272317886353 img loss 1.1775181293487549 img loss 1.2180469036102295 img loss 1.2474801540374756 img loss 1.171746850013733 img loss 1.2316243648529053 img loss 1.1265523433685303 img loss 1.1789034605026245 img loss 1.1523557901382446 img loss 1.2011665105819702 img loss 1.2249876260757446 img loss 1.1092751026153564 img loss 1.2676604986190796 {'loss': 1.2031, 'grad_norm': 0.26518380641937256, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2338075637817383 img loss 1.2734043598175049 img loss 1.2460983991622925 img loss 1.2478084564208984 img loss 1.2537076473236084 img loss 1.334747076034546 img loss 1.2328299283981323 img loss 1.24528968334198 img loss 1.2775254249572754 img loss 1.2697263956069946 img loss 1.285700798034668 img loss 1.194679856300354 img loss 1.2523044347763062 img loss 1.2583662271499634 img loss 1.2049927711486816 img loss 1.2873073816299438 img loss 1.2093474864959717 img loss 1.2698856592178345 img loss 1.226339340209961 img loss 1.305649995803833 img loss 1.2374286651611328 img loss 1.2475180625915527 img loss 1.3239425420761108 img loss 1.2312641143798828 img loss 1.2109220027923584 img loss 1.2987353801727295 img loss 1.285309076309204 img loss 1.342748761177063 img loss 1.249427318572998 img loss 1.2826879024505615 img loss 1.2959438562393188 img loss 1.2025563716888428 img loss 1.3104166984558105 img loss 1.2852274179458618 img loss 1.2775217294692993 img loss 1.2084678411483765 img loss 1.294559359550476 img loss 1.2053889036178589 img loss 1.2436459064483643 img loss 1.1965606212615967 img loss 1.2415924072265625 img loss 1.2455506324768066 img loss 1.2821629047393799 img loss 1.287644863128662 img loss 1.2363313436508179 img loss 1.2748132944107056 img loss 1.2434210777282715 img loss 1.2280946969985962 img loss 1.2641456127166748 img loss 1.295621633529663 img loss 1.2461031675338745 img loss 1.2563122510910034 img loss 1.1840577125549316 img loss 1.2431225776672363 img loss 1.2622994184494019 img loss 1.2489173412322998 img loss 1.2949092388153076 img loss 1.2339314222335815 img loss 1.2531431913375854 img loss 1.2636114358901978 img loss 1.2124273777008057 img loss 1.305148720741272 img loss 1.297242522239685 img loss 1.2373284101486206 img loss 1.2826128005981445 img loss 1.3156678676605225 img loss 1.3799306154251099 img loss 1.2144038677215576 img loss 1.32828688621521 img loss 1.2778337001800537 img loss 1.2173165082931519 img loss 1.2826783657073975 img loss 1.2447469234466553 img loss 1.2053369283676147 img loss 1.2406747341156006 img loss 1.283800721168518 img loss 1.195540189743042 img loss 1.2637394666671753 img loss 1.278462290763855 img loss 1.2524702548980713 img loss 1.2798936367034912 img loss 1.2633419036865234 img loss 1.3293380737304688 img loss 1.2259527444839478 img loss 1.308560848236084 img loss 1.2501847743988037 img loss 1.1973187923431396 img loss 1.2239203453063965 img loss 1.2408777475357056 img loss 1.221740484237671 img loss 1.2852028608322144 img loss 1.149117350578308 img loss 1.2468534708023071 img loss 1.2635160684585571 img loss 1.1787821054458618 img loss 1.2774639129638672 img loss 1.2743158340454102 img loss 1.2588709592819214 img loss 1.273889183998108 img loss 1.2772883176803589 img loss 1.2469719648361206 img loss 1.3930814266204834 img loss 1.2137333154678345 img loss 1.1966890096664429 img loss 1.1398472785949707 img loss 1.3971831798553467 img loss 1.2715086936950684 img loss 1.2225137948989868 img loss 1.1805475950241089 img loss 1.2075594663619995 img loss 1.2600024938583374 img loss 1.2557413578033447img loss 1.2711615562438965img loss 1.278019666671753 img loss 1.1891711950302124 img loss 1.2190784215927124 img loss 1.2203056812286377 img loss 1.2000640630722046 img loss 1.3382786512374878img loss 1.2858368158340454 img loss 1.299425721168518 img loss 1.2441043853759766 img loss 1.3573521375656128 img loss 1.2200181484222412 img loss 1.2822983264923096 img loss 1.1772525310516357 img loss 1.2200813293457031 img loss 1.1963539123535156 {'loss': 1.2559, 'grad_norm': 0.2634521424770355, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1920744180679321 img loss 1.2273260354995728 img loss 1.2330358028411865 img loss 1.2850685119628906 img loss 1.2439714670181274 img loss 1.1938098669052124 img loss 1.2347607612609863 img loss 1.2720906734466553 img loss 1.1912180185317993 img loss 1.1847530603408813 img loss 1.2169244289398193 img loss 1.1952978372573853 img loss 1.2596575021743774 img loss 1.2277066707611084 img loss 1.2471671104431152 img loss 1.2504104375839233img loss 1.2458842992782593 img loss 1.272180438041687 img loss 1.2867727279663086 img loss 1.237209677696228 img loss 1.2648977041244507 img loss 1.200748324394226 img loss 1.2025083303451538 img loss 1.246752142906189 img loss 1.2394425868988037 img loss 1.2156845331192017 img loss 1.2212835550308228 img loss 1.1999613046646118 img loss 1.1856027841567993 img loss 1.1793880462646484 img loss 1.253740668296814 img loss 1.2355989217758179 img loss 1.27025306224823 img loss 1.1872365474700928 img loss 1.2274034023284912 img loss 1.2669683694839478 img loss 1.2423136234283447 img loss 1.2198023796081543 img loss 1.2420812845230103 img loss 1.2119311094284058 img loss 1.1861751079559326 img loss 1.2356719970703125 img loss 1.236143946647644 img loss 1.2475007772445679 img loss 1.169851541519165 img loss 1.171608805656433 img loss 1.2291234731674194 img loss 1.2374029159545898 img loss 1.2351429462432861 img loss 1.2355854511260986 img loss 1.2668125629425049 img loss 1.2643413543701172 img loss 1.2403781414031982 img loss 1.2125442028045654 img loss 1.2222594022750854 img loss 1.239173173904419 img loss 1.2696844339370728 img loss 1.257048487663269 img loss 1.1974847316741943 img loss 1.2193384170532227 img loss 1.2204132080078125 img loss 1.2963775396347046 img loss 1.2758197784423828 img loss 1.2316062450408936 img loss 1.2059264183044434 img loss 1.2290252447128296 img loss 1.2457520961761475 img loss 1.1765131950378418 img loss 1.227720856666565 img loss 1.1705349683761597 img loss 1.222461223602295 img loss 1.2631460428237915 img loss 1.2216575145721436 img loss 1.1923097372055054 img loss 1.2315462827682495 img loss 1.2429783344268799 img loss 1.2879226207733154 img loss 1.198138952255249 img loss 1.2647532224655151 img loss 1.200214147567749 img loss 1.2256386280059814 img loss 1.2690534591674805 img loss 1.2548869848251343 img loss 1.205782175064087 img loss 1.2371981143951416 img loss 1.205486536026001 img loss 1.2213866710662842 img loss 1.3426669836044312 img loss 1.2473793029785156 img loss 1.2380003929138184 img loss 1.305986762046814 img loss 1.3445203304290771 img loss 1.2648158073425293 img loss 1.2727707624435425 img loss 1.2306327819824219 img loss 1.243940830230713 img loss 1.233685851097107img loss 1.2177770137786865img loss 1.216231346130371 img loss 1.2153409719467163 img loss 1.2030792236328125 img loss 1.19307279586792img loss 1.231400966644287img loss 1.3020540475845337 img loss 1.2192246913909912 img loss 1.2566826343536377 img loss 1.272610068321228 img loss 1.1955770254135132 img loss 1.2525343894958496 img loss 1.2167277336120605 img loss 1.1936216354370117img loss 1.1867207288742065 img loss 1.2237306833267212 img loss 1.2453303337097168 img loss 1.1607747077941895 img loss 1.2769601345062256 img loss 1.2021602392196655 img loss 1.1907143592834473 img loss 1.2637332677841187 img loss 1.252695918083191 img loss 1.263870120048523 img loss 1.2185922861099243 img loss 1.3028130531311035 img loss 1.2236971855163574 img loss 1.2618904113769531 img loss 1.2243258953094482 img loss 1.2350831031799316 img loss 1.1843575239181519 {'loss': 1.2331, 'grad_norm': 0.22979694604873657, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.6721980571746826 img loss 1.5512702465057373 img loss 1.612117052078247 img loss 1.5957410335540771 img loss 1.5451725721359253 img loss 1.5248748064041138 img loss 1.576526165008545 img loss 1.5401396751403809 img loss 1.6374675035476685 img loss 1.4935649633407593 img loss 1.4951077699661255 img loss 1.4686352014541626 img loss 1.6146233081817627 img loss 1.5364326238632202 img loss 1.677963376045227 img loss 1.4816739559173584 img loss 1.5730088949203491 img loss 1.5679775476455688 img loss 1.5182985067367554 img loss 1.6042511463165283 img loss 1.6112293004989624 img loss 1.4787859916687012 img loss 1.5816115140914917 img loss 1.5615719556808472 img loss 1.6541827917099 img loss 1.4921314716339111 img loss 1.4556763172149658 img loss 1.465332269668579 img loss 1.6501561403274536 img loss 1.522179126739502 img loss 1.5362132787704468 img loss 1.4853371381759644 img loss 1.4814317226409912 img loss 1.635282039642334 img loss 1.4572194814682007 img loss 1.6468816995620728 img loss 1.4319711923599243 img loss 1.7447357177734375 img loss 1.5256741046905518 img loss 1.5485237836837769 img loss 1.6159862279891968 img loss 1.5161309242248535 img loss 1.6045955419540405 img loss 1.5944260358810425 img loss 1.479023814201355 img loss 1.406970500946045 img loss 1.520495057106018 img loss 1.5557373762130737 img loss 1.598039984703064 img loss 1.4361188411712646 img loss 1.51206374168396 img loss 1.5262070894241333 img loss 1.5093625783920288 img loss 1.457537293434143 img loss 1.539639949798584 img loss 1.4621665477752686 img loss 1.5422803163528442 img loss 1.457062005996704 img loss 1.5223292112350464 img loss 1.4629875421524048 img loss 1.4937025308609009 img loss 1.390321969985962 img loss 1.422157645225525 img loss 1.5909016132354736 img loss 1.6011122465133667 img loss 1.394753098487854 img loss 1.5955090522766113 img loss 1.5344706773757935 img loss 1.3841460943222046 img loss 1.5557204484939575 img loss 1.3457013368606567 img loss 1.516302227973938 img loss 1.5004665851593018 img loss 1.4252429008483887 img loss 1.3890736103057861 img loss 1.6839001178741455 img loss 1.435677409172058 img loss 1.5145602226257324 img loss 1.61284601688385 img loss 1.6862932443618774 img loss 1.5621095895767212 img loss 1.4187979698181152 img loss 1.5779662132263184 img loss 1.5847277641296387 img loss 1.617700457572937 img loss 1.4921902418136597 img loss 1.6044666767120361 img loss 1.5213698148727417 img loss 1.5618897676467896 img loss 1.458463430404663 img loss 1.5455050468444824 img loss 1.5188660621643066 img loss 1.5362334251403809 img loss 1.512575626373291 img loss 1.5816246271133423 img loss 1.5233914852142334 img loss 1.4831432104110718 img loss 1.4595541954040527 img loss 1.561083436012268 img loss 1.4980933666229248 img loss 1.5648809671401978 img loss 1.5123839378356934 img loss 1.4421908855438232 img loss 1.5994724035263062 img loss 1.557355523109436 img loss 1.3769572973251343 img loss 1.5715081691741943 img loss 1.4455788135528564 img loss 1.6128489971160889 img loss 1.515991449356079 img loss 1.5150421857833862 img loss 1.5549304485321045 img loss 1.5638850927352905 img loss 1.6323411464691162 img loss 1.6173423528671265 img loss 1.5317378044128418 img loss 1.6567885875701904 img loss 1.5906260013580322 img loss 1.3984323740005493 img loss 1.5264612436294556 img loss 1.5086321830749512 img loss 1.5257896184921265 img loss 1.642646312713623 img loss 1.5673346519470215 img loss 1.506630778312683 img loss 1.5236564874649048 img loss 1.5613371133804321 img loss 1.4862204790115356 {'loss': 1.5342, 'grad_norm': 0.24640685319900513, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4585423469543457 img loss 1.371817946434021 img loss 1.3871792554855347 img loss 1.3009999990463257 img loss 1.2913044691085815 img loss 1.2594923973083496 img loss 1.2554315328598022 img loss 1.3633583784103394 img loss 1.3428632020950317 img loss 1.4516675472259521 img loss 1.2605470418930054 img loss 1.2714580297470093 img loss 1.3478797674179077 img loss 1.3270272016525269 img loss 1.3160490989685059 img loss 1.3647128343582153 img loss 1.3596068620681763 img loss 1.2584024667739868 img loss 1.324846625328064 img loss 1.379106044769287 img loss 1.226912498474121 img loss 1.2610348463058472 img loss 1.2449309825897217 img loss 1.3515819311141968 img loss 1.2396883964538574 img loss 1.2901808023452759 img loss 1.3157719373703003 img loss 1.4004409313201904 img loss 1.4250019788742065 img loss 1.3556571006774902 img loss 1.2418030500411987 img loss 1.388100266456604 img loss 1.2613176107406616 img loss 1.319505214691162 img loss 1.3701891899108887 img loss 1.2593624591827393 img loss 1.3570046424865723 img loss 1.3004131317138672 img loss 1.2792108058929443 img loss 1.291093349456787 img loss 1.3567421436309814 img loss 1.331899642944336 img loss 1.310187816619873 img loss 1.3483701944351196 img loss 1.4485667943954468 img loss 1.3569825887680054 img loss 1.4425324201583862 img loss 1.287557601928711 img loss 1.3514634370803833 img loss 1.445167064666748 img loss 1.3205256462097168 img loss 1.458858609199524 img loss 1.3279664516448975 img loss 1.2808837890625 img loss 1.301194190979004 img loss 1.2654798030853271 img loss 1.2058080434799194 img loss 1.3430664539337158 img loss 1.2584271430969238 img loss 1.3973487615585327 img loss 1.2692878246307373 img loss 1.4000284671783447 img loss 1.297942042350769 img loss 1.2983547449111938 img loss 1.2979965209960938 img loss 1.3607491254806519 img loss 1.299182415008545 img loss 1.3335191011428833 img loss 1.3097610473632812 img loss 1.41350257396698 img loss 1.311342716217041 img loss 1.2981293201446533 img loss 1.4115461111068726 img loss 1.4167876243591309 img loss 1.3365111351013184 img loss 1.3057641983032227 img loss 1.4213453531265259 img loss 1.3203513622283936 img loss 1.3497978448867798 img loss 1.4207218885421753 img loss 1.377142071723938 img loss 1.371916651725769 img loss 1.363918423652649 img loss 1.3317489624023438 img loss 1.366032361984253 img loss 1.400631308555603 img loss 1.3515629768371582 img loss 1.3178108930587769 img loss 1.2605539560317993 img loss 1.3872430324554443 img loss 1.333801507949829 img loss 1.318756103515625 img loss 1.4276986122131348 img loss 1.3859763145446777 img loss 1.4569097757339478 img loss 1.3450884819030762 img loss 1.36958646774292 img loss 1.3693673610687256 img loss 1.2754695415496826 img loss 1.2818626165390015 img loss 1.3400071859359741 img loss 1.289164423942566 img loss 1.3155097961425781 img loss 1.20809006690979 img loss 1.365158200263977 img loss 1.3995659351348877 img loss 1.414828896522522 img loss 1.3257830142974854 img loss 1.407294511795044 img loss 1.3031386137008667 img loss 1.3820250034332275 img loss 1.332162857055664 img loss 1.3684557676315308 img loss 1.2599716186523438 img loss 1.3399220705032349 img loss 1.2493388652801514 img loss 1.2939019203186035 img loss 1.289725661277771 img loss 1.3274434804916382 img loss 1.3357479572296143 img loss 1.3341130018234253 img loss 1.2275958061218262 img loss 1.307474136352539 img loss 1.2120615243911743 img loss 1.4234150648117065 img loss 1.3605107069015503 img loss 1.2428053617477417 img loss 1.276086688041687 {'loss': 1.3329, 'grad_norm': 0.2686893939971924, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2622332572937012 img loss 1.3157150745391846 img loss 1.1892681121826172 img loss 1.1774879693984985 img loss 1.2089852094650269 img loss 1.2218674421310425 img loss 1.250012993812561 img loss 1.236465334892273 img loss 1.1994342803955078 img loss 1.2230194807052612 img loss 1.2325400114059448 img loss 1.2910215854644775 img loss 1.2914743423461914 img loss 1.1616321802139282 img loss 1.2183828353881836 img loss 1.2277179956436157 img loss 1.1553105115890503 img loss 1.3172975778579712 img loss 1.2546932697296143 img loss 1.186335802078247 img loss 1.335073709487915 img loss 1.2003810405731201 img loss 1.1208909749984741 img loss 1.2694554328918457 img loss 1.243276596069336 img loss 1.2328295707702637 img loss 1.2442107200622559 img loss 1.196791648864746 img loss 1.2441247701644897 img loss 1.2959047555923462 img loss 1.261863350868225 img loss 1.181291103363037 img loss 1.244994044303894 img loss 1.2371736764907837 img loss 1.2670272588729858 img loss 1.1803832054138184 img loss 1.1617072820663452 img loss 1.239737868309021 img loss 1.2616344690322876 img loss 1.318495750427246 img loss 1.1984423398971558 img loss 1.153254747390747 img loss 1.2404485940933228 img loss 1.3173789978027344 img loss 1.166743278503418 img loss 1.2494922876358032 img loss 1.1775128841400146 img loss 1.2410902976989746 img loss 1.2649593353271484 img loss 1.205651879310608 img loss 1.2646489143371582 img loss 1.1826417446136475 img loss 1.1949758529663086 img loss 1.3147046566009521 img loss 1.2242329120635986 img loss 1.2570221424102783 img loss 1.2163511514663696 img loss 1.156381368637085 img loss 1.2027297019958496 img loss 1.2294886112213135 img loss 1.2711995840072632 img loss 1.2793076038360596 img loss 1.231223702430725 img loss 1.2339129447937012 img loss 1.2121920585632324 img loss 1.3359850645065308 img loss 1.2131036520004272 img loss 1.199907660484314img loss 1.1414035558700562 img loss 1.2291483879089355 img loss 1.275022268295288 img loss 1.2590839862823486 img loss 1.2019184827804565 img loss 1.2090790271759033 img loss 1.2224533557891846 img loss 1.2302560806274414 img loss 1.256578803062439 img loss 1.2689852714538574 img loss 1.2978140115737915 img loss 1.3069274425506592 img loss 1.2591824531555176 img loss 1.369006872177124 img loss 1.2682701349258423 img loss 1.3785662651062012 img loss 1.2558602094650269 img loss 1.191222906112671 img loss 1.2255337238311768 img loss 1.2366943359375 img loss 1.2668676376342773 img loss 1.292285442352295 img loss 1.2597239017486572 img loss 1.2289470434188843 img loss 1.1328295469284058 img loss 1.1851425170898438 img loss 1.219336748123169 img loss 1.213976502418518 img loss 1.3449233770370483 img loss 1.2956771850585938 img loss 1.1968048810958862 img loss 1.174712896347046 img loss 1.2920184135437012 img loss 1.290077805519104 img loss 1.2226231098175049 img loss 1.3363491296768188 img loss 1.1805747747421265 img loss 1.1995893716812134 img loss 1.2704200744628906 img loss 1.1688625812530518img loss 1.262723684310913 img loss 1.2436574697494507 img loss 1.296683669090271 img loss 1.2568491697311401 img loss 1.2350733280181885 img loss 1.228377103805542 img loss 1.191565752029419 img loss 1.1840648651123047 img loss 1.1576664447784424 img loss 1.289961814880371 img loss 1.22939133644104 img loss 1.3185640573501587 img loss 1.26759672164917 img loss 1.196480631828308 img loss 1.2068800926208496 img loss 1.1654964685440063 img loss 1.1494451761245728 img loss 1.215135097503662 img loss 1.2631524801254272 img loss 1.2255576848983765 {'loss': 1.2362, 'grad_norm': 0.6240653991699219, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3153550624847412 img loss 1.2478349208831787 img loss 1.2594045400619507 img loss 1.367316722869873 img loss 1.2856041193008423 img loss 1.2849851846694946 img loss 1.2412172555923462 img loss 1.2432276010513306 img loss 1.2811516523361206 img loss 1.2170932292938232 img loss 1.2589882612228394 img loss 1.2644532918930054 img loss 1.2803261280059814 img loss 1.1884334087371826 img loss 1.3544056415557861 img loss 1.2995526790618896 img loss 1.1829344034194946 img loss 1.3087399005889893 img loss 1.2082929611206055 img loss 1.3280214071273804 img loss 1.2592464685440063 img loss 1.3232998847961426 img loss 1.2593920230865479 img loss 1.2911014556884766 img loss 1.1843150854110718 img loss 1.35525381565094 img loss 1.3075679540634155 img loss 1.2691552639007568 img loss 1.2483793497085571 img loss 1.2681955099105835 img loss 1.3126847743988037 img loss 1.3190202713012695 img loss 1.3130111694335938 img loss 1.3425532579421997 img loss 1.3021295070648193 img loss 1.2658398151397705 img loss 1.1828269958496094 img loss 1.2642312049865723 img loss 1.3030191659927368 img loss 1.518603801727295 img loss 1.334031581878662 img loss 1.3200008869171143 img loss 1.2174339294433594 img loss 1.330918312072754 img loss 1.3822146654129028 img loss 1.305259108543396 img loss 1.2473938465118408 img loss 1.3832920789718628 img loss 1.327052354812622 img loss 1.226438045501709 img loss 1.3213505744934082 img loss 1.2777116298675537 img loss 1.3027795553207397 img loss 1.3742486238479614 img loss 1.2923600673675537 img loss 1.3049601316452026 img loss 1.3012527227401733 img loss 1.2562378644943237 img loss 1.342018723487854 img loss 1.262064814567566 img loss 1.3682515621185303 img loss 1.2530782222747803 img loss 1.2408455610275269 img loss 1.1853516101837158 img loss 1.273303747177124 img loss 1.2545504570007324 img loss 1.2229533195495605 img loss 1.3232382535934448 img loss 1.2596778869628906 img loss 1.3449243307113647 img loss 1.3366658687591553 img loss 1.2604546546936035 img loss 1.303232192993164 img loss 1.3785821199417114 img loss 1.2738672494888306 img loss 1.3480936288833618 img loss 1.2188074588775635 img loss 1.2156461477279663 img loss 1.341432809829712 img loss 1.2121108770370483 img loss 1.2633136510849 img loss 1.3562721014022827 img loss 1.3351904153823853 img loss 1.2885832786560059 img loss 1.2583128213882446 img loss 1.295851707458496 img loss 1.3003679513931274 img loss 1.2350761890411377 img loss 1.3276588916778564 img loss 1.3893016576766968 img loss 1.2869185209274292 img loss 1.275828242301941 img loss 1.3108774423599243 img loss 1.3775525093078613 img loss 1.3177695274353027 img loss 1.3060245513916016 img loss 1.2897361516952515 img loss 1.3894684314727783 img loss 1.2182835340499878 img loss 1.2790865898132324 img loss 1.4344960451126099 img loss 1.2364734411239624 img loss 1.265837550163269 img loss 1.2830322980880737 img loss 1.2746635675430298 img loss 1.396366834640503 img loss 1.289575457572937 img loss 1.2861113548278809 img loss 1.3481065034866333 img loss 1.3852179050445557 img loss 1.4229892492294312 img loss 1.3329620361328125 img loss 1.313254714012146 img loss 1.2558493614196777 img loss 1.2994276285171509 img loss 1.4448697566986084 img loss 1.2571747303009033 img loss 1.3106049299240112 img loss 1.2836898565292358 img loss 1.2516169548034668 img loss 1.25062894821167 img loss 1.3658068180084229 img loss 1.3030476570129395 img loss 1.1960872411727905 img loss 1.2799018621444702 img loss 1.3679107427597046 img loss 1.3182976245880127 img loss 1.3293043375015259 {'loss': 1.2962, 'grad_norm': 0.340987890958786, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3483108282089233 img loss 1.4901070594787598 img loss 1.5982054471969604 img loss 1.4755194187164307 img loss 1.4627528190612793 img loss 1.4929957389831543 img loss 1.3160452842712402 img loss 1.5121839046478271img loss 1.5623869895935059 img loss 1.6618493795394897 img loss 1.3952610492706299 img loss 1.5228896141052246 img loss 1.4463486671447754 img loss 1.4117581844329834 img loss 1.3550435304641724 img loss 1.4105010032653809 img loss 1.4717885255813599 img loss 1.4798808097839355 img loss 1.4722734689712524 img loss 1.5422009229660034 img loss 1.4588353633880615 img loss 1.4998937845230103 img loss 1.5078997611999512 img loss 1.5309975147247314 img loss 1.5338146686553955 img loss 1.4669326543807983 img loss 1.5165455341339111 img loss 1.4816533327102661 img loss 1.507515788078308 img loss 1.3070149421691895 img loss 1.4192475080490112 img loss 1.4122682809829712 img loss 1.556165099143982 img loss 1.3376803398132324 img loss 1.5349278450012207 img loss 1.5373059511184692 img loss 1.5851536989212036 img loss 1.3938120603561401 img loss 1.3857423067092896 img loss 1.3519545793533325 img loss 1.5035699605941772 img loss 1.449349284172058 img loss 1.4945825338363647 img loss 1.4124897718429565 img loss 1.5865132808685303 img loss 1.4386905431747437 img loss 1.376050591468811 img loss 1.5341823101043701 img loss 1.5880459547042847 img loss 1.4051204919815063 img loss 1.4528251886367798 img loss 1.405627727508545 img loss 1.436564326286316 img loss 1.3911564350128174 img loss 1.618874192237854 img loss 1.3782074451446533 img loss 1.5318585634231567 img loss 1.6118682622909546 img loss 1.377356767654419 img loss 1.4445030689239502 img loss 1.5158865451812744 img loss 1.4655624628067017 img loss 1.4224658012390137img loss 1.496387243270874 img loss 1.6053471565246582 img loss 1.2969536781311035 img loss 1.40265691280365 img loss 1.58134925365448img loss 1.473360538482666 img loss 1.4994357824325562 img loss 1.4937608242034912 img loss 1.4013718366622925 img loss 1.3870537281036377 img loss 1.459119439125061 img loss 1.4185854196548462 img loss 1.4601649045944214 img loss 1.4137070178985596 img loss 1.4166470766067505 img loss 1.3801103830337524 img loss 1.4321485757827759 img loss 1.3290401697158813 img loss 1.6431313753128052 img loss 1.4431833028793335 img loss 1.5891510248184204 img loss 1.4250195026397705 img loss 1.5226261615753174 img loss 1.499466061592102 img loss 1.4465757608413696 img loss 1.6231132745742798 img loss 1.3812276124954224 img loss 1.4637974500656128 img loss 1.417853593826294 img loss 1.4038479328155518 img loss 1.5017417669296265 img loss 1.4223424196243286 img loss 1.32648503780365 img loss 1.454511284828186 img loss 1.5113781690597534 img loss 1.4653345346450806 img loss 1.4909676313400269 img loss 1.5607597827911377 img loss 1.3811343908309937 img loss 1.5917670726776123 img loss 1.6122649908065796 img loss 1.543830156326294 img loss 1.5008701086044312 img loss 1.4835478067398071 img loss 1.2629406452178955 img loss 1.491309642791748 img loss 1.4119268655776978 img loss 1.4004632234573364 img loss 1.495669960975647 img loss 1.4571703672409058 img loss 1.5601786375045776 img loss 1.3080744743347168 img loss 1.6912853717803955 img loss 1.6150643825531006 img loss 1.483019232749939 img loss 1.5221072435379028 img loss 1.3361960649490356 img loss 1.4935721158981323 img loss 1.522570252418518 img loss 1.5631957054138184 img loss 1.5639725923538208 img loss 1.5136185884475708 img loss 1.4851295948028564 img loss 1.426573395729065 img loss 1.42959463596344 {'loss': 1.471, 'grad_norm': 0.43521109223365784, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2326889038085938 img loss 1.2227026224136353 img loss 1.2024319171905518 img loss 1.1701830625534058 img loss 1.2985740900039673 img loss 1.2137819528579712 img loss 1.2462519407272339 img loss 1.2141178846359253 img loss 1.1475340127944946 img loss 1.194334626197815 img loss 1.1974552869796753 img loss 1.2065718173980713 img loss 1.2424815893173218 img loss 1.1932915449142456 img loss 1.142398476600647 img loss 1.0936821699142456 img loss 1.2245614528656006 img loss 1.2217774391174316 img loss 1.2469840049743652 img loss 1.259769320487976 img loss 1.2204939126968384 img loss 1.2257722616195679 img loss 1.2347514629364014 img loss 1.1853489875793457 img loss 1.1019868850708008 img loss 1.1600472927093506 img loss 1.1907280683517456 img loss 1.1767191886901855 img loss 1.181070327758789 img loss 1.1845066547393799 img loss 1.2429699897766113 img loss 1.277631163597107 img loss 1.1906403303146362 img loss 1.17784583568573 img loss 1.2417140007019043 img loss 1.1735409498214722 img loss 1.1552274227142334 img loss 1.2448692321777344 img loss 1.2192234992980957 img loss 1.2088000774383545 img loss 1.1119558811187744 img loss 1.1511791944503784 img loss 1.1260991096496582 img loss 1.38886559009552 img loss 1.299586296081543 img loss 1.3251711130142212 img loss 1.2188557386398315 img loss 1.212047815322876 img loss 1.1804882287979126 img loss 1.1358712911605835 img loss 1.09807288646698 img loss 1.1661512851715088 img loss 1.2787688970565796 img loss 1.1491787433624268 img loss 1.148863434791565 img loss 1.221513271331787 img loss 1.3425021171569824 img loss 1.2155598402023315 img loss 1.263898253440857 img loss 1.1186914443969727 img loss 1.290003776550293 img loss 1.2046453952789307 img loss 1.1784781217575073 img loss 1.2271448373794556 img loss 1.2253401279449463 img loss 1.1904417276382446 img loss 1.225612998008728 img loss 1.1342090368270874 img loss 1.2218246459960938 img loss 1.2323927879333496 img loss 1.155016541481018 img loss 1.1827210187911987 img loss 1.2319167852401733 img loss 1.2838767766952515 img loss 1.2259806394577026 img loss 1.182908058166504 img loss 1.1566568613052368 img loss 1.286461353302002 img loss 1.2138093709945679 img loss 1.1732838153839111 img loss 1.2731980085372925 img loss 1.1024006605148315 img loss 1.2550147771835327 img loss 1.1766610145568848 img loss 1.126268982887268 img loss 1.094440221786499 img loss 1.3330864906311035 img loss 1.1985441446304321 img loss 1.1740148067474365 img loss 1.1749814748764038 img loss 1.2002556324005127 img loss 1.2122122049331665 img loss 1.1634470224380493 img loss 1.2824052572250366 img loss 1.23836350440979 img loss 1.1969490051269531 img loss 1.1867005825042725 img loss 1.2039498090744019 img loss 1.1283899545669556 img loss 1.1825904846191406 img loss 1.23893141746521 img loss 1.2158527374267578 img loss 1.1227935552597046 img loss 1.097920298576355 img loss 1.202061414718628 img loss 1.1528830528259277 img loss 1.320582389831543 img loss 1.2011221647262573 img loss 1.1959766149520874 img loss 1.3063019514083862 img loss 1.1794166564941406 img loss 1.2498164176940918 img loss 1.1915130615234375 img loss 1.2250747680664062 img loss 1.2507352828979492 img loss 1.1598529815673828 img loss 1.1839346885681152 img loss 1.237145185470581 img loss 1.2780951261520386 img loss 1.2628076076507568 img loss 1.1159323453903198 img loss 1.1896919012069702 img loss 1.1515859365463257 img loss 1.1415715217590332 img loss 1.1555655002593994 img loss 1.098711609840393 img loss 1.1862404346466064 img loss 1.1818289756774902 {'loss': 1.2027, 'grad_norm': 0.7332169413566589, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3787322044372559 img loss 1.3608039617538452 img loss 1.391389012336731 img loss 1.3563436269760132 img loss 1.422028660774231 img loss 1.3145461082458496 img loss 1.5572727918624878 img loss 1.3643649816513062 img loss 1.3843845129013062 img loss 1.3746262788772583 img loss 1.4588180780410767 img loss 1.526495099067688 img loss 1.3500659465789795 img loss 1.3802449703216553 img loss 1.503394365310669 img loss 1.3157724142074585 img loss 1.397356629371643 img loss 1.3545258045196533 img loss 1.4213913679122925 img loss 1.491317868232727 img loss 1.4093372821807861 img loss 1.3952473402023315 img loss 1.4116648435592651 img loss 1.5375171899795532 img loss 1.3397876024246216 img loss 1.3957054615020752 img loss 1.4669544696807861 img loss 1.3691483736038208 img loss 1.3776825666427612 img loss 1.4748486280441284 img loss 1.393290400505066 img loss 1.3757811784744263 img loss 1.374927282333374 img loss 1.4683396816253662 img loss 1.2804189920425415 img loss 1.3903263807296753 img loss 1.323971152305603 img loss 1.3131043910980225 img loss 1.4387832880020142 img loss 1.343887209892273 img loss 1.3653615713119507 img loss 1.480026364326477 img loss 1.4363951683044434 img loss 1.4654524326324463 img loss 1.2897241115570068 img loss 1.4982991218566895 img loss 1.3483442068099976 img loss 1.346755862236023 img loss 1.3316457271575928 img loss 1.2782907485961914 img loss 1.3606477975845337 img loss 1.3786793947219849 img loss 1.383139967918396 img loss 1.3139700889587402 img loss 1.4277540445327759 img loss 1.4717618227005005 img loss 1.4189244508743286 img loss 1.3538850545883179 img loss 1.439359188079834 img loss 1.430263638496399 img loss 1.4031903743743896 img loss 1.522864580154419 img loss 1.4322274923324585 img loss 1.4398442506790161 img loss 1.3812012672424316 img loss 1.5337632894515991 img loss 1.4202617406845093 img loss 1.3092378377914429 img loss 1.3613487482070923 img loss 1.3484578132629395 img loss 1.3753812313079834 img loss 1.3421846628189087 img loss 1.3243520259857178 img loss 1.3876606225967407 img loss 1.3318942785263062 img loss 1.400099277496338 img loss 1.4355757236480713 img loss 1.3294172286987305 img loss 1.303736925125122 img loss 1.35141122341156 img loss 1.3214954137802124 img loss 1.3832207918167114 img loss 1.3486920595169067 img loss 1.3790537118911743 img loss 1.2915105819702148 img loss 1.392828345298767 img loss 1.431546926498413 img loss 1.2456903457641602 img loss 1.4335771799087524 img loss 1.5096427202224731 img loss 1.3686871528625488 img loss 1.5577194690704346 img loss 1.3065779209136963 img loss 1.358618140220642 img loss 1.4659342765808105 img loss 1.2803120613098145 img loss 1.3164989948272705 img loss 1.379870891571045 img loss 1.2723641395568848 img loss 1.3520222902297974 img loss 1.4172099828720093 img loss 1.4539536237716675 img loss 1.5173670053482056 img loss 1.3367196321487427 img loss 1.3578647375106812 img loss 1.2576019763946533 img loss 1.4065145254135132 img loss 1.3446892499923706 img loss 1.432544469833374 img loss 1.310123324394226 img loss 1.398518443107605 img loss 1.2984111309051514 img loss 1.3585320711135864 img loss 1.4559804201126099 img loss 1.386414885520935 img loss 1.3820945024490356 img loss 1.448533296585083 img loss 1.3877956867218018 img loss 1.4584091901779175 img loss 1.308946967124939 img loss 1.4246532917022705 img loss 1.2908447980880737 img loss 1.3958115577697754 img loss 1.4037272930145264 img loss 1.5086843967437744 img loss 1.539008378982544 img loss 1.39742112159729 img loss 1.4754608869552612 {'loss': 1.3913, 'grad_norm': 0.3888551592826843, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1702533960342407 img loss 1.2214106321334839 img loss 1.175687551498413 img loss 1.1272691488265991 img loss 1.2977573871612549 img loss 1.220213770866394 img loss 1.149646282196045 img loss 1.188462257385254 img loss 1.1932874917984009 img loss 1.1296495199203491 img loss 1.262235403060913 img loss 1.2061794996261597 img loss 1.224578857421875 img loss 1.174753189086914 img loss 1.280504584312439 img loss 1.2987216711044312 img loss 1.2592495679855347 img loss 1.2108252048492432 img loss 1.2288368940353394 img loss 1.2040927410125732 img loss 1.2916191816329956 img loss 1.210079550743103 img loss 1.2247962951660156 img loss 1.2259472608566284 img loss 1.1705464124679565 img loss 1.2081706523895264 img loss 1.2726808786392212 img loss 1.1955301761627197 img loss 1.1856707334518433 img loss 1.1603630781173706 img loss 1.2180378437042236 img loss 1.2267049551010132 img loss 1.2027842998504639 img loss 1.1869542598724365 img loss 1.2036164999008179 img loss 1.2683876752853394 img loss 1.2457122802734375 img loss 1.1906237602233887 img loss 1.2437351942062378 img loss 1.2171372175216675 img loss 1.194750428199768 img loss 1.2324516773223877 img loss 1.2327117919921875 img loss 1.2170872688293457 img loss 1.219042420387268 img loss 1.2641518115997314 img loss 1.2254635095596313 img loss 1.2011016607284546 img loss 1.2223888635635376 img loss 1.3156957626342773 img loss 1.2018742561340332 img loss 1.2068170309066772 img loss 1.205966591835022 img loss 1.1753019094467163 img loss 1.1975512504577637 img loss 1.1766242980957031 img loss 1.17327082157135 img loss 1.300247073173523 img loss 1.2781645059585571 img loss 1.1928328275680542 img loss 1.1436467170715332 img loss 1.185781478881836 img loss 1.265392780303955 img loss 1.2811064720153809 img loss 1.1717731952667236 img loss 1.2518528699874878 img loss 1.316382646560669 img loss 1.1591241359710693 img loss 1.2422764301300049 img loss 1.1731094121932983 img loss 1.1984360218048096 img loss 1.1722491979599 img loss 1.2270199060440063 img loss 1.2169275283813477 img loss 1.1871029138565063 img loss 1.2464150190353394 img loss 1.1707501411437988 img loss 1.2572160959243774 img loss 1.1197932958602905 img loss 1.2623552083969116 img loss 1.265387773513794 img loss 1.3010843992233276 img loss 1.2695183753967285 img loss 1.1685932874679565 img loss 1.2882217168807983 img loss 1.186816930770874 img loss 1.1967519521713257 img loss 1.2334983348846436 img loss 1.1893529891967773 img loss 1.148950457572937 img loss 1.233911395072937 img loss 1.2666882276535034 img loss 1.2105096578598022 img loss 1.2683773040771484 img loss 1.2032936811447144 img loss 1.1355321407318115 img loss 1.201534628868103 img loss 1.226447343826294 img loss 1.2308177947998047 img loss 1.2234058380126953 img loss 1.1952359676361084 img loss 1.3059535026550293 img loss 1.191947340965271 img loss 1.2247793674468994 img loss 1.2658623456954956 img loss 1.2596638202667236 img loss 1.2399858236312866 img loss 1.270831823348999 img loss 1.2258727550506592 img loss 1.241329550743103 img loss 1.1494563817977905 img loss 1.181781530380249 img loss 1.2277731895446777 img loss 1.3003840446472168 img loss 1.235016107559204 img loss 1.2593116760253906 img loss 1.1906192302703857 img loss 1.1648831367492676 img loss 1.1959904432296753 img loss 1.2896225452423096 img loss 1.1643345355987549 img loss 1.1887531280517578 img loss 1.232418417930603 img loss 1.281954288482666 img loss 1.2162315845489502 img loss 1.2489924430847168 img loss 1.164801001548767 img loss 1.1811184883117676 {'loss': 1.2187, 'grad_norm': 0.4853876829147339, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2028248310089111 img loss 1.3634892702102661 img loss 1.3730065822601318 img loss 1.208311915397644 img loss 1.3058180809020996 img loss 1.3052867650985718 img loss 1.250645637512207 img loss 1.2909390926361084 img loss 1.3436825275421143 img loss 1.2225697040557861 img loss 1.4114964008331299 img loss 1.259687900543213 img loss 1.3706940412521362 img loss 1.247279167175293 img loss 1.295032262802124 img loss 1.3694950342178345 img loss 1.3859307765960693 img loss 1.2548719644546509 img loss 1.3086799383163452 img loss 1.3012746572494507 img loss 1.2106468677520752 img loss 1.3702867031097412 img loss 1.2970317602157593 img loss 1.3149820566177368 img loss 1.329732894897461 img loss 1.2754114866256714 img loss 1.1892962455749512 img loss 1.250179648399353 img loss 1.2031166553497314 img loss 1.2426726818084717 img loss 1.3247904777526855 img loss 1.2894890308380127 img loss 1.2158427238464355 img loss 1.2320421934127808 img loss 1.3940879106521606 img loss 1.411560297012329 img loss 1.217132329940796 img loss 1.3037219047546387 img loss 1.1711816787719727 img loss 1.2688672542572021 img loss 1.3525919914245605 img loss 1.3597979545593262 img loss 1.2662854194641113 img loss 1.2368218898773193 img loss 1.3188626766204834 img loss 1.2389569282531738 img loss 1.3027958869934082 img loss 1.1717478036880493 img loss 1.2170026302337646 img loss 1.3233799934387207 img loss 1.2776215076446533 img loss 1.2858877182006836 img loss 1.2515687942504883 img loss 1.3402800559997559 img loss 1.2681047916412354 img loss 1.3705371618270874 img loss 1.2548043727874756 img loss 1.2595230340957642 img loss 1.3105180263519287 img loss 1.3758139610290527 img loss 1.3338207006454468 img loss 1.3002433776855469 img loss 1.2833017110824585 img loss 1.2611992359161377 img loss 1.2846801280975342 img loss 1.3204846382141113 img loss 1.213808536529541 img loss 1.304349660873413 img loss 1.2822154760360718 img loss 1.3621262311935425 img loss 1.287413239479065 img loss 1.2960069179534912 img loss 1.2708408832550049 img loss 1.1922577619552612 img loss 1.2570750713348389 img loss 1.3305397033691406 img loss 1.1590553522109985 img loss 1.2378991842269897 img loss 1.340267539024353 img loss 1.3630517721176147 img loss 1.2498185634613037 img loss 1.2220988273620605 img loss 1.2356630563735962 img loss 1.3820246458053589 img loss 1.3128042221069336 img loss 1.2117414474487305 img loss 1.2991185188293457 img loss 1.3266685009002686 img loss 1.2856056690216064 img loss 1.296063780784607 img loss 1.2563952207565308 img loss 1.26015305519104 img loss 1.2575526237487793 img loss 1.323218822479248 img loss 1.310542106628418 img loss 1.3291698694229126 img loss 1.2746387720108032 img loss 1.4853817224502563 img loss 1.3485971689224243 img loss 1.210756540298462 img loss 1.2066808938980103 img loss 1.2919610738754272 img loss 1.203840732574463 img loss 1.3149545192718506 img loss 1.2911956310272217 img loss 1.2881044149398804 img loss 1.198127031326294 img loss 1.2822338342666626 img loss 1.3252681493759155 img loss 1.246287226676941 img loss 1.2276543378829956 img loss 1.2782684564590454 img loss 1.314996600151062 img loss 1.283738613128662 img loss 1.246291160583496 img loss 1.285602331161499 img loss 1.1838140487670898 img loss 1.3377525806427002 img loss 1.3098578453063965 img loss 1.2994158267974854 img loss 1.198461890220642 img loss 1.3033078908920288 img loss 1.232224941253662 img loss 1.2931078672409058 img loss 1.3763777017593384 img loss 1.3143638372421265 img loss 1.2628675699234009 img loss 1.3260564804077148 {'loss': 1.2863, 'grad_norm': 0.3151698410511017, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3431230783462524 img loss 1.2739225625991821 img loss 1.2744159698486328 img loss 1.291702151298523 img loss 1.3165096044540405 img loss 1.3483415842056274 img loss 1.4564210176467896 img loss 1.3678423166275024 img loss 1.3605417013168335 img loss 1.2390837669372559 img loss 1.350172758102417 img loss 1.4617501497268677 img loss 1.275559663772583 img loss 1.3276203870773315 img loss 1.2911477088928223 img loss 1.3322519063949585 img loss 1.339410424232483 img loss 1.3745516538619995 img loss 1.395950198173523 img loss 1.3151124715805054 img loss 1.3212207555770874 img loss 1.4451924562454224 img loss 1.3884212970733643 img loss 1.3261158466339111 img loss 1.4571553468704224 img loss 1.2928550243377686 img loss 1.469651460647583 img loss 1.3868056535720825 img loss 1.4211851358413696 img loss 1.4448487758636475 img loss 1.4288078546524048 img loss 1.265644907951355 img loss 1.4446970224380493 img loss 1.2633198499679565 img loss 1.3840882778167725 img loss 1.3681004047393799 img loss 1.237558364868164 img loss 1.4047598838806152 img loss 1.3710240125656128 img loss 1.3636845350265503 img loss 1.4570746421813965 img loss 1.3619805574417114 img loss 1.3906381130218506 img loss 1.3321424722671509 img loss 1.3615763187408447 img loss 1.3577195405960083 img loss 1.3509336709976196 img loss 1.347252368927002 img loss 1.3592438697814941 img loss 1.398650884628296 img loss 1.3992972373962402 img loss 1.2305963039398193 img loss 1.282236099243164 img loss 1.294527530670166 img loss 1.3683865070343018 img loss 1.277994155883789 img loss 1.4202334880828857 img loss 1.3357230424880981 img loss 1.270395278930664 img loss 1.356993556022644 img loss 1.3661577701568604 img loss 1.3947173357009888 img loss 1.3297849893569946 img loss 1.3010128736495972 img loss 1.349282145500183 img loss 1.3419578075408936 img loss 1.339199185371399 img loss 1.4134371280670166 img loss 1.4532719850540161 img loss 1.372086763381958 img loss 1.369992733001709 img loss 1.4241231679916382 img loss 1.307676911354065 img loss 1.432563066482544 img loss 1.3636642694473267 img loss 1.367584466934204 img loss 1.32341468334198 img loss 1.4538837671279907 img loss 1.4037007093429565 img loss 1.3187507390975952 img loss 1.3079595565795898 img loss 1.4138809442520142 img loss 1.288104772567749 img loss 1.3958441019058228 img loss 1.5544410943984985 img loss 1.3987250328063965 img loss 1.3740850687026978 img loss 1.3969357013702393 img loss 1.304037094116211 img loss 1.276244878768921 img loss 1.4025827646255493 img loss 1.3080991506576538 img loss 1.324573278427124 img loss 1.3902004957199097 img loss 1.2958691120147705 img loss 1.3241690397262573 img loss 1.4941974878311157 img loss 1.3375566005706787 img loss 1.3607789278030396 img loss 1.3320974111557007 img loss 1.2691673040390015 img loss 1.3748347759246826 img loss 1.3020644187927246 img loss 1.3984891176223755 img loss 1.3264573812484741 img loss 1.2706712484359741 img loss 1.3354955911636353 img loss 1.3809926509857178 img loss 1.297288417816162 img loss 1.347270131111145 img loss 1.3286978006362915 img loss 1.345737338066101 img loss 1.4062838554382324 img loss 1.4473607540130615 img loss 1.4652072191238403 img loss 1.2664717435836792 img loss 1.5394890308380127 img loss 1.2495205402374268 img loss 1.3171170949935913 img loss 1.3977910280227661 img loss 1.4173282384872437 img loss 1.299100399017334 img loss 1.3432523012161255 img loss 1.4181255102157593 img loss 1.3332403898239136 img loss 1.3348240852355957 img loss 1.3216278553009033 img loss 1.3598896265029907 {'loss': 1.3576, 'grad_norm': 0.3057224750518799, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1809791326522827 img loss 1.1937503814697266 img loss 1.1805403232574463 img loss 1.2462409734725952 img loss 1.4208674430847168 img loss 1.2444864511489868 img loss 1.244615077972412 img loss 1.2677485942840576 img loss 1.2414716482162476 img loss 1.2035410404205322 img loss 1.2467635869979858 img loss 1.2196288108825684 img loss 1.1815201044082642 img loss 1.2668476104736328 img loss 1.2657668590545654 img loss 1.1699720621109009 img loss 1.2413978576660156 img loss 1.1805084943771362 img loss 1.2496782541275024 img loss 1.2570507526397705 img loss 1.3319976329803467 img loss 1.2521297931671143 img loss 1.2507033348083496 img loss 1.1915736198425293 img loss 1.2522324323654175 img loss 1.2488653659820557 img loss 1.2610594034194946 img loss 1.208074927330017 img loss 1.2472131252288818 img loss 1.1287546157836914 img loss 1.3469959497451782 img loss 1.2217462062835693 img loss 1.29952871799469 img loss 1.2051753997802734 img loss 1.1947689056396484 img loss 1.236507773399353 img loss 1.2214961051940918 img loss 1.2437865734100342 img loss 1.241636037826538 img loss 1.2649139165878296 img loss 1.214851975440979 img loss 1.1843868494033813 img loss 1.233593463897705 img loss 1.2766504287719727 img loss 1.1663421392440796 img loss 1.2748408317565918 img loss 1.195193886756897 img loss 1.1324236392974854 img loss 1.2863587141036987 img loss 1.1858164072036743 img loss 1.1891229152679443 img loss 1.1919381618499756 img loss 1.1377145051956177 img loss 1.176347017288208 img loss 1.3027265071868896 img loss 1.2613416910171509 img loss 1.3181828260421753 img loss 1.216827154159546 img loss 1.1648870706558228 img loss 1.2043719291687012 img loss 1.2758396863937378 img loss 1.1365925073623657 img loss 1.2454984188079834 img loss 1.17193603515625 img loss 1.2007309198379517 img loss 1.2812613248825073 img loss 1.2232186794281006 img loss 1.1683906316757202 img loss 1.240156888961792 img loss 1.2248973846435547 img loss 1.3058254718780518 img loss 1.2183189392089844 img loss 1.271289587020874 img loss 1.178806185722351 img loss 1.2527836561203003 img loss 1.362834095954895 img loss 1.2854433059692383 img loss 1.268856406211853 img loss 1.2298228740692139img loss 1.3600306510925293 img loss 1.1815705299377441 img loss 1.1413829326629639 img loss 1.2246850728988647 img loss 1.3459678888320923 img loss 1.286073088645935 img loss 1.2388615608215332 img loss 1.1304206848144531 img loss 1.1720956563949585 img loss 1.1805142164230347 img loss 1.229142427444458 img loss 1.2547645568847656 img loss 1.2600961923599243 img loss 1.2563271522521973 img loss 1.2165248394012451 img loss 1.3166749477386475 img loss 1.1899746656417847 img loss 1.2891521453857422 img loss 1.2221195697784424 img loss 1.2148857116699219 img loss 1.2883888483047485 img loss 1.160431146621704 img loss 1.2054924964904785 img loss 1.2762861251831055 img loss 1.2889734506607056 img loss 1.2464158535003662 img loss 1.271594524383545 img loss 1.250627040863037 img loss 1.1395869255065918 img loss 1.2773823738098145 img loss 1.2468260526657104 img loss 1.218762755393982 img loss 1.1341975927352905 img loss 1.1997761726379395 img loss 1.4025462865829468 img loss 1.2393614053726196 img loss 1.3039153814315796 img loss 1.2398121356964111 img loss 1.2676435708999634 img loss 1.1691949367523193 img loss 1.2131675481796265 img loss 1.249804139137268 img loss 1.2699545621871948 img loss 1.2387043237686157 img loss 1.2329468727111816 img loss 1.2554600238800049 img loss 1.2537236213684082 img loss 1.198813796043396 img loss 1.2466226816177368 {'loss': 1.2352, 'grad_norm': 0.5312013626098633, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.5772511959075928 img loss 1.565557599067688 img loss 1.667305827140808 img loss 1.5321012735366821 img loss 1.5358752012252808 img loss 1.504886507987976 img loss 1.5847172737121582 img loss 1.4572930335998535 img loss 1.6526215076446533 img loss 1.466031789779663 img loss 1.5608927011489868 img loss 1.4299315214157104 img loss 1.58662748336792 img loss 1.58573317527771 img loss 1.5448931455612183 img loss 1.5475707054138184 img loss 1.4599310159683228 img loss 1.4839673042297363 img loss 1.5483061075210571 img loss 1.6440908908843994 img loss 1.5695880651474 img loss 1.5173776149749756 img loss 1.6169886589050293 img loss 1.55231511592865 img loss 1.5178173780441284 img loss 1.5398575067520142 img loss 1.5014851093292236 img loss 1.592353105545044 img loss 1.6087557077407837 img loss 1.4434794187545776 img loss 1.5329347848892212 img loss 1.6141040325164795 img loss 1.6202222108840942 img loss 1.517675518989563 img loss 1.4441416263580322 img loss 1.7156633138656616 img loss 1.603155493736267 img loss 1.4779536724090576 img loss 1.6179016828536987 img loss 1.5031869411468506 img loss 1.6102242469787598 img loss 1.5340874195098877 img loss 1.5947376489639282 img loss 1.5689283609390259 img loss 1.534818410873413 img loss 1.412535548210144 img loss 1.452551007270813 img loss 1.5681496858596802 img loss 1.525390386581421 img loss 1.497748851776123 img loss 1.4440258741378784 img loss 1.5141408443450928 img loss 1.5902049541473389 img loss 1.6563271284103394 img loss 1.5598210096359253 img loss 1.5259149074554443 img loss 1.841184139251709 img loss 1.4917187690734863 img loss 1.6236668825149536 img loss 1.3987354040145874 img loss 1.6133532524108887 img loss 1.5774483680725098 img loss 1.631865382194519 img loss 1.7617528438568115 img loss 1.6076377630233765 img loss 1.4483253955841064 img loss 1.5447815656661987 img loss 1.550788402557373 img loss 1.576427936553955 img loss 1.6296583414077759 img loss 1.639919638633728 img loss 1.5194920301437378 img loss 1.656699776649475 img loss 1.4909605979919434 img loss 1.835891842842102 img loss 1.6114895343780518 img loss 1.5393903255462646 img loss 1.5467652082443237 img loss 1.571277141571045 img loss 1.5145796537399292 img loss 1.632365107536316 img loss 1.7016806602478027img loss 1.5437499284744263 img loss 1.6608951091766357 img loss 1.5217821598052979 img loss 1.5394823551177979 img loss 1.491357684135437 img loss 1.5596916675567627 img loss 1.6097663640975952 img loss 1.678067684173584 img loss 1.658037781715393 img loss 1.5417665243148804 img loss 1.5966862440109253 img loss 1.7828314304351807 img loss 1.5143121480941772 img loss 1.6099284887313843 img loss 1.5312620401382446 img loss 1.502294659614563 img loss 1.6529396772384644 img loss 1.5441696643829346 img loss 1.5758378505706787 img loss 1.5976413488388062 img loss 1.7278528213500977 img loss 1.4264140129089355 img loss 1.488915205001831 img loss 1.5224024057388306 img loss 1.4971359968185425 img loss 1.4512600898742676 img loss 1.5023373365402222 img loss 1.603980302810669 img loss 1.518959403038025 img loss 1.4824223518371582 img loss 1.682674765586853 img loss 1.6109035015106201 img loss 1.7311925888061523 img loss 1.5148394107818604 img loss 1.5464543104171753 img loss 1.6227954626083374 img loss 1.643664836883545 img loss 1.5103504657745361 img loss 1.4956060647964478 img loss 1.5206259489059448 img loss 1.446501612663269 img loss 1.631710410118103 img loss 1.5125244855880737 img loss 1.6275486946105957 img loss 1.59040367603302 img loss 1.5073730945587158 {'loss': 1.565, 'grad_norm': 0.3988659977912903, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.344563364982605 img loss 1.2727830410003662 img loss 1.380133032798767 img loss 1.4626870155334473 img loss 1.2697854042053223 img loss 1.283629298210144 img loss 1.3574793338775635 img loss 1.3473533391952515 img loss 1.3886970281600952 img loss 1.365257978439331 img loss 1.3583625555038452 img loss 1.2547595500946045 img loss 1.3452792167663574 img loss 1.4167393445968628 img loss 1.4033410549163818 img loss 1.3776708841323853 img loss 1.4507066011428833 img loss 1.3441509008407593 img loss 1.4513885974884033 img loss 1.418039083480835 img loss 1.3828035593032837 img loss 1.3499623537063599 img loss 1.276618242263794 img loss 1.371772289276123 img loss 1.264783263206482 img loss 1.4341559410095215 img loss 1.424045205116272 img loss 1.4142451286315918 img loss 1.370835781097412 img loss 1.3560584783554077 img loss 1.3030451536178589 img loss 1.3605602979660034 img loss 1.4258134365081787 img loss 1.4080798625946045 img loss 1.46125066280365 img loss 1.3203296661376953 img loss 1.3269081115722656 img loss 1.4451746940612793 img loss 1.3555322885513306 img loss 1.336915135383606 img loss 1.4493539333343506 img loss 1.3281735181808472 img loss 1.3247730731964111 img loss 1.2882946729660034 img loss 1.332166075706482 img loss 1.3998081684112549 img loss 1.327900767326355 img loss 1.3085556030273438 img loss 1.3944852352142334 img loss 1.3120378255844116 img loss 1.4024498462677002 img loss 1.3257383108139038 img loss 1.3716470003128052 img loss 1.3143128156661987 img loss 1.2752983570098877 img loss 1.338080883026123 img loss 1.3418428897857666 img loss 1.3181204795837402 img loss 1.342966914176941 img loss 1.398997187614441 img loss 1.212398886680603 img loss 1.3790571689605713 img loss 1.3827998638153076 img loss 1.3772025108337402 img loss 1.3454861640930176 img loss 1.416814923286438 img loss 1.340471625328064 img loss 1.2336071729660034 img loss 1.3457552194595337 img loss 1.4284918308258057 img loss 1.2779476642608643 img loss 1.3321373462677002 img loss 1.313370943069458 img loss 1.3656030893325806 img loss 1.33308744430542 img loss 1.4709999561309814 img loss 1.2331669330596924 img loss 1.3434078693389893 img loss 1.28656804561615 img loss 1.332593321800232 img loss 1.2800029516220093 img loss 1.458823800086975 img loss 1.439123272895813 img loss 1.439049243927002 img loss 1.3101648092269897 img loss 1.326838731765747 img loss 1.3765841722488403 img loss 1.3904956579208374 img loss 1.3355656862258911 img loss 1.4702380895614624 img loss 1.3075180053710938 img loss 1.3731905221939087 img loss 1.4435912370681763 img loss 1.3093889951705933 img loss 1.4639025926589966 img loss 1.29625403881073 img loss 1.2970731258392334 img loss 1.4152644872665405 img loss 1.3605551719665527 img loss 1.3725905418395996 img loss 1.4742144346237183 img loss 1.3007404804229736 img loss 1.3332974910736084 img loss 1.3268728256225586 img loss 1.3959327936172485 img loss 1.3711556196212769 img loss 1.2187907695770264 img loss 1.4024995565414429 img loss 1.351701021194458 img loss 1.4075332880020142 img loss 1.4753938913345337 img loss 1.2842692136764526 img loss 1.3882969617843628 img loss 1.362374186515808 img loss 1.3497538566589355 img loss 1.3525739908218384 img loss 1.3344700336456299 img loss 1.3674445152282715 img loss 1.4131951332092285 img loss 1.3296756744384766 img loss 1.295426607131958 img loss 1.3954471349716187 img loss 1.3604158163070679 img loss 1.3859179019927979 img loss 1.4196326732635498 img loss 1.289484977722168 img loss 1.3740147352218628 img loss 1.3259313106536865 {'loss': 1.3584, 'grad_norm': 0.33974307775497437, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2518104314804077 img loss 1.182756781578064 img loss 1.2288250923156738 img loss 1.233559489250183 img loss 1.1902275085449219 img loss 1.2521299123764038 img loss 1.2677921056747437 img loss 1.195676565170288 img loss 1.209899663925171 img loss 1.2270402908325195 img loss 1.2282214164733887 img loss 1.2482054233551025 img loss 1.2359082698822021 img loss 1.1928040981292725 img loss 1.2259211540222168 img loss 1.2279548645019531 img loss 1.2517915964126587 img loss 1.2009514570236206 img loss 1.2787526845932007 img loss 1.218326210975647 img loss 1.2691435813903809 img loss 1.2310956716537476 img loss 1.258711576461792 img loss 1.2313085794448853 img loss 1.2276004552841187 img loss 1.2338815927505493 img loss 1.2193028926849365 img loss 1.2885432243347168 img loss 1.2929871082305908 img loss 1.2370964288711548 img loss 1.2202304601669312 img loss 1.2457493543624878 img loss 1.2449184656143188 img loss 1.2195098400115967 img loss 1.2173130512237549 img loss 1.2461493015289307 img loss 1.2092140913009644 img loss 1.233641266822815 img loss 1.2397689819335938 img loss 1.2459065914154053 img loss 1.2590787410736084 img loss 1.301450490951538 img loss 1.3513041734695435 img loss 1.2386044263839722 img loss 1.2796380519866943 img loss 1.2458724975585938 img loss 1.2088590860366821 img loss 1.2778637409210205 img loss 1.2583063840866089 img loss 1.282470464706421 img loss 1.2581192255020142 img loss 1.2367271184921265 img loss 1.2505873441696167 img loss 1.2475917339324951 img loss 1.240890383720398 img loss 1.1899973154067993 img loss 1.2201563119888306 img loss 1.2355763912200928 img loss 1.1908650398254395 img loss 1.2749656438827515 img loss 1.2121145725250244 img loss 1.2311842441558838 img loss 1.2766544818878174 img loss 1.2383848428726196 img loss 1.1910831928253174 img loss 1.2444685697555542 img loss 1.231885313987732 img loss 1.2706007957458496 img loss 1.2114548683166504 img loss 1.2249540090560913 img loss 1.216109037399292 img loss 1.18312406539917 img loss 1.2950559854507446 img loss 1.3089489936828613 img loss 1.2375545501708984 img loss 1.2061047554016113 img loss 1.281704306602478 img loss 1.2096192836761475 img loss 1.226487398147583 img loss 1.2568678855895996 img loss 1.255397081375122 img loss 1.225297451019287 img loss 1.2215824127197266 img loss 1.227745771408081 img loss 1.229499340057373 img loss 1.282847285270691 img loss 1.2850451469421387 img loss 1.2442874908447266 img loss 1.2171903848648071 img loss 1.2298614978790283 img loss 1.2522926330566406img loss 1.2166656255722046 img loss 1.2578847408294678 img loss 1.2709554433822632 img loss 1.1973612308502197 img loss 1.2334064245224 img loss 1.2285040616989136 img loss 1.1959781646728516 img loss 1.200702428817749 img loss 1.2021756172180176 img loss 1.2317758798599243 img loss 1.2282371520996094 img loss 1.172101378440857 img loss 1.1971853971481323 img loss 1.1744990348815918 img loss 1.2458114624023438 img loss 1.215462565422058 img loss 1.2491564750671387 img loss 1.222792148590088 img loss 1.2087887525558472 img loss 1.225409746170044 img loss 1.2825278043746948 img loss 1.254838466644287 img loss 1.2588026523590088 img loss 1.2721221446990967 img loss 1.203672170639038 img loss 1.2573275566101074 img loss 1.236666202545166 img loss 1.2082382440567017 img loss 1.2395515441894531 img loss 1.2322604656219482 img loss 1.1944706439971924 img loss 1.1941550970077515 img loss 1.1963812112808228 img loss 1.2470483779907227 img loss 1.259813904762268 img loss 1.2415865659713745 img loss 1.232245683670044 {'loss': 1.2361, 'grad_norm': 0.2511078119277954, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.5049365758895874 img loss 1.4903348684310913 img loss 1.5133779048919678 img loss 1.5029631853103638 img loss 1.4307023286819458 img loss 1.5493406057357788 img loss 1.4851677417755127 img loss 1.5039706230163574 img loss 1.4006612300872803 img loss 1.5157550573349 img loss 1.5124599933624268 img loss 1.4880024194717407 img loss 1.4056826829910278 img loss 1.4103407859802246 img loss 1.5109981298446655 img loss 1.4607681035995483 img loss 1.3507918119430542 img loss 1.4936978816986084 img loss 1.4559605121612549 img loss 1.4402071237564087 img loss 1.4792351722717285img loss 1.4314258098602295 img loss 1.42609441280365 img loss 1.5060328245162964 img loss 1.4798301458358765 img loss 1.5379151105880737 img loss 1.3496206998825073 img loss 1.4818291664123535 img loss 1.4374338388442993 img loss 1.2652180194854736 img loss 1.502013921737671 img loss 1.4041050672531128 img loss 1.399198293685913 img loss 1.4733355045318604 img loss 1.5067722797393799 img loss 1.5019968748092651 img loss 1.4106640815734863 img loss 1.5625150203704834 img loss 1.5100725889205933 img loss 1.4570986032485962 img loss 1.436917781829834 img loss 1.439422845840454 img loss 1.4520585536956787 img loss 1.4458409547805786 img loss 1.3483842611312866 img loss 1.4331986904144287 img loss 1.3983705043792725 img loss 1.4240509271621704 img loss 1.569124460220337 img loss 1.5190272331237793 img loss 1.4718338251113892 img loss 1.3114128112792969 img loss 1.5138341188430786 img loss 1.4121959209442139 img loss 1.3907185792922974 img loss 1.2863900661468506 img loss 1.4041434526443481 img loss 1.4041149616241455 img loss 1.3852542638778687 img loss 1.5087487697601318 img loss 1.4050575494766235 img loss 1.3956483602523804 img loss 1.579776644706726 img loss 1.5464580059051514 img loss 1.5223195552825928 img loss 1.5656673908233643 img loss 1.4540517330169678 img loss 1.489497423171997 img loss 1.5284987688064575 img loss 1.38185453414917 img loss 1.4363728761672974 img loss 1.3284926414489746 img loss 1.4346925020217896 img loss 1.4212239980697632 img loss 1.4508000612258911 img loss 1.5574450492858887 img loss 1.4640389680862427 img loss 1.4132946729660034 img loss 1.4024533033370972 img loss 1.5115739107131958 img loss 1.4083116054534912 img loss 1.435807704925537 img loss 1.5137828588485718 img loss 1.3850302696228027 img loss 1.535962462425232 img loss 1.5807373523712158 img loss 1.4354342222213745 img loss 1.6000624895095825 img loss 1.5133436918258667 img loss 1.5234700441360474 img loss 1.4808727502822876 img loss 1.4511523246765137 img loss 1.4783062934875488 img loss 1.4134715795516968 img loss 1.5908910036087036 img loss 1.403694987297058 img loss 1.6294065713882446 img loss 1.4676305055618286 img loss 1.5260895490646362 img loss 1.5189149379730225 img loss 1.3260303735733032 img loss 1.6265050172805786 img loss 1.451239824295044 img loss 1.4908400774002075 img loss 1.5302040576934814 img loss 1.3764456510543823 img loss 1.437316656112671 img loss 1.4423800706863403 img loss 1.5401065349578857 img loss 1.4672009944915771 img loss 1.4256707429885864 img loss 1.4903265237808228 img loss 1.38619065284729 img loss 1.4704585075378418 img loss 1.6354128122329712 img loss 1.5228005647659302 img loss 1.5653458833694458 img loss 1.4628299474716187 img loss 1.5382047891616821 img loss 1.5184283256530762 img loss 1.4988000392913818 img loss 1.5355772972106934 img loss 1.3862967491149902 img loss 1.4630383253097534 img loss 1.5014584064483643 img loss 1.4435750246047974 img loss 1.4249379634857178 img loss 1.4476927518844604 {'loss': 1.4663, 'grad_norm': 0.6438932418823242, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3389484882354736 img loss 1.3310012817382812 img loss 1.3129425048828125 img loss 1.192859411239624 img loss 1.269418478012085 img loss 1.2675122022628784 img loss 1.3151568174362183 img loss 1.219872236251831 img loss 1.27422297000885 img loss 1.2763639688491821 img loss 1.2925814390182495 img loss 1.219529151916504 img loss 1.2211015224456787 img loss 1.29461669921875 img loss 1.368316411972046 img loss 1.284464716911316 img loss 1.2441916465759277 img loss 1.2815468311309814 img loss 1.2214678525924683 img loss 1.2993652820587158 img loss 1.2782542705535889 img loss 1.283084511756897 img loss 1.287494421005249 img loss 1.3065146207809448 img loss 1.390949010848999 img loss 1.3146376609802246 img loss 1.260312557220459 img loss 1.2571396827697754 img loss 1.3276020288467407 img loss 1.2304080724716187 img loss 1.2412769794464111 img loss 1.219447374343872 img loss 1.2972393035888672 img loss 1.5007388591766357 img loss 1.2516953945159912 img loss 1.2321494817733765 img loss 1.3715651035308838 img loss 1.2736797332763672 img loss 1.3159396648406982 img loss 1.1708970069885254 img loss 1.31309974193573 img loss 1.2372535467147827 img loss 1.238065242767334 img loss 1.3504711389541626 img loss 1.408392310142517 img loss 1.2623322010040283 img loss 1.1947193145751953 img loss 1.2653636932373047 img loss 1.3155419826507568 img loss 1.302894115447998 img loss 1.2621214389801025 img loss 1.3161176443099976 img loss 1.2629177570343018 img loss 1.228847861289978 img loss 1.2800703048706055 img loss 1.2392172813415527 img loss 1.2680373191833496 img loss 1.2936943769454956 img loss 1.2180317640304565 img loss 1.2183459997177124 img loss 1.3027085065841675 img loss 1.2609878778457642 img loss 1.3167345523834229 img loss 1.2352231740951538 img loss 1.27337646484375 img loss 1.2859119176864624 img loss 1.2668179273605347 img loss 1.2390774488449097 img loss 1.2685266733169556 img loss 1.328877329826355 img loss 1.2749378681182861 img loss 1.2961276769638062 img loss 1.284752607345581 img loss 1.2144396305084229 img loss 1.216148853302002 img loss 1.2501744031906128 img loss 1.2768292427062988 img loss 1.2211334705352783 img loss 1.2622374296188354 img loss 1.2347553968429565 img loss 1.27788245677948 img loss 1.2396200895309448 img loss 1.3157708644866943 img loss 1.2058522701263428 img loss 1.2648729085922241 img loss 1.2831920385360718 img loss 1.272324800491333 img loss 1.2644357681274414 img loss 1.253291368484497 img loss 1.2567919492721558 img loss 1.3547919988632202 img loss 1.238586187362671 img loss 1.3160948753356934 img loss 1.2203187942504883 img loss 1.2885128259658813 img loss 1.3056025505065918 img loss 1.2631676197052002 img loss 1.3260999917984009 img loss 1.2911853790283203 img loss 1.269019365310669 img loss 1.275119662284851 img loss 1.290748953819275 img loss 1.240142583847046 img loss 1.2331326007843018 img loss 1.2887275218963623 img loss 1.233864665031433 img loss 1.3552508354187012 img loss 1.2512940168380737 img loss 1.2852176427841187 img loss 1.225597620010376 img loss 1.3287708759307861 img loss 1.2952779531478882 img loss 1.373001217842102 img loss 1.3021695613861084 img loss 1.3148460388183594 img loss 1.3316385746002197 img loss 1.3293225765228271 img loss 1.3117709159851074 img loss 1.3613810539245605 img loss 1.209807276725769 img loss 1.2593640089035034 img loss 1.2657148838043213 img loss 1.2338415384292603 img loss 1.2486788034439087 img loss 1.2419354915618896 img loss 1.2892613410949707 img loss 1.4077908992767334 img loss 1.2950725555419922 {'loss': 1.279, 'grad_norm': 0.28693652153015137, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3411632776260376 img loss 1.3366724252700806 img loss 1.3753201961517334 img loss 1.323877215385437 img loss 1.288134217262268 img loss 1.3719033002853394 img loss 1.3564897775650024 img loss 1.3405873775482178 img loss 1.4467648267745972 img loss 1.4104868173599243 img loss 1.3755539655685425 img loss 1.3751269578933716 img loss 1.2798599004745483 img loss 1.370367169380188 img loss 1.291982650756836 img loss 1.3371180295944214 img loss 1.2626672983169556 img loss 1.3221282958984375 img loss 1.3345741033554077 img loss 1.3966144323349 img loss 1.4612518548965454img loss 1.3431860208511353 img loss 1.2602719068527222 img loss 1.3602941036224365 img loss 1.3768789768218994 img loss 1.318307876586914 img loss 1.5031428337097168 img loss 1.491345763206482 img loss 1.4174731969833374 img loss 1.4000874757766724 img loss 1.2519015073776245 img loss 1.4809072017669678 img loss 1.390593409538269 img loss 1.4158846139907837 img loss 1.3493353128433228 img loss 1.2714543342590332 img loss 1.3227821588516235 img loss 1.4079610109329224 img loss 1.349071979522705 img loss 1.4625508785247803 img loss 1.3586102724075317 img loss 1.3632913827896118 img loss 1.2752277851104736 img loss 1.388035535812378 img loss 1.4955878257751465 img loss 1.3261604309082031 img loss 1.4104628562927246 img loss 1.3288494348526 img loss 1.3504674434661865 img loss 1.2532355785369873 img loss 1.4748104810714722 img loss 1.271196722984314 img loss 1.3783761262893677 img loss 1.3197414875030518 img loss 1.4133752584457397 img loss 1.3379055261611938 img loss 1.4002331495285034 img loss 1.3546582460403442 img loss 1.3691531419754028 img loss 1.395535945892334 img loss 1.3699077367782593 img loss 1.3682328462600708 img loss 1.2576961517333984 img loss 1.39363431930542 img loss 1.2748106718063354 img loss 1.4698631763458252 img loss 1.3146679401397705 img loss 1.332047462463379 img loss 1.2941893339157104 img loss 1.3537371158599854 img loss 1.3482091426849365 img loss 1.4024394750595093 img loss 1.3865300416946411 img loss 1.357116460800171 img loss 1.4651144742965698 img loss 1.414227843284607 img loss 1.3289706707000732 img loss 1.3228020668029785 img loss 1.3904926776885986 img loss 1.328264594078064 img loss 1.3648818731307983 img loss 1.3863126039505005 img loss 1.3726316690444946 img loss 1.2830721139907837 img loss 1.461382269859314 img loss 1.3349335193634033 img loss 1.402095079421997 img loss 1.317226767539978 img loss 1.3762515783309937 img loss 1.4116642475128174 img loss 1.3012192249298096 img loss 1.4048625230789185 img loss 1.399726152420044 img loss 1.3253586292266846img loss 1.3018245697021484 img loss 1.2909960746765137 img loss 1.4426575899124146 img loss 1.4239195585250854 img loss 1.3669133186340332 img loss 1.3476449251174927 img loss 1.4492794275283813 img loss 1.3207043409347534 img loss 1.296781063079834 img loss 1.3792376518249512 img loss 1.3047014474868774 img loss 1.376085877418518 img loss 1.4154974222183228 img loss 1.3592464923858643 img loss 1.4987692832946777 img loss 1.415358304977417 img loss 1.3296650648117065 img loss 1.3807488679885864 img loss 1.308752417564392 img loss 1.3899747133255005 img loss 1.3087422847747803 img loss 1.385465383529663 img loss 1.3662607669830322 img loss 1.3263204097747803 img loss 1.3958067893981934 img loss 1.3042840957641602 img loss 1.3533474206924438 img loss 1.299800157546997 img loss 1.5234180688858032 img loss 1.4238272905349731 img loss 1.3698960542678833 img loss 1.4762860536575317 img loss 1.490496039390564 img loss 1.4301267862319946 {'loss': 1.3672, 'grad_norm': 0.3491172194480896, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3421136140823364 img loss 1.507804036140442 img loss 1.2896788120269775 img loss 1.2678098678588867 img loss 1.3852190971374512 img loss 1.2775694131851196 img loss 1.385694980621338 img loss 1.2847144603729248 img loss 1.3209474086761475 img loss 1.3971556425094604 img loss 1.2579721212387085 img loss 1.3330307006835938 img loss 1.3388731479644775 img loss 1.4110509157180786 img loss 1.3073513507843018 img loss 1.3417452573776245 img loss 1.335245966911316 img loss 1.4001656770706177 img loss 1.3457547426223755 img loss 1.3640164136886597 img loss 1.3574069738388062 img loss 1.2623003721237183 img loss 1.3501487970352173 img loss 1.4352176189422607 img loss 1.4076470136642456 img loss 1.352047085762024 img loss 1.2446969747543335 img loss 1.2692171335220337 img loss 1.3684097528457642 img loss 1.2902183532714844 img loss 1.4219069480895996 img loss 1.3709172010421753 img loss 1.3912850618362427 img loss 1.365400791168213 img loss 1.2408069372177124 img loss 1.4571703672409058 img loss 1.4130228757858276 img loss 1.42537522315979 img loss 1.3284558057785034 img loss 1.2371432781219482 img loss 1.4551329612731934 img loss 1.2963653802871704 img loss 1.4453412294387817 img loss 1.435953974723816 img loss 1.3183802366256714 img loss 1.3721951246261597 img loss 1.4585239887237549 img loss 1.3069219589233398 img loss 1.3940280675888062 img loss 1.3441088199615479 img loss 1.3827500343322754 img loss 1.4053012132644653 img loss 1.3304626941680908 img loss 1.2849606275558472 img loss 1.3465991020202637 img loss 1.340451717376709 img loss 1.2914199829101562 img loss 1.4196425676345825 img loss 1.4723172187805176 img loss 1.3331427574157715 img loss 1.3450936079025269 img loss 1.2925021648406982 img loss 1.3045835494995117 img loss 1.3136976957321167 img loss 1.3357269763946533 img loss 1.388720154762268 img loss 1.2756099700927734 img loss 1.3591276407241821 img loss 1.3091200590133667 img loss 1.3128178119659424 img loss 1.3932689428329468 img loss 1.3235164880752563 img loss 1.4063347578048706 img loss 1.3421461582183838 img loss 1.2812556028366089 img loss 1.356140375137329 img loss 1.3569962978363037 img loss 1.3140079975128174 img loss 1.4273158311843872 img loss 1.317148208618164 img loss 1.2919440269470215 img loss 1.29710054397583 img loss 1.4117783308029175 img loss 1.3306163549423218 img loss 1.3249309062957764 img loss 1.27419912815094 img loss 1.2825647592544556 img loss 1.3111330270767212 img loss 1.2397851943969727 img loss 1.3745087385177612 img loss 1.3263938426971436 img loss 1.3335957527160645 img loss 1.2970761060714722 img loss 1.3270392417907715 img loss 1.289569616317749 img loss 1.3253700733184814 img loss 1.3379162549972534 img loss 1.3186911344528198 img loss 1.2271485328674316 img loss 1.4438518285751343 img loss 1.2611416578292847 img loss 1.29591703414917 img loss 1.3496743440628052 img loss 1.4187427759170532 img loss 1.310634970664978 img loss 1.2635738849639893 img loss 1.3611180782318115 img loss 1.3078144788742065 img loss 1.3586798906326294 img loss 1.3797374963760376 img loss 1.3309074640274048 img loss 1.3030493259429932 img loss 1.3179547786712646 img loss 1.4294488430023193 img loss 1.3267815113067627 img loss 1.339295506477356 img loss 1.2601505517959595 img loss 1.3409011363983154 img loss 1.344398021697998 img loss 1.4454056024551392 img loss 1.30055832862854 img loss 1.4453656673431396 img loss 1.3266048431396484 img loss 1.3789153099060059 img loss 1.3562246561050415 img loss 1.2931503057479858 img loss 1.3616522550582886 img loss 1.4532201290130615 {'loss': 1.3445, 'grad_norm': 0.32044294476509094, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4856847524642944 img loss 1.419594407081604 img loss 1.4705337285995483 img loss 1.459325909614563 img loss 1.4622063636779785 img loss 1.3993964195251465 img loss 1.4961678981781006 img loss 1.394929051399231 img loss 1.4081320762634277 img loss 1.5315001010894775 img loss 1.400352954864502 img loss 1.403886079788208 img loss 1.5132502317428589 img loss 1.3954318761825562 img loss 1.3389610052108765 img loss 1.4120056629180908 img loss 1.4181464910507202 img loss 1.3819085359573364 img loss 1.4344488382339478 img loss 1.5723427534103394 img loss 1.485175371170044 img loss 1.556959867477417 img loss 1.3096418380737305 img loss 1.468453049659729 img loss 1.3763011693954468 img loss 1.457707166671753 img loss 1.4088631868362427 img loss 1.452699899673462 img loss 1.3011242151260376 img loss 1.4584059715270996 img loss 1.4266207218170166 img loss 1.446336269378662 img loss 1.3776360750198364 img loss 1.4503957033157349 img loss 1.4404438734054565 img loss 1.4471417665481567 img loss 1.4577759504318237 img loss 1.528814673423767 img loss 1.5003514289855957 img loss 1.4215186834335327 img loss 1.3787264823913574 img loss 1.4138505458831787 img loss 1.5146044492721558 img loss 1.567767858505249 img loss 1.4042210578918457 img loss 1.522743582725525 img loss 1.4479615688323975 img loss 1.5094454288482666 img loss 1.4196728467941284 img loss 1.4450725317001343 img loss 1.3788564205169678 img loss 1.4200921058654785 img loss 1.318570852279663 img loss 1.3897236585617065 img loss 1.5314134359359741 img loss 1.4069435596466064 img loss 1.4770028591156006 img loss 1.4087363481521606 img loss 1.2232576608657837 img loss 1.397592306137085 img loss 1.4937212467193604 img loss 1.3979833126068115 img loss 1.4381957054138184 img loss 1.5030872821807861 img loss 1.511238932609558 img loss 1.5009419918060303 img loss 1.3669692277908325 img loss 1.4480563402175903 img loss 1.4697930812835693 img loss 1.4226300716400146 img loss 1.3498566150665283 img loss 1.444485068321228 img loss 1.4669890403747559 img loss 1.4129806756973267 img loss 1.4738389253616333 img loss 1.3267017602920532 img loss 1.43095862865448 img loss 1.4467581510543823 img loss 1.5380486249923706 img loss 1.4652200937271118 img loss 1.5075846910476685 img loss 1.3946305513381958 img loss 1.3325618505477905 img loss 1.2488406896591187 img loss 1.3533982038497925 img loss 1.5333753824234009 img loss 1.4324036836624146 img loss 1.4972970485687256 img loss 1.4388371706008911 img loss 1.3959423303604126 img loss 1.4992928504943848 img loss 1.3107022047042847 img loss 1.2289780378341675 img loss 1.417533040046692 img loss 1.3949459791183472 img loss 1.4079906940460205 img loss 1.5198915004730225 img loss 1.4351948499679565 img loss 1.5480371713638306 img loss 1.3281177282333374 img loss 1.418442964553833 img loss 1.454903244972229 img loss 1.4388049840927124 img loss 1.4937232732772827 img loss 1.4332787990570068 img loss 1.4462454319000244 img loss 1.5672551393508911 img loss 1.4018269777297974 img loss 1.2773680686950684img loss 1.546689510345459 img loss 1.353744626045227 img loss 1.3780485391616821 img loss 1.4934096336364746 img loss 1.472448468208313 img loss 1.5023409128189087 img loss 1.3179993629455566 img loss 1.574665904045105 img loss 1.5239003896713257 img loss 1.4757095575332642 img loss 1.3600283861160278 img loss 1.4279154539108276 img loss 1.3188661336898804 img loss 1.4492758512496948 img loss 1.5376285314559937 img loss 1.499809741973877 img loss 1.4892070293426514 img loss 1.384487271308899 img loss 1.559731364250183 {'loss': 1.4366, 'grad_norm': 0.27723586559295654, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2383151054382324 img loss 1.173213243484497 img loss 1.1864042282104492 img loss 1.131128191947937 img loss 1.15908944606781 img loss 1.2265398502349854 img loss 1.1701964139938354 img loss 1.1421597003936768 img loss 1.1904876232147217 img loss 1.177742600440979 img loss 1.1888484954833984 img loss 1.2650150060653687 img loss 1.1142873764038086 img loss 1.218701958656311 img loss 1.1811529397964478 img loss 1.2013413906097412 img loss 1.1759389638900757 img loss 1.1417244672775269 img loss 1.2282837629318237 img loss 1.2011218070983887 img loss 1.1807087659835815 img loss 1.2277854681015015 img loss 1.1646275520324707 img loss 1.1852068901062012 img loss 1.258819580078125 img loss 1.2604615688323975 img loss 1.1539855003356934 img loss 1.234239101409912 img loss 1.1965365409851074 img loss 1.2125756740570068 img loss 1.2387876510620117 img loss 1.179414987564087 img loss 1.226761817932129 img loss 1.2472150325775146 img loss 1.2149360179901123 img loss 1.1785415410995483 img loss 1.218441367149353 img loss 1.1531517505645752 img loss 1.2431151866912842 img loss 1.1175227165222168 img loss 1.171099305152893 img loss 1.218239188194275 img loss 1.2288599014282227 img loss 1.1920645236968994 img loss 1.1626505851745605 img loss 1.1911404132843018 img loss 1.1992592811584473 img loss 1.1717758178710938 img loss 1.195866584777832 img loss 1.1698106527328491 img loss 1.2842782735824585 img loss 1.1492037773132324 img loss 1.2660248279571533 img loss 1.2403202056884766 img loss 1.2187995910644531 img loss 1.216845154762268 img loss 1.1816608905792236 img loss 1.2457423210144043 img loss 1.224911093711853 img loss 1.1714725494384766 img loss 1.1348780393600464 img loss 1.197382926940918 img loss 1.1972547769546509 img loss 1.205954909324646 img loss 1.28886878490448 img loss 1.154916524887085 img loss 1.1657488346099854 img loss 1.2302830219268799 img loss 1.2026004791259766 img loss 1.2595785856246948 img loss 1.2238879203796387 img loss 1.2074962854385376 img loss 1.140369176864624 img loss 1.2846415042877197 img loss 1.1459869146347046 img loss 1.2199420928955078 img loss 1.1735968589782715 img loss 1.208330512046814 img loss 1.1929529905319214 img loss 1.210598349571228 img loss 1.2309383153915405 img loss 1.16303288936615 img loss 1.18104887008667 img loss 1.1752595901489258 img loss 1.1349071264266968 img loss 1.175196886062622 img loss 1.1894032955169678 img loss 1.1488473415374756 img loss 1.2662218809127808 img loss 1.1774438619613647 img loss 1.1864651441574097 img loss 1.2058051824569702 img loss 1.1951770782470703 img loss 1.2238824367523193 img loss 1.1313281059265137 img loss 1.2307236194610596 img loss 1.2029956579208374 img loss 1.1754423379898071 img loss 1.1579546928405762 img loss 1.1902722120285034 img loss 1.2203772068023682 img loss 1.1451427936553955 img loss 1.17019784450531 img loss 1.1409504413604736 img loss 1.2090243101119995 img loss 1.1662535667419434 img loss 1.1832541227340698 img loss 1.2199658155441284 img loss 1.2489250898361206 img loss 1.205187201499939 img loss 1.22365140914917 img loss 1.2226073741912842 img loss 1.2284386157989502 img loss 1.1723181009292603 img loss 1.1554114818572998 img loss 1.2332603931427002 img loss 1.1548961400985718 img loss 1.2610899209976196 img loss 1.1869760751724243 img loss 1.1868553161621094 img loss 1.2184375524520874 img loss 1.1998289823532104 img loss 1.2000536918640137 img loss 1.1536779403686523 img loss 1.2066867351531982 img loss 1.2236684560775757 img loss 1.215728521347046 img loss 1.121921420097351 {'loss': 1.1966, 'grad_norm': 0.31377390027046204, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1456184387207031 img loss 1.1740448474884033 img loss 1.177236557006836 img loss 1.136335015296936 img loss 1.2435269355773926 img loss 1.1646864414215088 img loss 1.1486663818359375 img loss 1.2016525268554688 img loss 1.1548117399215698 img loss 1.135731816291809 img loss 1.2042945623397827 img loss 1.168007731437683 img loss 1.2221335172653198 img loss 1.178341269493103 img loss 1.2006672620773315 img loss 1.1861919164657593 img loss 1.238842248916626 img loss 1.1443737745285034 img loss 1.129263162612915 img loss 1.126051425933838 img loss 1.2492752075195312 img loss 1.1399706602096558 img loss 1.1443372964859009 img loss 1.2447656393051147 img loss 1.204230785369873 img loss 1.2046446800231934 img loss 1.1558462381362915 img loss 1.1992372274398804 img loss 1.2265865802764893 img loss 1.2003427743911743 img loss 1.314659833908081 img loss 1.1710045337677002 img loss 1.1522877216339111 img loss 1.1268060207366943 img loss 1.1156291961669922 img loss 1.1836597919464111 img loss 1.1525872945785522 img loss 1.1780973672866821 img loss 1.1823468208312988 img loss 1.1126415729522705 img loss 1.1461143493652344 img loss 1.2021039724349976 img loss 1.194470763206482 img loss 1.1797187328338623 img loss 1.1509947776794434 img loss 1.16022527217865 img loss 1.157539963722229 img loss 1.1292022466659546 img loss 1.1920827627182007 img loss 1.205822467803955 img loss 1.2332823276519775 img loss 1.1584404706954956 img loss 1.1548571586608887 img loss 1.0970392227172852 img loss 1.2278791666030884 img loss 1.1522079706192017 img loss 1.1814221143722534 img loss 1.1652429103851318 img loss 1.1695520877838135 img loss 1.1746320724487305 img loss 1.2208225727081299 img loss 1.1862766742706299 img loss 1.2729356288909912 img loss 1.2186543941497803 img loss 1.1379951238632202 img loss 1.1798591613769531 img loss 1.1965749263763428 img loss 1.246765375137329 img loss 1.197546362876892 img loss 1.1934574842453003 img loss 1.184038519859314 img loss 1.148070216178894 img loss 1.1722744703292847 img loss 1.1643835306167603 img loss 1.1885600090026855 img loss 1.1959117650985718 img loss 1.233881950378418 img loss 1.1838181018829346 img loss 1.1550309658050537 img loss 1.1900376081466675 img loss 1.147560477256775 img loss 1.217547059059143 img loss 1.142585277557373 img loss 1.1958606243133545 img loss 1.1550476551055908 img loss 1.1356451511383057 img loss 1.173097014427185 img loss 1.1883035898208618 img loss 1.1704978942871094 img loss 1.2255750894546509 img loss 1.2450215816497803 img loss 1.186835765838623 img loss 1.1941418647766113 img loss 1.2429131269454956 img loss 1.154173493385315 img loss 1.2263331413269043 img loss 1.2593939304351807 img loss 1.1601784229278564 img loss 1.1821199655532837 img loss 1.1890976428985596 img loss 1.1478097438812256 img loss 1.1462773084640503 img loss 1.1519689559936523 img loss 1.216012716293335 img loss 1.1709390878677368 img loss 1.2640434503555298 img loss 1.1291173696517944 img loss 1.2534539699554443 img loss 1.1052343845367432 img loss 1.253122329711914 img loss 1.1934746503829956 img loss 1.228281855583191 img loss 1.2350510358810425 img loss 1.1658388376235962 img loss 1.1573619842529297 img loss 1.2424743175506592 img loss 1.1420220136642456 img loss 1.1297268867492676 img loss 1.1965439319610596 img loss 1.1820905208587646 img loss 1.1428143978118896 img loss 1.1911579370498657 img loss 1.1109910011291504 img loss 1.1523094177246094 img loss 1.1804357767105103 img loss 1.1763050556182861 img loss 1.1169610023498535 img loss 1.118452787399292 {'loss': 1.1807, 'grad_norm': 0.23658861219882965, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2414785623550415 img loss 1.2613193988800049 img loss 1.2743192911148071 img loss 1.278646469116211 img loss 1.284644603729248 img loss 1.2823498249053955 img loss 1.2372751235961914 img loss 1.3133690357208252 img loss 1.2928543090820312 img loss 1.2474987506866455 img loss 1.3111934661865234 img loss 1.272863745689392 img loss 1.2463269233703613 img loss 1.259757399559021 img loss 1.238537073135376 img loss 1.2231563329696655 img loss 1.3249353170394897 img loss 1.229151725769043 img loss 1.2649455070495605 img loss 1.2816901206970215 img loss 1.2510526180267334 img loss 1.233450174331665 img loss 1.3469369411468506 img loss 1.2789005041122437 img loss 1.4328043460845947 img loss 1.2510740756988525 img loss 1.308488130569458 img loss 1.3068984746932983 img loss 1.2987847328186035 img loss 1.330270528793335 img loss 1.367128849029541img loss 1.2021757364273071 img loss 1.2831367254257202 img loss 1.3635774850845337 img loss 1.2194578647613525 img loss 1.2505995035171509 img loss 1.2255820035934448 img loss 1.178762435913086 img loss 1.3028504848480225 img loss 1.205107569694519 img loss 1.2709987163543701 img loss 1.221956729888916 img loss 1.2927191257476807 img loss 1.1920406818389893 img loss 1.2034262418746948 img loss 1.2900676727294922 img loss 1.2858223915100098 img loss 1.291818380355835 img loss 1.2901617288589478 img loss 1.265526294708252 img loss 1.2595269680023193 img loss 1.3196247816085815 img loss 1.2781902551651 img loss 1.2240110635757446 img loss 1.3098523616790771 img loss 1.2262667417526245 img loss 1.2938295602798462 img loss 1.3599028587341309 img loss 1.3225711584091187 img loss 1.2677643299102783 img loss 1.285555124282837 img loss 1.2020782232284546 img loss 1.3127142190933228 img loss 1.2973171472549438 img loss 1.2557995319366455 img loss 1.3081330060958862 img loss 1.409530520439148 img loss 1.1944526433944702 img loss 1.3221405744552612 img loss 1.3570256233215332 img loss 1.231798529624939 img loss 1.309507131576538 img loss 1.219146490097046 img loss 1.3321149349212646 img loss 1.3481682538986206 img loss 1.2922178506851196 img loss 1.2872265577316284 img loss 1.176082968711853 img loss 1.3660544157028198 img loss 1.280962586402893 img loss 1.3800549507141113 img loss 1.2310404777526855 img loss 1.290229082107544 img loss 1.2800066471099854 img loss 1.1760669946670532 img loss 1.2887767553329468 img loss 1.364498257637024 img loss 1.2448174953460693 img loss 1.3695166110992432 img loss 1.2455153465270996 img loss 1.2277854681015015 img loss 1.2515932321548462 img loss 1.2161014080047607 img loss 1.2866629362106323 img loss 1.2243114709854126 img loss 1.3347173929214478 img loss 1.347929835319519 img loss 1.3867720365524292 img loss 1.2122228145599365 img loss 1.256568193435669 img loss 1.2777050733566284 img loss 1.33933424949646 img loss 1.312986135482788 img loss 1.2335622310638428 img loss 1.2812440395355225 img loss 1.3078975677490234 img loss 1.272485375404358 img loss 1.2972646951675415 img loss 1.3624461889266968 img loss 1.2619726657867432 img loss 1.4378674030303955 img loss 1.27841055393219 img loss 1.2854022979736328 img loss 1.2709922790527344 img loss 1.2965962886810303 img loss 1.2165164947509766 img loss 1.2358245849609375 img loss 1.3306325674057007 img loss 1.2578989267349243 img loss 1.3978155851364136 img loss 1.310748815536499 img loss 1.2937159538269043 img loss 1.3184343576431274 img loss 1.414864182472229 img loss 1.3359357118606567 img loss 1.1843794584274292 img loss 1.3273580074310303 img loss 1.2141609191894531 {'loss': 1.283, 'grad_norm': 0.2585762143135071, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2170683145523071 img loss 1.2459087371826172 img loss 1.2612205743789673 img loss 1.3020362854003906 img loss 1.1698660850524902 img loss 1.2959671020507812 img loss 1.1631215810775757 img loss 1.1884002685546875 img loss 1.2185337543487549 img loss 1.275887131690979 img loss 1.2223315238952637 img loss 1.2166979312896729 img loss 1.230588436126709 img loss 1.2613563537597656 img loss 1.1920632123947144 img loss 1.1890562772750854 img loss 1.253650426864624 img loss 1.3004697561264038 img loss 1.2345818281173706 img loss 1.3967632055282593 img loss 1.202178955078125 img loss 1.1892341375350952 img loss 1.1495707035064697 img loss 1.3131847381591797 img loss 1.1612565517425537 img loss 1.1285309791564941 img loss 1.1853454113006592 img loss 1.2137770652770996 img loss 1.2009992599487305 img loss 1.189696192741394 img loss 1.2594633102416992 img loss 1.2016007900238037 img loss 1.2381713390350342 img loss 1.2912096977233887 img loss 1.132603406906128 img loss 1.2123119831085205 img loss 1.182936191558838 img loss 1.2243237495422363 img loss 1.1802818775177002 img loss 1.1857569217681885 img loss 1.1571998596191406 img loss 1.2379156351089478 img loss 1.1696147918701172 img loss 1.2705615758895874 img loss 1.2203688621520996 img loss 1.1833057403564453 img loss 1.3015058040618896 img loss 1.2506128549575806 img loss 1.2081172466278076 img loss 1.2475616931915283 img loss 1.315659523010254 img loss 1.2376924753189087 img loss 1.2180578708648682 img loss 1.2543928623199463 img loss 1.1884937286376953 img loss 1.1825170516967773img loss 1.252794861793518 img loss 1.2210224866867065 img loss 1.2844711542129517 img loss 1.2070664167404175 img loss 1.3106684684753418 img loss 1.2578997611999512 img loss 1.2889800071716309 img loss 1.1958986520767212 img loss 1.3054684400558472 img loss 1.191023588180542 img loss 1.2883061170578003 img loss 1.2866865396499634 img loss 1.1502432823181152 img loss 1.2138527631759644 img loss 1.1907238960266113 img loss 1.2521429061889648 img loss 1.2257009744644165 img loss 1.137363076210022 img loss 1.208634614944458 img loss 1.172890543937683 img loss 1.2013564109802246 img loss 1.229791283607483 img loss 1.2148367166519165 img loss 1.2284204959869385 img loss 1.3079891204833984 img loss 1.2370954751968384 img loss 1.1951318979263306 img loss 1.2275413274765015 img loss 1.263619303703308 img loss 1.23021399974823 img loss 1.1948175430297852 img loss 1.2217768430709839 img loss 1.2541782855987549 img loss 1.2603825330734253 img loss 1.2339531183242798 img loss 1.186543345451355 img loss 1.2788931131362915 img loss 1.1403084993362427 img loss 1.2277507781982422 img loss 1.3161875009536743 img loss 1.2403796911239624 img loss 1.2106091976165771 img loss 1.2221304178237915 img loss 1.2218797206878662 img loss 1.1780624389648438 img loss 1.2428654432296753 img loss 1.2755478620529175 img loss 1.233872890472412 img loss 1.2729909420013428 img loss 1.1977030038833618 img loss 1.1975820064544678 img loss 1.223592758178711 img loss 1.2887827157974243 img loss 1.2070066928863525 img loss 1.2513065338134766 img loss 1.1500608921051025 img loss 1.1900444030761719 img loss 1.167531967163086 img loss 1.267061471939087 img loss 1.2358999252319336 img loss 1.245726227760315 img loss 1.2481803894042969 img loss 1.2073040008544922 img loss 1.1346315145492554 img loss 1.2089802026748657 img loss 1.223934531211853 img loss 1.2739086151123047 img loss 1.2219799757003784 img loss 1.2260944843292236 img loss 1.3373640775680542 img loss 1.2697067260742188 img loss 1.196237564086914 {'loss': 1.2272, 'grad_norm': 0.30257561802864075, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1783287525177002 img loss 1.1911866664886475 img loss 1.2363232374191284 img loss 1.259230375289917 img loss 1.201479434967041 img loss 1.2078278064727783 img loss 1.185715675354004 img loss 1.2255737781524658 img loss 1.204324722290039 img loss 1.234915018081665 img loss 1.2339622974395752 img loss 1.245788812637329 img loss 1.1598484516143799 img loss 1.1557563543319702 img loss 1.202291488647461 img loss 1.1601557731628418 img loss 1.232421875 img loss 1.2555210590362549 img loss 1.2213892936706543 img loss 1.1242499351501465 img loss 1.2292059659957886 img loss 1.1864951848983765 img loss 1.1956825256347656 img loss 1.1836748123168945 img loss 1.2280664443969727 img loss 1.197523832321167 img loss 1.3053537607192993 img loss 1.211207628250122 img loss 1.1730244159698486 img loss 1.1555171012878418 img loss 1.17562735080719 img loss 1.2838484048843384 img loss 1.1778309345245361 img loss 1.152278184890747 img loss 1.2192291021347046 img loss 1.2546442747116089 img loss 1.2586345672607422 img loss 1.2575347423553467 img loss 1.271786093711853 img loss 1.1465659141540527 img loss 1.2013822793960571 img loss 1.1941335201263428 img loss 1.163489818572998 img loss 1.2268484830856323 img loss 1.2324254512786865 img loss 1.1333101987838745 img loss 1.1641292572021484 img loss 1.2219599485397339 img loss 1.2454456090927124img loss 1.1948143243789673 img loss 1.1912763118743896 img loss 1.1702584028244019 img loss 1.241522192955017 img loss 1.2103257179260254 img loss 1.2151542901992798 img loss 1.3332252502441406 img loss 1.1378591060638428 img loss 1.1952120065689087 img loss 1.182564377784729 img loss 1.2066853046417236 img loss 1.1653358936309814 img loss 1.1997841596603394 img loss 1.2156254053115845 img loss 1.1617380380630493 img loss 1.1486574411392212 img loss 1.1460776329040527 img loss 1.19137442111969 img loss 1.2574211359024048 img loss 1.1686753034591675 img loss 1.173396348953247 img loss 1.2497618198394775 img loss 1.2243616580963135 img loss 1.1842408180236816 img loss 1.1999213695526123 img loss 1.1918915510177612 img loss 1.1826447248458862 img loss 1.2640208005905151 img loss 1.2383027076721191 img loss 1.2297353744506836 img loss 1.283972144126892 img loss 1.1973899602890015 img loss 1.2683994770050049 img loss 1.1768989562988281 img loss 1.2044117450714111 img loss 1.1963376998901367 img loss 1.244443655014038 img loss 1.1779816150665283 img loss 1.1620548963546753 img loss 1.2404619455337524 img loss 1.1608384847640991 img loss 1.2259491682052612 img loss 1.2742877006530762 img loss 1.1778628826141357 img loss 1.1948944330215454 img loss 1.2275587320327759 img loss 1.2322688102722168 img loss 1.2300620079040527 img loss 1.1984286308288574 img loss 1.23424232006073 img loss 1.1817749738693237 img loss 1.236266851425171 img loss 1.1587103605270386 img loss 1.2556403875350952 img loss 1.2428529262542725 img loss 1.218004822731018 img loss 1.2302806377410889 img loss 1.1753437519073486 img loss 1.1923065185546875 img loss 1.1827694177627563 img loss 1.2216746807098389 img loss 1.1747970581054688 img loss 1.2244207859039307 img loss 1.1758289337158203 img loss 1.2179120779037476 img loss 1.198312759399414 img loss 1.18997061252594 img loss 1.255167007446289 img loss 1.2185426950454712 img loss 1.1943554878234863img loss 1.198961853981018 img loss 1.2153375148773193 img loss 1.2298064231872559 img loss 1.1406469345092773 img loss 1.2131532430648804 img loss 1.2283896207809448img loss 1.2418780326843262 img loss 1.2354081869125366 img loss 1.173921823501587 {'loss': 1.2075, 'grad_norm': 0.22021636366844177, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.5198699235916138 img loss 1.3901562690734863 img loss 1.444607138633728 img loss 1.4534869194030762 img loss 1.5804474353790283 img loss 1.470175862312317 img loss 1.555904746055603 img loss 1.4519236087799072 img loss 1.4907643795013428 img loss 1.4410202503204346 img loss 1.476115107536316 img loss 1.5537562370300293 img loss 1.445818305015564 img loss 1.3806260824203491 img loss 1.5350677967071533 img loss 1.5809013843536377 img loss 1.4246535301208496 img loss 1.6478559970855713 img loss 1.4062806367874146 img loss 1.5411646366119385 img loss 1.4565590620040894 img loss 1.4031630754470825 img loss 1.4535213708877563 img loss 1.6191579103469849 img loss 1.4911102056503296 img loss 1.4962674379348755 img loss 1.5378928184509277 img loss 1.4628539085388184 img loss 1.5873277187347412 img loss 1.5180577039718628 img loss 1.5060640573501587 img loss 1.460435390472412 img loss 1.5508620738983154 img loss 1.5476746559143066 img loss 1.4389673471450806 img loss 1.4240186214447021 img loss 1.479731798171997 img loss 1.7439690828323364 img loss 1.6165382862091064 img loss 1.4565188884735107 img loss 1.5771183967590332 img loss 1.4797636270523071 img loss 1.4593138694763184 img loss 1.5018584728240967 img loss 1.4748178720474243 img loss 1.46360182762146 img loss 1.4145386219024658 img loss 1.5587643384933472 img loss 1.5537439584732056 img loss 1.4449280500411987 img loss 1.6097142696380615 img loss 1.4838194847106934 img loss 1.4247658252716064 img loss 1.4903826713562012 img loss 1.509718418121338 img loss 1.5766648054122925 img loss 1.4718091487884521 img loss 1.3929699659347534 img loss 1.4823709726333618 img loss 1.345746397972107 img loss 1.4956936836242676 img loss 1.4284940958023071 img loss 1.3530687093734741 img loss 1.376034140586853 img loss 1.3397496938705444 img loss 1.5660303831100464 img loss 1.3756077289581299 img loss 1.370958924293518 img loss 1.4462321996688843 img loss 1.5019029378890991img loss 1.5619852542877197 img loss 1.4301841259002686 img loss 1.5491379499435425 img loss 1.5149261951446533 img loss 1.4006489515304565 img loss 1.4863282442092896 img loss 1.4692848920822144 img loss 1.6433255672454834 img loss 1.4340412616729736 img loss 1.4643728733062744 img loss 1.4331401586532593 img loss 1.5267856121063232 img loss 1.4775097370147705 img loss 1.5207240581512451 img loss 1.464074969291687 img loss 1.4511370658874512 img loss 1.5342745780944824 img loss 1.5667024850845337 img loss 1.4849904775619507 img loss 1.4119325876235962 img loss 1.519700527191162 img loss 1.4098039865493774 img loss 1.5670502185821533 img loss 1.5020238161087036 img loss 1.545638918876648 img loss 1.4745758771896362 img loss 1.4572975635528564 img loss 1.4492017030715942 img loss 1.696988582611084 img loss 1.5334147214889526 img loss 1.521288275718689 img loss 1.4526517391204834 img loss 1.4600865840911865 img loss 1.4167829751968384 img loss 1.4184625148773193 img loss 1.5729893445968628 img loss 1.510176181793213 img loss 1.471163034439087 img loss 1.5370129346847534 img loss 1.5956329107284546 img loss 1.4228919744491577 img loss 1.453315019607544 img loss 1.4549871683120728 img loss 1.4155396223068237 img loss 1.6905592679977417 img loss 1.3806872367858887 img loss 1.4004932641983032 img loss 1.4065282344818115 img loss 1.392738699913025 img loss 1.550822377204895 img loss 1.4805179834365845 img loss 1.578202486038208 img loss 1.430216908454895 img loss 1.4385606050491333 img loss 1.4670315980911255 img loss 1.3500293493270874 img loss 1.5072131156921387 img loss 1.526650309562683 {'loss': 1.4867, 'grad_norm': 0.2979067265987396, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1675184965133667 img loss 1.2378071546554565 img loss 1.270158290863037 img loss 1.1429089307785034 img loss 1.1737393140792847 img loss 1.2064881324768066 img loss 1.1644922494888306 img loss 1.1631324291229248 img loss 1.1522448062896729 img loss 1.2718913555145264 img loss 1.192247748374939 img loss 1.1288518905639648 img loss 1.3058879375457764 img loss 1.176664113998413 img loss 1.220507025718689 img loss 1.2629516124725342 img loss 1.2295650243759155 img loss 1.267485499382019 img loss 1.215519666671753 img loss 1.2303584814071655 img loss 1.2562416791915894 img loss 1.2123972177505493 img loss 1.2131316661834717 img loss 1.1666829586029053 img loss 1.1495494842529297 img loss 1.2769044637680054 img loss 1.2052814960479736 img loss 1.2583612203598022 img loss 1.2898434400558472 img loss 1.244170904159546 img loss 1.3245487213134766 img loss 1.1875566244125366 img loss 1.2743498086929321 img loss 1.1524033546447754 img loss 1.1539677381515503 img loss 1.155535101890564 img loss 1.1613256931304932 img loss 1.1380248069763184 img loss 1.2367308139801025 img loss 1.1939016580581665 img loss 1.1752073764801025 img loss 1.2519371509552002 img loss 1.2840031385421753 img loss 1.2558698654174805 img loss 1.2498538494110107 img loss 1.1733958721160889 img loss 1.2299513816833496 img loss 1.2911772727966309 img loss 1.1628496646881104 img loss 1.3477566242218018 img loss 1.283332347869873 img loss 1.2184040546417236 img loss 1.3540637493133545 img loss 1.198028802871704 img loss 1.3061411380767822 img loss 1.2490495443344116 img loss 1.1905962228775024 img loss 1.2121026515960693 img loss 1.1899268627166748 img loss 1.1749231815338135 img loss 1.2043975591659546 img loss 1.1639823913574219 img loss 1.227852702140808 img loss 1.2115647792816162 img loss 1.2584638595581055 img loss 1.1667356491088867 img loss 1.2425487041473389 img loss 1.1689704656600952 img loss 1.2288599014282227 img loss 1.1849855184555054 img loss 1.1909147500991821 img loss 1.2954944372177124 img loss 1.3222248554229736 img loss 1.2816447019577026 img loss 1.2445777654647827 img loss 1.2629938125610352 img loss 1.1395639181137085 img loss 1.2627086639404297 img loss 1.2936629056930542 img loss 1.122652530670166 img loss 1.1761751174926758 img loss 1.2181326150894165 img loss 1.265684962272644 img loss 1.207309603691101 img loss 1.1411553621292114 img loss 1.1590595245361328 img loss 1.2035168409347534 img loss 1.1883327960968018 img loss 1.162453532218933 img loss 1.178165316581726 img loss 1.1918874979019165 img loss 1.2547142505645752 img loss 1.298740029335022 img loss 1.25662362575531 img loss 1.158778429031372 img loss 1.1838767528533936 img loss 1.2578468322753906 img loss 1.3038005828857422 img loss 1.1155343055725098 img loss 1.247111201286316 img loss 1.1942647695541382 img loss 1.2333892583847046 img loss 1.2426128387451172 img loss 1.2884972095489502 img loss 1.108435869216919 img loss 1.2956502437591553 img loss 1.1096227169036865 img loss 1.105215311050415 img loss 1.2044588327407837 img loss 1.2855010032653809 img loss 1.3920878171920776 img loss 1.2178146839141846 img loss 1.1152657270431519 img loss 1.2475390434265137 img loss 1.1972872018814087 img loss 1.1345610618591309 img loss 1.279463768005371 img loss 1.2202777862548828 img loss 1.1853196620941162 img loss 1.1951637268066406 img loss 1.14078950881958 img loss 1.2563828229904175 img loss 1.170412540435791 img loss 1.2119014263153076 img loss 1.2091896533966064 img loss 1.224907636642456 img loss 1.2150503396987915 img loss 1.1683857440948486 {'loss': 1.2166, 'grad_norm': 0.37607666850090027, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4804978370666504 img loss 1.3402659893035889 img loss 1.5446562767028809 img loss 1.3997079133987427 img loss 1.7508529424667358 img loss 1.5618232488632202 img loss 1.668300747871399 img loss 1.4577580690383911 img loss 1.650437831878662 img loss 1.5777565240859985 img loss 1.5379971265792847 img loss 1.420285940170288 img loss 1.6442493200302124 img loss 1.5489537715911865 img loss 1.594436764717102 img loss 1.651472568511963 img loss 1.491575002670288 img loss 1.4843860864639282 img loss 1.3764630556106567 img loss 1.4981892108917236 img loss 1.5089203119277954 img loss 1.593658685684204 img loss 1.5610429048538208 img loss 1.5258876085281372 img loss 1.3936514854431152 img loss 1.4043906927108765 img loss 1.530096411705017 img loss 1.548692226409912 img loss 1.4899380207061768 img loss 1.5009076595306396 img loss 1.593762755393982 img loss 1.5060389041900635 img loss 1.576628565788269 img loss 1.5863959789276123 img loss 1.4525045156478882 img loss 1.4639877080917358 img loss 1.4555354118347168 img loss 1.5392203330993652 img loss 1.6367722749710083 img loss 1.6017205715179443 img loss 1.6316463947296143 img loss 1.4177124500274658 img loss 1.5905888080596924 img loss 1.6567884683609009 img loss 1.3628145456314087 img loss 1.7607910633087158 img loss 1.5609346628189087 img loss 1.5691845417022705 img loss 1.6738173961639404 img loss 1.694441556930542 img loss 1.452393889427185 img loss 1.621848464012146 img loss 1.4244801998138428 img loss 1.4452627897262573 img loss 1.455808401107788 img loss 1.5066678524017334 img loss 1.5523488521575928 img loss 1.4576784372329712 img loss 1.676863193511963 img loss 1.6216312646865845 img loss 1.6776682138442993 img loss 1.535583257675171 img loss 1.5307568311691284 img loss 1.6067893505096436 img loss 1.4818404912948608 img loss 1.4449371099472046 img loss 1.4706212282180786 img loss 1.6093459129333496 img loss 1.4365594387054443 img loss 1.5208998918533325 img loss 1.446562647819519 img loss 1.5677660703659058 img loss 1.6106173992156982 img loss 1.4582141637802124 img loss 1.5049999952316284 img loss 1.2844743728637695 img loss 1.647800087928772 img loss 1.5157955884933472 img loss 1.6160578727722168 img loss 1.792296051979065 img loss 1.532686710357666 img loss 1.6201249361038208 img loss 1.621307611465454 img loss 1.6253703832626343 img loss 1.6189697980880737img loss 1.604703426361084 img loss 1.5452525615692139 img loss 1.527722954750061 img loss 1.4132238626480103 img loss 1.4407659769058228 img loss 1.351925015449524 img loss 1.519529938697815 img loss 1.7123405933380127 img loss 1.6852666139602661 img loss 1.5502922534942627 img loss 1.5052014589309692 img loss 1.3313394784927368 img loss 1.6898815631866455 img loss 1.5935370922088623 img loss 1.5852503776550293 img loss 1.5581029653549194 img loss 1.5234007835388184 img loss 1.4938023090362549 img loss 1.5167324542999268 img loss 1.616776943206787 img loss 1.4694712162017822 img loss 1.6166222095489502 img loss 1.7060168981552124 img loss 1.5533257722854614 img loss 1.598935604095459 img loss 1.679317593574524 img loss 1.5280193090438843 img loss 1.5906691551208496 img loss 1.593726396560669 img loss 1.4604955911636353 img loss 1.4929726123809814 img loss 1.616831660270691 img loss 1.4851421117782593 img loss 1.6608179807662964 img loss 1.614651083946228 img loss 1.597023367881775 img loss 1.4265486001968384 img loss 1.580931544303894 img loss 1.7909435033798218 img loss 1.5128228664398193 img loss 1.4929015636444092 img loss 1.620176076889038 img loss 1.638791799545288 {'loss': 1.5481, 'grad_norm': 0.2859911024570465, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4048068523406982 img loss 1.282209038734436 img loss 1.2453720569610596 img loss 1.2071001529693604 img loss 1.2051070928573608 img loss 1.3178621530532837 img loss 1.246348261833191 img loss 1.2956950664520264 img loss 1.275977611541748 img loss 1.268156886100769 img loss 1.2566797733306885 img loss 1.2639753818511963 img loss 1.3014229536056519 img loss 1.362440824508667 img loss 1.2366507053375244 img loss 1.2536627054214478 img loss 1.4463852643966675 img loss 1.2913906574249268 img loss 1.2021265029907227 img loss 1.2740075588226318 img loss 1.3430733680725098 img loss 1.2962592840194702 img loss 1.229766607284546 img loss 1.2158472537994385 img loss 1.2562460899353027 img loss 1.1757524013519287 img loss 1.2481809854507446 img loss 1.2040222883224487 img loss 1.2341945171356201 img loss 1.2641181945800781 img loss 1.2841823101043701 img loss 1.2847275733947754 img loss 1.221743106842041 img loss 1.2573928833007812 img loss 1.283107042312622 img loss 1.281878113746643 img loss 1.285874843597412 img loss 1.2447125911712646 img loss 1.3259295225143433 img loss 1.2209961414337158 img loss 1.2565109729766846 img loss 1.2035869359970093 img loss 1.2954193353652954 img loss 1.2534834146499634 img loss 1.3063217401504517 img loss 1.3272662162780762 img loss 1.2522186040878296 img loss 1.1934705972671509 img loss 1.3080005645751953 img loss 1.2171733379364014 img loss 1.2462714910507202 img loss 1.3832212686538696 img loss 1.3654698133468628 img loss 1.2395216226577759 img loss 1.2654359340667725 img loss 1.2857739925384521 img loss 1.224268913269043 img loss 1.265181064605713 img loss 1.2310014963150024 img loss 1.3143606185913086 img loss 1.313045859336853 img loss 1.2590651512145996 img loss 1.217991828918457 img loss 1.2093760967254639 img loss 1.2898508310317993 img loss 1.3163117170333862 img loss 1.3647774457931519 img loss 1.2763347625732422 img loss 1.291668176651001 img loss 1.2415995597839355 img loss 1.2151075601577759 img loss 1.2323668003082275 img loss 1.3557194471359253 img loss 1.231191635131836 img loss 1.2654926776885986 img loss 1.344190239906311 img loss 1.3288713693618774 img loss 1.233777642250061 img loss 1.3373645544052124 img loss 1.2352110147476196 img loss 1.1961517333984375 img loss 1.3275394439697266 img loss 1.178226113319397 img loss 1.142555832862854 img loss 1.2051482200622559 img loss 1.16167414188385 img loss 1.3472849130630493 img loss 1.2486881017684937 img loss 1.286436676979065 img loss 1.212756633758545 img loss 1.2003065347671509 img loss 1.2217787504196167 img loss 1.2350677251815796 img loss 1.2078328132629395 img loss 1.2198702096939087 img loss 1.2149282693862915 img loss 1.2984665632247925 img loss 1.2131578922271729 img loss 1.2069071531295776 img loss 1.1988815069198608 img loss 1.2084649801254272 img loss 1.2468857765197754 img loss 1.3340494632720947 img loss 1.2049381732940674 img loss 1.2614027261734009 img loss 1.312860131263733 img loss 1.2242951393127441 img loss 1.2369093894958496 img loss 1.2783609628677368 img loss 1.2565600872039795 img loss 1.435890555381775 img loss 1.2234935760498047 img loss 1.2907015085220337 img loss 1.2457987070083618 img loss 1.2640411853790283 img loss 1.2240734100341797 img loss 1.308212161064148 img loss 1.2571673393249512 img loss 1.3062490224838257 img loss 1.2419984340667725 img loss 1.2017700672149658 img loss 1.1727279424667358 img loss 1.1336719989776611 img loss 1.2568399906158447 img loss 1.2699804306030273 img loss 1.2312047481536865 img loss 1.265516996383667 img loss 1.255717158317566 {'loss': 1.2614, 'grad_norm': 0.2580847144126892, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2528064250946045 img loss 1.249140977859497 img loss 1.3316457271575928 img loss 1.333872675895691 img loss 1.282601237297058 img loss 1.212759017944336 img loss 1.3454620838165283 img loss 1.297280192375183 img loss 1.2495545148849487 img loss 1.237587571144104 img loss 1.238166332244873 img loss 1.320474624633789 img loss 1.2349212169647217 img loss 1.2535101175308228 img loss 1.24201238155365 img loss 1.275628924369812 img loss 1.2597116231918335 img loss 1.2488799095153809 img loss 1.3163877725601196 img loss 1.1737663745880127 img loss 1.2944408655166626 img loss 1.2357196807861328 img loss 1.330621600151062 img loss 1.2417455911636353 img loss 1.2391258478164673 img loss 1.2781530618667603 img loss 1.2513173818588257 img loss 1.2865500450134277 img loss 1.265591025352478 img loss 1.2540771961212158 img loss 1.2842042446136475 img loss 1.2727293968200684 img loss 1.2597174644470215 img loss 1.2860677242279053 img loss 1.3307996988296509 img loss 1.2019271850585938 img loss 1.326648473739624 img loss 1.2937703132629395 img loss 1.2687208652496338 img loss 1.2567249536514282 img loss 1.2892564535140991 img loss 1.3328999280929565 img loss 1.340646505355835 img loss 1.3304165601730347 img loss 1.282511591911316 img loss 1.3083624839782715 img loss 1.2792580127716064 img loss 1.3455899953842163 img loss 1.2790836095809937 img loss 1.2534868717193604 img loss 1.2626017332077026 img loss 1.2844244241714478 img loss 1.3346871137619019 img loss 1.2307407855987549 img loss 1.222200632095337 img loss 1.2384001016616821 img loss 1.3200206756591797 img loss 1.2063696384429932 img loss 1.226157784461975 img loss 1.2398090362548828 img loss 1.2357852458953857 img loss 1.2609013319015503 img loss 1.281897783279419 img loss 1.3690589666366577 img loss 1.3143441677093506 img loss 1.2245872020721436 img loss 1.3140895366668701 img loss 1.2571542263031006 img loss 1.3405028581619263 img loss 1.3830485343933105 img loss 1.2894340753555298 img loss 1.4002288579940796 img loss 1.3813939094543457 img loss 1.3715767860412598 img loss 1.339314579963684 img loss 1.2466614246368408 img loss 1.3161274194717407 img loss 1.236348032951355 img loss 1.289115309715271 img loss 1.2727560997009277 img loss 1.3360110521316528 img loss 1.3127622604370117 img loss 1.2656221389770508 img loss 1.1890772581100464 img loss 1.2914663553237915 img loss 1.3868600130081177 img loss 1.206612229347229 img loss 1.3290818929672241 img loss 1.3593467473983765 img loss 1.2646673917770386 img loss 1.3243839740753174img loss 1.3265424966812134 img loss 1.2194466590881348 img loss 1.2973393201828003 img loss 1.2227249145507812 img loss 1.3360896110534668 img loss 1.3336659669876099 img loss 1.2844204902648926 img loss 1.2259937524795532 img loss 1.278193712234497 img loss 1.2081925868988037 img loss 1.2321048974990845 img loss 1.2980468273162842 img loss 1.2387864589691162 img loss 1.291035532951355 img loss 1.285826325416565 img loss 1.2183587551116943 img loss 1.3640767335891724 img loss 1.2614980936050415 img loss 1.3406002521514893 img loss 1.2497501373291016 img loss 1.236642837524414 img loss 1.346850037574768 img loss 1.2566426992416382 img loss 1.2555071115493774 img loss 1.3079696893692017 img loss 1.287434458732605 img loss 1.3006627559661865 img loss 1.288378119468689 img loss 1.3182542324066162 img loss 1.247135877609253 img loss 1.3994296789169312 img loss 1.3305139541625977 img loss 1.2355173826217651 img loss 1.3336336612701416 img loss 1.2730363607406616 img loss 1.43104887008667 img loss 1.2768874168395996 {'loss': 1.2848, 'grad_norm': 0.384826123714447, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.611132025718689 img loss 1.4794707298278809 img loss 1.6115787029266357 img loss 1.5266135931015015 img loss 1.6208837032318115 img loss 1.4747363328933716 img loss 1.7100895643234253 img loss 1.4974960088729858 img loss 1.6020609140396118 img loss 1.527184009552002 img loss 1.4887312650680542 img loss 1.6895626783370972 img loss 1.6352365016937256 img loss 1.5418893098831177 img loss 1.5464643239974976 img loss 1.6033095121383667 img loss 1.569898247718811 img loss 1.6439677476882935 img loss 1.6074650287628174 img loss 1.6211016178131104 img loss 1.5425679683685303 img loss 1.5280719995498657 img loss 1.5748944282531738 img loss 1.5539326667785645 img loss 1.5802842378616333 img loss 1.4397149085998535 img loss 1.430212378501892 img loss 1.7559090852737427 img loss 1.5477327108383179 img loss 1.6205391883850098 img loss 1.5461804866790771 img loss 1.5514310598373413 img loss 1.4854398965835571 img loss 1.4452815055847168 img loss 1.5189263820648193 img loss 1.5897752046585083 img loss 1.5522139072418213 img loss 1.5908633470535278 img loss 1.5745747089385986 img loss 1.450400471687317 img loss 1.4815678596496582 img loss 1.4910389184951782 img loss 1.499466061592102 img loss 1.649568796157837 img loss 1.5238231420516968 img loss 1.5312132835388184 img loss 1.6538482904434204 img loss 1.4446234703063965 img loss 1.4805710315704346 img loss 1.5718563795089722 img loss 1.4808706045150757 img loss 1.4906532764434814 img loss 1.664383053779602 img loss 1.5966582298278809 img loss 1.5864259004592896 img loss 1.5267266035079956img loss 1.5547747611999512 img loss 1.5515000820159912 img loss 1.4876606464385986 img loss 1.4873090982437134 img loss 1.45186185836792 img loss 1.6228411197662354 img loss 1.5228606462478638 img loss 1.6224217414855957 img loss 1.663063406944275 img loss 1.5308506488800049 img loss 1.6998322010040283 img loss 1.6189924478530884 img loss 1.4676697254180908 img loss 1.6082388162612915 img loss 1.5386666059494019 img loss 1.6452466249465942 img loss 1.5480186939239502 img loss 1.575373888015747 img loss 1.5824910402297974 img loss 1.4029752016067505 img loss 1.517356514930725 img loss 1.756081223487854 img loss 1.5471034049987793 img loss 1.4569190740585327 img loss 1.4591765403747559 img loss 1.5062346458435059 img loss 1.595017671585083 img loss 1.5807664394378662 img loss 1.661812663078308 img loss 1.5020548105239868 img loss 1.5666615962982178 img loss 1.6398828029632568 img loss 1.528531551361084 img loss 1.5113122463226318 img loss 1.4047623872756958 img loss 1.424373984336853 img loss 1.5588880777359009 img loss 1.4981845617294312 img loss 1.5150834321975708img loss 1.5951374769210815 img loss 1.6530264616012573 img loss 1.6337608098983765 img loss 1.5823615789413452 img loss 1.6135562658309937 img loss 1.6250985860824585 img loss 1.5924898386001587 img loss 1.39506196975708 img loss 1.4867850542068481 img loss 1.5294029712677002 img loss 1.5675969123840332 img loss 1.6486846208572388 img loss 1.6190416812896729 img loss 1.4509427547454834 img loss 1.6027930974960327 img loss 1.4954267740249634 img loss 1.5674842596054077 img loss 1.5361148118972778 img loss 1.556404948234558 img loss 1.5062906742095947 img loss 1.5075074434280396 img loss 1.5581049919128418 img loss 1.5718249082565308 img loss 1.5511479377746582 img loss 1.4659334421157837 img loss 1.6383506059646606 img loss 1.680659532546997 img loss 1.5602859258651733 img loss 1.5556946992874146 img loss 1.5014770030975342 img loss 1.712980031967163 img loss 1.5131860971450806 img loss 1.6817437410354614 {'loss': 1.5573, 'grad_norm': 0.425932914018631, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.246126413345337 img loss 1.1988214254379272 img loss 1.2342983484268188 img loss 1.221022605895996 img loss 1.2750287055969238 img loss 1.2675416469573975 img loss 1.2110599279403687 img loss 1.2198753356933594 img loss 1.2317570447921753 img loss 1.2046860456466675 img loss 1.2480239868164062 img loss 1.2544368505477905 img loss 1.2369236946105957 img loss 1.2016056776046753 img loss 1.2145618200302124 img loss 1.2331665754318237 img loss 1.2660049200057983 img loss 1.2266391515731812 img loss 1.255096197128296 img loss 1.2152082920074463 img loss 1.2071280479431152 img loss 1.224609375 img loss 1.2293144464492798 img loss 1.2180747985839844 img loss 1.1914318799972534 img loss 1.2346715927124023 img loss 1.226977825164795 img loss 1.2387347221374512 img loss 1.2411386966705322 img loss 1.245745062828064 img loss 1.2514671087265015 img loss 1.208513617515564 img loss 1.1860278844833374 img loss 1.25404953956604 img loss 1.1961071491241455 img loss 1.2378774881362915 img loss 1.2099413871765137 img loss 1.2596992254257202 img loss 1.2363897562026978 img loss 1.210526943206787 img loss 1.2146613597869873 img loss 1.225889801979065 img loss 1.2471259832382202 img loss 1.2605984210968018 img loss 1.2710708379745483 img loss 1.2017991542816162 img loss 1.2920604944229126 img loss 1.216472864151001 img loss 1.288914680480957 img loss 1.2526206970214844 img loss 1.1755497455596924 img loss 1.203918695449829 img loss 1.1824774742126465 img loss 1.1975784301757812 img loss 1.268090844154358 img loss 1.231467604637146 img loss 1.2821106910705566 img loss 1.2974982261657715 img loss 1.259087324142456 img loss 1.2085185050964355 img loss 1.2482722997665405 img loss 1.3079242706298828 img loss 1.1927937269210815 img loss 1.2132879495620728 img loss 1.2014130353927612 img loss 1.217587947845459 img loss 1.240358829498291 img loss 1.2208285331726074 img loss 1.2162216901779175 img loss 1.2691380977630615 img loss 1.2446131706237793 img loss 1.2593704462051392 img loss 1.219680666923523 img loss 1.2343523502349854 img loss 1.3224670886993408 img loss 1.2241358757019043 img loss 1.1909050941467285 img loss 1.3367750644683838 img loss 1.2087970972061157 img loss 1.2304846048355103 img loss 1.2718242406845093 img loss 1.2266486883163452 img loss 1.2588189840316772 img loss 1.2572674751281738 img loss 1.2609093189239502 img loss 1.2397648096084595 img loss 1.2591862678527832 img loss 1.269517183303833 img loss 1.3014717102050781 img loss 1.2737362384796143 img loss 1.1957062482833862 img loss 1.2422221899032593 img loss 1.244131088256836 img loss 1.255466341972351 img loss 1.2314118146896362 img loss 1.2557463645935059 img loss 1.2280558347702026 img loss 1.2112996578216553 img loss 1.21353280544281 img loss 1.234896183013916 img loss 1.271201729774475 img loss 1.2569078207015991 img loss 1.2629629373550415 img loss 1.253326416015625 img loss 1.212388277053833 img loss 1.2234941720962524 img loss 1.211850881576538 img loss 1.2546522617340088 img loss 1.2611807584762573 img loss 1.2647595405578613 img loss 1.2286357879638672 img loss 1.2330052852630615 img loss 1.2203015089035034 img loss 1.2294644117355347 img loss 1.2157008647918701 img loss 1.2322518825531006 img loss 1.2417290210723877 img loss 1.177802562713623 img loss 1.207105278968811 img loss 1.304444670677185 img loss 1.1915994882583618 img loss 1.2196576595306396 img loss 1.2160913944244385 img loss 1.2238143682479858 img loss 1.2281345129013062 img loss 1.2369036674499512 img loss 1.1891390085220337 img loss 1.2602367401123047 {'loss': 1.236, 'grad_norm': 0.4581761062145233, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.217160701751709 img loss 1.2185968160629272 img loss 1.245629906654358 img loss 1.2488727569580078 img loss 1.2717316150665283 img loss 1.2538635730743408 img loss 1.3356324434280396 img loss 1.2496941089630127 img loss 1.1845598220825195 img loss 1.2797778844833374 img loss 1.1412853002548218 img loss 1.2140930891036987 img loss 1.2194461822509766 img loss 1.2446935176849365 img loss 1.2248790264129639 img loss 1.1989147663116455 img loss 1.2488415241241455 img loss 1.2166951894760132 img loss 1.1813440322875977 img loss 1.2281746864318848 img loss 1.2537956237792969 img loss 1.2388908863067627 img loss 1.210097074508667 img loss 1.2206007242202759 img loss 1.2906737327575684 img loss 1.2349255084991455 img loss 1.2370926141738892 img loss 1.2106939554214478 img loss 1.1847968101501465 img loss 1.2380375862121582 img loss 1.2888301610946655 img loss 1.1680960655212402 img loss 1.2202892303466797 img loss 1.226357102394104 img loss 1.2244873046875 img loss 1.2335783243179321 img loss 1.2221786975860596 img loss 1.2293829917907715 img loss 1.2010087966918945 img loss 1.2062476873397827 img loss 1.2501972913742065 img loss 1.160660982131958 img loss 1.1904338598251343 img loss 1.2864222526550293 img loss 1.1834503412246704 img loss 1.2450344562530518img loss 1.2274625301361084 img loss 1.2090485095977783 img loss 1.2148557901382446 img loss 1.264288306236267 img loss 1.1624306440353394img loss 1.194554328918457 img loss 1.279987096786499 img loss 1.2720516920089722 img loss 1.201101303100586 img loss 1.2361812591552734 img loss 1.2493118047714233 img loss 1.1459318399429321 img loss 1.1354225873947144 img loss 1.2551300525665283 img loss 1.2383123636245728 img loss 1.2505563497543335 img loss 1.2156620025634766 img loss 1.257062554359436 img loss 1.2386324405670166 img loss 1.1499805450439453 img loss 1.186825156211853 img loss 1.319340467453003 img loss 1.290031909942627 img loss 1.2515777349472046 img loss 1.2438254356384277 img loss 1.2776068449020386 img loss 1.2087405920028687 img loss 1.262837290763855 img loss 1.2526204586029053 img loss 1.3938740491867065 img loss 1.1728843450546265 img loss 1.2594636678695679 img loss 1.1859098672866821 img loss 1.2053768634796143 img loss 1.144007682800293 img loss 1.1990761756896973 img loss 1.2112483978271484 img loss 1.1940882205963135 img loss 1.2210394144058228 img loss 1.2205958366394043 img loss 1.274941325187683 img loss 1.2047920227050781 img loss 1.2433818578720093 img loss 1.1957333087921143 img loss 1.2578455209732056 img loss 1.1707954406738281 img loss 1.1283807754516602 img loss 1.2292423248291016 img loss 1.28408944606781 img loss 1.063915729522705 img loss 1.1670211553573608 img loss 1.2389495372772217 img loss 1.1527316570281982 img loss 1.27279531955719 img loss 1.168962836265564 img loss 1.2040441036224365 img loss 1.2175129652023315 img loss 1.2079719305038452 img loss 1.2187045812606812 img loss 1.239324927330017 img loss 1.2577875852584839 img loss 1.2273037433624268 img loss 1.2381442785263062 img loss 1.1925007104873657 img loss 1.1627060174942017 img loss 1.2433652877807617 img loss 1.304315447807312 img loss 1.1599249839782715 img loss 1.1857165098190308 img loss 1.1564222574234009 img loss 1.162329077720642 img loss 1.3177258968353271 img loss 1.239906907081604 img loss 1.2398308515548706 img loss 1.205867052078247 img loss 1.2365108728408813 img loss 1.2559397220611572 img loss 1.2147207260131836 img loss 1.2603108882904053 img loss 1.205546259880066 img loss 1.233014702796936 img loss 1.2158544063568115 {'loss': 1.2237, 'grad_norm': 0.333253413438797, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2472370862960815 img loss 1.2041481733322144 img loss 1.238215446472168 img loss 1.3445521593093872 img loss 1.3161823749542236 img loss 1.311838984489441 img loss 1.280012845993042 img loss 1.3087555170059204 img loss 1.336861491203308 img loss 1.2596161365509033 img loss 1.3341783285140991 img loss 1.2540678977966309 img loss 1.3586125373840332 img loss 1.240981101989746 img loss 1.2456583976745605img loss 1.2960715293884277 img loss 1.3986271619796753 img loss 1.173764705657959 img loss 1.3210978507995605 img loss 1.2711482048034668 img loss 1.335033655166626 img loss 1.279496192932129 img loss 1.4167555570602417 img loss 1.1861379146575928 img loss 1.3650486469268799 img loss 1.3394360542297363 img loss 1.2313883304595947 img loss 1.2443798780441284 img loss 1.3860570192337036 img loss 1.3463542461395264 img loss 1.2495365142822266 img loss 1.4006792306900024 img loss 1.4023038148880005 img loss 1.2792603969573975 img loss 1.3163561820983887 img loss 1.2484636306762695 img loss 1.309079647064209 img loss 1.1826419830322266 img loss 1.1873587369918823 img loss 1.312783122062683 img loss 1.3363919258117676 img loss 1.452584981918335 img loss 1.3450391292572021 img loss 1.2645413875579834 img loss 1.2419161796569824 img loss 1.3032193183898926 img loss 1.2801992893218994 img loss 1.3445303440093994 img loss 1.2213133573532104 img loss 1.296125054359436 img loss 1.4073346853256226 img loss 1.2903647422790527 img loss 1.3193286657333374 img loss 1.2247618436813354 img loss 1.301355004310608 img loss 1.3319222927093506 img loss 1.2867075204849243 img loss 1.227098822593689 img loss 1.2942638397216797 img loss 1.360963225364685 img loss 1.3742578029632568 img loss 1.3838951587677002 img loss 1.3239930868148804 img loss 1.29928719997406 img loss 1.2612566947937012 img loss 1.1988528966903687 img loss 1.4180887937545776 img loss 1.2773536443710327 img loss 1.3192962408065796 img loss 1.2322224378585815 img loss 1.2975285053253174 img loss 1.1596293449401855 img loss 1.290993094444275 img loss 1.364976167678833 img loss 1.2623364925384521 img loss 1.3431841135025024 img loss 1.3030952215194702 img loss 1.2669141292572021 img loss 1.2666544914245605 img loss 1.2977802753448486 img loss 1.2951231002807617 img loss 1.2649866342544556 img loss 1.2892570495605469 img loss 1.2615280151367188 img loss 1.1701844930648804 img loss 1.299941897392273 img loss 1.4009712934494019 img loss 1.219095230102539 img loss 1.2693370580673218 img loss 1.205573320388794 img loss 1.2446820735931396 img loss 1.2799514532089233 img loss 1.2991714477539062 img loss 1.3133405447006226 img loss 1.2965118885040283 img loss 1.3497041463851929 img loss 1.268522024154663 img loss 1.2859911918640137 img loss 1.3469382524490356 img loss 1.3354028463363647 img loss 1.2961182594299316 img loss 1.3284882307052612 img loss 1.226305603981018 img loss 1.1974858045578003 img loss 1.3157986402511597 img loss 1.2615646123886108 img loss 1.283921718597412 img loss 1.2720879316329956 img loss 1.2630027532577515 img loss 1.2842764854431152 img loss 1.3104472160339355 img loss 1.208287239074707 img loss 1.261972188949585 img loss 1.156468152999878 img loss 1.3691071271896362 img loss 1.3439003229141235 img loss 1.2257543802261353 img loss 1.2588258981704712 img loss 1.3588500022888184 img loss 1.3168896436691284 img loss 1.2867040634155273 img loss 1.3084676265716553 img loss 1.2577918767929077 img loss 1.3256648778915405 img loss 1.2891775369644165 img loss 1.3393079042434692 img loss 1.3253977298736572 img loss 1.2705066204071045 {'loss': 1.2927, 'grad_norm': 0.2981260418891907, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1724271774291992 img loss 1.1776020526885986 img loss 1.2240740060806274 img loss 1.2286450862884521 img loss 1.259184718132019 img loss 1.2618224620819092 img loss 1.3407714366912842 img loss 1.1710693836212158 img loss 1.2368030548095703 img loss 1.2063950300216675 img loss 1.313231348991394 img loss 1.2262260913848877 img loss 1.1557105779647827 img loss 1.2381491661071777 img loss 1.236467719078064 img loss 1.2575520277023315 img loss 1.2602800130844116 img loss 1.2367300987243652 img loss 1.2657172679901123 img loss 1.2362573146820068 img loss 1.1758465766906738 img loss 1.3109204769134521 img loss 1.227105736732483 img loss 1.3857671022415161 img loss 1.3069913387298584 img loss 1.3339855670928955 img loss 1.2339017391204834 img loss 1.261249303817749 img loss 1.2723795175552368 img loss 1.1754668951034546 img loss 1.309956431388855 img loss 1.2867393493652344 img loss 1.286493182182312 img loss 1.2941887378692627 img loss 1.2673454284667969 img loss 1.2514336109161377 img loss 1.2466750144958496 img loss 1.3093371391296387 img loss 1.2712359428405762 img loss 1.2720634937286377 img loss 1.333535075187683 img loss 1.250437617301941 img loss 1.2551600933074951 img loss 1.2539268732070923 img loss 1.3256534337997437 img loss 1.239593505859375 img loss 1.264822244644165 img loss 1.2656792402267456 img loss 1.2528520822525024 img loss 1.3117002248764038 img loss 1.1575944423675537 img loss 1.2801568508148193 img loss 1.2569799423217773 img loss 1.2999513149261475 img loss 1.2096744775772095 img loss 1.2738441228866577 img loss 1.262824535369873 img loss 1.3107836246490479 img loss 1.2584959268569946 img loss 1.3297392129898071 img loss 1.2280409336090088 img loss 1.1659342050552368 img loss 1.273496389389038 img loss 1.3362822532653809 img loss 1.255628228187561 img loss 1.2215628623962402 img loss 1.2780513763427734 img loss 1.2275413274765015 img loss 1.3519014120101929 img loss 1.371030569076538 img loss 1.245204210281372 img loss 1.2117562294006348 img loss 1.3180088996887207 img loss 1.29487943649292 img loss 1.2584359645843506 img loss 1.3100897073745728 img loss 1.2489681243896484 img loss 1.2712323665618896 img loss 1.2501826286315918 img loss 1.2432466745376587 img loss 1.4445061683654785 img loss 1.2984998226165771 img loss 1.2696161270141602 img loss 1.2349838018417358 img loss 1.3663042783737183 img loss 1.2458205223083496 img loss 1.3024412393569946 img loss 1.34575355052948 img loss 1.2933562994003296 img loss 1.2181146144866943 img loss 1.2283070087432861 img loss 1.2370142936706543 img loss 1.2546887397766113 img loss 1.2651280164718628 img loss 1.2596855163574219 img loss 1.2356352806091309 img loss 1.2669042348861694 img loss 1.2651476860046387 img loss 1.3220133781433105 img loss 1.2144315242767334 img loss 1.1832287311553955 img loss 1.23829984664917 img loss 1.306823492050171 img loss 1.2233216762542725 img loss 1.2357443571090698 img loss 1.1323258876800537 img loss 1.2708978652954102 img loss 1.2767503261566162 img loss 1.23228120803833 img loss 1.3012769222259521 img loss 1.2448093891143799 img loss 1.2553963661193848 img loss 1.2894840240478516 img loss 1.1697161197662354 img loss 1.2750097513198853 img loss 1.1861121654510498 img loss 1.3255841732025146 img loss 1.3336493968963623 img loss 1.227841854095459 img loss 1.2219005823135376 img loss 1.24045991897583 img loss 1.2566078901290894 img loss 1.2815078496932983 img loss 1.2197726964950562 img loss 1.2626018524169922 img loss 1.2151440382003784 img loss 1.2881134748458862 img loss 1.340696930885315 {'loss': 1.2621, 'grad_norm': 0.2582813799381256, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2752293348312378 img loss 1.1894406080245972 img loss 1.2432641983032227 img loss 1.1765172481536865 img loss 1.2243412733078003 img loss 1.1639231443405151 img loss 1.2187821865081787 img loss 1.1773436069488525 img loss 1.2731465101242065 img loss 1.163196325302124 img loss 1.2043702602386475 img loss 1.1866506338119507 img loss 1.2066304683685303 img loss 1.215855598449707 img loss 1.2330644130706787 img loss 1.197760820388794 img loss 1.184648871421814 img loss 1.2134134769439697 img loss 1.221404790878296 img loss 1.174525499343872 img loss 1.20536208152771 img loss 1.1731079816818237 img loss 1.2327640056610107 img loss 1.248553991317749 img loss 1.2257280349731445 img loss 1.1259572505950928 img loss 1.2204221487045288 img loss 1.1448335647583008 img loss 1.2292546033859253 img loss 1.1651828289031982 img loss 1.2337993383407593 img loss 1.1572847366333008 img loss 1.2191590070724487 img loss 1.1498408317565918 img loss 1.1963787078857422 img loss 1.2281734943389893 img loss 1.178288221359253 img loss 1.1911463737487793 img loss 1.290065050125122 img loss 1.236384630203247 img loss 1.1347626447677612 img loss 1.2016730308532715 img loss 1.1976902484893799 img loss 1.167100429534912 img loss 1.2145715951919556 img loss 1.1681797504425049 img loss 1.2210502624511719 img loss 1.1117527484893799 img loss 1.2194620370864868 img loss 1.240993857383728 img loss 1.245928168296814 img loss 1.122965693473816 img loss 1.218272089958191 img loss 1.206742525100708 img loss 1.2086533308029175 img loss 1.1313515901565552 img loss 1.3442456722259521 img loss 1.1640050411224365 img loss 1.129730224609375 img loss 1.1745802164077759 img loss 1.2399883270263672 img loss 1.147146224975586 img loss 1.1533564329147339 img loss 1.171748399734497 img loss 1.2274423837661743 img loss 1.1810650825500488 img loss 1.159982681274414 img loss 1.1317094564437866 img loss 1.1687263250350952 img loss 1.1713404655456543 img loss 1.3460644483566284 img loss 1.1780622005462646 img loss 1.211941123008728 img loss 1.1355721950531006 img loss 1.2202000617980957 img loss 1.162339210510254 img loss 1.21689772605896 img loss 1.1643400192260742 img loss 1.1849722862243652 img loss 1.2058255672454834 img loss 1.1609511375427246 img loss 1.164340853691101 img loss 1.2539303302764893 img loss 1.2260046005249023 img loss 1.177751898765564 img loss 1.2932029962539673 img loss 1.232856035232544 img loss 1.1659092903137207 img loss 1.2571616172790527 img loss 1.2595738172531128 img loss 1.1725897789001465 img loss 1.169461727142334 img loss 1.2215543985366821 img loss 1.1782546043395996 img loss 1.1083872318267822 img loss 1.2466740608215332 img loss 1.196601390838623 img loss 1.1707401275634766 img loss 1.260874629020691 img loss 1.1923091411590576 img loss 1.2533071041107178 img loss 1.2093899250030518 img loss 1.1779932975769043 img loss 1.1709808111190796 img loss 1.197487473487854 img loss 1.246005892753601 img loss 1.183699369430542 img loss 1.2007125616073608 img loss 1.2518856525421143 img loss 1.199645757675171 img loss 1.2461451292037964 img loss 1.1891820430755615 img loss 1.1638729572296143 img loss 1.180092215538025 img loss 1.1832709312438965 img loss 1.1850496530532837 img loss 1.1781787872314453 img loss 1.216809630393982 img loss 1.2818869352340698 img loss 1.1792644262313843 img loss 1.2028117179870605 img loss 1.2378710508346558 img loss 1.1470329761505127 img loss 1.1964175701141357 img loss 1.203805685043335 img loss 1.1218557357788086 img loss 1.130010724067688 img loss 1.0886237621307373 {'loss': 1.1979, 'grad_norm': 0.4738999307155609, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1556618213653564 img loss 1.2257102727890015 img loss 1.237636923789978 img loss 1.1826584339141846 img loss 1.203071117401123 img loss 1.2731211185455322 img loss 1.2446941137313843 img loss 1.3000173568725586 img loss 1.2454962730407715 img loss 1.2621906995773315 img loss 1.358434796333313 img loss 1.1808791160583496 img loss 1.2991236448287964 img loss 1.1969830989837646 img loss 1.226802110671997 img loss 1.1742585897445679 img loss 1.267120122909546 img loss 1.2686567306518555 img loss 1.3166435956954956 img loss 1.2941162586212158 img loss 1.2778301239013672 img loss 1.1767847537994385 img loss 1.3320441246032715 img loss 1.246471643447876 img loss 1.2276920080184937 img loss 1.1723016500473022 img loss 1.2394096851348877 img loss 1.2197397947311401 img loss 1.259864330291748 img loss 1.301668643951416 img loss 1.1931177377700806 img loss 1.2521990537643433 img loss 1.2397220134735107 img loss 1.2464520931243896 img loss 1.2617746591567993 img loss 1.1836581230163574 img loss 1.3088667392730713 img loss 1.256870150566101 img loss 1.2611297369003296 img loss 1.244505524635315 img loss 1.1828186511993408 img loss 1.2730116844177246 img loss 1.260873556137085 img loss 1.2697691917419434 img loss 1.188992977142334 img loss 1.2719898223876953 img loss 1.2514522075653076 img loss 1.345579743385315 img loss 1.2424437999725342 img loss 1.3068417310714722 img loss 1.2115418910980225 img loss 1.2203612327575684 img loss 1.222928762435913 img loss 1.2756531238555908 img loss 1.260150671005249 img loss 1.241938829421997 img loss 1.3387024402618408 img loss 1.2396254539489746 img loss 1.2153656482696533 img loss 1.1861097812652588 img loss 1.130953073501587 img loss 1.1920154094696045 img loss 1.233089804649353 img loss 1.142887830734253 img loss 1.2819337844848633 img loss 1.2466952800750732 img loss 1.2911204099655151 img loss 1.2803370952606201 img loss 1.2930892705917358 img loss 1.2372363805770874 img loss 1.2981290817260742 img loss 1.2504316568374634 img loss 1.2735008001327515 img loss 1.2711608409881592 img loss 1.2209854125976562 img loss 1.276941180229187 img loss 1.21247136592865 img loss 1.2039108276367188 img loss 1.1871106624603271 img loss 1.2443516254425049 img loss 1.20768404006958 img loss 1.308424949645996 img loss 1.240667700767517 img loss 1.1951240301132202 img loss 1.2558866739273071 img loss 1.4027482271194458 img loss 1.2462657690048218 img loss 1.3127821683883667 img loss 1.2276744842529297 img loss 1.2431080341339111 img loss 1.2613706588745117 img loss 1.2732818126678467 img loss 1.291093349456787 img loss 1.24387526512146 img loss 1.3151378631591797 img loss 1.3332828283309937 img loss 1.208833932876587 img loss 1.1507196426391602 img loss 1.3524508476257324 img loss 1.1942386627197266 img loss 1.239632248878479 img loss 1.273203730583191 img loss 1.1879385709762573 img loss 1.2300670146942139 img loss 1.1889714002609253 img loss 1.1078741550445557 img loss 1.3551361560821533 img loss 1.1983642578125 img loss 1.2764726877212524 img loss 1.247739553451538 img loss 1.2391833066940308 img loss 1.247081995010376 img loss 1.1923588514328003 img loss 1.2447385787963867 img loss 1.2087866067886353 img loss 1.1787207126617432 img loss 1.2222731113433838 img loss 1.262878179550171 img loss 1.2976405620574951 img loss 1.175177812576294 img loss 1.2095342874526978 img loss 1.1383543014526367 img loss 1.2455719709396362 img loss 1.272814154624939 img loss 1.2901276350021362 img loss 1.3691223859786987 img loss 1.2448257207870483 img loss 1.2387821674346924 {'loss': 1.2456, 'grad_norm': 0.2523103654384613, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.383705735206604 img loss 1.3842681646347046 img loss 1.4505620002746582 img loss 1.293941855430603 img loss 1.5361400842666626 img loss 1.3962160348892212 img loss 1.373258113861084 img loss 1.5410058498382568 img loss 1.3865373134613037 img loss 1.3913124799728394 img loss 1.4508804082870483 img loss 1.361427664756775 img loss 1.4070059061050415 img loss 1.505377173423767 img loss 1.4853826761245728 img loss 1.4298222064971924 img loss 1.3041305541992188 img loss 1.4681200981140137 img loss 1.384487271308899 img loss 1.4497722387313843 img loss 1.4644132852554321 img loss 1.6172953844070435 img loss 1.4110723733901978 img loss 1.469807505607605 img loss 1.4705183506011963 img loss 1.416663646697998 img loss 1.4510828256607056 img loss 1.3837136030197144 img loss 1.4118086099624634 img loss 1.4510635137557983 img loss 1.4158085584640503 img loss 1.3682663440704346 img loss 1.4154980182647705 img loss 1.4620097875595093 img loss 1.4929357767105103 img loss 1.407486081123352 img loss 1.5664578676223755 img loss 1.422371745109558 img loss 1.4380593299865723 img loss 1.4659991264343262 img loss 1.407162070274353 img loss 1.480209469795227 img loss 1.512275218963623 img loss 1.4930487871170044 img loss 1.5280299186706543 img loss 1.549088716506958 img loss 1.5263644456863403 img loss 1.318977952003479 img loss 1.4042775630950928 img loss 1.4454476833343506 img loss 1.4770225286483765 img loss 1.4716742038726807 img loss 1.5326716899871826 img loss 1.3985334634780884 img loss 1.3554669618606567 img loss 1.500134825706482 img loss 1.5113946199417114 img loss 1.4178965091705322 img loss 1.4714094400405884 img loss 1.5577737092971802 img loss 1.46512770652771 img loss 1.4651042222976685 img loss 1.466794490814209 img loss 1.4602160453796387 img loss 1.4299561977386475 img loss 1.3937820196151733 img loss 1.4527379274368286 img loss 1.5524388551712036 img loss 1.4608253240585327 img loss 1.512264609336853 img loss 1.4262245893478394 img loss 1.471683144569397 img loss 1.4254357814788818 img loss 1.372225284576416 img loss 1.4746211767196655 img loss 1.490557074546814 img loss 1.4036587476730347 img loss 1.449359655380249 img loss 1.529949426651001 img loss 1.508853793144226 img loss 1.5270181894302368 img loss 1.4169036149978638 img loss 1.4004008769989014 img loss 1.5278809070587158 img loss 1.6044508218765259 img loss 1.3584822416305542 img loss 1.4390267133712769 img loss 1.5232070684432983 img loss 1.3524514436721802 img loss 1.435878872871399 img loss 1.5965726375579834 img loss 1.4386528730392456 img loss 1.4323627948760986 img loss 1.4012348651885986 img loss 1.4821505546569824 img loss 1.4853627681732178 img loss 1.4853417873382568 img loss 1.4197657108306885 img loss 1.4741759300231934 img loss 1.5836758613586426 img loss 1.3886967897415161img loss 1.4382532835006714 img loss 1.3655720949172974 img loss 1.388830304145813 img loss 1.4297970533370972 img loss 1.4953811168670654 img loss 1.4476830959320068 img loss 1.4952290058135986 img loss 1.6619898080825806 img loss 1.5675876140594482 img loss 1.522387981414795 img loss 1.3428384065628052 img loss 1.4964250326156616 img loss 1.511410117149353 img loss 1.374897837638855 img loss 1.4249699115753174 img loss 1.4722996950149536 img loss 1.5490540266036987 img loss 1.594509243965149 img loss 1.5549408197402954 img loss 1.3974392414093018 img loss 1.4251967668533325 img loss 1.3784905672073364 img loss 1.4086203575134277 img loss 1.306525468826294 img loss 1.4254366159439087 img loss 1.4791227579116821 img loss 1.2834434509277344 {'loss': 1.4529, 'grad_norm': 0.3253892958164215, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1608517169952393 img loss 1.1593111753463745 img loss 1.1839529275894165 img loss 1.2394192218780518 img loss 1.2337379455566406img loss 1.1226614713668823 img loss 1.1421730518341064 img loss 1.1665455102920532 img loss 1.1589248180389404 img loss 1.1934603452682495 img loss 1.1991090774536133 img loss 1.1506942510604858 img loss 1.224617838859558 img loss 1.2345497608184814 img loss 1.1827915906906128 img loss 1.2496769428253174 img loss 1.2267816066741943 img loss 1.1809093952178955 img loss 1.1513012647628784 img loss 1.2027194499969482 img loss 1.2037136554718018 img loss 1.1642754077911377 img loss 1.2164294719696045 img loss 1.229439377784729 img loss 1.1776752471923828 img loss 1.1748756170272827 img loss 1.1878150701522827 img loss 1.2697762250900269 img loss 1.2316679954528809 img loss 1.1552293300628662 img loss 1.258676528930664img loss 1.2503087520599365 img loss 1.139351725578308 img loss 1.1915117502212524 img loss 1.2147979736328125 img loss 1.1291277408599854 img loss 1.2162309885025024 img loss 1.0981683731079102 img loss 1.181640625 img loss 1.1976959705352783 img loss 1.170137643814087 img loss 1.1973965167999268 img loss 1.1820363998413086 img loss 1.1344798803329468 img loss 1.1852235794067383 img loss 1.1991618871688843 img loss 1.2092068195343018 img loss 1.2049754858016968 img loss 1.1600306034088135 img loss 1.1888569593429565 img loss 1.1907182931900024 img loss 1.135219931602478 img loss 1.155569076538086 img loss 1.2485843896865845 img loss 1.1698938608169556 img loss 1.1272310018539429 img loss 1.1425952911376953 img loss 1.1612402200698853 img loss 1.1725200414657593 img loss 1.2322524785995483 img loss 1.2020263671875 img loss 1.2983016967773438 img loss 1.202939510345459 img loss 1.1802988052368164 img loss 1.1864428520202637 img loss 1.145100474357605 img loss 1.2478232383728027 img loss 1.157554268836975 img loss 1.2502037286758423 img loss 1.1889270544052124 img loss 1.2980047464370728 img loss 1.1663899421691895 img loss 1.2031325101852417 img loss 1.1704870462417603 img loss 1.185485601425171 img loss 1.273937463760376 img loss 1.209733247756958 img loss 1.1421592235565186 img loss 1.1667842864990234 img loss 1.1792246103286743 img loss 1.162180781364441 img loss 1.0930862426757812 img loss 1.1107767820358276 img loss 1.152289628982544 img loss 1.1857706308364868 img loss 1.2141040563583374 img loss 1.1046245098114014 img loss 1.1497585773468018 img loss 1.2176034450531006 img loss 1.1902531385421753 img loss 1.217711329460144 img loss 1.1384024620056152 img loss 1.2359074354171753 img loss 1.2272238731384277 img loss 1.18292236328125 img loss 1.1439214944839478 img loss 1.1651854515075684 img loss 1.273819923400879 img loss 1.1473073959350586 img loss 1.217504858970642 img loss 1.229886531829834 img loss 1.1963553428649902 img loss 1.09316885471344 img loss 1.257209062576294 img loss 1.2031844854354858 img loss 1.1351213455200195 img loss 1.2521113157272339 img loss 1.1805949211120605 img loss 1.2243086099624634 img loss 1.1332921981811523 img loss 1.195706844329834 img loss 1.1540565490722656 img loss 1.2305113077163696 img loss 1.1021199226379395 img loss 1.1726624965667725 img loss 1.1715331077575684 img loss 1.22634756565094 img loss 1.1571511030197144 img loss 1.1729142665863037 img loss 1.151168704032898 img loss 1.2159764766693115 img loss 1.2118698358535767 img loss 1.1079908609390259 img loss 1.18093740940094 img loss 1.2165637016296387 img loss 1.201894998550415 img loss 1.156807541847229 img loss 1.234816074371338 {'loss': 1.1873, 'grad_norm': 0.40293118357658386, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2147740125656128 img loss 1.3092201948165894 img loss 1.2622544765472412 img loss 1.2113250494003296 img loss 1.267336130142212 img loss 1.2014684677124023 img loss 1.2144602537155151 img loss 1.265428066253662 img loss 1.2449535131454468 img loss 1.2515877485275269 img loss 1.2098206281661987 img loss 1.2921684980392456 img loss 1.230101227760315 img loss 1.2406327724456787 img loss 1.2609729766845703 img loss 1.292406678199768 img loss 1.2137190103530884 img loss 1.2613099813461304 img loss 1.2511277198791504 img loss 1.1898784637451172 img loss 1.274522304534912 img loss 1.2425645589828491 img loss 1.220530390739441 img loss 1.2360546588897705 img loss 1.2506965398788452 img loss 1.2148936986923218 img loss 1.221085786819458 img loss 1.2228952646255493 img loss 1.2264597415924072 img loss 1.2450199127197266 img loss 1.280026912689209 img loss 1.1948635578155518 img loss 1.2674481868743896 img loss 1.247252345085144 img loss 1.2295491695404053 img loss 1.1882436275482178 img loss 1.2367544174194336 img loss 1.1957471370697021 img loss 1.1886430978775024 img loss 1.1943089962005615 img loss 1.2277653217315674 img loss 1.256504774093628 img loss 1.2791544198989868 img loss 1.2194572687149048 img loss 1.2285677194595337 img loss 1.2821624279022217 img loss 1.1958225965499878 img loss 1.2681145668029785 img loss 1.298526406288147 img loss 1.2340543270111084 img loss 1.2867045402526855 img loss 1.2504860162734985 img loss 1.2201811075210571 img loss 1.225328803062439 img loss 1.239060640335083 img loss 1.258056402206421 img loss 1.2603400945663452 img loss 1.2375266551971436 img loss 1.229156732559204 img loss 1.2846382856369019 img loss 1.1944423913955688 img loss 1.2422096729278564 img loss 1.2306528091430664 img loss 1.245321273803711 img loss 1.2140707969665527 img loss 1.2297711372375488 img loss 1.1561615467071533 img loss 1.232785940170288 img loss 1.2104517221450806 img loss 1.2749404907226562 img loss 1.212536334991455 img loss 1.2553110122680664 img loss 1.2175188064575195 img loss 1.1815983057022095 img loss 1.2697422504425049 img loss 1.22011137008667 img loss 1.2793688774108887 img loss 1.1953589916229248 img loss 1.2376399040222168 img loss 1.2658451795578003 img loss 1.280038595199585 img loss 1.3119977712631226 img loss 1.309834361076355 img loss 1.2454197406768799 img loss 1.2611820697784424 img loss 1.223441481590271 img loss 1.2601244449615479 img loss 1.2635841369628906 img loss 1.217421054840088 img loss 1.274635672569275 img loss 1.2413052320480347 img loss 1.336814522743225 img loss 1.2446136474609375 img loss 1.2357592582702637 img loss 1.1848969459533691 img loss 1.2440112829208374 img loss 1.2664823532104492 img loss 1.2051849365234375 img loss 1.1919596195220947 img loss 1.2375701665878296 img loss 1.2383837699890137 img loss 1.262393832206726 img loss 1.1716713905334473 img loss 1.264272689819336 img loss 1.2500574588775635 img loss 1.2044881582260132 img loss 1.1811813116073608 img loss 1.2030081748962402 img loss 1.2148994207382202 img loss 1.2328896522521973 img loss 1.2105770111083984 img loss 1.179165244102478 img loss 1.3059751987457275 img loss 1.2519657611846924 img loss 1.1758460998535156 img loss 1.2627285718917847 img loss 1.2043488025665283 img loss 1.1550506353378296 img loss 1.2721810340881348 img loss 1.2516686916351318 img loss 1.2466014623641968 img loss 1.267189621925354 img loss 1.1958465576171875 img loss 1.272067904472351 img loss 1.2270960807800293 img loss 1.2847989797592163 img loss 1.2549854516983032 img loss 1.2613601684570312 {'loss': 1.2387, 'grad_norm': 0.2895975708961487, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3152174949645996 img loss 1.4326329231262207 img loss 1.3347961902618408 img loss 1.3014049530029297 img loss 1.363921046257019 img loss 1.2915695905685425 img loss 1.3032476902008057 img loss 1.340334177017212 img loss 1.2883658409118652 img loss 1.2152858972549438 img loss 1.4684611558914185 img loss 1.2322196960449219 img loss 1.2954206466674805 img loss 1.3063633441925049 img loss 1.3365795612335205 img loss 1.2629867792129517 img loss 1.3338310718536377 img loss 1.2293447256088257 img loss 1.2733080387115479 img loss 1.337139368057251 img loss 1.4547334909439087 img loss 1.3221161365509033 img loss 1.3285280466079712 img loss 1.3815639019012451 img loss 1.3671330213546753 img loss 1.2384010553359985 img loss 1.2842203378677368 img loss 1.2815014123916626 img loss 1.256591558456421 img loss 1.2674975395202637 img loss 1.3255923986434937 img loss 1.4388173818588257 img loss 1.3568527698516846 img loss 1.3110318183898926 img loss 1.3172496557235718 img loss 1.339011311531067 img loss 1.4128745794296265 img loss 1.2951711416244507 img loss 1.3331964015960693 img loss 1.418230652809143 img loss 1.3105798959732056 img loss 1.2551008462905884 img loss 1.346449613571167 img loss 1.2899750471115112 img loss 1.3130428791046143 img loss 1.2968355417251587 img loss 1.2441768646240234 img loss 1.325042963027954 img loss 1.3119800090789795 img loss 1.4674369096755981 img loss 1.3432343006134033 img loss 1.3310762643814087 img loss 1.2667746543884277 img loss 1.2983424663543701 img loss 1.2329590320587158 img loss 1.395137906074524 img loss 1.3218963146209717 img loss 1.3457781076431274 img loss 1.271404504776001 img loss 1.2872127294540405 img loss 1.5218732357025146 img loss 1.391668438911438 img loss 1.3397386074066162 img loss 1.4960616827011108 img loss 1.2442357540130615 img loss 1.2841218709945679 img loss 1.2209885120391846 img loss 1.3211182355880737 img loss 1.332910180091858 img loss 1.313957929611206 img loss 1.296627402305603 img loss 1.3732186555862427 img loss 1.4682313203811646 img loss 1.3536427021026611 img loss 1.3472912311553955 img loss 1.2541414499282837 img loss 1.3153561353683472 img loss 1.355283498764038 img loss 1.2930216789245605 img loss 1.3377602100372314 img loss 1.2593319416046143 img loss 1.2966877222061157 img loss 1.175149917602539 img loss 1.286623239517212 img loss 1.3339283466339111 img loss 1.3255655765533447 img loss 1.3247895240783691 img loss 1.2667765617370605 img loss 1.3782597780227661 img loss 1.2912793159484863 img loss 1.3386751413345337 img loss 1.354896903038025 img loss 1.3905694484710693 img loss 1.2671942710876465 img loss 1.424376368522644 img loss 1.319097876548767 img loss 1.3142837285995483 img loss 1.2967233657836914 img loss 1.276094913482666 img loss 1.2707966566085815 img loss 1.250907301902771 img loss 1.315132975578308 img loss 1.2670081853866577 img loss 1.3752758502960205 img loss 1.4808480739593506 img loss 1.3801156282424927 img loss 1.3282582759857178 img loss 1.3861374855041504 img loss 1.348305106163025 img loss 1.2541437149047852 img loss 1.2668633460998535 img loss 1.387869119644165 img loss 1.293260931968689 img loss 1.310296654701233 img loss 1.3133137226104736 img loss 1.277350902557373 img loss 1.2766754627227783 img loss 1.4935532808303833 img loss 1.2963478565216064 img loss 1.44631028175354 img loss 1.2973190546035767 img loss 1.352697730064392 img loss 1.3970881700515747 img loss 1.4079188108444214 img loss 1.2026331424713135 img loss 1.2513391971588135 img loss 1.3602558374404907 img loss 1.2837985754013062 {'loss': 1.325, 'grad_norm': 0.36461713910102844, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3461617231369019 img loss 1.5126261711120605 img loss 1.3939566612243652 img loss 1.4254921674728394 img loss 1.364223599433899 img loss 1.4033738374710083 img loss 1.5206114053726196 img loss 1.3935863971710205 img loss 1.5173048973083496 img loss 1.3851953744888306 img loss 1.3906084299087524 img loss 1.3677304983139038 img loss 1.4528847932815552 img loss 1.4149583578109741 img loss 1.3120722770690918 img loss 1.367539644241333 img loss 1.4885298013687134 img loss 1.5562500953674316 img loss 1.3580572605133057 img loss 1.619568109512329 img loss 1.4332573413848877 img loss 1.415309190750122 img loss 1.394925832748413 img loss 1.4590786695480347 img loss 1.3850083351135254 img loss 1.4072222709655762 img loss 1.414689540863037 img loss 1.3486469984054565 img loss 1.3848215341567993 img loss 1.4003046751022339 img loss 1.617204189300537 img loss 1.4520190954208374 img loss 1.4726383686065674 img loss 1.4444783926010132 img loss 1.5527005195617676 img loss 1.355400800704956 img loss 1.4304205179214478 img loss 1.5960516929626465 img loss 1.4052757024765015 img loss 1.4582264423370361 img loss 1.4051376581192017 img loss 1.3559762239456177 img loss 1.4566024541854858 img loss 1.4164268970489502 img loss 1.3934977054595947 img loss 1.431545376777649 img loss 1.5159860849380493 img loss 1.5018131732940674 img loss 1.4699358940124512 img loss 1.3900084495544434 img loss 1.5046149492263794 img loss 1.445708990097046 img loss 1.4796702861785889 img loss 1.435835361480713 img loss 1.412804126739502 img loss 1.3948071002960205 img loss 1.4123502969741821 img loss 1.3154282569885254 img loss 1.5593432188034058 img loss 1.3321388959884644 img loss 1.297371745109558 img loss 1.3313144445419312 img loss 1.3435943126678467 img loss 1.4626339673995972 img loss 1.4447556734085083 img loss 1.4253896474838257 img loss 1.4909526109695435 img loss 1.4856435060501099 img loss 1.4185513257980347 img loss 1.3783513307571411 img loss 1.4277814626693726 img loss 1.4617983102798462 img loss 1.5082284212112427 img loss 1.5898211002349854 img loss 1.3618816137313843 img loss 1.6420966386795044 img loss 1.5051848888397217 img loss 1.3763757944107056 img loss 1.4341014623641968 img loss 1.464462399482727 img loss 1.4124187231063843 img loss 1.3695212602615356 img loss 1.3662205934524536 img loss 1.404099702835083 img loss 1.4166380167007446 img loss 1.4456967115402222 img loss 1.480819582939148 img loss 1.3547953367233276 img loss 1.4600423574447632 img loss 1.4467302560806274 img loss 1.5536919832229614 img loss 1.5676772594451904 img loss 1.4066131114959717 img loss 1.550890564918518 img loss 1.5666145086288452 img loss 1.3626059293746948 img loss 1.5604147911071777 img loss 1.4251519441604614 img loss 1.4755686521530151 img loss 1.4257231950759888 img loss 1.3421962261199951 img loss 1.4586817026138306 img loss 1.584051251411438 img loss 1.2584271430969238 img loss 1.4074702262878418 img loss 1.5088156461715698 img loss 1.5485761165618896 img loss 1.3768556118011475 img loss 1.3002393245697021 img loss 1.631784200668335 img loss 1.4560768604278564 img loss 1.3650094270706177 img loss 1.4535272121429443 img loss 1.360568642616272 img loss 1.5221203565597534 img loss 1.671783208847046 img loss 1.5863038301467896 img loss 1.4220703840255737 img loss 1.4397724866867065 img loss 1.4336435794830322 img loss 1.40434730052948 img loss 1.4799309968948364 img loss 1.4568215608596802 img loss 1.4431365728378296 img loss 1.535851240158081 img loss 1.4701555967330933 img loss 1.438692331314087 img loss 1.418784260749817 {'loss': 1.4432, 'grad_norm': 0.3546287417411804, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.253562331199646 img loss 1.2218832969665527 img loss 1.2904895544052124 img loss 1.1519705057144165 img loss 1.2166478633880615 img loss 1.2745897769927979 img loss 1.2597912549972534 img loss 1.2514159679412842 img loss 1.2523550987243652 img loss 1.2761563062667847 img loss 1.289565920829773 img loss 1.218695878982544 img loss 1.2558844089508057 img loss 1.200482726097107 img loss 1.2957396507263184 img loss 1.303632140159607 img loss 1.1473900079727173 img loss 1.2548861503601074 img loss 1.2429709434509277 img loss 1.267998456954956 img loss 1.1928659677505493 img loss 1.2792953252792358 img loss 1.244236707687378 img loss 1.1969321966171265 img loss 1.2175079584121704 img loss 1.2278666496276855 img loss 1.2510926723480225 img loss 1.2081232070922852 img loss 1.2622534036636353 img loss 1.2394466400146484 img loss 1.1607025861740112 img loss 1.1835577487945557 img loss 1.2331527471542358 img loss 1.193990707397461 img loss 1.3036584854125977 img loss 1.2850703001022339 img loss 1.2167432308197021 img loss 1.2782424688339233 img loss 1.258634090423584 img loss 1.278222918510437 img loss 1.1926586627960205 img loss 1.2403321266174316 img loss 1.201293706893921 img loss 1.1891028881072998 img loss 1.2327077388763428 img loss 1.2682043313980103 img loss 1.2418031692504883 img loss 1.2207353115081787 img loss 1.2720102071762085 img loss 1.2893959283828735 img loss 1.2314085960388184 img loss 1.2264236211776733 img loss 1.2583898305892944 img loss 1.2430229187011719 img loss 1.358405590057373 img loss 1.2276501655578613 img loss 1.2796072959899902 img loss 1.2345421314239502 img loss 1.2660795450210571 img loss 1.312892198562622 img loss 1.2288661003112793 img loss 1.2428088188171387 img loss 1.2495225667953491 img loss 1.2484710216522217 img loss 1.22410249710083 img loss 1.2535959482192993 img loss 1.2375589609146118 img loss 1.2058998346328735 img loss 1.2950998544692993 img loss 1.2166107892990112 img loss 1.242126226425171 img loss 1.2294930219650269 img loss 1.1830744743347168 img loss 1.2959246635437012 img loss 1.1995896100997925 img loss 1.2020483016967773 img loss 1.2582695484161377 img loss 1.2684438228607178 img loss 1.282141089439392 img loss 1.2580070495605469 img loss 1.2421311140060425 img loss 1.2414391040802002 img loss 1.2812639474868774 img loss 1.2744108438491821 img loss 1.1987510919570923 img loss 1.2157787084579468 img loss 1.2355554103851318 img loss 1.2497297525405884 img loss 1.2260279655456543 img loss 1.29983651638031 img loss 1.254544734954834 img loss 1.2518112659454346 img loss 1.2438673973083496 img loss 1.2292782068252563 img loss 1.2198766469955444 img loss 1.2720648050308228 img loss 1.2421728372573853 img loss 1.2560398578643799 img loss 1.2777374982833862 img loss 1.2545322179794312 img loss 1.2228939533233643 img loss 1.3067620992660522 img loss 1.3261665105819702 img loss 1.2074980735778809 img loss 1.2341713905334473 img loss 1.2470242977142334 img loss 1.2480113506317139 img loss 1.2077292203903198 img loss 1.2731168270111084 img loss 1.222562551498413 img loss 1.1225268840789795 img loss 1.2124526500701904 img loss 1.2620604038238525 img loss 1.1923319101333618 img loss 1.2258777618408203 img loss 1.2000064849853516 img loss 1.217964768409729 img loss 1.3217291831970215 img loss 1.2442734241485596 img loss 1.2304282188415527 img loss 1.214052677154541 img loss 1.2397750616073608 img loss 1.2742538452148438 img loss 1.2508872747421265 img loss 1.190569519996643 img loss 1.2936036586761475 img loss 1.3118562698364258 img loss 1.3082609176635742 {'loss': 1.2439, 'grad_norm': 0.24034453928470612, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2916768789291382 img loss 1.4005228281021118 img loss 1.3033031225204468 img loss 1.2670783996582031 img loss 1.357568383216858 img loss 1.3444056510925293 img loss 1.348490834236145 img loss 1.3231645822525024 img loss 1.2754238843917847 img loss 1.2474178075790405 img loss 1.2194515466690063 img loss 1.314934253692627 img loss 1.300452709197998 img loss 1.2655887603759766 img loss 1.288554072380066 img loss 1.309328317642212 img loss 1.3685210943222046 img loss 1.247094750404358 img loss 1.2814735174179077 img loss 1.3037621974945068 img loss 1.2725261449813843 img loss 1.3020539283752441 img loss 1.3012031316757202 img loss 1.271971583366394 img loss 1.2808541059494019 img loss 1.2967289686203003 img loss 1.2858901023864746 img loss 1.298460602760315 img loss 1.308099627494812 img loss 1.2548332214355469 img loss 1.331389307975769 img loss 1.329301118850708 img loss 1.2822818756103516 img loss 1.269432783126831 img loss 1.326117753982544 img loss 1.3304572105407715 img loss 1.2681734561920166 img loss 1.284363031387329 img loss 1.2587116956710815 img loss 1.3411977291107178 img loss 1.3280788660049438 img loss 1.2704437971115112 img loss 1.306785225868225 img loss 1.3210810422897339 img loss 1.3259652853012085 img loss 1.3382391929626465 img loss 1.3817824125289917 img loss 1.2986066341400146 img loss 1.312276840209961 img loss 1.2680764198303223 img loss 1.3018689155578613 img loss 1.317911148071289 img loss 1.2592253684997559 img loss 1.375700831413269 img loss 1.266465187072754 img loss 1.3435627222061157 img loss 1.2999101877212524 img loss 1.3567707538604736 img loss 1.3161572217941284 img loss 1.2454075813293457 img loss 1.2812721729278564 img loss 1.262477159500122 img loss 1.2798465490341187 img loss 1.2816026210784912 img loss 1.30927312374115 img loss 1.3497025966644287 img loss 1.3253103494644165 img loss 1.41657292842865 img loss 1.3251291513442993 img loss 1.3367465734481812 img loss 1.325518250465393 img loss 1.3163626194000244 img loss 1.2684249877929688 img loss 1.2894216775894165 img loss 1.274877905845642 img loss 1.2770965099334717 img loss 1.2631967067718506 img loss 1.3387242555618286 img loss 1.338796854019165 img loss 1.2923578023910522 img loss 1.2995589971542358 img loss 1.337096929550171 img loss 1.3607802391052246 img loss 1.324979543685913 img loss 1.2711304426193237 img loss 1.24276864528656 img loss 1.2816481590270996 img loss 1.223245620727539 img loss 1.3074764013290405 img loss 1.2825441360473633 img loss 1.3033826351165771 img loss 1.3716559410095215 img loss 1.322443962097168 img loss 1.2869985103607178 img loss 1.3322476148605347 img loss 1.3405873775482178 img loss 1.2167690992355347 img loss 1.3219311237335205 img loss 1.229598879814148 img loss 1.2475674152374268 img loss 1.2556250095367432 img loss 1.2764544486999512 img loss 1.2791122198104858 img loss 1.3343502283096313 img loss 1.2528711557388306 img loss 1.2672357559204102 img loss 1.2591193914413452 img loss 1.2135610580444336 img loss 1.3096935749053955 img loss 1.2978639602661133 img loss 1.2103008031845093 img loss 1.2702655792236328 img loss 1.2096648216247559 img loss 1.2677940130233765 img loss 1.3027241230010986 img loss 1.3862297534942627 img loss 1.335215449333191 img loss 1.2993195056915283 img loss 1.252784013748169 img loss 1.3600456714630127 img loss 1.3001844882965088 img loss 1.2778277397155762 img loss 1.334377646446228 img loss 1.2882561683654785 img loss 1.2640637159347534 img loss 1.3080627918243408 img loss 1.3731589317321777 img loss 1.320343017578125 {'loss': 1.2996, 'grad_norm': 0.4067844748497009, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2566837072372437 img loss 1.1979501247406006 img loss 1.2173432111740112 img loss 1.2114331722259521 img loss 1.1387529373168945 img loss 1.2103347778320312 img loss 1.1699472665786743 img loss 1.3065556287765503 img loss 1.195962905883789 img loss 1.1405012607574463 img loss 1.2066010236740112 img loss 1.2177691459655762 img loss 1.2137917280197144 img loss 1.1889355182647705 img loss 1.2440299987792969 img loss 1.2003231048583984 img loss 1.1024044752120972 img loss 1.185485601425171 img loss 1.2651805877685547 img loss 1.163987398147583 img loss 1.2206295728683472 img loss 1.2286938428878784 img loss 1.249761939048767 img loss 1.1621508598327637 img loss 1.1535184383392334 img loss 1.2413322925567627 img loss 1.2748686075210571 img loss 1.2188799381256104 img loss 1.240557074546814 img loss 1.2206312417984009 img loss 1.192798376083374 img loss 1.2039685249328613 img loss 1.2468109130859375 img loss 1.1847116947174072 img loss 1.3563148975372314 img loss 1.1719611883163452 img loss 1.2157061100006104 img loss 1.2144567966461182 img loss 1.1881650686264038 img loss 1.2635687589645386 img loss 1.1832703351974487 img loss 1.2110705375671387 img loss 1.219795823097229 img loss 1.2099182605743408 img loss 1.14439857006073 img loss 1.1799800395965576 img loss 1.1827551126480103 img loss 1.2470020055770874 img loss 1.2478119134902954 img loss 1.153054118156433 img loss 1.1898983716964722 img loss 1.1476213932037354 img loss 1.187459945678711 img loss 1.2275090217590332 img loss 1.1489639282226562 img loss 1.2074936628341675 img loss 1.2587242126464844 img loss 1.1530966758728027 img loss 1.2350906133651733 img loss 1.2729239463806152 img loss 1.1712963581085205 img loss 1.2598745822906494 img loss 1.2339731454849243 img loss 1.1526355743408203 img loss 1.2542030811309814 img loss 1.2065480947494507 img loss 1.1542011499404907 img loss 1.1632038354873657 img loss 1.2322778701782227 img loss 1.265316367149353 img loss 1.1865390539169312 img loss 1.2078384160995483 img loss 1.23552668094635 img loss 1.1473301649093628 img loss 1.2523670196533203 img loss 1.0912107229232788 img loss 1.172821044921875 img loss 1.17577064037323 img loss 1.2079925537109375 img loss 1.2302227020263672 img loss 1.1905068159103394 img loss 1.1479847431182861 img loss 1.2326740026474 img loss 1.1913890838623047 img loss 1.1821712255477905 img loss 1.181875228881836 img loss 1.138919711112976 img loss 1.2475112676620483 img loss 1.2423841953277588 img loss 1.1468652486801147 img loss 1.2251532077789307 img loss 1.2303518056869507 img loss 1.19806706905365 img loss 1.1911585330963135 img loss 1.2364763021469116 img loss 1.1658570766448975 img loss 1.1598719358444214 img loss 1.2094933986663818 img loss 1.1615698337554932 img loss 1.2277740240097046 img loss 1.2099246978759766 img loss 1.1450527906417847 img loss 1.1886757612228394 img loss 1.178097128868103 img loss 1.1859650611877441 img loss 1.2314255237579346 img loss 1.2398841381072998 img loss 1.1875638961791992 img loss 1.1434624195098877 img loss 1.160172700881958 img loss 1.1537895202636719 img loss 1.2073302268981934 img loss 1.1961662769317627 img loss 1.2288843393325806 img loss 1.171935796737671 img loss 1.231321930885315 img loss 1.1746796369552612 img loss 1.169954538345337 img loss 1.1938133239746094 img loss 1.1999666690826416 img loss 1.2593715190887451 img loss 1.1542247533798218 img loss 1.2650847434997559 img loss 1.1379404067993164 img loss 1.204070806503296 img loss 1.12956702709198 img loss 1.179053544998169 img loss 1.2160778045654297 {'loss': 1.2011, 'grad_norm': 0.22279588878154755, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.24449622631073 img loss 1.3558552265167236 img loss 1.1996715068817139 img loss 1.365662693977356 img loss 1.3231319189071655 img loss 1.3772259950637817 img loss 1.2693372964859009 img loss 1.2896240949630737 img loss 1.3960171937942505 img loss 1.3131881952285767 img loss 1.2902793884277344 img loss 1.2753254175186157 img loss 1.2574095726013184 img loss 1.306159496307373 img loss 1.2697043418884277 img loss 1.3075345754623413 img loss 1.377212643623352 img loss 1.3646515607833862 img loss 1.2960243225097656 img loss 1.2871919870376587 img loss 1.2890374660491943 img loss 1.3272368907928467 img loss 1.2761151790618896 img loss 1.3006237745285034 img loss 1.3361198902130127 img loss 1.3003281354904175 img loss 1.2839138507843018 img loss 1.3977768421173096 img loss 1.3750687837600708 img loss 1.4186065196990967 img loss 1.2948493957519531 img loss 1.3124980926513672 img loss 1.3032042980194092 img loss 1.2418962717056274 img loss 1.3323915004730225 img loss 1.2221425771713257 img loss 1.245934009552002 img loss 1.2770652770996094 img loss 1.3251234292984009 img loss 1.2998946905136108 img loss 1.3201922178268433 img loss 1.36068594455719 img loss 1.3133858442306519 img loss 1.2548242807388306 img loss 1.3076393604278564 img loss 1.2754111289978027 img loss 1.2113571166992188 img loss 1.2490687370300293 img loss 1.297330617904663 img loss 1.2308306694030762 img loss 1.2809213399887085 img loss 1.257535696029663 img loss 1.2767064571380615 img loss 1.3195650577545166 img loss 1.2963415384292603 img loss 1.2907345294952393 img loss 1.3203556537628174 img loss 1.3040796518325806img loss 1.348954677581787 img loss 1.302760362625122 img loss 1.2666844129562378 img loss 1.189893364906311 img loss 1.3678914308547974 img loss 1.231553554534912 img loss 1.285111665725708 img loss 1.2169477939605713 img loss 1.2929270267486572 img loss 1.2917362451553345 img loss 1.2995363473892212 img loss 1.2256019115447998 img loss 1.3433480262756348 img loss 1.3105162382125854 img loss 1.2471003532409668 img loss 1.3087916374206543 img loss 1.308195948600769 img loss 1.3981680870056152 img loss 1.3238075971603394 img loss 1.297196865081787 img loss 1.3312329053878784 img loss 1.3499492406845093 img loss 1.306196928024292 img loss 1.3346139192581177 img loss 1.3070311546325684 img loss 1.3123024702072144 img loss 1.4439629316329956 img loss 1.3126894235610962 img loss 1.2576318979263306 img loss 1.2986191511154175 img loss 1.2634861469268799 img loss 1.3273675441741943 img loss 1.2501673698425293 img loss 1.3261895179748535 img loss 1.286685585975647 img loss 1.3098220825195312 img loss 1.297461748123169 img loss 1.2849870920181274 img loss 1.268216609954834 img loss 1.2245306968688965 img loss 1.3196169137954712 img loss 1.2858901023864746 img loss 1.2999588251113892 img loss 1.275107741355896 img loss 1.2748981714248657 img loss 1.3809993267059326 img loss 1.3311126232147217 img loss 1.2772756814956665 img loss 1.3748193979263306 img loss 1.3047676086425781 img loss 1.3633153438568115 img loss 1.2944347858428955 img loss 1.3369873762130737 img loss 1.189042329788208 img loss 1.4195420742034912 img loss 1.2918298244476318 img loss 1.273323893547058 img loss 1.2400450706481934 img loss 1.3324190378189087 img loss 1.2697193622589111 img loss 1.3177144527435303 img loss 1.3123435974121094 img loss 1.3096857070922852 img loss 1.3449252843856812 img loss 1.3269494771957397 img loss 1.2709333896636963 img loss 1.311490535736084 img loss 1.2243573665618896 img loss 1.4366105794906616 img loss 1.309857964515686 {'loss': 1.3027, 'grad_norm': 0.227549746632576, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1647738218307495 img loss 1.18046236038208 img loss 1.1700528860092163 img loss 1.156312346458435 img loss 1.172634482383728 img loss 1.2623140811920166 img loss 1.1726336479187012 img loss 1.114137887954712 img loss 1.1823927164077759 img loss 1.139485239982605 img loss 1.1487724781036377 img loss 1.18106210231781 img loss 1.1178406476974487 img loss 1.1444071531295776 img loss 1.146391749382019 img loss 1.1339097023010254 img loss 1.160143494606018 img loss 1.1594278812408447 img loss 1.2282211780548096 img loss 1.2117540836334229 img loss 1.1629765033721924 img loss 1.198269248008728 img loss 1.0945662260055542 img loss 1.1750417947769165 img loss 1.2078580856323242 img loss 1.2214611768722534 img loss 1.2170056104660034 img loss 1.2464444637298584 img loss 1.1266459226608276 img loss 1.2180050611495972 img loss 1.1415928602218628 img loss 1.1857140064239502 img loss 1.126535177230835 img loss 1.2540781497955322 img loss 1.1309332847595215 img loss 1.3148767948150635 img loss 1.2882506847381592 img loss 1.1918209791183472 img loss 1.2194613218307495 img loss 1.1014530658721924 img loss 1.1164706945419312 img loss 1.0977561473846436 img loss 1.2166612148284912 img loss 1.1337984800338745 img loss 1.1376447677612305 img loss 1.1613233089447021 img loss 1.149951696395874 img loss 1.2044471502304077 img loss 1.195969581604004 img loss 1.1356594562530518 img loss 1.1608531475067139img loss 1.12729012966156 img loss 1.075789451599121 img loss 1.2235910892486572 img loss 1.1374956369400024 img loss 1.1589083671569824 img loss 1.2125928401947021img loss 1.2213647365570068 img loss 1.2058054208755493 img loss 1.1020296812057495 img loss 1.2192018032073975 img loss 1.2197338342666626 img loss 1.1736061573028564 img loss 1.1365633010864258 img loss 1.106724500656128 img loss 1.1801313161849976 img loss 1.141808271408081 img loss 1.2188094854354858 img loss 1.2122961282730103 img loss 1.2013325691223145 img loss 1.1661038398742676 img loss 1.1429836750030518 img loss 1.2013744115829468 img loss 1.1273387670516968 img loss 1.2444061040878296 img loss 1.2452600002288818 img loss 1.1697609424591064 img loss 1.224192500114441 img loss 1.1857128143310547 img loss 1.1767390966415405 img loss 1.2492148876190186 img loss 1.1060441732406616 img loss 1.2378616333007812 img loss 1.126829981803894 img loss 1.1359614133834839 img loss 1.1121805906295776 img loss 1.1706088781356812 img loss 1.1632816791534424 img loss 1.168680191040039 img loss 1.1880441904067993 img loss 1.1939597129821777 img loss 1.184099555015564 img loss 1.2564777135849 img loss 1.210439682006836 img loss 1.1478862762451172 img loss 1.2106443643569946 img loss 1.1768845319747925 img loss 1.1847137212753296 img loss 1.2258762121200562 img loss 1.1735845804214478 img loss 1.1573631763458252 img loss 1.1587169170379639 img loss 1.1684976816177368 img loss 1.1582982540130615 img loss 1.1965632438659668 img loss 1.192169189453125 img loss 1.1529111862182617 img loss 1.110696792602539 img loss 1.155089259147644 img loss 1.2384910583496094 img loss 1.2376551628112793 img loss 1.2500709295272827 img loss 1.1558996438980103 img loss 1.1981923580169678 img loss 1.1643905639648438 img loss 1.3092079162597656 img loss 1.1244819164276123 img loss 1.1732450723648071 img loss 1.147477149963379 img loss 1.1780266761779785 img loss 1.2224520444869995 img loss 1.1162900924682617 img loss 1.1622838973999023 img loss 1.079744815826416img loss 1.1579365730285645 img loss 1.265410304069519 img loss 1.2523417472839355 img loss 1.1899821758270264 {'loss': 1.1776, 'grad_norm': 0.23242759704589844, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2665079832077026 img loss 1.1571624279022217 img loss 1.234607219696045 img loss 1.1459853649139404 img loss 1.1830153465270996 img loss 1.228318691253662 img loss 1.1794209480285645 img loss 1.1894721984863281 img loss 1.2685086727142334 img loss 1.2105833292007446 img loss 1.147916316986084 img loss 1.1725424528121948 img loss 1.1632126569747925 img loss 1.2366547584533691 img loss 1.2196545600891113 img loss 1.183213472366333 img loss 1.1414880752563477 img loss 1.178318738937378 img loss 1.111595630645752 img loss 1.1668514013290405 img loss 1.1836905479431152 img loss 1.2427494525909424 img loss 1.1481530666351318 img loss 1.0845842361450195 img loss 1.1785576343536377 img loss 1.164907455444336 img loss 1.1469018459320068 img loss 1.2066696882247925 img loss 1.1712875366210938 img loss 1.1285306215286255 img loss 1.2448630332946777 img loss 1.203113317489624 img loss 1.2131690979003906 img loss 1.1569063663482666 img loss 1.2067679166793823 img loss 1.1164295673370361 img loss 1.2435306310653687 img loss 1.222269058227539 img loss 1.132205843925476 img loss 1.1799170970916748 img loss 1.1952310800552368 img loss 1.1231255531311035 img loss 1.1444416046142578 img loss 1.2192696332931519 img loss 1.2025655508041382 img loss 1.2572320699691772 img loss 1.1991209983825684 img loss 1.276219129562378 img loss 1.122618556022644 img loss 1.1899255514144897 img loss 1.1702622175216675 img loss 1.2448471784591675 img loss 1.2077205181121826 img loss 1.2615680694580078 img loss 1.1666568517684937 img loss 1.1098573207855225 img loss 1.257598638534546 img loss 1.236175537109375 img loss 1.174528956413269 img loss 1.2028892040252686 img loss 1.1924493312835693 img loss 1.166290521621704 img loss 1.194661021232605 img loss 1.2223429679870605 img loss 1.1864780187606812 img loss 1.1766078472137451 img loss 1.1742942333221436 img loss 1.1481149196624756 img loss 1.1722064018249512 img loss 1.1274712085723877 img loss 1.1266148090362549 img loss 1.2758234739303589 img loss 1.2274188995361328 img loss 1.1521137952804565 img loss 1.1997573375701904 img loss 1.220628023147583 img loss 1.183214545249939 img loss 1.161070466041565 img loss 1.1774728298187256 img loss 1.1536972522735596 img loss 1.1395106315612793 img loss 1.2071895599365234 img loss 1.125381350517273 img loss 1.2120041847229004 img loss 1.2486213445663452 img loss 1.1630691289901733 img loss 1.2098655700683594 img loss 1.1287298202514648 img loss 1.1605587005615234 img loss 1.1107795238494873 img loss 1.223952054977417 img loss 1.2351223230361938 img loss 1.2009155750274658 img loss 1.2762656211853027 img loss 1.2439275979995728 img loss 1.236365556716919 img loss 1.309468150138855 img loss 1.1368253231048584 img loss 1.1915806531906128 img loss 1.1298507452011108 img loss 1.1885826587677002 img loss 1.1597516536712646 img loss 1.1669096946716309 img loss 1.2178571224212646 img loss 1.1139649152755737 img loss 1.310766577720642 img loss 1.1339542865753174 img loss 1.1631685495376587 img loss 1.143565058708191 img loss 1.181830883026123 img loss 1.221185326576233 img loss 1.1449768543243408 img loss 1.2135193347930908 img loss 1.1371010541915894 img loss 1.1254569292068481 img loss 1.1890270709991455 img loss 1.2446012496948242 img loss 1.2103267908096313 img loss 1.1597626209259033 img loss 1.1651122570037842 img loss 1.1989455223083496 img loss 1.2560547590255737 img loss 1.0691323280334473 img loss 1.1583582162857056 img loss 1.2547621726989746 img loss 1.1503734588623047 img loss 1.1533467769622803 img loss 1.1495932340621948 {'loss': 1.1862, 'grad_norm': 0.32458677887916565, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2862993478775024 img loss 1.3799083232879639 img loss 1.248842477798462 img loss 1.3188469409942627 img loss 1.2430514097213745 img loss 1.3652033805847168 img loss 1.4017188549041748 img loss 1.2933955192565918 img loss 1.2460129261016846 img loss 1.2719579935073853 img loss 1.1802897453308105 img loss 1.2267006635665894 img loss 1.3720133304595947 img loss 1.248044729232788 img loss 1.2375810146331787 img loss 1.3601946830749512 img loss 1.2948709726333618 img loss 1.226927638053894 img loss 1.256629467010498 img loss 1.2650192975997925 img loss 1.3016483783721924 img loss 1.2636293172836304 img loss 1.368742823600769 img loss 1.2642021179199219 img loss 1.2597179412841797 img loss 1.2729980945587158 img loss 1.3916422128677368 img loss 1.372941255569458 img loss 1.3332546949386597 img loss 1.2115559577941895 img loss 1.2204906940460205 img loss 1.3067597150802612 img loss 1.2651875019073486 img loss 1.4202824831008911 img loss 1.1982618570327759 img loss 1.2714494466781616 img loss 1.237691879272461 img loss 1.3282089233398438 img loss 1.408765435218811 img loss 1.3197473287582397 img loss 1.235536813735962 img loss 1.3243324756622314 img loss 1.2499569654464722 img loss 1.2438039779663086 img loss 1.2373199462890625 img loss 1.2640806436538696img loss 1.386330485343933 img loss 1.2392430305480957 img loss 1.3530421257019043 img loss 1.2714965343475342 img loss 1.3310158252716064 img loss 1.259019136428833 img loss 1.2908549308776855 img loss 1.2540130615234375 img loss 1.2068898677825928 img loss 1.3212230205535889 img loss 1.3065109252929688 img loss 1.2934517860412598 img loss 1.4340643882751465 img loss 1.405794620513916 img loss 1.233059287071228 img loss 1.2615609169006348 img loss 1.3404008150100708 img loss 1.2909541130065918 img loss 1.3174771070480347 img loss 1.3234634399414062 img loss 1.1993250846862793 img loss 1.394930124282837 img loss 1.2908759117126465 img loss 1.3179365396499634 img loss 1.2759342193603516 img loss 1.3266541957855225 img loss 1.3195807933807373 img loss 1.257253646850586 img loss 1.2766189575195312 img loss 1.3061344623565674 img loss 1.2634388208389282 img loss 1.267686128616333 img loss 1.24274480342865 img loss 1.2695420980453491 img loss 1.2355483770370483 img loss 1.2746753692626953 img loss 1.3070799112319946 img loss 1.3324244022369385 img loss 1.3021379709243774 img loss 1.2864426374435425 img loss 1.4891960620880127 img loss 1.3614649772644043 img loss 1.295056939125061 img loss 1.2782409191131592 img loss 1.4058668613433838 img loss 1.2365471124649048 img loss 1.3972561359405518 img loss 1.4214917421340942 img loss 1.4547860622406006 img loss 1.2503552436828613 img loss 1.344075083732605 img loss 1.241466760635376 img loss 1.3030357360839844 img loss 1.2839962244033813 img loss 1.3704057931900024 img loss 1.3106486797332764 img loss 1.3575648069381714 img loss 1.3161834478378296 img loss 1.1957955360412598 img loss 1.4184625148773193 img loss 1.3590341806411743img loss 1.303335189819336 img loss 1.2976951599121094 img loss 1.2079596519470215 img loss 1.3336018323898315 img loss 1.2232798337936401 img loss 1.2442808151245117 img loss 1.2396941184997559img loss 1.2990801334381104 img loss 1.3517253398895264 img loss 1.3072019815444946 img loss 1.4130218029022217 img loss 1.2890574932098389 img loss 1.2970898151397705 img loss 1.2648341655731201 img loss 1.3439619541168213img loss 1.2770681381225586 img loss 1.3200972080230713 img loss 1.3488571643829346 img loss 1.2261823415756226 img loss 1.2982289791107178 img loss 1.394415020942688 {'loss': 1.301, 'grad_norm': 0.4412422776222229, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.231704592704773 img loss 1.284848928451538 img loss 1.2964417934417725 img loss 1.2639870643615723 img loss 1.3157970905303955 img loss 1.3403972387313843 img loss 1.2902047634124756 img loss 1.3136727809906006 img loss 1.2683756351470947 img loss 1.3153820037841797 img loss 1.252562165260315 img loss 1.227285385131836 img loss 1.254105806350708 img loss 1.3637365102767944 img loss 1.349973440170288 img loss 1.3006569147109985 img loss 1.1713348627090454 img loss 1.2710745334625244 img loss 1.3454679250717163 img loss 1.3225001096725464 img loss 1.2810171842575073 img loss 1.3746856451034546 img loss 1.2447187900543213 img loss 1.2713334560394287 img loss 1.2992314100265503 img loss 1.2150323390960693 img loss 1.2562166452407837 img loss 1.2394592761993408 img loss 1.2598310708999634 img loss 1.2837492227554321 img loss 1.22891104221344 img loss 1.2778301239013672 img loss 1.4614769220352173 img loss 1.309314250946045 img loss 1.3126417398452759 img loss 1.3561114072799683 img loss 1.2803226709365845 img loss 1.235978603363037 img loss 1.2096667289733887 img loss 1.3053096532821655 img loss 1.263791799545288 img loss 1.3383396863937378 img loss 1.2009644508361816 img loss 1.2427520751953125 img loss 1.3204882144927979 img loss 1.236228585243225 img loss 1.2968909740447998 img loss 1.238156795501709 img loss 1.2377901077270508 img loss 1.2340811491012573 img loss 1.2247682809829712 img loss 1.232604742050171 img loss 1.3190943002700806 img loss 1.2603282928466797 img loss 1.2731434106826782 img loss 1.315810203552246 img loss 1.2998902797698975 img loss 1.3058326244354248 img loss 1.1866196393966675 img loss 1.2210718393325806 img loss 1.3067741394042969 img loss 1.2535568475723267 img loss 1.2810282707214355 img loss 1.3180675506591797 img loss 1.2777819633483887 img loss 1.304552435874939 img loss 1.3785088062286377 img loss 1.2212653160095215 img loss 1.208327054977417 img loss 1.3485642671585083 img loss 1.3190879821777344 img loss 1.296415090560913 img loss 1.1721025705337524 img loss 1.3106534481048584 img loss 1.304930329322815 img loss 1.3396823406219482 img loss 1.188078761100769 img loss 1.257232666015625 img loss 1.2452811002731323 img loss 1.2365336418151855 img loss 1.3298524618148804 img loss 1.2420268058776855 img loss 1.2390979528427124 img loss 1.2732326984405518 img loss 1.2270201444625854 img loss 1.2767819166183472 img loss 1.2930399179458618 img loss 1.273759126663208 img loss 1.3074283599853516 img loss 1.203612208366394 img loss 1.2628339529037476 img loss 1.273569107055664 img loss 1.2420748472213745 img loss 1.2074626684188843 img loss 1.255395531654358 img loss 1.370241403579712 img loss 1.2877144813537598 img loss 1.3093750476837158 img loss 1.2239875793457031 img loss 1.235132098197937 img loss 1.3028267621994019 img loss 1.3198524713516235 img loss 1.2738702297210693 img loss 1.3228087425231934 img loss 1.3056837320327759 img loss 1.221719741821289 img loss 1.2386623620986938 img loss 1.232710838317871 img loss 1.2491925954818726 img loss 1.2367550134658813 img loss 1.3476089239120483 img loss 1.3375874757766724 img loss 1.3252670764923096 img loss 1.2658002376556396 img loss 1.2506226301193237 img loss 1.2957229614257812 img loss 1.252077341079712 img loss 1.2923691272735596img loss 1.1462210416793823 img loss 1.305863618850708 img loss 1.2157974243164062 img loss 1.2699453830718994 img loss 1.3453736305236816 img loss 1.2370322942733765 img loss 1.397215723991394 img loss 1.272240161895752 img loss 1.2147184610366821 img loss 1.3367964029312134 {'loss': 1.2769, 'grad_norm': 0.32310405373573303, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1908223628997803 img loss 1.1721687316894531 img loss 1.285662055015564 img loss 1.164975881576538 img loss 1.2267061471939087 img loss 1.2108280658721924 img loss 1.2051866054534912 img loss 1.2092063426971436 img loss 1.12972092628479 img loss 1.1267517805099487 img loss 1.1696507930755615 img loss 1.1844937801361084 img loss 1.1753984689712524 img loss 1.1513714790344238 img loss 1.2292134761810303 img loss 1.1650874614715576 img loss 1.187783122062683 img loss 1.2872695922851562 img loss 1.207550048828125 img loss 1.2022998332977295 img loss 1.2099202871322632 img loss 1.150368332862854 img loss 1.1770319938659668 img loss 1.2105271816253662 img loss 1.2129064798355103 img loss 1.2016048431396484 img loss 1.216825246810913 img loss 1.19157874584198 img loss 1.2572102546691895 img loss 1.1679781675338745 img loss 1.2437124252319336 img loss 1.123141884803772 img loss 1.2567081451416016 img loss 1.19896399974823 img loss 1.1969637870788574 img loss 1.2267398834228516 img loss 1.1927063465118408 img loss 1.2150754928588867 img loss 1.2539527416229248 img loss 1.166069746017456 img loss 1.236809492111206 img loss 1.206220030784607 img loss 1.1861567497253418 img loss 1.2377614974975586 img loss 1.2227709293365479 img loss 1.2340811491012573 img loss 1.2382551431655884 img loss 1.1760681867599487 img loss 1.1575634479522705 img loss 1.2635849714279175 img loss 1.1816325187683105 img loss 1.1959327459335327 img loss 1.2205512523651123 img loss 1.1672780513763428 img loss 1.2651809453964233 img loss 1.173996925354004 img loss 1.1046277284622192 img loss 1.2259597778320312 img loss 1.261502981185913 img loss 1.1673516035079956 img loss 1.2036018371582031 img loss 1.1636208295822144 img loss 1.184110164642334 img loss 1.1972702741622925 img loss 1.2085994482040405 img loss 1.2023454904556274 img loss 1.2605724334716797 img loss 1.1564949750900269 img loss 1.2539678812026978 img loss 1.2231955528259277 img loss 1.2308850288391113 img loss 1.1732192039489746 img loss 1.1691089868545532img loss 1.112159252166748 img loss 1.1742931604385376 img loss 1.1883103847503662 img loss 1.2034521102905273 img loss 1.1796166896820068 img loss 1.154811143875122 img loss 1.1432369947433472 img loss 1.147631287574768 img loss 1.1711229085922241 img loss 1.1891343593597412 img loss 1.1224758625030518 img loss 1.15853750705719 img loss 1.1564735174179077 img loss 1.1593445539474487 img loss 1.2059965133666992 img loss 1.2139564752578735 img loss 1.1890970468521118 img loss 1.2126195430755615 img loss 1.2227433919906616 img loss 1.1971657276153564 img loss 1.1886379718780518 img loss 1.171446442604065 img loss 1.2243883609771729 img loss 1.204493522644043 img loss 1.212650179862976 img loss 1.2133729457855225 img loss 1.2449325323104858 img loss 1.1968828439712524 img loss 1.1980195045471191 img loss 1.1674838066101074 img loss 1.1781660318374634 img loss 1.1623940467834473 img loss 1.185394525527954 img loss 1.229925513267517 img loss 1.2041021585464478 img loss 1.2134755849838257 img loss 1.1950664520263672 img loss 1.2441158294677734 img loss 1.1985307931900024 img loss 1.139775037765503 img loss 1.2052061557769775 img loss 1.2467831373214722 img loss 1.1729717254638672 img loss 1.1920703649520874 img loss 1.2235262393951416 img loss 1.1649360656738281 img loss 1.1844621896743774 img loss 1.1201318502426147 img loss 1.14835524559021 img loss 1.1855405569076538 img loss 1.2305071353912354 img loss 1.187273383140564 img loss 1.2806271314620972 img loss 1.1459903717041016 img loss 1.1707438230514526 {'loss': 1.1956, 'grad_norm': 0.35198986530303955, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2002924680709839 img loss 1.2483810186386108 img loss 1.2373237609863281 img loss 1.1808875799179077 img loss 1.2120850086212158 img loss 1.1996281147003174 img loss 1.2186474800109863 img loss 1.2614868879318237 img loss 1.1792038679122925 img loss 1.2257810831069946 img loss 1.2894160747528076 img loss 1.2339776754379272 img loss 1.2174214124679565 img loss 1.1997404098510742 img loss 1.1849831342697144 img loss 1.2403678894042969 img loss 1.1597588062286377 img loss 1.1791146993637085 img loss 1.2706345319747925 img loss 1.2580302953720093 img loss 1.2375034093856812 img loss 1.2908962965011597 img loss 1.2173963785171509 img loss 1.2100056409835815 img loss 1.2316330671310425 img loss 1.2057758569717407 img loss 1.2098822593688965 img loss 1.2846726179122925 img loss 1.2884678840637207 img loss 1.2595579624176025 img loss 1.1619595289230347 img loss 1.1988184452056885 img loss 1.2366986274719238 img loss 1.1899144649505615 img loss 1.2569011449813843 img loss 1.1801636219024658 img loss 1.2152204513549805 img loss 1.2513929605484009 img loss 1.2312554121017456 img loss 1.2442868947982788 img loss 1.1727478504180908 img loss 1.2953802347183228 img loss 1.289663314819336 img loss 1.2109181880950928 img loss 1.1754841804504395 img loss 1.2446237802505493 img loss 1.209895133972168 img loss 1.1523102521896362 img loss 1.2162660360336304 img loss 1.1761291027069092 img loss 1.1959848403930664 img loss 1.2106056213378906 img loss 1.1990470886230469 img loss 1.2460092306137085 img loss 1.2319339513778687 img loss 1.2273520231246948 img loss 1.2726658582687378 img loss 1.2055909633636475 img loss 1.19010329246521 img loss 1.1692488193511963 img loss 1.2428176403045654 img loss 1.2323970794677734 img loss 1.1385533809661865 img loss 1.1460299491882324 img loss 1.2179588079452515 img loss 1.220528244972229 img loss 1.195726990699768 img loss 1.2008960247039795 img loss 1.2202860116958618 img loss 1.1955177783966064 img loss 1.2099422216415405 img loss 1.2613298892974854 img loss 1.2407997846603394 img loss 1.1981782913208008 img loss 1.2155708074569702 img loss 1.170425295829773 img loss 1.1170461177825928 img loss 1.191840410232544 img loss 1.1812243461608887 img loss 1.2076935768127441 img loss 1.2931361198425293 img loss 1.1850330829620361 img loss 1.3105714321136475 img loss 1.2158143520355225 img loss 1.207006812095642 img loss 1.170680284500122 img loss 1.2319846153259277 img loss 1.1720890998840332 img loss 1.160811424255371 img loss 1.229399561882019 img loss 1.2191253900527954 img loss 1.2296903133392334 img loss 1.1654001474380493 img loss 1.2049291133880615 img loss 1.2419096231460571 img loss 1.221757173538208 img loss 1.2652888298034668 img loss 1.1672048568725586 img loss 1.1997101306915283 img loss 1.1501524448394775 img loss 1.085854172706604 img loss 1.2184666395187378 img loss 1.2276140451431274 img loss 1.207085371017456 img loss 1.170823335647583 img loss 1.2158249616622925 img loss 1.1833809614181519 img loss 1.2136304378509521 img loss 1.1593035459518433 img loss 1.1647751331329346 img loss 1.232093095779419 img loss 1.1989805698394775 img loss 1.2156493663787842 img loss 1.1931257247924805 img loss 1.2175500392913818 img loss 1.2297028303146362 img loss 1.2434184551239014 img loss 1.2215492725372314 img loss 1.2279126644134521 img loss 1.1764262914657593 img loss 1.2173160314559937 img loss 1.2050797939300537 img loss 1.2147958278656006 img loss 1.2229055166244507 img loss 1.2349861860275269 img loss 1.1632999181747437 img loss 1.1938027143478394 img loss 1.1931825876235962 {'loss': 1.2124, 'grad_norm': 0.23067593574523926, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3249106407165527 img loss 1.4209438562393188 img loss 1.4885021448135376 img loss 1.414954662322998 img loss 1.3866117000579834 img loss 1.3230549097061157 img loss 1.2799263000488281 img loss 1.4357534646987915 img loss 1.426038146018982 img loss 1.3365806341171265 img loss 1.309869408607483 img loss 1.3213975429534912 img loss 1.3824517726898193 img loss 1.4234813451766968 img loss 1.4278559684753418 img loss 1.3928678035736084 img loss 1.5056068897247314 img loss 1.3807709217071533 img loss 1.4345957040786743 img loss 1.4992886781692505 img loss 1.4737190008163452 img loss 1.466447114944458 img loss 1.2903099060058594 img loss 1.4150093793869019 img loss 1.3715847730636597 img loss 1.3274751901626587 img loss 1.3688644170761108 img loss 1.5027499198913574 img loss 1.5252346992492676 img loss 1.458862543106079 img loss 1.4093165397644043 img loss 1.4537113904953003 img loss 1.3895580768585205 img loss 1.4772533178329468 img loss 1.4487297534942627 img loss 1.5433257818222046 img loss 1.369004487991333 img loss 1.4486005306243896 img loss 1.314713954925537 img loss 1.3933252096176147 img loss 1.3782804012298584 img loss 1.468216061592102 img loss 1.4553226232528687 img loss 1.48871910572052 img loss 1.4423432350158691 img loss 1.4538133144378662 img loss 1.396058201789856 img loss 1.465035319328308 img loss 1.4107259511947632 img loss 1.4184346199035645 img loss 1.4130266904830933 img loss 1.4516888856887817 img loss 1.5609360933303833 img loss 1.4063078165054321 img loss 1.3602739572525024 img loss 1.3885835409164429 img loss 1.384433627128601 img loss 1.4221254587173462 img loss 1.36099112033844 img loss 1.3865989446640015 img loss 1.4211357831954956 img loss 1.434343934059143 img loss 1.4500328302383423 img loss 1.3309506177902222 img loss 1.3745478391647339 img loss 1.4889531135559082 img loss 1.2973254919052124 img loss 1.5624549388885498 img loss 1.3665088415145874 img loss 1.4392555952072144 img loss 1.3181540966033936 img loss 1.3685190677642822 img loss 1.385535717010498 img loss 1.4045861959457397 img loss 1.4343284368515015 img loss 1.4478882551193237 img loss 1.4817883968353271 img loss 1.3645097017288208 img loss 1.3911443948745728 img loss 1.363099455833435 img loss 1.4238317012786865 img loss 1.3926774263381958 img loss 1.283937692642212 img loss 1.4530411958694458 img loss 1.2912096977233887 img loss 1.41714346408844 img loss 1.483051061630249 img loss 1.2147597074508667 img loss 1.367748498916626 img loss 1.357832670211792 img loss 1.348976969718933 img loss 1.4685195684432983 img loss 1.4272061586380005 img loss 1.4428693056106567 img loss 1.3377959728240967 img loss 1.4724887609481812 img loss 1.3941991329193115 img loss 1.4483845233917236 img loss 1.3863043785095215 img loss 1.4451066255569458 img loss 1.5113866329193115 img loss 1.3775827884674072 img loss 1.4495497941970825 img loss 1.4495275020599365 img loss 1.5732073783874512 img loss 1.4633203744888306 img loss 1.428587555885315 img loss 1.4000424146652222 img loss 1.4311363697052002 img loss 1.4597432613372803 img loss 1.4302908182144165 img loss 1.5576074123382568 img loss 1.3513445854187012 img loss 1.3094913959503174 img loss 1.4156696796417236 img loss 1.3900140523910522 img loss 1.3407032489776611 img loss 1.416542887687683 img loss 1.394170880317688 img loss 1.4496725797653198 img loss 1.4017707109451294 img loss 1.5143567323684692 img loss 1.5326546430587769 img loss 1.41263747215271 img loss 1.518652319908142 img loss 1.3877558708190918 img loss 1.4116075038909912 img loss 1.38369619846344 {'loss': 1.4142, 'grad_norm': 0.32021084427833557, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2474726438522339 img loss 1.3441725969314575 img loss 1.2288169860839844 img loss 1.220581293106079 img loss 1.250838041305542 img loss 1.200648546218872 img loss 1.2430800199508667 img loss 1.2656822204589844 img loss 1.181800365447998 img loss 1.2114975452423096 img loss 1.2447484731674194 img loss 1.2061023712158203 img loss 1.2114518880844116 img loss 1.2392361164093018 img loss 1.2938774824142456 img loss 1.220476508140564 img loss 1.2532681226730347 img loss 1.2508623600006104 img loss 1.2835279703140259 img loss 1.231191635131836 img loss 1.2509307861328125 img loss 1.2174317836761475 img loss 1.2444170713424683 img loss 1.2186304330825806 img loss 1.1641957759857178 img loss 1.216203212738037 img loss 1.249522089958191 img loss 1.3224124908447266 img loss 1.2322040796279907 img loss 1.1708886623382568 img loss 1.2509969472885132 img loss 1.2867320775985718 img loss 1.2946093082427979 img loss 1.2310998439788818 img loss 1.2335505485534668 img loss 1.1753528118133545 img loss 1.226855754852295 img loss 1.2903518676757812 img loss 1.2485665082931519 img loss 1.2229660749435425 img loss 1.2386410236358643 img loss 1.2227909564971924 img loss 1.3193914890289307 img loss 1.2431720495224 img loss 1.1836333274841309 img loss 1.3136367797851562 img loss 1.3252825736999512 img loss 1.2146536111831665 img loss 1.1936153173446655 img loss 1.253983974456787 img loss 1.261542797088623 img loss 1.204833745956421 img loss 1.2662742137908936 img loss 1.215030550956726img loss 1.3153502941131592 img loss 1.2350319623947144 img loss 1.2027318477630615 img loss 1.2013458013534546 img loss 1.2105591297149658 img loss 1.2551636695861816 img loss 1.2185333967208862 img loss 1.229631781578064 img loss 1.1983819007873535 img loss 1.155818223953247 img loss 1.2807731628417969 img loss 1.2578009366989136 img loss 1.2179874181747437 img loss 1.2274843454360962 img loss 1.2599906921386719 img loss 1.2022573947906494 img loss 1.2410999536514282 img loss 1.164323091506958 img loss 1.2605050802230835 img loss 1.228798270225525 img loss 1.2475286722183228 img loss 1.2043253183364868 img loss 1.276674509048462 img loss 1.244124412536621 img loss 1.3230783939361572 img loss 1.2483420372009277 img loss 1.2660667896270752 img loss 1.1802458763122559 img loss 1.2261441946029663 img loss 1.2692492008209229 img loss 1.2419036626815796 img loss 1.261931300163269 img loss 1.2937710285186768 img loss 1.2818124294281006 img loss 1.1825270652770996 img loss 1.245751976966858 img loss 1.2499185800552368 img loss 1.236284852027893 img loss 1.2273088693618774 img loss 1.2134385108947754 img loss 1.271750807762146 img loss 1.237131118774414 img loss 1.3297051191329956 img loss 1.1977680921554565 img loss 1.2130239009857178 img loss 1.2228988409042358 img loss 1.2282875776290894 img loss 1.198319673538208 img loss 1.3822671175003052 img loss 1.264786958694458 img loss 1.3044359683990479 img loss 1.2444396018981934 img loss 1.2832435369491577 img loss 1.2534282207489014 img loss 1.2363851070404053 img loss 1.2905601263046265 img loss 1.1669410467147827 img loss 1.2292016744613647 img loss 1.2609180212020874 img loss 1.258979082107544 img loss 1.266310691833496 img loss 1.285388708114624 img loss 1.280470371246338 img loss 1.1442627906799316 img loss 1.2098708152770996 img loss 1.2002487182617188 img loss 1.2106873989105225 img loss 1.3701251745224 img loss 1.1992319822311401img loss 1.285927176475525 img loss 1.161094069480896 img loss 1.2376712560653687 img loss 1.2020719051361084 img loss 1.2947301864624023 {'loss': 1.2417, 'grad_norm': 0.290457159280777, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.25300931930542 img loss 1.2685585021972656 img loss 1.26423978805542 img loss 1.2730127573013306 img loss 1.243475317955017 img loss 1.2054847478866577 img loss 1.2298767566680908 img loss 1.345984697341919 img loss 1.2088038921356201 img loss 1.181841492652893 img loss 1.2459311485290527 img loss 1.2651755809783936 img loss 1.1908692121505737 img loss 1.2674202919006348 img loss 1.2082736492156982 img loss 1.3282057046890259 img loss 1.3030359745025635 img loss 1.2141789197921753 img loss 1.2131245136260986 img loss 1.249704122543335 img loss 1.3031444549560547 img loss 1.288555383682251 img loss 1.2829549312591553 img loss 1.1970220804214478 img loss 1.2797825336456299 img loss 1.310873031616211 img loss 1.3385204076766968 img loss 1.2926868200302124 img loss 1.2936369180679321 img loss 1.249129056930542 img loss 1.2926025390625 img loss 1.343963384628296 img loss 1.3552418947219849 img loss 1.244891881942749 img loss 1.2268996238708496 img loss 1.3155474662780762 img loss 1.327775001525879 img loss 1.2724260091781616 img loss 1.1982758045196533 img loss 1.2825723886489868 img loss 1.338934302330017 img loss 1.3380025625228882 img loss 1.4138108491897583 img loss 1.3967463970184326 img loss 1.266843557357788 img loss 1.2991204261779785 img loss 1.3141924142837524 img loss 1.2117645740509033 img loss 1.3564200401306152 img loss 1.315211534500122 img loss 1.1924971342086792 img loss 1.3088935613632202 img loss 1.2392715215682983 img loss 1.333274483680725 img loss 1.3175616264343262 img loss 1.2132662534713745 img loss 1.3136634826660156 img loss 1.3004471063613892 img loss 1.2994709014892578 img loss 1.2106339931488037 img loss 1.2579330205917358 img loss 1.2458921670913696 img loss 1.3283638954162598 img loss 1.2782734632492065 img loss 1.2572354078292847 img loss 1.241586446762085 img loss 1.293067455291748 img loss 1.1922109127044678 img loss 1.3713692426681519 img loss 1.2375380992889404 img loss 1.234095811843872 img loss 1.2607485055923462 img loss 1.2853708267211914 img loss 1.24217689037323 img loss 1.339784860610962 img loss 1.2451450824737549 img loss 1.236474633216858 img loss 1.2318490743637085 img loss 1.2823642492294312 img loss 1.3568493127822876 img loss 1.2536208629608154 img loss 1.3232380151748657 img loss 1.3295048475265503 img loss 1.2996679544448853 img loss 1.2810496091842651 img loss 1.195917010307312 img loss 1.3145346641540527 img loss 1.2733287811279297 img loss 1.4024662971496582 img loss 1.2147610187530518 img loss 1.3601278066635132 img loss 1.2539913654327393 img loss 1.3185443878173828 img loss 1.2896428108215332 img loss 1.302445411682129 img loss 1.2697668075561523 img loss 1.197882890701294 img loss 1.3614040613174438 img loss 1.267596960067749 img loss 1.2025460004806519 img loss 1.2337642908096313 img loss 1.363503336906433 img loss 1.3045469522476196 img loss 1.377307415008545 img loss 1.2154080867767334 img loss 1.3247661590576172 img loss 1.3439308404922485 img loss 1.308896541595459 img loss 1.2541965246200562 img loss 1.220345139503479 img loss 1.231389045715332 img loss 1.2319011688232422 img loss 1.2064920663833618 img loss 1.2634060382843018 img loss 1.3038595914840698 img loss 1.3076584339141846 img loss 1.3404484987258911 img loss 1.232958436012268 img loss 1.2497239112854004 img loss 1.310497522354126 img loss 1.2608140707015991 img loss 1.3874144554138184 img loss 1.3865569829940796 img loss 1.248767375946045 img loss 1.3021252155303955 img loss 1.2404422760009766 img loss 1.404747724533081 img loss 1.2409876585006714 {'loss': 1.2802, 'grad_norm': 0.35145723819732666, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3749229907989502 img loss 1.4455430507659912 img loss 1.334869146347046 img loss 1.455076813697815 img loss 1.358195185661316 img loss 1.388237714767456 img loss 1.3499376773834229 img loss 1.3717668056488037 img loss 1.4045342206954956 img loss 1.372957468032837 img loss 1.37947416305542 img loss 1.3664278984069824 img loss 1.4127191305160522 img loss 1.3084951639175415 img loss 1.3665963411331177 img loss 1.383012294769287 img loss 1.3593961000442505 img loss 1.3675376176834106img loss 1.436794400215149 img loss 1.4966273307800293 img loss 1.4937231540679932 img loss 1.3856052160263062 img loss 1.4353588819503784 img loss 1.3886586427688599 img loss 1.4377458095550537 img loss 1.42667818069458 img loss 1.2894871234893799 img loss 1.4761625528335571 img loss 1.3802169561386108 img loss 1.356217861175537 img loss 1.3700957298278809 img loss 1.4446600675582886 img loss 1.3858124017715454 img loss 1.398755669593811 img loss 1.4014837741851807 img loss 1.378943920135498 img loss 1.406888723373413 img loss 1.4194363355636597 img loss 1.4554153680801392 img loss 1.3878872394561768 img loss 1.374782681465149 img loss 1.4221311807632446 img loss 1.323544979095459 img loss 1.39191472530365 img loss 1.469054102897644 img loss 1.406745433807373 img loss 1.4231170415878296 img loss 1.420702338218689 img loss 1.4399220943450928 img loss 1.2905175685882568 img loss 1.4157249927520752 img loss 1.3254379034042358 img loss 1.4011043310165405 img loss 1.2813490629196167 img loss 1.3449124097824097 img loss 1.4439034461975098 img loss 1.5199013948440552 img loss 1.3786259889602661 img loss 1.3306381702423096 img loss 1.425780177116394 img loss 1.49339759349823 img loss 1.3770995140075684 img loss 1.3627045154571533 img loss 1.423946738243103 img loss 1.4919960498809814 img loss 1.328909158706665 img loss 1.2495886087417603 img loss 1.4966776371002197 img loss 1.3037058115005493 img loss 1.3949105739593506 img loss 1.3415143489837646 img loss 1.3081238269805908 img loss 1.4022533893585205 img loss 1.357479453086853 img loss 1.5171005725860596 img loss 1.3015812635421753 img loss 1.4313633441925049 img loss 1.4187214374542236 img loss 1.3486541509628296 img loss 1.4178763628005981 img loss 1.3133281469345093 img loss 1.4246017932891846 img loss 1.4336036443710327 img loss 1.36033034324646 img loss 1.3387852907180786 img loss 1.3249313831329346 img loss 1.3824065923690796 img loss 1.4149903059005737 img loss 1.3786817789077759 img loss 1.3694363832473755 img loss 1.321569800376892 img loss 1.3958065509796143 img loss 1.432891607284546 img loss 1.3808388710021973 img loss 1.4167059659957886 img loss 1.3804631233215332 img loss 1.4228183031082153 img loss 1.288111925125122 img loss 1.3503166437149048 img loss 1.4508713483810425 img loss 1.4505648612976074 img loss 1.3916656970977783 img loss 1.3306536674499512 img loss 1.28396737575531 img loss 1.3944242000579834 img loss 1.383989691734314 img loss 1.3361523151397705 img loss 1.4366804361343384 img loss 1.3262367248535156 img loss 1.3950819969177246 img loss 1.4131704568862915 img loss 1.551077961921692 img loss 1.390844464302063 img loss 1.4278265237808228 img loss 1.3408424854278564 img loss 1.3465923070907593 img loss 1.316352128982544 img loss 1.2494877576828003 img loss 1.345149278640747 img loss 1.4457157850265503 img loss 1.5255029201507568 img loss 1.2870696783065796 img loss 1.339929461479187 img loss 1.4636136293411255 img loss 1.3968278169631958 img loss 1.3550269603729248 img loss 1.339462399482727 img loss 1.335461974143982 {'loss': 1.3877, 'grad_norm': 0.31066596508026123, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1871886253356934 img loss 1.2066330909729004 img loss 1.2222874164581299 img loss 1.2213913202285767 img loss 1.1958013772964478 img loss 1.21648108959198 img loss 1.2109127044677734 img loss 1.2344214916229248 img loss 1.2134642601013184 img loss 1.2628273963928223 img loss 1.233741283416748 img loss 1.167030692100525 img loss 1.1940784454345703 img loss 1.1885325908660889 img loss 1.2060893774032593 img loss 1.153582215309143 img loss 1.335660696029663 img loss 1.1738038063049316 img loss 1.1590572595596313 img loss 1.1141334772109985 img loss 1.1041909456253052 img loss 1.2138962745666504 img loss 1.1490329504013062 img loss 1.1796011924743652 img loss 1.2000608444213867 img loss 1.278961420059204 img loss 1.1163835525512695 img loss 1.1608269214630127 img loss 1.234654188156128 img loss 1.163447618484497 img loss 1.1729319095611572 img loss 1.1552156209945679 img loss 1.3096497058868408 img loss 1.2185351848602295 img loss 1.200230598449707 img loss 1.173885703086853 img loss 1.1483887434005737 img loss 1.17579984664917 img loss 1.2322813272476196 img loss 1.2736809253692627 img loss 1.290407419204712 img loss 1.2252925634384155 img loss 1.306955099105835 img loss 1.2057318687438965 img loss 1.0821216106414795 img loss 1.1996158361434937 img loss 1.1809829473495483 img loss 1.149332880973816 img loss 1.180909514427185 img loss 1.2562321424484253 img loss 1.2728486061096191 img loss 1.2227189540863037 img loss 1.1160088777542114 img loss 1.1919916868209839 img loss 1.2189663648605347 img loss 1.191319227218628 img loss 1.2255325317382812 img loss 1.1292600631713867 img loss 1.1769311428070068 img loss 1.2235188484191895 img loss 1.1519052982330322 img loss 1.247032880783081 img loss 1.1615718603134155 img loss 1.218908667564392 img loss 1.15195631980896 img loss 1.1792229413986206 img loss 1.2132831811904907 img loss 1.0221937894821167 img loss 1.2298580408096313 img loss 1.2028441429138184 img loss 1.4245742559432983 img loss 1.1948744058609009 img loss 1.1721991300582886 img loss 1.14018714427948 img loss 1.2192623615264893 img loss 1.2638803720474243 img loss 1.1871742010116577 img loss 1.1206663846969604 img loss 1.1834367513656616 img loss 1.3244237899780273 img loss 1.2529635429382324 img loss 1.267573356628418 img loss 1.2710767984390259 img loss 1.2241548299789429 img loss 1.2010945081710815 img loss 1.1889103651046753 img loss 1.255414605140686 img loss 1.315589189529419 img loss 1.158962607383728 img loss 1.2195965051651 img loss 1.1891705989837646 img loss 1.1922581195831299 img loss 1.2180304527282715 img loss 1.1826715469360352 img loss 1.1739273071289062 img loss 1.1861721277236938 img loss 1.1714613437652588 img loss 1.2139002084732056 img loss 1.182271957397461 img loss 1.1846040487289429 img loss 1.2066744565963745 img loss 1.150773525238037 img loss 1.317368745803833 img loss 1.217119812965393 img loss 1.1602859497070312 img loss 1.309408187866211 img loss 1.2235960960388184 img loss 1.1902738809585571 img loss 1.1963367462158203 img loss 1.1902586221694946 img loss 1.1114833354949951 img loss 1.1850790977478027 img loss 1.2643675804138184 img loss 1.278030276298523 img loss 1.1865304708480835 img loss 1.2546488046646118 img loss 1.1643791198730469 img loss 1.1844441890716553 img loss 1.1770122051239014 img loss 1.2054957151412964 img loss 1.1227083206176758 img loss 1.256041407585144 img loss 1.1494501829147339 img loss 1.2081124782562256 img loss 1.1454371213912964 img loss 1.2491730451583862 img loss 1.231109619140625 img loss 1.199032187461853 {'loss': 1.2031, 'grad_norm': 0.3656421899795532, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.6508383750915527 img loss 1.7770202159881592 img loss 1.6759687662124634 img loss 1.9222148656845093 img loss 1.7216057777404785 img loss 1.7738629579544067 img loss 1.9231486320495605 img loss 1.8175251483917236 img loss 1.7454583644866943 img loss 1.637671947479248 img loss 1.5872607231140137 img loss 1.7723013162612915 img loss 1.6945210695266724 img loss 1.7808557748794556 img loss 1.7053817510604858 img loss 1.9649931192398071 img loss 1.7925500869750977 img loss 1.8007447719573975 img loss 1.7538763284683228 img loss 1.6375025510787964 img loss 1.7062828540802002 img loss 1.9573030471801758 img loss 1.9649252891540527 img loss 1.7404463291168213 img loss 1.7775378227233887 img loss 1.8524754047393799 img loss 1.6605955362319946 img loss 1.9088817834854126 img loss 1.708354115486145 img loss 1.7421228885650635 img loss 1.705693006515503 img loss 1.8855564594268799 img loss 2.0352563858032227 img loss 1.709486484527588 img loss 1.7523188591003418 img loss 1.668819785118103 img loss 1.9401204586029053 img loss 1.6227409839630127 img loss 1.6385496854782104 img loss 1.7357889413833618 img loss 1.8615096807479858 img loss 1.9044500589370728 img loss 1.7213430404663086 img loss 1.7067220211029053 img loss 1.8158693313598633 img loss 1.7211077213287354 img loss 1.6055282354354858 img loss 1.947871208190918 img loss 1.8031532764434814 img loss 1.8283147811889648 img loss 1.6128637790679932 img loss 1.9755432605743408 img loss 1.7793748378753662 img loss 1.8557491302490234 img loss 1.8140959739685059 img loss 1.7456289529800415 img loss 1.6995452642440796 img loss 1.9762232303619385 img loss 1.6837183237075806 img loss 1.6582019329071045 img loss 1.8745185136795044 img loss 1.589880347251892 img loss 1.7328606843948364 img loss 1.681309461593628 img loss 1.687082052230835 img loss 1.7564265727996826 img loss 1.8868259191513062 img loss 1.6321433782577515 img loss 1.6823023557662964 img loss 1.7136749029159546 img loss 2.1515183448791504 img loss 1.7679635286331177 img loss 1.6132696866989136 img loss 1.6009156703948975 img loss 1.6886030435562134 img loss 1.8563737869262695 img loss 1.7756774425506592 img loss 1.7832751274108887 img loss 1.794851303100586 img loss 1.8454608917236328img loss 1.7212311029434204 img loss 1.8318697214126587 img loss 2.0066351890563965 img loss 1.6003601551055908 img loss 1.7458783388137817 img loss 1.8193726539611816 img loss 1.7215741872787476 img loss 1.8736183643341064 img loss 1.8262125253677368 img loss 1.6811366081237793 img loss 1.7748452425003052 img loss 1.830634355545044 img loss 1.7995808124542236 img loss 1.7323113679885864 img loss 1.8456392288208008 img loss 1.8412046432495117 img loss 1.9931284189224243 img loss 1.8275281190872192 img loss 1.9138519763946533 img loss 1.750288963317871 img loss 1.8044257164001465 img loss 1.939855933189392 img loss 1.765397310256958 img loss 1.5720158815383911 img loss 1.7166844606399536 img loss 1.8396722078323364 img loss 1.6974499225616455 img loss 1.7513524293899536 img loss 1.8592438697814941 img loss 1.9195362329483032 img loss 1.7272626161575317 img loss 1.6227622032165527 img loss 1.7803380489349365 img loss 1.535351276397705 img loss 1.6952240467071533 img loss 1.9074747562408447 img loss 1.639310598373413 img loss 1.6087279319763184 img loss 1.677497386932373 img loss 1.7243895530700684 img loss 1.63571298122406 img loss 1.7520428895950317 img loss 1.676268458366394 img loss 1.6480814218521118 img loss 1.8587987422943115 img loss 1.8703408241271973 img loss 1.660051703453064 img loss 1.6791142225265503 {'loss': 1.7686, 'grad_norm': 0.26736339926719666, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4533460140228271 img loss 1.2677996158599854 img loss 1.3057314157485962 img loss 1.2711536884307861 img loss 1.267225980758667 img loss 1.3458870649337769 img loss 1.2184470891952515 img loss 1.290993571281433 img loss 1.2184436321258545 img loss 1.2950854301452637 img loss 1.3304134607315063 img loss 1.3180160522460938 img loss 1.2337238788604736 img loss 1.2374290227890015 img loss 1.2822827100753784 img loss 1.2311172485351562 img loss 1.3193250894546509 img loss 1.2726550102233887 img loss 1.445019245147705 img loss 1.3225364685058594 img loss 1.2823710441589355 img loss 1.235687494277954 img loss 1.2814972400665283 img loss 1.3088806867599487 img loss 1.2300522327423096 img loss 1.2176196575164795 img loss 1.3188583850860596 img loss 1.2928050756454468 img loss 1.391661286354065 img loss 1.3444980382919312 img loss 1.3497213125228882 img loss 1.2751328945159912 img loss 1.2773889303207397 img loss 1.3075807094573975 img loss 1.2586796283721924 img loss 1.310449481010437 img loss 1.3300862312316895 img loss 1.273952841758728 img loss 1.2334946393966675 img loss 1.2274852991104126 img loss 1.2248753309249878 img loss 1.3539845943450928 img loss 1.2690247297286987 img loss 1.205035924911499 img loss 1.2303446531295776 img loss 1.2614357471466064 img loss 1.3106772899627686 img loss 1.2574217319488525 img loss 1.2842715978622437 img loss 1.3040306568145752 img loss 1.2575308084487915 img loss 1.2917299270629883 img loss 1.2457692623138428 img loss 1.3152942657470703 img loss 1.2860335111618042 img loss 1.2389706373214722 img loss 1.3193753957748413 img loss 1.3802874088287354 img loss 1.2986729145050049 img loss 1.2437065839767456 img loss 1.3011964559555054 img loss 1.2508646249771118 img loss 1.2930750846862793 img loss 1.3255363702774048 img loss 1.3207588195800781 img loss 1.2627549171447754 img loss 1.2625045776367188 img loss 1.2944256067276 img loss 1.3429933786392212 img loss 1.3423103094100952 img loss 1.2635773420333862 img loss 1.344052791595459 img loss 1.2355778217315674 img loss 1.2587814331054688 img loss 1.269742727279663 img loss 1.2492611408233643 img loss 1.274271011352539 img loss 1.2457526922225952 img loss 1.2473398447036743 img loss 1.348191499710083 img loss 1.2856309413909912 img loss 1.3348190784454346 img loss 1.380897045135498 img loss 1.27803373336792 img loss 1.3247970342636108 img loss 1.2353942394256592 img loss 1.2603237628936768 img loss 1.2538200616836548 img loss 1.2653874158859253 img loss 1.329627513885498 img loss 1.2462981939315796 img loss 1.2483810186386108 img loss 1.263803243637085 img loss 1.263453722000122 img loss 1.287343978881836 img loss 1.2978720664978027 img loss 1.2421433925628662 img loss 1.3554867506027222 img loss 1.3013317584991455 img loss 1.3128126859664917 img loss 1.2713840007781982 img loss 1.2707104682922363 img loss 1.380861520767212 img loss 1.2307558059692383 img loss 1.2500150203704834 img loss 1.3557056188583374 img loss 1.3092771768569946 img loss 1.2758257389068604 img loss 1.2863796949386597 img loss 1.2841099500656128 img loss 1.2527097463607788 img loss 1.23410964012146 img loss 1.2906404733657837 img loss 1.2986599206924438 img loss 1.2843660116195679 img loss 1.3291888236999512 img loss 1.2767834663391113 img loss 1.233907699584961 img loss 1.260257363319397 img loss 1.2390992641448975 img loss 1.345160961151123 img loss 1.3342106342315674 img loss 1.2188618183135986 img loss 1.2619727849960327 img loss 1.3046643733978271 img loss 1.3065698146820068 img loss 1.4017443656921387 img loss 1.2782816886901855 {'loss': 1.2877, 'grad_norm': 0.3112384080886841, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.310524344444275 img loss 1.2366993427276611 img loss 1.195378303527832 img loss 1.3316905498504639 img loss 1.2158418893814087 img loss 1.248114824295044 img loss 1.2212694883346558 img loss 1.2937805652618408 img loss 1.2286574840545654 img loss 1.2797402143478394 img loss 1.2468218803405762 img loss 1.2968456745147705 img loss 1.2812620401382446 img loss 1.310887098312378 img loss 1.2363009452819824 img loss 1.2603625059127808 img loss 1.2245614528656006 img loss 1.2834928035736084 img loss 1.2854466438293457 img loss 1.280455470085144 img loss 1.252032995223999 img loss 1.2656989097595215 img loss 1.2419040203094482 img loss 1.2868611812591553 img loss 1.2951784133911133 img loss 1.2883508205413818 img loss 1.2583551406860352 img loss 1.2250704765319824 img loss 1.3598202466964722 img loss 1.2772833108901978 img loss 1.1746854782104492 img loss 1.259596347808838 img loss 1.159878134727478 img loss 1.3190054893493652 img loss 1.2927249670028687 img loss 1.2385505437850952 img loss 1.1994069814682007 img loss 1.2238136529922485 img loss 1.2587684392929077 img loss 1.267864465713501 img loss 1.3157713413238525 img loss 1.2492831945419312 img loss 1.3630627393722534 img loss 1.3207132816314697 img loss 1.284766435623169 img loss 1.2693672180175781 img loss 1.3137667179107666 img loss 1.202284574508667 img loss 1.2710577249526978 img loss 1.2181320190429688 img loss 1.2407276630401611 img loss 1.158334493637085 img loss 1.2788786888122559 img loss 1.3118510246276855 img loss 1.2261940240859985 img loss 1.3178541660308838 img loss 1.2000383138656616 img loss 1.2788923978805542 img loss 1.3066518306732178 img loss 1.3116106986999512 img loss 1.2252893447875977 img loss 1.388055682182312 img loss 1.2611674070358276 img loss 1.2540289163589478 img loss 1.2428829669952393 img loss 1.2469909191131592 img loss 1.2544028759002686 img loss 1.2635858058929443 img loss 1.3087162971496582 img loss 1.2859022617340088 img loss 1.2405904531478882 img loss 1.2663525342941284 img loss 1.251913070678711 img loss 1.3232090473175049 img loss 1.2068819999694824 img loss 1.1524007320404053 img loss 1.254391074180603img loss 1.3324553966522217 img loss 1.3072915077209473 img loss 1.262195110321045 img loss 1.345621943473816 img loss 1.1995928287506104 img loss 1.2163206338882446 img loss 1.2937026023864746 img loss 1.2896606922149658 img loss 1.2867568731307983 img loss 1.3772398233413696 img loss 1.329789638519287 img loss 1.2635343074798584 img loss 1.2541983127593994img loss 1.3008246421813965 img loss 1.3142738342285156 img loss 1.303314208984375 img loss 1.2654083967208862 img loss 1.280554175376892 img loss 1.19160795211792 img loss 1.2073115110397339 img loss 1.2522344589233398 img loss 1.2485207319259644 img loss 1.276572823524475 img loss 1.3272185325622559 img loss 1.2856481075286865 img loss 1.2616310119628906 img loss 1.3133381605148315 img loss 1.2865451574325562 img loss 1.2863787412643433 img loss 1.2828319072723389 img loss 1.225221037864685 img loss 1.250922441482544 img loss 1.3202062845230103 img loss 1.2551392316818237 img loss 1.3173316717147827 img loss 1.225600004196167 img loss 1.1987276077270508 img loss 1.359843373298645 img loss 1.2072882652282715 img loss 1.2818827629089355 img loss 1.3009203672409058 img loss 1.2557058334350586 img loss 1.3701084852218628 img loss 1.2853398323059082 img loss 1.234769344329834 img loss 1.2977184057235718 img loss 1.25783109664917 img loss 1.2221993207931519 img loss 1.4098438024520874 img loss 1.2512139081954956 img loss 1.2289379835128784 {'loss': 1.2694, 'grad_norm': 0.2683270275592804, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3678072690963745 img loss 1.406731128692627 img loss 1.2437927722930908 img loss 1.5208560228347778 img loss 1.3634041547775269 img loss 1.280016303062439 img loss 1.338629961013794 img loss 1.413872241973877 img loss 1.1820080280303955 img loss 1.3543353080749512 img loss 1.3205703496932983 img loss 1.3474371433258057 img loss 1.3170515298843384 img loss 1.3807523250579834 img loss 1.2690595388412476 img loss 1.3088276386260986 img loss 1.3756967782974243 img loss 1.3262593746185303 img loss 1.3928929567337036 img loss 1.2872116565704346 img loss 1.379349946975708 img loss 1.4053246974945068 img loss 1.2591005563735962 img loss 1.3561047315597534 img loss 1.4250551462173462 img loss 1.3077342510223389 img loss 1.2663726806640625 img loss 1.3158011436462402 img loss 1.4420727491378784 img loss 1.3523443937301636 img loss 1.3434444665908813 img loss 1.245867371559143 img loss 1.398558497428894 img loss 1.315276026725769 img loss 1.4032566547393799 img loss 1.3957215547561646 img loss 1.4417140483856201 img loss 1.3863425254821777 img loss 1.437306523323059 img loss 1.2738854885101318 img loss 1.3156975507736206 img loss 1.3387023210525513 img loss 1.348827600479126 img loss 1.4565374851226807 img loss 1.2972254753112793 img loss 1.2861199378967285 img loss 1.234325647354126 img loss 1.339099645614624 img loss 1.4082928895950317 img loss 1.2331843376159668 img loss 1.3869296312332153 img loss 1.3387953042984009 img loss 1.3494805097579956 img loss 1.362733006477356 img loss 1.3196229934692383 img loss 1.2145107984542847 img loss 1.386107325553894 img loss 1.2682838439941406 img loss 1.3347506523132324 img loss 1.3608262538909912 img loss 1.4491288661956787 img loss 1.3802775144577026 img loss 1.3832237720489502 img loss 1.339285135269165 img loss 1.4215189218521118 img loss 1.3640215396881104 img loss 1.2610987424850464 img loss 1.3042943477630615 img loss 1.3186224699020386 img loss 1.3629353046417236 img loss 1.3381972312927246 img loss 1.4089077711105347 img loss 1.306985855102539 img loss 1.4308396577835083 img loss 1.3650834560394287 img loss 1.4102176427841187 img loss 1.3572643995285034 img loss 1.4022105932235718 img loss 1.43534255027771 img loss 1.3121287822723389 img loss 1.3166927099227905 img loss 1.4116215705871582 img loss 1.4464632272720337 img loss 1.4076688289642334 img loss 1.3501865863800049 img loss 1.2998480796813965 img loss 1.2528375387191772 img loss 1.6033530235290527 img loss 1.339040994644165 img loss 1.383482575416565 img loss 1.3022806644439697 img loss 1.2844669818878174 img loss 1.3421274423599243 img loss 1.4533089399337769 img loss 1.4190655946731567 img loss 1.2810654640197754 img loss 1.1908048391342163 img loss 1.36099374294281 img loss 1.3501312732696533 img loss 1.3742907047271729 img loss 1.3955323696136475 img loss 1.3053470849990845 img loss 1.2655681371688843 img loss 1.490118384361267 img loss 1.3410059213638306 img loss 1.4185512065887451 img loss 1.428576111793518 img loss 1.2748533487319946 img loss 1.3712519407272339 img loss 1.4145952463150024 img loss 1.3974530696868896 img loss 1.3800207376480103 img loss 1.3409212827682495 img loss 1.374875545501709 img loss 1.3582202196121216 img loss 1.3767902851104736 img loss 1.3813774585723877 img loss 1.3392844200134277 img loss 1.3381130695343018 img loss 1.4423096179962158 img loss 1.426400065422058 img loss 1.3477728366851807 img loss 1.3909001350402832 img loss 1.3581936359405518 img loss 1.3968863487243652 img loss 1.3499239683151245 img loss 1.2598767280578613 img loss 1.5189249515533447 {'loss': 1.3557, 'grad_norm': 0.3138664960861206, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.405606746673584 img loss 1.3249047994613647 img loss 1.289591670036316 img loss 1.3162658214569092 img loss 1.385189414024353 img loss 1.3772261142730713 img loss 1.2426989078521729 img loss 1.254428744316101 img loss 1.2223113775253296 img loss 1.351274013519287 img loss 1.25508451461792 img loss 1.2841764688491821 img loss 1.2796194553375244 img loss 1.382003664970398 img loss 1.4334832429885864 img loss 1.3705227375030518 img loss 1.2823126316070557 img loss 1.2509371042251587 img loss 1.2818922996520996 img loss 1.367412805557251 img loss 1.2223122119903564 img loss 1.249516248703003 img loss 1.2016313076019287 img loss 1.290719985961914 img loss 1.3558039665222168 img loss 1.3500126600265503 img loss 1.35907781124115 img loss 1.3964616060256958 img loss 1.368152379989624 img loss 1.3553639650344849 img loss 1.3264738321304321 img loss 1.3760267496109009 img loss 1.3511298894882202 img loss 1.1981877088546753 img loss 1.3793447017669678 img loss 1.278540849685669 img loss 1.321976900100708 img loss 1.2748695611953735 img loss 1.295481562614441 img loss 1.3544880151748657 img loss 1.3534566164016724 img loss 1.4148415327072144 img loss 1.2972580194473267 img loss 1.2453657388687134 img loss 1.2592909336090088 img loss 1.3681284189224243 img loss 1.3317372798919678img loss 1.3072324991226196 img loss 1.3649417161941528 img loss 1.3705055713653564 img loss 1.3467196226119995 img loss 1.3828577995300293 img loss 1.2734768390655518 img loss 1.2555043697357178 img loss 1.40975821018219 img loss 1.3568894863128662 img loss 1.3441885709762573 img loss 1.1823115348815918 img loss 1.2764900922775269 img loss 1.1688570976257324 img loss 1.3436840772628784 img loss 1.2478349208831787 img loss 1.4386028051376343 img loss 1.2895702123641968 img loss 1.48197340965271 img loss 1.282077431678772 img loss 1.3386386632919312 img loss 1.227084994316101 img loss 1.3304588794708252 img loss 1.3400328159332275 img loss 1.2635514736175537 img loss 1.4079740047454834 img loss 1.265393853187561 img loss 1.327094554901123 img loss 1.4174835681915283 img loss 1.3930408954620361 img loss 1.3726774454116821 img loss 1.2879917621612549 img loss 1.2582318782806396 img loss 1.3280256986618042 img loss 1.4430463314056396 img loss 1.228649616241455 img loss 1.3052232265472412 img loss 1.4108048677444458 img loss 1.309723138809204 img loss 1.3152683973312378 img loss 1.3632103204727173 img loss 1.2617634534835815 img loss 1.319987177848816 img loss 1.3242299556732178 img loss 1.3129551410675049 img loss 1.2283004522323608 img loss 1.2574223279953003 img loss 1.2554670572280884 img loss 1.3457459211349487 img loss 1.3697036504745483 img loss 1.2927284240722656 img loss 1.2662773132324219 img loss 1.313452124595642 img loss 1.2696399688720703 img loss 1.3166593313217163 img loss 1.437667965888977 img loss 1.3353396654129028 img loss 1.2942595481872559 img loss 1.3262782096862793 img loss 1.3491756916046143 img loss 1.3057245016098022 img loss 1.351947546005249 img loss 1.3235454559326172 img loss 1.2389881610870361 img loss 1.337595820426941 img loss 1.336911916732788 img loss 1.3818608522415161 img loss 1.246031641960144 img loss 1.267126441001892 img loss 1.2632653713226318 img loss 1.366640567779541 img loss 1.36854088306427 img loss 1.3013910055160522 img loss 1.2860549688339233 img loss 1.3019546270370483 img loss 1.2367104291915894 img loss 1.345660924911499 img loss 1.2709383964538574 img loss 1.4074788093566895 img loss 1.323899507522583 img loss 1.236280918121338 img loss 1.2836605310440063 {'loss': 1.3176, 'grad_norm': 0.34261247515678406, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.262857437133789 img loss 1.3241991996765137 img loss 1.3072640895843506 img loss 1.384816288948059 img loss 1.3241264820098877 img loss 1.2490949630737305 img loss 1.214187502861023 img loss 1.2076268196105957 img loss 1.263523817062378 img loss 1.2270020246505737 img loss 1.1980164051055908 img loss 1.2003133296966553 img loss 1.2007966041564941 img loss 1.243492841720581 img loss 1.2712819576263428 img loss 1.1812753677368164 img loss 1.2557190656661987 img loss 1.2398391962051392 img loss 1.2396166324615479 img loss 1.2170524597167969 img loss 1.2456711530685425 img loss 1.2441766262054443 img loss 1.1800124645233154 img loss 1.211861491203308 img loss 1.3876365423202515 img loss 1.2879425287246704 img loss 1.210543155670166 img loss 1.2501485347747803 img loss 1.2597453594207764 img loss 1.3339787721633911 img loss 1.2518097162246704 img loss 1.2111845016479492 img loss 1.2880167961120605 img loss 1.244720458984375 img loss 1.1888389587402344 img loss 1.2785735130310059 img loss 1.217045783996582 img loss 1.2858197689056396 img loss 1.3298931121826172 img loss 1.293350100517273 img loss 1.192899465560913 img loss 1.110015630722046 img loss 1.2435986995697021 img loss 1.2244539260864258 img loss 1.354059100151062 img loss 1.2015994787216187 img loss 1.237407922744751 img loss 1.2275680303573608 img loss 1.2422664165496826 img loss 1.2446134090423584 img loss 1.2559698820114136 img loss 1.241847038269043 img loss 1.2347080707550049 img loss 1.2890472412109375 img loss 1.3649914264678955 img loss 1.2484242916107178 img loss 1.2039035558700562 img loss 1.2334871292114258 img loss 1.1899493932724 img loss 1.14597487449646 img loss 1.2751343250274658 img loss 1.2910780906677246 img loss 1.2415416240692139 img loss 1.2273287773132324 img loss 1.2148892879486084 img loss 1.3299312591552734 img loss 1.2575287818908691 img loss 1.122230052947998 img loss 1.2254786491394043 img loss 1.2199835777282715 img loss 1.2436347007751465 img loss 1.2669503688812256 img loss 1.188166856765747 img loss 1.2380332946777344 img loss 1.1797726154327393 img loss 1.3067231178283691 img loss 1.3306670188903809 img loss 1.2872816324234009 img loss 1.1816462278366089 img loss 1.2607898712158203 img loss 1.2441319227218628 img loss 1.2034475803375244 img loss 1.2303787469863892 img loss 1.2827485799789429 img loss 1.333243727684021 img loss 1.1622155904769897 img loss 1.250364065170288 img loss 1.195778727531433 img loss 1.2783340215682983 img loss 1.1967566013336182 img loss 1.2512462139129639 img loss 1.2981723546981812 img loss 1.1994848251342773 img loss 1.2952402830123901 img loss 1.2924963235855103 img loss 1.289225459098816 img loss 1.2887481451034546 img loss 1.2434935569763184 img loss 1.2945612668991089 img loss 1.3123104572296143 img loss 1.262337565422058 img loss 1.2424561977386475 img loss 1.191415548324585 img loss 1.2274243831634521 img loss 1.190873384475708 img loss 1.269931674003601 img loss 1.3178554773330688 img loss 1.2376941442489624 img loss 1.197843074798584 img loss 1.218709945678711 img loss 1.2728420495986938 img loss 1.2982109785079956 img loss 1.355365514755249 img loss 1.221043348312378 img loss 1.2068151235580444 img loss 1.16986882686615 img loss 1.1269512176513672 img loss 1.1323821544647217 img loss 1.2038288116455078 img loss 1.258704662322998 img loss 1.247567057609558 img loss 1.2209476232528687 img loss 1.263659119606018 img loss 1.2649452686309814 img loss 1.1956546306610107 img loss 1.217455267906189 img loss 1.241748571395874 img loss 1.211474895477295 {'loss': 1.2453, 'grad_norm': 0.2495427280664444, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2514894008636475 img loss 1.2105250358581543 img loss 1.123270869255066 img loss 1.1726969480514526 img loss 1.1190675497055054 img loss 1.1566451787948608 img loss 1.2091474533081055 img loss 1.1420201063156128 img loss 1.164767861366272 img loss 1.1860156059265137 img loss 1.2018680572509766 img loss 1.1757951974868774 img loss 1.1771674156188965 img loss 1.1881780624389648 img loss 1.2036893367767334 img loss 1.182323694229126 img loss 1.222007393836975 img loss 1.1908366680145264 img loss 1.2273833751678467 img loss 1.174107313156128 img loss 1.14103364944458 img loss 1.1767603158950806 img loss 1.156370997428894 img loss 1.244390845298767 img loss 1.1847474575042725 img loss 1.232889175415039 img loss 1.1150445938110352 img loss 1.0902280807495117 img loss 1.2044570446014404 img loss 1.1786178350448608 img loss 1.2609310150146484 img loss 1.201498031616211 img loss 1.1532435417175293 img loss 1.1548023223876953 img loss 1.1243767738342285 img loss 1.191898226737976 img loss 1.1992566585540771 img loss 1.2266249656677246 img loss 1.1364178657531738 img loss 1.1242105960845947 img loss 1.1422507762908936 img loss 1.1626514196395874 img loss 1.2118542194366455 img loss 1.1468727588653564 img loss 1.2356151342391968 img loss 1.2184300422668457 img loss 1.1431986093521118 img loss 1.1955896615982056 img loss 1.2105655670166016 img loss 1.1787289381027222 img loss 1.1432727575302124 img loss 1.1695008277893066 img loss 1.2185016870498657 img loss 1.1650015115737915 img loss 1.2109506130218506 img loss 1.2678711414337158 img loss 1.2227888107299805 img loss 1.1825398206710815 img loss 1.2057771682739258 img loss 1.1613750457763672 img loss 1.3175103664398193 img loss 1.2328003644943237 img loss 1.1172311305999756 img loss 1.1847463846206665 img loss 1.1984719038009644 img loss 1.1779391765594482 img loss 1.1635080575942993 img loss 1.1653077602386475 img loss 1.1272289752960205 img loss 1.2209856510162354 img loss 1.1562457084655762 img loss 1.1717827320098877 img loss 1.1677483320236206 img loss 1.2043869495391846 img loss 1.1850056648254395 img loss 1.190803050994873 img loss 1.1852535009384155 img loss 1.2114043235778809 img loss 1.125643014907837 img loss 1.264564037322998 img loss 1.1945478916168213 img loss 1.1803234815597534 img loss 1.243564486503601 img loss 1.1883323192596436 img loss 1.2311350107192993 img loss 1.1757713556289673 img loss 1.2687015533447266 img loss 1.209814429283142 img loss 1.1868855953216553 img loss 1.2113773822784424 img loss 1.1473098993301392 img loss 1.153650164604187 img loss 1.2620508670806885 img loss 1.1139189004898071 img loss 1.1540640592575073 img loss 1.1512283086776733 img loss 1.2262914180755615 img loss 1.1752948760986328 img loss 1.238066554069519 img loss 1.1430364847183228 img loss 1.192491054534912 img loss 1.2099169492721558 img loss 1.173343300819397 img loss 1.1712987422943115 img loss 1.1782124042510986 img loss 1.1441057920455933 img loss 1.1331125497817993 img loss 1.1942973136901855 img loss 1.2168943881988525 img loss 1.219158411026001 img loss 1.22591233253479 img loss 1.2742893695831299 img loss 1.2444071769714355 img loss 1.2403061389923096 img loss 1.1603847742080688 img loss 1.1882694959640503 img loss 1.1233842372894287 img loss 1.1310957670211792 img loss 1.2092254161834717 img loss 1.3536807298660278 img loss 1.1591088771820068 img loss 1.1941850185394287 img loss 1.1696627140045166 img loss 1.2296810150146484 img loss 1.2007536888122559 img loss 1.1618849039077759 img loss 1.158294677734375 img loss 1.232823371887207 {'loss': 1.1882, 'grad_norm': 0.5248981714248657, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3483785390853882 img loss 1.3140627145767212 img loss 1.3157057762145996 img loss 1.3786771297454834 img loss 1.3971182107925415 img loss 1.3643864393234253 img loss 1.3406094312667847 img loss 1.302282691001892 img loss 1.3348370790481567 img loss 1.3212321996688843 img loss 1.3862539529800415 img loss 1.2961134910583496 img loss 1.3586891889572144 img loss 1.3995060920715332 img loss 1.3501793146133423 img loss 1.3238590955734253 img loss 1.3448024988174438 img loss 1.4088705778121948 img loss 1.3551609516143799 img loss 1.4254766702651978 img loss 1.3789981603622437 img loss 1.2994496822357178 img loss 1.3104244470596313 img loss 1.4727399349212646 img loss 1.4878098964691162 img loss 1.329653263092041 img loss 1.412453055381775 img loss 1.2737226486206055 img loss 1.3650060892105103 img loss 1.3131202459335327 img loss 1.3783305883407593 img loss 1.3099322319030762 img loss 1.426266074180603 img loss 1.3133182525634766 img loss 1.454902172088623 img loss 1.2605993747711182 img loss 1.3444361686706543 img loss 1.4664852619171143 img loss 1.3180248737335205 img loss 1.3215539455413818 img loss 1.324700117111206 img loss 1.3693101406097412 img loss 1.414254903793335 img loss 1.3057361841201782 img loss 1.3221404552459717 img loss 1.346840500831604 img loss 1.362478494644165 img loss 1.3909817934036255 img loss 1.4608924388885498 img loss 1.398706316947937 img loss 1.2846903800964355 img loss 1.2720097303390503 img loss 1.3948792219161987 img loss 1.3248589038848877 img loss 1.4267140626907349 img loss 1.2910727262496948 img loss 1.3277868032455444 img loss 1.3300493955612183 img loss 1.358485460281372 img loss 1.3571499586105347 img loss 1.2841042280197144 img loss 1.3550236225128174 img loss 1.3925739526748657 img loss 1.3709158897399902 img loss 1.3639733791351318 img loss 1.409329891204834 img loss 1.4305347204208374 img loss 1.3591837882995605 img loss 1.3818260431289673 img loss 1.3520420789718628 img loss 1.346300721168518 img loss 1.33832585811615 img loss 1.3667387962341309 img loss 1.3642163276672363 img loss 1.3343665599822998 img loss 1.3873502016067505 img loss 1.436671495437622 img loss 1.3231863975524902 img loss 1.3194822072982788 img loss 1.4625447988510132 img loss 1.426992654800415 img loss 1.2764346599578857 img loss 1.397271752357483 img loss 1.3469288349151611 img loss 1.3954492807388306 img loss 1.3730722665786743 img loss 1.4290283918380737 img loss 1.3251961469650269 img loss 1.3471646308898926 img loss 1.3056962490081787 img loss 1.3803004026412964 img loss 1.2859470844268799 img loss 1.4096993207931519 img loss 1.2769325971603394 img loss 1.3575470447540283 img loss 1.334915041923523 img loss 1.3908665180206299 img loss 1.407663106918335 img loss 1.3761829137802124 img loss 1.3083189725875854 img loss 1.4048157930374146 img loss 1.3405033349990845 img loss 1.3844975233078003 img loss 1.379433512687683 img loss 1.360225796699524 img loss 1.4613555669784546 img loss 1.3736412525177002 img loss 1.4113210439682007 img loss 1.3980110883712769 img loss 1.2635618448257446 img loss 1.454260230064392 img loss 1.3172725439071655 img loss 1.3349987268447876 img loss 1.436795949935913 img loss 1.4175636768341064 img loss 1.2768828868865967 img loss 1.3639652729034424 img loss 1.4262633323669434 img loss 1.4405242204666138 img loss 1.3629823923110962 img loss 1.3579565286636353 img loss 1.4022191762924194 img loss 1.3810635805130005 img loss 1.4443871974945068 img loss 1.3307645320892334 img loss 1.3170263767242432 img loss 1.3836206197738647 img loss 1.3371901512145996 {'loss': 1.363, 'grad_norm': 0.2900976836681366, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3614827394485474 img loss 1.403623342514038 img loss 1.3621413707733154 img loss 1.4191786050796509 img loss 1.3779542446136475 img loss 1.4386712312698364 img loss 1.4206128120422363 img loss 1.319809913635254 img loss 1.2973302602767944 img loss 1.397030234336853 img loss 1.4537689685821533 img loss 1.4618955850601196 img loss 1.3747121095657349 img loss 1.3802106380462646 img loss 1.4400004148483276 img loss 1.4761593341827393 img loss 1.4113026857376099 img loss 1.2910393476486206 img loss 1.3031647205352783 img loss 1.3792392015457153 img loss 1.4091404676437378 img loss 1.394839882850647 img loss 1.4462262392044067 img loss 1.378332495689392 img loss 1.3748174905776978 img loss 1.3214492797851562 img loss 1.3826106786727905 img loss 1.501062273979187 img loss 1.4394828081130981 img loss 1.3401509523391724 img loss 1.4742982387542725 img loss 1.4574172496795654 img loss 1.4169442653656006 img loss 1.2827222347259521 img loss 1.361334204673767 img loss 1.3306937217712402 img loss 1.3329672813415527 img loss 1.4421496391296387 img loss 1.3976579904556274 img loss 1.362486481666565 img loss 1.2045445442199707 img loss 1.4284614324569702 img loss 1.5648635625839233 img loss 1.3298166990280151 img loss 1.4025394916534424 img loss 1.4146850109100342 img loss 1.4044277667999268 img loss 1.2997349500656128 img loss 1.358460783958435 img loss 1.4139779806137085 img loss 1.481733798980713 img loss 1.3033556938171387 img loss 1.448773741722107 img loss 1.3452013731002808 img loss 1.314837098121643 img loss 1.353968858718872 img loss 1.3339067697525024 img loss 1.3428455591201782 img loss 1.3968405723571777 img loss 1.525024175643921 img loss 1.2170989513397217 img loss 1.2887285947799683 img loss 1.3818246126174927 img loss 1.395925760269165 img loss 1.4446570873260498 img loss 1.4536092281341553 img loss 1.4022682905197144 img loss 1.2918585538864136 img loss 1.5402170419692993 img loss 1.3731480836868286 img loss 1.2826447486877441 img loss 1.3743922710418701 img loss 1.3818484544754028img loss 1.5620439052581787 img loss 1.302299976348877 img loss 1.375008463859558 img loss 1.4754194021224976 img loss 1.4890445470809937 img loss 1.4073947668075562 img loss 1.460033893585205 img loss 1.5118896961212158 img loss 1.337551474571228 img loss 1.4573209285736084 img loss 1.4611411094665527 img loss 1.5559000968933105 img loss 1.4493683576583862 img loss 1.3949707746505737 img loss 1.4689675569534302 img loss 1.4785990715026855 img loss 1.423169732093811 img loss 1.5349915027618408 img loss 1.3439078330993652 img loss 1.4424339532852173 img loss 1.3956923484802246 img loss 1.4376674890518188 img loss 1.3766534328460693 img loss 1.3395555019378662 img loss 1.4957987070083618 img loss 1.454833745956421 img loss 1.4034658670425415 img loss 1.4238191843032837 img loss 1.3817137479782104 img loss 1.4014856815338135 img loss 1.3845436573028564 img loss 1.3985646963119507 img loss 1.552294135093689 img loss 1.393642783164978 img loss 1.2801777124404907 img loss 1.403671145439148 img loss 1.3537640571594238 img loss 1.3826403617858887 img loss 1.3784229755401611 img loss 1.4405828714370728 img loss 1.5394521951675415 img loss 1.4487231969833374 img loss 1.421221375465393 img loss 1.3946248292922974 img loss 1.3893243074417114 img loss 1.2859892845153809 img loss 1.3389928340911865 img loss 1.3855115175247192 img loss 1.485856533050537 img loss 1.4503308534622192 img loss 1.4549068212509155 img loss 1.4644901752471924 img loss 1.3799530267715454 img loss 1.5088894367218018 img loss 1.4652010202407837 {'loss': 1.4026, 'grad_norm': 0.32685622572898865, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.150088906288147 img loss 1.2868037223815918 img loss 1.2747926712036133 img loss 1.3354748487472534 img loss 1.2292122840881348 img loss 1.292661190032959 img loss 1.223527193069458 img loss 1.175163984298706 img loss 1.2096563577651978 img loss 1.2298862934112549 img loss 1.2086187601089478 img loss 1.1864962577819824 img loss 1.2308911085128784 img loss 1.4430431127548218 img loss 1.2298846244812012 img loss 1.2254884243011475 img loss 1.266666293144226 img loss 1.1784589290618896 img loss 1.2523789405822754 img loss 1.18586003780365 img loss 1.2843035459518433 img loss 1.3606764078140259 img loss 1.2518174648284912 img loss 1.3033828735351562 img loss 1.2421395778656006 img loss 1.2720756530761719 img loss 1.3296377658843994 img loss 1.3029879331588745 img loss 1.3121097087860107 img loss 1.2446832656860352 img loss 1.1484380960464478 img loss 1.2488725185394287 img loss 1.3293424844741821 img loss 1.1801542043685913 img loss 1.2712239027023315 img loss 1.2309662103652954 img loss 1.2887110710144043 img loss 1.2398350238800049 img loss 1.2970436811447144 img loss 1.2149746417999268 img loss 1.285022497177124 img loss 1.2076966762542725 img loss 1.2955048084259033 img loss 1.3279881477355957 img loss 1.260199785232544 img loss 1.3249871730804443 img loss 1.2324249744415283 img loss 1.2561061382293701 img loss 1.2134149074554443 img loss 1.1803072690963745 img loss 1.279259443283081 img loss 1.2712208032608032 img loss 1.227266550064087 img loss 1.2454087734222412 img loss 1.292351484298706 img loss 1.2671884298324585 img loss 1.2521110773086548 img loss 1.2653992176055908 img loss 1.2954883575439453 img loss 1.21579909324646 img loss 1.3058600425720215 img loss 1.2583351135253906 img loss 1.1950969696044922 img loss 1.3137047290802002 img loss 1.2814369201660156 img loss 1.2572122812271118 img loss 1.2759803533554077 img loss 1.2369145154953003 img loss 1.2143633365631104 img loss 1.1554632186889648 img loss 1.215403437614441 img loss 1.246325969696045 img loss 1.2450428009033203 img loss 1.1956403255462646 img loss 1.2091856002807617 img loss 1.2766776084899902 img loss 1.376024603843689 img loss 1.3229502439498901 img loss 1.3051894903182983 img loss 1.2735493183135986 img loss 1.243865728378296 img loss 1.2751728296279907 img loss 1.285435676574707 img loss 1.2404812574386597 img loss 1.2712925672531128 img loss 1.321422815322876 img loss 1.2495981454849243 img loss 1.2713207006454468 img loss 1.195831537246704 img loss 1.2922542095184326 img loss 1.3650734424591064 img loss 1.1678454875946045 img loss 1.3220241069793701 img loss 1.2211945056915283 img loss 1.3045892715454102 img loss 1.2109984159469604 img loss 1.2646770477294922 img loss 1.2440185546875 img loss 1.3165119886398315 img loss 1.3251826763153076 img loss 1.1971149444580078 img loss 1.2342652082443237 img loss 1.125269889831543 img loss 1.2702339887619019 img loss 1.2865705490112305 img loss 1.276822805404663 img loss 1.3020797967910767 img loss 1.2625083923339844 img loss 1.3466821908950806 img loss 1.24826979637146 img loss 1.2292938232421875 img loss 1.2417960166931152 img loss 1.2509765625 img loss 1.1915613412857056 img loss 1.227780818939209 img loss 1.2481998205184937 img loss 1.2275079488754272 img loss 1.2666335105895996 img loss 1.3131853342056274 img loss 1.2384735345840454 img loss 1.3091882467269897 img loss 1.2175827026367188 img loss 1.2731903791427612 img loss 1.2468864917755127 img loss 1.231022834777832 img loss 1.2566888332366943 img loss 1.2706307172775269 img loss 1.3009274005889893 {'loss': 1.2578, 'grad_norm': 0.27504315972328186, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.9779244661331177 img loss 1.6448180675506592 img loss 1.6403669118881226 img loss 1.6517937183380127 img loss 1.4555989503860474 img loss 1.6001429557800293 img loss 1.7299102544784546 img loss 1.7319579124450684 img loss 1.607434868812561 img loss 1.9278719425201416 img loss 1.6929844617843628 img loss 1.700989842414856 img loss 1.6895414590835571 img loss 1.9480104446411133 img loss 1.7229657173156738 img loss 1.6798819303512573 img loss 1.7900974750518799 img loss 1.7310764789581299 img loss 1.7401232719421387 img loss 1.7686052322387695 img loss 1.6894829273223877 img loss 1.740308403968811 img loss 1.6704121828079224 img loss 1.5323402881622314 img loss 1.5770184993743896 img loss 1.57112455368042 img loss 2.014342784881592 img loss 1.7268296480178833 img loss 1.8138060569763184 img loss 1.5348769426345825 img loss 1.660845398902893 img loss 1.8122367858886719 img loss 1.906203269958496 img loss 1.7917426824569702 img loss 1.7166305780410767 img loss 1.749499797821045 img loss 1.75082266330719 img loss 1.778498888015747 img loss 1.6984905004501343 img loss 1.6598715782165527 img loss 1.64655339717865 img loss 1.6454675197601318 img loss 1.7750089168548584img loss 1.70498526096344 img loss 1.63966703414917 img loss 1.6997904777526855 img loss 1.7241061925888062 img loss 1.6697843074798584 img loss 1.708315372467041 img loss 1.7820950746536255 img loss 1.5775967836380005 img loss 1.6688393354415894 img loss 1.7426011562347412 img loss 1.6561495065689087 img loss 1.8192256689071655 img loss 1.7143735885620117 img loss 1.924424409866333 img loss 1.7798892259597778 img loss 1.7122820615768433 img loss 1.7106719017028809 img loss 1.781665563583374 img loss 1.7056021690368652 img loss 1.7909891605377197 img loss 1.8212957382202148 img loss 1.7414014339447021 img loss 1.7809100151062012 img loss 1.7175334692001343 img loss 1.8836336135864258 img loss 1.8504576683044434 img loss 1.8129689693450928 img loss 1.6075618267059326 img loss 1.73052179813385 img loss 1.8163261413574219 img loss 1.6974389553070068 img loss 1.683422565460205 img loss 1.7550256252288818 img loss 1.6397382020950317 img loss 1.7254881858825684 img loss 1.660148024559021 img loss 1.6660233736038208 img loss 1.842583179473877 img loss 1.5482923984527588 img loss 1.848025918006897 img loss 1.7081084251403809 img loss 1.815432071685791 img loss 1.8182237148284912 img loss 1.554753065109253 img loss 1.931776523590088 img loss 1.8184940814971924 img loss 1.745123028755188 img loss 1.7808167934417725 img loss 1.697153925895691 img loss 1.6346391439437866 img loss 1.7692961692810059 img loss 1.7013728618621826 img loss 1.7186486721038818 img loss 1.7173264026641846 img loss 1.8985093832015991 img loss 1.7587376832962036 img loss 1.794645071029663 img loss 1.7016416788101196 img loss 1.7826519012451172 img loss 1.5959612131118774 img loss 1.6954694986343384 img loss 1.8211883306503296 img loss 1.928337574005127 img loss 1.8377324342727661 img loss 1.9657325744628906 img loss 1.9510245323181152img loss 1.7431622743606567 img loss 1.6375356912612915 img loss 1.9095386266708374 img loss 1.6607989072799683 img loss 1.8470369577407837 img loss 1.7185653448104858 img loss 1.7496505975723267 img loss 1.8467116355895996 img loss 1.8869836330413818 img loss 1.833996295928955 img loss 1.660738468170166 img loss 1.595159649848938 img loss 1.7606929540634155 img loss 1.6662427186965942 img loss 1.6790738105773926 img loss 1.684997320175171 img loss 1.7757841348648071 img loss 1.7065645456314087 img loss 1.9329018592834473 {'loss': 1.7397, 'grad_norm': 1.6018130779266357, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.271359920501709 img loss 1.341164469718933 img loss 1.1093368530273438 img loss 1.2162879705429077 img loss 1.1233936548233032 img loss 1.2063214778900146 img loss 1.3684496879577637 img loss 1.3587614297866821 img loss 1.1938517093658447 img loss 1.210693120956421 img loss 1.1409671306610107 img loss 1.2683186531066895 img loss 1.2304036617279053 img loss 1.2218239307403564 img loss 1.1936635971069336 img loss 1.3050270080566406 img loss 1.1497730016708374 img loss 1.2354333400726318 img loss 1.1690810918807983 img loss 1.158310890197754 img loss 1.1819530725479126 img loss 1.1852061748504639 img loss 1.2433174848556519 img loss 1.2960318326950073 img loss 1.2775157690048218 img loss 1.1087596416473389 img loss 1.2133243083953857 img loss 1.2927110195159912 img loss 1.224524974822998 img loss 1.1718367338180542 img loss 1.151538610458374 img loss 1.183844804763794 img loss 1.2035654783248901 img loss 1.2424777746200562 img loss 1.15353262424469 img loss 1.1636141538619995 img loss 1.0866191387176514 img loss 1.2120513916015625 img loss 1.2891483306884766 img loss 1.280037522315979 img loss 1.2423102855682373 img loss 1.2174996137619019 img loss 1.2224514484405518 img loss 1.2181956768035889 img loss 1.2772190570831299 img loss 1.2088136672973633 img loss 1.250098705291748 img loss 1.186858892440796 img loss 1.1895697116851807 img loss 1.231381893157959 img loss 1.1325318813323975 img loss 1.2357107400894165 img loss 1.1747499704360962 img loss 1.1709768772125244 img loss 1.2309566736221313 img loss 1.1692123413085938 img loss 1.1955403089523315 img loss 1.195457935333252 img loss 1.1529719829559326 img loss 1.1430847644805908 img loss 1.3536368608474731 img loss 1.26180899143219 img loss 1.3043431043624878 img loss 1.2146761417388916 img loss 1.1850409507751465 img loss 1.2382744550704956 img loss 1.2070386409759521 img loss 1.101638913154602 img loss 1.1186546087265015 img loss 1.2781533002853394 img loss 1.1575599908828735 img loss 1.1346874237060547 img loss 1.2484642267227173 img loss 1.2154401540756226 img loss 1.1834936141967773 img loss 1.284719467163086 img loss 1.2275562286376953 img loss 1.2582794427871704 img loss 1.162376880645752 img loss 1.2719560861587524 img loss 1.1260936260223389 img loss 1.2037239074707031 img loss 1.1462469100952148 img loss 1.2000439167022705 img loss 1.2059024572372437 img loss 1.266015648841858 img loss 1.2097266912460327 img loss 1.2174651622772217 img loss 1.2023730278015137 img loss 1.242686152458191 img loss 1.2667430639266968 img loss 1.203346610069275 img loss 1.2783914804458618 img loss 1.2089656591415405 img loss 1.2288637161254883 img loss 1.196723461151123 img loss 1.305281162261963 img loss 1.1738489866256714 img loss 1.218839406967163 img loss 1.2461416721343994 img loss 1.2788116931915283 img loss 1.2250587940216064 img loss 1.1699049472808838 img loss 1.2140296697616577 img loss 1.1789779663085938 img loss 1.311430811882019 img loss 1.2083784341812134 img loss 1.2175544500350952 img loss 1.1569305658340454 img loss 1.1951704025268555 img loss 1.155524730682373 img loss 1.0831739902496338 img loss 1.1239066123962402 img loss 1.171330451965332 img loss 1.2280361652374268 img loss 1.1885267496109009 img loss 1.281137228012085 img loss 1.2006103992462158 img loss 1.2313783168792725 img loss 1.192401647567749 img loss 1.2630610466003418 img loss 1.2369847297668457 img loss 1.20361328125 img loss 1.1677069664001465 img loss 1.2509877681732178 img loss 1.1555092334747314 img loss 1.18826162815094 img loss 1.1582469940185547 {'loss': 1.2115, 'grad_norm': 0.6415609121322632, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.329121470451355 img loss 1.3395533561706543 img loss 1.2538914680480957 img loss 1.3216108083724976 img loss 1.325144648551941 img loss 1.1829195022583008 img loss 1.3000692129135132 img loss 1.2274093627929688 img loss 1.2192760705947876 img loss 1.3027002811431885 img loss 1.3178986310958862 img loss 1.3417706489562988 img loss 1.336973786354065 img loss 1.218432068824768 img loss 1.260441541671753 img loss 1.2704977989196777 img loss 1.263975977897644 img loss 1.2236213684082031 img loss 1.352231502532959 img loss 1.2611579895019531 img loss 1.3044790029525757 img loss 1.3102692365646362 img loss 1.1931507587432861 img loss 1.2658275365829468 img loss 1.310646414756775 img loss 1.256812334060669 img loss 1.2284284830093384 img loss 1.2824710607528687 img loss 1.277342438697815 img loss 1.3672477006912231 img loss 1.370788335800171 img loss 1.2346248626708984 img loss 1.23806893825531 img loss 1.18924880027771 img loss 1.3145869970321655 img loss 1.247359037399292 img loss 1.2638310194015503 img loss 1.3293840885162354 img loss 1.2764793634414673 img loss 1.2762212753295898 img loss 1.2969884872436523 img loss 1.2723108530044556 img loss 1.2621830701828003 img loss 1.2564939260482788 img loss 1.2882200479507446 img loss 1.2262226343154907 img loss 1.196612000465393 img loss 1.233733892440796 img loss 1.304555892944336 img loss 1.2276846170425415 img loss 1.2522720098495483 img loss 1.3056572675704956 img loss 1.2275352478027344 img loss 1.234506368637085 img loss 1.2700713872909546 img loss 1.2622135877609253 img loss 1.2988899946212769 img loss 1.2491564750671387 img loss 1.258514404296875 img loss 1.2522705793380737 img loss 1.282163143157959 img loss 1.2663215398788452 img loss 1.2840778827667236 img loss 1.2586621046066284 img loss 1.2808606624603271 img loss 1.327498435974121 img loss 1.26431143283844 img loss 1.2829290628433228 img loss 1.2926584482192993 img loss 1.320581316947937 img loss 1.2858619689941406 img loss 1.2213149070739746 img loss 1.2005223035812378 img loss 1.308504343032837 img loss 1.3463876247406006 img loss 1.2635672092437744 img loss 1.2709448337554932 img loss 1.2476284503936768 img loss 1.2243309020996094 img loss 1.2717697620391846 img loss 1.200438141822815 img loss 1.268538475036621 img loss 1.222460389137268 img loss 1.2978814840316772 img loss 1.2276824712753296 img loss 1.2574137449264526 img loss 1.2677762508392334 img loss 1.2725481986999512 img loss 1.3240578174591064 img loss 1.2596009969711304 img loss 1.2992677688598633 img loss 1.1951897144317627 img loss 1.2516930103302002 img loss 1.3523638248443604 img loss 1.2505251169204712 img loss 1.2455028295516968 img loss 1.2614479064941406 img loss 1.228859305381775 img loss 1.2657089233398438 img loss 1.3166643381118774 img loss 1.3976486921310425 img loss 1.2475361824035645 img loss 1.2281341552734375 img loss 1.2697899341583252 img loss 1.3216960430145264 img loss 1.243690848350525 img loss 1.3035248517990112 img loss 1.3580654859542847 img loss 1.3043897151947021 img loss 1.2856686115264893 img loss 1.2695354223251343 img loss 1.264508605003357 img loss 1.2774537801742554 img loss 1.343177080154419 img loss 1.2154560089111328 img loss 1.217273473739624 img loss 1.2227751016616821 img loss 1.311428427696228 img loss 1.2325941324234009 img loss 1.259311556816101 img loss 1.2896366119384766 img loss 1.2318220138549805 img loss 1.2873352766036987 img loss 1.3589826822280884 img loss 1.2528501749038696 img loss 1.2508596181869507 img loss 1.2689129114151 img loss 1.3232492208480835 {'loss': 1.2732, 'grad_norm': 0.2866694927215576, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4505656957626343 img loss 1.5657684803009033 img loss 1.5501301288604736 img loss 1.6448532342910767 img loss 1.5614835023880005 img loss 1.5894314050674438 img loss 1.4892677068710327 img loss 1.3943151235580444 img loss 1.6733763217926025 img loss 1.6065194606781006 img loss 1.5275079011917114 img loss 1.5802863836288452 img loss 1.6230450868606567 img loss 1.6591086387634277 img loss 1.586055874824524 img loss 1.7325149774551392 img loss 1.6049448251724243 img loss 1.480709195137024 img loss 1.5145059823989868 img loss 1.557650089263916 img loss 1.6269729137420654 img loss 1.6481095552444458 img loss 1.6578222513198853 img loss 1.5930272340774536 img loss 1.554589033126831 img loss 1.610316514968872 img loss 1.5984803438186646 img loss 1.5459061861038208 img loss 1.4877687692642212 img loss 1.652006983757019 img loss 1.7143211364746094 img loss 1.597166895866394 img loss 1.5823607444763184 img loss 1.6556299924850464 img loss 1.5722956657409668 img loss 1.5241094827651978 img loss 1.6441168785095215 img loss 1.4413959980010986 img loss 1.6085622310638428 img loss 1.5547088384628296 img loss 1.5058687925338745 img loss 1.5716594457626343 img loss 1.5414468050003052 img loss 1.5737407207489014 img loss 1.6369837522506714 img loss 1.6666865348815918 img loss 1.5097744464874268 img loss 1.5425350666046143 img loss 1.6462628841400146 img loss 1.6094571352005005 img loss 1.571540117263794 img loss 1.422236680984497 img loss 1.551658272743225 img loss 1.5206817388534546 img loss 1.564573049545288 img loss 1.5142306089401245 img loss 1.5613023042678833 img loss 1.540413737297058 img loss 1.582269549369812 img loss 1.5163754224777222 img loss 1.5794602632522583 img loss 1.5874264240264893 img loss 1.5245187282562256 img loss 1.5920484066009521 img loss 1.6090012788772583 img loss 1.58597731590271 img loss 1.6463379859924316 img loss 1.476495623588562 img loss 1.7759850025177002 img loss 1.5732065439224243 img loss 1.5810877084732056 img loss 1.6056311130523682 img loss 1.6515555381774902 img loss 1.5151857137680054 img loss 1.6740666627883911 img loss 1.5870882272720337 img loss 1.5919865369796753 img loss 1.5433590412139893 img loss 1.6476638317108154 img loss 1.5280985832214355 img loss 1.5979511737823486 img loss 1.6147412061691284 img loss 1.631925106048584 img loss 1.605937123298645 img loss 1.720439076423645 img loss 1.6295806169509888 img loss 1.4938714504241943 img loss 1.638496994972229 img loss 1.6193987131118774 img loss 1.4547169208526611 img loss 1.7275928258895874 img loss 1.6330609321594238 img loss 1.6309211254119873 img loss 1.5083707571029663 img loss 1.6756571531295776 img loss 1.7342734336853027 img loss 1.3982958793640137 img loss 1.6273930072784424 img loss 1.700080156326294 img loss 1.6196767091751099 img loss 1.5155798196792603 img loss 1.611182451248169 img loss 1.837024211883545 img loss 1.6552594900131226 img loss 1.5892770290374756img loss 1.7048742771148682 img loss 1.5951988697052002 img loss 1.6615489721298218 img loss 1.5780917406082153 img loss 1.50650954246521 img loss 1.673052430152893 img loss 1.5017849206924438 img loss 1.5899683237075806 img loss 1.574011206626892 img loss 1.563881516456604 img loss 1.5270216464996338 img loss 1.7831165790557861 img loss 1.5345138311386108 img loss 1.6587789058685303 img loss 1.6103180646896362 img loss 1.5488148927688599 img loss 1.4447568655014038 img loss 1.5903376340866089 img loss 1.6674821376800537 img loss 1.455576777458191 img loss 1.5123839378356934 img loss 1.3936303853988647 img loss 1.5790222883224487 {'loss': 1.586, 'grad_norm': 0.5233632922172546, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.289044976234436 img loss 1.2810704708099365 img loss 1.314672827720642 img loss 1.31094229221344 img loss 1.3037230968475342 img loss 1.3045600652694702 img loss 1.3516905307769775 img loss 1.1945044994354248 img loss 1.2608321905136108 img loss 1.2433197498321533 img loss 1.2402626276016235 img loss 1.290920615196228 img loss 1.3416268825531006 img loss 1.3182262182235718 img loss 1.33919095993042 img loss 1.274947166442871 img loss 1.3798526525497437 img loss 1.3195933103561401 img loss 1.2435617446899414 img loss 1.2623400688171387 img loss 1.3175820112228394 img loss 1.2482565641403198 img loss 1.395070195198059 img loss 1.3350785970687866 img loss 1.347856879234314 img loss 1.2807315587997437 img loss 1.322149634361267 img loss 1.335921049118042 img loss 1.3440947532653809 img loss 1.2623472213745117 img loss 1.3588097095489502 img loss 1.3651427030563354 img loss 1.3784937858581543 img loss 1.2761704921722412 img loss 1.3969753980636597 img loss 1.3321878910064697 img loss 1.3205057382583618 img loss 1.3513528108596802 img loss 1.2398327589035034 img loss 1.3248190879821777 img loss 1.3639922142028809 img loss 1.2995303869247437 img loss 1.3104995489120483 img loss 1.3453644514083862 img loss 1.3325213193893433 img loss 1.205865502357483 img loss 1.3393328189849854 img loss 1.3345733880996704 img loss 1.2709388732910156 img loss 1.3932185173034668 img loss 1.2872769832611084 img loss 1.3640090227127075 img loss 1.2473798990249634 img loss 1.3096970319747925 img loss 1.3868433237075806 img loss 1.3144230842590332 img loss 1.3430451154708862 img loss 1.3973873853683472 img loss 1.302530288696289 img loss 1.3370797634124756 img loss 1.408263921737671 img loss 1.3409018516540527 img loss 1.312791347503662 img loss 1.2461029291152954 img loss 1.331214189529419 img loss 1.2466583251953125 img loss 1.3863927125930786 img loss 1.2858511209487915 img loss 1.270876407623291 img loss 1.361804485321045 img loss 1.354144811630249 img loss 1.3853451013565063 img loss 1.374771237373352 img loss 1.3711642026901245 img loss 1.305755853652954 img loss 1.3180897235870361 img loss 1.341925024986267 img loss 1.3367589712142944 img loss 1.3696354627609253 img loss 1.3545020818710327 img loss 1.2353147268295288 img loss 1.3391010761260986 img loss 1.2911312580108643 img loss 1.2634086608886719 img loss 1.2733582258224487 img loss 1.3416732549667358 img loss 1.2708553075790405 img loss 1.2921960353851318 img loss 1.3702216148376465 img loss 1.345836877822876 img loss 1.3412559032440186 img loss 1.382935881614685 img loss 1.3066043853759766 img loss 1.336521863937378 img loss 1.3335003852844238 img loss 1.2338225841522217 img loss 1.3593031167984009 img loss 1.2913440465927124 img loss 1.3256193399429321 img loss 1.2909886837005615 img loss 1.3093430995941162 img loss 1.2513328790664673 img loss 1.3777223825454712 img loss 1.365409255027771 img loss 1.3077006340026855 img loss 1.3349939584732056 img loss 1.3741899728775024 img loss 1.3459991216659546 img loss 1.3652056455612183 img loss 1.3306869268417358 img loss 1.203739047050476 img loss 1.3907686471939087 img loss 1.307957410812378 img loss 1.384474277496338 img loss 1.3219956159591675 img loss 1.387244462966919 img loss 1.220686674118042 img loss 1.2767233848571777 img loss 1.3843389749526978 img loss 1.3146604299545288 img loss 1.2939516305923462 img loss 1.2504959106445312 img loss 1.2588410377502441 img loss 1.1858465671539307 img loss 1.311086654663086 img loss 1.3401120901107788 img loss 1.4588581323623657 img loss 1.3530863523483276 {'loss': 1.3189, 'grad_norm': 0.36971038579940796, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2165484428405762 img loss 1.2219759225845337 img loss 1.1193819046020508 img loss 1.2048146724700928 img loss 1.1574933528900146 img loss 1.2113579511642456 img loss 1.2135601043701172 img loss 1.166379690170288 img loss 1.1619755029678345 img loss 1.2547352313995361 img loss 1.200718641281128 img loss 1.1611965894699097 img loss 1.203591227531433 img loss 1.2446693181991577 img loss 1.1967248916625977 img loss 1.205116629600525 img loss 1.1988037824630737 img loss 1.1352989673614502 img loss 1.2509592771530151 img loss 1.2212036848068237 img loss 1.2112665176391602img loss 1.1587541103363037 img loss 1.205275535583496 img loss 1.1313977241516113 img loss 1.3217257261276245 img loss 1.2504444122314453 img loss 1.2464044094085693 img loss 1.2535847425460815 img loss 1.3018510341644287 img loss 1.2732042074203491 img loss 1.2196390628814697 img loss 1.1633150577545166 img loss 1.1296497583389282 img loss 1.146435260772705 img loss 1.205075979232788 img loss 1.1550955772399902 img loss 1.3131378889083862 img loss 1.1430919170379639 img loss 1.2232584953308105 img loss 1.2287180423736572 img loss 1.1858198642730713 img loss 1.2034034729003906 img loss 1.22036612033844 img loss 1.2614591121673584 img loss 1.1589527130126953 img loss 1.1201505661010742 img loss 1.1880934238433838 img loss 1.2973370552062988 img loss 1.2631433010101318 img loss 1.1323914527893066 img loss 1.2416393756866455 img loss 1.2457656860351562 img loss 1.2056705951690674 img loss 1.2417778968811035 img loss 1.275394320487976 img loss 1.3011622428894043 img loss 1.329439640045166 img loss 1.2658060789108276 img loss 1.1915180683135986 img loss 1.227466106414795 img loss 1.168647050857544 img loss 1.2059646844863892 img loss 1.2452304363250732 img loss 1.2134212255477905 img loss 1.2221753597259521 img loss 1.225656509399414 img loss 1.3247463703155518 img loss 1.230176568031311 img loss 1.2996666431427002 img loss 1.180558443069458 img loss 1.2235465049743652 img loss 1.2474138736724854 img loss 1.2164510488510132 img loss 1.2742432355880737 img loss 1.2122340202331543 img loss 1.2131280899047852 img loss 1.2371582984924316 img loss 1.2048498392105103 img loss 1.2931606769561768 img loss 1.285207748413086 img loss 1.245818018913269 img loss 1.1777002811431885 img loss 1.227262020111084 img loss 1.1459375619888306 img loss 1.2395260334014893 img loss 1.2691965103149414 img loss 1.1920907497406006 img loss 1.28008234500885 img loss 1.2197846174240112 img loss 1.250971794128418 img loss 1.2960716485977173 img loss 1.2749354839324951 img loss 1.2215179204940796 img loss 1.231021523475647 img loss 1.2688874006271362 img loss 1.2680470943450928 img loss 1.2640318870544434 img loss 1.2020232677459717 img loss 1.2496823072433472 img loss 1.3124338388442993 img loss 1.2068818807601929 img loss 1.2517699003219604 img loss 1.1828551292419434 img loss 1.258884072303772 img loss 1.2083261013031006 img loss 1.2527556419372559 img loss 1.2181370258331299 img loss 1.1647895574569702 img loss 1.1396751403808594 img loss 1.2433195114135742 img loss 1.2786868810653687 img loss 1.1817463636398315 img loss 1.2873022556304932 img loss 1.187139868736267 img loss 1.1814415454864502 img loss 1.2102429866790771 img loss 1.198934555053711 img loss 1.3131496906280518 img loss 1.2879424095153809 img loss 1.1400154829025269 img loss 1.2979224920272827 img loss 1.2241350412368774 img loss 1.2210601568222046 img loss 1.194886565208435 img loss 1.1643905639648438 img loss 1.1852158308029175 img loss 1.2503255605697632 img loss 1.1473827362060547 {'loss': 1.2221, 'grad_norm': 0.29723718762397766, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.316049337387085 img loss 1.2155625820159912 img loss 1.2925009727478027 img loss 1.2336480617523193 img loss 1.226633906364441 img loss 1.2524735927581787 img loss 1.2618621587753296 img loss 1.193184733390808 img loss 1.2227277755737305 img loss 1.2441017627716064 img loss 1.2644151449203491 img loss 1.1889362335205078 img loss 1.255548357963562 img loss 1.2766737937927246 img loss 1.3181891441345215 img loss 1.2443360090255737 img loss 1.2381064891815186 img loss 1.1951065063476562 img loss 1.1710306406021118 img loss 1.244603157043457 img loss 1.2977924346923828 img loss 1.3212169408798218 img loss 1.2326925992965698 img loss 1.2525732517242432 img loss 1.222533106803894 img loss 1.24436354637146 img loss 1.2702462673187256 img loss 1.302802324295044 img loss 1.249092936515808 img loss 1.2354528903961182 img loss 1.256192922592163 img loss 1.1764768362045288 img loss 1.3018608093261719 img loss 1.2826991081237793 img loss 1.2029882669448853 img loss 1.174401044845581 img loss 1.2419174909591675 img loss 1.2716476917266846 img loss 1.2547788619995117 img loss 1.2502720355987549 img loss 1.2565913200378418 img loss 1.2484030723571777 img loss 1.2342617511749268 img loss 1.2342493534088135 img loss 1.2870347499847412 img loss 1.2083326578140259 img loss 1.2696561813354492 img loss 1.1956095695495605 img loss 1.2332524061203003 img loss 1.3516141176223755 img loss 1.2405986785888672 img loss 1.2225778102874756 img loss 1.215075969696045 img loss 1.2905954122543335 img loss 1.2873605489730835 img loss 1.2155616283416748 img loss 1.2202491760253906 img loss 1.2678782939910889 img loss 1.2273868322372437 img loss 1.274677038192749 img loss 1.267242670059204 img loss 1.2396156787872314 img loss 1.2114075422286987 img loss 1.2352862358093262 img loss 1.2247989177703857 img loss 1.355882167816162 img loss 1.2565593719482422 img loss 1.2991951704025269 img loss 1.16166353225708 img loss 1.286489486694336 img loss 1.2478662729263306 img loss 1.2997043132781982 img loss 1.2513072490692139 img loss 1.3122272491455078 img loss 1.288214921951294 img loss 1.3189442157745361 img loss 1.2280182838439941 img loss 1.2509496212005615 img loss 1.2718359231948853 img loss 1.27517569065094img loss 1.318108081817627 img loss 1.1711324453353882 img loss 1.2786716222763062 img loss 1.2162282466888428 img loss 1.1721447706222534 img loss 1.2662320137023926 img loss 1.2308326959609985 img loss 1.2648253440856934 img loss 1.2202527523040771 img loss 1.1929194927215576 img loss 1.2314395904541016 img loss 1.2977256774902344 img loss 1.2249336242675781 img loss 1.3091483116149902 img loss 1.2455118894577026 img loss 1.2316133975982666 img loss 1.233945608139038 img loss 1.246394395828247 img loss 1.2972218990325928 img loss 1.2338699102401733 img loss 1.3084770441055298 img loss 1.197080135345459 img loss 1.2702134847640991 img loss 1.2714601755142212 img loss 1.2866511344909668 img loss 1.3289380073547363 img loss 1.2591729164123535 img loss 1.226091742515564 img loss 1.2836865186691284 img loss 1.1811426877975464 img loss 1.1994959115982056 img loss 1.2423207759857178 img loss 1.3167810440063477 img loss 1.288536787033081 img loss 1.2326374053955078 img loss 1.2629259824752808 img loss 1.2403597831726074 img loss 1.2817413806915283 img loss 1.3262097835540771 img loss 1.1410614252090454 img loss 1.2917590141296387 img loss 1.231745719909668 img loss 1.2378902435302734 img loss 1.2964301109313965 img loss 1.2307395935058594 img loss 1.244566559791565 img loss 1.2409099340438843 img loss 1.2029719352722168 {'loss': 1.2513, 'grad_norm': 0.2745022773742676, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1666598320007324 img loss 1.1878470182418823 img loss 1.1812996864318848 img loss 1.2347047328948975 img loss 1.171663522720337 img loss 1.2155122756958008 img loss 1.2060637474060059 img loss 1.1516950130462646 img loss 1.1928257942199707 img loss 1.1793532371520996 img loss 1.2245529890060425 img loss 1.2222086191177368 img loss 1.1826953887939453 img loss 1.1035850048065186 img loss 1.2309284210205078 img loss 1.1392369270324707 img loss 1.2826918363571167 img loss 1.2321314811706543 img loss 1.1524866819381714 img loss 1.1391956806182861 img loss 1.1691887378692627 img loss 1.147748351097107 img loss 1.2333977222442627 img loss 1.1788842678070068 img loss 1.1425999402999878 img loss 1.2347992658615112 img loss 1.2280091047286987 img loss 1.1920700073242188 img loss 1.244218111038208 img loss 1.175443172454834 img loss 1.201891541481018 img loss 1.1422929763793945 img loss 1.1673685312271118 img loss 1.234310507774353 img loss 1.2219206094741821 img loss 1.1198832988739014 img loss 1.2626672983169556 img loss 1.1928956508636475 img loss 1.2041332721710205 img loss 1.1353156566619873 img loss 1.2122923135757446 img loss 1.2082237005233765 img loss 1.2374448776245117 img loss 1.2056972980499268 img loss 1.138201117515564 img loss 1.1803687810897827 img loss 1.2013708353042603 img loss 1.1122602224349976 img loss 1.192667841911316 img loss 1.1610486507415771 img loss 1.1746480464935303 img loss 1.166634440422058 img loss 1.1597321033477783 img loss 1.1639516353607178 img loss 1.1852946281433105 img loss 1.2360512018203735 img loss 1.1379010677337646 img loss 1.2591463327407837 img loss 1.2330763339996338 img loss 1.194850206375122 img loss 1.1633200645446777 img loss 1.1099610328674316 img loss 1.1381456851959229 img loss 1.2440837621688843 img loss 1.1910851001739502 img loss 1.1925771236419678 img loss 1.1687982082366943 img loss 1.228602647781372 img loss 1.2512747049331665 img loss 1.2260017395019531 img loss 1.1562999486923218 img loss 1.2181001901626587 img loss 1.153377890586853 img loss 1.2100218534469604 img loss 1.2433795928955078 img loss 1.2048795223236084 img loss 1.1815022230148315 img loss 1.223724365234375 img loss 1.217333436012268 img loss 1.1897292137145996 img loss 1.176730990409851 img loss 1.123306155204773 img loss 1.2084951400756836 img loss 1.1959223747253418 img loss 1.14009690284729 img loss 1.1781240701675415 img loss 1.1430141925811768 img loss 1.1786564588546753 img loss 1.1571195125579834 img loss 1.2728655338287354 img loss 1.1821485757827759 img loss 1.1516002416610718 img loss 1.219996690750122 img loss 1.1571075916290283 img loss 1.1340349912643433 img loss 1.2298475503921509 img loss 1.180448055267334 img loss 1.1565666198730469 img loss 1.1518723964691162 img loss 1.2334998846054077 img loss 1.218414068222046 img loss 1.1490437984466553 img loss 1.3002545833587646 img loss 1.2275915145874023 img loss 1.1439261436462402 img loss 1.2002567052841187img loss 1.2738789319992065 img loss 1.1909565925598145 img loss 1.152454137802124 img loss 1.1668428182601929 img loss 1.2003849744796753 img loss 1.1995155811309814 img loss 1.2458940744400024 img loss 1.208674430847168 img loss 1.1718553304672241 img loss 1.2121784687042236 img loss 1.2106231451034546 img loss 1.195910096168518 img loss 1.21394681930542 img loss 1.186685562133789 img loss 1.2002136707305908 img loss 1.2701791524887085 img loss 1.2670230865478516 img loss 1.1987825632095337 img loss 1.133089303970337 img loss 1.1705784797668457 img loss 1.1802688837051392 img loss 1.2381234169006348 {'loss': 1.1922, 'grad_norm': 0.23561108112335205, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.246374487876892 img loss 1.2585376501083374 img loss 1.2029451131820679 img loss 1.1925009489059448 img loss 1.1993348598480225 img loss 1.2580854892730713 img loss 1.218616247177124 img loss 1.167938470840454 img loss 1.299432635307312 img loss 1.1779149770736694 img loss 1.1964178085327148 img loss 1.2171821594238281 img loss 1.2378000020980835 img loss 1.2149938344955444 img loss 1.2070783376693726 img loss 1.2445169687271118 img loss 1.198740839958191 img loss 1.304992437362671 img loss 1.3371350765228271 img loss 1.2232837677001953 img loss 1.214812159538269 img loss 1.1957546472549438 img loss 1.2299706935882568 img loss 1.252217173576355 img loss 1.265116572380066 img loss 1.2019928693771362 img loss 1.209733247756958 img loss 1.2452411651611328 img loss 1.1769099235534668 img loss 1.2223224639892578 img loss 1.1908968687057495 img loss 1.223741888999939 img loss 1.229586124420166 img loss 1.2479578256607056 img loss 1.2875703573226929 img loss 1.2496217489242554 img loss 1.22511625289917 img loss 1.2222485542297363 img loss 1.2600786685943604 img loss 1.2645190954208374 img loss 1.2043724060058594 img loss 1.2145942449569702 img loss 1.1892880201339722 img loss 1.2888554334640503 img loss 1.174633264541626 img loss 1.2231982946395874 img loss 1.244978904724121 img loss 1.1956449747085571 img loss 1.2139583826065063 img loss 1.2744228839874268 img loss 1.2562129497528076 img loss 1.1956859827041626 img loss 1.2468401193618774 img loss 1.2114284038543701img loss 1.211235761642456 img loss 1.1728042364120483 img loss 1.226051926612854 img loss 1.191786527633667 img loss 1.2454500198364258 img loss 1.1793828010559082 img loss 1.2296680212020874 img loss 1.1887054443359375 img loss 1.2239007949829102 img loss 1.2157137393951416 img loss 1.2096751928329468 img loss 1.2854382991790771 img loss 1.3103981018066406 img loss 1.2190284729003906 img loss 1.1653753519058228 img loss 1.2713361978530884 img loss 1.2608627080917358 img loss 1.3198403120040894 img loss 1.2216075658798218 img loss 1.2929672002792358 img loss 1.2554054260253906 img loss 1.2228227853775024 img loss 1.2435287237167358 img loss 1.2070858478546143 img loss 1.3210591077804565 img loss 1.2530533075332642 img loss 1.2811386585235596 img loss 1.1819168329238892 img loss 1.2196521759033203 img loss 1.24700927734375 img loss 1.2588269710540771 img loss 1.1679205894470215 img loss 1.1761177778244019 img loss 1.193511724472046 img loss 1.2042536735534668 img loss 1.2448252439498901 img loss 1.3219820261001587 img loss 1.2829711437225342 img loss 1.2805454730987549 img loss 1.211249589920044 img loss 1.2270913124084473 img loss 1.2210052013397217 img loss 1.2162606716156006 img loss 1.286097764968872 img loss 1.2396211624145508 img loss 1.213519811630249 img loss 1.2514384984970093 img loss 1.1776149272918701 img loss 1.2203514575958252 img loss 1.293456792831421 img loss 1.2331523895263672 img loss 1.1879189014434814 img loss 1.2276098728179932 img loss 1.2478668689727783 img loss 1.233945369720459 img loss 1.2643190622329712 img loss 1.2888984680175781 img loss 1.3164552450180054 img loss 1.1951297521591187 img loss 1.2995309829711914 img loss 1.2294710874557495 img loss 1.1960891485214233 img loss 1.2195377349853516 img loss 1.2268195152282715 img loss 1.252123236656189 img loss 1.227752685546875 img loss 1.2578834295272827 img loss 1.1900641918182373 img loss 1.3026567697525024 img loss 1.1528174877166748 img loss 1.2114479541778564 img loss 1.2040926218032837 img loss 1.266829252243042 img loss 1.224012851715088 {'loss': 1.2326, 'grad_norm': 0.23159688711166382, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.238598346710205 img loss 1.245861530303955 img loss 1.333319067955017 img loss 1.2579700946807861 img loss 1.3140106201171875 img loss 1.2384814023971558 img loss 1.248386263847351 img loss 1.2307682037353516 img loss 1.2833608388900757 img loss 1.2826595306396484 img loss 1.2034084796905518 img loss 1.3081661462783813 img loss 1.1987351179122925 img loss 1.197026252746582 img loss 1.2348369359970093 img loss 1.2396923303604126 img loss 1.2410296201705933 img loss 1.1979316473007202 img loss 1.2552971839904785 img loss 1.2581493854522705 img loss 1.245518684387207 img loss 1.2369458675384521 img loss 1.2362202405929565 img loss 1.291797161102295 img loss 1.3105518817901611 img loss 1.2606174945831299 img loss 1.288330078125 img loss 1.3192358016967773 img loss 1.3722031116485596 img loss 1.2317960262298584 img loss 1.1681054830551147 img loss 1.2491230964660645 img loss 1.1731507778167725 img loss 1.1848833560943604 img loss 1.268480658531189 img loss 1.3250842094421387 img loss 1.2238425016403198 img loss 1.2415608167648315 img loss 1.3302589654922485 img loss 1.3078701496124268 img loss 1.2373217344284058 img loss 1.3220653533935547 img loss 1.2335333824157715 img loss 1.1810702085494995 img loss 1.2752920389175415 img loss 1.24092435836792 img loss 1.3067823648452759 img loss 1.2327889204025269 img loss 1.3062719106674194 img loss 1.193580985069275 img loss 1.2795113325119019 img loss 1.2595288753509521 img loss 1.1697124242782593 img loss 1.236578345298767 img loss 1.2293757200241089 img loss 1.2643555402755737 img loss 1.2535035610198975 img loss 1.2543646097183228 img loss 1.2797296047210693 img loss 1.2614740133285522 img loss 1.2407444715499878 img loss 1.2061305046081543 img loss 1.1079089641571045 img loss 1.191669225692749 img loss 1.1987228393554688 img loss 1.3500440120697021 img loss 1.3228815793991089 img loss 1.1932456493377686 img loss 1.2735213041305542 img loss 1.2956920862197876 img loss 1.2802317142486572 img loss 1.2442774772644043 img loss 1.2831189632415771 img loss 1.193376898765564 img loss 1.2735942602157593 img loss 1.2932300567626953 img loss 1.2837917804718018 img loss 1.2026286125183105 img loss 1.198820948600769 img loss 1.285091757774353 img loss 1.3416074514389038 img loss 1.2212893962860107 img loss 1.2750728130340576 img loss 1.2795560359954834 img loss 1.3315882682800293 img loss 1.2111120223999023 img loss 1.2715202569961548 img loss 1.2599289417266846 img loss 1.2881454229354858 img loss 1.3047071695327759 img loss 1.2404098510742188 img loss 1.2046215534210205 img loss 1.2603214979171753 img loss 1.219683289527893 img loss 1.2174372673034668 img loss 1.2588062286376953 img loss 1.2739756107330322 img loss 1.207139492034912 img loss 1.2721999883651733 img loss 1.1939918994903564 img loss 1.2319377660751343 img loss 1.275065302848816 img loss 1.3062305450439453 img loss 1.2370954751968384 img loss 1.2404861450195312 img loss 1.1936143636703491 img loss 1.2366312742233276 img loss 1.2202434539794922 img loss 1.2591854333877563 img loss 1.273746371269226 img loss 1.1860175132751465 img loss 1.2076915502548218 img loss 1.3100967407226562 img loss 1.1873321533203125 img loss 1.1952314376831055 img loss 1.248234748840332 img loss 1.2345757484436035 img loss 1.2661082744598389 img loss 1.259459376335144 img loss 1.2186686992645264 img loss 1.2853279113769531 img loss 1.3935182094573975 img loss 1.1828391551971436 img loss 1.2790520191192627 img loss 1.2542626857757568 img loss 1.1981874704360962 img loss 1.291666030883789 img loss 1.2017310857772827 {'loss': 1.2517, 'grad_norm': 0.2159198373556137, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1970772743225098 img loss 1.260459542274475 img loss 1.2467278242111206 img loss 1.2596685886383057 img loss 1.3435062170028687 img loss 1.2231630086898804 img loss 1.3464102745056152 img loss 1.314037799835205 img loss 1.2291507720947266 img loss 1.2317464351654053 img loss 1.2410529851913452 img loss 1.1821200847625732 img loss 1.2168307304382324 img loss 1.2455507516860962 img loss 1.2315998077392578 img loss 1.3402007818222046 img loss 1.2121168375015259 img loss 1.350308895111084 img loss 1.2350869178771973 img loss 1.2608389854431152 img loss 1.3701798915863037 img loss 1.2991913557052612 img loss 1.24786376953125 img loss 1.308995008468628 img loss 1.2853240966796875 img loss 1.331735372543335 img loss 1.2311867475509644 img loss 1.2552999258041382 img loss 1.2206881046295166 img loss 1.2673372030258179 img loss 1.2410926818847656 img loss 1.178684115409851 img loss 1.2242486476898193 img loss 1.2318108081817627 img loss 1.2143304347991943 img loss 1.305418848991394 img loss 1.1954197883605957 img loss 1.2588346004486084 img loss 1.2447731494903564 img loss 1.24297034740448 img loss 1.3094840049743652 img loss 1.316178321838379 img loss 1.2824733257293701 img loss 1.2200783491134644 img loss 1.2423025369644165 img loss 1.276059865951538 img loss 1.2419755458831787 img loss 1.2954158782958984 img loss 1.324816107749939 img loss 1.322117805480957 img loss 1.2846794128417969 img loss 1.3106460571289062 img loss 1.262460708618164 img loss 1.200696587562561 img loss 1.1651438474655151 img loss 1.2915714979171753 img loss 1.2938941717147827 img loss 1.1629860401153564 img loss 1.2554248571395874 img loss 1.3967092037200928 img loss 1.2348451614379883 img loss 1.2880017757415771 img loss 1.2423018217086792 img loss 1.24936842918396 img loss 1.2511028051376343 img loss 1.2268998622894287 img loss 1.266735553741455 img loss 1.2555806636810303 img loss 1.2747610807418823 img loss 1.2480417490005493 img loss 1.2365550994873047 img loss 1.2418488264083862 img loss 1.3124736547470093 img loss 1.2417902946472168 img loss 1.344245433807373 img loss 1.3420301675796509 img loss 1.2983134984970093 img loss 1.245003342628479 img loss 1.3274065256118774 img loss 1.2091295719146729 img loss 1.2433823347091675 img loss 1.2720645666122437 img loss 1.2461999654769897 img loss 1.3013606071472168 img loss 1.2701354026794434 img loss 1.306553840637207 img loss 1.2235946655273438 img loss 1.2913200855255127 img loss 1.2369085550308228 img loss 1.286962866783142 img loss 1.3545876741409302 img loss 1.2326405048370361 img loss 1.2514102458953857 img loss 1.3458737134933472 img loss 1.2760261297225952 img loss 1.292738437652588 img loss 1.2624437808990479 img loss 1.2252774238586426 img loss 1.2422236204147339 img loss 1.2376396656036377 img loss 1.1931184530258179 img loss 1.319998025894165 img loss 1.1755815744400024 img loss 1.2995563745498657 img loss 1.2150192260742188 img loss 1.298901081085205 img loss 1.1432827711105347 img loss 1.281309723854065 img loss 1.2319810390472412 img loss 1.2090078592300415 img loss 1.2542307376861572 img loss 1.251645803451538 img loss 1.3216251134872437 img loss 1.262958288192749 img loss 1.244028925895691 img loss 1.309648871421814 img loss 1.2602384090423584 img loss 1.2241570949554443 img loss 1.332675814628601 img loss 1.2571980953216553 img loss 1.259855031967163 img loss 1.2287533283233643 img loss 1.3298755884170532 img loss 1.3093750476837158 img loss 1.2846540212631226 img loss 1.3313980102539062 img loss 1.2857956886291504 img loss 1.3235397338867188 {'loss': 1.2653, 'grad_norm': 0.26924818754196167, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2519381046295166 img loss 1.2300633192062378 img loss 1.244307518005371 img loss 1.2658686637878418 img loss 1.1626603603363037 img loss 1.235054850578308 img loss 1.2037569284439087 img loss 1.2618763446807861 img loss 1.1770118474960327 img loss 1.3123328685760498 img loss 1.2754625082015991 img loss 1.204625129699707 img loss 1.2204135656356812 img loss 1.2369861602783203 img loss 1.240121841430664 img loss 1.2867672443389893 img loss 1.3409219980239868 img loss 1.3096323013305664 img loss 1.2931818962097168 img loss 1.2372210025787354 img loss 1.238675594329834 img loss 1.204951524734497 img loss 1.2445142269134521 img loss 1.1729713678359985 img loss 1.2528384923934937 img loss 1.2720952033996582 img loss 1.2465370893478394 img loss 1.22416353225708 img loss 1.2730315923690796 img loss 1.178711175918579 img loss 1.2191722393035889 img loss 1.2764594554901123 img loss 1.2461403608322144 img loss 1.1992753744125366 img loss 1.199317216873169 img loss 1.217323899269104 img loss 1.371111273765564 img loss 1.163818120956421 img loss 1.2340816259384155 img loss 1.212902307510376 img loss 1.2053513526916504img loss 1.1804018020629883 img loss 1.2140192985534668 img loss 1.259363055229187 img loss 1.234342098236084 img loss 1.2241690158843994 img loss 1.257219910621643 img loss 1.2081297636032104 img loss 1.2575390338897705 img loss 1.273390293121338 img loss 1.1962904930114746 img loss 1.2228317260742188 img loss 1.1712298393249512 img loss 1.1449123620986938 img loss 1.2311813831329346 img loss 1.2675374746322632 img loss 1.2435760498046875 img loss 1.2416480779647827 img loss 1.2277015447616577img loss 1.2200827598571777 img loss 1.2530720233917236 img loss 1.2423070669174194 img loss 1.2197494506835938 img loss 1.2732375860214233 img loss 1.3122848272323608 img loss 1.3154785633087158 img loss 1.2374067306518555 img loss 1.4455177783966064 img loss 1.203038215637207 img loss 1.2071888446807861 img loss 1.172707200050354 img loss 1.2492821216583252 img loss 1.2325069904327393 img loss 1.2028464078903198 img loss 1.3117574453353882 img loss 1.2680515050888062 img loss 1.1790406703948975 img loss 1.2950674295425415 img loss 1.2697285413742065 img loss 1.2872962951660156 img loss 1.2977631092071533 img loss 1.2219750881195068 img loss 1.215428113937378 img loss 1.1972386837005615 img loss 1.1854161024093628 img loss 1.2213878631591797 img loss 1.287029504776001 img loss 1.2840160131454468 img loss 1.3136138916015625 img loss 1.2927391529083252 img loss 1.1506074666976929 img loss 1.2293733358383179 img loss 1.2197685241699219 img loss 1.2763546705245972 img loss 1.2892262935638428 img loss 1.184259295463562 img loss 1.271378993988037 img loss 1.2626545429229736 img loss 1.2292083501815796 img loss 1.314416766166687 img loss 1.3108717203140259 img loss 1.239683747291565 img loss 1.2178606986999512 img loss 1.3071727752685547 img loss 1.2365731000900269 img loss 1.268315315246582 img loss 1.28501558303833 img loss 1.2407344579696655 img loss 1.2134795188903809 img loss 1.2826406955718994 img loss 1.2439097166061401 img loss 1.2956483364105225 img loss 1.2636302709579468 img loss 1.405409336090088 img loss 1.2405335903167725 img loss 1.1803308725357056 img loss 1.2397325038909912 img loss 1.2562278509140015 img loss 1.2073862552642822 img loss 1.2857818603515625 img loss 1.219468593597412 img loss 1.2615572214126587 img loss 1.2456016540527344 img loss 1.2023699283599854 img loss 1.2600103616714478 img loss 1.306532859802246 img loss 1.2033450603485107 img loss 1.2964210510253906 {'loss': 1.2458, 'grad_norm': 0.19130218029022217, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3501213788986206 img loss 1.2171039581298828 img loss 1.1501718759536743 img loss 1.2421488761901855 img loss 1.2191638946533203 img loss 1.224501132965088 img loss 1.1574251651763916 img loss 1.2444648742675781 img loss 1.261313796043396 img loss 1.3036212921142578 img loss 1.2867240905761719 img loss 1.2356771230697632 img loss 1.2235304117202759 img loss 1.294227123260498 img loss 1.1919612884521484 img loss 1.1837362051010132 img loss 1.1231988668441772 img loss 1.1882574558258057 img loss 1.267277717590332 img loss 1.2630257606506348 img loss 1.2937543392181396 img loss 1.2214761972427368 img loss 1.2459357976913452 img loss 1.2376282215118408 img loss 1.2307230234146118 img loss 1.1597965955734253 img loss 1.2276458740234375 img loss 1.2424848079681396 img loss 1.1588104963302612 img loss 1.2117133140563965 img loss 1.2193927764892578 img loss 1.2036664485931396 img loss 1.2032066583633423 img loss 1.2949548959732056 img loss 1.2058961391448975 img loss 1.2943453788757324 img loss 1.204737901687622 img loss 1.2908271551132202 img loss 1.1597753763198853 img loss 1.2061591148376465img loss 1.243981122970581 img loss 1.2454153299331665 img loss 1.2143199443817139 img loss 1.1650434732437134 img loss 1.3081889152526855 img loss 1.284429907798767 img loss 1.1798739433288574 img loss 1.1829276084899902 img loss 1.2822086811065674 img loss 1.3370157480239868 img loss 1.1933358907699585 img loss 1.3793216943740845 img loss 1.111401915550232 img loss 1.3224005699157715 img loss 1.1620924472808838 img loss 1.1878671646118164 img loss 1.146176815032959 img loss 1.182433843612671 img loss 1.2182624340057373 img loss 1.322900414466858 img loss 1.2238247394561768 img loss 1.1884589195251465 img loss 1.1896984577178955 img loss 1.2278095483779907 img loss 1.213538646697998 img loss 1.1494662761688232 img loss 1.2124289274215698 img loss 1.2703875303268433 img loss 1.2024075984954834 img loss 1.18007230758667 img loss 1.2849327325820923 img loss 1.2490265369415283 img loss 1.246213674545288 img loss 1.199061632156372 img loss 1.326413631439209 img loss 1.2172448635101318 img loss 1.2803192138671875 img loss 1.1968845129013062 img loss 1.2450586557388306 img loss 1.2700750827789307 img loss 1.193479299545288 img loss 1.1632906198501587 img loss 1.1524264812469482 img loss 1.3036600351333618 img loss 1.193002700805664 img loss 1.1967853307724 img loss 1.296488642692566 img loss 1.1815499067306519 img loss 1.2099021673202515 img loss 1.1959208250045776 img loss 1.267660140991211 img loss 1.2403420209884644 img loss 1.1966392993927002 img loss 1.318681001663208 img loss 1.1985843181610107 img loss 1.2485260963439941 img loss 1.2598257064819336 img loss 1.1920034885406494 img loss 1.1772531270980835 img loss 1.1354012489318848 img loss 1.1993335485458374 img loss 1.1830358505249023 img loss 1.1207294464111328 img loss 1.170413851737976 img loss 1.1909316778182983 img loss 1.267612099647522 img loss 1.176656723022461 img loss 1.265924334526062 img loss 1.1555067300796509 img loss 1.188621163368225 img loss 1.1995668411254883 img loss 1.2250125408172607 img loss 1.270841121673584 img loss 1.2826858758926392 img loss 1.2715716361999512 img loss 1.2515829801559448 img loss 1.1886030435562134 img loss 1.2540515661239624 img loss 1.1863301992416382 img loss 1.19500732421875 img loss 1.13271963596344 img loss 1.2786849737167358 img loss 1.1749731302261353 img loss 1.2140992879867554 img loss 1.245461106300354 img loss 1.2607324123382568 img loss 1.2264957427978516 img loss 1.2156835794448853 {'loss': 1.2242, 'grad_norm': 0.19457414746284485, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2084805965423584 img loss 1.2316620349884033 img loss 1.181799292564392 img loss 1.2124683856964111 img loss 1.1835877895355225 img loss 1.2209835052490234 img loss 1.151283860206604 img loss 1.1964067220687866 img loss 1.1972935199737549 img loss 1.2444605827331543 img loss 1.2013187408447266 img loss 1.2322945594787598 img loss 1.2575935125350952 img loss 1.2175345420837402 img loss 1.175820231437683 img loss 1.210992455482483img loss 1.1533067226409912 img loss 1.2247745990753174 img loss 1.267991304397583 img loss 1.259263515472412 img loss 1.1896692514419556 img loss 1.2105087041854858 img loss 1.153960943222046 img loss 1.212049126625061 img loss 1.2563116550445557 img loss 1.233177661895752 img loss 1.1809332370758057 img loss 1.229443907737732 img loss 1.1785519123077393 img loss 1.227586269378662 img loss 1.2012685537338257 img loss 1.176103949546814 img loss 1.2073196172714233 img loss 1.209653615951538 img loss 1.1192048788070679 img loss 1.1706463098526 img loss 1.2348120212554932 img loss 1.2194737195968628 img loss 1.2345597743988037 img loss 1.1700199842453003 img loss 1.284748911857605 img loss 1.1930758953094482 img loss 1.1633058786392212 img loss 1.1495007276535034 img loss 1.2088737487792969 img loss 1.2286381721496582 img loss 1.1685014963150024 img loss 1.1961004734039307 img loss 1.1237683296203613 img loss 1.2720880508422852 img loss 1.1986138820648193 img loss 1.2707664966583252 img loss 1.203202724456787 img loss 1.2397674322128296 img loss 1.1456539630889893 img loss 1.2145401239395142 img loss 1.223863959312439 img loss 1.2082340717315674 img loss 1.3527439832687378 img loss 1.21815824508667 img loss 1.2142552137374878 img loss 1.2330273389816284 img loss 1.19145929813385 img loss 1.2116094827651978 img loss 1.171648383140564 img loss 1.1783783435821533 img loss 1.1830437183380127 img loss 1.244728684425354 img loss 1.2491596937179565 img loss 1.1498889923095703 img loss 1.2495126724243164 img loss 1.1875633001327515 img loss 1.2321466207504272 img loss 1.1970303058624268 img loss 1.2253952026367188 img loss 1.1571663618087769 img loss 1.2110373973846436 img loss 1.1810147762298584 img loss 1.192061424255371 img loss 1.2101848125457764 img loss 1.1579358577728271 img loss 1.2147407531738281 img loss 1.1315442323684692 img loss 1.2148327827453613 img loss 1.2501238584518433 img loss 1.1787786483764648 img loss 1.2348957061767578 img loss 1.219773530960083 img loss 1.233323097229004 img loss 1.1965131759643555 img loss 1.184831142425537 img loss 1.210242748260498 img loss 1.2210807800292969 img loss 1.1826235055923462 img loss 1.1946429014205933 img loss 1.2476768493652344 img loss 1.2106845378875732 img loss 1.1701277494430542 img loss 1.1832456588745117 img loss 1.159775972366333 img loss 1.1290651559829712 img loss 1.1713093519210815 img loss 1.2124288082122803 img loss 1.220496654510498 img loss 1.2677969932556152 img loss 1.1413066387176514 img loss 1.2106385231018066 img loss 1.2003663778305054 img loss 1.210038185119629 img loss 1.194016695022583 img loss 1.2017048597335815 img loss 1.1969727277755737 img loss 1.1650769710540771 img loss 1.1617273092269897 img loss 1.2272809743881226 img loss 1.206378698348999 img loss 1.2024497985839844 img loss 1.2173105478286743 img loss 1.205962896347046 img loss 1.2907402515411377 img loss 1.212085247039795 img loss 1.2184903621673584 img loss 1.1882288455963135 img loss 1.2177332639694214 img loss 1.2008342742919922 img loss 1.1827754974365234 img loss 1.1764543056488037 img loss 1.1771210432052612 {'loss': 1.2046, 'grad_norm': 0.2469068169593811, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2038822174072266 img loss 1.2000346183776855 img loss 1.1354349851608276 img loss 1.2015721797943115 img loss 1.0783119201660156 img loss 1.1742044687271118 img loss 1.109188437461853 img loss 1.1412023305892944 img loss 1.1731172800064087 img loss 1.2376335859298706 img loss 1.1636357307434082 img loss 1.1656520366668701 img loss 1.193998098373413 img loss 1.125976324081421 img loss 1.2390117645263672 img loss 1.1140111684799194 img loss 1.110975742340088 img loss 1.1252667903900146 img loss 1.1641515493392944 img loss 1.1787917613983154 img loss 1.2172988653182983 img loss 1.175631046295166 img loss 1.1801633834838867 img loss 1.1355772018432617 img loss 1.2112468481063843 img loss 1.1702914237976074 img loss 1.1324717998504639 img loss 1.0967892408370972 img loss 1.2071352005004883 img loss 1.1112024784088135 img loss 1.2256965637207031 img loss 1.0864858627319336 img loss 1.2208991050720215 img loss 1.1733176708221436 img loss 1.0753575563430786 img loss 1.2340974807739258 img loss 1.2019327878952026 img loss 1.219124436378479 img loss 1.1756809949874878 img loss 1.192448616027832 img loss 1.2495434284210205 img loss 1.1813019514083862 img loss 1.1696399450302124 img loss 1.2066587209701538 img loss 1.1924653053283691 img loss 1.2400341033935547 img loss 1.1229733228683472 img loss 1.2484861612319946 img loss 1.1771456003189087 img loss 1.1195238828659058 img loss 1.1409993171691895 img loss 1.157992959022522 img loss 1.1524465084075928 img loss 1.0927188396453857 img loss 1.1753153800964355 img loss 1.233424425125122 img loss 1.1730759143829346 img loss 1.2065094709396362 img loss 1.147937297821045 img loss 1.1329386234283447 img loss 1.1707738637924194 img loss 1.1698410511016846 img loss 1.2536134719848633 img loss 1.2316131591796875 img loss 1.2554043531417847 img loss 1.1513521671295166 img loss 1.1416542530059814 img loss 1.1848599910736084 img loss 1.1662378311157227 img loss 1.140631079673767 img loss 1.2469583749771118 img loss 1.2243961095809937 img loss 1.276055097579956 img loss 1.181166172027588 img loss 1.204411506652832 img loss 1.2133846282958984 img loss 1.248437523841858 img loss 1.2413477897644043 img loss 1.2116097211837769 img loss 1.2838139533996582 img loss 1.059910535812378 img loss 1.1896473169326782 img loss 1.17606520652771 img loss 1.1997332572937012 img loss 1.2390841245651245 img loss 1.186947226524353 img loss 1.1024130582809448 img loss 1.1655323505401611 img loss 1.1707470417022705 img loss 1.2457631826400757 img loss 1.1213462352752686 img loss 1.1819177865982056 img loss 1.1222779750823975 img loss 1.1484073400497437 img loss 1.213202714920044 img loss 1.1272847652435303 img loss 1.2060142755508423 img loss 1.1245288848876953 img loss 1.1625492572784424 img loss 1.1782758235931396 img loss 1.205430269241333 img loss 1.1166998147964478 img loss 1.1295181512832642 img loss 1.1643595695495605 img loss 1.182401418685913 img loss 1.1635326147079468 img loss 1.165320873260498 img loss 1.155938744544983 img loss 1.2124050855636597 img loss 1.1334543228149414 img loss 1.1844077110290527 img loss 1.1367745399475098 img loss 1.1489570140838623 img loss 1.19772207736969 img loss 1.2381908893585205 img loss 1.2108240127563477 img loss 1.1527998447418213 img loss 1.215159296989441 img loss 1.1711487770080566 img loss 1.1263015270233154 img loss 1.217139482498169 img loss 1.1798946857452393 img loss 1.1583671569824219 img loss 1.1745636463165283 img loss 1.1816033124923706 img loss 1.232177734375 img loss 1.1571239233016968 img loss 1.2832906246185303 {'loss': 1.1775, 'grad_norm': 0.2576143443584442, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.203013300895691 img loss 1.2126739025115967 img loss 1.1528481245040894 img loss 1.2482227087020874 img loss 1.1890109777450562 img loss 1.209633469581604 img loss 1.239653468132019 img loss 1.2100642919540405 img loss 1.2825658321380615 img loss 1.2108218669891357 img loss 1.242456078529358 img loss 1.2004337310791016 img loss 1.2186335325241089 img loss 1.232214331626892 img loss 1.2669585943222046 img loss 1.2233597040176392 img loss 1.227232575416565 img loss 1.1909931898117065 img loss 1.201281189918518 img loss 1.2962335348129272 img loss 1.1563775539398193 img loss 1.2021147012710571 img loss 1.2312027215957642 img loss 1.3184773921966553 img loss 1.2028534412384033 img loss 1.17527174949646img loss 1.2025604248046875 img loss 1.257409930229187 img loss 1.2249507904052734 img loss 1.1855655908584595 img loss 1.21025550365448 img loss 1.245995044708252 img loss 1.2403264045715332 img loss 1.224918007850647 img loss 1.1822245121002197 img loss 1.299607515335083 img loss 1.2886755466461182 img loss 1.203991413116455 img loss 1.2006422281265259 img loss 1.187411904335022 img loss 1.2830581665039062 img loss 1.147137999534607 img loss 1.2649993896484375 img loss 1.2048275470733643 img loss 1.2427223920822144 img loss 1.147387981414795 img loss 1.263700008392334 img loss 1.1711573600769043 img loss 1.2871930599212646 img loss 1.2284854650497437 img loss 1.334571123123169 img loss 1.1452423334121704 img loss 1.3243825435638428 img loss 1.2496641874313354 img loss 1.2754912376403809 img loss 1.1845958232879639 img loss 1.232968807220459 img loss 1.1863839626312256 img loss 1.2633765935897827 img loss 1.3031545877456665 img loss 1.1965689659118652 img loss 1.2232377529144287 img loss 1.2119338512420654 img loss 1.249786138534546 img loss 1.157463550567627 img loss 1.2155083417892456 img loss 1.2540013790130615 img loss 1.2675870656967163 img loss 1.1861305236816406 img loss 1.1549122333526611 img loss 1.309975266456604 img loss 1.2670769691467285 img loss 1.2966583967208862 img loss 1.2532377243041992 img loss 1.2066446542739868 img loss 1.18124258518219 img loss 1.2846405506134033 img loss 1.1685261726379395 img loss 1.2827366590499878 img loss 1.2750355005264282 img loss 1.1846681833267212 img loss 1.2366039752960205 img loss 1.1469624042510986 img loss 1.2199301719665527 img loss 1.1956861019134521 img loss 1.199290156364441 img loss 1.2515239715576172 img loss 1.153757929801941 img loss 1.1370843648910522 img loss 1.2512725591659546 img loss 1.167986273765564 img loss 1.1624363660812378 img loss 1.2175215482711792 img loss 1.4016683101654053 img loss 1.1602016687393188 img loss 1.154353141784668 img loss 1.3618824481964111 img loss 1.2047843933105469 img loss 1.2546614408493042 img loss 1.2662590742111206 img loss 1.261324167251587 img loss 1.1879551410675049 img loss 1.206128478050232 img loss 1.20675528049469 img loss 1.269735336303711 img loss 1.2777780294418335 img loss 1.2392253875732422 img loss 1.1299461126327515 img loss 1.2712923288345337 img loss 1.1676785945892334 img loss 1.2018663883209229 img loss 1.2015424966812134 img loss 1.2522996664047241 img loss 1.2402559518814087 img loss 1.246795892715454 img loss 1.1988836526870728 img loss 1.205575942993164 img loss 1.2098840475082397 img loss 1.1751306056976318 img loss 1.2486883401870728 img loss 1.2166274785995483 img loss 1.2207714319229126 img loss 1.1901158094406128 img loss 1.2228564023971558 img loss 1.2397645711898804 img loss 1.2482943534851074 img loss 1.301072359085083 img loss 1.2727158069610596 {'loss': 1.226, 'grad_norm': 0.2119799107313156, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2312158346176147 img loss 1.3457255363464355 img loss 1.3006908893585205 img loss 1.2793898582458496 img loss 1.2721402645111084 img loss 1.2222366333007812 img loss 1.279615879058838 img loss 1.2744659185409546 img loss 1.3876299858093262 img loss 1.281515121459961 img loss 1.3190888166427612 img loss 1.282160997390747 img loss 1.207079291343689 img loss 1.2554820775985718 img loss 1.3604754209518433 img loss 1.3044753074645996 img loss 1.3205689191818237 img loss 1.3992890119552612 img loss 1.3144762516021729 img loss 1.2754881381988525 img loss 1.3028684854507446 img loss 1.2015854120254517 img loss 1.2334755659103394 img loss 1.228474497795105 img loss 1.2951455116271973 img loss 1.3497178554534912 img loss 1.2494982481002808 img loss 1.2546991109848022 img loss 1.2884539365768433 img loss 1.1961941719055176 img loss 1.3374584913253784 img loss 1.2883023023605347 img loss 1.3706176280975342 img loss 1.3292821645736694 img loss 1.303565263748169 img loss 1.3478484153747559 img loss 1.2791694402694702 img loss 1.3531394004821777 img loss 1.2833847999572754 img loss 1.3204176425933838 img loss 1.2945693731307983 img loss 1.3152039051055908 img loss 1.2191661596298218 img loss 1.3065977096557617 img loss 1.3136217594146729 img loss 1.259289026260376 img loss 1.3462250232696533 img loss 1.295204758644104 img loss 1.246539831161499 img loss 1.405504584312439 img loss 1.303139328956604 img loss 1.3207358121871948 img loss 1.1787524223327637 img loss 1.259054183959961 img loss 1.178539752960205 img loss 1.3167320489883423 img loss 1.2389214038848877 img loss 1.3170126676559448 img loss 1.3258540630340576 img loss 1.3149651288986206 img loss 1.3247531652450562 img loss 1.2545565366744995 img loss 1.2384353876113892 img loss 1.3176124095916748 img loss 1.3599385023117065 img loss 1.3477768898010254 img loss 1.3214921951293945img loss 1.274396300315857 img loss 1.3515244722366333 img loss 1.2522006034851074 img loss 1.2901108264923096 img loss 1.3120559453964233img loss 1.3205896615982056 img loss 1.2771751880645752 img loss 1.2553762197494507 img loss 1.2970720529556274 img loss 1.371104121208191 img loss 1.287862777709961 img loss 1.248590111732483 img loss 1.3381478786468506 img loss 1.2466589212417603 img loss 1.3441808223724365 img loss 1.3404866456985474 img loss 1.2907756567001343 img loss 1.2934033870697021 img loss 1.2431691884994507 img loss 1.3212065696716309 img loss 1.3126287460327148 img loss 1.3930718898773193 img loss 1.259972095489502 img loss 1.386466383934021 img loss 1.3149489164352417 img loss 1.2873852252960205 img loss 1.2673479318618774 img loss 1.2922006845474243 img loss 1.2676788568496704 img loss 1.2546547651290894 img loss 1.3028817176818848 img loss 1.3547109365463257 img loss 1.2963309288024902 img loss 1.2497156858444214 img loss 1.330356240272522 img loss 1.381367802619934 img loss 1.388049840927124 img loss 1.4135549068450928 img loss 1.295976996421814 img loss 1.3284438848495483 img loss 1.3099210262298584 img loss 1.2647571563720703 img loss 1.3942112922668457 img loss 1.2423665523529053 img loss 1.298169732093811 img loss 1.3088130950927734 img loss 1.3177976608276367 img loss 1.3374476432800293 img loss 1.3200539350509644 img loss 1.2013107538223267 img loss 1.2973428964614868 img loss 1.3184441328048706 img loss 1.3327772617340088 img loss 1.3976198434829712 img loss 1.3798924684524536 img loss 1.2994647026062012 img loss 1.2717483043670654 img loss 1.372096300125122 img loss 1.3134677410125732 img loss 1.253914713859558 img loss 1.2901214361190796 {'loss': 1.3008, 'grad_norm': 0.3080225884914398, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.5891547203063965 img loss 1.7229833602905273 img loss 1.623196005821228 img loss 1.6477607488632202 img loss 1.5481480360031128 img loss 1.6829346418380737 img loss 1.6731371879577637 img loss 1.9002573490142822 img loss 1.659521460533142 img loss 1.5373021364212036 img loss 1.7983548641204834 img loss 1.639754056930542 img loss 1.5746283531188965 img loss 1.5545026063919067 img loss 1.6883054971694946 img loss 1.5627027750015259 img loss 1.6278802156448364 img loss 1.7150901556015015 img loss 1.9270687103271484 img loss 1.6142433881759644 img loss 1.7050340175628662 img loss 1.6485666036605835 img loss 1.5530524253845215 img loss 1.6641361713409424 img loss 1.58657705783844 img loss 1.5226986408233643 img loss 1.7958091497421265 img loss 1.9127620458602905 img loss 1.6704881191253662 img loss 1.8828165531158447 img loss 1.585296392440796 img loss 1.6498223543167114 img loss 1.6836918592453003 img loss 1.5385472774505615 img loss 1.6476727724075317 img loss 1.6205536127090454 img loss 1.6369929313659668 img loss 1.7958219051361084 img loss 1.729572057723999 img loss 1.7475273609161377 img loss 1.5676112174987793 img loss 1.8067213296890259 img loss 1.5730624198913574 img loss 1.5697553157806396 img loss 1.7038978338241577 img loss 1.693813443183899 img loss 1.6378552913665771 img loss 1.74818754196167 img loss 1.5832188129425049 img loss 1.558835506439209 img loss 1.6946243047714233 img loss 1.7623388767242432 img loss 1.636500597000122 img loss 1.6070793867111206 img loss 1.6326297521591187 img loss 1.6375477313995361 img loss 1.4887099266052246 img loss 1.8604377508163452 img loss 1.6140676736831665 img loss 1.6311472654342651 img loss 1.7731558084487915 img loss 1.7590023279190063 img loss 1.6577563285827637 img loss 1.5143221616744995 img loss 1.657619595527649 img loss 1.5838419198989868 img loss 1.8418891429901123 img loss 1.7627005577087402 img loss 1.7245393991470337 img loss 1.5883519649505615 img loss 1.5311135053634644 img loss 1.6402653455734253 img loss 1.5272011756896973 img loss 1.6114426851272583 img loss 1.7083380222320557 img loss 1.5198086500167847 img loss 1.6672377586364746 img loss 1.6198363304138184 img loss 1.5989279747009277 img loss 1.6587241888046265 img loss 1.4379076957702637 img loss 1.659559965133667 img loss 1.6767277717590332 img loss 1.6469498872756958 img loss 1.698492407798767 img loss 1.5229424238204956 img loss 1.5571233034133911 img loss 1.667446494102478 img loss 1.5761975049972534 img loss 1.6417051553726196 img loss 1.5709117650985718 img loss 1.7589659690856934 img loss 1.3939155340194702 img loss 1.7279094457626343 img loss 1.7230675220489502 img loss 1.7815980911254883 img loss 1.735052466392517 img loss 1.7714236974716187 img loss 1.7107312679290771 img loss 1.6444257497787476 img loss 1.6442571878433228 img loss 1.5125155448913574 img loss 1.7060811519622803 img loss 1.6207836866378784 img loss 1.536721110343933 img loss 1.8124284744262695 img loss 1.5756890773773193 img loss 1.5890730619430542 img loss 1.5232712030410767 img loss 1.6165225505828857 img loss 1.70653235912323 img loss 1.567521572113037 img loss 1.6195423603057861 img loss 1.71135413646698 img loss 1.6166404485702515 img loss 1.8567720651626587 img loss 1.5504156351089478 img loss 1.8065450191497803 img loss 1.6425846815109253 img loss 1.6430418491363525 img loss 1.815242052078247 img loss 1.6282895803451538 img loss 1.6934973001480103 img loss 1.5294314622879028 img loss 1.5175319910049438 img loss 1.656278371810913 img loss 1.4969217777252197 img loss 1.6730533838272095 {'loss': 1.653, 'grad_norm': 0.3774663507938385, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2430671453475952 img loss 1.2312875986099243 img loss 1.2033462524414062 img loss 1.2695930004119873 img loss 1.3253512382507324 img loss 1.2635438442230225 img loss 1.292701005935669 img loss 1.2615883350372314 img loss 1.2464598417282104 img loss 1.22153902053833 img loss 1.26732337474823 img loss 1.3356053829193115 img loss 1.2275501489639282 img loss 1.382838487625122 img loss 1.263716459274292 img loss 1.2997022867202759 img loss 1.2601181268692017 img loss 1.2334202527999878 img loss 1.2558752298355103 img loss 1.3292326927185059 img loss 1.3184151649475098 img loss 1.2584234476089478 img loss 1.2654893398284912 img loss 1.2299772500991821 img loss 1.2064732313156128 img loss 1.2528812885284424 img loss 1.356195092201233 img loss 1.2862907648086548 img loss 1.280108094215393 img loss 1.2429262399673462 img loss 1.2734659910202026 img loss 1.2087090015411377 img loss 1.22189462184906 img loss 1.2860393524169922 img loss 1.274809718132019 img loss 1.2920023202896118 img loss 1.2544384002685547 img loss 1.2674050331115723 img loss 1.2945636510849 img loss 1.1829588413238525 img loss 1.2145963907241821 img loss 1.2916520833969116 img loss 1.2830462455749512 img loss 1.2361408472061157 img loss 1.2135469913482666 img loss 1.2476847171783447 img loss 1.2757648229599 img loss 1.318935751914978 img loss 1.2397058010101318 img loss 1.3042510747909546 img loss 1.3579211235046387 img loss 1.1771461963653564 img loss 1.3729900121688843 img loss 1.2688592672348022 img loss 1.251421332359314 img loss 1.2329463958740234 img loss 1.295021653175354 img loss 1.243564486503601 img loss 1.3089359998703003 img loss 1.299539566040039 img loss 1.2751145362854004 img loss 1.269059181213379 img loss 1.281080961227417 img loss 1.2671794891357422 img loss 1.2678017616271973 img loss 1.1890058517456055 img loss 1.3036422729492188 img loss 1.2611182928085327 img loss 1.2867544889450073 img loss 1.2165640592575073 img loss 1.256185531616211 img loss 1.2864646911621094 img loss 1.1699907779693604 img loss 1.2954238653182983 img loss 1.2841800451278687 img loss 1.2441905736923218 img loss 1.1905479431152344 img loss 1.2305856943130493 img loss 1.2576440572738647 img loss 1.3545070886611938 img loss 1.2849794626235962 img loss 1.310604453086853 img loss 1.2547639608383179 img loss 1.3031344413757324 img loss 1.27444326877594 img loss 1.2168611288070679 img loss 1.2790145874023438 img loss 1.2534292936325073 img loss 1.2368923425674438 img loss 1.320573329925537 img loss 1.3233994245529175 img loss 1.2671664953231812 img loss 1.2594345808029175 img loss 1.2484118938446045 img loss 1.2690708637237549 img loss 1.3432852029800415 img loss 1.3279049396514893 img loss 1.2633341550827026 img loss 1.2675749063491821 img loss 1.2356717586517334 img loss 1.2899928092956543 img loss 1.3352782726287842 img loss 1.3098254203796387 img loss 1.2435516119003296 img loss 1.4575358629226685 img loss 1.22136390209198 img loss 1.2644470930099487 img loss 1.2877355813980103 img loss 1.3109583854675293 img loss 1.2849278450012207 img loss 1.2691705226898193 img loss 1.2766040563583374 img loss 1.363269329071045 img loss 1.175977349281311 img loss 1.31730055809021 img loss 1.3003177642822266 img loss 1.2135618925094604 img loss 1.2520332336425781 img loss 1.3520053625106812 img loss 1.2870495319366455 img loss 1.2253143787384033 img loss 1.264845848083496 img loss 1.2600440979003906 img loss 1.26644766330719 img loss 1.247091293334961 img loss 1.3732539415359497 img loss 1.286893367767334 img loss 1.1946738958358765 {'loss': 1.2716, 'grad_norm': 0.24592477083206177, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.552712082862854 img loss 1.4681754112243652 img loss 1.4648396968841553 img loss 1.507393479347229 img loss 1.4036372900009155 img loss 1.3678232431411743 img loss 1.5803005695343018 img loss 1.6209050416946411 img loss 1.5196948051452637 img loss 1.4527490139007568 img loss 1.5617603063583374 img loss 1.4293137788772583 img loss 1.5221364498138428 img loss 1.486603856086731 img loss 1.4235578775405884 img loss 1.5736244916915894 img loss 1.4875874519348145 img loss 1.3762911558151245 img loss 1.4479968547821045 img loss 1.5250400304794312 img loss 1.6228086948394775 img loss 1.5116010904312134 img loss 1.6728428602218628 img loss 1.473587155342102 img loss 1.5078518390655518 img loss 1.5744779109954834 img loss 1.5480057001113892 img loss 1.6292850971221924 img loss 1.4846686124801636 img loss 1.5863020420074463 img loss 1.4938544034957886 img loss 1.508767008781433 img loss 1.4860786199569702 img loss 1.5982372760772705 img loss 1.5343822240829468 img loss 1.4520008563995361 img loss 1.4249145984649658 img loss 1.3794699907302856 img loss 1.5147145986557007 img loss 1.618590235710144 img loss 1.4610464572906494 img loss 1.5671254396438599 img loss 1.491220235824585 img loss 1.4545220136642456 img loss 1.3335901498794556 img loss 1.550473928451538 img loss 1.5672434568405151 img loss 1.4587806463241577 img loss 1.4576421976089478 img loss 1.339829921722412img loss 1.4242527484893799 img loss 1.4326709508895874 img loss 1.4415974617004395 img loss 1.5674363374710083 img loss 1.6400209665298462 img loss 1.4615819454193115 img loss 1.516564130783081 img loss 1.4975041151046753 img loss 1.3800700902938843 img loss 1.482737421989441 img loss 1.4511561393737793 img loss 1.382055640220642 img loss 1.4334485530853271 img loss 1.619849681854248 img loss 1.4908115863800049 img loss 1.4787527322769165 img loss 1.4760644435882568 img loss 1.5031288862228394 img loss 1.4577258825302124 img loss 1.5037150382995605 img loss 1.4900100231170654 img loss 1.3720002174377441 img loss 1.4607605934143066 img loss 1.4227834939956665 img loss 1.5121902227401733 img loss 1.5262759923934937 img loss 1.3751434087753296 img loss 1.4752365350723267 img loss 1.5333201885223389 img loss 1.775214433670044 img loss 1.4204694032669067 img loss 1.514524221420288 img loss 1.3669486045837402 img loss 1.5288358926773071 img loss 1.512851357460022 img loss 1.4976742267608643 img loss 1.3927706480026245 img loss 1.5363320112228394 img loss 1.4362736940383911 img loss 1.4531351327896118 img loss 1.4468629360198975 img loss 1.5304577350616455 img loss 1.4736970663070679 img loss 1.506954312324524 img loss 1.4256961345672607 img loss 1.5711846351623535 img loss 1.444366693496704 img loss 1.6658484935760498 img loss 1.482582926750183 img loss 1.4828702211380005 img loss 1.4596457481384277 img loss 1.401007056236267 img loss 1.6238938570022583 img loss 1.5422831773757935 img loss 1.402920126914978 img loss 1.6278294324874878 img loss 1.4914109706878662 img loss 1.3057783842086792 img loss 1.5751138925552368 img loss 1.4555010795593262 img loss 1.510424017906189 img loss 1.4217994213104248 img loss 1.4714092016220093 img loss 1.4848856925964355 img loss 1.397812008857727 img loss 1.468450903892517 img loss 1.3602783679962158 img loss 1.3966187238693237 img loss 1.5914204120635986 img loss 1.5046757459640503 img loss 1.4346575736999512 img loss 1.3832144737243652 img loss 1.405792474746704 img loss 1.5113953351974487 img loss 1.5513888597488403 img loss 1.57191801071167 img loss 1.4498564004898071 img loss 1.429345965385437 {'loss': 1.4889, 'grad_norm': 0.268877238035202, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.285721778869629 img loss 1.2602040767669678 img loss 1.3477838039398193 img loss 1.3991864919662476 img loss 1.3478291034698486 img loss 1.3196744918823242 img loss 1.3402026891708374 img loss 1.357103943824768 img loss 1.2786089181900024 img loss 1.2370414733886719 img loss 1.2935314178466797 img loss 1.3253134489059448 img loss 1.3151224851608276 img loss 1.3135521411895752 img loss 1.3122212886810303 img loss 1.2934874296188354 img loss 1.286096453666687 img loss 1.3095476627349854 img loss 1.2246129512786865 img loss 1.3207011222839355 img loss 1.2573707103729248 img loss 1.1927341222763062 img loss 1.2816195487976074 img loss 1.325932502746582 img loss 1.262337327003479 img loss 1.3233695030212402 img loss 1.3037145137786865 img loss 1.355231523513794 img loss 1.3149851560592651 img loss 1.3535689115524292 img loss 1.3146730661392212 img loss 1.5014899969100952 img loss 1.2490471601486206 img loss 1.2475134134292603 img loss 1.294044852256775 img loss 1.3508790731430054 img loss 1.2977044582366943 img loss 1.3760446310043335 img loss 1.3448193073272705 img loss 1.219907283782959 img loss 1.3686165809631348 img loss 1.3119722604751587 img loss 1.2919158935546875 img loss 1.3552039861679077 img loss 1.3177707195281982 img loss 1.3184425830841064 img loss 1.402193546295166 img loss 1.2852989435195923img loss 1.260610818862915 img loss 1.3350163698196411 img loss 1.2778759002685547 img loss 1.2276372909545898 img loss 1.249977469444275 img loss 1.361499309539795 img loss 1.3529361486434937 img loss 1.2384744882583618 img loss 1.2755135297775269 img loss 1.400898814201355 img loss 1.3594574928283691 img loss 1.2991777658462524 img loss 1.2640621662139893 img loss 1.3302348852157593 img loss 1.4010003805160522 img loss 1.4528372287750244 img loss 1.3598521947860718 img loss 1.306416392326355 img loss 1.3625638484954834 img loss 1.3659604787826538 img loss 1.2313258647918701 img loss 1.238285779953003 img loss 1.3518491983413696 img loss 1.3305047750473022 img loss 1.3271688222885132 img loss 1.3283430337905884 img loss 1.3094630241394043 img loss 1.3152226209640503 img loss 1.31419038772583 img loss 1.2756991386413574 img loss 1.3276360034942627 img loss 1.3223226070404053 img loss 1.319383144378662 img loss 1.3181122541427612 img loss 1.3419080972671509 img loss 1.3048709630966187 img loss 1.3407113552093506 img loss 1.2834243774414062 img loss 1.3971468210220337 img loss 1.3514702320098877 img loss 1.258713722229004 img loss 1.34940767288208 img loss 1.2679182291030884 img loss 1.3168015480041504 img loss 1.2626346349716187 img loss 1.3735700845718384 img loss 1.2782167196273804 img loss 1.3296436071395874 img loss 1.250449538230896 img loss 1.2814987897872925 img loss 1.2979414463043213 img loss 1.3625909090042114 img loss 1.3292961120605469 img loss 1.319567084312439 img loss 1.2757078409194946 img loss 1.2640833854675293 img loss 1.3429490327835083 img loss 1.308206558227539 img loss 1.2247854471206665 img loss 1.368756651878357 img loss 1.2854381799697876 img loss 1.23674738407135 img loss 1.2440855503082275 img loss 1.3345657587051392 img loss 1.2710506916046143 img loss 1.4046804904937744 img loss 1.274731993675232 img loss 1.2560144662857056 img loss 1.3092056512832642 img loss 1.3207616806030273 img loss 1.2618482112884521 img loss 1.292370080947876 img loss 1.3163982629776 img loss 1.390810489654541 img loss 1.3352503776550293 img loss 1.2788314819335938 img loss 1.307032823562622 img loss 1.2969448566436768 img loss 1.3020834922790527 img loss 1.2708916664123535 {'loss': 1.3113, 'grad_norm': 0.22620509564876556, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4263287782669067 img loss 1.5039063692092896 img loss 1.4714601039886475 img loss 1.5640722513198853 img loss 1.4082823991775513 img loss 1.3782202005386353 img loss 1.533287763595581 img loss 1.4198154211044312 img loss 1.5341027975082397 img loss 1.2834419012069702 img loss 1.4130644798278809 img loss 1.5836403369903564 img loss 1.3720825910568237 img loss 1.5276515483856201 img loss 1.4135372638702393 img loss 1.4399962425231934 img loss 1.5254100561141968 img loss 1.5600695610046387 img loss 1.3236770629882812 img loss 1.4680569171905518 img loss 1.5410542488098145 img loss 1.4213993549346924 img loss 1.4662587642669678 img loss 1.4191782474517822 img loss 1.4888371229171753 img loss 1.2987993955612183 img loss 1.318007469177246 img loss 1.4935708045959473 img loss 1.4293278455734253 img loss 1.495282769203186 img loss 1.5240511894226074 img loss 1.4256993532180786 img loss 1.4674984216690063 img loss 1.537858247756958 img loss 1.4736123085021973 img loss 1.403603196144104 img loss 1.5689605474472046 img loss 1.3674854040145874 img loss 1.4459221363067627 img loss 1.4332365989685059 img loss 1.483215570449829 img loss 1.4786105155944824 img loss 1.4545550346374512 img loss 1.4126036167144775 img loss 1.4912056922912598 img loss 1.2794270515441895 img loss 1.4776676893234253 img loss 1.514650583267212 img loss 1.535873532295227 img loss 1.3810628652572632 img loss 1.5943890810012817 img loss 1.5032947063446045 img loss 1.3634650707244873 img loss 1.3774834871292114 img loss 1.4052388668060303 img loss 1.3413822650909424 img loss 1.4773478507995605 img loss 1.4970357418060303 img loss 1.3824831247329712 img loss 1.509053111076355 img loss 1.3146796226501465 img loss 1.4813532829284668 img loss 1.43634831905365 img loss 1.4029723405838013 img loss 1.4076249599456787 img loss 1.4364038705825806 img loss 1.5326790809631348 img loss 1.4758427143096924 img loss 1.3868976831436157 img loss 1.412248134613037 img loss 1.4120491743087769 img loss 1.3398393392562866 img loss 1.4664396047592163 img loss 1.427773356437683 img loss 1.4535492658615112 img loss 1.409554123878479 img loss 1.3710957765579224 img loss 1.446850061416626 img loss 1.467409372329712 img loss 1.406038522720337 img loss 1.3892313241958618 img loss 1.4072498083114624 img loss 1.4441858530044556 img loss 1.39352285861969 img loss 1.4365880489349365 img loss 1.4418251514434814 img loss 1.4301725625991821 img loss 1.4522850513458252 img loss 1.3926751613616943 img loss 1.512528896331787 img loss 1.3724076747894287 img loss 1.490251064300537 img loss 1.5228946208953857 img loss 1.4399540424346924 img loss 1.4249932765960693 img loss 1.4056168794631958 img loss 1.4404332637786865 img loss 1.4337706565856934 img loss 1.4150378704071045 img loss 1.4675663709640503 img loss 1.4182827472686768 img loss 1.341264247894287 img loss 1.521965742111206 img loss 1.419195532798767 img loss 1.5572116374969482 img loss 1.4405845403671265 img loss 1.5669447183609009 img loss 1.488420009613037 img loss 1.455005407333374 img loss 1.5394806861877441 img loss 1.4679573774337769 img loss 1.3304383754730225 img loss 1.3543800115585327 img loss 1.549862265586853 img loss 1.4241491556167603 img loss 1.4743132591247559 img loss 1.524877667427063 img loss 1.3596402406692505 img loss 1.3826278448104858 img loss 1.5269410610198975 img loss 1.4576151371002197 img loss 1.3649351596832275 img loss 1.4297468662261963 img loss 1.4395992755889893 img loss 1.4189573526382446 img loss 1.4132282733917236 img loss 1.3894513845443726 img loss 1.44186270236969 {'loss': 1.444, 'grad_norm': 0.31963980197906494, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2092280387878418 img loss 1.2840403318405151 img loss 1.2069498300552368 img loss 1.2708165645599365 img loss 1.2833904027938843 img loss 1.3000011444091797 img loss 1.311217188835144 img loss 1.2268167734146118 img loss 1.2571502923965454 img loss 1.3589112758636475 img loss 1.3532252311706543 img loss 1.1951725482940674 img loss 1.2779083251953125 img loss 1.2558826208114624 img loss 1.39510178565979 img loss 1.3077589273452759 img loss 1.3525160551071167 img loss 1.260118842124939 img loss 1.2359110116958618 img loss 1.2899394035339355 img loss 1.2850216627120972 img loss 1.3230255842208862 img loss 1.272541880607605 img loss 1.3027523756027222 img loss 1.1950041055679321 img loss 1.3736603260040283 img loss 1.2869676351547241 img loss 1.2247055768966675 img loss 1.1696414947509766 img loss 1.332120418548584 img loss 1.2792004346847534 img loss 1.2483152151107788 img loss 1.2898824214935303 img loss 1.2602108716964722 img loss 1.304086685180664 img loss 1.2233514785766602 img loss 1.2603845596313477 img loss 1.2983825206756592 img loss 1.2511428594589233 img loss 1.159132719039917 img loss 1.1893267631530762 img loss 1.3260077238082886 img loss 1.3161033391952515 img loss 1.2617939710617065 img loss 1.3118221759796143 img loss 1.2823160886764526 img loss 1.2151710987091064 img loss 1.3373944759368896 img loss 1.418890118598938 img loss 1.2725129127502441 img loss 1.2587659358978271 img loss 1.2343366146087646 img loss 1.277320384979248 img loss 1.3469761610031128 img loss 1.3543990850448608 img loss 1.2656675577163696 img loss 1.3053181171417236 img loss 1.2218248844146729 img loss 1.2481329441070557 img loss 1.4535202980041504 img loss 1.3481593132019043 img loss 1.2925405502319336 img loss 1.2814468145370483 img loss 1.3561851978302002 img loss 1.2956510782241821 img loss 1.345792293548584 img loss 1.2942661046981812 img loss 1.2618374824523926 img loss 1.2269706726074219 img loss 1.364170789718628 img loss 1.3904750347137451 img loss 1.2949600219726562 img loss 1.3178170919418335 img loss 1.2283194065093994 img loss 1.2853411436080933 img loss 1.1823008060455322 img loss 1.2178906202316284 img loss 1.256682276725769 img loss 1.2769407033920288 img loss 1.250341773033142 img loss 1.2805242538452148 img loss 1.273805022239685 img loss 1.3007898330688477 img loss 1.2523646354675293 img loss 1.2652391195297241 img loss 1.1902649402618408 img loss 1.331343650817871 img loss 1.2844369411468506 img loss 1.1678810119628906 img loss 1.1590290069580078 img loss 1.243520975112915 img loss 1.3372520208358765 img loss 1.2619940042495728 img loss 1.356873631477356 img loss 1.2386889457702637 img loss 1.2410788536071777 img loss 1.3079966306686401 img loss 1.2630958557128906 img loss 1.3211193084716797 img loss 1.1973365545272827 img loss 1.289960265159607 img loss 1.3491419553756714 img loss 1.369435429573059 img loss 1.3219873905181885 img loss 1.3214279413223267 img loss 1.2476952075958252 img loss 1.246895670890808 img loss 1.3193469047546387 img loss 1.2581850290298462 img loss 1.3770601749420166 img loss 1.2250694036483765 img loss 1.3339201211929321 img loss 1.2843480110168457 img loss 1.247206211090088 img loss 1.3359086513519287 img loss 1.4117639064788818 img loss 1.2221177816390991 img loss 1.1929662227630615 img loss 1.3309472799301147 img loss 1.2923579216003418 img loss 1.2125451564788818 img loss 1.2611675262451172 img loss 1.318548560142517 img loss 1.379273533821106 img loss 1.2667754888534546 img loss 1.3972691297531128 img loss 1.2784297466278076 img loss 1.301434874534607 {'loss': 1.2836, 'grad_norm': 0.28398287296295166, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2179603576660156 img loss 1.2992161512374878 img loss 1.209032654762268 img loss 1.3269915580749512 img loss 1.2915229797363281 img loss 1.2696335315704346 img loss 1.38905668258667 img loss 1.3485732078552246 img loss 1.2268295288085938 img loss 1.3072818517684937 img loss 1.2649741172790527 img loss 1.2618569135665894 img loss 1.364609956741333 img loss 1.2485976219177246 img loss 1.2440115213394165 img loss 1.3728286027908325 img loss 1.3009624481201172 img loss 1.3490216732025146 img loss 1.3458282947540283 img loss 1.2906415462493896 img loss 1.2985057830810547 img loss 1.3070666790008545 img loss 1.4021422863006592 img loss 1.3437236547470093 img loss 1.2590408325195312 img loss 1.4123696088790894 img loss 1.3157185316085815 img loss 1.299699068069458 img loss 1.2706125974655151 img loss 1.2180216312408447 img loss 1.290295124053955 img loss 1.3115323781967163 img loss 1.3302209377288818 img loss 1.4030206203460693 img loss 1.207102656364441 img loss 1.275629997253418 img loss 1.2293908596038818 img loss 1.2408616542816162 img loss 1.337424874305725 img loss 1.3331726789474487 img loss 1.2306362390518188 img loss 1.2091583013534546 img loss 1.3271160125732422 img loss 1.275766372680664 img loss 1.303417444229126 img loss 1.3476563692092896 img loss 1.3092515468597412 img loss 1.3090779781341553 img loss 1.2379868030548096 img loss 1.3410590887069702 img loss 1.3667722940444946 img loss 1.2377279996871948 img loss 1.3196470737457275 img loss 1.352449893951416 img loss 1.2829262018203735 img loss 1.2828457355499268 img loss 1.3263587951660156 img loss 1.300635814666748 img loss 1.2244843244552612 img loss 1.2659435272216797 img loss 1.4037257432937622 img loss 1.4212149381637573 img loss 1.3131537437438965 img loss 1.232216715812683 img loss 1.465247631072998 img loss 1.333251714706421 img loss 1.2878568172454834 img loss 1.2169854640960693 img loss 1.2560398578643799 img loss 1.3608711957931519 img loss 1.32619309425354 img loss 1.2627484798431396 img loss 1.2481343746185303 img loss 1.2630398273468018 img loss 1.2946453094482422 img loss 1.2750030755996704 img loss 1.2404495477676392 img loss 1.2852778434753418 img loss 1.3889994621276855 img loss 1.337571620941162 img loss 1.3817487955093384 img loss 1.2438344955444336 img loss 1.2459774017333984 img loss 1.2918524742126465 img loss 1.3024355173110962 img loss 1.31533944606781 img loss 1.3330782651901245 img loss 1.2499010562896729 img loss 1.3720992803573608 img loss 1.2737538814544678 img loss 1.260750412940979 img loss 1.3358439207077026 img loss 1.3683263063430786img loss 1.3565430641174316 img loss 1.28464674949646 img loss 1.2903320789337158 img loss 1.3586281538009644 img loss 1.330432415008545 img loss 1.2793620824813843 img loss 1.3719022274017334 img loss 1.2497791051864624 img loss 1.295581340789795 img loss 1.2056198120117188 img loss 1.1915401220321655 img loss 1.3208236694335938 img loss 1.289613127708435 img loss 1.2434600591659546 img loss 1.2309937477111816 img loss 1.2557839155197144 img loss 1.276183009147644 img loss 1.3170334100723267 img loss 1.2729787826538086 img loss 1.3300384283065796 img loss 1.2587051391601562 img loss 1.3392956256866455 img loss 1.3622641563415527 img loss 1.2827389240264893 img loss 1.237333059310913 img loss 1.2664152383804321 img loss 1.2903497219085693 img loss 1.3597859144210815 img loss 1.302353858947754 img loss 1.3804141283035278 img loss 1.28489089012146 img loss 1.3158022165298462 img loss 1.2530845403671265 img loss 1.4053813219070435 img loss 1.3202228546142578 {'loss': 1.3005, 'grad_norm': 0.33875808119773865, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1760525703430176 img loss 1.1773439645767212 img loss 1.24501371383667 img loss 1.2091728448867798 img loss 1.2612476348876953 img loss 1.2035564184188843 img loss 1.2666367292404175 img loss 1.2179913520812988 img loss 1.1838467121124268 img loss 1.2681270837783813 img loss 1.2404788732528687 img loss 1.2414970397949219 img loss 1.2132066488265991 img loss 1.239134669303894 img loss 1.2225027084350586 img loss 1.2185672521591187 img loss 1.2133315801620483 img loss 1.2233997583389282 img loss 1.2431585788726807 img loss 1.2127935886383057 img loss 1.2221063375473022 img loss 1.183003306388855 img loss 1.2578372955322266 img loss 1.196984052658081 img loss 1.2682255506515503 img loss 1.2217586040496826 img loss 1.226039171218872 img loss 1.2439216375350952 img loss 1.264643907546997 img loss 1.1650619506835938 img loss 1.2324600219726562 img loss 1.2669868469238281 img loss 1.1886372566223145 img loss 1.2322145700454712 img loss 1.2348121404647827 img loss 1.1897997856140137 img loss 1.2508594989776611 img loss 1.2697803974151611 img loss 1.1813243627548218 img loss 1.2783069610595703 img loss 1.1987125873565674 img loss 1.2370952367782593 img loss 1.2059168815612793 img loss 1.1743360757827759 img loss 1.21074378490448 img loss 1.26723051071167 img loss 1.2394466400146484 img loss 1.2540278434753418 img loss 1.2970069646835327 img loss 1.251028299331665 img loss 1.210413932800293 img loss 1.2255996465682983 img loss 1.2111982107162476 img loss 1.2422101497650146 img loss 1.2574193477630615 img loss 1.302760124206543 img loss 1.2785775661468506 img loss 1.2456815242767334 img loss 1.2288979291915894 img loss 1.2489103078842163 img loss 1.2864046096801758 img loss 1.2390549182891846 img loss 1.1859099864959717 img loss 1.2567561864852905 img loss 1.2344292402267456 img loss 1.2321736812591553 img loss 1.233694076538086 img loss 1.2355873584747314 img loss 1.1756641864776611 img loss 1.2437676191329956 img loss 1.2549972534179688 img loss 1.2718929052352905 img loss 1.220860481262207 img loss 1.1548041105270386 img loss 1.2503371238708496 img loss 1.2834968566894531 img loss 1.228531837463379 img loss 1.1976861953735352 img loss 1.212749719619751 img loss 1.2098934650421143 img loss 1.2291653156280518 img loss 1.2019591331481934 img loss 1.2184568643569946 img loss 1.231777548789978 img loss 1.2354445457458496 img loss 1.2109661102294922 img loss 1.1848701238632202 img loss 1.2438722848892212 img loss 1.226975679397583 img loss 1.2449545860290527 img loss 1.2111613750457764 img loss 1.2759008407592773 img loss 1.2794904708862305 img loss 1.2870336771011353 img loss 1.2260282039642334 img loss 1.261511206626892 img loss 1.2122681140899658 img loss 1.2026662826538086 img loss 1.2235273122787476 img loss 1.2161496877670288 img loss 1.248686671257019 img loss 1.2511272430419922 img loss 1.2909045219421387 img loss 1.1921621561050415 img loss 1.2338943481445312 img loss 1.1799949407577515 img loss 1.2180217504501343 img loss 1.2628118991851807 img loss 1.2316464185714722 img loss 1.2167205810546875 img loss 1.2212481498718262 img loss 1.216652512550354 img loss 1.1748998165130615 img loss 1.2940254211425781 img loss 1.3103374242782593 img loss 1.2689886093139648 img loss 1.304019808769226 img loss 1.1825158596038818 img loss 1.255502462387085 img loss 1.2376720905303955 img loss 1.2136162519454956 img loss 1.2237385511398315 img loss 1.2165143489837646 img loss 1.2162888050079346 img loss 1.2372984886169434 img loss 1.2659584283828735 img loss 1.200855016708374 img loss 1.2426855564117432 {'loss': 1.2319, 'grad_norm': 0.22370536625385284, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1908483505249023 img loss 1.1972792148590088 img loss 1.2333424091339111 img loss 1.2040019035339355 img loss 1.1725995540618896 img loss 1.2106825113296509 img loss 1.2066024541854858 img loss 1.2014572620391846 img loss 1.213631510734558 img loss 1.1941341161727905 img loss 1.1715115308761597 img loss 1.2093064785003662 img loss 1.20083487033844 img loss 1.2582528591156006 img loss 1.2042258977890015 img loss 1.2014098167419434 img loss 1.1882009506225586 img loss 1.1957887411117554 img loss 1.1938533782958984 img loss 1.219848871231079 img loss 1.2026792764663696 img loss 1.156726360321045 img loss 1.1853569746017456 img loss 1.168849229812622 img loss 1.1722149848937988 img loss 1.211550235748291 img loss 1.2034012079238892 img loss 1.212725281715393 img loss 1.1771509647369385 img loss 1.2061200141906738 img loss 1.2089495658874512 img loss 1.2140445709228516 img loss 1.2186130285263062 img loss 1.1785907745361328 img loss 1.167560338973999 img loss 1.2082427740097046 img loss 1.1942468881607056 img loss 1.180895447731018 img loss 1.2226637601852417 img loss 1.1783424615859985 img loss 1.1798288822174072 img loss 1.1984857320785522 img loss 1.1832852363586426 img loss 1.2039985656738281 img loss 1.1949971914291382 img loss 1.212192177772522 img loss 1.1678788661956787 img loss 1.2297738790512085 img loss 1.1784017086029053 img loss 1.2022236585617065 img loss 1.1591777801513672 img loss 1.1870113611221313 img loss 1.16879141330719 img loss 1.2107417583465576 img loss 1.1934477090835571 img loss 1.203305959701538 img loss 1.196021318435669 img loss 1.196204423904419 img loss 1.210676670074463 img loss 1.2034212350845337 img loss 1.162862777709961 img loss 1.2038111686706543 img loss 1.1737388372421265 img loss 1.2176146507263184 img loss 1.1766594648361206 img loss 1.1869913339614868 img loss 1.2338862419128418 img loss 1.1963833570480347 img loss 1.190969467163086 img loss 1.1874685287475586 img loss 1.1657860279083252 img loss 1.195725917816162 img loss 1.219961404800415 img loss 1.2084397077560425 img loss 1.1901901960372925 img loss 1.2060093879699707 img loss 1.1799077987670898 img loss 1.2045754194259644 img loss 1.1996039152145386 img loss 1.1884522438049316 img loss 1.1829166412353516 img loss 1.2175968885421753 img loss 1.153922438621521 img loss 1.1768934726715088 img loss 1.2142562866210938 img loss 1.2036221027374268 img loss 1.1852147579193115 img loss 1.2183164358139038 img loss 1.1725590229034424 img loss 1.2114187479019165 img loss 1.2043026685714722 img loss 1.1690502166748047 img loss 1.2089656591415405 img loss 1.1765108108520508 img loss 1.1883481740951538 img loss 1.17137610912323 img loss 1.1486458778381348 img loss 1.2037147283554077 img loss 1.214942455291748 img loss 1.1765072345733643 img loss 1.1852260828018188 img loss 1.1765369176864624 img loss 1.1544990539550781 img loss 1.1753355264663696 img loss 1.1865191459655762 img loss 1.18514883518219 img loss 1.2198981046676636 img loss 1.1583751440048218 img loss 1.1636699438095093 img loss 1.213114619255066 img loss 1.2089312076568604 img loss 1.2706459760665894 img loss 1.16496741771698 img loss 1.1910269260406494 img loss 1.2007299661636353 img loss 1.2198445796966553 img loss 1.2135871648788452 img loss 1.176522970199585 img loss 1.2028799057006836 img loss 1.1798248291015625 img loss 1.2194637060165405 img loss 1.1804115772247314 img loss 1.225298285484314 img loss 1.22079336643219 img loss 1.183630347251892 img loss 1.212625503540039 img loss 1.177060604095459 img loss 1.231629729270935 {'loss': 1.1953, 'grad_norm': 0.23732882738113403, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3960682153701782 img loss 1.3168141841888428 img loss 1.4597774744033813 img loss 1.3749206066131592 img loss 1.4478825330734253 img loss 1.4129178524017334 img loss 1.3452436923980713 img loss 1.2295044660568237 img loss 1.3629755973815918 img loss 1.3269932270050049 img loss 1.3582059144973755 img loss 1.2351176738739014 img loss 1.4389711618423462 img loss 1.422200083732605 img loss 1.3044414520263672 img loss 1.4084908962249756 img loss 1.2770302295684814 img loss 1.3331520557403564 img loss 1.5027282238006592 img loss 1.4726576805114746 img loss 1.3631597757339478 img loss 1.4004634618759155 img loss 1.3871675729751587 img loss 1.4034006595611572 img loss 1.5019433498382568 img loss 1.4188300371170044 img loss 1.429848313331604 img loss 1.2915552854537964 img loss 1.4045192003250122 img loss 1.4287657737731934 img loss 1.4695346355438232 img loss 1.4495692253112793 img loss 1.4052718877792358 img loss 1.41105055809021 img loss 1.4778462648391724 img loss 1.4401899576187134 img loss 1.5189522504806519 img loss 1.4597986936569214 img loss 1.3622807264328003 img loss 1.437090516090393 img loss 1.3268359899520874 img loss 1.3601387739181519 img loss 1.47184419631958 img loss 1.3548527956008911 img loss 1.4014400243759155 img loss 1.2231147289276123 img loss 1.3336024284362793 img loss 1.2990421056747437 img loss 1.3828397989273071 img loss 1.3685429096221924 img loss 1.4773783683776855 img loss 1.385621428489685 img loss 1.369590401649475 img loss 1.347337245941162 img loss 1.4379096031188965 img loss 1.4603816270828247 img loss 1.4532569646835327 img loss 1.4872268438339233 img loss 1.4173475503921509 img loss 1.440851092338562 img loss 1.3391273021697998 img loss 1.482246994972229 img loss 1.473568320274353 img loss 1.4825941324234009 img loss 1.361155390739441 img loss 1.3860410451889038 img loss 1.444700002670288 img loss 1.4364144802093506 img loss 1.4706255197525024 img loss 1.3655954599380493 img loss 1.3755875825881958 img loss 1.433447241783142 img loss 1.3905558586120605 img loss 1.3681581020355225 img loss 1.409699559211731 img loss 1.2078285217285156 img loss 1.4725086688995361 img loss 1.424177885055542 img loss 1.4757181406021118 img loss 1.322997808456421 img loss 1.446292519569397 img loss 1.3756897449493408 img loss 1.4750685691833496 img loss 1.3459006547927856 img loss 1.3392184972763062 img loss 1.3418995141983032 img loss 1.4330121278762817 img loss 1.394142985343933 img loss 1.4022465944290161 img loss 1.2597999572753906 img loss 1.4171693325042725 img loss 1.3632515668869019 img loss 1.2855956554412842 img loss 1.3315643072128296 img loss 1.4727082252502441 img loss 1.3731223344802856 img loss 1.3421810865402222 img loss 1.4381128549575806 img loss 1.4249883890151978 img loss 1.2998769283294678 img loss 1.2947866916656494 img loss 1.3821938037872314 img loss 1.4331467151641846 img loss 1.4727685451507568 img loss 1.472800612449646 img loss 1.3971762657165527 img loss 1.2960928678512573 img loss 1.4953104257583618 img loss 1.4861528873443604 img loss 1.5741997957229614 img loss 1.569682002067566 img loss 1.252166986465454 img loss 1.3854576349258423 img loss 1.300069808959961 img loss 1.479644536972046 img loss 1.3724051713943481 img loss 1.3101133108139038 img loss 1.526447057723999 img loss 1.3284097909927368 img loss 1.466723084449768 img loss 1.352392315864563 img loss 1.3330143690109253 img loss 1.4406026601791382 img loss 1.4656211137771606 img loss 1.4152085781097412 img loss 1.3810750246047974 img loss 1.4463934898376465 img loss 1.4463087320327759 {'loss': 1.398, 'grad_norm': 0.6948779225349426, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.5625361204147339 img loss 1.3873909711837769 img loss 1.3525887727737427 img loss 1.4478226900100708 img loss 1.5426050424575806 img loss 1.4881527423858643 img loss 1.5168417692184448 img loss 1.3457685708999634 img loss 1.633905291557312 img loss 1.518085241317749 img loss 1.5926021337509155 img loss 1.329053282737732 img loss 1.3795735836029053 img loss 1.4821609258651733 img loss 1.4618465900421143 img loss 1.3426148891448975 img loss 1.4106162786483765 img loss 1.4929211139678955 img loss 1.4358818531036377 img loss 1.5937473773956299 img loss 1.484742283821106 img loss 1.3610154390335083 img loss 1.61074697971344 img loss 1.377463698387146 img loss 1.4060691595077515 img loss 1.6151013374328613 img loss 1.3590680360794067 img loss 1.4826557636260986 img loss 1.5325056314468384 img loss 1.4897656440734863 img loss 1.5663079023361206 img loss 1.4805513620376587 img loss 1.5283616781234741 img loss 1.4143102169036865 img loss 1.3950979709625244 img loss 1.3735450506210327 img loss 1.3851120471954346 img loss 1.4339896440505981 img loss 1.5988258123397827 img loss 1.393530249595642 img loss 1.4860292673110962 img loss 1.5082859992980957 img loss 1.41519033908844 img loss 1.5526823997497559 img loss 1.5091307163238525img loss 1.4348515272140503 img loss 1.5293610095977783 img loss 1.3976620435714722 img loss 1.4108859300613403 img loss 1.4214054346084595 img loss 1.5194909572601318 img loss 1.5704213380813599 img loss 1.5384066104888916 img loss 1.5363516807556152 img loss 1.2876980304718018 img loss 1.3969146013259888 img loss 1.4869633913040161 img loss 1.3737894296646118 img loss 1.485042929649353 img loss 1.4293491840362549 img loss 1.369397759437561 img loss 1.4860453605651855 img loss 1.4390208721160889 img loss 1.575896978378296 img loss 1.4833407402038574 img loss 1.4968639612197876 img loss 1.63368558883667 img loss 1.5367244482040405 img loss 1.477557897567749 img loss 1.3084897994995117 img loss 1.4906560182571411 img loss 1.5050331354141235 img loss 1.4429142475128174 img loss 1.4694931507110596 img loss 1.417216181755066 img loss 1.4360431432724 img loss 1.5133869647979736 img loss 1.4431147575378418 img loss 1.5278937816619873 img loss 1.576697826385498 img loss 1.3426086902618408 img loss 1.4405128955841064 img loss 1.5812945365905762 img loss 1.4371284246444702 img loss 1.4046152830123901 img loss 1.4793751239776611 img loss 1.4038673639297485 img loss 1.3726223707199097 img loss 1.48432195186615 img loss 1.4215890169143677 img loss 1.5134778022766113 img loss 1.6007869243621826 img loss 1.433897852897644 img loss 1.4514802694320679 img loss 1.3858487606048584 img loss 1.405463457107544 img loss 1.4940924644470215 img loss 1.3450407981872559 img loss 1.4825621843338013 img loss 1.4184091091156006 img loss 1.4088828563690186 img loss 1.2329156398773193 img loss 1.3942416906356812 img loss 1.4045157432556152 img loss 1.5021082162857056 img loss 1.4930483102798462 img loss 1.4581109285354614 img loss 1.4557684659957886 img loss 1.4830585718154907 img loss 1.4641202688217163 img loss 1.424153208732605 img loss 1.439857840538025 img loss 1.282889723777771 img loss 1.4363923072814941 img loss 1.468937635421753 img loss 1.5066519975662231 img loss 1.4752262830734253 img loss 1.54610013961792 img loss 1.482108235359192 img loss 1.4465118646621704 img loss 1.6918110847473145 img loss 1.5556986331939697 img loss 1.6173704862594604 img loss 1.4823648929595947 img loss 1.3198878765106201 img loss 1.4153231382369995 img loss 1.701707124710083 img loss 1.3330520391464233 {'loss': 1.4636, 'grad_norm': 0.5105879902839661, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.5884164571762085 img loss 1.5865254402160645 img loss 1.6425703763961792 img loss 1.674037218093872 img loss 1.6286617517471313 img loss 1.5973267555236816 img loss 1.7358949184417725 img loss 1.6525909900665283 img loss 1.7583165168762207 img loss 1.6423970460891724 img loss 1.6257450580596924 img loss 1.6619940996170044 img loss 1.8847190141677856 img loss 1.6458202600479126 img loss 1.7247974872589111 img loss 1.5813956260681152 img loss 1.6984477043151855 img loss 1.5577433109283447 img loss 1.5435773134231567 img loss 1.712310552597046 img loss 1.809557557106018 img loss 1.7377920150756836 img loss 1.7465730905532837 img loss 1.5932185649871826 img loss 1.6000500917434692 img loss 1.698966145515442 img loss 1.7463326454162598 img loss 1.688138723373413 img loss 1.5979193449020386 img loss 1.6525081396102905 img loss 1.588776707649231 img loss 1.739389419555664 img loss 1.4704092741012573 img loss 1.6697518825531006 img loss 1.7355878353118896 img loss 1.7671597003936768 img loss 1.582373857498169 img loss 1.656683325767517 img loss 1.541717290878296 img loss 1.853420376777649 img loss 1.6019147634506226 img loss 1.6283771991729736img loss 1.8527045249938965 img loss 1.855758786201477 img loss 1.727439522743225 img loss 1.7767179012298584 img loss 1.7516673803329468 img loss 1.5531823635101318 img loss 1.6688627004623413 img loss 1.7135189771652222 img loss 1.7869131565093994 img loss 1.471422791481018 img loss 1.6699970960617065 img loss 1.6000839471817017 img loss 1.746945858001709 img loss 1.576589822769165 img loss 1.6165224313735962 img loss 1.61381995677948 img loss 1.455736756324768 img loss 1.7018951177597046 img loss 1.6779519319534302 img loss 1.5760160684585571 img loss 1.6830161809921265 img loss 1.7791931629180908 img loss 1.7696912288665771 img loss 1.740065336227417 img loss 1.6664249897003174 img loss 1.741079330444336 img loss 1.6457315683364868 img loss 1.7600346803665161 img loss 1.9788978099822998 img loss 1.8852567672729492 img loss 1.8794580698013306 img loss 1.780646562576294 img loss 1.6679987907409668 img loss 1.7514476776123047 img loss 1.732960820198059 img loss 1.6233165264129639 img loss 1.727886438369751 img loss 1.7433114051818848 img loss 1.7308086156845093 img loss 1.5853756666183472 img loss 1.804917573928833 img loss 1.582679271697998 img loss 1.6680420637130737 img loss 1.750759243965149 img loss 1.6086167097091675 img loss 1.7758424282073975 img loss 1.5310245752334595 img loss 1.6249468326568604 img loss 1.7958149909973145 img loss 1.443955898284912 img loss 1.5460153818130493 img loss 1.7874979972839355 img loss 1.7573962211608887 img loss 1.5021414756774902 img loss 1.716814398765564 img loss 1.6526329517364502img loss 1.6180349588394165 img loss 1.688607096672058 img loss 1.5140891075134277 img loss 1.7653214931488037 img loss 1.7588046789169312 img loss 1.5888844728469849 img loss 1.5918993949890137 img loss 1.448055386543274 img loss 1.7796013355255127 img loss 1.6571643352508545 img loss 1.6027706861495972 img loss 1.6555465459823608 img loss 1.8704187870025635 img loss 1.5738905668258667 img loss 1.6273703575134277 img loss 1.8557075262069702 img loss 1.6647799015045166 img loss 1.6637147665023804 img loss 1.5766007900238037 img loss 1.6822103261947632 img loss 1.6052614450454712 img loss 1.7006068229675293 img loss 1.7095810174942017 img loss 1.7195113897323608 img loss 1.7129877805709839 img loss 1.6118134260177612 img loss 1.6263777017593384 img loss 1.7954225540161133 img loss 1.6214784383773804 img loss 1.8578487634658813 {'loss': 1.6782, 'grad_norm': 0.847215473651886, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2391401529312134 img loss 1.320885419845581 img loss 1.2452545166015625 img loss 1.3798725605010986 img loss 1.3815847635269165 img loss 1.2250769138336182 img loss 1.3513143062591553 img loss 1.270668864250183 img loss 1.30678129196167 img loss 1.2162795066833496 img loss 1.4218688011169434 img loss 1.3205007314682007 img loss 1.3481866121292114 img loss 1.3833824396133423 img loss 1.2134002447128296 img loss 1.3557469844818115 img loss 1.3002064228057861 img loss 1.3085402250289917 img loss 1.2672752141952515 img loss 1.2644128799438477 img loss 1.2305799722671509 img loss 1.2966301441192627 img loss 1.3742272853851318 img loss 1.3072938919067383 img loss 1.352566123008728 img loss 1.2972866296768188 img loss 1.2820297479629517 img loss 1.2867357730865479 img loss 1.311722755432129 img loss 1.3360077142715454 img loss 1.3162119388580322 img loss 1.2799420356750488 img loss 1.28883957862854 img loss 1.3899672031402588 img loss 1.2835127115249634 img loss 1.2992253303527832 img loss 1.2938454151153564 img loss 1.345557689666748 img loss 1.3759769201278687 img loss 1.33995521068573 img loss 1.2363879680633545 img loss 1.3104474544525146 img loss 1.2555456161499023 img loss 1.2083938121795654 img loss 1.3307554721832275 img loss 1.248247504234314 img loss 1.2336887121200562 img loss 1.2640776634216309 img loss 1.2788465023040771 img loss 1.3674248456954956 img loss 1.278321623802185 img loss 1.1937766075134277 img loss 1.3568215370178223 img loss 1.2934646606445312 img loss 1.2853522300720215 img loss 1.3411247730255127 img loss 1.34774649143219 img loss 1.276810884475708 img loss 1.2580839395523071 img loss 1.4214670658111572 img loss 1.319811224937439 img loss 1.261175513267517 img loss 1.3563435077667236 img loss 1.2666494846343994 img loss 1.3113807439804077 img loss 1.2473446130752563 img loss 1.347507357597351 img loss 1.293513298034668 img loss 1.2974066734313965 img loss 1.2648428678512573 img loss 1.2390683889389038 img loss 1.2291990518569946 img loss 1.3189705610275269 img loss 1.3354060649871826 img loss 1.3018156290054321 img loss 1.2619657516479492 img loss 1.3713573217391968 img loss 1.314024567604065 img loss 1.2695186138153076 img loss 1.1815705299377441 img loss 1.3095940351486206 img loss 1.2991178035736084 img loss 1.2925628423690796 img loss 1.2652192115783691 img loss 1.254411220550537 img loss 1.413920521736145 img loss 1.3182790279388428 img loss 1.2975952625274658 img loss 1.3246419429779053 img loss 1.2499792575836182 img loss 1.192610502243042 img loss 1.2713135480880737 img loss 1.4479472637176514 img loss 1.3541386127471924 img loss 1.2586724758148193 img loss 1.2142903804779053 img loss 1.2687504291534424 img loss 1.320422649383545 img loss 1.285447120666504 img loss 1.373380184173584 img loss 1.260110855102539 img loss 1.3286951780319214 img loss 1.2276042699813843 img loss 1.3456790447235107 img loss 1.247327446937561 img loss 1.271959662437439 img loss 1.291184425354004 img loss 1.344098687171936 img loss 1.27338445186615 img loss 1.3487478494644165 img loss 1.3549635410308838 img loss 1.2599763870239258 img loss 1.3331917524337769 img loss 1.302863597869873 img loss 1.2876601219177246 img loss 1.3580447435379028 img loss 1.3523802757263184 img loss 1.2237765789031982 img loss 1.3292595148086548 img loss 1.2741888761520386 img loss 1.1997027397155762 img loss 1.2732149362564087 img loss 1.3021119832992554 img loss 1.349493384361267 img loss 1.355465054512024 img loss 1.3306585550308228 img loss 1.3409961462020874 img loss 1.286802053451538 {'loss': 1.3004, 'grad_norm': 0.3305458426475525, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2615352869033813 img loss 1.2670286893844604 img loss 1.311033844947815 img loss 1.425787329673767 img loss 1.1576933860778809 img loss 1.3162729740142822 img loss 1.3064708709716797 img loss 1.3190009593963623 img loss 1.2486741542816162 img loss 1.3017213344573975 img loss 1.3518511056900024 img loss 1.20669424533844 img loss 1.3608126640319824 img loss 1.287494421005249 img loss 1.36705482006073 img loss 1.2456824779510498 img loss 1.2423580884933472 img loss 1.351102590560913 img loss 1.2616231441497803 img loss 1.2946243286132812 img loss 1.3158385753631592 img loss 1.4084714651107788 img loss 1.368456482887268 img loss 1.2169392108917236 img loss 1.3485153913497925 img loss 1.427765130996704 img loss 1.2354005575180054 img loss 1.3833882808685303 img loss 1.2493711709976196 img loss 1.3349559307098389 img loss 1.2097179889678955 img loss 1.3797794580459595 img loss 1.3302768468856812 img loss 1.4185278415679932 img loss 1.2152855396270752 img loss 1.2838521003723145 img loss 1.2393879890441895 img loss 1.264026165008545 img loss 1.3124034404754639 img loss 1.411780834197998 img loss 1.2979247570037842 img loss 1.2707116603851318 img loss 1.3229084014892578 img loss 1.334245204925537 img loss 1.3388208150863647 img loss 1.33110511302948 img loss 1.4184385538101196 img loss 1.2753076553344727 img loss 1.3465198278427124 img loss 1.377259373664856 img loss 1.2754836082458496 img loss 1.3008575439453125 img loss 1.33541738986969 img loss 1.453008770942688 img loss 1.376528263092041 img loss 1.417880892753601 img loss 1.3227379322052002 img loss 1.3090167045593262 img loss 1.4214099645614624 img loss 1.3966957330703735 img loss 1.2851817607879639 img loss 1.3886419534683228 img loss 1.2376254796981812 img loss 1.3326033353805542 img loss 1.3842989206314087 img loss 1.2174491882324219 img loss 1.248796820640564 img loss 1.3277212381362915 img loss 1.3043546676635742 img loss 1.2554863691329956 img loss 1.3288933038711548 img loss 1.2506248950958252 img loss 1.3180891275405884 img loss 1.330643892288208 img loss 1.3815723657608032 img loss 1.1507799625396729 img loss 1.3869378566741943 img loss 1.4283969402313232 img loss 1.3046679496765137 img loss 1.4191277027130127 img loss 1.236784815788269 img loss 1.3327845335006714 img loss 1.3555361032485962 img loss 1.1844196319580078 img loss 1.2416445016860962 img loss 1.2671771049499512 img loss 1.24202561378479 img loss 1.4084153175354004 img loss 1.2399234771728516 img loss 1.2562649250030518 img loss 1.2614917755126953 img loss 1.3464261293411255 img loss 1.2950763702392578 img loss 1.2702935934066772 img loss 1.342722773551941 img loss 1.2480913400650024 img loss 1.3253777027130127 img loss 1.347022533416748 img loss 1.2521463632583618 img loss 1.2984246015548706 img loss 1.4547028541564941 img loss 1.3155397176742554 img loss 1.2629133462905884 img loss 1.4051121473312378 img loss 1.3417147397994995 img loss 1.3227697610855103 img loss 1.3404622077941895 img loss 1.335465908050537 img loss 1.308976650238037 img loss 1.292118787765503 img loss 1.302812099456787 img loss 1.314318299293518 img loss 1.3104419708251953 img loss 1.25438392162323 img loss 1.3383591175079346 img loss 1.2293757200241089 img loss 1.3116402626037598 img loss 1.3416368961334229 img loss 1.3840306997299194 img loss 1.3103432655334473img loss 1.2868075370788574 img loss 1.3544718027114868 img loss 1.3370095491409302 img loss 1.3000448942184448 img loss 1.2054731845855713 img loss 1.229917287826538 img loss 1.2973968982696533 img loss 1.3410135507583618 {'loss': 1.3127, 'grad_norm': 0.3164445757865906, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3542903661727905 img loss 1.153280258178711 img loss 1.1206227540969849 img loss 1.2116097211837769 img loss 1.247294306755066 img loss 1.2465507984161377 img loss 1.2829149961471558 img loss 1.2084605693817139 img loss 1.1859757900238037 img loss 1.165230393409729 img loss 1.1714662313461304 img loss 1.2162742614746094 img loss 1.1661401987075806 img loss 1.2842706441879272 img loss 1.350277066230774 img loss 1.2669181823730469 img loss 1.2829750776290894 img loss 1.241492509841919 img loss 1.2160699367523193 img loss 1.2775131464004517 img loss 1.2228132486343384 img loss 1.2936697006225586 img loss 1.2074370384216309 img loss 1.2204301357269287 img loss 1.2619833946228027 img loss 1.2348954677581787 img loss 1.2496708631515503 img loss 1.2313251495361328 img loss 1.2276490926742554 img loss 1.2791696786880493 img loss 1.2160906791687012 img loss 1.2894986867904663 img loss 1.2135865688323975 img loss 1.272408366203308 img loss 1.237657904624939 img loss 1.363014578819275 img loss 1.295045256614685 img loss 1.204087495803833 img loss 1.2639669179916382 img loss 1.2807087898254395 img loss 1.2958821058273315 img loss 1.3106019496917725 img loss 1.2820571660995483 img loss 1.336201786994934 img loss 1.3001350164413452 img loss 1.296330213546753 img loss 1.2332730293273926 img loss 1.1923853158950806 img loss 1.2389707565307617 img loss 1.386686086654663 img loss 1.1829551458358765 img loss 1.2580585479736328 img loss 1.2020231485366821 img loss 1.256659984588623 img loss 1.2627352476119995 img loss 1.2478841543197632 img loss 1.427078366279602 img loss 1.2042137384414673 img loss 1.2131316661834717 img loss 1.2942548990249634 img loss 1.1738159656524658 img loss 1.3025426864624023 img loss 1.3056467771530151 img loss 1.1877846717834473 img loss 1.1734154224395752 img loss 1.3200676441192627 img loss 1.2529027462005615 img loss 1.2527711391448975 img loss 1.2030949592590332 img loss 1.1762841939926147 img loss 1.2291685342788696 img loss 1.2804524898529053 img loss 1.2255151271820068 img loss 1.1744245290756226 img loss 1.3075428009033203 img loss 1.2789207696914673 img loss 1.3016847372055054 img loss 1.3148798942565918 img loss 1.3303016424179077 img loss 1.2886409759521484 img loss 1.305270791053772 img loss 1.2058089971542358 img loss 1.2966349124908447 img loss 1.295285940170288 img loss 1.275089144706726img loss 1.2409199476242065 img loss 1.2613483667373657 img loss 1.2518608570098877 img loss 1.2422749996185303 img loss 1.3755346536636353 img loss 1.1894878149032593 img loss 1.261675238609314 img loss 1.2077107429504395 img loss 1.1614383459091187 img loss 1.2895628213882446 img loss 1.2725751399993896 img loss 1.2901519536972046 img loss 1.2373528480529785 img loss 1.2274928092956543 img loss 1.248085856437683 img loss 1.2519466876983643 img loss 1.2974761724472046 img loss 1.2382087707519531 img loss 1.1551105976104736 img loss 1.2534902095794678 img loss 1.240073800086975 img loss 1.1969985961914062 img loss 1.1654964685440063 img loss 1.3179774284362793 img loss 1.1909726858139038 img loss 1.2988090515136719 img loss 1.266218662261963 img loss 1.2562146186828613 img loss 1.2446601390838623 img loss 1.2405589818954468 img loss 1.2279815673828125 img loss 1.1005624532699585 img loss 1.3708759546279907 img loss 1.238039493560791 img loss 1.2812225818634033 img loss 1.181899070739746 img loss 1.2587724924087524 img loss 1.2588999271392822 img loss 1.19662344455719 img loss 1.1727291345596313 img loss 1.152766466140747 img loss 1.282336950302124 img loss 1.3337457180023193 {'loss': 1.2502, 'grad_norm': 0.3064649999141693, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.254485845565796 img loss 1.202665090560913 img loss 1.2203091382980347 img loss 1.1624293327331543 img loss 1.1688144207000732 img loss 1.3047081232070923 img loss 1.2141544818878174 img loss 1.2674111127853394 img loss 1.2058508396148682 img loss 1.219423770904541 img loss 1.2858901023864746 img loss 1.2104761600494385 img loss 1.2153135538101196 img loss 1.2996482849121094 img loss 1.2077972888946533 img loss 1.17389714717865 img loss 1.166072130203247 img loss 1.267272710800171 img loss 1.2829211950302124 img loss 1.265960693359375 img loss 1.2906805276870728 img loss 1.2970139980316162 img loss 1.1746790409088135 img loss 1.242895483970642 img loss 1.2154362201690674 img loss 1.2576462030410767img loss 1.1908564567565918 img loss 1.306170105934143 img loss 1.1712672710418701 img loss 1.2047648429870605 img loss 1.2201566696166992 img loss 1.2841172218322754 img loss 1.2662198543548584 img loss 1.1843255758285522 img loss 1.2268463373184204 img loss 1.274742603302002 img loss 1.2838184833526611 img loss 1.2360438108444214 img loss 1.247894287109375 img loss 1.2244304418563843 img loss 1.2088813781738281img loss 1.2588106393814087 img loss 1.3016166687011719 img loss 1.1716639995574951 img loss 1.2517694234848022 img loss 1.215970516204834 img loss 1.27953040599823 img loss 1.2706667184829712 img loss 1.2266491651535034 img loss 1.2599400281906128 img loss 1.3016554117202759 img loss 1.190839409828186 img loss 1.2110626697540283 img loss 1.2562930583953857 img loss 1.224301815032959 img loss 1.2621581554412842 img loss 1.2615296840667725 img loss 1.2298706769943237 img loss 1.2700639963150024 img loss 1.217851161956787 img loss 1.2837309837341309 img loss 1.27550208568573 img loss 1.2845168113708496 img loss 1.2401180267333984 img loss 1.1634833812713623 img loss 1.2057147026062012 img loss 1.1579252481460571 img loss 1.2002681493759155 img loss 1.1955039501190186 img loss 1.2789026498794556 img loss 1.2582067251205444 img loss 1.3296794891357422 img loss 1.2949761152267456 img loss 1.3242661952972412 img loss 1.2734050750732422 img loss 1.3021970987319946 img loss 1.2030216455459595 img loss 1.2925571203231812 img loss 1.3719795942306519 img loss 1.1929305791854858 img loss 1.2897051572799683 img loss 1.306334137916565 img loss 1.167449951171875 img loss 1.203011155128479 img loss 1.200143814086914 img loss 1.2030171155929565 img loss 1.2177685499191284 img loss 1.2065378427505493 img loss 1.2203165292739868 img loss 1.2366466522216797 img loss 1.263790488243103 img loss 1.3521554470062256 img loss 1.2562646865844727 img loss 1.268066167831421 img loss 1.2630479335784912 img loss 1.1497609615325928 img loss 1.2233332395553589 img loss 1.2435816526412964 img loss 1.2274854183197021 img loss 1.104111909866333 img loss 1.2569451332092285 img loss 1.2313728332519531 img loss 1.1547377109527588 img loss 1.2051854133605957 img loss 1.2427572011947632 img loss 1.2776669263839722 img loss 1.2337967157363892 img loss 1.2259693145751953 img loss 1.2872031927108765 img loss 1.2407948970794678 img loss 1.1904985904693604 img loss 1.2737553119659424 img loss 1.2868484258651733 img loss 1.2312874794006348 img loss 1.2697255611419678 img loss 1.2617158889770508 img loss 1.2383249998092651 img loss 1.174098253250122 img loss 1.1966962814331055 img loss 1.2334916591644287 img loss 1.2380284070968628 img loss 1.260504126548767 img loss 1.3094090223312378 img loss 1.1425516605377197 img loss 1.2804564237594604 img loss 1.2849438190460205 img loss 1.2431811094284058 img loss 1.2657588720321655 {'loss': 1.2401, 'grad_norm': 0.23134343326091766, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2477221488952637 img loss 1.2002471685409546 img loss 1.2592929601669312 img loss 1.2758190631866455 img loss 1.2735095024108887 img loss 1.2126165628433228 img loss 1.2458986043930054 img loss 1.239488124847412 img loss 1.2649120092391968 img loss 1.22328519821167 img loss 1.2351298332214355 img loss 1.2184150218963623 img loss 1.2269293069839478 img loss 1.2319669723510742 img loss 1.2843488454818726 img loss 1.248014211654663 img loss 1.2417856454849243 img loss 1.2688779830932617 img loss 1.2632710933685303 img loss 1.2232338190078735 img loss 1.2854137420654297 img loss 1.2316620349884033 img loss 1.2232106924057007 img loss 1.1825016736984253 img loss 1.221760630607605 img loss 1.1818523406982422 img loss 1.2795536518096924 img loss 1.250178575515747 img loss 1.2137314081192017 img loss 1.2306489944458008 img loss 1.2607582807540894 img loss 1.2072416543960571 img loss 1.2055728435516357 img loss 1.2690540552139282 img loss 1.2908234596252441 img loss 1.2997649908065796 img loss 1.2498064041137695 img loss 1.2221750020980835 img loss 1.247340202331543 img loss 1.195407748222351 img loss 1.2489830255508423 img loss 1.2378087043762207 img loss 1.2315384149551392 img loss 1.227760910987854 img loss 1.200346827507019 img loss 1.1896746158599854 img loss 1.2114002704620361 img loss 1.1071932315826416 img loss 1.3010786771774292 img loss 1.2342145442962646 img loss 1.3125076293945312 img loss 1.253941297531128 img loss 1.2201135158538818 img loss 1.2729449272155762 img loss 1.2600419521331787 img loss 1.2440967559814453 img loss 1.2010082006454468 img loss 1.2858664989471436 img loss 1.249171495437622 img loss 1.2788679599761963 img loss 1.3043668270111084 img loss 1.1935185194015503 img loss 1.254414439201355 img loss 1.2611643075942993 img loss 1.351763367652893 img loss 1.176438570022583 img loss 1.245103359222412 img loss 1.2916738986968994 img loss 1.2321356534957886 img loss 1.2309093475341797 img loss 1.2575278282165527 img loss 1.242624282836914 img loss 1.2913464307785034 img loss 1.279425859451294 img loss 1.3170876502990723 img loss 1.2396249771118164 img loss 1.256812572479248 img loss 1.2427202463150024 img loss 1.2278200387954712 img loss 1.291892409324646 img loss 1.2238105535507202img loss 1.2420463562011719 img loss 1.2661186456680298 img loss 1.2296589612960815 img loss 1.2262163162231445 img loss 1.2363859415054321 img loss 1.181190848350525 img loss 1.2404288053512573 img loss 1.3216618299484253 img loss 1.1908330917358398 img loss 1.253888726234436 img loss 1.3255810737609863 img loss 1.1977800130844116 img loss 1.2323843240737915 img loss 1.3038851022720337 img loss 1.2229737043380737 img loss 1.214577078819275 img loss 1.2888362407684326 img loss 1.2593762874603271 img loss 1.3084481954574585 img loss 1.2172560691833496 img loss 1.2644113302230835 img loss 1.2185590267181396 img loss 1.1799066066741943 img loss 1.2400668859481812 img loss 1.245441198348999 img loss 1.2600380182266235 img loss 1.2689919471740723 img loss 1.3393034934997559 img loss 1.1925287246704102 img loss 1.2149255275726318 img loss 1.225837230682373 img loss 1.2362264394760132 img loss 1.1989835500717163 img loss 1.3385838270187378 img loss 1.257771372795105 img loss 1.2864612340927124 img loss 1.2597240209579468 img loss 1.2192836999893188 img loss 1.258935809135437 img loss 1.2186263799667358 img loss 1.2687395811080933 img loss 1.2394951581954956 img loss 1.2832494974136353 img loss 1.2111345529556274 img loss 1.172005534172058 img loss 1.264520287513733 img loss 1.2192342281341553 {'loss': 1.245, 'grad_norm': 0.37735533714294434, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2464942932128906 img loss 1.283139944076538 img loss 1.2516498565673828 img loss 1.200416922569275 img loss 1.266080617904663 img loss 1.2966827154159546 img loss 1.2435247898101807 img loss 1.2138811349868774 img loss 1.2568165063858032 img loss 1.2099689245224 img loss 1.2219656705856323 img loss 1.293677568435669 img loss 1.2127277851104736 img loss 1.2530800104141235 img loss 1.1910194158554077 img loss 1.1962131261825562 img loss 1.285553216934204 img loss 1.1519349813461304 img loss 1.2692874670028687 img loss 1.250939130783081 img loss 1.2141220569610596 img loss 1.1941239833831787 img loss 1.222104787826538 img loss 1.3340986967086792 img loss 1.341277003288269 img loss 1.2257459163665771 img loss 1.3271653652191162 img loss 1.2164734601974487 img loss 1.2993420362472534 img loss 1.25505530834198 img loss 1.2601248025894165 img loss 1.352414608001709 img loss 1.2190220355987549 img loss 1.2279080152511597 img loss 1.1768137216567993 img loss 1.187004566192627 img loss 1.3413513898849487 img loss 1.3393906354904175 img loss 1.2122730016708374 img loss 1.2063326835632324 img loss 1.1088104248046875 img loss 1.2772613763809204 img loss 1.2567542791366577 img loss 1.2282617092132568 img loss 1.2002710103988647 img loss 1.2472292184829712 img loss 1.1702995300292969 img loss 1.2826083898544312 img loss 1.1870864629745483 img loss 1.3292820453643799 img loss 1.3588824272155762 img loss 1.3033751249313354 img loss 1.2248072624206543 img loss 1.239546537399292 img loss 1.2158293724060059 img loss 1.1418390274047852 img loss 1.2114289999008179 img loss 1.2613072395324707 img loss 1.1783006191253662 img loss 1.1930415630340576 img loss 1.4085644483566284 img loss 1.1769880056381226 img loss 1.1557643413543701 img loss 1.2376097440719604 img loss 1.2971839904785156 img loss 1.2423224449157715 img loss 1.2806181907653809 img loss 1.2510398626327515 img loss 1.232092261314392 img loss 1.1978574991226196 img loss 1.190290093421936 img loss 1.184614896774292 img loss 1.1892074346542358 img loss 1.1902611255645752 img loss 1.1970523595809937 img loss 1.2043594121932983 img loss 1.2195353507995605 img loss 1.2486085891723633 img loss 1.2484605312347412 img loss 1.1872209310531616 img loss 1.3577371835708618 img loss 1.250373363494873 img loss 1.2935184240341187 img loss 1.3116031885147095 img loss 1.168139100074768 img loss 1.2354825735092163 img loss 1.212259292602539 img loss 1.2871464490890503 img loss 1.266794204711914 img loss 1.2806593179702759 img loss 1.293727159500122 img loss 1.2283267974853516 img loss 1.173898458480835 img loss 1.2340617179870605 img loss 1.3173130750656128 img loss 1.256290078163147 img loss 1.2086318731307983 img loss 1.2168139219284058 img loss 1.192190408706665 img loss 1.2902312278747559 img loss 1.2025692462921143 img loss 1.2080827951431274 img loss 1.2821102142333984 img loss 1.2590835094451904 img loss 1.2888094186782837 img loss 1.2023524045944214 img loss 1.2578885555267334 img loss 1.261888861656189 img loss 1.2047924995422363 img loss 1.1698329448699951 img loss 1.304207682609558 img loss 1.2263026237487793 img loss 1.216917872428894 img loss 1.20757257938385 img loss 1.2141358852386475 img loss 1.2625272274017334 img loss 1.2819627523422241 img loss 1.1803535223007202 img loss 1.1409944295883179 img loss 1.1755341291427612 img loss 1.2279095649719238 img loss 1.1836689710617065 img loss 1.2684202194213867 img loss 1.2465647459030151 img loss 1.2373952865600586 img loss 1.1628429889678955 img loss 1.2654863595962524 img loss 1.2600339651107788 {'loss': 1.2389, 'grad_norm': 0.3379597067832947, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3225762844085693 img loss 1.220837950706482 img loss 1.32082998752594 img loss 1.2806600332260132 img loss 1.2359565496444702 img loss 1.2061169147491455 img loss 1.3091484308242798 img loss 1.2901102304458618 img loss 1.2734439373016357 img loss 1.371740460395813 img loss 1.2373089790344238 img loss 1.3453075885772705 img loss 1.2554869651794434 img loss 1.2638318538665771 img loss 1.3152192831039429 img loss 1.2669332027435303 img loss 1.3223137855529785 img loss 1.3522473573684692 img loss 1.2728707790374756 img loss 1.251389741897583 img loss 1.3232802152633667 img loss 1.3278841972351074 img loss 1.3189646005630493 img loss 1.2296693325042725 img loss 1.3032845258712769 img loss 1.3340628147125244 img loss 1.264632225036621 img loss 1.2980951070785522 img loss 1.288900375366211 img loss 1.247794508934021 img loss 1.2891814708709717 img loss 1.3408879041671753 img loss 1.2726764678955078 img loss 1.3187956809997559 img loss 1.3455653190612793 img loss 1.3230652809143066 img loss 1.3854362964630127 img loss 1.3123490810394287 img loss 1.287050724029541 img loss 1.2744401693344116 img loss 1.2398897409439087 img loss 1.3067283630371094 img loss 1.2799824476242065 img loss 1.244309663772583 img loss 1.2779150009155273 img loss 1.2451634407043457 img loss 1.183143973350525 img loss 1.2987875938415527 img loss 1.305613398551941 img loss 1.2481571435928345 img loss 1.261621356010437 img loss 1.2790488004684448 img loss 1.400248646736145 img loss 1.366326928138733 img loss 1.2576730251312256 img loss 1.2510021924972534 img loss 1.3960996866226196 img loss 1.2817096710205078 img loss 1.2658462524414062 img loss 1.2786431312561035 img loss 1.3036208152770996 img loss 1.2220711708068848 img loss 1.243281364440918 img loss 1.2501734495162964 img loss 1.257551670074463 img loss 1.2649378776550293 img loss 1.247963786125183 img loss 1.1970185041427612 img loss 1.2037882804870605 img loss 1.2941862344741821 img loss 1.283565878868103 img loss 1.2879189252853394 img loss 1.2261303663253784 img loss 1.347180962562561 img loss 1.200493335723877 img loss 1.3051475286483765 img loss 1.2352479696273804 img loss 1.2514963150024414 img loss 1.3439834117889404 img loss 1.296641230583191 img loss 1.2177079916000366 img loss 1.3643395900726318 img loss 1.3003679513931274 img loss 1.2861629724502563 img loss 1.2498887777328491 img loss 1.301663875579834 img loss 1.3550984859466553 img loss 1.2679814100265503 img loss 1.3380424976348877 img loss 1.258788824081421 img loss 1.3474957942962646 img loss 1.2887934446334839 img loss 1.2751176357269287 img loss 1.280748724937439 img loss 1.3883661031723022 img loss 1.2014929056167603 img loss 1.4298433065414429 img loss 1.2655811309814453 img loss 1.2946600914001465 img loss 1.2095577716827393 img loss 1.304514765739441 img loss 1.3081060647964478 img loss 1.321459174156189 img loss 1.230973720550537 img loss 1.2788417339324951 img loss 1.2732155323028564 img loss 1.2120927572250366 img loss 1.308359980583191 img loss 1.325232982635498 img loss 1.2688746452331543 img loss 1.271686315536499 img loss 1.2909469604492188 img loss 1.2739404439926147 img loss 1.256730556488037 img loss 1.2616125345230103 img loss 1.2678107023239136 img loss 1.3450888395309448 img loss 1.3041471242904663 img loss 1.2496843338012695 img loss 1.3266997337341309 img loss 1.310302495956421 img loss 1.2524592876434326 img loss 1.3093241453170776 img loss 1.247331976890564 img loss 1.235458254814148 img loss 1.279895544052124 img loss 1.24787175655365 img loss 1.315031886100769 {'loss': 1.2854, 'grad_norm': 0.5540245771408081, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2012958526611328 img loss 1.3494874238967896 img loss 1.199941635131836 img loss 1.2734029293060303 img loss 1.1772446632385254 img loss 1.17471182346344 img loss 1.2302378416061401 img loss 1.2182101011276245 img loss 1.201801061630249 img loss 1.3155666589736938 img loss 1.2065385580062866 img loss 1.2234026193618774 img loss 1.1995453834533691 img loss 1.1308095455169678 img loss 1.1771843433380127 img loss 1.313269853591919 img loss 1.1396397352218628 img loss 1.2577686309814453 img loss 1.1682020425796509 img loss 1.281030535697937 img loss 1.1914089918136597 img loss 1.1812444925308228 img loss 1.1704275608062744 img loss 1.1707525253295898 img loss 1.2262928485870361 img loss 1.2865033149719238 img loss 1.190806269645691 img loss 1.1644651889801025 img loss 1.2365319728851318 img loss 1.3040180206298828 img loss 1.1518100500106812 img loss 1.1434639692306519 img loss 1.2336660623550415 img loss 1.2242664098739624 img loss 1.2309372425079346 img loss 1.2712593078613281 img loss 1.2753599882125854 img loss 1.3270233869552612 img loss 1.182969570159912 img loss 1.203680396080017 img loss 1.2953847646713257 img loss 1.1813396215438843 img loss 1.2291628122329712 img loss 1.2231993675231934 img loss 1.23070228099823 img loss 1.1816734075546265 img loss 1.2212655544281006 img loss 1.3913599252700806 img loss 1.24822199344635 img loss 1.2554426193237305 img loss 1.1802704334259033 img loss 1.2064186334609985 img loss 1.2111048698425293 img loss 1.2526346445083618 img loss 1.2967287302017212 img loss 1.209714651107788 img loss 1.2457891702651978 img loss 1.2022758722305298 img loss 1.1798920631408691 img loss 1.212343454360962 img loss 1.179847240447998 img loss 1.2113890647888184 img loss 1.1102147102355957 img loss 1.2854714393615723 img loss 1.2681719064712524 img loss 1.2326666116714478 img loss 1.4147764444351196 img loss 1.2770936489105225 img loss 1.226896047592163 img loss 1.1840388774871826 img loss 1.1834968328475952 img loss 1.2322304248809814 img loss 1.1875953674316406 img loss 1.159627914428711 img loss 1.1893137693405151 img loss 1.2706255912780762 img loss 1.191301941871643 img loss 1.2236381769180298 img loss 1.162942886352539 img loss 1.2718514204025269 img loss 1.2242637872695923 img loss 1.2345256805419922 img loss 1.2102431058883667 img loss 1.2113808393478394 img loss 1.2233178615570068 img loss 1.2389631271362305 img loss 1.1824183464050293 img loss 1.181933879852295 img loss 1.235879898071289 img loss 1.2428104877471924 img loss 1.2139524221420288 img loss 1.3067739009857178 img loss 1.2027413845062256 img loss 1.1880009174346924 img loss 1.2308472394943237 img loss 1.200333595275879 img loss 1.2008367776870728 img loss 1.235775351524353 img loss 1.2331271171569824 img loss 1.2091727256774902 img loss 1.2304284572601318 img loss 1.2506673336029053 img loss 1.2154369354248047 img loss 1.172102928161621 img loss 1.243883490562439 img loss 1.2138909101486206 img loss 1.150012731552124 img loss 1.270667552947998 img loss 1.252511739730835 img loss 1.278247356414795 img loss 1.1687464714050293 img loss 1.251640796661377 img loss 1.1616872549057007 img loss 1.2495291233062744 img loss 1.2828128337860107 img loss 1.164194107055664 img loss 1.1934798955917358 img loss 1.1580348014831543 img loss 1.27166748046875 img loss 1.180437684059143 img loss 1.2965739965438843 img loss 1.2657612562179565 img loss 1.2086904048919678 img loss 1.262041449546814 img loss 1.2323791980743408 img loss 1.2225546836853027 img loss 1.2251510620117188 img loss 1.193005919456482 {'loss': 1.2234, 'grad_norm': 0.30203956365585327, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.5069286823272705 img loss 1.3879492282867432 img loss 1.3229382038116455 img loss 1.4417539834976196img loss 1.3638173341751099 img loss 1.4170743227005005 img loss 1.4319428205490112 img loss 1.4391305446624756 img loss 1.4330447912216187 img loss 1.4068617820739746 img loss 1.4277805089950562 img loss 1.338097333908081 img loss 1.3932321071624756 img loss 1.4775944948196411 img loss 1.4204723834991455 img loss 1.4110562801361084 img loss 1.3832719326019287 img loss 1.3928303718566895 img loss 1.3649686574935913 img loss 1.3497271537780762 img loss 1.4093754291534424 img loss 1.3052347898483276 img loss 1.3682515621185303 img loss 1.4891475439071655 img loss 1.3923596143722534 img loss 1.3586889505386353 img loss 1.393358588218689 img loss 1.3977891206741333 img loss 1.4621914625167847 img loss 1.4705356359481812 img loss 1.4583936929702759 img loss 1.6527063846588135 img loss 1.4613455533981323 img loss 1.451191782951355 img loss 1.395110845565796 img loss 1.3793283700942993 img loss 1.3893005847930908 img loss 1.3340688943862915 img loss 1.4024245738983154 img loss 1.472569227218628 img loss 1.4384745359420776 img loss 1.431976556777954 img loss 1.3638746738433838 img loss 1.3913367986679077 img loss 1.3307042121887207 img loss 1.4311107397079468 img loss 1.4121034145355225 img loss 1.4409011602401733 img loss 1.285299301147461 img loss 1.3209043741226196 img loss 1.386552095413208 img loss 1.4067909717559814 img loss 1.367954134941101 img loss 1.2533130645751953 img loss 1.4166134595870972 img loss 1.45402991771698 img loss 1.3999823331832886 img loss 1.3933576345443726 img loss 1.3523377180099487 img loss 1.3963702917099 img loss 1.4360177516937256 img loss 1.590261697769165 img loss 1.421159029006958 img loss 1.4784244298934937 img loss 1.402500033378601 img loss 1.3819613456726074 img loss 1.3527023792266846 img loss 1.3122894763946533 img loss 1.3158881664276123 img loss 1.3539588451385498 img loss 1.451769232749939 img loss 1.4140583276748657 img loss 1.2896111011505127 img loss 1.5583328008651733 img loss 1.404971957206726 img loss 1.4579046964645386 img loss 1.3649532794952393 img loss 1.3380399942398071 img loss 1.444516897201538 img loss 1.349164605140686 img loss 1.384583592414856 img loss 1.4976017475128174 img loss 1.5174447298049927 img loss 1.382037878036499 img loss 1.421272873878479 img loss 1.4172345399856567 img loss 1.410507321357727 img loss 1.374873399734497 img loss 1.4039301872253418 img loss 1.300653338432312 img loss 1.4180881977081299 img loss 1.3850970268249512 img loss 1.3681973218917847 img loss 1.3424748182296753 img loss 1.3672683238983154 img loss 1.4141377210617065 img loss 1.354507565498352 img loss 1.410814881324768 img loss 1.325985312461853 img loss 1.4061903953552246 img loss 1.4042105674743652 img loss 1.5546314716339111 img loss 1.3813645839691162 img loss 1.3820079565048218 img loss 1.4273425340652466 img loss 1.4674201011657715 img loss 1.3186956644058228 img loss 1.3814804553985596 img loss 1.2326562404632568 img loss 1.5000646114349365 img loss 1.451292872428894 img loss 1.2917683124542236 img loss 1.44181227684021 img loss 1.3816109895706177 img loss 1.40168035030365 img loss 1.37236487865448 img loss 1.3068392276763916 img loss 1.3800700902938843 img loss 1.55739164352417 img loss 1.3823133707046509 img loss 1.3660866022109985 img loss 1.3726093769073486 img loss 1.2994036674499512 img loss 1.4455479383468628 img loss 1.30638587474823 img loss 1.5686348676681519 img loss 1.3487483263015747 img loss 1.405674695968628 {'loss': 1.4014, 'grad_norm': 0.39076337218284607, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3974416255950928 img loss 1.3573557138442993 img loss 1.2534891366958618 img loss 1.190917730331421 img loss 1.2506630420684814 img loss 1.282676339149475 img loss 1.2653359174728394 img loss 1.2657181024551392 img loss 1.285642147064209 img loss 1.277586579322815 img loss 1.2767924070358276 img loss 1.250950574874878 img loss 1.2586991786956787 img loss 1.2230404615402222 img loss 1.251434087753296 img loss 1.3370506763458252 img loss 1.337611436843872 img loss 1.24799382686615 img loss 1.3405381441116333 img loss 1.3087420463562012 img loss 1.2475483417510986 img loss 1.3735421895980835 img loss 1.2417553663253784 img loss 1.2696666717529297 img loss 1.369235634803772 img loss 1.2254186868667603 img loss 1.2948540449142456 img loss 1.2489056587219238 img loss 1.3761109113693237 img loss 1.2863597869873047 img loss 1.3754382133483887 img loss 1.3139057159423828 img loss 1.281797170639038 img loss 1.2645983695983887 img loss 1.29586660861969 img loss 1.340957760810852 img loss 1.242639422416687 img loss 1.2871263027191162 img loss 1.3288099765777588 img loss 1.340938925743103 img loss 1.264596700668335 img loss 1.297109603881836 img loss 1.3192278146743774 img loss 1.457403302192688 img loss 1.3192780017852783 img loss 1.3553835153579712 img loss 1.237874984741211 img loss 1.2423940896987915 img loss 1.321449875831604 img loss 1.2327349185943604 img loss 1.211681604385376 img loss 1.1829736232757568 img loss 1.2470297813415527 img loss 1.2898004055023193 img loss 1.2767683267593384 img loss 1.2820968627929688 img loss 1.2420024871826172 img loss 1.3054661750793457 img loss 1.2595798969268799 img loss 1.3219163417816162 img loss 1.2861506938934326 img loss 1.2841135263442993 img loss 1.2189404964447021 img loss 1.358988642692566 img loss 1.2603825330734253 img loss 1.3344086408615112 img loss 1.261573076248169 img loss 1.3756600618362427 img loss 1.2456433773040771 img loss 1.338253378868103 img loss 1.2642570734024048 img loss 1.2851622104644775 img loss 1.263026475906372 img loss 1.278749942779541 img loss 1.3204578161239624 img loss 1.2394567728042603 img loss 1.2529990673065186 img loss 1.3256704807281494 img loss 1.2987209558486938 img loss 1.2919855117797852 img loss 1.3153436183929443 img loss 1.3151241540908813 img loss 1.2985610961914062 img loss 1.2803024053573608 img loss 1.3129322528839111 img loss 1.2575091123580933 img loss 1.278700828552246 img loss 1.3066432476043701 img loss 1.3632795810699463 img loss 1.1995973587036133 img loss 1.2885079383850098 img loss 1.2217429876327515 img loss 1.2301280498504639 img loss 1.277890920639038 img loss 1.324978232383728 img loss 1.3024355173110962 img loss 1.324244737625122 img loss 1.3113365173339844 img loss 1.2439663410186768 img loss 1.3839455842971802 img loss 1.321258306503296 img loss 1.2534031867980957 img loss 1.3572020530700684 img loss 1.3038820028305054 img loss 1.289518117904663 img loss 1.302834153175354 img loss 1.245747447013855 img loss 1.2928920984268188 img loss 1.3306262493133545 img loss 1.3131262063980103 img loss 1.30374014377594 img loss 1.3119275569915771 img loss 1.2788028717041016 img loss 1.2582085132598877 img loss 1.3066458702087402 img loss 1.3227710723876953 img loss 1.263130784034729 img loss 1.2570387125015259 img loss 1.2337391376495361 img loss 1.286863923072815 img loss 1.3512426614761353 img loss 1.2754244804382324 img loss 1.3043617010116577 img loss 1.2570003271102905 img loss 1.2741222381591797 img loss 1.2346949577331543 img loss 1.3193440437316895 img loss 1.285398244857788 {'loss': 1.2898, 'grad_norm': 0.2806016504764557, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.344481348991394 img loss 1.3317354917526245 img loss 1.2378954887390137 img loss 1.2951183319091797 img loss 1.245415210723877 img loss 1.2527379989624023 img loss 1.2800101041793823 img loss 1.3231121301651 img loss 1.1717872619628906 img loss 1.3104560375213623 img loss 1.214415192604065 img loss 1.2420562505722046 img loss 1.2195863723754883 img loss 1.2129329442977905 img loss 1.219419240951538 img loss 1.2146551609039307 img loss 1.2179440259933472 img loss 1.2548853158950806 img loss 1.2838833332061768 img loss 1.262285828590393 img loss 1.2251967191696167 img loss 1.2855404615402222 img loss 1.2449772357940674 img loss 1.2823346853256226 img loss 1.3072056770324707 img loss 1.2504240274429321 img loss 1.2028214931488037 img loss 1.224487066268921 img loss 1.2631851434707642 img loss 1.269242763519287 img loss 1.2734525203704834 img loss 1.2842868566513062 img loss 1.2731672525405884 img loss 1.2594438791275024 img loss 1.2764763832092285 img loss 1.2459650039672852 img loss 1.204443335533142 img loss 1.244269847869873 img loss 1.2587578296661377 img loss 1.2490332126617432 img loss 1.2854359149932861 img loss 1.2920312881469727img loss 1.2083420753479004 img loss 1.2922701835632324 img loss 1.2132514715194702 img loss 1.2472679615020752 img loss 1.2622687816619873 img loss 1.2142071723937988 img loss 1.1940114498138428 img loss 1.2781511545181274 img loss 1.2654757499694824 img loss 1.3437923192977905 img loss 1.2085151672363281 img loss 1.2240797281265259 img loss 1.3425300121307373 img loss 1.2184298038482666 img loss 1.2172389030456543 img loss 1.2510406970977783 img loss 1.2239443063735962 img loss 1.2437041997909546 img loss 1.2548213005065918 img loss 1.2084462642669678 img loss 1.2523176670074463 img loss 1.2540205717086792 img loss 1.3114479780197144 img loss 1.2465729713439941 img loss 1.2414520978927612 img loss 1.2679089307785034 img loss 1.2089781761169434 img loss 1.1893279552459717 img loss 1.2505613565444946 img loss 1.2384827136993408 img loss 1.227116346359253 img loss 1.262853980064392 img loss 1.2491949796676636 img loss 1.2575931549072266 img loss 1.2689822912216187 img loss 1.2511135339736938 img loss 1.2482643127441406 img loss 1.249584436416626 img loss 1.298827886581421 img loss 1.205440878868103 img loss 1.264520287513733 img loss 1.2779794931411743 img loss 1.1875083446502686 img loss 1.287757396697998 img loss 1.2597072124481201 img loss 1.2037289142608643 img loss 1.249559760093689 img loss 1.2438791990280151 img loss 1.2482165098190308 img loss 1.261579155921936 img loss 1.2851417064666748 img loss 1.2709424495697021 img loss 1.2445838451385498 img loss 1.24860417842865 img loss 1.2383224964141846 img loss 1.3297853469848633 img loss 1.3166215419769287 img loss 1.2386692762374878 img loss 1.2144917249679565 img loss 1.2408783435821533 img loss 1.301949381828308 img loss 1.24824857711792 img loss 1.2130507230758667 img loss 1.225716233253479 img loss 1.2744568586349487 img loss 1.2711575031280518 img loss 1.2707550525665283 img loss 1.2483488321304321 img loss 1.24818754196167 img loss 1.2427691221237183 img loss 1.261818528175354 img loss 1.278605341911316 img loss 1.245721459388733 img loss 1.218801498413086 img loss 1.258289098739624 img loss 1.221709132194519 img loss 1.2403504848480225 img loss 1.3344733715057373 img loss 1.245794653892517 img loss 1.226874828338623 img loss 1.2208560705184937 img loss 1.3050713539123535 img loss 1.1838810443878174 img loss 1.2272132635116577 img loss 1.2541391849517822 img loss 1.3140089511871338 {'loss': 1.2533, 'grad_norm': 0.24497415125370026, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3572605848312378 img loss 1.310465693473816 img loss 1.2065517902374268 img loss 1.210983157157898 img loss 1.1937073469161987 img loss 1.2212176322937012 img loss 1.2722852230072021 img loss 1.2746493816375732 img loss 1.3017128705978394 img loss 1.2597850561141968 img loss 1.3611875772476196 img loss 1.2691092491149902 img loss 1.1773712635040283 img loss 1.3153578042984009 img loss 1.199049472808838 img loss 1.231244444847107 img loss 1.2439981698989868 img loss 1.2623176574707031 img loss 1.2153356075286865 img loss 1.3308305740356445 img loss 1.2554080486297607 img loss 1.3116109371185303 img loss 1.2639033794403076 img loss 1.1761505603790283 img loss 1.199618935585022 img loss 1.211694359779358 img loss 1.2811628580093384 img loss 1.2954373359680176 img loss 1.4151939153671265 img loss 1.234198808670044 img loss 1.2767226696014404 img loss 1.1666371822357178 img loss 1.20186185836792 img loss 1.1895103454589844 img loss 1.1913914680480957 img loss 1.2254693508148193 img loss 1.2175225019454956 img loss 1.309586763381958 img loss 1.3193453550338745 img loss 1.2650418281555176 img loss 1.19810152053833 img loss 1.2541545629501343 img loss 1.320595145225525 img loss 1.2628980875015259 img loss 1.236962914466858 img loss 1.2212740182876587 img loss 1.175014853477478 img loss 1.2534891366958618 img loss 1.2249987125396729 img loss 1.3247017860412598 img loss 1.226112961769104 img loss 1.2500022649765015 img loss 1.2735413312911987 img loss 1.2398802042007446 img loss 1.3216873407363892 img loss 1.2346224784851074 img loss 1.3654732704162598 img loss 1.3156598806381226 img loss 1.3236637115478516 img loss 1.2392288446426392 img loss 1.2881104946136475 img loss 1.2801169157028198 img loss 1.2534449100494385 img loss 1.3094944953918457 img loss 1.324828863143921 img loss 1.2531479597091675 img loss 1.3300039768218994 img loss 1.2349666357040405 img loss 1.2738151550292969 img loss 1.4493824243545532 img loss 1.261418342590332 img loss 1.2785265445709229 img loss 1.279611587524414 img loss 1.3358389139175415 img loss 1.3608813285827637 img loss 1.2872055768966675 img loss 1.2799209356307983 img loss 1.2540676593780518 img loss 1.2454410791397095 img loss 1.3315134048461914 img loss 1.4671787023544312 img loss 1.2541615962982178 img loss 1.2816789150238037 img loss 1.2998284101486206 img loss 1.2387698888778687 img loss 1.2263264656066895 img loss 1.3422904014587402 img loss 1.2698010206222534 img loss 1.2584543228149414 img loss 1.2891981601715088 img loss 1.2882639169692993 img loss 1.2383743524551392 img loss 1.2874878644943237 img loss 1.3099151849746704 img loss 1.302842378616333 img loss 1.2880489826202393 img loss 1.2280066013336182 img loss 1.1822645664215088 img loss 1.247779369354248 img loss 1.2786072492599487 img loss 1.2565491199493408 img loss 1.2338018417358398 img loss 1.2325340509414673 img loss 1.2430109977722168 img loss 1.324346899986267 img loss 1.2550357580184937 img loss 1.2930755615234375 img loss 1.2928025722503662 img loss 1.3481767177581787 img loss 1.2981855869293213 img loss 1.28684401512146 img loss 1.2688636779785156 img loss 1.2519890069961548 img loss 1.1904128789901733 img loss 1.3514924049377441 img loss 1.214249849319458 img loss 1.246018886566162 img loss 1.2810697555541992 img loss 1.2619253396987915 img loss 1.2363338470458984 img loss 1.2454050779342651 img loss 1.1892578601837158 img loss 1.2502130270004272 img loss 1.2731596231460571 img loss 1.2031574249267578 img loss 1.1799564361572266 img loss 1.243842363357544 img loss 1.2592121362686157 {'loss': 1.2671, 'grad_norm': 0.2277376651763916, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4994724988937378 img loss 1.4045159816741943 img loss 1.4979966878890991 img loss 1.4547890424728394 img loss 1.4028233289718628 img loss 1.3383324146270752 img loss 1.3176066875457764 img loss 1.5272831916809082 img loss 1.4591032266616821 img loss 1.4176042079925537 img loss 1.3760665655136108 img loss 1.6165262460708618 img loss 1.364500880241394 img loss 1.430303931236267 img loss 1.515255331993103 img loss 1.4025903940200806 img loss 1.4483054876327515 img loss 1.4078680276870728 img loss 1.3489158153533936 img loss 1.380431056022644 img loss 1.3492919206619263 img loss 1.592237114906311 img loss 1.3503938913345337 img loss 1.4557815790176392 img loss 1.4849003553390503 img loss 1.379873514175415 img loss 1.4543836116790771 img loss 1.290104866027832 img loss 1.3992797136306763 img loss 1.4934029579162598 img loss 1.3649029731750488 img loss 1.507203221321106 img loss 1.420722246170044 img loss 1.2948614358901978 img loss 1.4725388288497925 img loss 1.2696266174316406 img loss 1.6020511388778687 img loss 1.4129308462142944 img loss 1.4688829183578491 img loss 1.408349633216858 img loss 1.4204193353652954 img loss 1.404048204421997 img loss 1.5512444972991943 img loss 1.3493512868881226 img loss 1.3543219566345215 img loss 1.400580644607544 img loss 1.4868742227554321 img loss 1.5935972929000854 img loss 1.3755300045013428 img loss 1.420072317123413 img loss 1.4461272954940796 img loss 1.5401151180267334 img loss 1.4596861600875854 img loss 1.3812432289123535 img loss 1.4886802434921265 img loss 1.4809070825576782 img loss 1.2997311353683472 img loss 1.4791576862335205 img loss 1.5399802923202515 img loss 1.5709747076034546img loss 1.281786322593689 img loss 1.5141035318374634 img loss 1.4364268779754639 img loss 1.427017331123352 img loss 1.3607680797576904 img loss 1.3731958866119385 img loss 1.4432733058929443 img loss 1.5249570608139038 img loss 1.4236456155776978 img loss 1.4699727296829224 img loss 1.5244076251983643 img loss 1.5221022367477417 img loss 1.384153127670288 img loss 1.3473466634750366 img loss 1.4031280279159546 img loss 1.4702731370925903 img loss 1.4860578775405884 img loss 1.4412366151809692 img loss 1.481202483177185 img loss 1.3167816400527954 img loss 1.4234178066253662 img loss 1.35930335521698 img loss 1.4393748044967651 img loss 1.488463044166565 img loss 1.4187140464782715 img loss 1.4484962224960327 img loss 1.329200267791748 img loss 1.413851022720337 img loss 1.447619915008545 img loss 1.3129090070724487 img loss 1.272305965423584 img loss 1.4403904676437378 img loss 1.354131817817688 img loss 1.5134104490280151 img loss 1.5054248571395874 img loss 1.4301837682724 img loss 1.4203919172286987 img loss 1.5272899866104126 img loss 1.5345826148986816 img loss 1.5344786643981934 img loss 1.3627434968948364 img loss 1.3345171213150024 img loss 1.4150290489196777 img loss 1.271815538406372 img loss 1.475512981414795 img loss 1.486310362815857 img loss 1.6421067714691162 img loss 1.3180770874023438 img loss 1.3594495058059692 img loss 1.3789087533950806 img loss 1.5394484996795654 img loss 1.4819532632827759 img loss 1.4930262565612793 img loss 1.4528470039367676 img loss 1.4242771863937378 img loss 1.4699571132659912 img loss 1.361466646194458 img loss 1.5799087285995483 img loss 1.3397866487503052 img loss 1.501725435256958 img loss 1.4115430116653442 img loss 1.4357417821884155 img loss 1.3681889772415161 img loss 1.3550924062728882 img loss 1.4716869592666626 img loss 1.3402936458587646 img loss 1.4653124809265137 img loss 1.4621220827102661 {'loss': 1.4326, 'grad_norm': 0.23975186049938202, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3072001934051514 img loss 1.2661213874816895 img loss 1.3673911094665527 img loss 1.3424103260040283 img loss 1.3304245471954346 img loss 1.328601598739624 img loss 1.3032492399215698 img loss 1.2972320318222046 img loss 1.2983499765396118 img loss 1.265581488609314 img loss 1.4116203784942627 img loss 1.284766674041748 img loss 1.286434531211853 img loss 1.2645487785339355 img loss 1.2713499069213867 img loss 1.3176788091659546 img loss 1.3796700239181519 img loss 1.326270341873169 img loss 1.2785602807998657 img loss 1.3523049354553223 img loss 1.2904001474380493 img loss 1.3186910152435303 img loss 1.3014531135559082 img loss 1.2455929517745972 img loss 1.2683582305908203 img loss 1.343972086906433 img loss 1.2242255210876465 img loss 1.354193091392517 img loss 1.2482144832611084 img loss 1.2443771362304688 img loss 1.274118185043335 img loss 1.2327990531921387 img loss 1.2766671180725098 img loss 1.3658909797668457 img loss 1.2852782011032104 img loss 1.3076910972595215 img loss 1.3314588069915771 img loss 1.2947802543640137 img loss 1.3257362842559814 img loss 1.2853435277938843 img loss 1.2434297800064087 img loss 1.2978729009628296 img loss 1.2535114288330078 img loss 1.3229796886444092 img loss 1.3457437753677368 img loss 1.2616032361984253 img loss 1.3261150121688843 img loss 1.3032548427581787 img loss 1.2633044719696045 img loss 1.3191733360290527 img loss 1.3264070749282837 img loss 1.2246416807174683 img loss 1.2614139318466187 img loss 1.3140114545822144 img loss 1.2143433094024658 img loss 1.3006153106689453 img loss 1.2435743808746338 img loss 1.3727957010269165 img loss 1.3025047779083252 img loss 1.358603835105896 img loss 1.3079323768615723 img loss 1.316421389579773 img loss 1.30532705783844 img loss 1.232857584953308 img loss 1.3222973346710205 img loss 1.3340299129486084 img loss 1.212348222732544 img loss 1.3213127851486206 img loss 1.312204360961914 img loss 1.2480137348175049 img loss 1.3360940217971802 img loss 1.3117234706878662 img loss 1.299727439880371 img loss 1.340026617050171 img loss 1.2918298244476318 img loss 1.267202377319336 img loss 1.2790794372558594 img loss 1.1867201328277588 img loss 1.1824616193771362 img loss 1.3588308095932007 img loss 1.3671857118606567 img loss 1.2774838209152222 img loss 1.2457964420318604 img loss 1.2516379356384277 img loss 1.2707455158233643 img loss 1.3378435373306274 img loss 1.3616443872451782 img loss 1.2955983877182007 img loss 1.3305734395980835 img loss 1.3193838596343994 img loss 1.234424352645874 img loss 1.335615634918213 img loss 1.3982903957366943 img loss 1.277239203453064 img loss 1.2709697484970093 img loss 1.2462610006332397 img loss 1.2846077680587769 img loss 1.3088855743408203 img loss 1.2860440015792847 img loss 1.3436386585235596 img loss 1.3433080911636353 img loss 1.3168506622314453 img loss 1.268812656402588 img loss 1.3439695835113525 img loss 1.3144676685333252 img loss 1.3720933198928833 img loss 1.3411892652511597 img loss 1.304061770439148 img loss 1.2964341640472412 img loss 1.3938275575637817 img loss 1.235066294670105 img loss 1.290719985961914 img loss 1.2912977933883667 img loss 1.2603734731674194 img loss 1.2577580213546753 img loss 1.3147790431976318 img loss 1.320854902267456 img loss 1.304856777191162 img loss 1.2298078536987305 img loss 1.3056217432022095 img loss 1.3428809642791748 img loss 1.3062362670898438 img loss 1.3907757997512817 img loss 1.2074741125106812 img loss 1.3098728656768799 img loss 1.2958920001983643 img loss 1.3436837196350098 img loss 1.2425401210784912 {'loss': 1.2993, 'grad_norm': 0.2373410165309906, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.5108044147491455 img loss 1.549414038658142 img loss 1.528847575187683 img loss 1.6428229808807373 img loss 1.5208295583724976 img loss 1.554792046546936 img loss 1.5763996839523315 img loss 1.5695465803146362 img loss 1.7263814210891724 img loss 1.511683702468872 img loss 1.5969326496124268 img loss 1.5194798707962036 img loss 1.4010261297225952 img loss 1.5449012517929077 img loss 1.678292989730835 img loss 1.4947848320007324 img loss 1.5346013307571411 img loss 1.5508099794387817 img loss 1.5520875453948975 img loss 1.4821516275405884 img loss 1.4670509099960327 img loss 1.569158673286438 img loss 1.4581948518753052 img loss 1.5499929189682007 img loss 1.5091197490692139 img loss 1.4663320779800415 img loss 1.4204614162445068 img loss 1.4823921918869019 img loss 1.7053180932998657 img loss 1.580615758895874 img loss 1.5514957904815674 img loss 1.4067803621292114 img loss 1.5313597917556763 img loss 1.6667896509170532 img loss 1.4367791414260864 img loss 1.4077379703521729 img loss 1.6615527868270874 img loss 1.4353185892105103 img loss 1.6042420864105225 img loss 1.5388928651809692 img loss 1.5173307657241821 img loss 1.4433791637420654 img loss 1.6484593152999878 img loss 1.5058690309524536 img loss 1.4661945104599 img loss 1.5866609811782837 img loss 1.476075291633606 img loss 1.5569941997528076 img loss 1.468596339225769 img loss 1.4779964685440063 img loss 1.689619779586792 img loss 1.4106332063674927 img loss 1.5945465564727783 img loss 1.4900821447372437 img loss 1.5041941404342651 img loss 1.5692600011825562 img loss 1.5168392658233643 img loss 1.4918262958526611 img loss 1.5194518566131592 img loss 1.4937902688980103 img loss 1.611319661140442 img loss 1.5975953340530396 img loss 1.6017497777938843 img loss 1.5567777156829834 img loss 1.6600216627120972 img loss 1.5138418674468994 img loss 1.55486261844635 img loss 1.5777796506881714 img loss 1.4366005659103394 img loss 1.5854523181915283 img loss 1.6894069910049438 img loss 1.4250129461288452 img loss 1.5176641941070557 img loss 1.4449504613876343 img loss 1.5973535776138306 img loss 1.6091772317886353 img loss 1.5692874193191528 img loss 1.4255568981170654 img loss 1.4961086511611938 img loss 1.5789179801940918 img loss 1.7116459608078003 img loss 1.5116832256317139 img loss 1.5332437753677368 img loss 1.5768073797225952 img loss 1.5483012199401855 img loss 1.4235118627548218 img loss 1.462855577468872 img loss 1.5137403011322021 img loss 1.4105740785598755 img loss 1.4667534828186035 img loss 1.7089693546295166 img loss 1.4360088109970093 img loss 1.6114178895950317 img loss 1.677248239517212 img loss 1.6058109998703003 img loss 1.477475643157959 img loss 1.4533354043960571 img loss 1.574743628501892 img loss 1.4817835092544556 img loss 1.553382396697998 img loss 1.6883213520050049 img loss 1.50752592086792 img loss 1.4067479372024536 img loss 1.5810456275939941 img loss 1.5730206966400146 img loss 1.3491642475128174 img loss 1.6738475561141968 img loss 1.5429197549819946 img loss 1.4996447563171387 img loss 1.478598952293396 img loss 1.4206360578536987 img loss 1.4721099138259888 img loss 1.4566594362258911 img loss 1.523058295249939 img loss 1.5755618810653687 img loss 1.615149736404419 img loss 1.500651240348816 img loss 1.5495808124542236 img loss 1.48288094997406 img loss 1.469336986541748 img loss 1.5230196714401245 img loss 1.4709633588790894 img loss 1.608440637588501 img loss 1.5264395475387573 img loss 1.590107798576355 img loss 1.6422836780548096 img loss 1.5818588733673096 img loss 1.5433241128921509 {'loss': 1.5357, 'grad_norm': 0.35832181572914124, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.187839388847351 img loss 1.2054147720336914 img loss 1.26028311252594 img loss 1.2685173749923706 img loss 1.2254139184951782 img loss 1.2190132141113281 img loss 1.283059000968933 img loss 1.20176362991333 img loss 1.2688411474227905 img loss 1.18418550491333 img loss 1.2229055166244507 img loss 1.2162407636642456 img loss 1.2653751373291016 img loss 1.25578773021698 img loss 1.2375538349151611 img loss 1.283620834350586 img loss 1.3035749197006226 img loss 1.281572699546814 img loss 1.223928451538086 img loss 1.240639090538025 img loss 1.2605764865875244 img loss 1.2432405948638916 img loss 1.269750952720642 img loss 1.2215509414672852 img loss 1.2861781120300293 img loss 1.2649528980255127 img loss 1.2605829238891602 img loss 1.2233912944793701 img loss 1.2811626195907593 img loss 1.2408273220062256 img loss 1.2764198780059814 img loss 1.2193440198898315 img loss 1.2352311611175537 img loss 1.2507243156433105 img loss 1.2398467063903809 img loss 1.321881651878357 img loss 1.264553427696228 img loss 1.2610753774642944 img loss 1.280480980873108 img loss 1.2222764492034912 img loss 1.2340905666351318 img loss 1.223200798034668 img loss 1.3100190162658691 img loss 1.3912185430526733 img loss 1.184569239616394 img loss 1.2056108713150024 img loss 1.271226406097412 img loss 1.2909958362579346 img loss 1.2867740392684937 img loss 1.2821438312530518 img loss 1.2040990591049194 img loss 1.2164596319198608 img loss 1.2301491498947144 img loss 1.2405694723129272 img loss 1.2016899585723877 img loss 1.341942548751831 img loss 1.2077817916870117 img loss 1.2125009298324585 img loss 1.2881731986999512 img loss 1.2809094190597534 img loss 1.2470766305923462 img loss 1.2116544246673584 img loss 1.2371689081192017 img loss 1.1884548664093018 img loss 1.2407804727554321 img loss 1.240261435508728 img loss 1.3021159172058105 img loss 1.2387627363204956 img loss 1.2239729166030884 img loss 1.198408842086792 img loss 1.3359020948410034 img loss 1.2295584678649902 img loss 1.2416551113128662 img loss 1.2569469213485718 img loss 1.261556625366211 img loss 1.2525402307510376 img loss 1.267772912979126 img loss 1.2124769687652588 img loss 1.1816151142120361 img loss 1.244261384010315 img loss 1.250135064125061 img loss 1.124163031578064 img loss 1.220977783203125 img loss 1.3381094932556152 img loss 1.1886147260665894 img loss 1.247451663017273 img loss 1.245938777923584 img loss 1.27286696434021 img loss 1.2060245275497437 img loss 1.2054599523544312 img loss 1.215684175491333 img loss 1.2695701122283936 img loss 1.2360813617706299 img loss 1.1962441205978394 img loss 1.2149279117584229 img loss 1.3332204818725586 img loss 1.295662522315979 img loss 1.2939465045928955 img loss 1.2970280647277832 img loss 1.2480719089508057 img loss 1.240782618522644 img loss 1.2932697534561157 img loss 1.2233729362487793 img loss 1.232187271118164 img loss 1.2921327352523804 img loss 1.297651767730713 img loss 1.205682635307312 img loss 1.1819608211517334 img loss 1.2345929145812988 img loss 1.2075045108795166 img loss 1.336905837059021 img loss 1.2302194833755493 img loss 1.1881451606750488 img loss 1.2173912525177002 img loss 1.264526605606079 img loss 1.2534693479537964 img loss 1.2210609912872314 img loss 1.2791184186935425 img loss 1.2938709259033203 img loss 1.2342580556869507 img loss 1.2915445566177368 img loss 1.2192903757095337 img loss 1.2779672145843506 img loss 1.322526216506958 img loss 1.257631778717041 img loss 1.2627246379852295 img loss 1.3535940647125244 img loss 1.2053064107894897 {'loss': 1.2492, 'grad_norm': 0.32954534888267517, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.5138076543807983 img loss 1.3872230052947998 img loss 1.5083727836608887 img loss 1.5807738304138184 img loss 1.3232910633087158 img loss 1.3498042821884155 img loss 1.4129595756530762 img loss 1.5056432485580444 img loss 1.403335452079773 img loss 1.5251656770706177 img loss 1.33779776096344 img loss 1.3390686511993408 img loss 1.4452061653137207 img loss 1.4814562797546387 img loss 1.3869315385818481 img loss 1.2866429090499878 img loss 1.4787226915359497 img loss 1.407956838607788 img loss 1.411960244178772 img loss 1.5168145895004272 img loss 1.5117264986038208 img loss 1.41000235080719 img loss 1.516080379486084 img loss 1.3817410469055176 img loss 1.343664526939392 img loss 1.3452438116073608 img loss 1.5696243047714233 img loss 1.4340182542800903 img loss 1.4105632305145264 img loss 1.4580544233322144 img loss 1.3571799993515015 img loss 1.4186774492263794 img loss 1.4299657344818115 img loss 1.4756418466567993 img loss 1.4695600271224976 img loss 1.4246219396591187 img loss 1.3375121355056763 img loss 1.338986873626709 img loss 1.3781521320343018 img loss 1.4094103574752808 img loss 1.3379913568496704 img loss 1.408799409866333 img loss 1.2935720682144165 img loss 1.4725143909454346 img loss 1.3579930067062378 img loss 1.354143500328064 img loss 1.3604706525802612 img loss 1.4921677112579346 img loss 1.3730021715164185 img loss 1.5025445222854614 img loss 1.3638584613800049 img loss 1.4113523960113525 img loss 1.4169420003890991 img loss 1.3711179494857788 img loss 1.4334536790847778 img loss 1.4091492891311646 img loss 1.415941596031189 img loss 1.53987455368042 img loss 1.5015758275985718 img loss 1.4703675508499146 img loss 1.4248625040054321 img loss 1.3086360692977905 img loss 1.40528404712677 img loss 1.3444846868515015 img loss 1.5199958086013794 img loss 1.456978678703308 img loss 1.4276012182235718 img loss 1.449218511581421 img loss 1.4891445636749268 img loss 1.4057432413101196 img loss 1.6346498727798462 img loss 1.533976435661316 img loss 1.4844505786895752 img loss 1.4152560234069824 img loss 1.4321343898773193 img loss 1.4622223377227783 img loss 1.439958930015564 img loss 1.3723891973495483 img loss 1.4567991495132446 img loss 1.4460617303848267 img loss 1.3748191595077515 img loss 1.413306713104248 img loss 1.3667484521865845 img loss 1.482735276222229 img loss 1.41805100440979 img loss 1.3560458421707153 img loss 1.32468581199646 img loss 1.4688961505889893 img loss 1.338997483253479 img loss 1.4541960954666138 img loss 1.4627634286880493 img loss 1.401108980178833 img loss 1.4736183881759644 img loss 1.4613579511642456 img loss 1.427822470664978 img loss 1.5487593412399292 img loss 1.2813189029693604 img loss 1.30492103099823 img loss 1.5005717277526855 img loss 1.420304536819458 img loss 1.5168583393096924 img loss 1.4060879945755005 img loss 1.3972218036651611 img loss 1.4740288257598877 img loss 1.3865019083023071 img loss 1.4972912073135376 img loss 1.4356093406677246 img loss 1.3548258543014526 img loss 1.442064881324768 img loss 1.346685528755188 img loss 1.4683502912521362 img loss 1.34006929397583 img loss 1.2882498502731323 img loss 1.4773119688034058 img loss 1.4656155109405518 img loss 1.3500510454177856 img loss 1.3501026630401611 img loss 1.3422443866729736 img loss 1.3875373601913452 img loss 1.4220911264419556 img loss 1.4108079671859741 img loss 1.4922888278961182 img loss 1.4122964143753052 img loss 1.4166826009750366 img loss 1.4480441808700562 img loss 1.4718800783157349 img loss 1.4040507078170776 img loss 1.3862870931625366 {'loss': 1.4226, 'grad_norm': 0.2634567320346832, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2824805974960327 img loss 1.3263736963272095 img loss 1.279138445854187 img loss 1.225476622581482 img loss 1.4739105701446533 img loss 1.2843226194381714 img loss 1.2925925254821777 img loss 1.2903766632080078 img loss 1.3719216585159302 img loss 1.2649917602539062 img loss 1.3208839893341064 img loss 1.3036469221115112 img loss 1.2797329425811768 img loss 1.1807098388671875 img loss 1.2536629438400269 img loss 1.148967981338501 img loss 1.3811482191085815 img loss 1.3773424625396729 img loss 1.378812551498413 img loss 1.2862470149993896 img loss 1.3244869709014893 img loss 1.2844070196151733 img loss 1.3723698854446411 img loss 1.2824742794036865 img loss 1.3239548206329346 img loss 1.237308382987976 img loss 1.2818841934204102 img loss 1.2822173833847046 img loss 1.2827814817428589 img loss 1.1758201122283936 img loss 1.240028977394104 img loss 1.1792128086090088 img loss 1.329725742340088 img loss 1.3392051458358765 img loss 1.2870759963989258 img loss 1.2320611476898193 img loss 1.3926736116409302 img loss 1.235958456993103 img loss 1.3371098041534424 img loss 1.2585943937301636 img loss 1.3075342178344727 img loss 1.1774859428405762 img loss 1.336852788925171 img loss 1.329798698425293 img loss 1.3520671129226685 img loss 1.2247904539108276 img loss 1.2660101652145386 img loss 1.3358405828475952 img loss 1.2275816202163696 img loss 1.3017507791519165 img loss 1.308790683746338 img loss 1.2970243692398071 img loss 1.2576072216033936 img loss 1.2543033361434937 img loss 1.1603398323059082 img loss 1.268674612045288 img loss 1.3040236234664917 img loss 1.281625747680664 img loss 1.220996618270874 img loss 1.2638936042785645 img loss 1.3697984218597412 img loss 1.4376740455627441 img loss 1.3208661079406738 img loss 1.3134182691574097 img loss 1.2340227365493774 img loss 1.3267868757247925 img loss 1.327917456626892 img loss 1.4426286220550537 img loss 1.2242538928985596 img loss 1.242113709449768 img loss 1.196818232536316 img loss 1.2444676160812378 img loss 1.2781214714050293 img loss 1.2993083000183105 img loss 1.2398408651351929 img loss 1.3294942378997803 img loss 1.246268630027771 img loss 1.2991387844085693 img loss 1.3382794857025146 img loss 1.3129839897155762 img loss 1.234622836112976 img loss 1.2378383874893188 img loss 1.293905258178711 img loss 1.2983020544052124 img loss 1.3392623662948608 img loss 1.246302843093872 img loss 1.2445400953292847 img loss 1.332497477531433 img loss 1.3074002265930176 img loss 1.3182026147842407 img loss 1.3587177991867065 img loss 1.3211573362350464 img loss 1.3689788579940796 img loss 1.2279115915298462 img loss 1.344584584236145 img loss 1.2565395832061768 img loss 1.2877814769744873 img loss 1.2164233922958374 img loss 1.2173393964767456 img loss 1.3039005994796753 img loss 1.2547305822372437 img loss 1.212247371673584 img loss 1.3343380689620972 img loss 1.385161280632019 img loss 1.3323943614959717 img loss 1.2266346216201782 img loss 1.2885292768478394 img loss 1.1929610967636108 img loss 1.2739293575286865 img loss 1.3457688093185425 img loss 1.1930458545684814 img loss 1.3215957880020142 img loss 1.2829512357711792 img loss 1.2933692932128906 img loss 1.2416170835494995 img loss 1.244215488433838 img loss 1.2384488582611084 img loss 1.3383824825286865 img loss 1.1969523429870605 img loss 1.3493465185165405 img loss 1.2225356101989746 img loss 1.3947337865829468 img loss 1.180598497390747 img loss 1.2027318477630615 img loss 1.2936333417892456 img loss 1.3418735265731812 img loss 1.2772773504257202 img loss 1.3269248008728027 {'loss': 1.2869, 'grad_norm': 0.3364028334617615, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.353086233139038 img loss 1.218037486076355 img loss 1.3333820104599 img loss 1.2962193489074707 img loss 1.2885478734970093 img loss 1.3035551309585571 img loss 1.390918254852295 img loss 1.3428699970245361 img loss 1.3296966552734375 img loss 1.314070224761963 img loss 1.371693730354309 img loss 1.3408821821212769 img loss 1.3302160501480103 img loss 1.2558887004852295 img loss 1.3072394132614136 img loss 1.2665836811065674 img loss 1.3089576959609985 img loss 1.2277753353118896 img loss 1.3872021436691284 img loss 1.2801835536956787 img loss 1.3068065643310547 img loss 1.2853693962097168 img loss 1.3298307657241821 img loss 1.3792979717254639 img loss 1.285562515258789 img loss 1.295013427734375 img loss 1.3516860008239746 img loss 1.2789950370788574 img loss 1.309497356414795 img loss 1.343932032585144 img loss 1.3346790075302124 img loss 1.4249578714370728 img loss 1.3221266269683838 img loss 1.2069586515426636 img loss 1.2602604627609253 img loss 1.367838978767395 img loss 1.2804553508758545 img loss 1.315172791481018 img loss 1.2871127128601074 img loss 1.3555575609207153 img loss 1.2768217325210571 img loss 1.3219093084335327 img loss 1.2516531944274902 img loss 1.222348928451538 img loss 1.2931418418884277 img loss 1.438491940498352 img loss 1.1955839395523071 img loss 1.3546340465545654img loss 1.3632705211639404 img loss 1.2520995140075684 img loss 1.2935236692428589 img loss 1.4340530633926392 img loss 1.3000816106796265 img loss 1.3538926839828491 img loss 1.2329914569854736 img loss 1.2852256298065186 img loss 1.2459636926651 img loss 1.2830235958099365 img loss 1.3450456857681274 img loss 1.1939363479614258 img loss 1.1983840465545654 img loss 1.3583738803863525 img loss 1.3341845273971558 img loss 1.2469948530197144 img loss 1.4811292886734009 img loss 1.3205053806304932 img loss 1.2188113927841187 img loss 1.212939977645874 img loss 1.3851059675216675 img loss 1.304646372795105 img loss 1.2512311935424805 img loss 1.3041117191314697 img loss 1.3147648572921753 img loss 1.32664954662323 img loss 1.2230215072631836 img loss 1.3926196098327637 img loss 1.19002103805542 img loss 1.2811411619186401 img loss 1.2934021949768066 img loss 1.3463857173919678 img loss 1.3586170673370361 img loss 1.3347923755645752 img loss 1.330899953842163 img loss 1.3165090084075928 img loss 1.1963847875595093 img loss 1.3991707563400269 img loss 1.3352081775665283 img loss 1.4180676937103271 img loss 1.29768967628479 img loss 1.275777816772461 img loss 1.2039660215377808 img loss 1.293142318725586 img loss 1.2884076833724976 img loss 1.2339839935302734 img loss 1.2950870990753174 img loss 1.2429348230361938 img loss 1.2269556522369385 img loss 1.2406346797943115 img loss 1.356564998626709 img loss 1.352891445159912 img loss 1.2649824619293213 img loss 1.3423265218734741 img loss 1.3487582206726074 img loss 1.2920383214950562 img loss 1.2735931873321533 img loss 1.2820780277252197 img loss 1.3342223167419434 img loss 1.2291511297225952 img loss 1.278907060623169 img loss 1.4215513467788696 img loss 1.2886734008789062 img loss 1.3120739459991455 img loss 1.296830654144287 img loss 1.3094608783721924 img loss 1.3305325508117676 img loss 1.3278950452804565 img loss 1.3292261362075806 img loss 1.3081811666488647 img loss 1.2918652296066284 img loss 1.2211663722991943 img loss 1.3604451417922974 img loss 1.2204532623291016 img loss 1.2738043069839478 img loss 1.3073642253875732 img loss 1.4707859754562378 img loss 1.3093235492706299 img loss 1.4046605825424194 img loss 1.2268402576446533 {'loss': 1.3058, 'grad_norm': 0.2822854220867157, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.738858938217163 img loss 1.6342912912368774 img loss 1.5462346076965332 img loss 1.6851141452789307 img loss 1.7282298803329468 img loss 1.6619762182235718 img loss 1.5195000171661377 img loss 1.6083570718765259 img loss 1.5029876232147217 img loss 1.6516109704971313 img loss 1.5585894584655762 img loss 1.5712274312973022 img loss 1.4758436679840088 img loss 1.5595967769622803 img loss 1.62489652633667 img loss 1.5304499864578247 img loss 1.5021674633026123 img loss 1.5457890033721924 img loss 1.6085753440856934 img loss 1.5570120811462402 img loss 1.548561930656433 img loss 1.5252844095230103 img loss 1.6378757953643799 img loss 1.4941545724868774 img loss 1.464179515838623 img loss 1.7192339897155762 img loss 1.572989583015442 img loss 1.5349239110946655 img loss 1.515946865081787 img loss 1.5616265535354614 img loss 1.5232645273208618 img loss 1.6018928289413452 img loss 1.649444341659546 img loss 1.5506412982940674 img loss 1.5889915227890015 img loss 1.6171749830245972 img loss 1.589180827140808 img loss 1.5665687322616577 img loss 1.516680359840393 img loss 1.6172033548355103 img loss 1.530685544013977 img loss 1.5477811098098755 img loss 1.5272631645202637 img loss 1.5892231464385986 img loss 1.6515029668807983 img loss 1.6064295768737793 img loss 1.4999749660491943 img loss 1.792128324508667 img loss 1.6029609441757202 img loss 1.5326024293899536 img loss 1.5331367254257202 img loss 1.6692606210708618 img loss 1.5811887979507446 img loss 1.4968653917312622 img loss 1.5254814624786377 img loss 1.5853285789489746 img loss 1.688651442527771 img loss 1.6698966026306152 img loss 1.5269855260849 img loss 1.551620364189148 img loss 1.5370256900787354 img loss 1.48961341381073 img loss 1.5247026681900024 img loss 1.5696661472320557 img loss 1.6169992685317993 img loss 1.6295474767684937 img loss 1.5330003499984741 img loss 1.6108564138412476 img loss 1.528939127922058 img loss 1.4779140949249268 img loss 1.4611525535583496 img loss 1.702581763267517 img loss 1.5363205671310425 img loss 1.5729607343673706 img loss 1.5450478792190552 img loss 1.8220148086547852 img loss 1.7157236337661743 img loss 1.6141932010650635 img loss 1.544869065284729 img loss 1.7278592586517334 img loss 1.6560416221618652 img loss 1.6055749654769897 img loss 1.657743215560913 img loss 1.6358705759048462 img loss 1.5829241275787354 img loss 1.5638725757598877 img loss 1.480649471282959 img loss 1.596402883529663 img loss 1.5913220643997192 img loss 1.789162039756775 img loss 1.4851704835891724 img loss 1.5562870502471924 img loss 1.5845454931259155 img loss 1.5451903343200684 img loss 1.4960581064224243 img loss 1.5178978443145752 img loss 1.5727918148040771 img loss 1.7437622547149658 img loss 1.556034803390503 img loss 1.585656762123108 img loss 1.4493963718414307 img loss 1.573240041732788 img loss 1.6374775171279907 img loss 1.695847988128662 img loss 1.5285639762878418 img loss 1.6234891414642334 img loss 1.628313422203064 img loss 1.661259412765503 img loss 1.4464741945266724 img loss 1.5895713567733765 img loss 1.597793459892273 img loss 1.5472939014434814 img loss 1.5863198041915894 img loss 1.4826109409332275 img loss 1.5718610286712646 img loss 1.662798285484314 img loss 1.610408902168274 img loss 1.8368570804595947 img loss 1.5408413410186768 img loss 1.54684579372406 img loss 1.5847105979919434 img loss 1.5751068592071533 img loss 1.5979961156845093 img loss 1.5733388662338257 img loss 1.5883877277374268 img loss 1.614421010017395 img loss 1.5677188634872437 img loss 1.4498449563980103 {'loss': 1.5848, 'grad_norm': 0.28522372245788574, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.504718542098999 img loss 1.4950480461120605 img loss 1.514288067817688 img loss 1.7248693704605103 img loss 1.6002060174942017 img loss 1.3801770210266113 img loss 1.3768986463546753 img loss 1.6045262813568115 img loss 1.472420334815979 img loss 1.4613326787948608 img loss 1.4126795530319214 img loss 1.3736361265182495 img loss 1.5292351245880127 img loss 1.374423623085022 img loss 1.6414177417755127 img loss 1.4221396446228027 img loss 1.3586499691009521 img loss 1.5802682638168335 img loss 1.588681697845459 img loss 1.4097874164581299 img loss 1.4632991552352905 img loss 1.4378801584243774 img loss 1.4889529943466187 img loss 1.4057408571243286 img loss 1.5485187768936157 img loss 1.4734617471694946 img loss 1.504045844078064 img loss 1.393767237663269 img loss 1.4266104698181152 img loss 1.3745992183685303 img loss 1.5101597309112549 img loss 1.3383501768112183 img loss 1.4167615175247192 img loss 1.4391511678695679 img loss 1.3989392518997192 img loss 1.4389011859893799 img loss 1.4832254648208618 img loss 1.4710066318511963 img loss 1.5911389589309692 img loss 1.4655479192733765 img loss 1.4486002922058105 img loss 1.5037692785263062 img loss 1.5057450532913208 img loss 1.4451096057891846 img loss 1.7560925483703613 img loss 1.4404330253601074 img loss 1.3869357109069824 img loss 1.4463553428649902 img loss 1.510962963104248 img loss 1.446825623512268 img loss 1.644176721572876 img loss 1.4567235708236694 img loss 1.32960844039917 img loss 1.4367258548736572 img loss 1.3735257387161255 img loss 1.503833293914795 img loss 1.3833335638046265 img loss 1.4835336208343506 img loss 1.3507282733917236 img loss 1.5054147243499756 img loss 1.4903289079666138 img loss 1.4108150005340576 img loss 1.4249989986419678 img loss 1.5008167028427124 img loss 1.508613109588623 img loss 1.4813103675842285 img loss 1.4398834705352783 img loss 1.3816269636154175 img loss 1.4772831201553345 img loss 1.4536653757095337 img loss 1.5164984464645386 img loss 1.3802074193954468 img loss 1.5554118156433105 img loss 1.452172875404358 img loss 1.5350233316421509 img loss 1.3793762922286987 img loss 1.4183050394058228 img loss 1.6408765316009521 img loss 1.4236328601837158 img loss 1.3569111824035645 img loss 1.4431496858596802 img loss 1.456233263015747 img loss 1.422048807144165 img loss 1.5727139711380005 img loss 1.537868618965149 img loss 1.4246914386749268 img loss 1.5475785732269287 img loss 1.5688425302505493 img loss 1.5004106760025024 img loss 1.379542589187622 img loss 1.4143083095550537 img loss 1.4944268465042114 img loss 1.4210684299468994 img loss 1.485956072807312 img loss 1.5043580532073975 img loss 1.2633540630340576 img loss 1.4908262491226196 img loss 1.4907761812210083 img loss 1.4639760255813599 img loss 1.3837248086929321 img loss 1.5277947187423706 img loss 1.5304428339004517 img loss 1.3724561929702759 img loss 1.5576118230819702 img loss 1.397467017173767 img loss 1.6102334260940552 img loss 1.5252889394760132 img loss 1.3942347764968872 img loss 1.4206026792526245 img loss 1.4759734869003296 img loss 1.4265166521072388 img loss 1.3756215572357178 img loss 1.5635472536087036 img loss 1.4329025745391846 img loss 1.5935413837432861 img loss 1.6342037916183472 img loss 1.580369234085083 img loss 1.5869879722595215 img loss 1.4444633722305298 img loss 1.645262598991394 img loss 1.4556866884231567 img loss 1.340012788772583 img loss 1.52229642868042 img loss 1.421033501625061 img loss 1.5324980020523071 img loss 1.48405122756958 img loss 1.511888027191162 img loss 1.3729567527770996 {'loss': 1.4725, 'grad_norm': 0.3276742696762085, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3071380853652954 img loss 1.2974681854248047 img loss 1.4031481742858887 img loss 1.4012097120285034 img loss 1.363057255744934 img loss 1.2882287502288818 img loss 1.2636854648590088 img loss 1.3262242078781128 img loss 1.344913125038147 img loss 1.3728654384613037 img loss 1.2240879535675049 img loss 1.3293378353118896 img loss 1.3389724493026733 img loss 1.3960133790969849 img loss 1.3036470413208008 img loss 1.3439515829086304 img loss 1.238064169883728 img loss 1.3630173206329346 img loss 1.339023232460022 img loss 1.259873867034912 img loss 1.352982997894287 img loss 1.2489780187606812 img loss 1.3811383247375488 img loss 1.412955641746521 img loss 1.2881693840026855 img loss 1.3107426166534424 img loss 1.252362608909607 img loss 1.314720630645752 img loss 1.264373779296875 img loss 1.3320868015289307 img loss 1.2616547346115112 img loss 1.3269398212432861 img loss 1.3623712062835693 img loss 1.4246238470077515 img loss 1.3541045188903809 img loss 1.3567931652069092 img loss 1.4037811756134033 img loss 1.3761849403381348 img loss 1.440449595451355 img loss 1.3318010568618774 img loss 1.2498655319213867 img loss 1.2795791625976562 img loss 1.4370521306991577 img loss 1.314156413078308 img loss 1.2609230279922485 img loss 1.344896912574768 img loss 1.3648836612701416 img loss 1.2760639190673828 img loss 1.3342394828796387 img loss 1.3094489574432373 img loss 1.3938430547714233 img loss 1.4252418279647827 img loss 1.280404806137085 img loss 1.4217721223831177 img loss 1.3660129308700562 img loss 1.2897882461547852 img loss 1.350838541984558 img loss 1.3492405414581299 img loss 1.4663949012756348 img loss 1.337120532989502 img loss 1.3456066846847534 img loss 1.271798849105835 img loss 1.3049770593643188 img loss 1.3140957355499268 img loss 1.3755466938018799 img loss 1.333728551864624 img loss 1.3009834289550781 img loss 1.2868363857269287 img loss 1.335594654083252 img loss 1.3789881467819214 img loss 1.3127437829971313 img loss 1.2885974645614624 img loss 1.2932593822479248 img loss 1.363065481185913 img loss 1.29619300365448 img loss 1.3770910501480103 img loss 1.3504787683486938 img loss 1.371495008468628 img loss 1.3106231689453125 img loss 1.3136277198791504 img loss 1.4048330783843994 img loss 1.261177659034729 img loss 1.3008766174316406 img loss 1.2776628732681274 img loss 1.407936453819275 img loss 1.265734076499939 img loss 1.2586866617202759 img loss 1.3335239887237549 img loss 1.3324356079101562 img loss 1.349881887435913 img loss 1.3877354860305786 img loss 1.2737810611724854 img loss 1.2936254739761353 img loss 1.2759130001068115 img loss 1.3810316324234009 img loss 1.300362467765808 img loss 1.2664813995361328 img loss 1.3609496355056763 img loss 1.3256690502166748 img loss 1.2524038553237915 img loss 1.373838186264038 img loss 1.39126455783844 img loss 1.3399282693862915 img loss 1.4585522413253784 img loss 1.2922437191009521 img loss 1.3124827146530151 img loss 1.2949413061141968 img loss 1.3512312173843384 img loss 1.2611618041992188 img loss 1.4085444211959839 img loss 1.3286473751068115 img loss 1.2879242897033691 img loss 1.2490277290344238 img loss 1.3721203804016113 img loss 1.322587490081787 img loss 1.2832015752792358 img loss 1.3633211851119995 img loss 1.3967548608779907 img loss 1.3533543348312378img loss 1.344225287437439 img loss 1.307162880897522 img loss 1.2808774709701538 img loss 1.3456971645355225 img loss 1.2456451654434204 img loss 1.4007374048233032 img loss 1.4227309226989746 img loss 1.4164482355117798 img loss 1.2733334302902222 {'loss': 1.3318, 'grad_norm': 0.3906981348991394, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3227542638778687 img loss 1.3683421611785889 img loss 1.2897402048110962 img loss 1.336547613143921 img loss 1.2961840629577637 img loss 1.274888515472412 img loss 1.2956385612487793 img loss 1.2524913549423218 img loss 1.286841869354248 img loss 1.3334988355636597 img loss 1.2813136577606201 img loss 1.26151704788208 img loss 1.4039770364761353 img loss 1.3304105997085571 img loss 1.3074188232421875 img loss 1.2617214918136597 img loss 1.2505202293395996 img loss 1.4061801433563232 img loss 1.3630480766296387 img loss 1.26360023021698 img loss 1.2691186666488647 img loss 1.2782080173492432 img loss 1.3454148769378662 img loss 1.3228697776794434 img loss 1.2438360452651978 img loss 1.3371660709381104 img loss 1.2434234619140625 img loss 1.312059998512268 img loss 1.2593746185302734 img loss 1.3369156122207642 img loss 1.2260178327560425 img loss 1.262894630432129 img loss 1.213728904724121 img loss 1.222847580909729 img loss 1.2865002155303955 img loss 1.3470064401626587 img loss 1.2723182439804077 img loss 1.3016793727874756 img loss 1.258811593055725 img loss 1.3407442569732666 img loss 1.2708438634872437 img loss 1.3279852867126465 img loss 1.3270397186279297 img loss 1.3519399166107178 img loss 1.2157306671142578 img loss 1.2714860439300537 img loss 1.3184975385665894 img loss 1.295113205909729 img loss 1.2744559049606323 img loss 1.2843434810638428 img loss 1.2771623134613037 img loss 1.2543224096298218 img loss 1.3275316953659058 img loss 1.3399789333343506 img loss 1.3140027523040771 img loss 1.2154661417007446 img loss 1.3442176580429077 img loss 1.2635259628295898 img loss 1.283862829208374 img loss 1.2923009395599365 img loss 1.3022096157073975 img loss 1.243761658668518 img loss 1.3312042951583862 img loss 1.2280558347702026 img loss 1.3926860094070435 img loss 1.2371389865875244 img loss 1.3039095401763916 img loss 1.3126955032348633 img loss 1.2999107837677002 img loss 1.3128021955490112 img loss 1.2811601161956787 img loss 1.2596404552459717 img loss 1.3082236051559448 img loss 1.2563761472702026 img loss 1.4167914390563965 img loss 1.2679004669189453 img loss 1.241230845451355 img loss 1.3246760368347168 img loss 1.2756553888320923 img loss 1.2868342399597168 img loss 1.245113730430603 img loss 1.3141392469406128 img loss 1.3093376159667969 img loss 1.2931900024414062 img loss 1.3519057035446167 img loss 1.339078664779663 img loss 1.2806147336959839 img loss 1.2630622386932373 img loss 1.3179229497909546 img loss 1.2687797546386719 img loss 1.264350414276123 img loss 1.4224250316619873 img loss 1.3072468042373657 img loss 1.3336520195007324 img loss 1.364302396774292 img loss 1.2851711511611938 img loss 1.2926914691925049 img loss 1.1396892070770264 img loss 1.3078278303146362 img loss 1.2622857093811035 img loss 1.246342420578003 img loss 1.3531423807144165 img loss 1.2959017753601074 img loss 1.3085187673568726 img loss 1.30379319190979 img loss 1.2708842754364014 img loss 1.2593269348144531 img loss 1.3958392143249512 img loss 1.2534316778182983 img loss 1.2639092206954956 img loss 1.2820186614990234 img loss 1.2895827293395996 img loss 1.2048060894012451 img loss 1.2532951831817627 img loss 1.2697080373764038 img loss 1.3137743473052979 img loss 1.3077199459075928 img loss 1.2943763732910156 img loss 1.2436320781707764 img loss 1.2673981189727783 img loss 1.2831196784973145 img loss 1.2531237602233887 img loss 1.286012887954712 img loss 1.2328325510025024 img loss 1.304961919784546 img loss 1.2129772901535034 img loss 1.3176912069320679 img loss 1.287522792816162 {'loss': 1.2923, 'grad_norm': 0.20898647606372833, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.145566463470459 img loss 1.2465004920959473 img loss 1.1410249471664429 img loss 1.1788409948349 img loss 1.1821985244750977 img loss 1.1773202419281006 img loss 1.293923020362854 img loss 1.2673618793487549 img loss 1.1559290885925293 img loss 1.1595313549041748 img loss 1.2626451253890991 img loss 1.2160776853561401 img loss 1.1710106134414673 img loss 1.1287437677383423 img loss 1.1637959480285645 img loss 1.2431938648223877 img loss 1.2895878553390503 img loss 1.2398332357406616 img loss 1.18290114402771 img loss 1.1920229196548462 img loss 1.2225310802459717 img loss 1.1638561487197876 img loss 1.1073311567306519 img loss 1.2182340621948242 img loss 1.1593983173370361 img loss 1.1950562000274658 img loss 1.2528272867202759 img loss 1.236086130142212 img loss 1.216282844543457 img loss 1.250724196434021 img loss 1.2047287225723267 img loss 1.255387544631958 img loss 1.2192237377166748 img loss 1.1990644931793213 img loss 1.0885299444198608 img loss 1.094220519065857 img loss 1.1314127445220947 img loss 1.1537774801254272 img loss 1.2014226913452148 img loss 1.2202625274658203 img loss 1.1043812036514282 img loss 1.254412055015564 img loss 1.2747070789337158 img loss 1.278201937675476 img loss 1.2349499464035034 img loss 1.1354548931121826 img loss 1.152768850326538 img loss 1.2589161396026611 img loss 1.1766510009765625 img loss 1.2566580772399902 img loss 1.2164568901062012 img loss 1.2436790466308594 img loss 1.2108070850372314 img loss 1.2156990766525269 img loss 1.2263344526290894 img loss 1.149573802947998 img loss 1.1256927251815796 img loss 1.2982304096221924 img loss 1.2321428060531616 img loss 1.1324925422668457 img loss 1.124635100364685 img loss 1.1973605155944824 img loss 1.1742973327636719 img loss 1.1736090183258057 img loss 1.17911696434021 img loss 1.2763439416885376 img loss 1.2292537689208984 img loss 1.3039270639419556 img loss 1.172210693359375 img loss 1.1032944917678833 img loss 1.2488338947296143 img loss 1.2533187866210938 img loss 1.2137950658798218 img loss 1.252462387084961 img loss 1.2337157726287842 img loss 1.149035930633545 img loss 1.1600366830825806 img loss 1.176369071006775 img loss 1.2968002557754517 img loss 1.228998064994812 img loss 1.156739592552185 img loss 1.242753267288208 img loss 1.1005520820617676 img loss 1.2276794910430908 img loss 1.2574949264526367 img loss 1.207832932472229 img loss 1.2925410270690918 img loss 1.171865701675415 img loss 1.1447902917861938 img loss 1.2295012474060059 img loss 1.202239751815796 img loss 1.2108280658721924 img loss 1.1900873184204102 img loss 1.2887701988220215 img loss 1.1759543418884277 img loss 1.1484310626983643 img loss 1.131185531616211 img loss 1.2843332290649414 img loss 1.2906224727630615 img loss 1.3032615184783936 img loss 1.2373708486557007 img loss 1.2262814044952393 img loss 1.240238070487976 img loss 1.245853304862976 img loss 1.2057969570159912 img loss 1.1892755031585693 img loss 1.2627027034759521 img loss 1.2501695156097412 img loss 1.2218950986862183 img loss 1.1541718244552612 img loss 1.1673657894134521 img loss 1.1270432472229004 img loss 1.1912367343902588 img loss 1.2154498100280762 img loss 1.24751615524292 img loss 1.0918854475021362 img loss 1.180525302886963 img loss 1.19719398021698 img loss 1.1583333015441895 img loss 1.1228294372558594 img loss 1.183919906616211 img loss 1.201606273651123 img loss 1.136831283569336 img loss 1.195494294166565 img loss 1.2004647254943848 img loss 1.1758602857589722 img loss 1.159661889076233 img loss 1.2393938302993774 {'loss': 1.2019, 'grad_norm': 0.2635238766670227, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4903618097305298 img loss 1.5398647785186768 img loss 1.4761449098587036 img loss 1.5695964097976685 img loss 1.5505821704864502 img loss 1.5495957136154175 img loss 1.458484411239624 img loss 1.4986262321472168 img loss 1.54750394821167 img loss 1.5639656782150269 img loss 1.554813265800476 img loss 1.6222995519638062 img loss 1.47068190574646 img loss 1.4170868396759033 img loss 1.4443717002868652 img loss 1.4612107276916504 img loss 1.569929838180542 img loss 1.507758617401123 img loss 1.464813470840454 img loss 1.459023356437683 img loss 1.5191713571548462 img loss 1.4365028142929077 img loss 1.4666523933410645 img loss 1.487499475479126 img loss 1.5305978059768677 img loss 1.4904414415359497 img loss 1.4643794298171997 img loss 1.407631754875183 img loss 1.4096152782440186 img loss 1.4865028858184814 img loss 1.416730523109436 img loss 1.4576659202575684 img loss 1.5122027397155762 img loss 1.6397799253463745 img loss 1.4420640468597412 img loss 1.5069843530654907 img loss 1.5427734851837158 img loss 1.5611053705215454 img loss 1.4981281757354736 img loss 1.5473237037658691 img loss 1.434630036354065 img loss 1.7280017137527466 img loss 1.5719562768936157 img loss 1.5096995830535889 img loss 1.479656457901001 img loss 1.4864505529403687 img loss 1.6620646715164185 img loss 1.5235974788665771 img loss 1.4274674654006958 img loss 1.4790230989456177 img loss 1.4953992366790771 img loss 1.6352076530456543 img loss 1.5789653062820435 img loss 1.6159508228302002 img loss 1.4756255149841309 img loss 1.6195253133773804 img loss 1.5670071840286255 img loss 1.444266438484192 img loss 1.422275185585022 img loss 1.4934450387954712 img loss 1.6370702981948853 img loss 1.4328666925430298 img loss 1.6048176288604736 img loss 1.4667904376983643 img loss 1.5285099744796753 img loss 1.5891960859298706 img loss 1.5319914817810059 img loss 1.4495130777359009 img loss 1.4804054498672485 img loss 1.4423489570617676 img loss 1.5049129724502563 img loss 1.442414402961731 img loss 1.5638954639434814 img loss 1.649505853652954 img loss 1.4583913087844849 img loss 1.448768973350525 img loss 1.531245470046997 img loss 1.4758508205413818 img loss 1.5433008670806885 img loss 1.504489779472351 img loss 1.5826741456985474 img loss 1.433569073677063 img loss 1.5095165967941284 img loss 1.3430564403533936 img loss 1.4609721899032593 img loss 1.6902188062667847 img loss 1.4092497825622559 img loss 1.495358943939209 img loss 1.6289957761764526 img loss 1.3872876167297363 img loss 1.483015537261963 img loss 1.3521808385849 img loss 1.5571635961532593 img loss 1.5333534479141235 img loss 1.4333813190460205 img loss 1.4580285549163818img loss 1.5035879611968994 img loss 1.4200416803359985 img loss 1.5156075954437256 img loss 1.500995397567749 img loss 1.6000038385391235 img loss 1.4231871366500854 img loss 1.6225723028182983 img loss 1.6420387029647827 img loss 1.6336060762405396 img loss 1.458614706993103 img loss 1.6080442667007446 img loss 1.4011435508728027 img loss 1.6033860445022583 img loss 1.4348652362823486 img loss 1.5034831762313843 img loss 1.4900397062301636 img loss 1.6545214653015137 img loss 1.4151476621627808 img loss 1.4821581840515137 img loss 1.584398627281189 img loss 1.5584619045257568 img loss 1.5276484489440918 img loss 1.485937476158142 img loss 1.5224974155426025 img loss 1.6302485466003418 img loss 1.5107090473175049 img loss 1.5417253971099854 img loss 1.4748320579528809 img loss 1.6490318775177002 img loss 1.5521241426467896 img loss 1.613035798072815 img loss 1.6506882905960083 {'loss': 1.5152, 'grad_norm': 0.2840801477432251, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2351592779159546 img loss 1.1889655590057373 img loss 1.1715859174728394 img loss 1.3513152599334717 img loss 1.2110612392425537 img loss 1.2916972637176514 img loss 1.2657623291015625 img loss 1.2713634967803955 img loss 1.211147665977478 img loss 1.187458872795105 img loss 1.182131290435791 img loss 1.2271764278411865 img loss 1.3259543180465698 img loss 1.2337546348571777 img loss 1.32993745803833 img loss 1.31999671459198 img loss 1.2443020343780518 img loss 1.239907145500183 img loss 1.201235055923462 img loss 1.2589473724365234 img loss 1.2585963010787964 img loss 1.318161964416504 img loss 1.2096610069274902 img loss 1.2191721200942993 img loss 1.2154088020324707 img loss 1.1509056091308594 img loss 1.2583750486373901 img loss 1.2207486629486084 img loss 1.2557224035263062 img loss 1.309321641921997 img loss 1.265532374382019 img loss 1.221352219581604 img loss 1.2760779857635498 img loss 1.2320764064788818 img loss 1.279888391494751 img loss 1.1955957412719727 img loss 1.3819226026535034 img loss 1.1895116567611694 img loss 1.1772081851959229 img loss 1.2178572416305542 img loss 1.2084434032440186 img loss 1.2183656692504883 img loss 1.1411329507827759 img loss 1.2985296249389648 img loss 1.2770897150039673 img loss 1.2489746809005737 img loss 1.2551414966583252 img loss 1.1950466632843018 img loss 1.2963672876358032 img loss 1.2140405178070068 img loss 1.2225089073181152 img loss 1.1781079769134521 img loss 1.207335352897644 img loss 1.2586678266525269 img loss 1.2485640048980713 img loss 1.2821986675262451 img loss 1.221179723739624 img loss 1.2456804513931274 img loss 1.2764972448349 img loss 1.258164644241333 img loss 1.2721672058105469 img loss 1.2827891111373901 img loss 1.2954574823379517 img loss 1.340395450592041 img loss 1.2660548686981201 img loss 1.2142614126205444 img loss 1.222826361656189 img loss 1.3299559354782104 img loss 1.2443166971206665 img loss 1.2183116674423218 img loss 1.1742210388183594 img loss 1.2119245529174805 img loss 1.2444695234298706 img loss 1.2518304586410522 img loss 1.1743534803390503 img loss 1.2001111507415771 img loss 1.198737621307373 img loss 1.1840537786483765 img loss 1.3284752368927002 img loss 1.307429313659668 img loss 1.2764071226119995 img loss 1.1237608194351196 img loss 1.2019487619400024 img loss 1.2552556991577148 img loss 1.3119466304779053 img loss 1.287339448928833 img loss 1.224618911743164 img loss 1.261361002922058 img loss 1.258524775505066 img loss 1.1990245580673218 img loss 1.2716193199157715 img loss 1.2475428581237793 img loss 1.3553967475891113 img loss 1.2320759296417236 img loss 1.266221523284912 img loss 1.2466392517089844 img loss 1.2468814849853516 img loss 1.2263246774673462 img loss 1.190393328666687 img loss 1.2201097011566162 img loss 1.1655240058898926 img loss 1.222229242324829 img loss 1.2086399793624878 img loss 1.0989688634872437 img loss 1.2594873905181885 img loss 1.2515602111816406 img loss 1.257798671722412 img loss 1.1832683086395264 img loss 1.1797888278961182 img loss 1.2277380228042603 img loss 1.1982848644256592 img loss 1.169984221458435 img loss 1.3047970533370972 img loss 1.2544761896133423 img loss 1.2080612182617188 img loss 1.2315467596054077 img loss 1.251743197441101 img loss 1.216662049293518 img loss 1.2411199808120728 img loss 1.4044722318649292 img loss 1.3898727893829346 img loss 1.2351911067962646 img loss 1.291774034500122 img loss 1.2364219427108765 img loss 1.2233898639678955 img loss 1.2691864967346191 img loss 1.2668503522872925 img loss 1.1405582427978516 {'loss': 1.2423, 'grad_norm': 0.26176151633262634, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.362610936164856 img loss 1.2276747226715088 img loss 1.2959046363830566 img loss 1.272417664527893 img loss 1.2578754425048828 img loss 1.284624457359314 img loss 1.3003126382827759 img loss 1.290730357170105 img loss 1.2607921361923218 img loss 1.283164381980896 img loss 1.2760004997253418 img loss 1.4012750387191772 img loss 1.2730000019073486 img loss 1.2378596067428589 img loss 1.2961934804916382 img loss 1.243075966835022 img loss 1.2513188123703003 img loss 1.350014328956604 img loss 1.2617067098617554 img loss 1.2844517230987549 img loss 1.286641001701355 img loss 1.2715718746185303 img loss 1.3185774087905884 img loss 1.3134887218475342 img loss 1.3332488536834717 img loss 1.3509944677352905 img loss 1.3249659538269043 img loss 1.2900999784469604 img loss 1.2654244899749756 img loss 1.295336127281189 img loss 1.282335638999939 img loss 1.314690351486206 img loss 1.3116209506988525 img loss 1.280959963798523 img loss 1.3150542974472046 img loss 1.269876480102539 img loss 1.3242944478988647 img loss 1.3193485736846924 img loss 1.3099193572998047 img loss 1.2301851511001587 img loss 1.2562127113342285 img loss 1.2846152782440186 img loss 1.302317500114441 img loss 1.2536324262619019 img loss 1.3295658826828003 img loss 1.3128457069396973 img loss 1.3201589584350586img loss 1.3267688751220703 img loss 1.2880338430404663 img loss 1.2533719539642334 img loss 1.2735741138458252 img loss 1.3043606281280518 img loss 1.3722065687179565 img loss 1.2808263301849365 img loss 1.3417266607284546 img loss 1.256242275238037 img loss 1.3424029350280762 img loss 1.3373692035675049 img loss 1.2704862356185913 img loss 1.2798726558685303 img loss 1.3016527891159058 img loss 1.3244463205337524 img loss 1.2193853855133057 img loss 1.2563722133636475 img loss 1.2954387664794922 img loss 1.244736909866333 img loss 1.258116602897644 img loss 1.2912927865982056 img loss 1.3099244832992554 img loss 1.3288029432296753 img loss 1.2769889831542969 img loss 1.3234257698059082 img loss 1.2532199621200562 img loss 1.3383936882019043 img loss 1.2188977003097534 img loss 1.2845284938812256 img loss 1.2805241346359253 img loss 1.343796968460083 img loss 1.3198517560958862 img loss 1.319284439086914 img loss 1.3248498439788818 img loss 1.266120195388794 img loss 1.3631600141525269 img loss 1.2267825603485107 img loss 1.334396243095398 img loss 1.2888519763946533 img loss 1.2593954801559448 img loss 1.3294912576675415 img loss 1.2294971942901611 img loss 1.2998676300048828 img loss 1.3139995336532593 img loss 1.3151997327804565 img loss 1.2754205465316772 img loss 1.2288222312927246 img loss 1.410644769668579 img loss 1.2955039739608765 img loss 1.308083176612854 img loss 1.2983421087265015 img loss 1.2910963296890259 img loss 1.2837425470352173 img loss 1.3153221607208252 img loss 1.327990174293518 img loss 1.2669899463653564 img loss 1.2831223011016846 img loss 1.269242763519287 img loss 1.282944917678833 img loss 1.3422656059265137 img loss 1.2666683197021484 img loss 1.2245630025863647 img loss 1.2466528415679932 img loss 1.3132035732269287 img loss 1.2753043174743652 img loss 1.3017138242721558 img loss 1.348874568939209 img loss 1.345200777053833 img loss 1.3465487957000732 img loss 1.3366550207138062 img loss 1.2600457668304443 img loss 1.301308512687683 img loss 1.309566855430603 img loss 1.2886643409729004 img loss 1.248106837272644 img loss 1.2336115837097168 img loss 1.3269484043121338 img loss 1.2835099697113037 img loss 1.2515840530395508 img loss 1.3026412725448608 img loss 1.311272144317627 {'loss': 1.2941, 'grad_norm': 0.26759058237075806, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2380924224853516 img loss 1.2379006147384644 img loss 1.238872766494751 img loss 1.2267709970474243 img loss 1.2431529760360718 img loss 1.3240669965744019 img loss 1.1966482400894165 img loss 1.1466093063354492 img loss 1.2910125255584717 img loss 1.1978710889816284 img loss 1.2107139825820923 img loss 1.3036973476409912 img loss 1.2468737363815308 img loss 1.1503585577011108 img loss 1.1627851724624634 img loss 1.1634563207626343 img loss 1.2322851419448853 img loss 1.2259202003479004 img loss 1.2715030908584595 img loss 1.1899875402450562 img loss 1.1666100025177002 img loss 1.2288141250610352 img loss 1.2418638467788696 img loss 1.2198083400726318 img loss 1.2429590225219727 img loss 1.2070369720458984 img loss 1.204258680343628 img loss 1.2223196029663086 img loss 1.2497576475143433 img loss 1.1978574991226196 img loss 1.2538613080978394 img loss 1.155804991722107 img loss 1.2029149532318115 img loss 1.1987330913543701 img loss 1.2471587657928467 img loss 1.2254786491394043 img loss 1.1723697185516357 img loss 1.1980254650115967 img loss 1.27196204662323 img loss 1.3444406986236572 img loss 1.2014356851577759 img loss 1.2698055505752563 img loss 1.2320326566696167 img loss 1.2963004112243652 img loss 1.1811065673828125 img loss 1.2074971199035645 img loss 1.223540186882019 img loss 1.2287003993988037 img loss 1.2721915245056152 img loss 1.1756788492202759 img loss 1.19640052318573 img loss 1.230599284172058 img loss 1.182921290397644 img loss 1.3376362323760986 img loss 1.2567267417907715 img loss 1.2704589366912842 img loss 1.2202427387237549 img loss 1.2008988857269287 img loss 1.2745863199234009 img loss 1.1801570653915405 img loss 1.232157588005066 img loss 1.229363203048706 img loss 1.2458555698394775 img loss 1.2555984258651733 img loss 1.2765748500823975 img loss 1.2341516017913818 img loss 1.1717371940612793 img loss 1.204874038696289 img loss 1.190649390220642 img loss 1.2096855640411377 img loss 1.2820069789886475 img loss 1.2367914915084839 img loss 1.2353317737579346 img loss 1.2458508014678955 img loss 1.2330870628356934 img loss 1.2811352014541626 img loss 1.2604950666427612 img loss 1.1817646026611328 img loss 1.2846031188964844 img loss 1.1670820713043213 img loss 1.2663081884384155 img loss 1.2277666330337524 img loss 1.1489222049713135 img loss 1.223271369934082 img loss 1.218654990196228 img loss 1.2096436023712158 img loss 1.2132887840270996 img loss 1.230333924293518 img loss 1.2312350273132324 img loss 1.2098946571350098 img loss 1.2163656949996948 img loss 1.2168899774551392 img loss 1.2394614219665527 img loss 1.2123668193817139 img loss 1.2213530540466309 img loss 1.2834057807922363 img loss 1.1277464628219604 img loss 1.2053581476211548 img loss 1.2599201202392578 img loss 1.2004077434539795 img loss 1.2237544059753418 img loss 1.212694764137268 img loss 1.2568877935409546 img loss 1.2233712673187256 img loss 1.2407968044281006 img loss 1.2332091331481934 img loss 1.2364994287490845 img loss 1.2376699447631836 img loss 1.2230510711669922 img loss 1.1639155149459839 img loss 1.194747805595398 img loss 1.3104276657104492 img loss 1.1839654445648193 img loss 1.20479154586792 img loss 1.2201448678970337 img loss 1.2337448596954346 img loss 1.2433619499206543 img loss 1.2185509204864502 img loss 1.182698130607605 img loss 1.252103328704834 img loss 1.261534571647644 img loss 1.2237201929092407 img loss 1.2067904472351074 img loss 1.1701607704162598 img loss 1.2474820613861084 img loss 1.2431892156600952 img loss 1.2963898181915283 img loss 1.1842424869537354 {'loss': 1.2261, 'grad_norm': 0.2425220012664795, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3498810529708862 img loss 1.3537733554840088 img loss 1.2909374237060547 img loss 1.2943158149719238 img loss 1.3762009143829346 img loss 1.3425730466842651 img loss 1.3245601654052734 img loss 1.3860231637954712 img loss 1.3130346536636353 img loss 1.40999174118042 img loss 1.2723774909973145 img loss 1.252193808555603 img loss 1.3052409887313843 img loss 1.2262636423110962 img loss 1.2292693853378296 img loss 1.3994892835617065 img loss 1.3116382360458374 img loss 1.2117284536361694 img loss 1.2893576622009277 img loss 1.3477410078048706 img loss 1.354487657546997 img loss 1.3111237287521362 img loss 1.3548712730407715 img loss 1.4079833030700684 img loss 1.3345487117767334 img loss 1.306941270828247 img loss 1.450822114944458 img loss 1.291874885559082 img loss 1.3925498723983765 img loss 1.4162230491638184 img loss 1.2697962522506714 img loss 1.2935022115707397 img loss 1.3347162008285522 img loss 1.2664074897766113 img loss 1.3268604278564453 img loss 1.3032658100128174 img loss 1.2911841869354248 img loss 1.3743586540222168 img loss 1.2503832578659058 img loss 1.2465730905532837 img loss 1.329555869102478 img loss 1.273259162902832 img loss 1.383573055267334 img loss 1.289142370223999 img loss 1.2479852437973022 img loss 1.3898776769638062 img loss 1.3496311902999878 img loss 1.3432241678237915 img loss 1.2891429662704468 img loss 1.3027374744415283 img loss 1.3380606174468994 img loss 1.3149447441101074 img loss 1.3550407886505127 img loss 1.2977062463760376 img loss 1.2843265533447266 img loss 1.2430188655853271 img loss 1.2669953107833862 img loss 1.3187659978866577 img loss 1.3173118829727173 img loss 1.2942273616790771 img loss 1.2704112529754639 img loss 1.2903708219528198 img loss 1.3067853450775146 img loss 1.2441747188568115 img loss 1.2302589416503906 img loss 1.288008689880371 img loss 1.3778703212738037 img loss 1.3079946041107178 img loss 1.251275658607483 img loss 1.3254451751708984img loss 1.2580132484436035 img loss 1.4657527208328247 img loss 1.3382542133331299 img loss 1.2317341566085815 img loss 1.4160770177841187 img loss 1.2246882915496826 img loss 1.2983055114746094 img loss 1.239454746246338 img loss 1.2257018089294434 img loss 1.2763662338256836 img loss 1.3347971439361572 img loss 1.3166412115097046 img loss 1.3609662055969238 img loss 1.2953251600265503 img loss 1.3611937761306763 img loss 1.298095464706421 img loss 1.340786099433899 img loss 1.4456231594085693 img loss 1.2385700941085815 img loss 1.3253753185272217 img loss 1.3187878131866455 img loss 1.2348297834396362 img loss 1.2484660148620605 img loss 1.25279700756073 img loss 1.4508289098739624 img loss 1.2369827032089233 img loss 1.2960834503173828 img loss 1.3744317293167114 img loss 1.2849832773208618 img loss 1.2740191221237183 img loss 1.2710484266281128 img loss 1.2580652236938477 img loss 1.2912014722824097 img loss 1.306952714920044 img loss 1.298185110092163 img loss 1.2694001197814941 img loss 1.288815975189209 img loss 1.3151565790176392 img loss 1.3345109224319458 img loss 1.2815030813217163 img loss 1.2037954330444336 img loss 1.3740057945251465 img loss 1.326414704322815 img loss 1.2534081935882568 img loss 1.2786890268325806 img loss 1.4156148433685303 img loss 1.3431601524353027 img loss 1.2797701358795166 img loss 1.2670902013778687 img loss 1.3348238468170166 img loss 1.4097076654434204 img loss 1.3068535327911377 img loss 1.281961441040039 img loss 1.4173901081085205 img loss 1.2613695859909058 img loss 1.3336836099624634 img loss 1.3576427698135376 img loss 1.338356852531433 {'loss': 1.3121, 'grad_norm': 0.27023929357528687, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3236792087554932 img loss 1.3847262859344482 img loss 1.4082309007644653 img loss 1.3543117046356201 img loss 1.3003991842269897 img loss 1.2851263284683228 img loss 1.3051526546478271 img loss 1.4345908164978027 img loss 1.2654340267181396 img loss 1.2594101428985596 img loss 1.3267663717269897 img loss 1.2323064804077148 img loss 1.228475570678711 img loss 1.3744196891784668 img loss 1.3677729368209839 img loss 1.2910480499267578 img loss 1.3615044355392456 img loss 1.3033857345581055 img loss 1.3367035388946533 img loss 1.281107783317566 img loss 1.2967753410339355 img loss 1.3960992097854614img loss 1.3243861198425293 img loss 1.3409584760665894 img loss 1.3044867515563965 img loss 1.42465341091156 img loss 1.3339715003967285 img loss 1.2738258838653564 img loss 1.3392056226730347 img loss 1.2875823974609375 img loss 1.2841148376464844 img loss 1.3204619884490967 img loss 1.2047017812728882 img loss 1.3885654211044312 img loss 1.2626185417175293 img loss 1.2575163841247559 img loss 1.3254073858261108 img loss 1.3759796619415283img loss 1.4231410026550293 img loss 1.305275559425354 img loss 1.3037292957305908 img loss 1.3269422054290771 img loss 1.291595458984375 img loss 1.2645386457443237 img loss 1.3485225439071655 img loss 1.4246366024017334 img loss 1.336243987083435 img loss 1.2623242139816284 img loss 1.2183759212493896 img loss 1.240631103515625 img loss 1.3736692667007446 img loss 1.2758890390396118 img loss 1.4230644702911377 img loss 1.3008345365524292 img loss 1.3130874633789062 img loss 1.3281190395355225 img loss 1.3487132787704468 img loss 1.3250672817230225 img loss 1.3262994289398193 img loss 1.3187917470932007 img loss 1.2840009927749634 img loss 1.2227089405059814 img loss 1.3033217191696167 img loss 1.4027119874954224 img loss 1.438327670097351 img loss 1.277047872543335 img loss 1.3427151441574097 img loss 1.317342758178711 img loss 1.341192603111267 img loss 1.2267112731933594 img loss 1.272629976272583 img loss 1.4113110303878784 img loss 1.3136842250823975 img loss 1.298316240310669 img loss 1.417185664176941 img loss 1.3375318050384521 img loss 1.2972524166107178 img loss 1.3014142513275146 img loss 1.3642827272415161 img loss 1.3375977277755737 img loss 1.35222327709198 img loss 1.284809947013855 img loss 1.3016786575317383 img loss 1.238946795463562 img loss 1.3238019943237305 img loss 1.2477900981903076 img loss 1.2472997903823853 img loss 1.2756078243255615 img loss 1.4457114934921265img loss 1.2445223331451416 img loss 1.3720487356185913 img loss 1.1896899938583374 img loss 1.3113059997558594 img loss 1.3485530614852905 img loss 1.324388861656189 img loss 1.409800410270691 img loss 1.469498872756958 img loss 1.3179413080215454 img loss 1.4325910806655884 img loss 1.3437840938568115 img loss 1.287496566772461 img loss 1.3236005306243896 img loss 1.3004976511001587 img loss 1.2846211194992065 img loss 1.3538039922714233 img loss 1.3189451694488525 img loss 1.3493465185165405 img loss 1.3763333559036255 img loss 1.283943772315979 img loss 1.2964509725570679 img loss 1.287772536277771 img loss 1.371060848236084 img loss 1.361150860786438 img loss 1.2525299787521362 img loss 1.3767973184585571 img loss 1.321632981300354 img loss 1.2620232105255127 img loss 1.3749289512634277 img loss 1.2941573858261108 img loss 1.2987008094787598 img loss 1.358582615852356 img loss 1.3047153949737549 img loss 1.3716412782669067 img loss 1.2836334705352783 img loss 1.2727848291397095 img loss 1.2616353034973145 img loss 1.2897462844848633 img loss 1.3650412559509277 {'loss': 1.3212, 'grad_norm': 0.3472522497177124, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2155941724777222 img loss 1.2792551517486572 img loss 1.1873700618743896 img loss 1.2038971185684204 img loss 1.159240484237671 img loss 1.1706464290618896 img loss 1.1732662916183472 img loss 1.1577541828155518 img loss 1.2217600345611572 img loss 1.2432368993759155 img loss 1.2021570205688477 img loss 1.2301976680755615 img loss 1.2194607257843018 img loss 1.2146939039230347 img loss 1.1813896894454956 img loss 1.2262096405029297 img loss 1.3330793380737305 img loss 1.1707426309585571 img loss 1.2049511671066284 img loss 1.1791160106658936 img loss 1.210287094116211 img loss 1.1582752466201782 img loss 1.1883739233016968 img loss 1.2604902982711792 img loss 1.2614109516143799 img loss 1.2171549797058105 img loss 1.2492605447769165 img loss 1.1063517332077026 img loss 1.179560899734497 img loss 1.208168625831604 img loss 1.126004695892334 img loss 1.2187201976776123 img loss 1.2177923917770386 img loss 1.1659177541732788 img loss 1.2782378196716309 img loss 1.2400095462799072 img loss 1.2973392009735107 img loss 1.1569585800170898 img loss 1.1660774946212769 img loss 1.1611011028289795 img loss 1.2437628507614136 img loss 1.2292779684066772 img loss 1.2326862812042236 img loss 1.240320086479187 img loss 1.2257435321807861 img loss 1.139854073524475 img loss 1.2511075735092163 img loss 1.2212750911712646 img loss 1.1827328205108643 img loss 1.1425058841705322 img loss 1.159420371055603 img loss 1.1871273517608643 img loss 1.1800878047943115 img loss 1.2018342018127441 img loss 1.2089022397994995 img loss 1.2244776487350464 img loss 1.2301498651504517 img loss 1.1958303451538086 img loss 1.2962454557418823 img loss 1.2094357013702393 img loss 1.1785485744476318 img loss 1.1744346618652344 img loss 1.1875925064086914 img loss 1.1558527946472168 img loss 1.2051899433135986 img loss 1.1780050992965698 img loss 1.1720895767211914 img loss 1.251573085784912 img loss 1.19580078125 img loss 1.1621983051300049 img loss 1.20881986618042 img loss 1.1614773273468018 img loss 1.2231203317642212 img loss 1.1837965250015259 img loss 1.2014191150665283 img loss 1.1647766828536987 img loss 1.2379567623138428 img loss 1.1466803550720215 img loss 1.1370418071746826 img loss 1.2133595943450928 img loss 1.2343010902404785 img loss 1.1679197549819946 img loss 1.1935093402862549 img loss 1.2752422094345093 img loss 1.205259919166565 img loss 1.2331483364105225 img loss 1.1673355102539062 img loss 1.2039533853530884 img loss 1.2314517498016357 img loss 1.3222261667251587 img loss 1.1603100299835205 img loss 1.1878831386566162 img loss 1.1323373317718506 img loss 1.179598093032837 img loss 1.1890676021575928 img loss 1.2222049236297607 img loss 1.2097465991973877 img loss 1.2523988485336304 img loss 1.2426674365997314 img loss 1.1681933403015137 img loss 1.1535918712615967 img loss 1.2214106321334839 img loss 1.2066208124160767 img loss 1.2233493328094482 img loss 1.1773337125778198 img loss 1.118066430091858 img loss 1.2472796440124512 img loss 1.1802411079406738 img loss 1.1736352443695068 img loss 1.1550731658935547 img loss 1.1411571502685547 img loss 1.1687687635421753 img loss 1.2066553831100464 img loss 1.1350631713867188 img loss 1.228442668914795 img loss 1.207613229751587 img loss 1.186154842376709 img loss 1.2162293195724487 img loss 1.2505935430526733 img loss 1.194853663444519 img loss 1.1541237831115723 img loss 1.2422175407409668 img loss 1.1849075555801392 img loss 1.2526086568832397 img loss 1.2053823471069336 img loss 1.2125003337860107 img loss 1.2360708713531494 img loss 1.1569459438323975 {'loss': 1.2016, 'grad_norm': 0.24749179184436798, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2502639293670654 img loss 1.3236793279647827 img loss 1.3367321491241455 img loss 1.34260892868042 img loss 1.2957496643066406 img loss 1.508910894393921 img loss 1.3000105619430542 img loss 1.3685976266860962 img loss 1.298914909362793 img loss 1.4865241050720215 img loss 1.429399013519287 img loss 1.4930330514907837 img loss 1.4079636335372925 img loss 1.3509113788604736 img loss 1.4209202527999878 img loss 1.2977991104125977 img loss 1.39113187789917 img loss 1.201873540878296 img loss 1.393664836883545 img loss 1.334863305091858 img loss 1.3971055746078491 img loss 1.3741458654403687 img loss 1.2032524347305298 img loss 1.3228247165679932 img loss 1.2870947122573853 img loss 1.3618015050888062 img loss 1.3920289278030396 img loss 1.3052940368652344 img loss 1.3167011737823486 img loss 1.2581123113632202 img loss 1.3506715297698975 img loss 1.3574868440628052 img loss 1.3620696067810059 img loss 1.2980990409851074 img loss 1.4008418321609497 img loss 1.376535177230835 img loss 1.4180537462234497 img loss 1.4090288877487183 img loss 1.3608189821243286 img loss 1.321243166923523 img loss 1.4575817584991455 img loss 1.2491375207901 img loss 1.398494839668274 img loss 1.3277796506881714 img loss 1.3054653406143188img loss 1.4105974435806274 img loss 1.4164108037948608 img loss 1.3676539659500122 img loss 1.3633981943130493 img loss 1.29386568069458 img loss 1.5104984045028687 img loss 1.4281314611434937 img loss 1.3510099649429321 img loss 1.3535670042037964 img loss 1.2643412351608276 img loss 1.4547064304351807 img loss 1.3828790187835693 img loss 1.2794548273086548 img loss 1.3293293714523315 img loss 1.4877393245697021 img loss 1.4674866199493408 img loss 1.522458791732788 img loss 1.2959308624267578 img loss 1.362162709236145 img loss 1.3819276094436646 img loss 1.283440113067627 img loss 1.2958221435546875 img loss 1.3927969932556152 img loss 1.294837474822998 img loss 1.2491991519927979 img loss 1.3069171905517578 img loss 1.320939540863037 img loss 1.3655911684036255 img loss 1.3798221349716187 img loss 1.3855996131896973 img loss 1.4074146747589111 img loss 1.4710195064544678 img loss 1.4084779024124146 img loss 1.29036283493042 img loss 1.4052916765213013 img loss 1.372498631477356 img loss 1.401877522468567 img loss 1.3009275197982788 img loss 1.314039945602417 img loss 1.268824577331543 img loss 1.2296112775802612 img loss 1.3726780414581299 img loss 1.3702366352081299 img loss 1.421695351600647 img loss 1.3439555168151855 img loss 1.3491636514663696 img loss 1.3155381679534912 img loss 1.3630239963531494 img loss 1.3256664276123047 img loss 1.2844232320785522 img loss 1.3637107610702515 img loss 1.3963741064071655 img loss 1.4181491136550903 img loss 1.398314118385315 img loss 1.465499997138977 img loss 1.3269906044006348 img loss 1.2733304500579834 img loss 1.504489541053772 img loss 1.346779704093933 img loss 1.3494116067886353 img loss 1.4648922681808472 img loss 1.2963650226593018 img loss 1.3767801523208618 img loss 1.3869463205337524 img loss 1.2746247053146362 img loss 1.430862545967102 img loss 1.176377773284912 img loss 1.2442220449447632 img loss 1.3016611337661743 img loss 1.3928841352462769 img loss 1.3622050285339355 img loss 1.307437777519226 img loss 1.2819664478302002 img loss 1.3554657697677612 img loss 1.249794363975525 img loss 1.2950186729431152 img loss 1.389623999595642 img loss 1.3681398630142212 img loss 1.3389626741409302 img loss 1.371864914894104 img loss 1.3043285608291626 img loss 1.3164668083190918 img loss 1.4347583055496216 {'loss': 1.3549, 'grad_norm': 0.2646380066871643, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.5818225145339966 img loss 1.68258798122406 img loss 1.7148934602737427 img loss 1.5923740863800049 img loss 1.6582751274108887 img loss 1.4973747730255127 img loss 1.7547602653503418 img loss 1.599300503730774 img loss 1.6600638628005981 img loss 1.5021969079971313 img loss 1.6314585208892822 img loss 1.5889010429382324 img loss 1.5776926279067993 img loss 1.7195122241973877 img loss 1.4439613819122314 img loss 1.4129983186721802 img loss 1.628477931022644 img loss 1.638658881187439 img loss 1.669948935508728 img loss 1.6685508489608765 img loss 1.7304143905639648 img loss 1.6487284898757935 img loss 1.555254340171814 img loss 1.5806792974472046 img loss 1.6273125410079956 img loss 1.7185463905334473 img loss 1.7036840915679932 img loss 1.5747567415237427 img loss 1.6184571981430054 img loss 1.494200348854065 img loss 1.549836277961731 img loss 1.6857212781906128 img loss 1.4906156063079834 img loss 1.5381745100021362 img loss 1.5195165872573853 img loss 1.5296498537063599 img loss 1.5696101188659668 img loss 1.5243821144104004 img loss 1.6042563915252686 img loss 1.5249181985855103 img loss 1.4521549940109253 img loss 1.611387014389038 img loss 1.6000571250915527 img loss 1.7263705730438232 img loss 1.6005971431732178 img loss 1.5862427949905396 img loss 1.6672195196151733 img loss 1.4318279027938843 img loss 1.6276401281356812 img loss 1.5876868963241577 img loss 1.4967342615127563 img loss 1.6608459949493408 img loss 1.5495842695236206 img loss 1.6003252267837524 img loss 1.504381537437439 img loss 1.6335785388946533 img loss 1.553056240081787 img loss 1.6956788301467896 img loss 1.697314977645874 img loss 1.428892731666565 img loss 1.6149876117706299 img loss 1.6343538761138916 img loss 1.5400954484939575 img loss 1.6297156810760498 img loss 1.7226040363311768 img loss 1.5955246686935425 img loss 1.5240999460220337 img loss 1.59410560131073 img loss 1.5451465845108032 img loss 1.6860897541046143 img loss 1.620710849761963 img loss 1.5754120349884033 img loss 1.5681101083755493 img loss 1.5149201154708862 img loss 1.586225986480713 img loss 1.4618357419967651 img loss 1.640674352645874 img loss 1.6235153675079346 img loss 1.5671712160110474 img loss 1.5223679542541504 img loss 1.5031144618988037 img loss 1.5613324642181396 img loss 1.5088506937026978 img loss 1.5289266109466553 img loss 1.5220930576324463 img loss 1.5049625635147095 img loss 1.5988175868988037 img loss 1.5612378120422363 img loss 1.4514727592468262 img loss 1.6271823644638062 img loss 1.5967020988464355 img loss 1.5564099550247192 img loss 1.6794966459274292 img loss 1.6456001996994019 img loss 1.5972657203674316 img loss 1.5505141019821167 img loss 1.5180943012237549 img loss 1.835726022720337 img loss 1.4845291376113892 img loss 1.5457996129989624 img loss 1.5688021183013916 img loss 1.6066211462020874 img loss 1.6541686058044434 img loss 1.6494439840316772 img loss 1.5821168422698975 img loss 1.6000754833221436 img loss 1.664232611656189 img loss 1.5024209022521973 img loss 1.5835732221603394 img loss 1.5622296333312988 img loss 1.8259921073913574 img loss 1.6882153749465942 img loss 1.4716798067092896 img loss 1.6616123914718628 img loss 1.7094885110855103 img loss 1.5121570825576782 img loss 1.5531903505325317 img loss 1.6479803323745728 img loss 1.4080941677093506 img loss 1.5606474876403809 img loss 1.722579002380371 img loss 1.551176905632019 img loss 1.56371009349823 img loss 1.6427311897277832 img loss 1.5857759714126587 img loss 1.4809534549713135 img loss 1.526211142539978 img loss 1.6691440343856812 {'loss': 1.5908, 'grad_norm': 0.21261726319789886, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1806721687316895 img loss 1.1465908288955688 img loss 1.205325961112976 img loss 1.242114543914795 img loss 1.2010905742645264 img loss 1.2031481266021729 img loss 1.1693748235702515 img loss 1.1415742635726929 img loss 1.1882507801055908 img loss 1.2051444053649902 img loss 1.2242250442504883 img loss 1.1868922710418701 img loss 1.1317354440689087 img loss 1.2926117181777954 img loss 1.1452144384384155 img loss 1.2036170959472656 img loss 1.2507691383361816 img loss 1.2338919639587402 img loss 1.176365852355957 img loss 1.3147681951522827 img loss 1.2340478897094727 img loss 1.1258221864700317 img loss 1.1769905090332031 img loss 1.1892423629760742 img loss 1.1692023277282715 img loss 1.1988235712051392 img loss 1.2205290794372559 img loss 1.1241377592086792 img loss 1.1396998167037964 img loss 1.1897294521331787 img loss 1.2491986751556396 img loss 1.234663724899292 img loss 1.2203974723815918 img loss 1.1668884754180908 img loss 1.2197831869125366 img loss 1.1498831510543823 img loss 1.2390072345733643 img loss 1.2121756076812744 img loss 1.1618140935897827 img loss 1.182941198348999 img loss 1.1790213584899902 img loss 1.2322279214859009 img loss 1.241552710533142 img loss 1.1698417663574219 img loss 1.197709560394287 img loss 1.17734956741333 img loss 1.323476791381836 img loss 1.2536695003509521 img loss 1.162550687789917 img loss 1.1834025382995605 img loss 1.212337851524353 img loss 1.121267318725586 img loss 1.2221999168395996 img loss 1.2595218420028687 img loss 1.2067724466323853 img loss 1.1629385948181152 img loss 1.0956382751464844 img loss 1.2164901494979858 img loss 1.1440622806549072 img loss 1.180790662765503 img loss 1.2019827365875244 img loss 1.2104856967926025 img loss 1.2302721738815308 img loss 1.2013065814971924 img loss 1.2969655990600586 img loss 1.2329051494598389 img loss 1.1927069425582886 img loss 1.1359975337982178 img loss 1.1937921047210693 img loss 1.259069800376892 img loss 1.2466464042663574 img loss 1.231685996055603 img loss 1.2122570276260376 img loss 1.281591773033142 img loss 1.1772352457046509 img loss 1.208055853843689 img loss 1.2000787258148193 img loss 1.2257130146026611 img loss 1.203202486038208 img loss 1.2018152475357056 img loss 1.225313425064087 img loss 1.1485389471054077 img loss 1.150187373161316 img loss 1.2124965190887451 img loss 1.3305385112762451 img loss 1.21819007396698 img loss 1.1984585523605347 img loss 1.2239267826080322 img loss 1.2310574054718018 img loss 1.1655129194259644 img loss 1.2129902839660645 img loss 1.2601971626281738 img loss 1.2114166021347046 img loss 1.2087982892990112 img loss 1.1659588813781738 img loss 1.2121527194976807 img loss 1.1677745580673218 img loss 1.1805027723312378 img loss 1.2451533079147339 img loss 1.1328175067901611 img loss 1.2786239385604858 img loss 1.2077887058258057 img loss 1.3000952005386353 img loss 1.2586660385131836 img loss 1.1984285116195679 img loss 1.178617238998413 img loss 1.1613143682479858 img loss 1.2119554281234741 img loss 1.1832802295684814 img loss 1.218851923942566 img loss 1.1587913036346436 img loss 1.2001087665557861 img loss 1.303680419921875 img loss 1.1573021411895752 img loss 1.1618897914886475 img loss 1.2364578247070312 img loss 1.1795490980148315 img loss 1.2081458568572998 img loss 1.2834417819976807 img loss 1.2881543636322021 img loss 1.1759772300720215 img loss 1.2220978736877441 img loss 1.155444860458374 img loss 1.2171446084976196 img loss 1.224191665649414 img loss 1.2084931135177612 img loss 1.2108055353164673 img loss 1.1456878185272217 {'loss': 1.2045, 'grad_norm': 0.2337915003299713, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2355695962905884 img loss 1.3545993566513062 img loss 1.3144327402114868 img loss 1.5178275108337402 img loss 1.2778899669647217 img loss 1.2257364988327026 img loss 1.2697781324386597 img loss 1.2996304035186768 img loss 1.3475712537765503 img loss 1.3349461555480957 img loss 1.297361135482788 img loss 1.3087234497070312 img loss 1.3283534049987793 img loss 1.258199691772461 img loss 1.3140413761138916 img loss 1.2457834482192993 img loss 1.276659607887268 img loss 1.2656350135803223 img loss 1.4459125995635986 img loss 1.2627782821655273 img loss 1.3388009071350098 img loss 1.2927080392837524 img loss 1.3146194219589233 img loss 1.3057224750518799 img loss 1.3209675550460815 img loss 1.3307650089263916 img loss 1.203835129737854 img loss 1.258318305015564 img loss 1.3348231315612793 img loss 1.310150146484375 img loss 1.3164262771606445 img loss 1.2451848983764648 img loss 1.2347495555877686 img loss 1.3199427127838135 img loss 1.3211548328399658 img loss 1.3654332160949707 img loss 1.3761250972747803 img loss 1.3261665105819702 img loss 1.3143705129623413 img loss 1.3472872972488403 img loss 1.2682851552963257 img loss 1.3170809745788574 img loss 1.3671910762786865 img loss 1.323922038078308 img loss 1.3597053289413452 img loss 1.2797603607177734 img loss 1.3558087348937988 img loss 1.3974909782409668 img loss 1.262366533279419 img loss 1.3480206727981567 img loss 1.243181824684143 img loss 1.385871410369873 img loss 1.2186963558197021 img loss 1.2700157165527344 img loss 1.250944972038269 img loss 1.2053327560424805 img loss 1.365242838859558 img loss 1.3419667482376099 img loss 1.2318229675292969 img loss 1.3570445775985718 img loss 1.2656210660934448 img loss 1.3668633699417114 img loss 1.3246402740478516 img loss 1.4791117906570435 img loss 1.254804253578186 img loss 1.329404592514038 img loss 1.2697172164916992 img loss 1.3223867416381836 img loss 1.2958742380142212 img loss 1.3717371225357056 img loss 1.3468865156173706 img loss 1.4022953510284424 img loss 1.3077378273010254 img loss 1.3976796865463257 img loss 1.2128797769546509 img loss 1.3108975887298584 img loss 1.2552094459533691 img loss 1.338636875152588 img loss 1.2614023685455322 img loss 1.2141703367233276 img loss 1.3154728412628174 img loss 1.2951390743255615 img loss 1.3525112867355347 img loss 1.26728093624115 img loss 1.35684072971344 img loss 1.3089863061904907 img loss 1.3510910272598267 img loss 1.3085545301437378 img loss 1.3854926824569702 img loss 1.2483736276626587 img loss 1.3528611660003662 img loss 1.4071385860443115 img loss 1.4513046741485596 img loss 1.337952971458435 img loss 1.3884918689727783 img loss 1.3137634992599487 img loss 1.2812680006027222 img loss 1.3467051982879639 img loss 1.2500669956207275 img loss 1.2699613571166992 img loss 1.3250150680541992 img loss 1.2979494333267212 img loss 1.3171128034591675 img loss 1.3392138481140137 img loss 1.3962562084197998 img loss 1.364854335784912img loss 1.2701525688171387 img loss 1.3803428411483765 img loss 1.3095306158065796 img loss 1.348030686378479 img loss 1.3864675760269165 img loss 1.4147645235061646 img loss 1.2479276657104492 img loss 1.3590086698532104 img loss 1.3774693012237549 img loss 1.259311556816101 img loss 1.2661546468734741 img loss 1.2666345834732056 img loss 1.4106724262237549 img loss 1.3716552257537842 img loss 1.3288838863372803 img loss 1.255802035331726 img loss 1.2278474569320679 img loss 1.3817355632781982 img loss 1.454879879951477 img loss 1.3113439083099365 img loss 1.2755399942398071 img loss 1.3588780164718628 {'loss': 1.3182, 'grad_norm': 0.21565042436122894, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.199756383895874 img loss 1.1901369094848633 img loss 1.1762770414352417 img loss 1.2061254978179932 img loss 1.2206499576568604 img loss 1.1351693868637085 img loss 1.189461588859558 img loss 1.1360422372817993 img loss 1.1784205436706543 img loss 1.1757169961929321 img loss 1.2201817035675049 img loss 1.1543631553649902 img loss 1.1681184768676758 img loss 1.229357361793518 img loss 1.1807019710540771 img loss 1.1851259469985962 img loss 1.1584614515304565 img loss 1.2694934606552124 img loss 1.202450156211853 img loss 1.217109203338623 img loss 1.2132015228271484 img loss 1.243041753768921 img loss 1.1366395950317383 img loss 1.2317004203796387 img loss 1.1951881647109985 img loss 1.1420069932937622 img loss 1.1992628574371338 img loss 1.2448837757110596 img loss 1.2291399240493774 img loss 1.2115375995635986 img loss 1.22372305393219 img loss 1.1727758646011353 img loss 1.1888128519058228 img loss 1.208179235458374 img loss 1.1380059719085693 img loss 1.1908788681030273 img loss 1.184054970741272 img loss 1.176446795463562 img loss 1.243299961090088 img loss 1.2216637134552002 img loss 1.1843303442001343 img loss 1.1783368587493896 img loss 1.1941673755645752 img loss 1.2992653846740723 img loss 1.3349252939224243 img loss 1.1021409034729004 img loss 1.163469672203064 img loss 1.193773627281189 img loss 1.2724710702896118 img loss 1.2023906707763672 img loss 1.2450214624404907 img loss 1.1696925163269043 img loss 1.193674921989441 img loss 1.2133492231369019 img loss 1.2535451650619507 img loss 1.3305108547210693 img loss 1.2053784132003784 img loss 1.1695458889007568 img loss 1.180005431175232 img loss 1.1716232299804688 img loss 1.2576899528503418 img loss 1.189101219177246 img loss 1.1575257778167725 img loss 1.2163503170013428 img loss 1.2176357507705688 img loss 1.1977744102478027 img loss 1.1937534809112549 img loss 1.1585938930511475 img loss 1.1869823932647705 img loss 1.2438808679580688 img loss 1.2480531930923462 img loss 1.1435577869415283 img loss 1.2038980722427368 img loss 1.2044239044189453 img loss 1.1777616739273071 img loss 1.1286966800689697 img loss 1.2154667377471924 img loss 1.2203525304794312 img loss 1.192859411239624 img loss 1.1786880493164062 img loss 1.2625263929367065 img loss 1.155096411705017 img loss 1.2421239614486694 img loss 1.2708475589752197 img loss 1.1427240371704102 img loss 1.1636238098144531 img loss 1.1904455423355103 img loss 1.167302131652832 img loss 1.2525913715362549 img loss 1.2082831859588623 img loss 1.1857883930206299 img loss 1.1915286779403687 img loss 1.2127513885498047 img loss 1.1622943878173828 img loss 1.220342993736267 img loss 1.1596405506134033 img loss 1.2289009094238281 img loss 1.211717963218689 img loss 1.2436230182647705 img loss 1.1853398084640503 img loss 1.2051658630371094 img loss 1.1923717260360718 img loss 1.1801995038986206 img loss 1.1442844867706299 img loss 1.272518515586853 img loss 1.1731802225112915 img loss 1.2095247507095337 img loss 1.235738754272461 img loss 1.2692883014678955 img loss 1.2307116985321045 img loss 1.1713217496871948 img loss 1.19423508644104 img loss 1.1936657428741455 img loss 1.1523460149765015 img loss 1.1940019130706787 img loss 1.1782482862472534 img loss 1.1773602962493896 img loss 1.2246233224868774 img loss 1.1542067527770996 img loss 1.207979440689087 img loss 1.2199327945709229 img loss 1.1650539636611938 img loss 1.2154210805892944 img loss 1.2146122455596924 img loss 1.2697582244873047 img loss 1.2246363162994385 img loss 1.1308684349060059 img loss 1.1839160919189453 {'loss': 1.2002, 'grad_norm': 0.23794302344322205, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2879894971847534 img loss 1.3054866790771484 img loss 1.2823081016540527 img loss 1.3283321857452393 img loss 1.3270634412765503 img loss 1.1854575872421265 img loss 1.2467970848083496 img loss 1.2593722343444824 img loss 1.2371412515640259 img loss 1.2227646112442017 img loss 1.2526057958602905 img loss 1.3525904417037964 img loss 1.290688395500183 img loss 1.249529242515564 img loss 1.2736625671386719 img loss 1.3388035297393799 img loss 1.266965627670288 img loss 1.2672913074493408 img loss 1.2690377235412598 img loss 1.258751392364502 img loss 1.2614834308624268 img loss 1.3194634914398193 img loss 1.2394007444381714 img loss 1.3618301153182983 img loss 1.2063299417495728 img loss 1.3348127603530884 img loss 1.3396003246307373 img loss 1.3102927207946777 img loss 1.3387904167175293 img loss 1.2229022979736328 img loss 1.3250651359558105 img loss 1.217270851135254 img loss 1.2461216449737549 img loss 1.226824402809143 img loss 1.2773956060409546 img loss 1.320798635482788 img loss 1.29612135887146 img loss 1.2366232872009277 img loss 1.2981162071228027 img loss 1.323305606842041 img loss 1.2465633153915405 img loss 1.2342478036880493 img loss 1.2944138050079346 img loss 1.2498118877410889 img loss 1.2512943744659424 img loss 1.2612427473068237 img loss 1.2976881265640259 img loss 1.2772612571716309 img loss 1.2363742589950562 img loss 1.3016772270202637 img loss 1.3172038793563843 img loss 1.2838449478149414 img loss 1.3210452795028687 img loss 1.2650930881500244 img loss 1.3293204307556152 img loss 1.3122806549072266 img loss 1.249579906463623 img loss 1.2909015417099 img loss 1.247146487236023 img loss 1.270963191986084 img loss 1.363258719444275 img loss 1.2902138233184814 img loss 1.3948720693588257 img loss 1.3246523141860962 img loss 1.2983490228652954 img loss 1.3157023191452026 img loss 1.2495269775390625 img loss 1.3623783588409424 img loss 1.2408603429794312 img loss 1.2514809370040894 img loss 1.3269233703613281 img loss 1.2850490808486938 img loss 1.3046692609786987 img loss 1.308570384979248 img loss 1.2561728954315186 img loss 1.294123888015747 img loss 1.34955632686615 img loss 1.234728455543518 img loss 1.3010954856872559 img loss 1.2870709896087646 img loss 1.2641034126281738 img loss 1.3007138967514038 img loss 1.2963396310806274 img loss 1.2646270990371704 img loss 1.2180438041687012 img loss 1.2048966884613037 img loss 1.222865343093872 img loss 1.2573738098144531 img loss 1.3181825876235962 img loss 1.2397916316986084 img loss 1.3916629552841187 img loss 1.2613956928253174 img loss 1.2818859815597534 img loss 1.3158807754516602 img loss 1.2128645181655884 img loss 1.221975326538086 img loss 1.2634762525558472 img loss 1.2064788341522217 img loss 1.2587097883224487 img loss 1.2955374717712402 img loss 1.1871521472930908 img loss 1.224664568901062 img loss 1.4444235563278198 img loss 1.3144242763519287 img loss 1.2034708261489868 img loss 1.2540202140808105 img loss 1.3401752710342407 img loss 1.350623607635498 img loss 1.2531579732894897 img loss 1.2553752660751343 img loss 1.302488088607788 img loss 1.3388817310333252 img loss 1.317565679550171 img loss 1.3006763458251953 img loss 1.2875745296478271 img loss 1.2189452648162842 img loss 1.1902507543563843 img loss 1.2685375213623047 img loss 1.3025360107421875 img loss 1.2368669509887695 img loss 1.3025023937225342 img loss 1.2938421964645386 img loss 1.2805802822113037 img loss 1.2654335498809814 img loss 1.2287993431091309 img loss 1.2892906665802002 img loss 1.3368874788284302 img loss 1.3021005392074585 {'loss': 1.281, 'grad_norm': 0.2892121374607086, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2348798513412476 img loss 1.2747807502746582 img loss 1.2668342590332031 img loss 1.1727464199066162 img loss 1.210079550743103 img loss 1.213277816772461 img loss 1.247168779373169 img loss 1.1531097888946533 img loss 1.2739286422729492 img loss 1.2397228479385376 img loss 1.2048332691192627 img loss 1.2387681007385254 img loss 1.2488369941711426 img loss 1.2364611625671387 img loss 1.2209194898605347 img loss 1.1791977882385254 img loss 1.3442105054855347 img loss 1.1394846439361572 img loss 1.225122332572937 img loss 1.2562458515167236 img loss 1.2815606594085693 img loss 1.246885061264038 img loss 1.1403510570526123 img loss 1.2130879163742065 img loss 1.236694097518921 img loss 1.2588441371917725 img loss 1.2849756479263306 img loss 1.2121537923812866 img loss 1.1866697072982788 img loss 1.305285096168518 img loss 1.2273451089859009 img loss 1.2284759283065796 img loss 1.2294727563858032 img loss 1.2067064046859741 img loss 1.3722487688064575 img loss 1.2211401462554932 img loss 1.1898741722106934 img loss 1.2563738822937012 img loss 1.2674565315246582 img loss 1.3256628513336182 img loss 1.2108681201934814 img loss 1.1640026569366455 img loss 1.2096455097198486 img loss 1.2330669164657593 img loss 1.2530845403671265 img loss 1.237021803855896 img loss 1.2714250087738037 img loss 1.2886035442352295 img loss 1.1981223821640015 img loss 1.2841237783432007 img loss 1.236764907836914 img loss 1.193274736404419 img loss 1.1969248056411743 img loss 1.2274051904678345 img loss 1.1755021810531616 img loss 1.1767176389694214 img loss 1.2181099653244019 img loss 1.3185021877288818 img loss 1.2511119842529297 img loss 1.2662758827209473 img loss 1.2278307676315308 img loss 1.2616631984710693 img loss 1.205173373222351 img loss 1.2274513244628906 img loss 1.258696436882019 img loss 1.171270728111267 img loss 1.3703171014785767 img loss 1.2504630088806152 img loss 1.2494062185287476 img loss 1.209180474281311 img loss 1.2091577053070068 img loss 1.2205322980880737 img loss 1.2387099266052246 img loss 1.225113868713379 img loss 1.2255871295928955 img loss 1.1952836513519287 img loss 1.315976858139038 img loss 1.2100557088851929 img loss 1.183990240097046 img loss 1.2040128707885742 img loss 1.201529860496521 img loss 1.2558605670928955 img loss 1.3876124620437622 img loss 1.2480270862579346 img loss 1.1959425210952759 img loss 1.3131287097930908 img loss 1.1517537832260132 img loss 1.1797322034835815 img loss 1.2490592002868652 img loss 1.2301979064941406 img loss 1.1545591354370117 img loss 1.2310857772827148 img loss 1.238452434539795 img loss 1.2326894998550415 img loss 1.2555458545684814 img loss 1.2488164901733398 img loss 1.2529563903808594 img loss 1.2972530126571655 img loss 1.2589948177337646 img loss 1.2159249782562256 img loss 1.265695333480835 img loss 1.337673544883728 img loss 1.2576078176498413 img loss 1.2048084735870361 img loss 1.1719130277633667 img loss 1.2399858236312866 img loss 1.2350260019302368 img loss 1.2783039808273315 img loss 1.1825929880142212 img loss 1.2607332468032837 img loss 1.2531036138534546 img loss 1.3105883598327637 img loss 1.2078371047973633 img loss 1.2003834247589111 img loss 1.2121787071228027 img loss 1.2406976222991943 img loss 1.184457778930664 img loss 1.1906251907348633 img loss 1.2042760848999023 img loss 1.2596615552902222 img loss 1.2222951650619507 img loss 1.2473978996276855 img loss 1.2812706232070923 img loss 1.1787691116333008 img loss 1.2846306562423706 img loss 1.1787189245224 img loss 1.2925140857696533 img loss 1.2373632192611694 {'loss': 1.2356, 'grad_norm': 0.263034462928772, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3275078535079956 img loss 1.2602565288543701 img loss 1.4055718183517456 img loss 1.2601561546325684 img loss 1.3637508153915405 img loss 1.2848625183105469 img loss 1.2025976181030273 img loss 1.2342249155044556 img loss 1.2565181255340576 img loss 1.3638795614242554 img loss 1.320817232131958 img loss 1.2666754722595215 img loss 1.2276761531829834 img loss 1.380592942237854 img loss 1.281146764755249 img loss 1.305405616760254 img loss 1.2398449182510376 img loss 1.295384407043457 img loss 1.2567150592803955 img loss 1.237473964691162 img loss 1.3128783702850342 img loss 1.3720471858978271 img loss 1.3071842193603516 img loss 1.3218523263931274 img loss 1.2993417978286743 img loss 1.343701720237732 img loss 1.2662155628204346 img loss 1.254991888999939 img loss 1.2434576749801636 img loss 1.3146504163742065 img loss 1.1993520259857178 img loss 1.3306530714035034 img loss 1.1925700902938843 img loss 1.363300085067749 img loss 1.2140225172042847 img loss 1.2471652030944824 img loss 1.3644449710845947 img loss 1.2139590978622437 img loss 1.4213101863861084 img loss 1.316097617149353 img loss 1.2717170715332031 img loss 1.3152775764465332 img loss 1.2666354179382324 img loss 1.2288321256637573 img loss 1.257745623588562 img loss 1.2247982025146484 img loss 1.2489583492279053 img loss 1.3074889183044434 img loss 1.2555968761444092 img loss 1.1821848154067993 img loss 1.2855143547058105 img loss 1.3028125762939453 img loss 1.2648520469665527 img loss 1.2331178188323975 img loss 1.3025720119476318 img loss 1.3297970294952393 img loss 1.3067806959152222 img loss 1.268707275390625 img loss 1.293028473854065 img loss 1.3970776796340942 img loss 1.3610581159591675 img loss 1.23530912399292 img loss 1.327721357345581 img loss 1.3264970779418945 img loss 1.312359094619751 img loss 1.288129448890686 img loss 1.285908579826355 img loss 1.260048747062683 img loss 1.3055979013442993 img loss 1.2869476079940796 img loss 1.278703212738037 img loss 1.1177384853363037 img loss 1.2598435878753662 img loss 1.3069732189178467 img loss 1.3045200109481812 img loss 1.2482820749282837 img loss 1.252711534500122 img loss 1.3078715801239014 img loss 1.279256820678711 img loss 1.3671562671661377 img loss 1.3204981088638306 img loss 1.2344225645065308 img loss 1.3845999240875244 img loss 1.3531724214553833 img loss 1.3610413074493408 img loss 1.366466999053955 img loss 1.3942667245864868 img loss 1.3510206937789917 img loss 1.2404849529266357 img loss 1.2425569295883179 img loss 1.1935930252075195 img loss 1.2912566661834717 img loss 1.2234104871749878 img loss 1.2365727424621582 img loss 1.28863525390625 img loss 1.2623189687728882 img loss 1.263594388961792 img loss 1.2642416954040527 img loss 1.324126124382019 img loss 1.3270305395126343 img loss 1.2784528732299805 img loss 1.3035814762115479 img loss 1.207611083984375 img loss 1.3599445819854736 img loss 1.3195171356201172 img loss 1.2412134408950806 img loss 1.256187081336975 img loss 1.3200873136520386 img loss 1.2770683765411377 img loss 1.2604106664657593 img loss 1.3108447790145874 img loss 1.380071759223938 img loss 1.336802363395691 img loss 1.2735488414764404 img loss 1.315529704093933 img loss 1.1981407403945923 img loss 1.269110918045044 img loss 1.2885513305664062 img loss 1.2447627782821655 img loss 1.237640142440796 img loss 1.3356627225875854 img loss 1.3361891508102417 img loss 1.2568343877792358 img loss 1.2590312957763672 img loss 1.2486660480499268 img loss 1.27653968334198 img loss 1.2487868070602417 img loss 1.301084041595459 {'loss': 1.2874, 'grad_norm': 0.3400156795978546, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2531523704528809 img loss 1.1945605278015137 img loss 1.1556131839752197 img loss 1.2080116271972656 img loss 1.2434496879577637 img loss 1.196989893913269 img loss 1.2079139947891235 img loss 1.1992652416229248 img loss 1.2044291496276855 img loss 1.2151107788085938 img loss 1.2378075122833252 img loss 1.1917932033538818 img loss 1.1617140769958496 img loss 1.1759662628173828 img loss 1.1580358743667603 img loss 1.182952642440796 img loss 1.1727741956710815 img loss 1.3309859037399292 img loss 1.1598949432373047 img loss 1.221435308456421 img loss 1.207448959350586 img loss 1.253506064414978 img loss 1.1947897672653198 img loss 1.1939367055892944 img loss 1.2418403625488281 img loss 1.2597126960754395 img loss 1.267148494720459 img loss 1.1541829109191895 img loss 1.2617896795272827 img loss 1.1585099697113037 img loss 1.2406315803527832 img loss 1.2269177436828613 img loss 1.2983207702636719 img loss 1.2169967889785767 img loss 1.2101300954818726 img loss 1.2448517084121704 img loss 1.1885610818862915 img loss 1.2125780582427979 img loss 1.2368252277374268 img loss 1.2400808334350586 img loss 1.1878212690353394 img loss 1.2352771759033203 img loss 1.3018020391464233 img loss 1.3109185695648193 img loss 1.2279973030090332 img loss 1.1693273782730103 img loss 1.2072043418884277 img loss 1.1476389169692993 img loss 1.2477383613586426 img loss 1.2445690631866455 img loss 1.1878706216812134 img loss 1.2675347328186035 img loss 1.1478065252304077 img loss 1.1958658695220947 img loss 1.2171881198883057 img loss 1.2528820037841797 img loss 1.127497911453247 img loss 1.2415112257003784 img loss 1.2262589931488037 img loss 1.225732684135437 img loss 1.207101583480835 img loss 1.2116358280181885 img loss 1.292305588722229 img loss 1.1894959211349487 img loss 1.2457388639450073 img loss 1.1603339910507202 img loss 1.1915829181671143 img loss 1.1575987339019775 img loss 1.2036845684051514 img loss 1.2250804901123047 img loss 1.161920189857483 img loss 1.1735453605651855 img loss 1.1958492994308472 img loss 1.2337578535079956 img loss 1.2511684894561768 img loss 1.324573040008545 img loss 1.2507884502410889 img loss 1.2315764427185059 img loss 1.1746876239776611 img loss 1.2267177104949951 img loss 1.182382345199585 img loss 1.1366628408432007 img loss 1.2874829769134521 img loss 1.268950343132019 img loss 1.1939810514450073 img loss 1.21920645236969 img loss 1.2173495292663574 img loss 1.1909124851226807 img loss 1.1610323190689087 img loss 1.1572184562683105 img loss 1.1811755895614624 img loss 1.2478994131088257 img loss 1.2648996114730835 img loss 1.3475309610366821 img loss 1.2598702907562256 img loss 1.1733720302581787 img loss 1.2360045909881592 img loss 1.239863395690918 img loss 1.2671316862106323 img loss 1.239158272743225 img loss 1.206028938293457 img loss 1.2380428314208984 img loss 1.1921600103378296 img loss 1.1917335987091064 img loss 1.2457611560821533 img loss 1.1742637157440186 img loss 1.189465045928955 img loss 1.202021598815918 img loss 1.1859272718429565 img loss 1.131648302078247 img loss 1.2618739604949951 img loss 1.228764533996582 img loss 1.2971076965332031 img loss 1.1849288940429688 img loss 1.2952097654342651 img loss 1.2051674127578735 img loss 1.2100205421447754 img loss 1.196500301361084 img loss 1.151811122894287 img loss 1.231980800628662 img loss 1.1905244588851929 img loss 1.2484651803970337 img loss 1.1760870218276978 img loss 1.309705138206482 img loss 1.2430037260055542 img loss 1.1908881664276123 img loss 1.1439146995544434 img loss 1.2003233432769775 {'loss': 1.2161, 'grad_norm': 0.25245749950408936, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.154126524925232 img loss 1.1663939952850342 img loss 1.2007442712783813 img loss 1.2684916257858276 img loss 1.2381398677825928 img loss 1.2006072998046875 img loss 1.2445646524429321 img loss 1.2275453805923462 img loss 1.2251968383789062 img loss 1.1919831037521362 img loss 1.151638388633728 img loss 1.1606546640396118 img loss 1.17305588722229 img loss 1.1914420127868652 img loss 1.2799323797225952 img loss 1.202460527420044 img loss 1.1471471786499023 img loss 1.2696231603622437 img loss 1.3403717279434204 img loss 1.2797149419784546 img loss 1.2631542682647705 img loss 1.2338670492172241 img loss 1.2216867208480835 img loss 1.1397209167480469 img loss 1.325740098953247img loss 1.3617539405822754 img loss 1.2545697689056396 img loss 1.2275341749191284 img loss 1.2383053302764893 img loss 1.196399211883545 img loss 1.175924301147461 img loss 1.1331195831298828 img loss 1.2596030235290527 img loss 1.161631464958191 img loss 1.2633002996444702 img loss 1.2821991443634033 img loss 1.207831859588623 img loss 1.2563018798828125 img loss 1.3375352621078491 img loss 1.1821720600128174 img loss 1.1346451044082642 img loss 1.245574951171875 img loss 1.2581113576889038 img loss 1.2174142599105835 img loss 1.1825834512710571 img loss 1.07660710811615 img loss 1.2625675201416016 img loss 1.2106527090072632 img loss 1.2726595401763916 img loss 1.223496437072754 img loss 1.2169544696807861 img loss 1.2742466926574707 img loss 1.223026990890503 img loss 1.2433271408081055 img loss 1.1463598012924194 img loss 1.2436394691467285 img loss 1.19108247756958 img loss 1.150643229484558 img loss 1.343575358390808 img loss 1.2135158777236938 img loss 1.2667878866195679 img loss 1.2055600881576538 img loss 1.1918247938156128 img loss 1.197374701499939 img loss 1.2644290924072266 img loss 1.150470495223999 img loss 1.2211806774139404 img loss 1.1622951030731201 img loss 1.2454994916915894 img loss 1.3115043640136719 img loss 1.207466721534729 img loss 1.132690191268921 img loss 1.1884685754776 img loss 1.2182559967041016 img loss 1.2467811107635498 img loss 1.2255191802978516 img loss 1.2412315607070923 img loss 1.1165642738342285 img loss 1.184221625328064 img loss 1.158804178237915 img loss 1.1628633737564087 img loss 1.179370641708374 img loss 1.1758668422698975 img loss 1.2082562446594238 img loss 1.2257190942764282 img loss 1.2177032232284546 img loss 1.1580708026885986 img loss 1.1742740869522095 img loss 1.3041232824325562 img loss 1.3402081727981567 img loss 1.2869088649749756 img loss 1.2670329809188843 img loss 1.222717523574829 img loss 1.2599647045135498 img loss 1.1662535667419434 img loss 1.2382115125656128 img loss 1.1155076026916504 img loss 1.2235445976257324 img loss 1.1568580865859985 img loss 1.1921918392181396 img loss 1.2311017513275146 img loss 1.1445903778076172 img loss 1.2139930725097656 img loss 1.2390183210372925 img loss 1.27829909324646 img loss 1.1454882621765137 img loss 1.205735683441162 img loss 1.3098199367523193 img loss 1.2346569299697876 img loss 1.1581491231918335 img loss 1.1839271783828735 img loss 1.2261050939559937 img loss 1.2950022220611572 img loss 1.1758477687835693 img loss 1.1083251237869263 img loss 1.216286301612854 img loss 1.1903575658798218 img loss 1.1881992816925049 img loss 1.3770421743392944 img loss 1.2956576347351074 img loss 1.1953823566436768 img loss 1.3050979375839233 img loss 1.2828434705734253 img loss 1.1780376434326172 img loss 1.318070650100708 img loss 1.2833064794540405 img loss 1.2777565717697144 img loss 1.1429040431976318 {'loss': 1.2202, 'grad_norm': 0.17648322880268097, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3844425678253174 img loss 1.4695630073547363 img loss 1.461646318435669 img loss 1.4869295358657837 img loss 1.4034302234649658 img loss 1.426438570022583 img loss 1.3533827066421509 img loss 1.4463168382644653 img loss 1.4308291673660278 img loss 1.5537803173065186 img loss 1.5360729694366455 img loss 1.3510173559188843 img loss 1.3906015157699585 img loss 1.5191518068313599 img loss 1.4249589443206787 img loss 1.41384756565094 img loss 1.3171488046646118 img loss 1.2796285152435303 img loss 1.541764497756958 img loss 1.3485534191131592 img loss 1.5046414136886597 img loss 1.5950791835784912 img loss 1.4222691059112549 img loss 1.3860989809036255 img loss 1.4560102224349976 img loss 1.418602466583252 img loss 1.330613613128662 img loss 1.4547972679138184 img loss 1.364367127418518 img loss 1.2744107246398926 img loss 1.3300657272338867 img loss 1.3396580219268799 img loss 1.2999131679534912 img loss 1.424194574356079 img loss 1.4150383472442627 img loss 1.4121538400650024 img loss 1.4503729343414307 img loss 1.368701696395874 img loss 1.3796722888946533 img loss 1.4704926013946533 img loss 1.2836453914642334 img loss 1.4893606901168823 img loss 1.4129360914230347 img loss 1.3432261943817139 img loss 1.4080960750579834 img loss 1.525912880897522 img loss 1.344046711921692 img loss 1.458158254623413 img loss 1.3458374738693237 img loss 1.3260637521743774 img loss 1.3669463396072388 img loss 1.384403944015503 img loss 1.4635964632034302 img loss 1.4516637325286865 img loss 1.31767737865448 img loss 1.2510420083999634 img loss 1.3601946830749512 img loss 1.4651752710342407 img loss 1.3682007789611816 img loss 1.4718345403671265 img loss 1.4609917402267456 img loss 1.428188681602478 img loss 1.3961882591247559 img loss 1.4605802297592163 img loss 1.5005444288253784 img loss 1.3909010887145996 img loss 1.4309431314468384 img loss 1.3926283121109009 img loss 1.485748052597046 img loss 1.5746158361434937 img loss 1.3301700353622437 img loss 1.4333442449569702 img loss 1.5595831871032715 img loss 1.4219306707382202 img loss 1.4822756052017212 img loss 1.3860507011413574 img loss 1.3351296186447144 img loss 1.2761999368667603 img loss 1.3967055082321167 img loss 1.3883721828460693 img loss 1.280442476272583 img loss 1.3240547180175781 img loss 1.3064401149749756 img loss 1.3460228443145752 img loss 1.3875478506088257 img loss 1.3628666400909424 img loss 1.3201141357421875 img loss 1.5298315286636353 img loss 1.4836715459823608 img loss 1.4179699420928955 img loss 1.4050012826919556 img loss 1.3035892248153687 img loss 1.3956648111343384 img loss 1.3174810409545898 img loss 1.3855974674224854 img loss 1.3277744054794312 img loss 1.3894822597503662img loss 1.3648810386657715 img loss 1.319093942642212 img loss 1.4102421998977661 img loss 1.397580623626709 img loss 1.345983624458313 img loss 1.3334256410598755 img loss 1.4887338876724243 img loss 1.4195387363433838 img loss 1.3828173875808716 img loss 1.426973819732666 img loss 1.432249903678894 img loss 1.463672399520874 img loss 1.4312456846237183 img loss 1.3956027030944824 img loss 1.4632841348648071 img loss 1.4299646615982056 img loss 1.3639146089553833 img loss 1.3745945692062378 img loss 1.3486517667770386 img loss 1.4188942909240723 img loss 1.3256604671478271 img loss 1.5226231813430786 img loss 1.4913382530212402 img loss 1.3777120113372803 img loss 1.4407230615615845 img loss 1.4389662742614746 img loss 1.3706594705581665 img loss 1.5008349418640137 img loss 1.2785327434539795 img loss 1.3781688213348389 img loss 1.3765932321548462 {'loss': 1.4047, 'grad_norm': 0.29613667726516724, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3314948081970215 img loss 1.2927197217941284 img loss 1.3089550733566284 img loss 1.1843498945236206 img loss 1.2161786556243896 img loss 1.3085616827011108 img loss 1.3244117498397827 img loss 1.2763326168060303 img loss 1.3796457052230835 img loss 1.2797164916992188 img loss 1.2134569883346558 img loss 1.2823760509490967 img loss 1.1724224090576172 img loss 1.2451248168945312 img loss 1.2645844221115112 img loss 1.2515175342559814 img loss 1.2324060201644897 img loss 1.2960668802261353 img loss 1.1777046918869019 img loss 1.3248975276947021 img loss 1.400692343711853 img loss 1.3097175359725952 img loss 1.2277016639709473 img loss 1.2108044624328613 img loss 1.324063777923584 img loss 1.2984832525253296 img loss 1.3120245933532715 img loss 1.3433996438980103 img loss 1.3555248975753784 img loss 1.2929331064224243 img loss 1.2475898265838623 img loss 1.2490055561065674 img loss 1.291231632232666 img loss 1.2485778331756592 img loss 1.2633503675460815 img loss 1.167407512664795 img loss 1.2518129348754883 img loss 1.2838417291641235 img loss 1.2240972518920898 img loss 1.2015316486358643 img loss 1.1906465291976929 img loss 1.3541264533996582 img loss 1.4233118295669556 img loss 1.245644211769104 img loss 1.2486536502838135 img loss 1.256483793258667 img loss 1.3506875038146973 img loss 1.1900910139083862 img loss 1.1637935638427734 img loss 1.397233247756958 img loss 1.4718868732452393 img loss 1.1824123859405518 img loss 1.3624680042266846 img loss 1.220527172088623 img loss 1.3193843364715576 img loss 1.2381658554077148 img loss 1.3124992847442627 img loss 1.3031762838363647 img loss 1.2431837320327759 img loss 1.2693380117416382 img loss 1.217437982559204 img loss 1.286309838294983 img loss 1.2387540340423584 img loss 1.2853354215621948 img loss 1.1870867013931274 img loss 1.3425939083099365 img loss 1.2916805744171143 img loss 1.2507896423339844 img loss 1.2394987344741821 img loss 1.281253457069397 img loss 1.2188211679458618 img loss 1.2649732828140259 img loss 1.3635871410369873 img loss 1.2589645385742188 img loss 1.1616387367248535 img loss 1.4120584726333618 img loss 1.2366188764572144 img loss 1.2692127227783203 img loss 1.1604187488555908 img loss 1.1886417865753174 img loss 1.2540854215621948 img loss 1.2628577947616577 img loss 1.2286808490753174 img loss 1.1939712762832642 img loss 1.3112173080444336 img loss 1.2207688093185425 img loss 1.1815071105957031 img loss 1.1980546712875366 img loss 1.3711621761322021 img loss 1.3128641843795776 img loss 1.317699670791626 img loss 1.3058607578277588 img loss 1.193763256072998 img loss 1.2877616882324219 img loss 1.2938005924224854 img loss 1.3340049982070923 img loss 1.242479920387268 img loss 1.2946211099624634 img loss 1.2492300271987915 img loss 1.2834720611572266 img loss 1.20106840133667 img loss 1.2995809316635132 img loss 1.2485039234161377 img loss 1.218576192855835 img loss 1.2176803350448608 img loss 1.1192381381988525 img loss 1.3690283298492432 img loss 1.2589311599731445 img loss 1.2723249197006226img loss 1.2257943153381348 img loss 1.2717472314834595 img loss 1.2205075025558472 img loss 1.218146562576294 img loss 1.226693868637085 img loss 1.235025405883789 img loss 1.2697250843048096 img loss 1.287615180015564 img loss 1.202267050743103 img loss 1.2796270847320557 img loss 1.1707218885421753 img loss 1.299057960510254 img loss 1.2520509958267212 img loss 1.2267844676971436 img loss 1.2106707096099854 img loss 1.2317204475402832 img loss 1.259124994277954 img loss 1.2587494850158691 img loss 1.173418641090393 {'loss': 1.2643, 'grad_norm': 0.32346901297569275, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3645821809768677 img loss 1.3270516395568848 img loss 1.3828984498977661 img loss 1.3416110277175903 img loss 1.364038348197937 img loss 1.2950589656829834 img loss 1.3470419645309448 img loss 1.26278555393219 img loss 1.3239749670028687 img loss 1.3332077264785767 img loss 1.2135553359985352 img loss 1.342261791229248 img loss 1.331843614578247 img loss 1.3251605033874512 img loss 1.2829021215438843 img loss 1.289524793624878 img loss 1.3298004865646362 img loss 1.3816903829574585 img loss 1.3634657859802246 img loss 1.4505650997161865 img loss 1.3052830696105957 img loss 1.3405659198760986 img loss 1.3173874616622925 img loss 1.4192233085632324 img loss 1.3644853830337524 img loss 1.423340916633606 img loss 1.2588754892349243 img loss 1.3148771524429321 img loss 1.28933584690094 img loss 1.2796493768692017 img loss 1.34364652633667 img loss 1.291810393333435 img loss 1.374050498008728 img loss 1.3320029973983765 img loss 1.3342210054397583 img loss 1.3814542293548584 img loss 1.3793504238128662 img loss 1.3905166387557983 img loss 1.4060447216033936 img loss 1.327091932296753 img loss 1.3417108058929443 img loss 1.3513671159744263 img loss 1.3313498497009277 img loss 1.3573901653289795 img loss 1.3078203201293945 img loss 1.2557766437530518 img loss 1.3668067455291748 img loss 1.3766692876815796 img loss 1.3488446474075317 img loss 1.4187099933624268 img loss 1.3180480003356934 img loss 1.3888498544692993 img loss 1.3941705226898193 img loss 1.357277274131775 img loss 1.3512390851974487 img loss 1.2857756614685059 img loss 1.3880388736724854 img loss 1.3619593381881714 img loss 1.3249943256378174 img loss 1.262468695640564 img loss 1.2631062269210815 img loss 1.3679569959640503img loss 1.3241771459579468 img loss 1.3003404140472412 img loss 1.3798834085464478 img loss 1.3548614978790283 img loss 1.3121165037155151 img loss 1.3073174953460693 img loss 1.2904260158538818 img loss 1.3786646127700806 img loss 1.3802908658981323 img loss 1.3317878246307373 img loss 1.2666864395141602 img loss 1.3341286182403564 img loss 1.3157408237457275 img loss 1.3910610675811768 img loss 1.319948673248291 img loss 1.3672505617141724 img loss 1.39109206199646 img loss 1.4206475019454956 img loss 1.382212519645691 img loss 1.4834895133972168 img loss 1.324370265007019 img loss 1.3578494787216187 img loss 1.301865816116333 img loss 1.371918797492981 img loss 1.305983304977417 img loss 1.2905584573745728 img loss 1.3232438564300537 img loss 1.359281301498413 img loss 1.3241972923278809 img loss 1.3505290746688843 img loss 1.3264076709747314img loss 1.284488320350647 img loss 1.2463650703430176 img loss 1.3794639110565186 img loss 1.2934807538986206 img loss 1.358014464378357 img loss 1.4327794313430786 img loss 1.3872977495193481 img loss 1.4229389429092407 img loss 1.2729523181915283 img loss 1.3301180601119995 img loss 1.297737956047058 img loss 1.2776696681976318 img loss 1.4320957660675049 img loss 1.3328139781951904 img loss 1.2697021961212158 img loss 1.3504220247268677 img loss 1.4279396533966064 img loss 1.4367156028747559 img loss 1.325264811515808 img loss 1.367479920387268 img loss 1.3227713108062744 img loss 1.419614315032959 img loss 1.4369556903839111 img loss 1.3074657917022705 img loss 1.3213248252868652 img loss 1.375566005706787 img loss 1.3996212482452393 img loss 1.2603986263275146 img loss 1.2937268018722534 img loss 1.4091506004333496 img loss 1.2613214254379272 img loss 1.315499186515808 img loss 1.5003327131271362 img loss 1.456186056137085 img loss 1.31082022190094 {'loss': 1.344, 'grad_norm': 0.26266980171203613, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.235205888748169 img loss 1.2375104427337646 img loss 1.3394237756729126 img loss 1.2990983724594116 img loss 1.4237042665481567 img loss 1.373931646347046 img loss 1.2264249324798584 img loss 1.3404353857040405 img loss 1.1682288646697998 img loss 1.2774370908737183 img loss 1.258867621421814 img loss 1.3705772161483765 img loss 1.3539890050888062 img loss 1.2959667444229126 img loss 1.1565091609954834 img loss 1.261452555656433 img loss 1.2069309949874878 img loss 1.3264994621276855 img loss 1.2121236324310303 img loss 1.2693727016448975 img loss 1.2403634786605835 img loss 1.1661452054977417 img loss 1.1557493209838867 img loss 1.1761395931243896 img loss 1.250834345817566 img loss 1.2973603010177612 img loss 1.301755428314209 img loss 1.2631443738937378 img loss 1.3078683614730835 img loss 1.3334786891937256 img loss 1.2675950527191162 img loss 1.2497538328170776 img loss 1.1701505184173584 img loss 1.3004807233810425 img loss 1.2896664142608643 img loss 1.4058681726455688 img loss 1.281400203704834 img loss 1.1947540044784546 img loss 1.287710428237915 img loss 1.3000447750091553 img loss 1.266678810119629 img loss 1.2681326866149902 img loss 1.3039575815200806 img loss 1.2198481559753418 img loss 1.3680107593536377 img loss 1.2516692876815796 img loss 1.2441719770431519 img loss 1.2575533390045166 img loss 1.2039024829864502 img loss 1.1632320880889893 img loss 1.2480506896972656 img loss 1.2821186780929565 img loss 1.3010181188583374 img loss 1.2844767570495605 img loss 1.223262071609497 img loss 1.1924567222595215img loss 1.2727186679840088 img loss 1.2827144861221313 img loss 1.3040651082992554 img loss 1.266920804977417 img loss 1.3970894813537598 img loss 1.1514604091644287 img loss 1.2659239768981934 img loss 1.2504602670669556 img loss 1.259186029434204 img loss 1.32301664352417 img loss 1.1816134452819824 img loss 1.2667012214660645 img loss 1.3066654205322266 img loss 1.2933237552642822 img loss 1.2462238073349 img loss 1.3089916706085205 img loss 1.3277127742767334 img loss 1.2803741693496704 img loss 1.2215343713760376 img loss 1.2856237888336182 img loss 1.2117652893066406 img loss 1.3198784589767456 img loss 1.3706918954849243 img loss 1.2682437896728516 img loss 1.2264255285263062 img loss 1.298046588897705 img loss 1.262096881866455 img loss 1.2318311929702759 img loss 1.2571446895599365 img loss 1.292395830154419 img loss 1.3794474601745605 img loss 1.3029325008392334 img loss 1.2422434091567993 img loss 1.2841304540634155 img loss 1.234827995300293 img loss 1.2067375183105469 img loss 1.333189845085144 img loss 1.435990810394287 img loss 1.1960632801055908 img loss 1.2803335189819336 img loss 1.2676119804382324 img loss 1.3892472982406616 img loss 1.2475361824035645 img loss 1.3254016637802124 img loss 1.334145426750183 img loss 1.3757244348526 img loss 1.3261644840240479 img loss 1.238524079322815 img loss 1.2827224731445312 img loss 1.2818050384521484 img loss 1.2451605796813965 img loss 1.2387938499450684 img loss 1.2083218097686768 img loss 1.2250670194625854 img loss 1.2507978677749634 img loss 1.40781831741333 img loss 1.2090320587158203 img loss 1.1335043907165527 img loss 1.2732654809951782 img loss 1.32403564453125 img loss 1.280802607536316 img loss 1.2993812561035156 img loss 1.3090951442718506 img loss 1.383978009223938 img loss 1.345184087753296 img loss 1.3034089803695679 img loss 1.2498607635498047 img loss 1.278076410293579 img loss 1.1948730945587158 img loss 1.2765945196151733 img loss 1.3148632049560547 img loss 1.148833155632019 {'loss': 1.2738, 'grad_norm': 0.34380918741226196, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.5920586585998535 img loss 1.5038491487503052 img loss 1.5150226354599 img loss 1.491821050643921 img loss 1.6044577360153198 img loss 1.593483805656433 img loss 1.5478745698928833 img loss 1.579755425453186 img loss 1.4846240282058716 img loss 1.469117283821106 img loss 1.461634874343872 img loss 1.493752121925354 img loss 1.4965968132019043 img loss 1.510355830192566 img loss 1.5039286613464355 img loss 1.3917973041534424 img loss 1.5452419519424438 img loss 1.4207396507263184 img loss 1.5271238088607788 img loss 1.573992371559143 img loss 1.5308500528335571 img loss 1.4782963991165161 img loss 1.3741507530212402 img loss 1.5910465717315674 img loss 1.4261912107467651 img loss 1.5072964429855347 img loss 1.525875210762024 img loss 1.4472754001617432 img loss 1.5689789056777954 img loss 1.5259555578231812 img loss 1.6473443508148193 img loss 1.4141361713409424 img loss 1.4311025142669678 img loss 1.4278396368026733 img loss 1.6924865245819092 img loss 1.595426321029663 img loss 1.4535948038101196 img loss 1.4116904735565186 img loss 1.458283543586731 img loss 1.5307737588882446 img loss 1.6714814901351929 img loss 1.4737955331802368 img loss 1.5786168575286865 img loss 1.3695734739303589 img loss 1.3921838998794556 img loss 1.5949361324310303 img loss 1.4581767320632935 img loss 1.5184667110443115 img loss 1.4654158353805542 img loss 1.6234002113342285 img loss 1.518532156944275 img loss 1.5423146486282349 img loss 1.447109341621399 img loss 1.6123379468917847 img loss 1.5410068035125732 img loss 1.4003403186798096 img loss 1.481359839439392 img loss 1.4338167905807495 img loss 1.4515869617462158 img loss 1.5210163593292236 img loss 1.4831162691116333 img loss 1.5237438678741455 img loss 1.5042393207550049 img loss 1.5594922304153442 img loss 1.4479953050613403 img loss 1.460657000541687 img loss 1.513500690460205 img loss 1.4789265394210815 img loss 1.52662992477417 img loss 1.4292439222335815 img loss 1.677188515663147 img loss 1.5918704271316528 img loss 1.550828456878662 img loss 1.4690625667572021 img loss 1.5597020387649536 img loss 1.583234429359436 img loss 1.4105652570724487 img loss 1.5555447340011597 img loss 1.5642504692077637 img loss 1.451378583908081 img loss 1.5631691217422485 img loss 1.3901704549789429 img loss 1.5447909832000732 img loss 1.5027302503585815 img loss 1.5022958517074585 img loss 1.561599850654602 img loss 1.665023684501648 img loss 1.4941461086273193 img loss 1.5527673959732056 img loss 1.4177073240280151 img loss 1.4543324708938599 img loss 1.505919098854065 img loss 1.4131712913513184 img loss 1.50534987449646 img loss 1.5827208757400513 img loss 1.4916701316833496 img loss 1.591794490814209 img loss 1.4807841777801514 img loss 1.5966402292251587 img loss 1.6367634534835815img loss 1.4642525911331177 img loss 1.4107919931411743 img loss 1.520163655281067 img loss 1.5722081661224365 img loss 1.5212005376815796 img loss 1.3701720237731934 img loss 1.4078599214553833 img loss 1.5529359579086304 img loss 1.3875199556350708 img loss 1.5115970373153687 img loss 1.5706714391708374 img loss 1.5637935400009155 img loss 1.5423072576522827 img loss 1.4362949132919312 img loss 1.4710410833358765 img loss 1.4568111896514893 img loss 1.5964783430099487img loss 1.5715177059173584 img loss 1.445704698562622 img loss 1.4771887063980103 img loss 1.5376789569854736 img loss 1.422167181968689 img loss 1.5721795558929443 img loss 1.6193703413009644 img loss 1.4995782375335693 img loss 1.391187071800232 img loss 1.4863299131393433 img loss 1.4314125776290894 {'loss': 1.5082, 'grad_norm': 0.3495693504810333, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.40053129196167 img loss 1.537103295326233 img loss 1.4852124452590942 img loss 1.3772042989730835 img loss 1.494638204574585 img loss 1.6445777416229248 img loss 1.4425618648529053 img loss 1.5287729501724243 img loss 1.4788669347763062 img loss 1.3959213495254517 img loss 1.3665744066238403img loss 1.4784568548202515 img loss 1.5906145572662354 img loss 1.4927698373794556 img loss 1.5988751649856567 img loss 1.596707820892334 img loss 1.3475135564804077 img loss 1.3968905210494995 img loss 1.3983827829360962 img loss 1.4991191625595093 img loss 1.4912619590759277 img loss 1.4573609828948975 img loss 1.5116305351257324 img loss 1.5271226167678833 img loss 1.5127713680267334 img loss 1.442405104637146 img loss 1.562272310256958 img loss 1.3930504322052002 img loss 1.5670477151870728 img loss 1.388488531112671 img loss 1.5007107257843018 img loss 1.4684216976165771 img loss 1.6270867586135864 img loss 1.375451683998108 img loss 1.4481080770492554 img loss 1.5323609113693237 img loss 1.4469565153121948 img loss 1.5711586475372314 img loss 1.4716142416000366 img loss 1.5017908811569214 img loss 1.5238748788833618 img loss 1.574168086051941 img loss 1.4806360006332397 img loss 1.5170656442642212 img loss 1.3978240489959717 img loss 1.5298125743865967 img loss 1.5674690008163452 img loss 1.5457432270050049 img loss 1.4520496129989624 img loss 1.5178319215774536 img loss 1.572128415107727 img loss 1.5222697257995605 img loss 1.3725134134292603 img loss 1.5090564489364624 img loss 1.4147169589996338 img loss 1.5438687801361084 img loss 1.490836501121521 img loss 1.464038372039795 img loss 1.5160071849822998 img loss 1.5156770944595337 img loss 1.4152506589889526 img loss 1.601174235343933 img loss 1.4917680025100708 img loss 1.4417262077331543 img loss 1.4890202283859253 img loss 1.4281814098358154 img loss 1.4274876117706299 img loss 1.4372637271881104 img loss 1.5093896389007568 img loss 1.4174214601516724 img loss 1.4950449466705322 img loss 1.6689202785491943 img loss 1.50908362865448 img loss 1.4382798671722412 img loss 1.3851702213287354 img loss 1.372848629951477 img loss 1.5875259637832642 img loss 1.5206786394119263 img loss 1.3773194551467896 img loss 1.3812988996505737 img loss 1.484902024269104 img loss 1.4097316265106201 img loss 1.4525021314620972 img loss 1.4522281885147095 img loss 1.5057145357131958 img loss 1.6404997110366821 img loss 1.4658147096633911 img loss 1.4892175197601318 img loss 1.53595769405365 img loss 1.560033917427063 img loss 1.5363399982452393 img loss 1.4537397623062134 img loss 1.6152998208999634 img loss 1.5377556085586548 img loss 1.3607418537139893 img loss 1.463714361190796 img loss 1.744042992591858 img loss 1.4946303367614746 img loss 1.5051543712615967 img loss 1.404022455215454 img loss 1.454912781715393 img loss 1.5299832820892334 img loss 1.4998635053634644 img loss 1.4711605310440063 img loss 1.4227157831192017 img loss 1.3674559593200684 img loss 1.4069006443023682 img loss 1.4722214937210083 img loss 1.4756156206130981 img loss 1.5682282447814941 img loss 1.4192737340927124 img loss 1.5326287746429443 img loss 1.3257765769958496 img loss 1.4247546195983887 img loss 1.5987251996994019 img loss 1.4900535345077515 img loss 1.5384184122085571 img loss 1.5220158100128174 img loss 1.3360822200775146 img loss 1.4635255336761475 img loss 1.422150731086731 img loss 1.4640313386917114 img loss 1.564963459968567 img loss 1.4186328649520874 img loss 1.4604547023773193 img loss 1.4515327215194702 img loss 1.4764176607131958 img loss 1.5358643531799316 {'loss': 1.4844, 'grad_norm': 0.2929096221923828, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.181260108947754 img loss 1.1565386056900024 img loss 1.2029588222503662 img loss 1.2001068592071533 img loss 1.2462537288665771 img loss 1.1300877332687378 img loss 1.1955838203430176 img loss 1.2247583866119385 img loss 1.1719220876693726 img loss 1.2152421474456787 img loss 1.2281280755996704 img loss 1.2372710704803467 img loss 1.2032506465911865 img loss 1.1640799045562744 img loss 1.214900255203247 img loss 1.283595323562622 img loss 1.2190179824829102 img loss 1.2420341968536377 img loss 1.2647186517715454 img loss 1.1504520177841187 img loss 1.2448841333389282 img loss 1.2304216623306274 img loss 1.2066245079040527 img loss 1.2219724655151367 img loss 1.2450778484344482 img loss 1.1854565143585205 img loss 1.1977062225341797 img loss 1.2075613737106323 img loss 1.1571489572525024 img loss 1.2649750709533691 img loss 1.1710762977600098 img loss 1.2273895740509033 img loss 1.2567946910858154 img loss 1.2249577045440674 img loss 1.2140519618988037 img loss 1.238172173500061 img loss 1.161385178565979 img loss 1.2145143747329712 img loss 1.222875952720642 img loss 1.2650922536849976 img loss 1.153451919555664 img loss 1.1980209350585938img loss 1.269197940826416 img loss 1.197296142578125 img loss 1.211511492729187 img loss 1.239152431488037 img loss 1.256890892982483 img loss 1.1876354217529297 img loss 1.2432498931884766 img loss 1.2696359157562256 img loss 1.225339651107788 img loss 1.2709296941757202 img loss 1.2963138818740845 img loss 1.1751259565353394 img loss 1.2770156860351562 img loss 1.1837334632873535 img loss 1.2105751037597656 img loss 1.2436823844909668 img loss 1.1982990503311157 img loss 1.2205276489257812 img loss 1.1927133798599243 img loss 1.1542805433273315 img loss 1.143951416015625 img loss 1.1964988708496094 img loss 1.1355078220367432 img loss 1.1526122093200684 img loss 1.2157520055770874 img loss 1.2260936498641968 img loss 1.2023696899414062 img loss 1.1714794635772705 img loss 1.1625124216079712 img loss 1.2109531164169312 img loss 1.2071709632873535 img loss 1.1681098937988281 img loss 1.228438138961792 img loss 1.231055736541748 img loss 1.2149871587753296 img loss 1.2898705005645752 img loss 1.2463544607162476 img loss 1.1571934223175049 img loss 1.1927038431167603 img loss 1.2206432819366455 img loss 1.166426181793213 img loss 1.2008743286132812 img loss 1.2293462753295898 img loss 1.2157062292099 img loss 1.288037896156311 img loss 1.2544102668762207 img loss 1.190258264541626 img loss 1.1472489833831787 img loss 1.1659704446792603 img loss 1.2735098600387573 img loss 1.1683235168457031 img loss 1.2371279001235962 img loss 1.1779563426971436 img loss 1.119969367980957 img loss 1.2654823064804077 img loss 1.317301630973816 img loss 1.1656372547149658 img loss 1.1411198377609253 img loss 1.2444730997085571 img loss 1.1957437992095947 img loss 1.1826670169830322 img loss 1.2639307975769043 img loss 1.3309773206710815 img loss 1.2558231353759766 img loss 1.2583613395690918 img loss 1.203379511833191 img loss 1.3049352169036865 img loss 1.150568962097168 img loss 1.2712322473526 img loss 1.2206952571868896 img loss 1.2620004415512085 img loss 1.1819052696228027 img loss 1.2154743671417236 img loss 1.2305355072021484 img loss 1.188188910484314 img loss 1.2140824794769287 img loss 1.2496144771575928 img loss 1.2529144287109375 img loss 1.3275810480117798 img loss 1.2577526569366455 img loss 1.19871985912323 img loss 1.1838796138763428 img loss 1.148707628250122 img loss 1.2592967748641968 img loss 1.1897426843643188 img loss 1.2098021507263184 {'loss': 1.215, 'grad_norm': 0.23094257712364197, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.0878831148147583 img loss 1.2110939025878906 img loss 1.1413202285766602 img loss 1.1876996755599976 img loss 1.1944420337677002 img loss 1.2511554956436157 img loss 1.2540820837020874 img loss 1.1855443716049194 img loss 1.1985435485839844 img loss 1.2056970596313477 img loss 1.200692057609558 img loss 1.1622051000595093 img loss 1.3275495767593384 img loss 1.2342875003814697 img loss 1.2173631191253662 img loss 1.1953485012054443 img loss 1.1616578102111816 img loss 1.1983680725097656 img loss 1.207079529762268 img loss 1.2187721729278564 img loss 1.2290416955947876 img loss 1.1963552236557007 img loss 1.1445190906524658 img loss 1.1337225437164307 img loss 1.2086827754974365 img loss 1.1042039394378662 img loss 1.2994225025177002 img loss 1.195181131362915 img loss 1.2411553859710693 img loss 1.1918861865997314 img loss 1.1238892078399658 img loss 1.2138012647628784 img loss 1.288681983947754 img loss 1.1547513008117676 img loss 1.1363818645477295 img loss 1.2118123769760132 img loss 1.1805167198181152 img loss 1.2362473011016846 img loss 1.1942697763442993 img loss 1.2177232503890991 img loss 1.3168379068374634 img loss 1.1421325206756592 img loss 1.3139722347259521 img loss 1.1874639987945557 img loss 1.148863673210144 img loss 1.218131422996521 img loss 1.2126624584197998 img loss 1.158567190170288 img loss 1.2975366115570068 img loss 1.246867060661316 img loss 1.1613906621932983 img loss 1.1318886280059814 img loss 1.2028206586837769 img loss 1.1369503736495972 img loss 1.2437407970428467 img loss 1.1547621488571167 img loss 1.1885738372802734 img loss 1.2519352436065674 img loss 1.2930865287780762 img loss 1.2647392749786377 img loss 1.1970833539962769 img loss 1.163629174232483 img loss 1.1866910457611084 img loss 1.1808795928955078 img loss 1.2499414682388306 img loss 1.2006281614303589 img loss 1.2545413970947266 img loss 1.1902865171432495 img loss 1.2826251983642578 img loss 1.2084441184997559 img loss 1.3066608905792236 img loss 1.2020899057388306 img loss 1.2046005725860596 img loss 1.190097689628601 img loss 1.2262916564941406 img loss 1.132800817489624 img loss 1.2742245197296143 img loss 1.151187777519226 img loss 1.199131727218628 img loss 1.2013070583343506 img loss 1.2018696069717407 img loss 1.1998318433761597 img loss 1.2055087089538574 img loss 1.2165074348449707 img loss 1.1437654495239258 img loss 1.2655746936798096 img loss 1.2565332651138306 img loss 1.2431148290634155 img loss 1.2342004776000977 img loss 1.2581285238265991 img loss 1.216350793838501 img loss 1.150238037109375 img loss 1.1531504392623901 img loss 1.2544784545898438 img loss 1.1863794326782227 img loss 1.2049365043640137 img loss 1.2507082223892212 img loss 1.105621099472046 img loss 1.256102204322815 img loss 1.1933236122131348 img loss 1.2114003896713257 img loss 1.240273118019104 img loss 1.2516953945159912 img loss 1.2229045629501343 img loss 1.201775312423706 img loss 1.2263426780700684 img loss 1.1025813817977905 img loss 1.178678035736084 img loss 1.195613145828247 img loss 1.1599266529083252 img loss 1.2042359113693237 img loss 1.1316111087799072 img loss 1.2202539443969727 img loss 1.2608784437179565 img loss 1.2802006006240845 img loss 1.1846634149551392 img loss 1.2431648969650269 img loss 1.225777506828308 img loss 1.2713024616241455 img loss 1.2070585489273071 img loss 1.2030982971191406 img loss 1.1520323753356934 img loss 1.1770050525665283 img loss 1.166922926902771 img loss 1.200600504875183 img loss 1.1320303678512573 img loss 1.2598989009857178 img loss 1.2502115964889526 {'loss': 1.2061, 'grad_norm': 0.28510284423828125, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1787781715393066 img loss 1.1814970970153809 img loss 1.1980596780776978 img loss 1.1395012140274048 img loss 1.2068227529525757 img loss 1.2065609693527222 img loss 1.1655725240707397 img loss 1.1739567518234253 img loss 1.1689881086349487 img loss 1.2026193141937256 img loss 1.1784474849700928 img loss 1.1531000137329102 img loss 1.1538808345794678 img loss 1.265299677848816 img loss 1.1975445747375488 img loss 1.160314917564392 img loss 1.1817619800567627 img loss 1.2040337324142456 img loss 1.1871064901351929 img loss 1.1649640798568726 img loss 1.2077457904815674 img loss 1.1894009113311768 img loss 1.1924047470092773 img loss 1.1539500951766968 img loss 1.195604920387268 img loss 1.1842466592788696 img loss 1.1897141933441162 img loss 1.1424654722213745 img loss 1.1437095403671265 img loss 1.1970953941345215 img loss 1.1727020740509033 img loss 1.1971272230148315 img loss 1.1600040197372437 img loss 1.2036261558532715 img loss 1.2172865867614746 img loss 1.225298285484314 img loss 1.2503738403320312 img loss 1.1602783203125 img loss 1.2116612195968628 img loss 1.1992806196212769 img loss 1.2151687145233154 img loss 1.2216936349868774 img loss 1.157799243927002 img loss 1.1988798379898071 img loss 1.147817611694336 img loss 1.2324968576431274 img loss 1.1684646606445312 img loss 1.141158103942871 img loss 1.2411818504333496 img loss 1.1946980953216553 img loss 1.1862924098968506 img loss 1.143784999847412 img loss 1.1370608806610107 img loss 1.182487964630127 img loss 1.1379609107971191 img loss 1.250661849975586 img loss 1.194758653640747 img loss 1.199461579322815 img loss 1.16170072555542 img loss 1.1932090520858765 img loss 1.1809322834014893 img loss 1.1670663356781006 img loss 1.222127914428711 img loss 1.2434308528900146 img loss 1.165934443473816 img loss 1.1479237079620361 img loss 1.1988862752914429 img loss 1.1641082763671875 img loss 1.1848446130752563 img loss 1.1863349676132202 img loss 1.1680892705917358 img loss 1.2187862396240234 img loss 1.178326964378357 img loss 1.191179633140564 img loss 1.1864581108093262 img loss 1.1760382652282715 img loss 1.2219752073287964 img loss 1.1681269407272339 img loss 1.1653094291687012 img loss 1.1664669513702393 img loss 1.1625149250030518 img loss 1.1995882987976074 img loss 1.179695725440979 img loss 1.1887946128845215 img loss 1.2144159078598022 img loss 1.1566590070724487 img loss 1.2209622859954834 img loss 1.1840436458587646 img loss 1.1808689832687378 img loss 1.1562789678573608 img loss 1.1773160696029663 img loss 1.1719785928726196 img loss 1.2505079507827759 img loss 1.2046737670898438 img loss 1.167398452758789 img loss 1.1691945791244507 img loss 1.244167685508728 img loss 1.1795330047607422 img loss 1.1965880393981934 img loss 1.2031301259994507 img loss 1.1639617681503296 img loss 1.1260530948638916 img loss 1.1891002655029297 img loss 1.1538877487182617 img loss 1.1856439113616943 img loss 1.287412166595459 img loss 1.212662935256958 img loss 1.2138750553131104 img loss 1.18247389793396 img loss 1.188045859336853 img loss 1.1666587591171265 img loss 1.1261380910873413 img loss 1.1657905578613281 img loss 1.1738766431808472 img loss 1.1650253534317017 img loss 1.1883716583251953 img loss 1.1991691589355469 img loss 1.1893638372421265 img loss 1.1924424171447754 img loss 1.1720584630966187 img loss 1.1898362636566162 img loss 1.2018177509307861 img loss 1.156542420387268 img loss 1.1826711893081665 img loss 1.15841543674469 img loss 1.1935077905654907 img loss 1.2173389196395874 img loss 1.2473335266113281 {'loss': 1.1865, 'grad_norm': 0.28305938839912415, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.533747911453247 img loss 1.425811529159546 img loss 1.4633533954620361 img loss 1.5338579416275024 img loss 1.2851110696792603 img loss 1.4914933443069458 img loss 1.453890085220337 img loss 1.4282270669937134 img loss 1.624924898147583 img loss 1.4136850833892822 img loss 1.511061191558838 img loss 1.5019583702087402 img loss 1.4741467237472534 img loss 1.4878172874450684 img loss 1.3943692445755005 img loss 1.441161036491394 img loss 1.5943819284439087 img loss 1.3310860395431519 img loss 1.516851544380188 img loss 1.6186034679412842 img loss 1.5443565845489502 img loss 1.4341139793395996 img loss 1.5209754705429077 img loss 1.447156310081482 img loss 1.4966473579406738 img loss 1.4584791660308838 img loss 1.488784909248352 img loss 1.5107368230819702 img loss 1.5102953910827637 img loss 1.4944161176681519 img loss 1.4813119173049927 img loss 1.4498169422149658 img loss 1.5040708780288696 img loss 1.304186224937439 img loss 1.60569429397583 img loss 1.519044280052185 img loss 1.3117605447769165 img loss 1.5951950550079346 img loss 1.4369347095489502 img loss 1.4722849130630493 img loss 1.4983837604522705 img loss 1.46754789352417 img loss 1.4414564371109009 img loss 1.409153699874878 img loss 1.4693800210952759 img loss 1.62960684299469 img loss 1.4573743343353271 img loss 1.4837325811386108 img loss 1.5825635194778442 img loss 1.5658605098724365 img loss 1.4779200553894043 img loss 1.5263251066207886 img loss 1.4761147499084473 img loss 1.4136583805084229 img loss 1.549656629562378 img loss 1.6271339654922485 img loss 1.4637306928634644 img loss 1.516842246055603 img loss 1.5058823823928833 img loss 1.4800307750701904 img loss 1.4499174356460571 img loss 1.4659781455993652 img loss 1.4296295642852783 img loss 1.597084403038025 img loss 1.3657095432281494 img loss 1.4271047115325928 img loss 1.5177870988845825 img loss 1.4408624172210693 img loss 1.3343666791915894 img loss 1.4165881872177124 img loss 1.4853320121765137 img loss 1.3930468559265137 img loss 1.418229341506958 img loss 1.4797451496124268 img loss 1.443987488746643 img loss 1.5819271802902222 img loss 1.6869851350784302 img loss 1.6341898441314697 img loss 1.3782719373703003 img loss 1.4520024061203003 img loss 1.4343477487564087 img loss 1.400550365447998 img loss 1.4198477268218994 img loss 1.3814196586608887 img loss 1.3066600561141968 img loss 1.501785159111023 img loss 1.521970272064209 img loss 1.358507752418518 img loss 1.4215123653411865 img loss 1.3874245882034302 img loss 1.514297604560852 img loss 1.5254555940628052 img loss 1.5627648830413818 img loss 1.3715739250183105 img loss 1.482610821723938 img loss 1.4999043941497803 img loss 1.5327130556106567 img loss 1.4935022592544556 img loss 1.4944570064544678 img loss 1.4210028648376465 img loss 1.6019443273544312 img loss 1.485015630722046 img loss 1.5476075410842896 img loss 1.5465753078460693 img loss 1.4856632947921753 img loss 1.4014843702316284 img loss 1.4603655338287354 img loss 1.4465343952178955 img loss 1.5254749059677124 img loss 1.4446005821228027 img loss 1.5407761335372925 img loss 1.4191683530807495 img loss 1.6343806982040405 img loss 1.508700966835022 img loss 1.4605885744094849 img loss 1.5440090894699097 img loss 1.5886740684509277 img loss 1.4998838901519775 img loss 1.4216290712356567 img loss 1.433221459388733 img loss 1.456624150276184 img loss 1.4005978107452393 img loss 1.4290845394134521 img loss 1.449610948562622 img loss 1.4853014945983887 img loss 1.4460057020187378 img loss 1.5194532871246338 img loss 1.5810812711715698 {'loss': 1.4793, 'grad_norm': 0.3343122601509094, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3494484424591064 img loss 1.432257890701294 img loss 1.4126121997833252 img loss 1.539794683456421 img loss 1.6460334062576294 img loss 1.3859765529632568 img loss 1.5354249477386475 img loss 1.5258411169052124 img loss 1.6418331861495972 img loss 1.4598883390426636 img loss 1.5372636318206787 img loss 1.67708420753479 img loss 1.650329351425171 img loss 1.6118409633636475 img loss 1.4971213340759277 img loss 1.4609882831573486 img loss 1.5411020517349243 img loss 1.717887282371521 img loss 1.5498863458633423 img loss 1.665614366531372 img loss 1.4822109937667847 img loss 1.640450358390808 img loss 1.5386977195739746 img loss 1.5818400382995605 img loss 1.596514105796814 img loss 1.4187742471694946 img loss 1.495160460472107 img loss 1.5028067827224731 img loss 1.5497759580612183 img loss 1.6013569831848145 img loss 1.5045850276947021 img loss 1.6011148691177368 img loss 1.5121878385543823 img loss 1.590474247932434 img loss 1.5238687992095947 img loss 1.6329293251037598 img loss 1.4286091327667236 img loss 1.541573405265808 img loss 1.5592471361160278 img loss 1.5696851015090942 img loss 1.5436919927597046 img loss 1.6059699058532715 img loss 1.501266598701477 img loss 1.6655020713806152 img loss 1.475889801979065 img loss 1.7133898735046387 img loss 1.5332081317901611 img loss 1.6445400714874268 img loss 1.5863021612167358 img loss 1.6032767295837402 img loss 1.6197365522384644 img loss 1.633123517036438 img loss 1.594741702079773 img loss 1.6756279468536377 img loss 1.4090501070022583 img loss 1.52965247631073 img loss 1.521511197090149 img loss 1.4141594171524048 img loss 1.5216423273086548 img loss 1.5893473625183105 img loss 1.5408180952072144 img loss 1.700621247291565 img loss 1.6315964460372925 img loss 1.5161035060882568 img loss 1.5748156309127808 img loss 1.5493558645248413 img loss 1.5873574018478394 img loss 1.4577229022979736 img loss 1.3480459451675415 img loss 1.5676504373550415 img loss 1.381313681602478 img loss 1.7407268285751343 img loss 1.54189133644104 img loss 1.6217968463897705 img loss 1.3546440601348877 img loss 1.5534213781356812 img loss 1.535070538520813 img loss 1.5654425621032715 img loss 1.529508113861084 img loss 1.4770971536636353 img loss 1.4970790147781372 img loss 1.6249048709869385 img loss 1.5948916673660278 img loss 1.5322855710983276 img loss 1.6090401411056519 img loss 1.533057451248169 img loss 1.6459704637527466 img loss 1.5487313270568848 img loss 1.5829503536224365 img loss 1.5231125354766846 img loss 1.6488282680511475 img loss 1.718737006187439 img loss 1.4878681898117065 img loss 1.5684462785720825 img loss 1.5938944816589355 img loss 1.6172289848327637 img loss 1.4482380151748657 img loss 1.7088018655776978 img loss 1.5094752311706543 img loss 1.5549886226654053 img loss 1.5088616609573364 img loss 1.3613380193710327 img loss 1.4667613506317139 img loss 1.5285001993179321 img loss 1.629807710647583 img loss 1.602832317352295 img loss 1.6526652574539185 img loss 1.4920859336853027 img loss 1.4953192472457886 img loss 1.5533310174942017 img loss 1.7930564880371094 img loss 1.6223701238632202 img loss 1.4348170757293701 img loss 1.4567382335662842 img loss 1.512615442276001 img loss 1.5429667234420776 img loss 1.5384771823883057 img loss 1.5833309888839722 img loss 1.5264092683792114 img loss 1.7136365175247192 img loss 1.5487717390060425 img loss 1.5017902851104736 img loss 1.5882794857025146 img loss 1.5033882856369019 img loss 1.4982025623321533 img loss 1.5145868062973022 img loss 1.6960158348083496 img loss 1.6713899374008179 {'loss': 1.5543, 'grad_norm': 0.3426840007305145, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1412720680236816 img loss 1.1973803043365479 img loss 1.1609772443771362 img loss 1.164086937904358 img loss 1.119077205657959 img loss 1.0746572017669678 img loss 1.155408501625061 img loss 1.1454209089279175 img loss 1.1512755155563354 img loss 1.1460001468658447 img loss 1.201155662536621 img loss 1.1917755603790283 img loss 1.1744883060455322 img loss 1.189384937286377 img loss 1.1631407737731934 img loss 1.1705435514450073 img loss 1.1506694555282593 img loss 1.1614317893981934 img loss 1.1250040531158447 img loss 1.1778682470321655 img loss 1.1712419986724854 img loss 1.1418007612228394 img loss 1.1152315139770508 img loss 1.1409270763397217 img loss 1.1220512390136719 img loss 1.1112549304962158 img loss 1.18397855758667 img loss 1.1267914772033691 img loss 1.153178095817566 img loss 1.1953037977218628 img loss 1.1128358840942383 img loss 1.111161470413208 img loss 1.1099433898925781 img loss 1.1493686437606812 img loss 1.0986874103546143 img loss 1.1571413278579712 img loss 1.1524333953857422 img loss 1.169507622718811 img loss 1.1828030347824097 img loss 1.155882477760315 img loss 1.167515754699707 img loss 1.164952039718628 img loss 1.1322263479232788 img loss 1.130462884902954 img loss 1.1140011548995972 img loss 1.178857445716858 img loss 1.1975817680358887 img loss 1.1236399412155151 img loss 1.1243913173675537 img loss 1.1544418334960938 img loss 1.154794454574585 img loss 1.1785118579864502 img loss 1.162615180015564 img loss 1.1640716791152954 img loss 1.1432437896728516 img loss 1.1611334085464478 img loss 1.1259982585906982 img loss 1.150458812713623 img loss 1.1749107837677002 img loss 1.1388121843338013 img loss 1.1540745496749878 img loss 1.115287184715271 img loss 1.157977819442749 img loss 1.1686261892318726 img loss 1.1779265403747559 img loss 1.1435258388519287 img loss 1.1237815618515015 img loss 1.1706428527832031 img loss 1.1716445684432983 img loss 1.1584933996200562 img loss 1.1442540884017944 img loss 1.1906858682632446 img loss 1.1272473335266113 img loss 1.1360797882080078 img loss 1.179186463356018 img loss 1.2118936777114868 img loss 1.2062386274337769 img loss 1.1613086462020874 img loss 1.135305643081665 img loss 1.1961891651153564 img loss 1.2340350151062012 img loss 1.218845248222351 img loss 1.1012462377548218 img loss 1.1637582778930664 img loss 1.1647579669952393 img loss 1.163405418395996 img loss 1.1581522226333618 img loss 1.1574310064315796 img loss 1.1932247877120972 img loss 1.194008469581604 img loss 1.1408109664916992 img loss 1.1452229022979736 img loss 1.2049760818481445 img loss 1.154085397720337 img loss 1.1430710554122925 img loss 1.169249176979065 img loss 1.1725558042526245 img loss 1.1738018989562988 img loss 1.1220452785491943 img loss 1.1889820098876953 img loss 1.162514567375183 img loss 1.2033659219741821 img loss 1.1235947608947754 img loss 1.1722253561019897 img loss 1.1600093841552734 img loss 1.1278777122497559 img loss 1.1572206020355225 img loss 1.1314215660095215 img loss 1.156317949295044 img loss 1.1536000967025757 img loss 1.168595314025879 img loss 1.0932015180587769 img loss 1.1708848476409912 img loss 1.1910407543182373 img loss 1.1835285425186157 img loss 1.1888697147369385img loss 1.1379530429840088 img loss 1.1897141933441162 img loss 1.1872109174728394 img loss 1.1596161127090454 img loss 1.1091426610946655 img loss 1.1019726991653442 img loss 1.1845965385437012 img loss 1.1621555089950562 img loss 1.1281336545944214 img loss 1.15753173828125 img loss 1.125525951385498 img loss 1.0972330570220947 {'loss': 1.1558, 'grad_norm': 0.33928510546684265, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3499423265457153 img loss 1.2563059329986572 img loss 1.2585673332214355 img loss 1.3284051418304443 img loss 1.3960694074630737 img loss 1.2513798475265503 img loss 1.285970687866211 img loss 1.2201263904571533 img loss 1.3467729091644287 img loss 1.2756240367889404 img loss 1.2663133144378662 img loss 1.3652111291885376 img loss 1.3117616176605225 img loss 1.2852153778076172 img loss 1.2639610767364502 img loss 1.3291033506393433 img loss 1.3189033269882202 img loss 1.3076502084732056 img loss 1.3377290964126587 img loss 1.26371169090271 img loss 1.291365623474121 img loss 1.2824573516845703 img loss 1.261240839958191 img loss 1.217994213104248 img loss 1.2507215738296509 img loss 1.329422950744629 img loss 1.339243769645691 img loss 1.3090989589691162 img loss 1.2476695775985718 img loss 1.3576371669769287 img loss 1.2767722606658936 img loss 1.216413974761963 img loss 1.3028780221939087 img loss 1.2348246574401855 img loss 1.298856258392334 img loss 1.2485812902450562 img loss 1.2673866748809814 img loss 1.2941176891326904 img loss 1.3045574426651 img loss 1.3374804258346558 img loss 1.2603981494903564 img loss 1.3055404424667358 img loss 1.230851650238037 img loss 1.2806546688079834 img loss 1.2773950099945068 img loss 1.25528883934021 img loss 1.2626667022705078 img loss 1.3097399473190308 img loss 1.3176754713058472 img loss 1.2549504041671753 img loss 1.31624174118042 img loss 1.3986653089523315 img loss 1.2862110137939453 img loss 1.261714220046997 img loss 1.328428864479065 img loss 1.3005834817886353 img loss 1.251787543296814 img loss 1.3636376857757568 img loss 1.1397761106491089 img loss 1.3537379503250122 img loss 1.2691620588302612 img loss 1.2393845319747925 img loss 1.2397472858428955 img loss 1.2737003564834595 img loss 1.2429637908935547 img loss 1.3064247369766235 img loss 1.2525125741958618 img loss 1.2868497371673584 img loss 1.304785966873169 img loss 1.3101186752319336 img loss 1.2630057334899902 img loss 1.310188889503479 img loss 1.1975934505462646 img loss 1.3026201725006104 img loss 1.311802864074707 img loss 1.3461909294128418 img loss 1.2867693901062012 img loss 1.2799739837646484 img loss 1.3113796710968018 img loss 1.2737786769866943 img loss 1.3579230308532715 img loss 1.258339524269104 img loss 1.3733916282653809 img loss 1.2723796367645264 img loss 1.310625433921814 img loss 1.2746464014053345 img loss 1.3235182762145996 img loss 1.2658295631408691 img loss 1.3009055852890015 img loss 1.2304518222808838 img loss 1.3432097434997559 img loss 1.2743600606918335 img loss 1.2198683023452759 img loss 1.2772769927978516 img loss 1.292749285697937 img loss 1.302801489830017 img loss 1.2674424648284912 img loss 1.3083981275558472 img loss 1.3189136981964111 img loss 1.319938063621521 img loss 1.309457778930664 img loss 1.2802257537841797 img loss 1.249550700187683 img loss 1.2756685018539429 img loss 1.3439196348190308 img loss 1.3551898002624512 img loss 1.2321293354034424 img loss 1.2758461236953735 img loss 1.280359148979187 img loss 1.4145662784576416 img loss 1.384387731552124 img loss 1.3202862739562988 img loss 1.307361125946045 img loss 1.3780121803283691 img loss 1.2626826763153076 img loss 1.337051510810852 img loss 1.2391142845153809 img loss 1.3464312553405762 img loss 1.2586320638656616 img loss 1.3106937408447266 img loss 1.3561217784881592 img loss 1.3478405475616455 img loss 1.306581735610962 img loss 1.313385009765625 img loss 1.2711889743804932 img loss 1.3769543170928955 img loss 1.2783750295639038 img loss 1.2641884088516235 {'loss': 1.2939, 'grad_norm': 0.29636311531066895, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1530303955078125 img loss 1.1938749551773071 img loss 1.2053066492080688 img loss 1.157570242881775 img loss 1.2240206003189087 img loss 1.1544225215911865 img loss 1.140029788017273 img loss 1.122789978981018 img loss 1.2423642873764038 img loss 1.127573013305664 img loss 1.2355016469955444 img loss 1.2279688119888306 img loss 1.1413424015045166 img loss 1.1477094888687134 img loss 1.1253020763397217 img loss 1.1871590614318848 img loss 1.1776665449142456 img loss 1.1282870769500732 img loss 1.182511329650879 img loss 1.1160011291503906 img loss 1.1425126791000366 img loss 1.1660069227218628 img loss 1.1810719966888428 img loss 1.1541919708251953 img loss 1.1609508991241455 img loss 1.093340277671814 img loss 1.1428422927856445 img loss 1.1587755680084229 img loss 1.170172929763794 img loss 1.2442054748535156 img loss 1.113257884979248 img loss 1.1122782230377197 img loss 1.1050341129302979 img loss 1.147806167602539 img loss 1.1906659603118896 img loss 1.1401870250701904 img loss 1.1267739534378052 img loss 1.1900802850723267 img loss 1.1853493452072144 img loss 1.2054113149642944 img loss 1.2184154987335205 img loss 1.1674926280975342 img loss 1.200602412223816 img loss 1.121222972869873 img loss 1.1171340942382812 img loss 1.2150731086730957 img loss 1.1722996234893799 img loss 1.148625373840332 img loss 1.1562236547470093 img loss 1.141721487045288 img loss 1.2036254405975342 img loss 1.165727138519287 img loss 1.1835474967956543 img loss 1.171230673789978 img loss 1.0913866758346558 img loss 1.1310380697250366 img loss 1.1295499801635742 img loss 1.237142562866211 img loss 1.1806944608688354 img loss 1.0647190809249878 img loss 1.1587791442871094 img loss 1.1691044569015503 img loss 1.2283644676208496 img loss 1.1414930820465088 img loss 1.0981923341751099 img loss 1.1069215536117554 img loss 1.183427333831787 img loss 1.0986864566802979 img loss 1.1705927848815918 img loss 1.1213958263397217 img loss 1.22914457321167 img loss 1.179344892501831 img loss 1.1861705780029297 img loss 1.1331610679626465 img loss 1.1817642450332642 img loss 1.1564946174621582 img loss 1.1095353364944458 img loss 1.237196683883667 img loss 1.2310510873794556 img loss 1.15810227394104 img loss 1.2081167697906494 img loss 1.1552093029022217 img loss 1.2058517932891846 img loss 1.1941860914230347 img loss 1.2049922943115234img loss 1.238097906112671 img loss 1.1615533828735352 img loss 1.1433943510055542 img loss 1.159890055656433 img loss 1.158942699432373 img loss 1.1493186950683594 img loss 1.1573129892349243 img loss 1.1679216623306274 img loss 1.1724385023117065 img loss 1.144449234008789 img loss 1.1860594749450684 img loss 1.2647209167480469 img loss 1.1844799518585205 img loss 1.127255916595459 img loss 1.15855872631073 img loss 1.1438261270523071 img loss 1.1318442821502686 img loss 1.1518770456314087 img loss 1.155110239982605 img loss 1.1325792074203491 img loss 1.1770023107528687 img loss 1.1701970100402832 img loss 1.1981265544891357 img loss 1.1647783517837524 img loss 1.1713359355926514 img loss 1.2040283679962158 img loss 1.1870898008346558 img loss 1.1375188827514648 img loss 1.2225068807601929 img loss 1.1705902814865112 img loss 1.1635687351226807 img loss 1.1447536945343018 img loss 1.1510980129241943 img loss 1.118682622909546 img loss 1.1529192924499512 img loss 1.1288305521011353 img loss 1.209298849105835 img loss 1.1657034158706665 img loss 1.1357567310333252 img loss 1.1470447778701782 img loss 1.1217024326324463 img loss 1.220241904258728 img loss 1.1561726331710815 {'loss': 1.1648, 'grad_norm': 0.3334326148033142, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3452506065368652 img loss 1.1908478736877441 img loss 1.2136462926864624 img loss 1.3888880014419556 img loss 1.469215750694275 img loss 1.1749244928359985 img loss 1.384216070175171 img loss 1.3634892702102661 img loss 1.2532840967178345 img loss 1.2708759307861328 img loss 1.228392481803894 img loss 1.3156250715255737 img loss 1.2786582708358765 img loss 1.2376532554626465 img loss 1.2424192428588867 img loss 1.3525441884994507 img loss 1.3392494916915894 img loss 1.2032822370529175 img loss 1.3420368432998657 img loss 1.2663383483886719 img loss 1.370085597038269 img loss 1.334952473640442 img loss 1.268602728843689 img loss 1.243464469909668 img loss 1.2085497379302979 img loss 1.223831057548523 img loss 1.236527681350708 img loss 1.3518348932266235 img loss 1.1986737251281738 img loss 1.3101060390472412 img loss 1.314296007156372 img loss 1.1978678703308105 img loss 1.356231451034546 img loss 1.255245566368103 img loss 1.304203987121582 img loss 1.3034480810165405 img loss 1.2966861724853516 img loss 1.1994270086288452 img loss 1.2492873668670654 img loss 1.304453730583191 img loss 1.1407407522201538 img loss 1.2129795551300049 img loss 1.364399790763855 img loss 1.2246547937393188 img loss 1.2885727882385254 img loss 1.332980990409851 img loss 1.219706416130066 img loss 1.2977207899093628 img loss 1.2769336700439453 img loss 1.255175232887268 img loss 1.1795411109924316 img loss 1.2238329648971558 img loss 1.2429707050323486 img loss 1.21006178855896 img loss 1.3033480644226074 img loss 1.2165942192077637 img loss 1.2393585443496704 img loss 1.1919915676116943 img loss 1.3026118278503418 img loss 1.3115986585617065 img loss 1.339946985244751 img loss 1.256071925163269 img loss 1.2276802062988281 img loss 1.2691943645477295 img loss 1.2895920276641846 img loss 1.2784374952316284 img loss 1.2444065809249878 img loss 1.4780323505401611 img loss 1.2857776880264282 img loss 1.3680949211120605 img loss 1.1810741424560547 img loss 1.1661773920059204 img loss 1.1573925018310547 img loss 1.3117231130599976 img loss 1.2111324071884155 img loss 1.389147400856018 img loss 1.2724672555923462 img loss 1.3341766595840454 img loss 1.2869141101837158 img loss 1.2375234365463257 img loss 1.2220468521118164 img loss 1.264376163482666 img loss 1.3263009786605835 img loss 1.2755188941955566 img loss 1.2627285718917847 img loss 1.3343900442123413 img loss 1.1849513053894043 img loss 1.37428617477417 img loss 1.2793951034545898 img loss 1.236173152923584 img loss 1.3395127058029175 img loss 1.2181427478790283 img loss 1.35048508644104 img loss 1.187083125114441 img loss 1.3018527030944824 img loss 1.3457108736038208 img loss 1.3051780462265015 img loss 1.248957872390747 img loss 1.1530113220214844 img loss 1.2459057569503784 img loss 1.1996062994003296 img loss 1.3376799821853638 img loss 1.3571854829788208 img loss 1.2664728164672852 img loss 1.1703567504882812 img loss 1.3669811487197876 img loss 1.2513158321380615 img loss 1.3369518518447876 img loss 1.2982277870178223 img loss 1.3597780466079712 img loss 1.2568354606628418 img loss 1.2147949934005737 img loss 1.2586145401000977 img loss 1.1734071969985962 img loss 1.2877819538116455 img loss 1.3195103406906128 img loss 1.2718920707702637 img loss 1.2839034795761108 img loss 1.2109383344650269 img loss 1.354826807975769 img loss 1.1853454113006592 img loss 1.3211082220077515 img loss 1.2559418678283691 img loss 1.2188324928283691 img loss 1.2671667337417603 img loss 1.283608317375183 img loss 1.1203683614730835 img loss 1.275303840637207 {'loss': 1.2732, 'grad_norm': 0.2867128551006317, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2369134426116943 img loss 1.296287178993225 img loss 1.2496426105499268 img loss 1.2919387817382812 img loss 1.26426100730896 img loss 1.2548246383666992 img loss 1.2918901443481445 img loss 1.3724595308303833 img loss 1.2929022312164307 img loss 1.2104926109313965 img loss 1.3017692565917969 img loss 1.2604827880859375 img loss 1.361997365951538 img loss 1.261521577835083 img loss 1.2239038944244385 img loss 1.227020025253296 img loss 1.2198915481567383 img loss 1.2545818090438843 img loss 1.2660211324691772 img loss 1.278452754020691 img loss 1.2971218824386597 img loss 1.3345677852630615 img loss 1.2692006826400757 img loss 1.325181245803833 img loss 1.28801691532135 img loss 1.3169209957122803 img loss 1.2826083898544312 img loss 1.3264317512512207 img loss 1.249155044555664 img loss 1.3319683074951172 img loss 1.2313954830169678 img loss 1.332855224609375 img loss 1.3836902379989624 img loss 1.2315486669540405 img loss 1.3062820434570312 img loss 1.2837380170822144 img loss 1.2857625484466553 img loss 1.2501657009124756 img loss 1.2933833599090576 img loss 1.3694322109222412 img loss 1.3342481851577759 img loss 1.2998218536376953 img loss 1.1910979747772217 img loss 1.2552943229675293 img loss 1.273519515991211 img loss 1.3321776390075684 img loss 1.2332292795181274 img loss 1.2296741008758545 img loss 1.2979485988616943 img loss 1.2302942276000977 img loss 1.3598017692565918 img loss 1.2678745985031128 img loss 1.2769569158554077 img loss 1.3175939321517944 img loss 1.2472059726715088 img loss 1.2346044778823853 img loss 1.2170298099517822 img loss 1.2240310907363892 img loss 1.2474706172943115 img loss 1.254270076751709 img loss 1.2127517461776733 img loss 1.2790157794952393 img loss 1.2522166967391968 img loss 1.2190282344818115 img loss 1.270148754119873 img loss 1.2462955713272095 img loss 1.1736797094345093 img loss 1.290910243988037 img loss 1.1989853382110596 img loss 1.286594271659851 img loss 1.2439178228378296 img loss 1.2671844959259033 img loss 1.2645500898361206 img loss 1.231222152709961 img loss 1.2136205434799194 img loss 1.254594087600708 img loss 1.2998608350753784 img loss 1.232576608657837 img loss 1.3546260595321655 img loss 1.2959507703781128 img loss 1.2865664958953857 img loss 1.2896077632904053 img loss 1.3427937030792236 img loss 1.3018758296966553 img loss 1.254390001296997 img loss 1.2950165271759033 img loss 1.2177780866622925 img loss 1.2474594116210938 img loss 1.2597424983978271 img loss 1.350236415863037 img loss 1.2904701232910156 img loss 1.3218071460723877 img loss 1.2346820831298828 img loss 1.3329261541366577 img loss 1.2172825336456299 img loss 1.2411640882492065 img loss 1.2954785823822021 img loss 1.20955228805542 img loss 1.279872179031372 img loss 1.2642757892608643 img loss 1.2347530126571655 img loss 1.265236735343933 img loss 1.292490839958191 img loss 1.3447345495224 img loss 1.3448405265808105 img loss 1.2792905569076538 img loss 1.2122206687927246 img loss 1.3138166666030884 img loss 1.2650935649871826 img loss 1.2811816930770874 img loss 1.329864501953125 img loss 1.188823938369751 img loss 1.2469414472579956 img loss 1.273217797279358 img loss 1.262171983718872 img loss 1.2973833084106445 img loss 1.27277410030365 img loss 1.2722322940826416 img loss 1.292999029159546 img loss 1.2337595224380493 img loss 1.2068618535995483 img loss 1.21986722946167 img loss 1.298161268234253 img loss 1.2986280918121338 img loss 1.314959168434143 img loss 1.241094946861267 img loss 1.3174883127212524 img loss 1.3287779092788696 {'loss': 1.2741, 'grad_norm': 0.3230683505535126, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2341513633728027 img loss 1.4292949438095093 img loss 1.332007884979248 img loss 1.4238840341567993 img loss 1.338672161102295 img loss 1.3864697217941284 img loss 1.3207199573516846 img loss 1.225989580154419 img loss 1.3640564680099487 img loss 1.332150936126709 img loss 1.3022470474243164 img loss 1.31180739402771 img loss 1.247626543045044 img loss 1.471282720565796 img loss 1.4034650325775146 img loss 1.3194539546966553 img loss 1.3791651725769043 img loss 1.301571249961853 img loss 1.286624550819397 img loss 1.3582555055618286 img loss 1.391477346420288 img loss 1.3550728559494019 img loss 1.4555599689483643 img loss 1.373918890953064 img loss 1.3784202337265015 img loss 1.2941021919250488 img loss 1.3767939805984497 img loss 1.3839547634124756 img loss 1.301377534866333 img loss 1.40160071849823 img loss 1.3028178215026855 img loss 1.3489258289337158 img loss 1.2799052000045776 img loss 1.3862537145614624 img loss 1.3969453573226929 img loss 1.3720158338546753 img loss 1.5275657176971436 img loss 1.3055130243301392 img loss 1.3664215803146362 img loss 1.3768315315246582 img loss 1.2862688302993774 img loss 1.3881953954696655 img loss 1.3759315013885498 img loss 1.3003143072128296 img loss 1.2513269186019897 img loss 1.3398422002792358 img loss 1.311976432800293 img loss 1.6030118465423584 img loss 1.4771177768707275 img loss 1.2164874076843262 img loss 1.4188010692596436 img loss 1.3393257856369019 img loss 1.374129056930542 img loss 1.3255103826522827 img loss 1.4055503606796265 img loss 1.3597763776779175 img loss 1.3118501901626587 img loss 1.3741284608840942 img loss 1.2583024501800537 img loss 1.2827240228652954 img loss 1.4439046382904053 img loss 1.357377290725708 img loss 1.2594294548034668 img loss 1.257646918296814 img loss 1.4088376760482788 img loss 1.200863242149353 img loss 1.2762846946716309 img loss 1.4598050117492676 img loss 1.387912392616272 img loss 1.4133069515228271 img loss 1.3333462476730347 img loss 1.3341853618621826 img loss 1.2874336242675781 img loss 1.3772743940353394 img loss 1.5118597745895386 img loss 1.3490792512893677 img loss 1.2828699350357056 img loss 1.303038239479065 img loss 1.3804481029510498 img loss 1.3136205673217773 img loss 1.3314735889434814 img loss 1.1729047298431396 img loss 1.247663974761963 img loss 1.2720904350280762 img loss 1.2362861633300781 img loss 1.2999695539474487 img loss 1.3471043109893799 img loss 1.301081895828247 img loss 1.3750710487365723 img loss 1.323952555656433 img loss 1.2650097608566284 img loss 1.349716067314148 img loss 1.2091821432113647 img loss 1.2522013187408447 img loss 1.4198452234268188 img loss 1.3180631399154663 img loss 1.2940216064453125 img loss 1.3142774105072021 img loss 1.4131816625595093 img loss 1.3519418239593506 img loss 1.3332371711730957 img loss 1.4382765293121338 img loss 1.326372504234314 img loss 1.256730318069458 img loss 1.2898529767990112 img loss 1.4001212120056152 img loss 1.314652442932129 img loss 1.2860075235366821 img loss 1.4188083410263062 img loss 1.2523176670074463 img loss 1.2619147300720215 img loss 1.3747994899749756 img loss 1.2563304901123047 img loss 1.3853278160095215 img loss 1.368626356124878 img loss 1.3412144184112549 img loss 1.311356782913208 img loss 1.3792122602462769 img loss 1.2531147003173828 img loss 1.1718719005584717 img loss 1.3336187601089478 img loss 1.226247787475586 img loss 1.3413493633270264 img loss 1.3235106468200684 img loss 1.4628998041152954 img loss 1.3205523490905762 img loss 1.2675861120224 img loss 1.3730604648590088 {'loss': 1.3379, 'grad_norm': 0.3738563656806946, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2373027801513672 img loss 1.1847119331359863 img loss 1.1179171800613403 img loss 1.1794006824493408 img loss 1.1619336605072021 img loss 1.1842470169067383 img loss 1.1679394245147705 img loss 1.2355648279190063 img loss 1.250862717628479 img loss 1.2378469705581665 img loss 1.136732578277588 img loss 1.1902122497558594 img loss 1.253685474395752 img loss 1.220617651939392 img loss 1.1216275691986084 img loss 1.1538012027740479 img loss 1.2206560373306274 img loss 1.133478045463562 img loss 1.2273120880126953 img loss 1.2568994760513306 img loss 1.1746916770935059 img loss 1.2066057920455933 img loss 1.1654869318008423 img loss 1.2473665475845337 img loss 1.2293431758880615 img loss 1.2342365980148315 img loss 1.2482242584228516 img loss 1.1689938306808472 img loss 1.2180811166763306 img loss 1.1627211570739746 img loss 1.1659469604492188 img loss 1.184914469718933 img loss 1.1680195331573486 img loss 1.1546409130096436 img loss 1.1143814325332642 img loss 1.2637195587158203 img loss 1.1951360702514648 img loss 1.1801484823226929 img loss 1.1563211679458618 img loss 1.2684731483459473 img loss 1.2566101551055908 img loss 1.2721209526062012 img loss 1.1991281509399414 img loss 1.1905851364135742 img loss 1.105916976928711 img loss 1.1666914224624634 img loss 1.2335410118103027 img loss 1.1564346551895142 img loss 1.1923823356628418 img loss 1.2070887088775635 img loss 1.222965121269226 img loss 1.2328156232833862 img loss 1.1608595848083496 img loss 1.1309762001037598 img loss 1.1897296905517578 img loss 1.2020879983901978 img loss 1.176287055015564 img loss 1.1906986236572266 img loss 1.1318786144256592 img loss 1.1704128980636597 img loss 1.2207527160644531 img loss 1.2955565452575684 img loss 1.1995060443878174 img loss 1.2475128173828125 img loss 1.242611289024353 img loss 1.2645306587219238 img loss 1.1805331707000732 img loss 1.224831223487854 img loss 1.2324246168136597 img loss 1.1716995239257812 img loss 1.2104612588882446 img loss 1.3016146421432495 img loss 1.1707355976104736 img loss 1.149460792541504 img loss 1.1066571474075317 img loss 1.0800477266311646 img loss 1.1404141187667847 img loss 1.1459492444992065img loss 1.1618733406066895 img loss 1.1786994934082031 img loss 1.157484531402588 img loss 1.170264720916748 img loss 1.249351978302002 img loss 1.2210934162139893 img loss 1.228919267654419 img loss 1.1676511764526367 img loss 1.1996006965637207 img loss 1.2358317375183105 img loss 1.2257945537567139 img loss 1.183175802230835 img loss 1.1391074657440186 img loss 1.147191047668457 img loss 1.2084789276123047 img loss 1.1498186588287354 img loss 1.091521143913269 img loss 1.2175642251968384 img loss 1.2653710842132568 img loss 1.1891368627548218 img loss 1.1732748746871948 img loss 1.145363688468933 img loss 1.1920924186706543 img loss 1.1844842433929443 img loss 1.1909847259521484 img loss 1.2196125984191895 img loss 1.1804001331329346 img loss 1.2036837339401245 img loss 1.1958421468734741 img loss 1.194083571434021 img loss 1.1586689949035645 img loss 1.3094823360443115 img loss 1.2420614957809448 img loss 1.113497257232666 img loss 1.1266260147094727 img loss 1.2108211517333984 img loss 1.246720790863037 img loss 1.1669471263885498 img loss 1.1440939903259277 img loss 1.1493176221847534 img loss 1.1298071146011353 img loss 1.1265307664871216 img loss 1.1836225986480713 img loss 1.1673824787139893 img loss 1.2523975372314453 img loss 1.1691712141036987 img loss 1.1266746520996094 img loss 1.2281723022460938 img loss 1.200852870941162 img loss 1.1891076564788818 {'loss': 1.1911, 'grad_norm': 0.23944787681102753, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2951240539550781 img loss 1.2275179624557495 img loss 1.2265020608901978 img loss 1.2002193927764893 img loss 1.2102106809616089 img loss 1.1993839740753174 img loss 1.169256567955017 img loss 1.3079888820648193 img loss 1.1723297834396362 img loss 1.1734787225723267 img loss 1.156286597251892 img loss 1.249585747718811 img loss 1.2375531196594238 img loss 1.1931527853012085 img loss 1.2251402139663696 img loss 1.2307604551315308 img loss 1.2620199918746948 img loss 1.2263038158416748 img loss 1.242851734161377 img loss 1.315712332725525 img loss 1.2312840223312378 img loss 1.155735969543457 img loss 1.2219443321228027 img loss 1.211150884628296 img loss 1.2274537086486816 img loss 1.2307394742965698 img loss 1.2631460428237915 img loss 1.2480480670928955 img loss 1.1906535625457764 img loss 1.2037490606307983 img loss 1.2033342123031616 img loss 1.1998258829116821 img loss 1.2888367176055908 img loss 1.2568777799606323 img loss 1.2578004598617554 img loss 1.1816554069519043 img loss 1.195207118988037 img loss 1.2343889474868774 img loss 1.1994554996490479 img loss 1.2554601430892944 img loss 1.2118053436279297 img loss 1.3117649555206299 img loss 1.3135408163070679 img loss 1.2016234397888184 img loss 1.2001060247421265 img loss 1.187334656715393 img loss 1.2361396551132202 img loss 1.2372028827667236 img loss 1.242255449295044 img loss 1.2831974029541016 img loss 1.2600882053375244 img loss 1.3619390726089478 img loss 1.3272416591644287img loss 1.235673427581787 img loss 1.2779134511947632 img loss 1.281848669052124 img loss 1.2358614206314087 img loss 1.250525951385498 img loss 1.2221626043319702 img loss 1.1597797870635986 img loss 1.2521730661392212 img loss 1.2904243469238281 img loss 1.2520138025283813 img loss 1.2133738994598389 img loss 1.2736958265304565 img loss 1.2201550006866455 img loss 1.2605637311935425 img loss 1.2482773065567017 img loss 1.22972571849823 img loss 1.2346328496932983 img loss 1.2082648277282715 img loss 1.2695664167404175 img loss 1.2779535055160522 img loss 1.2720611095428467 img loss 1.221451997756958 img loss 1.2602157592773438 img loss 1.1596753597259521 img loss 1.2660244703292847 img loss 1.2960827350616455 img loss 1.306363821029663 img loss 1.2940162420272827 img loss 1.20951509475708 img loss 1.2011094093322754 img loss 1.188794732093811 img loss 1.187921166419983 img loss 1.2300745248794556 img loss 1.2995033264160156 img loss 1.2166889905929565 img loss 1.2485301494598389 img loss 1.3109582662582397 img loss 1.1917521953582764 img loss 1.1879652738571167 img loss 1.292125940322876 img loss 1.2828612327575684 img loss 1.222165822982788 img loss 1.2420307397842407 img loss 1.20518958568573 img loss 1.114236831665039 img loss 1.2314801216125488 img loss 1.2221769094467163 img loss 1.22031569480896 img loss 1.2909119129180908 img loss 1.2426865100860596 img loss 1.2346851825714111 img loss 1.233101725578308 img loss 1.2450779676437378 img loss 1.2822221517562866 img loss 1.2088888883590698 img loss 1.2262248992919922 img loss 1.3388855457305908 img loss 1.1987446546554565 img loss 1.2294154167175293 img loss 1.1206650733947754 img loss 1.237378478050232 img loss 1.2903196811676025 img loss 1.2110697031021118 img loss 1.1921608448028564 img loss 1.1611971855163574 img loss 1.268312931060791 img loss 1.2444571256637573 img loss 1.26864492893219 img loss 1.2092102766036987 img loss 1.2156047821044922 img loss 1.1994558572769165 img loss 1.2367403507232666 img loss 1.227224588394165 img loss 1.241645097732544 img loss 1.2698795795440674 {'loss': 1.2356, 'grad_norm': 0.31722959876060486, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2848296165466309 img loss 1.1797852516174316 img loss 1.245735764503479 img loss 1.117548942565918 img loss 1.158989429473877 img loss 1.186814546585083 img loss 1.1413567066192627 img loss 1.195255160331726 img loss 1.2673194408416748 img loss 1.1474597454071045 img loss 1.2119603157043457 img loss 1.3095176219940186 img loss 1.2858833074569702 img loss 1.212320327758789 img loss 1.2270252704620361 img loss 1.1509708166122437 img loss 1.1729801893234253 img loss 1.2512602806091309 img loss 1.1797655820846558 img loss 1.1769888401031494 img loss 1.161728858947754 img loss 1.1876275539398193 img loss 1.1959996223449707 img loss 1.2626670598983765 img loss 1.2079334259033203 img loss 1.176797866821289 img loss 1.1428287029266357 img loss 1.2353941202163696 img loss 1.1822150945663452 img loss 1.152532935142517 img loss 1.2188644409179688 img loss 1.229602575302124 img loss 1.2271816730499268 img loss 1.123207688331604 img loss 1.1691224575042725 img loss 1.2101914882659912 img loss 1.2820372581481934 img loss 1.2977752685546875 img loss 1.1153358221054077 img loss 1.235529899597168 img loss 1.1390421390533447 img loss 1.2689588069915771 img loss 1.202073574066162 img loss 1.0993940830230713 img loss 1.2505106925964355 img loss 1.2274060249328613 img loss 1.1641956567764282 img loss 1.288739800453186 img loss 1.2184135913848877 img loss 1.2544007301330566 img loss 1.1521220207214355 img loss 1.1803215742111206 img loss 1.1776628494262695 img loss 1.1765180826187134 img loss 1.166330337524414 img loss 1.3193132877349854 img loss 1.2501957416534424 img loss 1.1971355676651 img loss 1.189337968826294 img loss 1.1856313943862915 img loss 1.2592048645019531 img loss 1.1874608993530273 img loss 1.2089972496032715 img loss 1.1690601110458374 img loss 1.1998337507247925 img loss 1.1135082244873047 img loss 1.2137808799743652 img loss 1.1442466974258423 img loss 1.1687746047973633 img loss 1.1849029064178467 img loss 1.135955810546875 img loss 1.2057547569274902 img loss 1.207964301109314 img loss 1.2130693197250366 img loss 1.176440954208374 img loss 1.213531255722046 img loss 1.263095498085022 img loss 1.105854868888855 img loss 1.1477437019348145 img loss 1.1985946893692017 img loss 1.2836261987686157 img loss 1.1277825832366943 img loss 1.210529088973999 img loss 1.2250639200210571 img loss 1.162552833557129 img loss 1.1638603210449219 img loss 1.1082490682601929 img loss 1.1237337589263916 img loss 1.2446441650390625 img loss 1.25520920753479 img loss 1.1889126300811768 img loss 1.2090691328048706 img loss 1.1291600465774536 img loss 1.1735713481903076 img loss 1.203070044517517 img loss 1.277003526687622 img loss 1.2033114433288574 img loss 1.2635771036148071 img loss 1.202225685119629 img loss 1.1279767751693726 img loss 1.2259584665298462 img loss 1.136624813079834 img loss 1.192036509513855 img loss 1.1984198093414307 img loss 1.1524124145507812 img loss 1.1544636487960815 img loss 1.235136866569519 img loss 1.2385953664779663 img loss 1.2262214422225952 img loss 1.1616089344024658 img loss 1.2336409091949463 img loss 1.2180505990982056 img loss 1.1558160781860352 img loss 1.1908142566680908 img loss 1.2435873746871948 img loss 1.246813178062439 img loss 1.1029917001724243 img loss 1.196826696395874 img loss 1.2279995679855347 img loss 1.1474062204360962 img loss 1.18168044090271 img loss 1.201902151107788 img loss 1.2628463506698608 img loss 1.2206313610076904 img loss 1.2363640069961548 img loss 1.1814125776290894 img loss 1.3440765142440796 img loss 1.1539912223815918 {'loss': 1.1992, 'grad_norm': 0.18612314760684967, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2199325561523438 img loss 1.2368396520614624 img loss 1.220762014389038 img loss 1.2070547342300415 img loss 1.2712348699569702 img loss 1.211443543434143 img loss 1.2002760171890259 img loss 1.1795918941497803 img loss 1.2081406116485596 img loss 1.215161919593811 img loss 1.2115572690963745 img loss 1.264543056488037 img loss 1.260558843612671 img loss 1.2122634649276733 img loss 1.2502754926681519 img loss 1.1850082874298096 img loss 1.2071863412857056 img loss 1.2455816268920898 img loss 1.1693830490112305 img loss 1.2256780862808228 img loss 1.2357885837554932 img loss 1.255130648612976img loss 1.1731460094451904 img loss 1.2071846723556519 img loss 1.2269973754882812 img loss 1.191533088684082 img loss 1.2233295440673828 img loss 1.1564853191375732 img loss 1.236711025238037 img loss 1.1804217100143433 img loss 1.2838208675384521 img loss 1.1689800024032593 img loss 1.2317408323287964 img loss 1.304444670677185 img loss 1.148719072341919 img loss 1.2474178075790405 img loss 1.201361060142517 img loss 1.1690372228622437 img loss 1.3050436973571777 img loss 1.2782282829284668 img loss 1.1830859184265137 img loss 1.2502018213272095 img loss 1.1840300559997559 img loss 1.175065517425537 img loss 1.2786552906036377 img loss 1.281862497329712 img loss 1.1819875240325928 img loss 1.2496464252471924 img loss 1.281863808631897 img loss 1.2998781204223633 img loss 1.2951256036758423 img loss 1.2659238576889038 img loss 1.2122331857681274 img loss 1.2045516967773438 img loss 1.173112392425537 img loss 1.173309564590454 img loss 1.1593979597091675 img loss 1.243303894996643 img loss 1.2368595600128174 img loss 1.1599172353744507 img loss 1.2030647993087769 img loss 1.1658509969711304 img loss 1.2441155910491943 img loss 1.2337145805358887 img loss 1.232072114944458 img loss 1.277784824371338 img loss 1.2157642841339111 img loss 1.225844383239746 img loss 1.1856313943862915 img loss 1.2074660062789917 img loss 1.184124231338501 img loss 1.2308833599090576 img loss 1.2289576530456543 img loss 1.1861284971237183 img loss 1.2564220428466797 img loss 1.2045429944992065 img loss 1.1899136304855347 img loss 1.2355117797851562 img loss 1.1400011777877808 img loss 1.196998953819275 img loss 1.168768286705017 img loss 1.361875295639038 img loss 1.225398063659668 img loss 1.141990065574646 img loss 1.1843879222869873 img loss 1.274828314781189 img loss 1.1970112323760986 img loss 1.177672028541565 img loss 1.1712154150009155 img loss 1.308152437210083 img loss 1.272202730178833 img loss 1.2487856149673462 img loss 1.2220253944396973 img loss 1.2870584726333618img loss 1.2538254261016846 img loss 1.235767126083374 img loss 1.2159149646759033 img loss 1.199854850769043 img loss 1.2360641956329346 img loss 1.232150673866272 img loss 1.217924952507019 img loss 1.23090398311615 img loss 1.1496132612228394 img loss 1.1648567914962769 img loss 1.2819732427597046 img loss 1.1948697566986084img loss 1.1783607006072998 img loss 1.2243231534957886 img loss 1.2471767663955688 img loss 1.186941146850586 img loss 1.1384700536727905 img loss 1.255409598350525 img loss 1.2516748905181885 img loss 1.1976174116134644 img loss 1.209661841392517 img loss 1.1941174268722534 img loss 1.239124059677124 img loss 1.203853964805603 img loss 1.2370153665542603 img loss 1.1839604377746582 img loss 1.2543165683746338 img loss 1.263560175895691 img loss 1.2731373310089111 img loss 1.2055416107177734 img loss 1.165249228477478 img loss 1.1909592151641846 img loss 1.2428394556045532 img loss 1.259747862815857 {'loss': 1.2205, 'grad_norm': 0.2756122648715973, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2993688583374023 img loss 1.1922011375427246 img loss 1.2874023914337158 img loss 1.2049193382263184 img loss 1.167488694190979 img loss 1.2882989645004272 img loss 1.2085092067718506 img loss 1.2040858268737793 img loss 1.2794232368469238 img loss 1.2404273748397827 img loss 1.1972270011901855 img loss 1.228877305984497 img loss 1.176313042640686 img loss 1.2305020093917847 img loss 1.2284810543060303 img loss 1.1990870237350464 img loss 1.2158045768737793 img loss 1.2119290828704834 img loss 1.216525912284851 img loss 1.2730052471160889 img loss 1.174973726272583 img loss 1.1991117000579834 img loss 1.1458431482315063 img loss 1.1974849700927734 img loss 1.221158504486084 img loss 1.1894782781600952 img loss 1.1659401655197144 img loss 1.1622517108917236 img loss 1.2012908458709717 img loss 1.233635425567627 img loss 1.1779570579528809 img loss 1.2511861324310303 img loss 1.1936450004577637 img loss 1.1928379535675049 img loss 1.2432259321212769 img loss 1.2163498401641846 img loss 1.2097644805908203 img loss 1.2269608974456787 img loss 1.3241398334503174 img loss 1.1952190399169922 img loss 1.1998035907745361 img loss 1.2331374883651733 img loss 1.322126030921936 img loss 1.2546184062957764 img loss 1.1784664392471313 img loss 1.2780818939208984 img loss 1.2367680072784424 img loss 1.159288763999939 img loss 1.3068491220474243 img loss 1.1688153743743896 img loss 1.21910560131073 img loss 1.1828030347824097 img loss 1.2355350255966187 img loss 1.1872433423995972 img loss 1.2580746412277222 img loss 1.2532684803009033 img loss 1.241297721862793 img loss 1.1684547662734985 img loss 1.173224687576294 img loss 1.2221657037734985img loss 1.319274663925171 img loss 1.1811668872833252 img loss 1.2745522260665894 img loss 1.2689192295074463 img loss 1.16478431224823 img loss 1.2131894826889038 img loss 1.2146916389465332 img loss 1.2083861827850342 img loss 1.2034087181091309 img loss 1.2060335874557495 img loss 1.230334997177124 img loss 1.2836945056915283 img loss 1.2614495754241943 img loss 1.237268090248108 img loss 1.2194780111312866 img loss 1.2744306325912476 img loss 1.195459246635437 img loss 1.211399793624878 img loss 1.2316486835479736 img loss 1.145450234413147 img loss 1.1975421905517578 img loss 1.2321891784667969 img loss 1.2262864112854004 img loss 1.2515459060668945 img loss 1.187034249305725 img loss 1.2865291833877563 img loss 1.203843593597412 img loss 1.256244421005249 img loss 1.2230957746505737 img loss 1.2365655899047852 img loss 1.1905436515808105 img loss 1.246619462966919 img loss 1.2217296361923218 img loss 1.2920281887054443 img loss 1.2079477310180664 img loss 1.237504005432129 img loss 1.182523488998413 img loss 1.2062397003173828 img loss 1.2674152851104736 img loss 1.2431048154830933 img loss 1.1678540706634521 img loss 1.176796555519104 img loss 1.2607353925704956 img loss 1.1756750345230103 img loss 1.3326857089996338 img loss 1.235335350036621 img loss 1.1691639423370361 img loss 1.2435626983642578 img loss 1.3331503868103027 img loss 1.154207706451416 img loss 1.1941375732421875 img loss 1.192490816116333 img loss 1.2205175161361694 img loss 1.2877018451690674 img loss 1.2802187204360962 img loss 1.2430390119552612 img loss 1.1637945175170898 img loss 1.203507661819458 img loss 1.1758549213409424 img loss 1.2407139539718628 img loss 1.1755188703536987 img loss 1.2349934577941895 img loss 1.2258096933364868 img loss 1.207426905632019 img loss 1.272303819656372 img loss 1.2345789670944214 img loss 1.1752986907958984 img loss 1.166778802871704 {'loss': 1.2222, 'grad_norm': 0.27208927273750305, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2420356273651123 img loss 1.1512598991394043 img loss 1.3985381126403809 img loss 1.2567377090454102 img loss 1.2367264032363892 img loss 1.2095717191696167 img loss 1.2739876508712769 img loss 1.2252953052520752 img loss 1.282622218132019 img loss 1.2114311456680298 img loss 1.2473232746124268 img loss 1.1605557203292847 img loss 1.2284513711929321 img loss 1.1807937622070312 img loss 1.2208447456359863 img loss 1.2529172897338867 img loss 1.1311439275741577 img loss 1.2027318477630615 img loss 1.26372492313385 img loss 1.2771075963974 img loss 1.2375551462173462 img loss 1.2138614654541016 img loss 1.3000282049179077 img loss 1.2612838745117188 img loss 1.1916167736053467 img loss 1.2568440437316895 img loss 1.3012014627456665 img loss 1.204092025756836 img loss 1.2875093221664429 img loss 1.248229742050171 img loss 1.1976455450057983 img loss 1.2216370105743408 img loss 1.190960168838501 img loss 1.225066065788269 img loss 1.269944429397583 img loss 1.2061662673950195 img loss 1.216369867324829 img loss 1.161974310874939 img loss 1.1943517923355103 img loss 1.2344917058944702 img loss 1.1991881132125854 img loss 1.270108938217163 img loss 1.2044233083724976 img loss 1.2018203735351562 img loss 1.203232765197754 img loss 1.1598237752914429 img loss 1.2964816093444824 img loss 1.1848042011260986 img loss 1.1344190835952759 img loss 1.282944679260254 img loss 1.2562834024429321 img loss 1.2278096675872803 img loss 1.1152032613754272 img loss 1.159194827079773 img loss 1.22162663936615 img loss 1.2942593097686768 img loss 1.2637124061584473 img loss 1.240984320640564 img loss 1.1157960891723633 img loss 1.2721800804138184 img loss 1.1639819145202637 img loss 1.3423441648483276 img loss 1.1418299674987793 img loss 1.2367684841156006 img loss 1.1631011962890625 img loss 1.2513929605484009 img loss 1.224992275238037 img loss 1.3164513111114502 img loss 1.2119051218032837 img loss 1.208235263824463 img loss 1.146740436553955 img loss 1.1551969051361084 img loss 1.2327197790145874 img loss 1.2752701044082642 img loss 1.1891100406646729 img loss 1.2231521606445312 img loss 1.2284283638000488 img loss 1.2283077239990234 img loss 1.1694602966308594 img loss 1.1960127353668213 img loss 1.203285574913025 img loss 1.208439826965332 img loss 1.2026861906051636 img loss 1.282585620880127 img loss 1.2559046745300293 img loss 1.2610067129135132 img loss 1.1865651607513428 img loss 1.2581896781921387 img loss 1.2356312274932861 img loss 1.2181342840194702 img loss 1.2267656326293945 img loss 1.1601253747940063 img loss 1.2198295593261719 img loss 1.1663116216659546 img loss 1.2483774423599243 img loss 1.1732425689697266 img loss 1.1732158660888672 img loss 1.1440867185592651 img loss 1.2376492023468018 img loss 1.1451491117477417 img loss 1.197497010231018 img loss 1.2653623819351196 img loss 1.2572587728500366 img loss 1.2289317846298218 img loss 1.1767724752426147 img loss 1.28425931930542 img loss 1.2124383449554443 img loss 1.2302665710449219 img loss 1.2220484018325806 img loss 1.2108283042907715 img loss 1.2723814249038696 img loss 1.2437947988510132 img loss 1.2223700284957886 img loss 1.1691936254501343 img loss 1.2337160110473633 img loss 1.1955726146697998 img loss 1.2611653804779053 img loss 1.137993335723877 img loss 1.2978341579437256 img loss 1.1976679563522339 img loss 1.2102010250091553 img loss 1.2275432348251343 img loss 1.2435579299926758 img loss 1.322677493095398 img loss 1.2302343845367432 img loss 1.2077758312225342 img loss 1.2430815696716309 img loss 1.262576699256897 {'loss': 1.2231, 'grad_norm': 0.19109807908535004, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.394929051399231 img loss 1.4399949312210083 img loss 1.5417792797088623 img loss 1.5027753114700317 img loss 1.3731427192687988 img loss 1.4181188344955444 img loss 1.3567994832992554 img loss 1.4179874658584595 img loss 1.3861018419265747 img loss 1.4047763347625732 img loss 1.3183839321136475 img loss 1.3698731660842896 img loss 1.477717638015747 img loss 1.507820725440979 img loss 1.2992088794708252 img loss 1.4535232782363892 img loss 1.3987514972686768 img loss 1.4072340726852417 img loss 1.3092384338378906 img loss 1.4089545011520386 img loss 1.3296116590499878 img loss 1.4107325077056885 img loss 1.366187334060669 img loss 1.4929978847503662 img loss 1.327843189239502 img loss 1.4980920553207397 img loss 1.5133816003799438 img loss 1.3409966230392456 img loss 1.5440469980239868 img loss 1.421730875968933 img loss 1.5057047605514526 img loss 1.359514594078064 img loss 1.4149651527404785 img loss 1.4043266773223877 img loss 1.4896657466888428 img loss 1.4779818058013916 img loss 1.4116168022155762 img loss 1.4272352457046509 img loss 1.573133945465088 img loss 1.349069356918335 img loss 1.4686863422393799 img loss 1.3699206113815308 img loss 1.4179295301437378 img loss 1.3642385005950928 img loss 1.4406993389129639 img loss 1.3356807231903076 img loss 1.490172028541565 img loss 1.3844743967056274 img loss 1.3382443189620972 img loss 1.469753384590149 img loss 1.4087110757827759 img loss 1.4260518550872803 img loss 1.4869437217712402 img loss 1.4155737161636353 img loss 1.4498341083526611 img loss 1.4369280338287354 img loss 1.3358995914459229 img loss 1.5710389614105225 img loss 1.5571084022521973 img loss 1.4429113864898682 img loss 1.421395182609558 img loss 1.437589406967163 img loss 1.4102305173873901 img loss 1.4265135526657104 img loss 1.4255626201629639 img loss 1.4542540311813354 img loss 1.4619182348251343 img loss 1.3814579248428345 img loss 1.4554625749588013 img loss 1.4246246814727783 img loss 1.3748395442962646 img loss 1.6319741010665894 img loss 1.4217952489852905 img loss 1.3375813961029053 img loss 1.3517533540725708 img loss 1.438604474067688 img loss 1.2783282995224 img loss 1.5193231105804443 img loss 1.4544494152069092 img loss 1.490333080291748 img loss 1.5186970233917236 img loss 1.3706185817718506 img loss 1.3475182056427002 img loss 1.420082449913025 img loss 1.472261667251587 img loss 1.3375176191329956 img loss 1.3685938119888306 img loss 1.3991024494171143 img loss 1.3665755987167358 img loss 1.4777418375015259 img loss 1.4748257398605347 img loss 1.4585206508636475 img loss 1.3682540655136108 img loss 1.3635609149932861 img loss 1.4331097602844238 img loss 1.4747340679168701 img loss 1.490899682044983 img loss 1.4307799339294434 img loss 1.502213716506958 img loss 1.4160970449447632 img loss 1.3741267919540405 img loss 1.5890852212905884 img loss 1.4541451930999756 img loss 1.490689992904663 img loss 1.5693494081497192 img loss 1.3319149017333984 img loss 1.4219073057174683 img loss 1.4674623012542725 img loss 1.5404359102249146 img loss 1.4510328769683838 img loss 1.4045255184173584 img loss 1.2697757482528687 img loss 1.5457063913345337 img loss 1.3681269884109497 img loss 1.429218053817749 img loss 1.430168867111206 img loss 1.4838491678237915 img loss 1.4669920206069946 img loss 1.4868491888046265 img loss 1.4549469947814941 img loss 1.4635778665542603 img loss 1.4556326866149902 img loss 1.3201847076416016 img loss 1.4431945085525513 img loss 1.45289945602417 img loss 1.3277175426483154 img loss 1.415052056312561 img loss 1.497078537940979 {'loss': 1.4293, 'grad_norm': 0.2944951057434082, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3453001976013184 img loss 1.2684334516525269 img loss 1.2260710000991821 img loss 1.1083024740219116 img loss 1.2066175937652588 img loss 1.3437224626541138 img loss 1.229184865951538 img loss 1.25496506690979 img loss 1.2933177947998047 img loss 1.1860756874084473 img loss 1.2966363430023193 img loss 1.233846664428711 img loss 1.3123483657836914 img loss 1.2523220777511597 img loss 1.3074684143066406 img loss 1.3480995893478394 img loss 1.33677077293396 img loss 1.261263370513916 img loss 1.321516990661621 img loss 1.278151273727417 img loss 1.254204511642456 img loss 1.3299049139022827 img loss 1.2492684125900269 img loss 1.2135040760040283 img loss 1.2260417938232422 img loss 1.3100026845932007 img loss 1.3226484060287476 img loss 1.2623871564865112 img loss 1.399905800819397 img loss 1.280612826347351 img loss 1.24049711227417 img loss 1.3578009605407715 img loss 1.3157154321670532 img loss 1.4221116304397583 img loss 1.3807404041290283 img loss 1.3578393459320068 img loss 1.266508936882019 img loss 1.3587995767593384 img loss 1.3077694177627563 img loss 1.2984119653701782 img loss 1.3043742179870605 img loss 1.2982370853424072 img loss 1.2743768692016602 img loss 1.3654042482376099 img loss 1.2230517864227295 img loss 1.2612580060958862 img loss 1.2378243207931519 img loss 1.3225904703140259 img loss 1.2817944288253784 img loss 1.2103111743927002 img loss 1.3284108638763428 img loss 1.35036039352417 img loss 1.3317985534667969 img loss 1.2530906200408936 img loss 1.2376554012298584 img loss 1.3640390634536743 img loss 1.2150980234146118 img loss 1.2665544748306274 img loss 1.3405879735946655 img loss 1.2525962591171265 img loss 1.313395380973816 img loss 1.3300644159317017 img loss 1.348634958267212 img loss 1.3104908466339111 img loss 1.3006644248962402 img loss 1.309049367904663 img loss 1.2557398080825806 img loss 1.2862480878829956 img loss 1.3668758869171143 img loss 1.2467924356460571 img loss 1.2818639278411865 img loss 1.2994403839111328 img loss 1.3165197372436523 img loss 1.346351981163025 img loss 1.2356783151626587 img loss 1.3869531154632568 img loss 1.2854914665222168 img loss 1.3310844898223877 img loss 1.2342461347579956 img loss 1.3251348733901978 img loss 1.229444980621338 img loss 1.260980486869812img loss 1.4581626653671265 img loss 1.264979362487793 img loss 1.3231425285339355 img loss 1.2925471067428589 img loss 1.2847126722335815 img loss 1.3165128231048584 img loss 1.2958786487579346 img loss 1.3136675357818604 img loss 1.313110113143921 img loss 1.2676115036010742 img loss 1.2080906629562378 img loss 1.411112666130066 img loss 1.3529819250106812 img loss 1.2706239223480225 img loss 1.231425166130066 img loss 1.2354521751403809 img loss 1.304931879043579 img loss 1.2657002210617065 img loss 1.2659013271331787 img loss 1.1960281133651733 img loss 1.360778570175171 img loss 1.354337215423584 img loss 1.3485338687896729 img loss 1.237080454826355 img loss 1.2806190252304077 img loss 1.2656035423278809 img loss 1.321846842765808 img loss 1.2401912212371826 img loss 1.2966032028198242 img loss 1.2631477117538452 img loss 1.3214527368545532 img loss 1.3050435781478882 img loss 1.3967965841293335 img loss 1.228607177734375 img loss 1.2806072235107422 img loss 1.2926650047302246 img loss 1.1824729442596436 img loss 1.2374104261398315 img loss 1.3729103803634644 img loss 1.222472906112671 img loss 1.246743083000183 img loss 1.2334644794464111 img loss 1.2906839847564697 img loss 1.3646702766418457 img loss 1.2611069679260254 img loss 1.2895320653915405 {'loss': 1.291, 'grad_norm': 0.21653518080711365, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2445776462554932 img loss 1.2442251443862915 img loss 1.221943736076355 img loss 1.2053375244140625 img loss 1.190124750137329 img loss 1.2598896026611328 img loss 1.249744176864624 img loss 1.3127729892730713 img loss 1.2385849952697754 img loss 1.2390354871749878 img loss 1.2463451623916626 img loss 1.195367455482483 img loss 1.1669666767120361 img loss 1.27870512008667 img loss 1.2499231100082397 img loss 1.2188457250595093 img loss 1.252539873123169 img loss 1.2086150646209717 img loss 1.3208717107772827 img loss 1.2232640981674194 img loss 1.240033507347107 img loss 1.2253490686416626 img loss 1.3523143529891968 img loss 1.1356920003890991 img loss 1.2683168649673462 img loss 1.1612350940704346 img loss 1.2147762775421143 img loss 1.2019314765930176 img loss 1.2359611988067627 img loss 1.2622114419937134 img loss 1.2313416004180908 img loss 1.2955334186553955 img loss 1.3291536569595337 img loss 1.2590948343276978 img loss 1.1635465621948242 img loss 1.2042564153671265 img loss 1.180749535560608 img loss 1.2602837085723877 img loss 1.1756988763809204 img loss 1.2328919172286987 img loss 1.2801727056503296 img loss 1.3681038618087769 img loss 1.1892846822738647 img loss 1.1990540027618408 img loss 1.2999086380004883 img loss 1.3396923542022705 img loss 1.2204017639160156 img loss 1.3017390966415405 img loss 1.2497366666793823 img loss 1.2923139333724976 img loss 1.2598373889923096 img loss 1.2150648832321167 img loss 1.1665287017822266 img loss 1.2010526657104492 img loss 1.277268648147583 img loss 1.2925561666488647 img loss 1.2176417112350464 img loss 1.2744865417480469 img loss 1.2912242412567139 img loss 1.285823106765747 img loss 1.1946310997009277 img loss 1.2894843816757202 img loss 1.2833850383758545 img loss 1.335008978843689 img loss 1.228926181793213 img loss 1.2245745658874512 img loss 1.234692096710205 img loss 1.204097032546997 img loss 1.2481858730316162 img loss 1.2071150541305542 img loss 1.259423851966858 img loss 1.1796330213546753 img loss 1.216010332107544 img loss 1.2364870309829712 img loss 1.2648319005966187 img loss 1.3484127521514893 img loss 1.2669401168823242 img loss 1.2219702005386353 img loss 1.2193320989608765 img loss 1.1949269771575928 img loss 1.1993874311447144 img loss 1.2701282501220703 img loss 1.3159935474395752 img loss 1.2262206077575684 img loss 1.268265962600708 img loss 1.2268646955490112 img loss 1.330523133277893 img loss 1.2436312437057495 img loss 1.2994065284729004 img loss 1.2818424701690674 img loss 1.2147953510284424 img loss 1.199648141860962 img loss 1.2234286069869995 img loss 1.3577955961227417 img loss 1.2015762329101562 img loss 1.1810758113861084 img loss 1.2248315811157227 img loss 1.1847885847091675 img loss 1.2654073238372803 img loss 1.2520605325698853 img loss 1.1939043998718262 img loss 1.3034099340438843 img loss 1.2662361860275269 img loss 1.193742275238037 img loss 1.228572130203247 img loss 1.2225767374038696 img loss 1.256069540977478 img loss 1.2708630561828613 img loss 1.2093294858932495 img loss 1.2340712547302246 img loss 1.2204813957214355 img loss 1.3182035684585571 img loss 1.17763090133667 img loss 1.3012399673461914 img loss 1.3483389616012573 img loss 1.2565851211547852 img loss 1.2126392126083374 img loss 1.2369736433029175 img loss 1.2700095176696777 img loss 1.2128084897994995 img loss 1.2580807209014893 img loss 1.3208980560302734 img loss 1.365445613861084 img loss 1.2604000568389893 img loss 1.2334486246109009 img loss 1.2583013772964478 img loss 1.2735490798950195 img loss 1.2315477132797241 {'loss': 1.2467, 'grad_norm': 0.20085018873214722, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.21499502658844 img loss 1.2486265897750854 img loss 1.0580580234527588 img loss 1.1639918088912964 img loss 1.2231508493423462 img loss 1.2341095209121704 img loss 1.1769227981567383 img loss 1.121610403060913 img loss 1.232614517211914 img loss 1.1693782806396484 img loss 1.1928291320800781 img loss 1.1448054313659668 img loss 1.1841793060302734 img loss 1.2581467628479004 img loss 1.2248305082321167 img loss 1.178118348121643 img loss 1.2243545055389404 img loss 1.184273600578308 img loss 1.2125005722045898 img loss 1.2019858360290527 img loss 1.2640416622161865 img loss 1.1705107688903809 img loss 1.215592861175537 img loss 1.2251930236816406 img loss 1.3038991689682007 img loss 1.1807612180709839 img loss 1.2509247064590454 img loss 1.2258566617965698 img loss 1.203304648399353 img loss 1.092748999595642 img loss 1.299424648284912 img loss 1.2707939147949219 img loss 1.212763786315918 img loss 1.2686574459075928 img loss 1.3418247699737549img loss 1.248315453529358 img loss 1.1861904859542847 img loss 1.1456007957458496 img loss 1.2037560939788818 img loss 1.224701166152954 img loss 1.198638916015625 img loss 1.2868084907531738 img loss 1.2677100896835327 img loss 1.226538896560669 img loss 1.186797022819519 img loss 1.1603516340255737 img loss 1.439852237701416 img loss 1.2016947269439697 img loss 1.124057412147522 img loss 1.1674820184707642 img loss 1.2094395160675049 img loss 1.212544322013855 img loss 1.200073480606079 img loss 1.1612389087677002 img loss 1.157703161239624 img loss 1.2728245258331299 img loss 1.2673767805099487 img loss 1.2035331726074219 img loss 1.1919702291488647 img loss 1.1558623313903809 img loss 1.2540185451507568 img loss 1.2029051780700684 img loss 1.2653264999389648 img loss 1.202161192893982 img loss 1.1500647068023682 img loss 1.2387176752090454 img loss 1.1406182050704956 img loss 1.2109766006469727 img loss 1.2216713428497314 img loss 1.146431803703308 img loss 1.2421817779541016 img loss 1.1709502935409546 img loss 1.2044504880905151 img loss 1.2133042812347412 img loss 1.1718708276748657 img loss 1.2955316305160522 img loss 1.2782704830169678 img loss 1.1628527641296387 img loss 1.21248197555542 img loss 1.1929101943969727 img loss 1.2082719802856445 img loss 1.3181719779968262 img loss 1.2140636444091797 img loss 1.1795141696929932 img loss 1.215362310409546 img loss 1.1424741744995117 img loss 1.1887081861495972 img loss 1.205748438835144 img loss 1.2181198596954346 img loss 1.203143835067749 img loss 1.222701907157898 img loss 1.1166629791259766 img loss 1.1639230251312256 img loss 1.1492862701416016 img loss 1.2078946828842163 img loss 1.1784502267837524 img loss 1.2387635707855225 img loss 1.1702698469161987 img loss 1.2028100490570068 img loss 1.2258374691009521 img loss 1.2044739723205566 img loss 1.222143530845642 img loss 1.1581100225448608 img loss 1.1575320959091187 img loss 1.2391287088394165 img loss 1.2587146759033203 img loss 1.305633783340454 img loss 1.1653721332550049 img loss 1.2525326013565063 img loss 1.209896445274353 img loss 1.2031086683273315 img loss 1.2105242013931274 img loss 1.208569884300232 img loss 1.1663451194763184 img loss 1.2343872785568237 img loss 1.273413896560669 img loss 1.17019784450531 img loss 1.2116620540618896 img loss 1.1496490240097046 img loss 1.2671568393707275 img loss 1.202714204788208 img loss 1.168756365776062 img loss 1.2602909803390503 img loss 1.167097568511963 img loss 1.1425713300704956 img loss 1.2785618305206299 img loss 1.2685661315917969 img loss 1.2338703870773315 {'loss': 1.2095, 'grad_norm': 0.2562507688999176, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4108394384384155 img loss 1.2494492530822754 img loss 1.281693696975708 img loss 1.360764980316162 img loss 1.3081098794937134 img loss 1.3040430545806885 img loss 1.2470967769622803 img loss 1.2193011045455933 img loss 1.2866415977478027 img loss 1.2819772958755493 img loss 1.3539689779281616 img loss 1.2877488136291504 img loss 1.3243780136108398 img loss 1.4125863313674927 img loss 1.3131074905395508 img loss 1.2599380016326904 img loss 1.2143528461456299 img loss 1.3594919443130493 img loss 1.33285391330719 img loss 1.2633671760559082 img loss 1.2355235815048218 img loss 1.2793201208114624 img loss 1.313677430152893 img loss 1.201240062713623 img loss 1.409324288368225 img loss 1.2753347158432007 img loss 1.284920334815979 img loss 1.276812195777893 img loss 1.2850044965744019 img loss 1.4072253704071045 img loss 1.3640385866165161 img loss 1.3902815580368042 img loss 1.3449699878692627 img loss 1.2892377376556396 img loss 1.220497965812683 img loss 1.3098796606063843 img loss 1.3428070545196533 img loss 1.2005966901779175 img loss 1.3106526136398315 img loss 1.300870656967163 img loss 1.3351070880889893 img loss 1.246867060661316 img loss 1.2705663442611694 img loss 1.3332194089889526 img loss 1.2513641119003296 img loss 1.2750324010849 img loss 1.2350258827209473 img loss 1.321234941482544 img loss 1.3627196550369263 img loss 1.3054910898208618 img loss 1.3342822790145874 img loss 1.1662323474884033 img loss 1.2335894107818604 img loss 1.258304238319397 img loss 1.2744190692901611 img loss 1.2660086154937744 img loss 1.3983162641525269 img loss 1.1869341135025024 img loss 1.182007074356079 img loss 1.3523482084274292 img loss 1.2996071577072144 img loss 1.3118674755096436 img loss 1.3247427940368652 img loss 1.2861511707305908 img loss 1.2650597095489502 img loss 1.285337209701538 img loss 1.4086511135101318 img loss 1.3023719787597656 img loss 1.2542942762374878 img loss 1.3380929231643677 img loss 1.3604977130889893 img loss 1.1809303760528564 img loss 1.3627649545669556 img loss 1.2958052158355713 img loss 1.2395961284637451 img loss 1.276418685913086 img loss 1.3198778629302979 img loss 1.254623293876648 img loss 1.2195748090744019 img loss 1.3171337842941284 img loss 1.3229950666427612 img loss 1.2698345184326172 img loss 1.3812297582626343 img loss 1.3136042356491089 img loss 1.3318458795547485 img loss 1.2575486898422241 img loss 1.2894272804260254 img loss 1.3952667713165283 img loss 1.4635151624679565 img loss 1.295810580253601 img loss 1.4028217792510986 img loss 1.1999787092208862 img loss 1.3747975826263428 img loss 1.2788941860198975 img loss 1.4053391218185425 img loss 1.3579164743423462 img loss 1.3869637250900269 img loss 1.2700655460357666 img loss 1.2126296758651733 img loss 1.520095944404602 img loss 1.3429070711135864 img loss 1.2848573923110962 img loss 1.3226131200790405 img loss 1.1791905164718628img loss 1.383137583732605img loss 1.2770981788635254 img loss 1.279384970664978 img loss 1.4003664255142212img loss 1.2760365009307861 img loss 1.1879295110702515 img loss 1.2271060943603516 img loss 1.3469263315200806 img loss 1.3717180490493774 img loss 1.2908693552017212 img loss 1.2958650588989258 img loss 1.3291078805923462 img loss 1.248126745223999 img loss 1.2435381412506104 img loss 1.3198884725570679 img loss 1.2384490966796875 img loss 1.2682312726974487 img loss 1.3450478315353394 img loss 1.331364631652832 img loss 1.2191587686538696 img loss 1.2258394956588745 img loss 1.3743550777435303 img loss 1.4607101678848267 img loss 1.285725474357605 {'loss': 1.3023, 'grad_norm': 0.23052968084812164, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.5687639713287354 img loss 1.8665685653686523 img loss 1.5662791728973389 img loss 1.7482110261917114 img loss 1.7334457635879517 img loss 1.6238186359405518 img loss 1.6460204124450684 img loss 1.7150096893310547 img loss 1.857325792312622 img loss 1.682828426361084 img loss 1.7027989625930786 img loss 1.638120174407959 img loss 1.862412929534912 img loss 1.5491284132003784 img loss 1.508224606513977 img loss 1.659775972366333 img loss 1.727527379989624 img loss 1.6382648944854736 img loss 1.5046292543411255 img loss 1.7646019458770752 img loss 1.6087002754211426 img loss 1.6305310726165771 img loss 1.6971776485443115 img loss 1.610416293144226 img loss 1.450774908065796 img loss 1.6690279245376587 img loss 1.6427193880081177 img loss 1.6889656782150269 img loss 1.664458155632019 img loss 1.637061357498169 img loss 1.648879885673523 img loss 1.6966465711593628 img loss 1.5561798810958862 img loss 1.6126283407211304 img loss 1.6826730966567993 img loss 1.596469521522522 img loss 1.8804521560668945 img loss 1.6371839046478271 img loss 1.9268443584442139 img loss 1.925774335861206 img loss 1.7756162881851196 img loss 1.6322144269943237 img loss 1.5336171388626099 img loss 1.768035650253296 img loss 1.688328504562378 img loss 1.7094027996063232 img loss 1.7027522325515747 img loss 1.6675249338150024 img loss 1.6424269676208496 img loss 1.658435583114624 img loss 1.5988181829452515 img loss 1.5530709028244019 img loss 1.6341623067855835 img loss 1.8361167907714844 img loss 1.724726915359497 img loss 1.7571327686309814 img loss 1.7688013315200806 img loss 1.664225697517395 img loss 1.680517554283142 img loss 1.6194965839385986 img loss 1.7861140966415405 img loss 1.7245073318481445 img loss 1.773617148399353 img loss 1.6309828758239746 img loss 1.463092565536499 img loss 1.6698132753372192 img loss 1.6005233526229858 img loss 1.7249348163604736 img loss 1.5893146991729736 img loss 1.7081900835037231 img loss 1.54814875125885 img loss 1.7676129341125488 img loss 1.6481339931488037 img loss 1.6223692893981934 img loss 1.5357221364974976 img loss 1.4607139825820923 img loss 1.4700920581817627 img loss 1.6207385063171387 img loss 1.713407039642334 img loss 1.5463290214538574 img loss 1.6356226205825806 img loss 1.5460381507873535 img loss 1.5899550914764404 img loss 1.6375038623809814 img loss 1.8123316764831543 img loss 1.772049069404602 img loss 1.555018663406372 img loss 1.5165746212005615 img loss 1.7423381805419922 img loss 1.4508768320083618 img loss 1.5410343408584595 img loss 1.5080702304840088 img loss 1.5050082206726074 img loss 1.6024765968322754 img loss 1.6241786479949951 img loss 1.503969430923462 img loss 1.6260654926300049 img loss 1.8109982013702393 img loss 1.7072464227676392 img loss 1.6947861909866333 img loss 1.7184808254241943 img loss 1.6639704704284668 img loss 1.673671841621399 img loss 1.567358136177063 img loss 1.6071851253509521 img loss 1.6433883905410767 img loss 1.6954420804977417 img loss 1.577358365058899 img loss 1.798803687095642 img loss 1.715938925743103 img loss 1.7911790609359741 img loss 1.5844128131866455 img loss 1.712177038192749 img loss 1.6214253902435303 img loss 1.7281839847564697 img loss 1.632548213005066 img loss 1.6434675455093384 img loss 1.6841816902160645 img loss 1.6131783723831177 img loss 1.8060739040374756 img loss 1.5488660335540771 img loss 1.5962250232696533 img loss 1.6390814781188965 img loss 1.6354044675827026 img loss 1.548195242881775 img loss 1.7538893222808838 img loss 1.8178244829177856 img loss 1.4852126836776733 {'loss': 1.6573, 'grad_norm': 0.38128793239593506, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4756596088409424 img loss 1.385710597038269 img loss 1.394441843032837 img loss 1.4791992902755737 img loss 1.6193379163742065 img loss 1.4475725889205933 img loss 1.422861933708191 img loss 1.3335649967193604 img loss 1.4630123376846313 img loss 1.4385936260223389 img loss 1.4099595546722412 img loss 1.4977549314498901 img loss 1.4051835536956787 img loss 1.4516103267669678 img loss 1.4490853548049927 img loss 1.3816548585891724 img loss 1.3840596675872803 img loss 1.4930579662322998 img loss 1.3851701021194458 img loss 1.4681650400161743 img loss 1.5399636030197144 img loss 1.430100679397583 img loss 1.629361867904663 img loss 1.431322693824768 img loss 1.317644476890564 img loss 1.4047268629074097 img loss 1.4374810457229614 img loss 1.4270179271697998 img loss 1.5021344423294067 img loss 1.4972161054611206 img loss 1.4321099519729614 img loss 1.4177230596542358 img loss 1.4881207942962646 img loss 1.3614153861999512 img loss 1.5633769035339355 img loss 1.3756153583526611 img loss 1.338667631149292 img loss 1.3862897157669067 img loss 1.3509647846221924 img loss 1.4974265098571777 img loss 1.5194509029388428 img loss 1.345051646232605 img loss 1.2993663549423218 img loss 1.4385415315628052 img loss 1.5090067386627197 img loss 1.3712360858917236 img loss 1.401896595954895 img loss 1.4712815284729004 img loss 1.6077208518981934 img loss 1.4658037424087524 img loss 1.362033724784851 img loss 1.5518467426300049 img loss 1.4279961585998535 img loss 1.4105603694915771 img loss 1.4578574895858765 img loss 1.5089504718780518 img loss 1.4781348705291748 img loss 1.453720211982727 img loss 1.3816930055618286 img loss 1.4087425470352173 img loss 1.451985239982605 img loss 1.4578888416290283 img loss 1.332733154296875 img loss 1.5352871417999268 img loss 1.4539148807525635 img loss 1.4324088096618652 img loss 1.472054123878479 img loss 1.4445899724960327 img loss 1.4724735021591187 img loss 1.4860457181930542 img loss 1.4944994449615479 img loss 1.4469637870788574 img loss 1.4451498985290527 img loss 1.388250470161438 img loss 1.443076252937317 img loss 1.4041154384613037 img loss 1.471749186515808 img loss 1.4744759798049927 img loss 1.3591409921646118 img loss 1.4177873134613037 img loss 1.3628276586532593 img loss 1.490005612373352 img loss 1.4790295362472534 img loss 1.456506609916687 img loss 1.4755034446716309 img loss 1.342017412185669 img loss 1.3642324209213257 img loss 1.5087600946426392 img loss 1.4125735759735107 img loss 1.4535987377166748 img loss 1.427457571029663 img loss 1.3822433948516846 img loss 1.4514505863189697 img loss 1.4310787916183472 img loss 1.4402406215667725 img loss 1.4586269855499268 img loss 1.4024933576583862 img loss 1.581966519355774 img loss 1.3334040641784668 img loss 1.50032377243042 img loss 1.5617897510528564 img loss 1.468824028968811 img loss 1.5141366720199585 img loss 1.446207880973816 img loss 1.539487600326538 img loss 1.4182122945785522 img loss 1.2940515279769897 img loss 1.508642554283142 img loss 1.3359425067901611 img loss 1.4233239889144897 img loss 1.3154048919677734 img loss 1.3737770318984985 img loss 1.4624578952789307 img loss 1.5040725469589233 img loss 1.471131682395935 img loss 1.4448635578155518img loss 1.4034407138824463 img loss 1.4309251308441162 img loss 1.3662382364273071 img loss 1.3914158344268799 img loss 1.4297655820846558 img loss 1.4591971635818481 img loss 1.4113186597824097 img loss 1.3529479503631592 img loss 1.3929177522659302 img loss 1.4757388830184937 img loss 1.3444972038269043 img loss 1.473960280418396 {'loss': 1.4386, 'grad_norm': 0.37067392468452454, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.7339327335357666 img loss 1.6194698810577393 img loss 1.6860098838806152 img loss 1.844482183456421 img loss 1.7864797115325928 img loss 1.5857490301132202 img loss 1.8352580070495605 img loss 1.6021268367767334 img loss 1.8847594261169434 img loss 1.7442353963851929 img loss 1.746448040008545 img loss 1.592970371246338 img loss 1.656095266342163 img loss 1.7130786180496216 img loss 1.6018482446670532 img loss 1.6762330532073975 img loss 1.8878999948501587 img loss 1.684428095817566 img loss 1.6297177076339722 img loss 1.7614312171936035 img loss 1.7896391153335571 img loss 1.837844967842102 img loss 1.6989854574203491 img loss 1.6436457633972168 img loss 1.7795153856277466 img loss 1.5995938777923584 img loss 1.676053524017334 img loss 1.677183985710144 img loss 1.7659521102905273 img loss 1.6450893878936768 img loss 1.6306357383728027 img loss 1.5878796577453613 img loss 1.740881085395813 img loss 1.5996317863464355 img loss 1.80263090133667 img loss 1.8870187997817993 img loss 1.5328551530838013 img loss 1.5952017307281494 img loss 1.769481897354126 img loss 1.681316614151001 img loss 1.6751221418380737 img loss 1.5976910591125488 img loss 1.7399264574050903 img loss 1.5091545581817627 img loss 1.7263312339782715 img loss 1.8239980936050415 img loss 1.5646308660507202 img loss 1.4972501993179321 img loss 1.691665768623352 img loss 1.727262020111084 img loss 1.6412354707717896 img loss 1.7731335163116455 img loss 1.7126548290252686 img loss 1.6143287420272827 img loss 1.7493823766708374 img loss 1.6783225536346436 img loss 1.7972297668457031 img loss 1.6372830867767334 img loss 1.6028977632522583 img loss 1.7239118814468384 img loss 1.654350996017456 img loss 1.798251748085022 img loss 1.7276777029037476 img loss 1.644669771194458 img loss 1.7424224615097046 img loss 1.572629451751709 img loss 1.6097924709320068 img loss 1.8481404781341553 img loss 1.6113097667694092 img loss 1.6886208057403564 img loss 1.6352007389068604 img loss 1.7435742616653442 img loss 1.7261396646499634 img loss 1.6215498447418213 img loss 1.613622784614563 img loss 1.5727276802062988 img loss 1.672599196434021 img loss 1.6708042621612549 img loss 1.7708768844604492 img loss 1.623111605644226 img loss 1.6971341371536255 img loss 1.8075300455093384 img loss 1.7955275774002075 img loss 1.785133719444275 img loss 1.783774495124817 img loss 1.629546880722046 img loss 1.6749719381332397 img loss 1.7167257070541382 img loss 1.6297804117202759 img loss 1.7070046663284302 img loss 1.6630715131759644 img loss 1.7659716606140137 img loss 1.623672604560852 img loss 1.5865691900253296 img loss 1.567543864250183 img loss 1.6450285911560059 img loss 1.6166040897369385 img loss 1.669043779373169 img loss 1.8701188564300537 img loss 1.7543665170669556 img loss 1.704322338104248 img loss 1.619890570640564 img loss 1.6643383502960205 img loss 1.679250955581665 img loss 1.8004181385040283 img loss 2.0092408657073975 img loss 1.710955023765564 img loss 1.7837285995483398 img loss 1.6721282005310059 img loss 1.6643805503845215 img loss 1.525905966758728 img loss 1.8407365083694458 img loss 1.6710435152053833 img loss 1.6793595552444458img loss 1.6353658437728882 img loss 1.5547032356262207 img loss 1.8526500463485718 img loss 1.6878066062927246 img loss 1.7629125118255615 img loss 1.6213635206222534 img loss 1.7230561971664429 img loss 1.612890601158142 img loss 1.7563592195510864 img loss 1.6395714282989502 img loss 1.6880953311920166 img loss 1.647281527519226 img loss 1.5962868928909302 img loss 1.700424075126648 {'loss': 1.6933, 'grad_norm': 0.24965061247348785, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.320133090019226 img loss 1.1863908767700195 img loss 1.3910619020462036 img loss 1.1549973487854004 img loss 1.1759886741638184 img loss 1.197655200958252 img loss 1.3124644756317139 img loss 1.2531232833862305 img loss 1.1467533111572266 img loss 1.220279335975647 img loss 1.2506729364395142 img loss 1.2343852519989014 img loss 1.2103126049041748 img loss 1.155282735824585 img loss 1.2667509317398071 img loss 1.1811054944992065 img loss 1.2633216381072998 img loss 1.3872042894363403 img loss 1.2161585092544556 img loss 1.1902906894683838 img loss 1.24381685256958 img loss 1.190718412399292 img loss 1.2516577243804932 img loss 1.21798574924469 img loss 1.2282339334487915 img loss 1.2467845678329468 img loss 1.1748833656311035 img loss 1.2311134338378906 img loss 1.1993086338043213 img loss 1.250535488128662 img loss 1.263002872467041 img loss 1.2704010009765625 img loss 1.2853355407714844 img loss 1.1809529066085815 img loss 1.2304511070251465 img loss 1.282125473022461 img loss 1.235015869140625 img loss 1.24580717086792 img loss 1.2027435302734375 img loss 1.1654753684997559 img loss 1.2060890197753906 img loss 1.2196159362792969 img loss 1.2353501319885254 img loss 1.2531532049179077 img loss 1.205849051475525 img loss 1.2297065258026123 img loss 1.1904830932617188 img loss 1.2062320709228516 img loss 1.203346610069275 img loss 1.2064940929412842 img loss 1.3265933990478516 img loss 1.1947119235992432 img loss 1.2570300102233887 img loss 1.1903345584869385 img loss 1.2721599340438843 img loss 1.2296175956726074 img loss 1.2496845722198486 img loss 1.1599831581115723 img loss 1.2669081687927246 img loss 1.2255979776382446 img loss 1.2032321691513062 img loss 1.1617282629013062 img loss 1.389035940170288 img loss 1.2349331378936768 img loss 1.2287739515304565 img loss 1.1755504608154297 img loss 1.3346394300460815 img loss 1.2552776336669922 img loss 1.1628103256225586 img loss 1.2154548168182373 img loss 1.281818151473999 img loss 1.2832589149475098 img loss 1.2511471509933472 img loss 1.252358078956604 img loss 1.2105318307876587 img loss 1.1721950769424438 img loss 1.2649078369140625 img loss 1.2015295028686523 img loss 1.157209038734436 img loss 1.2628358602523804 img loss 1.236463189125061 img loss 1.3572170734405518 img loss 1.3014278411865234 img loss 1.2685375213623047 img loss 1.2845230102539062 img loss 1.292487621307373 img loss 1.3775025606155396 img loss 1.2317218780517578 img loss 1.2769742012023926 img loss 1.2859405279159546 img loss 1.24358069896698 img loss 1.254692554473877 img loss 1.3081554174423218 img loss 1.19667387008667 img loss 1.2024544477462769 img loss 1.2331862449645996 img loss 1.193243384361267 img loss 1.2086408138275146 img loss 1.2158945798873901 img loss 1.1896326541900635 img loss 1.1383473873138428 img loss 1.1708091497421265 img loss 1.2273205518722534 img loss 1.19119131565094 img loss 1.2853426933288574 img loss 1.2124269008636475 img loss 1.267392635345459 img loss 1.3316181898117065 img loss 1.1841520071029663 img loss 1.243485689163208 img loss 1.2258875370025635 img loss 1.217055320739746 img loss 1.3149464130401611 img loss 1.1857047080993652 img loss 1.370947241783142 img loss 1.2378343343734741 img loss 1.1771209239959717 img loss 1.204894781112671 img loss 1.2418073415756226 img loss 1.241326928138733 img loss 1.24616277217865 img loss 1.3078691959381104 img loss 1.2752430438995361 img loss 1.1992390155792236 img loss 1.2756322622299194 img loss 1.2108906507492065 img loss 1.246612548828125 img loss 1.2539781332015991 {'loss': 1.2374, 'grad_norm': 0.28148603439331055, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2708172798156738 img loss 1.2213348150253296 img loss 1.232231616973877 img loss 1.1904594898223877 img loss 1.2692451477050781 img loss 1.282180666923523 img loss 1.2852182388305664 img loss 1.2805824279785156 img loss 1.2554411888122559 img loss 1.3242782354354858 img loss 1.2623239755630493 img loss 1.259564757347107 img loss 1.344472050666809 img loss 1.2063392400741577 img loss 1.2836384773254395 img loss 1.2500569820404053 img loss 1.1830039024353027 img loss 1.1796364784240723 img loss 1.187225103378296 img loss 1.2307965755462646 img loss 1.2285535335540771 img loss 1.2591581344604492 img loss 1.2230274677276611 img loss 1.2124440670013428 img loss 1.3411459922790527 img loss 1.2871290445327759 img loss 1.3045629262924194 img loss 1.2058881521224976 img loss 1.2487080097198486 img loss 1.2918157577514648 img loss 1.2144993543624878 img loss 1.1983016729354858 img loss 1.2267669439315796 img loss 1.202842116355896 img loss 1.2754799127578735 img loss 1.226009726524353 img loss 1.3075755834579468 img loss 1.2227494716644287 img loss 1.2837843894958496 img loss 1.2012726068496704 img loss 1.2059742212295532 img loss 1.239060878753662 img loss 1.2405283451080322 img loss 1.2671163082122803 img loss 1.3087983131408691 img loss 1.3988770246505737 img loss 1.2935729026794434 img loss 1.2360937595367432 img loss 1.3094208240509033 img loss 1.2174714803695679 img loss 1.419777512550354 img loss 1.337372064590454 img loss 1.1743488311767578 img loss 1.2121479511260986 img loss 1.2098172903060913 img loss 1.2978442907333374 img loss 1.293725609779358 img loss 1.2995837926864624 img loss 1.2570198774337769 img loss 1.1341261863708496 img loss 1.1862540245056152 img loss 1.2509716749191284 img loss 1.260108470916748 img loss 1.3142017126083374 img loss 1.2813129425048828 img loss 1.198832392692566 img loss 1.1657171249389648 img loss 1.2523341178894043 img loss 1.2993927001953125 img loss 1.2333873510360718 img loss 1.3282337188720703 img loss 1.2497663497924805 img loss 1.2579246759414673 img loss 1.2860974073410034 img loss 1.1645536422729492 img loss 1.2629926204681396 img loss 1.205346703529358 img loss 1.253690242767334 img loss 1.1954431533813477 img loss 1.2350218296051025 img loss 1.2620015144348145 img loss 1.204419732093811 img loss 1.205851435661316 img loss 1.2266615629196167 img loss 1.22076416015625 img loss 1.2375617027282715 img loss 1.2037484645843506 img loss 1.2347148656845093 img loss 1.2784477472305298 img loss 1.366949200630188 img loss 1.183142066001892 img loss 1.2133386135101318 img loss 1.2939773797988892 img loss 1.2517433166503906 img loss 1.2109944820404053 img loss 1.2015446424484253 img loss 1.1997990608215332 img loss 1.1823428869247437 img loss 1.2214977741241455 img loss 1.2509437799453735 img loss 1.174782633781433 img loss 1.2003819942474365 img loss 1.2589447498321533 img loss 1.2879798412322998 img loss 1.2819818258285522 img loss 1.2695578336715698 img loss 1.3086270093917847 img loss 1.208350658416748 img loss 1.166616439819336 img loss 1.144424319267273 img loss 1.2875516414642334 img loss 1.2410913705825806 img loss 1.3743398189544678 img loss 1.2676596641540527 img loss 1.1647919416427612 img loss 1.2168591022491455 img loss 1.165520429611206 img loss 1.26566481590271 img loss 1.3578652143478394 img loss 1.2316807508468628 img loss 1.2496123313903809 img loss 1.1814342737197876 img loss 1.2104326486587524 img loss 1.2384361028671265 img loss 1.16777765750885 img loss 1.2939960956573486 img loss 1.2396352291107178 img loss 1.2528403997421265 {'loss': 1.2465, 'grad_norm': 0.30438363552093506, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2065576314926147 img loss 1.1376006603240967 img loss 1.2944902181625366 img loss 1.1909617185592651 img loss 1.2483348846435547 img loss 1.26982581615448 img loss 1.1653598546981812 img loss 1.2599648237228394 img loss 1.1689815521240234 img loss 1.1510226726531982 img loss 1.2096811532974243 img loss 1.2088590860366821 img loss 1.184610366821289 img loss 1.2292779684066772 img loss 1.1295783519744873 img loss 1.2294164896011353 img loss 1.1323671340942383 img loss 1.1732510328292847 img loss 1.209967851638794 img loss 1.2227505445480347 img loss 1.1559414863586426 img loss 1.169013500213623 img loss 1.2176361083984375 img loss 1.2732337713241577 img loss 1.1179872751235962 img loss 1.1904579401016235 img loss 1.2277010679244995 img loss 1.252665400505066 img loss 1.1908330917358398 img loss 1.2053269147872925 img loss 1.2568776607513428 img loss 1.2831652164459229 img loss 1.1742833852767944 img loss 1.1979955434799194 img loss 1.276476502418518 img loss 1.19212007522583 img loss 1.200242042541504 img loss 1.152380347251892 img loss 1.1495933532714844 img loss 1.1170514822006226 img loss 1.152838945388794 img loss 1.2549632787704468 img loss 1.1712614297866821 img loss 1.185124397277832 img loss 1.2024329900741577 img loss 1.190032958984375 img loss 1.1549285650253296 img loss 1.2309397459030151 img loss 1.1710795164108276 img loss 1.180632472038269 img loss 1.2040518522262573 img loss 1.1407641172409058 img loss 1.1961634159088135 img loss 1.098685383796692 img loss 1.1252622604370117 img loss 1.229644536972046 img loss 1.1647173166275024 img loss 1.171201229095459 img loss 1.1756445169448853 img loss 1.1628235578536987 img loss 1.1587661504745483 img loss 1.2165648937225342 img loss 1.1583737134933472 img loss 1.219462275505066 img loss 1.1711337566375732 img loss 1.1781649589538574 img loss 1.1255005598068237 img loss 1.2238715887069702 img loss 1.2616029977798462 img loss 1.2422540187835693 img loss 1.1456539630889893 img loss 1.2130554914474487 img loss 1.2103514671325684 img loss 1.2250797748565674 img loss 1.188788890838623 img loss 1.2924377918243408 img loss 1.1814358234405518 img loss 1.2293957471847534 img loss 1.232693076133728 img loss 1.2784912586212158 img loss 1.1663377285003662 img loss 1.2204031944274902 img loss 1.1329436302185059 img loss 1.2135865688323975 img loss 1.1647294759750366 img loss 1.1415936946868896 img loss 1.2561933994293213 img loss 1.1985496282577515 img loss 1.2273861169815063 img loss 1.1708736419677734 img loss 1.1428354978561401 img loss 1.193056344985962 img loss 1.178937315940857 img loss 1.2050641775131226 img loss 1.176338791847229 img loss 1.2357802391052246 img loss 1.2211391925811768 img loss 1.1921498775482178 img loss 1.1745268106460571 img loss 1.2303990125656128 img loss 1.207668662071228 img loss 1.1921074390411377 img loss 1.1795936822891235 img loss 1.279189109802246 img loss 1.1930795907974243 img loss 1.1682599782943726 img loss 1.2642449140548706 img loss 1.1808795928955078 img loss 1.1451202630996704 img loss 1.1399139165878296 img loss 1.2326328754425049 img loss 1.2538038492202759 img loss 1.2346811294555664 img loss 1.3036530017852783 img loss 1.215650200843811 img loss 1.2981963157653809 img loss 1.2602818012237549 img loss 1.296125054359436 img loss 1.1876758337020874 img loss 1.198377251625061 img loss 1.118355393409729 img loss 1.1460930109024048 img loss 1.2107740640640259 img loss 1.1689318418502808 img loss 1.2976131439208984 img loss 1.204993724822998 img loss 1.1946923732757568 img loss 1.1869888305664062 {'loss': 1.1996, 'grad_norm': 0.19679896533489227, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3847699165344238 img loss 1.2880375385284424 img loss 1.3403325080871582 img loss 1.2616561651229858 img loss 1.294283151626587 img loss 1.2382009029388428 img loss 1.2342485189437866 img loss 1.2640466690063477 img loss 1.2444169521331787 img loss 1.2878918647766113 img loss 1.2312803268432617 img loss 1.2401747703552246 img loss 1.346544623374939 img loss 1.2407306432724 img loss 1.33336341381073 img loss 1.1783437728881836 img loss 1.3298711776733398 img loss 1.351639986038208 img loss 1.2784614562988281 img loss 1.2321960926055908 img loss 1.3323249816894531 img loss 1.2756433486938477 img loss 1.2811014652252197 img loss 1.2905582189559937 img loss 1.316094994544983 img loss 1.2201429605484009 img loss 1.2421501874923706 img loss 1.2840368747711182 img loss 1.2322200536727905 img loss 1.2498091459274292 img loss 1.2493782043457031 img loss 1.345862627029419 img loss 1.309798002243042 img loss 1.2284730672836304 img loss 1.2530220746994019 img loss 1.2743993997573853 img loss 1.294397234916687 img loss 1.4234071969985962 img loss 1.2524851560592651 img loss 1.2191188335418701 img loss 1.2690311670303345 img loss 1.3254127502441406 img loss 1.2469886541366577 img loss 1.2305209636688232 img loss 1.2677778005599976 img loss 1.256029486656189 img loss 1.2629296779632568 img loss 1.2152198553085327 img loss 1.2265843152999878 img loss 1.3687584400177002 img loss 1.3508388996124268 img loss 1.3112281560897827 img loss 1.3000109195709229 img loss 1.2700412273406982 img loss 1.2971655130386353 img loss 1.3137736320495605 img loss 1.2379311323165894 img loss 1.2851969003677368 img loss 1.318502426147461 img loss 1.1922626495361328 img loss 1.3339085578918457 img loss 1.2826967239379883 img loss 1.2847760915756226img loss 1.2654438018798828 img loss 1.2518259286880493 img loss 1.2461098432540894 img loss 1.222180962562561 img loss 1.3618829250335693 img loss 1.2343775033950806 img loss 1.274271011352539 img loss 1.3654567003250122 img loss 1.2894750833511353 img loss 1.2612392902374268 img loss 1.3335789442062378 img loss 1.3323593139648438 img loss 1.2828577756881714 img loss 1.2439970970153809 img loss 1.2866151332855225 img loss 1.483361005783081 img loss 1.2053087949752808 img loss 1.248712182044983 img loss 1.306347370147705 img loss 1.214994192123413 img loss 1.3207181692123413 img loss 1.3702846765518188 img loss 1.2415271997451782 img loss 1.2471084594726562 img loss 1.2968205213546753 img loss 1.1856392621994019 img loss 1.2754895687103271 img loss 1.2960675954818726 img loss 1.2573730945587158 img loss 1.3466966152191162 img loss 1.3251005411148071 img loss 1.2730648517608643 img loss 1.3418959379196167 img loss 1.25128173828125 img loss 1.2926931381225586 img loss 1.298238754272461 img loss 1.2950884103775024 img loss 1.322899341583252 img loss 1.3085622787475586 img loss 1.3271222114562988 img loss 1.205636739730835 img loss 1.3210264444351196 img loss 1.3376644849777222 img loss 1.2137303352355957 img loss 1.3437479734420776 img loss 1.3370673656463623 img loss 1.368303656578064 img loss 1.198185920715332 img loss 1.3478827476501465 img loss 1.2191743850708008 img loss 1.2294354438781738 img loss 1.2279376983642578 img loss 1.2615265846252441 img loss 1.3348544836044312 img loss 1.1836333274841309 img loss 1.331376314163208 img loss 1.178941011428833 img loss 1.2716811895370483 img loss 1.2711786031723022 img loss 1.314673900604248 img loss 1.423548936843872 img loss 1.3090107440948486 img loss 1.3021953105926514 img loss 1.267469882965088 img loss 1.2834830284118652 {'loss': 1.2835, 'grad_norm': 0.3273402452468872, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2761482000350952 img loss 1.2949438095092773 img loss 1.16795814037323 img loss 1.263071060180664 img loss 1.1761586666107178 img loss 1.2174441814422607 img loss 1.1899323463439941 img loss 1.3196253776550293 img loss 1.307196855545044 img loss 1.2989647388458252 img loss 1.2270660400390625 img loss 1.3087153434753418 img loss 1.205075979232788 img loss 1.3281124830245972 img loss 1.2134289741516113 img loss 1.2428375482559204 img loss 1.1966476440429688 img loss 1.3353372812271118 img loss 1.3198583126068115 img loss 1.1991599798202515 img loss 1.1834919452667236 img loss 1.2860593795776367 img loss 1.1563587188720703 img loss 1.192380428314209 img loss 1.2654063701629639 img loss 1.1969572305679321 img loss 1.252951979637146 img loss 1.2671070098876953 img loss 1.2247012853622437 img loss 1.200700283050537 img loss 1.278120517730713 img loss 1.3081893920898438 img loss 1.2530443668365479 img loss 1.2089207172393799 img loss 1.1647465229034424 img loss 1.1971787214279175 img loss 1.2642862796783447 img loss 1.3138331174850464 img loss 1.3190689086914062 img loss 1.1788660287857056 img loss 1.2497434616088867 img loss 1.231644868850708 img loss 1.265737533569336 img loss 1.2681400775909424 img loss 1.2447048425674438 img loss 1.2267643213272095 img loss 1.2456063032150269 img loss 1.2066526412963867 img loss 1.2877342700958252 img loss 1.2816543579101562 img loss 1.2186789512634277 img loss 1.1791188716888428 img loss 1.2119156122207642 img loss 1.2792152166366577 img loss 1.310810923576355 img loss 1.2009201049804688 img loss 1.2204550504684448 img loss 1.2462137937545776 img loss 1.2327202558517456 img loss 1.2138361930847168 img loss 1.2795681953430176 img loss 1.2437689304351807 img loss 1.2853753566741943 img loss 1.2115917205810547 img loss 1.2524956464767456 img loss 1.2321107387542725 img loss 1.276407241821289 img loss 1.3811384439468384 img loss 1.1684292554855347 img loss 1.3004976511001587 img loss 1.3941833972930908 img loss 1.2907472848892212 img loss 1.2569278478622437 img loss 1.2693190574645996 img loss 1.1494594812393188 img loss 1.1937031745910645 img loss 1.2711806297302246 img loss 1.2923983335494995 img loss 1.2722047567367554 img loss 1.2986787557601929 img loss 1.23293936252594 img loss 1.2411530017852783 img loss 1.2030518054962158 img loss 1.235508918762207 img loss 1.1769741773605347 img loss 1.2111440896987915 img loss 1.2052948474884033 img loss 1.261193037033081 img loss 1.28306245803833 img loss 1.3076833486557007 img loss 1.3243634700775146 img loss 1.2335751056671143 img loss 1.1894835233688354 img loss 1.2622325420379639 img loss 1.218838095664978 img loss 1.2255064249038696 img loss 1.2600373029708862 img loss 1.3779847621917725 img loss 1.217187523841858 img loss 1.2175796031951904 img loss 1.2256009578704834 img loss 1.2837051153182983 img loss 1.3316982984542847 img loss 1.196475625038147 img loss 1.2494449615478516 img loss 1.2773680686950684 img loss 1.3913209438323975 img loss 1.176638126373291 img loss 1.323494553565979 img loss 1.2521063089370728 img loss 1.3782886266708374 img loss 1.3305022716522217 img loss 1.3370661735534668 img loss 1.2058244943618774 img loss 1.2302278280258179 img loss 1.198361873626709 img loss 1.299678087234497 img loss 1.3126611709594727 img loss 1.2790420055389404 img loss 1.2513092756271362 img loss 1.2742971181869507 img loss 1.2853741645812988 img loss 1.22296941280365 img loss 1.3042356967926025 img loss 1.2574142217636108 img loss 1.2484910488128662 img loss 1.2613341808319092 img loss 1.262032389640808 {'loss': 1.2537, 'grad_norm': 0.2279175966978073, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2467782497406006 img loss 1.23079514503479 img loss 1.2450586557388306 img loss 1.1829763650894165 img loss 1.2206640243530273 img loss 1.2743500471115112 img loss 1.31691575050354 img loss 1.230150580406189 img loss 1.2725337743759155 img loss 1.2303876876831055 img loss 1.2807022333145142 img loss 1.2242695093154907 img loss 1.1918957233428955 img loss 1.2654577493667603 img loss 1.2306687831878662 img loss 1.2513560056686401 img loss 1.2789437770843506 img loss 1.2667019367218018 img loss 1.2516835927963257 img loss 1.3450065851211548 img loss 1.2374165058135986 img loss 1.2132495641708374 img loss 1.2212207317352295 img loss 1.181223750114441 img loss 1.2885807752609253 img loss 1.2646433115005493 img loss 1.3019895553588867 img loss 1.2668923139572144 img loss 1.2561081647872925 img loss 1.2330230474472046 img loss 1.231257677078247 img loss 1.2546162605285645 img loss 1.170378565788269 img loss 1.2292038202285767 img loss 1.2353763580322266 img loss 1.2741296291351318 img loss 1.1926147937774658 img loss 1.2444860935211182 img loss 1.2883507013320923 img loss 1.252922534942627 img loss 1.2710232734680176 img loss 1.224138617515564 img loss 1.2927165031433105 img loss 1.199985384941101 img loss 1.2793262004852295 img loss 1.225478172302246 img loss 1.2544316053390503 img loss 1.2380262613296509 img loss 1.2450379133224487 img loss 1.2292094230651855 img loss 1.2071322202682495img loss 1.242140769958496 img loss 1.2302268743515015 img loss 1.2967469692230225 img loss 1.3101515769958496 img loss 1.2906055450439453 img loss 1.2633895874023438 img loss 1.2873138189315796 img loss 1.2584545612335205 img loss 1.2411335706710815 img loss 1.2484651803970337 img loss 1.313647747039795 img loss 1.2272716760635376 img loss 1.2189944982528687 img loss 1.2402453422546387 img loss 1.2948126792907715 img loss 1.2196426391601562 img loss 1.2201464176177979 img loss 1.1957215070724487 img loss 1.237311840057373 img loss 1.1927112340927124 img loss 1.2416996955871582 img loss 1.246508240699768 img loss 1.2431752681732178 img loss 1.2211251258850098 img loss 1.2852429151535034 img loss 1.2806167602539062 img loss 1.2378515005111694 img loss 1.2541265487670898 img loss 1.2236480712890625 img loss 1.2657679319381714 img loss 1.1876883506774902 img loss 1.2709547281265259 img loss 1.2157187461853027 img loss 1.276468276977539 img loss 1.2941794395446777 img loss 1.34671950340271 img loss 1.2053766250610352 img loss 1.218457579612732 img loss 1.2708958387374878 img loss 1.197019100189209 img loss 1.2811214923858643 img loss 1.2506687641143799 img loss 1.278923749923706 img loss 1.242574691772461 img loss 1.2818560600280762 img loss 1.20771062374115 img loss 1.2463048696517944 img loss 1.235255479812622 img loss 1.2619060277938843 img loss 1.2961995601654053 img loss 1.2405287027359009 img loss 1.1983217000961304 img loss 1.3111733198165894 img loss 1.2545084953308105 img loss 1.3694401979446411 img loss 1.1938139200210571 img loss 1.1934900283813477 img loss 1.2209854125976562 img loss 1.291673183441162 img loss 1.277774691581726 img loss 1.1987484693527222 img loss 1.2779433727264404 img loss 1.242539405822754 img loss 1.2180278301239014 img loss 1.204645037651062 img loss 1.182126760482788 img loss 1.255265235900879 img loss 1.2516483068466187 img loss 1.2619037628173828 img loss 1.2657756805419922 img loss 1.2389256954193115 img loss 1.234679102897644 img loss 1.2444804906845093 img loss 1.174937129020691 img loss 1.2539188861846924 img loss 1.2585289478302002 img loss 1.2438281774520874 {'loss': 1.2476, 'grad_norm': 0.23231247067451477, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4246660470962524 img loss 1.52462637424469 img loss 1.505816102027893 img loss 1.4535784721374512 img loss 1.4253747463226318 img loss 1.3724201917648315 img loss 1.590204119682312 img loss 1.355501413345337 img loss 1.6639782190322876 img loss 1.4648324251174927 img loss 1.4427216053009033 img loss 1.4597784280776978 img loss 1.4813657999038696 img loss 1.4674010276794434 img loss 1.270270586013794 img loss 1.696909785270691 img loss 1.377785563468933 img loss 1.4001057147979736 img loss 1.3587357997894287 img loss 1.4534250497817993 img loss 1.3533421754837036 img loss 1.4701801538467407 img loss 1.5249096155166626 img loss 1.432080626487732 img loss 1.4909924268722534 img loss 1.4793646335601807 img loss 1.455323576927185 img loss 1.431512475013733 img loss 1.3792989253997803 img loss 1.3939354419708252 img loss 1.484168291091919 img loss 1.4130187034606934 img loss 1.5076453685760498 img loss 1.4776772260665894 img loss 1.4469512701034546 img loss 1.4218199253082275 img loss 1.4994738101959229 img loss 1.3391454219818115 img loss 1.3597753047943115 img loss 1.478837251663208 img loss 1.3931186199188232 img loss 1.3094786405563354 img loss 1.5513614416122437 img loss 1.3543809652328491 img loss 1.44471275806427 img loss 1.5219063758850098 img loss 1.325971245765686 img loss 1.4286189079284668 img loss 1.2870367765426636 img loss 1.361749291419983 img loss 1.5801606178283691 img loss 1.548290729522705 img loss 1.5883173942565918 img loss 1.3218293190002441 img loss 1.4038445949554443 img loss 1.446531891822815 img loss 1.3555437326431274 img loss 1.3646961450576782 img loss 1.4639256000518799 img loss 1.392219066619873 img loss 1.4922491312026978 img loss 1.5414015054702759 img loss 1.474413514137268 img loss 1.4556859731674194 img loss 1.2664209604263306 img loss 1.493088960647583 img loss 1.3545372486114502 img loss 1.394046425819397 img loss 1.3242686986923218 img loss 1.5926309823989868 img loss 1.3862797021865845 img loss 1.4163302183151245 img loss 1.416420817375183 img loss 1.4694607257843018 img loss 1.4109922647476196 img loss 1.4703160524368286 img loss 1.438065767288208 img loss 1.4315354824066162 img loss 1.4890035390853882 img loss 1.3692153692245483 img loss 1.4399796724319458 img loss 1.3572670221328735 img loss 1.301318883895874 img loss 1.324066162109375 img loss 1.4532743692398071 img loss 1.4674279689788818 img loss 1.4810649156570435 img loss 1.652401089668274 img loss 1.464496374130249 img loss 1.5945103168487549 img loss 1.500373125076294 img loss 1.4679509401321411 img loss 1.340140461921692 img loss 1.452135443687439 img loss 1.4553560018539429 img loss 1.4420760869979858 img loss 1.4545670747756958 img loss 1.538244605064392 img loss 1.3747146129608154 img loss 1.3676625490188599 img loss 1.4011043310165405 img loss 1.401533842086792 img loss 1.4720522165298462img loss 1.3861920833587646 img loss 1.3582608699798584 img loss 1.4509013891220093 img loss 1.3963490724563599 img loss 1.2905597686767578 img loss 1.4614099264144897 img loss 1.3802613019943237 img loss 1.358709692955017 img loss 1.5196031332015991 img loss 1.5570632219314575 img loss 1.5150694847106934 img loss 1.362902283668518 img loss 1.3443360328674316 img loss 1.4677833318710327 img loss 1.4673478603363037 img loss 1.4950448274612427 img loss 1.415830373764038 img loss 1.4476863145828247 img loss 1.469728946685791 img loss 1.4843060970306396 img loss 1.4505199193954468 img loss 1.4689780473709106 img loss 1.5597082376480103 img loss 1.398398995399475 img loss 1.548534631729126 {'loss': 1.4408, 'grad_norm': 0.26859092712402344, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.317514419555664 img loss 1.3209787607192993 img loss 1.3074311017990112 img loss 1.1784255504608154 img loss 1.3126826286315918 img loss 1.316369891166687 img loss 1.1785128116607666 img loss 1.2542781829833984 img loss 1.2268974781036377 img loss 1.2411410808563232 img loss 1.276578426361084 img loss 1.231821060180664 img loss 1.2890819311141968 img loss 1.2643489837646484 img loss 1.2849023342132568 img loss 1.2590129375457764 img loss 1.1829861402511597 img loss 1.2651705741882324 img loss 1.2521816492080688 img loss 1.2970006465911865 img loss 1.291732668876648 img loss 1.1874043941497803 img loss 1.2588860988616943 img loss 1.2147228717803955 img loss 1.2406806945800781 img loss 1.271363615989685 img loss 1.299787163734436 img loss 1.2032372951507568 img loss 1.210076093673706 img loss 1.2790634632110596 img loss 1.227435827255249 img loss 1.2427815198898315 img loss 1.1906523704528809 img loss 1.225993037223816 img loss 1.2241387367248535 img loss 1.2805590629577637 img loss 1.348619818687439 img loss 1.2293627262115479 img loss 1.3533724546432495 img loss 1.2123401165008545 img loss 1.3054184913635254 img loss 1.301616907119751 img loss 1.4132742881774902 img loss 1.3406051397323608 img loss 1.2372000217437744 img loss 1.3193917274475098 img loss 1.426924467086792 img loss 1.292445421218872 img loss 1.2829360961914062 img loss 1.2858681678771973 img loss 1.2216306924819946 img loss 1.1994624137878418 img loss 1.2664330005645752 img loss 1.2457103729248047 img loss 1.2875118255615234 img loss 1.233154296875 img loss 1.3281577825546265 img loss 1.2822480201721191 img loss 1.1705950498580933 img loss 1.2819972038269043 img loss 1.2366306781768799 img loss 1.298762321472168 img loss 1.3004268407821655 img loss 1.2597942352294922 img loss 1.266985535621643 img loss 1.257742166519165 img loss 1.301255702972412 img loss 1.2084660530090332 img loss 1.2472259998321533 img loss 1.218056559562683 img loss 1.25859797000885 img loss 1.2714016437530518 img loss 1.216291069984436 img loss 1.3203637599945068 img loss 1.3052853345870972 img loss 1.21016526222229 img loss 1.2367370128631592 img loss 1.3460745811462402 img loss 1.2707765102386475 img loss 1.247667670249939 img loss 1.3076053857803345 img loss 1.2562248706817627 img loss 1.2875150442123413 img loss 1.2279434204101562 img loss 1.3056381940841675 img loss 1.2285019159317017 img loss 1.2584978342056274 img loss 1.2812753915786743 img loss 1.1961418390274048 img loss 1.2079018354415894 img loss 1.3180207014083862 img loss 1.3054640293121338 img loss 1.2487515211105347 img loss 1.288705587387085 img loss 1.249488353729248 img loss 1.188423752784729 img loss 1.233577013015747 img loss 1.2991008758544922 img loss 1.300853967666626 img loss 1.1967957019805908 img loss 1.2834486961364746 img loss 1.2735201120376587 img loss 1.322803020477295 img loss 1.253472924232483 img loss 1.3498685359954834 img loss 1.2406738996505737 img loss 1.3087276220321655 img loss 1.2306467294692993 img loss 1.281786322593689 img loss 1.2109315395355225 img loss 1.2285900115966797 img loss 1.2273508310317993 img loss 1.262280821800232 img loss 1.26902174949646 img loss 1.2633332014083862 img loss 1.264597773551941 img loss 1.2214683294296265 img loss 1.276965856552124 img loss 1.2160955667495728 img loss 1.3091157674789429 img loss 1.231195330619812 img loss 1.2345079183578491 img loss 1.2399654388427734 img loss 1.3003809452056885 img loss 1.2670773267745972 img loss 1.22175931930542 img loss 1.1343272924423218 img loss 1.3312797546386719 {'loss': 1.2632, 'grad_norm': 0.22675791382789612, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3918758630752563 img loss 1.2055109739303589 img loss 1.1812494993209839 img loss 1.161600112915039 img loss 1.3084311485290527 img loss 1.2022111415863037 img loss 1.2267011404037476 img loss 1.3918797969818115 img loss 1.2225521802902222 img loss 1.338990569114685 img loss 1.1731013059616089 img loss 1.3176915645599365 img loss 1.2501400709152222 img loss 1.300850749015808 img loss 1.171415090560913 img loss 1.2605888843536377 img loss 1.2748342752456665 img loss 1.2592206001281738 img loss 1.2302497625350952 img loss 1.233818769454956img loss 1.1756622791290283 img loss 1.2937511205673218 img loss 1.2609035968780518 img loss 1.2385854721069336 img loss 1.2359451055526733 img loss 1.262570858001709 img loss 1.2325985431671143 img loss 1.2285693883895874 img loss 1.2147353887557983 img loss 1.2230008840560913 img loss 1.1823303699493408 img loss 1.181984782218933 img loss 1.3258694410324097 img loss 1.3591400384902954 img loss 1.192807912826538 img loss 1.2533974647521973 img loss 1.27101469039917 img loss 1.1835860013961792 img loss 1.3150755167007446 img loss 1.2545526027679443 img loss 1.2529445886611938 img loss 1.1650826930999756 img loss 1.2928707599639893 img loss 1.189408779144287 img loss 1.3521045446395874 img loss 1.2235357761383057 img loss 1.3226288557052612 img loss 1.2085001468658447 img loss 1.3798130750656128 img loss 1.1458200216293335 img loss 1.2455633878707886 img loss 1.260684609413147 img loss 1.223864197731018 img loss 1.2574411630630493 img loss 1.2519391775131226 img loss 1.1779924631118774 img loss 1.2585092782974243 img loss 1.2318744659423828 img loss 1.1720383167266846 img loss 1.2713334560394287 img loss 1.2729610204696655 img loss 1.1934840679168701 img loss 1.0878252983093262 img loss 1.2167631387710571 img loss 1.1699540615081787 img loss 1.265114188194275 img loss 1.313846230506897 img loss 1.2315396070480347 img loss 1.1957507133483887 img loss 1.2883480787277222 img loss 1.2543493509292603 img loss 1.191396951675415 img loss 1.292285442352295 img loss 1.234850525856018 img loss 1.1773077249526978 img loss 1.120628833770752 img loss 1.451331377029419 img loss 1.2229620218276978 img loss 1.2424440383911133 img loss 1.2973365783691406 img loss 1.1824984550476074 img loss 1.2781370878219604 img loss 1.3033146858215332 img loss 1.226744294166565 img loss 1.207794427871704 img loss 1.2139167785644531 img loss 1.2739893198013306 img loss 1.1945194005966187 img loss 1.1223828792572021 img loss 1.203715205192566 img loss 1.2507145404815674 img loss 1.3125451803207397 img loss 1.1748510599136353 img loss 1.159421682357788 img loss 1.2467273473739624 img loss 1.2970545291900635 img loss 1.2959496974945068 img loss 1.35306978225708 img loss 1.3292487859725952 img loss 1.189287781715393 img loss 1.2486603260040283 img loss 1.2490335702896118 img loss 1.24192214012146 img loss 1.1830602884292603 img loss 1.2086948156356812 img loss 1.30145263671875 img loss 1.2711873054504395 img loss 1.218583583831787 img loss 1.248019814491272 img loss 1.2734923362731934 img loss 1.2402949333190918 img loss 1.2059215307235718 img loss 1.3042144775390625 img loss 1.2787494659423828 img loss 1.1917473077774048 img loss 1.3259146213531494 img loss 1.1868234872817993 img loss 1.2320942878723145 img loss 1.2192137241363525 img loss 1.1930763721466064 img loss 1.185302734375 img loss 1.3000493049621582 img loss 1.267960548400879 img loss 1.220099925994873 img loss 1.2554848194122314 img loss 1.3754055500030518 img loss 1.2408500909805298 img loss 1.1942144632339478 {'loss': 1.2443, 'grad_norm': 0.20465610921382904, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.19064199924469 img loss 1.27895987033844 img loss 1.277754545211792 img loss 1.2583006620407104 img loss 1.2189254760742188 img loss 1.1901652812957764 img loss 1.391332983970642 img loss 1.256845474243164 img loss 1.2860026359558105 img loss 1.2287554740905762 img loss 1.3400118350982666 img loss 1.2846084833145142 img loss 1.2259701490402222 img loss 1.2790988683700562 img loss 1.2231594324111938 img loss 1.2231476306915283 img loss 1.2766937017440796 img loss 1.3460949659347534 img loss 1.3046412467956543 img loss 1.3000125885009766 img loss 1.3037726879119873 img loss 1.3052319288253784 img loss 1.3058241605758667 img loss 1.2793930768966675 img loss 1.331132411956787 img loss 1.2819151878356934 img loss 1.370471477508545 img loss 1.2913802862167358 img loss 1.3210692405700684 img loss 1.2496932744979858 img loss 1.3247041702270508 img loss 1.3352562189102173 img loss 1.3071436882019043 img loss 1.2785545587539673 img loss 1.2621214389801025 img loss 1.3406144380569458 img loss 1.3739913702011108 img loss 1.3818992376327515 img loss 1.2862021923065186 img loss 1.3498104810714722 img loss 1.3784059286117554 img loss 1.3110660314559937 img loss 1.2136385440826416 img loss 1.358242392539978 img loss 1.2485778331756592 img loss 1.2733023166656494 img loss 1.252631664276123 img loss 1.2863762378692627 img loss 1.2759748697280884 img loss 1.374480128288269 img loss 1.325229525566101 img loss 1.4705004692077637 img loss 1.2594740390777588 img loss 1.2700697183609009 img loss 1.3315083980560303 img loss 1.3095556497573853 img loss 1.3007656335830688 img loss 1.4112430810928345 img loss 1.2759016752243042 img loss 1.2819905281066895 img loss 1.326230525970459 img loss 1.3952335119247437 img loss 1.3615473508834839 img loss 1.3697867393493652 img loss 1.269966959953308 img loss 1.2219949960708618 img loss 1.2550697326660156 img loss 1.2495107650756836 img loss 1.3354823589324951 img loss 1.2591168880462646 img loss 1.4358047246932983 img loss 1.2758369445800781 img loss 1.2909653186798096 img loss 1.3217995166778564 img loss 1.2590678930282593 img loss 1.395281195640564 img loss 1.28758704662323 img loss 1.3315656185150146 img loss 1.2706745862960815 img loss 1.2565243244171143 img loss 1.273381233215332 img loss 1.3048148155212402 img loss 1.2096182107925415 img loss 1.324077844619751 img loss 1.2705799341201782 img loss 1.3804469108581543 img loss 1.2814652919769287 img loss 1.2875698804855347 img loss 1.2816942930221558 img loss 1.2728853225708008 img loss 1.2773548364639282 img loss 1.3731379508972168 img loss 1.2526946067810059 img loss 1.2824598550796509 img loss 1.3195968866348267 img loss 1.302790641784668 img loss 1.2914841175079346 img loss 1.3646210432052612 img loss 1.5107558965682983 img loss 1.3790497779846191 img loss 1.2488353252410889 img loss 1.2816002368927002 img loss 1.2557358741760254 img loss 1.2935421466827393 img loss 1.3864665031433105 img loss 1.3960236310958862 img loss 1.3596371412277222 img loss 1.2704271078109741 img loss 1.3345504999160767 img loss 1.405990481376648 img loss 1.2435362339019775 img loss 1.3570832014083862 img loss 1.2807796001434326 img loss 1.2357534170150757 img loss 1.3989263772964478 img loss 1.3038538694381714 img loss 1.2647547721862793 img loss 1.3034976720809937 img loss 1.2909610271453857 img loss 1.2663657665252686 img loss 1.220989465713501 img loss 1.314612865447998 img loss 1.2579959630966187 img loss 1.2443084716796875 img loss 1.243295431137085 img loss 1.203203558921814 img loss 1.3836289644241333 img loss 1.320661187171936 {'loss': 1.3019, 'grad_norm': 0.36180344223976135, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2459825277328491 img loss 1.288208246231079 img loss 1.2265453338623047 img loss 1.2052720785140991 img loss 1.2742258310317993 img loss 1.1873692274093628 img loss 1.2233574390411377 img loss 1.2884974479675293 img loss 1.3525264263153076 img loss 1.1833235025405884 img loss 1.2412030696868896 img loss 1.392738699913025 img loss 1.2099757194519043 img loss 1.3507211208343506 img loss 1.2911936044692993 img loss 1.2554906606674194 img loss 1.265890121459961 img loss 1.2109525203704834 img loss 1.1609998941421509 img loss 1.4155066013336182 img loss 1.2361029386520386 img loss 1.2848690748214722 img loss 1.2343964576721191 img loss 1.1542491912841797 img loss 1.3113596439361572 img loss 1.185011625289917 img loss 1.3305702209472656 img loss 1.2225812673568726 img loss 1.2629629373550415 img loss 1.2336982488632202 img loss 1.2424087524414062 img loss 1.2226359844207764 img loss 1.1732900142669678 img loss 1.2532362937927246 img loss 1.1911379098892212 img loss 1.3087071180343628 img loss 1.2708325386047363 img loss 1.3034533262252808 img loss 1.250217080116272 img loss 1.293637990951538 img loss 1.2230781316757202 img loss 1.1639959812164307 img loss 1.2407010793685913 img loss 1.2225356101989746 img loss 1.2150530815124512 img loss 1.3359304666519165 img loss 1.30843985080719 img loss 1.2061512470245361 img loss 1.2088598012924194 img loss 1.2406880855560303 img loss 1.2315993309020996 img loss 1.275123953819275 img loss 1.1551856994628906 img loss 1.325918197631836 img loss 1.2029892206192017 img loss 1.4109963178634644 img loss 1.2302783727645874 img loss 1.2106549739837646 img loss 1.2360512018203735 img loss 1.238830327987671 img loss 1.282286286354065 img loss 1.1938093900680542 img loss 1.2237205505371094 img loss 1.3202009201049805 img loss 1.2766377925872803 img loss 1.2270848751068115 img loss 1.2832438945770264 img loss 1.2819830179214478 img loss 1.2544256448745728 img loss 1.2891387939453125 img loss 1.2434886693954468 img loss 1.2636646032333374 img loss 1.2456164360046387 img loss 1.26254141330719 img loss 1.2784664630889893 img loss 1.3081002235412598 img loss 1.2641938924789429 img loss 1.36075758934021 img loss 1.256545901298523 img loss 1.2936619520187378 img loss 1.236457347869873 img loss 1.2746204137802124 img loss 1.1992040872573853 img loss 1.268829107284546 img loss 1.2421973943710327 img loss 1.2552716732025146 img loss 1.3319381475448608 img loss 1.3611947298049927 img loss 1.3156826496124268 img loss 1.209114909172058 img loss 1.2525280714035034 img loss 1.305361032485962 img loss 1.2495535612106323 img loss 1.212277889251709 img loss 1.2703278064727783 img loss 1.3322715759277344 img loss 1.2317302227020264 img loss 1.1911311149597168 img loss 1.3266656398773193 img loss 1.3305988311767578 img loss 1.2983171939849854 img loss 1.223732352256775 img loss 1.1951673030853271 img loss 1.3416401147842407 img loss 1.1542991399765015 img loss 1.3022998571395874 img loss 1.3388636112213135 img loss 1.307921051979065 img loss 1.2813336849212646 img loss 1.2619441747665405 img loss 1.192923903465271 img loss 1.191540002822876 img loss 1.2328647375106812 img loss 1.3440691232681274 img loss 1.2290985584259033 img loss 1.3031556606292725 img loss 1.3170884847640991 img loss 1.2718216180801392 img loss 1.3186547756195068 img loss 1.2783596515655518 img loss 1.1957871913909912 img loss 1.2793591022491455 img loss 1.203615427017212 img loss 1.3138673305511475 img loss 1.2339508533477783 img loss 1.2323538064956665 img loss 1.2501376867294312 img loss 1.2458620071411133 {'loss': 1.2599, 'grad_norm': 0.2513138949871063, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2420010566711426 img loss 1.2334562540054321 img loss 1.3093478679656982 img loss 1.3760029077529907 img loss 1.375895380973816 img loss 1.2935088872909546 img loss 1.3251640796661377 img loss 1.3298782110214233 img loss 1.2328933477401733 img loss 1.319416880607605 img loss 1.2756175994873047 img loss 1.2458679676055908 img loss 1.3598618507385254 img loss 1.24601149559021 img loss 1.2744852304458618 img loss 1.3346489667892456 img loss 1.4315513372421265 img loss 1.3177440166473389 img loss 1.2573885917663574 img loss 1.3116260766983032 img loss 1.2335697412490845 img loss 1.2844247817993164 img loss 1.4072729349136353 img loss 1.2797397375106812 img loss 1.2408819198608398 img loss 1.353350043296814 img loss 1.3240692615509033 img loss 1.2762173414230347 img loss 1.3423904180526733 img loss 1.2179546356201172 img loss 1.2188923358917236 img loss 1.3673537969589233 img loss 1.2340795993804932 img loss 1.3430908918380737 img loss 1.3676203489303589 img loss 1.252082109451294 img loss 1.3110069036483765 img loss 1.4309766292572021 img loss 1.3015270233154297 img loss 1.2615705728530884 img loss 1.364725947380066 img loss 1.3096774816513062 img loss 1.294653296470642 img loss 1.3439862728118896 img loss 1.352084994316101 img loss 1.2604825496673584 img loss 1.1854013204574585 img loss 1.2652218341827393 img loss 1.2761304378509521 img loss 1.387600302696228 img loss 1.3008348941802979 img loss 1.2741413116455078 img loss 1.3230243921279907 img loss 1.3128852844238281 img loss 1.3482156991958618 img loss 1.316361427307129 img loss 1.2880264520645142 img loss 1.2481542825698853 img loss 1.243281364440918 img loss 1.2078561782836914 img loss 1.3230284452438354 img loss 1.263528823852539 img loss 1.2957063913345337 img loss 1.3227405548095703 img loss 1.36117684841156 img loss 1.327949047088623 img loss 1.3477171659469604 img loss 1.339343547821045 img loss 1.2796443700790405 img loss 1.408302903175354 img loss 1.310018539428711 img loss 1.2710723876953125 img loss 1.3226213455200195 img loss 1.2751803398132324 img loss 1.225428819656372 img loss 1.398842215538025 img loss 1.3815743923187256 img loss 1.2944914102554321 img loss 1.2428539991378784 img loss 1.3609710931777954 img loss 1.3130096197128296 img loss 1.3086695671081543 img loss 1.3440707921981812 img loss 1.370063304901123 img loss 1.2623543739318848 img loss 1.3522236347198486 img loss 1.2453210353851318 img loss 1.3370811939239502 img loss 1.2494540214538574 img loss 1.2953472137451172 img loss 1.309061050415039 img loss 1.2651392221450806 img loss 1.2620251178741455 img loss 1.3083877563476562 img loss 1.3010272979736328 img loss 1.3258874416351318 img loss 1.2980587482452393 img loss 1.258443832397461 img loss 1.3214490413665771 img loss 1.3201065063476562 img loss 1.4244887828826904 img loss 1.27652108669281 img loss 1.2680623531341553 img loss 1.3548845052719116 img loss 1.2792983055114746 img loss 1.2444614171981812 img loss 1.3355824947357178 img loss 1.3629857301712036 img loss 1.337568998336792 img loss 1.3258451223373413 img loss 1.2401732206344604 img loss 1.3811644315719604 img loss 1.289964199066162 img loss 1.3262295722961426 img loss 1.3305225372314453 img loss 1.2544864416122437 img loss 1.350809931755066 img loss 1.2966265678405762 img loss 1.3319447040557861 img loss 1.293770432472229 img loss 1.3448339700698853 img loss 1.3054872751235962 img loss 1.2164866924285889 img loss 1.2970795631408691 img loss 1.3557813167572021 img loss 1.3106399774551392 img loss 1.3688544034957886 img loss 1.2626984119415283 {'loss': 1.3063, 'grad_norm': 0.35361984372138977, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.5162147283554077 img loss 1.4276684522628784 img loss 1.5745776891708374 img loss 1.5772653818130493 img loss 1.4212602376937866 img loss 1.562466025352478 img loss 1.5392906665802002 img loss 1.475319266319275 img loss 1.5063817501068115 img loss 1.477547526359558 img loss 1.3575013875961304 img loss 1.3380000591278076 img loss 1.4863530397415161 img loss 1.3952833414077759 img loss 1.503690481185913 img loss 1.5726171731948853 img loss 1.382766842842102 img loss 1.5432124137878418 img loss 1.3460347652435303 img loss 1.5259133577346802 img loss 1.6077595949172974 img loss 1.4404302835464478 img loss 1.5746179819107056 img loss 1.4375739097595215 img loss 1.434120774269104 img loss 1.3540130853652954 img loss 1.3256375789642334 img loss 1.5148166418075562 img loss 1.518507719039917 img loss 1.442259430885315 img loss 1.4137053489685059 img loss 1.4320428371429443 img loss 1.4996752738952637 img loss 1.5770004987716675img loss 1.3980847597122192 img loss 1.6181951761245728 img loss 1.529836893081665 img loss 1.3923567533493042 img loss 1.317803144454956 img loss 1.4152436256408691 img loss 1.3371195793151855 img loss 1.417295217514038 img loss 1.4710763692855835 img loss 1.4432482719421387 img loss 1.398107886314392 img loss 1.5734200477600098 img loss 1.548827052116394 img loss 1.4355627298355103 img loss 1.5050959587097168 img loss 1.469450831413269 img loss 1.402931571006775 img loss 1.4403868913650513 img loss 1.3600246906280518 img loss 1.401042103767395 img loss 1.3516675233840942 img loss 1.4331412315368652 img loss 1.3112452030181885 img loss 1.3847712278366089 img loss 1.5497167110443115 img loss 1.3229082822799683 img loss 1.3948310613632202 img loss 1.7305766344070435 img loss 1.39369535446167 img loss 1.4383797645568848 img loss 1.3530069589614868 img loss 1.4735478162765503 img loss 1.4501793384552002 img loss 1.5166891813278198 img loss 1.5462037324905396 img loss 1.4094442129135132 img loss 1.4476027488708496 img loss 1.5103858709335327 img loss 1.5504857301712036 img loss 1.4212785959243774 img loss 1.4889236688613892 img loss 1.5213409662246704 img loss 1.5843058824539185 img loss 1.3527039289474487 img loss 1.40229070186615 img loss 1.3014767169952393 img loss 1.5784410238265991 img loss 1.464159607887268 img loss 1.5471652746200562 img loss 1.2871911525726318 img loss 1.4039403200149536 img loss 1.5121560096740723 img loss 1.426310420036316 img loss 1.4487024545669556 img loss 1.5646673440933228 img loss 1.350856900215149 img loss 1.4665238857269287 img loss 1.667325496673584 img loss 1.4662737846374512 img loss 1.4687296152114868 img loss 1.4916102886199951 img loss 1.618314266204834 img loss 1.4831316471099854 img loss 1.3811992406845093 img loss 1.4998905658721924 img loss 1.3493573665618896 img loss 1.3441280126571655 img loss 1.4013707637786865 img loss 1.5081875324249268 img loss 1.5570311546325684 img loss 1.5217392444610596 img loss 1.500352144241333 img loss 1.4810166358947754 img loss 1.4458914995193481 img loss 1.4586901664733887 img loss 1.5080171823501587 img loss 1.49825119972229 img loss 1.4671225547790527 img loss 1.4818345308303833 img loss 1.4597166776657104 img loss 1.4923908710479736 img loss 1.4686545133590698 img loss 1.4083874225616455 img loss 1.401363492012024 img loss 1.2703111171722412 img loss 1.4660545587539673 img loss 1.628474473953247 img loss 1.409483790397644 img loss 1.4222725629806519 img loss 1.3509386777877808 img loss 1.3710919618606567 img loss 1.5235110521316528 img loss 1.4204472303390503 img loss 1.4303069114685059 {'loss': 1.4593, 'grad_norm': 0.3582766652107239, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2031431198120117 img loss 1.1824918985366821 img loss 1.208560824394226 img loss 1.3077712059020996 img loss 1.202042579650879 img loss 1.2276510000228882 img loss 1.0883115530014038 img loss 1.275662899017334 img loss 1.2340763807296753 img loss 1.1811320781707764img loss 1.1699508428573608 img loss 1.1752125024795532 img loss 1.1443527936935425 img loss 1.1606568098068237 img loss 1.174181580543518 img loss 1.3184984922409058 img loss 1.060953140258789 img loss 1.2864208221435547 img loss 1.1636908054351807 img loss 1.241433024406433 img loss 1.1272664070129395 img loss 1.2922524213790894 img loss 1.2014837265014648 img loss 1.1760584115982056 img loss 1.2000735998153687 img loss 1.2150400876998901 img loss 1.2349191904067993 img loss 1.19503653049469 img loss 1.1175525188446045 img loss 1.207542896270752 img loss 1.1574053764343262 img loss 1.1529819965362549 img loss 1.2418783903121948 img loss 1.1376440525054932 img loss 1.1697660684585571 img loss 1.1755865812301636 img loss 1.2593141794204712 img loss 1.12338125705719 img loss 1.20543372631073 img loss 1.2218106985092163 img loss 1.2003389596939087 img loss 1.207005500793457 img loss 1.1927542686462402 img loss 1.236739993095398 img loss 1.2036070823669434 img loss 1.053146243095398 img loss 1.1708307266235352 img loss 1.1758596897125244 img loss 1.1058192253112793 img loss 1.203944206237793 img loss 1.2592217922210693 img loss 1.1887595653533936 img loss 1.1820309162139893 img loss 1.2020100355148315 img loss 1.3463385105133057 img loss 1.2569997310638428 img loss 1.2265279293060303 img loss 1.1571242809295654 img loss 1.2229034900665283 img loss 1.2082163095474243 img loss 1.2589983940124512 img loss 1.2075340747833252 img loss 1.2283437252044678 img loss 1.2152098417282104 img loss 1.1402024030685425 img loss 1.2094833850860596 img loss 1.1701723337173462 img loss 1.1989020109176636 img loss 1.2046194076538086 img loss 1.2891035079956055 img loss 1.2732681035995483 img loss 1.1840343475341797 img loss 1.0622146129608154 img loss 1.22052800655365 img loss 1.187180995941162 img loss 1.22446608543396 img loss 1.1136444807052612 img loss 1.2106051445007324 img loss 1.2200173139572144 img loss 1.1522777080535889 img loss 1.2836973667144775 img loss 1.2165288925170898 img loss 1.1798843145370483 img loss 1.268078088760376 img loss 1.1307979822158813 img loss 1.2342455387115479 img loss 1.2548907995224 img loss 1.2233227491378784 img loss 1.2398966550827026 img loss 1.1635290384292603 img loss 1.3000690937042236 img loss 1.1303046941757202 img loss 1.2062758207321167 img loss 1.2441810369491577 img loss 1.2082241773605347 img loss 1.2108721733093262 img loss 1.188098430633545 img loss 1.1327965259552002 img loss 1.1483218669891357 img loss 1.2269549369812012 img loss 1.229357123374939 img loss 1.2315995693206787 img loss 1.2481677532196045 img loss 1.197376012802124 img loss 1.2603100538253784 img loss 1.1221317052841187 img loss 1.1450732946395874 img loss 1.129616618156433 img loss 1.2460559606552124 img loss 1.1446212530136108 img loss 1.1650950908660889 img loss 1.1945972442626953 img loss 1.2270662784576416 img loss 1.2028687000274658 img loss 1.119334101676941 img loss 1.1770371198654175 img loss 1.1676263809204102 img loss 1.1791757345199585 img loss 1.1937189102172852 img loss 1.168059229850769 img loss 1.2121882438659668 img loss 1.220608115196228 img loss 1.1877386569976807 img loss 1.2068517208099365 img loss 1.193953514099121 img loss 1.205561876296997 img loss 1.2050201892852783 img loss 1.2585166692733765 {'loss': 1.1986, 'grad_norm': 0.23375234007835388, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3519527912139893 img loss 1.2415131330490112 img loss 1.2336578369140625 img loss 1.2896705865859985 img loss 1.3380621671676636 img loss 1.2476685047149658 img loss 1.2556558847427368 img loss 1.258984923362732 img loss 1.3081085681915283 img loss 1.2594106197357178 img loss 1.2305395603179932 img loss 1.29680335521698 img loss 1.3034924268722534 img loss 1.2853882312774658 img loss 1.2864874601364136 img loss 1.2799566984176636 img loss 1.1585421562194824 img loss 1.1861389875411987 img loss 1.180998682975769 img loss 1.297165870666504 img loss 1.2533085346221924 img loss 1.2536228895187378 img loss 1.334302544593811 img loss 1.3698886632919312 img loss 1.275704264640808 img loss 1.274941325187683 img loss 1.2102985382080078 img loss 1.2383445501327515 img loss 1.3087090253829956 img loss 1.2892307043075562 img loss 1.2528061866760254 img loss 1.307847261428833 img loss 1.2574747800827026 img loss 1.1991055011749268 img loss 1.2961593866348267 img loss 1.2304801940917969 img loss 1.2108030319213867 img loss 1.3278177976608276 img loss 1.3468278646469116 img loss 1.188125491142273 img loss 1.2801440954208374 img loss 1.3239121437072754 img loss 1.2364046573638916 img loss 1.2753791809082031 img loss 1.2781387567520142 img loss 1.2232669591903687 img loss 1.235851764678955 img loss 1.303699016571045 img loss 1.3063743114471436 img loss 1.341133952140808 img loss 1.330727219581604 img loss 1.3829983472824097 img loss 1.2746641635894775 img loss 1.247973918914795 img loss 1.2488535642623901 img loss 1.355400800704956 img loss 1.2039024829864502 img loss 1.260157585144043 img loss 1.349381685256958 img loss 1.2811040878295898 img loss 1.2557743787765503 img loss 1.2540613412857056 img loss 1.2430033683776855 img loss 1.2431915998458862 img loss 1.2483516931533813 img loss 1.2998466491699219 img loss 1.1898083686828613 img loss 1.2929037809371948 img loss 1.254190444946289 img loss 1.1751989126205444 img loss 1.293211579322815 img loss 1.2895824909210205 img loss 1.298134207725525 img loss 1.399746060371399 img loss 1.2030744552612305 img loss 1.2975587844848633 img loss 1.2109143733978271 img loss 1.2685351371765137 img loss 1.275551199913025 img loss 1.3840945959091187 img loss 1.320827841758728 img loss 1.304323434829712 img loss 1.3593586683273315 img loss 1.2636187076568604 img loss 1.3224661350250244 img loss 1.2536976337432861 img loss 1.2301784753799438 img loss 1.3045803308486938 img loss 1.2423886060714722 img loss 1.3029289245605469 img loss 1.1956843137741089 img loss 1.2473864555358887 img loss 1.2283437252044678 img loss 1.3146889209747314 img loss 1.214974045753479 img loss 1.2490088939666748 img loss 1.343156099319458 img loss 1.2520403861999512 img loss 1.272862195968628 img loss 1.2227805852890015 img loss 1.2450357675552368 img loss 1.300567626953125 img loss 1.346288800239563 img loss 1.3073548078536987 img loss 1.3147218227386475 img loss 1.3148765563964844 img loss 1.1800475120544434 img loss 1.2347345352172852 img loss 1.241697907447815 img loss 1.2339839935302734 img loss 1.2915277481079102 img loss 1.1959413290023804 img loss 1.2465271949768066 img loss 1.2735521793365479 img loss 1.3191038370132446 img loss 1.275098204612732 img loss 1.1743946075439453 img loss 1.2475003004074097 img loss 1.3478684425354004 img loss 1.3201818466186523 img loss 1.2294175624847412 img loss 1.4173868894577026 img loss 1.3417620658874512 img loss 1.2853806018829346 img loss 1.2151219844818115 img loss 1.2428076267242432 img loss 1.3548734188079834 img loss 1.2850128412246704 {'loss': 1.2739, 'grad_norm': 0.23288169503211975, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2523618936538696 img loss 1.2419679164886475 img loss 1.2031103372573853 img loss 1.3121206760406494 img loss 1.185957908630371 img loss 1.1924388408660889 img loss 1.2662018537521362 img loss 1.1870428323745728 img loss 1.198995590209961 img loss 1.2750858068466187 img loss 1.1966516971588135 img loss 1.212697982788086 img loss 1.1486396789550781 img loss 1.1871237754821777 img loss 1.2083724737167358 img loss 1.2232115268707275 img loss 1.2687256336212158 img loss 1.246611475944519 img loss 1.2624468803405762 img loss 1.3006718158721924 img loss 1.26801335811615 img loss 1.268095850944519 img loss 1.1898751258850098 img loss 1.2101725339889526 img loss 1.2430262565612793 img loss 1.3082221746444702 img loss 1.1966526508331299 img loss 1.2395732402801514 img loss 1.2479768991470337 img loss 1.272574782371521 img loss 1.2375798225402832 img loss 1.2202262878417969 img loss 1.2484028339385986 img loss 1.2378952503204346 img loss 1.3291335105895996 img loss 1.2321641445159912img loss 1.2022831439971924 img loss 1.2044994831085205 img loss 1.2002294063568115 img loss 1.3238452672958374 img loss 1.2301256656646729 img loss 1.1723746061325073 img loss 1.1902730464935303 img loss 1.2170606851577759 img loss 1.169798493385315 img loss 1.1827313899993896 img loss 1.2095556259155273 img loss 1.2273012399673462 img loss 1.2418076992034912 img loss 1.2669652700424194 img loss 1.2070612907409668 img loss 1.1649463176727295 img loss 1.240039348602295 img loss 1.166991114616394 img loss 1.1801445484161377 img loss 1.2309139966964722 img loss 1.2371641397476196 img loss 1.2334270477294922 img loss 1.2107539176940918 img loss 1.1768802404403687 img loss 1.2127220630645752 img loss 1.2907088994979858 img loss 1.2065397500991821 img loss 1.3023041486740112 img loss 1.2173880338668823 img loss 1.1917396783828735 img loss 1.2553026676177979 img loss 1.2818437814712524 img loss 1.2608305215835571 img loss 1.2024754285812378 img loss 1.1966091394424438 img loss 1.206841230392456 img loss 1.2636501789093018 img loss 1.2227309942245483 img loss 1.2711790800094604 img loss 1.1889874935150146 img loss 1.2814738750457764 img loss 1.241708755493164 img loss 1.269181728363037 img loss 1.2003945112228394 img loss 1.1612423658370972 img loss 1.2528040409088135 img loss 1.2376184463500977 img loss 1.2997732162475586 img loss 1.1873003244400024 img loss 1.2687981128692627 img loss 1.219861626625061 img loss 1.2216308116912842 img loss 1.285942792892456 img loss 1.247750997543335 img loss 1.2591392993927002 img loss 1.199934720993042 img loss 1.1935157775878906 img loss 1.2623481750488281 img loss 1.2758517265319824 img loss 1.192389965057373 img loss 1.2315561771392822 img loss 1.2077076435089111 img loss 1.2533806562423706 img loss 1.2114557027816772 img loss 1.3232057094573975 img loss 1.2062441110610962 img loss 1.2065050601959229 img loss 1.2096048593521118 img loss 1.2407339811325073 img loss 1.2302573919296265 img loss 1.3046478033065796 img loss 1.2388043403625488 img loss 1.24795401096344 img loss 1.243189811706543 img loss 1.1806926727294922 img loss 1.175951361656189 img loss 1.2201801538467407 img loss 1.2846934795379639 img loss 1.2633306980133057 img loss 1.1613836288452148 img loss 1.2791497707366943 img loss 1.2441418170928955 img loss 1.2021098136901855 img loss 1.2390278577804565 img loss 1.1790164709091187 img loss 1.2725443840026855 img loss 1.265740990638733 img loss 1.2591397762298584 img loss 1.2300056219100952 img loss 1.2825486660003662 img loss 1.3182207345962524 img loss 1.3053346872329712 {'loss': 1.2333, 'grad_norm': 0.19665607810020447, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2888516187667847 img loss 1.2554967403411865 img loss 1.2941715717315674 img loss 1.3296000957489014 img loss 1.2788100242614746 img loss 1.3186215162277222 img loss 1.3474901914596558 img loss 1.2991185188293457 img loss 1.3069548606872559 img loss 1.3736627101898193 img loss 1.2090559005737305 img loss 1.3473819494247437 img loss 1.330502986907959 img loss 1.3385021686553955 img loss 1.3302234411239624 img loss 1.2728585004806519 img loss 1.3797682523727417 img loss 1.3443970680236816 img loss 1.3387229442596436 img loss 1.3538914918899536 img loss 1.3983162641525269 img loss 1.4216679334640503 img loss 1.300613284111023 img loss 1.378494381904602 img loss 1.335174322128296 img loss 1.2787588834762573 img loss 1.2146947383880615 img loss 1.409182071685791 img loss 1.2970470190048218 img loss 1.410531759262085 img loss 1.3012653589248657 img loss 1.3505299091339111 img loss 1.2853962182998657 img loss 1.3202955722808838 img loss 1.3462681770324707 img loss 1.316852331161499 img loss 1.3300684690475464 img loss 1.3124669790267944 img loss 1.2736642360687256 img loss 1.327328085899353 img loss 1.252204418182373 img loss 1.3682453632354736 img loss 1.3016808032989502 img loss 1.3166407346725464 img loss 1.4363858699798584 img loss 1.3396601676940918 img loss 1.284509539604187 img loss 1.365548014640808 img loss 1.3471821546554565 img loss 1.3987356424331665 img loss 1.302436351776123 img loss 1.2995189428329468 img loss 1.34880793094635 img loss 1.3519542217254639 img loss 1.3956454992294312 img loss 1.2899402379989624 img loss 1.3600633144378662 img loss 1.3447693586349487 img loss 1.374026894569397 img loss 1.3088594675064087 img loss 1.4418359994888306 img loss 1.3173365592956543 img loss 1.304964303970337 img loss 1.2704296112060547 img loss 1.313079833984375 img loss 1.3870469331741333 img loss 1.2797306776046753 img loss 1.2946794033050537 img loss 1.4010841846466064 img loss 1.3231781721115112 img loss 1.3232059478759766 img loss 1.3911882638931274 img loss 1.3530157804489136 img loss 1.3341313600540161 img loss 1.3706014156341553 img loss 1.3381307125091553 img loss 1.3650109767913818 img loss 1.2940508127212524 img loss 1.3977631330490112 img loss 1.2880346775054932 img loss 1.386858582496643 img loss 1.3518792390823364 img loss 1.363161325454712 img loss 1.2866405248641968 img loss 1.258602499961853 img loss 1.3347983360290527 img loss 1.292850136756897 img loss 1.327135682106018 img loss 1.3203858137130737 img loss 1.4469984769821167 img loss 1.4265862703323364 img loss 1.3798692226409912 img loss 1.3340966701507568 img loss 1.4074925184249878 img loss 1.3154830932617188 img loss 1.3867303133010864 img loss 1.3639357089996338 img loss 1.3793389797210693 img loss 1.2604329586029053 img loss 1.2897611856460571 img loss 1.2888821363449097 img loss 1.2882530689239502 img loss 1.2577518224716187 img loss 1.3077201843261719 img loss 1.4322354793548584 img loss 1.2505218982696533 img loss 1.38701331615448 img loss 1.3319761753082275 img loss 1.4168835878372192 img loss 1.2223865985870361 img loss 1.3809560537338257 img loss 1.3023104667663574 img loss 1.2841367721557617 img loss 1.3406836986541748 img loss 1.3876811265945435 img loss 1.307576060295105 img loss 1.3505512475967407 img loss 1.404600977897644 img loss 1.266369342803955 img loss 1.2397925853729248 img loss 1.4357409477233887 img loss 1.400367021560669 img loss 1.4505945444107056 img loss 1.4009991884231567 img loss 1.3790431022644043 img loss 1.314583659172058 img loss 1.359445333480835 img loss 1.3710404634475708 {'loss': 1.3359, 'grad_norm': 0.24817849695682526, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2434595823287964 img loss 1.1426700353622437 img loss 1.1690258979797363 img loss 1.1498618125915527 img loss 1.181740641593933 img loss 1.2034368515014648 img loss 1.1939406394958496 img loss 1.0900144577026367 img loss 1.187957525253296 img loss 1.1684925556182861 img loss 1.129826545715332 img loss 1.2111133337020874 img loss 1.196755051612854 img loss 1.145869255065918 img loss 1.2184007167816162 img loss 1.298924207687378 img loss 1.1713979244232178 img loss 1.204849123954773 img loss 1.1251006126403809 img loss 1.1999958753585815 img loss 1.2198193073272705 img loss 1.1324224472045898 img loss 1.306640625 img loss 1.1841657161712646 img loss 1.1609121561050415 img loss 1.2389848232269287 img loss 1.1707539558410645 img loss 1.2147454023361206 img loss 1.1050785779953003 img loss 1.2176874876022339 img loss 1.1498950719833374 img loss 1.0964436531066895 img loss 1.1545501947402954 img loss 1.1331202983856201 img loss 1.1705701351165771 img loss 1.1606487035751343 img loss 1.1124244928359985 img loss 1.1777771711349487 img loss 1.1495798826217651 img loss 1.1473383903503418 img loss 1.215225100517273 img loss 1.2287644147872925 img loss 1.1540249586105347 img loss 1.126044511795044 img loss 1.1762804985046387 img loss 1.2046457529067993 img loss 1.1761459112167358 img loss 1.1981607675552368 img loss 1.220729112625122 img loss 1.138200044631958 img loss 1.1721562147140503 img loss 1.2033089399337769 img loss 1.18301522731781 img loss 1.1967926025390625 img loss 1.1295994520187378 img loss 1.232163667678833 img loss 1.0878210067749023 img loss 1.2137600183486938 img loss 1.1875652074813843 img loss 1.1916444301605225 img loss 1.2581284046173096 img loss 1.2252124547958374 img loss 1.2079925537109375 img loss 1.2094810009002686 img loss 1.1933549642562866 img loss 1.1966228485107422 img loss 1.1436185836791992 img loss 1.133278489112854 img loss 1.1914479732513428 img loss 1.1716524362564087 img loss 1.2151293754577637 img loss 1.1732240915298462 img loss 1.1117749214172363 img loss 1.2666666507720947 img loss 1.1537070274353027 img loss 1.111432433128357 img loss 1.1967037916183472 img loss 1.1994060277938843 img loss 1.1645952463150024 img loss 1.1746046543121338 img loss 1.2350186109542847 img loss 1.1230933666229248 img loss 1.140012264251709 img loss 1.1405267715454102 img loss 1.170034408569336 img loss 1.1120803356170654 img loss 1.1422827243804932 img loss 1.2267861366271973 img loss 1.2154664993286133 img loss 1.1904349327087402 img loss 1.275991439819336 img loss 1.3056581020355225 img loss 1.104076862335205 img loss 1.1528091430664062 img loss 1.1898666620254517 img loss 1.1987406015396118 img loss 1.190134882926941 img loss 1.1848796606063843 img loss 1.1379622220993042 img loss 1.1542097330093384 img loss 1.2570966482162476 img loss 1.154317855834961 img loss 1.1605829000473022 img loss 1.1523364782333374 img loss 1.1566377878189087 img loss 1.163212537765503 img loss 1.2579174041748047 img loss 1.1864597797393799 img loss 1.245497465133667 img loss 1.226012945175171 img loss 1.2463274002075195 img loss 1.1978275775909424 img loss 1.2112503051757812 img loss 1.1830976009368896 img loss 1.1315274238586426 img loss 1.252663254737854 img loss 1.1913293600082397 img loss 1.1653200387954712 img loss 1.1771553754806519 img loss 1.204546570777893 img loss 1.1598280668258667 img loss 1.129831075668335 img loss 1.1615042686462402 img loss 1.261884331703186 img loss 1.2012325525283813 img loss 1.1497750282287598 img loss 1.2384668588638306 img loss 1.2430237531661987 {'loss': 1.183, 'grad_norm': 0.3123987913131714, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4700067043304443 img loss 1.3766199350357056 img loss 1.3734619617462158 img loss 1.3401596546173096 img loss 1.3730932474136353 img loss 1.462116003036499 img loss 1.3888907432556152 img loss 1.3460726737976074 img loss 1.5876449346542358 img loss 1.342272400856018 img loss 1.378926157951355 img loss 1.4088767766952515 img loss 1.3202874660491943 img loss 1.4031330347061157 img loss 1.3448830842971802 img loss 1.4168190956115723 img loss 1.3415682315826416 img loss 1.4214085340499878 img loss 1.394271969795227 img loss 1.3650418519973755 img loss 1.4916627407073975 img loss 1.301936388015747 img loss 1.37712562084198 img loss 1.3002547025680542 img loss 1.452298879623413 img loss 1.3217090368270874 img loss 1.2748255729675293 img loss 1.3518149852752686 img loss 1.502583384513855 img loss 1.4802225828170776 img loss 1.3927407264709473 img loss 1.3983124494552612 img loss 1.326322317123413 img loss 1.3504811525344849 img loss 1.3971712589263916 img loss 1.33995521068573 img loss 1.317160964012146 img loss 1.2746261358261108 img loss 1.4151740074157715 img loss 1.303989291191101 img loss 1.3331249952316284 img loss 1.2919926643371582 img loss 1.2536861896514893 img loss 1.3470759391784668 img loss 1.2996132373809814 img loss 1.4469678401947021 img loss 1.5810948610305786 img loss 1.4472602605819702 img loss 1.462644338607788 img loss 1.383104681968689 img loss 1.43082594871521 img loss 1.3246304988861084 img loss 1.3595482110977173 img loss 1.3563158512115479 img loss 1.3284037113189697 img loss 1.2984017133712769 img loss 1.3544644117355347 img loss 1.4993011951446533 img loss 1.388978123664856 img loss 1.2987842559814453 img loss 1.39858877658844 img loss 1.3713946342468262 img loss 1.3641180992126465 img loss 1.4304393529891968 img loss 1.3711923360824585 img loss 1.332505464553833 img loss 1.3734681606292725 img loss 1.3587889671325684 img loss 1.524482011795044 img loss 1.3451035022735596 img loss 1.2747712135314941 img loss 1.3681493997573853 img loss 1.2966740131378174 img loss 1.3881350755691528 img loss 1.4251878261566162 img loss 1.3441342115402222 img loss 1.369940161705017 img loss 1.4233037233352661 img loss 1.3377732038497925 img loss 1.2956254482269287 img loss 1.3787903785705566 img loss 1.394653081893921 img loss 1.3505489826202393 img loss 1.285170078277588 img loss 1.2817223072052002 img loss 1.4402334690093994 img loss 1.3195377588272095 img loss 1.4884816408157349 img loss 1.432991862297058 img loss 1.378341794013977 img loss 1.3247580528259277 img loss 1.4664303064346313 img loss 1.3905836343765259 img loss 1.450989007949829 img loss 1.3972631692886353 img loss 1.54076087474823 img loss 1.4713081121444702 img loss 1.391681432723999 img loss 1.3667042255401611 img loss 1.352120041847229 img loss 1.3682951927185059 img loss 1.4441659450531006 img loss 1.3726840019226074 img loss 1.330645203590393 img loss 1.4057844877243042 img loss 1.4613754749298096 img loss 1.437126636505127 img loss 1.38857901096344 img loss 1.2642182111740112 img loss 1.4895603656768799 img loss 1.4786241054534912 img loss 1.4383312463760376 img loss 1.413860559463501 img loss 1.3806365728378296 img loss 1.5010002851486206 img loss 1.3891762495040894 img loss 1.3729406595230103 img loss 1.2851051092147827 img loss 1.322420597076416 img loss 1.3821009397506714 img loss 1.3824265003204346 img loss 1.309449553489685 img loss 1.3761235475540161 img loss 1.4222577810287476 img loss 1.3693050146102905 img loss 1.296059489250183 img loss 1.3422980308532715 img loss 1.4135748147964478 {'loss': 1.3816, 'grad_norm': 0.28289055824279785, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3249515295028687 img loss 1.316742181777954 img loss 1.374847173690796 img loss 1.402876377105713 img loss 1.3238929510116577 img loss 1.4172402620315552 img loss 1.419740080833435 img loss 1.2704699039459229 img loss 1.3269580602645874 img loss 1.319516897201538 img loss 1.3477195501327515 img loss 1.3490262031555176 img loss 1.297301173210144 img loss 1.389548897743225 img loss 1.296336054801941 img loss 1.3736094236373901 img loss 1.3389497995376587 img loss 1.3555693626403809 img loss 1.346832513809204 img loss 1.3156893253326416 img loss 1.4109482765197754 img loss 1.4128841161727905 img loss 1.3040380477905273 img loss 1.1912848949432373 img loss 1.3590741157531738 img loss 1.373733401298523 img loss 1.3944504261016846 img loss 1.4082893133163452 img loss 1.347522497177124 img loss 1.3956795930862427 img loss 1.4631266593933105 img loss 1.4650613069534302 img loss 1.3620513677597046 img loss 1.3481441736221313 img loss 1.415520191192627 img loss 1.3987773656845093 img loss 1.3138794898986816 img loss 1.2984044551849365 img loss 1.3903917074203491 img loss 1.3748306035995483 img loss 1.3880879878997803 img loss 1.4522111415863037 img loss 1.3083395957946777 img loss 1.4116123914718628 img loss 1.4375853538513184 img loss 1.3990710973739624 img loss 1.3501514196395874 img loss 1.408638834953308 img loss 1.3094193935394287 img loss 1.419096827507019 img loss 1.2650030851364136 img loss 1.4064546823501587 img loss 1.4167182445526123 img loss 1.352845311164856 img loss 1.5597442388534546 img loss 1.3223637342453003 img loss 1.3840104341506958 img loss 1.442905068397522img loss 1.397147297859192 img loss 1.2619388103485107 img loss 1.3244895935058594 img loss 1.3086107969284058 img loss 1.3824564218521118 img loss 1.3937724828720093 img loss 1.3492289781570435 img loss 1.3066200017929077 img loss 1.4336388111114502 img loss 1.4160102605819702 img loss 1.477546215057373 img loss 1.3831627368927002 img loss 1.3906558752059937 img loss 1.3827544450759888 img loss 1.3843117952346802 img loss 1.4179829359054565 img loss 1.4585622549057007 img loss 1.3634191751480103 img loss 1.4159196615219116 img loss 1.2820069789886475 img loss 1.4292789697647095 img loss 1.3365002870559692 img loss 1.3488404750823975 img loss 1.3162543773651123 img loss 1.3595186471939087 img loss 1.3625115156173706 img loss 1.350579857826233 img loss 1.3641467094421387 img loss 1.342101812362671 img loss 1.2819960117340088 img loss 1.4048923254013062 img loss 1.4718661308288574 img loss 1.2626585960388184 img loss 1.457360863685608 img loss 1.375713586807251 img loss 1.3500802516937256 img loss 1.3962849378585815 img loss 1.4384074211120605 img loss 1.3829967975616455 img loss 1.3304266929626465 img loss 1.3594181537628174 img loss 1.3479561805725098 img loss 1.4812653064727783 img loss 1.2943110466003418 img loss 1.4782564640045166 img loss 1.4041019678115845 img loss 1.3335165977478027 img loss 1.3983408212661743 img loss 1.3550456762313843 img loss 1.4224791526794434 img loss 1.3842291831970215 img loss 1.3491390943527222 img loss 1.5671660900115967 img loss 1.358994960784912 img loss 1.350422739982605 img loss 1.4335894584655762 img loss 1.480805516242981 img loss 1.3739670515060425 img loss 1.3543041944503784 img loss 1.3978508710861206 img loss 1.3315104246139526 img loss 1.3941494226455688 img loss 1.3637759685516357 img loss 1.561726450920105 img loss 1.2638822793960571 img loss 1.2521713972091675 img loss 1.3672951459884644 img loss 1.4225927591323853 img loss 1.4424010515213013 img loss 1.291877031326294 {'loss': 1.3741, 'grad_norm': 0.4651290476322174, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3060874938964844 img loss 1.3616833686828613 img loss 1.3126485347747803 img loss 1.2778260707855225 img loss 1.3681155443191528 img loss 1.382614254951477 img loss 1.2917027473449707 img loss 1.398648738861084 img loss 1.478744626045227 img loss 1.542922854423523 img loss 1.3330605030059814 img loss 1.356208324432373 img loss 1.3186025619506836 img loss 1.2522106170654297 img loss 1.3790940046310425 img loss 1.3542015552520752 img loss 1.3189951181411743 img loss 1.3787163496017456 img loss 1.5282174348831177 img loss 1.4603562355041504 img loss 1.236914873123169 img loss 1.3288334608078003 img loss 1.3329463005065918 img loss 1.3098763227462769 img loss 1.4033268690109253 img loss 1.331958532333374 img loss 1.2896685600280762 img loss 1.3509246110916138 img loss 1.3419034481048584 img loss 1.3600528240203857 img loss 1.284342646598816 img loss 1.2605726718902588 img loss 1.349808931350708 img loss 1.3968011140823364 img loss 1.4334648847579956 img loss 1.3351149559020996 img loss 1.319173812866211 img loss 1.3453067541122437 img loss 1.311630129814148 img loss 1.3570023775100708 img loss 1.3363722562789917 img loss 1.3904820680618286 img loss 1.283834457397461 img loss 1.3524880409240723 img loss 1.2375810146331787 img loss 1.4651914834976196 img loss 1.2793492078781128 img loss 1.4139857292175293 img loss 1.4190644025802612 img loss 1.2890210151672363 img loss 1.363778829574585 img loss 1.358793020248413 img loss 1.3980348110198975 img loss 1.3299040794372559 img loss 1.2566779851913452 img loss 1.365531086921692 img loss 1.3363138437271118 img loss 1.2676857709884644 img loss 1.4723936319351196 img loss 1.3065426349639893 img loss 1.3133455514907837 img loss 1.532217264175415 img loss 1.3594170808792114 img loss 1.378804087638855 img loss 1.3255659341812134 img loss 1.2100111246109009 img loss 1.2778400182724 img loss 1.334351897239685 img loss 1.334644079208374 img loss 1.3237046003341675 img loss 1.3459631204605103 img loss 1.3306710720062256 img loss 1.3901705741882324 img loss 1.5653660297393799 img loss 1.4001612663269043 img loss 1.2926979064941406 img loss 1.2845661640167236 img loss 1.2846519947052002 img loss 1.4407833814620972 img loss 1.3991997241973877 img loss 1.3517554998397827 img loss 1.4272390604019165 img loss 1.3157316446304321 img loss 1.3187215328216553 img loss 1.3515499830245972 img loss 1.4169143438339233 img loss 1.3815629482269287 img loss 1.4007809162139893 img loss 1.4134944677352905 img loss 1.4407297372817993 img loss 1.3775278329849243 img loss 1.4385098218917847 img loss 1.4601272344589233 img loss 1.2234643697738647 img loss 1.3317980766296387 img loss 1.4274128675460815 img loss 1.4162421226501465 img loss 1.4129633903503418 img loss 1.3510148525238037 img loss 1.3129684925079346 img loss 1.4361186027526855 img loss 1.2275054454803467 img loss 1.3621277809143066 img loss 1.389373540878296 img loss 1.3032605648040771 img loss 1.3714001178741455 img loss 1.343706727027893 img loss 1.3092113733291626 img loss 1.3809891939163208 img loss 1.337604284286499 img loss 1.2830612659454346 img loss 1.366326093673706 img loss 1.3144505023956299img loss 1.3064457178115845 img loss 1.4141727685928345 img loss 1.3901540040969849 img loss 1.2642128467559814 img loss 1.3712838888168335 img loss 1.3702908754348755 img loss 1.3236929178237915 img loss 1.4698941707611084 img loss 1.398998498916626 img loss 1.3572391271591187 img loss 1.3546587228775024 img loss 1.4580382108688354 img loss 1.3694357872009277 img loss 1.2609935998916626 img loss 1.430320382118225 {'loss': 1.3567, 'grad_norm': 0.2853820323944092, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.354689121246338 img loss 1.3211100101470947 img loss 1.313700556755066 img loss 1.2687736749649048 img loss 1.2272891998291016 img loss 1.23652982711792 img loss 1.2651762962341309 img loss 1.3603832721710205 img loss 1.3604906797409058 img loss 1.4318865537643433 img loss 1.3683712482452393 img loss 1.309380292892456 img loss 1.3785678148269653 img loss 1.2572979927062988 img loss 1.3517861366271973 img loss 1.3584800958633423 img loss 1.3172889947891235 img loss 1.3096674680709839 img loss 1.4026925563812256 img loss 1.3288826942443848 img loss 1.2984293699264526 img loss 1.3050131797790527 img loss 1.2413973808288574 img loss 1.3431247472763062 img loss 1.3093290328979492 img loss 1.2647215127944946 img loss 1.2602459192276 img loss 1.2389774322509766 img loss 1.2370691299438477 img loss 1.32249116897583 img loss 1.411007285118103 img loss 1.2635724544525146 img loss 1.2397247552871704 img loss 1.3749691247940063 img loss 1.2896353006362915 img loss 1.348061442375183 img loss 1.3601077795028687 img loss 1.294506311416626 img loss 1.2478129863739014 img loss 1.398659348487854 img loss 1.339186191558838 img loss 1.2554330825805664 img loss 1.2674016952514648 img loss 1.3043444156646729 img loss 1.289031982421875 img loss 1.3745352029800415 img loss 1.363234043121338 img loss 1.2894558906555176 img loss 1.266995906829834 img loss 1.3185789585113525 img loss 1.2943310737609863 img loss 1.3535510301589966 img loss 1.3488519191741943 img loss 1.3300325870513916 img loss 1.2508951425552368 img loss 1.2188504934310913 img loss 1.301601767539978 img loss 1.3114392757415771 img loss 1.3215521574020386 img loss 1.2517699003219604 img loss 1.2848255634307861 img loss 1.355446457862854 img loss 1.3034876585006714 img loss 1.2829736471176147 img loss 1.3047434091567993 img loss 1.3063085079193115 img loss 1.3045330047607422 img loss 1.2829960584640503 img loss 1.303499460220337 img loss 1.331589937210083 img loss 1.2152998447418213 img loss 1.3135610818862915 img loss 1.3045985698699951 img loss 1.2924765348434448 img loss 1.3358014822006226 img loss 1.3027771711349487 img loss 1.2327728271484375 img loss 1.3176850080490112 img loss 1.2445343732833862 img loss 1.2686433792114258 img loss 1.3189408779144287 img loss 1.392393946647644 img loss 1.328031063079834 img loss 1.3139313459396362 img loss 1.2994240522384644 img loss 1.3410624265670776 img loss 1.2886021137237549 img loss 1.2207494974136353 img loss 1.2622413635253906 img loss 1.31342351436615 img loss 1.3277602195739746 img loss 1.303995132446289 img loss 1.3170455694198608 img loss 1.2613825798034668 img loss 1.2501627206802368 img loss 1.360126256942749 img loss 1.412446141242981 img loss 1.3624955415725708 img loss 1.3219846487045288 img loss 1.4826340675354004 img loss 1.2621586322784424 img loss 1.3001012802124023 img loss 1.400313138961792 img loss 1.2732282876968384 img loss 1.3440593481063843 img loss 1.2269290685653687 img loss 1.3111779689788818 img loss 1.315345048904419 img loss 1.3616513013839722 img loss 1.34758460521698 img loss 1.340844988822937 img loss 1.322526454925537 img loss 1.3398168087005615 img loss 1.3300584554672241 img loss 1.299323320388794 img loss 1.380810260772705 img loss 1.3544930219650269 img loss 1.3571617603302002 img loss 1.2816928625106812 img loss 1.2597672939300537 img loss 1.2863935232162476 img loss 1.2264668941497803 img loss 1.2982105016708374 img loss 1.290927767753601 img loss 1.2600548267364502 img loss 1.2673020362854004 img loss 1.3770358562469482 img loss 1.339846134185791 {'loss': 1.3105, 'grad_norm': 0.3652113080024719, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.190603256225586 img loss 1.3116601705551147 img loss 1.3063671588897705 img loss 1.2874221801757812 img loss 1.3101621866226196 img loss 1.2209404706954956 img loss 1.2631816864013672 img loss 1.1938036680221558 img loss 1.3234819173812866 img loss 1.4620405435562134 img loss 1.3368144035339355 img loss 1.436638593673706 img loss 1.3291239738464355 img loss 1.2187139987945557 img loss 1.2707593441009521 img loss 1.2263281345367432 img loss 1.3421772718429565 img loss 1.1960080862045288 img loss 1.3420488834381104 img loss 1.2693250179290771 img loss 1.3687875270843506 img loss 1.3448671102523804 img loss 1.218620777130127 img loss 1.2334418296813965 img loss 1.2813224792480469 img loss 1.2767866849899292 img loss 1.3725897073745728 img loss 1.3297362327575684 img loss 1.317609190940857 img loss 1.309882640838623 img loss 1.231108546257019 img loss 1.2958354949951172 img loss 1.3351441621780396 img loss 1.2048184871673584 img loss 1.2910598516464233 img loss 1.4269375801086426 img loss 1.320408582687378 img loss 1.4875630140304565 img loss 1.3248019218444824 img loss 1.3854022026062012 img loss 1.2343130111694336 img loss 1.3336549997329712 img loss 1.3630317449569702 img loss 1.322068691253662 img loss 1.3495538234710693 img loss 1.3125011920928955 img loss 1.4338289499282837 img loss 1.3326969146728516 img loss 1.3751580715179443 img loss 1.3536473512649536 img loss 1.307164192199707 img loss 1.2965452671051025 img loss 1.292443871498108 img loss 1.3208789825439453 img loss 1.2854363918304443 img loss 1.3792426586151123 img loss 1.3088343143463135 img loss 1.3258942365646362 img loss 1.3251386880874634 img loss 1.238267183303833 img loss 1.2482812404632568 img loss 1.3901445865631104 img loss 1.376731514930725 img loss 1.3714572191238403 img loss 1.2286300659179688 img loss 1.3155401945114136 img loss 1.321112871170044 img loss 1.2734707593917847 img loss 1.2518377304077148 img loss 1.310681700706482 img loss 1.3561748266220093 img loss 1.3914519548416138 img loss 1.256813406944275 img loss 1.4593087434768677 img loss 1.3320194482803345 img loss 1.371744990348816 img loss 1.3526026010513306 img loss 1.324758768081665 img loss 1.4600642919540405 img loss 1.25369131565094 img loss 1.3191808462142944 img loss 1.4177696704864502 img loss 1.3183188438415527 img loss 1.4344336986541748 img loss 1.3466200828552246 img loss 1.3892807960510254 img loss 1.3079684972763062 img loss 1.3251936435699463 img loss 1.3368754386901855 img loss 1.4421308040618896 img loss 1.4123570919036865 img loss 1.1955254077911377 img loss 1.3352124691009521 img loss 1.2616814374923706 img loss 1.2582125663757324 img loss 1.340476632118225 img loss 1.2982614040374756 img loss 1.436058759689331 img loss 1.2684054374694824 img loss 1.3478808403015137 img loss 1.259528636932373 img loss 1.2779117822647095 img loss 1.245774507522583 img loss 1.2846410274505615 img loss 1.3621739149093628 img loss 1.3365986347198486 img loss 1.3691140413284302 img loss 1.36543607711792 img loss 1.3624436855316162 img loss 1.3322654962539673 img loss 1.3546949625015259 img loss 1.3097254037857056 img loss 1.275039553642273 img loss 1.247495174407959 img loss 1.2186272144317627 img loss 1.299797534942627 img loss 1.3022398948669434 img loss 1.3620734214782715 img loss 1.2639904022216797 img loss 1.3224141597747803 img loss 1.4689334630966187 img loss 1.407324194908142 img loss 1.2501243352890015 img loss 1.3013818264007568 img loss 1.3265072107315063 img loss 1.2924797534942627 img loss 1.2179224491119385 img loss 1.328916072845459 {'loss': 1.3193, 'grad_norm': 0.5067201852798462, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2196317911148071 img loss 1.1876730918884277 img loss 1.1470082998275757 img loss 1.2131222486495972 img loss 1.1513512134552002 img loss 1.2244685888290405 img loss 1.1974601745605469 img loss 1.1566317081451416 img loss 1.1596821546554565 img loss 1.1489893198013306 img loss 1.2007232904434204 img loss 1.2308768033981323 img loss 1.1802632808685303 img loss 1.2592719793319702 img loss 1.2547945976257324 img loss 1.186813235282898 img loss 1.2099266052246094 img loss 1.1962321996688843 img loss 1.2007935047149658 img loss 1.2279690504074097 img loss 1.2160459756851196 img loss 1.2098822593688965 img loss 1.221114993095398 img loss 1.2375826835632324 img loss 1.1882160902023315 img loss 1.209255576133728 img loss 1.2140804529190063 img loss 1.1932809352874756 img loss 1.2604081630706787 img loss 1.1795458793640137 img loss 1.2397578954696655 img loss 1.2060457468032837 img loss 1.2001503705978394 img loss 1.1719040870666504 img loss 1.2037203311920166 img loss 1.198938012123108 img loss 1.2193189859390259 img loss 1.2089030742645264 img loss 1.2587478160858154 img loss 1.2382934093475342 img loss 1.2841137647628784 img loss 1.2048002481460571 img loss 1.178830623626709 img loss 1.2279348373413086 img loss 1.2415516376495361 img loss 1.2006968259811401 img loss 1.2069692611694336 img loss 1.1764609813690186 img loss 1.1612485647201538 img loss 1.18263578414917 img loss 1.2248979806900024 img loss 1.2141273021697998 img loss 1.1840213537216187 img loss 1.2662124633789062 img loss 1.1641767024993896 img loss 1.180413007736206 img loss 1.1727120876312256 img loss 1.2410166263580322 img loss 1.2169793844223022 img loss 1.1546432971954346 img loss 1.2010935544967651 img loss 1.167191505432129 img loss 1.249286413192749 img loss 1.2827868461608887 img loss 1.2552623748779297 img loss 1.1995046138763428 img loss 1.2462670803070068 img loss 1.2202190160751343 img loss 1.2217916250228882 img loss 1.184615969657898 img loss 1.1638342142105103 img loss 1.2277628183364868 img loss 1.1849313974380493 img loss 1.255499243736267 img loss 1.1839174032211304 img loss 1.2117109298706055 img loss 1.2628593444824219 img loss 1.1950613260269165 img loss 1.2069382667541504 img loss 1.1693987846374512 img loss 1.2505853176116943 img loss 1.2008615732192993 img loss 1.2514426708221436 img loss 1.2257412672042847 img loss 1.2283834218978882 img loss 1.195826768875122 img loss 1.184644341468811 img loss 1.1621758937835693 img loss 1.192797064781189 img loss 1.1890884637832642 img loss 1.2205015420913696 img loss 1.1956013441085815 img loss 1.238616704940796 img loss 1.1321521997451782 img loss 1.1881701946258545 img loss 1.2126171588897705 img loss 1.1764636039733887 img loss 1.2122830152511597 img loss 1.1770777702331543 img loss 1.1740927696228027 img loss 1.2247647047042847 img loss 1.1532262563705444 img loss 1.1301325559616089 img loss 1.1425408124923706 img loss 1.2364252805709839 img loss 1.1999967098236084 img loss 1.1885032653808594 img loss 1.268112063407898 img loss 1.2049822807312012 img loss 1.2165626287460327 img loss 1.1798615455627441 img loss 1.2134177684783936 img loss 1.1961368322372437 img loss 1.230762243270874 img loss 1.2328590154647827 img loss 1.235312819480896 img loss 1.2143449783325195 img loss 1.1757856607437134 img loss 1.1504626274108887 img loss 1.1746137142181396 img loss 1.2662633657455444 img loss 1.2314571142196655 img loss 1.1773872375488281 img loss 1.1863068342208862 img loss 1.2401999235153198 img loss 1.1980994939804077 img loss 1.2608259916305542 img loss 1.17935049533844 {'loss': 1.2056, 'grad_norm': 0.21792170405387878, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.217230200767517 img loss 1.265268087387085 img loss 1.2175507545471191 img loss 1.244165301322937 img loss 1.4267723560333252 img loss 1.3379677534103394 img loss 1.2069368362426758 img loss 1.2669882774353027 img loss 1.3394802808761597 img loss 1.3241181373596191 img loss 1.360660433769226 img loss 1.2477978467941284 img loss 1.4192689657211304 img loss 1.2445322275161743 img loss 1.2541894912719727 img loss 1.1794341802597046 img loss 1.2676312923431396 img loss 1.3512346744537354 img loss 1.242765188217163 img loss 1.4224873781204224 img loss 1.221208930015564 img loss 1.310996413230896 img loss 1.2584612369537354 img loss 1.1909923553466797 img loss 1.2409836053848267 img loss 1.2894819974899292 img loss 1.213369607925415 img loss 1.3414181470870972 img loss 1.246966004371643 img loss 1.2528598308563232 img loss 1.2197072505950928 img loss 1.2613866329193115 img loss 1.270944356918335 img loss 1.2275357246398926 img loss 1.2397466897964478 img loss 1.2896465063095093 img loss 1.302712321281433 img loss 1.2915997505187988 img loss 1.3051159381866455 img loss 1.2734572887420654 img loss 1.2930054664611816 img loss 1.2170673608779907 img loss 1.3267993927001953 img loss 1.3321455717086792 img loss 1.3452101945877075 img loss 1.263390302658081 img loss 1.402437686920166 img loss 1.3223694562911987 img loss 1.2649809122085571 img loss 1.2766249179840088 img loss 1.2814533710479736 img loss 1.3250672817230225 img loss 1.24907386302948 img loss 1.3438096046447754 img loss 1.3067665100097656 img loss 1.305081844329834 img loss 1.2079752683639526 img loss 1.3224232196807861 img loss 1.3029365539550781 img loss 1.436100721359253 img loss 1.264420747756958 img loss 1.2704856395721436 img loss 1.2870042324066162 img loss 1.271370530128479 img loss 1.3019311428070068 img loss 1.3324533700942993 img loss 1.365864872932434 img loss 1.3229305744171143 img loss 1.2864742279052734 img loss 1.3025643825531006 img loss 1.2115507125854492 img loss 1.3864939212799072 img loss 1.3527413606643677 img loss 1.2561806440353394 img loss 1.3759815692901611 img loss 1.2119479179382324 img loss 1.381184458732605 img loss 1.2804336547851562 img loss 1.3295698165893555 img loss 1.17939031124115 img loss 1.2548929452896118 img loss 1.2237917184829712 img loss 1.3088845014572144 img loss 1.1492925882339478 img loss 1.3216103315353394 img loss 1.2403887510299683 img loss 1.3163132667541504 img loss 1.231762170791626 img loss 1.210151195526123 img loss 1.3659518957138062 img loss 1.2509970664978027 img loss 1.2971848249435425 img loss 1.3527274131774902 img loss 1.3543702363967896 img loss 1.246953010559082 img loss 1.2548835277557373 img loss 1.2281044721603394 img loss 1.2269872426986694 img loss 1.149972915649414 img loss 1.3007625341415405 img loss 1.2756456136703491 img loss 1.300728678703308 img loss 1.3448172807693481 img loss 1.2774361371994019 img loss 1.209484338760376 img loss 1.2997077703475952 img loss 1.2860901355743408 img loss 1.187481164932251 img loss 1.2613327503204346 img loss 1.3058979511260986 img loss 1.2877016067504883 img loss 1.3366491794586182 img loss 1.2797291278839111 img loss 1.3276695013046265 img loss 1.2098517417907715 img loss 1.2318540811538696 img loss 1.2821639776229858 img loss 1.2976852655410767 img loss 1.3391749858856201 img loss 1.2834718227386475 img loss 1.2404199838638306 img loss 1.2764052152633667 img loss 1.2951083183288574 img loss 1.1690895557403564 img loss 1.3024486303329468 img loss 1.3236297369003296 img loss 1.2367641925811768 img loss 1.2972602844238281 {'loss': 1.2831, 'grad_norm': 0.65049809217453, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2086889743804932 img loss 1.21954345703125img loss 1.1704100370407104 img loss 1.3419520854949951 img loss 1.193346619606018 img loss 1.3219660520553589 img loss 1.2239549160003662 img loss 1.2544312477111816 img loss 1.2007992267608643 img loss 1.1599582433700562 img loss 1.2138822078704834 img loss 1.2898454666137695 img loss 1.253986120223999 img loss 1.2581833600997925 img loss 1.3603748083114624 img loss 1.15773344039917 img loss 1.4398226737976074 img loss 1.2441368103027344 img loss 1.2157138586044312 img loss 1.1488478183746338 img loss 1.3388320207595825 img loss 1.2246863842010498 img loss 1.2557512521743774 img loss 1.192744255065918 img loss 1.1852223873138428 img loss 1.2934080362319946 img loss 1.1726164817810059 img loss 1.2244137525558472 img loss 1.2597836256027222 img loss 1.2378535270690918 img loss 1.2793922424316406 img loss 1.2645928859710693 img loss 1.2795467376708984 img loss 1.154356837272644 img loss 1.3100929260253906 img loss 1.2212638854980469 img loss 1.1178511381149292 img loss 1.1765835285186768 img loss 1.1963093280792236 img loss 1.149731159210205 img loss 1.2014546394348145 img loss 1.215134620666504 img loss 1.3138067722320557 img loss 1.2197500467300415 img loss 1.2902276515960693 img loss 1.1792590618133545 img loss 1.1300153732299805 img loss 1.140246033668518 img loss 1.2517114877700806 img loss 1.2097480297088623 img loss 1.2314941883087158 img loss 1.3340367078781128 img loss 1.201103687286377 img loss 1.21085786819458 img loss 1.3394091129302979 img loss 1.1354035139083862 img loss 1.252084493637085 img loss 1.215885877609253 img loss 1.252766489982605 img loss 1.1742420196533203 img loss 1.242127776145935 img loss 1.121485710144043 img loss 1.1977945566177368 img loss 1.2836307287216187 img loss 1.2049871683120728 img loss 1.208612322807312 img loss 1.197354793548584 img loss 1.2440804243087769 img loss 1.2808711528778076 img loss 1.2158812284469604 img loss 1.1742587089538574 img loss 1.3214746713638306 img loss 1.2353571653366089 img loss 1.1969419717788696 img loss 1.2285419702529907 img loss 1.2402995824813843 img loss 1.2378692626953125 img loss 1.1908820867538452 img loss 1.1559271812438965 img loss 1.1597094535827637 img loss 1.2730538845062256 img loss 1.1734675168991089 img loss 1.3105744123458862 img loss 1.314154863357544 img loss 1.1957640647888184 img loss 1.2118051052093506 img loss 1.2128937244415283 img loss 1.3019428253173828 img loss 1.2193797826766968 img loss 1.2680672407150269img loss 1.1723688840866089 img loss 1.1581909656524658 img loss 1.255471110343933 img loss 1.3646609783172607 img loss 1.281939148902893 img loss 1.2315164804458618 img loss 1.1756000518798828 img loss 1.2555310726165771 img loss 1.2171729803085327 img loss 1.2487529516220093 img loss 1.212662935256958 img loss 1.2236659526824951 img loss 1.2364124059677124 img loss 1.2532354593276978 img loss 1.1669838428497314 img loss 1.194297194480896 img loss 1.2123768329620361 img loss 1.1606724262237549 img loss 1.254138469696045 img loss 1.1694647073745728 img loss 1.3321117162704468 img loss 1.2124507427215576 img loss 1.2243999242782593 img loss 1.3124217987060547 img loss 1.364739179611206 img loss 1.2139289379119873 img loss 1.2325851917266846 img loss 1.2199528217315674 img loss 1.1933739185333252 img loss 1.2023065090179443 img loss 1.2273824214935303 img loss 1.2142130136489868 img loss 1.2023329734802246 img loss 1.2190015316009521 img loss 1.1900246143341064 img loss 1.1543033123016357 img loss 1.2887130975723267 img loss 1.1712017059326172 {'loss': 1.2293, 'grad_norm': 0.42358657717704773, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.175269365310669 img loss 1.2576062679290771 img loss 1.209937572479248 img loss 1.195070505142212 img loss 1.260908603668213 img loss 1.2194145917892456 img loss 1.2084596157073975 img loss 1.286994218826294 img loss 1.242836833000183 img loss 1.210475206375122 img loss 1.1935629844665527 img loss 1.1708027124404907 img loss 1.2207648754119873 img loss 1.2859636545181274 img loss 1.2007246017456055 img loss 1.3741555213928223 img loss 1.262298822402954 img loss 1.1588318347930908 img loss 1.2854135036468506 img loss 1.2114753723144531 img loss 1.1658179759979248 img loss 1.2711806297302246 img loss 1.234992504119873 img loss 1.213814616203308 img loss 1.2233492136001587 img loss 1.2227892875671387 img loss 1.2148081064224243 img loss 1.1270195245742798 img loss 1.292991280555725 img loss 1.144790530204773 img loss 1.1359869241714478 img loss 1.2807432413101196 img loss 1.221916675567627 img loss 1.227591872215271 img loss 1.1608619689941406 img loss 1.2655858993530273 img loss 1.3116213083267212 img loss 1.2375526428222656 img loss 1.1938068866729736 img loss 1.2507474422454834 img loss 1.2102806568145752 img loss 1.2062993049621582 img loss 1.1836204528808594 img loss 1.2610243558883667 img loss 1.224457025527954 img loss 1.2159781455993652 img loss 1.2120977640151978 img loss 1.231073260307312 img loss 1.2267976999282837 img loss 1.2210421562194824 img loss 1.1407673358917236 img loss 1.2136675119400024 img loss 1.2520549297332764 img loss 1.2236121892929077 img loss 1.246833086013794 img loss 1.241595983505249 img loss 1.274317979812622 img loss 1.161250352859497 img loss 1.166917085647583 img loss 1.2039504051208496 img loss 1.2501325607299805 img loss 1.2597566843032837 img loss 1.240739107131958 img loss 1.2659218311309814 img loss 1.2281144857406616 img loss 1.223649263381958 img loss 1.218695044517517 img loss 1.3360819816589355 img loss 1.2480376958847046 img loss 1.241868495941162 img loss 1.2342346906661987 img loss 1.206179141998291 img loss 1.241249680519104 img loss 1.2789629697799683 img loss 1.2231080532073975 img loss 1.2117525339126587 img loss 1.2593512535095215 img loss 1.2572174072265625 img loss 1.2918061017990112 img loss 1.2327219247817993 img loss 1.275320053100586 img loss 1.136441707611084 img loss 1.2331421375274658 img loss 1.2040386199951172 img loss 1.2660807371139526 img loss 1.2810664176940918 img loss 1.2541526556015015 img loss 1.203752875328064 img loss 1.3074755668640137 img loss 1.1516530513763428 img loss 1.216501235961914 img loss 1.2335445880889893 img loss 1.2049627304077148 img loss 1.2014501094818115 img loss 1.2432193756103516 img loss 1.2507455348968506 img loss 1.1998900175094604 img loss 1.1811760663986206 img loss 1.2793278694152832 img loss 1.2123512029647827 img loss 1.2572228908538818 img loss 1.2143350839614868 img loss 1.2022676467895508 img loss 1.2316824197769165 img loss 1.2272205352783203 img loss 1.2675373554229736 img loss 1.2039124965667725 img loss 1.1965186595916748 img loss 1.2712693214416504 img loss 1.1900676488876343 img loss 1.1623296737670898 img loss 1.2390739917755127 img loss 1.2274575233459473 img loss 1.2887928485870361 img loss 1.1677213907241821 img loss 1.1888872385025024 img loss 1.1331781148910522 img loss 1.2341954708099365 img loss 1.1763919591903687 img loss 1.1621508598327637 img loss 1.209460735321045 img loss 1.2308968305587769 img loss 1.1971033811569214 img loss 1.1901910305023193 img loss 1.1973986625671387 img loss 1.2255274057388306 img loss 1.2411550283432007 img loss 1.2161070108413696 {'loss': 1.2249, 'grad_norm': 0.33485791087150574, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4159775972366333 img loss 1.2303426265716553 img loss 1.3666679859161377 img loss 1.2967753410339355 img loss 1.3846019506454468 img loss 1.34873366355896 img loss 1.3858572244644165 img loss 1.298692226409912 img loss 1.3292125463485718 img loss 1.2334942817687988 img loss 1.397258996963501 img loss 1.3190770149230957 img loss 1.2728362083435059 img loss 1.4567716121673584 img loss 1.2874211072921753 img loss 1.2986125946044922 img loss 1.4146380424499512 img loss 1.2463783025741577 img loss 1.304451584815979 img loss 1.3624776601791382 img loss 1.5064517259597778 img loss 1.2850737571716309 img loss 1.3414722681045532 img loss 1.4092745780944824 img loss 1.2885346412658691 img loss 1.2553399801254272 img loss 1.379759430885315 img loss 1.347571849822998 img loss 1.2851006984710693 img loss 1.380402684211731 img loss 1.316759705543518 img loss 1.360174298286438 img loss 1.4283677339553833 img loss 1.3616265058517456 img loss 1.3529255390167236 img loss 1.4459097385406494 img loss 1.417151689529419 img loss 1.486236333847046 img loss 1.3842843770980835 img loss 1.3773483037948608 img loss 1.4661813974380493 img loss 1.4043776988983154 img loss 1.3682830333709717 img loss 1.4128245115280151img loss 1.3568135499954224 img loss 1.2983849048614502 img loss 1.2917664051055908 img loss 1.3649888038635254 img loss 1.3025867938995361 img loss 1.34493887424469 img loss 1.414431095123291 img loss 1.4081711769104004 img loss 1.3075335025787354 img loss 1.4398525953292847 img loss 1.4379699230194092 img loss 1.3921910524368286 img loss 1.3425902128219604 img loss 1.2809538841247559 img loss 1.4953886270523071 img loss 1.416293978691101 img loss 1.3218883275985718 img loss 1.3845115900039673 img loss 1.321281909942627 img loss 1.320833444595337 img loss 1.330812692642212 img loss 1.2605106830596924 img loss 1.326096534729004 img loss 1.3332340717315674 img loss 1.3310078382492065 img loss 1.4945979118347168 img loss 1.313232183456421 img loss 1.4944970607757568 img loss 1.3052088022232056 img loss 1.2852319478988647 img loss 1.3018540143966675 img loss 1.4009507894515991 img loss 1.264390230178833 img loss 1.3890806436538696 img loss 1.372413158416748 img loss 1.4373399019241333 img loss 1.2973883152008057 img loss 1.3595761060714722 img loss 1.2737247943878174 img loss 1.3374264240264893 img loss 1.3901331424713135 img loss 1.3782060146331787 img loss 1.4619495868682861 img loss 1.402637243270874 img loss 1.3072848320007324 img loss 1.3480690717697144 img loss 1.4427918195724487 img loss 1.397515058517456 img loss 1.3072513341903687 img loss 1.3487612009048462 img loss 1.399565577507019 img loss 1.2327094078063965 img loss 1.2914246320724487 img loss 1.3838800191879272 img loss 1.3363661766052246 img loss 1.2789369821548462 img loss 1.3940293788909912 img loss 1.3608509302139282 img loss 1.3411648273468018 img loss 1.3959767818450928 img loss 1.3324580192565918 img loss 1.315436601638794 img loss 1.3627734184265137 img loss 1.3340356349945068 img loss 1.4737716913223267 img loss 1.2980246543884277 img loss 1.183836579322815 img loss 1.269456148147583 img loss 1.5211889743804932 img loss 1.2541307210922241 img loss 1.3978792428970337 img loss 1.2383029460906982 img loss 1.338736891746521 img loss 1.372933030128479 img loss 1.3301811218261719 img loss 1.3913590908050537 img loss 1.2978229522705078 img loss 1.3056811094284058 img loss 1.319905161857605 img loss 1.2493776082992554 img loss 1.2832064628601074 img loss 1.2711485624313354 img loss 1.4105255603790283 img loss 1.341735601425171 {'loss': 1.3512, 'grad_norm': 0.7005316615104675, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2377276420593262 img loss 1.2278389930725098 img loss 1.28164803981781 img loss 1.2002074718475342 img loss 1.2341434955596924 img loss 1.2232805490493774 img loss 1.1863912343978882 img loss 1.1581611633300781 img loss 1.2028149366378784 img loss 1.2610310316085815 img loss 1.2997575998306274 img loss 1.2324023246765137 img loss 1.2120765447616577 img loss 1.1965597867965698 img loss 1.309002161026001 img loss 1.2660139799118042 img loss 1.2437890768051147 img loss 1.2366490364074707 img loss 1.2457469701766968 img loss 1.18927001953125 img loss 1.225978136062622 img loss 1.2475314140319824 img loss 1.232547402381897 img loss 1.2151936292648315 img loss 1.2330868244171143 img loss 1.2930278778076172 img loss 1.1753238439559937 img loss 1.2386709451675415 img loss 1.1821229457855225 img loss 1.083736777305603 img loss 1.1602764129638672 img loss 1.204892873764038 img loss 1.2981290817260742 img loss 1.1611251831054688 img loss 1.2505760192871094 img loss 1.1483001708984375 img loss 1.162257432937622 img loss 1.265235424041748 img loss 1.3333710432052612 img loss 1.159867286682129 img loss 1.1953990459442139 img loss 1.2642468214035034 img loss 1.1864945888519287 img loss 1.2692463397979736 img loss 1.1574816703796387 img loss 1.1537396907806396 img loss 1.1943668127059937 img loss 1.175103783607483 img loss 1.25223708152771 img loss 1.2773282527923584 img loss 1.2348077297210693 img loss 1.1708296537399292 img loss 1.220218300819397 img loss 1.2088197469711304 img loss 1.2295072078704834 img loss 1.2152233123779297 img loss 1.155925989151001 img loss 1.2135614156723022 img loss 1.2101590633392334 img loss 1.2506054639816284 img loss 1.1141564846038818 img loss 1.3417915105819702 img loss 1.3360822200775146 img loss 1.2943007946014404 img loss 1.2326120138168335 img loss 1.197498083114624 img loss 1.1727203130722046 img loss 1.3290256261825562 img loss 1.2431507110595703 img loss 1.2641496658325195 img loss 1.1740055084228516 img loss 1.2375682592391968 img loss 1.2797640562057495 img loss 1.2334394454956055 img loss 1.1673545837402344 img loss 1.1683915853500366 img loss 1.161049246788025 img loss 1.1228276491165161 img loss 1.3173550367355347 img loss 1.2528351545333862 img loss 1.2762876749038696 img loss 1.2420412302017212 img loss 1.2501424551010132 img loss 1.2243590354919434 img loss 1.242684245109558 img loss 1.1795320510864258 img loss 1.3248943090438843 img loss 1.3331559896469116 img loss 1.3113768100738525 img loss 1.2407077550888062 img loss 1.3214869499206543 img loss 1.328559160232544 img loss 1.1793104410171509 img loss 1.191324234008789 img loss 1.2393535375595093 img loss 1.2718844413757324 img loss 1.3831349611282349 img loss 1.1941885948181152 img loss 1.199410319328308 img loss 1.182000756263733 img loss 1.2084232568740845 img loss 1.231939673423767 img loss 1.1400591135025024 img loss 1.2712476253509521 img loss 1.2052342891693115 img loss 1.239797592163086 img loss 1.185150146484375 img loss 1.1975929737091064 img loss 1.166178584098816 img loss 1.203478217124939 img loss 1.311876893043518 img loss 1.1914596557617188 img loss 1.2264765501022339 img loss 1.191249132156372 img loss 1.253732442855835 img loss 1.2117687463760376 img loss 1.2546327114105225 img loss 1.1762211322784424 img loss 1.2397396564483643 img loss 1.1980024576187134 img loss 1.2378109693527222 img loss 1.2058565616607666 img loss 1.1759246587753296 img loss 1.1797101497650146 img loss 1.1832540035247803 img loss 1.24080228805542 img loss 1.2358554601669312 img loss 1.2355011701583862 {'loss': 1.2258, 'grad_norm': 0.23256142437458038, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3337048292160034 img loss 1.268826961517334 img loss 1.3093115091323853 img loss 1.1824394464492798 img loss 1.2361363172531128 img loss 1.168318510055542 img loss 1.213212251663208 img loss 1.3525454998016357 img loss 1.2704414129257202 img loss 1.2489689588546753 img loss 1.2837456464767456 img loss 1.3605366945266724 img loss 1.2181930541992188 img loss 1.2150557041168213 img loss 1.3217524290084839 img loss 1.3298873901367188 img loss 1.2278698682785034 img loss 1.171778917312622 img loss 1.196685791015625 img loss 1.295327067375183 img loss 1.3491603136062622 img loss 1.236130952835083 img loss 1.2077959775924683 img loss 1.2690253257751465 img loss 1.3309515714645386 img loss 1.2928354740142822 img loss 1.2466542720794678 img loss 1.2416892051696777 img loss 1.2729839086532593 img loss 1.2615684270858765 img loss 1.2112197875976562 img loss 1.4402889013290405 img loss 1.2861255407333374 img loss 1.2748229503631592 img loss 1.2060526609420776 img loss 1.2222108840942383 img loss 1.3149884939193726 img loss 1.258785605430603 img loss 1.2477936744689941 img loss 1.295879602432251 img loss 1.268514633178711 img loss 1.241698980331421 img loss 1.2341892719268799 img loss 1.3622418642044067 img loss 1.2762428522109985 img loss 1.3762835264205933 img loss 1.3283909559249878 img loss 1.2626245021820068 img loss 1.2549550533294678 img loss 1.307503581047058 img loss 1.2610623836517334 img loss 1.1635658740997314 img loss 1.2946494817733765 img loss 1.2679725885391235 img loss 1.1969255208969116 img loss 1.2895925045013428 img loss 1.2524082660675049 img loss 1.2073729038238525 img loss 1.3285506963729858 img loss 1.2792924642562866 img loss 1.2186310291290283 img loss 1.2050797939300537 img loss 1.2197567224502563 img loss 1.1949379444122314 img loss 1.2543234825134277 img loss 1.2641561031341553 img loss 1.2193810939788818 img loss 1.2636343240737915 img loss 1.2750096321105957 img loss 1.2805083990097046 img loss 1.2862966060638428 img loss 1.3399405479431152 img loss 1.2085329294204712 img loss 1.1684682369232178 img loss 1.2542893886566162 img loss 1.3053058385849 img loss 1.276391625404358 img loss 1.2361960411071777 img loss 1.2047451734542847 img loss 1.201865792274475 img loss 1.2957853078842163 img loss 1.1888433694839478 img loss 1.3439024686813354 img loss 1.2545604705810547 img loss 1.3375588655471802 img loss 1.2326879501342773 img loss 1.2856268882751465 img loss 1.3506933450698853 img loss 1.2537109851837158 img loss 1.238168716430664 img loss 1.2334145307540894 img loss 1.2330410480499268 img loss 1.1988705396652222 img loss 1.333160400390625 img loss 1.2925167083740234 img loss 1.2269846200942993 img loss 1.2863993644714355 img loss 1.317792296409607 img loss 1.224405288696289 img loss 1.2969765663146973 img loss 1.3429099321365356 img loss 1.2029321193695068 img loss 1.2459328174591064 img loss 1.1968721151351929 img loss 1.1690107583999634 img loss 1.262152075767517 img loss 1.2827059030532837 img loss 1.3015600442886353 img loss 1.2140165567398071 img loss 1.2313140630722046 img loss 1.2420259714126587 img loss 1.261183500289917 img loss 1.228778600692749 img loss 1.370834469795227 img loss 1.1940078735351562 img loss 1.2704486846923828 img loss 1.3176239728927612 img loss 1.1884783506393433 img loss 1.2058594226837158 img loss 1.2463186979293823 img loss 1.2234286069869995 img loss 1.445757269859314 img loss 1.2936687469482422 img loss 1.2523796558380127 img loss 1.3728128671646118 img loss 1.1542118787765503 img loss 1.2266762256622314 img loss 1.2056455612182617 {'loss': 1.2623, 'grad_norm': 0.2407255917787552, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2155146598815918 img loss 1.2361702919006348 img loss 1.2582521438598633 img loss 1.3052211999893188 img loss 1.233992099761963 img loss 1.3162190914154053 img loss 1.2164006233215332 img loss 1.239786982536316 img loss 1.2145226001739502 img loss 1.2688735723495483 img loss 1.245865821838379 img loss 1.2847957611083984 img loss 1.2778629064559937 img loss 1.220788836479187 img loss 1.341646671295166 img loss 1.34255850315094 img loss 1.3347123861312866 img loss 1.3038238286972046 img loss 1.2663943767547607 img loss 1.2335022687911987 img loss 1.300818681716919 img loss 1.350488305091858 img loss 1.2263541221618652 img loss 1.1860889196395874 img loss 1.1543632745742798 img loss 1.3148765563964844 img loss 1.1704297065734863 img loss 1.2028727531433105 img loss 1.2381095886230469 img loss 1.2435996532440186 img loss 1.3217767477035522 img loss 1.2719967365264893 img loss 1.2443927526474 img loss 1.3396650552749634 img loss 1.3339968919754028 img loss 1.3184707164764404 img loss 1.3077023029327393 img loss 1.207406759262085 img loss 1.2615368366241455 img loss 1.3149610757827759 img loss 1.2801932096481323 img loss 1.2264503240585327 img loss 1.2557896375656128 img loss 1.2827603816986084 img loss 1.3515174388885498 img loss 1.2840187549591064 img loss 1.3164576292037964 img loss 1.3689483404159546 img loss 1.2112252712249756 img loss 1.2428598403930664 img loss 1.2743990421295166 img loss 1.2847423553466797 img loss 1.3312385082244873 img loss 1.2876124382019043 img loss 1.3260853290557861 img loss 1.2484949827194214 img loss 1.3404784202575684 img loss 1.338641881942749 img loss 1.2412666082382202 img loss 1.3068535327911377 img loss 1.2065054178237915 img loss 1.184952735900879 img loss 1.2902745008468628 img loss 1.320656657218933 img loss 1.2551826238632202 img loss 1.2217472791671753 img loss 1.3075755834579468 img loss 1.1704412698745728 img loss 1.3000192642211914 img loss 1.2971227169036865 img loss 1.288103461265564 img loss 1.2795512676239014 img loss 1.2499603033065796 img loss 1.2453579902648926 img loss 1.2753121852874756 img loss 1.2125500440597534 img loss 1.2109336853027344 img loss 1.1945183277130127 img loss 1.1949820518493652 img loss 1.340015172958374 img loss 1.3194645643234253 img loss 1.2705695629119873 img loss 1.3022009134292603 img loss 1.3285573720932007 img loss 1.3231323957443237 img loss 1.2535946369171143 img loss 1.3093180656433105 img loss 1.21445894241333 img loss 1.213533878326416 img loss 1.2760353088378906 img loss 1.3019293546676636 img loss 1.2170835733413696 img loss 1.3586986064910889 img loss 1.3139809370040894 img loss 1.2610621452331543 img loss 1.2746431827545166 img loss 1.2478363513946533 img loss 1.270389199256897 img loss 1.1543138027191162 img loss 1.2097066640853882 img loss 1.2858436107635498 img loss 1.2139370441436768 img loss 1.192859411239624 img loss 1.2877423763275146 img loss 1.3403629064559937 img loss 1.267390251159668 img loss 1.2501779794692993 img loss 1.232326865196228 img loss 1.3400059938430786 img loss 1.3750158548355103 img loss 1.3210577964782715 img loss 1.2949542999267578 img loss 1.2491363286972046 img loss 1.220057725906372 img loss 1.2313189506530762 img loss 1.228829026222229 img loss 1.350385069847107 img loss 1.1534160375595093 img loss 1.3482915163040161 img loss 1.2237963676452637 img loss 1.2746586799621582 img loss 1.2744498252868652 img loss 1.2443675994873047 img loss 1.1481367349624634 img loss 1.30656898021698 img loss 1.2017863988876343 img loss 1.2976493835449219 img loss 1.3510247468948364 {'loss': 1.2691, 'grad_norm': 0.6092694401741028, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3816845417022705 img loss 1.3277719020843506 img loss 1.3844224214553833 img loss 1.3470367193222046 img loss 1.2902581691741943 img loss 1.3313229084014893 img loss 1.455508828163147 img loss 1.365332007408142 img loss 1.3495171070098877 img loss 1.2422510385513306 img loss 1.3314446210861206 img loss 1.2255058288574219 img loss 1.3418892621994019 img loss 1.4643772840499878 img loss 1.2293944358825684 img loss 1.2850432395935059 img loss 1.2828691005706787 img loss 1.2798486948013306 img loss 1.284139633178711 img loss 1.270677924156189 img loss 1.241211175918579 img loss 1.2942800521850586 img loss 1.2572563886642456 img loss 1.1751803159713745 img loss 1.201891541481018 img loss 1.1711944341659546 img loss 1.2953535318374634 img loss 1.3732802867889404 img loss 1.277173399925232 img loss 1.3055843114852905 img loss 1.3219683170318604 img loss 1.3656100034713745 img loss 1.267305612564087 img loss 1.3309751749038696 img loss 1.2554330825805664 img loss 1.2980364561080933 img loss 1.3533072471618652 img loss 1.2591164112091064 img loss 1.3504443168640137 img loss 1.2811026573181152 img loss 1.2238044738769531 img loss 1.328466773033142 img loss 1.2634321451187134 img loss 1.3544844388961792 img loss 1.3275024890899658 img loss 1.2375000715255737 img loss 1.27530837059021 img loss 1.3040279150009155 img loss 1.4240516424179077 img loss 1.3227250576019287 img loss 1.3716118335723877 img loss 1.1884081363677979 img loss 1.2825465202331543 img loss 1.4573928117752075 img loss 1.34544837474823 img loss 1.1327705383300781 img loss 1.2797054052352905 img loss 1.3682063817977905 img loss 1.316080927848816 img loss 1.240409255027771 img loss 1.457999348640442 img loss 1.3777040243148804 img loss 1.1746230125427246 img loss 1.3464735746383667 img loss 1.3051795959472656 img loss 1.2784985303878784 img loss 1.415732979774475 img loss 1.2655400037765503 img loss 1.287448525428772 img loss 1.2458444833755493 img loss 1.334633231163025 img loss 1.2891299724578857 img loss 1.4070171117782593 img loss 1.2869322299957275 img loss 1.3196972608566284 img loss 1.3374154567718506 img loss 1.286679744720459 img loss 1.2235074043273926 img loss 1.2597464323043823 img loss 1.2924448251724243 img loss 1.3458133935928345 img loss 1.313767671585083 img loss 1.329552412033081 img loss 1.2810558080673218 img loss 1.339292049407959 img loss 1.3989044427871704 img loss 1.3780550956726074 img loss 1.3491756916046143 img loss 1.304185390472412 img loss 1.242379069328308 img loss 1.3659470081329346 img loss 1.3526599407196045 img loss 1.2742284536361694 img loss 1.2711424827575684 img loss 1.2814143896102905 img loss 1.1889680624008179 img loss 1.299975872039795 img loss 1.3841370344161987 img loss 1.3479856252670288 img loss 1.3270394802093506 img loss 1.2341747283935547 img loss 1.3103946447372437 img loss 1.3822940587997437 img loss 1.2638814449310303 img loss 1.3746685981750488 img loss 1.3020908832550049 img loss 1.4768720865249634 img loss 1.3609565496444702 img loss 1.3894997835159302 img loss 1.2766345739364624 img loss 1.3313900232315063 img loss 1.2546981573104858 img loss 1.3159294128417969 img loss 1.4233986139297485 img loss 1.2843202352523804 img loss 1.3684626817703247 img loss 1.343981385231018 img loss 1.4095598459243774 img loss 1.342300534248352 img loss 1.3841253519058228 img loss 1.310204267501831 img loss 1.3116060495376587 img loss 1.2645819187164307 img loss 1.2906392812728882 img loss 1.2195086479187012 img loss 1.330121397972107 img loss 1.3253930807113647 img loss 1.2110307216644287 {'loss': 1.3113, 'grad_norm': 0.2980685234069824, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3537980318069458 img loss 1.1883270740509033 img loss 1.1674164533615112 img loss 1.2699438333511353 img loss 1.211586594581604 img loss 1.2264372110366821 img loss 1.187476634979248 img loss 1.2176254987716675 img loss 1.2333917617797852 img loss 1.157423496246338 img loss 1.186793565750122 img loss 1.2065658569335938 img loss 1.230631709098816 img loss 1.2162723541259766 img loss 1.229622721672058 img loss 1.2127914428710938 img loss 1.1919748783111572 img loss 1.3198970556259155 img loss 1.204979658126831 img loss 1.1666138172149658 img loss 1.2003686428070068 img loss 1.2522192001342773 img loss 1.2027385234832764 img loss 1.189077377319336 img loss 1.2311646938323975 img loss 1.1722681522369385 img loss 1.27889084815979 img loss 1.2446739673614502 img loss 1.3347550630569458 img loss 1.139884352684021 img loss 1.187849998474121 img loss 1.2515194416046143 img loss 1.3013826608657837 img loss 1.2267519235610962 img loss 1.1534353494644165 img loss 1.2541916370391846 img loss 1.2310489416122437 img loss 1.2324424982070923 img loss 1.3055853843688965 img loss 1.2385601997375488 img loss 1.2976096868515015 img loss 1.1905949115753174 img loss 1.2388042211532593 img loss 1.1680821180343628 img loss 1.323675513267517 img loss 1.1872352361679077 img loss 1.20791494846344 img loss 1.2737003564834595 img loss 1.2480911016464233 img loss 1.2036635875701904 img loss 1.2119574546813965 img loss 1.2371591329574585 img loss 1.2937901020050049 img loss 1.2673921585083008 img loss 1.2171567678451538 img loss 1.1740357875823975 img loss 1.179149866104126 img loss 1.2810331583023071 img loss 1.2710685729980469 img loss 1.2238421440124512 img loss 1.2171611785888672 img loss 1.193063735961914 img loss 1.322003722190857 img loss 1.2284828424453735 img loss 1.1880500316619873 img loss 1.1404454708099365 img loss 1.1861324310302734 img loss 1.1922543048858643 img loss 1.2128264904022217 img loss 1.3723578453063965 img loss 1.1982094049453735 img loss 1.2104623317718506 img loss 1.2511662244796753 img loss 1.241066813468933 img loss 1.1904553174972534 img loss 1.1720303297042847 img loss 1.2082798480987549 img loss 1.2368886470794678 img loss 1.2416950464248657 img loss 1.223745346069336 img loss 1.1850290298461914 img loss 1.3306080102920532 img loss 1.2836146354675293 img loss 1.2789416313171387 img loss 1.1963260173797607 img loss 1.2114416360855103 img loss 1.2927567958831787 img loss 1.2166639566421509 img loss 1.2922300100326538 img loss 1.2363178730010986 img loss 1.2617485523223877 img loss 1.2180191278457642 img loss 1.1469011306762695 img loss 1.1735483407974243 img loss 1.2414616346359253 img loss 1.1617883443832397 img loss 1.2426003217697144 img loss 1.2322649955749512 img loss 1.2274452447891235 img loss 1.2099759578704834 img loss 1.251209020614624 img loss 1.2484773397445679 img loss 1.2518894672393799 img loss 1.2144392728805542 img loss 1.2108323574066162 img loss 1.2217328548431396 img loss 1.1785404682159424 img loss 1.2490354776382446 img loss 1.2341604232788086 img loss 1.296278476715088 img loss 1.2448526620864868 img loss 1.112683653831482 img loss 1.1510777473449707 img loss 1.3078150749206543 img loss 1.2325810194015503 img loss 1.2498043775558472 img loss 1.2194750308990479 img loss 1.19419264793396 img loss 1.2182228565216064 img loss 1.226582407951355 img loss 1.2425243854522705 img loss 1.2158244848251343 img loss 1.1951439380645752 img loss 1.3308296203613281 img loss 1.1857231855392456 img loss 1.1224874258041382 img loss 1.2086713314056396 img loss 1.2430328130722046 {'loss': 1.2268, 'grad_norm': 0.3163657784461975, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2499316930770874 img loss 1.2080001831054688 img loss 1.2198444604873657 img loss 1.156463384628296 img loss 1.2154909372329712 img loss 1.1893703937530518 img loss 1.1907755136489868 img loss 1.1665325164794922 img loss 1.1980302333831787 img loss 1.2632555961608887 img loss 1.2208518981933594 img loss 1.2197740077972412 img loss 1.1825510263442993 img loss 1.1476552486419678img loss 1.1613938808441162 img loss 1.2492196559906006 img loss 1.1512064933776855 img loss 1.2036577463150024 img loss 1.1904258728027344 img loss 1.2211459875106812 img loss 1.176099181175232 img loss 1.2428454160690308 img loss 1.1974050998687744 img loss 1.1570080518722534 img loss 1.2029798030853271 img loss 1.1460185050964355 img loss 1.1912473440170288 img loss 1.1183453798294067 img loss 1.210575819015503 img loss 1.2381658554077148 img loss 1.1782662868499756 img loss 1.0968478918075562 img loss 1.1761987209320068 img loss 1.2594788074493408 img loss 1.198409914970398 img loss 1.1382137537002563 img loss 1.125198245048523 img loss 1.1977744102478027 img loss 1.187527060508728 img loss 1.1893795728683472 img loss 1.162729263305664 img loss 1.2354073524475098 img loss 1.1997716426849365 img loss 1.2094683647155762 img loss 1.1755352020263672 img loss 1.1892229318618774 img loss 1.240181565284729 img loss 1.2136154174804688 img loss 1.2064635753631592 img loss 1.253278136253357 img loss 1.1961867809295654 img loss 1.1887825727462769 img loss 1.1919554471969604 img loss 1.1893548965454102 img loss 1.1650748252868652 img loss 1.1759060621261597 img loss 1.2166486978530884 img loss 1.1980198621749878 img loss 1.2467141151428223 img loss 1.2393200397491455 img loss 1.2327945232391357 img loss 1.1316637992858887 img loss 1.124712347984314 img loss 1.1382635831832886 img loss 1.1680973768234253 img loss 1.2068990468978882 img loss 1.126004695892334 img loss 1.2135168313980103 img loss 1.191499948501587 img loss 1.1614116430282593 img loss 1.2739784717559814 img loss 1.161535620689392 img loss 1.2049236297607422 img loss 1.135073184967041 img loss 1.1772093772888184 img loss 1.2190964221954346 img loss 1.2121992111206055 img loss 1.2084074020385742 img loss 1.2261053323745728 img loss 1.1540189981460571 img loss 1.1467573642730713 img loss 1.1660609245300293 img loss 1.2383732795715332 img loss 1.1502958536148071 img loss 1.1989383697509766 img loss 1.1961877346038818 img loss 1.2005326747894287 img loss 1.1467094421386719 img loss 1.2997592687606812 img loss 1.216202974319458 img loss 1.1848671436309814 img loss 1.1683889627456665 img loss 1.1899555921554565 img loss 1.1523746252059937 img loss 1.212778091430664 img loss 1.2647016048431396 img loss 1.1769918203353882 img loss 1.2596319913864136 img loss 1.1899616718292236 img loss 1.2463655471801758 img loss 1.1552084684371948 img loss 1.1914608478546143 img loss 1.2142879962921143 img loss 1.170217514038086 img loss 1.126786231994629 img loss 1.1828025579452515 img loss 1.2013447284698486 img loss 1.2308247089385986 img loss 1.1558425426483154 img loss 1.1787248849868774 img loss 1.132655143737793 img loss 1.2500364780426025 img loss 1.1440389156341553 img loss 1.235060453414917 img loss 1.2266404628753662 img loss 1.1578725576400757 img loss 1.1804150342941284 img loss 1.2431752681732178 img loss 1.1999149322509766 img loss 1.1973247528076172 img loss 1.2270711660385132 img loss 1.2257936000823975 img loss 1.134200096130371 img loss 1.216825008392334 img loss 1.120111107826233 img loss 1.1801438331604004 img loss 1.2740169763565063 img loss 1.172039270401001 {'loss': 1.1932, 'grad_norm': 0.3830537497997284, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2343400716781616 img loss 1.1953223943710327 img loss 1.263037085533142 img loss 1.3199074268341064 img loss 1.2468770742416382 img loss 1.1926603317260742 img loss 1.3078117370605469 img loss 1.2553069591522217 img loss 1.217324137687683 img loss 1.2156925201416016 img loss 1.263256549835205 img loss 1.278944969177246 img loss 1.153643250465393 img loss 1.270205020904541 img loss 1.282308578491211 img loss 1.2415202856063843 img loss 1.2711825370788574 img loss 1.2270567417144775 img loss 1.2598294019699097 img loss 1.239806056022644 img loss 1.2123483419418335 img loss 1.210771918296814 img loss 1.1994322538375854 img loss 1.2383311986923218 img loss 1.2990731000900269 img loss 1.2587320804595947 img loss 1.2427797317504883 img loss 1.2263377904891968 img loss 1.2318559885025024 img loss 1.2596832513809204 img loss 1.2536224126815796 img loss 1.2001510858535767 img loss 1.2860592603683472 img loss 1.2258280515670776 img loss 1.2461704015731812 img loss 1.2470276355743408 img loss 1.2616760730743408 img loss 1.2493654489517212 img loss 1.1989800930023193 img loss 1.280495524406433 img loss 1.2409498691558838 img loss 1.2589689493179321 img loss 1.2868258953094482 img loss 1.301643967628479 img loss 1.2445573806762695 img loss 1.2545474767684937 img loss 1.2108314037322998 img loss 1.1848973035812378 img loss 1.287599802017212 img loss 1.304286003112793 img loss 1.1537443399429321 img loss 1.2759805917739868 img loss 1.206464171409607 img loss 1.2310640811920166 img loss 1.2565854787826538 img loss 1.2256393432617188 img loss 1.2753170728683472 img loss 1.2897214889526367 img loss 1.2721741199493408 img loss 1.2128456830978394 img loss 1.2721786499023438 img loss 1.2223587036132812 img loss 1.2687228918075562 img loss 1.2068650722503662 img loss 1.2350622415542603 img loss 1.256143569946289 img loss 1.2419630289077759 img loss 1.2439144849777222 img loss 1.2473376989364624 img loss 1.2742677927017212 img loss 1.2061954736709595 img loss 1.2520787715911865 img loss 1.1888484954833984 img loss 1.2630451917648315 img loss 1.231747031211853 img loss 1.2629444599151611 img loss 1.2135857343673706 img loss 1.2258238792419434 img loss 1.2644213438034058 img loss 1.2635643482208252 img loss 1.2127108573913574 img loss 1.1755436658859253 img loss 1.2444627285003662 img loss 1.2285943031311035 img loss 1.222785234451294 img loss 1.2375657558441162 img loss 1.2893280982971191 img loss 1.2255783081054688 img loss 1.3124393224716187 img loss 1.2839305400848389 img loss 1.2036643028259277 img loss 1.2577317953109741 img loss 1.248515009880066 img loss 1.2147711515426636 img loss 1.280677318572998 img loss 1.2329038381576538 img loss 1.2199995517730713 img loss 1.3195452690124512 img loss 1.2514569759368896 img loss 1.2289527654647827 img loss 1.2209539413452148 img loss 1.259810209274292 img loss 1.2947849035263062 img loss 1.2909705638885498 img loss 1.2112817764282227 img loss 1.2678130865097046 img loss 1.2019909620285034 img loss 1.2246712446212769 img loss 1.2610543966293335 img loss 1.2064615488052368 img loss 1.3063979148864746 img loss 1.217761516571045 img loss 1.197123408317566 img loss 1.259932518005371 img loss 1.2156262397766113 img loss 1.2542166709899902 img loss 1.2405714988708496 img loss 1.2527782917022705 img loss 1.2316654920578003 img loss 1.1983588933944702 img loss 1.2846187353134155 img loss 1.2641901969909668 img loss 1.2213966846466064 img loss 1.2422161102294922 img loss 1.2598416805267334 img loss 1.2447905540466309 img loss 1.246894121170044 img loss 1.2329020500183105 {'loss': 1.2444, 'grad_norm': 0.4364176094532013, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2668838500976562 img loss 1.1608291864395142 img loss 1.2719320058822632 img loss 1.2467360496520996 img loss 1.2161396741867065 img loss 1.21995210647583 img loss 1.141973853111267 img loss 1.3192102909088135 img loss 1.22153639793396 img loss 1.2016810178756714 img loss 1.229888677597046 img loss 1.1023027896881104 img loss 1.1676944494247437 img loss 1.2342300415039062 img loss 1.165581464767456 img loss 1.2219032049179077 img loss 1.1859660148620605 img loss 1.2267334461212158 img loss 1.1566530466079712 img loss 1.137229323387146 img loss 1.2001011371612549 img loss 1.2639188766479492 img loss 1.2787564992904663 img loss 1.276486873626709 img loss 1.2451571226119995 img loss 1.2005544900894165 img loss 1.1659640073776245 img loss 1.2509706020355225 img loss 1.150835394859314 img loss 1.194200038909912 img loss 1.1833959817886353 img loss 1.2884291410446167 img loss 1.2330210208892822 img loss 1.2095599174499512 img loss 1.1202781200408936 img loss 1.1382842063903809 img loss 1.2004501819610596 img loss 1.265926718711853 img loss 1.253477692604065 img loss 1.2097656726837158 img loss 1.2510985136032104 img loss 1.244363784790039 img loss 1.2903244495391846 img loss 1.224161982536316 img loss 1.2271703481674194 img loss 1.2125545740127563 img loss 1.2712000608444214 img loss 1.231760859489441 img loss 1.1996296644210815 img loss 1.2705293893814087 img loss 1.211546778678894 img loss 1.2462248802185059 img loss 1.2167667150497437 img loss 1.279188871383667 img loss 1.2275066375732422 img loss 1.2418030500411987 img loss 1.2539503574371338 img loss 1.233742356300354 img loss 1.251147747039795 img loss 1.2495731115341187 img loss 1.1661309003829956 img loss 1.2140367031097412 img loss 1.2122541666030884 img loss 1.2736523151397705 img loss 1.1935681104660034 img loss 1.2502082586288452 img loss 1.2142494916915894 img loss 1.267183542251587 img loss 1.2153544425964355 img loss 1.176643967628479 img loss 1.1837834119796753 img loss 1.2223857641220093 img loss 1.2035903930664062 img loss 1.1888538599014282 img loss 1.220940113067627 img loss 1.1868815422058105 img loss 1.2365697622299194 img loss 1.2394886016845703 img loss 1.1784645318984985 img loss 1.2075814008712769 img loss 1.1746896505355835 img loss 1.1708688735961914 img loss 1.2115141153335571 img loss 1.1417810916900635 img loss 1.1764638423919678 img loss 1.144701361656189 img loss 1.1826419830322266 img loss 1.2615916728973389 img loss 1.2115734815597534 img loss 1.2082672119140625 img loss 1.2648768424987793 img loss 1.1927943229675293 img loss 1.2881314754486084 img loss 1.2834522724151611 img loss 1.3306947946548462 img loss 1.232836365699768 img loss 1.2356728315353394 img loss 1.2492090463638306 img loss 1.2619543075561523 img loss 1.1986284255981445 img loss 1.2256050109863281 img loss 1.2094491720199585 img loss 1.1643681526184082 img loss 1.1762194633483887 img loss 1.2118849754333496 img loss 1.0971359014511108 img loss 1.2320549488067627 img loss 1.2345654964447021 img loss 1.1922471523284912 img loss 1.2959082126617432 img loss 1.219257116317749 img loss 1.201646089553833 img loss 1.2000172138214111 img loss 1.1568577289581299 img loss 1.2798656225204468 img loss 1.16563081741333 img loss 1.1962131261825562 img loss 1.2190030813217163 img loss 1.253313422203064 img loss 1.2085989713668823 img loss 1.292832851409912 img loss 1.1569600105285645 img loss 1.2523101568222046 img loss 1.2136647701263428 img loss 1.1877120733261108 img loss 1.2684272527694702 img loss 1.2256979942321777 img loss 1.1893837451934814 {'loss': 1.2177, 'grad_norm': 0.2024836391210556, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2696889638900757 img loss 1.1890616416931152 img loss 1.1488430500030518 img loss 1.1624324321746826 img loss 1.1519391536712646 img loss 1.2362091541290283 img loss 1.1733579635620117 img loss 1.2621841430664062 img loss 1.2517708539962769 img loss 1.1971735954284668 img loss 1.3076242208480835 img loss 1.2056000232696533 img loss 1.2381091117858887 img loss 1.2096055746078491 img loss 1.1850638389587402 img loss 1.2103391885757446 img loss 1.230162262916565 img loss 1.2325055599212646 img loss 1.201546311378479 img loss 1.2453733682632446 img loss 1.1654313802719116 img loss 1.2241153717041016 img loss 1.2144675254821777 img loss 1.1991374492645264 img loss 1.1960656642913818 img loss 1.1562466621398926 img loss 1.1981521844863892 img loss 1.1341919898986816 img loss 1.2394264936447144 img loss 1.2085574865341187 img loss 1.26643705368042 img loss 1.1575134992599487 img loss 1.1589953899383545 img loss 1.2930924892425537 img loss 1.261332392692566 img loss 1.1771574020385742 img loss 1.351872205734253 img loss 1.2638795375823975 img loss 1.184019684791565 img loss 1.223254680633545 img loss 1.1544504165649414 img loss 1.1652415990829468 img loss 1.2347837686538696 img loss 1.28520929813385 img loss 1.2068334817886353 img loss 1.2220232486724854 img loss 1.2224403619766235 img loss 1.2089201211929321 img loss 1.329050898551941 img loss 1.2355225086212158 img loss 1.1693919897079468 img loss 1.2444331645965576 img loss 1.2938581705093384 img loss 1.266908884048462 img loss 1.181261420249939 img loss 1.3268039226531982 img loss 1.189948558807373 img loss 1.1757586002349854 img loss 1.2375454902648926 img loss 1.2790130376815796 img loss 1.3280123472213745 img loss 1.25706946849823 img loss 1.175365686416626 img loss 1.1795777082443237 img loss 1.3236576318740845 img loss 1.2702678442001343 img loss 1.234771966934204 img loss 1.2198227643966675 img loss 1.2001116275787354 img loss 1.2199970483779907 img loss 1.2542693614959717 img loss 1.2537368535995483 img loss 1.2166165113449097 img loss 1.1709264516830444 img loss 1.186896800994873 img loss 1.2391700744628906 img loss 1.2700786590576172 img loss 1.2083349227905273 img loss 1.186262607574463 img loss 1.2887074947357178 img loss 1.178902268409729 img loss 1.1227314472198486 img loss 1.229030966758728 img loss 1.2484158277511597 img loss 1.189494013786316 img loss 1.1957037448883057 img loss 1.2981889247894287 img loss 1.3448742628097534 img loss 1.1809651851654053 img loss 1.1846948862075806 img loss 1.252284288406372 img loss 1.1942627429962158 img loss 1.173571228981018 img loss 1.2701752185821533 img loss 1.2078392505645752 img loss 1.152374029159546 img loss 1.1979690790176392 img loss 1.2239960432052612 img loss 1.2167994976043701 img loss 1.3005660772323608 img loss 1.158315658569336img loss 1.3396154642105103 img loss 1.23556387424469 img loss 1.2013968229293823 img loss 1.3009954690933228 img loss 1.225350022315979 img loss 1.1771684885025024 img loss 1.329136848449707 img loss 1.2578791379928589 img loss 1.2527239322662354 img loss 1.2495580911636353 img loss 1.1827878952026367 img loss 1.2533068656921387 img loss 1.1519361734390259 img loss 1.1923363208770752 img loss 1.1861546039581299 img loss 1.2119078636169434 img loss 1.164491891860962 img loss 1.255488395690918 img loss 1.1932510137557983 img loss 1.219215750694275 img loss 1.2275102138519287 img loss 1.304806113243103 img loss 1.2114930152893066 img loss 1.2486164569854736 img loss 1.1351878643035889 img loss 1.1768797636032104 img loss 1.221343994140625 {'loss': 1.2228, 'grad_norm': 0.6594448685646057, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2534831762313843 img loss 1.271952509880066 img loss 1.2942150831222534 img loss 1.2325439453125 img loss 1.2901047468185425 img loss 1.2411930561065674 img loss 1.271732211112976 img loss 1.2908114194869995 img loss 1.2274919748306274 img loss 1.2296366691589355 img loss 1.2037969827651978 img loss 1.3115123510360718 img loss 1.1834712028503418 img loss 1.379098653793335 img loss 1.1989102363586426 img loss 1.1962727308273315 img loss 1.159512996673584 img loss 1.2705721855163574 img loss 1.2880388498306274 img loss 1.2640752792358398 img loss 1.199218988418579 img loss 1.2864612340927124 img loss 1.1838154792785645 img loss 1.2087345123291016 img loss 1.147897481918335 img loss 1.2624642848968506 img loss 1.3134872913360596 img loss 1.1853899955749512 img loss 1.2124888896942139 img loss 1.2200030088424683 img loss 1.346495509147644 img loss 1.1634737253189087 img loss 1.2302038669586182 img loss 1.2510719299316406 img loss 1.2743672132492065 img loss 1.2280911207199097 img loss 1.1932170391082764 img loss 1.1954736709594727 img loss 1.2362396717071533 img loss 1.199485182762146 img loss 1.1210253238677979 img loss 1.1786739826202393 img loss 1.2317856550216675 img loss 1.2433357238769531 img loss 1.2206335067749023 img loss 1.196062445640564 img loss 1.202307105064392 img loss 1.2384227514266968 img loss 1.2023181915283203 img loss 1.1991779804229736 img loss 1.3192304372787476 img loss 1.217454433441162 img loss 1.2563384771347046 img loss 1.2700252532958984 img loss 1.2108312845230103 img loss 1.2792909145355225 img loss 1.1248323917388916 img loss 1.2016003131866455 img loss 1.2386139631271362 img loss 1.2288318872451782 img loss 1.2415910959243774 img loss 1.1850566864013672 img loss 1.1666204929351807 img loss 1.2331478595733643 img loss 1.2043588161468506 img loss 1.1375483274459839 img loss 1.2394031286239624 img loss 1.2159500122070312 img loss 1.2423750162124634 img loss 1.268041968345642 img loss 1.1805164813995361 img loss 1.1862256526947021 img loss 1.1200587749481201 img loss 1.2057472467422485 img loss 1.2476654052734375 img loss 1.2333712577819824 img loss 1.1890029907226562 img loss 1.2396888732910156 img loss 1.17816960811615 img loss 1.3021306991577148 img loss 1.105483889579773 img loss 1.2092986106872559 img loss 1.1024364233016968 img loss 1.2084145545959473 img loss 1.2182743549346924 img loss 1.215021014213562 img loss 1.2474875450134277 img loss 1.24644935131073 img loss 1.2259423732757568 img loss 1.1689621210098267 img loss 1.369055151939392 img loss 1.184524416923523 img loss 1.3098974227905273 img loss 1.2159476280212402 img loss 1.2794063091278076 img loss 1.298585295677185 img loss 1.2221754789352417 img loss 1.2097241878509521 img loss 1.2564563751220703 img loss 1.2961863279342651 img loss 1.1530073881149292 img loss 1.2977384328842163 img loss 1.2857863903045654 img loss 1.1897591352462769 img loss 1.2779173851013184 img loss 1.269981861114502 img loss 1.2104239463806152 img loss 1.1753495931625366 img loss 1.2018295526504517 img loss 1.2099815607070923 img loss 1.2532352209091187 img loss 1.2245404720306396 img loss 1.2347123622894287 img loss 1.1980798244476318 img loss 1.1902307271957397 img loss 1.2234394550323486 img loss 1.1869515180587769 img loss 1.1544864177703857 img loss 1.2635846138000488 img loss 1.2627887725830078 img loss 1.2208597660064697 img loss 1.1155335903167725 img loss 1.2275352478027344 img loss 1.2147283554077148 img loss 1.1572067737579346 img loss 1.201108455657959 img loss 1.261887788772583 img loss 1.1731375455856323 {'loss': 1.2252, 'grad_norm': 0.48962774872779846, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4018819332122803 img loss 1.3243032693862915 img loss 1.3172850608825684 img loss 1.3427320718765259 img loss 1.373818039894104 img loss 1.2677476406097412 img loss 1.3123865127563477 img loss 1.2962290048599243 img loss 1.41061532497406 img loss 1.3868471384048462 img loss 1.4382292032241821 img loss 1.306373953819275 img loss 1.3200727701187134 img loss 1.3381115198135376 img loss 1.3360788822174072 img loss 1.4077904224395752 img loss 1.3748908042907715 img loss 1.4291878938674927 img loss 1.209347128868103 img loss 1.339874505996704 img loss 1.3126214742660522 img loss 1.3266425132751465 img loss 1.3673981428146362 img loss 1.3206909894943237 img loss 1.3497008085250854 img loss 1.4459887742996216 img loss 1.3742308616638184 img loss 1.474446177482605 img loss 1.4263279438018799 img loss 1.4260083436965942 img loss 1.3441195487976074 img loss 1.3717896938323975 img loss 1.4124739170074463 img loss 1.3308048248291016 img loss 1.285265326499939 img loss 1.2462058067321777 img loss 1.4050374031066895 img loss 1.341509461402893 img loss 1.3529551029205322 img loss 1.2814956903457642 img loss 1.3306388854980469 img loss 1.285529613494873 img loss 1.2991901636123657 img loss 1.2968215942382812 img loss 1.31443190574646 img loss 1.266801357269287 img loss 1.4625858068466187 img loss 1.3410784006118774 img loss 1.334524393081665 img loss 1.3564530611038208 img loss 1.3509262800216675 img loss 1.4177629947662354 img loss 1.2905058860778809 img loss 1.3805242776870728 img loss 1.3147156238555908 img loss 1.3468067646026611 img loss 1.3342468738555908 img loss 1.3491971492767334 img loss 1.435304045677185 img loss 1.3281837701797485 img loss 1.2509191036224365 img loss 1.267846941947937 img loss 1.3118138313293457 img loss 1.242505431175232 img loss 1.3888520002365112 img loss 1.357651948928833 img loss 1.3179630041122437 img loss 1.3856092691421509 img loss 1.2651755809783936 img loss 1.3324588537216187 img loss 1.408422827720642 img loss 1.257765293121338 img loss 1.3389220237731934 img loss 1.3389002084732056 img loss 1.2671345472335815 img loss 1.3377419710159302 img loss 1.2863167524337769 img loss 1.4004626274108887 img loss 1.2743782997131348 img loss 1.4136887788772583 img loss 1.3496320247650146 img loss 1.4137189388275146 img loss 1.336678147315979 img loss 1.3156828880310059 img loss 1.435268521308899 img loss 1.439369559288025 img loss 1.3586455583572388 img loss 1.2662580013275146 img loss 1.2860561609268188 img loss 1.3080946207046509 img loss 1.3692700862884521 img loss 1.317193865776062 img loss 1.2910075187683105 img loss 1.3616646528244019 img loss 1.3112236261367798 img loss 1.2737953662872314 img loss 1.5079463720321655 img loss 1.476153016090393 img loss 1.3683629035949707 img loss 1.362874150276184 img loss 1.2900794744491577 img loss 1.2925758361816406 img loss 1.4192701578140259 img loss 1.2381129264831543 img loss 1.393511414527893 img loss 1.2596853971481323 img loss 1.367540717124939 img loss 1.3398605585098267 img loss 1.3639228343963623 img loss 1.350987195968628 img loss 1.327185034751892 img loss 1.285135269165039 img loss 1.3565577268600464 img loss 1.3983418941497803 img loss 1.3487708568572998 img loss 1.2262418270111084 img loss 1.3121999502182007 img loss 1.4370075464248657 img loss 1.3027523756027222 img loss 1.3188180923461914 img loss 1.4001644849777222 img loss 1.3874114751815796 img loss 1.2499713897705078 img loss 1.4035001993179321 img loss 1.3049180507659912 img loss 1.5807021856307983 img loss 1.299436330795288 img loss 1.357120156288147 {'loss': 1.3451, 'grad_norm': 0.2628224492073059, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2299625873565674 img loss 1.186474323272705 img loss 1.2118600606918335 img loss 1.257887601852417 img loss 1.1944553852081299 img loss 1.3241989612579346 img loss 1.1624674797058105 img loss 1.2322126626968384 img loss 1.2616243362426758 img loss 1.2448995113372803 img loss 1.2225852012634277 img loss 1.308734655380249 img loss 1.2338720560073853 img loss 1.2073615789413452 img loss 1.1746189594268799 img loss 1.252610206604004 img loss 1.1990008354187012 img loss 1.2004550695419312 img loss 1.23300039768219 img loss 1.202952265739441 img loss 1.1464773416519165 img loss 1.2653007507324219 img loss 1.2191156148910522 img loss 1.2049871683120728 img loss 1.2658445835113525 img loss 1.2338230609893799 img loss 1.2652168273925781 img loss 1.1472526788711548 img loss 1.1872656345367432 img loss 1.2425341606140137 img loss 1.1665141582489014 img loss 1.236369013786316 img loss 1.2603358030319214 img loss 1.2198736667633057 img loss 1.1694151163101196 img loss 1.290197730064392 img loss 1.241337537765503 img loss 1.3482764959335327 img loss 1.2071812152862549 img loss 1.207649827003479 img loss 1.26190185546875 img loss 1.2040146589279175 img loss 1.275404930114746 img loss 1.2286224365234375 img loss 1.198444128036499 img loss 1.2363333702087402 img loss 1.1899223327636719 img loss 1.25375497341156 img loss 1.296952724456787 img loss 1.1509078741073608 img loss 1.2644561529159546 img loss 1.2106043100357056 img loss 1.2186425924301147 img loss 1.2072261571884155 img loss 1.1968357563018799 img loss 1.2214258909225464 img loss 1.2132678031921387 img loss 1.253069519996643 img loss 1.2029465436935425 img loss 1.1437519788742065 img loss 1.1499593257904053 img loss 1.2419350147247314 img loss 1.194520354270935 img loss 1.2036945819854736 img loss 1.223891019821167 img loss 1.2309578657150269 img loss 1.1665170192718506 img loss 1.2819536924362183 img loss 1.2414060831069946 img loss 1.226753830909729 img loss 1.2616477012634277 img loss 1.2078142166137695 img loss 1.209867000579834 img loss 1.1969730854034424 img loss 1.222667932510376 img loss 1.2210471630096436 img loss 1.2340006828308105 img loss 1.1859155893325806 img loss 1.2059838771820068 img loss 1.2623047828674316 img loss 1.2236804962158203 img loss 1.2822551727294922 img loss 1.2578883171081543 img loss 1.2716500759124756 img loss 1.1933521032333374 img loss 1.181430697441101 img loss 1.272298812866211 img loss 1.205879807472229 img loss 1.199796199798584 img loss 1.2011078596115112 img loss 1.1937888860702515 img loss 1.1784932613372803 img loss 1.1907272338867188 img loss 1.2294145822525024 img loss 1.1772568225860596 img loss 1.2164521217346191 img loss 1.218409776687622 img loss 1.2282845973968506 img loss 1.2085388898849487 img loss 1.2315359115600586 img loss 1.2059688568115234 img loss 1.2036113739013672 img loss 1.2179086208343506 img loss 1.2188849449157715 img loss 1.2507641315460205 img loss 1.253389596939087 img loss 1.232979655265808 img loss 1.2565773725509644 img loss 1.2652891874313354 img loss 1.252535104751587 img loss 1.2167452573776245 img loss 1.1960798501968384 img loss 1.2783329486846924 img loss 1.153549075126648 img loss 1.1946256160736084 img loss 1.2549136877059937 img loss 1.1728525161743164 img loss 1.2449431419372559 img loss 1.2077871561050415 img loss 1.216265320777893 img loss 1.2023004293441772 img loss 1.1613807678222656 img loss 1.2172918319702148 img loss 1.1788467168807983 img loss 1.2069761753082275 img loss 1.1678268909454346 img loss 1.1818573474884033 img loss 1.2414164543151855 {'loss': 1.2209, 'grad_norm': 0.5899162292480469, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2774776220321655 img loss 1.251560926437378 img loss 1.2566289901733398 img loss 1.2185014486312866 img loss 1.2347538471221924 img loss 1.2361096143722534 img loss 1.1600761413574219 img loss 1.1623235940933228 img loss 1.2156533002853394 img loss 1.2197017669677734 img loss 1.1874510049819946 img loss 1.2318519353866577 img loss 1.1996171474456787 img loss 1.2778162956237793 img loss 1.262522578239441 img loss 1.1953054666519165 img loss 1.3139413595199585 img loss 1.1917572021484375 img loss 1.204172968864441 img loss 1.270910620689392 img loss 1.2325396537780762 img loss 1.2018241882324219 img loss 1.1505097150802612 img loss 1.1823362112045288 img loss 1.1746777296066284 img loss 1.2640399932861328 img loss 1.2324613332748413 img loss 1.288125991821289 img loss 1.2111058235168457 img loss 1.2474008798599243 img loss 1.1950973272323608 img loss 1.229337215423584 img loss 1.1717543601989746 img loss 1.2439345121383667 img loss 1.2198940515518188 img loss 1.236975908279419 img loss 1.2247413396835327 img loss 1.1330115795135498 img loss 1.2707221508026123 img loss 1.195082664489746 img loss 1.2373225688934326 img loss 1.2385425567626953 img loss 1.1737505197525024 img loss 1.2713146209716797 img loss 1.1605257987976074 img loss 1.155775785446167 img loss 1.178091049194336 img loss 1.218502402305603 img loss 1.2326469421386719 img loss 1.1807736158370972 img loss 1.2142269611358643 img loss 1.2764184474945068 img loss 1.249380111694336 img loss 1.1378211975097656 img loss 1.2020729780197144 img loss 1.1574313640594482 img loss 1.1883370876312256 img loss 1.2973928451538086 img loss 1.2547426223754883 img loss 1.2023441791534424 img loss 1.2759974002838135 img loss 1.1487646102905273 img loss 1.2001006603240967 img loss 1.2360578775405884 img loss 1.252288818359375 img loss 1.1791733503341675 img loss 1.1977065801620483 img loss 1.297594428062439 img loss 1.2478885650634766 img loss 1.2507550716400146 img loss 1.1822303533554077 img loss 1.1958774328231812 img loss 1.1352351903915405 img loss 1.2612857818603516 img loss 1.2156600952148438 img loss 1.2433292865753174 img loss 1.312598466873169 img loss 1.2998512983322144 img loss 1.2562226057052612 img loss 1.2501170635223389 img loss 1.2585359811782837 img loss 1.1629241704940796 img loss 1.2280110120773315 img loss 1.2032015323638916 img loss 1.1279456615447998 img loss 1.205203890800476 img loss 1.2558574676513672 img loss 1.2365936040878296 img loss 1.2532587051391602 img loss 1.1777006387710571 img loss 1.2706563472747803 img loss 1.2368491888046265 img loss 1.2358464002609253 img loss 1.2093555927276611 img loss 1.1590101718902588 img loss 1.2162392139434814 img loss 1.1720874309539795 img loss 1.1934468746185303 img loss 1.2374098300933838 img loss 1.2106930017471313 img loss 1.3410277366638184 img loss 1.2392224073410034 img loss 1.1826510429382324 img loss 1.1692309379577637 img loss 1.2240740060806274 img loss 1.2417205572128296 img loss 1.268074870109558 img loss 1.1896663904190063 img loss 1.273034691810608 img loss 1.2090638875961304 img loss 1.2610573768615723 img loss 1.221947193145752 img loss 1.1909698247909546 img loss 1.1910908222198486 img loss 1.265519618988037 img loss 1.332311987876892 img loss 1.2005844116210938 img loss 1.182830810546875 img loss 1.2124134302139282 img loss 1.2454124689102173 img loss 1.2349411249160767 img loss 1.1799671649932861 img loss 1.2466038465499878 img loss 1.2151840925216675 img loss 1.2320235967636108 img loss 1.1727867126464844 img loss 1.1566646099090576 img loss 1.19249427318573 {'loss': 1.2208, 'grad_norm': 0.5212995409965515, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2081351280212402 img loss 1.188698172569275 img loss 1.2054362297058105 img loss 1.2888373136520386 img loss 1.2706539630889893 img loss 1.3069193363189697 img loss 1.2111766338348389 img loss 1.267378330230713 img loss 1.2179392576217651 img loss 1.221609115600586 img loss 1.247277021408081 img loss 1.209625244140625 img loss 1.241411805152893 img loss 1.2415317296981812 img loss 1.2219717502593994 img loss 1.184007167816162 img loss 1.2264080047607422 img loss 1.221367359161377 img loss 1.2244036197662354 img loss 1.2891594171524048 img loss 1.1933956146240234 img loss 1.2231831550598145 img loss 1.301571249961853 img loss 1.2288975715637207 img loss 1.24504554271698 img loss 1.1755927801132202 img loss 1.2348726987838745 img loss 1.301042914390564 img loss 1.1968082189559937 img loss 1.1903369426727295 img loss 1.2858580350875854 img loss 1.2727984189987183 img loss 1.2769291400909424 img loss 1.2115617990493774 img loss 1.1842173337936401 img loss 1.1757506132125854 img loss 1.2014318704605103 img loss 1.248687744140625 img loss 1.2430176734924316 img loss 1.2286021709442139 img loss 1.2484554052352905 img loss 1.2002899646759033 img loss 1.2275559902191162 img loss 1.2126235961914062 img loss 1.2614150047302246 img loss 1.2067798376083374 img loss 1.1982542276382446 img loss 1.207855224609375 img loss 1.2284456491470337 img loss 1.275730013847351 img loss 1.209333896636963 img loss 1.2615106105804443 img loss 1.2345011234283447 img loss 1.251229166984558 img loss 1.2837231159210205 img loss 1.3167377710342407 img loss 1.2164722681045532 img loss 1.2350757122039795 img loss 1.1917526721954346 img loss 1.196915864944458 img loss 1.1763960123062134 img loss 1.1967722177505493 img loss 1.1860309839248657 img loss 1.2245738506317139img loss 1.2337861061096191 img loss 1.188554286956787img loss 1.2319316864013672 img loss 1.2172578573226929 img loss 1.2266104221343994 img loss 1.202754259109497 img loss 1.2385265827178955 img loss 1.2431169748306274 img loss 1.2160675525665283 img loss 1.2515521049499512 img loss 1.315804123878479 img loss 1.2248128652572632 img loss 1.251418948173523 img loss 1.3273481130599976 img loss 1.2151801586151123 img loss 1.2126210927963257 img loss 1.2894943952560425 img loss 1.276041030883789 img loss 1.3418819904327393 img loss 1.2511180639266968 img loss 1.232457160949707 img loss 1.2041538953781128 img loss 1.28143310546875 img loss 1.2124618291854858 img loss 1.2088911533355713 img loss 1.3114327192306519 img loss 1.2353572845458984 img loss 1.1768498420715332 img loss 1.3082804679870605 img loss 1.2372677326202393 img loss 1.181350588798523 img loss 1.3000913858413696 img loss 1.1710028648376465 img loss 1.2283837795257568 img loss 1.2247627973556519 img loss 1.1763099431991577 img loss 1.2933269739151 img loss 1.2868094444274902 img loss 1.2168606519699097 img loss 1.2317895889282227 img loss 1.2437427043914795 img loss 1.235360026359558 img loss 1.2037490606307983 img loss 1.2094730138778687 img loss 1.195603609085083 img loss 1.212847113609314 img loss 1.2422194480895996 img loss 1.2404550313949585 img loss 1.2171028852462769 img loss 1.2704092264175415 img loss 1.2622051239013672 img loss 1.2437171936035156 img loss 1.2748240232467651 img loss 1.2092370986938477 img loss 1.2713961601257324 img loss 1.2355473041534424 img loss 1.2081949710845947 img loss 1.28227961063385 img loss 1.1911046504974365 img loss 1.2615422010421753 img loss 1.2342747449874878 img loss 1.2394064664840698 img loss 1.198839783668518 img loss 1.2327407598495483 {'loss': 1.2348, 'grad_norm': 0.2151021659374237, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2839293479919434 img loss 1.2441422939300537 img loss 1.23744535446167 img loss 1.2291840314865112 img loss 1.2488186359405518 img loss 1.2120994329452515 img loss 1.1837973594665527 img loss 1.1852136850357056 img loss 1.2190492153167725 img loss 1.2674179077148438 img loss 1.22727370262146 img loss 1.2393476963043213 img loss 1.208456039428711 img loss 1.1861628293991089 img loss 1.2531850337982178 img loss 1.1669092178344727 img loss 1.2586582899093628 img loss 1.189699649810791 img loss 1.218733549118042 img loss 1.28908109664917 img loss 1.2238813638687134 img loss 1.3087223768234253 img loss 1.1898373365402222 img loss 1.2116639614105225 img loss 1.2294124364852905 img loss 1.2568879127502441 img loss 1.2276302576065063 img loss 1.2119226455688477 img loss 1.1570297479629517 img loss 1.2994171380996704 img loss 1.1964057683944702 img loss 1.2289890050888062 img loss 1.3132953643798828 img loss 1.18876051902771 img loss 1.2266544103622437 img loss 1.2285208702087402 img loss 1.309255599975586 img loss 1.326766848564148 img loss 1.2213047742843628 img loss 1.2398627996444702 img loss 1.2305711507797241 img loss 1.2401964664459229 img loss 1.2032512426376343 img loss 1.270444631576538 img loss 1.174253225326538 img loss 1.1718530654907227 img loss 1.193031668663025 img loss 1.2068642377853394 img loss 1.2681783437728882 img loss 1.2090415954589844 img loss 1.263131022453308 img loss 1.1802897453308105 img loss 1.27135169506073 img loss 1.2207845449447632 img loss 1.2462036609649658 img loss 1.2317003011703491 img loss 1.2574247121810913 img loss 1.215329647064209 img loss 1.226192831993103 img loss 1.262473702430725 img loss 1.1955517530441284 img loss 1.2411774396896362 img loss 1.251176118850708 img loss 1.2230384349822998 img loss 1.2049107551574707 img loss 1.2247689962387085 img loss 1.2418646812438965 img loss 1.2302930355072021 img loss 1.2398030757904053 img loss 1.248875617980957 img loss 1.2321715354919434 img loss 1.2610654830932617 img loss 1.2837331295013428 img loss 1.193802833557129 img loss 1.2423151731491089 img loss 1.199375867843628 img loss 1.2388341426849365 img loss 1.2322349548339844 img loss 1.2352646589279175 img loss 1.2430245876312256 img loss 1.2131229639053345 img loss 1.2601172924041748 img loss 1.2099242210388184 img loss 1.3594077825546265 img loss 1.1856725215911865 img loss 1.216090440750122 img loss 1.198175311088562 img loss 1.230455994606018 img loss 1.2239129543304443 img loss 1.1851686239242554 img loss 1.3423770666122437 img loss 1.2442352771759033 img loss 1.1907622814178467 img loss 1.2588903903961182 img loss 1.1802639961242676 img loss 1.2853704690933228 img loss 1.2623226642608643 img loss 1.2722337245941162 img loss 1.277220368385315 img loss 1.1972062587738037 img loss 1.2332561016082764 img loss 1.2396265268325806 img loss 1.272700548171997 img loss 1.2029805183410645 img loss 1.3224424123764038 img loss 1.1831984519958496 img loss 1.214727759361267 img loss 1.280175805091858 img loss 1.220750093460083 img loss 1.1973971128463745 img loss 1.1880977153778076 img loss 1.247327208518982 img loss 1.2860667705535889 img loss 1.2372362613677979 img loss 1.2354930639266968 img loss 1.250880479812622 img loss 1.186418056488037 img loss 1.2295055389404297 img loss 1.195115566253662 img loss 1.2576640844345093 img loss 1.289294958114624 img loss 1.242785930633545 img loss 1.2184385061264038 img loss 1.1913623809814453 img loss 1.2370660305023193 img loss 1.281083583831787 img loss 1.2159909009933472 img loss 1.2234573364257812 {'loss': 1.2338, 'grad_norm': 0.4768676161766052, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2660086154937744 img loss 1.2303783893585205 img loss 1.2968660593032837 img loss 1.2545231580734253 img loss 1.2906805276870728 img loss 1.2559871673583984 img loss 1.2194421291351318 img loss 1.2280324697494507 img loss 1.2959785461425781 img loss 1.3056005239486694 img loss 1.331567645072937 img loss 1.2953009605407715 img loss 1.209764003753662 img loss 1.2367932796478271 img loss 1.3405888080596924 img loss 1.2635722160339355 img loss 1.1674327850341797 img loss 1.2644176483154297 img loss 1.3087458610534668 img loss 1.1722549200057983 img loss 1.2153537273406982 img loss 1.3510671854019165 img loss 1.2579681873321533 img loss 1.2827692031860352 img loss 1.1795810461044312 img loss 1.2295888662338257 img loss 1.2338473796844482 img loss 1.228084921836853 img loss 1.205840826034546 img loss 1.2513039112091064 img loss 1.2205225229263306 img loss 1.2783393859863281 img loss 1.2738898992538452 img loss 1.2165143489837646 img loss 1.232072114944458 img loss 1.1988149881362915 img loss 1.2567946910858154 img loss 1.1968111991882324 img loss 1.2611397504806519 img loss 1.315834641456604 img loss 1.2373039722442627 img loss 1.3307390213012695 img loss 1.2293328046798706 img loss 1.3408433198928833 img loss 1.211827039718628 img loss 1.2324122190475464 img loss 1.276312232017517 img loss 1.279657006263733 img loss 1.220970869064331 img loss 1.3028122186660767 img loss 1.206983208656311 img loss 1.3365060091018677 img loss 1.2410415410995483 img loss 1.252547264099121 img loss 1.2495205402374268 img loss 1.2131843566894531 img loss 1.3125938177108765 img loss 1.2448399066925049 img loss 1.29405677318573 img loss 1.2367167472839355 img loss 1.2618119716644287 img loss 1.3213647603988647 img loss 1.185166597366333 img loss 1.265591025352478 img loss 1.2491611242294312 img loss 1.2983028888702393 img loss 1.1879936456680298 img loss 1.3023666143417358 img loss 1.215399146080017 img loss 1.2861305475234985 img loss 1.2682331800460815 img loss 1.214638352394104 img loss 1.2677419185638428 img loss 1.2602686882019043 img loss 1.2832067012786865 img loss 1.2464290857315063 img loss 1.251962661743164 img loss 1.241266131401062 img loss 1.2250267267227173 img loss 1.2334245443344116 img loss 1.2924915552139282 img loss 1.2146782875061035 img loss 1.2251830101013184 img loss 1.2921485900878906 img loss 1.2072901725769043 img loss 1.1967215538024902 img loss 1.2251259088516235 img loss 1.2730040550231934 img loss 1.283850073814392img loss 1.2796425819396973 img loss 1.2345646619796753 img loss 1.2047184705734253 img loss 1.2809021472930908 img loss 1.2473357915878296 img loss 1.2192339897155762 img loss 1.2955069541931152 img loss 1.237138032913208 img loss 1.2366223335266113 img loss 1.2387332916259766 img loss 1.2337311506271362 img loss 1.2670514583587646 img loss 1.1974531412124634 img loss 1.2192304134368896 img loss 1.1925252676010132 img loss 1.2575711011886597 img loss 1.3235785961151123 img loss 1.2354252338409424 img loss 1.2109332084655762 img loss 1.2297356128692627 img loss 1.270384430885315 img loss 1.3337746858596802 img loss 1.232857584953308 img loss 1.2493586540222168 img loss 1.2486464977264404 img loss 1.2430188655853271 img loss 1.285073161125183 img loss 1.2576919794082642 img loss 1.2350419759750366 img loss 1.2917085886001587 img loss 1.1820474863052368 img loss 1.2501654624938965 img loss 1.2593717575073242 img loss 1.1789875030517578 img loss 1.3234325647354126 img loss 1.2620071172714233 img loss 1.2812364101409912 img loss 1.1736494302749634 img loss 1.2482025623321533 {'loss': 1.2523, 'grad_norm': 0.5056700706481934, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3335087299346924 img loss 1.3215410709381104 img loss 1.3975403308868408 img loss 1.43984854221344 img loss 1.3009684085845947 img loss 1.294442057609558 img loss 1.41148841381073 img loss 1.3775357007980347 img loss 1.282060980796814 img loss 1.346739649772644 img loss 1.3935824632644653 img loss 1.3093160390853882 img loss 1.3676161766052246 img loss 1.438684344291687 img loss 1.4254202842712402 img loss 1.3547474145889282 img loss 1.4031004905700684 img loss 1.5669515132904053 img loss 1.2706431150436401 img loss 1.4114018678665161 img loss 1.4079184532165527 img loss 1.3271901607513428 img loss 1.3507994413375854 img loss 1.3203233480453491 img loss 1.3630300760269165 img loss 1.3910316228866577 img loss 1.4605354070663452 img loss 1.3233330249786377 img loss 1.3632044792175293 img loss 1.4779725074768066 img loss 1.314051866531372 img loss 1.4223977327346802 img loss 1.2919328212738037 img loss 1.4761502742767334 img loss 1.2976592779159546 img loss 1.3520253896713257 img loss 1.5781915187835693 img loss 1.3197044134140015 img loss 1.3395495414733887img loss 1.3493961095809937 img loss 1.3723491430282593 img loss 1.3563309907913208 img loss 1.5338160991668701 img loss 1.3797026872634888 img loss 1.554289698600769 img loss 1.353086233139038 img loss 1.3381670713424683 img loss 1.381700873374939 img loss 1.363295316696167 img loss 1.4561036825180054 img loss 1.42117440700531 img loss 1.2900636196136475 img loss 1.2108471393585205 img loss 1.4194377660751343 img loss 1.282508373260498 img loss 1.4213255643844604 img loss 1.4262737035751343 img loss 1.3334091901779175 img loss 1.4529155492782593 img loss 1.3230950832366943 img loss 1.4281933307647705 img loss 1.4896385669708252 img loss 1.3038634061813354 img loss 1.3907687664031982 img loss 1.3816792964935303 img loss 1.5785642862319946 img loss 1.5320751667022705 img loss 1.2839819192886353 img loss 1.322424292564392 img loss 1.3757137060165405 img loss 1.3531092405319214 img loss 1.4322351217269897 img loss 1.3422001600265503 img loss 1.4835187196731567 img loss 1.3167481422424316 img loss 1.3525513410568237 img loss 1.3439984321594238 img loss 1.2420430183410645 img loss 1.1654763221740723 img loss 1.4324380159378052 img loss 1.338112711906433 img loss 1.3667709827423096 img loss 1.280022144317627 img loss 1.2797809839248657 img loss 1.2425464391708374 img loss 1.2604154348373413 img loss 1.2531218528747559 img loss 1.2668201923370361 img loss 1.3634765148162842 img loss 1.1816201210021973 img loss 1.5186158418655396 img loss 1.462365984916687 img loss 1.3370829820632935 img loss 1.2993589639663696 img loss 1.4149426221847534 img loss 1.3348993062973022 img loss 1.3287684917449951 img loss 1.2832672595977783 img loss 1.3192553520202637 img loss 1.4438551664352417 img loss 1.4089195728302002 img loss 1.4076472520828247 img loss 1.4363045692443848 img loss 1.430869221687317 img loss 1.3516067266464233 img loss 1.3760079145431519 img loss 1.3651944398880005 img loss 1.347947359085083 img loss 1.3367527723312378 img loss 1.4571986198425293 img loss 1.5854809284210205 img loss 1.487069010734558 img loss 1.5201424360275269 img loss 1.330176591873169 img loss 1.3171749114990234 img loss 1.5049573183059692 img loss 1.386659026145935 img loss 1.395236849784851 img loss 1.4336602687835693 img loss 1.3049415349960327 img loss 1.2015923261642456 img loss 1.3828880786895752 img loss 1.4563359022140503 img loss 1.332663893699646 img loss 1.2320631742477417 img loss 1.303884506225586 img loss 1.392115831375122 img loss 1.4321449995040894 {'loss': 1.3726, 'grad_norm': 0.2828458547592163, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2133285999298096 img loss 1.3628026247024536 img loss 1.329293131828308 img loss 1.4101349115371704 img loss 1.3871735334396362 img loss 1.2960408926010132 img loss 1.3169920444488525 img loss 1.2819116115570068 img loss 1.429012417793274 img loss 1.3509172201156616 img loss 1.3268359899520874 img loss 1.3278844356536865 img loss 1.289297103881836 img loss 1.3266648054122925 img loss 1.3272943496704102 img loss 1.2611401081085205 img loss 1.2224347591400146 img loss 1.3561805486679077 img loss 1.311767578125 img loss 1.3775314092636108 img loss 1.2638593912124634 img loss 1.3090152740478516 img loss 1.3408650159835815 img loss 1.410342812538147 img loss 1.3288545608520508 img loss 1.3016490936279297 img loss 1.3805420398712158 img loss 1.3395440578460693 img loss 1.3196951150894165 img loss 1.2381033897399902 img loss 1.2776756286621094 img loss 1.406625509262085 img loss 1.3256574869155884 img loss 1.3114140033721924 img loss 1.3254059553146362 img loss 1.39972722530365 img loss 1.3383069038391113 img loss 1.4389063119888306 img loss 1.3368247747421265 img loss 1.3196258544921875 img loss 1.3184471130371094 img loss 1.3584694862365723 img loss 1.3268237113952637 img loss 1.330230474472046 img loss 1.3653122186660767 img loss 1.387133240699768 img loss 1.3358060121536255 img loss 1.2613834142684937 img loss 1.2876441478729248 img loss 1.3179512023925781 img loss 1.4520057439804077 img loss 1.4114441871643066 img loss 1.340022325515747 img loss 1.3626856803894043 img loss 1.362060308456421 img loss 1.3092470169067383 img loss 1.3076876401901245 img loss 1.373339056968689 img loss 1.2879159450531006 img loss 1.2405439615249634 img loss 1.3767027854919434 img loss 1.364681363105774 img loss 1.419259786605835 img loss 1.2975071668624878 img loss 1.2696930170059204 img loss 1.371471881866455 img loss 1.2793982028961182 img loss 1.2736034393310547 img loss 1.3885632753372192 img loss 1.2893249988555908 img loss 1.3223437070846558 img loss 1.34114670753479 img loss 1.4271416664123535 img loss 1.3616200685501099 img loss 1.2318129539489746 img loss 1.3478578329086304 img loss 1.3179067373275757 img loss 1.3655551671981812 img loss 1.2941639423370361 img loss 1.3210252523422241 img loss 1.3214280605316162 img loss 1.3319135904312134 img loss 1.3349617719650269 img loss 1.4667240381240845 img loss 1.364101529121399 img loss 1.3806227445602417 img loss 1.2979822158813477 img loss 1.3237571716308594 img loss 1.367498755455017 img loss 1.2112972736358643 img loss 1.4417511224746704 img loss 1.3717790842056274 img loss 1.2605043649673462 img loss 1.2889562845230103 img loss 1.3787105083465576 img loss 1.2693077325820923 img loss 1.3923203945159912 img loss 1.436348795890808 img loss 1.2542818784713745 img loss 1.3457850217819214 img loss 1.3885319232940674 img loss 1.3817263841629028 img loss 1.29002046585083 img loss 1.1933839321136475 img loss 1.3948391675949097 img loss 1.3154191970825195 img loss 1.3512707948684692 img loss 1.2784487009048462 img loss 1.3441437482833862 img loss 1.3983064889907837 img loss 1.3423811197280884 img loss 1.3339635133743286 img loss 1.3875535726547241 img loss 1.298674464225769 img loss 1.2264240980148315 img loss 1.4505350589752197 img loss 1.3141682147979736 img loss 1.2790639400482178 img loss 1.3335545063018799 img loss 1.4098294973373413 img loss 1.4310327768325806 img loss 1.3241298198699951 img loss 1.302378535270691 img loss 1.2850326299667358 img loss 1.3030288219451904 img loss 1.3166567087173462 img loss 1.384286642074585 img loss 1.303588628768921 {'loss': 1.3345, 'grad_norm': 0.5857822299003601, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3253068923950195 img loss 1.3398064374923706 img loss 1.2704395055770874 img loss 1.2845200300216675 img loss 1.2477794885635376 img loss 1.289314866065979 img loss 1.3043560981750488 img loss 1.2279585599899292 img loss 1.2972159385681152 img loss 1.2802871465682983 img loss 1.320237398147583 img loss 1.2663567066192627 img loss 1.263909935951233 img loss 1.2427374124526978 img loss 1.3326892852783203 img loss 1.3428714275360107 img loss 1.222416877746582 img loss 1.256699800491333 img loss 1.2086334228515625 img loss 1.3023128509521484 img loss 1.3248850107192993 img loss 1.3040955066680908 img loss 1.2911700010299683 img loss 1.35469651222229 img loss 1.3095015287399292 img loss 1.2814419269561768 img loss 1.2615292072296143 img loss 1.2231075763702393 img loss 1.3415824174880981 img loss 1.2847986221313477 img loss 1.3849838972091675 img loss 1.262268304824829 img loss 1.2343246936798096 img loss 1.2953526973724365 img loss 1.2357746362686157 img loss 1.3180655241012573 img loss 1.2713266611099243 img loss 1.3725005388259888 img loss 1.280649185180664 img loss 1.2744715213775635 img loss 1.3017908334732056 img loss 1.3218441009521484 img loss 1.3855289220809937 img loss 1.349453330039978 img loss 1.2674206495285034 img loss 1.355291485786438 img loss 1.432836651802063 img loss 1.2670741081237793 img loss 1.3276774883270264 img loss 1.3030831813812256 img loss 1.1935687065124512 img loss 1.2449066638946533 img loss 1.2245548963546753 img loss 1.228232741355896 img loss 1.2394239902496338 img loss 1.291574239730835 img loss 1.3352643251419067 img loss 1.266901969909668 img loss 1.2809168100357056 img loss 1.2757184505462646 img loss 1.2587553262710571 img loss 1.3912545442581177 img loss 1.2717770338058472 img loss 1.320634365081787 img loss 1.2774646282196045 img loss 1.2748937606811523 img loss 1.2473442554473877 img loss 1.29613196849823 img loss 1.3646371364593506 img loss 1.3494693040847778 img loss 1.279966115951538 img loss 1.3687596321105957 img loss 1.296739101409912 img loss 1.1924113035202026 img loss 1.3836122751235962 img loss 1.1796079874038696 img loss 1.2141532897949219 img loss 1.2764713764190674 img loss 1.30107581615448 img loss 1.2475452423095703 img loss 1.2332167625427246 img loss 1.299334168434143 img loss 1.225290298461914 img loss 1.2004432678222656 img loss 1.3441628217697144 img loss 1.2476364374160767 img loss 1.2717018127441406 img loss 1.2641327381134033 img loss 1.2583234310150146 img loss 1.2406126260757446 img loss 1.2607380151748657 img loss 1.310762882232666 img loss 1.193213701248169 img loss 1.3364102840423584 img loss 1.2200262546539307 img loss 1.209038257598877 img loss 1.2932848930358887 img loss 1.2399156093597412 img loss 1.229491949081421 img loss 1.2533485889434814 img loss 1.3101708889007568 img loss 1.282382845878601 img loss 1.2168835401535034 img loss 1.2755215167999268 img loss 1.326940894126892 img loss 1.260606050491333 img loss 1.2653921842575073 img loss 1.289190649986267 img loss 1.3286864757537842 img loss 1.3079478740692139 img loss 1.3295001983642578 img loss 1.2916898727416992 img loss 1.3485506772994995 img loss 1.254490852355957 img loss 1.302111268043518 img loss 1.2453997135162354 img loss 1.3140407800674438 img loss 1.3418692350387573 img loss 1.3862793445587158 img loss 1.2891685962677002 img loss 1.278899073600769 img loss 1.2791423797607422 img loss 1.2460922002792358 img loss 1.238677740097046 img loss 1.291075587272644 img loss 1.3225902318954468 img loss 1.3049808740615845 img loss 1.2640302181243896 {'loss': 1.2855, 'grad_norm': 0.7115942239761353, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4454656839370728 img loss 1.451411485671997 img loss 1.4683283567428589 img loss 1.3423235416412354 img loss 1.53452467918396 img loss 1.4516347646713257 img loss 1.4973634481430054 img loss 1.5637532472610474 img loss 1.4322072267532349 img loss 1.5211517810821533 img loss 1.6170690059661865 img loss 1.5279210805892944 img loss 1.6256965398788452img loss 1.6274151802062988 img loss 1.6152474880218506 img loss 1.5747065544128418 img loss 1.5366168022155762 img loss 1.5965100526809692 img loss 1.6368651390075684 img loss 1.5814944505691528 img loss 1.5299640893936157 img loss 1.6981256008148193 img loss 1.5761839151382446 img loss 1.5089930295944214 img loss 1.5085166692733765 img loss 1.462399959564209 img loss 1.5401551723480225 img loss 1.4807926416397095 img loss 1.603598952293396 img loss 1.4577422142028809 img loss 1.564328908920288 img loss 1.5428978204727173 img loss 1.5529494285583496 img loss 1.5053492784500122 img loss 1.5436253547668457 img loss 1.53827702999115 img loss 1.648376703262329 img loss 1.4278991222381592 img loss 1.5680787563323975 img loss 1.6160188913345337 img loss 1.4777443408966064 img loss 1.446399450302124 img loss 1.4889549016952515 img loss 1.5328495502471924 img loss 1.5797916650772095 img loss 1.4970499277114868 img loss 1.5949958562850952 img loss 1.5511449575424194 img loss 1.457507848739624 img loss 1.42898428440094 img loss 1.4855592250823975 img loss 1.4334919452667236 img loss 1.5722285509109497 img loss 1.6540067195892334 img loss 1.6135581731796265 img loss 1.4175366163253784 img loss 1.4675018787384033 img loss 1.5606474876403809 img loss 1.521226406097412 img loss 1.537783145904541 img loss 1.4651514291763306 img loss 1.4578689336776733 img loss 1.5031760931015015 img loss 1.464353322982788 img loss 1.4515944719314575 img loss 1.4316922426223755 img loss 1.629629373550415 img loss 1.499130129814148 img loss 1.4421937465667725 img loss 1.478541612625122 img loss 1.4452811479568481 img loss 1.5932801961898804 img loss 1.4024978876113892 img loss 1.447021245956421img loss 1.6776124238967896 img loss 1.5083361864089966 img loss 1.4562058448791504 img loss 1.519485354423523 img loss 1.6011964082717896 img loss 1.5202194452285767 img loss 1.5734409093856812 img loss 1.5285779237747192 img loss 1.5978959798812866 img loss 1.4629446268081665 img loss 1.5868865251541138 img loss 1.452689528465271 img loss 1.4806629419326782 img loss 1.4142510890960693 img loss 1.553310513496399 img loss 1.4419220685958862 img loss 1.5012774467468262 img loss 1.5041507482528687 img loss 1.4598901271820068 img loss 1.5166723728179932 img loss 1.4415498971939087 img loss 1.4929935932159424 img loss 1.5249711275100708 img loss 1.5279438495635986 img loss 1.508293628692627 img loss 1.5932849645614624 img loss 1.5433878898620605 img loss 1.4172260761260986 img loss 1.505134105682373 img loss 1.5733768939971924 img loss 1.4153426885604858 img loss 1.5899544954299927 img loss 1.7343484163284302 img loss 1.5711454153060913 img loss 1.4326237440109253 img loss 1.6104505062103271 img loss 1.5678255558013916 img loss 1.6252957582473755 img loss 1.6230322122573853 img loss 1.3830279111862183 img loss 1.408882737159729 img loss 1.7091318368911743 img loss 1.5210803747177124 img loss 1.570635199546814 img loss 1.4435127973556519 img loss 1.420129418373108 img loss 1.6126545667648315 img loss 1.5513585805892944 img loss 1.5633175373077393 img loss 1.4274808168411255 img loss 1.463422179222107 img loss 1.665457010269165 img loss 1.4073197841644287 img loss 1.542173981666565 {'loss': 1.5226, 'grad_norm': 0.5444467663764954, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.6013752222061157 img loss 1.4937264919281006 img loss 1.5008677244186401 img loss 1.539097547531128 img loss 1.5866386890411377 img loss 1.5490692853927612 img loss 1.523375391960144 img loss 1.4905211925506592 img loss 1.623779058456421 img loss 1.519711971282959 img loss 1.4449328184127808 img loss 1.6261402368545532 img loss 1.6868970394134521 img loss 1.5124882459640503 img loss 1.5936331748962402 img loss 1.504675269126892 img loss 1.6420613527297974 img loss 1.53183114528656 img loss 1.6172691583633423 img loss 1.4679681062698364 img loss 1.4155126810073853 img loss 1.54264235496521 img loss 1.6133443117141724 img loss 1.4601789712905884 img loss 1.5198578834533691 img loss 1.513710618019104 img loss 1.4110835790634155 img loss 1.4410985708236694 img loss 1.473593831062317 img loss 1.5375884771347046 img loss 1.439522624015808 img loss 1.563815951347351 img loss 1.6048446893692017 img loss 1.5739370584487915 img loss 1.562987208366394 img loss 1.489781141281128 img loss 1.4856005907058716 img loss 1.4961971044540405 img loss 1.6055089235305786 img loss 1.5391727685928345 img loss 1.6149952411651611 img loss 1.5456671714782715 img loss 1.4975897073745728 img loss 1.4947975873947144 img loss 1.4254804849624634 img loss 1.5135349035263062 img loss 1.4429739713668823 img loss 1.5820095539093018 img loss 1.6316226720809937 img loss 1.5712262392044067 img loss 1.545008897781372 img loss 1.5314937829971313 img loss 1.4411122798919678 img loss 1.5749188661575317 img loss 1.5395758152008057 img loss 1.5121906995773315 img loss 1.5742648839950562 img loss 1.5330647230148315 img loss 1.5992432832717896 img loss 1.4775216579437256 img loss 1.485846996307373 img loss 1.5180858373641968 img loss 1.508857250213623 img loss 1.5721365213394165 img loss 1.5663305521011353 img loss 1.4709858894348145 img loss 1.456487774848938 img loss 1.453690767288208 img loss 1.4650778770446777 img loss 1.6116023063659668 img loss 1.574174165725708 img loss 1.513612985610962 img loss 1.431392788887024 img loss 1.6730000972747803 img loss 1.6129425764083862 img loss 1.6622297763824463 img loss 1.515047311782837 img loss 1.5247141122817993 img loss 1.6888079643249512 img loss 1.448818325996399 img loss 1.5684583187103271 img loss 1.471885085105896 img loss 1.676350474357605 img loss 1.5044283866882324 img loss 1.554299235343933 img loss 1.4447575807571411 img loss 1.4597210884094238 img loss 1.4724730253219604 img loss 1.4612470865249634 img loss 1.33687162399292 img loss 1.587505578994751 img loss 1.6237698793411255 img loss 1.4757769107818604 img loss 1.5890469551086426 img loss 1.4666191339492798 img loss 1.5299713611602783 img loss 1.5289585590362549 img loss 1.5419104099273682 img loss 1.501578688621521 img loss 1.5908225774765015 img loss 1.5431658029556274 img loss 1.4729571342468262 img loss 1.5296956300735474 img loss 1.5830899477005005 img loss 1.5848788022994995 img loss 1.5378830432891846 img loss 1.5826958417892456 img loss 1.632006287574768 img loss 1.5712741613388062 img loss 1.4643597602844238 img loss 1.3851468563079834 img loss 1.4431136846542358 img loss 1.3891342878341675 img loss 1.5095798969268799 img loss 1.4146698713302612 img loss 1.5488947629928589 img loss 1.4504989385604858 img loss 1.429151177406311 img loss 1.515346884727478 img loss 1.494869351387024 img loss 1.5493015050888062 img loss 1.4404855966567993 img loss 1.4413552284240723 img loss 1.5620906352996826 img loss 1.597266674041748 img loss 1.4731075763702393 img loss 1.560858964920044 img loss 1.3971514701843262 {'loss': 1.5253, 'grad_norm': 1.1912835836410522, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.316577672958374 img loss 1.3961434364318848 img loss 1.2349001169204712 img loss 1.286436915397644 img loss 1.2617419958114624 img loss 1.3568565845489502 img loss 1.351255178451538 img loss 1.3023719787597656 img loss 1.276159644126892 img loss 1.3803108930587769 img loss 1.2705062627792358 img loss 1.3088104724884033 img loss 1.2361654043197632 img loss 1.3519343137741089 img loss 1.3276698589324951 img loss 1.2405297756195068 img loss 1.2350096702575684 img loss 1.3540107011795044 img loss 1.3058079481124878 img loss 1.364725947380066 img loss 1.2988579273223877 img loss 1.250375747680664 img loss 1.3102738857269287 img loss 1.3406530618667603 img loss 1.2276158332824707 img loss 1.22245192527771 img loss 1.217689871788025 img loss 1.2507789134979248 img loss 1.2765470743179321 img loss 1.2428867816925049 img loss 1.3512861728668213 img loss 1.1969753503799438 img loss 1.2045981884002686 img loss 1.2646887302398682 img loss 1.2960809469223022 img loss 1.2496159076690674 img loss 1.2768607139587402 img loss 1.2661112546920776 img loss 1.2552613019943237 img loss 1.2180895805358887 img loss 1.261049747467041 img loss 1.1783676147460938 img loss 1.2202320098876953 img loss 1.3147468566894531 img loss 1.2879879474639893 img loss 1.2426036596298218 img loss 1.2655552625656128 img loss 1.2583231925964355 img loss 1.2746336460113525 img loss 1.2529900074005127 img loss 1.277978539466858 img loss 1.2288206815719604 img loss 1.1803357601165771 img loss 1.3321495056152344 img loss 1.2396068572998047 img loss 1.275521993637085 img loss 1.2517359256744385 img loss 1.3388240337371826 img loss 1.2232587337493896 img loss 1.1727519035339355 img loss 1.2827465534210205 img loss 1.264216423034668 img loss 1.3344228267669678 img loss 1.320897102355957 img loss 1.2781662940979004 img loss 1.2083574533462524 img loss 1.2608399391174316 img loss 1.2993240356445312 img loss 1.2846946716308594 img loss 1.2302699089050293 img loss 1.3141183853149414 img loss 1.201751708984375 img loss 1.2414919137954712 img loss 1.3335846662521362 img loss 1.2778053283691406 img loss 1.2785080671310425 img loss 1.2989888191223145 img loss 1.1878690719604492 img loss 1.2371052503585815 img loss 1.3085110187530518 img loss 1.3325811624526978 img loss 1.3850728273391724 img loss 1.190089464187622 img loss 1.328115463256836 img loss 1.264033317565918 img loss 1.3298003673553467 img loss 1.2254985570907593 img loss 1.2501182556152344 img loss 1.2913748025894165 img loss 1.1986230611801147 img loss 1.3197767734527588 img loss 1.2571194171905518 img loss 1.202655553817749 img loss 1.2702404260635376 img loss 1.2499207258224487 img loss 1.261516809463501 img loss 1.2803761959075928 img loss 1.2769476175308228 img loss 1.1976571083068848 img loss 1.2142366170883179 img loss 1.236493706703186 img loss 1.278961181640625 img loss 1.2739129066467285 img loss 1.2602336406707764 img loss 1.1889994144439697 img loss 1.2208369970321655 img loss 1.285038709640503 img loss 1.2717901468276978 img loss 1.2020492553710938 img loss 1.3008149862289429 img loss 1.3581769466400146 img loss 1.3729466199874878 img loss 1.2738069295883179 img loss 1.2654203176498413 img loss 1.3145331144332886 img loss 1.2540662288665771 img loss 1.2509570121765137 img loss 1.3349357843399048 img loss 1.2810958623886108 img loss 1.1713625192642212 img loss 1.219024658203125 img loss 1.294329285621643 img loss 1.3100680112838745 img loss 1.1688828468322754 img loss 1.2128331661224365 img loss 1.273726224899292 img loss 1.3106716871261597 img loss 1.3216521739959717 {'loss': 1.2713, 'grad_norm': 0.4481251537799835, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2445780038833618 img loss 1.313037395477295 img loss 1.3197933435440063 img loss 1.2203915119171143 img loss 1.2015762329101562 img loss 1.2712653875350952 img loss 1.2553967237472534 img loss 1.320473551750183 img loss 1.1985530853271484 img loss 1.353136420249939 img loss 1.2354449033737183 img loss 1.276269793510437 img loss 1.3607633113861084 img loss 1.2599499225616455 img loss 1.1841191053390503 img loss 1.357481837272644 img loss 1.293899416923523 img loss 1.4149647951126099 img loss 1.2836620807647705 img loss 1.2982470989227295 img loss 1.3379088640213013 img loss 1.3247294425964355 img loss 1.1666932106018066 img loss 1.1656404733657837 img loss 1.194774866104126 img loss 1.2849845886230469 img loss 1.2582292556762695 img loss 1.1590718030929565 img loss 1.2545130252838135 img loss 1.3867095708847046 img loss 1.209136962890625 img loss 1.283524751663208 img loss 1.351336121559143 img loss 1.2455532550811768 img loss 1.3261446952819824 img loss 1.2127445936203003 img loss 1.2118332386016846 img loss 1.2572414875030518 img loss 1.2411750555038452 img loss 1.2099908590316772 img loss 1.3716429471969604 img loss 1.3181710243225098 img loss 1.305595874786377 img loss 1.325255274772644 img loss 1.283373236656189 img loss 1.2172971963882446 img loss 1.2588480710983276 img loss 1.3623474836349487 img loss 1.2578773498535156 img loss 1.2666714191436768 img loss 1.2550528049468994 img loss 1.2865383625030518 img loss 1.3139108419418335 img loss 1.2473218441009521 img loss 1.3482235670089722 img loss 1.2663133144378662 img loss 1.292435884475708 img loss 1.3123321533203125 img loss 1.2755067348480225 img loss 1.3050825595855713 img loss 1.2814245223999023 img loss 1.2856968641281128 img loss 1.244203805923462 img loss 1.3856874704360962 img loss 1.358332872390747 img loss 1.2649011611938477 img loss 1.2693324089050293 img loss 1.3630698919296265 img loss 1.2739578485488892 img loss 1.2449839115142822 img loss 1.2741895914077759 img loss 1.366266131401062 img loss 1.2689392566680908 img loss 1.252824306488037 img loss 1.2801079750061035 img loss 1.308148741722107 img loss 1.1976218223571777 img loss 1.3078677654266357 img loss 1.3562451601028442 img loss 1.2861312627792358 img loss 1.2572555541992188 img loss 1.2174632549285889 img loss 1.2293014526367188 img loss 1.2978779077529907 img loss 1.2729958295822144 img loss 1.231637954711914 img loss 1.2295491695404053 img loss 1.2221639156341553 img loss 1.1853841543197632 img loss 1.278425931930542 img loss 1.2567012310028076 img loss 1.288262963294983 img loss 1.1773033142089844 img loss 1.3276407718658447 img loss 1.3004286289215088 img loss 1.2683632373809814 img loss 1.1723365783691406 img loss 1.3305002450942993 img loss 1.322351098060608 img loss 1.3077110052108765 img loss 1.2374792098999023 img loss 1.22268807888031 img loss 1.3310511112213135 img loss 1.2703088521957397 img loss 1.263307809829712 img loss 1.2445502281188965 img loss 1.2427961826324463 img loss 1.2188541889190674 img loss 1.2803187370300293 img loss 1.2444056272506714 img loss 1.1320958137512207 img loss 1.196094274520874 img loss 1.3421275615692139 img loss 1.2892138957977295 img loss 1.2616305351257324 img loss 1.3827660083770752 img loss 1.218529462814331 img loss 1.298097014427185 img loss 1.2906222343444824 img loss 1.2564520835876465 img loss 1.234460473060608 img loss 1.2199562788009644 img loss 1.3041216135025024 img loss 1.2372097969055176 img loss 1.2276067733764648 img loss 1.3283036947250366 img loss 1.2144955396652222 img loss 1.2533888816833496 {'loss': 1.2727, 'grad_norm': 0.24906831979751587, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4118889570236206 img loss 1.3780678510665894 img loss 1.291845679283142 img loss 1.3634772300720215 img loss 1.2290377616882324 img loss 1.3200860023498535 img loss 1.3506886959075928 img loss 1.2437105178833008 img loss 1.3662724494934082 img loss 1.3634088039398193 img loss 1.3411732912063599 img loss 1.2990376949310303 img loss 1.311521053314209 img loss 1.2645018100738525 img loss 1.2878254652023315 img loss 1.3170733451843262 img loss 1.3548508882522583 img loss 1.2880464792251587 img loss 1.2119206190109253 img loss 1.378149390220642 img loss 1.2768198251724243 img loss 1.2322494983673096 img loss 1.281672716140747 img loss 1.3011565208435059 img loss 1.3141565322875977 img loss 1.2541557550430298 img loss 1.3495838642120361 img loss 1.465492844581604 img loss 1.3600775003433228 img loss 1.2696607112884521 img loss 1.333250641822815 img loss 1.3040149211883545 img loss 1.3183962106704712 img loss 1.3270399570465088 img loss 1.2356971502304077 img loss 1.337778925895691 img loss 1.339176058769226 img loss 1.3894000053405762 img loss 1.4193509817123413 img loss 1.3894139528274536 img loss 1.3036115169525146 img loss 1.3132874965667725 img loss 1.3506004810333252 img loss 1.3985912799835205 img loss 1.3096710443496704 img loss 1.2588437795639038 img loss 1.370552659034729 img loss 1.3391255140304565 img loss 1.3861253261566162 img loss 1.2514073848724365 img loss 1.2561765909194946 img loss 1.252313494682312 img loss 1.3199570178985596 img loss 1.342536211013794 img loss 1.3058651685714722 img loss 1.2534899711608887 img loss 1.244759440422058 img loss 1.1525683403015137 img loss 1.3456052541732788 img loss 1.3438576459884644 img loss 1.3932147026062012 img loss 1.3711693286895752 img loss 1.3465009927749634 img loss 1.2642484903335571 img loss 1.2489750385284424 img loss 1.2906849384307861 img loss 1.2666963338851929 img loss 1.283852458000183 img loss 1.28522527217865 img loss 1.4127602577209473 img loss 1.2989088296890259 img loss 1.2174761295318604 img loss 1.2787165641784668 img loss 1.4095072746276855 img loss 1.410813570022583 img loss 1.3377386331558228 img loss 1.3811768293380737 img loss 1.3259323835372925 img loss 1.307489037513733 img loss 1.302549958229065 img loss 1.3308920860290527 img loss 1.3962212800979614 img loss 1.3426004648208618 img loss 1.4358803033828735 img loss 1.4008572101593018 img loss 1.2854015827178955 img loss 1.3347585201263428 img loss 1.3454506397247314 img loss 1.3235020637512207 img loss 1.3281219005584717 img loss 1.2508366107940674 img loss 1.4637948274612427 img loss 1.3254159688949585 img loss 1.3045597076416016 img loss 1.4566166400909424 img loss 1.3697750568389893 img loss 1.3125605583190918 img loss 1.3547165393829346 img loss 1.285705327987671 img loss 1.2714190483093262 img loss 1.3515468835830688 img loss 1.3416306972503662 img loss 1.2872737646102905 img loss 1.2040890455245972 img loss 1.3038554191589355 img loss 1.3125169277191162 img loss 1.3922755718231201 img loss 1.325066089630127 img loss 1.340883493423462 img loss 1.3456655740737915 img loss 1.3424639701843262 img loss 1.3277485370635986 img loss 1.3139839172363281 img loss 1.3058971166610718 img loss 1.3444180488586426 img loss 1.265994668006897 img loss 1.3987699747085571 img loss 1.4536880254745483 img loss 1.2657771110534668 img loss 1.3246315717697144 img loss 1.3037521839141846 img loss 1.3432356119155884 img loss 1.3031799793243408 img loss 1.3738247156143188 img loss 1.4263942241668701 img loss 1.3642812967300415 img loss 1.3551061153411865 img loss 1.2914960384368896 {'loss': 1.3253, 'grad_norm': 0.9194530248641968, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2795636653900146 img loss 1.2576117515563965 img loss 1.2339799404144287 img loss 1.203057050704956 img loss 1.2756413221359253 img loss 1.2363886833190918 img loss 1.3431824445724487 img loss 1.2813183069229126 img loss 1.3207250833511353 img loss 1.2814949750900269 img loss 1.2085421085357666 img loss 1.1993106603622437 img loss 1.2641609907150269 img loss 1.2545082569122314 img loss 1.2877349853515625 img loss 1.2936686277389526 img loss 1.214893102645874 img loss 1.289131999015808 img loss 1.2722716331481934 img loss 1.2194828987121582 img loss 1.3336907625198364 img loss 1.1814398765563965 img loss 1.3888252973556519 img loss 1.2542823553085327 img loss 1.2104640007019043 img loss 1.2889288663864136 img loss 1.2032947540283203 img loss 1.2020715475082397 img loss 1.1593294143676758 img loss 1.2301592826843262 img loss 1.2707099914550781 img loss 1.3142998218536377 img loss 1.263447642326355 img loss 1.2930444478988647 img loss 1.2263400554656982 img loss 1.3725091218948364 img loss 1.2386980056762695 img loss 1.3071019649505615 img loss 1.3304247856140137 img loss 1.2992510795593262 img loss 1.282057762145996 img loss 1.3026663064956665 img loss 1.3202751874923706 img loss 1.2901694774627686 img loss 1.3302721977233887 img loss 1.290901780128479 img loss 1.298250675201416 img loss 1.3619698286056519 img loss 1.16659677028656 img loss 1.2575156688690186 img loss 1.2430237531661987 img loss 1.296876311302185 img loss 1.2831138372421265 img loss 1.325810432434082 img loss 1.279811143875122 img loss 1.3318840265274048 img loss 1.3651540279388428 img loss 1.2587803602218628 img loss 1.1470317840576172 img loss 1.249480128288269 img loss 1.2128119468688965 img loss 1.260294795036316 img loss 1.3149813413619995 img loss 1.2324618101119995 img loss 1.2746864557266235 img loss 1.207297682762146 img loss 1.2572143077850342 img loss 1.343056082725525 img loss 1.2501147985458374 img loss 1.2552775144577026 img loss 1.1994309425354004 img loss 1.302224040031433 img loss 1.1705584526062012 img loss 1.1881004571914673 img loss 1.2998017072677612 img loss 1.2296322584152222 img loss 1.3320159912109375 img loss 1.12592351436615 img loss 1.341752290725708 img loss 1.269113540649414 img loss 1.289811134338379 img loss 1.2284685373306274 img loss 1.2287213802337646 img loss 1.2529436349868774 img loss 1.2345908880233765 img loss 1.2566437721252441 img loss 1.3246345520019531 img loss 1.2803878784179688 img loss 1.2548528909683228 img loss 1.2815885543823242 img loss 1.295867681503296 img loss 1.2682900428771973 img loss 1.2471965551376343 img loss 1.1654266119003296 img loss 1.3007398843765259 img loss 1.3081567287445068 img loss 1.2176519632339478 img loss 1.2555049657821655 img loss 1.2288031578063965 img loss 1.194009780883789 img loss 1.2288541793823242 img loss 1.3083324432373047 img loss 1.2762787342071533 img loss 1.2397778034210205 img loss 1.3775136470794678 img loss 1.2975128889083862 img loss 1.2666209936141968 img loss 1.2101482152938843 img loss 1.2032268047332764 img loss 1.19933021068573 img loss 1.1961231231689453 img loss 1.2498613595962524 img loss 1.3250185251235962 img loss 1.2872523069381714 img loss 1.2796753644943237 img loss 1.2658109664916992 img loss 1.2483323812484741 img loss 1.250616431236267 img loss 1.2218360900878906 img loss 1.2910120487213135 img loss 1.3710435628890991 img loss 1.2315266132354736 img loss 1.2761168479919434 img loss 1.3492233753204346 img loss 1.3072788715362549 img loss 1.2903988361358643 img loss 1.2716020345687866 img loss 1.3058429956436157 {'loss': 1.2662, 'grad_norm': 0.5846104025840759, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1950429677963257 img loss 1.2540042400360107 img loss 1.2399330139160156 img loss 1.1600106954574585 img loss 1.213404655456543 img loss 1.1987550258636475 img loss 1.2294639348983765 img loss 1.1417720317840576 img loss 1.142895221710205 img loss 1.1814826726913452 img loss 1.235106110572815 img loss 1.2168962955474854 img loss 1.232795238494873 img loss 1.1888929605484009 img loss 1.169400930404663 img loss 1.1890099048614502 img loss 1.2212170362472534 img loss 1.2195533514022827 img loss 1.305246114730835 img loss 1.203669548034668 img loss 1.2380608320236206 img loss 1.3015968799591064 img loss 1.2385183572769165 img loss 1.168222188949585 img loss 1.2825238704681396 img loss 1.1825997829437256 img loss 1.2550690174102783 img loss 1.140557050704956 img loss 1.1868575811386108 img loss 1.3049118518829346 img loss 1.2306320667266846 img loss 1.3506815433502197 img loss 1.2313088178634644 img loss 1.2013307809829712 img loss 1.2219961881637573 img loss 1.2064156532287598 img loss 1.2419931888580322 img loss 1.1696754693984985 img loss 1.2846181392669678 img loss 1.266758680343628 img loss 1.2873814105987549 img loss 1.214837908744812 img loss 1.1840801239013672 img loss 1.225137710571289img loss 1.229807734489441 img loss 1.1372722387313843 img loss 1.178470253944397 img loss 1.2084133625030518 img loss 1.171958565711975 img loss 1.2690666913986206 img loss 1.2109705209732056 img loss 1.2115634679794312 img loss 1.1833595037460327 img loss 1.267834186553955 img loss 1.1652109622955322 img loss 1.2004032135009766 img loss 1.2920222282409668 img loss 1.191430687904358 img loss 1.2307946681976318 img loss 1.2631040811538696 img loss 1.1340833902359009 img loss 1.1875927448272705 img loss 1.1565723419189453 img loss 1.1949048042297363 img loss 1.2577669620513916 img loss 1.2191969156265259 img loss 1.1774297952651978 img loss 1.228270411491394 img loss 1.189356803894043 img loss 1.142418384552002 img loss 1.2026487588882446 img loss 1.2122067213058472 img loss 1.2011030912399292 img loss 1.195350170135498 img loss 1.2488303184509277 img loss 1.2876485586166382 img loss 1.1851154565811157 img loss 1.1955372095108032 img loss 1.2369905710220337 img loss 1.22792387008667 img loss 1.1339267492294312 img loss 1.2242674827575684 img loss 1.228036880493164 img loss 1.1610527038574219 img loss 1.195342779159546 img loss 1.21047842502594 img loss 1.2331961393356323 img loss 1.1772581338882446 img loss 1.2365188598632812 img loss 1.1872670650482178 img loss 1.225808024406433 img loss 1.2907562255859375 img loss 1.1499626636505127 img loss 1.1956230401992798 img loss 1.1438555717468262 img loss 1.1919068098068237 img loss 1.2099330425262451 img loss 1.246368169784546 img loss 1.2382028102874756 img loss 1.2283523082733154 img loss 1.2992045879364014 img loss 1.2503502368927002 img loss 1.1932284832000732 img loss 1.16975736618042 img loss 1.2511142492294312 img loss 1.2894740104675293 img loss 1.1519582271575928 img loss 1.177164912223816 img loss 1.2741974592208862 img loss 1.2900867462158203 img loss 1.2599340677261353 img loss 1.2002077102661133 img loss 1.2940014600753784 img loss 1.159306526184082 img loss 1.1948953866958618 img loss 1.2067054510116577 img loss 1.1724287271499634 img loss 1.2199257612228394 img loss 1.1899360418319702 img loss 1.266127347946167 img loss 1.1806774139404297 img loss 1.174297571182251 img loss 1.2028957605361938 img loss 1.1717956066131592 img loss 1.2470929622650146 img loss 1.2936160564422607 img loss 1.2914502620697021 img loss 1.1943621635437012 {'loss': 1.2158, 'grad_norm': 0.33534371852874756, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.21163809299469 img loss 1.2039450407028198 img loss 1.2267959117889404 img loss 1.266418218612671 img loss 1.187695860862732 img loss 1.2610323429107666 img loss 1.2114872932434082 img loss 1.3139711618423462 img loss 1.1972484588623047 img loss 1.1878275871276855 img loss 1.1776916980743408 img loss 1.2689292430877686 img loss 1.2171834707260132 img loss 1.224892020225525 img loss 1.1739622354507446 img loss 1.2291810512542725 img loss 1.127589225769043 img loss 1.2409504652023315 img loss 1.142912745475769 img loss 1.2865632772445679 img loss 1.1446455717086792 img loss 1.1858004331588745 img loss 1.3060252666473389 img loss 1.171527624130249 img loss 1.1571424007415771 img loss 1.2815237045288086 img loss 1.2128729820251465 img loss 1.1978082656860352 img loss 1.239375114440918 img loss 1.1992019414901733 img loss 1.2588741779327393 img loss 1.2454131841659546 img loss 1.1779028177261353 img loss 1.207086205482483 img loss 1.1567413806915283 img loss 1.1991764307022095 img loss 1.2047293186187744 img loss 1.1658928394317627 img loss 1.1918749809265137 img loss 1.2394033670425415 img loss 1.26796293258667 img loss 1.2529926300048828 img loss 1.1697546243667603 img loss 1.2524640560150146 img loss 1.1838117837905884 img loss 1.2154781818389893 img loss 1.1371890306472778 img loss 1.1141937971115112 img loss 1.2218565940856934 img loss 1.2320549488067627 img loss 1.243837833404541 img loss 1.2362867593765259 img loss 1.1918888092041016 img loss 1.2586922645568848 img loss 1.142167091369629 img loss 1.2711549997329712 img loss 1.214158535003662 img loss 1.1758513450622559 img loss 1.1961817741394043 img loss 1.1775740385055542 img loss 1.220773458480835 img loss 1.232316493988037 img loss 1.1548622846603394 img loss 1.1752393245697021 img loss 1.2082583904266357 img loss 1.1977050304412842 img loss 1.2073593139648438 img loss 1.175552248954773 img loss 1.1581952571868896 img loss 1.233672857284546 img loss 1.2131975889205933 img loss 1.2086986303329468 img loss 1.1910052299499512 img loss 1.2189403772354126 img loss 1.1780771017074585 img loss 1.1737936735153198 img loss 1.256945013999939 img loss 1.2073028087615967 img loss 1.1720192432403564 img loss 1.1756595373153687 img loss 1.15688955783844 img loss 1.309538722038269 img loss 1.199318766593933 img loss 1.2977131605148315 img loss 1.2914783954620361 img loss 1.171958565711975 img loss 1.1444915533065796 img loss 1.1537340879440308 img loss 1.1943297386169434 img loss 1.205299973487854 img loss 1.1685816049575806 img loss 1.2317813634872437 img loss 1.1543266773223877 img loss 1.2163498401641846 img loss 1.2177400588989258 img loss 1.2027785778045654 img loss 1.2666124105453491 img loss 1.2283695936203003 img loss 1.2076356410980225 img loss 1.2042522430419922 img loss 1.2111059427261353 img loss 1.1959196329116821 img loss 1.2113170623779297 img loss 1.197176456451416 img loss 1.1931959390640259 img loss 1.216313362121582 img loss 1.1637903451919556 img loss 1.2066434621810913 img loss 1.2653191089630127 img loss 1.2396502494812012 img loss 1.179746150970459 img loss 1.2467608451843262 img loss 1.1998919248580933 img loss 1.2022559642791748 img loss 1.1806234121322632 img loss 1.1289921998977661 img loss 1.1729543209075928 img loss 1.1378229856491089 img loss 1.1728038787841797 img loss 1.2246204614639282 img loss 1.1703832149505615 img loss 1.2393486499786377 img loss 1.1084307432174683 img loss 1.1787112951278687 img loss 1.2717312574386597 img loss 1.099288821220398 img loss 1.1569534540176392 img loss 1.1611599922180176 {'loss': 1.2045, 'grad_norm': 0.6334270238876343, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1854699850082397 img loss 1.2197192907333374 img loss 1.1656639575958252 img loss 1.1087117195129395 img loss 1.1787500381469727 img loss 1.108646273612976 img loss 1.2991418838500977 img loss 1.1611007452011108 img loss 1.1322581768035889 img loss 1.1741609573364258 img loss 1.2246448993682861 img loss 1.1417405605316162 img loss 1.1705738306045532 img loss 1.2247790098190308 img loss 1.1361278295516968 img loss 1.232614517211914 img loss 1.2495708465576172 img loss 1.1557443141937256 img loss 1.2691893577575684 img loss 1.1732298135757446 img loss 1.2162688970565796 img loss 1.1346423625946045 img loss 1.1771830320358276 img loss 1.2018507719039917 img loss 1.1910594701766968 img loss 1.1542991399765015 img loss 1.1803643703460693 img loss 1.1877212524414062 img loss 1.2337837219238281 img loss 1.1477797031402588 img loss 1.1753520965576172 img loss 1.2008826732635498 img loss 1.1911251544952393 img loss 1.1937096118927002 img loss 1.1890785694122314 img loss 1.2028918266296387 img loss 1.1740429401397705 img loss 1.317147135734558 img loss 1.1746128797531128 img loss 1.232330083847046 img loss 1.1380136013031006 img loss 1.1496076583862305 img loss 1.2039192914962769 img loss 1.132647156715393 img loss 1.1254023313522339 img loss 1.24910306930542 img loss 1.1925106048583984 img loss 1.2485904693603516 img loss 1.1597187519073486 img loss 1.1580302715301514 img loss 1.1313457489013672 img loss 1.1321429014205933 img loss 1.2644299268722534 img loss 1.222627878189087 img loss 1.2899436950683594 img loss 1.1554772853851318 img loss 1.2153403759002686 img loss 1.1548603773117065 img loss 1.230302333831787 img loss 1.1056036949157715 img loss 1.2015302181243896 img loss 1.1887004375457764 img loss 1.2504929304122925 img loss 1.193402647972107 img loss 1.2039484977722168 img loss 1.1489448547363281 img loss 1.1821666955947876 img loss 1.1546704769134521 img loss 1.1019933223724365 img loss 1.239603042602539 img loss 1.2141590118408203 img loss 1.1412190198898315 img loss 1.1884188652038574 img loss 1.259565830230713 img loss 1.3318660259246826 img loss 1.189874529838562 img loss 1.1645793914794922 img loss 1.1600255966186523 img loss 1.2481307983398438 img loss 1.12437903881073 img loss 1.2074275016784668 img loss 1.294655203819275 img loss 1.160085678100586 img loss 1.168221116065979 img loss 1.2629189491271973 img loss 1.1419070959091187 img loss 1.185402512550354 img loss 1.1591522693634033 img loss 1.26469886302948 img loss 1.1891177892684937 img loss 1.154722809791565 img loss 1.1718385219573975 img loss 1.2018728256225586 img loss 1.2918238639831543 img loss 1.1718381643295288 img loss 1.1922261714935303 img loss 1.1466972827911377 img loss 1.2011396884918213 img loss 1.1477999687194824 img loss 1.1913490295410156 img loss 1.1752808094024658 img loss 1.210646152496338 img loss 1.2172311544418335 img loss 1.122164011001587 img loss 1.2405098676681519 img loss 1.1751840114593506 img loss 1.22080659866333 img loss 1.217953085899353 img loss 1.175317406654358 img loss 1.1561169624328613 img loss 1.1630741357803345 img loss 1.084481954574585 img loss 1.273711919784546 img loss 1.1485581398010254 img loss 1.2376537322998047 img loss 1.2693754434585571 img loss 1.1201528310775757 img loss 1.1173439025878906 img loss 1.180100917816162 img loss 1.1356209516525269 img loss 1.2003991603851318 img loss 1.1921833753585815 img loss 1.225672721862793 img loss 1.2516597509384155 img loss 1.1586135625839233 img loss 1.2348034381866455 img loss 1.195219874382019 img loss 1.236605167388916 {'loss': 1.1904, 'grad_norm': 0.6810716986656189, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1660513877868652 img loss 1.1977200508117676 img loss 1.299328327178955 img loss 1.2882938385009766 img loss 1.1337839365005493 img loss 1.2428549528121948 img loss 1.1678022146224976 img loss 1.2515087127685547 img loss 1.2160934209823608 img loss 1.190815806388855 img loss 1.1961086988449097 img loss 1.1777235269546509 img loss 1.1988359689712524 img loss 1.2272189855575562 img loss 1.1421844959259033 img loss 1.2119808197021484 img loss 1.1812400817871094 img loss 1.2252271175384521 img loss 1.2394949197769165 img loss 1.1937336921691895 img loss 1.232879638671875 img loss 1.2443803548812866 img loss 1.2274664640426636 img loss 1.2078239917755127 img loss 1.2026312351226807 img loss 1.214629054069519 img loss 1.2300541400909424 img loss 1.2260483503341675 img loss 1.2709362506866455 img loss 1.2381597757339478 img loss 1.2002270221710205 img loss 1.1795870065689087 img loss 1.2374900579452515 img loss 1.3171461820602417 img loss 1.266720175743103 img loss 1.1149982213974 img loss 1.1742037534713745 img loss 1.2037231922149658 img loss 1.1715128421783447 img loss 1.2213284969329834 img loss 1.1967220306396484 img loss 1.1995854377746582 img loss 1.189764380455017 img loss 1.2133820056915283 img loss 1.2740931510925293 img loss 1.2073720693588257 img loss 1.2575911283493042 img loss 1.2589452266693115 img loss 1.2270411252975464 img loss 1.2122646570205688 img loss 1.2379592657089233 img loss 1.1902594566345215 img loss 1.2719173431396484 img loss 1.2269419431686401 img loss 1.190231204032898 img loss 1.2081472873687744 img loss 1.2070833444595337 img loss 1.230581283569336 img loss 1.1477245092391968 img loss 1.142836570739746 img loss 1.2241427898406982 img loss 1.2711408138275146 img loss 1.1763243675231934 img loss 1.2717777490615845 img loss 1.2471592426300049 img loss 1.2823774814605713 img loss 1.1683604717254639 img loss 1.2651017904281616 img loss 1.2166060209274292 img loss 1.200094223022461 img loss 1.1897624731063843 img loss 1.2100775241851807 img loss 1.1567339897155762 img loss 1.2342032194137573 img loss 1.2132093906402588 img loss 1.2381110191345215 img loss 1.1827095746994019 img loss 1.2198796272277832 img loss 1.1918449401855469 img loss 1.2191569805145264 img loss 1.2013847827911377 img loss 1.244062066078186 img loss 1.2110321521759033 img loss 1.211917519569397 img loss 1.3334059715270996 img loss 1.148909091949463 img loss 1.171689748764038 img loss 1.1839048862457275 img loss 1.3190276622772217 img loss 1.2519252300262451 img loss 1.1805131435394287 img loss 1.239504337310791 img loss 1.339015245437622 img loss 1.191464900970459 img loss 1.2154995203018188 img loss 1.251015305519104 img loss 1.211178183555603 img loss 1.2011713981628418 img loss 1.217164397239685 img loss 1.2019327878952026 img loss 1.219714641571045 img loss 1.1558244228363037 img loss 1.1977109909057617 img loss 1.2148044109344482 img loss 1.1706905364990234 img loss 1.2082027196884155 img loss 1.2348079681396484 img loss 1.24830961227417 img loss 1.218292236328125 img loss 1.2235349416732788 img loss 1.2062699794769287 img loss 1.1670644283294678 img loss 1.2126718759536743 img loss 1.2447237968444824 img loss 1.179351806640625 img loss 1.2128808498382568 img loss 1.1193288564682007 img loss 1.269150972366333 img loss 1.2195985317230225 img loss 1.2220457792282104 img loss 1.221277117729187 img loss 1.2006628513336182 img loss 1.1336990594863892 img loss 1.2267311811447144 img loss 1.1893057823181152 img loss 1.2560524940490723 img loss 1.2104682922363281 img loss 1.309410572052002 {'loss': 1.2158, 'grad_norm': 0.26432543992996216, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2101970911026 img loss 1.3605973720550537 img loss 1.3105442523956299 img loss 1.2422126531600952 img loss 1.256967544555664 img loss 1.1732279062271118 img loss 1.2306325435638428 img loss 1.170195460319519 img loss 1.1850999593734741 img loss 1.2700660228729248 img loss 1.2673124074935913 img loss 1.16548490524292 img loss 1.232638955116272 img loss 1.1786091327667236 img loss 1.4100748300552368 img loss 1.1946003437042236 img loss 1.2196500301361084 img loss 1.2134274244308472 img loss 1.1819519996643066 img loss 1.2453107833862305 img loss 1.1765459775924683 img loss 1.1976276636123657 img loss 1.2362335920333862 img loss 1.1894670724868774 img loss 1.1915791034698486 img loss 1.237012505531311 img loss 1.2407039403915405 img loss 1.1697607040405273 img loss 1.2488131523132324 img loss 1.2193260192871094 img loss 1.301647424697876 img loss 1.208173155784607 img loss 1.1497973203659058 img loss 1.2507034540176392 img loss 1.2418832778930664 img loss 1.2320020198822021 img loss 1.204145908355713 img loss 1.2109229564666748 img loss 1.1600112915039062 img loss 1.3354378938674927 img loss 1.2565869092941284 img loss 1.21549654006958 img loss 1.2474355697631836 img loss 1.205741286277771 img loss 1.1738603115081787 img loss 1.2710318565368652 img loss 1.2314077615737915 img loss 1.2557976245880127 img loss 1.2118432521820068 img loss 1.2557904720306396 img loss 1.257647156715393 img loss 1.24514639377594 img loss 1.216905951499939 img loss 1.1790733337402344 img loss 1.345262050628662 img loss 1.3012529611587524 img loss 1.2741466760635376 img loss 1.27107834815979 img loss 1.147033929824829 img loss 1.256664514541626 img loss 1.2766622304916382 img loss 1.228866457939148 img loss 1.2085464000701904 img loss 1.2560869455337524 img loss 1.2334907054901123 img loss 1.2054203748703003 img loss 1.2290496826171875 img loss 1.2588348388671875 img loss 1.2053765058517456 img loss 1.313352108001709 img loss 1.2747067213058472 img loss 1.1896437406539917 img loss 1.2209728956222534 img loss 1.2288802862167358 img loss 1.2196319103240967 img loss 1.289886474609375 img loss 1.2933403253555298 img loss 1.2563085556030273 img loss 1.208606481552124 img loss 1.2458912134170532 img loss 1.2102389335632324 img loss 1.2405896186828613 img loss 1.3155463933944702 img loss 1.226975679397583 img loss 1.199991226196289 img loss 1.2236249446868896 img loss 1.2313611507415771 img loss 1.114633560180664 img loss 1.2952675819396973 img loss 1.2577955722808838 img loss 1.2721874713897705 img loss 1.267657995223999 img loss 1.219054937362671 img loss 1.2767685651779175 img loss 1.2135045528411865 img loss 1.2726855278015137 img loss 1.2146192789077759 img loss 1.2747753858566284 img loss 1.1918160915374756 img loss 1.2042423486709595 img loss 1.1706902980804443 img loss 1.2642751932144165 img loss 1.2998555898666382 img loss 1.2203724384307861 img loss 1.3767091035842896 img loss 1.213446855545044 img loss 1.2102291584014893 img loss 1.2992439270019531 img loss 1.2954479455947876 img loss 1.1822829246520996 img loss 1.2195568084716797 img loss 1.2242565155029297 img loss 1.204042673110962 img loss 1.2481828927993774 img loss 1.223660945892334 img loss 1.2485780715942383 img loss 1.1854662895202637 img loss 1.2529619932174683 img loss 1.3019676208496094 img loss 1.3032194375991821 img loss 1.2454489469528198 img loss 1.223488450050354 img loss 1.2595305442810059 img loss 1.340813159942627 img loss 1.2504453659057617 img loss 1.2379677295684814 img loss 1.1660916805267334 img loss 1.2457060813903809 {'loss': 1.2377, 'grad_norm': 0.4491027891635895, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.251998782157898 img loss 1.1573576927185059 img loss 1.2384251356124878 img loss 1.262134313583374 img loss 1.2840808629989624 img loss 1.1826107501983643 img loss 1.1977773904800415 img loss 1.206921100616455 img loss 1.2006945610046387 img loss 1.2543038129806519 img loss 1.1991466283798218 img loss 1.2133255004882812 img loss 1.1352745294570923 img loss 1.2179399728775024 img loss 1.2073668241500854 img loss 1.192549228668213 img loss 1.1593685150146484 img loss 1.1818621158599854 img loss 1.2580041885375977 img loss 1.2019975185394287 img loss 1.297472357749939 img loss 1.2833305597305298 img loss 1.2628856897354126 img loss 1.2162048816680908 img loss 1.201135516166687 img loss 1.3109171390533447 img loss 1.2238701581954956 img loss 1.1815136671066284 img loss 1.1968462467193604 img loss 1.192003846168518 img loss 1.193674921989441 img loss 1.2104600667953491 img loss 1.1728346347808838 img loss 1.1769946813583374 img loss 1.2089757919311523 img loss 1.2044950723648071 img loss 1.1876494884490967 img loss 1.2700761556625366 img loss 1.1955111026763916 img loss 1.1779868602752686 img loss 1.2298588752746582 img loss 1.1782562732696533 img loss 1.1998242139816284 img loss 1.2347158193588257 img loss 1.2703475952148438 img loss 1.1521910429000854 img loss 1.234377145767212 img loss 1.1935982704162598 img loss 1.1927293539047241 img loss 1.21218740940094 img loss 1.2432703971862793 img loss 1.182300090789795 img loss 1.1897376775741577 img loss 1.1819418668746948 img loss 1.1352429389953613 img loss 1.1845000982284546 img loss 1.208714246749878 img loss 1.2267624139785767 img loss 1.24885892868042 img loss 1.2271465063095093 img loss 1.2788090705871582 img loss 1.2504632472991943 img loss 1.2129982709884644 img loss 1.292501449584961 img loss 1.206188440322876 img loss 1.2776520252227783 img loss 1.2001842260360718 img loss 1.1875667572021484 img loss 1.2197216749191284 img loss 1.2137879133224487 img loss 1.2969993352890015 img loss 1.1960108280181885 img loss 1.2597129344940186 img loss 1.2397305965423584 img loss 1.163267731666565 img loss 1.2232472896575928 img loss 1.2100470066070557 img loss 1.2210464477539062 img loss 1.1596479415893555 img loss 1.1705178022384644 img loss 1.2229441404342651 img loss 1.213120937347412 img loss 1.2050516605377197 img loss 1.1822712421417236 img loss 1.1859376430511475 img loss 1.2242026329040527 img loss 1.2611298561096191 img loss 1.208728313446045 img loss 1.2561333179473877 img loss 1.1684284210205078 img loss 1.1757023334503174 img loss 1.2705483436584473 img loss 1.225696086883545 img loss 1.1832927465438843 img loss 1.171026587486267 img loss 1.1397068500518799 img loss 1.1911848783493042 img loss 1.214645266532898 img loss 1.22061026096344 img loss 1.1877834796905518 img loss 1.2087665796279907 img loss 1.2290557622909546 img loss 1.223130226135254 img loss 1.264107346534729 img loss 1.2434539794921875 img loss 1.2180811166763306 img loss 1.2215336561203003 img loss 1.1633813381195068 img loss 1.147479772567749 img loss 1.3197352886199951 img loss 1.2864526510238647 img loss 1.2446684837341309 img loss 1.1812328100204468 img loss 1.2497450113296509 img loss 1.1871166229248047 img loss 1.1787450313568115 img loss 1.2908439636230469 img loss 1.1715333461761475 img loss 1.148659586906433 img loss 1.2619251012802124 img loss 1.2482621669769287 img loss 1.2216615676879883 img loss 1.2364633083343506 img loss 1.2683504819869995 img loss 1.2345592975616455 img loss 1.252516269683838 img loss 1.2419356107711792 img loss 1.2116860151290894 {'loss': 1.2159, 'grad_norm': 0.4610423147678375, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.1627388000488281 img loss 1.2328499555587769 img loss 1.2274177074432373 img loss 1.2891258001327515 img loss 1.241245985031128 img loss 1.2143933773040771 img loss 1.2295290231704712 img loss 1.2285974025726318 img loss 1.201393961906433 img loss 1.275494933128357 img loss 1.2116161584854126 img loss 1.2922848463058472 img loss 1.3142120838165283 img loss 1.188815712928772 img loss 1.2176799774169922img loss 1.2723578214645386 img loss 1.229734182357788 img loss 1.277779459953308 img loss 1.244478464126587 img loss 1.2576289176940918 img loss 1.2509678602218628 img loss 1.276822566986084 img loss 1.1815916299819946 img loss 1.2342171669006348 img loss 1.2639133930206299 img loss 1.2109780311584473 img loss 1.1812156438827515 img loss 1.1380562782287598 img loss 1.2455904483795166 img loss 1.2155681848526 img loss 1.2393989562988281 img loss 1.259840965270996 img loss 1.2248008251190186 img loss 1.181984305381775 img loss 1.2577521800994873 img loss 1.240633487701416 img loss 1.2527798414230347 img loss 1.2594549655914307 img loss 1.2498525381088257 img loss 1.2311384677886963 img loss 1.222564697265625 img loss 1.257543921470642 img loss 1.2059391736984253 img loss 1.2480015754699707 img loss 1.2345198392868042 img loss 1.2272685766220093 img loss 1.2274302244186401 img loss 1.2617820501327515 img loss 1.3058514595031738 img loss 1.2928390502929688 img loss 1.2763389348983765 img loss 1.259264588356018 img loss 1.315142273902893 img loss 1.1535032987594604 img loss 1.3371806144714355 img loss 1.1891531944274902 img loss 1.2394330501556396 img loss 1.2437496185302734 img loss 1.266763687133789 img loss 1.256151556968689 img loss 1.2409757375717163 img loss 1.1754801273345947 img loss 1.2246865034103394 img loss 1.14371919631958 img loss 1.1753673553466797 img loss 1.233620285987854 img loss 1.228286623954773 img loss 1.221172571182251 img loss 1.2333238124847412 img loss 1.2183703184127808 img loss 1.323462963104248 img loss 1.183612585067749 img loss 1.2645034790039062 img loss 1.2278530597686768 img loss 1.2575315237045288img loss 1.2574676275253296 img loss 1.2498785257339478 img loss 1.257810115814209 img loss 1.2137959003448486 img loss 1.2424440383911133 img loss 1.2442578077316284 img loss 1.1781333684921265 img loss 1.2344517707824707 img loss 1.2489984035491943 img loss 1.2589555978775024 img loss 1.233420729637146 img loss 1.2134265899658203 img loss 1.2949165105819702 img loss 1.3053903579711914 img loss 1.2129871845245361 img loss 1.354128360748291 img loss 1.213179111480713 img loss 1.2489913702011108 img loss 1.1493563652038574 img loss 1.1454277038574219 img loss 1.3042389154434204 img loss 1.1431138515472412 img loss 1.2316040992736816 img loss 1.2762415409088135 img loss 1.226806640625 img loss 1.1862144470214844 img loss 1.230948805809021 img loss 1.3533835411071777 img loss 1.2545292377471924 img loss 1.2131870985031128 img loss 1.1733988523483276 img loss 1.1707069873809814 img loss 1.23137366771698 img loss 1.2351595163345337 img loss 1.2474162578582764 img loss 1.2255778312683105 img loss 1.3018935918807983 img loss 1.1449085474014282 img loss 1.182311773300171 img loss 1.261757254600525 img loss 1.2243200540542603 img loss 1.206902027130127 img loss 1.210937738418579 img loss 1.2142246961593628 img loss 1.2575905323028564 img loss 1.222320556640625 img loss 1.2477188110351562 img loss 1.2716416120529175 img loss 1.2427247762680054 img loss 1.2563745975494385 img loss 1.1896076202392578 img loss 1.2171540260314941 img loss 1.2082324028015137 {'loss': 1.2352, 'grad_norm': 0.29907509684562683, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2334569692611694 img loss 1.4251840114593506 img loss 1.3601021766662598 img loss 1.269711971282959 img loss 1.3864415884017944 img loss 1.2793774604797363 img loss 1.3051836490631104 img loss 1.2493133544921875 img loss 1.2739818096160889 img loss 1.266181230545044 img loss 1.2631763219833374 img loss 1.3381167650222778 img loss 1.3479875326156616 img loss 1.3718088865280151 img loss 1.283029317855835 img loss 1.258852481842041 img loss 1.255323886871338 img loss 1.2318758964538574 img loss 1.2624413967132568 img loss 1.321495532989502 img loss 1.346946358680725 img loss 1.3230397701263428 img loss 1.364152193069458 img loss 1.2893941402435303 img loss 1.3835569620132446 img loss 1.282930612564087 img loss 1.4409259557724 img loss 1.2493765354156494 img loss 1.2658374309539795 img loss 1.3180999755859375 img loss 1.3272672891616821 img loss 1.2763899564743042 img loss 1.3077123165130615 img loss 1.293204665184021 img loss 1.2082839012145996 img loss 1.29288911819458 img loss 1.3756051063537598 img loss 1.4427253007888794 img loss 1.2585558891296387 img loss 1.285801887512207 img loss 1.2980077266693115 img loss 1.2516353130340576 img loss 1.3233686685562134 img loss 1.4598548412322998 img loss 1.3255525827407837 img loss 1.343551516532898 img loss 1.4026819467544556 img loss 1.3377821445465088 img loss 1.3140926361083984 img loss 1.2894630432128906 img loss 1.2941312789916992 img loss 1.2346611022949219 img loss 1.2624218463897705 img loss 1.4045668840408325 img loss 1.2915496826171875 img loss 1.34548020362854 img loss 1.373216152191162 img loss 1.3598917722702026 img loss 1.2922700643539429 img loss 1.3386670351028442 img loss 1.2656800746917725 img loss 1.2541583776474 img loss 1.2630724906921387 img loss 1.2895934581756592 img loss 1.3025896549224854 img loss 1.3259594440460205 img loss 1.199259638786316 img loss 1.314270257949829 img loss 1.244779109954834 img loss 1.3899016380310059 img loss 1.3314964771270752 img loss 1.2160581350326538 img loss 1.269829273223877 img loss 1.4094655513763428 img loss 1.34093177318573 img loss 1.2681583166122437 img loss 1.3560320138931274 img loss 1.2954812049865723 img loss 1.2416565418243408 img loss 1.4256712198257446 img loss 1.2802385091781616 img loss 1.305855631828308 img loss 1.299681305885315 img loss 1.3532341718673706 img loss 1.22214674949646 img loss 1.2911858558654785 img loss 1.3283621072769165 img loss 1.415859580039978 img loss 1.304807186126709 img loss 1.4170385599136353 img loss 1.2280384302139282 img loss 1.3519415855407715 img loss 1.3552418947219849 img loss 1.2470929622650146 img loss 1.2872540950775146 img loss 1.3355603218078613 img loss 1.2944711446762085 img loss 1.3129534721374512 img loss 1.3300657272338867 img loss 1.420134425163269 img loss 1.391226887702942 img loss 1.300047755241394 img loss 1.306067705154419 img loss 1.3583776950836182 img loss 1.2887380123138428 img loss 1.4851292371749878 img loss 1.2109098434448242 img loss 1.300942063331604 img loss 1.3307275772094727 img loss 1.354835033416748 img loss 1.3289680480957031 img loss 1.3351060152053833 img loss 1.2271695137023926 img loss 1.3007292747497559 img loss 1.288323163986206 img loss 1.3460381031036377 img loss 1.262290358543396 img loss 1.3456742763519287 img loss 1.3070391416549683 img loss 1.244750738143921 img loss 1.3432503938674927 img loss 1.3240326642990112 img loss 1.30760657787323 img loss 1.325453519821167 img loss 1.2091615200042725 img loss 1.2990150451660156 img loss 1.2686283588409424 img loss 1.3326247930526733 {'loss': 1.3122, 'grad_norm': 0.3306964039802551, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3126314878463745 img loss 1.2847470045089722 img loss 1.3206852674484253 img loss 1.311570644378662 img loss 1.3498425483703613 img loss 1.2573457956314087 img loss 1.2720043659210205 img loss 1.3303016424179077 img loss 1.349483847618103 img loss 1.3433587551116943 img loss 1.3419468402862549 img loss 1.2500331401824951 img loss 1.295798897743225 img loss 1.3093302249908447 img loss 1.3707420825958252 img loss 1.338945746421814 img loss 1.304135799407959 img loss 1.3118784427642822 img loss 1.2557446956634521 img loss 1.3367351293563843 img loss 1.2743046283721924 img loss 1.2781422138214111 img loss 1.2535712718963623 img loss 1.379112720489502 img loss 1.3240476846694946 img loss 1.3436187505722046 img loss 1.4165178537368774 img loss 1.2662203311920166 img loss 1.2697367668151855 img loss 1.2993474006652832 img loss 1.3311964273452759 img loss 1.2764477729797363 img loss 1.2856537103652954 img loss 1.269989252090454 img loss 1.236632227897644 img loss 1.2864367961883545 img loss 1.4257065057754517 img loss 1.3540810346603394 img loss 1.274512767791748 img loss 1.336190104484558img loss 1.2930020093917847 img loss 1.3659605979919434 img loss 1.2865206003189087 img loss 1.3008453845977783 img loss 1.325451135635376 img loss 1.314056158065796 img loss 1.282080054283142 img loss 1.3087425231933594 img loss 1.2875924110412598 img loss 1.2649444341659546 img loss 1.270849585533142 img loss 1.3685063123703003 img loss 1.3760007619857788 img loss 1.2790329456329346 img loss 1.2611585855484009 img loss 1.3734074831008911 img loss 1.3408491611480713 img loss 1.309975504875183 img loss 1.2862250804901123 img loss 1.3524048328399658 img loss 1.3956987857818604 img loss 1.3243120908737183 img loss 1.310646414756775 img loss 1.2897335290908813 img loss 1.295285701751709 img loss 1.3659453392028809 img loss 1.2760952711105347 img loss 1.3425495624542236 img loss 1.3282402753829956 img loss 1.2614437341690063 img loss 1.3132603168487549 img loss 1.3712124824523926 img loss 1.3999582529067993 img loss 1.336802363395691 img loss 1.261220932006836 img loss 1.2948997020721436 img loss 1.2398194074630737 img loss 1.2528806924819946 img loss 1.3280123472213745 img loss 1.30584716796875 img loss 1.2853018045425415 img loss 1.3476216793060303 img loss 1.3843804597854614 img loss 1.3235864639282227 img loss 1.26284658908844 img loss 1.2780518531799316 img loss 1.249032735824585 img loss 1.4175721406936646 img loss 1.2608730792999268 img loss 1.392322063446045 img loss 1.2545323371887207 img loss 1.315245509147644 img loss 1.3688281774520874 img loss 1.3490831851959229 img loss 1.361173391342163 img loss 1.2541007995605469 img loss 1.29570734500885 img loss 1.3258289098739624 img loss 1.250585913658142 img loss 1.2680468559265137 img loss 1.3011516332626343 img loss 1.376542568206787 img loss 1.2917789220809937 img loss 1.3528714179992676 img loss 1.4348751306533813 img loss 1.3175197839736938 img loss 1.3330531120300293 img loss 1.3772594928741455 img loss 1.2584670782089233 img loss 1.4182037115097046 img loss 1.2703207731246948 img loss 1.2732651233673096 img loss 1.3559879064559937 img loss 1.281391978263855 img loss 1.2756662368774414 img loss 1.1395832300186157 img loss 1.2008827924728394 img loss 1.3169372081756592 img loss 1.2833704948425293 img loss 1.302164077758789 img loss 1.3361424207687378 img loss 1.3009121417999268 img loss 1.2366657257080078 img loss 1.3467191457748413 img loss 1.2094424962997437 img loss 1.291327953338623 img loss 1.3598977327346802 img loss 1.2873725891113281 {'loss': 1.3105, 'grad_norm': 0.3274041414260864, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.2243025302886963 img loss 1.2835718393325806 img loss 1.1960777044296265 img loss 1.2803912162780762 img loss 1.1705281734466553 img loss 1.2186882495880127 img loss 1.1850780248641968 img loss 1.1377264261245728 img loss 1.2850921154022217 img loss 1.2317408323287964 img loss 1.2758125066757202 img loss 1.2683788537979126 img loss 1.2189394235610962 img loss 1.2846568822860718 img loss 1.2811870574951172 img loss 1.180232286453247 img loss 1.19474196434021 img loss 1.1587835550308228 img loss 1.1588668823242188 img loss 1.2670542001724243 img loss 1.1927603483200073 img loss 1.2143443822860718 img loss 1.2010847330093384 img loss 1.1629739999771118 img loss 1.3027706146240234 img loss 1.1426286697387695 img loss 1.1416267156600952 img loss 1.232432246208191 img loss 1.22975492477417 img loss 1.2738516330718994 img loss 1.2063144445419312 img loss 1.2015348672866821 img loss 1.2270246744155884 img loss 1.2738325595855713 img loss 1.2096965312957764 img loss 1.2311800718307495 img loss 1.2071024179458618 img loss 1.1807029247283936 img loss 1.2137635946273804 img loss 1.1953846216201782 img loss 1.1655278205871582 img loss 1.3605812788009644img loss 1.2405669689178467 img loss 1.229227066040039 img loss 1.1882520914077759 img loss 1.22835111618042 img loss 1.141387939453125 img loss 1.2486423254013062 img loss 1.1543859243392944 img loss 1.2240318059921265 img loss 1.1590781211853027 img loss 1.3121373653411865 img loss 1.1885414123535156 img loss 1.200575828552246 img loss 1.1467952728271484 img loss 1.2110925912857056 img loss 1.1679763793945312 img loss 1.2220653295516968 img loss 1.1745914220809937 img loss 1.2649495601654053 img loss 1.1544480323791504 img loss 1.275015115737915 img loss 1.1835545301437378 img loss 1.2618831396102905 img loss 1.1489530801773071 img loss 1.173166036605835 img loss 1.2542434930801392 img loss 1.1834293603897095 img loss 1.164750337600708 img loss 1.144830584526062 img loss 1.1825785636901855 img loss 1.1098841428756714 img loss 1.2648999691009521 img loss 1.1462711095809937 img loss 1.1872327327728271 img loss 1.1814401149749756 img loss 1.1575016975402832 img loss 1.1375313997268677 img loss 1.327837347984314 img loss 1.1928189992904663 img loss 1.2243995666503906 img loss 1.222987413406372 img loss 1.0767782926559448 img loss 1.312260627746582 img loss 1.2536038160324097 img loss 1.2003388404846191 img loss 1.2345472574234009 img loss 1.1002804040908813 img loss 1.2101128101348877 img loss 1.2312946319580078 img loss 1.2137845754623413 img loss 1.179314374923706 img loss 1.1790657043457031 img loss 1.238573431968689 img loss 1.2463291883468628 img loss 1.1811461448669434 img loss 1.1946417093276978 img loss 1.2208722829818726 img loss 1.2190698385238647 img loss 1.2375208139419556 img loss 1.247741460800171 img loss 1.1427768468856812 img loss 1.2256958484649658 img loss 1.2521510124206543 img loss 1.1443917751312256 img loss 1.1790107488632202 img loss 1.2318180799484253 img loss 1.1994376182556152 img loss 1.2094931602478027 img loss 1.2029449939727783 img loss 1.1588104963302612 img loss 1.2152957916259766 img loss 1.2094435691833496 img loss 1.3265119791030884 img loss 1.1568140983581543 img loss 1.2334949970245361 img loss 1.1307541131973267 img loss 1.215627908706665img loss 1.1732012033462524img loss 1.1938787698745728 img loss 1.2121491432189941 img loss 1.2216887474060059 img loss 1.2270686626434326 img loss 1.2241714000701904 img loss 1.1441609859466553 img loss 1.1485037803649902 img loss 1.1700644493103027 img loss 1.2588138580322266 {'loss': 1.2081, 'grad_norm': 0.21281810104846954, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.4668015241622925 img loss 1.4258511066436768 img loss 1.4627188444137573 img loss 1.3581888675689697 img loss 1.349402904510498 img loss 1.5842331647872925 img loss 1.4416308403015137 img loss 1.3212411403656006 img loss 1.4400343894958496 img loss 1.3628208637237549 img loss 1.409519910812378 img loss 1.3923965692520142 img loss 1.3853610754013062 img loss 1.5017417669296265 img loss 1.6195491552352905 img loss 1.4607731103897095 img loss 1.28180730342865 img loss 1.4517713785171509 img loss 1.3116812705993652 img loss 1.4748097658157349 img loss 1.392607569694519 img loss 1.3615643978118896 img loss 1.4372780323028564 img loss 1.4154726266860962 img loss 1.4084912538528442 img loss 1.212921380996704 img loss 1.3622145652770996 img loss 1.5074571371078491 img loss 1.3932554721832275 img loss 1.4704926013946533 img loss 1.5484338998794556 img loss 1.4167753458023071 img loss 1.2772901058197021 img loss 1.423278570175171 img loss 1.4496430158615112 img loss 1.3896008729934692 img loss 1.4052612781524658 img loss 1.6020787954330444 img loss 1.3055098056793213 img loss 1.537277340888977 img loss 1.3810995817184448 img loss 1.4818586111068726 img loss 1.5006223917007446 img loss 1.4412673711776733 img loss 1.4742587804794312 img loss 1.4185292720794678 img loss 1.4362711906433105 img loss 1.3359196186065674 img loss 1.3539658784866333 img loss 1.4901916980743408 img loss 1.4492380619049072 img loss 1.3775519132614136 img loss 1.3901005983352661 img loss 1.4705137014389038 img loss 1.4258860349655151 img loss 1.401955246925354 img loss 1.4326223134994507 img loss 1.3984816074371338 img loss 1.4770405292510986 img loss 1.285689353942871 img loss 1.4277065992355347 img loss 1.4875720739364624 img loss 1.3959394693374634 img loss 1.5017777681350708 img loss 1.403510332107544 img loss 1.4076511859893799 img loss 1.4907430410385132 img loss 1.4256540536880493 img loss 1.3768924474716187 img loss 1.6419717073440552 img loss 1.358444333076477 img loss 1.3727052211761475 img loss 1.460649847984314 img loss 1.2700504064559937 img loss 1.5808842182159424 img loss 1.4510470628738403 img loss 1.4798489809036255 img loss 1.5644131898880005 img loss 1.4914149045944214 img loss 1.438034176826477 img loss 1.4202933311462402 img loss 1.356728196144104 img loss 1.4222773313522339 img loss 1.4230992794036865 img loss 1.3978571891784668 img loss 1.3848799467086792 img loss 1.4094364643096924 img loss 1.4105103015899658 img loss 1.4078787565231323 img loss 1.4650079011917114 img loss 1.5375440120697021 img loss 1.470345139503479 img loss 1.4028925895690918 img loss 1.4815541505813599 img loss 1.3518112897872925 img loss 1.5411494970321655 img loss 1.5553231239318848 img loss 1.4033615589141846 img loss 1.4431155920028687 img loss 1.502947211265564 img loss 1.5017683506011963img loss 1.5358752012252808 img loss 1.4351211786270142 img loss 1.380916714668274 img loss 1.4060674905776978 img loss 1.4344946146011353 img loss 1.4953434467315674 img loss 1.382535457611084 img loss 1.3799738883972168 img loss 1.4643086194992065 img loss 1.577644944190979 img loss 1.397381067276001 img loss 1.3951733112335205 img loss 1.5107945203781128 img loss 1.4185816049575806 img loss 1.490918517112732 img loss 1.3939001560211182 img loss 1.5131059885025024 img loss 1.463793396949768 img loss 1.3720622062683105 img loss 1.4237035512924194 img loss 1.481351375579834 img loss 1.538489818572998 img loss 1.4474613666534424 img loss 1.466408371925354 img loss 1.5498754978179932 img loss 1.41604483127594 img loss 1.423324704170227 {'loss': 1.4356, 'grad_norm': 0.22016674280166626, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.0851809978485107 img loss 1.2519632577896118 img loss 1.2311664819717407 img loss 1.1457732915878296 img loss 1.2042549848556519 img loss 1.2260525226593018 img loss 1.3088029623031616 img loss 1.3121604919433594 img loss 1.2208058834075928 img loss 1.2426562309265137 img loss 1.289005160331726 img loss 1.2817559242248535 img loss 1.1447738409042358 img loss 1.2165236473083496 img loss 1.2476365566253662 img loss 1.193156123161316 img loss 1.1656960248947144 img loss 1.18613600730896 img loss 1.1739946603775024 img loss 1.275944709777832 img loss 1.2416538000106812 img loss 1.1777398586273193 img loss 1.1667941808700562 img loss 1.193846583366394 img loss 1.1517059803009033 img loss 1.1836583614349365 img loss 1.2714632749557495 img loss 1.1638504266738892 img loss 1.2611926794052124 img loss 1.2956780195236206 img loss 1.1665118932724 img loss 1.2094389200210571 img loss 1.214458703994751 img loss 1.322311282157898 img loss 1.2327802181243896 img loss 1.2078739404678345 img loss 1.2821234464645386 img loss 1.1799567937850952 img loss 1.2803590297698975 img loss 1.2204669713974 img loss 1.216742992401123 img loss 1.1703376770019531 img loss 1.3311337232589722 img loss 1.1708719730377197 img loss 1.1062208414077759 img loss 1.17938232421875 img loss 1.2031099796295166 img loss 1.290781855583191 img loss 1.1717745065689087 img loss 1.1856534481048584 img loss 1.2084884643554688 img loss 1.2044318914413452 img loss 1.1941354274749756 img loss 1.209337830543518 img loss 1.247697114944458 img loss 1.2408642768859863 img loss 1.2383149862289429 img loss 1.2204643487930298 img loss 1.1758712530136108 img loss 1.0802083015441895 img loss 1.2362990379333496 img loss 1.1784167289733887 img loss 1.1957740783691406 img loss 1.144587755203247 img loss 1.2686131000518799 img loss 1.2335132360458374 img loss 1.124918818473816 img loss 1.145824909210205 img loss 1.1997618675231934 img loss 1.1901260614395142 img loss 1.2527507543563843 img loss 1.20363187789917 img loss 1.1299809217453003 img loss 1.2314165830612183 img loss 1.1459226608276367 img loss 1.203643560409546 img loss 1.1459095478057861 img loss 1.2146984338760376 img loss 1.1692264080047607 img loss 1.1313531398773193 img loss 1.2051613330841064 img loss 1.1736873388290405 img loss 1.169500708580017 img loss 1.2211847305297852 img loss 1.2245941162109375 img loss 1.2480425834655762 img loss 1.1639666557312012 img loss 1.2023658752441406 img loss 1.2727097272872925 img loss 1.2004607915878296 img loss 1.1834415197372437 img loss 1.2311420440673828 img loss 1.2766748666763306 img loss 1.160193681716919 img loss 1.219846487045288 img loss 1.2533060312271118 img loss 1.2234963178634644 img loss 1.284313678741455 img loss 1.1371625661849976 img loss 1.2149091958999634 img loss 1.205053687095642 img loss 1.3085951805114746 img loss 1.2267510890960693 img loss 1.2824922800064087 img loss 1.1593159437179565 img loss 1.2155194282531738 img loss 1.1906449794769287 img loss 1.24094557762146 img loss 1.279726266860962 img loss 1.2052221298217773 img loss 1.2774852514266968 img loss 1.1604423522949219 img loss 1.169930338859558 img loss 1.2532403469085693 img loss 1.1689426898956299 img loss 1.2045131921768188 img loss 1.284330129623413 img loss 1.1713616847991943 img loss 1.247514009475708 img loss 1.1570595502853394 img loss 1.1406326293945312 img loss 1.2321842908859253 img loss 1.218504548072815 img loss 1.2398650646209717 img loss 1.2091947793960571 img loss 1.2304532527923584 img loss 1.153276801109314 img loss 1.28019118309021 {'loss': 1.2109, 'grad_norm': 0.19579379260540009, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.3285975456237793 img loss 1.29998779296875 img loss 1.386387586593628 img loss 1.4685661792755127 img loss 1.359423279762268 img loss 1.377104640007019 img loss 1.514366865158081 img loss 1.4756816625595093 img loss 1.4603163003921509 img loss 1.335161566734314 img loss 1.4073582887649536 img loss 1.5708537101745605 img loss 1.324899435043335 img loss 1.3940423727035522 img loss 1.440175175666809 img loss 1.4062775373458862 img loss 1.407390832901001 img loss 1.3383876085281372 img loss 1.3521603345870972 img loss 1.2877416610717773 img loss 1.3099453449249268 img loss 1.41069495677948 img loss 1.3768420219421387 img loss 1.3087128400802612 img loss 1.460561990737915 img loss 1.3467451333999634 img loss 1.4154486656188965 img loss 1.3478407859802246 img loss 1.3115479946136475 img loss 1.4772413969039917 img loss 1.468605399131775 img loss 1.4350665807724 img loss 1.4354195594787598 img loss 1.370857834815979 img loss 1.3294190168380737 img loss 1.2618392705917358 img loss 1.339648723602295 img loss 1.463183879852295 img loss 1.2889738082885742 img loss 1.432849645614624 img loss 1.4512383937835693 img loss 1.4475808143615723 img loss 1.3962849378585815 img loss 1.5149861574172974 img loss 1.2808456420898438 img loss 1.4577761888504028 img loss 1.3245179653167725 img loss 1.4142857789993286 img loss 1.4344013929367065 img loss 1.3048756122589111 img loss 1.4437774419784546 img loss 1.4168851375579834 img loss 1.44663405418396 img loss 1.3848834037780762 img loss 1.3419814109802246 img loss 1.4148632287979126 img loss 1.4075796604156494 img loss 1.5141236782073975 img loss 1.360771656036377 img loss 1.327572226524353 img loss 1.4109770059585571 img loss 1.3894010782241821 img loss 1.399188756942749 img loss 1.3054977655410767 img loss 1.3621516227722168 img loss 1.4028894901275635 img loss 1.4094547033309937 img loss 1.2953472137451172 img loss 1.3637036085128784 img loss 1.3634493350982666 img loss 1.4428941011428833 img loss 1.350601315498352 img loss 1.3000636100769043 img loss 1.4202405214309692 img loss 1.4286640882492065 img loss 1.4379721879959106 img loss 1.2836884260177612 img loss 1.3959254026412964 img loss 1.3358525037765503 img loss 1.501067876815796 img loss 1.386630654335022 img loss 1.3700894117355347 img loss 1.4160202741622925 img loss 1.4740941524505615 img loss 1.3206325769424438 img loss 1.4297853708267212 img loss 1.3426109552383423 img loss 1.3955814838409424 img loss 1.5160877704620361 img loss 1.3419805765151978 img loss 1.3696483373641968 img loss 1.4139350652694702 img loss 1.3952277898788452 img loss 1.4614359140396118 img loss 1.301727294921875 img loss 1.3601917028427124 img loss 1.4655247926712036 img loss 1.3604623079299927 img loss 1.4641096591949463 img loss 1.3522346019744873 img loss 1.3662968873977661 img loss 1.4306076765060425 img loss 1.2772136926651 img loss 1.3228724002838135 img loss 1.3223981857299805 img loss 1.3992756605148315 img loss 1.444466471672058 img loss 1.4519048929214478 img loss 1.3801846504211426 img loss 1.2831026315689087 img loss 1.4048612117767334 img loss 1.382934331893921 img loss 1.4706224203109741 img loss 1.3304742574691772 img loss 1.3642175197601318 img loss 1.2867488861083984 img loss 1.3271749019622803 img loss 1.3778647184371948 img loss 1.3813239336013794 img loss 1.4715092182159424 img loss 1.374794602394104 img loss 1.3219836950302124 img loss 1.3553364276885986 img loss 1.2736209630966187 img loss 1.3852564096450806 img loss 1.444110631942749 img loss 1.401957392692566 img loss 1.4080116748809814 {'loss': 1.3874, 'grad_norm': 0.2682829797267914, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.23509681224823 img loss 1.2255189418792725 img loss 1.2727470397949219 img loss 1.2061052322387695 img loss 1.3039697408676147 img loss 1.2446430921554565 img loss 1.1865990161895752 img loss 1.2411593198776245 img loss 1.250940203666687 img loss 1.3534749746322632 img loss 1.294370174407959 img loss 1.2883319854736328 img loss 1.2491090297698975 img loss 1.2201136350631714 img loss 1.23859441280365 img loss 1.2153527736663818 img loss 1.1620097160339355 img loss 1.2121654748916626 img loss 1.297422170639038 img loss 1.2804049253463745 img loss 1.2110416889190674 img loss 1.2907284498214722 img loss 1.2628281116485596 img loss 1.1848608255386353 img loss 1.2164472341537476 img loss 1.2623727321624756 img loss 1.3085517883300781 img loss 1.177337408065796 img loss 1.2127337455749512 img loss 1.231580138206482 img loss 1.2572494745254517 img loss 1.2548065185546875 img loss 1.210488200187683 img loss 1.305708408355713 img loss 1.2223316431045532 img loss 1.257859706878662 img loss 1.2157341241836548 img loss 1.2206076383590698 img loss 1.2658474445343018 img loss 1.1641076803207397 img loss 1.254525065422058 img loss 1.3637508153915405 img loss 1.2722930908203125 img loss 1.2125208377838135 img loss 1.2694664001464844 img loss 1.1971195936203003 img loss 1.1757175922393799 img loss 1.2674834728240967 img loss 1.2849833965301514 img loss 1.2176175117492676 img loss 1.2537734508514404 img loss 1.2056572437286377 img loss 1.279693603515625img loss 1.2453047037124634 img loss 1.2325756549835205 img loss 1.2108216285705566 img loss 1.2433685064315796 img loss 1.2721266746520996 img loss 1.2178537845611572 img loss 1.2779546976089478 img loss 1.2922366857528687 img loss 1.3020871877670288 img loss 1.225872278213501 img loss 1.2440507411956787 img loss 1.1613677740097046 img loss 1.1871076822280884 img loss 1.2293224334716797 img loss 1.2422714233398438 img loss 1.2347303628921509 img loss 1.2227783203125 img loss 1.2500529289245605 img loss 1.2407584190368652 img loss 1.2110971212387085 img loss 1.3207495212554932 img loss 1.2621303796768188 img loss 1.2697399854660034 img loss 1.2302982807159424 img loss 1.2179583311080933 img loss 1.2394605875015259 img loss 1.2940784692764282 img loss 1.1916999816894531 img loss 1.1649181842803955 img loss 1.3171658515930176 img loss 1.2579083442687988 img loss 1.2585595846176147 img loss 1.2628231048583984 img loss 1.2291535139083862 img loss 1.2407684326171875 img loss 1.2132066488265991 img loss 1.2011773586273193 img loss 1.2136543989181519 img loss 1.299604892730713 img loss 1.2565830945968628 img loss 1.2782617807388306 img loss 1.291159987449646 img loss 1.268593430519104 img loss 1.203283667564392 img loss 1.2207075357437134 img loss 1.224529504776001 img loss 1.222055435180664 img loss 1.314592957496643 img loss 1.2479654550552368 img loss 1.206506371498108 img loss 1.2382464408874512 img loss 1.2981325387954712 img loss 1.3051918745040894 img loss 1.1906450986862183 img loss 1.2144787311553955 img loss 1.2721353769302368 img loss 1.235870361328125 img loss 1.213785171508789 img loss 1.1723051071166992 img loss 1.3115482330322266 img loss 1.1765379905700684 img loss 1.203016996383667 img loss 1.1944283246994019 img loss 1.2470813989639282 img loss 1.2662405967712402 img loss 1.244483232498169 img loss 1.315664291381836 img loss 1.1935813426971436 img loss 1.193845510482788 img loss 1.176560640335083 img loss 1.2844345569610596 img loss 1.2860134840011597 img loss 1.2656400203704834 img loss 1.2873783111572266 img loss 1.3238787651062012 {'loss': 1.2441, 'grad_norm': 0.26577070355415344, 'learning_rate': 0.0001, 'epoch': 0.25} img loss 1.494805932044983 img loss 1.3719066381454468 img loss 1.341115117073059 img loss 1.4499812126159668 img loss 1.3971182107925415 img loss 1.3728560209274292 img loss 1.3969625234603882 img loss 1.4570286273956299 img loss 1.3095145225524902 img loss 1.40846586227417 img loss 1.5650025606155396 img loss 1.3511556386947632 img loss 1.3431298732757568 img loss 1.3692326545715332 img loss 1.352677583694458 img loss 1.349444031715393 img loss 1.4104386568069458 img loss 1.2802412509918213 img loss 1.443946123123169 img loss 1.5348995923995972 img loss 1.4293859004974365 img loss 1.298221230506897 img loss 1.4127376079559326 img loss 1.3141587972640991 img loss 1.5124274492263794 img loss 1.4490561485290527 img loss 1.365485668182373 img loss 1.3535192012786865 img loss 1.3159443140029907 img loss 1.347586989402771 img loss 1.4426161050796509 img loss 1.371984839439392 img loss 1.4142688512802124img loss 1.2824596166610718 img loss 1.4141851663589478 img loss 1.3337804079055786 img loss 1.4255486726760864 img loss 1.3782047033309937 img loss 1.3549996614456177 img loss 1.3617206811904907 img loss 1.3790920972824097 img loss 1.4422706365585327 img loss 1.5002347230911255 img loss 1.3281437158584595 img loss 1.4418476819992065 img loss 1.3911536931991577 img loss 1.2856343984603882 img loss 1.481189250946045 img loss 1.410139799118042 img loss 1.3734740018844604 img loss 1.2466931343078613 img loss 1.4538487195968628 img loss 1.4243524074554443 img loss 1.4704906940460205 img loss 1.5453420877456665 img loss 1.377360463142395 img loss 1.294067621231079 img loss 1.3786457777023315 img loss 1.439730167388916 img loss 1.3645102977752686 img loss 1.4165135622024536 img loss 1.4468625783920288 img loss 1.392444133758545 img loss 1.4294707775115967 img loss 1.3793690204620361 img loss 1.311989665031433 img loss 1.3551865816116333 img loss 1.4295071363449097 img loss 1.3748929500579834 img loss 1.3019044399261475 img loss 1.3774305582046509 img loss 1.4093886613845825 img loss 1.3813647031784058 img loss 1.362008810043335 img loss 1.4755524396896362 img loss 1.378712773323059 img loss 1.5235857963562012 img loss 1.299615502357483 img loss 1.3562947511672974 img loss 1.3829902410507202 img loss 1.4300177097320557 img loss 1.3041385412216187 img loss 1.421032428741455 img loss 1.3021066188812256 img loss 1.2896469831466675 img loss 1.5284594297409058 img loss 1.3393254280090332 img loss 1.440079927444458 img loss 1.4556996822357178 img loss 1.4903109073638916 img loss 1.2493019104003906 img loss 1.315598964691162 img loss 1.3882180452346802 img loss 1.4753426313400269 img loss 1.418515682220459 img loss 1.342510461807251 img loss 1.3667012453079224 img loss 1.407317042350769 img loss 1.3084940910339355 img loss 1.25278902053833 img loss 1.5220075845718384 img loss 1.2673532962799072 img loss 1.3253635168075562 img loss 1.411312222480774 img loss 1.4683276414871216 img loss 1.32706618309021 img loss 1.4079118967056274 img loss 1.367602825164795 img loss 1.3762363195419312 img loss 1.3043583631515503 img loss 1.3656753301620483 img loss 1.3019464015960693 img loss 1.2778923511505127 img loss 1.3939824104309082 img loss 1.4041893482208252 img loss 1.5806761980056763 img loss 1.4060014486312866 img loss 1.4570419788360596 img loss 1.4132925271987915 img loss 1.4299019575119019 img loss 1.326228141784668 img loss 1.332540512084961 img loss 1.3915964365005493 img loss 1.2202099561691284 img loss 1.433447003364563 img loss 1.4181753396987915 img loss 1.3254141807556152 img loss 1.44991135597229 {'loss': 1.3877, 'grad_norm': 0.3368811011314392, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.565395474433899 img loss 1.3711504936218262 img loss 1.4821149110794067 img loss 1.5002139806747437 img loss 1.4874327182769775 img loss 1.403135061264038 img loss 1.4602092504501343 img loss 1.4831805229187012 img loss 1.353654146194458 img loss 1.4919428825378418 img loss 1.5493807792663574 img loss 1.4567292928695679 img loss 1.3505101203918457 img loss 1.4374552965164185 img loss 1.2654592990875244 img loss 1.4666073322296143 img loss 1.5805894136428833 img loss 1.6221331357955933 img loss 1.5443050861358643 img loss 1.3800463676452637 img loss 1.5994105339050293 img loss 1.684618353843689 img loss 1.5320802927017212 img loss 1.487824559211731 img loss 1.4490625858306885 img loss 1.477367877960205 img loss 1.498759150505066 img loss 1.624362587928772 img loss 1.5228337049484253 img loss 1.5055221319198608 img loss 1.4319461584091187 img loss 1.51371431350708 img loss 1.3629957437515259 img loss 1.4345823526382446 img loss 1.4162205457687378 img loss 1.4964433908462524 img loss 1.4885426759719849 img loss 1.467278003692627 img loss 1.5053421258926392 img loss 1.5194727182388306 img loss 1.506946086883545 img loss 1.5089229345321655 img loss 1.7399473190307617 img loss 1.475633144378662 img loss 1.4249794483184814 img loss 1.4527513980865479 img loss 1.4035035371780396 img loss 1.4657820463180542 img loss 1.4909123182296753 img loss 1.4031373262405396 img loss 1.548682451248169 img loss 1.563218355178833 img loss 1.466071367263794 img loss 1.5274510383605957 img loss 1.424730896949768 img loss 1.4075556993484497 img loss 1.421619176864624 img loss 1.295871615409851 img loss 1.440867304801941 img loss 1.5319651365280151 img loss 1.563370943069458 img loss 1.4217365980148315 img loss 1.4875807762145996 img loss 1.4458730220794678 img loss 1.4863516092300415 img loss 1.566839575767517 img loss 1.4322640895843506 img loss 1.4291962385177612 img loss 1.513781189918518 img loss 1.5207644701004028 img loss 1.4520078897476196 img loss 1.4116195440292358 img loss 1.5244261026382446 img loss 1.420427680015564 img loss 1.394214391708374 img loss 1.4089771509170532 img loss 1.4623550176620483 img loss 1.6302945613861084 img loss 1.6257251501083374 img loss 1.4822709560394287 img loss 1.4010682106018066 img loss 1.4514095783233643 img loss 1.4846844673156738 img loss 1.5077122449874878 img loss 1.4622801542282104 img loss 1.3271738290786743 img loss 1.4562485218048096 img loss 1.6378099918365479 img loss 1.5726288557052612 img loss 1.4661955833435059 img loss 1.475515604019165 img loss 1.3991960287094116 img loss 1.4817661046981812 img loss 1.5997557640075684 img loss 1.5043431520462036 img loss 1.4741159677505493 img loss 1.544262170791626 img loss 1.5173296928405762 img loss 1.5327409505844116 img loss 1.4719330072402954 img loss 1.5306397676467896 img loss 1.4955240488052368 img loss 1.4230573177337646 img loss 1.3988242149353027 img loss 1.3676344156265259 img loss 1.4147131443023682 img loss 1.508309006690979 img loss 1.3957277536392212 img loss 1.5959419012069702 img loss 1.3085554838180542 img loss 1.5692888498306274 img loss 1.508909821510315 img loss 1.5135471820831299 img loss 1.4509594440460205 img loss 1.4932278394699097 img loss 1.5075680017471313 img loss 1.5386964082717896 img loss 1.4034229516983032 img loss 1.4219101667404175 img loss 1.498745322227478 img loss 1.4532550573349 img loss 1.6431387662887573 img loss 1.500863790512085 img loss 1.5408225059509277 img loss 1.4703541994094849 img loss 1.5203958749771118 img loss 1.7418508529663086 img loss 1.4263532161712646 {'loss': 1.4833, 'grad_norm': 0.4361135959625244, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.155538558959961 img loss 1.267062783241272 img loss 1.1858259439468384 img loss 1.3213982582092285 img loss 1.2926697731018066 img loss 1.2530421018600464 img loss 1.2219880819320679 img loss 1.1784123182296753 img loss 1.2381527423858643 img loss 1.0812585353851318 img loss 1.2086853981018066 img loss 1.265085220336914 img loss 1.1938908100128174 img loss 1.3221467733383179 img loss 1.1977771520614624 img loss 1.2377662658691406 img loss 1.2681732177734375 img loss 1.2409694194793701 img loss 1.194946527481079 img loss 1.1235990524291992 img loss 1.185095191001892 img loss 1.2389888763427734 img loss 1.1647447347640991 img loss 1.1298527717590332 img loss 1.1670116186141968 img loss 1.255853295326233 img loss 1.3694344758987427 img loss 1.2631736993789673 img loss 1.2335137128829956 img loss 1.198530912399292 img loss 1.2083706855773926 img loss 1.21708345413208 img loss 1.2320846319198608 img loss 1.276100754737854 img loss 1.2988848686218262 img loss 1.2714474201202393 img loss 1.2176430225372314 img loss 1.4042493104934692 img loss 1.253213882446289 img loss 1.2715437412261963img loss 1.2242982387542725img loss 1.244933843612671 img loss 1.199253797531128 img loss 1.305239200592041 img loss 1.2080230712890625 img loss 1.1717448234558105 img loss 1.4485667943954468 img loss 1.2685351371765137 img loss 1.2015587091445923 img loss 1.1432480812072754img loss 1.2706067562103271 img loss 1.1942468881607056 img loss 1.2449960708618164 img loss 1.1655622720718384 img loss 1.2794994115829468 img loss 1.1268627643585205 img loss 1.2999895811080933 img loss 1.260862112045288 img loss 1.1889073848724365 img loss 1.1325567960739136 img loss 1.2643015384674072 img loss 1.236755609512329 img loss 1.2400718927383423 img loss 1.2711825370788574 img loss 1.314723253250122 img loss 1.2092350721359253 img loss 1.2177786827087402 img loss 1.1699562072753906 img loss 1.1495766639709473 img loss 1.2573001384735107 img loss 1.1205480098724365 img loss 1.2624839544296265 img loss 1.2007653713226318 img loss 1.1619023084640503 img loss 1.1546844244003296 img loss 1.1512154340744019 img loss 1.3025329113006592 img loss 1.242713451385498 img loss 1.180555820465088img loss 1.2777342796325684 img loss 1.1490639448165894 img loss 1.11966872215271 img loss 1.1726469993591309 img loss 1.1711078882217407 img loss 1.1576292514801025 img loss 1.1278626918792725 img loss 1.3072909116744995 img loss 1.3157975673675537 img loss 1.1764971017837524 img loss 1.0806745290756226 img loss 1.2965024709701538 img loss 1.2049987316131592 img loss 1.2160873413085938 img loss 1.2834657430648804 img loss 1.2484376430511475 img loss 1.2164579629898071 img loss 1.2342872619628906 img loss 1.1524784564971924 img loss 1.2143549919128418 img loss 1.2780914306640625 img loss 1.2527198791503906 img loss 1.2888497114181519 img loss 1.098047137260437 img loss 1.2768388986587524 img loss 1.1838924884796143 img loss 1.1748207807540894 img loss 1.2409218549728394 img loss 1.1824169158935547 img loss 1.2054555416107178 img loss 1.0932458639144897 img loss 1.147607684135437 img loss 1.251338243484497 img loss 1.1899394989013672 img loss 1.247427225112915 img loss 1.2745208740234375 img loss 1.272186517715454 img loss 1.2442436218261719 img loss 1.3429967164993286 img loss 1.1445003747940063 img loss 1.260039210319519 img loss 1.0934127569198608 img loss 1.2053117752075195 img loss 1.205381989479065 img loss 1.0694345235824585 img loss 1.2523339986801147 img loss 1.2712205648422241 img loss 1.195216178894043 img loss 1.1527503728866577 {'loss': 1.2204, 'grad_norm': 0.2503677010536194, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2780908346176147 img loss 1.1894394159317017 img loss 1.154170274734497 img loss 1.1849335432052612 img loss 1.1727232933044434 img loss 1.2131065130233765 img loss 1.2153853178024292 img loss 1.2578233480453491 img loss 1.2131056785583496 img loss 1.19020414352417 img loss 1.1985124349594116 img loss 1.2337379455566406 img loss 1.2278187274932861 img loss 1.2356007099151611 img loss 1.1848758459091187 img loss 1.2416232824325562 img loss 1.1935333013534546 img loss 1.2156789302825928 img loss 1.2143272161483765 img loss 1.2039963006973267 img loss 1.2833881378173828 img loss 1.2335251569747925 img loss 1.2018365859985352 img loss 1.2140192985534668 img loss 1.181215763092041 img loss 1.2284462451934814 img loss 1.159488558769226 img loss 1.2172400951385498 img loss 1.1852390766143799 img loss 1.2030119895935059 img loss 1.182373046875 img loss 1.1885051727294922 img loss 1.279486894607544 img loss 1.190794587135315 img loss 1.2020983695983887 img loss 1.226357102394104 img loss 1.2421844005584717 img loss 1.1911624670028687 img loss 1.1939815282821655 img loss 1.2242555618286133 img loss 1.1753437519073486 img loss 1.2517478466033936 img loss 1.1752861738204956 img loss 1.274565577507019 img loss 1.2693184614181519 img loss 1.2318174839019775 img loss 1.217257022857666 img loss 1.2852871417999268 img loss 1.1378222703933716 img loss 1.2140363454818726 img loss 1.1570119857788086 img loss 1.214537262916565 img loss 1.190372109413147 img loss 1.2998627424240112 img loss 1.1949249505996704 img loss 1.1719915866851807 img loss 1.2453917264938354 img loss 1.2160391807556152 img loss 1.295183539390564 img loss 1.1475579738616943 img loss 1.2069993019104004 img loss 1.191759467124939 img loss 1.1749008893966675 img loss 1.222184658050537 img loss 1.1990108489990234 img loss 1.1734331846237183 img loss 1.1894378662109375 img loss 1.2247521877288818 img loss 1.1999019384384155 img loss 1.1640642881393433 img loss 1.2177025079727173 img loss 1.2380205392837524 img loss 1.260096549987793 img loss 1.227617859840393 img loss 1.2338861227035522 img loss 1.186532735824585 img loss 1.1954154968261719 img loss 1.196119785308838 img loss 1.199763536453247 img loss 1.2246947288513184 img loss 1.1285210847854614 img loss 1.1928718090057373 img loss 1.1922335624694824 img loss 1.1686522960662842 img loss 1.1582973003387451 img loss 1.1496803760528564 img loss 1.1498609781265259 img loss 1.2311947345733643 img loss 1.2019810676574707 img loss 1.2237520217895508 img loss 1.2206928730010986 img loss 1.1730608940124512 img loss 1.2446930408477783 img loss 1.216195821762085 img loss 1.1612434387207031 img loss 1.177005410194397 img loss 1.2099347114562988 img loss 1.2403723001480103 img loss 1.2597496509552002 img loss 1.1932615041732788 img loss 1.1660507917404175 img loss 1.1917204856872559 img loss 1.1913974285125732 img loss 1.2102941274642944 img loss 1.27920401096344 img loss 1.2294596433639526 img loss 1.1212691068649292 img loss 1.2089862823486328 img loss 1.1721112728118896 img loss 1.204334020614624 img loss 1.1987276077270508 img loss 1.241379976272583 img loss 1.1420749425888062 img loss 1.1660168170928955 img loss 1.1968631744384766 img loss 1.244633674621582 img loss 1.210559606552124 img loss 1.22128427028656 img loss 1.2075645923614502 img loss 1.228320837020874 img loss 1.194622278213501 img loss 1.2296139001846313 img loss 1.2593591213226318 img loss 1.218435287475586 img loss 1.1679188013076782 img loss 1.2083942890167236 img loss 1.228614091873169 img loss 1.1569361686706543 {'loss': 1.2073, 'grad_norm': 0.3531990647315979, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4065678119659424 img loss 1.434790849685669 img loss 1.5063917636871338 img loss 1.4468261003494263 img loss 1.4269908666610718 img loss 1.4003260135650635 img loss 1.3784188032150269 img loss 1.35922110080719 img loss 1.3793529272079468 img loss 1.3073713779449463 img loss 1.3593577146530151 img loss 1.4942114353179932 img loss 1.3711447715759277 img loss 1.3193682432174683 img loss 1.4834816455841064 img loss 1.3859819173812866 img loss 1.366393804550171 img loss 1.4422670602798462 img loss 1.386116623878479 img loss 1.4135735034942627 img loss 1.4290143251419067 img loss 1.4203026294708252 img loss 1.462754726409912 img loss 1.3334126472473145 img loss 1.3361713886260986 img loss 1.3539925813674927 img loss 1.4279884099960327 img loss 1.3926997184753418 img loss 1.454023003578186 img loss 1.5583157539367676 img loss 1.4031713008880615 img loss 1.3191026449203491 img loss 1.3697612285614014 img loss 1.3035869598388672 img loss 1.3639031648635864 img loss 1.4531408548355103 img loss 1.4261749982833862 img loss 1.4446688890457153 img loss 1.2845715284347534 img loss 1.485604166984558 img loss 1.4406360387802124 img loss 1.3904786109924316 img loss 1.3698601722717285 img loss 1.400768756866455 img loss 1.3933807611465454 img loss 1.4645425081253052 img loss 1.429809331893921 img loss 1.320259690284729 img loss 1.3378413915634155 img loss 1.3166992664337158 img loss 1.3814663887023926 img loss 1.3433643579483032 img loss 1.3723194599151611 img loss 1.5235029458999634img loss 1.4006656408309937 img loss 1.3644782304763794 img loss 1.5319596529006958 img loss 1.5085476636886597 img loss 1.2813724279403687 img loss 1.3757909536361694 img loss 1.4428837299346924 img loss 1.5029667615890503 img loss 1.4843060970306396 img loss 1.4127402305603027 img loss 1.3686327934265137 img loss 1.4735963344573975 img loss 1.4385654926300049 img loss 1.4404810667037964 img loss 1.4665991067886353 img loss 1.299009919166565 img loss 1.3425533771514893 img loss 1.3743274211883545 img loss 1.49982488155365 img loss 1.3535491228103638 img loss 1.3195661306381226 img loss 1.274173617362976 img loss 1.383381724357605 img loss 1.41767156124115 img loss 1.3615052700042725 img loss 1.4547425508499146 img loss 1.3938429355621338 img loss 1.5014728307724 img loss 1.4364997148513794 img loss 1.4534318447113037 img loss 1.4438685178756714 img loss 1.3652657270431519 img loss 1.4174724817276 img loss 1.430690050125122 img loss 1.4679242372512817 img loss 1.371348261833191 img loss 1.4170253276824951 img loss 1.4186627864837646 img loss 1.377451777458191 img loss 1.3539246320724487 img loss 1.377509593963623 img loss 1.4023584127426147 img loss 1.48079252243042 img loss 1.4791759252548218 img loss 1.314363718032837 img loss 1.4608232975006104 img loss 1.3747607469558716 img loss 1.4527933597564697 img loss 1.4380981922149658 img loss 1.3123077154159546 img loss 1.3714414834976196 img loss 1.4718478918075562 img loss 1.3147132396697998 img loss 1.398633599281311 img loss 1.50258207321167 img loss 1.4733959436416626 img loss 1.3735986948013306 img loss 1.4149857759475708 img loss 1.543312668800354 img loss 1.3282955884933472 img loss 1.3827754259109497 img loss 1.2462809085845947 img loss 1.5140948295593262 img loss 1.4768699407577515 img loss 1.3999228477478027 img loss 1.3796879053115845 img loss 1.3125942945480347 img loss 1.4092633724212646 img loss 1.4569324254989624 img loss 1.4667925834655762 img loss 1.410844087600708 img loss 1.4131245613098145 img loss 1.335856556892395 img loss 1.345048427581787 {'loss': 1.405, 'grad_norm': 0.42243629693984985, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2539689540863037 img loss 1.258501648902893 img loss 1.2523343563079834 img loss 1.2842493057250977 img loss 1.1337512731552124 img loss 1.2296122312545776 img loss 1.1493923664093018 img loss 1.1970700025558472 img loss 1.1891517639160156 img loss 1.173271656036377 img loss 1.2025132179260254 img loss 1.199731707572937 img loss 1.1780115365982056 img loss 1.1958982944488525 img loss 1.1359021663665771 img loss 1.2562326192855835 img loss 1.2092037200927734 img loss 1.3003597259521484 img loss 1.252917766571045 img loss 1.117626667022705 img loss 1.253321886062622 img loss 1.1740645170211792 img loss 1.1350080966949463 img loss 1.259040355682373 img loss 1.25072181224823 img loss 1.1857181787490845 img loss 1.2544820308685303 img loss 1.2279248237609863 img loss 1.2377383708953857 img loss 1.1457817554473877 img loss 1.160387635231018 img loss 1.245888352394104 img loss 1.2488142251968384 img loss 1.250415325164795 img loss 1.2048778533935547 img loss 1.1832959651947021 img loss 1.122251033782959 img loss 1.1709541082382202 img loss 1.21477210521698 img loss 1.17841374874115 img loss 1.264859676361084 img loss 1.2251650094985962 img loss 1.256609559059143 img loss 1.181479811668396 img loss 1.2089446783065796 img loss 1.2060697078704834 img loss 1.142007827758789 img loss 1.2520887851715088 img loss 1.1957385540008545 img loss 1.1321909427642822 img loss 1.2670904397964478 img loss 1.3091319799423218 img loss 1.1642462015151978 img loss 1.217626929283142 img loss 1.2591192722320557 img loss 1.2096668481826782 img loss 1.2367687225341797 img loss 1.22343909740448 img loss 1.221437692642212 img loss 1.2565826177597046 img loss 1.218752145767212 img loss 1.2040138244628906 img loss 1.2938569784164429 img loss 1.1839618682861328 img loss 1.166063904762268 img loss 1.2122715711593628 img loss 1.2387222051620483 img loss 1.2148693799972534 img loss 1.2405179738998413 img loss 1.1963436603546143 img loss 1.2318816184997559 img loss 1.2200990915298462 img loss 1.1421674489974976 img loss 1.2505329847335815 img loss 1.2670555114746094 img loss 1.2425320148468018 img loss 1.1714482307434082 img loss 1.1655853986740112 img loss 1.2148933410644531 img loss 1.236172080039978 img loss 1.2890061140060425 img loss 1.2177772521972656 img loss 1.2916820049285889 img loss 1.2791688442230225 img loss 1.276499629020691 img loss 1.1727275848388672 img loss 1.2333259582519531 img loss 1.1648035049438477 img loss 1.197446584701538 img loss 1.1081050634384155 img loss 1.2769418954849243 img loss 1.1469533443450928 img loss 1.2805219888687134 img loss 1.1807339191436768 img loss 1.1687180995941162 img loss 1.1488447189331055 img loss 1.2144238948822021 img loss 1.123206377029419 img loss 1.2216557264328003 img loss 1.2194563150405884 img loss 1.1602869033813477 img loss 1.315447449684143 img loss 1.2789467573165894 img loss 1.2027133703231812 img loss 1.2796251773834229 img loss 1.2511906623840332 img loss 1.1570175886154175 img loss 1.1819041967391968 img loss 1.1795480251312256 img loss 1.1502119302749634 img loss 1.234246015548706 img loss 1.2372392416000366 img loss 1.2287402153015137 img loss 1.2299895286560059 img loss 1.2251818180084229 img loss 1.1565415859222412 img loss 1.167431116104126 img loss 1.2494537830352783 img loss 1.274014949798584 img loss 1.2052726745605469 img loss 1.2423272132873535 img loss 1.1605714559555054 img loss 1.2783266305923462 img loss 1.1410658359527588 img loss 1.2892364263534546 img loss 1.2018156051635742 img loss 1.3155382871627808 img loss 1.198258638381958 {'loss': 1.2142, 'grad_norm': 0.2828502058982849, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5959217548370361 img loss 1.4594063758850098 img loss 1.5184283256530762 img loss 1.5852285623550415 img loss 1.4227522611618042 img loss 1.5385321378707886 img loss 1.5488709211349487 img loss 1.5488760471343994 img loss 1.5037627220153809 img loss 1.4145219326019287 img loss 1.3765672445297241 img loss 1.4693615436553955 img loss 1.3985192775726318 img loss 1.5606392621994019 img loss 1.4842727184295654 img loss 1.6073311567306519 img loss 1.567169427871704 img loss 1.426029086112976 img loss 1.5941756963729858 img loss 1.491554617881775 img loss 1.3996151685714722 img loss 1.5210034847259521 img loss 1.5216313600540161 img loss 1.548567295074463 img loss 1.489514946937561 img loss 1.451377272605896 img loss 1.4774245023727417 img loss 1.3541110754013062 img loss 1.4414523839950562 img loss 1.4860879182815552 img loss 1.5847615003585815 img loss 1.4865647554397583 img loss 1.4342178106307983 img loss 1.4455654621124268 img loss 1.5382527112960815 img loss 1.472010850906372 img loss 1.44449782371521 img loss 1.4979318380355835 img loss 1.4455958604812622 img loss 1.3790276050567627 img loss 1.5454518795013428 img loss 1.4888297319412231 img loss 1.4070475101470947 img loss 1.4968868494033813 img loss 1.3836222887039185 img loss 1.3839905261993408 img loss 1.6141847372055054 img loss 1.3817108869552612 img loss 1.4686553478240967 img loss 1.394254446029663 img loss 1.4025837182998657 img loss 1.4430736303329468 img loss 1.4984787702560425 img loss 1.46329927444458 img loss 1.4689778089523315 img loss 1.4826550483703613 img loss 1.4314053058624268 img loss 1.4591144323349 img loss 1.4346424341201782 img loss 1.4792320728302002 img loss 1.480700969696045 img loss 1.391344666481018 img loss 1.609440565109253 img loss 1.4135985374450684 img loss 1.5142762660980225 img loss 1.6042416095733643 img loss 1.5509543418884277 img loss 1.5788052082061768 img loss 1.5190943479537964 img loss 1.5834869146347046 img loss 1.2823530435562134 img loss 1.3346108198165894 img loss 1.483586072921753 img loss 1.5839455127716064 img loss 1.5266015529632568 img loss 1.381363034248352 img loss 1.403525710105896 img loss 1.4678291082382202 img loss 1.494658350944519 img loss 1.4757885932922363 img loss 1.3667995929718018 img loss 1.6071162223815918 img loss 1.544298529624939 img loss 1.4359413385391235 img loss 1.430558681488037 img loss 1.6891491413116455 img loss 1.4356797933578491 img loss 1.4042699337005615 img loss 1.4255344867706299 img loss 1.4865710735321045 img loss 1.4944483041763306 img loss 1.4951680898666382 img loss 1.5053471326828003 img loss 1.5236750841140747 img loss 1.5312302112579346 img loss 1.7361278533935547 img loss 1.4095488786697388 img loss 1.57591712474823 img loss 1.5478113889694214 img loss 1.4372726678848267 img loss 1.4205949306488037 img loss 1.5017286539077759 img loss 1.366784691810608 img loss 1.385717511177063 img loss 1.4547981023788452 img loss 1.45674467086792 img loss 1.5391892194747925 img loss 1.506700873374939 img loss 1.6398578882217407 img loss 1.5607504844665527 img loss 1.5265947580337524 img loss 1.424682378768921 img loss 1.5282148122787476 img loss 1.5079987049102783 img loss 1.4029220342636108 img loss 1.379876732826233 img loss 1.4448010921478271 img loss 1.528195858001709 img loss 1.5414507389068604 img loss 1.503523349761963 img loss 1.3444745540618896 img loss 1.5889710187911987 img loss 1.3724867105484009 img loss 1.3432172536849976 img loss 1.5447965860366821 img loss 1.461337685585022 img loss 1.4329447746276855 img loss 1.666886806488037 {'loss': 1.4828, 'grad_norm': 0.27882060408592224, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1424235105514526 img loss 1.1316322088241577 img loss 1.2062097787857056 img loss 1.2166293859481812 img loss 1.2187656164169312 img loss 1.1467121839523315 img loss 1.1405781507492065 img loss 1.2783429622650146 img loss 1.2822803258895874 img loss 1.1982169151306152 img loss 1.1575182676315308 img loss 1.2354636192321777 img loss 1.2285418510437012 img loss 1.2259316444396973 img loss 1.1895068883895874 img loss 1.238978624343872 img loss 1.1331725120544434 img loss 1.1936275959014893 img loss 1.2431055307388306 img loss 1.2408074140548706 img loss 1.2117576599121094 img loss 1.3080095052719116 img loss 1.169878363609314 img loss 1.3182705640792847 img loss 1.1124595403671265 img loss 1.1927592754364014 img loss 1.2576842308044434 img loss 1.148292064666748 img loss 1.1300204992294312 img loss 1.1136364936828613 img loss 1.2614144086837769 img loss 1.190684199333191 img loss 1.2356321811676025 img loss 1.2696051597595215 img loss 1.223884105682373 img loss 1.1763848066329956 img loss 1.2389614582061768 img loss 1.21371591091156 img loss 1.2645231485366821 img loss 1.1557176113128662 img loss 1.1443729400634766 img loss 1.2683370113372803 img loss 1.2225521802902222 img loss 1.198793888092041 img loss 1.1946823596954346 img loss 1.2930808067321777 img loss 1.1541574001312256 img loss 1.2261972427368164 img loss 1.0853654146194458 img loss 1.1834559440612793 img loss 1.1372249126434326 img loss 1.1866934299468994 img loss 1.1672859191894531 img loss 1.203346848487854 img loss 1.1348198652267456 img loss 1.2301750183105469 img loss 1.146836519241333 img loss 1.1063873767852783 img loss 1.1237578392028809 img loss 1.1880016326904297 img loss 1.1805322170257568 img loss 1.3060921430587769 img loss 1.293662428855896 img loss 1.222510814666748 img loss 1.293165922164917 img loss 1.1511073112487793 img loss 1.1554062366485596 img loss 1.2885528802871704 img loss 1.1753604412078857img loss 1.1394752264022827 img loss 1.275156855583191 img loss 1.1114656925201416 img loss 1.1649315357208252 img loss 1.159024715423584 img loss 1.1080114841461182 img loss 1.108027696609497 img loss 1.2200497388839722 img loss 1.1504595279693604 img loss 1.1665332317352295 img loss 1.1575846672058105 img loss 1.212773084640503 img loss 1.133760690689087 img loss 1.1832711696624756 img loss 1.1347782611846924 img loss 1.2424894571304321 img loss 1.1410146951675415 img loss 1.1734545230865479 img loss 1.1021637916564941 img loss 1.2905632257461548 img loss 1.1564394235610962 img loss 1.1900038719177246 img loss 1.3107795715332031 img loss 1.204384207725525 img loss 1.1442536115646362 img loss 1.2802238464355469 img loss 1.242348074913025 img loss 1.1247624158859253 img loss 1.1280819177627563 img loss 1.210168480873108 img loss 1.162117838859558 img loss 1.193411111831665 img loss 1.310777187347412 img loss 1.119481086730957 img loss 1.145585298538208 img loss 1.282448410987854 img loss 1.1619075536727905 img loss 1.1618489027023315 img loss 1.103509783744812 img loss 1.2205051183700562 img loss 1.1631160974502563 img loss 1.2824729681015015 img loss 1.2321079969406128 img loss 1.235917568206787 img loss 1.2186312675476074 img loss 1.1911180019378662 img loss 1.1829570531845093 img loss 1.1908679008483887 img loss 1.2108386754989624 img loss 1.2231392860412598 img loss 1.1114739179611206 img loss 1.1984922885894775 img loss 1.1881885528564453 img loss 1.220189094543457 img loss 1.0574935674667358 img loss 1.2339810132980347 img loss 1.2038600444793701 img loss 1.080697774887085 img loss 1.1491506099700928 {'loss': 1.193, 'grad_norm': 0.25133997201919556, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2785658836364746 img loss 1.4576919078826904 img loss 1.4182908535003662 img loss 1.4317430257797241 img loss 1.3908790349960327 img loss 1.3447833061218262 img loss 1.3354547023773193 img loss 1.5274790525436401 img loss 1.393684983253479 img loss 1.322636365890503 img loss 1.454993486404419 img loss 1.3427811861038208 img loss 1.349133849143982 img loss 1.4660855531692505 img loss 1.4627960920333862 img loss 1.4221481084823608 img loss 1.506264328956604 img loss 1.3550995588302612 img loss 1.3535748720169067 img loss 1.3701633214950562 img loss 1.388414740562439 img loss 1.420691967010498 img loss 1.3730237483978271 img loss 1.3740514516830444 img loss 1.31105375289917 img loss 1.3963463306427002 img loss 1.5357623100280762 img loss 1.3767238855361938 img loss 1.457743525505066 img loss 1.3340188264846802 img loss 1.3945634365081787 img loss 1.2748743295669556 img loss 1.4642475843429565 img loss 1.344154953956604 img loss 1.4461019039154053 img loss 1.4057289361953735 img loss 1.4145731925964355 img loss 1.3817044496536255 img loss 1.4333993196487427 img loss 1.3996164798736572 img loss 1.4625719785690308 img loss 1.4156497716903687 img loss 1.4072785377502441 img loss 1.437248945236206 img loss 1.442620038986206 img loss 1.285986304283142 img loss 1.2024099826812744 img loss 1.3399351835250854 img loss 1.3285350799560547 img loss 1.3259024620056152 img loss 1.420876145362854 img loss 1.2882282733917236 img loss 1.3960517644882202 img loss 1.5174775123596191 img loss 1.2989259958267212 img loss 1.3503355979919434 img loss 1.3759218454360962 img loss 1.4295445680618286 img loss 1.236703634262085 img loss 1.3430131673812866 img loss 1.333201289176941 img loss 1.4632071256637573 img loss 1.486939787864685 img loss 1.4653860330581665 img loss 1.3782575130462646 img loss 1.3512672185897827 img loss 1.3694452047348022 img loss 1.2525970935821533 img loss 1.4768890142440796 img loss 1.2651947736740112 img loss 1.3606239557266235 img loss 1.4682544469833374 img loss 1.4905083179473877 img loss 1.4393280744552612 img loss 1.3882887363433838 img loss 1.4043614864349365 img loss 1.4181846380233765 img loss 1.4779022932052612 img loss 1.3260509967803955 img loss 1.2681939601898193 img loss 1.4649838209152222 img loss 1.270738959312439 img loss 1.4475791454315186 img loss 1.3773313760757446 img loss 1.3750194311141968 img loss 1.314825415611267 img loss 1.363798975944519 img loss 1.4789680242538452 img loss 1.379230260848999 img loss 1.2328507900238037 img loss 1.3445018529891968 img loss 1.437003254890442 img loss 1.3782817125320435 img loss 1.3427565097808838 img loss 1.4208128452301025 img loss 1.3471065759658813 img loss 1.3837867975234985 img loss 1.4146307706832886 img loss 1.4153350591659546 img loss 1.3523614406585693 img loss 1.3386539220809937 img loss 1.3026654720306396 img loss 1.3472484350204468 img loss 1.4020555019378662 img loss 1.3782013654708862 img loss 1.2476942539215088 img loss 1.4712328910827637 img loss 1.271539568901062 img loss 1.3699971437454224 img loss 1.3790209293365479 img loss 1.3889044523239136 img loss 1.3876229524612427 img loss 1.3565163612365723 img loss 1.3764338493347168 img loss 1.4476535320281982 img loss 1.4719007015228271 img loss 1.5718387365341187 img loss 1.2853617668151855 img loss 1.412148356437683 img loss 1.4550893306732178 img loss 1.3794447183609009 img loss 1.3244532346725464 img loss 1.3074889183044434 img loss 1.4190189838409424 img loss 1.3864715099334717 img loss 1.387732744216919 img loss 1.354110836982727 img loss 1.3088109493255615 {'loss': 1.3842, 'grad_norm': 0.5369135737419128, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2841919660568237 img loss 1.2692458629608154 img loss 1.2560017108917236 img loss 1.2983124256134033 img loss 1.259893774986267 img loss 1.2333507537841797 img loss 1.2288525104522705 img loss 1.179685354232788 img loss 1.296215534210205 img loss 1.2275996208190918 img loss 1.3160855770111084 img loss 1.320626974105835 img loss 1.2200391292572021 img loss 1.2381044626235962 img loss 1.3389054536819458 img loss 1.2439088821411133 img loss 1.2747249603271484 img loss 1.4041789770126343 img loss 1.2907555103302002 img loss 1.2633146047592163 img loss 1.2981294393539429 img loss 1.2676204442977905 img loss 1.2784786224365234 img loss 1.3594821691513062 img loss 1.2678866386413574 img loss 1.2140153646469116 img loss 1.2316471338272095 img loss 1.3106993436813354 img loss 1.3201823234558105 img loss 1.2379006147384644 img loss 1.301263689994812 img loss 1.3497662544250488 img loss 1.3071292638778687 img loss 1.3638993501663208 img loss 1.2629019021987915 img loss 1.2457338571548462 img loss 1.2749571800231934 img loss 1.3056185245513916 img loss 1.2753790616989136 img loss 1.334993839263916 img loss 1.2827842235565186 img loss 1.2589201927185059 img loss 1.2452627420425415 img loss 1.2674729824066162 img loss 1.2745026350021362 img loss 1.2893742322921753 img loss 1.273488998413086 img loss 1.2807331085205078 img loss 1.304878830909729 img loss 1.1970176696777344 img loss 1.2572777271270752 img loss 1.3330315351486206 img loss 1.2629246711730957 img loss 1.4117999076843262 img loss 1.3329172134399414 img loss 1.2126384973526 img loss 1.3701967000961304 img loss 1.2449051141738892 img loss 1.2469286918640137 img loss 1.2590136528015137 img loss 1.261497139930725 img loss 1.2934290170669556 img loss 1.2491012811660767 img loss 1.5739805698394775 img loss 1.207906723022461 img loss 1.2608133554458618 img loss 1.32692289352417 img loss 1.3253343105316162 img loss 1.271911382675171 img loss 1.2575831413269043 img loss 1.2649891376495361 img loss 1.3384026288986206 img loss 1.2960841655731201 img loss 1.3999993801116943 img loss 1.1982877254486084 img loss 1.31858229637146 img loss 1.3448759317398071 img loss 1.2513327598571777 img loss 1.2611010074615479 img loss 1.2077397108078003 img loss 1.289481520652771 img loss 1.3283956050872803 img loss 1.310280680656433 img loss 1.2579784393310547 img loss 1.201779842376709 img loss 1.284542441368103 img loss 1.2731395959854126 img loss 1.263850450515747 img loss 1.282904028892517 img loss 1.232824683189392 img loss 1.2612371444702148 img loss 1.289304494857788 img loss 1.1993073225021362 img loss 1.2651389837265015 img loss 1.1641044616699219 img loss 1.222973108291626 img loss 1.2246092557907104img loss 1.3017204999923706 img loss 1.3184974193572998 img loss 1.2790164947509766 img loss 1.2456682920455933 img loss 1.2527942657470703 img loss 1.3555634021759033 img loss 1.2754082679748535 img loss 1.2229540348052979 img loss 1.2900307178497314 img loss 1.3729665279388428 img loss 1.3521565198898315 img loss 1.3794537782669067 img loss 1.3092190027236938 img loss 1.280835509300232 img loss 1.275916337966919 img loss 1.3317703008651733 img loss 1.2152690887451172 img loss 1.2734675407409668 img loss 1.330987572669983 img loss 1.2491848468780518 img loss 1.3762104511260986 img loss 1.2562178373336792 img loss 1.294310450553894 img loss 1.214611291885376 img loss 1.285448431968689 img loss 1.2095491886138916 img loss 1.2685407400131226 img loss 1.306243896484375 img loss 1.2314704656600952 img loss 1.2624852657318115 img loss 1.2210146188735962 {'loss': 1.2809, 'grad_norm': 0.3773539960384369, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.155128836631775 img loss 1.134447693824768 img loss 1.225975751876831 img loss 1.130748987197876 img loss 1.230664849281311 img loss 1.1385365724563599 img loss 1.1953904628753662 img loss 1.2286295890808105 img loss 1.1321214437484741 img loss 1.2096328735351562 img loss 1.2021888494491577 img loss 1.279605746269226 img loss 1.2538551092147827 img loss 1.156018853187561 img loss 1.157114028930664 img loss 1.1266812086105347 img loss 1.1383317708969116 img loss 1.2990211248397827 img loss 1.1981422901153564 img loss 1.1902289390563965 img loss 1.1427700519561768 img loss 1.2229108810424805 img loss 1.1330475807189941 img loss 1.1738808155059814 img loss 1.1936739683151245 img loss 1.206005573272705 img loss 1.2687907218933105 img loss 1.1606374979019165 img loss 1.1926981210708618 img loss 1.1314700841903687 img loss 1.1944208145141602 img loss 1.147498607635498 img loss 1.221758246421814 img loss 1.2428810596466064 img loss 1.1843671798706055 img loss 1.224554419517517 img loss 1.2947454452514648 img loss 1.2680639028549194 img loss 1.2133206129074097 img loss 1.2029913663864136 img loss 1.3134106397628784 img loss 1.1729094982147217 img loss 1.158200740814209 img loss 1.2648423910140991 img loss 1.1114037036895752 img loss 1.2036269903182983 img loss 1.2290441989898682 img loss 1.1865670680999756 img loss 1.2249369621276855 img loss 1.1626291275024414 img loss 1.1858148574829102 img loss 1.2599419355392456 img loss 1.192409873008728 img loss 1.183091163635254 img loss 1.1787785291671753 img loss 1.2364915609359741 img loss 1.2553937435150146 img loss 1.2086656093597412 img loss 1.1924960613250732 img loss 1.2218749523162842 img loss 1.1676472425460815 img loss 1.2182674407958984 img loss 1.2290693521499634 img loss 1.1820464134216309 img loss 1.2708866596221924 img loss 1.1633933782577515 img loss 1.2049659490585327 img loss 1.2180187702178955 img loss 1.1539510488510132 img loss 1.1727062463760376 img loss 1.264543890953064 img loss 1.1425424814224243 img loss 1.2727893590927124img loss 1.260340690612793 img loss 1.1898161172866821 img loss 1.165902018547058 img loss 1.2354488372802734 img loss 1.217437744140625 img loss 1.289777398109436 img loss 1.2580444812774658 img loss 1.1925218105316162 img loss 1.239825963973999 img loss 1.2324756383895874 img loss 1.1901366710662842 img loss 1.2065225839614868 img loss 1.189483404159546 img loss 1.1585547924041748 img loss 1.2344757318496704 img loss 1.271092176437378 img loss 1.186949372291565 img loss 1.2222620248794556 img loss 1.2432599067687988 img loss 1.26117742061615 img loss 1.2855312824249268 img loss 1.2161155939102173 img loss 1.2644566297531128 img loss 1.1564342975616455 img loss 1.1907768249511719 img loss 1.2310999631881714 img loss 1.1551986932754517 img loss 1.1712950468063354 img loss 1.1454942226409912 img loss 1.2572815418243408 img loss 1.1998326778411865 img loss 1.1766363382339478 img loss 1.1518243551254272 img loss 1.1623039245605469 img loss 1.231493353843689 img loss 1.1786807775497437 img loss 1.2010143995285034 img loss 1.174623727798462 img loss 1.1481239795684814 img loss 1.205801010131836 img loss 1.1430925130844116 img loss 1.2375656366348267 img loss 1.1616712808609009 img loss 1.1895580291748047 img loss 1.170750379562378 img loss 1.202020525932312 img loss 1.1318819522857666 img loss 1.14290452003479 img loss 1.3269708156585693 img loss 1.1890714168548584 img loss 1.241433024406433 img loss 1.0966064929962158 img loss 1.1810178756713867 img loss 1.1673424243927002 img loss 1.2458281517028809 {'loss': 1.2014, 'grad_norm': 0.3196430206298828, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2126853466033936 img loss 1.230320692062378 img loss 1.205841064453125 img loss 1.2149465084075928 img loss 1.2464733123779297 img loss 1.33001708984375 img loss 1.275776743888855 img loss 1.2666510343551636 img loss 1.1585803031921387 img loss 1.1830135583877563 img loss 1.3255714178085327 img loss 1.2105354070663452 img loss 1.2925808429718018 img loss 1.2296183109283447 img loss 1.2875316143035889 img loss 1.1310172080993652 img loss 1.2755138874053955 img loss 1.261222243309021 img loss 1.2413585186004639 img loss 1.1199092864990234 img loss 1.298511028289795 img loss 1.2805290222167969 img loss 1.3892232179641724 img loss 1.3257019519805908 img loss 1.2555499076843262 img loss 1.1929337978363037 img loss 1.2417110204696655 img loss 1.3475152254104614 img loss 1.3369468450546265 img loss 1.310537338256836 img loss 1.2727863788604736 img loss 1.326027750968933 img loss 1.3255341053009033 img loss 1.2964565753936768 img loss 1.1681228876113892 img loss 1.2382769584655762 img loss 1.183967113494873 img loss 1.2735449075698853 img loss 1.2318347692489624 img loss 1.2214539051055908 img loss 1.2628870010375977 img loss 1.247233271598816 img loss 1.21760892868042 img loss 1.3130967617034912 img loss 1.29570472240448 img loss 1.379070520401001 img loss 1.240648627281189 img loss 1.252124309539795 img loss 1.254515290260315 img loss 1.15498948097229 img loss 1.1977615356445312 img loss 1.3187414407730103 img loss 1.2669941186904907 img loss 1.2309699058532715 img loss 1.2030893564224243 img loss 1.2859761714935303 img loss 1.2170839309692383 img loss 1.2339818477630615 img loss 1.1878297328948975 img loss 1.1819080114364624 img loss 1.2922263145446777 img loss 1.2625890970230103 img loss 1.2766424417495728 img loss 1.2212162017822266 img loss 1.277706503868103 img loss 1.1618047952651978 img loss 1.1445776224136353 img loss 1.256436824798584 img loss 1.2495125532150269 img loss 1.2203547954559326 img loss 1.206139326095581 img loss 1.172858476638794 img loss 1.1967837810516357 img loss 1.255676031112671 img loss 1.2865159511566162 img loss 1.2277576923370361 img loss 1.324676752090454 img loss 1.177990436553955 img loss 1.3438265323638916 img loss 1.2895023822784424 img loss 1.3109992742538452 img loss 1.2452034950256348 img loss 1.2111743688583374 img loss 1.202030062675476 img loss 1.3298650979995728 img loss 1.2958837747573853 img loss 1.2428406476974487 img loss 1.4112836122512817 img loss 1.2055710554122925 img loss 1.263109564781189 img loss 1.275828242301941 img loss 1.2231159210205078 img loss 1.1879026889801025 img loss 1.1709175109863281 img loss 1.2600520849227905 img loss 1.257399559020996 img loss 1.315570592880249 img loss 1.192054271697998 img loss 1.2117661237716675 img loss 1.264723777770996 img loss 1.225446343421936 img loss 1.2939300537109375 img loss 1.285011887550354 img loss 1.2738450765609741 img loss 1.2638676166534424 img loss 1.3153890371322632 img loss 1.3093063831329346 img loss 1.2922477722167969 img loss 1.1850591897964478 img loss 1.2579342126846313 img loss 1.2180845737457275 img loss 1.2112053632736206 img loss 1.289589524269104 img loss 1.258378267288208 img loss 1.291136622428894 img loss 1.340440273284912 img loss 1.2445074319839478 img loss 1.2824091911315918 img loss 1.264562964439392 img loss 1.2299607992172241 img loss 1.1571228504180908 img loss 1.2505234479904175 img loss 1.3477181196212769 img loss 1.313887119293213 img loss 1.2323039770126343 img loss 1.3086613416671753 img loss 1.2452058792114258 img loss 1.2372955083847046 {'loss': 1.254, 'grad_norm': 0.4553931653499603, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1982593536376953 img loss 1.2547262907028198 img loss 1.1969318389892578 img loss 1.2470524311065674 img loss 1.169442057609558 img loss 1.168670892715454 img loss 1.2072950601577759 img loss 1.20011305809021 img loss 1.2086601257324219 img loss 1.226958990097046 img loss 1.2637258768081665 img loss 1.2861212491989136 img loss 1.1887335777282715 img loss 1.2016823291778564 img loss 1.201686143875122 img loss 1.1878025531768799 img loss 1.2899500131607056 img loss 1.2407344579696655 img loss 1.1853995323181152 img loss 1.215268850326538 img loss 1.1858041286468506 img loss 1.1494996547698975 img loss 1.186684250831604 img loss 1.1970443725585938 img loss 1.174710750579834 img loss 1.2253012657165527 img loss 1.2006566524505615 img loss 1.1145820617675781 img loss 1.1865081787109375 img loss 1.2570198774337769 img loss 1.2308660745620728 img loss 1.242652416229248 img loss 1.2401847839355469 img loss 1.1584792137145996 img loss 1.169930100440979 img loss 1.1903157234191895 img loss 1.253122091293335 img loss 1.1825847625732422 img loss 1.2440447807312012 img loss 1.1454193592071533 img loss 1.231258749961853 img loss 1.2284294366836548 img loss 1.1808221340179443 img loss 1.175575852394104 img loss 1.2204926013946533 img loss 1.2157914638519287 img loss 1.256692886352539 img loss 1.2395693063735962 img loss 1.2221181392669678 img loss 1.1863352060317993 img loss 1.2379497289657593 img loss 1.1809194087982178 img loss 1.239545464515686 img loss 1.222097396850586 img loss 1.1884827613830566 img loss 1.1400065422058105 img loss 1.1877646446228027 img loss 1.2912641763687134 img loss 1.2524818181991577 img loss 1.2570911645889282 img loss 1.2475082874298096 img loss 1.2234535217285156 img loss 1.2223001718521118 img loss 1.1913353204727173 img loss 1.2367483377456665 img loss 1.2141567468643188 img loss 1.210558295249939 img loss 1.1861860752105713 img loss 1.1686384677886963 img loss 1.186337947845459 img loss 1.1299129724502563 img loss 1.2508063316345215 img loss 1.2271020412445068 img loss 1.20950186252594 img loss 1.2051887512207031 img loss 1.2630152702331543 img loss 1.1533018350601196 img loss 1.1572401523590088 img loss 1.1865144968032837 img loss 1.145829439163208 img loss 1.2219734191894531 img loss 1.1779464483261108 img loss 1.1917362213134766 img loss 1.2177658081054688 img loss 1.2149467468261719 img loss 1.2663183212280273 img loss 1.188586950302124 img loss 1.2318750619888306 img loss 1.2289080619812012 img loss 1.1537318229675293 img loss 1.2577526569366455 img loss 1.2271150350570679 img loss 1.233079195022583img loss 1.1903302669525146 img loss 1.2410316467285156 img loss 1.184427261352539 img loss 1.2151219844818115 img loss 1.1507432460784912 img loss 1.1921240091323853 img loss 1.187900424003601 img loss 1.2215741872787476 img loss 1.159999132156372 img loss 1.243331789970398 img loss 1.2184672355651855 img loss 1.182763934135437 img loss 1.2085884809494019 img loss 1.2332779169082642 img loss 1.2933305501937866 img loss 1.20579993724823 img loss 1.1858842372894287 img loss 1.148153305053711 img loss 1.2373063564300537 img loss 1.2485270500183105 img loss 1.2676193714141846 img loss 1.3045039176940918 img loss 1.1917836666107178 img loss 1.1834207773208618 img loss 1.2013523578643799 img loss 1.2243983745574951 img loss 1.200131893157959 img loss 1.2653840780258179 img loss 1.2097032070159912 img loss 1.176755666732788 img loss 1.205514669418335 img loss 1.2633419036865234 img loss 1.1909149885177612 img loss 1.1524746417999268 img loss 1.2161865234375 {'loss': 1.2098, 'grad_norm': 0.30883538722991943, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2217515707015991 img loss 1.2316787242889404 img loss 1.2385520935058594 img loss 1.2207493782043457 img loss 1.1738723516464233 img loss 1.2715953588485718 img loss 1.2773971557617188 img loss 1.216030478477478 img loss 1.3717466592788696 img loss 1.2350149154663086 img loss 1.204984426498413 img loss 1.2128880023956299 img loss 1.2764124870300293 img loss 1.221883773803711 img loss 1.2079471349716187 img loss 1.2024329900741577 img loss 1.255191683769226 img loss 1.3121169805526733 img loss 1.18839693069458 img loss 1.214141845703125 img loss 1.2666095495224 img loss 1.2564805746078491 img loss 1.298749327659607 img loss 1.1948566436767578 img loss 1.2166328430175781 img loss 1.2761808633804321 img loss 1.308590292930603 img loss 1.238959789276123 img loss 1.1863501071929932 img loss 1.3509241342544556 img loss 1.182055115699768 img loss 1.202631950378418 img loss 1.262270450592041 img loss 1.2493184804916382 img loss 1.2645319700241089 img loss 1.2310816049575806 img loss 1.203682541847229 img loss 1.151818037033081 img loss 1.1602380275726318 img loss 1.2065026760101318 img loss 1.2291274070739746 img loss 1.3174545764923096 img loss 1.2332725524902344 img loss 1.3001248836517334 img loss 1.23958158493042 img loss 1.2479057312011719 img loss 1.189462661743164 img loss 1.2862337827682495 img loss 1.2598724365234375 img loss 1.2416093349456787 img loss 1.1876300573349 img loss 1.2117305994033813 img loss 1.2776581048965454 img loss 1.2594610452651978 img loss 1.2503169775009155 img loss 1.2315871715545654 img loss 1.2729400396347046 img loss 1.2949570417404175 img loss 1.215898036956787 img loss 1.1642119884490967 img loss 1.2804259061813354 img loss 1.3012055158615112 img loss 1.1886169910430908 img loss 1.2488921880722046 img loss 1.2020553350448608 img loss 1.198737382888794 img loss 1.28774094581604 img loss 1.155045747756958 img loss 1.2067863941192627 img loss 1.2822322845458984 img loss 1.2339614629745483 img loss 1.2209713459014893 img loss 1.1440118551254272 img loss 1.3337372541427612 img loss 1.2272857427597046 img loss 1.207395076751709 img loss 1.293614149093628 img loss 1.1877269744873047 img loss 1.2330595254898071 img loss 1.2729519605636597 img loss 1.298784852027893 img loss 1.175118327140808 img loss 1.2462577819824219 img loss 1.2443150281906128 img loss 1.2072113752365112 img loss 1.1832150220870972 img loss 1.274804711341858 img loss 1.255820631980896 img loss 1.265310287475586 img loss 1.2279337644577026 img loss 1.2396453619003296 img loss 1.2271556854248047 img loss 1.1782245635986328 img loss 1.3477407693862915 img loss 1.25398588180542 img loss 1.2718864679336548 img loss 1.2764480113983154 img loss 1.2512873411178589 img loss 1.22900390625 img loss 1.365556001663208 img loss 1.2775338888168335 img loss 1.2615275382995605 img loss 1.2398297786712646 img loss 1.203864574432373 img loss 1.2519710063934326 img loss 1.2539684772491455 img loss 1.2745509147644043 img loss 1.2355496883392334 img loss 1.2557079792022705 img loss 1.2388309240341187 img loss 1.3402012586593628 img loss 1.2691372632980347 img loss 1.2681841850280762 img loss 1.1316368579864502 img loss 1.1573262214660645 img loss 1.2133997678756714 img loss 1.2184475660324097 img loss 1.2287862300872803 img loss 1.2826671600341797 img loss 1.1839196681976318 img loss 1.182007074356079 img loss 1.2107713222503662 img loss 1.2621344327926636 img loss 1.1619991064071655 img loss 1.29804265499115 img loss 1.2179659605026245 img loss 1.186622977256775 img loss 1.2089340686798096 {'loss': 1.2392, 'grad_norm': 0.35778141021728516, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3202546834945679 img loss 1.3436588048934937 img loss 1.2494856119155884 img loss 1.2364146709442139 img loss 1.3730682134628296 img loss 1.2268178462982178 img loss 1.3024241924285889 img loss 1.3052959442138672 img loss 1.259894609451294 img loss 1.2894153594970703 img loss 1.2984884977340698 img loss 1.3522590398788452 img loss 1.282509446144104 img loss 1.3062652349472046 img loss 1.3075242042541504 img loss 1.2553634643554688 img loss 1.2513474225997925 img loss 1.3725477457046509 img loss 1.3692578077316284img loss 1.2417848110198975 img loss 1.2728691101074219 img loss 1.299673080444336 img loss 1.2013523578643799 img loss 1.2667402029037476 img loss 1.4512544870376587 img loss 1.2241876125335693 img loss 1.345827579498291 img loss 1.275580883026123 img loss 1.4013241529464722 img loss 1.3503121137619019 img loss 1.2310129404067993 img loss 1.3506944179534912 img loss 1.2458480596542358 img loss 1.290850281715393 img loss 1.396786093711853 img loss 1.3406704664230347 img loss 1.2928471565246582 img loss 1.3496421575546265 img loss 1.2465814352035522 img loss 1.2946600914001465 img loss 1.1557673215866089 img loss 1.3175262212753296 img loss 1.303654432296753 img loss 1.273030161857605 img loss 1.2848478555679321 img loss 1.2720685005187988 img loss 1.3520361185073853 img loss 1.29143226146698 img loss 1.2748228311538696 img loss 1.2697035074234009 img loss 1.2518446445465088 img loss 1.295757532119751 img loss 1.350154995918274 img loss 1.3168563842773438 img loss 1.3016401529312134 img loss 1.343523621559143 img loss 1.3023293018341064 img loss 1.3135324716567993 img loss 1.2041679620742798 img loss 1.219887137413025 img loss 1.377174735069275 img loss 1.2278225421905518 img loss 1.2739934921264648 img loss 1.3235259056091309 img loss 1.3261563777923584 img loss 1.2264717817306519 img loss 1.3367060422897339 img loss 1.2670643329620361 img loss 1.234457015991211 img loss 1.4541916847229004 img loss 1.2685792446136475 img loss 1.2960563898086548 img loss 1.3166866302490234 img loss 1.2992311716079712 img loss 1.3103177547454834 img loss 1.2946696281433105 img loss 1.3134989738464355 img loss 1.223122477531433 img loss 1.4292099475860596 img loss 1.3104398250579834 img loss 1.3645917177200317 img loss 1.3000627756118774 img loss 1.3071798086166382 img loss 1.377496600151062 img loss 1.2926685810089111 img loss 1.2788530588150024 img loss 1.3156741857528687 img loss 1.3227918148040771 img loss 1.3794633150100708 img loss 1.3188621997833252 img loss 1.2911884784698486 img loss 1.3285223245620728 img loss 1.3317391872406006 img loss 1.3074088096618652 img loss 1.387946605682373 img loss 1.3489629030227661 img loss 1.2305768728256226 img loss 1.2663459777832031 img loss 1.3492271900177002 img loss 1.1846604347229004 img loss 1.1957916021347046 img loss 1.2785667181015015 img loss 1.2095253467559814 img loss 1.4021817445755005 img loss 1.261784315109253 img loss 1.2568719387054443 img loss 1.3174546957015991 img loss 1.3640590906143188 img loss 1.3082512617111206 img loss 1.3284832239151 img loss 1.3186383247375488 img loss 1.247440218925476 img loss 1.299773097038269 img loss 1.334287405014038 img loss 1.2571696043014526 img loss 1.2131823301315308 img loss 1.2752010822296143 img loss 1.3348708152770996 img loss 1.2628874778747559 img loss 1.281539797782898 img loss 1.3149534463882446 img loss 1.2605987787246704 img loss 1.3058507442474365 img loss 1.2253732681274414 img loss 1.2327390909194946 img loss 1.4541112184524536 img loss 1.3186410665512085 img loss 1.2831993103027344 {'loss': 1.2993, 'grad_norm': 0.26424703001976013, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3812987804412842 img loss 1.3447707891464233 img loss 1.3457874059677124 img loss 1.16130793094635 img loss 1.3312804698944092 img loss 1.3244991302490234 img loss 1.2751795053482056 img loss 1.2773048877716064 img loss 1.2512829303741455 img loss 1.2464179992675781 img loss 1.2207438945770264 img loss 1.2059739828109741 img loss 1.215006709098816 img loss 1.2760308980941772 img loss 1.347807765007019 img loss 1.3302152156829834 img loss 1.2988985776901245 img loss 1.2439606189727783 img loss 1.2357134819030762 img loss 1.304266333580017 img loss 1.2612898349761963 img loss 1.198386549949646 img loss 1.278940200805664 img loss 1.2611515522003174 img loss 1.174997091293335 img loss 1.2091816663742065 img loss 1.2020004987716675 img loss 1.22539222240448 img loss 1.2315022945404053 img loss 1.2864251136779785 img loss 1.284885287284851 img loss 1.2125835418701172 img loss 1.1604833602905273 img loss 1.2399526834487915 img loss 1.2793231010437012 img loss 1.3475470542907715 img loss 1.1946487426757812 img loss 1.2352614402770996 img loss 1.334191918373108 img loss 1.2326749563217163 img loss 1.313950777053833 img loss 1.2803802490234375 img loss 1.2772915363311768 img loss 1.2859925031661987 img loss 1.3160972595214844 img loss 1.2779470682144165 img loss 1.3225315809249878 img loss 1.2134863138198853 img loss 1.2408109903335571 img loss 1.240763545036316 img loss 1.3890835046768188 img loss 1.2509031295776367 img loss 1.24066162109375 img loss 1.2234195470809937 img loss 1.2982497215270996 img loss 1.279265284538269 img loss 1.291412353515625 img loss 1.1585842370986938 img loss 1.268551230430603 img loss 1.3097684383392334 img loss 1.2545150518417358 img loss 1.2871135473251343 img loss 1.1941019296646118 img loss 1.3035789728164673 img loss 1.2203136682510376 img loss 1.2402949333190918 img loss 1.2385534048080444 img loss 1.4232914447784424 img loss 1.2347666025161743 img loss 1.2703604698181152 img loss 1.2714872360229492 img loss 1.2516040802001953 img loss 1.1980851888656616 img loss 1.2445268630981445 img loss 1.3006930351257324 img loss 1.2910341024398804 img loss 1.2187650203704834 img loss 1.3398231267929077 img loss 1.271484136581421 img loss 1.2292331457138062 img loss 1.2700926065444946 img loss 1.2805850505828857 img loss 1.1841245889663696 img loss 1.3056471347808838 img loss 1.238293170928955 img loss 1.2751449346542358 img loss 1.2667001485824585 img loss 1.2839083671569824 img loss 1.2751606702804565 img loss 1.1709312200546265 img loss 1.2858737707138062 img loss 1.2965630292892456 img loss 1.2597225904464722 img loss 1.2453460693359375 img loss 1.2853153944015503 img loss 1.168626308441162 img loss 1.2490980625152588 img loss 1.2109192609786987 img loss 1.2365946769714355 img loss 1.2354665994644165 img loss 1.2667393684387207 img loss 1.2464321851730347 img loss 1.2649884223937988 img loss 1.286016821861267 img loss 1.2468128204345703 img loss 1.2316263914108276 img loss 1.2077890634536743 img loss 1.184849500656128 img loss 1.314526915550232 img loss 1.2667220830917358 img loss 1.2576804161071777 img loss 1.2738838195800781 img loss 1.2434768676757812 img loss 1.2820593118667603 img loss 1.2325977087020874 img loss 1.23287832736969 img loss 1.3720622062683105 img loss 1.25276517868042 img loss 1.2932472229003906 img loss 1.2930710315704346 img loss 1.2328327894210815 img loss 1.2843945026397705 img loss 1.290165662765503 img loss 1.252703309059143 img loss 1.2698980569839478 img loss 1.2994701862335205 img loss 1.1797188520431519 img loss 1.3112061023712158 {'loss': 1.2627, 'grad_norm': 0.2393723577260971, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.123284935951233 img loss 1.178841233253479 img loss 1.2945537567138672 img loss 1.286855936050415 img loss 1.2109627723693848 img loss 1.1749043464660645 img loss 1.243586540222168 img loss 1.197937250137329 img loss 1.2258869409561157 img loss 1.2376222610473633 img loss 1.254515528678894 img loss 1.2329858541488647 img loss 1.1866024732589722 img loss 1.2290502786636353 img loss 1.1920225620269775 img loss 1.2725797891616821 img loss 1.1667022705078125 img loss 1.1990065574645996 img loss 1.2911946773529053 img loss 1.3387410640716553 img loss 1.1662613153457642 img loss 1.226178765296936 img loss 1.2112804651260376 img loss 1.3238332271575928 img loss 1.224591612815857 img loss 1.2572009563446045 img loss 1.1435211896896362 img loss 1.2048927545547485 img loss 1.228264331817627 img loss 1.2160940170288086 img loss 1.217489242553711 img loss 1.2236859798431396 img loss 1.2160955667495728 img loss 1.2301329374313354 img loss 1.1723393201828003 img loss 1.2284663915634155 img loss 1.2044391632080078 img loss 1.3122249841690063 img loss 1.2116453647613525 img loss 1.2290794849395752 img loss 1.2011381387710571 img loss 1.178805947303772 img loss 1.2072360515594482 img loss 1.142682433128357 img loss 1.2353962659835815 img loss 1.2252525091171265 img loss 1.215614676475525 img loss 1.1917294263839722 img loss 1.2015249729156494 img loss 1.1984496116638184 img loss 1.1472574472427368 img loss 1.1186306476593018 img loss 1.1912163496017456 img loss 1.2361057996749878 img loss 1.2208185195922852 img loss 1.2154786586761475 img loss 1.2539268732070923 img loss 1.2583329677581787 img loss 1.2207133769989014 img loss 1.2319214344024658 img loss 1.2636947631835938 img loss 1.2175931930541992 img loss 1.1622463464736938 img loss 1.2293694019317627 img loss 1.243346095085144 img loss 1.2314717769622803 img loss 1.3096319437026978 img loss 1.2256443500518799 img loss 1.2358334064483643 img loss 1.2205244302749634 img loss 1.2246016263961792 img loss 1.1746186017990112 img loss 1.219830870628357 img loss 1.2940897941589355 img loss 1.2505251169204712 img loss 1.1884548664093018 img loss 1.254437804222107 img loss 1.2461583614349365 img loss 1.1908518075942993 img loss 1.1610655784606934 img loss 1.1563040018081665 img loss 1.2175288200378418 img loss 1.17233145236969 img loss 1.1923853158950806 img loss 1.2098454236984253 img loss 1.248165488243103 img loss 1.2276302576065063 img loss 1.2418735027313232 img loss 1.1814992427825928 img loss 1.1707360744476318 img loss 1.196260929107666 img loss 1.3385826349258423 img loss 1.1765779256820679 img loss 1.23002028465271 img loss 1.2394202947616577 img loss 1.209437608718872 img loss 1.1635942459106445 img loss 1.1117784976959229 img loss 1.20321524143219 img loss 1.1965808868408203 img loss 1.1677112579345703 img loss 1.1999101638793945 img loss 1.251813530921936 img loss 1.265602946281433 img loss 1.1397614479064941 img loss 1.2405004501342773 img loss 1.2947041988372803 img loss 1.2817888259887695 img loss 1.2021310329437256 img loss 1.2230205535888672 img loss 1.214689016342163 img loss 1.125581979751587 img loss 1.249847173690796 img loss 1.2384121417999268 img loss 1.267354965209961 img loss 1.2715497016906738 img loss 1.2605739831924438 img loss 1.1124900579452515 img loss 1.192394733428955 img loss 1.1882874965667725 img loss 1.2693946361541748 img loss 1.1577516794204712 img loss 1.2348449230194092 img loss 1.3254231214523315 img loss 1.314965844154358 img loss 1.0975396633148193 img loss 1.2019907236099243 img loss 1.2619460821151733 {'loss': 1.2184, 'grad_norm': 0.2582772672176361, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.379204511642456 img loss 1.3283329010009766 img loss 1.384374976158142 img loss 1.2871124744415283 img loss 1.3552041053771973 img loss 1.3846784830093384 img loss 1.134656310081482 img loss 1.2742314338684082 img loss 1.3062107563018799 img loss 1.3520294427871704 img loss 1.3340038061141968 img loss 1.282750129699707 img loss 1.376120686531067 img loss 1.218379259109497 img loss 1.304389476776123 img loss 1.3984496593475342 img loss 1.2521700859069824 img loss 1.319578766822815 img loss 1.2710487842559814 img loss 1.366787075996399 img loss 1.3325095176696777 img loss 1.3443113565444946 img loss 1.3364211320877075 img loss 1.2464265823364258 img loss 1.2662713527679443 img loss 1.2270694971084595 img loss 1.2960258722305298 img loss 1.267046570777893 img loss 1.2134346961975098 img loss 1.3883230686187744 img loss 1.3108242750167847 img loss 1.2957000732421875 img loss 1.2858396768569946 img loss 1.2336902618408203 img loss 1.31216561794281 img loss 1.288429617881775 img loss 1.3498523235321045 img loss 1.2895498275756836 img loss 1.3649485111236572 img loss 1.2691054344177246 img loss 1.2774596214294434 img loss 1.3579552173614502 img loss 1.3328821659088135 img loss 1.3111820220947266 img loss 1.2671732902526855 img loss 1.3041985034942627 img loss 1.2743778228759766 img loss 1.334702730178833 img loss 1.2689495086669922 img loss 1.3868035078048706 img loss 1.2642114162445068 img loss 1.2667224407196045 img loss 1.2746399641036987 img loss 1.1805379390716553 img loss 1.2971017360687256 img loss 1.2291462421417236 img loss 1.221678376197815 img loss 1.2519569396972656 img loss 1.379644751548767 img loss 1.315787672996521 img loss 1.352942705154419 img loss 1.2370715141296387 img loss 1.3443852663040161 img loss 1.2750457525253296 img loss 1.3563306331634521 img loss 1.3328118324279785 img loss 1.239432692527771 img loss 1.2685585021972656 img loss 1.2970422506332397 img loss 1.3459715843200684 img loss 1.358015775680542 img loss 1.3309590816497803 img loss 1.3463338613510132 img loss 1.4094254970550537 img loss 1.258188247680664 img loss 1.3153561353683472 img loss 1.3135915994644165 img loss 1.4643386602401733 img loss 1.2585541009902954 img loss 1.3897777795791626 img loss 1.3724883794784546 img loss 1.2553154230117798 img loss 1.402842402458191 img loss 1.364866852760315 img loss 1.3214261531829834 img loss 1.3087371587753296 img loss 1.3549339771270752 img loss 1.3373502492904663 img loss 1.339855432510376 img loss 1.3131709098815918 img loss 1.3765965700149536 img loss 1.2757868766784668 img loss 1.4228376150131226 img loss 1.3277992010116577 img loss 1.3442189693450928 img loss 1.3583428859710693 img loss 1.4196258783340454 img loss 1.3569592237472534 img loss 1.325570821762085 img loss 1.4010196924209595 img loss 1.3912445306777954 img loss 1.2319462299346924 img loss 1.3102967739105225 img loss 1.4571964740753174 img loss 1.3209060430526733 img loss 1.3045165538787842 img loss 1.3041315078735352 img loss 1.298192024230957 img loss 1.295287847518921 img loss 1.3769010305404663 img loss 1.2846488952636719 img loss 1.2580156326293945 img loss 1.3144969940185547 img loss 1.3525744676589966 img loss 1.356443166732788 img loss 1.3245112895965576 img loss 1.3505104780197144 img loss 1.40992271900177 img loss 1.3452715873718262 img loss 1.466518759727478 img loss 1.2576136589050293 img loss 1.224574327468872 img loss 1.3019694089889526 img loss 1.3281244039535522 img loss 1.1880793571472168 img loss 1.388617992401123 img loss 1.311917781829834 img loss 1.375780701637268 {'loss': 1.3174, 'grad_norm': 0.27721866965293884, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3840240240097046 img loss 1.31209135055542 img loss 1.3306957483291626 img loss 1.4292198419570923 img loss 1.4236379861831665 img loss 1.4824892282485962 img loss 1.4479187726974487 img loss 1.3819587230682373 img loss 1.4125162363052368 img loss 1.3385369777679443 img loss 1.3721327781677246 img loss 1.4184478521347046 img loss 1.3693139553070068 img loss 1.3468143939971924 img loss 1.5501549243927002 img loss 1.5675055980682373 img loss 1.366540789604187 img loss 1.3763982057571411 img loss 1.4550755023956299 img loss 1.5316383838653564 img loss 1.4409047365188599 img loss 1.4240013360977173 img loss 1.4427279233932495 img loss 1.4862161874771118 img loss 1.4018465280532837 img loss 1.411718726158142 img loss 1.4029881954193115 img loss 1.4678189754486084 img loss 1.536889672279358 img loss 1.4578393697738647 img loss 1.4794976711273193 img loss 1.3469375371932983 img loss 1.314024806022644 img loss 1.4673607349395752 img loss 1.4253113269805908 img loss 1.3898204565048218 img loss 1.3930224180221558 img loss 1.3834575414657593 img loss 1.3535866737365723 img loss 1.483461856842041 img loss 1.353411078453064 img loss 1.3884321451187134 img loss 1.3795158863067627 img loss 1.417580246925354 img loss 1.4837819337844849 img loss 1.4318909645080566 img loss 1.3666317462921143 img loss 1.3241313695907593 img loss 1.3513094186782837 img loss 1.3973745107650757 img loss 1.4428627490997314 img loss 1.4557534456253052 img loss 1.3379151821136475 img loss 1.413226842880249 img loss 1.4428837299346924 img loss 1.389758586883545 img loss 1.4209096431732178 img loss 1.3410269021987915 img loss 1.5544297695159912 img loss 1.4213769435882568 img loss 1.3587334156036377 img loss 1.4939522743225098 img loss 1.4006593227386475 img loss 1.4761909246444702 img loss 1.3160368204116821 img loss 1.3359863758087158 img loss 1.4915931224822998 img loss 1.4774010181427002 img loss 1.386227011680603 img loss 1.3709290027618408 img loss 1.4577323198318481 img loss 1.614086627960205 img loss 1.3488644361495972 img loss 1.381738305091858 img loss 1.4460092782974243 img loss 1.4561570882797241 img loss 1.5026649236679077 img loss 1.406528115272522 img loss 1.4388326406478882 img loss 1.4055627584457397 img loss 1.4360032081604004 img loss 1.3475571870803833 img loss 1.451585054397583 img loss 1.4088208675384521 img loss 1.3261991739273071 img loss 1.371655821800232 img loss 1.2912567853927612 img loss 1.4925845861434937 img loss 1.305708885192871 img loss 1.3029210567474365 img loss 1.3571857213974 img loss 1.3176958560943604 img loss 1.4049620628356934 img loss 1.3409119844436646 img loss 1.418444037437439 img loss 1.4634225368499756 img loss 1.3552863597869873 img loss 1.3778613805770874 img loss 1.5500998497009277 img loss 1.4448283910751343 img loss 1.4769006967544556 img loss 1.340222954750061 img loss 1.427012324333191 img loss 1.2842731475830078 img loss 1.478359580039978 img loss 1.3792693614959717 img loss 1.4572396278381348 img loss 1.475608468055725 img loss 1.4050599336624146img loss 1.4766556024551392 img loss 1.4645882844924927 img loss 1.4063042402267456 img loss 1.4277493953704834 img loss 1.4504501819610596 img loss 1.3548797369003296 img loss 1.3546911478042603 img loss 1.3921210765838623 img loss 1.2458007335662842 img loss 1.3739979267120361 img loss 1.39810311794281 img loss 1.5353072881698608 img loss 1.491339921951294 img loss 1.4383972883224487 img loss 1.4243884086608887 img loss 1.5212924480438232 img loss 1.4703258275985718 img loss 1.4201750755310059 img loss 1.483128309249878 {'loss': 1.4149, 'grad_norm': 0.3960636258125305, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.146569848060608 img loss 1.267533302307129 img loss 1.2080457210540771 img loss 1.2323322296142578 img loss 1.2562572956085205 img loss 1.2775287628173828 img loss 1.2204360961914062 img loss 1.2481240034103394 img loss 1.241377830505371 img loss 1.232814073562622 img loss 1.2042591571807861 img loss 1.2528436183929443 img loss 1.280788779258728 img loss 1.2070653438568115 img loss 1.237716555595398 img loss 1.2390326261520386 img loss 1.2405428886413574 img loss 1.159052848815918 img loss 1.192145586013794 img loss 1.2766656875610352 img loss 1.1866679191589355 img loss 1.1741833686828613 img loss 1.2608561515808105 img loss 1.244705080986023 img loss 1.2888314723968506 img loss 1.2226718664169312 img loss 1.2562147378921509 img loss 1.1870341300964355 img loss 1.2307695150375366 img loss 1.1607379913330078 img loss 1.2173805236816406 img loss 1.2381339073181152 img loss 1.1458555459976196 img loss 1.1932896375656128 img loss 1.2674007415771484 img loss 1.1992449760437012img loss 1.2023735046386719 img loss 1.2227027416229248 img loss 1.3521062135696411 img loss 1.182033896446228 img loss 1.1697033643722534 img loss 1.216257095336914 img loss 1.2859939336776733 img loss 1.2327669858932495 img loss 1.143693208694458 img loss 1.1679632663726807 img loss 1.2574230432510376 img loss 1.2674994468688965 img loss 1.1743491888046265 img loss 1.1806854009628296 img loss 1.1694297790527344 img loss 1.1775263547897339 img loss 1.1924183368682861 img loss 1.2202067375183105 img loss 1.2173786163330078 img loss 1.238019585609436 img loss 1.183119773864746 img loss 1.1457260847091675 img loss 1.2151503562927246 img loss 1.1786521673202515 img loss 1.2163680791854858 img loss 1.2316398620605469 img loss 1.1984907388687134 img loss 1.293749451637268 img loss 1.239366888999939 img loss 1.2515642642974854 img loss 1.1447954177856445 img loss 1.2561895847320557 img loss 1.2218129634857178 img loss 1.1886004209518433 img loss 1.184103012084961 img loss 1.21519935131073 img loss 1.178407073020935 img loss 1.1682392358779907 img loss 1.2320747375488281 img loss 1.199753761291504 img loss 1.1600126028060913 img loss 1.3243509531021118 img loss 1.274380087852478 img loss 1.278777003288269 img loss 1.267481803894043 img loss 1.2070413827896118 img loss 1.2336857318878174 img loss 1.2160624265670776 img loss 1.2919726371765137 img loss 1.2270277738571167 img loss 1.279809594154358 img loss 1.1737651824951172 img loss 1.22015380859375 img loss 1.2090847492218018 img loss 1.2353090047836304 img loss 1.1648330688476562 img loss 1.1650341749191284 img loss 1.2472119331359863 img loss 1.2011932134628296 img loss 1.2212433815002441 img loss 1.271681785583496 img loss 1.2388572692871094 img loss 1.2709988355636597 img loss 1.297182321548462 img loss 1.2027885913848877 img loss 1.2609772682189941 img loss 1.2642338275909424 img loss 1.1267330646514893 img loss 1.236379623413086 img loss 1.2101478576660156 img loss 1.1600737571716309 img loss 1.2019020318984985 img loss 1.380442500114441 img loss 1.239691972732544 img loss 1.1843266487121582 img loss 1.1815563440322876 img loss 1.1783764362335205 img loss 1.2397278547286987 img loss 1.256345272064209 img loss 1.15571928024292 img loss 1.1884019374847412 img loss 1.2111519575119019 img loss 1.1966071128845215 img loss 1.3488389253616333 img loss 1.1991084814071655 img loss 1.2132604122161865 img loss 1.2727563381195068 img loss 1.1911163330078125 img loss 1.2039616107940674 img loss 1.2254494428634644 img loss 1.202952265739441 img loss 1.2156219482421875 {'loss': 1.2214, 'grad_norm': 0.22682714462280273, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2518961429595947 img loss 1.250182032585144 img loss 1.2601836919784546 img loss 1.169057846069336 img loss 1.179389238357544 img loss 1.266036033630371 img loss 1.2295578718185425 img loss 1.2268050909042358 img loss 1.1826145648956299 img loss 1.230808138847351 img loss 1.2095375061035156 img loss 1.2943788766860962 img loss 1.1926021575927734 img loss 1.1570764780044556 img loss 1.282522201538086 img loss 1.185369849205017 img loss 1.286070466041565 img loss 1.19740891456604 img loss 1.138284683227539 img loss 1.1671836376190186 img loss 1.2132078409194946 img loss 1.2191977500915527 img loss 1.1732935905456543 img loss 1.2325941324234009 img loss 1.1887633800506592 img loss 1.2816656827926636 img loss 1.2819775342941284 img loss 1.239345908164978 img loss 1.3241972923278809 img loss 1.1909804344177246 img loss 1.205268144607544 img loss 1.1822664737701416 img loss 1.1474666595458984 img loss 1.243113398551941 img loss 1.2302587032318115 img loss 1.2268255949020386 img loss 1.1838196516036987 img loss 1.153574824333191 img loss 1.2567684650421143 img loss 1.1069539785385132 img loss 1.152556300163269 img loss 1.2587223052978516 img loss 1.0885558128356934 img loss 1.2071199417114258 img loss 1.1794995069503784 img loss 1.2480618953704834 img loss 1.1078848838806152 img loss 1.1725505590438843 img loss 1.2521891593933105 img loss 1.2108192443847656 img loss 1.2539364099502563 img loss 1.2534101009368896 img loss 1.225723147392273 img loss 1.2403420209884644 img loss 1.2144014835357666 img loss 1.2047408819198608 img loss 1.1686385869979858 img loss 1.157714605331421 img loss 1.2168598175048828 img loss 1.2411513328552246 img loss 1.2150318622589111 img loss 1.2561432123184204 img loss 1.1936333179473877 img loss 1.197998046875 img loss 1.2181663513183594 img loss 1.1853851079940796 img loss 1.2865159511566162 img loss 1.173848032951355 img loss 1.189796805381775 img loss 1.2174220085144043 img loss 1.176823377609253 img loss 1.2426915168762207 img loss 1.2306772470474243 img loss 1.3126453161239624 img loss 1.1754167079925537 img loss 1.2106326818466187 img loss 1.159849762916565 img loss 1.190337061882019 img loss 1.1883068084716797 img loss 1.1679834127426147 img loss 1.1703823804855347 img loss 1.1724456548690796 img loss 1.2759530544281006 img loss 1.125749945640564 img loss 1.1931538581848145 img loss 1.229386568069458 img loss 1.1620572805404663 img loss 1.2452523708343506 img loss 1.231218934059143 img loss 1.247732162475586 img loss 1.2864909172058105 img loss 1.1472854614257812 img loss 1.2560127973556519 img loss 1.192392110824585 img loss 1.228013515472412 img loss 1.2187000513076782 img loss 1.2339940071105957 img loss 1.234325647354126 img loss 1.1449123620986938 img loss 1.186978816986084 img loss 1.193245530128479 img loss 1.250383973121643 img loss 1.152492880821228 img loss 1.233454942703247 img loss 1.189776062965393 img loss 1.2842718362808228 img loss 1.2485002279281616 img loss 1.2220948934555054 img loss 1.2374571561813354 img loss 1.256219506263733 img loss 1.1709506511688232 img loss 1.1657475233078003 img loss 1.2595784664154053 img loss 1.1685060262680054 img loss 1.2136086225509644 img loss 1.205155849456787 img loss 1.2475812435150146 img loss 1.1596759557724 img loss 1.2063738107681274 img loss 1.2375001907348633 img loss 1.1983765363693237 img loss 1.1891754865646362 img loss 1.2244584560394287 img loss 1.2485557794570923 img loss 1.1447277069091797 img loss 1.1830384731292725 img loss 1.1543076038360596 img loss 1.2644054889678955 {'loss': 1.2107, 'grad_norm': 0.19816960394382477, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.423738956451416 img loss 1.425885796546936 img loss 1.4139721393585205 img loss 1.526183843612671 img loss 1.4056479930877686 img loss 1.4244757890701294 img loss 1.6167889833450317 img loss 1.6240894794464111 img loss 1.313207983970642 img loss 1.385181188583374 img loss 1.4525519609451294 img loss 1.3656165599822998 img loss 1.4338586330413818 img loss 1.4612514972686768 img loss 1.5403004884719849 img loss 1.6261354684829712 img loss 1.3524401187896729 img loss 1.3985579013824463 img loss 1.3945939540863037 img loss 1.4815009832382202 img loss 1.4689298868179321 img loss 1.3882269859313965 img loss 1.7225667238235474 img loss 1.492281198501587 img loss 1.5808438062667847 img loss 1.4615765810012817 img loss 1.3943482637405396 img loss 1.4099271297454834 img loss 1.4046627283096313 img loss 1.4199402332305908 img loss 1.3555458784103394 img loss 1.526870846748352 img loss 1.5244096517562866 img loss 1.4757792949676514 img loss 1.443886160850525 img loss 1.5623153448104858 img loss 1.3670973777770996 img loss 1.4596946239471436 img loss 1.572404146194458 img loss 1.252680778503418 img loss 1.4390161037445068 img loss 1.5160695314407349 img loss 1.4757963418960571 img loss 1.4121595621109009 img loss 1.3292100429534912 img loss 1.5494968891143799 img loss 1.4614812135696411 img loss 1.428706407546997 img loss 1.3930453062057495 img loss 1.6553245782852173 img loss 1.4517788887023926 img loss 1.3977528810501099 img loss 1.5215338468551636 img loss 1.4683849811553955 img loss 1.4399361610412598 img loss 1.427107334136963 img loss 1.3341506719589233 img loss 1.449531078338623 img loss 1.4385799169540405 img loss 1.4364551305770874 img loss 1.6060165166854858 img loss 1.548802137374878 img loss 1.5696351528167725 img loss 1.4080196619033813 img loss 1.4392930269241333 img loss 1.3689824342727661 img loss 1.4694502353668213 img loss 1.6216119527816772 img loss 1.4326542615890503 img loss 1.4967557191848755 img loss 1.4519152641296387 img loss 1.4135078191757202 img loss 1.4354870319366455 img loss 1.3804444074630737 img loss 1.6550782918930054 img loss 1.5363829135894775 img loss 1.4965603351593018 img loss 1.4375660419464111 img loss 1.540336012840271 img loss 1.3686774969100952 img loss 1.422300100326538 img loss 1.5967949628829956 img loss 1.4744086265563965 img loss 1.5468086004257202 img loss 1.550399899482727 img loss 1.4404476881027222 img loss 1.3598687648773193 img loss 1.408363699913025 img loss 1.4843083620071411 img loss 1.4719874858856201 img loss 1.5007141828536987 img loss 1.4421392679214478 img loss 1.3673516511917114 img loss 1.575072169303894 img loss 1.481024146080017 img loss 1.4420644044876099 img loss 1.3959614038467407 img loss 1.3849215507507324 img loss 1.3711649179458618 img loss 1.4682714939117432 img loss 1.5924046039581299 img loss 1.5581592321395874 img loss 1.3942261934280396 img loss 1.5116432905197144 img loss 1.4576002359390259 img loss 1.4929112195968628 img loss 1.3728379011154175 img loss 1.429687261581421 img loss 1.4945560693740845 img loss 1.5505610704421997 img loss 1.4343502521514893 img loss 1.3618165254592896 img loss 1.4813374280929565 img loss 1.584539532661438 img loss 1.508851170539856 img loss 1.470989465713501 img loss 1.5831135511398315 img loss 1.3858659267425537 img loss 1.435667634010315 img loss 1.5414880514144897 img loss 1.3543223142623901 img loss 1.5201926231384277 img loss 1.4189869165420532 img loss 1.4154149293899536 img loss 1.5475648641586304 img loss 1.4783772230148315 img loss 1.4096108675003052 img loss 1.4790676832199097 {'loss': 1.4649, 'grad_norm': 0.4961963891983032, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1305879354476929 img loss 1.14008367061615 img loss 1.174719214439392 img loss 1.17699134349823 img loss 1.1090614795684814 img loss 1.204856276512146 img loss 1.1582434177398682 img loss 1.1674622297286987 img loss 1.2642560005187988 img loss 1.3098816871643066 img loss 1.2332721948623657 img loss 1.187010645866394 img loss 1.0965921878814697 img loss 1.206939458847046 img loss 1.228712558746338 img loss 1.141760230064392 img loss 1.1078470945358276 img loss 1.072097897529602 img loss 1.250905990600586 img loss 1.201216220855713 img loss 1.2078081369400024 img loss 1.2732300758361816 img loss 1.1781071424484253 img loss 1.3118008375167847 img loss 1.1052919626235962 img loss 1.1618902683258057 img loss 1.185891032218933 img loss 1.2435425519943237 img loss 1.117841124534607 img loss 1.2041540145874023 img loss 1.1771973371505737 img loss 1.2980200052261353 img loss 1.100308895111084 img loss 1.1768468618392944 img loss 1.2002429962158203 img loss 1.1626625061035156 img loss 1.1909289360046387 img loss 1.1858018636703491 img loss 1.15010404586792 img loss 1.1208093166351318img loss 1.2212738990783691 img loss 1.1698158979415894 img loss 1.189826488494873 img loss 1.1520075798034668 img loss 1.1890368461608887 img loss 1.188788890838623 img loss 1.0917060375213623 img loss 1.256692886352539 img loss 1.159789800643921 img loss 1.1069644689559937 img loss 1.1563894748687744 img loss 1.1956900358200073 img loss 1.1191326379776 img loss 1.1020570993423462 img loss 1.179614782333374 img loss 1.1247076988220215 img loss 1.25019109249115 img loss 1.2634570598602295 img loss 1.2122247219085693 img loss 1.2979825735092163 img loss 1.1466118097305298 img loss 1.2194323539733887 img loss 1.1419973373413086 img loss 1.250842809677124 img loss 1.1891618967056274 img loss 1.2331942319869995 img loss 1.1781796216964722 img loss 1.2103705406188965 img loss 1.1308165788650513 img loss 1.1938198804855347 img loss 1.18210768699646 img loss 1.1899917125701904 img loss 1.1591449975967407 img loss 1.1815922260284424 img loss 1.2058768272399902 img loss 1.138289451599121 img loss 1.1728485822677612 img loss 1.1122989654541016 img loss 1.177537202835083 img loss 1.2245304584503174 img loss 1.2587820291519165 img loss 1.2209336757659912 img loss 1.0987920761108398 img loss 1.1667158603668213 img loss 1.1926047801971436 img loss 1.224379539489746 img loss 1.2083816528320312 img loss 1.1841957569122314 img loss 1.2641721963882446 img loss 1.1941970586776733 img loss 1.187095284461975 img loss 1.1314637660980225 img loss 1.2143011093139648 img loss 1.1918449401855469 img loss 1.2079628705978394 img loss 1.1412986516952515 img loss 1.214943528175354 img loss 1.1565029621124268 img loss 1.2003531455993652 img loss 1.3427300453186035 img loss 1.1791263818740845 img loss 1.1958286762237549 img loss 1.2152910232543945 img loss 1.2741296291351318 img loss 1.2979638576507568 img loss 1.161909580230713 img loss 1.1784818172454834 img loss 1.1798055171966553 img loss 1.1923272609710693 img loss 1.2037674188613892 img loss 1.1052088737487793 img loss 1.0343716144561768 img loss 1.1696746349334717 img loss 1.1894586086273193 img loss 1.2528406381607056 img loss 1.1619822978973389 img loss 1.1679104566574097 img loss 1.165581464767456 img loss 1.1879441738128662 img loss 1.1268969774246216 img loss 1.251678466796875 img loss 1.2001527547836304 img loss 1.2857723236083984 img loss 1.1831902265548706 img loss 1.2776325941085815 img loss 1.1334165334701538 img loss 1.1594635248184204 img loss 1.2005895376205444 {'loss': 1.1868, 'grad_norm': 0.20795056223869324, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.451978087425232 img loss 1.429451584815979 img loss 1.3326424360275269 img loss 1.5443394184112549 img loss 1.4646540880203247 img loss 1.5085819959640503 img loss 1.4412329196929932 img loss 1.4264447689056396 img loss 1.3504854440689087 img loss 1.3037573099136353 img loss 1.4186642169952393 img loss 1.3951674699783325 img loss 1.4079526662826538 img loss 1.4221590757369995 img loss 1.3876901865005493 img loss 1.4287015199661255 img loss 1.492917537689209 img loss 1.3508001565933228 img loss 1.507266879081726 img loss 1.338956594467163 img loss 1.3680140972137451 img loss 1.4135528802871704 img loss 1.4108322858810425 img loss 1.3525608777999878 img loss 1.3991953134536743 img loss 1.381142497062683 img loss 1.358386516571045 img loss 1.444541335105896 img loss 1.271399974822998 img loss 1.2552188634872437 img loss 1.397233247756958 img loss 1.4651544094085693 img loss 1.397447109222412 img loss 1.3392797708511353 img loss 1.4594234228134155 img loss 1.3128401041030884 img loss 1.482690691947937 img loss 1.385306715965271img loss 1.3782398700714111 img loss 1.4639264345169067 img loss 1.4152289628982544 img loss 1.5095455646514893 img loss 1.3615705966949463 img loss 1.3850754499435425 img loss 1.4439278841018677 img loss 1.357765793800354 img loss 1.4984325170516968 img loss 1.3138703107833862 img loss 1.3444197177886963 img loss 1.4654048681259155 img loss 1.3409587144851685 img loss 1.4839465618133545 img loss 1.5191689729690552 img loss 1.4206477403640747 img loss 1.5140101909637451 img loss 1.318246603012085 img loss 1.4079326391220093 img loss 1.438476324081421 img loss 1.4937571287155151 img loss 1.396859049797058 img loss 1.479114055633545 img loss 1.51132333278656 img loss 1.4124873876571655 img loss 1.3180090188980103 img loss 1.4518500566482544 img loss 1.381343960762024 img loss 1.4816690683364868 img loss 1.429451584815979 img loss 1.402004361152649 img loss 1.433347463607788 img loss 1.4242810010910034 img loss 1.388927698135376 img loss 1.4576678276062012 img loss 1.2918918132781982 img loss 1.369715929031372 img loss 1.434920072555542 img loss 1.3560459613800049 img loss 1.475709319114685 img loss 1.3111521005630493 img loss 1.4125584363937378 img loss 1.3662469387054443 img loss 1.343654990196228 img loss 1.3938452005386353 img loss 1.4230058193206787 img loss 1.3317184448242188 img loss 1.4221447706222534 img loss 1.4088103771209717 img loss 1.3552194833755493 img loss 1.3439377546310425 img loss 1.446877121925354 img loss 1.3640440702438354 img loss 1.3571085929870605 img loss 1.3919795751571655 img loss 1.343939185142517 img loss 1.4195045232772827 img loss 1.4324666261672974 img loss 1.3461402654647827 img loss 1.427010416984558 img loss 1.3993325233459473 img loss 1.2880830764770508 img loss 1.4688200950622559 img loss 1.3621437549591064 img loss 1.4716914892196655 img loss 1.3442530632019043 img loss 1.4299237728118896 img loss 1.4696987867355347 img loss 1.401476502418518 img loss 1.322098731994629 img loss 1.3896534442901611 img loss 1.4811136722564697 img loss 1.5339950323104858 img loss 1.3886040449142456 img loss 1.4298007488250732 img loss 1.2782410383224487 img loss 1.5721005201339722 img loss 1.468289852142334 img loss 1.524514079093933 img loss 1.3433146476745605 img loss 1.4009977579116821 img loss 1.433834433555603 img loss 1.4762225151062012 img loss 1.4173331260681152 img loss 1.36994206905365 img loss 1.3333468437194824 img loss 1.3455326557159424 img loss 1.438803791999817 img loss 1.4303604364395142 img loss 1.3846460580825806 {'loss': 1.4071, 'grad_norm': 0.30676963925361633, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3216092586517334 img loss 1.3985587358474731 img loss 1.4077317714691162 img loss 1.357876181602478 img loss 1.4953502416610718 img loss 1.4394243955612183 img loss 1.3095287084579468 img loss 1.3029669523239136 img loss 1.3744491338729858 img loss 1.295642375946045 img loss 1.2330131530761719 img loss 1.4150662422180176 img loss 1.328076720237732 img loss 1.2333943843841553 img loss 1.458862543106079 img loss 1.4310067892074585 img loss 1.3997973203659058 img loss 1.3567330837249756 img loss 1.4705394506454468 img loss 1.2768759727478027 img loss 1.386060118675232 img loss 1.479804515838623 img loss 1.4154144525527954 img loss 1.4686720371246338 img loss 1.3063290119171143 img loss 1.294716477394104 img loss 1.2795895338058472 img loss 1.3975850343704224 img loss 1.33767569065094 img loss 1.2575907707214355 img loss 1.4642571210861206 img loss 1.3474756479263306 img loss 1.3843858242034912 img loss 1.3215975761413574 img loss 1.4747614860534668 img loss 1.2528339624404907 img loss 1.3819893598556519 img loss 1.5151569843292236 img loss 1.3879188299179077 img loss 1.473119854927063 img loss 1.3655297756195068 img loss 1.3673698902130127 img loss 1.3654286861419678 img loss 1.4280954599380493 img loss 1.391254186630249 img loss 1.4066320657730103 img loss 1.3656232357025146 img loss 1.3160121440887451 img loss 1.508177399635315 img loss 1.299324870109558 img loss 1.474671721458435 img loss 1.382057547569275 img loss 1.3958842754364014 img loss 1.2321618795394897 img loss 1.3298851251602173 img loss 1.3131382465362549 img loss 1.2194814682006836 img loss 1.527879238128662 img loss 1.3872655630111694 img loss 1.3842864036560059 img loss 1.4578673839569092 img loss 1.4944063425064087 img loss 1.3744990825653076 img loss 1.4412976503372192 img loss 1.3339661359786987 img loss 1.3333688974380493 img loss 1.2860960960388184 img loss 1.474434494972229 img loss 1.4396116733551025 img loss 1.4699397087097168 img loss 1.348124384880066 img loss 1.5526798963546753 img loss 1.3241280317306519 img loss 1.4476065635681152 img loss 1.4656106233596802 img loss 1.3857015371322632 img loss 1.420080542564392 img loss 1.4257729053497314 img loss 1.4104219675064087 img loss 1.372111201286316 img loss 1.4112602472305298 img loss 1.4409104585647583 img loss 1.4699331521987915 img loss 1.2613319158554077 img loss 1.4011950492858887 img loss 1.3710936307907104 img loss 1.3412467241287231 img loss 1.5568110942840576 img loss 1.3723779916763306 img loss 1.3686639070510864 img loss 1.286224365234375 img loss 1.3339959383010864 img loss 1.3015227317810059 img loss 1.4655591249465942 img loss 1.341415524482727 img loss 1.2566994428634644 img loss 1.476141095161438 img loss 1.386839509010315 img loss 1.5330113172531128 img loss 1.3637197017669678 img loss 1.396228551864624 img loss 1.3504904508590698 img loss 1.4574624300003052 img loss 1.403497338294983 img loss 1.4717286825180054 img loss 1.3992332220077515 img loss 1.3704383373260498 img loss 1.2776392698287964 img loss 1.4803440570831299 img loss 1.5695210695266724 img loss 1.39100182056427 img loss 1.4596238136291504 img loss 1.332746982574463 img loss 1.1731210947036743 img loss 1.4050332307815552 img loss 1.3887206315994263 img loss 1.4992969036102295 img loss 1.3394051790237427 img loss 1.2409237623214722 img loss 1.3537962436676025 img loss 1.4064069986343384 img loss 1.4066475629806519 img loss 1.4157649278640747 img loss 1.4668428897857666 img loss 1.4216587543487549 img loss 1.3537487983703613 img loss 1.4655753374099731 img loss 1.411820650100708 {'loss': 1.3867, 'grad_norm': 0.2965633273124695, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.986032485961914 img loss 2.120298147201538 img loss 2.1613588333129883 img loss 2.4321115016937256 img loss 2.235450029373169 img loss 2.2589681148529053 img loss 2.2020695209503174 img loss 2.1414990425109863 img loss 2.270634412765503 img loss 2.1785764694213867 img loss 2.2026267051696777 img loss 2.3689820766448975 img loss 2.180055856704712 img loss 2.3160221576690674 img loss 2.226022720336914 img loss 2.262803316116333 img loss 2.1477086544036865 img loss 2.277855396270752 img loss 2.10274076461792 img loss 2.057452917098999 img loss 2.1905527114868164 img loss 2.1279397010803223 img loss 2.1638176441192627 img loss 2.3777832984924316 img loss 2.245661973953247 img loss 2.148860454559326 img loss 2.1135926246643066 img loss 1.9533735513687134 img loss 2.204197645187378 img loss 2.146740436553955 img loss 2.1585071086883545 img loss 2.1271584033966064 img loss 2.190150022506714 img loss 2.248552083969116 img loss 2.3748087882995605 img loss 1.9877415895462036 img loss 2.116544723510742 img loss 2.0824921131134033 img loss 2.2736520767211914 img loss 2.317779064178467 img loss 2.0699501037597656 img loss 2.0795092582702637 img loss 2.2865235805511475 img loss 2.278191328048706 img loss 2.126553773880005 img loss 2.6110520362854004 img loss 2.146444320678711 img loss 2.225708484649658 img loss 2.38348388671875 img loss 2.239532470703125 img loss 2.2190680503845215 img loss 2.2971627712249756 img loss 2.2763657569885254 img loss 2.294818639755249 img loss 2.091519355773926 img loss 2.1987290382385254 img loss 2.297773838043213 img loss 2.014982223510742 img loss 2.339115619659424 img loss 2.1477394104003906 img loss 2.365973949432373 img loss 2.078085422515869 img loss 2.164133071899414 img loss 2.1377453804016113 img loss 2.2709879875183105 img loss 2.155583381652832 img loss 1.9576715230941772 img loss 2.174570083618164 img loss 2.243494749069214 img loss 2.147702932357788 img loss 2.2673563957214355 img loss 2.2298669815063477 img loss 2.344552755355835 img loss 2.3152501583099365 img loss 2.1459810733795166 img loss 2.090099334716797 img loss 2.1443030834198 img loss 1.9268372058868408 img loss 2.1909914016723633 img loss 2.257211685180664 img loss 2.2948663234710693 img loss 2.1313400268554688 img loss 2.2337541580200195 img loss 2.143454074859619 img loss 2.0308806896209717 img loss 2.223008394241333 img loss 2.409780979156494 img loss 2.2520127296447754 img loss 2.200714111328125 img loss 2.301711082458496 img loss 2.2191741466522217 img loss 2.2323405742645264 img loss 2.162714719772339 img loss 2.19964337348938 img loss 2.2176742553710938 img loss 2.2908782958984375 img loss 2.343703269958496 img loss 2.240325689315796 img loss 2.1281495094299316 img loss 2.238241672515869 img loss 2.2413687705993652 img loss 2.173070192337036 img loss 2.1834278106689453 img loss 2.2598605155944824 img loss 2.246133804321289 img loss 2.171377182006836 img loss 2.2146406173706055 img loss 2.3853378295898438 img loss 2.197859525680542 img loss 2.4979968070983887 img loss 2.164381980895996 img loss 2.2911503314971924 img loss 2.0864408016204834 img loss 2.1991748809814453 img loss 2.3163132667541504 img loss 2.2521464824676514 img loss 2.304219961166382 img loss 2.174668788909912 img loss 2.199337959289551 img loss 2.201148509979248 img loss 2.1018505096435547 img loss 2.3137929439544678 img loss 2.3433473110198975 img loss 2.0644474029541016 img loss 2.23661208152771 img loss 2.012331485748291 img loss 2.246208667755127 img loss 2.3297243118286133 {'loss': 2.2095, 'grad_norm': 1.5456972122192383, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1880133152008057 img loss 1.2107889652252197 img loss 1.1988105773925781 img loss 1.2161210775375366 img loss 1.2744364738464355 img loss 1.227872371673584 img loss 1.2366790771484375 img loss 1.2394499778747559 img loss 1.2679400444030762 img loss 1.257581114768982 img loss 1.2585006952285767 img loss 1.2760124206542969 img loss 1.202715516090393 img loss 1.1606290340423584 img loss 1.3549363613128662 img loss 1.1908358335494995 img loss 1.2743290662765503 img loss 1.1867632865905762 img loss 1.2116358280181885 img loss 1.2643458843231201 img loss 1.1968889236450195 img loss 1.1763759851455688 img loss 1.2271294593811035 img loss 1.1795233488082886 img loss 1.1809043884277344 img loss 1.2328613996505737 img loss 1.175862193107605 img loss 1.2393417358398438 img loss 1.2940529584884644 img loss 1.3314080238342285 img loss 1.2370046377182007 img loss 1.2359482049942017 img loss 1.2538926601409912 img loss 1.2602689266204834 img loss 1.2658703327178955 img loss 1.2147003412246704 img loss 1.1768269538879395 img loss 1.2226922512054443 img loss 1.2935190200805664 img loss 1.2089731693267822 img loss 1.3233656883239746 img loss 1.2194950580596924 img loss 1.2344515323638916 img loss 1.2549844980239868 img loss 1.1640257835388184 img loss 1.2028489112854004 img loss 1.1937593221664429 img loss 1.3139455318450928 img loss 1.2267346382141113 img loss 1.1814316511154175 img loss 1.1534287929534912 img loss 1.1669975519180298 img loss 1.2985628843307495 img loss 1.1907542943954468 img loss 1.1884217262268066 img loss 1.2174304723739624 img loss 1.1956428289413452 img loss 1.2276309728622437 img loss 1.2285079956054688 img loss 1.2282443046569824 img loss 1.2015893459320068 img loss 1.1813169717788696 img loss 1.2399065494537354 img loss 1.1800212860107422 img loss 1.2010143995285034 img loss 1.3440139293670654 img loss 1.210347056388855 img loss 1.294145941734314 img loss 1.270994782447815 img loss 1.2455658912658691 img loss 1.2365120649337769 img loss 1.2110605239868164 img loss 1.2427104711532593 img loss 1.2519915103912354 img loss 1.2231048345565796 img loss 1.205574870109558 img loss 1.2480753660202026 img loss 1.24545156955719 img loss 1.2227284908294678 img loss 1.2165470123291016 img loss 1.2316985130310059 img loss 1.2382854223251343 img loss 1.2585397958755493 img loss 1.2354521751403809 img loss 1.1886860132217407 img loss 1.285243272781372 img loss 1.1006511449813843 img loss 1.2009748220443726 img loss 1.261698603630066 img loss 1.2988064289093018 img loss 1.2360254526138306 img loss 1.279494047164917 img loss 1.2778953313827515 img loss 1.1523773670196533 img loss 1.2088860273361206 img loss 1.2745472192764282 img loss 1.2489416599273682 img loss 1.2715481519699097 img loss 1.1871731281280518 img loss 1.1867632865905762 img loss 1.190142035484314 img loss 1.1555255651474 img loss 1.255990743637085 img loss 1.269649863243103 img loss 1.1977479457855225 img loss 1.1955288648605347 img loss 1.206886887550354 img loss 1.2873700857162476 img loss 1.2777726650238037 img loss 1.3032079935073853 img loss 1.2700393199920654 img loss 1.2037403583526611 img loss 1.1979063749313354 img loss 1.1865490674972534 img loss 1.2290356159210205 img loss 1.235569953918457 img loss 1.261767029762268 img loss 1.2189911603927612 img loss 1.2300599813461304 img loss 1.3453198671340942 img loss 1.262606143951416 img loss 1.2468153238296509 img loss 1.2203572988510132 img loss 1.1862235069274902 img loss 1.156728744506836 img loss 1.2588863372802734 img loss 1.1764047145843506 img loss 1.1900204420089722 {'loss': 1.2299, 'grad_norm': 0.3711802065372467, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5998400449752808 img loss 1.459094762802124 img loss 1.370306372642517 img loss 1.5883100032806396 img loss 1.5462895631790161 img loss 1.5362699031829834 img loss 1.3849221467971802 img loss 1.4146901369094849 img loss 1.3539506196975708 img loss 1.4422208070755005 img loss 1.3284326791763306 img loss 1.5186680555343628 img loss 1.4331988096237183 img loss 1.3346177339553833 img loss 1.4828555583953857 img loss 1.3412537574768066 img loss 1.4245308637619019 img loss 1.4735474586486816 img loss 1.3419328927993774 img loss 1.3996593952178955 img loss 1.4183014631271362 img loss 1.3058030605316162 img loss 1.4942160844802856 img loss 1.4937636852264404 img loss 1.427274227142334 img loss 1.4479771852493286 img loss 1.4534809589385986 img loss 1.485744595527649 img loss 1.531184434890747 img loss 1.4011064767837524 img loss 1.3907157182693481 img loss 1.3712095022201538 img loss 1.440274715423584 img loss 1.3886798620224 img loss 1.4465831518173218 img loss 1.4240834712982178 img loss 1.315381646156311 img loss 1.4618237018585205 img loss 1.5632258653640747 img loss 1.3617690801620483 img loss 1.4012665748596191 img loss 1.5472733974456787 img loss 1.4745887517929077 img loss 1.6081680059432983 img loss 1.3798829317092896 img loss 1.715563178062439 img loss 1.4157227277755737 img loss 1.488107442855835 img loss 1.588641881942749 img loss 1.3925634622573853 img loss 1.509955644607544 img loss 1.447800874710083 img loss 1.6357845067977905 img loss 1.5262179374694824 img loss 1.481137752532959 img loss 1.4994714260101318img loss 1.539638876914978 img loss 1.343564510345459 img loss 1.4719206094741821 img loss 1.3956390619277954 img loss 1.5431973934173584 img loss 1.4540724754333496 img loss 1.3943593502044678 img loss 1.397628664970398 img loss 1.4231454133987427 img loss 1.4373109340667725 img loss 1.3685643672943115 img loss 1.3722965717315674 img loss 1.5241968631744385 img loss 1.4973692893981934 img loss 1.326192855834961 img loss 1.4655119180679321 img loss 1.4321608543395996 img loss 1.3875983953475952 img loss 1.471615195274353 img loss 1.50022292137146 img loss 1.4895939826965332 img loss 1.4542937278747559 img loss 1.4491945505142212 img loss 1.35196852684021 img loss 1.3344224691390991 img loss 1.561623215675354 img loss 1.487037181854248 img loss 1.4675956964492798 img loss 1.5039267539978027 img loss 1.341744303703308 img loss 1.4530761241912842 img loss 1.4897723197937012 img loss 1.3467313051223755 img loss 1.3973252773284912 img loss 1.5059493780136108 img loss 1.4989529848098755 img loss 1.536802053451538 img loss 1.4363274574279785 img loss 1.3958220481872559 img loss 1.3636916875839233 img loss 1.5096379518508911 img loss 1.4445573091506958 img loss 1.3592039346694946 img loss 1.3990063667297363 img loss 1.34955632686615img loss 1.479314923286438 img loss 1.4360603094100952 img loss 1.4392987489700317 img loss 1.328752875328064 img loss 1.3825534582138062 img loss 1.4402716159820557 img loss 1.4334505796432495 img loss 1.4389811754226685 img loss 1.416808843612671 img loss 1.495633840560913 img loss 1.3604360818862915 img loss 1.4007525444030762 img loss 1.4803928136825562 img loss 1.5365805625915527 img loss 1.458309531211853 img loss 1.3732165098190308 img loss 1.332988977432251 img loss 1.3612110614776611 img loss 1.3120487928390503 img loss 1.427918553352356 img loss 1.4441332817077637 img loss 1.3883612155914307 img loss 1.4264777898788452 img loss 1.5082496404647827 img loss 1.5041470527648926 img loss 1.5459903478622437 img loss 1.442451000213623 {'loss': 1.4436, 'grad_norm': 0.2466304451227188, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.7819197177886963 img loss 1.6668816804885864 img loss 1.6730936765670776 img loss 1.6581588983535767 img loss 1.533359408378601 img loss 1.7507165670394897 img loss 1.7079240083694458 img loss 1.7363802194595337 img loss 1.83882474899292 img loss 1.7194446325302124 img loss 1.6849466562271118 img loss 1.7835218906402588 img loss 1.774297833442688 img loss 1.6319156885147095 img loss 1.7040154933929443 img loss 1.6981509923934937 img loss 1.4369033575057983 img loss 1.7387707233428955 img loss 1.7181206941604614 img loss 1.7640823125839233 img loss 1.5867583751678467 img loss 1.9485992193222046 img loss 1.7792086601257324 img loss 1.6508909463882446 img loss 1.727796196937561 img loss 1.6572152376174927 img loss 1.7228394746780396 img loss 1.7125359773635864 img loss 1.702471137046814 img loss 1.7173806428909302 img loss 1.8552908897399902 img loss 1.5875977277755737 img loss 1.685987949371338 img loss 1.6585160493850708 img loss 1.676869511604309 img loss 1.581493616104126 img loss 1.7118843793869019 img loss 1.6953942775726318 img loss 1.7911927700042725 img loss 1.5838439464569092 img loss 1.6693720817565918 img loss 1.6212536096572876 img loss 1.7106209993362427 img loss 1.632003903388977 img loss 1.8590435981750488 img loss 1.724770188331604 img loss 1.702191710472107 img loss 1.852609395980835 img loss 1.7201484441757202 img loss 1.7565428018569946 img loss 1.7938318252563477 img loss 1.798103928565979 img loss 1.668211579322815 img loss 1.731166124343872 img loss 1.684815764427185 img loss 1.6215041875839233 img loss 1.731278419494629 img loss 1.8312960863113403 img loss 1.8481708765029907 img loss 1.7731242179870605 img loss 1.5948513746261597 img loss 1.704768419265747 img loss 1.7003923654556274 img loss 1.8556238412857056 img loss 1.7449257373809814 img loss 1.8061491250991821 img loss 1.550778865814209 img loss 1.6763325929641724 img loss 1.7308790683746338 img loss 1.8777419328689575 img loss 1.679988145828247 img loss 1.7406846284866333 img loss 1.66611647605896 img loss 1.6344305276870728 img loss 1.8841382265090942 img loss 1.7017016410827637 img loss 1.6540614366531372 img loss 1.8375966548919678 img loss 1.7120678424835205 img loss 1.7410054206848145 img loss 1.6722807884216309 img loss 1.6632306575775146 img loss 1.6256930828094482 img loss 1.7058278322219849 img loss 1.7737092971801758 img loss 1.6636298894882202 img loss 1.856817364692688 img loss 1.7395347356796265 img loss 1.7673689126968384 img loss 1.6883381605148315 img loss 1.628562092781067 img loss 1.832064151763916 img loss 1.866408109664917 img loss 1.5945584774017334 img loss 1.6540558338165283 img loss 1.575425386428833 img loss 1.6142770051956177 img loss 1.7252004146575928 img loss 1.6814420223236084 img loss 1.8596673011779785 img loss 1.7292823791503906 img loss 1.6722972393035889 img loss 1.7457644939422607 img loss 1.5635617971420288 img loss 1.5852243900299072 img loss 1.645195722579956 img loss 1.711279273033142 img loss 1.6822755336761475 img loss 1.887049674987793 img loss 1.5578233003616333 img loss 1.7889348268508911 img loss 1.8539955615997314 img loss 1.7703825235366821 img loss 1.7806329727172852 img loss 1.5736640691757202 img loss 1.834184169769287 img loss 1.7613677978515625 img loss 1.7518503665924072 img loss 1.7177026271820068 img loss 1.6671189069747925 img loss 1.5431361198425293 img loss 1.7867952585220337 img loss 1.84333074092865 img loss 1.6180145740509033 img loss 1.8421962261199951 img loss 1.593331217765808 img loss 1.6279093027114868 img loss 1.8481800556182861 {'loss': 1.7143, 'grad_norm': 0.6415392756462097, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3233060836791992 img loss 1.4509450197219849 img loss 1.3582526445388794 img loss 1.459899663925171 img loss 1.4366295337677002 img loss 1.486487627029419 img loss 1.4354808330535889 img loss 1.4112285375595093 img loss 1.4309695959091187 img loss 1.4793179035186768 img loss 1.4428280591964722 img loss 1.4372389316558838 img loss 1.4720932245254517 img loss 1.4184222221374512 img loss 1.6296221017837524 img loss 1.5164436101913452 img loss 1.2819217443466187 img loss 1.521655559539795 img loss 1.5697494745254517 img loss 1.4892734289169312 img loss 1.457637071609497 img loss 1.4108909368515015 img loss 1.3744311332702637 img loss 1.5247811079025269 img loss 1.342743992805481 img loss 1.2861108779907227 img loss 1.5031152963638306 img loss 1.3733071088790894 img loss 1.5086523294448853 img loss 1.5000101327896118 img loss 1.5301920175552368 img loss 1.4122099876403809 img loss 1.3444485664367676 img loss 1.4544323682785034 img loss 1.367138147354126 img loss 1.4516018629074097 img loss 1.433449625968933 img loss 1.3507825136184692 img loss 1.3422410488128662 img loss 1.3908981084823608 img loss 1.4952948093414307 img loss 1.4761992692947388 img loss 1.5317730903625488 img loss 1.4951118230819702 img loss 1.4989742040634155 img loss 1.41792893409729 img loss 1.4400484561920166 img loss 1.3376740217208862 img loss 1.574704647064209 img loss 1.541306734085083 img loss 1.4064371585845947 img loss 1.2789055109024048 img loss 1.2863521575927734 img loss 1.5585553646087646 img loss 1.4993014335632324 img loss 1.4459115266799927 img loss 1.358652949333191 img loss 1.4793146848678589 img loss 1.3965784311294556 img loss 1.4049381017684937 img loss 1.3905375003814697 img loss 1.4195263385772705 img loss 1.568228840827942 img loss 1.3778880834579468 img loss 1.3264143466949463 img loss 1.35173499584198 img loss 1.417760968208313 img loss 1.4255090951919556 img loss 1.4300246238708496 img loss 1.3921207189559937 img loss 1.5654171705245972 img loss 1.4827200174331665 img loss 1.5136831998825073 img loss 1.3089624643325806 img loss 1.2351453304290771 img loss 1.503308653831482 img loss 1.3795119524002075 img loss 1.4721840620040894 img loss 1.3825275897979736 img loss 1.4401841163635254 img loss 1.3592143058776855 img loss 1.4142745733261108 img loss 1.5418527126312256 img loss 1.5415436029434204 img loss 1.3786529302597046 img loss 1.4146134853363037 img loss 1.4164549112319946 img loss 1.4713584184646606 img loss 1.299142837524414 img loss 1.48257577419281 img loss 1.3653019666671753 img loss 1.3763823509216309 img loss 1.4216992855072021 img loss 1.4636456966400146 img loss 1.411561131477356 img loss 1.4721591472625732 img loss 1.501692533493042 img loss 1.2922799587249756 img loss 1.337303638458252 img loss 1.3247454166412354 img loss 1.3113068342208862 img loss 1.6816116571426392 img loss 1.4588450193405151 img loss 1.3047261238098145 img loss 1.334967017173767 img loss 1.393843412399292 img loss 1.4840071201324463 img loss 1.3761142492294312 img loss 1.4291995763778687 img loss 1.4941421747207642 img loss 1.4695219993591309 img loss 1.3328380584716797 img loss 1.4686166048049927 img loss 1.3924764394760132 img loss 1.5661934614181519 img loss 1.464781641960144 img loss 1.413224458694458 img loss 1.580320954322815 img loss 1.3788191080093384 img loss 1.4923375844955444 img loss 1.544816493988037 img loss 1.410132884979248 img loss 1.4814974069595337 img loss 1.4531476497650146 img loss 1.4217541217803955 img loss 1.4065903425216675 img loss 1.3139564990997314 img loss 1.5105595588684082 {'loss': 1.4326, 'grad_norm': 0.3093116879463196, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3826708793640137 img loss 1.277476191520691 img loss 1.3893218040466309 img loss 1.4147576093673706 img loss 1.4145954847335815 img loss 1.4489868879318237 img loss 1.3458867073059082 img loss 1.2972806692123413 img loss 1.3228076696395874 img loss 1.460395336151123 img loss 1.380462884902954 img loss 1.521775484085083 img loss 1.3592442274093628 img loss 1.4429742097854614 img loss 1.388360619544983 img loss 1.3626614809036255 img loss 1.4711804389953613 img loss 1.2878960371017456 img loss 1.4779601097106934 img loss 1.5264252424240112 img loss 1.4473012685775757 img loss 1.5208133459091187 img loss 1.2760422229766846 img loss 1.3893510103225708 img loss 1.382157564163208 img loss 1.3274376392364502 img loss 1.3610979318618774 img loss 1.299798607826233 img loss 1.5793187618255615 img loss 1.322649359703064 img loss 1.2414069175720215 img loss 1.4066004753112793 img loss 1.3186612129211426 img loss 1.4189772605895996 img loss 1.359997034072876 img loss 1.4442180395126343 img loss 1.4508970975875854 img loss 1.3664504289627075 img loss 1.5498979091644287 img loss 1.3593469858169556 img loss 1.3525482416152954 img loss 1.3876278400421143 img loss 1.429695963859558 img loss 1.367652416229248 img loss 1.4020565748214722 img loss 1.3742575645446777 img loss 1.2928904294967651 img loss 1.439734697341919 img loss 1.4576869010925293 img loss 1.335646390914917 img loss 1.3664984703063965 img loss 1.4279532432556152 img loss 1.4523131847381592 img loss 1.3701083660125732 img loss 1.40427565574646 img loss 1.3682236671447754 img loss 1.3208732604980469 img loss 1.409767985343933 img loss 1.477124810218811 img loss 1.4771599769592285 img loss 1.332488775253296 img loss 1.4715975522994995 img loss 1.467547059059143 img loss 1.4299341440200806 img loss 1.4639767408370972 img loss 1.3362631797790527 img loss 1.4320766925811768 img loss 1.3984161615371704 img loss 1.3914893865585327 img loss 1.616562008857727 img loss 1.3682427406311035 img loss 1.4420275688171387 img loss 1.326056957244873 img loss 1.290565848350525 img loss 1.2836681604385376 img loss 1.3489028215408325 img loss 1.4174113273620605 img loss 1.4142872095108032 img loss 1.344722032546997 img loss 1.3174813985824585 img loss 1.46443510055542 img loss 1.254680871963501 img loss 1.4381300210952759 img loss 1.5157769918441772 img loss 1.3741718530654907 img loss 1.4844521284103394 img loss 1.4438754320144653 img loss 1.3643327951431274 img loss 1.448647379875183 img loss 1.3113577365875244 img loss 1.389818787574768 img loss 1.340656042098999 img loss 1.3641701936721802 img loss 1.4457465410232544 img loss 1.4280840158462524 img loss 1.3480277061462402 img loss 1.4157769680023193 img loss 1.4446762800216675 img loss 1.2476098537445068 img loss 1.573481798171997 img loss 1.398753046989441 img loss 1.3944370746612549 img loss 1.3214871883392334 img loss 1.4951432943344116 img loss 1.3822835683822632 img loss 1.3181235790252686 img loss 1.4411717653274536 img loss 1.4755470752716064 img loss 1.4203678369522095 img loss 1.4452049732208252 img loss 1.4075664281845093 img loss 1.3321479558944702 img loss 1.472285509109497 img loss 1.3756600618362427 img loss 1.5279332399368286 img loss 1.4074022769927979 img loss 1.3461650609970093 img loss 1.464418649673462 img loss 1.4718940258026123 img loss 1.391405463218689 img loss 1.4494606256484985 img loss 1.4080568552017212 img loss 1.4859620332717896 img loss 1.3168283700942993 img loss 1.437740683555603 img loss 1.4208346605300903 img loss 1.3598617315292358 img loss 1.4492123126983643 {'loss': 1.4009, 'grad_norm': 0.2710139751434326, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4452717304229736 img loss 1.4145371913909912 img loss 1.4621163606643677 img loss 1.2309200763702393 img loss 1.2813923358917236 img loss 1.3798842430114746 img loss 1.3098610639572144 img loss 1.4796135425567627 img loss 1.3521637916564941 img loss 1.4098846912384033 img loss 1.4298700094223022 img loss 1.3704558610916138 img loss 1.356643795967102 img loss 1.4261616468429565 img loss 1.4725773334503174 img loss 1.383745789527893 img loss 1.332948088645935 img loss 1.450164556503296 img loss 1.3990689516067505 img loss 1.3570753335952759 img loss 1.4988540410995483 img loss 1.295660376548767 img loss 1.2390425205230713 img loss 1.3556854724884033 img loss 1.4226821660995483 img loss 1.3269472122192383 img loss 1.3195432424545288 img loss 1.3716981410980225 img loss 1.4508168697357178 img loss 1.3515534400939941 img loss 1.4674514532089233 img loss 1.390114426612854 img loss 1.5309064388275146 img loss 1.348549723625183 img loss 1.35159170627594 img loss 1.2862154245376587 img loss 1.3778001070022583 img loss 1.39165198802948 img loss 1.5110280513763428 img loss 1.4151593446731567 img loss 1.3219050168991089 img loss 1.4392930269241333 img loss 1.4039193391799927 img loss 1.3946017026901245 img loss 1.4278208017349243 img loss 1.5426452159881592 img loss 1.458045244216919 img loss 1.4655497074127197 img loss 1.487059473991394 img loss 1.3604533672332764 img loss 1.3396623134613037 img loss 1.4709972143173218 img loss 1.5662949085235596 img loss 1.3491618633270264 img loss 1.352628469467163 img loss 1.4519416093826294 img loss 1.4834721088409424 img loss 1.4612410068511963 img loss 1.4486433267593384 img loss 1.3770166635513306 img loss 1.3741379976272583 img loss 1.3021609783172607 img loss 1.3318042755126953 img loss 1.4029582738876343 img loss 1.449072003364563 img loss 1.4082658290863037 img loss 1.4883301258087158 img loss 1.2843941450119019 img loss 1.5342274904251099 img loss 1.626096487045288 img loss 1.5215067863464355 img loss 1.3021981716156006 img loss 1.3408676385879517 img loss 1.3831088542938232 img loss 1.3893235921859741 img loss 1.2954213619232178 img loss 1.3202074766159058 img loss 1.3987171649932861 img loss 1.4827020168304443 img loss 1.5279701948165894 img loss 1.436551809310913 img loss 1.3492541313171387 img loss 1.3525420427322388 img loss 1.4264349937438965 img loss 1.410502314567566 img loss 1.5254732370376587 img loss 1.4213182926177979 img loss 1.3991305828094482 img loss 1.4232357740402222 img loss 1.3235405683517456 img loss 1.2449476718902588 img loss 1.435540795326233 img loss 1.3625524044036865img loss 1.3492043018341064 img loss 1.3575098514556885 img loss 1.417339563369751 img loss 1.3286769390106201 img loss 1.4433866739273071 img loss 1.3808175325393677 img loss 1.471403956413269 img loss 1.4634519815444946 img loss 1.4412055015563965 img loss 1.4407048225402832 img loss 1.4695724248886108 img loss 1.362799048423767 img loss 1.3487955331802368 img loss 1.4338778257369995 img loss 1.3698786497116089 img loss 1.4547525644302368 img loss 1.3496040105819702 img loss 1.4337290525436401 img loss 1.3426512479782104 img loss 1.3976950645446777 img loss 1.3908604383468628 img loss 1.3937523365020752 img loss 1.5104320049285889 img loss 1.4440209865570068 img loss 1.4305773973464966 img loss 1.4682704210281372 img loss 1.3870965242385864 img loss 1.3929193019866943 img loss 1.3658826351165771 img loss 1.4034935235977173 img loss 1.362052083015442 img loss 1.4680215120315552 img loss 1.462622046470642 img loss 1.4460664987564087 img loss 1.4819456338882446 {'loss': 1.4046, 'grad_norm': 0.3328182101249695, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.210610270500183 img loss 1.2819591760635376 img loss 1.284729242324829 img loss 1.2163997888565063 img loss 1.2302448749542236 img loss 1.286598563194275 img loss 1.2535580396652222 img loss 1.1581257581710815 img loss 1.2386150360107422 img loss 1.248421311378479 img loss 1.248752236366272 img loss 1.2757000923156738 img loss 1.233108401298523 img loss 1.2338836193084717 img loss 1.2697912454605103 img loss 1.2429919242858887 img loss 1.2794010639190674 img loss 1.2931172847747803 img loss 1.3567875623703003 img loss 1.1841198205947876 img loss 1.2334704399108887 img loss 1.3022273778915405 img loss 1.2406268119812012 img loss 1.1602165699005127 img loss 1.2222716808319092 img loss 1.2009283304214478 img loss 1.2344350814819336 img loss 1.2707865238189697 img loss 1.290062427520752 img loss 1.2788788080215454 img loss 1.176643967628479 img loss 1.2189764976501465 img loss 1.2606399059295654 img loss 1.183356523513794 img loss 1.2004212141036987 img loss 1.2553752660751343 img loss 1.2719806432724 img loss 1.189042568206787 img loss 1.213486909866333 img loss 1.2145801782608032 img loss 1.2864713668823242 img loss 1.2167134284973145 img loss 1.2289761304855347 img loss 1.2054405212402344 img loss 1.2749204635620117 img loss 1.2397702932357788 img loss 1.2236851453781128 img loss 1.2315044403076172 img loss 1.2370598316192627 img loss 1.2162021398544312 img loss 1.2470089197158813 img loss 1.235388994216919 img loss 1.2992072105407715 img loss 1.170168161392212 img loss 1.2353568077087402 img loss 1.2187618017196655 img loss 1.2071430683135986 img loss 1.2879282236099243 img loss 1.2737557888031006 img loss 1.297289252281189 img loss 1.2500064373016357 img loss 1.2513518333435059 img loss 1.181981086730957 img loss 1.2571214437484741 img loss 1.2250614166259766 img loss 1.2138475179672241 img loss 1.2047550678253174 img loss 1.2991386651992798 img loss 1.2487304210662842 img loss 1.2572112083435059 img loss 1.27418851852417 img loss 1.2213938236236572 img loss 1.2912224531173706 img loss 1.1998951435089111 img loss 1.2600888013839722 img loss 1.2420718669891357 img loss 1.2514771223068237 img loss 1.2428092956542969 img loss 1.2238749265670776 img loss 1.2424386739730835 img loss 1.1389261484146118 img loss 1.2069876194000244 img loss 1.2359309196472168 img loss 1.2255733013153076 img loss 1.2144702672958374 img loss 1.2453932762145996 img loss 1.2550725936889648 img loss 1.2296130657196045 img loss 1.1777799129486084 img loss 1.2239996194839478img loss 1.251274824142456 img loss 1.2338262796401978 img loss 1.2415128946304321 img loss 1.2882689237594604 img loss 1.2492855787277222 img loss 1.1771854162216187 img loss 1.1987016201019287 img loss 1.2374566793441772 img loss 1.1947429180145264 img loss 1.274788737297058 img loss 1.285355567932129 img loss 1.2018488645553589 img loss 1.218446969985962 img loss 1.2669752836227417 img loss 1.208858847618103 img loss 1.2413899898529053 img loss 1.2598791122436523 img loss 1.3116555213928223 img loss 1.288806438446045 img loss 1.194537878036499 img loss 1.1998366117477417 img loss 1.1637849807739258 img loss 1.2829424142837524 img loss 1.3830662965774536 img loss 1.2412232160568237 img loss 1.2549337148666382 img loss 1.2676126956939697 img loss 1.1871305704116821 img loss 1.1558977365493774 img loss 1.2365782260894775 img loss 1.1892311573028564 img loss 1.198454737663269 img loss 1.2860151529312134 img loss 1.2055206298828125 img loss 1.3115475177764893 img loss 1.1708793640136719 img loss 1.229958176612854 img loss 1.2389600276947021 {'loss': 1.2383, 'grad_norm': 0.26690322160720825, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2212494611740112 img loss 1.1932659149169922 img loss 1.2369009256362915 img loss 1.2595069408416748 img loss 1.3367716073989868 img loss 1.172264575958252 img loss 1.2936604022979736 img loss 1.3204199075698853 img loss 1.39973783493042 img loss 1.2758069038391113 img loss 1.343690037727356 img loss 1.318453311920166 img loss 1.2752225399017334 img loss 1.286211609840393 img loss 1.3774374723434448 img loss 1.1856300830841064 img loss 1.274332046508789 img loss 1.1718063354492188 img loss 1.4990676641464233 img loss 1.3056795597076416 img loss 1.3375887870788574 img loss 1.338858962059021 img loss 1.2980130910873413 img loss 1.2390238046646118 img loss 1.1842693090438843 img loss 1.3658634424209595 img loss 1.3006057739257812 img loss 1.2359793186187744 img loss 1.3831982612609863 img loss 1.2674410343170166 img loss 1.3098000288009644 img loss 1.3347609043121338 img loss 1.2606912851333618 img loss 1.3545655012130737 img loss 1.2507238388061523 img loss 1.428247332572937 img loss 1.3413646221160889 img loss 1.3512957096099854 img loss 1.1732934713363647 img loss 1.2266736030578613 img loss 1.340576410293579 img loss 1.310067892074585 img loss 1.3690457344055176 img loss 1.254189372062683 img loss 1.301951289176941 img loss 1.2310253381729126 img loss 1.321855902671814 img loss 1.2891658544540405 img loss 1.2669308185577393 img loss 1.395463228225708 img loss 1.2303017377853394 img loss 1.2724158763885498 img loss 1.3153762817382812 img loss 1.3401044607162476 img loss 1.352088451385498 img loss 1.373087763786316 img loss 1.3790329694747925 img loss 1.4529210329055786 img loss 1.2306442260742188 img loss 1.3473652601242065 img loss 1.2164005041122437 img loss 1.2791473865509033 img loss 1.3079785108566284 img loss 1.2163844108581543 img loss 1.3095881938934326 img loss 1.276557207107544 img loss 1.174399733543396 img loss 1.2619606256484985 img loss 1.3254258632659912 img loss 1.401344895362854 img loss 1.3944108486175537 img loss 1.2776379585266113 img loss 1.469913363456726 img loss 1.2538340091705322 img loss 1.3668285608291626 img loss 1.2830387353897095 img loss 1.2862640619277954 img loss 1.3174177408218384 img loss 1.2175997495651245 img loss 1.3300930261611938 img loss 1.336864709854126 img loss 1.2660807371139526 img loss 1.3458430767059326 img loss 1.2153048515319824 img loss 1.3226408958435059 img loss 1.2779901027679443 img loss 1.2466676235198975 img loss 1.2552635669708252 img loss 1.2778501510620117 img loss 1.2975327968597412 img loss 1.2796251773834229 img loss 1.3186863660812378 img loss 1.3130515813827515 img loss 1.4141124486923218 img loss 1.2760391235351562 img loss 1.3523390293121338 img loss 1.2411731481552124 img loss 1.2768499851226807 img loss 1.3788988590240479 img loss 1.2602627277374268 img loss 1.4061206579208374 img loss 1.2937120199203491 img loss 1.2562084197998047 img loss 1.3027570247650146 img loss 1.3518205881118774 img loss 1.2730051279067993 img loss 1.2095450162887573 img loss 1.2542970180511475 img loss 1.2535148859024048 img loss 1.1891682147979736 img loss 1.3162764310836792 img loss 1.1127142906188965 img loss 1.2611656188964844 img loss 1.3290919065475464 img loss 1.4087653160095215 img loss 1.2846717834472656 img loss 1.2562906742095947 img loss 1.3938032388687134 img loss 1.2698875665664673 img loss 1.24025297164917 img loss 1.2328569889068604 img loss 1.19729483127594 img loss 1.3225172758102417 img loss 1.2578845024108887 img loss 1.3509395122528076 img loss 1.3267154693603516 img loss 1.267311692237854 img loss 1.2124381065368652 {'loss': 1.2957, 'grad_norm': 0.34531745314598083, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2795541286468506 img loss 1.2389494180679321 img loss 1.2134759426116943 img loss 1.1366280317306519 img loss 1.3308601379394531 img loss 1.2557315826416016 img loss 1.2457823753356934 img loss 1.1995432376861572 img loss 1.1531271934509277 img loss 1.3323440551757812 img loss 1.2973159551620483 img loss 1.3641362190246582 img loss 1.128137469291687 img loss 1.1600993871688843 img loss 1.272355318069458 img loss 1.2720264196395874 img loss 1.364259958267212 img loss 1.1576899290084839 img loss 1.1651571989059448 img loss 1.2857803106307983 img loss 1.1709755659103394 img loss 1.3071744441986084 img loss 1.301023244857788 img loss 1.290208339691162 img loss 1.2391728162765503 img loss 1.2261486053466797 img loss 1.1669777631759644 img loss 1.3869969844818115 img loss 1.2315306663513184 img loss 1.2766075134277344 img loss 1.1767480373382568 img loss 1.326698899269104 img loss 1.2596616744995117 img loss 1.1782512664794922 img loss 1.1176594495773315 img loss 1.2025270462036133 img loss 1.2057796716690063 img loss 1.2357990741729736 img loss 1.2133684158325195 img loss 1.274309515953064 img loss 1.2631348371505737 img loss 1.2748947143554688 img loss 1.2251322269439697 img loss 1.3376697301864624 img loss 1.15350341796875 img loss 1.2599799633026123 img loss 1.2229210138320923 img loss 1.206848382949829 img loss 1.2209718227386475 img loss 1.2152775526046753 img loss 1.2986034154891968 img loss 1.2586334943771362 img loss 1.1369138956069946 img loss 1.2401859760284424 img loss 1.2287688255310059 img loss 1.1761505603790283 img loss 1.284096360206604 img loss 1.152064323425293 img loss 1.2973428964614868 img loss 1.2911927700042725 img loss 1.1937611103057861 img loss 1.2055987119674683 img loss 1.2351069450378418 img loss 1.1823875904083252 img loss 1.2368812561035156 img loss 1.2141064405441284 img loss 1.2327516078948975 img loss 1.2486728429794312 img loss 1.2677096128463745 img loss 1.273050308227539 img loss 1.163507103919983 img loss 1.0965038537979126 img loss 1.2526555061340332 img loss 1.1619971990585327 img loss 1.133771300315857 img loss 1.210272192955017 img loss 1.3142130374908447 img loss 1.1569552421569824 img loss 1.1545274257659912img loss 1.333423137664795 img loss 1.1016550064086914 img loss 1.2212865352630615 img loss 1.2219822406768799 img loss 1.25216543674469 img loss 1.306188941001892 img loss 1.2320696115493774 img loss 1.2824997901916504 img loss 1.2355668544769287 img loss 1.2385070323944092 img loss 1.404771089553833 img loss 1.2499356269836426 img loss 1.1828886270523071 img loss 1.244188666343689 img loss 1.111452579498291 img loss 1.2642854452133179 img loss 1.2526040077209473 img loss 1.2006597518920898 img loss 1.1188595294952393 img loss 1.2406558990478516 img loss 1.2374159097671509 img loss 1.2165355682373047 img loss 1.1916558742523193 img loss 1.1719274520874023 img loss 1.1756540536880493 img loss 1.150205135345459 img loss 1.2033981084823608 img loss 1.158306360244751 img loss 1.2134737968444824 img loss 1.1472430229187012 img loss 1.2564613819122314 img loss 1.1930758953094482 img loss 1.1939022541046143 img loss 1.1922712326049805 img loss 1.1925075054168701 img loss 1.1970252990722656 img loss 1.3212502002716064 img loss 1.2672353982925415 img loss 1.1601756811141968 img loss 1.2428348064422607 img loss 1.1352403163909912 img loss 1.3072752952575684 img loss 1.257524847984314 img loss 1.1102215051651 img loss 1.3305320739746094 img loss 1.2198418378829956 img loss 1.2718931436538696 img loss 1.1980383396148682 img loss 1.1702322959899902 {'loss': 1.2273, 'grad_norm': 0.24308693408966064, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1994624137878418 img loss 1.1886004209518433 img loss 1.1977076530456543 img loss 1.2082430124282837 img loss 1.1917598247528076 img loss 1.281067132949829 img loss 1.1814918518066406 img loss 1.2282071113586426 img loss 1.2163374423980713 img loss 1.2217836380004883 img loss 1.2720870971679688 img loss 1.2358932495117188 img loss 1.1788138151168823 img loss 1.2423720359802246 img loss 1.224895715713501 img loss 1.1690319776535034 img loss 1.1764264106750488 img loss 1.2087974548339844 img loss 1.1948461532592773 img loss 1.1649423837661743 img loss 1.186638355255127 img loss 1.1792484521865845 img loss 1.201772689819336 img loss 1.194065809249878 img loss 1.2069138288497925 img loss 1.2457385063171387 img loss 1.213854432106018 img loss 1.1935524940490723 img loss 1.2097758054733276 img loss 1.2214211225509644 img loss 1.2302772998809814 img loss 1.2212053537368774 img loss 1.2020729780197144 img loss 1.1923398971557617 img loss 1.210490107536316 img loss 1.1856496334075928 img loss 1.2362945079803467 img loss 1.2258458137512207 img loss 1.1986002922058105 img loss 1.1941381692886353 img loss 1.2463281154632568 img loss 1.2106702327728271 img loss 1.2089732885360718 img loss 1.2583484649658203 img loss 1.2016358375549316img loss 1.1984690427780151 img loss 1.1992223262786865 img loss 1.2136201858520508 img loss 1.2005057334899902 img loss 1.2195500135421753 img loss 1.194068431854248 img loss 1.1719375848770142 img loss 1.2102503776550293 img loss 1.2248892784118652 img loss 1.2141860723495483 img loss 1.1876100301742554 img loss 1.2258824110031128 img loss 1.2841618061065674 img loss 1.1394093036651611 img loss 1.2101424932479858 img loss 1.2264683246612549 img loss 1.1833782196044922 img loss 1.1929155588150024 img loss 1.264708161354065 img loss 1.2537294626235962 img loss 1.2246646881103516 img loss 1.1784746646881104 img loss 1.2151005268096924 img loss 1.208469033241272 img loss 1.2141871452331543 img loss 1.2308517694473267 img loss 1.2532360553741455 img loss 1.1907929182052612 img loss 1.1919341087341309 img loss 1.208250641822815 img loss 1.214942216873169 img loss 1.1908633708953857 img loss 1.1938459873199463 img loss 1.1856436729431152 img loss 1.2416330575942993 img loss 1.1650378704071045 img loss 1.1748833656311035 img loss 1.2100828886032104 img loss 1.2251557111740112 img loss 1.1731173992156982 img loss 1.2491252422332764 img loss 1.201162576675415 img loss 1.2236579656600952 img loss 1.178389310836792 img loss 1.1783241033554077 img loss 1.2002872228622437 img loss 1.179364800453186img loss 1.2251497507095337 img loss 1.1831566095352173 img loss 1.2084670066833496 img loss 1.1670503616333008 img loss 1.1723976135253906 img loss 1.1918444633483887 img loss 1.215981125831604 img loss 1.1900233030319214 img loss 1.1548820734024048 img loss 1.1943106651306152 img loss 1.183469295501709 img loss 1.1537617444992065 img loss 1.192347526550293 img loss 1.2224247455596924 img loss 1.189773440361023 img loss 1.218606948852539 img loss 1.19345223903656 img loss 1.1869277954101562 img loss 1.2230761051177979 img loss 1.184390902519226 img loss 1.1737871170043945 img loss 1.2079720497131348 img loss 1.1984449625015259 img loss 1.1587721109390259 img loss 1.213769555091858 img loss 1.197051763534546 img loss 1.2150408029556274 img loss 1.2132728099822998 img loss 1.1834207773208618 img loss 1.238321304321289 img loss 1.2152193784713745 img loss 1.2306056022644043 img loss 1.2448822259902954 img loss 1.2420659065246582 img loss 1.1882994174957275 img loss 1.2513558864593506 {'loss': 1.2062, 'grad_norm': 0.2490038126707077, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.169226050376892 img loss 1.202214241027832 img loss 1.220285415649414 img loss 1.182220458984375 img loss 1.2295221090316772 img loss 1.1591037511825562 img loss 1.2223294973373413 img loss 1.237629771232605 img loss 1.1767985820770264 img loss 1.2748372554779053 img loss 1.2857778072357178 img loss 1.2515850067138672 img loss 1.1884902715682983 img loss 1.2272658348083496 img loss 1.1921838521957397 img loss 1.1961727142333984 img loss 1.2445310354232788 img loss 1.209520697593689 img loss 1.133666753768921 img loss 1.1461528539657593 img loss 1.1213750839233398 img loss 1.1218584775924683 img loss 1.183713436126709 img loss 1.1890949010849 img loss 1.2076025009155273 img loss 1.156703233718872 img loss 1.1708532571792603 img loss 1.2293751239776611 img loss 1.2555904388427734 img loss 1.2275233268737793 img loss 1.1403334140777588 img loss 1.198636770248413 img loss 1.2017987966537476 img loss 1.2306535243988037 img loss 1.2582749128341675 img loss 1.1411523818969727 img loss 1.1970173120498657 img loss 1.1834137439727783 img loss 1.2067245244979858 img loss 1.193988561630249 img loss 1.195632815361023 img loss 1.1782746315002441 img loss 1.166090965270996 img loss 1.285706877708435 img loss 1.219163179397583 img loss 1.2178601026535034 img loss 1.2099405527114868 img loss 1.2877010107040405 img loss 1.1820342540740967img loss 1.1902168989181519 img loss 1.2403919696807861 img loss 1.1730115413665771 img loss 1.236765742301941 img loss 1.226712703704834 img loss 1.2102478742599487 img loss 1.2232654094696045 img loss 1.1997531652450562 img loss 1.2071024179458618 img loss 1.2679626941680908 img loss 1.170969843864441 img loss 1.2765531539916992 img loss 1.2619357109069824 img loss 1.16253662109375 img loss 1.24088454246521 img loss 1.2604572772979736 img loss 1.2125928401947021 img loss 1.213966727256775 img loss 1.1678426265716553 img loss 1.2408957481384277 img loss 1.2595124244689941 img loss 1.1894009113311768 img loss 1.1635396480560303 img loss 1.2020149230957031 img loss 1.1751407384872437 img loss 1.1657688617706299 img loss 1.2176589965820312 img loss 1.1955565214157104 img loss 1.212778925895691 img loss 1.4066650867462158 img loss 1.2057945728302002 img loss 1.2203794717788696 img loss 1.1739311218261719 img loss 1.150187373161316 img loss 1.206692099571228 img loss 1.2262028455734253 img loss 1.2063674926757812 img loss 1.1782958507537842 img loss 1.210986852645874 img loss 1.2274550199508667 img loss 1.270262360572815 img loss 1.1847599744796753 img loss 1.2401374578475952 img loss 1.1901955604553223 img loss 1.211861252784729 img loss 1.1972997188568115 img loss 1.167763590812683 img loss 1.2561365365982056 img loss 1.1666339635849 img loss 1.1710418462753296 img loss 1.2421162128448486 img loss 1.2064136266708374 img loss 1.2761791944503784 img loss 1.2531126737594604 img loss 1.1754543781280518 img loss 1.2192076444625854 img loss 1.3054769039154053 img loss 1.2688908576965332 img loss 1.2589677572250366 img loss 1.2246410846710205 img loss 1.1838301420211792 img loss 1.2021358013153076 img loss 1.2516396045684814 img loss 1.2235020399093628 img loss 1.1835877895355225 img loss 1.1596148014068604 img loss 1.2211920022964478 img loss 1.2082048654556274 img loss 1.214487910270691 img loss 1.257138729095459 img loss 1.1802995204925537 img loss 1.2229957580566406 img loss 1.1778204441070557 img loss 1.2037051916122437 img loss 1.2065156698226929 img loss 1.2094709873199463 img loss 1.175915241241455 img loss 1.211705207824707 img loss 1.1923651695251465 {'loss': 1.2098, 'grad_norm': 0.4488596022129059, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5024564266204834 img loss 1.4912359714508057 img loss 1.3871142864227295 img loss 1.4720244407653809 img loss 1.5707132816314697 img loss 1.3494559526443481 img loss 1.4196525812149048 img loss 1.4915213584899902 img loss 1.4646557569503784 img loss 1.4484413862228394 img loss 1.3944543600082397 img loss 1.5894811153411865 img loss 1.5603594779968262 img loss 1.431270718574524 img loss 1.6227949857711792 img loss 1.4436534643173218 img loss 1.8074941635131836 img loss 1.4643299579620361 img loss 1.4344254732131958 img loss 1.3617769479751587 img loss 1.4592026472091675 img loss 1.5494707822799683 img loss 1.4938714504241943 img loss 1.479432225227356 img loss 1.424322247505188 img loss 1.3975789546966553 img loss 1.5424562692642212 img loss 1.5936566591262817 img loss 1.6352659463882446 img loss 1.380806565284729 img loss 1.6115361452102661 img loss 1.4426270723342896 img loss 1.6535519361495972 img loss 1.5705665349960327 img loss 1.6321057081222534 img loss 1.4332138299942017 img loss 1.5903195142745972 img loss 1.5654443502426147 img loss 1.4814448356628418 img loss 1.5495012998580933 img loss 1.5539270639419556 img loss 1.4635121822357178 img loss 1.5419039726257324 img loss 1.4815984964370728 img loss 1.5280506610870361 img loss 1.546699047088623 img loss 1.703263759613037 img loss 1.630552053451538 img loss 1.526595950126648 img loss 1.4613850116729736img loss 1.473937749862671 img loss 1.537319540977478 img loss 1.4123356342315674 img loss 1.6053318977355957 img loss 1.5057240724563599 img loss 1.4692002534866333 img loss 1.560895323753357 img loss 1.4644705057144165 img loss 1.5059666633605957 img loss 1.4456756114959717 img loss 1.5030347108840942 img loss 1.5577890872955322 img loss 1.6467325687408447 img loss 1.4784483909606934 img loss 1.411129355430603 img loss 1.4696851968765259 img loss 1.4017901420593262 img loss 1.425757646560669 img loss 1.483748197555542 img loss 1.4378868341445923 img loss 1.3406511545181274 img loss 1.4105732440948486 img loss 1.507077693939209 img loss 1.4704450368881226 img loss 1.4306461811065674 img loss 1.454452633857727 img loss 1.530673861503601 img loss 1.6250721216201782 img loss 1.4777350425720215 img loss 1.5127842426300049 img loss 1.4769879579544067 img loss 1.5389761924743652 img loss 1.3744540214538574 img loss 1.474239468574524 img loss 1.418740153312683 img loss 1.4358967542648315 img loss 1.7777714729309082 img loss 1.394974946975708 img loss 1.4745844602584839 img loss 1.484973669052124 img loss 1.619316816329956 img loss 1.5038245916366577 img loss 1.434385895729065 img loss 1.4024192094802856 img loss 1.3940232992172241 img loss 1.539437174797058 img loss 1.53783118724823 img loss 1.5538709163665771 img loss 1.5348703861236572 img loss 1.6057285070419312 img loss 1.7371629476547241 img loss 1.4517178535461426 img loss 1.53368079662323 img loss 1.473597764968872 img loss 1.6670602560043335 img loss 1.5070821046829224 img loss 1.5487483739852905 img loss 1.5590282678604126 img loss 1.4484479427337646 img loss 1.5812194347381592 img loss 1.395179271697998 img loss 1.7076747417449951 img loss 1.555216670036316 img loss 1.534671664237976 img loss 1.4683078527450562 img loss 1.450844407081604 img loss 1.4890496730804443 img loss 1.66202974319458 img loss 1.5264703035354614 img loss 1.4242430925369263 img loss 1.4624565839767456 img loss 1.4799439907073975 img loss 1.5407941341400146 img loss 1.5467734336853027 img loss 1.4247667789459229 img loss 1.4687389135360718 img loss 1.4197933673858643 img loss 1.550103783607483 {'loss': 1.5061, 'grad_norm': 0.43852517008781433, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3948982954025269 img loss 1.406806230545044 img loss 1.4073069095611572 img loss 1.4954636096954346 img loss 1.3691248893737793 img loss 1.4995367527008057 img loss 1.4150588512420654 img loss 1.5827631950378418 img loss 1.4395110607147217 img loss 1.3943626880645752 img loss 1.4048105478286743 img loss 1.3740341663360596 img loss 1.4385297298431396 img loss 1.4063721895217896 img loss 1.376715064048767 img loss 1.3560494184494019 img loss 1.4627798795700073 img loss 1.5435436964035034 img loss 1.4173890352249146 img loss 1.572688341140747 img loss 1.3932604789733887 img loss 1.313485860824585 img loss 1.5108959674835205 img loss 1.4010272026062012 img loss 1.4704415798187256 img loss 1.351974368095398 img loss 1.3398345708847046 img loss 1.3499436378479004 img loss 1.5022809505462646 img loss 1.5364514589309692 img loss 1.3507637977600098 img loss 1.4636073112487793 img loss 1.3272621631622314 img loss 1.3347220420837402 img loss 1.3743281364440918 img loss 1.3987375497817993 img loss 1.3427293300628662 img loss 1.347815752029419 img loss 1.3156585693359375 img loss 1.374651551246643 img loss 1.3836798667907715 img loss 1.482903003692627 img loss 1.4514375925064087 img loss 1.3982014656066895img loss 1.2824037075042725 img loss 1.4649189710617065 img loss 1.3636187314987183 img loss 1.4758543968200684 img loss 1.4261584281921387 img loss 1.4906203746795654 img loss 1.4169682264328003 img loss 1.4395109415054321 img loss 1.358361840248108 img loss 1.42412269115448 img loss 1.3083510398864746 img loss 1.410895824432373 img loss 1.3432623147964478 img loss 1.4110721349716187 img loss 1.292354941368103 img loss 1.4591271877288818 img loss 1.379381537437439 img loss 1.4152497053146362 img loss 1.5095412731170654 img loss 1.5098087787628174 img loss 1.425536036491394 img loss 1.2977936267852783 img loss 1.4613922834396362 img loss 1.4631491899490356 img loss 1.312896490097046 img loss 1.3645883798599243 img loss 1.4742482900619507 img loss 1.3361499309539795 img loss 1.4708492755889893 img loss 1.4913108348846436 img loss 1.3395791053771973 img loss 1.6079905033111572 img loss 1.406775712966919 img loss 1.443257451057434 img loss 1.598726511001587 img loss 1.3370085954666138 img loss 1.342564344406128 img loss 1.424010157585144 img loss 1.443813443183899 img loss 1.465693712234497 img loss 1.3770185708999634 img loss 1.3081697225570679 img loss 1.3648314476013184 img loss 1.382396936416626 img loss 1.44551420211792 img loss 1.5049563646316528 img loss 1.3571287393569946 img loss 1.4060778617858887 img loss 1.3215065002441406 img loss 1.3981553316116333 img loss 1.40574049949646 img loss 1.4219794273376465 img loss 1.4128674268722534 img loss 1.3735995292663574 img loss 1.3201611042022705 img loss 1.4030976295471191 img loss 1.3891657590866089 img loss 1.3583422899246216 img loss 1.4206184148788452 img loss 1.4083527326583862 img loss 1.3503540754318237 img loss 1.438186764717102 img loss 1.3193891048431396 img loss 1.370623230934143 img loss 1.4352399110794067 img loss 1.4203603267669678 img loss 1.5668017864227295 img loss 1.3463138341903687 img loss 1.3857991695404053 img loss 1.5156797170639038 img loss 1.4245797395706177 img loss 1.2958884239196777 img loss 1.4546557664871216 img loss 1.4675004482269287 img loss 1.4032849073410034 img loss 1.4899684190750122 img loss 1.3380885124206543 img loss 1.3856732845306396 img loss 1.3263128995895386 img loss 1.3776729106903076 img loss 1.4800859689712524 img loss 1.3596158027648926 img loss 1.2466905117034912 img loss 1.4667004346847534 {'loss': 1.4094, 'grad_norm': 0.2883314788341522, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1324701309204102 img loss 1.2888524532318115 img loss 1.1912723779678345 img loss 1.176511526107788 img loss 1.2973952293395996 img loss 1.2660139799118042 img loss 1.2694437503814697 img loss 1.2271764278411865 img loss 1.1574511528015137 img loss 1.1898815631866455 img loss 1.161638617515564 img loss 1.2000782489776611 img loss 1.1733810901641846 img loss 1.3307256698608398 img loss 1.2395423650741577 img loss 1.1223607063293457 img loss 1.1935930252075195 img loss 1.2354122400283813 img loss 1.1417909860610962 img loss 1.3286463022232056 img loss 1.159594178199768 img loss 1.163991928100586 img loss 1.2625973224639893 img loss 1.2276740074157715 img loss 1.1855103969573975 img loss 1.235572099685669 img loss 1.234574794769287 img loss 1.2617125511169434 img loss 1.1962858438491821 img loss 1.1711103916168213 img loss 1.229936122894287 img loss 1.311012625694275 img loss 1.1142966747283936 img loss 1.191443920135498 img loss 1.3395466804504395 img loss 1.1563001871109009 img loss 1.1584199666976929 img loss 1.2050912380218506 img loss 1.244433879852295 img loss 1.2508268356323242 img loss 1.3608453273773193 img loss 1.2335411310195923 img loss 1.2469948530197144 img loss 1.2593549489974976 img loss 1.186246633529663 img loss 1.1795469522476196 img loss 1.1853605508804321 img loss 1.178949236869812 img loss 1.2935006618499756 img loss 1.2394033670425415 img loss 1.1772403717041016 img loss 1.118660807609558 img loss 1.240857720375061 img loss 1.2038273811340332 img loss 1.104117751121521 img loss 1.1704014539718628 img loss 1.1818342208862305 img loss 1.2323130369186401 img loss 1.2472243309020996 img loss 1.2501575946807861 img loss 1.2440216541290283 img loss 1.229888916015625 img loss 1.238831877708435 img loss 1.2831573486328125 img loss 1.249888300895691 img loss 1.1624140739440918 img loss 1.1840931177139282 img loss 1.1969547271728516 img loss 1.2014515399932861 img loss 1.1982754468917847 img loss 1.2154301404953003 img loss 1.222106695175171 img loss 1.1495800018310547 img loss 1.243194818496704 img loss 1.1649292707443237 img loss 1.1865977048873901 img loss 1.187634825706482 img loss 1.2578434944152832 img loss 1.2297415733337402 img loss 1.1922651529312134 img loss 1.2059555053710938 img loss 1.2317146062850952 img loss 1.220550775527954 img loss 1.1486802101135254 img loss 1.2196009159088135 img loss 1.196986198425293 img loss 1.2052456140518188 img loss 1.2476125955581665 img loss 1.259529709815979 img loss 1.2231566905975342 img loss 1.2177950143814087 img loss 1.21147620677948 img loss 1.179588794708252 img loss 1.2519153356552124 img loss 1.3192542791366577 img loss 1.161190390586853 img loss 1.1799477338790894 img loss 1.1944479942321777 img loss 1.1798604726791382 img loss 1.2329473495483398 img loss 1.0867704153060913 img loss 1.2100340127944946 img loss 1.2010254859924316 img loss 1.2379798889160156 img loss 1.2407112121582031 img loss 1.1691786050796509 img loss 1.2330546379089355 img loss 1.1802517175674438 img loss 1.225196123123169 img loss 1.2821356058120728 img loss 1.0965770483016968 img loss 1.2412029504776 img loss 1.1923578977584839 img loss 1.196916937828064 img loss 1.1269638538360596 img loss 1.267902135848999 img loss 1.1777474880218506 img loss 1.1868101358413696 img loss 1.2154629230499268 img loss 1.1979225873947144 img loss 1.2023987770080566 img loss 1.2089083194732666 img loss 1.184892177581787 img loss 1.1021827459335327 img loss 1.1772792339324951 img loss 1.1821858882904053 img loss 1.1589598655700684 img loss 1.1422728300094604 {'loss': 1.2091, 'grad_norm': 0.40674516558647156, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4663193225860596 img loss 1.3645341396331787 img loss 1.4672963619232178 img loss 1.4375499486923218 img loss 1.342347264289856 img loss 1.536063313484192 img loss 1.2891628742218018 img loss 1.442620873451233 img loss 1.4103472232818604 img loss 1.4096745252609253 img loss 1.2959327697753906 img loss 1.3797799348831177 img loss 1.3428007364273071 img loss 1.4666670560836792 img loss 1.3234550952911377 img loss 1.3364613056182861 img loss 1.5278165340423584 img loss 1.3183618783950806 img loss 1.354677438735962 img loss 1.4846625328063965 img loss 1.479910135269165 img loss 1.4305965900421143 img loss 1.4202457666397095 img loss 1.3994368314743042 img loss 1.3754222393035889 img loss 1.344203233718872 img loss 1.4198815822601318 img loss 1.3253132104873657 img loss 1.4754799604415894 img loss 1.5748353004455566 img loss 1.3117291927337646 img loss 1.4419608116149902 img loss 1.3614122867584229 img loss 1.4481698274612427 img loss 1.3437418937683105 img loss 1.3611948490142822 img loss 1.4620753526687622 img loss 1.3365124464035034 img loss 1.4410974979400635 img loss 1.4756594896316528 img loss 1.4516541957855225 img loss 1.4326913356781006 img loss 1.350408911705017 img loss 1.2957223653793335 img loss 1.40702486038208 img loss 1.3315544128417969 img loss 1.4043633937835693 img loss 1.4887315034866333 img loss 1.4237170219421387 img loss 1.3245289325714111 img loss 1.4643510580062866 img loss 1.4920706748962402 img loss 1.4603155851364136 img loss 1.361291766166687 img loss 1.464676022529602 img loss 1.4593307971954346 img loss 1.2966804504394531 img loss 1.5147356986999512 img loss 1.3873401880264282 img loss 1.3664450645446777 img loss 1.3688523769378662 img loss 1.54600191116333 img loss 1.4695016145706177 img loss 1.4407460689544678 img loss 1.4129549264907837 img loss 1.2843775749206543 img loss 1.345683217048645 img loss 1.409156322479248 img loss 1.3430464267730713 img loss 1.397448182106018 img loss 1.4353249073028564 img loss 1.378056287765503 img loss 1.3308181762695312 img loss 1.3061603307724 img loss 1.2889058589935303 img loss 1.444627046585083 img loss 1.3409316539764404 img loss 1.2921650409698486 img loss 1.3103138208389282 img loss 1.597947597503662 img loss 1.4972103834152222 img loss 1.3190529346466064 img loss 1.4672720432281494 img loss 1.2825607061386108 img loss 1.2778652906417847 img loss 1.375671148300171 img loss 1.384705662727356 img loss 1.3926513195037842 img loss 1.4097243547439575 img loss 1.4166680574417114 img loss 1.3857415914535522 img loss 1.357733130455017 img loss 1.3663955926895142 img loss 1.4587594270706177 img loss 1.2238167524337769 img loss 1.4751607179641724 img loss 1.3749067783355713 img loss 1.4721877574920654 img loss 1.3491365909576416 img loss 1.4484556913375854 img loss 1.466156244277954 img loss 1.3714309930801392 img loss 1.3435286283493042 img loss 1.4148993492126465 img loss 1.5362032651901245 img loss 1.2818846702575684 img loss 1.332509994506836 img loss 1.3041598796844482 img loss 1.3990029096603394 img loss 1.4030877351760864 img loss 1.3346635103225708 img loss 1.5512012243270874 img loss 1.4053062200546265 img loss 1.5070185661315918 img loss 1.4548447132110596 img loss 1.3764616250991821 img loss 1.4038431644439697 img loss 1.511816143989563 img loss 1.3577449321746826 img loss 1.40745210647583 img loss 1.3704184293746948 img loss 1.3785054683685303 img loss 1.4028561115264893 img loss 1.4791207313537598 img loss 1.4906529188156128 img loss 1.3318341970443726 img loss 1.4383033514022827 img loss 1.4528623819351196 {'loss': 1.4015, 'grad_norm': 0.2535165846347809, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4357202053070068 img loss 1.364131212234497 img loss 1.2719486951828003 img loss 1.2923638820648193 img loss 1.3858624696731567 img loss 1.3944860696792603 img loss 1.333522915840149 img loss 1.3817451000213623 img loss 1.3039205074310303 img loss 1.3990119695663452 img loss 1.3092257976531982 img loss 1.3799737691879272 img loss 1.3218815326690674img loss 1.3254808187484741 img loss 1.4328887462615967 img loss 1.4017834663391113 img loss 1.3040603399276733 img loss 1.4004206657409668 img loss 1.3272247314453125 img loss 1.3052715063095093 img loss 1.3003952503204346 img loss 1.4046674966812134 img loss 1.3726537227630615 img loss 1.3194684982299805 img loss 1.500831127166748 img loss 1.4366196393966675 img loss 1.32741117477417 img loss 1.3264755010604858 img loss 1.4191609621047974 img loss 1.2955254316329956 img loss 1.273747205734253 img loss 1.3822262287139893 img loss 1.3650214672088623 img loss 1.3584648370742798 img loss 1.311988115310669 img loss 1.3206404447555542 img loss 1.3562499284744263 img loss 1.3688538074493408 img loss 1.3169775009155273 img loss 1.3711098432540894 img loss 1.2413705587387085 img loss 1.3878909349441528 img loss 1.3037627935409546 img loss 1.2929996252059937 img loss 1.2994974851608276 img loss 1.344801425933838 img loss 1.5203214883804321 img loss 1.4026515483856201 img loss 1.319486141204834 img loss 1.367135763168335 img loss 1.309731364250183 img loss 1.354175329208374 img loss 1.451952576637268 img loss 1.3451772928237915 img loss 1.3645764589309692 img loss 1.4509084224700928 img loss 1.2694427967071533 img loss 1.4324325323104858 img loss 1.363166093826294 img loss 1.4339878559112549 img loss 1.3799630403518677 img loss 1.4218955039978027 img loss 1.2821050882339478 img loss 1.2921347618103027 img loss 1.3404552936553955 img loss 1.3144692182540894 img loss 1.4068514108657837 img loss 1.2955650091171265 img loss 1.305615782737732 img loss 1.369254469871521 img loss 1.2727841138839722 img loss 1.3106627464294434 img loss 1.3466802835464478 img loss 1.4757319688796997 img loss 1.430548071861267 img loss 1.3185771703720093 img loss 1.3781687021255493 img loss 1.2787824869155884 img loss 1.3889758586883545 img loss 1.3362566232681274 img loss 1.3537094593048096 img loss 1.3698171377182007 img loss 1.3635289669036865 img loss 1.3156460523605347 img loss 1.3071961402893066 img loss 1.3783844709396362 img loss 1.4378619194030762 img loss 1.290817141532898 img loss 1.3346610069274902 img loss 1.4251635074615479 img loss 1.3927983045578003 img loss 1.3355896472930908 img loss 1.305864691734314 img loss 1.393210530281067 img loss 1.248883843421936 img loss 1.400803804397583 img loss 1.3430618047714233 img loss 1.340750813484192 img loss 1.362210988998413 img loss 1.3236747980117798 img loss 1.3618226051330566 img loss 1.2810006141662598 img loss 1.3767954111099243 img loss 1.3283369541168213 img loss 1.335817575454712 img loss 1.3780525922775269 img loss 1.4114404916763306 img loss 1.3252893686294556 img loss 1.395577311515808 img loss 1.3925367593765259 img loss 1.4002865552902222 img loss 1.390433430671692 img loss 1.282732605934143 img loss 1.3278852701187134 img loss 1.3023589849472046 img loss 1.4018725156784058 img loss 1.2897611856460571 img loss 1.3733314275741577 img loss 1.3297531604766846 img loss 1.4063845872879028 img loss 1.3407244682312012 img loss 1.3100179433822632 img loss 1.3676599264144897 img loss 1.3868234157562256 img loss 1.4075285196304321 img loss 1.3846089839935303 img loss 1.3229210376739502 img loss 1.276195764541626 {'loss': 1.354, 'grad_norm': 0.3663608729839325, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3064162731170654 img loss 1.1883167028427124 img loss 1.223878264427185 img loss 1.3069648742675781 img loss 1.2276222705841064 img loss 1.2490049600601196 img loss 1.2874053716659546 img loss 1.2708450555801392 img loss 1.2059330940246582 img loss 1.1989879608154297 img loss 1.1741821765899658 img loss 1.1927123069763184 img loss 1.2254482507705688 img loss 1.2060514688491821 img loss 1.2733206748962402 img loss 1.3390642404556274 img loss 1.1866430044174194 img loss 1.2768325805664062 img loss 1.1698745489120483 img loss 1.2673285007476807 img loss 1.2133070230484009 img loss 1.2810642719268799 img loss 1.2270774841308594 img loss 1.3122308254241943 img loss 1.2449092864990234 img loss 1.2014130353927612 img loss 1.1503159999847412 img loss 1.2201496362686157 img loss 1.381605863571167 img loss 1.2579151391983032 img loss 1.320732831954956 img loss 1.2263975143432617 img loss 1.2396893501281738 img loss 1.1880998611450195 img loss 1.25601065158844 img loss 1.2872741222381592 img loss 1.2742750644683838 img loss 1.3350757360458374 img loss 1.2219538688659668 img loss 1.3242945671081543 img loss 1.1348240375518799 img loss 1.2153582572937012 img loss 1.2693138122558594 img loss 1.2242403030395508 img loss 1.1482257843017578 img loss 1.2426961660385132 img loss 1.2364671230316162 img loss 1.213078260421753 img loss 1.139499545097351 img loss 1.2651652097702026 img loss 1.3738610744476318 img loss 1.289323091506958 img loss 1.1864147186279297 img loss 1.3082493543624878 img loss 1.301482081413269 img loss 1.1989974975585938 img loss 1.3086261749267578 img loss 1.2108440399169922 img loss 1.3150057792663574 img loss 1.2818876504898071 img loss 1.21817946434021 img loss 1.2321248054504395 img loss 1.2059552669525146 img loss 1.2217497825622559 img loss 1.2190519571304321 img loss 1.2345497608184814 img loss 1.2127468585968018 img loss 1.157027244567871 img loss 1.1681442260742188 img loss 1.2047561407089233 img loss 1.199695348739624 img loss 1.2627490758895874 img loss 1.1788469552993774 img loss 1.2499500513076782 img loss 1.188615322113037 img loss 1.1844877004623413 img loss 1.285491704940796 img loss 1.1912990808486938 img loss 1.3182752132415771 img loss 1.209247350692749 img loss 1.2737163305282593 img loss 1.2287400960922241 img loss 1.2921886444091797 img loss 1.2048983573913574 img loss 1.3061050176620483 img loss 1.1777890920639038 img loss 1.2892359495162964 img loss 1.3135120868682861 img loss 1.210047721862793 img loss 1.218936800956726 img loss 1.3903287649154663 img loss 1.1537408828735352 img loss 1.2255182266235352 img loss 1.3018945455551147 img loss 1.2708004713058472 img loss 1.193946123123169 img loss 1.2854703664779663 img loss 1.1986677646636963 img loss 1.2610931396484375 img loss 1.2174514532089233 img loss 1.2893967628479004 img loss 1.2306692600250244 img loss 1.283028244972229 img loss 1.3103835582733154 img loss 1.287992000579834 img loss 1.170630693435669 img loss 1.1287741661071777 img loss 1.2650892734527588 img loss 1.2943633794784546 img loss 1.329046607017517 img loss 1.1805100440979004 img loss 1.3091142177581787 img loss 1.2988183498382568 img loss 1.2568374872207642 img loss 1.1743144989013672 img loss 1.2308756113052368 img loss 1.1940997838974 img loss 1.2863171100616455 img loss 1.3090835809707642 img loss 1.2299606800079346 img loss 1.278297781944275 img loss 1.2331652641296387 img loss 1.358681321144104 img loss 1.292487382888794 img loss 1.2825478315353394 img loss 1.2218538522720337 img loss 1.2651535272598267 img loss 1.25087308883667 {'loss': 1.2453, 'grad_norm': 0.3697984218597412, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1821072101593018 img loss 1.2430483102798462 img loss 1.1599881649017334 img loss 1.1414059400558472 img loss 1.1404949426651 img loss 1.1881616115570068 img loss 1.26226806640625 img loss 1.1812474727630615 img loss 1.1503280401229858 img loss 1.254498839378357 img loss 1.2604014873504639 img loss 1.2409332990646362 img loss 1.300248384475708 img loss 1.2052974700927734 img loss 1.2809181213378906 img loss 1.2698683738708496 img loss 1.2019144296646118 img loss 1.2793583869934082 img loss 1.1664824485778809 img loss 1.164039134979248 img loss 1.2550480365753174 img loss 1.1555508375167847 img loss 1.2162139415740967 img loss 1.2062299251556396 img loss 1.2269387245178223 img loss 1.2014648914337158 img loss 1.196873664855957 img loss 1.2134941816329956 img loss 1.2377151250839233 img loss 1.2241144180297852 img loss 1.2707936763763428 img loss 1.2165192365646362 img loss 1.238053560256958 img loss 1.2449365854263306 img loss 1.1594858169555664 img loss 1.1629078388214111 img loss 1.2435153722763062 img loss 1.1363381147384644 img loss 1.2398285865783691 img loss 1.1313056945800781 img loss 1.2330753803253174 img loss 1.223365306854248 img loss 1.1838884353637695 img loss 1.2047494649887085 img loss 1.1981321573257446 img loss 1.2719076871871948 img loss 1.237705945968628 img loss 1.2026824951171875 img loss 1.2304083108901978 img loss 1.2229316234588623 img loss 1.1793861389160156 img loss 1.214892029762268 img loss 1.2824435234069824 img loss 1.186307430267334 img loss 1.2130043506622314 img loss 1.2120023965835571 img loss 1.1358094215393066 img loss 1.2120888233184814 img loss 1.2900484800338745 img loss 1.184957504272461 img loss 1.1457241773605347 img loss 1.1722667217254639 img loss 1.2510979175567627 img loss 1.108641505241394 img loss 1.2630419731140137 img loss 1.1810556650161743 img loss 1.2117457389831543 img loss 1.186840534210205 img loss 1.2271648645401 img loss 1.1976419687271118 img loss 1.2467291355133057 img loss 1.1971447467803955 img loss 1.254167079925537 img loss 1.1219825744628906 img loss 1.2585896253585815 img loss 1.2272249460220337 img loss 1.2184375524520874 img loss 1.2692046165466309 img loss 1.264629602432251 img loss 1.1696439981460571 img loss 1.2797178030014038 img loss 1.2484078407287598 img loss 1.2276426553726196 img loss 1.2266324758529663 img loss 1.2694580554962158 img loss 1.2618212699890137 img loss 1.1314570903778076 img loss 1.2414884567260742 img loss 1.1985809803009033img loss 1.2384121417999268 img loss 1.2491390705108643 img loss 1.165319800376892 img loss 1.2492458820343018 img loss 1.181078553199768 img loss 1.2034857273101807 img loss 1.246573805809021 img loss 1.213441252708435 img loss 1.2233966588974 img loss 1.2106478214263916 img loss 1.1968647241592407 img loss 1.1670974493026733 img loss 1.1678178310394287 img loss 1.2415752410888672 img loss 1.163508653640747 img loss 1.2138484716415405 img loss 1.1526914834976196 img loss 1.2562329769134521 img loss 1.2307336330413818 img loss 1.2557332515716553 img loss 1.187845230102539 img loss 1.27017080783844 img loss 1.174742341041565 img loss 1.1188793182373047 img loss 1.197302222251892 img loss 1.145878791809082 img loss 1.181599497795105 img loss 1.1708427667617798 img loss 1.2145042419433594 img loss 1.2421709299087524 img loss 1.128824234008789 img loss 1.1671818494796753 img loss 1.2519594430923462 img loss 1.0994877815246582 img loss 1.187388300895691 img loss 1.183007836341858 img loss 1.198258399963379 img loss 1.1706955432891846 img loss 1.1643527746200562 {'loss': 1.2087, 'grad_norm': 0.2581702172756195, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2514519691467285 img loss 1.2517218589782715 img loss 1.232879638671875 img loss 1.2584081888198853 img loss 1.2473710775375366 img loss 1.2123064994812012 img loss 1.2395007610321045 img loss 1.2253453731536865 img loss 1.1876194477081299 img loss 1.3277361392974854 img loss 1.2893394231796265 img loss 1.2054812908172607 img loss 1.3337337970733643 img loss 1.2562308311462402 img loss 1.251167893409729 img loss 1.1672810316085815 img loss 1.306838870048523 img loss 1.2777705192565918 img loss 1.2548989057540894 img loss 1.2605122327804565 img loss 1.1957603693008423 img loss 1.1988000869750977 img loss 1.220306634902954 img loss 1.2971830368041992 img loss 1.251534104347229 img loss 1.216963768005371 img loss 1.1893818378448486 img loss 1.1923174858093262 img loss 1.3172218799591064 img loss 1.1988270282745361 img loss 1.3196921348571777 img loss 1.2414257526397705 img loss 1.184129238128662 img loss 1.2292251586914062 img loss 1.1669070720672607 img loss 1.2055737972259521 img loss 1.3000867366790771 img loss 1.2394567728042603 img loss 1.3257068395614624 img loss 1.2459371089935303 img loss 1.2909845113754272 img loss 1.2817238569259644 img loss 1.226531744003296 img loss 1.2767618894577026 img loss 1.3395260572433472 img loss 1.1899181604385376 img loss 1.2104825973510742 img loss 1.2313216924667358 img loss 1.2126520872116089 img loss 1.2418034076690674 img loss 1.169165015220642 img loss 1.208227515220642 img loss 1.200875997543335 img loss 1.3374607563018799 img loss 1.2394217252731323 img loss 1.2377114295959473 img loss 1.1895806789398193 img loss 1.1899346113204956 img loss 1.2000434398651123 img loss 1.1809360980987549 img loss 1.2707000970840454 img loss 1.3563377857208252 img loss 1.2052572965621948 img loss 1.1841716766357422 img loss 1.2770293951034546 img loss 1.1212565898895264 img loss 1.2776744365692139 img loss 1.155074954032898 img loss 1.229185700416565 img loss 1.1695979833602905 img loss 1.1958599090576172 img loss 1.188557505607605 img loss 1.1956455707550049 img loss 1.3104455471038818 img loss 1.2147921323776245 img loss 1.2547286748886108 img loss 1.2365343570709229 img loss 1.191311240196228 img loss 1.2971076965332031 img loss 1.1724603176116943 img loss 1.3177297115325928 img loss 1.1564013957977295 img loss 1.2317349910736084 img loss 1.2344805002212524 img loss 1.1657731533050537 img loss 1.273159384727478 img loss 1.2340434789657593 img loss 1.2481050491333008 img loss 1.236523985862732 img loss 1.2443588972091675 img loss 1.2377331256866455 img loss 1.2484455108642578 img loss 1.249030351638794 img loss 1.3428410291671753 img loss 1.2556356191635132 img loss 1.2504523992538452 img loss 1.2729688882827759 img loss 1.213485598564148 img loss 1.2623716592788696 img loss 1.2307175397872925 img loss 1.2029602527618408 img loss 1.198066234588623 img loss 1.1714625358581543 img loss 1.1772854328155518 img loss 1.1987016201019287 img loss 1.1909153461456299 img loss 1.3084259033203125 img loss 1.227800965309143 img loss 1.2300039529800415 img loss 1.1454155445098877 img loss 1.233794093132019 img loss 1.3435579538345337 img loss 1.2314382791519165 img loss 1.1965763568878174 img loss 1.1837161779403687 img loss 1.1703331470489502 img loss 1.193603277206421 img loss 1.2052236795425415 img loss 1.2566297054290771 img loss 1.2880324125289917 img loss 1.2863380908966064 img loss 1.2688490152359009 img loss 1.3917185068130493 img loss 1.205155849456787 img loss 1.2768672704696655 img loss 1.273260474205017 img loss 1.3190436363220215 img loss 1.2107274532318115 {'loss': 1.2377, 'grad_norm': 0.3359510004520416, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6514309644699097 img loss 1.615829348564148 img loss 1.5794585943222046 img loss 1.5049633979797363 img loss 1.6476705074310303 img loss 1.6364132165908813 img loss 1.5070363283157349 img loss 1.7519049644470215 img loss 1.5961135625839233 img loss 1.7093945741653442 img loss 1.5604469776153564 img loss 1.6950417757034302 img loss 1.4188439846038818 img loss 1.4536949396133423 img loss 1.6507409811019897 img loss 1.6534345149993896 img loss 1.6914951801300049 img loss 1.6161843538284302 img loss 1.583318829536438 img loss 1.5010780096054077 img loss 1.5358260869979858 img loss 1.4557267427444458 img loss 1.5600849390029907 img loss 1.5433851480484009 img loss 1.7613545656204224 img loss 1.6732704639434814 img loss 1.5336909294128418img loss 1.4430793523788452 img loss 1.5624393224716187 img loss 1.6689430475234985 img loss 1.5807937383651733 img loss 1.538761019706726 img loss 1.6642342805862427 img loss 1.6890180110931396 img loss 1.65922212600708 img loss 1.6202561855316162 img loss 1.6103085279464722 img loss 1.6930973529815674 img loss 1.6414788961410522 img loss 1.617308259010315 img loss 1.6450674533843994 img loss 1.6112148761749268 img loss 1.5988506078720093 img loss 1.5508124828338623 img loss 1.4874354600906372 img loss 1.7091282606124878 img loss 1.5799880027770996 img loss 1.615505337715149 img loss 1.7082912921905518 img loss 1.6249077320098877 img loss 1.6275757551193237 img loss 1.5262302160263062 img loss 1.4677280187606812 img loss 1.5383918285369873 img loss 1.487465500831604 img loss 1.5091995000839233 img loss 1.453670620918274 img loss 1.775029182434082 img loss 1.573550820350647 img loss 1.6421315670013428 img loss 1.5613903999328613 img loss 1.5546098947525024 img loss 1.5690114498138428 img loss 1.5843918323516846 img loss 1.4881306886672974 img loss 1.5235332250595093 img loss 1.7602390050888062 img loss 1.6755082607269287 img loss 1.4704307317733765 img loss 1.7383867502212524 img loss 1.6707282066345215 img loss 1.605859398841858 img loss 1.5838217735290527 img loss 1.6338002681732178 img loss 1.6512247323989868 img loss 1.5750576257705688 img loss 1.477504014968872 img loss 1.6046195030212402 img loss 1.666490912437439 img loss 1.5134953260421753 img loss 1.6099249124526978 img loss 1.5578824281692505 img loss 1.6294065713882446 img loss 1.5704139471054077 img loss 1.5538450479507446 img loss 1.6324044466018677 img loss 1.5575957298278809 img loss 1.558045506477356 img loss 1.7858105897903442 img loss 1.668394923210144 img loss 1.585861325263977 img loss 1.420113205909729 img loss 1.623262643814087 img loss 1.6102205514907837 img loss 1.5919489860534668 img loss 1.555364727973938 img loss 1.682626485824585 img loss 1.492655634880066 img loss 1.4669324159622192 img loss 1.596869707107544 img loss 1.5191868543624878 img loss 1.5319305658340454 img loss 1.7131285667419434 img loss 1.5804951190948486 img loss 1.6586424112319946 img loss 1.4154903888702393 img loss 1.553654432296753 img loss 1.6308902502059937 img loss 1.4946612119674683 img loss 1.587785243988037 img loss 1.5188095569610596 img loss 1.699306845664978 img loss 1.5105693340301514 img loss 1.635343074798584 img loss 1.410016417503357 img loss 1.549960970878601 img loss 1.5786185264587402 img loss 1.6038825511932373 img loss 1.6573816537857056 img loss 1.5961424112319946 img loss 1.5519630908966064 img loss 1.5745114088058472 img loss 1.5535866022109985 img loss 1.48829185962677 img loss 1.4717568159103394 img loss 1.680316686630249 img loss 1.4246211051940918 img loss 1.6337915658950806 {'loss': 1.5882, 'grad_norm': 0.6144043207168579, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2901792526245117 img loss 1.3443444967269897 img loss 1.2388981580734253 img loss 1.107043743133545 img loss 1.1888773441314697 img loss 1.1112189292907715 img loss 1.2048389911651611 img loss 1.1166367530822754 img loss 1.2540102005004883 img loss 1.2389930486679077 img loss 1.232827067375183 img loss 1.2184511423110962 img loss 1.327232837677002 img loss 1.1344685554504395 img loss 1.0733846426010132 img loss 1.1530449390411377 img loss 1.2329645156860352 img loss 1.1442503929138184 img loss 1.1763776540756226 img loss 1.2362463474273682 img loss 1.171817421913147 img loss 1.2098524570465088 img loss 1.2048860788345337 img loss 1.1354591846466064 img loss 1.2149161100387573 img loss 1.3390237092971802 img loss 1.214655876159668 img loss 1.118979811668396 img loss 1.2260761260986328 img loss 1.2254750728607178 img loss 1.1961524486541748 img loss 1.1747996807098389 img loss 1.1467232704162598 img loss 1.263026475906372 img loss 1.1765373945236206 img loss 1.2234666347503662 img loss 1.2449899911880493 img loss 1.2388569116592407 img loss 1.3165640830993652 img loss 1.1764984130859375 img loss 1.2909950017929077 img loss 1.2493114471435547 img loss 1.1986579895019531 img loss 1.1376020908355713 img loss 1.1703535318374634 img loss 1.2810026407241821 img loss 1.2568986415863037 img loss 1.1758229732513428 img loss 1.2236160039901733 img loss 1.143296480178833 img loss 1.1327580213546753 img loss 1.1178956031799316 img loss 1.168323040008545 img loss 1.2192009687423706 img loss 1.1788405179977417 img loss 1.1730785369873047 img loss 1.2315260171890259 img loss 1.2799803018569946 img loss 1.2189276218414307 img loss 1.245803713798523 img loss 1.158855676651001 img loss 1.1996268033981323 img loss 1.2942163944244385 img loss 1.179795503616333 img loss 1.193441390991211 img loss 1.2574057579040527 img loss 1.1773736476898193 img loss 1.185158371925354 img loss 1.141248345375061 img loss 1.212248682975769 img loss 1.1030714511871338 img loss 1.2715190649032593 img loss 1.1785506010055542 img loss 1.0936706066131592 img loss 1.2254137992858887 img loss 1.1631182432174683 img loss 1.1194654703140259 img loss 1.160421371459961 img loss 1.1574276685714722 img loss 1.2355893850326538 img loss 1.241828203201294 img loss 1.1576778888702393 img loss 1.1758263111114502 img loss 1.2198117971420288 img loss 1.2008919715881348 img loss 1.182385802268982 img loss 1.237668514251709 img loss 1.1613023281097412 img loss 1.2132806777954102 img loss 1.1969724893569946 img loss 1.208532691001892 img loss 1.221452236175537 img loss 1.2072861194610596 img loss 1.2831926345825195 img loss 1.3343945741653442 img loss 1.2139129638671875 img loss 1.216755747795105 img loss 1.1738054752349854 img loss 1.155633807182312 img loss 1.2231320142745972 img loss 1.2446496486663818 img loss 1.316291332244873 img loss 1.1961212158203125 img loss 1.3358901739120483 img loss 1.1685197353363037 img loss 1.186919093132019 img loss 1.2221202850341797 img loss 1.1664165258407593 img loss 1.2322033643722534 img loss 1.1685930490493774 img loss 1.234252691268921 img loss 1.1875090599060059 img loss 1.226481318473816 img loss 1.2267318964004517 img loss 1.18087899684906 img loss 1.1884384155273438 img loss 1.261597990989685 img loss 1.2475680112838745 img loss 1.1722495555877686 img loss 1.2856812477111816 img loss 1.2076866626739502 img loss 1.206621527671814 img loss 1.2581154108047485 img loss 1.1953734159469604 img loss 1.2411506175994873 img loss 1.2144063711166382 img loss 1.2240508794784546 img loss 1.2944412231445312 {'loss': 1.2075, 'grad_norm': 0.21813999116420746, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.275369644165039 img loss 1.4135034084320068 img loss 1.216862440109253 img loss 1.2782636880874634 img loss 1.2621872425079346 img loss 1.3458610773086548 img loss 1.2517060041427612 img loss 1.307820200920105 img loss 1.2874162197113037 img loss 1.317916750907898 img loss 1.3756721019744873 img loss 1.3038537502288818 img loss 1.2436866760253906 img loss 1.3195514678955078 img loss 1.3472912311553955 img loss 1.201218843460083 img loss 1.309424638748169 img loss 1.3603020906448364 img loss 1.201827883720398 img loss 1.284690499305725 img loss 1.284691333770752 img loss 1.3394925594329834 img loss 1.3370670080184937 img loss 1.3669542074203491 img loss 1.3058693408966064 img loss 1.396557092666626 img loss 1.2660927772521973 img loss 1.26267409324646 img loss 1.3150619268417358 img loss 1.274694800376892 img loss 1.226311206817627 img loss 1.2817792892456055 img loss 1.2693012952804565 img loss 1.3288593292236328 img loss 1.2699168920516968 img loss 1.4024479389190674 img loss 1.279612421989441 img loss 1.3053226470947266 img loss 1.3033207654953003 img loss 1.3582617044448853 img loss 1.3338820934295654 img loss 1.2636123895645142 img loss 1.3202755451202393 img loss 1.2995388507843018 img loss 1.287585973739624 img loss 1.2475981712341309 img loss 1.4421125650405884 img loss 1.1914395093917847 img loss 1.4499419927597046 img loss 1.2975480556488037 img loss 1.2737951278686523 img loss 1.3015034198760986 img loss 1.2704408168792725 img loss 1.299507737159729 img loss 1.3102679252624512 img loss 1.2374095916748047 img loss 1.4990077018737793 img loss 1.3774298429489136 img loss 1.3464305400848389 img loss 1.3744677305221558 img loss 1.3553147315979004 img loss 1.3415874242782593 img loss 1.304290533065796 img loss 1.2676376104354858 img loss 1.2299189567565918 img loss 1.348832368850708 img loss 1.3059406280517578 img loss 1.2520620822906494 img loss 1.2441014051437378 img loss 1.3645055294036865 img loss 1.3101742267608643 img loss 1.2803800106048584 img loss 1.3460701704025269 img loss 1.2548744678497314 img loss 1.2175463438034058 img loss 1.3332537412643433 img loss 1.353821873664856 img loss 1.272428274154663 img loss 1.2826993465423584 img loss 1.3500893115997314 img loss 1.372900366783142 img loss 1.3013291358947754 img loss 1.3232498168945312 img loss 1.292101502418518 img loss 1.2808750867843628 img loss 1.2939770221710205 img loss 1.3036240339279175 img loss 1.2756086587905884 img loss 1.3406380414962769 img loss 1.3256218433380127 img loss 1.3594677448272705 img loss 1.3499871492385864 img loss 1.1980537176132202 img loss 1.263061285018921 img loss 1.3345423936843872 img loss 1.2769055366516113 img loss 1.2653392553329468 img loss 1.2350419759750366 img loss 1.3542511463165283 img loss 1.2947900295257568 img loss 1.262956976890564 img loss 1.1385401487350464 img loss 1.247846245765686 img loss 1.4002059698104858 img loss 1.3893792629241943 img loss 1.3806970119476318 img loss 1.2736544609069824 img loss 1.2491199970245361 img loss 1.227966547012329 img loss 1.336619257926941 img loss 1.2297366857528687 img loss 1.3563803434371948 img loss 1.3522018194198608 img loss 1.2319387197494507 img loss 1.3768877983093262 img loss 1.3267372846603394 img loss 1.3399274349212646 img loss 1.2854087352752686 img loss 1.292755365371704 img loss 1.2865574359893799 img loss 1.3222177028656006 img loss 1.291063666343689 img loss 1.3207005262374878 img loss 1.3366113901138306 img loss 1.2343287467956543 img loss 1.4566768407821655 img loss 1.3699058294296265 img loss 1.2899012565612793 {'loss': 1.306, 'grad_norm': 0.40024587512016296, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2261207103729248 img loss 1.2850254774093628 img loss 1.3101681470870972 img loss 1.192054271697998 img loss 1.1761932373046875 img loss 1.2069953680038452 img loss 1.211277961730957 img loss 1.292564034461975 img loss 1.3011554479599 img loss 1.2516390085220337 img loss 1.2695059776306152 img loss 1.29629385471344 img loss 1.2516907453536987 img loss 1.2581828832626343 img loss 1.2697654962539673 img loss 1.2218732833862305 img loss 1.293006181716919 img loss 1.2751410007476807 img loss 1.1916042566299438 img loss 1.2978739738464355 img loss 1.2237920761108398 img loss 1.286460280418396img loss 1.2583608627319336 img loss 1.2260559797286987 img loss 1.2975647449493408 img loss 1.262669324874878 img loss 1.2258317470550537 img loss 1.2881191968917847 img loss 1.1869953870773315 img loss 1.1436569690704346 img loss 1.262662410736084 img loss 1.1914520263671875 img loss 1.241290807723999 img loss 1.2716684341430664 img loss 1.2410314083099365 img loss 1.2912788391113281 img loss 1.248900055885315 img loss 1.297281265258789 img loss 1.2277309894561768 img loss 1.2267802953720093 img loss 1.2504372596740723 img loss 1.2893922328948975 img loss 1.2040446996688843 img loss 1.1760838031768799 img loss 1.2992324829101562 img loss 1.24332594871521 img loss 1.2829242944717407 img loss 1.2314280271530151 img loss 1.2224777936935425 img loss 1.2955069541931152 img loss 1.291338562965393 img loss 1.280310869216919 img loss 1.4918678998947144img loss 1.333889126777649 img loss 1.2765623331069946 img loss 1.1798399686813354 img loss 1.1531622409820557 img loss 1.2336649894714355 img loss 1.2255464792251587 img loss 1.2440769672393799 img loss 1.262876033782959 img loss 1.237975835800171 img loss 1.3330634832382202 img loss 1.1676439046859741 img loss 1.226861596107483 img loss 1.1746783256530762 img loss 1.1904067993164062 img loss 1.3212337493896484 img loss 1.2552101612091064 img loss 1.253087043762207 img loss 1.3509421348571777 img loss 1.3438217639923096 img loss 1.1860188245773315 img loss 1.233824372291565 img loss 1.1238559484481812 img loss 1.2021931409835815 img loss 1.2882665395736694 img loss 1.3348841667175293 img loss 1.204618215560913 img loss 1.206558108329773 img loss 1.3382315635681152 img loss 1.2117538452148438 img loss 1.3657422065734863 img loss 1.1706472635269165 img loss 1.2092132568359375 img loss 1.2137532234191895 img loss 1.28802490234375 img loss 1.2148882150650024 img loss 1.1632938385009766 img loss 1.164965271949768 img loss 1.2011091709136963 img loss 1.2697932720184326 img loss 1.21162748336792 img loss 1.134487509727478 img loss 1.2794455289840698 img loss 1.2644855976104736 img loss 1.2205957174301147 img loss 1.1462703943252563 img loss 1.201777696609497 img loss 1.1749695539474487 img loss 1.273186445236206 img loss 1.195312261581421 img loss 1.2062091827392578 img loss 1.2658569812774658 img loss 1.2375885248184204 img loss 1.2111362218856812 img loss 1.2819737195968628 img loss 1.2732863426208496 img loss 1.2018001079559326 img loss 1.2690730094909668 img loss 1.1959705352783203 img loss 1.1837595701217651 img loss 1.214019775390625 img loss 1.2039775848388672 img loss 1.1829752922058105 img loss 1.1936196088790894 img loss 1.2931525707244873 img loss 1.1944223642349243 img loss 1.2771728038787842 img loss 1.1775270700454712 img loss 1.2369534969329834 img loss 1.2470918893814087 img loss 1.2278454303741455 img loss 1.1819032430648804 img loss 1.2284221649169922 img loss 1.1653378009796143 img loss 1.2411106824874878 img loss 1.1838200092315674 {'loss': 1.2404, 'grad_norm': 0.5569445490837097, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3015142679214478 img loss 1.3244438171386719 img loss 1.277498483657837 img loss 1.2447562217712402 img loss 1.2551212310791016 img loss 1.2831758260726929 img loss 1.337697148323059 img loss 1.268192172050476 img loss 1.3117904663085938 img loss 1.324931025505066 img loss 1.2483203411102295 img loss 1.2833149433135986 img loss 1.3032221794128418 img loss 1.2635173797607422 img loss 1.3063207864761353 img loss 1.3108471632003784 img loss 1.2788751125335693 img loss 1.3515187501907349 img loss 1.3107421398162842 img loss 1.2884995937347412 img loss 1.286595106124878 img loss 1.2742555141448975 img loss 1.2769958972930908 img loss 1.2772678136825562 img loss 1.3274062871932983 img loss 1.293887972831726 img loss 1.2404346466064453 img loss 1.227548360824585 img loss 1.2980027198791504 img loss 1.2715152502059937 img loss 1.2575912475585938 img loss 1.2627853155136108 img loss 1.3366705179214478 img loss 1.2977039813995361 img loss 1.3156654834747314 img loss 1.2482846975326538 img loss 1.2531532049179077 img loss 1.2764164209365845 img loss 1.2606511116027832 img loss 1.2571982145309448 img loss 1.2372448444366455 img loss 1.3236454725265503 img loss 1.2743160724639893 img loss 1.2206701040267944 img loss 1.233031153678894 img loss 1.2712039947509766 img loss 1.3096498250961304 img loss 1.2752958536148071 img loss 1.2702503204345703 img loss 1.3094303607940674 img loss 1.2518787384033203 img loss 1.2746905088424683 img loss 1.2369213104248047 img loss 1.3751235008239746 img loss 1.3226146697998047 img loss 1.382617473602295 img loss 1.3247822523117065 img loss 1.240498423576355 img loss 1.2140536308288574 img loss 1.389939785003662 img loss 1.2455103397369385 img loss 1.3106911182403564 img loss 1.29481840133667 img loss 1.3213510513305664 img loss 1.257433295249939 img loss 1.2581411600112915 img loss 1.2939484119415283 img loss 1.282090663909912 img loss 1.381834626197815 img loss 1.3675907850265503 img loss 1.2726045846939087 img loss 1.261731743812561 img loss 1.2869644165039062 img loss 1.2685410976409912 img loss 1.2715778350830078 img loss 1.333016037940979 img loss 1.240034580230713 img loss 1.2894420623779297 img loss 1.215793490409851 img loss 1.2954037189483643 img loss 1.337165355682373 img loss 1.3776906728744507 img loss 1.234029769897461 img loss 1.3333975076675415 img loss 1.2888600826263428 img loss 1.221656084060669 img loss 1.2882606983184814 img loss 1.3316186666488647 img loss 1.2767854928970337 img loss 1.283113956451416 img loss 1.2705097198486328 img loss 1.2366299629211426 img loss 1.3225221633911133 img loss 1.3023910522460938 img loss 1.3276491165161133 img loss 1.3203061819076538 img loss 1.349778413772583 img loss 1.2232520580291748 img loss 1.2804359197616577 img loss 1.383273959159851 img loss 1.3037258386611938 img loss 1.338893175125122 img loss 1.2514150142669678 img loss 1.3179690837860107 img loss 1.2829207181930542 img loss 1.2747726440429688 img loss 1.2612464427947998 img loss 1.3190479278564453 img loss 1.2751352787017822 img loss 1.305701732635498 img loss 1.2744508981704712 img loss 1.3112658262252808 img loss 1.2941455841064453 img loss 1.2614243030548096 img loss 1.3236255645751953 img loss 1.2820494174957275 img loss 1.2559032440185547 img loss 1.2676922082901 img loss 1.2804745435714722 img loss 1.2980821132659912 img loss 1.3162635564804077 img loss 1.2599292993545532 img loss 1.2412512302398682 img loss 1.2595207691192627 img loss 1.2575781345367432 img loss 1.3025684356689453 img loss 1.284695029258728 img loss 1.2566226720809937 {'loss': 1.2879, 'grad_norm': 0.23725001513957977, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2344881296157837 img loss 1.255387783050537 img loss 1.1938387155532837 img loss 1.294180154800415 img loss 1.272833228111267 img loss 1.3676609992980957 img loss 1.266312837600708 img loss 1.258524775505066 img loss 1.2053066492080688 img loss 1.203878402709961 img loss 1.2609604597091675 img loss 1.3785878419876099 img loss 1.2619117498397827 img loss 1.286310076713562 img loss 1.393343210220337 img loss 1.3007076978683472 img loss 1.2964940071105957 img loss 1.25443434715271 img loss 1.220252275466919 img loss 1.308030366897583 img loss 1.2223987579345703 img loss 1.279834270477295 img loss 1.2617604732513428 img loss 1.2833064794540405 img loss 1.2476234436035156 img loss 1.254167079925537 img loss 1.41993248462677 img loss 1.3238991498947144 img loss 1.3172496557235718 img loss 1.4183640480041504 img loss 1.265848159790039 img loss 1.32840096950531 img loss 1.2339531183242798 img loss 1.3393014669418335 img loss 1.3201308250427246 img loss 1.2524681091308594 img loss 1.2934186458587646 img loss 1.3199697732925415 img loss 1.2063844203948975 img loss 1.2685296535491943 img loss 1.2800337076187134 img loss 1.2098697423934937 img loss 1.3538014888763428 img loss 1.3529802560806274 img loss 1.3279346227645874 img loss 1.3053826093673706 img loss 1.2933013439178467 img loss 1.2518343925476074 img loss 1.3161444664001465 img loss 1.3310314416885376 img loss 1.2606146335601807 img loss 1.1852425336837769 img loss 1.2526969909667969 img loss 1.256042242050171 img loss 1.287612795829773 img loss 1.2821468114852905 img loss 1.2630947828292847 img loss 1.2203037738800049 img loss 1.3026399612426758 img loss 1.2605464458465576 img loss 1.3062750101089478 img loss 1.2976288795471191 img loss 1.3046185970306396 img loss 1.2312026023864746 img loss 1.31240713596344 img loss 1.387487769126892 img loss 1.1808665990829468 img loss 1.3005671501159668 img loss 1.30242121219635 img loss 1.2818037271499634 img loss 1.304492712020874 img loss 1.293882131576538 img loss 1.29043447971344 img loss 1.209559679031372 img loss 1.3647942543029785 img loss 1.2670329809188843 img loss 1.3181809186935425 img loss 1.3169174194335938 img loss 1.3875588178634644 img loss 1.2436283826828003 img loss 1.3074536323547363 img loss 1.275641918182373 img loss 1.2268718481063843 img loss 1.2917940616607666 img loss 1.3318514823913574 img loss 1.2044658660888672 img loss 1.418091058731079 img loss 1.3163594007492065 img loss 1.2172181606292725 img loss 1.3475371599197388 img loss 1.3027615547180176 img loss 1.2740281820297241 img loss 1.432099461555481 img loss 1.1694778203964233img loss 1.3078066110610962 img loss 1.2148830890655518 img loss 1.2910175323486328 img loss 1.2528561353683472 img loss 1.2737722396850586 img loss 1.3174188137054443 img loss 1.3038371801376343 img loss 1.302168369293213 img loss 1.2470176219940186 img loss 1.2315921783447266 img loss 1.3623998165130615 img loss 1.2566841840744019 img loss 1.3253161907196045 img loss 1.2862753868103027 img loss 1.2391575574874878 img loss 1.3565291166305542 img loss 1.2962431907653809 img loss 1.275040864944458 img loss 1.2924375534057617 img loss 1.3086670637130737 img loss 1.2390369176864624 img loss 1.3227746486663818 img loss 1.2620372772216797 img loss 1.2721847295761108 img loss 1.2950935363769531 img loss 1.3416154384613037 img loss 1.3016564846038818 img loss 1.314089298248291 img loss 1.2156903743743896 img loss 1.3116893768310547 img loss 1.3718430995941162 img loss 1.298667311668396 img loss 1.2479419708251953 img loss 1.2505619525909424 {'loss': 1.2872, 'grad_norm': 0.37496519088745117, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3794686794281006 img loss 1.4021985530853271 img loss 1.4219591617584229 img loss 1.554614543914795 img loss 1.387306809425354 img loss 1.3303438425064087 img loss 1.3286433219909668 img loss 1.3703290224075317 img loss 1.355301022529602 img loss 1.351123332977295 img loss 1.38556706905365 img loss 1.343748927116394 img loss 1.3306126594543457 img loss 1.284407377243042 img loss 1.4382730722427368 img loss 1.295714259147644 img loss 1.3209539651870728 img loss 1.3752964735031128 img loss 1.3478829860687256 img loss 1.2651119232177734 img loss 1.4115350246429443 img loss 1.4730699062347412 img loss 1.3718829154968262 img loss 1.3708598613739014 img loss 1.2951558828353882 img loss 1.3249729871749878 img loss 1.4719183444976807 img loss 1.286251425743103 img loss 1.3143634796142578 img loss 1.3930803537368774 img loss 1.3593982458114624 img loss 1.3780597448349 img loss 1.3956128358840942 img loss 1.447402834892273 img loss 1.4113976955413818 img loss 1.452921986579895 img loss 1.3960566520690918 img loss 1.350223183631897 img loss 1.4301620721817017 img loss 1.2700002193450928 img loss 1.3751550912857056 img loss 1.4605190753936768 img loss 1.32289457321167 img loss 1.4371775388717651 img loss 1.4199469089508057 img loss 1.3896394968032837 img loss 1.4187453985214233 img loss 1.32808256149292 img loss 1.394276738166809 img loss 1.397217035293579 img loss 1.4373619556427002 img loss 1.4047434329986572 img loss 1.4062649011611938 img loss 1.3115901947021484 img loss 1.347054362297058 img loss 1.3560154438018799 img loss 1.4700573682785034 img loss 1.4640756845474243 img loss 1.3397356271743774 img loss 1.364101767539978 img loss 1.4335265159606934 img loss 1.354138970375061 img loss 1.4498212337493896 img loss 1.2339082956314087 img loss 1.3455768823623657 img loss 1.3455015420913696 img loss 1.331808090209961 img loss 1.2773102521896362 img loss 1.439272403717041 img loss 1.3427187204360962 img loss 1.4069100618362427 img loss 1.4756293296813965 img loss 1.3137242794036865 img loss 1.3548561334609985 img loss 1.3817657232284546 img loss 1.3479268550872803 img loss 1.3716962337493896 img loss 1.4303295612335205 img loss 1.38051438331604 img loss 1.5209981203079224 img loss 1.3875263929367065 img loss 1.4290488958358765 img loss 1.2838950157165527 img loss 1.466389775276184 img loss 1.350801706314087 img loss 1.3812286853790283 img loss 1.4274085760116577 img loss 1.367937684059143 img loss 1.3678810596466064 img loss 1.3760758638381958 img loss 1.439380168914795 img loss 1.468878984451294 img loss 1.4574635028839111 img loss 1.4292447566986084 img loss 1.3596446514129639 img loss 1.2987875938415527 img loss 1.3144216537475586 img loss 1.314199447631836 img loss 1.3179984092712402 img loss 1.2870457172393799 img loss 1.4068963527679443 img loss 1.4258149862289429 img loss 1.378986120223999 img loss 1.4356882572174072 img loss 1.4155652523040771 img loss 1.424047827720642 img loss 1.3908530473709106 img loss 1.4478932619094849 img loss 1.3568737506866455 img loss 1.4001868963241577 img loss 1.3330168724060059 img loss 1.3752198219299316 img loss 1.341884970664978 img loss 1.4607285261154175 img loss 1.375194787979126 img loss 1.5085471868515015 img loss 1.3274043798446655 img loss 1.44377863407135 img loss 1.4018009901046753 img loss 1.3270699977874756 img loss 1.4345096349716187 img loss 1.3825275897979736 img loss 1.4871314764022827 img loss 1.3332631587982178 img loss 1.3048319816589355 img loss 1.369260549545288 img loss 1.2985942363739014 img loss 1.4709045886993408 {'loss': 1.3816, 'grad_norm': 0.3918152153491974, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.268209457397461 img loss 1.118321418762207 img loss 1.123905897140503 img loss 1.1825785636901855 img loss 1.1878989934921265 img loss 1.2365927696228027 img loss 1.2274235486984253 img loss 1.1876709461212158 img loss 1.178335189819336 img loss 1.1455202102661133 img loss 1.2069405317306519 img loss 1.0913866758346558 img loss 1.2312639951705933 img loss 1.1794227361679077 img loss 1.2016594409942627 img loss 1.160845398902893 img loss 1.144539475440979 img loss 1.1450163125991821 img loss 1.2080143690109253 img loss 1.1350806951522827 img loss 1.1545791625976562 img loss 1.1773185729980469 img loss 1.2173895835876465 img loss 1.185937523841858 img loss 1.1383757591247559img loss 1.220384120941162 img loss 1.187969446182251 img loss 1.1376279592514038 img loss 1.1301138401031494 img loss 1.1112178564071655 img loss 1.1009304523468018 img loss 1.1976163387298584 img loss 1.1466511487960815 img loss 1.139023780822754 img loss 1.1453831195831299 img loss 1.2617578506469727 img loss 1.2135934829711914 img loss 1.2300794124603271 img loss 1.1885838508605957 img loss 1.120735764503479 img loss 1.151147484779358 img loss 1.1609413623809814 img loss 1.1553659439086914 img loss 1.1429858207702637 img loss 1.1253981590270996 img loss 1.22519052028656 img loss 1.178526759147644 img loss 1.1272528171539307 img loss 1.2215909957885742 img loss 1.1839728355407715 img loss 1.2168315649032593 img loss 1.1431983709335327 img loss 1.1201881170272827 img loss 1.2348217964172363 img loss 1.1137242317199707 img loss 1.1890530586242676 img loss 1.1546865701675415 img loss 1.131103515625 img loss 1.1819711923599243 img loss 1.224565029144287 img loss 1.1178005933761597 img loss 1.1613668203353882 img loss 1.162291407585144 img loss 1.2327120304107666 img loss 1.1201192140579224 img loss 1.2219518423080444 img loss 1.166332483291626 img loss 1.1417667865753174 img loss 1.1926662921905518 img loss 1.1569569110870361 img loss 1.2129325866699219 img loss 1.1429967880249023 img loss 1.25101637840271 img loss 1.1618380546569824 img loss 1.2063608169555664 img loss 1.1608303785324097 img loss 1.162103295326233 img loss 1.1573234796524048 img loss 1.172705054283142 img loss 1.234866738319397 img loss 1.155617117881775 img loss 1.2033617496490479 img loss 1.1256473064422607 img loss 1.2337480783462524 img loss 1.1776678562164307 img loss 1.1477197408676147 img loss 1.1419727802276611 img loss 1.1492743492126465 img loss 1.0989696979522705 img loss 1.170589804649353 img loss 1.1736128330230713 img loss 1.162958025932312 img loss 1.1318215131759644 img loss 1.0876785516738892 img loss 1.2692785263061523 img loss 1.1586936712265015 img loss 1.20026433467865 img loss 1.1678704023361206 img loss 1.1566126346588135 img loss 1.1422019004821777 img loss 1.1621519327163696 img loss 1.18650221824646 img loss 1.154563307762146 img loss 1.215776801109314 img loss 1.1187360286712646 img loss 1.2313140630722046 img loss 1.1597366333007812 img loss 1.1706098318099976 img loss 1.2553043365478516 img loss 1.2207227945327759 img loss 1.1709212064743042 img loss 1.1889008283615112 img loss 1.2247097492218018 img loss 1.179852843284607 img loss 1.1802107095718384 img loss 1.1341851949691772 img loss 1.2079417705535889 img loss 1.1366996765136719 img loss 1.1842069625854492 img loss 1.151822805404663 img loss 1.2564797401428223 img loss 1.1613264083862305 img loss 1.1726384162902832 img loss 1.233548641204834 img loss 1.1806809902191162 img loss 1.374885082244873 img loss 1.2223083972930908 img loss 1.2478920221328735 {'loss': 1.1768, 'grad_norm': 0.22102271020412445, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4257875680923462 img loss 1.2811659574508667 img loss 1.3915798664093018 img loss 1.4359101057052612 img loss 1.4378021955490112 img loss 1.431518793106079 img loss 1.3695428371429443 img loss 1.3864790201187134 img loss 1.38093900680542 img loss 1.337583303451538 img loss 1.4959572553634644 img loss 1.3696000576019287 img loss 1.3849780559539795 img loss 1.3087773323059082 img loss 1.5208677053451538 img loss 1.442857027053833 img loss 1.36607027053833 img loss 1.3873765468597412 img loss 1.534375548362732 img loss 1.329708456993103 img loss 1.387603521347046 img loss 1.3584719896316528 img loss 1.2708046436309814 img loss 1.4660676717758179 img loss 1.3998939990997314 img loss 1.4362350702285767 img loss 1.4394160509109497 img loss 1.4126700162887573 img loss 1.4974627494812012 img loss 1.3644131422042847 img loss 1.6079577207565308 img loss 1.5606558322906494 img loss 1.5282875299453735 img loss 1.446753978729248 img loss 1.4713151454925537 img loss 1.4528920650482178 img loss 1.4802004098892212 img loss 1.3361601829528809 img loss 1.4780895709991455 img loss 1.4459960460662842 img loss 1.4502619504928589 img loss 1.377419114112854 img loss 1.3670990467071533 img loss 1.3951936960220337 img loss 1.34822678565979 img loss 1.3323802947998047 img loss 1.318763017654419 img loss 1.4127423763275146 img loss 1.325256109237671 img loss 1.4078152179718018 img loss 1.3847261667251587 img loss 1.3328149318695068 img loss 1.577701210975647 img loss 1.3021305799484253 img loss 1.444109559059143 img loss 1.4490716457366943 img loss 1.3706107139587402 img loss 1.4183628559112549 img loss 1.4103707075119019 img loss 1.3054180145263672 img loss 1.455350399017334 img loss 1.490110158920288 img loss 1.2988603115081787 img loss 1.4256319999694824 img loss 1.573961853981018 img loss 1.2078312635421753 img loss 1.319958209991455 img loss 1.45310378074646 img loss 1.4355731010437012 img loss 1.4006751775741577 img loss 1.3415452241897583 img loss 1.497955083847046 img loss 1.450656771659851 img loss 1.3806551694869995 img loss 1.4241669178009033 img loss 1.388234257698059 img loss 1.4285227060317993 img loss 1.3412939310073853 img loss 1.4340307712554932 img loss 1.3376320600509644 img loss 1.4194663763046265 img loss 1.4544435739517212 img loss 1.520354151725769 img loss 1.4264153242111206 img loss 1.3780196905136108 img loss 1.3502603769302368 img loss 1.3298171758651733 img loss 1.3209304809570312 img loss 1.3478620052337646 img loss 1.4741759300231934 img loss 1.4406670331954956 img loss 1.4521677494049072 img loss 1.450560450553894 img loss 1.3895716667175293 img loss 1.3988738059997559 img loss 1.321716070175171 img loss 1.2932724952697754 img loss 1.472381353378296 img loss 1.3426988124847412 img loss 1.4132282733917236 img loss 1.450049638748169 img loss 1.494922161102295 img loss 1.427977204322815 img loss 1.4263546466827393 img loss 1.3721147775650024 img loss 1.3499747514724731 img loss 1.4187757968902588 img loss 1.4281607866287231 img loss 1.3394235372543335 img loss 1.3816801309585571 img loss 1.4234925508499146 img loss 1.619218111038208 img loss 1.544278621673584 img loss 1.430094599723816 img loss 1.3297252655029297 img loss 1.4213812351226807 img loss 1.4220582246780396 img loss 1.576826810836792 img loss 1.6662808656692505 img loss 1.558517575263977 img loss 1.3708703517913818 img loss 1.4509291648864746 img loss 1.3433892726898193 img loss 1.442862868309021 img loss 1.3472208976745605 img loss 1.3945389986038208 img loss 1.34542977809906 img loss 1.4048863649368286 {'loss': 1.4129, 'grad_norm': 0.3195711672306061, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3137741088867188 img loss 1.264143466949463 img loss 1.2864958047866821 img loss 1.2105751037597656 img loss 1.2049182653427124 img loss 1.2489725351333618 img loss 1.3229115009307861 img loss 1.2419853210449219 img loss 1.3014543056488037 img loss 1.2586140632629395 img loss 1.3283264636993408 img loss 1.2332210540771484 img loss 1.2081209421157837 img loss 1.2290624380111694 img loss 1.3314933776855469 img loss 1.2594722509384155 img loss 1.2881163358688354 img loss 1.2537841796875 img loss 1.2302320003509521 img loss 1.2524845600128174 img loss 1.2755707502365112 img loss 1.2161601781845093 img loss 1.3037617206573486 img loss 1.3441749811172485 img loss 1.2404067516326904 img loss 1.2970128059387207 img loss 1.283185601234436 img loss 1.2228355407714844 img loss 1.2487367391586304 img loss 1.2075411081314087 img loss 1.1889264583587646 img loss 1.2878680229187012 img loss 1.2880091667175293 img loss 1.1933016777038574 img loss 1.2390110492706299 img loss 1.2720191478729248 img loss 1.232866644859314 img loss 1.2513628005981445 img loss 1.2370070219039917 img loss 1.28733229637146 img loss 1.2045319080352783 img loss 1.2293332815170288 img loss 1.243496298789978 img loss 1.245205283164978 img loss 1.2023452520370483 img loss 1.272384524345398 img loss 1.207780361175537 img loss 1.2177037000656128 img loss 1.2182533740997314 img loss 1.2615511417388916 img loss 1.193280577659607 img loss 1.229795217514038 img loss 1.206753134727478 img loss 1.2717528343200684 img loss 1.2576954364776611 img loss 1.2312990427017212 img loss 1.2308648824691772 img loss 1.2314261198043823 img loss 1.201798915863037 img loss 1.2385529279708862 img loss 1.319404125213623 img loss 1.2358813285827637 img loss 1.2862379550933838 img loss 1.2721970081329346 img loss 1.2843841314315796 img loss 1.2996330261230469 img loss 1.1814415454864502 img loss 1.3005503416061401 img loss 1.2398486137390137 img loss 1.3045263290405273 img loss 1.2523651123046875 img loss 1.2382335662841797 img loss 1.2589354515075684 img loss 1.2799431085586548 img loss 1.243357539176941 img loss 1.2958637475967407 img loss 1.195122241973877 img loss 1.2714285850524902 img loss 1.2021348476409912 img loss 1.2783781290054321 img loss 1.2921056747436523 img loss 1.2802212238311768 img loss 1.231668472290039 img loss 1.2302368879318237 img loss 1.2720187902450562 img loss 1.2317861318588257 img loss 1.279679536819458 img loss 1.2108819484710693 img loss 1.2632051706314087 img loss 1.285257339477539 img loss 1.2364581823349 img loss 1.2813595533370972 img loss 1.2549502849578857 img loss 1.2534327507019043 img loss 1.2569897174835205 img loss 1.2158691883087158 img loss 1.2132364511489868 img loss 1.1953120231628418 img loss 1.2443077564239502 img loss 1.2247614860534668 img loss 1.2535902261734009 img loss 1.249612808227539 img loss 1.2409156560897827 img loss 1.2925593852996826 img loss 1.2497501373291016 img loss 1.2732067108154297 img loss 1.2740635871887207 img loss 1.27290678024292 img loss 1.2615352869033813 img loss 1.2480357885360718 img loss 1.311806082725525 img loss 1.1621532440185547 img loss 1.231520414352417 img loss 1.2735874652862549 img loss 1.22257661819458 img loss 1.320741891860962 img loss 1.2504628896713257 img loss 1.2561744451522827 img loss 1.1735903024673462 img loss 1.2985483407974243 img loss 1.2266597747802734 img loss 1.3041378259658813 img loss 1.2251622676849365 img loss 1.2335186004638672 img loss 1.2594795227050781 img loss 1.2307102680206299 img loss 1.3261421918869019 img loss 1.2483996152877808 {'loss': 1.2527, 'grad_norm': 0.2730005085468292, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.581990361213684 img loss 1.435126543045044 img loss 1.7030009031295776 img loss 1.5442097187042236 img loss 1.5130351781845093 img loss 1.5230801105499268 img loss 1.542229175567627 img loss 1.3969396352767944 img loss 1.5698734521865845 img loss 1.5029841661453247 img loss 1.4858336448669434 img loss 1.4034794569015503 img loss 1.5536335706710815 img loss 1.5555788278579712 img loss 1.4176154136657715 img loss 1.525184988975525 img loss 1.4553059339523315 img loss 1.5635902881622314 img loss 1.3830618858337402 img loss 1.6023789644241333 img loss 1.5674995183944702 img loss 1.4972716569900513 img loss 1.3978406190872192 img loss 1.5171997547149658 img loss 1.4097353219985962 img loss 1.530657172203064 img loss 1.6212897300720215 img loss 1.5610382556915283 img loss 1.4832707643508911 img loss 1.4083417654037476 img loss 1.5959264039993286 img loss 1.585518717765808 img loss 1.601439356803894 img loss 1.3829888105392456 img loss 1.5085898637771606 img loss 1.433525562286377 img loss 1.606711983680725 img loss 1.592983603477478 img loss 1.4475781917572021 img loss 1.364683985710144 img loss 1.553199291229248 img loss 1.4992541074752808 img loss 1.439200520515442 img loss 1.7393652200698853 img loss 1.3760247230529785 img loss 1.6496888399124146 img loss 1.58324134349823 img loss 1.4602147340774536 img loss 1.5309895277023315 img loss 1.4334874153137207 img loss 1.4642916917800903 img loss 1.531969666481018 img loss 1.5047768354415894 img loss 1.5532160997390747 img loss 1.6377389430999756 img loss 1.5783555507659912 img loss 1.5815081596374512 img loss 1.5352317094802856 img loss 1.3774874210357666 img loss 1.420693278312683 img loss 1.5954928398132324 img loss 1.3808804750442505 img loss 1.5936405658721924 img loss 1.7080012559890747 img loss 1.4256203174591064 img loss 1.6096256971359253 img loss 1.4914106130599976 img loss 1.455704927444458 img loss 1.5542291402816772 img loss 1.6262232065200806 img loss 1.3977609872817993 img loss 1.6540329456329346 img loss 1.647446870803833 img loss 1.465643048286438 img loss 1.4765092134475708 img loss 1.5282714366912842 img loss 1.554101824760437 img loss 1.3954204320907593 img loss 1.5071494579315186 img loss 1.5641344785690308 img loss 1.3915680646896362 img loss 1.5323405265808105 img loss 1.4998831748962402 img loss 1.4488255977630615 img loss 1.5958380699157715 img loss 1.5577367544174194 img loss 1.523423433303833 img loss 1.4328731298446655 img loss 1.5758806467056274 img loss 1.6176129579544067 img loss 1.6013916730880737 img loss 1.4998667240142822 img loss 1.5780278444290161 img loss 1.4427443742752075 img loss 1.522286295890808 img loss 1.4971352815628052 img loss 1.5529087781906128 img loss 1.6818537712097168 img loss 1.5708175897598267 img loss 1.3973631858825684 img loss 1.495327115058899 img loss 1.538732886314392 img loss 1.501172423362732 img loss 1.5868746042251587 img loss 1.6250790357589722 img loss 1.443825602531433 img loss 1.390785574913025 img loss 1.5602355003356934 img loss 1.5082982778549194 img loss 1.4504448175430298 img loss 1.5208392143249512 img loss 1.5927814245224 img loss 1.5076651573181152 img loss 1.5733859539031982 img loss 1.5029428005218506 img loss 1.4521498680114746 img loss 1.4994122982025146 img loss 1.461870551109314 img loss 1.4808564186096191 img loss 1.4575368165969849 img loss 1.4130219221115112 img loss 1.4553139209747314 img loss 1.531243920326233 img loss 1.5525174140930176 img loss 1.2887598276138306 img loss 1.416938066482544 img loss 1.5839482545852661 img loss 1.4263184070587158 {'loss': 1.514, 'grad_norm': 0.22676126658916473, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5461870431900024 img loss 1.482568383216858 img loss 1.4692367315292358 img loss 1.3964036703109741 img loss 1.4561656713485718 img loss 1.4392008781433105 img loss 1.310613989830017 img loss 1.5809166431427002 img loss 1.531023621559143 img loss 1.3783634901046753 img loss 1.509394884109497 img loss 1.4175915718078613 img loss 1.401330828666687 img loss 1.550377607345581 img loss 1.6507258415222168 img loss 1.5553110837936401 img loss 1.5309759378433228 img loss 1.4693922996520996 img loss 1.4036383628845215 img loss 1.49355947971344 img loss 1.5169509649276733 img loss 1.5102890729904175 img loss 1.5176175832748413 img loss 1.4354256391525269 img loss 1.3527873754501343 img loss 1.3822060823440552 img loss 1.5753921270370483 img loss 1.3792120218276978 img loss 1.4841177463531494 img loss 1.6400468349456787 img loss 1.3969752788543701 img loss 1.3876591920852661 img loss 1.4357844591140747 img loss 1.4360700845718384 img loss 1.438970923423767 img loss 1.4969698190689087 img loss 1.4415630102157593 img loss 1.4266812801361084 img loss 1.4594359397888184 img loss 1.4458839893341064 img loss 1.5124180316925049 img loss 1.3695534467697144 img loss 1.418223261833191 img loss 1.4017506837844849 img loss 1.5562474727630615 img loss 1.4866594076156616 img loss 1.3892446756362915 img loss 1.3955442905426025 img loss 1.3854572772979736 img loss 1.5289051532745361 img loss 1.4355684518814087 img loss 1.3992077112197876 img loss 1.3913401365280151 img loss 1.4712884426116943 img loss 1.4876148700714111 img loss 1.631690502166748 img loss 1.4424736499786377 img loss 1.6725274324417114 img loss 1.4173322916030884 img loss 1.604987382888794 img loss 1.4527678489685059 img loss 1.5091975927352905 img loss 1.6692421436309814 img loss 1.4412133693695068 img loss 1.4457566738128662 img loss 1.4275509119033813 img loss 1.5215882062911987 img loss 1.376954197883606 img loss 1.6761902570724487 img loss 1.486609935760498 img loss 1.4533179998397827 img loss 1.3789308071136475 img loss 1.4910962581634521 img loss 1.2898677587509155 img loss 1.472991704940796 img loss 1.4228557348251343 img loss 1.4033253192901611 img loss 1.5101643800735474 img loss 1.4833399057388306 img loss 1.433699131011963 img loss 1.4767868518829346 img loss 1.3523093461990356 img loss 1.393940806388855 img loss 1.430083990097046 img loss 1.4613215923309326 img loss 1.3774532079696655 img loss 1.4076007604599 img loss 1.4197595119476318 img loss 1.5024330615997314 img loss 1.4454251527786255 img loss 1.4010065793991089 img loss 1.4606740474700928 img loss 1.4632476568222046 img loss 1.4927316904067993 img loss 1.4170902967453003 img loss 1.430722951889038 img loss 1.5453999042510986 img loss 1.457872748374939 img loss 1.4982330799102783 img loss 1.4310965538024902 img loss 1.3175102472305298 img loss 1.4724409580230713 img loss 1.346838355064392 img loss 1.4303020238876343 img loss 1.421409249305725 img loss 1.5359879732131958 img loss 1.5901086330413818 img loss 1.4053120613098145 img loss 1.3602592945098877 img loss 1.480750560760498 img loss 1.3626091480255127 img loss 1.3954577445983887 img loss 1.3616832494735718 img loss 1.4444918632507324 img loss 1.5494027137756348 img loss 1.537258267402649 img loss 1.4779622554779053 img loss 1.5404306650161743 img loss 1.541595220565796 img loss 1.4580051898956299 img loss 1.4368401765823364 img loss 1.3543450832366943 img loss 1.5707000494003296 img loss 1.6989643573760986 img loss 1.4170044660568237 img loss 1.2692161798477173 img loss 1.405840516090393 img loss 1.4445126056671143 {'loss': 1.4607, 'grad_norm': 0.25274983048439026, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2951126098632812 img loss 1.275193452835083 img loss 1.458820104598999 img loss 1.33739173412323 img loss 1.304244875907898 img loss 1.2825931310653687 img loss 1.3293136358261108 img loss 1.4603463411331177 img loss 1.5238804817199707 img loss 1.3707826137542725 img loss 1.314668893814087 img loss 1.3003185987472534 img loss 1.3865886926651 img loss 1.456040620803833 img loss 1.3536874055862427 img loss 1.329965591430664 img loss 1.4513648748397827 img loss 1.302683711051941 img loss 1.3794983625411987 img loss 1.322025179862976 img loss 1.438085675239563 img loss 1.309791922569275 img loss 1.3693965673446655 img loss 1.3376787900924683 img loss 1.411448359489441 img loss 1.2899150848388672 img loss 1.3109654188156128 img loss 1.5135172605514526 img loss 1.3746178150177002 img loss 1.2511913776397705 img loss 1.3101173639297485 img loss 1.4152976274490356 img loss 1.3739861249923706 img loss 1.3383784294128418 img loss 1.3837263584136963 img loss 1.438798189163208 img loss 1.4142664670944214 img loss 1.231687068939209 img loss 1.3717292547225952 img loss 1.449656367301941 img loss 1.3054169416427612 img loss 1.2909563779830933 img loss 1.3598335981369019 img loss 1.3081854581832886 img loss 1.2845122814178467 img loss 1.3059126138687134 img loss 1.4298464059829712 img loss 1.2511844635009766 img loss 1.459536075592041 img loss 1.3464833498001099 img loss 1.4268107414245605 img loss 1.487931489944458 img loss 1.4030568599700928 img loss 1.2974491119384766 img loss 1.4316359758377075 img loss 1.3808714151382446 img loss 1.3907380104064941 img loss 1.2815015316009521 img loss 1.3818033933639526 img loss 1.3457309007644653 img loss 1.3726134300231934 img loss 1.2743630409240723 img loss 1.3693759441375732 img loss 1.4456171989440918 img loss 1.488960862159729 img loss 1.3248239755630493 img loss 1.373200535774231 img loss 1.2568750381469727 img loss 1.3982514142990112 img loss 1.3443833589553833 img loss 1.4082454442977905 img loss 1.2440029382705688 img loss 1.2930965423583984 img loss 1.408104419708252 img loss 1.333717703819275 img loss 1.3227319717407227 img loss 1.2972822189331055 img loss 1.2926380634307861 img loss 1.3070744276046753 img loss 1.2979865074157715 img loss 1.3201727867126465 img loss 1.425482153892517 img loss 1.2346500158309937 img loss 1.340964436531067 img loss 1.2413389682769775 img loss 1.4751687049865723 img loss 1.2795436382293701 img loss 1.3432860374450684 img loss 1.301096796989441 img loss 1.418756127357483 img loss 1.3738399744033813 img loss 1.2986793518066406 img loss 1.3355618715286255 img loss 1.2681645154953003 img loss 1.4628922939300537 img loss 1.2733045816421509 img loss 1.2863938808441162 img loss 1.3701329231262207 img loss 1.3068597316741943 img loss 1.3221526145935059 img loss 1.4471356868743896 img loss 1.3476818799972534 img loss 1.3512279987335205 img loss 1.3010380268096924 img loss 1.3991551399230957 img loss 1.3090555667877197 img loss 1.4587117433547974 img loss 1.3036198616027832 img loss 1.2534162998199463 img loss 1.406660556793213 img loss 1.4614863395690918 img loss 1.194486379623413 img loss 1.5024440288543701 img loss 1.311249017715454 img loss 1.298291563987732 img loss 1.251847505569458 img loss 1.3329880237579346 img loss 1.3656189441680908 img loss 1.4039454460144043 img loss 1.394711971282959 img loss 1.4886577129364014 img loss 1.3730714321136475 img loss 1.3183708190917969 img loss 1.3472418785095215 img loss 1.4457274675369263 img loss 1.4189646244049072 img loss 1.330336093902588 img loss 1.4596894979476929 {'loss': 1.3558, 'grad_norm': 0.4197598993778229, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2741855382919312 img loss 1.2788227796554565 img loss 1.4212678670883179 img loss 1.3689271211624146 img loss 1.259881854057312 img loss 1.3601375818252563 img loss 1.3527424335479736 img loss 1.2697778940200806 img loss 1.3255060911178589 img loss 1.352523922920227 img loss 1.276152491569519 img loss 1.250806212425232 img loss 1.428804874420166 img loss 1.3064043521881104 img loss 1.3193997144699097 img loss 1.4306429624557495 img loss 1.3318251371383667 img loss 1.3671753406524658 img loss 1.3879027366638184 img loss 1.1974855661392212 img loss 1.3351075649261475 img loss 1.324541687965393 img loss 1.3602993488311768 img loss 1.277819275856018 img loss 1.4556905031204224 img loss 1.2759437561035156 img loss 1.3149127960205078 img loss 1.3275432586669922 img loss 1.4266612529754639 img loss 1.3983019590377808 img loss 1.2734264135360718 img loss 1.3246588706970215 img loss 1.3443481922149658 img loss 1.338420033454895 img loss 1.4120099544525146 img loss 1.3141131401062012 img loss 1.3690154552459717 img loss 1.3376367092132568 img loss 1.3588281869888306 img loss 1.3831913471221924 img loss 1.2687339782714844 img loss 1.4686821699142456 img loss 1.2592476606369019 img loss 1.3386112451553345 img loss 1.4166854619979858 img loss 1.320137858390808 img loss 1.277646541595459 img loss 1.2174181938171387 img loss 1.3071625232696533 img loss 1.3454011678695679 img loss 1.3385398387908936 img loss 1.404620885848999 img loss 1.4199516773223877 img loss 1.2161941528320312 img loss 1.367400050163269 img loss 1.292982816696167 img loss 1.2761926651000977 img loss 1.2601665258407593 img loss 1.3816332817077637 img loss 1.256876826286316 img loss 1.3163630962371826 img loss 1.3646998405456543 img loss 1.30174720287323 img loss 1.341018557548523 img loss 1.4550238847732544 img loss 1.3317447900772095 img loss 1.2271696329116821 img loss 1.4195717573165894 img loss 1.2949270009994507 img loss 1.421319842338562 img loss 1.2380714416503906 img loss 1.2292664051055908 img loss 1.348418116569519 img loss 1.256296992301941 img loss 1.256765365600586 img loss 1.3947550058364868 img loss 1.314867615699768 img loss 1.2320046424865723 img loss 1.3060420751571655 img loss 1.3805848360061646 img loss 1.4054999351501465 img loss 1.2465758323669434 img loss 1.4728960990905762 img loss 1.310838222503662 img loss 1.4148938655853271 img loss 1.2809464931488037 img loss 1.2645225524902344 img loss 1.3483731746673584 img loss 1.2676780223846436 img loss 1.3747098445892334 img loss 1.255005121231079 img loss 1.2805360555648804 img loss 1.5115288496017456 img loss 1.2752615213394165 img loss 1.3310546875 img loss 1.2328990697860718 img loss 1.4519654512405396 img loss 1.2664554119110107 img loss 1.2744460105895996 img loss 1.238204002380371 img loss 1.4174164533615112 img loss 1.2984570264816284 img loss 1.2756321430206299 img loss 1.2560415267944336 img loss 1.3440356254577637 img loss 1.2507423162460327 img loss 1.3111522197723389 img loss 1.2577104568481445 img loss 1.3707783222198486 img loss 1.327938437461853 img loss 1.2470102310180664 img loss 1.239111304283142 img loss 1.356650710105896 img loss 1.4749001264572144 img loss 1.3000284433364868 img loss 1.3189408779144287 img loss 1.3222354650497437 img loss 1.2698948383331299 img loss 1.31046462059021 img loss 1.2440365552902222 img loss 1.351412057876587 img loss 1.305614948272705 img loss 1.3449755907058716 img loss 1.409422755241394 img loss 1.2775697708129883 img loss 1.312599778175354 img loss 1.2325843572616577 img loss 1.342424988746643 {'loss': 1.3254, 'grad_norm': 0.22061747312545776, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.275986671447754 img loss 1.2572449445724487 img loss 1.244563341140747 img loss 1.2621740102767944 img loss 1.1508623361587524 img loss 1.3710650205612183 img loss 1.2615482807159424 img loss 1.2643048763275146 img loss 1.2328039407730103 img loss 1.2129380702972412 img loss 1.3022974729537964 img loss 1.3221087455749512 img loss 1.2263740301132202 img loss 1.166331171989441 img loss 1.1723421812057495 img loss 1.2044823169708252 img loss 1.282623291015625 img loss 1.3151311874389648 img loss 1.2164591550827026 img loss 1.305253028869629 img loss 1.3322323560714722 img loss 1.185227632522583 img loss 1.4098830223083496 img loss 1.2707144021987915 img loss 1.2823177576065063 img loss 1.263624668121338 img loss 1.1990669965744019 img loss 1.306189775466919 img loss 1.2468342781066895 img loss 1.3382092714309692 img loss 1.1790651082992554 img loss 1.3587815761566162 img loss 1.268266201019287 img loss 1.4056435823440552 img loss 1.2246359586715698 img loss 1.3162721395492554 img loss 1.3540189266204834 img loss 1.2685277462005615 img loss 1.3050373792648315 img loss 1.2880399227142334 img loss 1.240900993347168 img loss 1.260679841041565 img loss 1.279231071472168 img loss 1.260176420211792 img loss 1.2538763284683228 img loss 1.3410770893096924 img loss 1.3320338726043701 img loss 1.1937620639801025 img loss 1.3312716484069824 img loss 1.2591074705123901 img loss 1.2368665933609009 img loss 1.318002700805664 img loss 1.242248296737671 img loss 1.2251513004302979 img loss 1.2730664014816284 img loss 1.3084748983383179 img loss 1.3731244802474976 img loss 1.2881371974945068 img loss 1.2711868286132812 img loss 1.262253761291504 img loss 1.298505425453186 img loss 1.3925299644470215 img loss 1.3003108501434326 img loss 1.2828811407089233 img loss 1.3054134845733643 img loss 1.3763319253921509 img loss 1.2504587173461914 img loss 1.3359991312026978 img loss 1.2571468353271484 img loss 1.3009278774261475 img loss 1.2199963331222534 img loss 1.1990313529968262 img loss 1.237162470817566 img loss 1.3543641567230225 img loss 1.1771005392074585 img loss 1.1521357297897339 img loss 1.2780253887176514 img loss 1.1955152750015259 img loss 1.2754993438720703 img loss 1.3777579069137573 img loss 1.258578896522522 img loss 1.2235859632492065 img loss 1.248990535736084 img loss 1.2988996505737305 img loss 1.4630035161972046 img loss 1.3433667421340942 img loss 1.270341157913208 img loss 1.1934276819229126 img loss 1.335496425628662 img loss 1.3736323118209839 img loss 1.2680480480194092 img loss 1.1656792163848877 img loss 1.299300193786621 img loss 1.3005561828613281 img loss 1.3119533061981201 img loss 1.2529888153076172 img loss 1.2510156631469727 img loss 1.2670400142669678 img loss 1.275397539138794 img loss 1.2427736520767212 img loss 1.3082003593444824 img loss 1.2916994094848633 img loss 1.2386554479599 img loss 1.1922190189361572 img loss 1.1966118812561035 img loss 1.261889100074768 img loss 1.2654322385787964 img loss 1.3329380750656128 img loss 1.3232157230377197 img loss 1.423408031463623 img loss 1.262526512145996 img loss 1.2478382587432861 img loss 1.2311935424804688 img loss 1.2700659036636353 img loss 1.2735275030136108 img loss 1.1258715391159058 img loss 1.3077774047851562 img loss 1.3608101606369019 img loss 1.293357253074646 img loss 1.255370855331421 img loss 1.2681288719177246 img loss 1.172332525253296 img loss 1.249868631362915 img loss 1.2523698806762695 img loss 1.2212733030319214 img loss 1.2845977544784546 img loss 1.142950415611267 img loss 1.241178274154663 {'loss': 1.2727, 'grad_norm': 0.31830641627311707, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2131088972091675 img loss 1.198541522026062 img loss 1.2616220712661743 img loss 1.2574291229248047 img loss 1.236890196800232 img loss 1.280099868774414 img loss 1.377102017402649 img loss 1.2619746923446655 img loss 1.2022968530654907 img loss 1.2793039083480835 img loss 1.2455471754074097 img loss 1.2295417785644531 img loss 1.2012345790863037 img loss 1.253068447113037 img loss 1.3213419914245605 img loss 1.2610504627227783 img loss 1.2685588598251343 img loss 1.206723928451538 img loss 1.1813477277755737 img loss 1.2436999082565308 img loss 1.2706607580184937 img loss 1.2431485652923584 img loss 1.291292667388916 img loss 1.1554206609725952 img loss 1.226015567779541 img loss 1.2598155736923218 img loss 1.108406662940979 img loss 1.1783726215362549 img loss 1.3058888912200928 img loss 1.307259202003479 img loss 1.2063406705856323 img loss 1.2251205444335938 img loss 1.3346412181854248 img loss 1.1863412857055664 img loss 1.2142484188079834 img loss 1.19768226146698 img loss 1.1805946826934814 img loss 1.2773493528366089 img loss 1.2238680124282837 img loss 1.2763521671295166 img loss 1.2291386127471924 img loss 1.229945421218872 img loss 1.2395501136779785 img loss 1.1963974237442017 img loss 1.205686330795288 img loss 1.2087624073028564 img loss 1.1865415573120117 img loss 1.2920546531677246 img loss 1.2594345808029175 img loss 1.2569262981414795 img loss 1.277262568473816 img loss 1.2203369140625 img loss 1.2929985523223877 img loss 1.2374622821807861 img loss 1.2382197380065918 img loss 1.2495148181915283 img loss 1.2128582000732422 img loss 1.2849342823028564 img loss 1.159565806388855 img loss 1.2497022151947021 img loss 1.2151514291763306 img loss 1.2143573760986328 img loss 1.1563471555709839 img loss 1.2033748626708984 img loss 1.1575653553009033 img loss 1.2668570280075073 img loss 1.2123552560806274 img loss 1.1878767013549805 img loss 1.2631763219833374 img loss 1.2490131855010986 img loss 1.2385516166687012 img loss 1.2834129333496094 img loss 1.2880343198776245 img loss 1.2173423767089844 img loss 1.200508713722229 img loss 1.2101716995239258 img loss 1.2188656330108643 img loss 1.2591147422790527 img loss 1.1659586429595947 img loss 1.2129255533218384 img loss 1.2599552869796753 img loss 1.2107893228530884 img loss 1.2046655416488647 img loss 1.3177037239074707 img loss 1.1948387622833252 img loss 1.2156283855438232 img loss 1.2898921966552734 img loss 1.174431562423706 img loss 1.2679920196533203 img loss 1.2361801862716675 img loss 1.1904817819595337 img loss 1.2614831924438477 img loss 1.2744320631027222 img loss 1.3383375406265259 img loss 1.281592845916748 img loss 1.177154779434204 img loss 1.2700289487838745 img loss 1.2620208263397217 img loss 1.3439443111419678 img loss 1.2190443277359009 img loss 1.3452402353286743 img loss 1.1298784017562866 img loss 1.2526638507843018 img loss 1.2377961874008179 img loss 1.2010143995285034 img loss 1.2295773029327393 img loss 1.2810691595077515 img loss 1.188528299331665 img loss 1.1819349527359009 img loss 1.2099062204360962 img loss 1.2495653629302979 img loss 1.2191017866134644 img loss 1.2044522762298584 img loss 1.1736873388290405 img loss 1.2583376169204712 img loss 1.2278976440429688 img loss 1.3170512914657593 img loss 1.295566201210022 img loss 1.191495656967163 img loss 1.2899898290634155 img loss 1.1666452884674072 img loss 1.2091277837753296 img loss 1.2779394388198853 img loss 1.2318514585494995 img loss 1.2522928714752197 img loss 1.228665828704834 img loss 1.2101051807403564 img loss 1.1418099403381348 {'loss': 1.2359, 'grad_norm': 0.3832692503929138, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2764339447021484 img loss 1.2975822687149048 img loss 1.3133617639541626 img loss 1.1491050720214844 img loss 1.2864958047866821 img loss 1.2964569330215454 img loss 1.30085027217865 img loss 1.1650538444519043 img loss 1.2470777034759521 img loss 1.2883331775665283 img loss 1.2759921550750732 img loss 1.3324412107467651 img loss 1.1704539060592651 img loss 1.3373223543167114 img loss 1.3177680969238281 img loss 1.2612279653549194 img loss 1.2629631757736206 img loss 1.3196626901626587 img loss 1.2600595951080322 img loss 1.2260690927505493 img loss 1.2839971780776978 img loss 1.3326278924942017 img loss 1.3404653072357178 img loss 1.3000576496124268 img loss 1.347350001335144 img loss 1.2526850700378418 img loss 1.2847007513046265 img loss 1.3353362083435059 img loss 1.332093596458435 img loss 1.2717376947402954 img loss 1.2578816413879395 img loss 1.2537872791290283 img loss 1.33376944065094 img loss 1.2750458717346191 img loss 1.2426412105560303 img loss 1.2305644750595093 img loss 1.2404530048370361 img loss 1.3508257865905762 img loss 1.226152777671814 img loss 1.2294025421142578 img loss 1.2394300699234009 img loss 1.3502862453460693 img loss 1.305787444114685 img loss 1.2822718620300293 img loss 1.2519357204437256 img loss 1.3358579874038696 img loss 1.2870314121246338 img loss 1.3198120594024658 img loss 1.2896994352340698 img loss 1.1923032999038696 img loss 1.306455135345459 img loss 1.3182785511016846 img loss 1.2819544076919556 img loss 1.306376338005066 img loss 1.23416006565094 img loss 1.2986758947372437 img loss 1.2861696481704712 img loss 1.2572898864746094 img loss 1.3078984022140503 img loss 1.261840581893921 img loss 1.252144455909729 img loss 1.3027139902114868 img loss 1.4000051021575928 img loss 1.272674560546875 img loss 1.3150328397750854 img loss 1.3824865818023682 img loss 1.2134699821472168 img loss 1.3391183614730835 img loss 1.2551416158676147 img loss 1.1901452541351318 img loss 1.2481130361557007 img loss 1.361763834953308 img loss 1.2772692441940308 img loss 1.2411558628082275 img loss 1.2252988815307617 img loss 1.2142523527145386 img loss 1.288183569908142 img loss 1.3764450550079346 img loss 1.242379069328308 img loss 1.3156286478042603 img loss 1.2386455535888672 img loss 1.273085355758667 img loss 1.3246660232543945 img loss 1.210121989250183 img loss 1.264227271080017 img loss 1.234202265739441 img loss 1.2927896976470947 img loss 1.266871452331543 img loss 1.3609024286270142 img loss 1.2725197076797485 img loss 1.1690658330917358 img loss 1.280027151107788 img loss 1.348530888557434 img loss 1.2389898300170898 img loss 1.255804419517517 img loss 1.2639942169189453 img loss 1.274043321609497 img loss 1.2750133275985718 img loss 1.2869353294372559 img loss 1.2983684539794922 img loss 1.2852102518081665 img loss 1.2465264797210693 img loss 1.275614619255066 img loss 1.28763747215271 img loss 1.291745662689209 img loss 1.2258800268173218 img loss 1.2501016855239868 img loss 1.2936928272247314 img loss 1.2649494409561157 img loss 1.4074658155441284 img loss 1.2770423889160156 img loss 1.350257396697998 img loss 1.355016827583313 img loss 1.3192144632339478 img loss 1.2841068506240845 img loss 1.25974440574646 img loss 1.3009543418884277 img loss 1.25184965133667 img loss 1.26555597782135 img loss 1.192574143409729 img loss 1.3966180086135864 img loss 1.3131811618804932 img loss 1.320562720298767 img loss 1.275130271911621 img loss 1.2666795253753662 img loss 1.303253173828125 img loss 1.2578166723251343 img loss 1.2846726179122925 {'loss': 1.2818, 'grad_norm': 0.30634355545043945, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.212614893913269 img loss 1.2459665536880493 img loss 1.2284111976623535 img loss 1.2079811096191406 img loss 1.2984743118286133 img loss 1.248504400253296 img loss 1.2667479515075684 img loss 1.2439008951187134 img loss 1.252913236618042 img loss 1.28030526638031 img loss 1.2485640048980713 img loss 1.3216443061828613 img loss 1.2120835781097412 img loss 1.2767384052276611 img loss 1.2134194374084473 img loss 1.21031653881073 img loss 1.2658275365829468 img loss 1.1802862882614136 img loss 1.2632564306259155 img loss 1.203472375869751 img loss 1.189246416091919 img loss 1.285611629486084 img loss 1.293168306350708 img loss 1.2558790445327759 img loss 1.2584922313690186 img loss 1.2690773010253906 img loss 1.354133129119873 img loss 1.2204508781433105 img loss 1.1930692195892334 img loss 1.2490423917770386 img loss 1.2798792123794556 img loss 1.2135950326919556 img loss 1.3541553020477295 img loss 1.2843520641326904 img loss 1.2717854976654053 img loss 1.266619086265564 img loss 1.2466728687286377 img loss 1.354459524154663 img loss 1.1926472187042236 img loss 1.315081000328064 img loss 1.306486964225769 img loss 1.229735016822815 img loss 1.2435979843139648 img loss 1.1979280710220337 img loss 1.180124044418335 img loss 1.2683719396591187 img loss 1.2301762104034424 img loss 1.2135149240493774 img loss 1.1909754276275635 img loss 1.2936367988586426 img loss 1.2750746011734009 img loss 1.250304937362671img loss 1.2840251922607422 img loss 1.2347824573516846 img loss 1.2413862943649292 img loss 1.2198693752288818 img loss 1.2882914543151855 img loss 1.2491812705993652 img loss 1.2053406238555908 img loss 1.258680820465088 img loss 1.2085899114608765 img loss 1.188511610031128 img loss 1.3397945165634155 img loss 1.2323112487792969 img loss 1.3078060150146484 img loss 1.2514958381652832 img loss 1.2788963317871094 img loss 1.2415809631347656 img loss 1.267251968383789 img loss 1.2614465951919556 img loss 1.3059319257736206 img loss 1.2231682538986206 img loss 1.211394190788269 img loss 1.2093462944030762 img loss 1.2016804218292236 img loss 1.2335355281829834 img loss 1.2855396270751953 img loss 1.299338936805725 img loss 1.2845847606658936 img loss 1.177903413772583 img loss 1.1991318464279175 img loss 1.262833595275879 img loss 1.310741662979126 img loss 1.269134521484375 img loss 1.2729909420013428 img loss 1.2935222387313843 img loss 1.2284722328186035 img loss 1.2454279661178589 img loss 1.1967482566833496 img loss 1.2702980041503906 img loss 1.2640994787216187 img loss 1.2331998348236084 img loss 1.2156174182891846 img loss 1.2454019784927368 img loss 1.2182776927947998 img loss 1.3029594421386719 img loss 1.2326120138168335 img loss 1.2310417890548706 img loss 1.197352409362793 img loss 1.2125345468521118 img loss 1.2365188598632812 img loss 1.1653130054473877 img loss 1.235836386680603 img loss 1.2106636762619019 img loss 1.2023388147354126 img loss 1.2389386892318726 img loss 1.2504563331604004img loss 1.2103242874145508 img loss 1.3283276557922363 img loss 1.2161881923675537 img loss 1.311320185661316 img loss 1.2019370794296265 img loss 1.3334218263626099 img loss 1.3013027906417847 img loss 1.2021831274032593 img loss 1.297320008277893 img loss 1.2324663400650024 img loss 1.2327419519424438 img loss 1.2423197031021118 img loss 1.3020590543746948 img loss 1.2598940134048462 img loss 1.3469271659851074 img loss 1.2268564701080322 img loss 1.2373110055923462 img loss 1.213195562362671 img loss 1.2913074493408203 img loss 1.192183256149292 img loss 1.2698359489440918 {'loss': 1.2499, 'grad_norm': 0.3324364721775055, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.465631127357483 img loss 1.3532426357269287 img loss 1.4272772073745728 img loss 1.4862850904464722 img loss 1.5301318168640137 img loss 1.4998562335968018 img loss 1.5995298624038696 img loss 1.5498883724212646 img loss 1.4224231243133545 img loss 1.4432711601257324 img loss 1.4421591758728027 img loss 1.473307728767395 img loss 1.4858338832855225 img loss 1.3739774227142334 img loss 1.5183075666427612 img loss 1.5113192796707153 img loss 1.48129403591156 img loss 1.3787087202072144 img loss 1.5015279054641724 img loss 1.5878535509109497 img loss 1.3786635398864746 img loss 1.4345043897628784 img loss 1.3401004076004028 img loss 1.5047131776809692 img loss 1.4653211832046509 img loss 1.6054893732070923 img loss 1.305283784866333 img loss 1.3496845960617065 img loss 1.5307117700576782 img loss 1.506037950515747 img loss 1.3222700357437134 img loss 1.472736120223999 img loss 1.4071707725524902 img loss 1.4116419553756714 img loss 1.5364301204681396 img loss 1.4271637201309204 img loss 1.4959585666656494 img loss 1.3985369205474854 img loss 1.4391151666641235 img loss 1.3598212003707886 img loss 1.4152230024337769 img loss 1.4595621824264526 img loss 1.4644564390182495 img loss 1.5248677730560303 img loss 1.448003888130188 img loss 1.5718433856964111 img loss 1.5284868478775024 img loss 1.340460181236267 img loss 1.4266763925552368 img loss 1.4961495399475098 img loss 1.4014588594436646 img loss 1.616115689277649 img loss 1.4664825201034546 img loss 1.402846097946167 img loss 1.4600509405136108 img loss 1.534286618232727 img loss 1.5128586292266846 img loss 1.4802334308624268 img loss 1.5872236490249634 img loss 1.5431641340255737 img loss 1.5810269117355347 img loss 1.480015516281128 img loss 1.406724214553833 img loss 1.5734074115753174 img loss 1.3711947202682495 img loss 1.4925719499588013 img loss 1.4429430961608887 img loss 1.4573490619659424 img loss 1.3845428228378296 img loss 1.4285051822662354 img loss 1.4890246391296387 img loss 1.3674676418304443 img loss 1.391797661781311 img loss 1.4926056861877441 img loss 1.515093445777893 img loss 1.3480470180511475 img loss 1.4907755851745605 img loss 1.4543389081954956 img loss 1.3940898180007935 img loss 1.529484510421753 img loss 1.3992724418640137 img loss 1.4059282541275024 img loss 1.4323952198028564 img loss 1.4512184858322144 img loss 1.5116522312164307 img loss 1.3815972805023193 img loss 1.4580472707748413 img loss 1.4379570484161377 img loss 1.4954439401626587 img loss 1.4087307453155518 img loss 1.4748913049697876 img loss 1.3475863933563232 img loss 1.4944685697555542 img loss 1.4999445676803589 img loss 1.398419976234436 img loss 1.398364782333374 img loss 1.4977322816848755 img loss 1.499513030052185 img loss 1.4268147945404053 img loss 1.4517039060592651 img loss 1.4629846811294556 img loss 1.5039218664169312 img loss 1.3769469261169434 img loss 1.5853372812271118 img loss 1.3614095449447632 img loss 1.4111837148666382 img loss 1.4291186332702637 img loss 1.3815971612930298 img loss 1.4685513973236084 img loss 1.3168230056762695 img loss 1.4702303409576416 img loss 1.3834068775177002 img loss 1.3072766065597534 img loss 1.4466140270233154 img loss 1.5048121213912964 img loss 1.4644345045089722 img loss 1.3869712352752686 img loss 1.442073106765747 img loss 1.5430134534835815 img loss 1.422120451927185 img loss 1.6307624578475952 img loss 1.5658997297286987 img loss 1.4857615232467651 img loss 1.4698694944381714 img loss 1.5430670976638794 img loss 1.47589910030365 img loss 1.4256999492645264 img loss 1.433756709098816 {'loss': 1.4575, 'grad_norm': 0.28565558791160583, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2227039337158203 img loss 1.2031949758529663 img loss 1.2738170623779297 img loss 1.222379207611084 img loss 1.1690860986709595 img loss 1.2537869215011597 img loss 1.1798725128173828 img loss 1.164642095565796 img loss 1.256009817123413 img loss 1.2101397514343262 img loss 1.3439239263534546 img loss 1.1783738136291504 img loss 1.1762895584106445 img loss 1.2987864017486572 img loss 1.2262961864471436 img loss 1.2367476224899292 img loss 1.284576416015625 img loss 1.1712007522583008 img loss 1.2661899328231812 img loss 1.3340007066726685 img loss 1.2174854278564453 img loss 1.1837730407714844 img loss 1.3701695203781128 img loss 1.2220464944839478 img loss 1.2750743627548218 img loss 1.3671575784683228 img loss 1.2033642530441284 img loss 1.210456132888794 img loss 1.229076862335205 img loss 1.1802109479904175 img loss 1.2611044645309448 img loss 1.1950002908706665 img loss 1.2221589088439941 img loss 1.1798146963119507 img loss 1.202289342880249 img loss 1.3107621669769287 img loss 1.167557716369629 img loss 1.2037208080291748 img loss 1.2749401330947876 img loss 1.169384479522705 img loss 1.226440191268921 img loss 1.2896620035171509 img loss 1.2131506204605103 img loss 1.238291621208191 img loss 1.247084379196167 img loss 1.2060778141021729 img loss 1.217958927154541 img loss 1.2341175079345703 img loss 1.2230991125106812 img loss 1.2005259990692139 img loss 1.2416518926620483 img loss 1.3558900356292725 img loss 1.288748025894165 img loss 1.355232834815979 img loss 1.2949312925338745 img loss 1.3188865184783936 img loss 1.2085520029067993 img loss 1.24606192111969 img loss 1.2660958766937256 img loss 1.3560223579406738 img loss 1.202283263206482 img loss 1.299103021621704 img loss 1.3029160499572754 img loss 1.223484992980957 img loss 1.1802177429199219 img loss 1.162212610244751 img loss 1.2782588005065918 img loss 1.2877769470214844 img loss 1.3154712915420532 img loss 1.3020261526107788 img loss 1.3021461963653564 img loss 1.2033389806747437 img loss 1.1657798290252686 img loss 1.2989628314971924 img loss 1.195497751235962 img loss 1.2481030225753784 img loss 1.2565228939056396 img loss 1.1693172454833984 img loss 1.2701996564865112 img loss 1.2449802160263062 img loss 1.2708740234375 img loss 1.1819387674331665 img loss 1.235979676246643 img loss 1.2758419513702393 img loss 1.197272777557373 img loss 1.1923465728759766 img loss 1.1459511518478394 img loss 1.2074849605560303 img loss 1.2426522970199585 img loss 1.1707919836044312 img loss 1.2705334424972534 img loss 1.2037193775177002 img loss 1.2457807064056396 img loss 1.1507586240768433 img loss 1.3030040264129639 img loss 1.2588876485824585 img loss 1.2241910696029663 img loss 1.2516753673553467 img loss 1.293916940689087 img loss 1.2378872632980347 img loss 1.2123849391937256 img loss 1.230313777923584 img loss 1.2192301750183105 img loss 1.2062557935714722 img loss 1.2034046649932861 img loss 1.185271143913269 img loss 1.215858817100525 img loss 1.229408860206604 img loss 1.2826611995697021 img loss 1.2185440063476562 img loss 1.2869417667388916 img loss 1.2932350635528564 img loss 1.2795473337173462 img loss 1.2089307308197021 img loss 1.2247427701950073 img loss 1.2659618854522705 img loss 1.1921261548995972 img loss 1.2517457008361816 img loss 1.2629947662353516 img loss 1.256519079208374 img loss 1.1762367486953735 img loss 1.3137226104736328 img loss 1.2419570684432983 img loss 1.1816775798797607 img loss 1.224912405014038 img loss 1.2436249256134033 img loss 1.1854140758514404 img loss 1.215469241142273 {'loss': 1.2385, 'grad_norm': 0.3068488836288452, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3248964548110962 img loss 1.3029314279556274 img loss 1.3166471719741821 img loss 1.404011607170105 img loss 1.365689754486084 img loss 1.2687585353851318 img loss 1.2934644222259521 img loss 1.4902921915054321 img loss 1.350003719329834 img loss 1.4863600730895996 img loss 1.2972564697265625 img loss 1.3129678964614868 img loss 1.393625020980835 img loss 1.3826512098312378 img loss 1.3474409580230713 img loss 1.3827162981033325 img loss 1.4006890058517456 img loss 1.4321430921554565 img loss 1.3790162801742554 img loss 1.4435782432556152 img loss 1.3081884384155273 img loss 1.4524344205856323 img loss 1.3635116815567017 img loss 1.4653066396713257 img loss 1.3576810359954834 img loss 1.1845967769622803 img loss 1.3577592372894287 img loss 1.1962419748306274 img loss 1.3470690250396729 img loss 1.538857102394104 img loss 1.5252716541290283 img loss 1.3020339012145996 img loss 1.5065324306488037 img loss 1.3916157484054565 img loss 1.4693852663040161 img loss 1.3985284566879272 img loss 1.4399892091751099 img loss 1.3980708122253418 img loss 1.3643349409103394 img loss 1.3313536643981934 img loss 1.3992935419082642 img loss 1.432881236076355 img loss 1.4792214632034302 img loss 1.3836177587509155 img loss 1.4170044660568237 img loss 1.51399564743042 img loss 1.4881314039230347 img loss 1.3656936883926392 img loss 1.3383084535598755 img loss 1.4367984533309937 img loss 1.445220708847046 img loss 1.3632665872573853 img loss 1.4098618030548096 img loss 1.4373728036880493 img loss 1.3451464176177979 img loss 1.3138325214385986 img loss 1.3204046487808228 img loss 1.375455379486084 img loss 1.4106199741363525 img loss 1.3772298097610474 img loss 1.4311085939407349 img loss 1.4738385677337646 img loss 1.4753711223602295 img loss 1.3668968677520752 img loss 1.385566234588623 img loss 1.3336131572723389 img loss 1.4454561471939087 img loss 1.4031450748443604 img loss 1.3364533185958862 img loss 1.4550403356552124 img loss 1.2591384649276733 img loss 1.4481613636016846 img loss 1.4529378414154053 img loss 1.424690842628479 img loss 1.4175297021865845 img loss 1.4233156442642212 img loss 1.3740431070327759 img loss 1.4606807231903076 img loss 1.278184175491333 img loss 1.3125566244125366 img loss 1.492606520652771 img loss 1.4752057790756226 img loss 1.2503794431686401 img loss 1.5184009075164795 img loss 1.4218076467514038 img loss 1.4870941638946533 img loss 1.368853211402893 img loss 1.349363923072815 img loss 1.3957325220108032 img loss 1.3469517230987549 img loss 1.382326602935791 img loss 1.381295919418335 img loss 1.5377438068389893 img loss 1.3978339433670044 img loss 1.3295331001281738 img loss 1.4825748205184937 img loss 1.4697165489196777 img loss 1.4210213422775269 img loss 1.4540915489196777 img loss 1.3479877710342407 img loss 1.4348255395889282 img loss 1.4455586671829224 img loss 1.456224799156189 img loss 1.4119813442230225 img loss 1.512479543685913 img loss 1.3420032262802124 img loss 1.4252045154571533 img loss 1.4230135679244995 img loss 1.4811023473739624 img loss 1.3832926750183105 img loss 1.3954026699066162 img loss 1.2760244607925415 img loss 1.3622127771377563 img loss 1.495072603225708 img loss 1.3973785638809204 img loss 1.3659899234771729 img loss 1.292226791381836 img loss 1.3354003429412842 img loss 1.3790210485458374 img loss 1.3847301006317139 img loss 1.399330973625183 img loss 1.3818634748458862 img loss 1.3943935632705688 img loss 1.2624591588974 img loss 1.4246774911880493 img loss 1.3981531858444214 img loss 1.4444823265075684 img loss 1.3571113348007202 {'loss': 1.3942, 'grad_norm': 0.6236719489097595, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1707921028137207 img loss 1.1746978759765625 img loss 1.2185429334640503 img loss 1.1919708251953125 img loss 1.203444004058838 img loss 1.2305914163589478 img loss 1.1894766092300415 img loss 1.1758975982666016 img loss 1.186967372894287 img loss 1.2118576765060425 img loss 1.220340371131897 img loss 1.1899632215499878 img loss 1.2283449172973633 img loss 1.1754270792007446 img loss 1.2146923542022705 img loss 1.1912760734558105 img loss 1.1445527076721191 img loss 1.1916253566741943 img loss 1.220011591911316 img loss 1.1967147588729858 img loss 1.1678704023361206 img loss 1.202109932899475 img loss 1.1844862699508667 img loss 1.150518774986267 img loss 1.209429383277893 img loss 1.1880180835723877 img loss 1.2144228219985962 img loss 1.1606175899505615 img loss 1.189207673072815 img loss 1.2214195728302002 img loss 1.19551420211792 img loss 1.217935562133789 img loss 1.2091193199157715 img loss 1.2047566175460815 img loss 1.2471511363983154 img loss 1.18994140625 img loss 1.1991451978683472 img loss 1.2163571119308472 img loss 1.1833422183990479 img loss 1.1634044647216797 img loss 1.2342547178268433 img loss 1.2438997030258179 img loss 1.2060648202896118 img loss 1.2261433601379395 img loss 1.2060365676879883 img loss 1.2039154767990112 img loss 1.2184547185897827 img loss 1.167496919631958 img loss 1.234872579574585 img loss 1.2397725582122803 img loss 1.18557870388031 img loss 1.2344083786010742 img loss 1.2339657545089722 img loss 1.2261607646942139 img loss 1.2249590158462524 img loss 1.2338764667510986 img loss 1.1645774841308594 img loss 1.2181916236877441 img loss 1.1702187061309814 img loss 1.1794137954711914 img loss 1.2164238691329956 img loss 1.191871166229248 img loss 1.2027441263198853 img loss 1.210640549659729 img loss 1.2099865674972534 img loss 1.2178642749786377img loss 1.1827523708343506 img loss 1.2802367210388184 img loss 1.14988374710083 img loss 1.1651408672332764 img loss 1.1978609561920166 img loss 1.2693792581558228 img loss 1.1712020635604858 img loss 1.1486048698425293 img loss 1.2123069763183594 img loss 1.1722666025161743 img loss 1.2086886167526245 img loss 1.2088950872421265 img loss 1.1674660444259644 img loss 1.2298005819320679 img loss 1.206728219985962 img loss 1.2033790349960327 img loss 1.159549355506897 img loss 1.194021463394165 img loss 1.227823257446289 img loss 1.2413861751556396 img loss 1.2347469329833984 img loss 1.193764328956604 img loss 1.1401275396347046 img loss 1.200211763381958 img loss 1.2035877704620361 img loss 1.187877893447876 img loss 1.1332041025161743 img loss 1.1654267311096191 img loss 1.2533586025238037 img loss 1.1947128772735596 img loss 1.2405219078063965 img loss 1.21796452999115 img loss 1.245164394378662 img loss 1.2484396696090698 img loss 1.234972357749939 img loss 1.1816232204437256 img loss 1.2061784267425537 img loss 1.255439281463623 img loss 1.2281440496444702 img loss 1.2134827375411987 img loss 1.234184980392456 img loss 1.26120924949646 img loss 1.2154576778411865 img loss 1.1470024585723877 img loss 1.255287528038025 img loss 1.2017035484313965 img loss 1.2150675058364868 img loss 1.1580498218536377 img loss 1.2488235235214233 img loss 1.2131459712982178 img loss 1.2884173393249512 img loss 1.160275936126709 img loss 1.2373589277267456 img loss 1.1633203029632568 img loss 1.1989858150482178 img loss 1.1920627355575562 img loss 1.204734444618225 img loss 1.1607089042663574 img loss 1.246410846710205 img loss 1.1962697505950928 img loss 1.2119555473327637 img loss 1.2186874151229858 {'loss': 1.2043, 'grad_norm': 0.2416950911283493, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2561159133911133 img loss 1.2320679426193237 img loss 1.2860020399093628 img loss 1.2243505716323853 img loss 1.3232167959213257 img loss 1.3172247409820557 img loss 1.2322794198989868 img loss 1.2802871465682983 img loss 1.2663261890411377 img loss 1.258070707321167 img loss 1.2307898998260498 img loss 1.2780035734176636 img loss 1.2446842193603516 img loss 1.2835705280303955 img loss 1.3268247842788696 img loss 1.2619667053222656 img loss 1.2686814069747925 img loss 1.2544711828231812 img loss 1.2337298393249512 img loss 1.2706493139266968 img loss 1.3173537254333496 img loss 1.2013953924179077 img loss 1.1999738216400146 img loss 1.184460997581482 img loss 1.2057465314865112 img loss 1.2525509595870972 img loss 1.2625932693481445 img loss 1.2479695081710815 img loss 1.2687962055206299 img loss 1.2649624347686768 img loss 1.2014551162719727 img loss 1.202221155166626 img loss 1.2974984645843506 img loss 1.2983101606369019 img loss 1.1933494806289673 img loss 1.265288233757019 img loss 1.173527717590332 img loss 1.2510013580322266 img loss 1.2394120693206787 img loss 1.2419363260269165 img loss 1.2673486471176147 img loss 1.2782310247421265 img loss 1.2371488809585571 img loss 1.3171021938323975 img loss 1.2363471984863281 img loss 1.187814474105835 img loss 1.3052380084991455 img loss 1.2670516967773438 img loss 1.2885725498199463 img loss 1.2061890363693237 img loss 1.212316870689392 img loss 1.2197601795196533 img loss 1.2802895307540894 img loss 1.2715706825256348 img loss 1.25839102268219 img loss 1.2491164207458496 img loss 1.2972354888916016 img loss 1.2742456197738647 img loss 1.1866393089294434 img loss 1.1921098232269287 img loss 1.2624214887619019 img loss 1.2410469055175781 img loss 1.2154066562652588 img loss 1.313127875328064 img loss 1.2355276346206665 img loss 1.2741283178329468 img loss 1.2528008222579956 img loss 1.2937484979629517 img loss 1.343779444694519 img loss 1.2470855712890625 img loss 1.2172784805297852 img loss 1.2384891510009766 img loss 1.2215111255645752 img loss 1.336032748222351 img loss 1.2629902362823486 img loss 1.3170801401138306 img loss 1.3015350103378296 img loss 1.2495031356811523 img loss 1.3089940547943115 img loss 1.27798330783844 img loss 1.2560232877731323 img loss 1.1643146276474 img loss 1.2581186294555664 img loss 1.3066496849060059 img loss 1.2313709259033203 img loss 1.276172161102295 img loss 1.240088939666748 img loss 1.2076667547225952 img loss 1.218570351600647 img loss 1.2642472982406616 img loss 1.2362933158874512 img loss 1.279398798942566 img loss 1.2838706970214844 img loss 1.3030385971069336 img loss 1.2985352277755737 img loss 1.2114272117614746 img loss 1.3397622108459473 img loss 1.275760531425476 img loss 1.273159384727478 img loss 1.2431962490081787 img loss 1.2681078910827637 img loss 1.2765495777130127 img loss 1.237462043762207 img loss 1.3715605735778809 img loss 1.2684999704360962 img loss 1.3065283298492432 img loss 1.2062307596206665 img loss 1.2780994176864624 img loss 1.2279555797576904 img loss 1.2926006317138672 img loss 1.273476481437683 img loss 1.2694056034088135 img loss 1.271562099456787 img loss 1.1611689329147339 img loss 1.3380215167999268 img loss 1.2450833320617676 img loss 1.1950229406356812 img loss 1.3129204511642456 img loss 1.2386449575424194 img loss 1.3243355751037598 img loss 1.2725495100021362 img loss 1.2252323627471924 img loss 1.221513271331787 img loss 1.2818355560302734 img loss 1.2401083707809448 img loss 1.3089336156845093 img loss 1.1950812339782715 img loss 1.2680528163909912 {'loss': 1.2585, 'grad_norm': 0.2566254734992981, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2538914680480957 img loss 1.3578808307647705 img loss 1.2769314050674438 img loss 1.231928825378418 img loss 1.2082092761993408 img loss 1.229662299156189 img loss 1.3079115152359009 img loss 1.2713907957077026 img loss 1.189692735671997 img loss 1.3344675302505493 img loss 1.2888197898864746 img loss 1.2342369556427002 img loss 1.301682472229004 img loss 1.243508219718933 img loss 1.222988486289978 img loss 1.2365769147872925 img loss 1.2248561382293701 img loss 1.2416200637817383 img loss 1.2289272546768188 img loss 1.2613970041275024 img loss 1.3147437572479248 img loss 1.233073115348816 img loss 1.213492751121521 img loss 1.248957872390747 img loss 1.3377585411071777 img loss 1.207505702972412 img loss 1.244387149810791 img loss 1.221179485321045 img loss 1.2541471719741821 img loss 1.2350469827651978 img loss 1.2523025274276733 img loss 1.2911550998687744 img loss 1.2270616292953491 img loss 1.2432869672775269 img loss 1.3205153942108154 img loss 1.199859619140625 img loss 1.261828064918518 img loss 1.296020269393921 img loss 1.2329204082489014 img loss 1.2572695016860962 img loss 1.2857357263565063 img loss 1.3385436534881592 img loss 1.2848783731460571 img loss 1.248003363609314 img loss 1.2266044616699219 img loss 1.2913328409194946 img loss 1.2637081146240234 img loss 1.2367165088653564 img loss 1.2519491910934448 img loss 1.2176480293273926 img loss 1.2563542127609253 img loss 1.2114454507827759 img loss 1.2794345617294312 img loss 1.2078357934951782 img loss 1.2365690469741821 img loss 1.2597260475158691 img loss 1.304015040397644 img loss 1.268707036972046 img loss 1.2419042587280273 img loss 1.2790664434432983 img loss 1.219464898109436 img loss 1.2582411766052246 img loss 1.2444398403167725 img loss 1.2353579998016357 img loss 1.2609246969223022 img loss 1.298330545425415 img loss 1.300208330154419 img loss 1.2886193990707397 img loss 1.263013482093811 img loss 1.1952027082443237 img loss 1.2317957878112793 img loss 1.2203192710876465 img loss 1.2926145792007446 img loss 1.263301134109497 img loss 1.1837047338485718 img loss 1.2441717386245728 img loss 1.272956371307373 img loss 1.2686060667037964 img loss 1.2597177028656006 img loss 1.2818831205368042 img loss 1.2580647468566895 img loss 1.2587082386016846 img loss 1.288747787475586 img loss 1.245774745941162 img loss 1.2606219053268433 img loss 1.1940701007843018 img loss 1.2805753946304321 img loss 1.2213304042816162 img loss 1.2560685873031616 img loss 1.1807934045791626 img loss 1.234870195388794 img loss 1.2494826316833496 img loss 1.2634942531585693 img loss 1.2812000513076782 img loss 1.2200469970703125 img loss 1.2345726490020752 img loss 1.3309664726257324 img loss 1.196864128112793 img loss 1.247401475906372 img loss 1.2351118326187134 img loss 1.2097845077514648 img loss 1.2263325452804565 img loss 1.251772165298462 img loss 1.2760889530181885 img loss 1.1804895401000977 img loss 1.2909560203552246 img loss 1.224220871925354 img loss 1.287877082824707 img loss 1.2599842548370361 img loss 1.3177324533462524 img loss 1.2590053081512451 img loss 1.3747544288635254 img loss 1.2226176261901855 img loss 1.2976917028427124 img loss 1.3363169431686401 img loss 1.222733736038208 img loss 1.2261642217636108 img loss 1.2218307256698608 img loss 1.2389322519302368 img loss 1.2519290447235107 img loss 1.236325740814209 img loss 1.2428414821624756 img loss 1.2651443481445312 img loss 1.2142053842544556 img loss 1.245501160621643 img loss 1.2789381742477417 img loss 1.2745146751403809 img loss 1.2726218700408936 {'loss': 1.2551, 'grad_norm': 0.24599666893482208, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.246612310409546 img loss 1.163414716720581 img loss 1.1478188037872314 img loss 1.3158278465270996 img loss 1.339477300643921 img loss 1.2785402536392212 img loss 1.2692155838012695 img loss 1.2215209007263184 img loss 1.2684016227722168 img loss 1.26974618434906 img loss 1.1947319507598877 img loss 1.216367483139038 img loss 1.2334098815917969 img loss 1.309802532196045 img loss 1.2857236862182617 img loss 1.257605791091919 img loss 1.275768756866455img loss 1.2438342571258545 img loss 1.2381950616836548 img loss 1.260968565940857 img loss 1.2271116971969604 img loss 1.2514480352401733 img loss 1.2092094421386719 img loss 1.2312322854995728 img loss 1.2212905883789062 img loss 1.2119216918945312 img loss 1.2012073993682861 img loss 1.2316200733184814 img loss 1.1995224952697754 img loss 1.2159185409545898 img loss 1.3062493801116943 img loss 1.2175955772399902 img loss 1.2973432540893555 img loss 1.2062504291534424 img loss 1.2859809398651123 img loss 1.2773399353027344 img loss 1.198905348777771 img loss 1.2560009956359863 img loss 1.2328176498413086 img loss 1.1868921518325806 img loss 1.1066080331802368 img loss 1.2100247144699097 img loss 1.110161542892456 img loss 1.257401943206787 img loss 1.2150835990905762 img loss 1.197317123413086 img loss 1.283132791519165 img loss 1.1053489446640015 img loss 1.154341697692871 img loss 1.2153699398040771 img loss 1.1689751148223877 img loss 1.244864821434021 img loss 1.2605098485946655 img loss 1.1929693222045898 img loss 1.2446273565292358 img loss 1.2388625144958496 img loss 1.157956838607788 img loss 1.19602370262146 img loss 1.1928534507751465 img loss 1.2338680028915405 img loss 1.2713077068328857 img loss 1.2051531076431274 img loss 1.2006088495254517 img loss 1.3336341381072998 img loss 1.1018909215927124 img loss 1.2550113201141357 img loss 1.2663886547088623 img loss 1.1917905807495117 img loss 1.247680902481079 img loss 1.2421258687973022 img loss 1.3906017541885376 img loss 1.317278504371643 img loss 1.268808126449585 img loss 1.2157500982284546 img loss 1.2106690406799316 img loss 1.255210280418396 img loss 1.2230281829833984 img loss 1.2072426080703735 img loss 1.2334407567977905 img loss 1.1464574337005615 img loss 1.150327444076538 img loss 1.2901614904403687 img loss 1.3478020429611206 img loss 1.1774065494537354 img loss 1.2200031280517578 img loss 1.2928051948547363 img loss 1.2345205545425415 img loss 1.1723270416259766 img loss 1.2600533962249756 img loss 1.220733404159546 img loss 1.2966352701187134 img loss 1.1541690826416016 img loss 1.2365410327911377 img loss 1.2959460020065308 img loss 1.1790493726730347 img loss 1.2178276777267456 img loss 1.2183926105499268 img loss 1.2465742826461792 img loss 1.2711557149887085 img loss 1.2516491413116455 img loss 1.2821072340011597 img loss 1.203062891960144 img loss 1.1863888502120972 img loss 1.2214568853378296 img loss 1.1754807233810425 img loss 1.2245745658874512 img loss 1.2496769428253174 img loss 1.1211326122283936 img loss 1.1830863952636719 img loss 1.1981751918792725 img loss 1.2451845407485962 img loss 1.160184621810913 img loss 1.2022150754928589img loss 1.2876631021499634 img loss 1.2683595418930054 img loss 1.20513916015625 img loss 1.1576180458068848 img loss 1.2098627090454102 img loss 1.248888611793518 img loss 1.2072904109954834 img loss 1.1942074298858643 img loss 1.2376068830490112 img loss 1.2446342706680298 img loss 1.281682014465332 img loss 1.1740700006484985 img loss 1.2443040609359741 img loss 1.1482582092285156 img loss 1.2183687686920166 {'loss': 1.228, 'grad_norm': 0.20712921023368835, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.214350700378418 img loss 1.3124393224716187 img loss 1.2498600482940674 img loss 1.2960935831069946 img loss 1.2759920358657837 img loss 1.1849745512008667 img loss 1.2400469779968262 img loss 1.284711241722107 img loss 1.1728094816207886 img loss 1.2312673330307007 img loss 1.2759078741073608 img loss 1.1268444061279297 img loss 1.2380425930023193 img loss 1.2722269296646118 img loss 1.2551491260528564 img loss 1.3046211004257202 img loss 1.1766023635864258 img loss 1.2259467840194702 img loss 1.3147224187850952 img loss 1.181750774383545 img loss 1.2976576089859009 img loss 1.2043242454528809 img loss 1.2520618438720703 img loss 1.227065086364746 img loss 1.216505527496338 img loss 1.221556305885315 img loss 1.2051361799240112 img loss 1.2483396530151367 img loss 1.2710129022598267 img loss 1.155646800994873 img loss 1.2369464635849 img loss 1.1902083158493042 img loss 1.16580069065094 img loss 1.1901776790618896 img loss 1.1959412097930908 img loss 1.18305242061615 img loss 1.232438564300537 img loss 1.1719502210617065 img loss 1.3035292625427246 img loss 1.1708123683929443 img loss 1.2157044410705566 img loss 1.2825524806976318 img loss 1.1925662755966187 img loss 1.222838282585144 img loss 1.213101863861084 img loss 1.2203309535980225 img loss 1.2250484228134155 img loss 1.1759421825408936 img loss 1.2080329656600952 img loss 1.2216391563415527 img loss 1.183349847793579 img loss 1.1841943264007568 img loss 1.1948317289352417 img loss 1.1760942935943604 img loss 1.2446420192718506 img loss 1.1703987121582031 img loss 1.2207361459732056 img loss 1.2288297414779663 img loss 1.1927201747894287 img loss 1.1361603736877441 img loss 1.1942774057388306 img loss 1.1855608224868774 img loss 1.291682243347168 img loss 1.2645572423934937 img loss 1.221150279045105 img loss 1.2317039966583252 img loss 1.2195228338241577 img loss 1.266474962234497 img loss 1.2024927139282227 img loss 1.1841672658920288 img loss 1.163378119468689 img loss 1.296938419342041 img loss 1.2520718574523926 img loss 1.2210429906845093 img loss 1.259256362915039 img loss 1.2182788848876953 img loss 1.213477611541748 img loss 1.220141053199768 img loss 1.297971487045288 img loss 1.2413133382797241 img loss 1.2589125633239746 img loss 1.1773087978363037 img loss 1.2499111890792847 img loss 1.1825541257858276 img loss 1.231475830078125 img loss 1.2710411548614502 img loss 1.2206188440322876 img loss 1.2275803089141846 img loss 1.242889404296875 img loss 1.2297629117965698 img loss 1.2015479803085327 img loss 1.2261857986450195 img loss 1.2388839721679688 img loss 1.2375812530517578 img loss 1.1852757930755615 img loss 1.2597272396087646 img loss 1.219115138053894 img loss 1.2547136545181274 img loss 1.232221245765686 img loss 1.2201769351959229 img loss 1.2253775596618652 img loss 1.1592764854431152 img loss 1.2641239166259766 img loss 1.1916627883911133 img loss 1.3114503622055054 img loss 1.1992244720458984 img loss 1.2659118175506592 img loss 1.2938886880874634 img loss 1.1924962997436523 img loss 1.2054370641708374 img loss 1.2044233083724976 img loss 1.2057838439941406 img loss 1.182246208190918 img loss 1.2357043027877808 img loss 1.2033650875091553 img loss 1.2953909635543823 img loss 1.1688151359558105 img loss 1.191678762435913 img loss 1.230128526687622 img loss 1.2121360301971436 img loss 1.2601629495620728 img loss 1.2364391088485718 img loss 1.1923245191574097 img loss 1.2117098569869995 img loss 1.2351124286651611 img loss 1.2154388427734375 img loss 1.1791695356369019 img loss 1.1800782680511475 {'loss': 1.2238, 'grad_norm': 0.23194192349910736, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2929341793060303 img loss 1.3457787036895752 img loss 1.3689788579940796 img loss 1.258104681968689 img loss 1.223702073097229 img loss 1.2763112783432007 img loss 1.2299919128417969 img loss 1.3331018686294556 img loss 1.2227089405059814 img loss 1.286808967590332 img loss 1.2490743398666382 img loss 1.24093496799469 img loss 1.2477946281433105 img loss 1.3692243099212646 img loss 1.2757593393325806 img loss 1.2831591367721558 img loss 1.2428478002548218 img loss 1.345744013786316 img loss 1.2173304557800293 img loss 1.2524687051773071 img loss 1.2934033870697021 img loss 1.2628610134124756 img loss 1.3569780588150024 img loss 1.2566871643066406 img loss 1.248777985572815 img loss 1.3244972229003906 img loss 1.2905524969100952 img loss 1.3172920942306519 img loss 1.20100736618042 img loss 1.2194851636886597 img loss 1.3772820234298706 img loss 1.3137357234954834 img loss 1.2647514343261719 img loss 1.296703577041626 img loss 1.2631711959838867 img loss 1.3592265844345093 img loss 1.1692392826080322 img loss 1.3150479793548584 img loss 1.2768446207046509 img loss 1.262359380722046 img loss 1.2719569206237793 img loss 1.2720787525177002 img loss 1.3009860515594482 img loss 1.2803996801376343 img loss 1.28960382938385 img loss 1.266079306602478 img loss 1.4159716367721558 img loss 1.20616614818573 img loss 1.30539071559906 img loss 1.2778428792953491 img loss 1.3745989799499512 img loss 1.2990801334381104 img loss 1.3190428018569946 img loss 1.3850520849227905 img loss 1.3602921962738037 img loss 1.2517410516738892 img loss 1.2523020505905151 img loss 1.27178955078125 img loss 1.3090883493423462 img loss 1.3416552543640137 img loss 1.2036412954330444 img loss 1.2657833099365234 img loss 1.3112839460372925 img loss 1.2031631469726562 img loss 1.3012765645980835 img loss 1.2764211893081665 img loss 1.261521816253662 img loss 1.2582701444625854 img loss 1.2405998706817627 img loss 1.2419041395187378 img loss 1.2453163862228394 img loss 1.4322655200958252 img loss 1.3837896585464478 img loss 1.315055251121521 img loss 1.2928718328475952 img loss 1.3017736673355103 img loss 1.2174620628356934 img loss 1.2155078649520874 img loss 1.2677220106124878 img loss 1.2116607427597046 img loss 1.2882170677185059 img loss 1.2162766456604004 img loss 1.3099608421325684 img loss 1.3048901557922363 img loss 1.2287936210632324 img loss 1.1942633390426636 img loss 1.1934351921081543 img loss 1.2466875314712524 img loss 1.2060959339141846 img loss 1.3019802570343018 img loss 1.316642165184021 img loss 1.2095367908477783 img loss 1.2716501951217651 img loss 1.152225136756897 img loss 1.3399784564971924 img loss 1.3254165649414062 img loss 1.2411750555038452 img loss 1.321075201034546 img loss 1.2586411237716675 img loss 1.2632216215133667 img loss 1.1786679029464722 img loss 1.286604642868042 img loss 1.3476347923278809 img loss 1.2685186862945557 img loss 1.3776414394378662 img loss 1.3076820373535156 img loss 1.3284015655517578 img loss 1.3047069311141968 img loss 1.3634312152862549 img loss 1.2355053424835205 img loss 1.2961022853851318 img loss 1.1872801780700684 img loss 1.3029372692108154 img loss 1.2457458972930908 img loss 1.1872438192367554 img loss 1.3194068670272827 img loss 1.303119421005249 img loss 1.2237334251403809 img loss 1.277087926864624 img loss 1.2794713973999023 img loss 1.34233558177948 img loss 1.245233416557312 img loss 1.3456577062606812 img loss 1.2624375820159912 img loss 1.339788794517517 img loss 1.330987572669983 img loss 1.208282232284546 img loss 1.282662034034729 {'loss': 1.2805, 'grad_norm': 0.23220787942409515, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4583014249801636 img loss 1.4620261192321777 img loss 1.4785702228546143 img loss 1.3767030239105225 img loss 1.4048892259597778 img loss 1.476601004600525 img loss 1.4528310298919678 img loss 1.484719157218933 img loss 1.539793848991394 img loss 1.47145676612854 img loss 1.4361016750335693 img loss 1.3735569715499878 img loss 1.5185158252716064 img loss 1.4833089113235474 img loss 1.5389180183410645 img loss 1.340522289276123 img loss 1.6798319816589355 img loss 1.4683003425598145 img loss 1.5007704496383667 img loss 1.4556057453155518 img loss 1.475271463394165 img loss 1.5383192300796509 img loss 1.4539830684661865 img loss 1.492932915687561 img loss 1.4139420986175537 img loss 1.4258431196212769 img loss 1.5399056673049927 img loss 1.3328624963760376 img loss 1.4793058633804321 img loss 1.6215699911117554 img loss 1.4536439180374146 img loss 1.5054738521575928 img loss 1.3966975212097168 img loss 1.4697086811065674 img loss 1.4316685199737549 img loss 1.4402409791946411 img loss 1.4524933099746704 img loss 1.6064814329147339 img loss 1.4177523851394653 img loss 1.4606901407241821 img loss 1.473483920097351 img loss 1.4224402904510498 img loss 1.4598397016525269 img loss 1.3179936408996582 img loss 1.5798468589782715 img loss 1.4929144382476807 img loss 1.5067975521087646 img loss 1.5926625728607178 img loss 1.4664441347122192 img loss 1.542060375213623 img loss 1.5750536918640137 img loss 1.4460657835006714 img loss 1.4410351514816284 img loss 1.48848295211792 img loss 1.6813809871673584 img loss 1.641920566558838 img loss 1.5861620903015137 img loss 1.555533528327942 img loss 1.527655005455017 img loss 1.5101511478424072 img loss 1.4688467979431152 img loss 1.4701963663101196 img loss 1.5819923877716064 img loss 1.4225796461105347 img loss 1.5350559949874878 img loss 1.549047589302063 img loss 1.4660807847976685 img loss 1.5455316305160522 img loss 1.6660772562026978 img loss 1.403775691986084 img loss 1.4815698862075806 img loss 1.4666496515274048 img loss 1.4149014949798584 img loss 1.5294193029403687 img loss 1.4315987825393677 img loss 1.4503999948501587 img loss 1.4130693674087524 img loss 1.4148389101028442 img loss 1.42605459690094 img loss 1.4837788343429565 img loss 1.5320996046066284 img loss 1.4520361423492432 img loss 1.5227282047271729 img loss 1.4972904920578003 img loss 1.5626462697982788 img loss 1.505053162574768 img loss 1.487817645072937 img loss 1.5109244585037231 img loss 1.5931220054626465 img loss 1.4997142553329468 img loss 1.370694637298584 img loss 1.5540900230407715 img loss 1.637304663658142 img loss 1.3809151649475098 img loss 1.3865809440612793 img loss 1.4010692834854126 img loss 1.6135287284851074 img loss 1.3999210596084595 img loss 1.508866548538208 img loss 1.4905693531036377 img loss 1.5135033130645752 img loss 1.3982781171798706 img loss 1.5749595165252686 img loss 1.4877127408981323 img loss 1.4649635553359985 img loss 1.434577226638794 img loss 1.4292969703674316 img loss 1.3825275897979736 img loss 1.4641363620758057 img loss 1.387672781944275 img loss 1.427088975906372 img loss 1.4537667036056519 img loss 1.510239839553833 img loss 1.6159993410110474 img loss 1.4872266054153442 img loss 1.4254724979400635 img loss 1.5559709072113037 img loss 1.5271413326263428 img loss 1.5067918300628662 img loss 1.5252678394317627 img loss 1.5073329210281372 img loss 1.3703526258468628 img loss 1.4589372873306274 img loss 1.3516207933425903 img loss 1.4032410383224487 img loss 1.468450903892517 img loss 1.485747218132019 img loss 1.4571481943130493 {'loss': 1.4822, 'grad_norm': 0.32669028639793396, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1977418661117554 img loss 1.2870616912841797 img loss 1.1949785947799683 img loss 1.240789771080017 img loss 1.1845744848251343 img loss 1.2684571743011475 img loss 1.185168981552124 img loss 1.2681916952133179 img loss 1.1920158863067627 img loss 1.2290968894958496 img loss 1.297934889793396 img loss 1.218332290649414 img loss 1.1765066385269165 img loss 1.2583340406417847 img loss 1.1451077461242676 img loss 1.3202799558639526 img loss 1.3201820850372314 img loss 1.1923213005065918 img loss 1.2242339849472046 img loss 1.309203863143921 img loss 1.2681992053985596 img loss 1.2498708963394165 img loss 1.2748746871948242 img loss 1.2474409341812134 img loss 1.2424712181091309 img loss 1.3288538455963135 img loss 1.216103196144104 img loss 1.2162060737609863 img loss 1.286279559135437 img loss 1.2066725492477417 img loss 1.2814642190933228 img loss 1.1981213092803955 img loss 1.2248623371124268 img loss 1.2483360767364502 img loss 1.238614797592163 img loss 1.361080288887024 img loss 1.4065067768096924 img loss 1.2781997919082642 img loss 1.2566592693328857 img loss 1.282223105430603 img loss 1.4901185035705566 img loss 1.2522127628326416 img loss 1.200112223625183 img loss 1.3108890056610107 img loss 1.2037147283554077 img loss 1.3154243230819702 img loss 1.2818245887756348 img loss 1.2475578784942627 img loss 1.2856003046035767 img loss 1.265897512435913 img loss 1.2145161628723145 img loss 1.2079505920410156 img loss 1.2812397480010986 img loss 1.2358970642089844 img loss 1.2418590784072876 img loss 1.155423879623413 img loss 1.3140308856964111 img loss 1.246121883392334 img loss 1.1413757801055908 img loss 1.221888542175293 img loss 1.173277735710144 img loss 1.2959251403808594 img loss 1.1492857933044434 img loss 1.3227097988128662 img loss 1.4090635776519775 img loss 1.2609293460845947 img loss 1.3439182043075562 img loss 1.2298301458358765 img loss 1.2403208017349243 img loss 1.1845191717147827 img loss 1.233476161956787 img loss 1.2659889459609985 img loss 1.192981481552124 img loss 1.3102959394454956 img loss 1.3030592203140259 img loss 1.245218276977539 img loss 1.225123643875122 img loss 1.2503113746643066 img loss 1.2097735404968262 img loss 1.1832516193389893 img loss 1.257272720336914 img loss 1.3024829626083374 img loss 1.3407212495803833 img loss 1.1764476299285889 img loss 1.2248988151550293 img loss 1.1471048593521118 img loss 1.2070496082305908 img loss 1.216390609741211 img loss 1.2466455698013306 img loss 1.3015371561050415 img loss 1.1817110776901245 img loss 1.2009766101837158 img loss 1.1998707056045532 img loss 1.2456181049346924 img loss 1.2661064863204956 img loss 1.298898696899414 img loss 1.161944031715393 img loss 1.235245943069458 img loss 1.31197988986969 img loss 1.3577901124954224 img loss 1.217972755432129 img loss 1.1697019338607788 img loss 1.3480486869812012 img loss 1.400161862373352 img loss 1.323566198348999 img loss 1.3141975402832031 img loss 1.2974086999893188 img loss 1.246131420135498 img loss 1.3342623710632324 img loss 1.2077770233154297 img loss 1.2571245431900024 img loss 1.2635934352874756 img loss 1.3394321203231812 img loss 1.174324870109558 img loss 1.2220873832702637 img loss 1.3303890228271484 img loss 1.2165594100952148 img loss 1.2386687994003296 img loss 1.3122621774673462 img loss 1.1929022073745728 img loss 1.1896424293518066 img loss 1.2342469692230225 img loss 1.222930908203125 img loss 1.2464960813522339 img loss 1.2296141386032104 img loss 1.22296941280365 img loss 1.2158517837524414 img loss 1.1810054779052734 {'loss': 1.2515, 'grad_norm': 0.2130659818649292, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1852350234985352 img loss 1.218665361404419 img loss 1.2853617668151855 img loss 1.0876880884170532 img loss 1.2205564975738525 img loss 1.1758421659469604 img loss 1.1752954721450806 img loss 1.2008155584335327 img loss 1.1933733224868774 img loss 1.2223471403121948 img loss 1.2315086126327515 img loss 1.2389724254608154 img loss 1.2071435451507568 img loss 1.1244980096817017 img loss 1.2030384540557861 img loss 1.2098321914672852 img loss 1.1857860088348389 img loss 1.1782405376434326 img loss 1.1732279062271118 img loss 1.286975383758545 img loss 1.1667909622192383 img loss 1.2080010175704956 img loss 1.244727611541748 img loss 1.2257392406463623 img loss 1.2382513284683228 img loss 1.2686767578125 img loss 1.1285024881362915 img loss 1.2058141231536865 img loss 1.2678018808364868 img loss 1.1403177976608276 img loss 1.1895735263824463 img loss 1.150993824005127 img loss 1.2459957599639893 img loss 1.1932201385498047 img loss 1.1612974405288696 img loss 1.2174739837646484 img loss 1.2103923559188843 img loss 1.2551906108856201 img loss 1.2154526710510254 img loss 1.2160300016403198 img loss 1.2096962928771973 img loss 1.273248314857483 img loss 1.175272822380066 img loss 1.16942298412323 img loss 1.1546897888183594 img loss 1.2430638074874878 img loss 1.2411084175109863 img loss 1.1950539350509644 img loss 1.2427724599838257 img loss 1.1863325834274292img loss 1.1415553092956543 img loss 1.1089789867401123 img loss 1.1801681518554688 img loss 1.1246808767318726 img loss 1.215762734413147 img loss 1.230456829071045 img loss 1.181497573852539 img loss 1.2179772853851318 img loss 1.222684383392334 img loss 1.2044918537139893 img loss 1.2184348106384277 img loss 1.29118013381958 img loss 1.1632072925567627 img loss 1.154776930809021 img loss 1.2137904167175293 img loss 1.2066830396652222 img loss 1.1749207973480225 img loss 1.2313600778579712 img loss 1.1967853307724 img loss 1.1984953880310059 img loss 1.1774858236312866 img loss 1.1558518409729004 img loss 1.2036621570587158 img loss 1.1476998329162598 img loss 1.2443243265151978 img loss 1.1639533042907715 img loss 1.2796075344085693 img loss 1.1395986080169678 img loss 1.1849682331085205 img loss 1.1013835668563843 img loss 1.249759554862976 img loss 1.4624993801116943 img loss 1.174689769744873 img loss 1.2339671850204468 img loss 1.1782207489013672 img loss 1.1140824556350708 img loss 1.1701370477676392 img loss 1.2194355726242065 img loss 1.2320671081542969 img loss 1.217527151107788 img loss 1.2415966987609863 img loss 1.1009825468063354 img loss 1.1654490232467651 img loss 1.1881730556488037 img loss 1.1503441333770752 img loss 1.224353313446045 img loss 1.2359379529953003 img loss 1.1265339851379395 img loss 1.1948750019073486 img loss 1.1692562103271484 img loss 1.1863387823104858 img loss 1.2719618082046509 img loss 1.3211638927459717 img loss 1.2015185356140137 img loss 1.1842496395111084 img loss 1.2469720840454102 img loss 1.3070061206817627 img loss 1.1824796199798584 img loss 1.2076935768127441 img loss 1.2736843824386597 img loss 1.3039209842681885 img loss 1.1919552087783813 img loss 1.1823381185531616 img loss 1.2770817279815674 img loss 1.1517399549484253 img loss 1.1524542570114136 img loss 1.1426053047180176 img loss 1.2087061405181885 img loss 1.1805318593978882 img loss 1.2585500478744507 img loss 1.2482651472091675 img loss 1.1929292678833008 img loss 1.2262102365493774 img loss 1.2833187580108643 img loss 1.1716547012329102 img loss 1.1902523040771484 img loss 1.1779295206069946 img loss 1.180957555770874 {'loss': 1.2037, 'grad_norm': 0.2213565856218338, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2076810598373413 img loss 1.1923956871032715 img loss 1.2399572134017944 img loss 1.2660146951675415 img loss 1.2161424160003662 img loss 1.231895923614502 img loss 1.2461374998092651 img loss 1.166059136390686 img loss 1.1698812246322632 img loss 1.264744520187378 img loss 1.190058946609497 img loss 1.2437686920166016 img loss 1.1637903451919556 img loss 1.2397536039352417 img loss 1.2419140338897705 img loss 1.225231409072876 img loss 1.2509464025497437 img loss 1.17233407497406 img loss 1.2058473825454712 img loss 1.2341415882110596 img loss 1.2653948068618774 img loss 1.1770368814468384 img loss 1.3045810461044312 img loss 1.1775625944137573 img loss 1.2319449186325073 img loss 1.2379366159439087 img loss 1.2324856519699097 img loss 1.191129207611084 img loss 1.189592957496643 img loss 1.191138505935669 img loss 1.1814887523651123 img loss 1.1713913679122925 img loss 1.2412952184677124 img loss 1.1936062574386597 img loss 1.225189447402954 img loss 1.3316847085952759 img loss 1.1556495428085327 img loss 1.1904945373535156 img loss 1.1874308586120605 img loss 1.2399357557296753 img loss 1.1867597103118896 img loss 1.270951271057129 img loss 1.1970672607421875 img loss 1.1323150396347046 img loss 1.1760891675949097 img loss 1.2213884592056274 img loss 1.1691927909851074 img loss 1.1451479196548462 img loss 1.2061824798583984 img loss 1.1970371007919312 img loss 1.1694456338882446 img loss 1.2207263708114624 img loss 1.1948219537734985 img loss 1.3022249937057495 img loss 1.2626911401748657 img loss 1.2066293954849243 img loss 1.1898971796035767 img loss 1.1780915260314941 img loss 1.2687383890151978 img loss 1.2252229452133179 img loss 1.1539802551269531 img loss 1.2081522941589355 img loss 1.2325830459594727 img loss 1.267408847808838 img loss 1.2593692541122437 img loss 1.2234416007995605 img loss 1.2130227088928223 img loss 1.189847469329834 img loss 1.1709345579147339 img loss 1.2169363498687744 img loss 1.2381213903427124 img loss 1.1917452812194824 img loss 1.1892900466918945 img loss 1.2491689920425415 img loss 1.2476418018341064 img loss 1.2498449087142944 img loss 1.1511787176132202 img loss 1.267516016960144 img loss 1.2173891067504883 img loss 1.2526425123214722 img loss 1.234923005104065 img loss 1.1724754571914673 img loss 1.2640035152435303 img loss 1.238612413406372 img loss 1.2078065872192383 img loss 1.1848008632659912 img loss 1.2154781818389893 img loss 1.210834264755249 img loss 1.2314963340759277 img loss 1.1751083135604858 img loss 1.1795458793640137 img loss 1.3067331314086914 img loss 1.155242919921875 img loss 1.1625112295150757 img loss 1.2538419961929321 img loss 1.2163606882095337 img loss 1.2909595966339111 img loss 1.317737102508545 img loss 1.2107946872711182 img loss 1.2651351690292358 img loss 1.2251287698745728 img loss 1.251491904258728 img loss 1.250240683555603 img loss 1.2551097869873047 img loss 1.203386664390564 img loss 1.2454733848571777 img loss 1.188049077987671 img loss 1.2228620052337646 img loss 1.2476060390472412 img loss 1.1347637176513672 img loss 1.194819688796997 img loss 1.2052948474884033 img loss 1.1914621591567993 img loss 1.2082042694091797 img loss 1.2358829975128174 img loss 1.2313117980957031 img loss 1.3009464740753174 img loss 1.2009479999542236 img loss 1.212045669555664 img loss 1.1958410739898682 img loss 1.2364816665649414 img loss 1.1650251150131226 img loss 1.248399019241333 img loss 1.184965968132019 img loss 1.2123563289642334 img loss 1.1988556385040283 img loss 1.1763941049575806 img loss 1.1735166311264038 {'loss': 1.2163, 'grad_norm': 0.3085225820541382, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2470921277999878 img loss 1.2108299732208252 img loss 1.203304648399353 img loss 1.329899787902832 img loss 1.2930095195770264 img loss 1.3051867485046387 img loss 1.3262155055999756 img loss 1.2470197677612305 img loss 1.1998419761657715 img loss 1.515895962715149 img loss 1.2901618480682373 img loss 1.3718793392181396 img loss 1.3509658575057983 img loss 1.2154604196548462 img loss 1.1661823987960815 img loss 1.275019884109497 img loss 1.3231838941574097 img loss 1.330005168914795 img loss 1.2889503240585327 img loss 1.1981751918792725 img loss 1.3015695810317993 img loss 1.2647895812988281 img loss 1.2868759632110596 img loss 1.2439265251159668 img loss 1.2397875785827637 img loss 1.2006765604019165 img loss 1.2670331001281738 img loss 1.2296209335327148 img loss 1.2076141834259033 img loss 1.2175451517105103 img loss 1.3378002643585205 img loss 1.3323993682861328 img loss 1.2128572463989258 img loss 1.1634762287139893 img loss 1.2099969387054443 img loss 1.2706851959228516 img loss 1.2701680660247803 img loss 1.3038020133972168 img loss 1.4173967838287354 img loss 1.2110668420791626 img loss 1.2818483114242554 img loss 1.2954200506210327 img loss 1.2499077320098877 img loss 1.2638767957687378 img loss 1.2789846658706665 img loss 1.1573494672775269 img loss 1.2622324228286743 img loss 1.185777187347412 img loss 1.205225944519043 img loss 1.280473232269287 img loss 1.2156472206115723 img loss 1.1303352117538452 img loss 1.2849091291427612 img loss 1.2516504526138306 img loss 1.2840871810913086 img loss 1.241940975189209 img loss 1.1835907697677612 img loss 1.3750487565994263 img loss 1.2406889200210571 img loss 1.1828711032867432 img loss 1.256534457206726 img loss 1.2145161628723145 img loss 1.2806947231292725 img loss 1.2206848859786987 img loss 1.300118088722229 img loss 1.1816179752349854 img loss 1.224252462387085 img loss 1.2714133262634277 img loss 1.2854080200195312 img loss 1.216955542564392 img loss 1.1834827661514282 img loss 1.3766201734542847 img loss 1.2392733097076416 img loss 1.2684309482574463 img loss 1.2995258569717407 img loss 1.1737810373306274 img loss 1.238837480545044 img loss 1.320924997329712 img loss 1.2644208669662476 img loss 1.3126062154769897 img loss 1.202803373336792 img loss 1.273172378540039 img loss 1.3138970136642456 img loss 1.3307102918624878 img loss 1.2912728786468506 img loss 1.2209504842758179 img loss 1.1753886938095093 img loss 1.367063045501709 img loss 1.3128066062927246 img loss 1.2225041389465332 img loss 1.3350977897644043 img loss 1.2734559774398804 img loss 1.160030722618103 img loss 1.2855685949325562 img loss 1.1612083911895752 img loss 1.1639314889907837 img loss 1.32020902633667 img loss 1.337038278579712 img loss 1.1469026803970337 img loss 1.296163558959961 img loss 1.2223581075668335 img loss 1.1903772354125977 img loss 1.2759214639663696 img loss 1.3713535070419312 img loss 1.2253245115280151 img loss 1.3899959325790405 img loss 1.2504873275756836 img loss 1.2466567754745483 img loss 1.2989696264266968 img loss 1.180145025253296 img loss 1.401416301727295 img loss 1.2271509170532227 img loss 1.2705373764038086 img loss 1.3491151332855225 img loss 1.2897365093231201 img loss 1.2917675971984863 img loss 1.2781388759613037 img loss 1.3183304071426392 img loss 1.1829856634140015 img loss 1.3855059146881104 img loss 1.185615062713623 img loss 1.256185531616211 img loss 1.348903775215149 img loss 1.1497454643249512 img loss 1.2130932807922363 img loss 1.2371764183044434 img loss 1.3253389596939087 img loss 1.3744513988494873 {'loss': 1.264, 'grad_norm': 0.33212023973464966, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.163156270980835 img loss 1.1573691368103027 img loss 1.191175103187561 img loss 1.198386788368225 img loss 1.2192022800445557 img loss 1.127898097038269 img loss 1.1981149911880493 img loss 1.1782524585723877 img loss 1.2292269468307495 img loss 1.2614202499389648 img loss 1.1743066310882568 img loss 1.2164195775985718 img loss 1.1641525030136108 img loss 1.246183156967163 img loss 1.2049373388290405 img loss 1.2326878309249878 img loss 1.2858960628509521 img loss 1.199063777923584 img loss 1.216726303100586 img loss 1.2127280235290527 img loss 1.164351463317871 img loss 1.1618143320083618 img loss 1.1559038162231445 img loss 1.2073688507080078 img loss 1.1897847652435303 img loss 1.2583897113800049 img loss 1.2407783269882202 img loss 1.2022817134857178 img loss 1.2438530921936035 img loss 1.233530879020691 img loss 1.2563111782073975 img loss 1.1386808156967163 img loss 1.220913290977478 img loss 1.208824872970581 img loss 1.1924294233322144 img loss 1.2713621854782104 img loss 1.2234039306640625 img loss 1.2706400156021118 img loss 1.1901214122772217 img loss 1.1762052774429321 img loss 1.169891595840454 img loss 1.230647325515747 img loss 1.2607836723327637 img loss 1.154476523399353 img loss 1.1695513725280762 img loss 1.1947929859161377 img loss 1.2770788669586182 img loss 1.2215694189071655 img loss 1.22994863986969 img loss 1.1638145446777344 img loss 1.2321696281433105 img loss 1.1671932935714722 img loss 1.1292965412139893 img loss 1.2246519327163696 img loss 1.1642389297485352 img loss 1.219141960144043 img loss 1.2612348794937134 img loss 1.2351826429367065 img loss 1.225317358970642 img loss 1.2373971939086914 img loss 1.2607955932617188 img loss 1.2280313968658447 img loss 1.16959547996521 img loss 1.1888175010681152 img loss 1.2232508659362793 img loss 1.2826675176620483 img loss 1.3011115789413452 img loss 1.2116895914077759 img loss 1.1959991455078125 img loss 1.2910044193267822 img loss 1.2004705667495728 img loss 1.2130711078643799 img loss 1.208470344543457 img loss 1.1535484790802002 img loss 1.1785318851470947 img loss 1.1240770816802979 img loss 1.2297190427780151 img loss 1.1698448657989502 img loss 1.1839145421981812 img loss 1.1963831186294556 img loss 1.212268352508545 img loss 1.1848760843276978 img loss 1.2034721374511719 img loss 1.1768081188201904 img loss 1.1849873065948486 img loss 1.2173622846603394 img loss 1.2380157709121704 img loss 1.1907920837402344 img loss 1.2023569345474243 img loss 1.1786619424819946 img loss 1.1939467191696167 img loss 1.179245948791504 img loss 1.2642543315887451 img loss 1.2864208221435547 img loss 1.3450638055801392 img loss 1.2030318975448608 img loss 1.1847622394561768 img loss 1.2121015787124634 img loss 1.2707040309906006 img loss 1.2613239288330078 img loss 1.2020606994628906 img loss 1.1997857093811035 img loss 1.2347673177719116 img loss 1.2210031747817993 img loss 1.2235037088394165 img loss 1.1612720489501953 img loss 1.1641960144042969 img loss 1.2622230052947998 img loss 1.1353412866592407 img loss 1.2395153045654297 img loss 1.2756935358047485 img loss 1.2581068277359009 img loss 1.222005844116211 img loss 1.236486792564392 img loss 1.2196598052978516 img loss 1.2171051502227783 img loss 1.2567602396011353 img loss 1.2038805484771729 img loss 1.2627075910568237 img loss 1.2067468166351318 img loss 1.1497631072998047 img loss 1.1519336700439453 img loss 1.180519700050354 img loss 1.2046620845794678 img loss 1.2978743314743042 img loss 1.2594659328460693 img loss 1.2887475490570068 img loss 1.2746413946151733 {'loss': 1.213, 'grad_norm': 0.2405681312084198, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.25484037399292 img loss 1.258876085281372 img loss 1.3097152709960938 img loss 1.2698230743408203 img loss 1.3118747472763062 img loss 1.3121346235275269 img loss 1.2751283645629883 img loss 1.230942964553833 img loss 1.2614792585372925 img loss 1.3050506114959717 img loss 1.2520338296890259 img loss 1.227717638015747 img loss 1.3293813467025757 img loss 1.232185959815979 img loss 1.2932729721069336 img loss 1.188900351524353 img loss 1.2418521642684937 img loss 1.308419108390808 img loss 1.2233246564865112 img loss 1.2626316547393799 img loss 1.304858922958374 img loss 1.3588796854019165 img loss 1.3859857320785522 img loss 1.2121025323867798 img loss 1.2612810134887695 img loss 1.336251974105835 img loss 1.2587611675262451 img loss 1.2952847480773926 img loss 1.2856172323226929 img loss 1.260241985321045 img loss 1.3898193836212158 img loss 1.2742187976837158 img loss 1.232072114944458 img loss 1.19241201877594 img loss 1.2861782312393188 img loss 1.2347047328948975 img loss 1.2041356563568115 img loss 1.277261734008789 img loss 1.2361725568771362 img loss 1.3152421712875366 img loss 1.2473444938659668 img loss 1.3014312982559204 img loss 1.281221866607666 img loss 1.1744592189788818 img loss 1.3319090604782104 img loss 1.2720019817352295 img loss 1.2396388053894043 img loss 1.2615220546722412 img loss 1.2327522039413452 img loss 1.3128578662872314 img loss 1.281218409538269 img loss 1.2456135749816895 img loss 1.3190662860870361 img loss 1.2710397243499756 img loss 1.2857731580734253 img loss 1.2883400917053223 img loss 1.2612398862838745 img loss 1.3009876012802124 img loss 1.3101580142974854 img loss 1.2749704122543335 img loss 1.2483367919921875 img loss 1.3054224252700806 img loss 1.2829042673110962 img loss 1.2786362171173096 img loss 1.245723009109497 img loss 1.289142370223999 img loss 1.310138463973999 img loss 1.2864350080490112 img loss 1.2785305976867676 img loss 1.229783535003662 img loss 1.1928247213363647 img loss 1.3272628784179688img loss 1.2492412328720093 img loss 1.3536245822906494 img loss 1.2528400421142578 img loss 1.3399866819381714 img loss 1.2177807092666626 img loss 1.3045978546142578 img loss 1.3484413623809814 img loss 1.2935460805892944 img loss 1.2683048248291016 img loss 1.3034281730651855 img loss 1.1736077070236206 img loss 1.289743423461914 img loss 1.3225196599960327 img loss 1.2805842161178589 img loss 1.29361093044281 img loss 1.2548046112060547 img loss 1.438860297203064 img loss 1.2525707483291626 img loss 1.2913058996200562 img loss 1.384752869606018 img loss 1.350439190864563 img loss 1.292161226272583 img loss 1.2799593210220337 img loss 1.2842100858688354 img loss 1.3576700687408447 img loss 1.286985158920288 img loss 1.3042426109313965 img loss 1.2954514026641846 img loss 1.2552618980407715 img loss 1.29865300655365 img loss 1.3300548791885376 img loss 1.379254937171936 img loss 1.2907377481460571 img loss 1.3355828523635864 img loss 1.264136791229248 img loss 1.3331570625305176 img loss 1.2360824346542358 img loss 1.264249324798584 img loss 1.2750959396362305 img loss 1.3434990644454956 img loss 1.2524174451828003 img loss 1.327587366104126 img loss 1.2639521360397339 img loss 1.3208569288253784 img loss 1.3015477657318115 img loss 1.3523796796798706 img loss 1.3096331357955933 img loss 1.3610804080963135 img loss 1.3186233043670654 img loss 1.2799270153045654 img loss 1.3298368453979492 img loss 1.2781833410263062 img loss 1.2452577352523804 img loss 1.263025164604187 img loss 1.24678373336792 img loss 1.2594836950302124 {'loss': 1.2844, 'grad_norm': 0.2536125183105469, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3784687519073486 img loss 1.481468915939331 img loss 1.6776670217514038 img loss 1.576740026473999 img loss 1.5606976747512817 img loss 1.5933974981307983 img loss 1.6167950630187988 img loss 1.5999209880828857 img loss 1.6056138277053833 img loss 1.4624238014221191 img loss 1.554197072982788 img loss 1.5375486612319946 img loss 1.4941810369491577 img loss 1.5836806297302246 img loss 1.3700777292251587 img loss 1.5394346714019775 img loss 1.619089961051941 img loss 1.7478222846984863 img loss 1.4359382390975952 img loss 1.5926169157028198 img loss 1.614134430885315 img loss 1.4759955406188965 img loss 1.5028643608093262 img loss 1.449743628501892 img loss 1.4640494585037231 img loss 1.5261197090148926 img loss 1.4475899934768677 img loss 1.507715106010437 img loss 1.4958819150924683 img loss 1.73566472530365 img loss 1.7858086824417114 img loss 1.6028929948806763 img loss 1.666471242904663 img loss 1.4898210763931274 img loss 1.4551337957382202 img loss 1.4762585163116455 img loss 1.4980204105377197 img loss 1.5343832969665527 img loss 1.6006990671157837 img loss 1.605751633644104 img loss 1.5907416343688965 img loss 1.5416386127471924 img loss 1.5596365928649902 img loss 1.6322001218795776 img loss 1.5569840669631958 img loss 1.6733859777450562 img loss 1.5288604497909546 img loss 1.533232569694519 img loss 1.5295345783233643 img loss 1.5881658792495728 img loss 1.5840728282928467 img loss 1.611670970916748 img loss 1.5636804103851318 img loss 1.7204011678695679 img loss 1.5317699909210205 img loss 1.706362247467041 img loss 1.5274176597595215 img loss 1.6129266023635864 img loss 1.433709740638733 img loss 1.4819235801696777 img loss 1.530617594718933 img loss 1.5242626667022705 img loss 1.7245151996612549 img loss 1.435058355331421 img loss 1.7273645401000977 img loss 1.5266029834747314 img loss 1.7047065496444702 img loss 1.5211293697357178 img loss 1.6100457906723022 img loss 1.5368727445602417 img loss 1.5426783561706543 img loss 1.6676732301712036 img loss 1.569667100906372 img loss 1.6740540266036987 img loss 1.4262821674346924 img loss 1.497699499130249 img loss 1.6210931539535522 img loss 1.586321234703064 img loss 1.4559910297393799 img loss 1.6295229196548462 img loss 1.5113030672073364 img loss 1.523932695388794 img loss 1.6601061820983887 img loss 1.4962791204452515 img loss 1.4095789194107056 img loss 1.5483824014663696 img loss 1.4433867931365967 img loss 1.5685160160064697 img loss 1.4897860288619995 img loss 1.5226353406906128 img loss 1.6032488346099854 img loss 1.556085467338562 img loss 1.6508269309997559 img loss 1.5334166288375854 img loss 1.5622929334640503 img loss 1.5276200771331787 img loss 1.6391003131866455 img loss 1.5724689960479736 img loss 1.4444806575775146 img loss 1.5624616146087646 img loss 1.7133394479751587 img loss 1.7000740766525269 img loss 1.3983217477798462 img loss 1.5976345539093018 img loss 1.5385690927505493 img loss 1.4209378957748413 img loss 1.6195050477981567 img loss 1.6490588188171387 img loss 1.5909287929534912 img loss 1.5762741565704346 img loss 1.3834553956985474 img loss 1.5085028409957886 img loss 1.6488168239593506 img loss 1.4587773084640503 img loss 1.6633206605911255 img loss 1.5478966236114502 img loss 1.5632604360580444 img loss 1.5403176546096802 img loss 1.5183321237564087 img loss 1.6532212495803833 img loss 1.560433268547058 img loss 1.6398876905441284 img loss 1.5875874757766724 img loss 1.603186845779419 img loss 1.7167816162109375 img loss 1.7411235570907593 img loss 1.4832642078399658 img loss 1.5228058099746704 {'loss': 1.5621, 'grad_norm': 0.35889971256256104, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2961925268173218 img loss 1.310630202293396 img loss 1.2496719360351562 img loss 1.330751657485962 img loss 1.3882005214691162 img loss 1.2599563598632812 img loss 1.3335210084915161 img loss 1.293491244316101 img loss 1.2939039468765259 img loss 1.3285975456237793 img loss 1.2517337799072266 img loss 1.3289270401000977 img loss 1.340674638748169 img loss 1.3435652256011963 img loss 1.2305943965911865 img loss 1.302794098854065 img loss 1.3448225259780884 img loss 1.2796815633773804 img loss 1.3481937646865845 img loss 1.1786468029022217 img loss 1.3170922994613647 img loss 1.3191865682601929 img loss 1.2510263919830322 img loss 1.2233539819717407 img loss 1.2326538562774658 img loss 1.2295135259628296 img loss 1.2886241674423218 img loss 1.3221423625946045 img loss 1.2656458616256714 img loss 1.354324460029602 img loss 1.2012697458267212 img loss 1.308327555656433 img loss 1.2442973852157593 img loss 1.3037538528442383 img loss 1.3593398332595825 img loss 1.3309787511825562 img loss 1.3896939754486084 img loss 1.2678192853927612 img loss 1.2259197235107422 img loss 1.3117777109146118 img loss 1.3889256715774536 img loss 1.2641026973724365 img loss 1.2237451076507568 img loss 1.298032283782959 img loss 1.2186115980148315 img loss 1.3983912467956543 img loss 1.2455177307128906 img loss 1.3146917819976807 img loss 1.3997948169708252 img loss 1.3158512115478516 img loss 1.3081673383712769 img loss 1.261936068534851 img loss 1.2046983242034912 img loss 1.3267147541046143 img loss 1.2736281156539917 img loss 1.3863855600357056 img loss 1.3450616598129272 img loss 1.4022811651229858 img loss 1.3559898138046265 img loss 1.2590030431747437 img loss 1.2982184886932373 img loss 1.3153656721115112 img loss 1.2413020133972168 img loss 1.2552746534347534 img loss 1.2330982685089111 img loss 1.2224467992782593 img loss 1.242271065711975 img loss 1.2851698398590088 img loss 1.299998164176941 img loss 1.2396948337554932 img loss 1.1933586597442627 img loss 1.2540712356567383 img loss 1.3684567213058472 img loss 1.2630839347839355 img loss 1.3179174661636353 img loss 1.3268600702285767 img loss 1.3143624067306519 img loss 1.2809909582138062 img loss 1.2873557806015015 img loss 1.303912878036499 img loss 1.3410887718200684 img loss 1.2785332202911377 img loss 1.232593297958374 img loss 1.312080979347229 img loss 1.3895806074142456 img loss 1.26064932346344 img loss 1.3386826515197754 img loss 1.35770583152771 img loss 1.289305329322815 img loss 1.2972304821014404 img loss 1.267808198928833 img loss 1.2371327877044678 img loss 1.3005846738815308 img loss 1.2917736768722534 img loss 1.3015960454940796 img loss 1.3269423246383667 img loss 1.3630757331848145 img loss 1.224485158920288 img loss 1.2962538003921509 img loss 1.4279677867889404 img loss 1.2557801008224487 img loss 1.3861125707626343 img loss 1.3042774200439453 img loss 1.3515050411224365 img loss 1.2830615043640137 img loss 1.251535177230835 img loss 1.4113646745681763 img loss 1.3354698419570923 img loss 1.362669825553894 img loss 1.2763302326202393 img loss 1.3682371377944946 img loss 1.273895263671875 img loss 1.2663567066192627 img loss 1.2372606992721558 img loss 1.2022513151168823 img loss 1.278978705406189 img loss 1.2388856410980225 img loss 1.2838388681411743 img loss 1.2134716510772705 img loss 1.2864632606506348 img loss 1.3320062160491943 img loss 1.33864164352417 img loss 1.3022829294204712 img loss 1.1853444576263428 img loss 1.1977580785751343 img loss 1.1897376775741577 img loss 1.2191511392593384 img loss 1.2660269737243652 {'loss': 1.2934, 'grad_norm': 0.2561412751674652, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1929290294647217 img loss 1.2179882526397705 img loss 1.2130581140518188 img loss 1.162647008895874 img loss 1.2024023532867432 img loss 1.1546579599380493 img loss 1.1319798231124878 img loss 1.1457648277282715 img loss 1.2084509134292603 img loss 1.223748803138733 img loss 1.1347569227218628 img loss 1.2706851959228516 img loss 1.2441561222076416 img loss 1.1530992984771729 img loss 1.2214908599853516 img loss 1.2142913341522217 img loss 1.1958959102630615 img loss 1.2156751155853271 img loss 1.1477267742156982 img loss 1.2219651937484741 img loss 1.1880613565444946 img loss 1.1956806182861328 img loss 1.1989256143569946 img loss 1.204232931137085 img loss 1.1329843997955322 img loss 1.2264760732650757 img loss 1.1311367750167847 img loss 1.143122911453247 img loss 1.1873321533203125 img loss 1.1462196111679077 img loss 1.2029962539672852 img loss 1.2783315181732178 img loss 1.280882477760315 img loss 1.1999157667160034 img loss 1.2336262464523315 img loss 1.190514326095581 img loss 1.2214851379394531 img loss 1.2262308597564697 img loss 1.2262340784072876 img loss 1.1936490535736084 img loss 1.2121498584747314 img loss 1.129126787185669 img loss 1.1578748226165771 img loss 1.1736277341842651 img loss 1.17853581905365 img loss 1.1981626749038696 img loss 1.2533206939697266 img loss 1.2227638959884644 img loss 1.2734295129776 img loss 1.2163364887237549 img loss 1.2131836414337158 img loss 1.186684489250183 img loss 1.2256557941436768 img loss 1.144529938697815 img loss 1.1476396322250366 img loss 1.1974842548370361 img loss 1.1374633312225342 img loss 1.1832270622253418 img loss 1.1910622119903564 img loss 1.1769577264785767 img loss 1.229387640953064 img loss 1.1818864345550537 img loss 1.171201229095459 img loss 1.1792892217636108 img loss 1.1926038265228271 img loss 1.152483344078064 img loss 1.163914442062378 img loss 1.2689560651779175 img loss 1.151781439781189 img loss 1.1508830785751343 img loss 1.1367945671081543 img loss 1.264235258102417 img loss 1.1680796146392822 img loss 1.2870720624923706 img loss 1.1910183429718018 img loss 1.263522982597351 img loss 1.1968021392822266 img loss 1.1825298070907593 img loss 1.2688920497894287 img loss 1.1017916202545166 img loss 1.1774990558624268 img loss 1.136959433555603 img loss 1.2178436517715454 img loss 1.169344186782837 img loss 1.1503559350967407 img loss 1.2625043392181396 img loss 1.16725754737854 img loss 1.1709210872650146 img loss 1.2146985530853271 img loss 1.161426067352295 img loss 1.2171581983566284 img loss 1.1426448822021484 img loss 1.1915526390075684 img loss 1.1931431293487549 img loss 1.1670860052108765 img loss 1.1531091928482056 img loss 1.2546916007995605 img loss 1.171626329421997 img loss 1.1418805122375488 img loss 1.1984728574752808 img loss 1.2774232625961304 img loss 1.2089706659317017 img loss 1.1376190185546875 img loss 1.1515899896621704 img loss 1.1564910411834717 img loss 1.1618125438690186 img loss 1.214008092880249 img loss 1.2234561443328857 img loss 1.1595872640609741 img loss 1.2189148664474487 img loss 1.1984819173812866 img loss 1.1449980735778809 img loss 1.1583590507507324 img loss 1.1822878122329712 img loss 1.126692533493042 img loss 1.1355210542678833 img loss 1.1699848175048828 img loss 1.146511435508728 img loss 1.1983911991119385 img loss 1.1697734594345093 img loss 1.1964964866638184 img loss 1.1351516246795654 img loss 1.1384913921356201 img loss 1.1836782693862915 img loss 1.1880348920822144 img loss 1.1512993574142456 img loss 1.271631121635437 img loss 1.2312721014022827 {'loss': 1.1899, 'grad_norm': 0.21197044849395752, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.209271788597107 img loss 1.1934583187103271 img loss 1.1171653270721436 img loss 1.1389130353927612 img loss 1.1298942565917969 img loss 1.2557624578475952 img loss 1.1257619857788086 img loss 1.1319043636322021 img loss 1.128102421760559 img loss 1.222614049911499 img loss 1.1474262475967407 img loss 1.214074730873108 img loss 1.147639513015747 img loss 1.1805499792099 img loss 1.194997787475586 img loss 1.1670260429382324 img loss 1.2032501697540283 img loss 1.1549220085144043 img loss 1.296210765838623 img loss 1.1842340230941772 img loss 1.1595783233642578 img loss 1.2429075241088867 img loss 1.1735061407089233 img loss 1.2361278533935547 img loss 1.1369011402130127 img loss 1.1431602239608765 img loss 1.1249046325683594 img loss 1.1997040510177612 img loss 1.2075066566467285 img loss 1.2657917737960815 img loss 1.181168794631958 img loss 1.107489824295044 img loss 1.1674085855484009 img loss 1.1808946132659912 img loss 1.080085277557373 img loss 1.1534724235534668 img loss 1.197970986366272 img loss 1.2204248905181885 img loss 1.2091548442840576 img loss 1.1792551279067993 img loss 1.1281532049179077 img loss 1.2298791408538818 img loss 1.1398348808288574 img loss 1.245530366897583 img loss 1.1236833333969116 img loss 1.1377952098846436 img loss 1.1764154434204102 img loss 1.140773057937622 img loss 1.1750783920288086 img loss 1.1326109170913696 img loss 1.1161845922470093 img loss 1.1369937658309937 img loss 1.1472915410995483 img loss 1.1771541833877563 img loss 1.1477024555206299 img loss 1.1425055265426636 img loss 1.1666810512542725 img loss 1.176247477531433 img loss 1.1157010793685913 img loss 1.1736820936203003 img loss 1.2076243162155151 img loss 1.1454378366470337 img loss 1.1750602722167969 img loss 1.140275239944458 img loss 1.1634219884872437 img loss 1.1862447261810303 img loss 1.2036269903182983 img loss 1.1776280403137207 img loss 1.083127498626709 img loss 1.1573598384857178 img loss 1.1381834745407104 img loss 1.2420448064804077 img loss 1.1935375928878784 img loss 1.2217843532562256 img loss 1.1845651865005493 img loss 1.1689622402191162 img loss 1.0769307613372803 img loss 1.2471812963485718 img loss 1.16359281539917 img loss 1.2282922267913818 img loss 1.1865859031677246 img loss 1.1002686023712158 img loss 1.1520435810089111 img loss 1.134333848953247 img loss 1.1123188734054565 img loss 1.2145812511444092 img loss 1.1977064609527588 img loss 1.1789002418518066 img loss 1.2891534566879272 img loss 1.115875005722046 img loss 1.1900180578231812 img loss 1.1350620985031128 img loss 1.1865496635437012 img loss 1.105315923690796 img loss 1.1479014158248901 img loss 1.0972936153411865 img loss 1.1279969215393066 img loss 1.1845273971557617 img loss 1.1434158086776733 img loss 1.1588692665100098 img loss 1.1522798538208008 img loss 1.154718041419983 img loss 1.2136729955673218 img loss 1.1718389987945557 img loss 1.1713426113128662 img loss 1.1753978729248047 img loss 1.2002416849136353 img loss 1.1389926671981812 img loss 1.1979502439498901 img loss 1.1761324405670166 img loss 1.1430895328521729 img loss 1.168668508529663 img loss 1.2039183378219604 img loss 1.164293885231018 img loss 1.1516485214233398 img loss 1.1211752891540527 img loss 1.0625704526901245 img loss 1.1592063903808594 img loss 1.249437689781189 img loss 1.142538070678711 img loss 1.1898112297058105 img loss 1.1633601188659668 img loss 1.076845645904541 img loss 1.1642168760299683 img loss 1.128437876701355 img loss 1.1063565015792847 img loss 1.1407647132873535 img loss 1.1474945545196533 {'loss': 1.1667, 'grad_norm': 0.22679303586483002, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2773258686065674 img loss 1.3579210042953491 img loss 1.1351237297058105 img loss 1.2137774229049683 img loss 1.209755301475525 img loss 1.1879857778549194 img loss 1.213913917541504 img loss 1.2052462100982666 img loss 1.3145530223846436 img loss 1.2238209247589111 img loss 1.2088006734848022 img loss 1.1354225873947144 img loss 1.2392807006835938 img loss 1.159698724746704 img loss 1.163692831993103 img loss 1.1769903898239136 img loss 1.2661492824554443 img loss 1.2302627563476562 img loss 1.2737791538238525 img loss 1.2280279397964478 img loss 1.2260756492614746 img loss 1.1657750606536865 img loss 1.2582954168319702 img loss 1.2643312215805054 img loss 1.1439074277877808 img loss 1.2948863506317139 img loss 1.1963094472885132 img loss 1.1533383131027222 img loss 1.271044135093689 img loss 1.2276531457901 img loss 1.2793240547180176 img loss 1.24835205078125 img loss 1.2488199472427368 img loss 1.2015118598937988 img loss 1.2699718475341797 img loss 1.1609333753585815 img loss 1.2718427181243896 img loss 1.249738097190857 img loss 1.2038183212280273 img loss 1.1658146381378174 img loss 1.207852840423584 img loss 1.1234817504882812 img loss 1.244356393814087 img loss 1.2471297979354858 img loss 1.1813504695892334 img loss 1.1817673444747925 img loss 1.2499165534973145 img loss 1.3252501487731934 img loss 1.1124500036239624 img loss 1.1947659254074097 img loss 1.1813362836837769 img loss 1.2613790035247803 img loss 1.2007707357406616 img loss 1.179400086402893 img loss 1.270698070526123 img loss 1.2656415700912476 img loss 1.1277267932891846 img loss 1.2903879880905151 img loss 1.1962544918060303 img loss 1.1709609031677246 img loss 1.1535595655441284 img loss 1.2802590131759644 img loss 1.1706438064575195 img loss 1.1744513511657715 img loss 1.1433424949645996 img loss 1.1135138273239136 img loss 1.2838588953018188 img loss 1.2594457864761353 img loss 1.3143733739852905 img loss 1.199683427810669 img loss 1.2086105346679688 img loss 1.1664440631866455 img loss 1.1906139850616455 img loss 1.1586452722549438 img loss 1.1866110563278198 img loss 1.222395896911621 img loss 1.2157238721847534 img loss 1.2089817523956299 img loss 1.1574405431747437 img loss 1.1399990320205688 img loss 1.2749624252319336 img loss 1.1981213092803955 img loss 1.120721697807312 img loss 1.2481199502944946 img loss 1.2129005193710327 img loss 1.1992108821868896 img loss 1.2208306789398193 img loss 1.272342562675476 img loss 1.1421951055526733 img loss 1.1993979215621948 img loss 1.214449167251587 img loss 1.1720762252807617 img loss 1.1367584466934204 img loss 1.2325265407562256 img loss 1.2641029357910156 img loss 1.1667304039001465 img loss 1.3230081796646118 img loss 1.2169451713562012 img loss 1.1937569379806519 img loss 1.1662499904632568 img loss 1.1979035139083862 img loss 1.169419288635254 img loss 1.187088966369629 img loss 1.270495891571045 img loss 1.215076208114624 img loss 1.2135571241378784 img loss 1.1712911128997803 img loss 1.1949602365493774 img loss 1.1712044477462769 img loss 1.1834110021591187 img loss 1.1470427513122559 img loss 1.2623366117477417 img loss 1.2014224529266357 img loss 1.0998550653457642 img loss 1.2464706897735596 img loss 1.1483582258224487 img loss 1.250521183013916 img loss 1.1400306224822998 img loss 1.1398887634277344 img loss 1.2200740575790405 img loss 1.1542023420333862 img loss 1.2082849740982056 img loss 1.2006632089614868 img loss 1.188511610031128 img loss 1.209779143333435 img loss 1.2315189838409424 img loss 1.192781925201416 img loss 1.2705934047698975 {'loss': 1.209, 'grad_norm': 0.33375808596611023, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1954009532928467 img loss 1.2216644287109375 img loss 1.23104989528656 img loss 1.2278709411621094 img loss 1.2029147148132324 img loss 1.1837314367294312 img loss 1.2050994634628296 img loss 1.1873890161514282 img loss 1.249834418296814 img loss 1.2108619213104248 img loss 1.2449201345443726 img loss 1.2208256721496582 img loss 1.2215313911437988 img loss 1.2403054237365723 img loss 1.1982887983322144 img loss 1.235916018486023 img loss 1.1763155460357666 img loss 1.1790422201156616 img loss 1.174275279045105 img loss 1.19841730594635 img loss 1.1989978551864624 img loss 1.1761549711227417 img loss 1.175758719444275 img loss 1.249570369720459 img loss 1.171049952507019 img loss 1.2164236307144165 img loss 1.232662558555603 img loss 1.2108967304229736 img loss 1.1941651105880737 img loss 1.1646673679351807 img loss 1.2114776372909546 img loss 1.274104356765747 img loss 1.1959389448165894 img loss 1.2032415866851807 img loss 1.2512472867965698 img loss 1.2007700204849243 img loss 1.1874523162841797 img loss 1.1686973571777344 img loss 1.1506249904632568 img loss 1.234076738357544 img loss 1.1845248937606812 img loss 1.2714582681655884 img loss 1.1994249820709229 img loss 1.256714105606079 img loss 1.2475574016571045 img loss 1.2042433023452759 img loss 1.2663911581039429 img loss 1.2533621788024902 img loss 1.243551254272461 img loss 1.2218140363693237 img loss 1.23203444480896 img loss 1.2305898666381836 img loss 1.2305649518966675 img loss 1.2580788135528564 img loss 1.2217488288879395 img loss 1.2165981531143188 img loss 1.2514989376068115 img loss 1.1875696182250977 img loss 1.2260900735855103 img loss 1.22940194606781 img loss 1.2204574346542358 img loss 1.2275433540344238 img loss 1.1945527791976929 img loss 1.2436285018920898 img loss 1.2712265253067017 img loss 1.2363632917404175 img loss 1.164756178855896 img loss 1.280596375465393 img loss 1.2281372547149658 img loss 1.217258095741272 img loss 1.1929755210876465 img loss 1.2484643459320068 img loss 1.2307164669036865 img loss 1.2292149066925049 img loss 1.237093448638916 img loss 1.2205805778503418 img loss 1.1954760551452637 img loss 1.2270361185073853 img loss 1.184954285621643 img loss 1.164548635482788 img loss 1.2450411319732666 img loss 1.2213985919952393 img loss 1.2677303552627563 img loss 1.190600037574768 img loss 1.0796765089035034 img loss 1.2788276672363281 img loss 1.2181892395019531 img loss 1.1879689693450928 img loss 1.2768268585205078 img loss 1.2049520015716553 img loss 1.2400774955749512 img loss 1.2729811668395996 img loss 1.1764662265777588 img loss 1.2750334739685059 img loss 1.245714545249939 img loss 1.1983349323272705 img loss 1.1614149808883667 img loss 1.2776634693145752 img loss 1.2336177825927734 img loss 1.2263271808624268 img loss 1.2088240385055542 img loss 1.1800068616867065 img loss 1.2564139366149902 img loss 1.2902088165283203 img loss 1.1838161945343018 img loss 1.1983228921890259 img loss 1.1762170791625977 img loss 1.1953907012939453 img loss 1.287475824356079 img loss 1.238433599472046 img loss 1.2346605062484741 img loss 1.3044172525405884 img loss 1.235599160194397 img loss 1.2129082679748535 img loss 1.1633961200714111 img loss 1.2450474500656128 img loss 1.2426581382751465 img loss 1.2029163837432861 img loss 1.2157142162322998 img loss 1.2525572776794434 img loss 1.282135009765625 img loss 1.1932408809661865 img loss 1.2074394226074219 img loss 1.212206482887268 img loss 1.2304675579071045 img loss 1.1849015951156616 img loss 1.2171653509140015 img loss 1.2766749858856201 {'loss': 1.2198, 'grad_norm': 0.23734749853610992, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2449082136154175 img loss 1.2421793937683105 img loss 1.2597510814666748 img loss 1.2768207788467407 img loss 1.1642775535583496 img loss 1.2291227579116821 img loss 1.2365474700927734 img loss 1.1164484024047852 img loss 1.2485604286193848 img loss 1.1804604530334473 img loss 1.2553761005401611 img loss 1.2246860265731812 img loss 1.2262074947357178 img loss 1.3337687253952026 img loss 1.1494706869125366 img loss 1.2037580013275146 img loss 1.2800636291503906 img loss 1.2944352626800537 img loss 1.2956960201263428 img loss 1.2405232191085815 img loss 1.2189881801605225 img loss 1.2587552070617676 img loss 1.2151598930358887 img loss 1.2318906784057617 img loss 1.1784930229187012 img loss 1.130241870880127 img loss 1.2601051330566406 img loss 1.188887596130371 img loss 1.1575368642807007 img loss 1.3047664165496826 img loss 1.1770063638687134 img loss 1.1082381010055542 img loss 1.2989802360534668 img loss 1.208715796470642 img loss 1.2958805561065674 img loss 1.2245129346847534 img loss 1.2851958274841309 img loss 1.095745325088501 img loss 1.1282480955123901 img loss 1.1965998411178589 img loss 1.3074274063110352 img loss 1.235368251800537 img loss 1.2790398597717285 img loss 1.1774687767028809 img loss 1.186295747756958 img loss 1.2171348333358765 img loss 1.1856374740600586 img loss 1.145632266998291 img loss 1.1458775997161865 img loss 1.167650580406189 img loss 1.1833044290542603 img loss 1.1950477361679077 img loss 1.164528727531433 img loss 1.1647922992706299 img loss 1.2837110757827759 img loss 1.344775676727295 img loss 1.1592655181884766 img loss 1.1763919591903687 img loss 1.2442972660064697 img loss 1.1750811338424683 img loss 1.1967171430587769 img loss 1.2899211645126343 img loss 1.19452702999115 img loss 1.251452922821045 img loss 1.3605927228927612 img loss 1.142459750175476 img loss 1.2087417840957642 img loss 1.2192353010177612 img loss 1.2511622905731201 img loss 1.295236587524414 img loss 1.1439590454101562 img loss 1.1930935382843018 img loss 1.2761119604110718 img loss 1.180579662322998 img loss 1.2208576202392578 img loss 1.1573846340179443 img loss 1.2408407926559448 img loss 1.1866810321807861 img loss 1.2178999185562134 img loss 1.1998896598815918 img loss 1.2025765180587769 img loss 1.2564665079116821 img loss 1.1489899158477783 img loss 1.2375913858413696 img loss 1.1917245388031006 img loss 1.2592509984970093 img loss 1.2731672525405884 img loss 1.2961139678955078 img loss 1.2049403190612793 img loss 1.1736624240875244 img loss 1.2355866432189941 img loss 1.2702267169952393 img loss 1.2410014867782593 img loss 1.215268850326538 img loss 1.187242865562439 img loss 1.2557928562164307 img loss 1.2208154201507568 img loss 1.2005250453948975 img loss 1.1635557413101196 img loss 1.2838971614837646 img loss 1.1478861570358276 img loss 1.1665523052215576 img loss 1.209806203842163 img loss 1.2943415641784668 img loss 1.1622337102890015 img loss 1.2312262058258057 img loss 1.2111114263534546 img loss 1.2217241525650024 img loss 1.1882665157318115 img loss 1.3595460653305054 img loss 1.2941267490386963 img loss 1.1988948583602905 img loss 1.2786974906921387 img loss 1.191767930984497 img loss 1.2239233255386353 img loss 1.207327127456665 img loss 1.1996088027954102 img loss 1.2088196277618408 img loss 1.155042052268982 img loss 1.159266710281372 img loss 1.2922104597091675 img loss 1.2073554992675781 img loss 1.1725189685821533 img loss 1.319578766822815 img loss 1.2014808654785156 img loss 1.2458280324935913 img loss 1.147170066833496 img loss 1.1591496467590332 {'loss': 1.2188, 'grad_norm': 0.26087117195129395, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.8201524019241333 img loss 1.6110596656799316 img loss 1.5727832317352295 img loss 1.6840211153030396 img loss 1.6279635429382324 img loss 1.6287598609924316 img loss 1.5702296495437622 img loss 1.6481369733810425 img loss 1.62723708152771 img loss 1.721947431564331 img loss 1.4958453178405762 img loss 1.4938769340515137 img loss 1.7204738855361938 img loss 1.5498318672180176 img loss 1.7132230997085571 img loss 1.6569044589996338 img loss 1.7047141790390015 img loss 1.5836215019226074 img loss 1.6187423467636108 img loss 1.6953455209732056 img loss 1.5255802869796753 img loss 1.636588215827942 img loss 1.7367274761199951 img loss 1.7759733200073242 img loss 1.688461422920227 img loss 1.6240429878234863 img loss 1.6984810829162598 img loss 1.5958830118179321 img loss 1.651313066482544 img loss 1.5990878343582153 img loss 1.592900037765503 img loss 1.6257847547531128 img loss 1.6045597791671753 img loss 1.5678049325942993 img loss 1.6132769584655762 img loss 1.6292644739151 img loss 1.6628590822219849 img loss 1.5468409061431885 img loss 1.6167064905166626 img loss 1.6653389930725098 img loss 1.615057110786438 img loss 1.589867115020752 img loss 1.7882522344589233 img loss 1.6682299375534058 img loss 1.5925830602645874 img loss 1.707417368888855 img loss 1.6337831020355225 img loss 1.5021721124649048 img loss 1.6355146169662476 img loss 1.6196507215499878 img loss 1.5872666835784912 img loss 1.5702226161956787 img loss 1.5629303455352783 img loss 1.6138091087341309 img loss 1.7268339395523071 img loss 1.5785553455352783 img loss 1.5440685749053955 img loss 1.6782525777816772 img loss 1.6333926916122437 img loss 1.5844544172286987 img loss 1.6777794361114502 img loss 1.6323834657669067 img loss 1.5419995784759521 img loss 1.5845972299575806 img loss 1.646145224571228 img loss 1.6417787075042725 img loss 1.5568879842758179 img loss 1.5110520124435425 img loss 1.5610164403915405 img loss 1.5524622201919556 img loss 1.5171781778335571 img loss 1.6172524690628052 img loss 1.4671286344528198 img loss 1.550804853439331 img loss 1.572611927986145 img loss 1.5422265529632568 img loss 1.6853986978530884 img loss 1.5701769590377808 img loss 1.5456979274749756 img loss 1.5719006061553955 img loss 1.4560768604278564 img loss 1.7274901866912842 img loss 1.428558588027954 img loss 1.638035535812378 img loss 1.691266655921936 img loss 1.5693981647491455 img loss 1.5303990840911865 img loss 1.682033896446228 img loss 1.5232913494110107 img loss 1.6121819019317627 img loss 1.539488434791565 img loss 1.5301519632339478 img loss 1.6880654096603394 img loss 1.534544825553894 img loss 1.6289055347442627 img loss 1.5781567096710205 img loss 1.7279502153396606 img loss 1.7178184986114502 img loss 1.5599795579910278 img loss 1.5874806642532349 img loss 1.5143961906433105 img loss 1.7818434238433838 img loss 1.6713584661483765 img loss 1.7732186317443848 img loss 1.5219842195510864 img loss 1.6580201387405396 img loss 1.647584319114685 img loss 1.6188347339630127 img loss 1.6376042366027832 img loss 1.5604757070541382 img loss 1.6401668787002563 img loss 1.6729576587677002 img loss 1.672857642173767 img loss 1.6047635078430176 img loss 1.6246483325958252 img loss 1.5576022863388062 img loss 1.5049183368682861 img loss 1.7904486656188965 img loss 1.4966788291931152 img loss 1.6768927574157715 img loss 1.6639710664749146 img loss 1.6023911237716675 img loss 1.6141568422317505 img loss 1.626959204673767 img loss 1.6178182363510132 img loss 1.6366885900497437 img loss 1.6394531726837158 img loss 1.6140024662017822 {'loss': 1.617, 'grad_norm': 0.7638047337532043, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1415075063705444 img loss 1.216622233390808 img loss 1.2280572652816772 img loss 1.218737006187439 img loss 1.1857229471206665 img loss 1.2071030139923096 img loss 1.235224962234497 img loss 1.179879069328308 img loss 1.2621455192565918 img loss 1.245263695716858 img loss 1.2573049068450928 img loss 1.2844741344451904 img loss 1.2271960973739624 img loss 1.2210909128189087 img loss 1.2172353267669678 img loss 1.1688812971115112 img loss 1.1877398490905762 img loss 1.2113378047943115 img loss 1.1567511558532715 img loss 1.185463547706604 img loss 1.1223548650741577 img loss 1.2488982677459717 img loss 1.2924772500991821 img loss 1.1724649667739868 img loss 1.2425483465194702 img loss 1.2922890186309814 img loss 1.173412561416626 img loss 1.2243163585662842 img loss 1.2343714237213135 img loss 1.2257050275802612 img loss 1.2262111902236938 img loss 1.2577300071716309 img loss 1.1955666542053223 img loss 1.270625352859497 img loss 1.18951416015625 img loss 1.2324246168136597 img loss 1.1949644088745117 img loss 1.2644370794296265 img loss 1.2129690647125244 img loss 1.186543345451355 img loss 1.188807725906372 img loss 1.2301292419433594 img loss 1.281940221786499 img loss 1.24953031539917 img loss 1.1653679609298706 img loss 1.361158847808838 img loss 1.2420172691345215 img loss 1.137255311012268 img loss 1.232501745223999 img loss 1.1940752267837524 img loss 1.2089452743530273 img loss 1.2070249319076538 img loss 1.158633828163147 img loss 1.3372433185577393 img loss 1.19548499584198 img loss 1.1828289031982422 img loss 1.1478277444839478 img loss 1.244470238685608 img loss 1.2873222827911377 img loss 1.2477508783340454 img loss 1.2981507778167725 img loss 1.192102074623108 img loss 1.292954921722412 img loss 1.2211055755615234 img loss 1.2517181634902954 img loss 1.202348232269287 img loss 1.2272281646728516 img loss 1.186049461364746 img loss 1.3424570560455322 img loss 1.1799299716949463 img loss 1.180691123008728 img loss 1.2026857137680054 img loss 1.254644751548767 img loss 1.2347363233566284 img loss 1.2245241403579712 img loss 1.2924991846084595 img loss 1.1856000423431396 img loss 1.1552852392196655 img loss 1.1859511137008667 img loss 1.2045596837997437 img loss 1.2202039957046509 img loss 1.2395998239517212 img loss 1.1450002193450928 img loss 1.276180624961853 img loss 1.237831711769104 img loss 1.232155680656433 img loss 1.271715760231018 img loss 1.1590842008590698 img loss 1.2645518779754639 img loss 1.228623867034912 img loss 1.1910041570663452 img loss 1.1288331747055054 img loss 1.2733293771743774 img loss 1.2131582498550415 img loss 1.1956547498703003 img loss 1.2166740894317627 img loss 1.2789586782455444 img loss 1.2280126810073853 img loss 1.2066253423690796 img loss 1.1769214868545532 img loss 1.2407196760177612 img loss 1.1898138523101807 img loss 1.1779496669769287 img loss 1.2044792175292969 img loss 1.1754727363586426 img loss 1.2096236944198608 img loss 1.2213596105575562 img loss 1.1811856031417847 img loss 1.201684832572937 img loss 1.2566486597061157 img loss 1.0946801900863647 img loss 1.2639660835266113 img loss 1.2186801433563232 img loss 1.258195400238037 img loss 1.1790552139282227 img loss 1.1845922470092773 img loss 1.2239059209823608 img loss 1.25859534740448 img loss 1.2052350044250488 img loss 1.233884572982788 img loss 1.2505519390106201 img loss 1.22130286693573 img loss 1.1799452304840088 img loss 1.2050129175186157 img loss 1.2387226819992065 img loss 1.3367871046066284 img loss 1.1541391611099243 img loss 1.2023446559906006 {'loss': 1.2193, 'grad_norm': 0.23778380453586578, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2361853122711182 img loss 1.1938836574554443 img loss 1.1470695734024048 img loss 1.2201626300811768 img loss 1.223757028579712 img loss 1.2061705589294434 img loss 1.201494574546814 img loss 1.1418144702911377 img loss 1.2218059301376343 img loss 1.2225207090377808 img loss 1.169020414352417 img loss 1.2724097967147827 img loss 1.1681327819824219 img loss 1.2518888711929321 img loss 1.2243196964263916 img loss 1.1809992790222168 img loss 1.174252986907959 img loss 1.221755027770996 img loss 1.2087657451629639 img loss 1.2139537334442139 img loss 1.2295328378677368 img loss 1.149535059928894 img loss 1.216040015220642 img loss 1.1838622093200684 img loss 1.2275161743164062 img loss 1.2029169797897339 img loss 1.2455698251724243 img loss 1.2088487148284912 img loss 1.1336028575897217 img loss 1.2070555686950684 img loss 1.2213788032531738img loss 1.1912635564804077 img loss 1.1465047597885132 img loss 1.1444228887557983 img loss 1.2130244970321655 img loss 1.239246129989624 img loss 1.2694873809814453 img loss 1.2375495433807373 img loss 1.2003607749938965 img loss 1.2138779163360596 img loss 1.2390846014022827 img loss 1.183053731918335 img loss 1.173440933227539 img loss 1.1566425561904907 img loss 1.244488000869751 img loss 1.2242321968078613 img loss 1.2852365970611572 img loss 1.2069847583770752 img loss 1.239370346069336 img loss 1.175103783607483 img loss 1.2082620859146118 img loss 1.2085509300231934 img loss 1.1761295795440674 img loss 1.2342143058776855 img loss 1.2069525718688965 img loss 1.1889679431915283 img loss 1.2530959844589233 img loss 1.2044873237609863 img loss 1.2499504089355469 img loss 1.2219550609588623 img loss 1.1857105493545532 img loss 1.2167361974716187 img loss 1.2694768905639648 img loss 1.1403828859329224 img loss 1.296057939529419 img loss 1.211401343345642 img loss 1.219691276550293 img loss 1.230766773223877 img loss 1.2182068824768066 img loss 1.2146514654159546 img loss 1.2224249839782715 img loss 1.2921100854873657 img loss 1.1964612007141113 img loss 1.2446608543395996 img loss 1.1810775995254517 img loss 1.1151485443115234 img loss 1.186654806137085 img loss 1.2000833749771118 img loss 1.2521839141845703 img loss 1.1942424774169922 img loss 1.2392157316207886 img loss 1.2591971158981323 img loss 1.2677751779556274 img loss 1.3022902011871338 img loss 1.2082726955413818 img loss 1.2148537635803223 img loss 1.1788280010223389 img loss 1.1768872737884521 img loss 1.2485485076904297 img loss 1.1856244802474976 img loss 1.2000887393951416 img loss 1.2288264036178589 img loss 1.2237824201583862 img loss 1.2233545780181885 img loss 1.2253143787384033 img loss 1.2020610570907593 img loss 1.2673403024673462 img loss 1.1927658319473267 img loss 1.166184902191162 img loss 1.1972675323486328 img loss 1.1906967163085938 img loss 1.2150237560272217 img loss 1.1518948078155518 img loss 1.1457669734954834 img loss 1.2410430908203125 img loss 1.1268634796142578 img loss 1.1951301097869873 img loss 1.212584137916565 img loss 1.1861406564712524 img loss 1.2616413831710815 img loss 1.2287317514419556 img loss 1.2865219116210938 img loss 1.1385407447814941 img loss 1.2536187171936035 img loss 1.1534130573272705 img loss 1.1752560138702393 img loss 1.2259891033172607 img loss 1.1648063659667969 img loss 1.255169153213501 img loss 1.2835102081298828 img loss 1.2661223411560059 img loss 1.2006725072860718 img loss 1.2349685430526733 img loss 1.2076826095581055 img loss 1.1995983123779297 img loss 1.243844747543335 img loss 1.226805329322815 img loss 1.207024335861206 {'loss': 1.2112, 'grad_norm': 0.2408927083015442, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2333143949508667 img loss 1.2088663578033447 img loss 1.2698017358779907 img loss 1.1801536083221436 img loss 1.2082264423370361 img loss 1.2057266235351562 img loss 1.2395286560058594 img loss 1.2395853996276855 img loss 1.3052382469177246 img loss 1.160959243774414 img loss 1.226271152496338 img loss 1.2148348093032837 img loss 1.2056745290756226 img loss 1.2108997106552124 img loss 1.2155258655548096 img loss 1.241011619567871 img loss 1.1556211709976196 img loss 1.2714909315109253 img loss 1.17724609375 img loss 1.2087291479110718 img loss 1.2714697122573853 img loss 1.2508125305175781 img loss 1.2500004768371582 img loss 1.2251198291778564 img loss 1.1935157775878906 img loss 1.2430981397628784 img loss 1.2584294080734253 img loss 1.217319130897522 img loss 1.2560361623764038 img loss 1.1858962774276733 img loss 1.1483083963394165 img loss 1.2258051633834839 img loss 1.1983953714370728 img loss 1.2900911569595337 img loss 1.1560027599334717 img loss 1.2248783111572266 img loss 1.2616838216781616 img loss 1.2781881093978882 img loss 1.176990270614624 img loss 1.208960771560669 img loss 1.2672538757324219 img loss 1.2363307476043701 img loss 1.3497586250305176 img loss 1.3000421524047852 img loss 1.1756210327148438 img loss 1.1871403455734253 img loss 1.216601014137268 img loss 1.284501314163208 img loss 1.2116577625274658 img loss 1.2347159385681152 img loss 1.2007273435592651 img loss 1.190731406211853 img loss 1.216188669204712 img loss 1.1831166744232178 img loss 1.1868904829025269 img loss 1.2136435508728027 img loss 1.1954267024993896 img loss 1.2670844793319702 img loss 1.1928651332855225 img loss 1.1889681816101074 img loss 1.201059341430664 img loss 1.2891777753829956 img loss 1.248665690422058 img loss 1.206317663192749 img loss 1.2153764963150024 img loss 1.1992238759994507 img loss 1.2150503396987915 img loss 1.2099112272262573 img loss 1.1950453519821167 img loss 1.1882387399673462 img loss 1.265225887298584 img loss 1.2293121814727783 img loss 1.2291467189788818 img loss 1.3005213737487793 img loss 1.1910841464996338 img loss 1.216376543045044 img loss 1.2239460945129395 img loss 1.1915879249572754 img loss 1.202246904373169 img loss 1.2177644968032837 img loss 1.2591116428375244 img loss 1.2552589178085327 img loss 1.1806797981262207 img loss 1.2318196296691895 img loss 1.2381198406219482 img loss 1.1540086269378662 img loss 1.1961307525634766 img loss 1.2373281717300415 img loss 1.246698260307312 img loss 1.221380591392517 img loss 1.178179144859314 img loss 1.1956812143325806 img loss 1.1954008340835571 img loss 1.2182157039642334 img loss 1.2507356405258179 img loss 1.2877081632614136 img loss 1.2565054893493652 img loss 1.190654993057251 img loss 1.1966934204101562 img loss 1.2284982204437256 img loss 1.2744429111480713 img loss 1.1972808837890625 img loss 1.2491098642349243 img loss 1.210060715675354 img loss 1.2000070810317993 img loss 1.3239418268203735 img loss 1.2878143787384033 img loss 1.2400659322738647 img loss 1.1635184288024902 img loss 1.2385669946670532 img loss 1.2181545495986938 img loss 1.2316442728042603 img loss 1.3158267736434937 img loss 1.1871826648712158 img loss 1.2481179237365723 img loss 1.1773478984832764 img loss 1.2096500396728516 img loss 1.206614375114441 img loss 1.312341332435608 img loss 1.2678062915802002 img loss 1.199562668800354 img loss 1.1554218530654907img loss 1.2058756351470947 img loss 1.2003625631332397 img loss 1.2401179075241089 img loss 1.2632052898406982 img loss 1.2069323062896729 img loss 1.2639909982681274 {'loss': 1.2246, 'grad_norm': 0.2550199627876282, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4713221788406372 img loss 1.5387217998504639 img loss 1.6043065786361694 img loss 1.5217453241348267 img loss 1.483884334564209 img loss 1.5384219884872437 img loss 1.3887896537780762 img loss 1.6291428804397583 img loss 1.4892351627349854 img loss 1.4827862977981567 img loss 1.5278462171554565 img loss 1.659706711769104 img loss 1.544234037399292 img loss 1.743427038192749 img loss 1.665065884590149 img loss 1.6798981428146362 img loss 1.5246204137802124 img loss 1.6629971265792847 img loss 1.515764832496643 img loss 1.5585485696792603 img loss 1.6981309652328491 img loss 1.5453382730484009 img loss 1.4106154441833496 img loss 1.570435881614685 img loss 1.7235851287841797 img loss 1.4718258380889893 img loss 1.6032841205596924 img loss 1.6704117059707642 img loss 1.605580449104309 img loss 1.558350920677185 img loss 1.4469987154006958 img loss 1.563814401626587 img loss 1.620215892791748 img loss 1.5131220817565918 img loss 1.6192480325698853 img loss 1.6298071146011353 img loss 1.5863337516784668 img loss 1.77195143699646 img loss 1.6331161260604858 img loss 1.4560216665267944 img loss 1.4265779256820679 img loss 1.5778086185455322 img loss 1.4271031618118286 img loss 1.7551212310791016 img loss 1.6194510459899902 img loss 1.5200976133346558 img loss 1.5353626012802124 img loss 1.4698926210403442 img loss 1.5006558895111084 img loss 1.6732252836227417 img loss 1.5281065702438354 img loss 1.6580479145050049 img loss 1.417937159538269 img loss 1.5233665704727173 img loss 1.3858970403671265 img loss 1.41520357131958 img loss 1.5840346813201904 img loss 1.443055510520935 img loss 1.541716456413269 img loss 1.5654054880142212 img loss 1.6210286617279053 img loss 1.4130768775939941 img loss 1.6878169775009155 img loss 1.6026874780654907 img loss 1.5094867944717407 img loss 1.6419193744659424 img loss 1.5706446170806885 img loss 1.5119959115982056 img loss 1.5579978227615356 img loss 1.5574395656585693 img loss 1.5921016931533813 img loss 1.7126686573028564 img loss 1.5326244831085205 img loss 1.5798351764678955 img loss 1.4621100425720215 img loss 1.549973726272583 img loss 1.6067637205123901 img loss 1.4011566638946533 img loss 1.531004548072815 img loss 1.3495408296585083 img loss 1.6351828575134277 img loss 1.4514976739883423 img loss 1.5401740074157715 img loss 1.591986894607544 img loss 1.7405142784118652 img loss 1.7739449739456177 img loss 1.6096526384353638 img loss 1.523535966873169 img loss 1.4993237257003784 img loss 1.6471327543258667 img loss 1.4612141847610474 img loss 1.4785888195037842 img loss 1.5374740362167358 img loss 1.5686001777648926 img loss 1.6103341579437256 img loss 1.7436248064041138 img loss 1.6448034048080444 img loss 1.4799960851669312 img loss 1.7130118608474731 img loss 1.4617657661437988 img loss 1.5036934614181519 img loss 1.5449775457382202 img loss 1.4832241535186768 img loss 1.5390228033065796 img loss 1.5008546113967896 img loss 1.5229214429855347 img loss 1.639367938041687 img loss 1.6488372087478638 img loss 1.6161757707595825 img loss 1.5214124917984009 img loss 1.668048620223999 img loss 1.4687590599060059 img loss 1.6663763523101807 img loss 1.752746820449829 img loss 1.5957025289535522 img loss 1.4967987537384033 img loss 1.647580862045288 img loss 1.6750916242599487 img loss 1.5588825941085815 img loss 1.552944540977478 img loss 1.6343436241149902 img loss 1.652350664138794 img loss 1.557971715927124 img loss 1.751339077949524 img loss 1.4682748317718506 img loss 1.6307480335235596 img loss 1.6069804430007935 img loss 1.496160626411438 {'loss': 1.5672, 'grad_norm': 0.25444477796554565, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1750009059906006 img loss 1.3357499837875366 img loss 1.2272526025772095 img loss 1.325539231300354 img loss 1.3258007764816284 img loss 1.2349618673324585 img loss 1.280808925628662 img loss 1.363430142402649 img loss 1.3950952291488647 img loss 1.3456175327301025 img loss 1.2711682319641113 img loss 1.289668321609497 img loss 1.3496488332748413 img loss 1.2189629077911377 img loss 1.292202353477478 img loss 1.2824910879135132 img loss 1.306771993637085 img loss 1.27821683883667 img loss 1.2613070011138916 img loss 1.3031363487243652 img loss 1.2677866220474243 img loss 1.247546672821045 img loss 1.2272967100143433 img loss 1.266425371170044 img loss 1.299448847770691 img loss 1.2713361978530884 img loss 1.292650818824768 img loss 1.2968194484710693 img loss 1.2870413064956665 img loss 1.2850430011749268 img loss 1.3056334257125854 img loss 1.3858071565628052 img loss 1.3195596933364868 img loss 1.2439830303192139img loss 1.3049277067184448 img loss 1.2209224700927734 img loss 1.2259708642959595 img loss 1.2211910486221313 img loss 1.2635977268218994 img loss 1.234458565711975 img loss 1.2182221412658691 img loss 1.2476508617401123 img loss 1.2347933053970337 img loss 1.3080387115478516 img loss 1.2724547386169434 img loss 1.33470618724823 img loss 1.2694441080093384 img loss 1.2961153984069824 img loss 1.2440003156661987 img loss 1.2736790180206299 img loss 1.295514464378357 img loss 1.2872720956802368 img loss 1.2574119567871094 img loss 1.3113840818405151 img loss 1.2748759984970093 img loss 1.3621467351913452 img loss 1.2674497365951538 img loss 1.2553250789642334 img loss 1.3032726049423218 img loss 1.2530324459075928 img loss 1.2722058296203613 img loss 1.3693917989730835 img loss 1.295488953590393 img loss 1.1621016263961792 img loss 1.303550362586975 img loss 1.2216835021972656 img loss 1.2448641061782837 img loss 1.1998875141143799 img loss 1.3004611730575562 img loss 1.2617993354797363 img loss 1.2945040464401245 img loss 1.2246689796447754 img loss 1.2319881916046143 img loss 1.286454200744629 img loss 1.1784570217132568 img loss 1.2212034463882446 img loss 1.3328064680099487 img loss 1.3467367887496948 img loss 1.2877699136734009 img loss 1.2940647602081299 img loss 1.2906537055969238 img loss 1.3444474935531616 img loss 1.4207260608673096 img loss 1.2056653499603271 img loss 1.2959647178649902 img loss 1.2968729734420776 img loss 1.2998311519622803 img loss 1.2524161338806152 img loss 1.2760844230651855 img loss 1.2242825031280518 img loss 1.302943229675293 img loss 1.2189064025878906 img loss 1.3243746757507324 img loss 1.2294448614120483 img loss 1.3011376857757568 img loss 1.3909852504730225 img loss 1.2529715299606323 img loss 1.2944046258926392 img loss 1.3180683851242065 img loss 1.2428712844848633 img loss 1.2355148792266846 img loss 1.303961992263794 img loss 1.2799642086029053 img loss 1.2415508031845093 img loss 1.2927401065826416 img loss 1.2452796697616577 img loss 1.221845269203186 img loss 1.2040894031524658 img loss 1.2738316059112549 img loss 1.2325626611709595 img loss 1.2846018075942993 img loss 1.288530945777893 img loss 1.2830418348312378 img loss 1.275227427482605 img loss 1.2722443342208862 img loss 1.2563848495483398 img loss 1.3824670314788818 img loss 1.2793022394180298 img loss 1.2879843711853027 img loss 1.341249704360962 img loss 1.2410061359405518 img loss 1.2048413753509521 img loss 1.2898228168487549 img loss 1.2702559232711792 img loss 1.2536190748214722 img loss 1.3321946859359741 img loss 1.3573434352874756 img loss 1.2971093654632568 {'loss': 1.2792, 'grad_norm': 0.2634894847869873, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.282604694366455 img loss 1.3003908395767212 img loss 1.2928128242492676 img loss 1.3764373064041138 img loss 1.3119761943817139 img loss 1.3582074642181396 img loss 1.3469499349594116 img loss 1.42753005027771 img loss 1.2644928693771362 img loss 1.401811957359314 img loss 1.4112837314605713 img loss 1.3140226602554321 img loss 1.3446221351623535 img loss 1.3798757791519165 img loss 1.369148850440979 img loss 1.3619474172592163 img loss 1.292670488357544 img loss 1.3168425559997559 img loss 1.4085441827774048 img loss 1.2626978158950806 img loss 1.3236851692199707 img loss 1.3555207252502441 img loss 1.3311076164245605 img loss 1.3994187116622925 img loss 1.282427430152893 img loss 1.3230512142181396 img loss 1.288590669631958 img loss 1.3930237293243408 img loss 1.4527003765106201 img loss 1.372933030128479 img loss 1.421789288520813 img loss 1.3660523891448975 img loss 1.3142180442810059 img loss 1.289936900138855 img loss 1.3077493906021118 img loss 1.3165956735610962 img loss 1.2987723350524902 img loss 1.4495465755462646 img loss 1.2602204084396362 img loss 1.5192829370498657 img loss 1.3992005586624146 img loss 1.3783539533615112 img loss 1.3755853176116943 img loss 1.3363473415374756 img loss 1.3007900714874268 img loss 1.350402593612671 img loss 1.3451210260391235 img loss 1.3188995122909546 img loss 1.3510053157806396 img loss 1.3431884050369263 img loss 1.3651875257492065 img loss 1.3091826438903809 img loss 1.3344619274139404 img loss 1.3122875690460205 img loss 1.4180008172988892 img loss 1.423387050628662 img loss 1.2735906839370728 img loss 1.347172498703003 img loss 1.4153311252593994 img loss 1.310092806816101 img loss 1.3254215717315674 img loss 1.2710237503051758 img loss 1.3565679788589478 img loss 1.2942131757736206 img loss 1.2609888315200806 img loss 1.2485153675079346 img loss 1.2938568592071533 img loss 1.439370036125183 img loss 1.4203407764434814 img loss 1.2360557317733765 img loss 1.3741434812545776 img loss 1.3536527156829834 img loss 1.348192572593689 img loss 1.2749494314193726 img loss 1.3346095085144043 img loss 1.433750867843628 img loss 1.317739486694336 img loss 1.3346518278121948 img loss 1.2517588138580322 img loss 1.3669341802597046 img loss 1.3487876653671265 img loss 1.3904244899749756 img loss 1.3702771663665771 img loss 1.2591397762298584 img loss 1.4579874277114868 img loss 1.3611905574798584 img loss 1.3046973943710327 img loss 1.3532415628433228 img loss 1.313393235206604 img loss 1.3259702920913696 img loss 1.3589197397232056 img loss 1.3381065130233765 img loss 1.4335066080093384 img loss 1.4076062440872192 img loss 1.240666389465332 img loss 1.3529750108718872 img loss 1.366422414779663 img loss 1.347501277923584 img loss 1.4582445621490479 img loss 1.2615141868591309 img loss 1.2299973964691162 img loss 1.3913065195083618 img loss 1.3696799278259277 img loss 1.4115815162658691 img loss 1.253527045249939 img loss 1.4724243879318237 img loss 1.3286097049713135 img loss 1.3186123371124268 img loss 1.3533273935317993 img loss 1.3417437076568604 img loss 1.2809274196624756 img loss 1.3251384496688843 img loss 1.352170467376709 img loss 1.2479733228683472 img loss 1.3107960224151611 img loss 1.43175208568573 img loss 1.3961613178253174 img loss 1.3892247676849365 img loss 1.3605436086654663 img loss 1.275948166847229 img loss 1.3488372564315796 img loss 1.3940221071243286 img loss 1.327776312828064 img loss 1.3745548725128174 img loss 1.3550115823745728 img loss 1.3429763317108154 img loss 1.2878742218017578 img loss 1.4201103448867798 {'loss': 1.3451, 'grad_norm': 0.2777530252933502, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4696656465530396 img loss 1.3463884592056274 img loss 1.4598534107208252 img loss 1.3516167402267456 img loss 1.476969599723816 img loss 1.5372804403305054 img loss 1.4215377569198608 img loss 1.4932548999786377 img loss 1.4580662250518799 img loss 1.7056373357772827 img loss 1.378894329071045 img loss 1.4654948711395264 img loss 1.419593095779419 img loss 1.4203041791915894 img loss 1.4300256967544556 img loss 1.4772875308990479 img loss 1.4453990459442139 img loss 1.3115601539611816 img loss 1.4807813167572021 img loss 1.5521266460418701 img loss 1.3742139339447021 img loss 1.5728126764297485 img loss 1.498935341835022 img loss 1.4940670728683472 img loss 1.4481581449508667 img loss 1.5726834535598755 img loss 1.3688300848007202 img loss 1.3867772817611694 img loss 1.3989163637161255 img loss 1.393906831741333 img loss 1.3438866138458252 img loss 1.5479952096939087 img loss 1.4722667932510376 img loss 1.4526623487472534 img loss 1.454012155532837 img loss 1.4426484107971191 img loss 1.4018609523773193 img loss 1.3840125799179077 img loss 1.4575694799423218 img loss 1.5345518589019775 img loss 1.3686124086380005 img loss 1.4661166667938232 img loss 1.3316364288330078 img loss 1.5332586765289307 img loss 1.5257381200790405 img loss 1.298653483390808 img loss 1.4209438562393188 img loss 1.4413117170333862 img loss 1.4272040128707886 img loss 1.3727518320083618 img loss 1.4530166387557983 img loss 1.3604700565338135 img loss 1.3875153064727783 img loss 1.3960340023040771 img loss 1.4132448434829712 img loss 1.498307704925537 img loss 1.3534973859786987 img loss 1.5201716423034668 img loss 1.4127434492111206 img loss 1.3648369312286377 img loss 1.5398637056350708 img loss 1.5730969905853271 img loss 1.573241949081421 img loss 1.4512120485305786 img loss 1.4763624668121338 img loss 1.605739712715149 img loss 1.3656021356582642 img loss 1.4390455484390259 img loss 1.3135242462158203 img loss 1.4705853462219238 img loss 1.3909070491790771 img loss 1.3564517498016357 img loss 1.4682549238204956 img loss 1.418580412864685 img loss 1.405280351638794 img loss 1.4547334909439087 img loss 1.5153025388717651 img loss 1.394295334815979 img loss 1.3868377208709717img loss 1.4963438510894775 img loss 1.439828634262085 img loss 1.5549873113632202 img loss 1.4361509084701538 img loss 1.5068944692611694 img loss 1.4399856328964233 img loss 1.4016788005828857 img loss 1.4477883577346802 img loss 1.4381412267684937 img loss 1.5016614198684692 img loss 1.4637815952301025 img loss 1.54799222946167 img loss 1.378564476966858 img loss 1.4354311227798462 img loss 1.3232754468917847 img loss 1.4388583898544312 img loss 1.365760087966919 img loss 1.4527223110198975 img loss 1.2988723516464233 img loss 1.461375117301941 img loss 1.437028169631958 img loss 1.4779466390609741 img loss 1.4800432920455933 img loss 1.4485507011413574 img loss 1.2566964626312256 img loss 1.3498135805130005 img loss 1.465515375137329 img loss 1.4465219974517822 img loss 1.3263814449310303 img loss 1.3653093576431274 img loss 1.4915260076522827 img loss 1.4444550275802612 img loss 1.4130908250808716 img loss 1.3814671039581299 img loss 1.5084973573684692 img loss 1.4293029308319092 img loss 1.4630588293075562 img loss 1.5346273183822632 img loss 1.4902909994125366 img loss 1.5884937047958374 img loss 1.4307057857513428 img loss 1.4875231981277466 img loss 1.3622183799743652 img loss 1.5078741312026978 img loss 1.4417482614517212 img loss 1.4370559453964233 img loss 1.5341761112213135 img loss 1.4380725622177124 img loss 1.4492210149765015 {'loss': 1.4435, 'grad_norm': 0.22638846933841705, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4027596712112427 img loss 1.5474753379821777 img loss 1.4354298114776611 img loss 1.478696346282959 img loss 1.4509254693984985 img loss 1.4956963062286377 img loss 1.556140422821045 img loss 1.3978005647659302 img loss 1.586924433708191 img loss 1.3930631875991821 img loss 1.603931188583374 img loss 1.5308183431625366 img loss 1.489324927330017 img loss 1.4853307008743286 img loss 1.5729997158050537 img loss 1.4820399284362793 img loss 1.5372487306594849 img loss 1.4724904298782349 img loss 1.522663950920105 img loss 1.3701326847076416 img loss 1.6821409463882446 img loss 1.5787454843521118 img loss 1.555737853050232 img loss 1.5699641704559326 img loss 1.3318887948989868 img loss 1.4831119775772095 img loss 1.5838338136672974 img loss 1.474668025970459 img loss 1.4737565517425537 img loss 1.4485856294631958 img loss 1.5289359092712402 img loss 1.513160228729248 img loss 1.4945627450942993 img loss 1.72770094871521 img loss 1.6336815357208252 img loss 1.4657083749771118 img loss 1.4707468748092651 img loss 1.624021291732788 img loss 1.471158742904663 img loss 1.4994165897369385 img loss 1.5445014238357544 img loss 1.595471739768982 img loss 1.5358721017837524 img loss 1.4515329599380493 img loss 1.4679239988327026 img loss 1.4550731182098389 img loss 1.4842164516448975 img loss 1.6702791452407837 img loss 1.5681910514831543 img loss 1.5752694606781006 img loss 1.3633878231048584 img loss 1.48055100440979 img loss 1.3929961919784546 img loss 1.4607138633728027 img loss 1.470348834991455 img loss 1.5381547212600708 img loss 1.5427603721618652 img loss 1.5499699115753174 img loss 1.5495326519012451 img loss 1.5058245658874512 img loss 1.5302271842956543 img loss 1.5691684484481812 img loss 1.5359939336776733 img loss 1.470342755317688 img loss 1.458492398262024 img loss 1.526045322418213 img loss 1.518011450767517 img loss 1.6017796993255615 img loss 1.6386741399765015 img loss 1.5598746538162231 img loss 1.3673614263534546 img loss 1.4590885639190674 img loss 1.4743677377700806 img loss 1.500597357749939 img loss 1.5649572610855103 img loss 1.519843578338623 img loss 1.6003693342208862 img loss 1.6399128437042236 img loss 1.541564702987671 img loss 1.5515172481536865 img loss 1.431718349456787 img loss 1.567124843597412 img loss 1.4534984827041626 img loss 1.6083871126174927 img loss 1.5838836431503296 img loss 1.4962540864944458 img loss 1.6734503507614136 img loss 1.5315290689468384 img loss 1.508500576019287 img loss 1.5478349924087524 img loss 1.585242509841919 img loss 1.4970414638519287 img loss 1.4522062540054321 img loss 1.3118759393692017 img loss 1.583105206489563 img loss 1.5299773216247559 img loss 1.5326488018035889 img loss 1.5594723224639893 img loss 1.469611406326294 img loss 1.3935389518737793 img loss 1.5554412603378296 img loss 1.3758777379989624 img loss 1.5135823488235474 img loss 1.4173229932785034 img loss 1.562048077583313 img loss 1.4750789403915405 img loss 1.5707725286483765 img loss 1.5992085933685303 img loss 1.369789481163025 img loss 1.4483163356781006 img loss 1.404905915260315 img loss 1.6400959491729736 img loss 1.7413873672485352 img loss 1.5426424741744995 img loss 1.5656899213790894 img loss 1.4492394924163818 img loss 1.570451021194458 img loss 1.500996708869934 img loss 1.5852247476577759 img loss 1.352392554283142 img loss 1.4335278272628784 img loss 1.5433906316757202 img loss 1.4243630170822144 img loss 1.4738184213638306 img loss 1.6064118146896362 img loss 1.5566229820251465 img loss 1.5464848279953003 img loss 1.4274704456329346 {'loss': 1.5142, 'grad_norm': 0.27498626708984375, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4200818538665771 img loss 1.415658712387085 img loss 1.3667986392974854 img loss 1.4413645267486572 img loss 1.350831389427185 img loss 1.4014947414398193 img loss 1.466834306716919 img loss 1.4226927757263184 img loss 1.5458775758743286 img loss 1.5059592723846436 img loss 1.501971960067749 img loss 1.4234747886657715 img loss 1.4424011707305908 img loss 1.3989653587341309 img loss 1.4031966924667358 img loss 1.3985817432403564 img loss 1.467254400253296 img loss 1.4146181344985962 img loss 1.3439135551452637 img loss 1.5835727453231812 img loss 1.4938265085220337 img loss 1.4907020330429077 img loss 1.3752682209014893 img loss 1.377631425857544 img loss 1.3992329835891724 img loss 1.48125159740448 img loss 1.573838710784912 img loss 1.3549628257751465 img loss 1.399200201034546 img loss 1.560185194015503 img loss 1.4103020429611206 img loss 1.4672322273254395 img loss 1.3430408239364624 img loss 1.480385422706604 img loss 1.436734914779663 img loss 1.392078161239624 img loss 1.4186981916427612 img loss 1.3878484964370728 img loss 1.478819727897644 img loss 1.5366426706314087 img loss 1.4156211614608765 img loss 1.6213480234146118 img loss 1.555396556854248 img loss 1.3512104749679565 img loss 1.4179377555847168 img loss 1.3567463159561157 img loss 1.3612711429595947 img loss 1.4706482887268066 img loss 1.4693405628204346 img loss 1.3638298511505127 img loss 1.4750416278839111 img loss 1.3205807209014893 img loss 1.654930830001831 img loss 1.4634623527526855 img loss 1.4945273399353027 img loss 1.5269877910614014 img loss 1.4243042469024658 img loss 1.4529365301132202 img loss 1.3026288747787476 img loss 1.3991702795028687 img loss 1.460487723350525 img loss 1.395922064781189 img loss 1.5653889179229736 img loss 1.542526364326477 img loss 1.3710776567459106 img loss 1.382821798324585 img loss 1.3573123216629028 img loss 1.558738112449646 img loss 1.4767909049987793 img loss 1.4160364866256714 img loss 1.557716727256775 img loss 1.3562581539154053 img loss 1.4157042503356934 img loss 1.4136239290237427 img loss 1.3219504356384277img loss 1.5448716878890991 img loss 1.5118027925491333 img loss 1.50446355342865 img loss 1.4632145166397095 img loss 1.5522319078445435 img loss 1.3544200658798218 img loss 1.515350580215454 img loss 1.4273959398269653 img loss 1.4617382287979126 img loss 1.2946630716323853 img loss 1.4215394258499146 img loss 1.408446192741394 img loss 1.3853288888931274 img loss 1.5137447118759155 img loss 1.4349006414413452 img loss 1.4604249000549316 img loss 1.416143536567688 img loss 1.4659603834152222 img loss 1.4612399339675903 img loss 1.380246877670288 img loss 1.395534873008728 img loss 1.3774880170822144 img loss 1.4751149415969849 img loss 1.473077416419983 img loss 1.4227734804153442 img loss 1.4130162000656128 img loss 1.4719289541244507 img loss 1.506719946861267 img loss 1.3439505100250244 img loss 1.4975591897964478 img loss 1.4328750371932983 img loss 1.483622431755066 img loss 1.4490426778793335 img loss 1.4959875345230103 img loss 1.4620535373687744 img loss 1.4400954246520996 img loss 1.5154802799224854 img loss 1.331991195678711 img loss 1.2655043601989746 img loss 1.4729667901992798 img loss 1.3525220155715942 img loss 1.488946557044983 img loss 1.5009169578552246 img loss 1.2989362478256226 img loss 1.5430548191070557 img loss 1.399391770362854 img loss 1.3942877054214478 img loss 1.3585766553878784 img loss 1.5702831745147705 img loss 1.6064116954803467 img loss 1.3997313976287842 img loss 1.393073558807373 img loss 1.3984848260879517 {'loss': 1.4412, 'grad_norm': 0.3119574189186096, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.367520809173584 img loss 1.3620823621749878 img loss 1.4032939672470093 img loss 1.499866008758545 img loss 1.4155086278915405 img loss 1.4847275018692017 img loss 1.4888347387313843 img loss 1.4568382501602173 img loss 1.5001609325408936 img loss 1.4943251609802246 img loss 1.5532838106155396 img loss 1.4947552680969238 img loss 1.3563406467437744 img loss 1.4072140455245972 img loss 1.5124009847640991 img loss 1.4399654865264893 img loss 1.5853313207626343 img loss 1.4416013956069946 img loss 1.5598442554473877 img loss 1.2903560400009155 img loss 1.4868136644363403 img loss 1.4769675731658936 img loss 1.3135766983032227 img loss 1.3871933221817017 img loss 1.5362107753753662 img loss 1.4569275379180908 img loss 1.4180426597595215 img loss 1.484940767288208 img loss 1.4550201892852783 img loss 1.4029639959335327 img loss 1.4311518669128418 img loss 1.4433600902557373 img loss 1.3983596563339233 img loss 1.3092248439788818 img loss 1.4737821817398071 img loss 1.5540897846221924 img loss 1.4226597547531128 img loss 1.4561086893081665 img loss 1.4699429273605347 img loss 1.6073203086853027 img loss 1.488628625869751 img loss 1.4382809400558472 img loss 1.4679780006408691 img loss 1.334065556526184 img loss 1.385088562965393 img loss 1.3860764503479004 img loss 1.3714619874954224 img loss 1.4150470495224 img loss 1.3765794038772583 img loss 1.4703696966171265 img loss 1.5194885730743408 img loss 1.3067524433135986 img loss 1.4375206232070923 img loss 1.48194420337677 img loss 1.390712857246399 img loss 1.5050959587097168 img loss 1.4217628240585327 img loss 1.5809823274612427 img loss 1.3975988626480103 img loss 1.469180703163147 img loss 1.4556937217712402 img loss 1.4602726697921753 img loss 1.4875578880310059 img loss 1.4890687465667725 img loss 1.3237454891204834 img loss 1.4105154275894165 img loss 1.3130738735198975 img loss 1.3173835277557373 img loss 1.539575457572937 img loss 1.327982783317566 img loss 1.4161897897720337 img loss 1.4079383611679077 img loss 1.4013525247573853 img loss 1.2413581609725952 img loss 1.478926181793213 img loss 1.4825043678283691 img loss 1.4079869985580444 img loss 1.3978396654129028 img loss 1.6038777828216553 img loss 1.3023802042007446 img loss 1.3490604162216187 img loss 1.5940150022506714 img loss 1.5071948766708374 img loss 1.4690492153167725 img loss 1.5139119625091553 img loss 1.3187211751937866 img loss 1.3878263235092163 img loss 1.5102918148040771 img loss 1.445939540863037 img loss 1.4602917432785034 img loss 1.4943270683288574 img loss 1.3986375331878662 img loss 1.4395042657852173 img loss 1.5246737003326416 img loss 1.5246680974960327 img loss 1.5537612438201904 img loss 1.3225903511047363 img loss 1.5054208040237427 img loss 1.4824222326278687 img loss 1.4864182472229004 img loss 1.458940029144287 img loss 1.5661060810089111 img loss 1.4658626317977905 img loss 1.3604817390441895 img loss 1.378731608390808 img loss 1.3252266645431519 img loss 1.5038031339645386 img loss 1.5193639993667603 img loss 1.5121651887893677 img loss 1.4083926677703857 img loss 1.3710110187530518 img loss 1.5141993761062622 img loss 1.516776442527771 img loss 1.4982048273086548 img loss 1.477475643157959 img loss 1.4392485618591309 img loss 1.4577833414077759 img loss 1.4483414888381958 img loss 1.4511626958847046 img loss 1.4423776865005493 img loss 1.5093016624450684 img loss 1.609209656715393 img loss 1.380459189414978 img loss 1.4856549501419067 img loss 1.533962368965149 img loss 1.5287305116653442 img loss 1.3639994859695435 img loss 1.601476788520813 {'loss': 1.4486, 'grad_norm': 0.4031997323036194, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1405977010726929 img loss 1.1981792449951172 img loss 1.1934112310409546 img loss 1.1431388854980469 img loss 1.182115077972412 img loss 1.154447317123413 img loss 1.1713881492614746 img loss 1.2502233982086182 img loss 1.1570603847503662 img loss 1.1480883359909058 img loss 1.1785770654678345 img loss 1.245389461517334 img loss 1.1647781133651733 img loss 1.1740946769714355 img loss 1.1383357048034668 img loss 1.218275547027588 img loss 1.1701772212982178 img loss 1.2135368585586548 img loss 1.1796226501464844 img loss 1.246659517288208 img loss 1.1439825296401978 img loss 1.1003601551055908 img loss 1.2428607940673828 img loss 1.155386209487915 img loss 1.2060798406600952 img loss 1.2532954216003418 img loss 1.2319135665893555 img loss 1.1480441093444824 img loss 1.1905163526535034 img loss 1.309039831161499 img loss 1.2160348892211914 img loss 1.249187707901001 img loss 1.2460041046142578 img loss 1.2150137424468994 img loss 1.1309893131256104 img loss 1.1440012454986572 img loss 1.1639950275421143 img loss 1.2128711938858032 img loss 1.1519787311553955 img loss 1.178072452545166 img loss 1.164599895477295 img loss 1.1791976690292358 img loss 1.1790159940719604 img loss 1.199652910232544 img loss 1.2040561437606812 img loss 1.2162442207336426 img loss 1.1750197410583496 img loss 1.2098402976989746 img loss 1.1926716566085815 img loss 1.1937557458877563 img loss 1.1932235956192017 img loss 1.2008147239685059 img loss 1.1305471658706665 img loss 1.2147045135498047 img loss 1.2150486707687378 img loss 1.3204597234725952 img loss 1.243675708770752 img loss 1.231485366821289 img loss 1.2151793241500854 img loss 1.1519054174423218 img loss 1.1565765142440796 img loss 1.1461446285247803 img loss 1.212135910987854 img loss 1.228693962097168 img loss 1.1332651376724243 img loss 1.1230332851409912 img loss 1.25466787815094 img loss 1.1627544164657593 img loss 1.2198848724365234 img loss 1.2319608926773071 img loss 1.148759365081787 img loss 1.220445990562439 img loss 1.2037605047225952 img loss 1.2159662246704102 img loss 1.158607006072998 img loss 1.2332839965820312 img loss 1.2084190845489502 img loss 1.1550127267837524 img loss 1.1758705377578735 img loss 1.170356035232544 img loss 1.2412134408950806 img loss 1.172646403312683 img loss 1.2010421752929688 img loss 1.2242774963378906 img loss 1.173235535621643 img loss 1.1820732355117798 img loss 1.2401279211044312 img loss 1.2292346954345703 img loss 1.155799388885498 img loss 1.2164208889007568 img loss 1.157631754875183 img loss 1.1051828861236572 img loss 1.1539597511291504 img loss 1.2839590311050415 img loss 1.151052474975586 img loss 1.276460886001587 img loss 1.25270414352417 img loss 1.2211151123046875 img loss 1.1252985000610352 img loss 1.2124547958374023 img loss 1.1884510517120361 img loss 1.2387003898620605 img loss 1.1108729839324951 img loss 1.287392497062683 img loss 1.2246471643447876 img loss 1.2314404249191284 img loss 1.2649086713790894 img loss 1.1591681241989136 img loss 1.1373242139816284 img loss 1.1790733337402344 img loss 1.1243394613265991 img loss 1.1291892528533936 img loss 1.161889672279358 img loss 1.196541666984558 img loss 1.1424134969711304 img loss 1.2120206356048584 img loss 1.1923452615737915 img loss 1.167235016822815 img loss 1.2155898809432983 img loss 1.2570208311080933 img loss 1.2425251007080078img loss 1.2473828792572021 img loss 1.309780478477478 img loss 1.17275869846344 img loss 1.1738035678863525 img loss 1.2003662586212158 img loss 1.2046726942062378 img loss 1.221379280090332 {'loss': 1.1947, 'grad_norm': 0.24564629793167114, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2991598844528198 img loss 1.342096209526062 img loss 1.2880061864852905 img loss 1.3628287315368652 img loss 1.302457332611084 img loss 1.1915355920791626 img loss 1.3051261901855469 img loss 1.3226574659347534 img loss 1.3135342597961426 img loss 1.3025654554367065 img loss 1.2491918802261353 img loss 1.3026175498962402 img loss 1.3516173362731934 img loss 1.239460825920105 img loss 1.3514817953109741 img loss 1.303210973739624 img loss 1.2787193059921265 img loss 1.2796382904052734 img loss 1.189239501953125 img loss 1.3016551733016968 img loss 1.3248283863067627 img loss 1.408322811126709 img loss 1.2491639852523804 img loss 1.2820014953613281 img loss 1.269004225730896 img loss 1.316713809967041 img loss 1.222043514251709 img loss 1.2422294616699219 img loss 1.3055881261825562 img loss 1.3522347211837769 img loss 1.2115659713745117 img loss 1.2656149864196777 img loss 1.314653754234314 img loss 1.1947087049484253 img loss 1.2643382549285889 img loss 1.2414757013320923 img loss 1.188178300857544 img loss 1.2536025047302246 img loss 1.2151157855987549 img loss 1.2089775800704956 img loss 1.295214056968689 img loss 1.268296241760254 img loss 1.304011583328247 img loss 1.2861782312393188 img loss 1.1894397735595703 img loss 1.27742600440979 img loss 1.320523977279663 img loss 1.15388822555542 img loss 1.297412633895874 img loss 1.3067020177841187 img loss 1.3846564292907715 img loss 1.4178024530410767 img loss 1.2840819358825684 img loss 1.299035668373108 img loss 1.2957210540771484 img loss 1.2973992824554443 img loss 1.2106029987335205 img loss 1.3191509246826172 img loss 1.2784950733184814 img loss 1.3330180644989014 img loss 1.274601936340332 img loss 1.3081176280975342 img loss 1.383285641670227 img loss 1.272448182106018 img loss 1.2152265310287476 img loss 1.282145380973816 img loss 1.2850650548934937 img loss 1.3125627040863037 img loss 1.2714881896972656 img loss 1.3216490745544434 img loss 1.2435617446899414 img loss 1.2436469793319702 img loss 1.3242803812026978 img loss 1.366573452949524 img loss 1.3196758031845093 img loss 1.3064453601837158 img loss 1.2607406377792358 img loss 1.2031238079071045 img loss 1.2377960681915283 img loss 1.242021918296814 img loss 1.3915257453918457 img loss 1.2761163711547852 img loss 1.2809761762619019 img loss 1.2965625524520874 img loss 1.3715113401412964 img loss 1.1735053062438965img loss 1.2421503067016602 img loss 1.2943148612976074 img loss 1.243749976158142 img loss 1.4159358739852905 img loss 1.181268572807312 img loss 1.3178420066833496 img loss 1.2891919612884521 img loss 1.1705255508422852 img loss 1.3352848291397095 img loss 1.2633569240570068 img loss 1.3021982908248901 img loss 1.3084739446640015 img loss 1.2187228202819824 img loss 1.270451307296753 img loss 1.271959662437439 img loss 1.3034749031066895 img loss 1.2179450988769531 img loss 1.2714096307754517 img loss 1.2307887077331543 img loss 1.2738407850265503 img loss 1.3063591718673706 img loss 1.2983382940292358 img loss 1.2423502206802368 img loss 1.2503526210784912 img loss 1.238917589187622 img loss 1.3328415155410767 img loss 1.2980660200119019 img loss 1.3108891248703003 img loss 1.2527660131454468 img loss 1.3510758876800537 img loss 1.2445179224014282 img loss 1.2834601402282715 img loss 1.2513996362686157 img loss 1.282923936843872 img loss 1.2181293964385986 img loss 1.2779690027236938 img loss 1.1690003871917725 img loss 1.2468303442001343 img loss 1.269721508026123 img loss 1.30928635597229 img loss 1.2674064636230469 img loss 1.2008514404296875 {'loss': 1.2798, 'grad_norm': 0.26880133152008057, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2619670629501343 img loss 1.2813996076583862 img loss 1.2024236917495728 img loss 1.241014838218689 img loss 1.223458170890808 img loss 1.2601898908615112 img loss 1.2249274253845215 img loss 1.2444510459899902 img loss 1.1880711317062378 img loss 1.3022953271865845 img loss 1.2147693634033203 img loss 1.2487354278564453 img loss 1.2415165901184082 img loss 1.2017340660095215 img loss 1.2386099100112915 img loss 1.2406628131866455 img loss 1.2340445518493652 img loss 1.1867237091064453 img loss 1.2020370960235596 img loss 1.2548264265060425 img loss 1.2886357307434082 img loss 1.241987705230713 img loss 1.2344551086425781 img loss 1.2743949890136719 img loss 1.1857428550720215 img loss 1.185605525970459 img loss 1.1782524585723877 img loss 1.2000155448913574 img loss 1.2249798774719238 img loss 1.2514081001281738 img loss 1.1643842458724976 img loss 1.1757783889770508 img loss 1.3211520910263062 img loss 1.2763675451278687 img loss 1.2745418548583984 img loss 1.2269203662872314 img loss 1.3118702173233032 img loss 1.3745779991149902 img loss 1.2714046239852905 img loss 1.2550052404403687 img loss 1.2092537879943848 img loss 1.208980917930603 img loss 1.1738653182983398 img loss 1.308895468711853 img loss 1.263454794883728 img loss 1.2026408910751343 img loss 1.2915483713150024 img loss 1.213421106338501 img loss 1.22298002243042 img loss 1.2294888496398926 img loss 1.2972638607025146 img loss 1.2541537284851074 img loss 1.2269837856292725 img loss 1.2194753885269165 img loss 1.2684963941574097 img loss 1.2151768207550049 img loss 1.2435988187789917 img loss 1.2454521656036377 img loss 1.2170418500900269 img loss 1.2896581888198853 img loss 1.1966161727905273 img loss 1.3367407321929932 img loss 1.1721854209899902 img loss 1.2579292058944702 img loss 1.2217133045196533 img loss 1.194945216178894 img loss 1.1916006803512573 img loss 1.2557661533355713 img loss 1.2489556074142456 img loss 1.2181230783462524 img loss 1.2670354843139648 img loss 1.2239824533462524 img loss 1.2297470569610596 img loss 1.250019907951355 img loss 1.2939094305038452 img loss 1.2733486890792847 img loss 1.2441668510437012 img loss 1.2698653936386108 img loss 1.2736862897872925 img loss 1.2112458944320679 img loss 1.2143056392669678 img loss 1.307383418083191 img loss 1.2556560039520264 img loss 1.2532951831817627 img loss 1.185675024986267 img loss 1.2475229501724243 img loss 1.221592903137207 img loss 1.2167614698410034 img loss 1.285757064819336 img loss 1.2790759801864624 img loss 1.2399581670761108 img loss 1.240661382675171 img loss 1.2765064239501953 img loss 1.2737319469451904 img loss 1.3199719190597534 img loss 1.2727646827697754 img loss 1.2581430673599243 img loss 1.2344316244125366 img loss 1.3004544973373413 img loss 1.191697359085083 img loss 1.2233279943466187 img loss 1.22584867477417 img loss 1.2633942365646362 img loss 1.300655722618103 img loss 1.2700245380401611 img loss 1.2015552520751953 img loss 1.2279928922653198 img loss 1.2309587001800537 img loss 1.2672001123428345 img loss 1.1893303394317627 img loss 1.217883586883545 img loss 1.2499992847442627 img loss 1.2177720069885254 img loss 1.3071553707122803 img loss 1.2972757816314697 img loss 1.2173126935958862 img loss 1.2295459508895874 img loss 1.2582788467407227 img loss 1.319291353225708 img loss 1.2719792127609253 img loss 1.2349364757537842 img loss 1.27456533908844 img loss 1.2152937650680542 img loss 1.2884480953216553 img loss 1.2889114618301392 img loss 1.2459359169006348 img loss 1.259004831314087 img loss 1.2326656579971313 {'loss': 1.2449, 'grad_norm': 0.2410118132829666, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2877432107925415 img loss 1.32635498046875 img loss 1.234557032585144 img loss 1.2786868810653687 img loss 1.3627113103866577 img loss 1.3076224327087402 img loss 1.2747342586517334 img loss 1.283206820487976 img loss 1.2955639362335205 img loss 1.3707540035247803 img loss 1.408567190170288 img loss 1.1864217519760132 img loss 1.3211265802383423 img loss 1.3895989656448364 img loss 1.3726345300674438 img loss 1.3557438850402832 img loss 1.2532806396484375 img loss 1.2781853675842285 img loss 1.4380894899368286 img loss 1.3351935148239136 img loss 1.2238224744796753 img loss 1.2369589805603027 img loss 1.2199064493179321 img loss 1.3454337120056152 img loss 1.3801281452178955 img loss 1.3233509063720703 img loss 1.3278672695159912 img loss 1.3523074388504028 img loss 1.2151798009872437 img loss 1.333945631980896 img loss 1.4330965280532837 img loss 1.2925033569335938 img loss 1.4511996507644653 img loss 1.432625651359558 img loss 1.319893479347229 img loss 1.3110231161117554 img loss 1.229879379272461 img loss 1.1755566596984863 img loss 1.2422831058502197 img loss 1.268606185913086 img loss 1.2987875938415527 img loss 1.275774598121643 img loss 1.3716034889221191 img loss 1.3355895280838013 img loss 1.2473556995391846img loss 1.2479780912399292 img loss 1.3695290088653564 img loss 1.356621265411377 img loss 1.2630939483642578 img loss 1.3627554178237915 img loss 1.3188165426254272 img loss 1.2720627784729004 img loss 1.2827175855636597 img loss 1.3126453161239624 img loss 1.412875771522522 img loss 1.315010905265808 img loss 1.2873178720474243 img loss 1.294206976890564 img loss 1.2722868919372559 img loss 1.3017001152038574 img loss 1.291337251663208 img loss 1.223405122756958 img loss 1.3417391777038574 img loss 1.3615182638168335 img loss 1.290724277496338 img loss 1.3367732763290405 img loss 1.3064714670181274 img loss 1.2159494161605835 img loss 1.2473599910736084 img loss 1.3045390844345093 img loss 1.360249400138855 img loss 1.2868303060531616 img loss 1.4034886360168457 img loss 1.3107800483703613 img loss 1.3491928577423096 img loss 1.3344520330429077 img loss 1.247802734375 img loss 1.2715805768966675 img loss 1.3247509002685547 img loss 1.3562157154083252 img loss 1.3469988107681274 img loss 1.3007638454437256 img loss 1.3392187356948853 img loss 1.2480677366256714 img loss 1.1747421026229858 img loss 1.245543360710144 img loss 1.2888773679733276 img loss 1.4000071287155151 img loss 1.4254640340805054 img loss 1.3128283023834229 img loss 1.4744255542755127 img loss 1.3321514129638672 img loss 1.2747626304626465 img loss 1.2868059873580933 img loss 1.3345997333526611 img loss 1.2874226570129395 img loss 1.3672139644622803 img loss 1.3509083986282349 img loss 1.3709080219268799 img loss 1.4544367790222168 img loss 1.3042418956756592 img loss 1.2071326971054077 img loss 1.2690305709838867 img loss 1.3775583505630493 img loss 1.3126980066299438 img loss 1.3650752305984497 img loss 1.3586262464523315 img loss 1.325482964515686 img loss 1.4219348430633545 img loss 1.227163314819336 img loss 1.3415963649749756 img loss 1.2483572959899902 img loss 1.1930521726608276 img loss 1.3997935056686401 img loss 1.2684202194213867 img loss 1.2743089199066162 img loss 1.28158438205719 img loss 1.27716863155365 img loss 1.531337022781372 img loss 1.2701208591461182 img loss 1.3281152248382568 img loss 1.1874654293060303 img loss 1.4161887168884277 img loss 1.265786051750183 img loss 1.4200282096862793 img loss 1.333315372467041 img loss 1.3286643028259277 img loss 1.2296301126480103 {'loss': 1.3142, 'grad_norm': 0.4340848922729492, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4273496866226196 img loss 1.4686570167541504 img loss 1.519607663154602 img loss 1.4876409769058228 img loss 1.543471097946167 img loss 1.3386715650558472 img loss 1.5419541597366333 img loss 1.4380333423614502 img loss 1.5211310386657715 img loss 1.518308401107788 img loss 1.4291218519210815 img loss 1.5351836681365967 img loss 1.5028455257415771 img loss 1.440824031829834 img loss 1.5761154890060425 img loss 1.454904317855835 img loss 1.2105402946472168 img loss 1.4073231220245361 img loss 1.3219220638275146 img loss 1.4057234525680542 img loss 1.53304922580719 img loss 1.4351712465286255 img loss 1.546349048614502 img loss 1.5569491386413574 img loss 1.4659310579299927 img loss 1.438116192817688 img loss 1.4295498132705688 img loss 1.4770971536636353 img loss 1.4313305616378784 img loss 1.4499545097351074 img loss 1.4075045585632324 img loss 1.417244791984558 img loss 1.43804132938385 img loss 1.4396861791610718 img loss 1.412509560585022 img loss 1.4396346807479858 img loss 1.4781115055084229 img loss 1.367309331893921 img loss 1.4346158504486084 img loss 1.4680153131484985 img loss 1.4215724468231201 img loss 1.4766861200332642 img loss 1.5413557291030884 img loss 1.3990010023117065 img loss 1.5452382564544678 img loss 1.3806854486465454 img loss 1.5548921823501587 img loss 1.4240204095840454 img loss 1.4146634340286255 img loss 1.4290469884872437 img loss 1.5462852716445923 img loss 1.473113775253296 img loss 1.4218014478683472 img loss 1.4939428567886353 img loss 1.4434409141540527 img loss 1.4277561902999878 img loss 1.4150307178497314 img loss 1.4861369132995605 img loss 1.4127171039581299 img loss 1.4714105129241943 img loss 1.4338390827178955 img loss 1.3428806066513062 img loss 1.4031325578689575 img loss 1.4903548955917358 img loss 1.4504588842391968 img loss 1.4557719230651855 img loss 1.4339720010757446 img loss 1.4524272680282593 img loss 1.46701180934906 img loss 1.5265408754348755 img loss 1.4668300151824951 img loss 1.5126763582229614 img loss 1.4458820819854736 img loss 1.4156063795089722 img loss 1.5745995044708252 img loss 1.5318149328231812 img loss 1.6532188653945923 img loss 1.3643642663955688 img loss 1.5317187309265137 img loss 1.4995801448822021 img loss 1.6297842264175415 img loss 1.3419233560562134 img loss 1.451798677444458 img loss 1.4707653522491455 img loss 1.4287296533584595 img loss 1.4361097812652588 img loss 1.3300833702087402 img loss 1.66367769241333 img loss 1.483396291732788 img loss 1.5124144554138184 img loss 1.451607346534729 img loss 1.4011632204055786 img loss 1.515916109085083 img loss 1.469909429550171 img loss 1.4900404214859009 img loss 1.5449117422103882 img loss 1.4683438539505005 img loss 1.3056226968765259 img loss 1.4906541109085083 img loss 1.4584110975265503 img loss 1.4236228466033936 img loss 1.4646830558776855 img loss 1.2771209478378296 img loss 1.289628267288208 img loss 1.457211971282959 img loss 1.576758623123169 img loss 1.4506584405899048 img loss 1.5204514265060425 img loss 1.4410256147384644 img loss 1.4633976221084595 img loss 1.3996373414993286 img loss 1.3281434774398804 img loss 1.3682429790496826 img loss 1.3700944185256958 img loss 1.5500409603118896 img loss 1.4401956796646118 img loss 1.5165631771087646 img loss 1.3729289770126343 img loss 1.4620745182037354 img loss 1.4271453619003296 img loss 1.5074400901794434 img loss 1.3590642213821411 img loss 1.4556748867034912 img loss 1.4834802150726318 img loss 1.480730652809143 img loss 1.5034619569778442 img loss 1.4566677808761597 img loss 1.4875837564468384 {'loss': 1.4568, 'grad_norm': 0.333923876285553, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2556415796279907 img loss 1.1687793731689453 img loss 1.2005316019058228 img loss 1.1951467990875244 img loss 1.1987131834030151 img loss 1.1409128904342651 img loss 1.1458663940429688 img loss 1.2003620862960815 img loss 1.260446548461914 img loss 1.1606225967407227 img loss 1.2051864862442017 img loss 1.1645349264144897 img loss 1.2192531824111938 img loss 1.2570037841796875 img loss 1.1220325231552124 img loss 1.1534160375595093 img loss 1.2044471502304077 img loss 1.1944583654403687 img loss 1.301755428314209 img loss 1.2348352670669556 img loss 1.200758695602417 img loss 1.1727724075317383 img loss 1.230879545211792 img loss 1.156917929649353 img loss 1.2267603874206543 img loss 1.18059241771698 img loss 1.1762194633483887 img loss 1.2600364685058594 img loss 1.1604177951812744 img loss 1.2326606512069702 img loss 1.197916865348816 img loss 1.2929792404174805 img loss 1.1705940961837769img loss 1.1349729299545288 img loss 1.2187294960021973 img loss 1.1129884719848633 img loss 1.209393858909607 img loss 1.1974321603775024 img loss 1.320852279663086 img loss 1.1910845041275024 img loss 1.2144802808761597 img loss 1.1424154043197632 img loss 1.2014186382293701 img loss 1.2776373624801636 img loss 1.195191740989685 img loss 1.1617316007614136 img loss 1.2687335014343262 img loss 1.2717903852462769 img loss 1.2793444395065308 img loss 1.2137866020202637 img loss 1.193611979484558 img loss 1.2495505809783936 img loss 1.2251042127609253 img loss 1.1791714429855347 img loss 1.1623737812042236 img loss 1.228347659111023 img loss 1.2307077646255493 img loss 1.21076238155365 img loss 1.1472148895263672 img loss 1.2111353874206543 img loss 1.1724433898925781 img loss 1.1771657466888428 img loss 1.1696350574493408 img loss 1.259416103363037 img loss 1.1843913793563843 img loss 1.176473617553711 img loss 1.3177599906921387 img loss 1.1715538501739502 img loss 1.1635050773620605 img loss 1.179699420928955 img loss 1.111732006072998 img loss 1.234724521636963 img loss 1.2554445266723633 img loss 1.245617389678955 img loss 1.1730191707611084 img loss 1.2735271453857422 img loss 1.1973795890808105 img loss 1.1953576803207397 img loss 1.2314507961273193 img loss 1.2094115018844604 img loss 1.279976487159729 img loss 1.1443285942077637 img loss 1.2253235578536987 img loss 1.21634840965271 img loss 1.193743348121643 img loss 1.205366611480713 img loss 1.1743578910827637 img loss 1.200765609741211 img loss 1.159788727760315 img loss 1.229191780090332 img loss 1.1469253301620483 img loss 1.1522973775863647 img loss 1.2097768783569336 img loss 1.1202648878097534 img loss 1.24281907081604 img loss 1.2684701681137085 img loss 1.1776955127716064 img loss 1.236763596534729 img loss 1.2259024381637573 img loss 1.1876882314682007 img loss 1.2027966976165771 img loss 1.2398980855941772 img loss 1.2064157724380493 img loss 1.2019342184066772 img loss 1.1495203971862793 img loss 1.116397738456726 img loss 1.1714533567428589 img loss 1.172003984451294 img loss 1.1954249143600464 img loss 1.1800028085708618 img loss 1.1977771520614624 img loss 1.1933555603027344 img loss 1.1649608612060547 img loss 1.286317229270935 img loss 1.2096755504608154 img loss 1.2005535364151 img loss 1.190434217453003 img loss 1.1703181266784668 img loss 1.281319499015808 img loss 1.2563648223876953 img loss 1.2725927829742432 img loss 1.2485002279281616 img loss 1.2383980751037598 img loss 1.1641268730163574 img loss 1.1347545385360718 img loss 1.182705283164978 img loss 1.2704498767852783 img loss 1.19785475730896 {'loss': 1.2038, 'grad_norm': 0.21785974502563477, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2175705432891846 img loss 1.235543966293335 img loss 1.2527766227722168 img loss 1.2064342498779297 img loss 1.2704806327819824 img loss 1.2202887535095215 img loss 1.1924530267715454 img loss 1.1949608325958252 img loss 1.2744168043136597 img loss 1.2609621286392212 img loss 1.2431939840316772 img loss 1.2219088077545166 img loss 1.21484375 img loss 1.1500325202941895 img loss 1.2589871883392334 img loss 1.1942929029464722 img loss 1.1925714015960693 img loss 1.2047477960586548 img loss 1.1882526874542236 img loss 1.1590454578399658 img loss 1.1913808584213257 img loss 1.2170219421386719 img loss 1.210050106048584 img loss 1.1850271224975586 img loss 1.2086704969406128 img loss 1.1520462036132812 img loss 1.1876407861709595 img loss 1.1434675455093384 img loss 1.202623963356018 img loss 1.2150945663452148 img loss 1.214505910873413 img loss 1.2412878274917603 img loss 1.2713593244552612 img loss 1.2253460884094238 img loss 1.2329872846603394 img loss 1.2334442138671875 img loss 1.1740128993988037 img loss 1.187203288078308 img loss 1.1992805004119873 img loss 1.1765551567077637 img loss 1.2297909259796143 img loss 1.1628434658050537 img loss 1.2222723960876465 img loss 1.1962378025054932 img loss 1.1706175804138184 img loss 1.148956298828125 img loss 1.1551873683929443 img loss 1.2196511030197144 img loss 1.149542212486267 img loss 1.2549537420272827 img loss 1.191306710243225 img loss 1.2650703191757202 img loss 1.2973989248275757 img loss 1.1609963178634644 img loss 1.175364375114441 img loss 1.240027904510498 img loss 1.1450375318527222 img loss 1.2105751037597656 img loss 1.3431897163391113 img loss 1.2736767530441284 img loss 1.2560709714889526 img loss 1.183122992515564 img loss 1.1895893812179565 img loss 1.1648271083831787 img loss 1.1585544347763062 img loss 1.158689260482788 img loss 1.209460973739624 img loss 1.2520864009857178 img loss 1.1710238456726074 img loss 1.2054517269134521 img loss 1.34994375705719 img loss 1.2770395278930664 img loss 1.2142117023468018 img loss 1.178326964378357 img loss 1.2578948736190796 img loss 1.221246600151062 img loss 1.2555068731307983 img loss 1.228471040725708 img loss 1.196658730506897 img loss 1.2510216236114502 img loss 1.1873992681503296 img loss 1.2462519407272339 img loss 1.164646863937378 img loss 1.1233259439468384 img loss 1.1419507265090942 img loss 1.1627185344696045 img loss 1.1202830076217651 img loss 1.1946728229522705 img loss 1.2022281885147095 img loss 1.2939331531524658 img loss 1.170706033706665 img loss 1.280813455581665 img loss 1.238337755203247 img loss 1.2717255353927612 img loss 1.1872193813323975 img loss 1.2523068189620972 img loss 1.1260342597961426 img loss 1.199033498764038 img loss 1.237738013267517 img loss 1.183367371559143 img loss 1.1517833471298218 img loss 1.2890119552612305 img loss 1.2928165197372437 img loss 1.1763581037521362 img loss 1.2015955448150635 img loss 1.2832059860229492 img loss 1.1989150047302246 img loss 1.159627914428711 img loss 1.165050745010376 img loss 1.2352039813995361 img loss 1.2336571216583252 img loss 1.1993521451950073 img loss 1.1480480432510376 img loss 1.22505521774292 img loss 1.206059217453003 img loss 1.2188955545425415 img loss 1.13597571849823 img loss 1.2612138986587524 img loss 1.16875422000885 img loss 1.171144723892212 img loss 1.2346023321151733 img loss 1.122556209564209 img loss 1.1270519495010376 img loss 1.2384374141693115 img loss 1.2314157485961914 img loss 1.239145278930664 img loss 1.2705328464508057 img loss 1.253639817237854 {'loss': 1.2097, 'grad_norm': 0.3654542863368988, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3854414224624634 img loss 1.3455947637557983 img loss 1.3772852420806885 img loss 1.393754243850708 img loss 1.4716390371322632 img loss 1.3153657913208008 img loss 1.3801016807556152 img loss 1.2992693185806274 img loss 1.4179530143737793 img loss 1.3710013628005981 img loss 1.2639297246932983 img loss 1.3251588344573975 img loss 1.3472707271575928 img loss 1.3492845296859741 img loss 1.5004962682724 img loss 1.424324870109558 img loss 1.3971182107925415 img loss 1.388414978981018 img loss 1.2959818840026855 img loss 1.3175413608551025 img loss 1.290649175643921 img loss 1.4354408979415894 img loss 1.253676414489746 img loss 1.2446426153182983 img loss 1.3596484661102295 img loss 1.4681185483932495 img loss 1.3025684356689453 img loss 1.3983830213546753 img loss 1.2945764064788818 img loss 1.432372808456421 img loss 1.517472743988037 img loss 1.3490439653396606 img loss 1.4304273128509521 img loss 1.3905329704284668 img loss 1.431317687034607 img loss 1.3178207874298096 img loss 1.406341314315796 img loss 1.3583344221115112 img loss 1.3952356576919556 img loss 1.3895713090896606 img loss 1.3116741180419922 img loss 1.4383761882781982 img loss 1.387337565422058 img loss 1.239791750907898 img loss 1.4426378011703491 img loss 1.343610405921936 img loss 1.3970307111740112 img loss 1.3579744100570679 img loss 1.3752377033233643 img loss 1.3866286277770996img loss 1.3167757987976074 img loss 1.2700140476226807 img loss 1.4455915689468384 img loss 1.345267415046692 img loss 1.395089030265808 img loss 1.3527895212173462 img loss 1.3873637914657593 img loss 1.432279109954834 img loss 1.3842660188674927 img loss 1.447996973991394 img loss 1.4312613010406494 img loss 1.2896442413330078 img loss 1.5054844617843628 img loss 1.3385716676712036 img loss 1.3231024742126465 img loss 1.4893232583999634 img loss 1.3082575798034668 img loss 1.388999581336975 img loss 1.380385160446167 img loss 1.3215625286102295 img loss 1.41698157787323 img loss 1.3480432033538818 img loss 1.388953447341919 img loss 1.3493212461471558 img loss 1.395930528640747 img loss 1.3492454290390015 img loss 1.4633644819259644 img loss 1.3029435873031616 img loss 1.4454487562179565 img loss 1.4309277534484863 img loss 1.3364702463150024 img loss 1.4055759906768799 img loss 1.36454176902771 img loss 1.4004231691360474 img loss 1.2847408056259155 img loss 1.4163317680358887 img loss 1.37140691280365 img loss 1.3767133951187134 img loss 1.3590978384017944 img loss 1.345043420791626 img loss 1.4378644227981567 img loss 1.4221291542053223 img loss 1.3944040536880493 img loss 1.279356598854065 img loss 1.2878280878067017 img loss 1.467802882194519 img loss 1.359611988067627 img loss 1.3654112815856934 img loss 1.370695948600769 img loss 1.2343380451202393 img loss 1.4057587385177612 img loss 1.375364065170288 img loss 1.3529669046401978 img loss 1.300600528717041 img loss 1.400622010231018 img loss 1.2525968551635742 img loss 1.365362524986267 img loss 1.3879648447036743 img loss 1.462951421737671 img loss 1.3173837661743164 img loss 1.4259511232376099 img loss 1.3402352333068848 img loss 1.3680243492126465 img loss 1.2876734733581543 img loss 1.396920084953308 img loss 1.5309277772903442 img loss 1.2830243110656738 img loss 1.3428778648376465 img loss 1.3733675479888916 img loss 1.336184024810791 img loss 1.3804656267166138 img loss 1.2870781421661377 img loss 1.3946858644485474 img loss 1.3895163536071777 img loss 1.396984338760376 img loss 1.3496159315109253 img loss 1.3334705829620361 img loss 1.4895551204681396 {'loss': 1.3716, 'grad_norm': 0.44629499316215515, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2437609434127808 img loss 1.2079260349273682 img loss 1.2295539379119873 img loss 1.2784162759780884 img loss 1.297827124595642 img loss 1.213352084159851 img loss 1.2690683603286743 img loss 1.2825969457626343 img loss 1.2793183326721191 img loss 1.200419306755066 img loss 1.3798024654388428 img loss 1.2670124769210815 img loss 1.1645259857177734 img loss 1.2526670694351196 img loss 1.277625322341919 img loss 1.2147555351257324 img loss 1.1812002658843994 img loss 1.2099051475524902 img loss 1.160901665687561 img loss 1.2169716358184814 img loss 1.2067115306854248 img loss 1.2102640867233276 img loss 1.2144962549209595 img loss 1.2343230247497559 img loss 1.2099225521087646 img loss 1.2180331945419312 img loss 1.2730045318603516 img loss 1.2138818502426147 img loss 1.359483003616333 img loss 1.2721912860870361 img loss 1.2073067426681519 img loss 1.263943076133728 img loss 1.3273653984069824 img loss 1.2775471210479736 img loss 1.2319984436035156 img loss 1.2875841856002808 img loss 1.3144853115081787 img loss 1.2127412557601929 img loss 1.155524730682373 img loss 1.2201108932495117 img loss 1.2942968606948853 img loss 1.2127840518951416 img loss 1.3848148584365845 img loss 1.2192840576171875 img loss 1.2543423175811768 img loss 1.3282866477966309 img loss 1.1930011510849 img loss 1.2011923789978027 img loss 1.2974249124526978 img loss 1.310422658920288 img loss 1.2830328941345215 img loss 1.1469923257827759 img loss 1.1621177196502686 img loss 1.3136223554611206 img loss 1.2993333339691162 img loss 1.2566535472869873 img loss 1.3925610780715942 img loss 1.2332485914230347 img loss 1.3085616827011108 img loss 1.2330467700958252 img loss 1.228280782699585 img loss 1.2414366006851196 img loss 1.319403052330017 img loss 1.2899271249771118 img loss 1.164611577987671 img loss 1.223386287689209 img loss 1.3056334257125854 img loss 1.1951954364776611 img loss 1.2600429058074951 img loss 1.265350580215454 img loss 1.3531216382980347 img loss 1.2781898975372314 img loss 1.2212309837341309 img loss 1.2790513038635254 img loss 1.2375987768173218 img loss 1.2450875043869019 img loss 1.1526697874069214 img loss 1.2241445779800415 img loss 1.2915276288986206 img loss 1.2552952766418457 img loss 1.4211081266403198 img loss 1.2067594528198242 img loss 1.2512593269348145 img loss 1.2774872779846191 img loss 1.1907973289489746 img loss 1.1929411888122559 img loss 1.2602479457855225 img loss 1.533277153968811 img loss 1.1854896545410156 img loss 1.224524974822998 img loss 1.269531011581421 img loss 1.1730412244796753 img loss 1.2732632160186768 img loss 1.2533526420593262 img loss 1.2642738819122314 img loss 1.250756025314331 img loss 1.3010203838348389 img loss 1.1992100477218628 img loss 1.2189682722091675 img loss 1.2675729990005493 img loss 1.2561964988708496 img loss 1.1650176048278809 img loss 1.2704700231552124 img loss 1.2535319328308105 img loss 1.3030074834823608 img loss 1.218796968460083 img loss 1.2214239835739136 img loss 1.2354180812835693 img loss 1.200080394744873 img loss 1.2337545156478882 img loss 1.2246156930923462 img loss 1.341475248336792 img loss 1.257871389389038 img loss 1.2481441497802734 img loss 1.2625194787979126 img loss 1.2451541423797607 img loss 1.3495252132415771 img loss 1.1732938289642334 img loss 1.2587333917617798 img loss 1.2499327659606934 img loss 1.2320761680603027 img loss 1.1584737300872803 img loss 1.2693771123886108 img loss 1.193526268005371 img loss 1.1973565816879272 img loss 1.3304023742675781 img loss 1.2035670280456543 img loss 1.2984590530395508 {'loss': 1.2513, 'grad_norm': 0.2602021396160126, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2163567543029785 img loss 1.2160441875457764 img loss 1.2288410663604736 img loss 1.3257637023925781 img loss 1.2100064754486084 img loss 1.290292501449585 img loss 1.225530982017517 img loss 1.2106269598007202 img loss 1.2230777740478516 img loss 1.2377431392669678 img loss 1.236769676208496 img loss 1.25446355342865 img loss 1.2457226514816284 img loss 1.2289390563964844 img loss 1.2247484922409058 img loss 1.1387652158737183 img loss 1.269056797027588 img loss 1.2421272993087769 img loss 1.252297282218933 img loss 1.3009051084518433 img loss 1.2417747974395752 img loss 1.2528319358825684 img loss 1.2764824628829956 img loss 1.1972148418426514 img loss 1.2684437036514282 img loss 1.218686580657959 img loss 1.2365645170211792 img loss 1.2015442848205566 img loss 1.2489049434661865 img loss 1.2110047340393066 img loss 1.2257009744644165 img loss 1.3133273124694824 img loss 1.3377772569656372 img loss 1.1687633991241455 img loss 1.2954847812652588 img loss 1.2199745178222656 img loss 1.2554562091827393 img loss 1.3282392024993896 img loss 1.2788753509521484 img loss 1.2442175149917603 img loss 1.2673765420913696 img loss 1.2749261856079102 img loss 1.2579450607299805 img loss 1.183459997177124img loss 1.301756739616394 img loss 1.3050222396850586 img loss 1.1749757528305054 img loss 1.22908616065979 img loss 1.1557754278182983 img loss 1.1892011165618896 img loss 1.2197818756103516 img loss 1.3024461269378662 img loss 1.2507749795913696 img loss 1.2734909057617188 img loss 1.2358455657958984 img loss 1.2772482633590698 img loss 1.2103536128997803 img loss 1.251901626586914 img loss 1.2430599927902222 img loss 1.2013695240020752 img loss 1.2600582838058472 img loss 1.229490041732788 img loss 1.2693666219711304 img loss 1.2078206539154053 img loss 1.2126266956329346 img loss 1.2929811477661133 img loss 1.2651160955429077 img loss 1.2217553853988647 img loss 1.188960313796997 img loss 1.3450000286102295 img loss 1.212235689163208 img loss 1.3460466861724854 img loss 1.2586978673934937 img loss 1.3646472692489624 img loss 1.2312631607055664 img loss 1.1670717000961304 img loss 1.1559038162231445 img loss 1.2505508661270142 img loss 1.2287095785140991 img loss 1.2118675708770752 img loss 1.2421280145645142 img loss 1.2575782537460327 img loss 1.2313584089279175 img loss 1.1628690958023071 img loss 1.154833436012268 img loss 1.2666621208190918 img loss 1.2294155359268188 img loss 1.1401866674423218 img loss 1.302931308746338 img loss 1.257360816001892 img loss 1.2909274101257324 img loss 1.2944778203964233 img loss 1.300830602645874 img loss 1.3005266189575195 img loss 1.3786240816116333 img loss 1.3055540323257446 img loss 1.2024024724960327 img loss 1.2395853996276855 img loss 1.1915359497070312 img loss 1.22489333152771 img loss 1.2511062622070312 img loss 1.2225878238677979 img loss 1.1930259466171265 img loss 1.2741830348968506 img loss 1.1396878957748413 img loss 1.2927788496017456 img loss 1.2694905996322632 img loss 1.1921395063400269 img loss 1.2784546613693237 img loss 1.274126648902893 img loss 1.2321584224700928 img loss 1.21510648727417 img loss 1.3151836395263672 img loss 1.278807520866394 img loss 1.2743462324142456 img loss 1.2520662546157837 img loss 1.194825530052185 img loss 1.1671072244644165 img loss 1.2263100147247314 img loss 1.1962770223617554 img loss 1.2864874601364136 img loss 1.1955419778823853 img loss 1.2153013944625854 img loss 1.2171639204025269 img loss 1.1428396701812744 img loss 1.2022931575775146 img loss 1.2309627532958984 img loss 1.2192769050598145 {'loss': 1.2418, 'grad_norm': 0.210085928440094, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3487595319747925 img loss 1.2637050151824951 img loss 1.3085224628448486 img loss 1.2707983255386353 img loss 1.3603671789169312 img loss 1.2091155052185059 img loss 1.367296576499939 img loss 1.3268444538116455 img loss 1.2584431171417236 img loss 1.2194647789001465 img loss 1.266893982887268 img loss 1.2813185453414917 img loss 1.1965950727462769 img loss 1.2053122520446777 img loss 1.3920156955718994 img loss 1.3166937828063965 img loss 1.2572211027145386 img loss 1.318298101425171 img loss 1.4175270795822144 img loss 1.4021104574203491 img loss 1.2610517740249634 img loss 1.3475772142410278 img loss 1.1905792951583862 img loss 1.2912406921386719 img loss 1.246599555015564 img loss 1.2025903463363647 img loss 1.2042810916900635 img loss 1.278756022453308 img loss 1.2499487400054932 img loss 1.192708969116211 img loss 1.1786936521530151 img loss 1.2745213508605957 img loss 1.2779364585876465 img loss 1.3218199014663696 img loss 1.272349238395691 img loss 1.1979016065597534 img loss 1.2822163105010986 img loss 1.2061305046081543 img loss 1.2968109846115112 img loss 1.2393321990966797 img loss 1.1870651245117188 img loss 1.3046362400054932 img loss 1.2812012434005737 img loss 1.247106909751892 img loss 1.2453312873840332 img loss 1.2794673442840576 img loss 1.322317123413086 img loss 1.2129524946212769 img loss 1.181132197380066 img loss 1.301919937133789 img loss 1.2467496395111084 img loss 1.3392759561538696 img loss 1.2296044826507568 img loss 1.3062800168991089 img loss 1.2994379997253418 img loss 1.2260792255401611 img loss 1.263854742050171 img loss 1.2384188175201416 img loss 1.3331960439682007 img loss 1.2613552808761597 img loss 1.1999292373657227 img loss 1.1954416036605835 img loss 1.2523096799850464 img loss 1.270645022392273 img loss 1.133683204650879 img loss 1.2821388244628906 img loss 1.2884116172790527 img loss 1.2157875299453735img loss 1.336256742477417 img loss 1.259714126586914 img loss 1.3284987211227417 img loss 1.3329685926437378 img loss 1.2568626403808594 img loss 1.3314093351364136 img loss 1.294368028640747 img loss 1.3121141195297241 img loss 1.2720839977264404 img loss 1.3503938913345337 img loss 1.2285912036895752 img loss 1.277909755706787 img loss 1.2803239822387695 img loss 1.2977901697158813 img loss 1.2345035076141357 img loss 1.24556565284729 img loss 1.2884001731872559 img loss 1.3118195533752441 img loss 1.2090544700622559 img loss 1.3272656202316284 img loss 1.2264846563339233 img loss 1.3534789085388184 img loss 1.292348861694336 img loss 1.3232277631759644 img loss 1.297308325767517 img loss 1.255895972251892 img loss 1.3345122337341309 img loss 1.317958116531372 img loss 1.1918902397155762 img loss 1.362011194229126 img loss 1.2792606353759766 img loss 1.1831501722335815 img loss 1.2461668252944946 img loss 1.149579644203186 img loss 1.256692886352539 img loss 1.3369495868682861 img loss 1.236727237701416 img loss 1.2229899168014526 img loss 1.3674538135528564 img loss 1.4176764488220215 img loss 1.3233040571212769 img loss 1.3399759531021118 img loss 1.352516770362854 img loss 1.272814393043518 img loss 1.2346341609954834 img loss 1.2891486883163452 img loss 1.2112441062927246 img loss 1.3516215085983276 img loss 1.234168291091919 img loss 1.249540090560913 img loss 1.2448490858078003 img loss 1.258391261100769 img loss 1.2183669805526733 img loss 1.3214378356933594 img loss 1.294809103012085 img loss 1.300382375717163 img loss 1.1832774877548218 img loss 1.2255500555038452 img loss 1.2653850317001343 img loss 1.2963539361953735 {'loss': 1.2738, 'grad_norm': 0.41378241777420044, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2510684728622437 img loss 1.2101258039474487 img loss 1.2452458143234253 img loss 1.2540998458862305 img loss 1.2141902446746826 img loss 1.2224557399749756 img loss 1.2160077095031738 img loss 1.2410913705825806 img loss 1.245478868484497 img loss 1.2119686603546143 img loss 1.267166018486023 img loss 1.150052785873413 img loss 1.1755489110946655 img loss 1.2579602003097534 img loss 1.2454227209091187 img loss 1.1569931507110596 img loss 1.3050963878631592 img loss 1.2235676050186157 img loss 1.177406907081604 img loss 1.1949161291122437 img loss 1.2267227172851562 img loss 1.2789757251739502 img loss 1.2678762674331665 img loss 1.1611783504486084 img loss 1.2979457378387451 img loss 1.2077909708023071 img loss 1.1691216230392456 img loss 1.249621033668518 img loss 1.2177339792251587 img loss 1.2217516899108887 img loss 1.2845014333724976 img loss 1.203256368637085 img loss 1.2793712615966797 img loss 1.180295705795288 img loss 1.1593188047409058 img loss 1.2445580959320068 img loss 1.2152690887451172 img loss 1.2838325500488281 img loss 1.2252670526504517 img loss 1.2095084190368652 img loss 1.1302963495254517 img loss 1.2632253170013428 img loss 1.2652219533920288 img loss 1.1951093673706055 img loss 1.2090080976486206 img loss 1.2730140686035156 img loss 1.2395687103271484 img loss 1.1845505237579346 img loss 1.2306978702545166 img loss 1.2320822477340698 img loss 1.1474589109420776 img loss 1.1715505123138428 img loss 1.2524833679199219 img loss 1.1622962951660156 img loss 1.1197770833969116 img loss 1.1481605768203735 img loss 1.2553049325942993 img loss 1.1758049726486206 img loss 1.121236801147461 img loss 1.192995309829712 img loss 1.1968275308609009 img loss 1.290601134300232 img loss 1.1880429983139038 img loss 1.2233052253723145 img loss 1.2005127668380737 img loss 1.2320927381515503 img loss 1.201182246208191 img loss 1.2038302421569824 img loss 1.2017059326171875 img loss 1.2640093564987183 img loss 1.2638498544692993 img loss 1.2302786111831665 img loss 1.186479091644287 img loss 1.21872878074646 img loss 1.2656008005142212 img loss 1.249057650566101 img loss 1.1639022827148438 img loss 1.1885403394699097 img loss 1.1880576610565186 img loss 1.2259262800216675 img loss 1.195997714996338 img loss 1.2733304500579834 img loss 1.3017851114273071 img loss 1.2047542333602905 img loss 1.2999296188354492img loss 1.2458076477050781 img loss 1.2112387418746948 img loss 1.2455859184265137 img loss 1.2248090505599976 img loss 1.1989490985870361 img loss 1.2367149591445923 img loss 1.1339945793151855 img loss 1.254052758216858 img loss 1.192863941192627 img loss 1.3341528177261353 img loss 1.2301156520843506 img loss 1.282006859779358 img loss 1.1916582584381104 img loss 1.2004868984222412 img loss 1.2270160913467407 img loss 1.1697452068328857 img loss 1.2622442245483398 img loss 1.1717441082000732 img loss 1.1975752115249634 img loss 1.226080298423767 img loss 1.2518417835235596 img loss 1.2591147422790527 img loss 1.220777153968811 img loss 1.2855947017669678 img loss 1.2836557626724243 img loss 1.218841552734375 img loss 1.2358813285827637 img loss 1.2694660425186157 img loss 1.17959463596344 img loss 1.2471728324890137 img loss 1.1837776899337769 img loss 1.1822547912597656 img loss 1.1898545026779175 img loss 1.1965383291244507 img loss 1.1799243688583374 img loss 1.2422987222671509 img loss 1.2124290466308594 img loss 1.2731913328170776 img loss 1.2469232082366943 img loss 1.2584412097930908 img loss 1.179189682006836 img loss 1.209308385848999 img loss 1.1818557977676392 {'loss': 1.2211, 'grad_norm': 0.28061047196388245, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2370085716247559 img loss 1.1999282836914062 img loss 1.2389529943466187 img loss 1.2461316585540771 img loss 1.228930115699768 img loss 1.1807597875595093 img loss 1.237717866897583 img loss 1.2428425550460815 img loss 1.241746187210083 img loss 1.2342617511749268 img loss 1.3209195137023926 img loss 1.2501152753829956 img loss 1.272012710571289 img loss 1.2120060920715332 img loss 1.2081851959228516 img loss 1.2165764570236206 img loss 1.2960102558135986 img loss 1.1880863904953003 img loss 1.2030102014541626 img loss 1.2551970481872559 img loss 1.204270601272583 img loss 1.2672805786132812 img loss 1.1905959844589233 img loss 1.1802666187286377 img loss 1.2066493034362793 img loss 1.2895612716674805 img loss 1.3047418594360352 img loss 1.290578842163086 img loss 1.221313714981079 img loss 1.1317952871322632 img loss 1.2155301570892334 img loss 1.2388701438903809 img loss 1.2469500303268433 img loss 1.283037543296814 img loss 1.2084406614303589 img loss 1.2558588981628418 img loss 1.1962411403656006 img loss 1.2142518758773804 img loss 1.2103582620620728 img loss 1.2184672355651855img loss 1.2589569091796875 img loss 1.215218186378479 img loss 1.2769612073898315 img loss 1.1991862058639526 img loss 1.2657246589660645 img loss 1.2607711553573608 img loss 1.2673898935317993 img loss 1.2224165201187134 img loss 1.208338975906372 img loss 1.2227905988693237 img loss 1.2300611734390259 img loss 1.3064842224121094 img loss 1.2996870279312134 img loss 1.2354131937026978 img loss 1.1840324401855469 img loss 1.2801376581192017 img loss 1.2618101835250854 img loss 1.2328240871429443 img loss 1.3643079996109009img loss 1.273343801498413 img loss 1.256197452545166 img loss 1.2179151773452759 img loss 1.1704230308532715 img loss 1.2207891941070557 img loss 1.3326882123947144 img loss 1.170814871788025 img loss 1.2165312767028809 img loss 1.2340428829193115 img loss 1.2966610193252563 img loss 1.223412036895752 img loss 1.2175910472869873 img loss 1.2578539848327637 img loss 1.15250563621521 img loss 1.3081374168395996 img loss 1.2446460723876953 img loss 1.2209415435791016 img loss 1.1915117502212524 img loss 1.2269824743270874 img loss 1.2022806406021118 img loss 1.2261834144592285 img loss 1.1627918481826782 img loss 1.194690465927124 img loss 1.2539156675338745 img loss 1.1659960746765137 img loss 1.3137518167495728 img loss 1.2915291786193848 img loss 1.2590874433517456 img loss 1.2206779718399048 img loss 1.1483068466186523 img loss 1.130059838294983 img loss 1.2180966138839722 img loss 1.243782639503479 img loss 1.1831945180892944 img loss 1.2410128116607666 img loss 1.2292592525482178 img loss 1.2407927513122559 img loss 1.2850359678268433 img loss 1.2217260599136353 img loss 1.3536440134048462 img loss 1.2456586360931396 img loss 1.184340238571167 img loss 1.2617281675338745 img loss 1.2713745832443237 img loss 1.272491216659546 img loss 1.2648981809616089 img loss 1.1830837726593018 img loss 1.18980872631073 img loss 1.248095989227295 img loss 1.295559287071228 img loss 1.2048814296722412 img loss 1.264960765838623 img loss 1.3613134622573853 img loss 1.215200424194336 img loss 1.157549262046814 img loss 1.1925597190856934 img loss 1.2800772190093994 img loss 1.1885274648666382 img loss 1.2113615274429321 img loss 1.2126823663711548 img loss 1.2154638767242432 img loss 1.2796624898910522 img loss 1.2282968759536743 img loss 1.258125901222229 img loss 1.2425447702407837 img loss 1.214028239250183 img loss 1.2711626291275024 img loss 1.2714006900787354 img loss 1.2372441291809082 {'loss': 1.2361, 'grad_norm': 0.23135529458522797, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2446191310882568 img loss 1.2750383615493774 img loss 1.2860503196716309 img loss 1.2337746620178223 img loss 1.2866618633270264 img loss 1.2543004751205444 img loss 1.2243162393569946 img loss 1.2016425132751465 img loss 1.274722933769226 img loss 1.229270339012146 img loss 1.2171695232391357 img loss 1.3005731105804443 img loss 1.2656358480453491 img loss 1.3282661437988281 img loss 1.3191184997558594 img loss 1.20389986038208 img loss 1.2759729623794556 img loss 1.2294095754623413img loss 1.1961853504180908 img loss 1.1749546527862549 img loss 1.2871407270431519 img loss 1.2252625226974487 img loss 1.2647312879562378 img loss 1.230466604232788img loss 1.2561054229736328 img loss 1.2617267370224 img loss 1.2712299823760986 img loss 1.1844115257263184 img loss 1.2109243869781494 img loss 1.2970348596572876 img loss 1.2749550342559814 img loss 1.2122139930725098 img loss 1.2494093179702759 img loss 1.1915512084960938 img loss 1.244598627090454 img loss 1.3408901691436768 img loss 1.2558027505874634 img loss 1.2471904754638672 img loss 1.2413679361343384 img loss 1.2074531316757202 img loss 1.2493623495101929 img loss 1.4048389196395874 img loss 1.293567419052124 img loss 1.279599666595459 img loss 1.2348684072494507 img loss 1.228461503982544 img loss 1.2953325510025024 img loss 1.2565351724624634 img loss 1.1695828437805176 img loss 1.257775068283081 img loss 1.195655107498169 img loss 1.2019963264465332 img loss 1.3355364799499512 img loss 1.3083528280258179 img loss 1.222994089126587 img loss 1.2393118143081665 img loss 1.2238529920578003 img loss 1.213737964630127 img loss 1.1785006523132324 img loss 1.3137140274047852 img loss 1.2299797534942627 img loss 1.2245140075683594 img loss 1.1905744075775146 img loss 1.2434024810791016 img loss 1.307725429534912 img loss 1.210585355758667 img loss 1.2174866199493408 img loss 1.2621148824691772 img loss 1.1713930368423462 img loss 1.2062325477600098 img loss 1.274210810661316 img loss 1.2024271488189697 img loss 1.2345824241638184 img loss 1.175933599472046 img loss 1.2220523357391357 img loss 1.2420170307159424 img loss 1.244452953338623 img loss 1.2512764930725098 img loss 1.2449373006820679 img loss 1.166624903678894 img loss 1.2342098951339722 img loss 1.269085168838501 img loss 1.1992175579071045 img loss 1.1893024444580078 img loss 1.2200019359588623 img loss 1.273824691772461 img loss 1.197935700416565 img loss 1.1581271886825562 img loss 1.1910738945007324 img loss 1.174361228942871 img loss 1.2275508642196655 img loss 1.2819957733154297 img loss 1.377137541770935 img loss 1.2198337316513062 img loss 1.2755420207977295 img loss 1.183092713356018 img loss 1.199656367301941 img loss 1.2130306959152222 img loss 1.2466875314712524 img loss 1.2482515573501587 img loss 1.298877239227295 img loss 1.2874000072479248 img loss 1.1311349868774414 img loss 1.1996334791183472 img loss 1.324279546737671 img loss 1.375635027885437 img loss 1.1223894357681274 img loss 1.239267110824585 img loss 1.2935750484466553 img loss 1.1729816198349 img loss 1.138301134109497 img loss 1.3248594999313354 img loss 1.2775123119354248 img loss 1.2386174201965332 img loss 1.1844735145568848 img loss 1.1914844512939453 img loss 1.2537678480148315 img loss 1.1689494848251343 img loss 1.230668544769287 img loss 1.247868299484253 img loss 1.2329883575439453 img loss 1.1975654363632202 img loss 1.180277705192566 img loss 1.246733546257019 img loss 1.1867471933364868 img loss 1.2492408752441406 img loss 1.2849295139312744 img loss 1.2583496570587158 {'loss': 1.24, 'grad_norm': 0.2503887414932251, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.281684398651123 img loss 1.306061029434204 img loss 1.2984634637832642 img loss 1.4291411638259888 img loss 1.3695374727249146 img loss 1.3669565916061401 img loss 1.2913159132003784 img loss 1.543817400932312 img loss 1.3609287738800049 img loss 1.2772372961044312 img loss 1.4399278163909912 img loss 1.4945695400238037 img loss 1.3885648250579834 img loss 1.5111651420593262 img loss 1.4168941974639893 img loss 1.3374037742614746 img loss 1.3148105144500732 img loss 1.275721788406372 img loss 1.4144691228866577 img loss 1.2997031211853027 img loss 1.39450204372406 img loss 1.3100591897964478 img loss 1.3999866247177124 img loss 1.3023003339767456 img loss 1.4080172777175903 img loss 1.4262832403182983 img loss 1.3679109811782837 img loss 1.3978086709976196 img loss 1.4983495473861694 img loss 1.3003343343734741 img loss 1.392540454864502 img loss 1.4271818399429321 img loss 1.3768619298934937 img loss 1.4093871116638184 img loss 1.368142008781433 img loss 1.4999048709869385 img loss 1.3408597707748413 img loss 1.3034477233886719 img loss 1.3965458869934082 img loss 1.2803179025650024 img loss 1.3236157894134521 img loss 1.3663870096206665 img loss 1.5395162105560303 img loss 1.3998347520828247 img loss 1.2885268926620483 img loss 1.3407901525497437 img loss 1.4978461265563965 img loss 1.3843762874603271 img loss 1.3616198301315308 img loss 1.2475992441177368 img loss 1.3391553163528442 img loss 1.4224075078964233 img loss 1.2907360792160034 img loss 1.2824797630310059 img loss 1.4210069179534912 img loss 1.2906608581542969 img loss 1.3618377447128296 img loss 1.4206088781356812 img loss 1.3646676540374756 img loss 1.3062721490859985 img loss 1.4280579090118408 img loss 1.3621342182159424 img loss 1.3522802591323853 img loss 1.3001635074615479 img loss 1.3337241411209106 img loss 1.438313364982605 img loss 1.5012131929397583 img loss 1.4355416297912598 img loss 1.4411088228225708 img loss 1.3950659036636353 img loss 1.3117046356201172 img loss 1.4562666416168213 img loss 1.3167622089385986 img loss 1.4759933948516846 img loss 1.5034795999526978 img loss 1.3954836130142212 img loss 1.3783570528030396 img loss 1.399857759475708 img loss 1.3430942296981812 img loss 1.4407447576522827 img loss 1.4397985935211182 img loss 1.3112941980361938 img loss 1.3240463733673096 img loss 1.4219363927841187 img loss 1.4421254396438599 img loss 1.3291329145431519 img loss 1.377099871635437 img loss 1.362553358078003 img loss 1.3959219455718994 img loss 1.4556238651275635 img loss 1.2311711311340332 img loss 1.2213964462280273 img loss 1.255448579788208 img loss 1.3625296354293823 img loss 1.3643862009048462 img loss 1.4403901100158691 img loss 1.4045008420944214 img loss 1.3809679746627808 img loss 1.385623812675476 img loss 1.3668701648712158 img loss 1.3496521711349487 img loss 1.342343807220459 img loss 1.3840763568878174 img loss 1.3792253732681274 img loss 1.2536237239837646 img loss 1.3848989009857178 img loss 1.479743242263794 img loss 1.3676549196243286 img loss 1.3671668767929077 img loss 1.3385326862335205 img loss 1.3444015979766846 img loss 1.3163760900497437 img loss 1.4204227924346924 img loss 1.402180552482605 img loss 1.4004321098327637 img loss 1.2538009881973267 img loss 1.3845943212509155 img loss 1.1861099004745483 img loss 1.3056567907333374 img loss 1.2929465770721436 img loss 1.3450947999954224 img loss 1.3804795742034912 img loss 1.3792433738708496 img loss 1.3928427696228027 img loss 1.3020639419555664 img loss 1.4450575113296509 img loss 1.4043861627578735 img loss 1.4728432893753052 {'loss': 1.3721, 'grad_norm': 0.3161223828792572, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2824954986572266 img loss 1.4186913967132568 img loss 1.2570011615753174 img loss 1.2643626928329468 img loss 1.291806697845459 img loss 1.2629811763763428 img loss 1.278116226196289 img loss 1.3148672580718994 img loss 1.2793660163879395 img loss 1.2899283170700073 img loss 1.2604196071624756 img loss 1.2951093912124634 img loss 1.3077739477157593 img loss 1.2883819341659546 img loss 1.2846965789794922 img loss 1.328353762626648 img loss 1.263435959815979 img loss 1.2478641271591187 img loss 1.3024085760116577 img loss 1.259364366531372 img loss 1.3196223974227905 img loss 1.2936615943908691 img loss 1.2802034616470337 img loss 1.2410310506820679 img loss 1.2938282489776611 img loss 1.2778074741363525 img loss 1.349442720413208 img loss 1.3426053524017334 img loss 1.2733631134033203 img loss 1.3020473718643188 img loss 1.320107102394104 img loss 1.2280573844909668 img loss 1.3109087944030762 img loss 1.3032950162887573 img loss 1.3002631664276123 img loss 1.3021602630615234 img loss 1.2849998474121094 img loss 1.2856125831604004 img loss 1.3093070983886719 img loss 1.26925528049469 img loss 1.3261274099349976 img loss 1.270129919052124 img loss 1.3191757202148438 img loss 1.2651822566986084 img loss 1.262298345565796 img loss 1.2457118034362793 img loss 1.2643097639083862 img loss 1.3541184663772583 img loss 1.3122522830963135 img loss 1.2897906303405762 img loss 1.2980132102966309 img loss 1.3366472721099854 img loss 1.2859838008880615 img loss 1.3292920589447021 img loss 1.2632553577423096 img loss 1.3450305461883545 img loss 1.3169234991073608 img loss 1.2875936031341553 img loss 1.3117278814315796 img loss 1.291874885559082 img loss 1.283121943473816 img loss 1.2886497974395752 img loss 1.3085123300552368 img loss 1.2145881652832031 img loss 1.3322492837905884 img loss 1.2549223899841309 img loss 1.326699137687683 img loss 1.3005824089050293 img loss 1.3127411603927612 img loss 1.2933810949325562 img loss 1.234953761100769 img loss 1.2466744184494019 img loss 1.3777012825012207 img loss 1.2842429876327515 img loss 1.2914221286773682 img loss 1.4421488046646118 img loss 1.3066600561141968 img loss 1.3009307384490967 img loss 1.260392189025879 img loss 1.311906099319458 img loss 1.2722053527832031 img loss 1.272202968597412 img loss 1.297179937362671 img loss 1.2813382148742676 img loss 1.3435227870941162 img loss 1.2826601266860962 img loss 1.3217947483062744 img loss 1.3151097297668457 img loss 1.3269329071044922 img loss 1.3136612176895142 img loss 1.2898225784301758 img loss 1.2715305089950562 img loss 1.3108744621276855 img loss 1.320651888847351 img loss 1.2799631357192993 img loss 1.3333103656768799 img loss 1.2510284185409546 img loss 1.2407459020614624 img loss 1.2933241128921509 img loss 1.3313541412353516 img loss 1.2465161085128784 img loss 1.3137177228927612 img loss 1.2744934558868408 img loss 1.305772304534912 img loss 1.3009508848190308 img loss 1.3157289028167725 img loss 1.2569468021392822 img loss 1.2980022430419922 img loss 1.285315752029419 img loss 1.2945412397384644 img loss 1.2413349151611328 img loss 1.2423992156982422 img loss 1.2833107709884644 img loss 1.3043231964111328 img loss 1.2971720695495605 img loss 1.339483380317688 img loss 1.265956163406372 img loss 1.415649652481079 img loss 1.3111122846603394 img loss 1.3810756206512451 img loss 1.3227230310440063 img loss 1.2351824045181274 img loss 1.3059430122375488 img loss 1.27530837059021 img loss 1.3031079769134521 img loss 1.3298473358154297 img loss 1.382933259010315 img loss 1.2751688957214355 {'loss': 1.2966, 'grad_norm': 0.27798765897750854, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2160849571228027 img loss 1.1776304244995117 img loss 1.362777829170227 img loss 1.2400708198547363 img loss 1.2093472480773926 img loss 1.2917612791061401 img loss 1.2299010753631592 img loss 1.1957091093063354 img loss 1.2637782096862793 img loss 1.2695213556289673 img loss 1.2724628448486328 img loss 1.244550108909607 img loss 1.2343006134033203 img loss 1.2179946899414062 img loss 1.2232959270477295 img loss 1.1936185359954834 img loss 1.2205913066864014 img loss 1.2339985370635986 img loss 1.2618827819824219 img loss 1.3161165714263916 img loss 1.2353296279907227 img loss 1.1575464010238647 img loss 1.2668062448501587 img loss 1.3144240379333496 img loss 1.2128065824508667 img loss 1.2359464168548584 img loss 1.2786719799041748 img loss 1.2795372009277344 img loss 1.2571940422058105 img loss 1.2336176633834839 img loss 1.248774766921997 img loss 1.2009323835372925 img loss 1.188942313194275 img loss 1.2297264337539673 img loss 1.19817316532135 img loss 1.2268633842468262 img loss 1.1964373588562012 img loss 1.244596004486084 img loss 1.2396410703659058 img loss 1.223433256149292 img loss 1.2158217430114746 img loss 1.177813172340393 img loss 1.185394287109375 img loss 1.2192246913909912 img loss 1.2798432111740112 img loss 1.2479223012924194 img loss 1.1716389656066895 img loss 1.3237062692642212 img loss 1.2230796813964844 img loss 1.2926998138427734 img loss 1.2432057857513428 img loss 1.212764024734497 img loss 1.2272858619689941 img loss 1.2511106729507446 img loss 1.2740440368652344 img loss 1.2212679386138916 img loss 1.1731973886489868 img loss 1.2350994348526 img loss 1.2805794477462769 img loss 1.1677336692810059 img loss 1.3213618993759155 img loss 1.279611587524414 img loss 1.2888587713241577 img loss 1.3187955617904663 img loss 1.2486522197723389 img loss 1.2098802328109741 img loss 1.2722771167755127 img loss 1.2333869934082031 img loss 1.19644296169281 img loss 1.4057691097259521 img loss 1.3068747520446777 img loss 1.1987661123275757 img loss 1.2900333404541016 img loss 1.1911065578460693 img loss 1.1942754983901978 img loss 1.2291276454925537 img loss 1.2528076171875 img loss 1.2827808856964111 img loss 1.2210192680358887 img loss 1.2102794647216797 img loss 1.2385880947113037 img loss 1.254266381263733 img loss 1.259749412536621 img loss 1.2025444507598877 img loss 1.2617696523666382 img loss 1.2612766027450562 img loss 1.2806040048599243 img loss 1.2038242816925049 img loss 1.2658880949020386 img loss 1.241513967514038 img loss 1.1794098615646362 img loss 1.214606761932373 img loss 1.2603023052215576 img loss 1.242226481437683 img loss 1.2641299962997437 img loss 1.2358766794204712 img loss 1.342873454093933 img loss 1.262298583984375 img loss 1.1805819272994995 img loss 1.2722070217132568 img loss 1.2274818420410156 img loss 1.28303861618042 img loss 1.2724655866622925 img loss 1.2944543361663818 img loss 1.2678173780441284 img loss 1.2035812139511108 img loss 1.231238603591919 img loss 1.2724603414535522 img loss 1.2709097862243652 img loss 1.2320388555526733 img loss 1.2152341604232788 img loss 1.2191040515899658 img loss 1.1713148355484009 img loss 1.2243857383728027 img loss 1.182264804840088 img loss 1.2506510019302368 img loss 1.237313985824585 img loss 1.277856469154358 img loss 1.271514654159546 img loss 1.156518816947937 img loss 1.2703981399536133 img loss 1.2542304992675781 img loss 1.2286243438720703 img loss 1.2176029682159424 img loss 1.2404327392578125 img loss 1.196170449256897 img loss 1.3511661291122437 img loss 1.2259775400161743 {'loss': 1.2421, 'grad_norm': 0.2580093443393707, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.214414358139038 img loss 1.2800287008285522 img loss 1.214080810546875 img loss 1.2767605781555176 img loss 1.2078357934951782 img loss 1.219786286354065 img loss 1.2715213298797607 img loss 1.2315328121185303 img loss 1.1826871633529663 img loss 1.2481638193130493 img loss 1.2408602237701416 img loss 1.329192876815796 img loss 1.2119693756103516 img loss 1.1022469997406006 img loss 1.1844907999038696 img loss 1.3260493278503418 img loss 1.2557570934295654 img loss 1.244960069656372 img loss 1.2653098106384277 img loss 1.2599060535430908 img loss 1.2685455083847046 img loss 1.1840860843658447 img loss 1.2282650470733643 img loss 1.2715325355529785 img loss 1.2765476703643799 img loss 1.125028371810913 img loss 1.3341838121414185 img loss 1.2814966440200806 img loss 1.2496088743209839 img loss 1.324952483177185 img loss 1.1685856580734253 img loss 1.231096863746643 img loss 1.3291290998458862 img loss 1.2338812351226807 img loss 1.1773070096969604 img loss 1.2801806926727295 img loss 1.2722018957138062 img loss 1.2527879476547241 img loss 1.1752878427505493 img loss 1.3297333717346191 img loss 1.1994599103927612 img loss 1.198593020439148 img loss 1.2273471355438232 img loss 1.2624638080596924 img loss 1.1759506464004517 img loss 1.1899152994155884 img loss 1.2353847026824951 img loss 1.1076970100402832 img loss 1.2484155893325806 img loss 1.2343933582305908 img loss 1.2197504043579102 img loss 1.3010270595550537 img loss 1.2071014642715454 img loss 1.2392317056655884 img loss 1.1982749700546265 img loss 1.2642154693603516 img loss 1.2635799646377563 img loss 1.2493499517440796 img loss 1.229642629623413 img loss 1.1748578548431396 img loss 1.2161719799041748 img loss 1.2904016971588135 img loss 1.294535517692566 img loss 1.3502086400985718 img loss 1.2317818403244019 img loss 1.33843195438385 img loss 1.1510441303253174 img loss 1.3401018381118774 img loss 1.2543613910675049 img loss 1.2591874599456787 img loss 1.147979497909546 img loss 1.1094926595687866 img loss 1.1711206436157227 img loss 1.2421059608459473 img loss 1.319252848625183 img loss 1.1651333570480347 img loss 1.317626714706421 img loss 1.274728775024414 img loss 1.2441434860229492 img loss 1.23920476436615 img loss 1.1733667850494385 img loss 1.2295633554458618 img loss 1.259732961654663 img loss 1.2568784952163696 img loss 1.2076356410980225 img loss 1.2382980585098267 img loss 1.3194912672042847 img loss 1.2837154865264893 img loss 1.1881511211395264 img loss 1.214648962020874 img loss 1.2729110717773438 img loss 1.1751124858856201 img loss 1.2090585231781006 img loss 1.185295820236206 img loss 1.234389305114746 img loss 1.3754087686538696 img loss 1.208940029144287 img loss 1.3153797388076782 img loss 1.1819710731506348 img loss 1.225036382675171 img loss 1.2304761409759521 img loss 1.2558414936065674 img loss 1.2633686065673828 img loss 1.225921630859375 img loss 1.2638089656829834 img loss 1.2728830575942993 img loss 1.27982497215271 img loss 1.3253173828125 img loss 1.2363176345825195 img loss 1.169325351715088 img loss 1.211159348487854 img loss 1.1934362649917603 img loss 1.2301099300384521 img loss 1.2817375659942627 img loss 1.2169939279556274 img loss 1.2164907455444336 img loss 1.3381092548370361 img loss 1.3315205574035645 img loss 1.1890572309494019 img loss 1.3892794847488403 img loss 1.2982869148254395 img loss 1.2746028900146484 img loss 1.2442821264266968 img loss 1.103147029876709 img loss 1.2615760564804077 img loss 1.2623634338378906 img loss 1.2777563333511353 img loss 1.240225076675415 {'loss': 1.2421, 'grad_norm': 0.40038207173347473, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.250070333480835 img loss 1.314980149269104 img loss 1.3683704137802124 img loss 1.3218942880630493 img loss 1.3197911977767944 img loss 1.2676626443862915 img loss 1.346900224685669 img loss 1.3217079639434814 img loss 1.1836769580841064 img loss 1.3299062252044678 img loss 1.3144978284835815 img loss 1.3407617807388306 img loss 1.18532133102417 img loss 1.29098379611969 img loss 1.294522762298584 img loss 1.2691837549209595 img loss 1.3319898843765259 img loss 1.3091109991073608 img loss 1.3389638662338257 img loss 1.277907133102417 img loss 1.2655351161956787 img loss 1.300261378288269 img loss 1.202993392944336 img loss 1.2448784112930298 img loss 1.3015344142913818 img loss 1.4246593713760376 img loss 1.265737533569336 img loss 1.2472809553146362 img loss 1.2663671970367432 img loss 1.3354700803756714 img loss 1.2412643432617188 img loss 1.3383334875106812 img loss 1.299396276473999 img loss 1.4083696603775024 img loss 1.298262596130371 img loss 1.2216566801071167 img loss 1.3756455183029175 img loss 1.2630536556243896 img loss 1.3180546760559082 img loss 1.3178468942642212 img loss 1.2558330297470093 img loss 1.2693016529083252 img loss 1.2482880353927612 img loss 1.3099782466888428 img loss 1.3270127773284912 img loss 1.379625916481018 img loss 1.2978333234786987 img loss 1.2911114692687988 img loss 1.3282575607299805 img loss 1.2247158288955688 img loss 1.2612441778182983 img loss 1.2883856296539307 img loss 1.266158103942871 img loss 1.2998368740081787 img loss 1.3251570463180542 img loss 1.2761081457138062 img loss 1.3050246238708496 img loss 1.3331505060195923 img loss 1.3554683923721313 img loss 1.2898216247558594 img loss 1.2079315185546875 img loss 1.2546637058258057 img loss 1.2738481760025024 img loss 1.3266661167144775 img loss 1.396856665611267 img loss 1.2768605947494507 img loss 1.2994111776351929 img loss 1.2151151895523071 img loss 1.3026186227798462 img loss 1.2869563102722168 img loss 1.269243597984314 img loss 1.2679193019866943 img loss 1.3101872205734253 img loss 1.2410829067230225 img loss 1.419908046722412 img loss 1.2338100671768188 img loss 1.3245940208435059 img loss 1.3513723611831665 img loss 1.3713890314102173 img loss 1.2937132120132446 img loss 1.303566575050354 img loss 1.2814764976501465 img loss 1.189611792564392img loss 1.241485595703125 img loss 1.3408316373825073 img loss 1.3057167530059814 img loss 1.3950507640838623 img loss 1.3761299848556519 img loss 1.2868151664733887 img loss 1.2173932790756226 img loss 1.3344630002975464 img loss 1.3071491718292236 img loss 1.2789324522018433 img loss 1.236792802810669 img loss 1.3564658164978027 img loss 1.3459800481796265 img loss 1.2982797622680664 img loss 1.3090691566467285 img loss 1.3303031921386719 img loss 1.3659803867340088 img loss 1.3263412714004517 img loss 1.2891048192977905 img loss 1.4267598390579224 img loss 1.2366493940353394 img loss 1.344631552696228 img loss 1.2966680526733398 img loss 1.3668211698532104 img loss 1.3059451580047607 img loss 1.4040379524230957 img loss 1.300121784210205 img loss 1.2991379499435425 img loss 1.2603697776794434 img loss 1.335681676864624 img loss 1.2087934017181396 img loss 1.3054016828536987 img loss 1.208188533782959 img loss 1.3697006702423096 img loss 1.278628945350647 img loss 1.294960379600525 img loss 1.2930721044540405 img loss 1.340457797050476 img loss 1.3276222944259644 img loss 1.2482829093933105 img loss 1.372472882270813 img loss 1.3588169813156128 img loss 1.2321125268936157 img loss 1.3770654201507568 img loss 1.4340431690216064 {'loss': 1.3025, 'grad_norm': 0.3011649250984192, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2409477233886719 img loss 1.1590576171875 img loss 1.1877427101135254 img loss 1.2932262420654297 img loss 1.2876877784729004 img loss 1.2253354787826538 img loss 1.1729017496109009 img loss 1.1961936950683594 img loss 1.2835997343063354 img loss 1.1892356872558594 img loss 1.1958389282226562 img loss 1.3147706985473633 img loss 1.1795320510864258 img loss 1.2106189727783203 img loss 1.2623852491378784 img loss 1.2757190465927124 img loss 1.2600075006484985 img loss 1.2580466270446777 img loss 1.2628275156021118 img loss 1.2503668069839478 img loss 1.2256133556365967 img loss 1.2156705856323242 img loss 1.1625235080718994 img loss 1.1901721954345703 img loss 1.2195919752120972 img loss 1.2632511854171753 img loss 1.2915267944335938 img loss 1.2256263494491577 img loss 1.2528576850891113 img loss 1.2803086042404175 img loss 1.2503178119659424 img loss 1.1440682411193848 img loss 1.30458664894104 img loss 1.1909369230270386 img loss 1.3341572284698486 img loss 1.2040153741836548 img loss 1.2234858274459839 img loss 1.205206274986267 img loss 1.1362091302871704 img loss 1.289536476135254 img loss 1.2757067680358887 img loss 1.2484654188156128 img loss 1.1523163318634033 img loss 1.1805968284606934 img loss 1.202979326248169 img loss 1.1221832036972046 img loss 1.2672665119171143 img loss 1.230162262916565 img loss 1.355860948562622 img loss 1.2388231754302979 img loss 1.274919033050537 img loss 1.2811615467071533 img loss 1.1857513189315796 img loss 1.2293599843978882 img loss 1.2873146533966064 img loss 1.3704811334609985 img loss 1.2558643817901611 img loss 1.209206461906433 img loss 1.2034912109375 img loss 1.244873046875 img loss 1.365840196609497 img loss 1.241722583770752 img loss 1.2292323112487793 img loss 1.1910885572433472 img loss 1.219611644744873 img loss 1.2579429149627686 img loss 1.2803184986114502 img loss 1.2794121503829956 img loss 1.2256618738174438 img loss 1.2696506977081299 img loss 1.2918336391448975 img loss 1.3049201965332031 img loss 1.3423160314559937 img loss 1.2374002933502197 img loss 1.2583353519439697 img loss 1.2551196813583374 img loss 1.2820042371749878 img loss 1.2350702285766602 img loss 1.2150858640670776 img loss 1.2998197078704834 img loss 1.1767592430114746 img loss 1.3213322162628174 img loss 1.2618197202682495 img loss 1.2898354530334473 img loss 1.2383358478546143 img loss 1.240179419517517 img loss 1.2400333881378174 img loss 1.2670029401779175 img loss 1.2384647130966187 img loss 1.2968286275863647 img loss 1.2395247220993042 img loss 1.2291494607925415 img loss 1.1856130361557007 img loss 1.221874713897705 img loss 1.2407935857772827 img loss 1.1975934505462646 img loss 1.2521905899047852 img loss 1.3013654947280884 img loss 1.1317555904388428 img loss 1.2571903467178345 img loss 1.2583208084106445 img loss 1.237760066986084 img loss 1.2427494525909424 img loss 1.2311514616012573 img loss 1.2552307844161987 img loss 1.2746529579162598 img loss 1.1767348051071167 img loss 1.2037200927734375 img loss 1.2755992412567139 img loss 1.2625324726104736 img loss 1.2955687046051025 img loss 1.2316241264343262 img loss 1.2699015140533447 img loss 1.247387170791626 img loss 1.2337687015533447 img loss 1.229085922241211 img loss 1.167887568473816 img loss 1.2714879512786865 img loss 1.2409523725509644 img loss 1.2382704019546509 img loss 1.2716617584228516 img loss 1.1885221004486084 img loss 1.2190979719161987 img loss 1.2012286186218262 img loss 1.252327799797058 img loss 1.239478588104248 img loss 1.1648869514465332 img loss 1.2570463418960571 {'loss': 1.2413, 'grad_norm': 0.3422169089317322, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2148456573486328 img loss 1.1858570575714111 img loss 1.2081835269927979 img loss 1.228220820426941 img loss 1.2844648361206055 img loss 1.2510695457458496 img loss 1.2604506015777588 img loss 1.2193713188171387 img loss 1.2036179304122925 img loss 1.257481575012207 img loss 1.2211213111877441 img loss 1.2481588125228882 img loss 1.2201766967773438 img loss 1.2561190128326416 img loss 1.2310614585876465 img loss 1.2284473180770874 img loss 1.3022136688232422 img loss 1.2320657968521118 img loss 1.2193617820739746 img loss 1.2445528507232666 img loss 1.2790007591247559 img loss 1.1564338207244873 img loss 1.210317611694336 img loss 1.3169403076171875 img loss 1.2465060949325562 img loss 1.2773451805114746 img loss 1.228990077972412 img loss 1.1832647323608398 img loss 1.2563663721084595 img loss 1.1604984998703003 img loss 1.2346372604370117 img loss 1.2274715900421143 img loss 1.3499845266342163 img loss 1.267814040184021 img loss 1.2115607261657715 img loss 1.2986390590667725 img loss 1.2965620756149292 img loss 1.2313847541809082 img loss 1.2443691492080688 img loss 1.1627609729766846 img loss 1.18972647190094 img loss 1.286145806312561 img loss 1.3846218585968018 img loss 1.2749714851379395 img loss 1.2124661207199097 img loss 1.1561241149902344 img loss 1.275796890258789 img loss 1.2415251731872559 img loss 1.1720942258834839 img loss 1.1777551174163818 img loss 1.227390170097351 img loss 1.2504485845565796 img loss 1.2839607000350952 img loss 1.2438328266143799 img loss 1.2054437398910522 img loss 1.2175947427749634 img loss 1.2123754024505615 img loss 1.235239863395691 img loss 1.203883409500122 img loss 1.2346121072769165 img loss 1.2218284606933594 img loss 1.2413914203643799 img loss 1.2435541152954102 img loss 1.277293086051941 img loss 1.2249388694763184 img loss 1.2865333557128906 img loss 1.2783184051513672 img loss 1.2576732635498047 img loss 1.2588304281234741 img loss 1.2995352745056152 img loss 1.3430255651474 img loss 1.2060514688491821 img loss 1.3163275718688965 img loss 1.25436270236969 img loss 1.1998343467712402 img loss 1.192657709121704 img loss 1.2349895238876343 img loss 1.2600719928741455 img loss 1.253432035446167 img loss 1.28448486328125 img loss 1.2336667776107788 img loss 1.2391656637191772 img loss 1.2306984663009644 img loss 1.225695013999939 img loss 1.2491145133972168 img loss 1.305108904838562 img loss 1.2969696521759033 img loss 1.1913613080978394 img loss 1.2061764001846313 img loss 1.2220138311386108 img loss 1.210928201675415 img loss 1.278076171875 img loss 1.2917245626449585 img loss 1.2495304346084595 img loss 1.2237285375595093img loss 1.2797859907150269 img loss 1.1905864477157593 img loss 1.2188389301300049 img loss 1.223395586013794 img loss 1.2699830532073975 img loss 1.1976746320724487img loss 1.303699254989624img loss 1.2079960107803345 img loss 1.2193539142608643 img loss 1.2443917989730835 img loss 1.2821029424667358 img loss 1.231898546218872 img loss 1.2599544525146484 img loss 1.314056396484375 img loss 1.2785218954086304 img loss 1.2090551853179932 img loss 1.3156819343566895 img loss 1.260839819908142 img loss 1.2460170984268188 img loss 1.235491394996643 img loss 1.208815097808838 img loss 1.2064671516418457 img loss 1.2736661434173584 img loss 1.1574840545654297 img loss 1.2311691045761108img loss 1.2680295705795288 img loss 1.197518229484558 img loss 1.2662855386734009 img loss 1.201387882232666 img loss 1.245431661605835 img loss 1.2575006484985352 img loss 1.227746605873108 img loss 1.1755565404891968 {'loss': 1.2417, 'grad_norm': 0.24249176681041718, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5229843854904175 img loss 1.595467448234558 img loss 1.6290154457092285 img loss 1.6163252592086792 img loss 1.6184742450714111 img loss 1.5758614540100098 img loss 1.7372859716415405 img loss 1.8620021343231201 img loss 1.5268189907073975 img loss 1.4832777976989746 img loss 1.5254853963851929 img loss 1.5596665143966675 img loss 1.6447596549987793 img loss 1.552805781364441 img loss 1.6594094038009644 img loss 1.6010795831680298 img loss 1.6948504447937012 img loss 1.6604769229888916 img loss 1.6261757612228394 img loss 1.6046802997589111 img loss 1.601643443107605 img loss 1.676605463027954 img loss 1.679948329925537 img loss 1.5645251274108887 img loss 1.6891858577728271 img loss 1.7490674257278442 img loss 1.7327451705932617 img loss 1.5018019676208496 img loss 1.730403184890747 img loss 1.6500471830368042 img loss 1.6795960664749146 img loss 1.5097397565841675 img loss 1.5366634130477905 img loss 1.5668240785598755 img loss 1.6764589548110962 img loss 1.749333381652832 img loss 1.742240071296692 img loss 1.7418699264526367 img loss 1.785894513130188 img loss 1.5098967552185059 img loss 1.6244347095489502 img loss 1.6006605625152588 img loss 1.7160574197769165 img loss 1.6817114353179932 img loss 1.5599416494369507 img loss 1.8197917938232422 img loss 1.5955803394317627 img loss 1.5503723621368408 img loss 1.5394623279571533 img loss 1.6287696361541748 img loss 1.6584759950637817 img loss 1.7711795568466187 img loss 1.6862574815750122 img loss 1.7534537315368652 img loss 1.5658471584320068 img loss 1.7295719385147095 img loss 1.7020703554153442 img loss 1.8002219200134277 img loss 1.755275011062622 img loss 1.6328274011611938 img loss 1.6547950506210327 img loss 1.5437710285186768 img loss 1.6309876441955566 img loss 1.5266164541244507 img loss 1.6560925245285034 img loss 1.6123706102371216 img loss 1.6511651277542114 img loss 1.7257728576660156 img loss 1.5468553304672241 img loss 1.6412354707717896 img loss 1.8305423259735107 img loss 1.6030224561691284 img loss 1.7453254461288452 img loss 1.7022812366485596 img loss 1.6235194206237793 img loss 1.9197590351104736 img loss 1.6572697162628174 img loss 1.641518235206604 img loss 1.6239392757415771 img loss 1.6736587285995483 img loss 1.6631895303726196 img loss 1.6895039081573486 img loss 1.8752820491790771 img loss 1.6475476026535034 img loss 1.7638788223266602 img loss 1.5402950048446655 img loss 1.6573454141616821 img loss 1.594783067703247 img loss 1.6896798610687256 img loss 1.7129842042922974 img loss 1.5847547054290771 img loss 1.7707312107086182 img loss 1.522984266281128 img loss 1.7801965475082397 img loss 1.6713083982467651 img loss 1.6447579860687256 img loss 1.6300374269485474 img loss 1.548179030418396 img loss 1.8383617401123047 img loss 1.5671807527542114 img loss 1.6737455129623413 img loss 1.7192223072052002 img loss 1.569630742073059 img loss 1.76858389377594 img loss 1.7354758977890015 img loss 1.677677035331726 img loss 1.7388917207717896 img loss 1.720895528793335 img loss 1.620483636856079 img loss 1.8484193086624146 img loss 1.7284297943115234 img loss 1.6450774669647217 img loss 1.9557244777679443 img loss 1.681653380393982 img loss 1.7796823978424072 img loss 1.6834524869918823 img loss 1.7186397314071655 img loss 1.6471422910690308 img loss 1.7185758352279663 img loss 1.6262093782424927 img loss 1.5758610963821411 img loss 1.6359909772872925 img loss 1.8066816329956055 img loss 1.719152569770813 img loss 1.5834256410598755 img loss 1.7052031755447388 img loss 1.596881628036499 img loss 1.6598700284957886 {'loss': 1.6632, 'grad_norm': 0.620364785194397, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2767457962036133 img loss 1.2310622930526733 img loss 1.2984377145767212 img loss 1.2265675067901611 img loss 1.2731374502182007 img loss 1.2673612833023071 img loss 1.2468466758728027 img loss 1.225663423538208 img loss 1.2472217082977295 img loss 1.2240996360778809 img loss 1.256624698638916img loss 1.2550406455993652 img loss 1.261949896812439 img loss 1.3871190547943115 img loss 1.2577929496765137 img loss 1.2406041622161865 img loss 1.2886042594909668 img loss 1.2312997579574585 img loss 1.2418612241744995 img loss 1.281477451324463 img loss 1.2215874195098877 img loss 1.2696160078048706 img loss 1.2456297874450684 img loss 1.2353273630142212 img loss 1.2184823751449585 img loss 1.2821769714355469 img loss 1.273180603981018 img loss 1.237687110900879 img loss 1.2752913236618042 img loss 1.2688664197921753 img loss 1.236434817314148 img loss 1.2783403396606445 img loss 1.2349143028259277 img loss 1.2192579507827759 img loss 1.2176307439804077 img loss 1.3050804138183594 img loss 1.3188567161560059 img loss 1.2209433317184448 img loss 1.3037631511688232 img loss 1.2418562173843384 img loss 1.2601953744888306 img loss 1.3057140111923218 img loss 1.2400120496749878 img loss 1.2162672281265259 img loss 1.2705390453338623 img loss 1.20549476146698 img loss 1.234511137008667 img loss 1.2514019012451172 img loss 1.2794089317321777img loss 1.2534301280975342 img loss 1.3114452362060547 img loss 1.2526493072509766 img loss 1.2420156002044678 img loss 1.245337724685669 img loss 1.227299451828003 img loss 1.259744644165039 img loss 1.2788021564483643 img loss 1.2561079263687134 img loss 1.2913252115249634 img loss 1.2774494886398315 img loss 1.2150312662124634 img loss 1.2910356521606445 img loss 1.2631726264953613 img loss 1.2056934833526611 img loss 1.2216072082519531 img loss 1.2569005489349365 img loss 1.3154325485229492 img loss 1.2506787776947021 img loss 1.2377312183380127 img loss 1.2880626916885376 img loss 1.2073835134506226 img loss 1.223482608795166 img loss 1.2394787073135376 img loss 1.2530750036239624 img loss 1.3499047756195068 img loss 1.2512272596359253 img loss 1.2241909503936768 img loss 1.3110935688018799 img loss 1.2514123916625977 img loss 1.2458441257476807 img loss 1.264534831047058 img loss 1.2483619451522827 img loss 1.3006155490875244 img loss 1.3167804479599 img loss 1.2331968545913696 img loss 1.2870731353759766 img loss 1.259102463722229 img loss 1.2233123779296875 img loss 1.2139652967453003 img loss 1.310929298400879 img loss 1.2820934057235718 img loss 1.2580393552780151 img loss 1.2821862697601318 img loss 1.2576274871826172 img loss 1.2994669675827026 img loss 1.253788709640503 img loss 1.2847132682800293 img loss 1.2415441274642944 img loss 1.2615879774093628 img loss 1.2546097040176392 img loss 1.236735224723816 img loss 1.2436827421188354 img loss 1.2581695318222046 img loss 1.2028738260269165 img loss 1.2332929372787476 img loss 1.3112932443618774 img loss 1.3098597526550293 img loss 1.254133701324463 img loss 1.2472152709960938 img loss 1.278076171875 img loss 1.2674176692962646 img loss 1.303999900817871 img loss 1.2399219274520874 img loss 1.2240513563156128 img loss 1.2619426250457764 img loss 1.2609095573425293 img loss 1.2264374494552612 img loss 1.2680912017822266 img loss 1.2271314859390259 img loss 1.2739046812057495 img loss 1.2146068811416626 img loss 1.3130210638046265 img loss 1.2612133026123047 img loss 1.2749203443527222 img loss 1.2710827589035034 img loss 1.3033063411712646 img loss 1.2718029022216797 img loss 1.2733421325683594 {'loss': 1.2596, 'grad_norm': 0.282906174659729, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.25238037109375 img loss 1.2906599044799805 img loss 1.2297331094741821 img loss 1.1647186279296875 img loss 1.2033497095108032 img loss 1.3032735586166382 img loss 1.1955528259277344 img loss 1.2305264472961426 img loss 1.2064754962921143 img loss 1.1957098245620728 img loss 1.272646427154541 img loss 1.3156449794769287 img loss 1.2435171604156494 img loss 1.1975388526916504 img loss 1.171154260635376 img loss 1.2104519605636597 img loss 1.3166770935058594 img loss 1.198995590209961 img loss 1.1813486814498901 img loss 1.180580496788025 img loss 1.209938406944275 img loss 1.2216514348983765 img loss 1.2183442115783691 img loss 1.227414608001709 img loss 1.1766083240509033 img loss 1.272559404373169 img loss 1.217455506324768 img loss 1.2450565099716187 img loss 1.2209409475326538 img loss 1.2335236072540283 img loss 1.173492670059204 img loss 1.181800127029419 img loss 1.2273037433624268 img loss 1.1351324319839478 img loss 1.2576605081558228 img loss 1.2384201288223267 img loss 1.1775352954864502 img loss 1.1763091087341309 img loss 1.2137326002120972 img loss 1.1704521179199219 img loss 1.2093337774276733 img loss 1.2500865459442139 img loss 1.0962156057357788 img loss 1.2004817724227905 img loss 1.2045124769210815 img loss 1.1735137701034546 img loss 1.21467924118042 img loss 1.2181944847106934 img loss 1.2006595134735107 img loss 1.22231125831604 img loss 1.158562183380127 img loss 1.2172554731369019 img loss 1.2060799598693848 img loss 1.2322125434875488 img loss 1.195875883102417 img loss 1.2759674787521362 img loss 1.2335405349731445 img loss 1.1829229593276978 img loss 1.2555814981460571 img loss 1.269454836845398 img loss 1.2529371976852417 img loss 1.2553409337997437 img loss 1.165322184562683 img loss 1.2243812084197998 img loss 1.180255651473999 img loss 1.1783370971679688 img loss 1.2079713344573975 img loss 1.2072463035583496 img loss 1.244969129562378 img loss 1.1287322044372559 img loss 1.2164781093597412 img loss 1.3031387329101562 img loss 1.2183088064193726 img loss 1.1515697240829468 img loss 1.2380977869033813 img loss 1.1641290187835693 img loss 1.1553380489349365 img loss 1.2549033164978027 img loss 1.2263644933700562 img loss 1.2746814489364624 img loss 1.223525881767273 img loss 1.2085449695587158 img loss 1.230986475944519 img loss 1.1371533870697021 img loss 1.2490260601043701 img loss 1.191548228263855 img loss 1.1990602016448975 img loss 1.2253894805908203 img loss 1.2099888324737549 img loss 1.199705958366394 img loss 1.229653000831604 img loss 1.228534460067749 img loss 1.2502474784851074 img loss 1.1846654415130615 img loss 1.2569937705993652 img loss 1.2141854763031006 img loss 1.2006584405899048 img loss 1.1801509857177734 img loss 1.1917212009429932 img loss 1.2208824157714844 img loss 1.2361137866973877 img loss 1.225063681602478 img loss 1.2393722534179688 img loss 1.2043604850769043 img loss 1.2313629388809204 img loss 1.2439154386520386 img loss 1.2128225564956665 img loss 1.2185801267623901 img loss 1.178504467010498 img loss 1.217110514640808 img loss 1.2644983530044556 img loss 1.2481122016906738 img loss 1.22969388961792 img loss 1.235403060913086 img loss 1.1700422763824463 img loss 1.1463819742202759 img loss 1.2840038537979126 img loss 1.1880635023117065 img loss 1.2079250812530518 img loss 1.239316701889038 img loss 1.2067610025405884 img loss 1.2426671981811523 img loss 1.199768304824829 img loss 1.1762021780014038 img loss 1.1693928241729736 img loss 1.19002366065979 img loss 1.2548929452896118 img loss 1.2279865741729736 {'loss': 1.2152, 'grad_norm': 0.3833436369895935, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2394882440567017 img loss 1.2404937744140625 img loss 1.1908315420150757 img loss 1.1837800741195679 img loss 1.1946719884872437 img loss 1.2532742023468018 img loss 1.2097489833831787 img loss 1.280779242515564 img loss 1.2167593240737915 img loss 1.2193015813827515 img loss 1.2047609090805054 img loss 1.244386911392212 img loss 1.2747890949249268 img loss 1.2175772190093994 img loss 1.1945650577545166 img loss 1.1436612606048584 img loss 1.2762755155563354 img loss 1.2576960325241089 img loss 1.2402962446212769 img loss 1.3410398960113525 img loss 1.1990307569503784 img loss 1.2481443881988525 img loss 1.3051313161849976 img loss 1.2248547077178955 img loss 1.327117919921875 img loss 1.2351651191711426 img loss 1.201690435409546 img loss 1.2722721099853516 img loss 1.2782152891159058 img loss 1.2127909660339355 img loss 1.3115341663360596 img loss 1.2511515617370605 img loss 1.332226276397705 img loss 1.2543667554855347 img loss 1.2480878829956055img loss 1.2286908626556396 img loss 1.1348627805709839 img loss 1.1900057792663574 img loss 1.1906583309173584 img loss 1.2259747982025146 img loss 1.2482731342315674 img loss 1.2329050302505493 img loss 1.2337652444839478 img loss 1.2408984899520874 img loss 1.195865511894226 img loss 1.233785629272461 img loss 1.240423560142517 img loss 1.1849744319915771 img loss 1.2449796199798584 img loss 1.1996132135391235 img loss 1.2710680961608887 img loss 1.2160017490386963 img loss 1.2120797634124756 img loss 1.2395120859146118 img loss 1.2538318634033203 img loss 1.2832335233688354 img loss 1.2443197965621948 img loss 1.2287105321884155img loss 1.2568196058273315 img loss 1.2106579542160034 img loss 1.2786928415298462 img loss 1.2621809244155884 img loss 1.2027381658554077 img loss 1.2885805368423462 img loss 1.1891372203826904 img loss 1.1694015264511108 img loss 1.2316808700561523 img loss 1.2213367223739624 img loss 1.2269176244735718img loss 1.234779953956604 img loss 1.2306407690048218 img loss 1.2669025659561157 img loss 1.2331873178482056 img loss 1.230233073234558 img loss 1.26436448097229 img loss 1.2527079582214355 img loss 1.228362798690796 img loss 1.179814338684082 img loss 1.3175724744796753 img loss 1.2832151651382446 img loss 1.1966480016708374 img loss 1.2751444578170776 img loss 1.2450220584869385 img loss 1.2545894384384155 img loss 1.242611289024353 img loss 1.20510733127594 img loss 1.2941293716430664 img loss 1.2084035873413086 img loss 1.2850923538208008 img loss 1.2475600242614746 img loss 1.2482235431671143 img loss 1.226527452468872 img loss 1.2700119018554688 img loss 1.2361894845962524 img loss 1.2398747205734253 img loss 1.2771904468536377 img loss 1.1890828609466553 img loss 1.2493971586227417 img loss 1.2401665449142456 img loss 1.3006525039672852 img loss 1.28643000125885 img loss 1.226846694946289 img loss 1.2570806741714478 img loss 1.2688560485839844 img loss 1.2406601905822754 img loss 1.1927142143249512 img loss 1.199472188949585 img loss 1.2717056274414062 img loss 1.226772665977478img loss 1.2028553485870361img loss 1.3076331615447998 img loss 1.2489161491394043 img loss 1.3104112148284912 img loss 1.280718207359314 img loss 1.2239863872528076 img loss 1.1990340948104858 img loss 1.2738592624664307 img loss 1.2529348134994507 img loss 1.2249151468276978 img loss 1.2768601179122925img loss 1.2271066904067993img loss 1.2248942852020264 img loss 1.266434907913208 img loss 1.2037479877471924 img loss 1.2252305746078491 img loss 1.234191656112671 img loss 1.2457160949707031 img loss 1.2713561058044434 {'loss': 1.2403, 'grad_norm': 0.28445810079574585, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2113988399505615 img loss 1.192910075187683 img loss 1.2030463218688965 img loss 1.205786943435669 img loss 1.1843979358673096 img loss 1.2238584756851196 img loss 1.2252514362335205 img loss 1.2932510375976562 img loss 1.202768325805664 img loss 1.2976067066192627 img loss 1.2689170837402344 img loss 1.2535433769226074 img loss 1.2684416770935059 img loss 1.248340368270874 img loss 1.2326469421386719 img loss 1.2668073177337646 img loss 1.2786710262298584 img loss 1.2085825204849243 img loss 1.1969114542007446 img loss 1.2298851013183594 img loss 1.2162646055221558 img loss 1.2706530094146729 img loss 1.3027805089950562 img loss 1.1958870887756348 img loss 1.2307469844818115 img loss 1.2530850172042847 img loss 1.2347354888916016 img loss 1.23392915725708 img loss 1.166521668434143 img loss 1.2849292755126953 img loss 1.1968414783477783 img loss 1.2544832229614258 img loss 1.2011321783065796 img loss 1.2437199354171753 img loss 1.277902603149414 img loss 1.2242103815078735 img loss 1.219643235206604 img loss 1.3028820753097534 img loss 1.1376454830169678 img loss 1.3087962865829468 img loss 1.2483289241790771 img loss 1.2266600131988525 img loss 1.2375439405441284 img loss 1.1963127851486206 img loss 1.2245965003967285 img loss 1.3024471998214722 img loss 1.181843638420105 img loss 1.241461157798767 img loss 1.2446955442428589 img loss 1.1948542594909668 img loss 1.1984400749206543 img loss 1.1648527383804321 img loss 1.166067123413086 img loss 1.2741081714630127 img loss 1.2047699689865112 img loss 1.2640342712402344 img loss 1.2487671375274658 img loss 1.1789982318878174 img loss 1.2728395462036133 img loss 1.2501856088638306 img loss 1.2588045597076416 img loss 1.2200497388839722 img loss 1.1910700798034668 img loss 1.2330641746520996 img loss 1.208504557609558 img loss 1.3321287631988525 img loss 1.2425369024276733 img loss 1.2141430377960205 img loss 1.2874960899353027 img loss 1.1944961547851562 img loss 1.2295873165130615 img loss 1.2446941137313843 img loss 1.2297128438949585 img loss 1.2218353748321533 img loss 1.183774709701538 img loss 1.2515827417373657 img loss 1.2577956914901733 img loss 1.3030908107757568 img loss 1.237544298171997 img loss 1.2089440822601318 img loss 1.282159686088562 img loss 1.2755285501480103 img loss 1.2071281671524048 img loss 1.221214771270752 img loss 1.2678091526031494 img loss 1.2307037115097046 img loss 1.2080516815185547 img loss 1.2500466108322144 img loss 1.176735758781433 img loss 1.2236566543579102 img loss 1.2171192169189453 img loss 1.225698471069336 img loss 1.2224838733673096 img loss 1.1795649528503418 img loss 1.163440465927124 img loss 1.2713425159454346 img loss 1.2058290243148804 img loss 1.250025987625122 img loss 1.215890645980835 img loss 1.2445416450500488 img loss 1.1958974599838257 img loss 1.1885956525802612 img loss 1.2128920555114746 img loss 1.2330052852630615 img loss 1.2714550495147705 img loss 1.2132898569107056 img loss 1.2527213096618652 img loss 1.2211430072784424 img loss 1.257453203201294 img loss 1.2611547708511353 img loss 1.2488983869552612 img loss 1.1802691221237183 img loss 1.168884038925171 img loss 1.2602670192718506 img loss 1.2606433629989624 img loss 1.1978057622909546 img loss 1.2705848217010498 img loss 1.2637070417404175 img loss 1.295019507408142 img loss 1.2712492942810059 img loss 1.2472761869430542 img loss 1.1949125528335571 img loss 1.22850501537323 img loss 1.2120798826217651 img loss 1.2158282995224 img loss 1.2349522113800049 img loss 1.2033523321151733 img loss 1.2447834014892578 {'loss': 1.2326, 'grad_norm': 0.3710760474205017, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2338757514953613 img loss 1.2464959621429443 img loss 1.263458013534546 img loss 1.2064018249511719 img loss 1.269673228263855 img loss 1.2176624536514282 img loss 1.5236610174179077 img loss 1.1503161191940308 img loss 1.3438671827316284 img loss 1.2741808891296387 img loss 1.2811198234558105 img loss 1.2568010091781616 img loss 1.1876261234283447 img loss 1.3181685209274292 img loss 1.2607609033584595 img loss 1.1953554153442383 img loss 1.1913788318634033 img loss 1.2457401752471924 img loss 1.369290828704834 img loss 1.199495792388916 img loss 1.3150471448898315 img loss 1.2637138366699219 img loss 1.1970207691192627 img loss 1.3024307489395142 img loss 1.1966145038604736 img loss 1.3333419561386108 img loss 1.2555245161056519 img loss 1.218200922012329 img loss 1.455176830291748 img loss 1.3785864114761353 img loss 1.214937686920166 img loss 1.304677963256836 img loss 1.271971583366394 img loss 1.30661141872406 img loss 1.2212963104248047 img loss 1.3607079982757568 img loss 1.287341833114624 img loss 1.227294683456421 img loss 1.3193820714950562 img loss 1.297666311264038 img loss 1.2285622358322144 img loss 1.2724416255950928 img loss 1.2781834602355957 img loss 1.2344863414764404 img loss 1.2401245832443237 img loss 1.287474274635315 img loss 1.205735683441162 img loss 1.260223388671875 img loss 1.2635016441345215 img loss 1.3174374103546143 img loss 1.2674928903579712 img loss 1.3064751625061035 img loss 1.166702151298523 img loss 1.260133147239685 img loss 1.186713695526123 img loss 1.271342158317566 img loss 1.326297402381897 img loss 1.3395028114318848 img loss 1.2488298416137695 img loss 1.3043251037597656 img loss 1.341789960861206 img loss 1.2175663709640503 img loss 1.32417893409729 img loss 1.3261417150497437 img loss 1.3292829990386963 img loss 1.270029902458191 img loss 1.2104767560958862 img loss 1.243849277496338 img loss 1.258255958557129 img loss 1.284826636314392 img loss 1.1787420511245728 img loss 1.1961441040039062 img loss 1.2341172695159912 img loss 1.28316068649292 img loss 1.2561756372451782 img loss 1.291490077972412 img loss 1.3987536430358887 img loss 1.3453704118728638 img loss 1.2710978984832764 img loss 1.2442289590835571 img loss 1.1608846187591553 img loss 1.2935813665390015 img loss 1.2474676370620728 img loss 1.3651652336120605 img loss 1.2148302793502808 img loss 1.3568990230560303 img loss 1.2733783721923828 img loss 1.2294933795928955 img loss 1.269285798072815 img loss 1.281304955482483 img loss 1.2301257848739624 img loss 1.196724772453308 img loss 1.2575801610946655 img loss 1.3183008432388306 img loss 1.2846336364746094 img loss 1.2699142694473267 img loss 1.2424968481063843 img loss 1.2417514324188232 img loss 1.2307595014572144 img loss 1.2618727684020996 img loss 1.2929643392562866 img loss 1.2410471439361572 img loss 1.3218927383422852 img loss 1.2435537576675415 img loss 1.2994861602783203 img loss 1.300050973892212 img loss 1.2498085498809814 img loss 1.2309331893920898 img loss 1.361489176750183 img loss 1.2254610061645508 img loss 1.2166352272033691 img loss 1.261089563369751 img loss 1.2117658853530884 img loss 1.3584712743759155 img loss 1.3172903060913086 img loss 1.2001135349273682 img loss 1.2997090816497803 img loss 1.3263918161392212 img loss 1.3175605535507202 img loss 1.2595973014831543 img loss 1.197202205657959 img loss 1.2222023010253906 img loss 1.2269929647445679 img loss 1.2740769386291504 img loss 1.305459976196289 img loss 1.2127386331558228 img loss 1.247269868850708 img loss 1.2593748569488525 {'loss': 1.2691, 'grad_norm': 0.25049516558647156, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.353748083114624 img loss 1.324235439300537 img loss 1.3114678859710693 img loss 1.3728938102722168 img loss 1.2876571416854858 img loss 1.4311715364456177 img loss 1.3930407762527466 img loss 1.2567545175552368 img loss 1.2707555294036865 img loss 1.252786636352539 img loss 1.3191676139831543 img loss 1.3265074491500854 img loss 1.3988367319107056 img loss 1.4181205034255981 img loss 1.3278160095214844 img loss 1.4075769186019897 img loss 1.35165274143219 img loss 1.2087602615356445 img loss 1.358672022819519 img loss 1.4616094827651978 img loss 1.3668360710144043 img loss 1.4524425268173218 img loss 1.2801871299743652 img loss 1.555235505104065 img loss 1.3502519130706787 img loss 1.3182425498962402 img loss 1.3906168937683105 img loss 1.4280422925949097 img loss 1.405910849571228 img loss 1.3468451499938965 img loss 1.342590570449829img loss 1.3945326805114746 img loss 1.3696047067642212 img loss 1.3805973529815674 img loss 1.256894588470459 img loss 1.3385450839996338 img loss 1.3372148275375366 img loss 1.3104695081710815 img loss 1.427252173423767 img loss 1.356728434562683 img loss 1.3632919788360596 img loss 1.253122329711914 img loss 1.3806977272033691 img loss 1.3739289045333862 img loss 1.3136096000671387 img loss 1.283092975616455 img loss 1.414159893989563 img loss 1.424936056137085 img loss 1.2762930393218994 img loss 1.360414981842041 img loss 1.4163230657577515 img loss 1.2775893211364746 img loss 1.3352458477020264 img loss 1.3346010446548462 img loss 1.2285704612731934 img loss 1.3292814493179321 img loss 1.428036093711853 img loss 1.4605897665023804 img loss 1.3056591749191284 img loss 1.4050241708755493 img loss 1.3973772525787354 img loss 1.309013843536377 img loss 1.3491475582122803 img loss 1.3872243165969849 img loss 1.2854623794555664 img loss 1.2671582698822021 img loss 1.2967242002487183 img loss 1.45004141330719 img loss 1.3605763912200928 img loss 1.3476548194885254 img loss 1.2970339059829712 img loss 1.3006031513214111 img loss 1.416208028793335 img loss 1.38944411277771 img loss 1.2335785627365112 img loss 1.2975361347198486 img loss 1.3122937679290771 img loss 1.3785356283187866 img loss 1.3265621662139893 img loss 1.4168906211853027 img loss 1.3109010457992554 img loss 1.3430588245391846 img loss 1.3574236631393433 img loss 1.3760496377944946 img loss 1.4165091514587402 img loss 1.4138922691345215 img loss 1.4077942371368408 img loss 1.4630781412124634 img loss 1.415329098701477 img loss 1.421851634979248 img loss 1.3706837892532349 img loss 1.3075082302093506 img loss 1.4270930290222168 img loss 1.4015663862228394 img loss 1.2747077941894531 img loss 1.3798630237579346 img loss 1.3831063508987427img loss 1.2622493505477905 img loss 1.250990629196167 img loss 1.4507735967636108 img loss 1.3445277214050293 img loss 1.4839385747909546 img loss 1.4361417293548584 img loss 1.452083706855774 img loss 1.2537790536880493 img loss 1.3172566890716553 img loss 1.4328562021255493 img loss 1.4825044870376587 img loss 1.2988885641098022 img loss 1.369250774383545 img loss 1.3119072914123535 img loss 1.4162801504135132 img loss 1.2496438026428223 img loss 1.3043286800384521 img loss 1.3943095207214355 img loss 1.3439946174621582 img loss 1.4444692134857178 img loss 1.316095232963562 img loss 1.2664153575897217 img loss 1.3163903951644897 img loss 1.417495608329773 img loss 1.3825536966323853 img loss 1.345536470413208 img loss 1.3826848268508911 img loss 1.309061884880066 img loss 1.4216090440750122 img loss 1.3957027196884155 img loss 1.421019196510315 {'loss': 1.3576, 'grad_norm': 0.3152766823768616, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1282672882080078 img loss 1.330081582069397 img loss 1.2259249687194824 img loss 1.1899946928024292 img loss 1.2634847164154053 img loss 1.222019076347351 img loss 1.1980018615722656 img loss 1.268297791481018 img loss 1.088386058807373 img loss 1.303354263305664 img loss 1.3091033697128296 img loss 1.2552465200424194 img loss 1.1316155195236206 img loss 1.213753581047058 img loss 1.2860126495361328 img loss 1.1353793144226074 img loss 1.1956485509872437 img loss 1.181739330291748 img loss 1.2386499643325806 img loss 1.2493889331817627 img loss 1.3724082708358765 img loss 1.2027262449264526 img loss 1.225752592086792 img loss 1.1942801475524902 img loss 1.2524994611740112 img loss 1.1548850536346436 img loss 1.2042295932769775 img loss 1.2571895122528076 img loss 1.16255521774292 img loss 1.2150465250015259 img loss 1.312532663345337 img loss 1.3235383033752441 img loss 1.2670435905456543 img loss 1.160173773765564 img loss 1.3879095315933228 img loss 1.1437675952911377 img loss 1.2567118406295776 img loss 1.2753876447677612 img loss 1.2114677429199219 img loss 1.2129007577896118 img loss 1.3151172399520874 img loss 1.206515908241272 img loss 1.3268346786499023 img loss 1.2960851192474365 img loss 1.1729322671890259 img loss 1.2825626134872437 img loss 1.2820804119110107 img loss 1.1565766334533691 img loss 1.2060377597808838 img loss 1.2970600128173828 img loss 1.2475638389587402 img loss 1.1788270473480225 img loss 1.1892989873886108 img loss 1.21842360496521 img loss 1.2590821981430054 img loss 1.2963387966156006 img loss 1.1994595527648926 img loss 1.224219560623169 img loss 1.3004496097564697 img loss 1.2151902914047241 img loss 1.2271302938461304 img loss 1.2084071636199951 img loss 1.2006632089614868 img loss 1.2567678689956665 img loss 1.294076681137085 img loss 1.189756989479065 img loss 1.2462122440338135 img loss 1.2053070068359375 img loss 1.22664213180542 img loss 1.2552125453948975 img loss 1.2117118835449219 img loss 1.251937747001648 img loss 1.3051642179489136 img loss 1.2872318029403687 img loss 1.2379200458526611 img loss 1.1680424213409424 img loss 1.256069540977478 img loss 1.2320477962493896 img loss 1.2031512260437012 img loss 1.2700456380844116 img loss 1.2371639013290405 img loss 1.2499741315841675 img loss 1.2716509103775024 img loss 1.2561787366867065 img loss 1.1949517726898193 img loss 1.2056509256362915 img loss 1.2073860168457031 img loss 1.21256685256958 img loss 1.1947665214538574 img loss 1.2163208723068237 img loss 1.210696816444397 img loss 1.2900851964950562 img loss 1.232949137687683 img loss 1.2456042766571045 img loss 1.1508173942565918 img loss 1.261434555053711 img loss 1.2621268033981323 img loss 1.2235279083251953 img loss 1.1714725494384766 img loss 1.3391019105911255 img loss 1.181422472000122 img loss 1.3405357599258423 img loss 1.1740291118621826 img loss 1.2208149433135986 img loss 1.229297399520874 img loss 1.1467511653900146 img loss 1.284308671951294 img loss 1.2381960153579712 img loss 1.198229432106018 img loss 1.2596302032470703 img loss 1.1417262554168701 img loss 1.1756881475448608 img loss 1.2132889032363892 img loss 1.151679515838623 img loss 1.2186578512191772 img loss 1.176790714263916 img loss 1.1819158792495728 img loss 1.1725629568099976 img loss 1.1556613445281982 img loss 1.2282856702804565 img loss 1.1661529541015625 img loss 1.2592110633850098 img loss 1.2200984954833984 img loss 1.1938703060150146 img loss 1.1373556852340698 img loss 1.184425711631775 img loss 1.0740139484405518 img loss 1.2196673154830933 {'loss': 1.2265, 'grad_norm': 0.47908294200897217, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3467217683792114 img loss 1.3633148670196533 img loss 1.2876086235046387 img loss 1.2785389423370361 img loss 1.280537486076355 img loss 1.2650456428527832 img loss 1.2765462398529053 img loss 1.2548139095306396 img loss 1.3207272291183472 img loss 1.2260584831237793 img loss 1.2824691534042358 img loss 1.2685803174972534 img loss 1.2989516258239746 img loss 1.3173092603683472 img loss 1.257689356803894 img loss 1.241912841796875 img loss 1.412556529045105 img loss 1.2668904066085815 img loss 1.3004608154296875 img loss 1.2578452825546265 img loss 1.3056957721710205 img loss 1.2741367816925049 img loss 1.328023910522461 img loss 1.2783117294311523 img loss 1.1961936950683594 img loss 1.2984739542007446 img loss 1.2565422058105469 img loss 1.3084642887115479 img loss 1.3151428699493408 img loss 1.268303632736206 img loss 1.2911248207092285 img loss 1.245955467224121 img loss 1.296416163444519 img loss 1.2269448041915894 img loss 1.2041977643966675 img loss 1.2781703472137451 img loss 1.3090733289718628 img loss 1.2991307973861694 img loss 1.263479232788086 img loss 1.2628430128097534 img loss 1.2513148784637451 img loss 1.2656277418136597 img loss 1.2981579303741455 img loss 1.2492488622665405 img loss 1.33061683177948 img loss 1.2877933979034424 img loss 1.3180994987487793 img loss 1.2578554153442383 img loss 1.2759475708007812 img loss 1.312455415725708 img loss 1.3454310894012451 img loss 1.2135008573532104 img loss 1.262470006942749 img loss 1.3230918645858765 img loss 1.2989685535430908 img loss 1.2782963514328003 img loss 1.2959420680999756 img loss 1.290151596069336 img loss 1.2794215679168701 img loss 1.3010143041610718 img loss 1.2459368705749512 img loss 1.2529995441436768 img loss 1.2496365308761597 img loss 1.1956658363342285 img loss 1.2353967428207397 img loss 1.2679039239883423 img loss 1.3121085166931152 img loss 1.2279391288757324 img loss 1.3178764581680298 img loss 1.3062210083007812 img loss 1.238260269165039 img loss 1.3673756122589111 img loss 1.2577346563339233 img loss 1.2694530487060547 img loss 1.2760289907455444 img loss 1.3794010877609253 img loss 1.3208805322647095 img loss 1.2938072681427002 img loss 1.3233387470245361 img loss 1.2929176092147827 img loss 1.2678806781768799 img loss 1.2979742288589478 img loss 1.2734878063201904 img loss 1.3524338006973267 img loss 1.270140528678894 img loss 1.2924976348876953 img loss 1.2384880781173706 img loss 1.2564913034439087 img loss 1.2468174695968628 img loss 1.2118194103240967 img loss 1.3144121170043945 img loss 1.3473469018936157 img loss 1.272703766822815 img loss 1.2938387393951416 img loss 1.2276012897491455 img loss 1.270851492881775 img loss 1.2799086570739746 img loss 1.340818166732788 img loss 1.2625757455825806 img loss 1.2241079807281494 img loss 1.222814917564392 img loss 1.2551014423370361 img loss 1.249184489250183 img loss 1.332159399986267 img loss 1.2418466806411743 img loss 1.25046968460083 img loss 1.253509521484375 img loss 1.2572993040084839 img loss 1.313136100769043 img loss 1.3279536962509155 img loss 1.2710566520690918 img loss 1.2238678932189941 img loss 1.2652393579483032 img loss 1.2642196416854858 img loss 1.279002070426941 img loss 1.344009280204773 img loss 1.2489902973175049 img loss 1.276151418685913 img loss 1.2381970882415771 img loss 1.2879351377487183 img loss 1.2901748418807983 img loss 1.2684739828109741 img loss 1.3472402095794678 img loss 1.1940425634384155 img loss 1.2738255262374878 img loss 1.2692028284072876 img loss 1.2543213367462158 img loss 1.30356764793396 {'loss': 1.2799, 'grad_norm': 0.26152339577674866, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3023896217346191 img loss 1.260154366493225 img loss 1.1875264644622803 img loss 1.2201964855194092 img loss 1.2428001165390015 img loss 1.263877511024475 img loss 1.30387544631958 img loss 1.3348851203918457 img loss 1.1867207288742065 img loss 1.315445899963379 img loss 1.2358670234680176 img loss 1.266837477684021 img loss 1.2446075677871704 img loss 1.1959816217422485 img loss 1.1953039169311523 img loss 1.256368637084961 img loss 1.27108633518219 img loss 1.2182815074920654 img loss 1.246118187904358 img loss 1.1915388107299805 img loss 1.2671314477920532 img loss 1.2909114360809326 img loss 1.2416417598724365 img loss 1.2147221565246582 img loss 1.2221587896347046 img loss 1.158833384513855 img loss 1.29094398021698 img loss 1.2081537246704102 img loss 1.2479989528656006 img loss 1.2311382293701172 img loss 1.2956154346466064 img loss 1.2360172271728516 img loss 1.235058307647705 img loss 1.2359144687652588 img loss 1.2135686874389648 img loss 1.3057076930999756 img loss 1.2197424173355103 img loss 1.3144733905792236 img loss 1.2496259212493896 img loss 1.281005620956421 img loss 1.3886548280715942 img loss 1.230059027671814 img loss 1.196690320968628 img loss 1.1992346048355103 img loss 1.1879949569702148 img loss 1.2520707845687866 img loss 1.2094520330429077 img loss 1.2318836450576782 img loss 1.273356318473816 img loss 1.1547421216964722 img loss 1.1608331203460693 img loss 1.3167237043380737 img loss 1.2707138061523438 img loss 1.1669384241104126 img loss 1.2022825479507446 img loss 1.2831859588623047 img loss 1.2817744016647339 img loss 1.20442533493042 img loss 1.2448954582214355 img loss 1.2762600183486938 img loss 1.2334734201431274 img loss 1.2999376058578491 img loss 1.2208398580551147 img loss 1.2585862874984741 img loss 1.2415512800216675 img loss 1.1864076852798462 img loss 1.256913661956787 img loss 1.2646201848983765 img loss 1.1881736516952515 img loss 1.2967402935028076 img loss 1.2295849323272705 img loss 1.2247012853622437 img loss 1.2923543453216553 img loss 1.2423874139785767 img loss 1.2737281322479248 img loss 1.2709484100341797 img loss 1.2302979230880737 img loss 1.2756824493408203 img loss 1.2420196533203125 img loss 1.3288383483886719 img loss 1.184629201889038 img loss 1.2223209142684937 img loss 1.259143352508545 img loss 1.304770827293396 img loss 1.2405552864074707 img loss 1.280962347984314 img loss 1.276678442955017 img loss 1.1992689371109009 img loss 1.2796682119369507 img loss 1.2681374549865723 img loss 1.2376039028167725 img loss 1.2652587890625 img loss 1.2614846229553223 img loss 1.2742832899093628 img loss 1.2229984998703003 img loss 1.305241346359253 img loss 1.2359141111373901 img loss 1.1864612102508545 img loss 1.2980666160583496 img loss 1.2651128768920898 img loss 1.2609505653381348 img loss 1.2436387538909912 img loss 1.3544048070907593 img loss 1.199011206626892 img loss 1.247915267944336 img loss 1.246544599533081 img loss 1.2635691165924072 img loss 1.2831922769546509 img loss 1.2109394073486328 img loss 1.2591272592544556 img loss 1.2393139600753784 img loss 1.2251192331314087 img loss 1.2180988788604736 img loss 1.309030532836914 img loss 1.3056583404541016 img loss 1.215649962425232 img loss 1.1844414472579956 img loss 1.2437705993652344 img loss 1.246506690979004 img loss 1.246071457862854 img loss 1.113972544670105 img loss 1.267991542816162 img loss 1.1957638263702393 img loss 1.2102705240249634 img loss 1.2896543741226196 img loss 1.193217158317566 img loss 1.2379446029663086 img loss 1.3375766277313232 {'loss': 1.2469, 'grad_norm': 0.23389974236488342, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2245982885360718 img loss 1.232582449913025 img loss 1.195861577987671 img loss 1.1834591627120972 img loss 1.3134506940841675 img loss 1.3061819076538086 img loss 1.22771418094635 img loss 1.3017059564590454 img loss 1.195502519607544 img loss 1.2225444316864014 img loss 1.3122525215148926 img loss 1.2448995113372803 img loss 1.2849682569503784 img loss 1.2178312540054321 img loss 1.2387683391571045 img loss 1.3131479024887085 img loss 1.206714391708374 img loss 1.2199020385742188 img loss 1.2477644681930542 img loss 1.27008056640625 img loss 1.2491099834442139 img loss 1.2784754037857056 img loss 1.3202931880950928 img loss 1.2832725048065186 img loss 1.2126574516296387 img loss 1.2469953298568726 img loss 1.2228293418884277 img loss 1.288794755935669 img loss 1.2187066078186035 img loss 1.2470221519470215img loss 1.1857877969741821 img loss 1.2410682439804077 img loss 1.275303840637207 img loss 1.1736912727355957 img loss 1.2136127948760986 img loss 1.2653101682662964 img loss 1.2388770580291748 img loss 1.2874151468276978 img loss 1.2250105142593384 img loss 1.1485517024993896 img loss 1.2699429988861084 img loss 1.2150459289550781 img loss 1.1720805168151855 img loss 1.202347755432129 img loss 1.286838173866272 img loss 1.2260971069335938 img loss 1.222289800643921 img loss 1.221677303314209 img loss 1.2357572317123413 img loss 1.1825335025787354 img loss 1.2539199590682983 img loss 1.2553901672363281 img loss 1.2370336055755615 img loss 1.1722303628921509 img loss 1.206368088722229 img loss 1.2713866233825684 img loss 1.1947920322418213 img loss 1.2555454969406128 img loss 1.2166670560836792 img loss 1.243492603302002 img loss 1.2420881986618042 img loss 1.2633681297302246 img loss 1.1905839443206787 img loss 1.1896965503692627 img loss 1.2844157218933105 img loss 1.3227310180664062 img loss 1.2307614088058472 img loss 1.246644377708435 img loss 1.3082764148712158 img loss 1.1918213367462158 img loss 1.282639741897583 img loss 1.2814826965332031 img loss 1.1892579793930054 img loss 1.2552660703659058 img loss 1.2573127746582031 img loss 1.2403807640075684 img loss 1.2158904075622559 img loss 1.2583348751068115 img loss 1.2345870733261108 img loss 1.2344951629638672 img loss 1.2633298635482788 img loss 1.307786464691162 img loss 1.2378208637237549 img loss 1.2162827253341675 img loss 1.169501543045044 img loss 1.2090661525726318 img loss 1.242430329322815 img loss 1.2192552089691162 img loss 1.2307541370391846 img loss 1.2231639623641968 img loss 1.2087953090667725 img loss 1.2025965452194214 img loss 1.2843559980392456 img loss 1.2064787149429321 img loss 1.2389553785324097 img loss 1.2404706478118896 img loss 1.2174975872039795 img loss 1.216390609741211 img loss 1.2136958837509155 img loss 1.2096388339996338 img loss 1.261321783065796 img loss 1.1328227519989014 img loss 1.1839646100997925 img loss 1.2461665868759155 img loss 1.2378368377685547 img loss 1.213354468345642 img loss 1.1623260974884033 img loss 1.2403501272201538 img loss 1.2012357711791992 img loss 1.311347484588623 img loss 1.254618525505066 img loss 1.2929853200912476 img loss 1.2577861547470093 img loss 1.2448376417160034 img loss 1.2049615383148193 img loss 1.1590418815612793 img loss 1.3101824522018433 img loss 1.2014178037643433 img loss 1.2269287109375 img loss 1.2158300876617432 img loss 1.2162108421325684 img loss 1.2182538509368896 img loss 1.2251001596450806 img loss 1.233736515045166 img loss 1.2685953378677368 img loss 1.2212129831314087 img loss 1.1772578954696655 img loss 1.186301827430725 {'loss': 1.2352, 'grad_norm': 0.3644793927669525, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2351363897323608 img loss 1.2941415309906006 img loss 1.2967941761016846 img loss 1.1898999214172363 img loss 1.2693382501602173 img loss 1.2835476398468018 img loss 1.3545022010803223 img loss 1.3649107217788696 img loss 1.2732231616973877 img loss 1.3385316133499146 img loss 1.35569167137146 img loss 1.21555495262146 img loss 1.3107000589370728 img loss 1.335060477256775 img loss 1.315501093864441 img loss 1.2995026111602783 img loss 1.1810364723205566 img loss 1.186011791229248 img loss 1.3491581678390503 img loss 1.3216264247894287 img loss 1.2991526126861572 img loss 1.3498138189315796 img loss 1.2969467639923096 img loss 1.2739900350570679 img loss 1.302771806716919 img loss 1.3121657371520996 img loss 1.2513210773468018 img loss 1.2979402542114258img loss 1.2689933776855469 img loss 1.27556574344635 img loss 1.3070658445358276 img loss 1.3067359924316406 img loss 1.310045838356018 img loss 1.3196380138397217 img loss 1.359157681465149 img loss 1.3768842220306396 img loss 1.2901244163513184 img loss 1.2651442289352417 img loss 1.2715237140655518 img loss 1.3048311471939087 img loss 1.3104835748672485 img loss 1.288726568222046 img loss 1.3279931545257568 img loss 1.3029453754425049 img loss 1.2669094800949097 img loss 1.2602343559265137 img loss 1.304198145866394 img loss 1.3908015489578247 img loss 1.302937388420105 img loss 1.2632501125335693 img loss 1.3450294733047485 img loss 1.190058708190918 img loss 1.2866228818893433 img loss 1.286515474319458 img loss 1.409990906715393 img loss 1.295123815536499 img loss 1.310239553451538 img loss 1.1779625415802002 img loss 1.3645886182785034 img loss 1.242783546447754 img loss 1.2922580242156982 img loss 1.3869632482528687 img loss 1.289807677268982 img loss 1.2958637475967407 img loss 1.3145897388458252 img loss 1.3622448444366455 img loss 1.2982734441757202 img loss 1.2641160488128662 img loss 1.2937045097351074 img loss 1.267616868019104 img loss 1.2837356328964233 img loss 1.3403141498565674 img loss 1.3341400623321533 img loss 1.3061150312423706 img loss 1.3258692026138306 img loss 1.3264583349227905 img loss 1.2655953168869019 img loss 1.253570318222046 img loss 1.2241798639297485 img loss 1.2244668006896973 img loss 1.2956254482269287 img loss 1.3445103168487549 img loss 1.3628990650177002 img loss 1.313496470451355 img loss 1.3222194910049438 img loss 1.262973427772522 img loss 1.2115644216537476 img loss 1.37125563621521 img loss 1.2873775959014893 img loss 1.2947955131530762 img loss 1.4657179117202759 img loss 1.2780735492706299 img loss 1.2038228511810303 img loss 1.2513668537139893 img loss 1.2080535888671875 img loss 1.3799407482147217 img loss 1.3151977062225342 img loss 1.3489277362823486 img loss 1.3737488985061646 img loss 1.3949893712997437 img loss 1.2227895259857178 img loss 1.3481584787368774 img loss 1.3932899236679077 img loss 1.188575267791748 img loss 1.3464158773422241 img loss 1.3162875175476074 img loss 1.2663370370864868 img loss 1.2957525253295898 img loss 1.3310301303863525 img loss 1.3455740213394165 img loss 1.3211112022399902 img loss 1.3353514671325684 img loss 1.3900572061538696 img loss 1.2264955043792725 img loss 1.2275619506835938 img loss 1.2868881225585938 img loss 1.3717950582504272 img loss 1.2550019025802612 img loss 1.3394683599472046 img loss 1.2489142417907715 img loss 1.4687508344650269 img loss 1.3008241653442383 img loss 1.4246008396148682 img loss 1.2287099361419678 img loss 1.3458753824234009 img loss 1.2218401432037354 img loss 1.337292194366455 img loss 1.2510613203048706 {'loss': 1.3016, 'grad_norm': 0.4613122045993805, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.497475028038025 img loss 1.4402095079421997 img loss 1.3616958856582642 img loss 1.5447547435760498 img loss 1.4115549325942993 img loss 1.3813985586166382 img loss 1.4752048254013062 img loss 1.3687193393707275 img loss 1.3964616060256958 img loss 1.4481937885284424 img loss 1.4525779485702515 img loss 1.432646632194519 img loss 1.4629167318344116 img loss 1.503031611442566 img loss 1.4243708848953247 img loss 1.665939450263977 img loss 1.4094053506851196 img loss 1.2970144748687744 img loss 1.4275166988372803 img loss 1.4102200269699097 img loss 1.3267443180084229 img loss 1.236691951751709 img loss 1.4438515901565552 img loss 1.462460994720459 img loss 1.4529603719711304 img loss 1.495781660079956 img loss 1.5322868824005127 img loss 1.5620678663253784 img loss 1.4479725360870361 img loss 1.5025161504745483 img loss 1.5542515516281128 img loss 1.508283257484436 img loss 1.451269507408142 img loss 1.3640892505645752 img loss 1.4098865985870361 img loss 1.3671780824661255 img loss 1.458109736442566 img loss 1.4276111125946045 img loss 1.5754297971725464 img loss 1.5342520475387573 img loss 1.5443023443222046 img loss 1.4280716180801392 img loss 1.4487011432647705 img loss 1.474707841873169 img loss 1.4940954446792603 img loss 1.4754449129104614 img loss 1.263091802597046 img loss 1.3185477256774902 img loss 1.334206223487854 img loss 1.3911550045013428 img loss 1.459275484085083 img loss 1.4534226655960083 img loss 1.429667353630066 img loss 1.455969214439392 img loss 1.618980050086975 img loss 1.3727482557296753 img loss 1.4448847770690918 img loss 1.2893339395523071 img loss 1.4654239416122437 img loss 1.4055190086364746 img loss 1.5287483930587769 img loss 1.394163727760315 img loss 1.5291510820388794 img loss 1.5099751949310303 img loss 1.3865456581115723 img loss 1.6567293405532837 img loss 1.4658881425857544 img loss 1.3911558389663696 img loss 1.3025003671646118 img loss 1.501792073249817 img loss 1.5382517576217651 img loss 1.5333300828933716 img loss 1.4293828010559082 img loss 1.5057741403579712 img loss 1.4924590587615967 img loss 1.529935598373413 img loss 1.4015511274337769 img loss 1.4039124250411987 img loss 1.4748841524124146 img loss 1.5841867923736572 img loss 1.3219013214111328 img loss 1.38047456741333 img loss 1.373278021812439 img loss 1.4485303163528442 img loss 1.5644402503967285 img loss 1.6534560918807983 img loss 1.4597710371017456 img loss 1.5827358961105347 img loss 1.4612926244735718 img loss 1.4285023212432861 img loss 1.4233742952346802 img loss 1.5351903438568115 img loss 1.4626519680023193 img loss 1.3932526111602783 img loss 1.4156211614608765 img loss 1.5397382974624634 img loss 1.6420103311538696 img loss 1.4480689764022827 img loss 1.5404314994812012 img loss 1.4311177730560303 img loss 1.4511172771453857 img loss 1.4710490703582764 img loss 1.484418511390686 img loss 1.4844080209732056 img loss 1.5402910709381104 img loss 1.7118334770202637 img loss 1.3281517028808594 img loss 1.5901615619659424 img loss 1.4131757020950317 img loss 1.3752421140670776 img loss 1.4850952625274658 img loss 1.4581735134124756 img loss 1.5311020612716675 img loss 1.543501377105713 img loss 1.5180689096450806 img loss 1.4948347806930542 img loss 1.4761513471603394 img loss 1.3744702339172363 img loss 1.7297837734222412 img loss 1.6217806339263916 img loss 1.4435913562774658 img loss 1.4502650499343872 img loss 1.352973461151123 img loss 1.4736708402633667 img loss 1.367950677871704 img loss 1.465212345123291 img loss 1.4495359659194946 img loss 1.4619019031524658 {'loss': 1.4618, 'grad_norm': 0.3083738088607788, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1954569816589355 img loss 1.227547526359558 img loss 1.1388797760009766 img loss 1.1636559963226318 img loss 1.2328976392745972 img loss 1.1595122814178467 img loss 1.2166874408721924 img loss 1.2231025695800781 img loss 1.1502459049224854 img loss 1.2284895181655884 img loss 1.1898670196533203 img loss 1.169034719467163 img loss 1.2100692987442017 img loss 1.1311252117156982 img loss 1.2686378955841064 img loss 1.0863450765609741 img loss 1.2448291778564453 img loss 1.1817009449005127 img loss 1.1787532567977905 img loss 1.1501271724700928 img loss 1.1711318492889404 img loss 1.1546244621276855 img loss 1.230690836906433 img loss 1.165081262588501 img loss 1.196967363357544 img loss 1.20039701461792 img loss 1.2889251708984375 img loss 1.167519450187683 img loss 1.1286791563034058 img loss 1.1735076904296875 img loss 1.207146406173706 img loss 1.1790580749511719 img loss 1.27296781539917 img loss 1.2039246559143066 img loss 1.3500087261199951 img loss 1.174465537071228 img loss 1.253883719444275 img loss 1.1447560787200928 img loss 1.1953004598617554 img loss 1.2564740180969238 img loss 1.146512746810913 img loss 1.2695364952087402 img loss 1.187235713005066 img loss 1.2168371677398682 img loss 1.18049955368042 img loss 1.087436556816101 img loss 1.2186429500579834 img loss 1.224239706993103 img loss 1.2583612203598022 img loss 1.21137273311615 img loss 1.1559206247329712 img loss 1.158747911453247 img loss 1.1807241439819336 img loss 1.179389476776123 img loss 1.0955810546875 img loss 1.1426260471343994 img loss 1.1076909303665161 img loss 1.1679818630218506 img loss 1.178579568862915 img loss 1.1648181676864624 img loss 1.2407541275024414 img loss 1.1782995462417603 img loss 1.171006679534912 img loss 1.158620834350586 img loss 1.1954923868179321 img loss 1.1334965229034424 img loss 1.2215754985809326 img loss 1.1235219240188599 img loss 1.1075915098190308 img loss 1.216864824295044 img loss 1.1772454977035522 img loss 1.1636723279953003 img loss 1.2404524087905884 img loss 1.1702333688735962 img loss 1.1864172220230103 img loss 1.1839288473129272 img loss 1.180890440940857 img loss 1.1627113819122314 img loss 1.2074896097183228 img loss 1.3187153339385986 img loss 1.1406818628311157 img loss 1.2014222145080566 img loss 1.1010582447052002 img loss 1.1650009155273438 img loss 1.1330214738845825 img loss 1.1563667058944702 img loss 1.2106560468673706 img loss 1.168465495109558 img loss 1.2810814380645752 img loss 1.1102275848388672 img loss 1.1863692998886108 img loss 1.2133724689483643 img loss 1.1841617822647095 img loss 1.2050178050994873 img loss 1.1896955966949463 img loss 1.1653404235839844 img loss 1.185554027557373 img loss 1.1337149143218994 img loss 1.205911636352539 img loss 1.2019776105880737 img loss 1.1005134582519531 img loss 1.3007733821868896 img loss 1.2599079608917236 img loss 1.2190577983856201 img loss 1.1900423765182495 img loss 1.1863481998443604 img loss 1.196967363357544 img loss 1.202126383781433 img loss 1.1695512533187866 img loss 1.1889656782150269 img loss 1.119884729385376 img loss 1.1325446367263794 img loss 1.2283896207809448 img loss 1.2101531028747559 img loss 1.1813396215438843 img loss 1.22147536277771 img loss 1.1607917547225952 img loss 1.0742318630218506 img loss 1.1530969142913818 img loss 1.1925721168518066 img loss 1.2079952955245972 img loss 1.196298599243164 img loss 1.2416118383407593 img loss 1.1807150840759277 img loss 1.170958399772644 img loss 1.1971652507781982 img loss 1.1710861921310425 img loss 1.2495628595352173 {'loss': 1.1873, 'grad_norm': 0.4513399302959442, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2887523174285889 img loss 1.1927450895309448 img loss 1.265093207359314 img loss 1.1421321630477905 img loss 1.2858948707580566 img loss 1.2480895519256592 img loss 1.2438066005706787 img loss 1.26103937625885 img loss 1.2165300846099854 img loss 1.237115502357483 img loss 1.279784917831421 img loss 1.2990461587905884 img loss 1.223980188369751 img loss 1.2430450916290283 img loss 1.2583664655685425 img loss 1.2020199298858643 img loss 1.2147191762924194 img loss 1.241281509399414 img loss 1.2119024991989136 img loss 1.2217795848846436 img loss 1.2391031980514526 img loss 1.2389391660690308 img loss 1.2839313745498657 img loss 1.266711950302124 img loss 1.2801721096038818 img loss 1.2551932334899902 img loss 1.2780568599700928 img loss 1.2684683799743652 img loss 1.1551754474639893 img loss 1.2463502883911133 img loss 1.2236554622650146 img loss 1.1818994283676147 img loss 1.1722878217697144 img loss 1.2515525817871094 img loss 1.2129443883895874 img loss 1.2185949087142944 img loss 1.2661300897598267 img loss 1.2688716650009155 img loss 1.2061583995819092 img loss 1.2944777011871338 img loss 1.194088339805603 img loss 1.3308476209640503 img loss 1.276772379875183 img loss 1.2090405225753784 img loss 1.2493771314620972 img loss 1.2860510349273682 img loss 1.2320717573165894 img loss 1.263698935508728 img loss 1.2572664022445679 img loss 1.1966596841812134 img loss 1.2351586818695068 img loss 1.2717676162719727 img loss 1.2642383575439453 img loss 1.2286410331726074 img loss 1.2343552112579346 img loss 1.2320611476898193 img loss 1.2131973505020142 img loss 1.1800047159194946 img loss 1.1672827005386353 img loss 1.2900042533874512 img loss 1.1494594812393188 img loss 1.2299962043762207 img loss 1.2336959838867188 img loss 1.3157978057861328 img loss 1.2455685138702393 img loss 1.3617881536483765 img loss 1.257089376449585 img loss 1.3043923377990723 img loss 1.2292194366455078 img loss 1.151144027709961 img loss 1.206113576889038 img loss 1.2439377307891846 img loss 1.247013807296753 img loss 1.2053155899047852 img loss 1.2208331823349 img loss 1.2163405418395996 img loss 1.3020598888397217 img loss 1.187553882598877 img loss 1.2840840816497803 img loss 1.3107980489730835 img loss 1.2123024463653564 img loss 1.1640105247497559 img loss 1.2715023756027222 img loss 1.1786086559295654 img loss 1.260278344154358 img loss 1.2643775939941406 img loss 1.1776633262634277 img loss 1.2554601430892944 img loss 1.2448524236679077 img loss 1.2122797966003418 img loss 1.256608486175537 img loss 1.2299933433532715 img loss 1.1718227863311768 img loss 1.2447826862335205 img loss 1.216376781463623 img loss 1.2258751392364502 img loss 1.2623716592788696 img loss 1.2332231998443604 img loss 1.2332009077072144 img loss 1.2152706384658813 img loss 1.2336336374282837 img loss 1.278082251548767 img loss 1.2354198694229126 img loss 1.3109405040740967 img loss 1.2548291683197021 img loss 1.1792545318603516 img loss 1.1951185464859009 img loss 1.2168220281600952 img loss 1.2399632930755615 img loss 1.1245874166488647 img loss 1.2174007892608643 img loss 1.1952762603759766 img loss 1.2342246770858765 img loss 1.2389293909072876 img loss 1.2416436672210693 img loss 1.2156901359558105 img loss 1.2532646656036377 img loss 1.1723747253417969 img loss 1.2216460704803467 img loss 1.2399206161499023 img loss 1.195180892944336 img loss 1.150244116783142 img loss 1.2549575567245483 img loss 1.2175076007843018 img loss 1.226078748703003 img loss 1.2451664209365845 img loss 1.2180800437927246 img loss 1.237331748008728 {'loss': 1.235, 'grad_norm': 0.37896615266799927, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1396464109420776 img loss 1.2307422161102295 img loss 1.0615085363388062 img loss 1.1578876972198486 img loss 1.1255488395690918 img loss 1.1892575025558472 img loss 1.233888030052185 img loss 1.2128407955169678 img loss 1.1588990688323975 img loss 1.2439063787460327 img loss 1.0865874290466309 img loss 1.255712866783142 img loss 1.176674485206604 img loss 1.1614620685577393 img loss 1.1843785047531128 img loss 1.1417819261550903 img loss 1.2516924142837524 img loss 1.1072461605072021 img loss 1.2035644054412842 img loss 1.1720436811447144 img loss 1.1957976818084717 img loss 1.1912949085235596 img loss 1.155616044998169 img loss 1.253031611442566 img loss 1.1846965551376343 img loss 1.1431137323379517 img loss 1.221286654472351 img loss 1.1925604343414307 img loss 1.1770234107971191 img loss 1.1453083753585815 img loss 1.281305193901062 img loss 1.160287618637085 img loss 1.33089280128479 img loss 1.217005729675293 img loss 1.2302316427230835 img loss 1.195415735244751 img loss 1.1523916721343994 img loss 1.2295454740524292 img loss 1.143092393875122 img loss 1.2516511678695679 img loss 1.1881150007247925 img loss 1.1772127151489258 img loss 1.254911184310913 img loss 1.1769064664840698 img loss 1.1938226222991943 img loss 1.0909819602966309 img loss 1.2108075618743896 img loss 1.1543750762939453 img loss 1.1950583457946777 img loss 1.1587713956832886 img loss 1.175666093826294 img loss 1.1336591243743896 img loss 1.0549637079238892 img loss 1.1369071006774902 img loss 1.2600018978118896 img loss 1.1610883474349976 img loss 1.125484824180603 img loss 1.1750601530075073 img loss 1.2002336978912354 img loss 1.220698595046997 img loss 1.205836534500122 img loss 1.1333576440811157 img loss 1.1953920125961304 img loss 1.0601190328598022 img loss 1.2580461502075195 img loss 1.1449062824249268 img loss 1.1833248138427734 img loss 1.1700189113616943 img loss 1.2739677429199219 img loss 1.1482422351837158 img loss 1.1360197067260742 img loss 1.145472526550293 img loss 1.2166767120361328 img loss 1.2020618915557861 img loss 1.2919557094573975 img loss 1.1625049114227295 img loss 1.1640558242797852 img loss 1.216867446899414 img loss 1.2401556968688965 img loss 1.2303682565689087 img loss 1.1291923522949219 img loss 1.1948250532150269 img loss 1.2064132690429688 img loss 1.1625105142593384 img loss 1.1527490615844727 img loss 1.0929096937179565 img loss 1.2074716091156006 img loss 1.2606220245361328 img loss 1.1858505010604858 img loss 1.2595819234848022 img loss 1.2164493799209595 img loss 1.102332592010498 img loss 1.2598507404327393 img loss 1.1939228773117065 img loss 1.2457830905914307 img loss 1.2459018230438232 img loss 1.2321985960006714 img loss 1.254751205444336 img loss 1.1385231018066406 img loss 1.276332139968872 img loss 1.2288305759429932 img loss 1.253007173538208 img loss 1.1642167568206787 img loss 1.2181403636932373 img loss 1.2482514381408691 img loss 1.2443995475769043 img loss 1.2029204368591309 img loss 1.1668974161148071 img loss 1.142266035079956 img loss 1.182137370109558 img loss 1.1848392486572266 img loss 1.284389853477478 img loss 1.2625831365585327 img loss 1.2336485385894775 img loss 1.1530617475509644 img loss 1.1852935552597046 img loss 1.1859711408615112 img loss 1.2546850442886353 img loss 1.2589772939682007 img loss 1.2110527753829956 img loss 1.2239208221435547 img loss 1.1694786548614502 img loss 1.2528595924377441 img loss 1.1788805723190308 img loss 1.142524003982544 img loss 1.1914350986480713 img loss 1.1366355419158936 img loss 1.1986949443817139 {'loss': 1.1918, 'grad_norm': 0.26722756028175354, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.366626262664795 img loss 1.2209548950195312 img loss 1.234069585800171 img loss 1.200212001800537 img loss 1.2554738521575928 img loss 1.208592414855957 img loss 1.213517665863037 img loss 1.2548376321792603 img loss 1.259168028831482 img loss 1.24064040184021 img loss 1.242377758026123 img loss 1.3861987590789795 img loss 1.2401957511901855 img loss 1.234282374382019 img loss 1.2391331195831299 img loss 1.2830731868743896 img loss 1.2201412916183472 img loss 1.2735251188278198 img loss 1.2569469213485718 img loss 1.2851966619491577 img loss 1.2453343868255615 img loss 1.3280420303344727 img loss 1.2035356760025024 img loss 1.1564297676086426 img loss 1.228362798690796 img loss 1.265571117401123 img loss 1.3067024946212769 img loss 1.2420752048492432 img loss 1.2021797895431519 img loss 1.222489833831787 img loss 1.290962815284729 img loss 1.3107905387878418 img loss 1.3329674005508423 img loss 1.194056510925293 img loss 1.3027002811431885 img loss 1.2666443586349487 img loss 1.2783024311065674 img loss 1.2643345594406128 img loss 1.2695106267929077 img loss 1.4640555381774902 img loss 1.3812376260757446 img loss 1.2884116172790527 img loss 1.2437019348144531 img loss 1.2515435218811035 img loss 1.3010859489440918 img loss 1.31328547000885 img loss 1.30435049533844 img loss 1.317331075668335 img loss 1.2742325067520142 img loss 1.2223984003067017 img loss 1.3144080638885498 img loss 1.222081184387207 img loss 1.1905609369277954 img loss 1.3132004737854004 img loss 1.2639414072036743 img loss 1.2963109016418457 img loss 1.139661192893982 img loss 1.3028959035873413 img loss 1.2969540357589722 img loss 1.1963924169540405 img loss 1.3342833518981934 img loss 1.2014912366867065 img loss 1.3351728916168213 img loss 1.3020066022872925 img loss 1.2076940536499023 img loss 1.2199783325195312 img loss 1.2589486837387085 img loss 1.3503453731536865 img loss 1.2818918228149414 img loss 1.290574312210083 img loss 1.2766096591949463 img loss 1.2509210109710693 img loss 1.3414721488952637 img loss 1.248197317123413 img loss 1.2558021545410156 img loss 1.2631877660751343 img loss 1.214476466178894 img loss 1.2057335376739502 img loss 1.2887901067733765 img loss 1.2932571172714233 img loss 1.2300748825073242 img loss 1.2438760995864868 img loss 1.223552942276001 img loss 1.3166296482086182 img loss 1.2062824964523315 img loss 1.2478951215744019 img loss 1.2241895198822021 img loss 1.3515058755874634 img loss 1.291808843612671 img loss 1.3626130819320679 img loss 1.1575053930282593 img loss 1.2522578239440918 img loss 1.2490514516830444 img loss 1.3525413274765015 img loss 1.285109281539917 img loss 1.2625054121017456 img loss 1.1996469497680664 img loss 1.2425177097320557 img loss 1.2587248086929321 img loss 1.2992409467697144 img loss 1.3308372497558594 img loss 1.2625471353530884 img loss 1.2132099866867065 img loss 1.2851333618164062 img loss 1.2856910228729248 img loss 1.2922886610031128 img loss 1.3566005229949951 img loss 1.3442491292953491 img loss 1.284658670425415 img loss 1.2374836206436157 img loss 1.3004144430160522 img loss 1.3991200923919678 img loss 1.2909797430038452 img loss 1.2451528310775757 img loss 1.187161922454834 img loss 1.1764487028121948 img loss 1.2505216598510742 img loss 1.2751436233520508 img loss 1.2629101276397705 img loss 1.2894006967544556 img loss 1.2039648294448853 img loss 1.2370494604110718 img loss 1.2501201629638672 img loss 1.2554221153259277 img loss 1.280942440032959 img loss 1.2613332271575928 img loss 1.169470191001892 img loss 1.2682653665542603 {'loss': 1.2664, 'grad_norm': 0.3499053716659546, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4499446153640747 img loss 1.36183762550354 img loss 1.3605873584747314 img loss 1.4915587902069092 img loss 1.4502421617507935 img loss 1.5163590908050537 img loss 1.4099031686782837 img loss 1.4143157005310059 img loss 1.428737998008728 img loss 1.3866275548934937 img loss 1.4240965843200684 img loss 1.3590033054351807 img loss 1.454508900642395 img loss 1.4486740827560425 img loss 1.4217016696929932 img loss 1.5603150129318237 img loss 1.4536961317062378 img loss 1.332772970199585 img loss 1.4231806993484497 img loss 1.4159597158432007 img loss 1.3731048107147217 img loss 1.3449479341506958 img loss 1.44203782081604 img loss 1.5479037761688232 img loss 1.4558323621749878 img loss 1.4556363821029663 img loss 1.476460337638855 img loss 1.3586221933364868 img loss 1.405535340309143 img loss 1.4183822870254517 img loss 1.451750636100769 img loss 1.407773494720459 img loss 1.4411238431930542 img loss 1.4172955751419067 img loss 1.3432260751724243 img loss 1.3849060535430908 img loss 1.33920156955719 img loss 1.407671332359314 img loss 1.3645970821380615 img loss 1.4304053783416748 img loss 1.4088406562805176 img loss 1.4903172254562378 img loss 1.3491441011428833 img loss 1.4192538261413574 img loss 1.4278019666671753 img loss 1.3924485445022583 img loss 1.3613361120224 img loss 1.3981077671051025 img loss 1.4061427116394043 img loss 1.4102809429168701 img loss 1.4346567392349243 img loss 1.428131341934204 img loss 1.5293536186218262 img loss 1.431566834449768 img loss 1.385222315788269 img loss 1.387569785118103 img loss 1.4745594263076782 img loss 1.4606893062591553 img loss 1.5144885778427124 img loss 1.4077602624893188 img loss 1.4253140687942505 img loss 1.4824509620666504 img loss 1.4680103063583374 img loss 1.4416080713272095 img loss 1.5235687494277954 img loss 1.5230926275253296 img loss 1.4457155466079712 img loss 1.4037913084030151 img loss 1.5979050397872925 img loss 1.443305253982544 img loss 1.4546095132827759 img loss 1.427135705947876 img loss 1.361060380935669 img loss 1.2930688858032227 img loss 1.5132014751434326 img loss 1.385582685470581 img loss 1.4561259746551514 img loss 1.3743959665298462 img loss 1.556217908859253 img loss 1.6370869874954224 img loss 1.4747788906097412 img loss 1.3152213096618652 img loss 1.446521520614624 img loss 1.2938599586486816 img loss 1.3653088808059692 img loss 1.4305275678634644 img loss 1.4959245920181274 img loss 1.3453707695007324 img loss 1.395342469215393 img loss 1.4688832759857178 img loss 1.6027249097824097 img loss 1.2940047979354858 img loss 1.4854967594146729 img loss 1.4672428369522095 img loss 1.498942255973816 img loss 1.4516022205352783 img loss 1.3764564990997314 img loss 1.455905556678772 img loss 1.4353916645050049 img loss 1.4681800603866577 img loss 1.4992607831954956 img loss 1.3510925769805908 img loss 1.4707282781600952 img loss 1.4359033107757568 img loss 1.4088469743728638 img loss 1.4451558589935303 img loss 1.407089352607727 img loss 1.3920471668243408 img loss 1.3971588611602783 img loss 1.4290807247161865 img loss 1.4581243991851807 img loss 1.5775043964385986 img loss 1.462960124015808 img loss 1.465762734413147 img loss 1.5168335437774658 img loss 1.453428864479065 img loss 1.4297717809677124 img loss 1.3878493309020996 img loss 1.4654983282089233 img loss 1.369038462638855 img loss 1.3887768983840942 img loss 1.3885948657989502 img loss 1.4709079265594482 img loss 1.4269969463348389 img loss 1.450670838356018 img loss 1.408210277557373 img loss 1.4519816637039185 img loss 1.456789493560791 {'loss': 1.4328, 'grad_norm': 0.37472209334373474, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4497822523117065 img loss 1.5658869743347168 img loss 1.4525272846221924 img loss 1.500048041343689 img loss 1.6972873210906982 img loss 1.454363465309143 img loss 1.5496678352355957 img loss 1.626645803451538 img loss 1.4722034931182861 img loss 1.625121831893921 img loss 1.6539225578308105 img loss 1.4794822931289673 img loss 1.6483803987503052 img loss 1.6095775365829468 img loss 1.4419044256210327 img loss 1.4344813823699951 img loss 1.5998246669769287 img loss 1.5980165004730225 img loss 1.6106278896331787 img loss 1.542386531829834 img loss 1.5633302927017212 img loss 1.4026533365249634img loss 1.6646075248718262 img loss 1.5568089485168457 img loss 1.3867710828781128 img loss 1.4741824865341187 img loss 1.7357884645462036 img loss 1.4986588954925537 img loss 1.4274547100067139 img loss 1.4730689525604248 img loss 1.5620707273483276 img loss 1.5541030168533325 img loss 1.4183014631271362 img loss 1.4720882177352905 img loss 1.5562769174575806 img loss 1.5481938123703003 img loss 1.6877949237823486 img loss 1.5131040811538696 img loss 1.7235124111175537 img loss 1.51643705368042 img loss 1.417984127998352 img loss 1.459247350692749 img loss 1.4873355627059937 img loss 1.4400068521499634 img loss 1.5969866514205933 img loss 1.5321428775787354 img loss 1.518450379371643 img loss 1.51424241065979 img loss 1.6308988332748413 img loss 1.5180392265319824 img loss 1.6466381549835205 img loss 1.62328040599823 img loss 1.4846322536468506 img loss 1.509171962738037 img loss 1.6707510948181152 img loss 1.492509126663208 img loss 1.5659441947937012 img loss 1.4977545738220215 img loss 1.5050777196884155 img loss 1.4052242040634155 img loss 1.5264790058135986 img loss 1.4992655515670776 img loss 1.3182018995285034 img loss 1.5119255781173706 img loss 1.5888563394546509 img loss 1.4283586740493774 img loss 1.5402730703353882 img loss 1.5787713527679443 img loss 1.4430431127548218 img loss 1.625779390335083 img loss 1.511233925819397 img loss 1.4406477212905884 img loss 1.7137078046798706 img loss 1.5106197595596313 img loss 1.502867579460144 img loss 1.599218726158142 img loss 1.5270307064056396 img loss 1.7089712619781494 img loss 1.4772766828536987 img loss 1.5702687501907349 img loss 1.3982914686203003 img loss 1.6583508253097534 img loss 1.6195447444915771 img loss 1.4925287961959839 img loss 1.570250153541565 img loss 1.581600546836853 img loss 1.4899245500564575 img loss 1.432465672492981 img loss 1.441851019859314 img loss 1.5408265590667725 img loss 1.5944504737854004 img loss 1.6188362836837769 img loss 1.4824148416519165 img loss 1.3829809427261353 img loss 1.5371235609054565 img loss 1.508184552192688 img loss 1.434220552444458 img loss 1.6128333806991577 img loss 1.4052730798721313 img loss 1.6193671226501465 img loss 1.4994769096374512 img loss 1.5295841693878174 img loss 1.2976497411727905 img loss 1.5212509632110596 img loss 1.525884747505188 img loss 1.5765074491500854 img loss 1.5730907917022705 img loss 1.4075239896774292 img loss 1.6242996454238892 img loss 1.5681366920471191 img loss 1.488061547279358 img loss 1.479444146156311 img loss 1.674742579460144 img loss 1.5981582403182983 img loss 1.6044751405715942 img loss 1.4649935960769653 img loss 1.4026710987091064 img loss 1.5208842754364014 img loss 1.4510911703109741 img loss 1.5766087770462036 img loss 1.5093457698822021 img loss 1.4958704710006714 img loss 1.5329296588897705 img loss 1.4090923070907593 img loss 1.5932557582855225 img loss 1.6021544933319092 img loss 1.5864394903182983 img loss 1.5040147304534912 {'loss': 1.5307, 'grad_norm': 0.46401408314704895, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2574161291122437 img loss 1.2734954357147217 img loss 1.3129204511642456 img loss 1.2859671115875244 img loss 1.2820701599121094 img loss 1.2835763692855835 img loss 1.2732164859771729 img loss 1.2384440898895264 img loss 1.297576665878296 img loss 1.246114730834961 img loss 1.3113467693328857 img loss 1.2278960943222046 img loss 1.28520667552948 img loss 1.3374587297439575 img loss 1.2683403491973877 img loss 1.2482494115829468 img loss 1.251258134841919 img loss 1.2553685903549194 img loss 1.2561105489730835 img loss 1.2633776664733887 img loss 1.2647596597671509 img loss 1.3414229154586792 img loss 1.2767679691314697 img loss 1.1962703466415405 img loss 1.4066475629806519 img loss 1.231262445449829 img loss 1.226806640625 img loss 1.2056223154067993 img loss 1.1916885375976562 img loss 1.2174839973449707 img loss 1.300717830657959 img loss 1.246238112449646 img loss 1.243528127670288 img loss 1.2650940418243408 img loss 1.347460389137268 img loss 1.2329720258712769 img loss 1.2720270156860352 img loss 1.2420246601104736 img loss 1.2402673959732056 img loss 1.2108323574066162 img loss 1.2040427923202515 img loss 1.2982609272003174 img loss 1.2953386306762695 img loss 1.251593828201294 img loss 1.2879266738891602 img loss 1.2390475273132324 img loss 1.2495427131652832 img loss 1.2402616739273071 img loss 1.3158859014511108 img loss 1.2389848232269287 img loss 1.3257191181182861 img loss 1.1727348566055298 img loss 1.2312484979629517 img loss 1.286573886871338 img loss 1.2138851881027222 img loss 1.2697842121124268 img loss 1.2732456922531128 img loss 1.3157322406768799 img loss 1.3320621252059937 img loss 1.2726969718933105 img loss 1.2198982238769531 img loss 1.3735185861587524 img loss 1.330949068069458 img loss 1.3350507020950317 img loss 1.2971343994140625 img loss 1.3014191389083862 img loss 1.2176597118377686 img loss 1.2229926586151123 img loss 1.2708783149719238 img loss 1.1401698589324951 img loss 1.367268443107605 img loss 1.3357681035995483 img loss 1.2798893451690674 img loss 1.2275341749191284 img loss 1.2076985836029053 img loss 1.252313494682312 img loss 1.2903797626495361 img loss 1.2937736511230469 img loss 1.3000186681747437 img loss 1.3232381343841553 img loss 1.269639015197754 img loss 1.3102515935897827 img loss 1.2049068212509155 img loss 1.2681680917739868 img loss 1.2115528583526611 img loss 1.1969391107559204 img loss 1.2886028289794922 img loss 1.2085965871810913 img loss 1.341214895248413 img loss 1.2192823886871338 img loss 1.2757182121276855 img loss 1.35426664352417 img loss 1.202061414718628 img loss 1.2818058729171753 img loss 1.2776950597763062 img loss 1.227312684059143 img loss 1.207930326461792 img loss 1.2820476293563843 img loss 1.2651195526123047 img loss 1.2771961688995361 img loss 1.2549684047698975 img loss 1.2783184051513672 img loss 1.2515205144882202 img loss 1.2980706691741943 img loss 1.3043760061264038 img loss 1.2256181240081787 img loss 1.2110117673873901 img loss 1.4111307859420776 img loss 1.349947214126587 img loss 1.2658144235610962 img loss 1.3333603143692017 img loss 1.3261133432388306 img loss 1.3104790449142456 img loss 1.227843165397644 img loss 1.3387914896011353 img loss 1.2813892364501953 img loss 1.2619251012802124 img loss 1.2720152139663696 img loss 1.2523401975631714 img loss 1.2771620750427246 img loss 1.1930774450302124 img loss 1.2696986198425293 img loss 1.3156676292419434 img loss 1.2841535806655884 img loss 1.2854762077331543 img loss 1.251317024230957 img loss 1.2767471075057983 img loss 1.3165888786315918 {'loss': 1.2704, 'grad_norm': 0.28118374943733215, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2725566625595093 img loss 1.2630245685577393 img loss 1.2587569952011108 img loss 1.17210054397583 img loss 1.171243667602539 img loss 1.2735382318496704 img loss 1.3370240926742554 img loss 1.2588322162628174 img loss 1.2464779615402222 img loss 1.225067377090454 img loss 1.1478878259658813 img loss 1.1859960556030273 img loss 1.227701187133789 img loss 1.2996926307678223 img loss 1.2028719186782837 img loss 1.1755532026290894 img loss 1.1766908168792725 img loss 1.2775423526763916 img loss 1.2063677310943604 img loss 1.245532751083374 img loss 1.2439333200454712 img loss 1.183092713356018 img loss 1.3580840826034546 img loss 1.1601941585540771 img loss 1.2447096109390259 img loss 1.2029988765716553 img loss 1.1720088720321655 img loss 1.2180180549621582 img loss 1.2682685852050781 img loss 1.200812816619873 img loss 1.2036375999450684 img loss 1.2795015573501587 img loss 1.294470191001892 img loss 1.2356441020965576 img loss 1.1893322467803955 img loss 1.3531991243362427 img loss 1.1285502910614014 img loss 1.2313344478607178 img loss 1.1958343982696533 img loss 1.191281795501709 img loss 1.2620748281478882 img loss 1.2809511423110962 img loss 1.1981370449066162 img loss 1.2715743780136108 img loss 1.2600191831588745 img loss 1.1899809837341309 img loss 1.2315099239349365 img loss 1.3081175088882446 img loss 1.247437834739685 img loss 1.2742836475372314 img loss 1.1592146158218384 img loss 1.2717446088790894 img loss 1.2365869283676147 img loss 1.2306511402130127 img loss 1.251534104347229 img loss 1.209657073020935 img loss 1.1634416580200195 img loss 1.1590425968170166 img loss 1.177855134010315 img loss 1.198669195175171 img loss 1.298500418663025 img loss 1.2193944454193115 img loss 1.2581140995025635 img loss 1.248968482017517 img loss 1.2179301977157593 img loss 1.210977554321289 img loss 1.3119542598724365 img loss 1.1983773708343506 img loss 1.3542050123214722 img loss 1.2521504163742065 img loss 1.2490363121032715 img loss 1.2880874872207642 img loss 1.2776365280151367 img loss 1.155648112297058 img loss 1.1614532470703125 img loss 1.2925041913986206 img loss 1.230621576309204 img loss 1.1766400337219238 img loss 1.2219444513320923 img loss 1.313321590423584 img loss 1.2218356132507324 img loss 1.2264506816864014 img loss 1.2401660680770874 img loss 1.1982125043869019 img loss 1.269681692123413 img loss 1.2102768421173096 img loss 1.2828251123428345 img loss 1.3263205289840698 img loss 1.2281452417373657 img loss 1.2659590244293213 img loss 1.201290488243103 img loss 1.2036634683609009 img loss 1.3232276439666748 img loss 1.2482128143310547 img loss 1.1835237741470337 img loss 1.2296841144561768 img loss 1.284751296043396 img loss 1.2112149000167847 img loss 1.2656006813049316 img loss 1.2431796789169312 img loss 1.220213532447815 img loss 1.2378581762313843 img loss 1.2717939615249634 img loss 1.2322418689727783 img loss 1.3094621896743774 img loss 1.2500547170639038 img loss 1.2436482906341553 img loss 1.2879749536514282 img loss 1.2968382835388184 img loss 1.2554190158843994 img loss 1.2636765241622925 img loss 1.161841869354248 img loss 1.2660095691680908 img loss 1.1781175136566162 img loss 1.2341110706329346 img loss 1.2791247367858887 img loss 1.2579669952392578 img loss 1.2559638023376465 img loss 1.2659087181091309 img loss 1.2909399271011353 img loss 1.204271674156189 img loss 1.1733582019805908 img loss 1.2514166831970215 img loss 1.1928000450134277 img loss 1.270423412322998 img loss 1.2928987741470337 img loss 1.2636909484863281 img loss 1.1923348903656006 {'loss': 1.238, 'grad_norm': 0.3305234909057617, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3310751914978027 img loss 1.1312552690505981 img loss 1.175819754600525 img loss 1.187921404838562 img loss 1.1548936367034912 img loss 1.203957200050354 img loss 1.231552004814148 img loss 1.1985191106796265 img loss 1.1987446546554565 img loss 1.2221717834472656 img loss 1.2293058633804321 img loss 1.1950238943099976 img loss 1.2606170177459717 img loss 1.3277966976165771 img loss 1.198647141456604 img loss 1.1828235387802124 img loss 1.1402850151062012 img loss 1.2893462181091309 img loss 1.2106879949569702 img loss 1.209747314453125 img loss 1.184852123260498 img loss 1.1275761127471924 img loss 1.169321894645691 img loss 1.3009003400802612 img loss 1.1220901012420654 img loss 1.1074590682983398 img loss 1.1234962940216064 img loss 1.1354259252548218 img loss 1.1949716806411743 img loss 1.1722068786621094 img loss 1.2066452503204346 img loss 1.0889922380447388 img loss 1.2760303020477295 img loss 1.2947909832000732 img loss 1.2515828609466553 img loss 1.1337628364562988 img loss 1.1040128469467163 img loss 1.302887201309204 img loss 1.2035329341888428 img loss 1.2672278881072998 img loss 1.1803061962127686 img loss 1.2012332677841187 img loss 1.0518882274627686 img loss 1.2940682172775269 img loss 1.213987946510315 img loss 1.148457407951355 img loss 1.1402252912521362 img loss 1.2472202777862549 img loss 1.2446602582931519 img loss 1.1955337524414062 img loss 1.1433172225952148 img loss 1.2046465873718262 img loss 1.200713872909546 img loss 1.2398731708526611 img loss 1.205941915512085 img loss 1.1589304208755493 img loss 1.244707465171814 img loss 1.1987969875335693 img loss 1.1636250019073486 img loss 1.2455253601074219 img loss 1.203521490097046 img loss 1.3293683528900146 img loss 1.2619746923446655 img loss 1.278379201889038 img loss 1.2394509315490723 img loss 1.1619538068771362 img loss 1.2583659887313843 img loss 1.1562225818634033 img loss 1.2472450733184814 img loss 1.1884212493896484 img loss 1.1716431379318237 img loss 1.188697099685669 img loss 1.1779212951660156 img loss 1.2569245100021362 img loss 1.3003346920013428 img loss 1.1426455974578857 img loss 1.2228885889053345 img loss 1.213505744934082 img loss 1.1348443031311035 img loss 1.1833871603012085 img loss 1.1997143030166626 img loss 1.1597169637680054 img loss 1.179268479347229 img loss 1.2334163188934326 img loss 1.1688932180404663 img loss 1.3463985919952393 img loss 1.207695722579956 img loss 1.2698884010314941 img loss 1.2306249141693115 img loss 1.110809087753296 img loss 1.168389081954956 img loss 1.1922191381454468 img loss 1.2942451238632202 img loss 1.2529792785644531 img loss 1.1749061346054077 img loss 1.1483891010284424 img loss 1.1972213983535767 img loss 1.2077277898788452 img loss 1.2300093173980713 img loss 1.2261756658554077 img loss 1.263100028038025 img loss 1.141395926475525 img loss 1.1827785968780518 img loss 1.1527647972106934 img loss 1.1872632503509521 img loss 1.175299882888794 img loss 1.188084363937378 img loss 1.2330118417739868 img loss 1.1667437553405762 img loss 1.1882299184799194 img loss 1.1889079809188843 img loss 1.1806249618530273 img loss 1.2570985555648804 img loss 1.27557373046875 img loss 1.1927578449249268 img loss 1.2069807052612305 img loss 1.1939054727554321 img loss 1.1966192722320557 img loss 1.1806515455245972 img loss 1.2309870719909668 img loss 1.1904839277267456 img loss 1.2937134504318237 img loss 1.2483305931091309 img loss 1.2451101541519165 img loss 1.161033272743225 img loss 1.1996736526489258 img loss 1.2000545263290405 img loss 1.1947777271270752 {'loss': 1.2047, 'grad_norm': 0.21686013042926788, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2304829359054565 img loss 1.2986037731170654 img loss 1.225584626197815 img loss 1.2096424102783203 img loss 1.2543715238571167 img loss 1.338943600654602 img loss 1.2994627952575684 img loss 1.220374345779419 img loss 1.2273390293121338 img loss 1.2773301601409912 img loss 1.2849887609481812 img loss 1.1435155868530273 img loss 1.2542998790740967 img loss 1.1543915271759033 img loss 1.2780290842056274 img loss 1.1997215747833252 img loss 1.200303554534912 img loss 1.2740007638931274 img loss 1.1631450653076172 img loss 1.197736144065857 img loss 1.2960783243179321 img loss 1.1697109937667847 img loss 1.3345741033554077 img loss 1.2597023248672485 img loss 1.211671233177185 img loss 1.1853846311569214 img loss 1.2546695470809937 img loss 1.2798603773117065 img loss 1.22958242893219 img loss 1.1912885904312134 img loss 1.3266704082489014 img loss 1.2905086278915405 img loss 1.345720887184143 img loss 1.2527709007263184 img loss 1.233803153038025 img loss 1.2220432758331299 img loss 1.2060835361480713 img loss 1.2139638662338257 img loss 1.274592399597168 img loss 1.2329480648040771 img loss 1.2785497903823853 img loss 1.2327630519866943 img loss 1.1825177669525146 img loss 1.2299646139144897 img loss 1.2275042533874512 img loss 1.228040337562561 img loss 1.2260173559188843 img loss 1.3222179412841797 img loss 1.267087697982788 img loss 1.3161057233810425 img loss 1.1742427349090576 img loss 1.158484697341919 img loss 1.226402759552002 img loss 1.217604637145996img loss 1.2402706146240234 img loss 1.2167061567306519 img loss 1.2148284912109375 img loss 1.2426044940948486 img loss 1.239217758178711 img loss 1.2202281951904297 img loss 1.2103220224380493 img loss 1.3003429174423218 img loss 1.2914892435073853 img loss 1.2632133960723877 img loss 1.2168649435043335 img loss 1.217536449432373 img loss 1.3723218441009521 img loss 1.252008080482483 img loss 1.2719045877456665 img loss 1.203704595565796 img loss 1.1993544101715088 img loss 1.2183773517608643 img loss 1.2469768524169922 img loss 1.260690450668335 img loss 1.1975975036621094 img loss 1.2225147485733032img loss 1.2559975385665894 img loss 1.1978670358657837 img loss 1.2815951108932495 img loss 1.2767585515975952 img loss 1.1555618047714233 img loss 1.109989047050476 img loss 1.1646945476531982 img loss 1.2574419975280762 img loss 1.2949022054672241 img loss 1.27070951461792 img loss 1.27644681930542 img loss 1.2459676265716553 img loss 1.2693032026290894 img loss 1.2115122079849243 img loss 1.2255178689956665 img loss 1.222123384475708 img loss 1.2338234186172485 img loss 1.2961843013763428 img loss 1.4092200994491577 img loss 1.2872902154922485 img loss 1.239974021911621 img loss 1.2302660942077637 img loss 1.2497143745422363 img loss 1.2253750562667847 img loss 1.2120423316955566 img loss 1.2382984161376953 img loss 1.2271522283554077 img loss 1.2350682020187378 img loss 1.2095762491226196 img loss 1.2420061826705933img loss 1.3085755109786987 img loss 1.2097619771957397 img loss 1.1828407049179077 img loss 1.2373487949371338 img loss 1.168076515197754 img loss 1.3157517910003662 img loss 1.321559190750122 img loss 1.1976921558380127 img loss 1.2743656635284424 img loss 1.2611430883407593 img loss 1.3347195386886597 img loss 1.2376861572265625 img loss 1.3652870655059814 img loss 1.2869495153427124 img loss 1.1952663660049438 img loss 1.1740970611572266 img loss 1.261697769165039 img loss 1.1567217111587524 img loss 1.2436736822128296 img loss 1.295257806777954 img loss 1.1950526237487793 img loss 1.2460848093032837 {'loss': 1.2428, 'grad_norm': 0.3355862498283386, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2382559776306152 img loss 1.2214990854263306 img loss 1.2194327116012573 img loss 1.2578575611114502 img loss 1.2212097644805908 img loss 1.1372474431991577 img loss 1.152077317237854 img loss 1.2536158561706543 img loss 1.2068735361099243 img loss 1.270575761795044 img loss 1.1269466876983643 img loss 1.2059893608093262 img loss 1.3098995685577393 img loss 1.2173951864242554 img loss 1.2198541164398193 img loss 1.215054988861084 img loss 1.2276229858398438 img loss 1.2699037790298462 img loss 1.2268407344818115 img loss 1.2739381790161133 img loss 1.2685145139694214 img loss 1.2443571090698242 img loss 1.215976357460022 img loss 1.1846799850463867 img loss 1.2951010465621948 img loss 1.209288477897644 img loss 1.2399189472198486 img loss 1.147430181503296 img loss 1.3310378789901733 img loss 1.1984245777130127 img loss 1.26460862159729 img loss 1.213897705078125 img loss 1.2968562841415405 img loss 1.1872127056121826 img loss 1.2373578548431396 img loss 1.2175674438476562 img loss 1.2627909183502197 img loss 1.1508725881576538 img loss 1.2884219884872437 img loss 1.2200247049331665 img loss 1.2057571411132812 img loss 1.2374374866485596 img loss 1.2368744611740112 img loss 1.169142723083496 img loss 1.187753438949585 img loss 1.2248433828353882 img loss 1.2439451217651367 img loss 1.2878475189208984 img loss 1.2594032287597656 img loss 1.2595305442810059 img loss 1.3349940776824951 img loss 1.1723142862319946 img loss 1.168928861618042 img loss 1.203321099281311 img loss 1.3757281303405762 img loss 1.219248652458191 img loss 1.3527547121047974 img loss 1.2605736255645752 img loss 1.0884244441986084 img loss 1.1863819360733032 img loss 1.2630070447921753 img loss 1.2410038709640503 img loss 1.2249655723571777 img loss 1.2011923789978027 img loss 1.3708256483078003 img loss 1.1921708583831787 img loss 1.236059546470642 img loss 1.196353554725647 img loss 1.2039048671722412 img loss 1.1853973865509033 img loss 1.148494005203247 img loss 1.19157874584198 img loss 1.2294483184814453 img loss 1.1997342109680176 img loss 1.2553414106369019 img loss 1.2080917358398438 img loss 1.1779543161392212 img loss 1.2029533386230469 img loss 1.2093433141708374 img loss 1.211944341659546 img loss 1.2074964046478271 img loss 1.1603721380233765 img loss 1.2705386877059937 img loss 1.296964406967163 img loss 1.238384485244751 img loss 1.2429990768432617 img loss 1.2226154804229736 img loss 1.2560222148895264 img loss 1.3072761297225952 img loss 1.2874813079833984 img loss 1.0991179943084717 img loss 1.238097906112671 img loss 1.3148343563079834 img loss 1.2397022247314453 img loss 1.2435654401779175 img loss 1.2557766437530518 img loss 1.1862208843231201 img loss 1.256838083267212 img loss 1.256969928741455 img loss 1.192320466041565 img loss 1.2188726663589478 img loss 1.2358582019805908 img loss 1.2187432050704956 img loss 1.2567967176437378 img loss 1.2624372243881226 img loss 1.2026011943817139 img loss 1.2371962070465088 img loss 1.149512529373169 img loss 1.2107048034667969 img loss 1.3080848455429077 img loss 1.2221390008926392 img loss 1.1346851587295532 img loss 1.2673754692077637 img loss 1.2125251293182373 img loss 1.1639137268066406 img loss 1.2095482349395752 img loss 1.2094255685806274 img loss 1.208229660987854 img loss 1.1981347799301147 img loss 1.2437963485717773 img loss 1.2494511604309082 img loss 1.2767770290374756 img loss 1.2697958946228027 img loss 1.2723228931427002 img loss 1.2804096937179565 img loss 1.1564900875091553 img loss 1.2864060401916504 img loss 1.146409273147583 {'loss': 1.2285, 'grad_norm': 0.2620713412761688, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2412009239196777 img loss 1.1931854486465454 img loss 1.2312183380126953 img loss 1.1847541332244873 img loss 1.1864808797836304 img loss 1.199926733970642 img loss 1.3094229698181152 img loss 1.2398136854171753 img loss 1.2726213932037354 img loss 1.1595911979675293 img loss 1.2940889596939087 img loss 1.2180660963058472 img loss 1.236281156539917 img loss 1.2548760175704956 img loss 1.2018520832061768 img loss 1.1656758785247803 img loss 1.1877659559249878 img loss 1.2191641330718994 img loss 1.2099988460540771 img loss 1.214972734451294 img loss 1.1839179992675781 img loss 1.1906628608703613 img loss 1.2181179523468018 img loss 1.2213878631591797 img loss 1.2161457538604736 img loss 1.239327073097229 img loss 1.1421912908554077 img loss 1.2124754190444946 img loss 1.2320482730865479 img loss 1.1991722583770752 img loss 1.2593975067138672 img loss 1.2456318140029907 img loss 1.195077896118164 img loss 1.2357479333877563 img loss 1.2228052616119385 img loss 1.285240650177002 img loss 1.2053030729293823 img loss 1.1802507638931274 img loss 1.1798598766326904 img loss 1.1854749917984009 img loss 1.18558931350708 img loss 1.2085115909576416 img loss 1.239053726196289 img loss 1.2425428628921509 img loss 1.1610902547836304 img loss 1.26925790309906 img loss 1.1830180883407593 img loss 1.2307844161987305 img loss 1.2012457847595215 img loss 1.2462856769561768 img loss 1.224485993385315 img loss 1.1908743381500244 img loss 1.2301545143127441 img loss 1.2339810132980347 img loss 1.2334274053573608 img loss 1.2754350900650024 img loss 1.1688467264175415 img loss 1.2128223180770874 img loss 1.2475401163101196 img loss 1.2069709300994873 img loss 1.2059074640274048img loss 1.1995588541030884 img loss 1.1992218494415283 img loss 1.2203935384750366 img loss 1.2030198574066162 img loss 1.206967830657959 img loss 1.2530523538589478 img loss 1.2412325143814087 img loss 1.1943724155426025 img loss 1.206958532333374 img loss 1.199023962020874 img loss 1.172441840171814 img loss 1.141465187072754 img loss 1.2182929515838623 img loss 1.255278468132019 img loss 1.2631986141204834 img loss 1.2789814472198486 img loss 1.1963809728622437 img loss 1.2069509029388428 img loss 1.2334731817245483 img loss 1.228559970855713 img loss 1.1743905544281006 img loss 1.2149598598480225 img loss 1.2026538848876953 img loss 1.2146570682525635 img loss 1.2455518245697021 img loss 1.2182432413101196 img loss 1.2404488325119019 img loss 1.2133710384368896 img loss 1.210915207862854 img loss 1.2822606563568115 img loss 1.3634039163589478 img loss 1.206145167350769 img loss 1.2149661779403687 img loss 1.2367503643035889 img loss 1.2470378875732422 img loss 1.3561437129974365 img loss 1.2588353157043457 img loss 1.2317309379577637 img loss 1.1920490264892578 img loss 1.2484488487243652 img loss 1.253089427947998 img loss 1.3079044818878174 img loss 1.1612956523895264 img loss 1.1851117610931396 img loss 1.2735674381256104 img loss 1.2730183601379395 img loss 1.1960567235946655 img loss 1.1997735500335693 img loss 1.2538201808929443 img loss 1.2369998693466187 img loss 1.2167613506317139 img loss 1.2249000072479248 img loss 1.2235584259033203 img loss 1.2312531471252441 img loss 1.2389475107192993 img loss 1.1911189556121826 img loss 1.302946925163269 img loss 1.1743712425231934 img loss 1.1799235343933105 img loss 1.1594727039337158 img loss 1.2281044721603394 img loss 1.212424635887146 img loss 1.1673812866210938 img loss 1.2120678424835205 img loss 1.2356880903244019 img loss 1.2750229835510254 img loss 1.2024731636047363 {'loss': 1.2217, 'grad_norm': 0.2238548994064331, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1900650262832642 img loss 1.1685196161270142 img loss 1.2242848873138428 img loss 1.2149901390075684 img loss 1.1673426628112793 img loss 1.1503223180770874 img loss 1.2311182022094727 img loss 1.123764991760254 img loss 1.2654526233673096 img loss 1.1565595865249634 img loss 1.3022788763046265 img loss 1.202541708946228 img loss 1.1619377136230469 img loss 1.243856430053711 img loss 1.1727163791656494 img loss 1.2643678188323975 img loss 1.1918065547943115 img loss 1.2154064178466797 img loss 1.2305856943130493 img loss 1.1442484855651855 img loss 1.141876459121704 img loss 1.1403254270553589 img loss 1.213694453239441 img loss 1.2648433446884155 img loss 1.1520440578460693 img loss 1.1854099035263062 img loss 1.194424033164978 img loss 1.1875224113464355 img loss 1.1562824249267578 img loss 1.2789570093154907 img loss 1.2203834056854248 img loss 1.2267813682556152 img loss 1.2471561431884766 img loss 1.171519160270691 img loss 1.2289565801620483 img loss 1.171323537826538 img loss 1.2034244537353516 img loss 1.252465844154358 img loss 1.2236963510513306 img loss 1.2029842138290405 img loss 1.1057368516921997 img loss 1.2147910594940186 img loss 1.2110629081726074 img loss 1.2463010549545288 img loss 1.208811640739441 img loss 1.198688268661499 img loss 1.174405813217163 img loss 1.1866518259048462 img loss 1.1850261688232422 img loss 1.1567530632019043 img loss 1.2005685567855835 img loss 1.2180849313735962 img loss 1.1409114599227905 img loss 1.2064037322998047 img loss 1.2577956914901733 img loss 1.2103536128997803 img loss 1.2159531116485596 img loss 1.248551845550537img loss 1.169471025466919 img loss 1.1995010375976562 img loss 1.151854157447815 img loss 1.1451177597045898 img loss 1.1547129154205322 img loss 1.1449201107025146 img loss 1.2105090618133545 img loss 1.2528572082519531 img loss 1.111414909362793 img loss 1.1822947263717651 img loss 1.2111057043075562 img loss 1.2964648008346558 img loss 1.2555971145629883 img loss 1.1897640228271484 img loss 1.1619219779968262 img loss 1.2079542875289917 img loss 1.1686787605285645 img loss 1.1237958669662476 img loss 1.2254770994186401 img loss 1.259621024131775 img loss 1.3210170269012451 img loss 1.19766104221344 img loss 1.2644776105880737 img loss 1.259569764137268 img loss 1.2313764095306396 img loss 1.2297238111495972 img loss 1.20183527469635 img loss 1.1780915260314941 img loss 1.1290124654769897 img loss 1.2087188959121704 img loss 1.1834733486175537 img loss 1.1054527759552002 img loss 1.1580909490585327 img loss 1.2005813121795654 img loss 1.218490481376648 img loss 1.2752101421356201 img loss 1.1506260633468628 img loss 1.1947307586669922 img loss 1.186358094215393 img loss 1.190194845199585 img loss 1.233009696006775 img loss 1.2536283731460571 img loss 1.2170532941818237 img loss 1.2318204641342163 img loss 1.2138862609863281 img loss 1.2057396173477173 img loss 1.1378638744354248 img loss 1.2541751861572266 img loss 1.1717678308486938 img loss 1.1646380424499512 img loss 1.258100152015686 img loss 1.1376982927322388 img loss 1.167772650718689 img loss 1.1861822605133057 img loss 1.0607500076293945 img loss 1.1665072441101074 img loss 1.199228286743164 img loss 1.176325798034668 img loss 1.256954550743103 img loss 1.2668637037277222 img loss 1.196955680847168 img loss 1.2421743869781494 img loss 1.2386853694915771 img loss 1.210224986076355 img loss 1.1709468364715576 img loss 1.1926939487457275 img loss 1.1965280771255493 img loss 1.3098758459091187 img loss 1.21134352684021 img loss 1.1999964714050293 {'loss': 1.2009, 'grad_norm': 0.20500999689102173, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2473684549331665 img loss 1.157444953918457 img loss 1.1757032871246338 img loss 1.2361408472061157 img loss 1.242319941520691 img loss 1.282373309135437 img loss 1.1874510049819946 img loss 1.1603665351867676 img loss 1.1888034343719482 img loss 1.2412919998168945 img loss 1.2645381689071655 img loss 1.2217854261398315 img loss 1.3493274450302124 img loss 1.3126556873321533 img loss 1.191187858581543 img loss 1.2206968069076538 img loss 1.14792799949646 img loss 1.2169957160949707 img loss 1.1470905542373657 img loss 1.2041213512420654 img loss 1.2162888050079346 img loss 1.1652740240097046 img loss 1.166459560394287 img loss 1.186776041984558 img loss 1.145482063293457 img loss 1.2218468189239502 img loss 1.2142970561981201 img loss 1.1757020950317383 img loss 1.2319239377975464 img loss 1.28689444065094 img loss 1.2660460472106934 img loss 1.199912667274475 img loss 1.2490310668945312 img loss 1.1991004943847656 img loss 1.2393412590026855 img loss 1.2545816898345947 img loss 1.1693370342254639 img loss 1.2510409355163574 img loss 1.1733717918395996 img loss 1.186530590057373 img loss 1.1958870887756348 img loss 1.1674647331237793 img loss 1.2183862924575806 img loss 1.2076621055603027 img loss 1.2035776376724243 img loss 1.1521562337875366 img loss 1.1996992826461792 img loss 1.222544550895691 img loss 1.1957039833068848 img loss 1.2062814235687256 img loss 1.145994782447815 img loss 1.237711787223816 img loss 1.1741588115692139 img loss 1.2589880228042603 img loss 1.191636562347412 img loss 1.227865219116211 img loss 1.1742348670959473 img loss 1.2061563730239868 img loss 1.2499191761016846 img loss 1.209144115447998 img loss 1.287086844444275 img loss 1.2202762365341187 img loss 1.1491822004318237 img loss 1.1825981140136719 img loss 1.1647076606750488 img loss 1.2234543561935425 img loss 1.210736632347107 img loss 1.2515580654144287 img loss 1.1947379112243652 img loss 1.2762482166290283 img loss 1.2511733770370483 img loss 1.2169814109802246 img loss 1.2320938110351562 img loss 1.2190574407577515 img loss 1.2986547946929932 img loss 1.2052133083343506 img loss 1.2405017614364624 img loss 1.237939715385437 img loss 1.2720798254013062 img loss 1.17319655418396 img loss 1.196692705154419 img loss 1.1978206634521484 img loss 1.1669644117355347 img loss 1.20310378074646 img loss 1.2452925443649292 img loss 1.2018448114395142 img loss 1.2746464014053345 img loss 1.154796838760376 img loss 1.2148809432983398 img loss 1.1528797149658203 img loss 1.2660185098648071 img loss 1.2761876583099365 img loss 1.2820425033569336 img loss 1.2296922206878662 img loss 1.1917823553085327 img loss 1.197320580482483 img loss 1.1934106349945068 img loss 1.1528688669204712 img loss 1.1737384796142578 img loss 1.1335726976394653 img loss 1.2255624532699585 img loss 1.2156498432159424 img loss 1.2370307445526123 img loss 1.2173124551773071 img loss 1.2233655452728271 img loss 1.2074512243270874 img loss 1.2329955101013184 img loss 1.2945410013198853 img loss 1.2651572227478027 img loss 1.2010490894317627 img loss 1.2223234176635742 img loss 1.1890006065368652 img loss 1.1475275754928589 img loss 1.197485327720642 img loss 1.2297934293746948 img loss 1.2325127124786377 img loss 1.2270296812057495 img loss 1.1452053785324097 img loss 1.2358896732330322 img loss 1.1673134565353394 img loss 1.2150852680206299 img loss 1.222886562347412 img loss 1.1485248804092407 img loss 1.2319875955581665 img loss 1.238006353378296 img loss 1.188039779663086 img loss 1.2626770734786987 img loss 1.2026991844177246 {'loss': 1.2131, 'grad_norm': 0.22146378457546234, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1935210227966309 img loss 1.2292735576629639 img loss 1.2225850820541382 img loss 1.2222175598144531 img loss 1.2437496185302734 img loss 1.2765352725982666 img loss 1.2131389379501343 img loss 1.2538220882415771 img loss 1.2525322437286377 img loss 1.1891682147979736 img loss 1.2218818664550781 img loss 1.2037334442138672 img loss 1.2614178657531738 img loss 1.1909445524215698 img loss 1.208535075187683 img loss 1.2697420120239258 img loss 1.2446269989013672 img loss 1.2101643085479736 img loss 1.2207365036010742 img loss 1.2439000606536865 img loss 1.2110470533370972 img loss 1.214686632156372 img loss 1.2309739589691162 img loss 1.241899013519287 img loss 1.2038743495941162 img loss 1.2307993173599243 img loss 1.1954231262207031 img loss 1.198198676109314 img loss 1.238830327987671 img loss 1.194782018661499 img loss 1.2091082334518433 img loss 1.177272081375122 img loss 1.1829684972763062 img loss 1.2402843236923218 img loss 1.2780689001083374 img loss 1.304350733757019 img loss 1.2496641874313354 img loss 1.246112585067749 img loss 1.2060664892196655 img loss 1.238760232925415 img loss 1.2065417766571045 img loss 1.2095097303390503 img loss 1.2582244873046875 img loss 1.2231667041778564 img loss 1.184852123260498 img loss 1.2934976816177368 img loss 1.236366629600525 img loss 1.2685272693634033 img loss 1.1818557977676392 img loss 1.2547863721847534 img loss 1.2899036407470703 img loss 1.231887698173523 img loss 1.2745859622955322 img loss 1.2715542316436768 img loss 1.3056941032409668 img loss 1.26557195186615 img loss 1.211313247680664 img loss 1.195955753326416 img loss 1.1735066175460815 img loss 1.1557737588882446 img loss 1.2366058826446533 img loss 1.2379330396652222 img loss 1.2390217781066895 img loss 1.2308069467544556 img loss 1.2291154861450195 img loss 1.231998085975647 img loss 1.2589476108551025 img loss 1.315978765487671 img loss 1.254187822341919 img loss 1.233031988143921 img loss 1.23078191280365 img loss 1.2946686744689941 img loss 1.2380930185317993 img loss 1.251858115196228 img loss 1.2057360410690308 img loss 1.2409981489181519 img loss 1.22182297706604 img loss 1.2809996604919434 img loss 1.1822620630264282 img loss 1.2515485286712646 img loss 1.2425085306167603 img loss 1.2171378135681152 img loss 1.235134482383728 img loss 1.2133800983428955 img loss 1.278814673423767 img loss 1.215705156326294 img loss 1.2136504650115967 img loss 1.2076774835586548 img loss 1.1871883869171143 img loss 1.230883240699768 img loss 1.1810896396636963 img loss 1.282004952430725 img loss 1.1968860626220703 img loss 1.2497749328613281 img loss 1.2710514068603516 img loss 1.1910656690597534 img loss 1.2916244268417358 img loss 1.2305876016616821 img loss 1.2238966226577759 img loss 1.2411949634552002 img loss 1.260862946510315 img loss 1.1959149837493896 img loss 1.2414660453796387 img loss 1.2432202100753784 img loss 1.2251983880996704 img loss 1.259355068206787 img loss 1.249784231185913 img loss 1.2763999700546265 img loss 1.2014362812042236 img loss 1.2283576726913452 img loss 1.2129509449005127 img loss 1.2663675546646118 img loss 1.2232292890548706 img loss 1.2239351272583008 img loss 1.2324742078781128 img loss 1.2294516563415527 img loss 1.286210298538208 img loss 1.2463219165802002 img loss 1.23434579372406 img loss 1.2416183948516846 img loss 1.2858059406280518 img loss 1.2509316205978394 img loss 1.2289068698883057 img loss 1.254014015197754 img loss 1.1867672204971313 img loss 1.2423954010009766 img loss 1.2487167119979858 img loss 1.23920476436615 {'loss': 1.2339, 'grad_norm': 0.23460181057453156, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.326422929763794 img loss 1.2973973751068115 img loss 1.294910192489624 img loss 1.2340023517608643 img loss 1.224578857421875 img loss 1.2573144435882568 img loss 1.1790215969085693 img loss 1.1956593990325928 img loss 1.3685420751571655 img loss 1.3037270307540894 img loss 1.2274833917617798 img loss 1.3395135402679443 img loss 1.2335572242736816 img loss 1.2436127662658691 img loss 1.2703555822372437 img loss 1.2625901699066162 img loss 1.2212151288986206 img loss 1.159624695777893 img loss 1.1704012155532837 img loss 1.290378212928772 img loss 1.200753092765808 img loss 1.1688827276229858 img loss 1.3068207502365112 img loss 1.224482774734497 img loss 1.2687313556671143 img loss 1.1879738569259644 img loss 1.2660892009735107 img loss 1.2884035110473633 img loss 1.2222981452941895 img loss 1.2855618000030518 img loss 1.2390515804290771 img loss 1.2950206995010376 img loss 1.2281391620635986 img loss 1.2085644006729126 img loss 1.2106425762176514 img loss 1.2127435207366943 img loss 1.316528081893921 img loss 1.2497204542160034 img loss 1.2024017572402954 img loss 1.3125040531158447 img loss 1.2262588739395142 img loss 1.2124385833740234 img loss 1.1649516820907593 img loss 1.2969063520431519 img loss 1.2783828973770142 img loss 1.3085055351257324 img loss 1.3044610023498535 img loss 1.2873282432556152 img loss 1.2540500164031982 img loss 1.2856053113937378 img loss 1.1943728923797607 img loss 1.2459137439727783 img loss 1.3311021327972412 img loss 1.2778342962265015 img loss 1.2284111976623535 img loss 1.2443941831588745 img loss 1.2608428001403809 img loss 1.2839791774749756 img loss 1.3487627506256104 img loss 1.2017849683761597 img loss 1.1782073974609375 img loss 1.3879504203796387 img loss 1.2716879844665527 img loss 1.3039671182632446 img loss 1.3343474864959717 img loss 1.1528759002685547 img loss 1.2499902248382568 img loss 1.2314318418502808 img loss 1.2802542448043823 img loss 1.2367748022079468 img loss 1.1951833963394165 img loss 1.2370553016662598 img loss 1.3465005159378052 img loss 1.2073744535446167 img loss 1.2748699188232422 img loss 1.2793054580688477 img loss 1.2827662229537964 img loss 1.2304046154022217 img loss 1.322628378868103 img loss 1.3251113891601562 img loss 1.2630127668380737 img loss 1.3246111869812012 img loss 1.3112972974777222 img loss 1.2411562204360962 img loss 1.3199732303619385 img loss 1.3196136951446533 img loss 1.2357361316680908 img loss 1.2650870084762573 img loss 1.2039680480957031 img loss 1.2920860052108765 img loss 1.188677191734314 img loss 1.2323640584945679 img loss 1.2605520486831665 img loss 1.2076995372772217 img loss 1.3146953582763672 img loss 1.3508217334747314 img loss 1.3452118635177612 img loss 1.227308988571167 img loss 1.1802395582199097 img loss 1.2664315700531006 img loss 1.2393165826797485 img loss 1.1782665252685547 img loss 1.2043516635894775 img loss 1.2401169538497925 img loss 1.317259669303894 img loss 1.2858340740203857 img loss 1.1994545459747314 img loss 1.2584772109985352 img loss 1.280447006225586 img loss 1.1830036640167236 img loss 1.2260302305221558 img loss 1.225858211517334 img loss 1.2212409973144531 img loss 1.3116810321807861 img loss 1.3197147846221924 img loss 1.257077693939209 img loss 1.2060425281524658 img loss 1.1591743230819702 img loss 1.2949116230010986 img loss 1.2497013807296753 img loss 1.2789198160171509 img loss 1.172224998474121 img loss 1.3887778520584106 img loss 1.2285761833190918 img loss 1.2762666940689087 img loss 1.225887656211853 img loss 1.2942742109298706 img loss 1.267019271850586 {'loss': 1.257, 'grad_norm': 0.2589561343193054, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2508466243743896 img loss 1.2013628482818604 img loss 1.2517850399017334 img loss 1.268907904624939 img loss 1.2274894714355469 img loss 1.291864275932312 img loss 1.3113508224487305 img loss 1.3892501592636108 img loss 1.2698719501495361 img loss 1.513018012046814 img loss 1.2897080183029175 img loss 1.2545734643936157 img loss 1.2829911708831787 img loss 1.185766577720642 img loss 1.3124048709869385 img loss 1.2815557718276978 img loss 1.2078304290771484 img loss 1.1902779340744019 img loss 1.3738237619400024 img loss 1.2623653411865234 img loss 1.2395941019058228 img loss 1.2660343647003174 img loss 1.3195022344589233 img loss 1.1471645832061768 img loss 1.3884669542312622 img loss 1.1968284845352173 img loss 1.2744629383087158 img loss 1.3261635303497314 img loss 1.2031970024108887 img loss 1.2299768924713135 img loss 1.3134231567382812 img loss 1.2734228372573853 img loss 1.369055151939392 img loss 1.2173343896865845 img loss 1.3945590257644653 img loss 1.3245062828063965 img loss 1.2547929286956787 img loss 1.242638111114502 img loss 1.272627353668213 img loss 1.2113384008407593 img loss 1.227237582206726 img loss 1.2746427059173584 img loss 1.3340544700622559 img loss 1.2640244960784912 img loss 1.360978364944458 img loss 1.2926806211471558 img loss 1.2503373622894287 img loss 1.2926445007324219 img loss 1.3636239767074585 img loss 1.396700382232666 img loss 1.3191152811050415 img loss 1.30952787399292 img loss 1.2621104717254639 img loss 1.2498414516448975 img loss 1.3154754638671875 img loss 1.3051033020019531 img loss 1.2478141784667969 img loss 1.239477515220642 img loss 1.2659568786621094 img loss 1.3261590003967285 img loss 1.2692426443099976 img loss 1.176472544670105 img loss 1.2670862674713135 img loss 1.3340362310409546 img loss 1.2589631080627441 img loss 1.282151460647583 img loss 1.2489877939224243 img loss 1.195640206336975 img loss 1.2937382459640503 img loss 1.2690370082855225 img loss 1.3284344673156738 img loss 1.2353436946868896 img loss 1.1625075340270996 img loss 1.2184605598449707 img loss 1.3019644021987915 img loss 1.3686765432357788 img loss 1.2284716367721558 img loss 1.2189239263534546 img loss 1.3267185688018799 img loss 1.252113938331604 img loss 1.2048615217208862 img loss 1.3354871273040771 img loss 1.362626314163208 img loss 1.266923189163208 img loss 1.2569408416748047 img loss 1.2656246423721313 img loss 1.2611850500106812 img loss 1.301633358001709 img loss 1.2732467651367188 img loss 1.373855710029602 img loss 1.2385629415512085 img loss 1.3466206789016724 img loss 1.2966009378433228 img loss 1.33919095993042 img loss 1.154374361038208 img loss 1.3771507740020752 img loss 1.2498937845230103 img loss 1.3246879577636719 img loss 1.2722784280776978 img loss 1.2316960096359253 img loss 1.401556134223938 img loss 1.2536627054214478 img loss 1.3077112436294556 img loss 1.2706975936889648 img loss 1.2808767557144165 img loss 1.2060375213623047 img loss 1.2617871761322021 img loss 1.2450692653656006 img loss 1.2877132892608643 img loss 1.3720875978469849 img loss 1.3264528512954712 img loss 1.220253825187683 img loss 1.4516252279281616 img loss 1.3068779706954956 img loss 1.3476537466049194 img loss 1.241376519203186 img loss 1.3016197681427002 img loss 1.3370903730392456 img loss 1.2683809995651245 img loss 1.2580389976501465 img loss 1.1967166662216187 img loss 1.1989548206329346 img loss 1.339555025100708 img loss 1.3123698234558105 img loss 1.1891902685165405 img loss 1.2223796844482422 img loss 1.2738946676254272 img loss 1.192543864250183 {'loss': 1.2799, 'grad_norm': 0.26820945739746094, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6194090843200684 img loss 1.7546828985214233 img loss 1.5940890312194824 img loss 1.6364929676055908 img loss 1.6412068605422974 img loss 1.6148695945739746 img loss 1.6091609001159668 img loss 1.6654143333435059 img loss 1.6094772815704346 img loss 1.6433804035186768 img loss 1.6144136190414429 img loss 1.5242974758148193 img loss 1.6438957452774048 img loss 1.5205340385437012 img loss 1.4614415168762207 img loss 1.5385935306549072 img loss 1.619614839553833 img loss 1.5638970136642456 img loss 1.5057817697525024 img loss 1.5739243030548096 img loss 1.565619945526123 img loss 1.6964643001556396 img loss 1.7935975790023804 img loss 1.6631265878677368 img loss 1.5351710319519043 img loss 1.7022497653961182 img loss 1.657691478729248 img loss 1.5201290845870972 img loss 1.6884220838546753 img loss 1.459592342376709 img loss 1.5894863605499268 img loss 1.6008306741714478 img loss 1.5960816144943237 img loss 1.6389719247817993 img loss 1.5598686933517456 img loss 1.5145000219345093 img loss 1.7524616718292236 img loss 1.649208903312683 img loss 1.5523267984390259 img loss 1.6167088747024536 img loss 1.7192225456237793 img loss 1.643129825592041 img loss 1.6219696998596191 img loss 1.5549455881118774 img loss 1.577475666999817 img loss 1.7062956094741821 img loss 1.660945177078247 img loss 1.550667643547058 img loss 1.527450680732727 img loss 1.5013364553451538 img loss 1.5728951692581177 img loss 1.5064283609390259 img loss 1.6882126331329346 img loss 1.5219895839691162 img loss 1.7309743165969849 img loss 1.6968671083450317 img loss 1.6219171285629272 img loss 1.6536813974380493 img loss 1.8985059261322021 img loss 1.6806089878082275 img loss 1.7308344841003418 img loss 1.6282258033752441 img loss 1.5554959774017334 img loss 1.7722277641296387 img loss 1.6308413743972778 img loss 1.5747970342636108 img loss 1.7429821491241455 img loss 1.701617956161499 img loss 1.553350567817688 img loss 1.6727938652038574 img loss 1.4738506078720093 img loss 1.5599610805511475 img loss 1.686801552772522 img loss 1.592223882675171 img loss 1.4920700788497925 img loss 1.6990326642990112 img loss 1.6348422765731812 img loss 1.6484538316726685 img loss 1.6486011743545532 img loss 1.6507179737091064 img loss 1.6840418577194214 img loss 1.662859559059143 img loss 1.555985927581787 img loss 1.601029872894287 img loss 1.6103562116622925 img loss 1.6357039213180542 img loss 1.6176998615264893 img loss 1.7390371561050415 img loss 1.7663319110870361 img loss 1.577674150466919 img loss 1.6382839679718018 img loss 1.6289188861846924 img loss 1.588189721107483 img loss 1.581684947013855 img loss 1.7220392227172852 img loss 1.642729640007019 img loss 1.6009595394134521 img loss 1.5620371103286743 img loss 1.634325385093689 img loss 1.7057214975357056 img loss 1.6508797407150269 img loss 1.7665112018585205 img loss 1.5433849096298218img loss 1.6446772813796997 img loss 1.4943927526474 img loss 1.6835161447525024 img loss 1.7585244178771973 img loss 1.5909279584884644 img loss 1.7271710634231567 img loss 1.6776622533798218 img loss 1.6616438627243042 img loss 1.487352967262268 img loss 1.8036739826202393 img loss 1.6001827716827393 img loss 1.7024139165878296 img loss 1.675040364265442 img loss 1.6338633298873901 img loss 1.5673805475234985 img loss 1.6828901767730713 img loss 1.6304335594177246 img loss 1.4977117776870728 img loss 1.5876176357269287 img loss 1.7705203294754028 img loss 1.6400264501571655 img loss 1.4694870710372925 img loss 1.6226998567581177 img loss 1.6306277513504028 img loss 1.618883728981018 {'loss': 1.6263, 'grad_norm': 0.23802395164966583, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2844960689544678 img loss 1.2161710262298584 img loss 1.161494493484497 img loss 1.2317805290222168 img loss 1.2888208627700806 img loss 1.2126318216323853 img loss 1.133095383644104 img loss 1.2140326499938965 img loss 1.2322698831558228 img loss 1.211789608001709 img loss 1.192786693572998 img loss 1.1039377450942993 img loss 1.207106351852417 img loss 1.1734778881072998 img loss 1.18423330783844 img loss 1.1760914325714111 img loss 1.2306772470474243 img loss 1.2158043384552002 img loss 1.2049554586410522 img loss 1.128692388534546 img loss 1.3258824348449707 img loss 1.1856411695480347 img loss 1.2014623880386353 img loss 1.16414475440979 img loss 1.163631796836853 img loss 1.1642036437988281 img loss 1.196044683456421 img loss 1.2214124202728271 img loss 1.1781525611877441 img loss 1.2112425565719604 img loss 1.2456653118133545 img loss 1.1499985456466675 img loss 1.2087581157684326 img loss 1.2168591022491455 img loss 1.1371033191680908 img loss 1.2296615839004517 img loss 1.2292240858078003 img loss 1.1791795492172241 img loss 1.1935526132583618 img loss 1.2495763301849365 img loss 1.2169134616851807 img loss 1.1473708152770996 img loss 1.1898479461669922 img loss 1.1199297904968262 img loss 1.1937910318374634 img loss 1.162608027458191 img loss 1.2743967771530151 img loss 1.119795799255371 img loss 1.2238765954971313 img loss 1.373955249786377 img loss 1.2297741174697876 img loss 1.1261242628097534 img loss 1.225786805152893 img loss 1.1567333936691284 img loss 1.209460735321045 img loss 1.3530555963516235 img loss 1.2415025234222412 img loss 1.284452199935913 img loss 1.2348966598510742 img loss 1.2453550100326538 img loss 1.1524238586425781 img loss 1.2756810188293457 img loss 1.1547229290008545 img loss 1.1395807266235352 img loss 1.22038733959198 img loss 1.3025802373886108 img loss 1.2356910705566406 img loss 1.2136646509170532 img loss 1.2169604301452637 img loss 1.1609395742416382 img loss 1.2037986516952515 img loss 1.1622062921524048 img loss 1.2324625253677368 img loss 1.223082423210144 img loss 1.2216796875 img loss 1.278479814529419 img loss 1.110609769821167 img loss 1.1479910612106323 img loss 1.2337626218795776 img loss 1.1975188255310059 img loss 1.2103192806243896 img loss 1.2354779243469238 img loss 1.263808250427246 img loss 1.264188528060913 img loss 1.1471452713012695 img loss 1.2495979070663452 img loss 1.2132173776626587 img loss 1.1719797849655151 img loss 1.0915873050689697 img loss 1.141017198562622 img loss 1.1716388463974 img loss 1.1525872945785522 img loss 1.2755895853042603 img loss 1.1799954175949097 img loss 1.2258293628692627 img loss 1.1386985778808594 img loss 1.1663296222686768 img loss 1.2008817195892334 img loss 1.1786556243896484 img loss 1.2600314617156982 img loss 1.2088207006454468 img loss 1.2429006099700928 img loss 1.1708412170410156 img loss 1.2877858877182007 img loss 1.0739058256149292 img loss 1.229222297668457 img loss 1.131756067276001 img loss 1.2190827131271362 img loss 1.2533406019210815 img loss 1.1343921422958374 img loss 1.2490630149841309 img loss 1.1984083652496338 img loss 1.1732172966003418 img loss 1.160468578338623 img loss 1.1951863765716553 img loss 1.2799146175384521 img loss 1.20735764503479 img loss 1.2911958694458008 img loss 1.1994071006774902 img loss 1.2583255767822266 img loss 1.1913909912109375 img loss 1.1792256832122803 img loss 1.1837961673736572 img loss 1.344547152519226 img loss 1.1719557046890259 img loss 1.1621453762054443 img loss 1.2221075296401978 img loss 1.1885623931884766 {'loss': 1.2048, 'grad_norm': 0.24846571683883667, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2216848134994507 img loss 1.2635784149169922 img loss 1.2711029052734375 img loss 1.2013177871704102 img loss 1.273894190788269 img loss 1.412367343902588 img loss 1.1545242071151733 img loss 1.2668482065200806 img loss 1.2449734210968018 img loss 1.2365171909332275 img loss 1.2173045873641968 img loss 1.2728536128997803 img loss 1.2921265363693237 img loss 1.1501171588897705 img loss 1.3111103773117065 img loss 1.254423975944519 img loss 1.1746792793273926 img loss 1.1886738538742065 img loss 1.3285696506500244 img loss 1.269167423248291 img loss 1.3140523433685303 img loss 1.197651743888855 img loss 1.2592599391937256 img loss 1.3189855813980103 img loss 1.312814474105835 img loss 1.232968807220459 img loss 1.3313555717468262 img loss 1.2629588842391968 img loss 1.3151730298995972 img loss 1.291807770729065 img loss 1.2370365858078003 img loss 1.2616024017333984 img loss 1.1972124576568604 img loss 1.2271374464035034 img loss 1.2692705392837524 img loss 1.2857630252838135 img loss 1.1404857635498047 img loss 1.2122883796691895 img loss 1.2805370092391968 img loss 1.2715208530426025 img loss 1.1994777917861938 img loss 1.2532403469085693 img loss 1.1494550704956055 img loss 1.2801157236099243 img loss 1.3091734647750854 img loss 1.2407022714614868 img loss 1.2676539421081543 img loss 1.2288240194320679 img loss 1.2634493112564087 img loss 1.2324079275131226 img loss 1.2380287647247314 img loss 1.2918146848678589 img loss 1.2620391845703125 img loss 1.25967276096344 img loss 1.27202308177948 img loss 1.3541672229766846 img loss 1.1833364963531494 img loss 1.2646934986114502 img loss 1.2836341857910156 img loss 1.3061968088150024 img loss 1.2269439697265625 img loss 1.1919790506362915 img loss 1.3345015048980713 img loss 1.1551988124847412 img loss 1.2391232252120972 img loss 1.1821253299713135 img loss 1.2484806776046753 img loss 1.2166287899017334 img loss 1.29220449924469 img loss 1.2116849422454834 img loss 1.2115591764450073 img loss 1.2330050468444824 img loss 1.2485936880111694 img loss 1.3092255592346191 img loss 1.2141560316085815 img loss 1.2101716995239258 img loss 1.168965220451355 img loss 1.289223313331604 img loss 1.200864553451538 img loss 1.20760977268219 img loss 1.3189367055892944 img loss 1.2642014026641846 img loss 1.2606027126312256 img loss 1.2734100818634033 img loss 1.281085729598999 img loss 1.2868525981903076 img loss 1.3014276027679443 img loss 1.314544439315796 img loss 1.199868083000183 img loss 1.281673789024353 img loss 1.1784321069717407 img loss 1.2660231590270996 img loss 1.2336525917053223 img loss 1.2382606267929077 img loss 1.3130910396575928 img loss 1.2389963865280151 img loss 1.2516143321990967 img loss 1.2272865772247314 img loss 1.362699270248413 img loss 1.2136236429214478 img loss 1.2829699516296387 img loss 1.2423549890518188 img loss 1.2361420392990112 img loss 1.2755295038223267 img loss 1.2597414255142212 img loss 1.2428874969482422 img loss 1.2444387674331665 img loss 1.3117117881774902 img loss 1.2669743299484253 img loss 1.2304714918136597 img loss 1.2644126415252686 img loss 1.235863447189331 img loss 1.310118317604065 img loss 1.2343885898590088 img loss 1.2344692945480347 img loss 1.2846721410751343 img loss 1.2568848133087158 img loss 1.2786861658096313 img loss 1.305713176727295 img loss 1.3462642431259155 img loss 1.3407238721847534 img loss 1.2991889715194702 img loss 1.2494850158691406 img loss 1.211190938949585 img loss 1.2318518161773682 img loss 1.2675144672393799 img loss 1.1883779764175415 img loss 1.2779591083526611 {'loss': 1.2553, 'grad_norm': 0.24884068965911865, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.184146523475647 img loss 1.1384828090667725 img loss 1.1605336666107178 img loss 1.0920307636260986 img loss 1.1284592151641846 img loss 1.1761747598648071 img loss 1.1866918802261353 img loss 1.1410073041915894 img loss 1.1640331745147705 img loss 1.2888706922531128 img loss 1.1937522888183594 img loss 1.1746249198913574 img loss 1.1906254291534424 img loss 1.1758078336715698 img loss 1.2010374069213867 img loss 1.252000331878662 img loss 1.2163562774658203 img loss 1.2402825355529785 img loss 1.2530046701431274 img loss 1.2234824895858765 img loss 1.1344026327133179 img loss 1.1578305959701538 img loss 1.2429046630859375 img loss 1.2164274454116821 img loss 1.1505308151245117 img loss 1.1491533517837524 img loss 1.2154970169067383 img loss 1.2566943168640137 img loss 1.1946887969970703 img loss 1.2374694347381592 img loss 1.2342537641525269 img loss 1.1845444440841675 img loss 1.2172683477401733 img loss 1.1747268438339233 img loss 1.1990607976913452 img loss 1.1762529611587524 img loss 1.1431763172149658 img loss 1.2400401830673218 img loss 1.1464858055114746 img loss 1.2292330265045166 img loss 1.179424524307251 img loss 1.1662358045578003 img loss 1.1747016906738281 img loss 1.224768042564392 img loss 1.2354453802108765 img loss 1.2125686407089233 img loss 1.1674401760101318 img loss 1.2165964841842651 img loss 1.2248053550720215 img loss 1.2205861806869507 img loss 1.1308351755142212 img loss 1.2573010921478271 img loss 1.2926020622253418 img loss 1.1056991815567017 img loss 1.1989338397979736 img loss 1.2113301753997803 img loss 1.147010087966919 img loss 1.2113831043243408 img loss 1.1852582693099976 img loss 1.2835328578948975 img loss 1.0814167261123657 img loss 1.1247634887695312 img loss 1.1393160820007324 img loss 1.243544340133667 img loss 1.1478271484375 img loss 1.1201608180999756 img loss 1.1388417482376099 img loss 1.1804864406585693 img loss 1.2631324529647827 img loss 1.197803258895874 img loss 1.245496392250061 img loss 1.157031536102295 img loss 1.1893701553344727 img loss 1.2144016027450562 img loss 1.1932132244110107 img loss 1.1294586658477783 img loss 1.1822254657745361 img loss 1.1195144653320312 img loss 1.151056170463562 img loss 1.1501543521881104 img loss 1.2280998229980469 img loss 1.1788322925567627 img loss 1.2095956802368164 img loss 1.1075103282928467 img loss 1.1489894390106201 img loss 1.1745507717132568 img loss 1.1678078174591064 img loss 1.1534502506256104 img loss 1.192063331604004 img loss 1.205960988998413 img loss 1.129341721534729 img loss 1.104583740234375 img loss 1.201324701309204 img loss 1.1741608381271362 img loss 1.1539255380630493 img loss 1.1397228240966797 img loss 1.2179653644561768 img loss 1.1529810428619385 img loss 1.1282014846801758 img loss 1.2534712553024292 img loss 1.160272479057312 img loss 1.216315746307373 img loss 1.1959384679794312 img loss 1.1683306694030762 img loss 1.178161382675171 img loss 1.1876797676086426img loss 1.1732096672058105 img loss 1.1278719902038574 img loss 1.2574331760406494 img loss 1.1033848524093628 img loss 1.1776604652404785 img loss 1.1230816841125488 img loss 1.182888388633728 img loss 1.2601561546325684 img loss 1.2163304090499878 img loss 1.2261006832122803 img loss 1.235540747642517 img loss 1.1656720638275146 img loss 1.1507409811019897 img loss 1.1409717798233032 img loss 1.253778100013733 img loss 1.1485896110534668 img loss 1.1681365966796875 img loss 1.248481273651123 img loss 1.2809488773345947 img loss 1.2418549060821533 img loss 1.2433847188949585 img loss 1.1817626953125 {'loss': 1.187, 'grad_norm': 0.21128305792808533, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.24822998046875 img loss 1.207700490951538 img loss 1.2689679861068726 img loss 1.2070937156677246 img loss 1.2223491668701172 img loss 1.2686457633972168 img loss 1.339612364768982 img loss 1.264148473739624 img loss 1.2552878856658936 img loss 1.2235393524169922 img loss 1.2157119512557983 img loss 1.3045028448104858 img loss 1.2390685081481934 img loss 1.1732177734375 img loss 1.26509428024292 img loss 1.2019011974334717 img loss 1.3286702632904053 img loss 1.197324275970459 img loss 1.2022441625595093 img loss 1.176084280014038 img loss 1.305467128753662 img loss 1.147265911102295 img loss 1.2744296789169312 img loss 1.2077648639678955 img loss 1.24089515209198 img loss 1.2608486413955688 img loss 1.1765549182891846 img loss 1.2079453468322754 img loss 1.2191418409347534 img loss 1.1871823072433472 img loss 1.2162587642669678 img loss 1.1972811222076416 img loss 1.1836735010147095 img loss 1.1658110618591309 img loss 1.2294483184814453 img loss 1.2577095031738281 img loss 1.2568085193634033 img loss 1.2305434942245483 img loss 1.192856788635254 img loss 1.2629337310791016 img loss 1.1956030130386353 img loss 1.2358633279800415 img loss 1.2697957754135132 img loss 1.220396876335144 img loss 1.2251150608062744 img loss 1.2282135486602783 img loss 1.2429749965667725 img loss 1.3122766017913818img loss 1.276087999343872 img loss 1.2962968349456787 img loss 1.3728821277618408 img loss 1.183407187461853 img loss 1.3115332126617432 img loss 1.244138479232788 img loss 1.2263696193695068 img loss 1.2393834590911865 img loss 1.3077905178070068 img loss 1.192800521850586 img loss 1.253899097442627 img loss 1.2427589893341064 img loss 1.2372435331344604 img loss 1.2746140956878662 img loss 1.194060206413269 img loss 1.221414566040039 img loss 1.280872106552124 img loss 1.2705554962158203 img loss 1.2536264657974243 img loss 1.266392469406128 img loss 1.2157922983169556 img loss 1.281604528427124 img loss 1.23756742477417 img loss 1.2644115686416626 img loss 1.259231448173523 img loss 1.24635910987854 img loss 1.2041782140731812 img loss 1.2428044080734253 img loss 1.2643616199493408 img loss 1.2694963216781616 img loss 1.291747808456421 img loss 1.3175855875015259 img loss 1.3231474161148071 img loss 1.2093918323516846 img loss 1.2882040739059448 img loss 1.27242910861969 img loss 1.1631178855895996 img loss 1.2215478420257568 img loss 1.320959448814392 img loss 1.2132917642593384 img loss 1.20387601852417 img loss 1.1858221292495728 img loss 1.1823030710220337 img loss 1.2235493659973145 img loss 1.2925331592559814 img loss 1.319888949394226 img loss 1.1973880529403687 img loss 1.242477297782898 img loss 1.224542498588562 img loss 1.1910254955291748 img loss 1.2578504085540771 img loss 1.2686179876327515 img loss 1.2623844146728516 img loss 1.2351516485214233 img loss 1.2166869640350342 img loss 1.281694769859314 img loss 1.2817473411560059 img loss 1.1918140649795532 img loss 1.3189523220062256 img loss 1.2733160257339478 img loss 1.2372058629989624 img loss 1.214185118675232 img loss 1.2406933307647705 img loss 1.2453670501708984 img loss 1.2880589962005615 img loss 1.2527698278427124 img loss 1.2715610265731812 img loss 1.2486984729766846 img loss 1.3049026727676392 img loss 1.2302665710449219 img loss 1.2848083972930908 img loss 1.3787190914154053 img loss 1.2725121974945068 img loss 1.195399522781372 img loss 1.2870181798934937 img loss 1.2463774681091309 img loss 1.2777830362319946 img loss 1.2445969581604004 img loss 1.2394574880599976 img loss 1.1819559335708618 {'loss': 1.2454, 'grad_norm': 0.22813980281352997, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4546027183532715 img loss 1.4922455549240112 img loss 1.503039002418518 img loss 1.3807711601257324 img loss 1.4373081922531128 img loss 1.4440609216690063 img loss 1.406468152999878 img loss 1.4455899000167847 img loss 1.406168818473816 img loss 1.3691017627716064 img loss 1.4336895942687988 img loss 1.4445512294769287 img loss 1.4617246389389038 img loss 1.438085913658142 img loss 1.470985770225525 img loss 1.4692902565002441 img loss 1.4726933240890503 img loss 1.418678641319275 img loss 1.3836171627044678 img loss 1.308837890625 img loss 1.4453336000442505 img loss 1.3948931694030762 img loss 1.4671779870986938 img loss 1.521752119064331 img loss 1.2948172092437744 img loss 1.4485561847686768 img loss 1.3825129270553589 img loss 1.4808319807052612 img loss 1.3546042442321777 img loss 1.3517820835113525 img loss 1.4977459907531738 img loss 1.4470890760421753 img loss 1.5068248510360718 img loss 1.3123564720153809 img loss 1.3676804304122925 img loss 1.5116174221038818 img loss 1.3877365589141846 img loss 1.4618443250656128 img loss 1.403580904006958 img loss 1.4270597696304321 img loss 1.478705883026123 img loss 1.429301142692566 img loss 1.4547607898712158 img loss 1.3754955530166626 img loss 1.4072117805480957 img loss 1.3700467348098755 img loss 1.4965441226959229 img loss 1.5609432458877563 img loss 1.3969950675964355 img loss 1.535921573638916 img loss 1.5354039669036865 img loss 1.335321307182312 img loss 1.5186983346939087 img loss 1.5898419618606567 img loss 1.4040194749832153 img loss 1.4235013723373413 img loss 1.465585470199585img loss 1.3898073434829712 img loss 1.4594299793243408 img loss 1.402984380722046 img loss 1.408082127571106 img loss 1.3893104791641235 img loss 1.578913927078247 img loss 1.3943244218826294 img loss 1.3234390020370483 img loss 1.3849056959152222 img loss 1.4265717267990112 img loss 1.4828579425811768 img loss 1.4232542514801025 img loss 1.4825949668884277 img loss 1.6489356756210327 img loss 1.5479553937911987 img loss 1.5096962451934814 img loss 1.5155255794525146 img loss 1.462720274925232 img loss 1.4759236574172974 img loss 1.438087821006775 img loss 1.4872685670852661 img loss 1.3724735975265503 img loss 1.447862982749939 img loss 1.5162523984909058 img loss 1.4749714136123657 img loss 1.4016362428665161 img loss 1.4034091234207153 img loss 1.4210715293884277 img loss 1.3697503805160522 img loss 1.5006500482559204 img loss 1.3863216638565063 img loss 1.4777381420135498 img loss 1.434613823890686 img loss 1.441800594329834 img loss 1.3910002708435059 img loss 1.3382657766342163 img loss 1.5016478300094604 img loss 1.3899648189544678 img loss 1.4424482583999634 img loss 1.3701437711715698 img loss 1.4388940334320068 img loss 1.3868321180343628 img loss 1.4171174764633179 img loss 1.4887025356292725 img loss 1.5393961668014526 img loss 1.3934448957443237img loss 1.501853108406067 img loss 1.4968539476394653 img loss 1.4668976068496704 img loss 1.4365140199661255 img loss 1.4312487840652466 img loss 1.636959195137024 img loss 1.4710004329681396 img loss 1.3649992942810059 img loss 1.3968385457992554 img loss 1.3764185905456543 img loss 1.419604778289795 img loss 1.5479791164398193 img loss 1.5047765970230103 img loss 1.4200350046157837 img loss 1.3542972803115845 img loss 1.4835221767425537 img loss 1.5286890268325806 img loss 1.468941330909729 img loss 1.509761929512024 img loss 1.540040135383606 img loss 1.5005204677581787 img loss 1.330838918685913 img loss 1.3811347484588623 img loss 1.5227620601654053 img loss 1.4828238487243652 {'loss': 1.4441, 'grad_norm': 0.25505807995796204, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3907063007354736 img loss 1.3018696308135986 img loss 1.4378694295883179 img loss 1.3886343240737915 img loss 1.3594040870666504 img loss 1.420560359954834 img loss 1.335986614227295 img loss 1.3367912769317627 img loss 1.416902780532837 img loss 1.2870330810546875 img loss 1.3951152563095093 img loss 1.2161328792572021 img loss 1.4616625308990479 img loss 1.3253387212753296 img loss 1.3775876760482788 img loss 1.3157166242599487 img loss 1.3909043073654175 img loss 1.3318712711334229 img loss 1.3246548175811768 img loss 1.4558302164077759 img loss 1.2930190563201904 img loss 1.313399314880371 img loss 1.285163164138794 img loss 1.250581979751587 img loss 1.3731826543807983 img loss 1.382710576057434 img loss 1.4238337278366089 img loss 1.466235637664795 img loss 1.3203542232513428 img loss 1.407590627670288 img loss 1.3475346565246582 img loss 1.2908827066421509 img loss 1.4091740846633911 img loss 1.4964357614517212 img loss 1.3157498836517334 img loss 1.317394733428955 img loss 1.3921550512313843 img loss 1.3802679777145386 img loss 1.3462212085723877 img loss 1.3848944902420044 img loss 1.3449208736419678 img loss 1.33177649974823 img loss 1.3280798196792603 img loss 1.4338635206222534 img loss 1.3783419132232666 img loss 1.3524936437606812 img loss 1.445888638496399 img loss 1.4325883388519287 img loss 1.3593288660049438 img loss 1.232102870941162 img loss 1.3321118354797363 img loss 1.3594790697097778 img loss 1.435434103012085 img loss 1.3853923082351685 img loss 1.50437331199646 img loss 1.2815368175506592 img loss 1.3719475269317627 img loss 1.4495896100997925 img loss 1.4294774532318115 img loss 1.3807851076126099 img loss 1.4994546175003052 img loss 1.363125205039978 img loss 1.4257932901382446 img loss 1.3728535175323486 img loss 1.3583983182907104 img loss 1.2414902448654175 img loss 1.4821362495422363 img loss 1.3585683107376099 img loss 1.473795771598816 img loss 1.376675009727478 img loss 1.4513987302780151 img loss 1.363710641860962 img loss 1.3801915645599365 img loss 1.3541971445083618 img loss 1.5095807313919067 img loss 1.3985008001327515 img loss 1.4000660181045532 img loss 1.5120689868927002 img loss 1.3872544765472412 img loss 1.4896886348724365 img loss 1.4282410144805908 img loss 1.3968698978424072 img loss 1.3759455680847168 img loss 1.3369662761688232 img loss 1.5316989421844482 img loss 1.4286415576934814 img loss 1.2520722150802612 img loss 1.5164796113967896 img loss 1.4088367223739624 img loss 1.3827050924301147 img loss 1.4606572389602661 img loss 1.378648281097412 img loss 1.2552998065948486 img loss 1.4456945657730103 img loss 1.4208987951278687 img loss 1.318662166595459 img loss 1.297719955444336 img loss 1.3975130319595337 img loss 1.2957284450531006 img loss 1.459160566329956 img loss 1.383156657218933 img loss 1.3063443899154663 img loss 1.3892407417297363 img loss 1.3886263370513916 img loss 1.2940601110458374 img loss 1.3800565004348755 img loss 1.3716171979904175 img loss 1.3236546516418457 img loss 1.476354956626892 img loss 1.5122517347335815 img loss 1.3252586126327515 img loss 1.3587374687194824 img loss 1.377386212348938 img loss 1.4159668684005737 img loss 1.3353184461593628 img loss 1.2604633569717407 img loss 1.2912966012954712 img loss 1.3635609149932861 img loss 1.3441929817199707 img loss 1.440020203590393 img loss 1.2624592781066895 img loss 1.413556456565857img loss 1.3103423118591309img loss 1.1788872480392456 img loss 1.3219374418258667 img loss 1.4080195426940918 img loss 1.4212982654571533 img loss 1.3717646598815918 {'loss': 1.3754, 'grad_norm': 0.5489780306816101, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2005383968353271 img loss 1.1982462406158447 img loss 1.2120939493179321 img loss 1.2735841274261475 img loss 1.2413876056671143 img loss 1.1924866437911987 img loss 1.3302574157714844 img loss 1.1252214908599854 img loss 1.1858303546905518 img loss 1.2382280826568604 img loss 1.1956630945205688 img loss 1.2390177249908447 img loss 1.2322908639907837 img loss 1.2292556762695312 img loss 1.1773631572723389 img loss 1.1794166564941406 img loss 1.2103099822998047 img loss 1.1733050346374512 img loss 1.237439513206482 img loss 1.1996848583221436 img loss 1.1220800876617432 img loss 1.243971824645996 img loss 1.2402489185333252 img loss 1.1581953763961792 img loss 1.1987816095352173 img loss 1.2313365936279297 img loss 1.2399284839630127 img loss 1.147242784500122 img loss 1.2686868906021118 img loss 1.1940122842788696 img loss 1.3096340894699097 img loss 1.247004747390747 img loss 1.3251394033432007 img loss 1.2092310190200806 img loss 1.2729682922363281 img loss 1.1709139347076416 img loss 1.23976469039917 img loss 1.2569583654403687 img loss 1.1856836080551147 img loss 1.1981689929962158 img loss 1.288164496421814 img loss 1.1559038162231445 img loss 1.2466959953308105 img loss 1.1408628225326538 img loss 1.0957036018371582 img loss 1.169594407081604 img loss 1.1959705352783203 img loss 1.239572286605835 img loss 1.2699140310287476 img loss 1.2551043033599854 img loss 1.1800469160079956 img loss 1.3082432746887207 img loss 1.2600460052490234 img loss 1.1847094297409058 img loss 1.1248735189437866 img loss 1.2874701023101807 img loss 1.1323039531707764 img loss 1.2142136096954346 img loss 1.1797244548797607 img loss 1.2060182094573975 img loss 1.1665924787521362 img loss 1.1531444787979126 img loss 1.2365880012512207 img loss 1.2274260520935059 img loss 1.3073616027832031 img loss 1.2762740850448608 img loss 1.232753038406372 img loss 1.1921571493148804 img loss 1.2665141820907593 img loss 1.330075979232788 img loss 1.188729166984558 img loss 1.1877731084823608 img loss 1.249534249305725 img loss 1.2036126852035522 img loss 1.2181744575500488 img loss 1.2239559888839722 img loss 1.2304706573486328 img loss 1.2640926837921143 img loss 1.2521857023239136 img loss 1.252031683921814 img loss 1.1697944402694702 img loss 1.2039918899536133 img loss 1.2848268747329712 img loss 1.160266399383545 img loss 1.205317735671997 img loss 1.2496155500411987 img loss 1.2927136421203613 img loss 1.3186630010604858 img loss 1.1779453754425049 img loss 1.1974245309829712 img loss 1.3067030906677246 img loss 1.3098151683807373 img loss 1.3127105236053467 img loss 1.2242085933685303 img loss 1.212311029434204 img loss 1.1665061712265015 img loss 1.232259750366211 img loss 1.2653675079345703 img loss 1.2401701211929321 img loss 1.194427490234375 img loss 1.2383488416671753img loss 1.2569642066955566 img loss 1.2412112951278687 img loss 1.1818466186523438 img loss 1.2198609113693237 img loss 1.3161242008209229 img loss 1.2671735286712646 img loss 1.2497289180755615 img loss 1.1724011898040771 img loss 1.1910908222198486 img loss 1.2183964252471924 img loss 1.1685065031051636 img loss 1.3361939191818237 img loss 1.1955190896987915 img loss 1.1806553602218628 img loss 1.2232906818389893 img loss 1.2003170251846313 img loss 1.085197925567627img loss 1.2253797054290771img loss 1.1404266357421875 img loss 1.2137504816055298img loss 1.2354190349578857img loss 1.283486008644104 img loss 1.2218436002731323 img loss 1.1910409927368164 img loss 1.1741474866867065 img loss 1.2473856210708618 img loss 1.223006248474121 {'loss': 1.2215, 'grad_norm': 0.21519674360752106, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6483073234558105 img loss 1.4004158973693848 img loss 1.4788933992385864 img loss 1.5842763185501099 img loss 1.4263423681259155 img loss 1.4086697101593018 img loss 1.5147746801376343 img loss 1.5867879390716553 img loss 1.4052021503448486 img loss 1.3197433948516846 img loss 1.4663292169570923 img loss 1.4445658922195435 img loss 1.5354899168014526 img loss 1.4627573490142822 img loss 1.4789797067642212 img loss 1.5798429250717163 img loss 1.6395994424819946 img loss 1.4528053998947144 img loss 1.5808433294296265 img loss 1.4128220081329346 img loss 1.5810539722442627 img loss 1.686895728111267 img loss 1.5122034549713135 img loss 1.5051649808883667 img loss 1.518249273300171 img loss 1.4819557666778564 img loss 1.4512706995010376 img loss 1.4352753162384033 img loss 1.557323932647705 img loss 1.367563009262085 img loss 1.4618552923202515 img loss 1.375914454460144 img loss 1.5344358682632446 img loss 1.3609049320220947 img loss 1.6417559385299683 img loss 1.3987820148468018 img loss 1.4421318769454956 img loss 1.4744926691055298 img loss 1.41502845287323 img loss 1.4081037044525146 img loss 1.3695236444473267 img loss 1.4339510202407837 img loss 1.4476810693740845 img loss 1.3945348262786865 img loss 1.5130623579025269 img loss 1.5029925107955933 img loss 1.4225668907165527 img loss 1.505492925643921 img loss 1.5105785131454468 img loss 1.586403727531433 img loss 1.5889017581939697 img loss 1.5593924522399902 img loss 1.4936412572860718 img loss 1.4508452415466309 img loss 1.51500403881073 img loss 1.5867716073989868 img loss 1.3982179164886475 img loss 1.4431633949279785 img loss 1.4186222553253174 img loss 1.5859373807907104 img loss 1.4129678010940552 img loss 1.4326281547546387 img loss 1.5430001020431519 img loss 1.3857442140579224 img loss 1.4995087385177612 img loss 1.3960100412368774 img loss 1.4551596641540527 img loss 1.5471316576004028 img loss 1.5486466884613037 img loss 1.4391571283340454 img loss 1.5686923265457153 img loss 1.417094111442566 img loss 1.5182284116744995 img loss 1.474880576133728 img loss 1.4795126914978027 img loss 1.470842957496643 img loss 1.4714186191558838 img loss 1.2909374237060547 img loss 1.4348809719085693 img loss 1.4854272603988647 img loss 1.414516568183899 img loss 1.4132040739059448 img loss 1.5503103733062744 img loss 1.386642575263977 img loss 1.4838017225265503 img loss 1.5568472146987915 img loss 1.555606722831726 img loss 1.5930274724960327 img loss 1.5734752416610718 img loss 1.600102186203003 img loss 1.4726827144622803 img loss 1.5170100927352905 img loss 1.482214331626892 img loss 1.460593581199646 img loss 1.5826761722564697 img loss 1.5155318975448608 img loss 1.3976815938949585 img loss 1.4925295114517212 img loss 1.4277369976043701 img loss 1.4147350788116455 img loss 1.3392938375473022 img loss 1.3764564990997314 img loss 1.4174774885177612 img loss 1.3848869800567627 img loss 1.4780954122543335 img loss 1.5909278392791748 img loss 1.4045064449310303 img loss 1.5761758089065552 img loss 1.5759555101394653 img loss 1.3331018686294556 img loss 1.4637497663497925 img loss 1.5652692317962646 img loss 1.44693922996521 img loss 1.4455063343048096 img loss 1.48953378200531 img loss 1.3993372917175293 img loss 1.4637364149093628 img loss 1.3851126432418823 img loss 1.460713267326355 img loss 1.433929204940796 img loss 1.5033543109893799 img loss 1.5985887050628662 img loss 1.413386583328247 img loss 1.3826931715011597 img loss 1.5029674768447876 img loss 1.5372555255889893 img loss 1.4430092573165894 img loss 1.44973623752594 {'loss': 1.478, 'grad_norm': 0.424545556306839, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.205886721611023 img loss 1.1843265295028687 img loss 1.313873529434204 img loss 1.1851104497909546 img loss 1.2425283193588257 img loss 1.194150686264038 img loss 1.204175591468811 img loss 1.1583359241485596 img loss 1.2115569114685059 img loss 1.246519684791565 img loss 1.134757399559021 img loss 1.2610043287277222 img loss 1.2727820873260498 img loss 1.289353609085083 img loss 1.1185516119003296 img loss 1.0935741662979126 img loss 1.1404244899749756 img loss 1.1716840267181396 img loss 1.2701616287231445 img loss 1.25726318359375 img loss 1.1592556238174438 img loss 1.2179393768310547 img loss 1.1093586683273315 img loss 1.2987773418426514 img loss 1.205865740776062 img loss 1.1961498260498047 img loss 1.3017514944076538 img loss 1.2428497076034546 img loss 1.1506953239440918 img loss 1.2771492004394531 img loss 1.3022165298461914 img loss 1.1436636447906494 img loss 1.150995135307312 img loss 1.142183780670166 img loss 1.2067465782165527 img loss 1.259864330291748 img loss 1.2946107387542725 img loss 1.317210078239441 img loss 1.2636865377426147 img loss 1.1830564737319946 img loss 1.2837094068527222 img loss 1.2952684164047241 img loss 1.2268996238708496 img loss 1.2553040981292725 img loss 1.1369086503982544 img loss 1.229647159576416 img loss 1.1527397632598877 img loss 1.1565039157867432 img loss 1.2237669229507446 img loss 1.3484069108963013 img loss 1.329514741897583 img loss 1.2737253904342651 img loss 1.2571700811386108 img loss 1.229894995689392 img loss 1.1806989908218384 img loss 1.2330033779144287 img loss 1.1395851373672485 img loss 1.2188230752944946 img loss 1.2350151538848877 img loss 1.191893458366394 img loss 1.212449073791504 img loss 1.1798475980758667 img loss 1.2375110387802124 img loss 1.1443103551864624 img loss 1.2785851955413818 img loss 1.287828803062439 img loss 1.2253873348236084 img loss 1.233313798904419 img loss 1.2784404754638672 img loss 1.248380422592163 img loss 1.2190611362457275 img loss 1.2375401258468628 img loss 1.2348352670669556 img loss 1.2782187461853027 img loss 1.1587889194488525 img loss 1.2650022506713867 img loss 1.2914495468139648 img loss 1.1855249404907227 img loss 1.295998454093933 img loss 1.2120870351791382 img loss 1.2569741010665894 img loss 1.165781021118164 img loss 1.2654798030853271 img loss 1.235176682472229 img loss 1.1477636098861694 img loss 1.235146164894104 img loss 1.1847851276397705 img loss 1.168274164199829 img loss 1.1233235597610474 img loss 1.3228468894958496 img loss 1.2459434270858765 img loss 1.1129255294799805 img loss 1.2134097814559937 img loss 1.3251651525497437 img loss 1.2004141807556152 img loss 1.2349001169204712 img loss 1.1826826333999634 img loss 1.2490155696868896 img loss 1.213221788406372 img loss 1.1096327304840088 img loss 1.1976618766784668 img loss 1.2314480543136597 img loss 1.2568659782409668 img loss 1.229244589805603 img loss 1.2288010120391846 img loss 1.3048202991485596 img loss 1.1941792964935303 img loss 1.2475087642669678 img loss 1.2766928672790527 img loss 1.245867133140564 img loss 1.2097351551055908 img loss 1.2361160516738892 img loss 1.1985759735107422 img loss 1.240872859954834 img loss 1.1786937713623047 img loss 1.2416456937789917 img loss 1.135401964187622 img loss 1.2922674417495728 img loss 1.1777536869049072 img loss 1.2362251281738281 img loss 1.1776443719863892 img loss 1.2991795539855957 img loss 1.273150086402893 img loss 1.2482398748397827 img loss 1.1367666721343994 img loss 1.2180614471435547 img loss 1.2972147464752197 img loss 1.2152493000030518 {'loss': 1.2227, 'grad_norm': 0.36923718452453613, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2809722423553467 img loss 1.24936842918396 img loss 1.1741218566894531 img loss 1.3413522243499756 img loss 1.237818717956543 img loss 1.2405191659927368 img loss 1.1990444660186768 img loss 1.310675859451294 img loss 1.2880399227142334 img loss 1.2967286109924316 img loss 1.1578353643417358 img loss 1.1391223669052124 img loss 1.2755590677261353 img loss 1.1951072216033936 img loss 1.2553801536560059 img loss 1.2132339477539062 img loss 1.2450608015060425 img loss 1.1605544090270996 img loss 1.1732298135757446 img loss 1.2561540603637695 img loss 1.3142948150634766 img loss 1.1398886442184448 img loss 1.1866077184677124 img loss 1.271863341331482 img loss 1.2970691919326782 img loss 1.2385611534118652 img loss 1.246992826461792 img loss 1.2623589038848877 img loss 1.2971214056015015 img loss 1.1956065893173218 img loss 1.2906993627548218 img loss 1.2206951379776 img loss 1.2615423202514648 img loss 1.2688624858856201 img loss 1.2501951456069946img loss 1.2125365734100342 img loss 1.2156579494476318 img loss 1.2566211223602295 img loss 1.1592804193496704 img loss 1.2478933334350586 img loss 1.1852185726165771 img loss 1.230638861656189 img loss 1.2046056985855103 img loss 1.2729003429412842 img loss 1.2571276426315308 img loss 1.2275367975234985 img loss 1.196610927581787 img loss 1.1480023860931396 img loss 1.2721916437149048 img loss 1.1940929889678955 img loss 1.1795457601547241img loss 1.2666659355163574 img loss 1.1559498310089111 img loss 1.3082091808319092 img loss 1.147363305091858 img loss 1.2263612747192383 img loss 1.1161571741104126 img loss 1.0868293046951294 img loss 1.2566287517547607 img loss 1.2872824668884277 img loss 1.2177976369857788 img loss 1.2668263912200928 img loss 1.2289302349090576 img loss 1.1809488534927368 img loss 1.2232517004013062 img loss 1.207934856414795 img loss 1.2818676233291626 img loss 1.1880698204040527 img loss 1.2751766443252563 img loss 1.2709949016571045 img loss 1.1659129858016968 img loss 1.1670277118682861 img loss 1.2363965511322021 img loss 1.1223293542861938 img loss 1.2111432552337646 img loss 1.228101372718811 img loss 1.2804961204528809 img loss 1.1820217370986938 img loss 1.2287195920944214 img loss 1.1485702991485596 img loss 1.1911569833755493 img loss 1.172114610671997 img loss 1.2105292081832886 img loss 1.1648496389389038 img loss 1.2017408609390259 img loss 1.1945257186889648 img loss 1.1876449584960938 img loss 1.1946569681167603 img loss 1.2220432758331299 img loss 1.1895363330841064 img loss 1.162048578262329 img loss 1.1826788187026978 img loss 1.2662404775619507 img loss 1.1620821952819824 img loss 1.2275619506835938 img loss 1.162510633468628 img loss 1.2295583486557007 img loss 1.2657582759857178 img loss 1.201418161392212 img loss 1.1598379611968994 img loss 1.22334623336792 img loss 1.3137130737304688 img loss 1.2185263633728027 img loss 1.2389581203460693 img loss 1.1735395193099976 img loss 1.2316243648529053 img loss 1.210500717163086 img loss 1.2923197746276855 img loss 1.2341852188110352 img loss 1.195237398147583 img loss 1.208422064781189 img loss 1.1622053384780884 img loss 1.1579868793487549 img loss 1.2318834066390991 img loss 1.2521120309829712 img loss 1.2272968292236328 img loss 1.201090693473816 img loss 1.212947130203247 img loss 1.2725422382354736 img loss 1.1337318420410156img loss 1.192938208580017 img loss 1.2348804473876953img loss 1.1889837980270386 img loss 1.215592861175537 img loss 1.287710189819336 img loss 1.266608476638794 img loss 1.2741310596466064 img loss 1.22629714012146 {'loss': 1.221, 'grad_norm': 0.19642974436283112, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.265235185623169 img loss 1.2872388362884521 img loss 1.1877297163009644 img loss 1.2159655094146729 img loss 1.242232322692871 img loss 1.2216854095458984 img loss 1.2747166156768799 img loss 1.2898679971694946 img loss 1.1966508626937866 img loss 1.1562550067901611 img loss 1.2037560939788818 img loss 1.1513046026229858 img loss 1.2909191846847534 img loss 1.2891753911972046 img loss 1.2728564739227295 img loss 1.2633157968521118 img loss 1.1934776306152344 img loss 1.3700788021087646 img loss 1.1978814601898193 img loss 1.244201421737671 img loss 1.3218188285827637 img loss 1.2018474340438843 img loss 1.3185741901397705 img loss 1.1802581548690796 img loss 1.271942138671875 img loss 1.1646361351013184 img loss 1.2569721937179565 img loss 1.2393913269042969 img loss 1.2664059400558472 img loss 1.254119873046875 img loss 1.3239660263061523 img loss 1.2730443477630615 img loss 1.187949776649475 img loss 1.2035623788833618 img loss 1.2983925342559814 img loss 1.2484886646270752 img loss 1.1772596836090088 img loss 1.2658545970916748 img loss 1.1832001209259033 img loss 1.239762544631958 img loss 1.2857855558395386 img loss 1.1930484771728516 img loss 1.293404221534729 img loss 1.2848790884017944 img loss 1.240897536277771 img loss 1.231424331665039 img loss 1.2630208730697632 img loss 1.25128972530365 img loss 1.2241674661636353 img loss 1.3051315546035767 img loss 1.217369794845581 img loss 1.3315922021865845 img loss 1.2399104833602905 img loss 1.2787920236587524 img loss 1.2003376483917236 img loss 1.259005069732666 img loss 1.340409755706787 img loss 1.3176307678222656 img loss 1.2656503915786743 img loss 1.2352927923202515 img loss 1.2398470640182495 img loss 1.1302579641342163 img loss 1.2667022943496704 img loss 1.325919508934021 img loss 1.2197636365890503 img loss 1.1996363401412964img loss 1.231810212135315 img loss 1.2634289264678955 img loss 1.2827576398849487 img loss 1.2089598178863525 img loss 1.2662391662597656 img loss 1.268295168876648 img loss 1.2815970182418823 img loss 1.2595272064208984 img loss 1.1996561288833618 img loss 1.2142202854156494 img loss 1.2586231231689453 img loss 1.2131211757659912 img loss 1.2879564762115479 img loss 1.2970519065856934 img loss 1.2850984334945679 img loss 1.2948044538497925 img loss 1.2203497886657715 img loss 1.1670494079589844 img loss 1.2130144834518433 img loss 1.2084311246871948 img loss 1.2377943992614746 img loss 1.188194751739502 img loss 1.2267204523086548 img loss 1.2764573097229004 img loss 1.1711781024932861 img loss 1.2170250415802002 img loss 1.227556586265564 img loss 1.3984318971633911 img loss 1.2501388788223267 img loss 1.303958773612976img loss 1.2601377964019775 img loss 1.2156816720962524 img loss 1.1553993225097656 img loss 1.2780026197433472 img loss 1.153684377670288 img loss 1.2042853832244873 img loss 1.356565237045288 img loss 1.1920979022979736 img loss 1.364227533340454 img loss 1.253908395767212 img loss 1.256368637084961 img loss 1.2778743505477905 img loss 1.2149407863616943 img loss 1.2722315788269043 img loss 1.1907488107681274 img loss 1.2765381336212158 img loss 1.2994415760040283 img loss 1.2796101570129395 img loss 1.2381407022476196 img loss 1.276658296585083 img loss 1.3169103860855103 img loss 1.2182902097702026 img loss 1.207796573638916 img loss 1.2996220588684082 img loss 1.2787659168243408 img loss 1.380821704864502 img loss 1.147665023803711 img loss 1.3064334392547607 img loss 1.2018460035324097 img loss 1.2988077402114868 img loss 1.2525866031646729 img loss 1.2456210851669312 {'loss': 1.2494, 'grad_norm': 0.5744822025299072, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3942855596542358 img loss 1.2114285230636597 img loss 1.3512451648712158 img loss 1.2720797061920166 img loss 1.3675720691680908 img loss 1.354691982269287 img loss 1.2489261627197266 img loss 1.32601797580719 img loss 1.3488694429397583 img loss 1.277148962020874 img loss 1.3035435676574707 img loss 1.360190510749817 img loss 1.279105544090271 img loss 1.305985450744629 img loss 1.3907735347747803 img loss 1.3261511325836182 img loss 1.269408106803894 img loss 1.2839200496673584 img loss 1.3734227418899536 img loss 1.2274178266525269 img loss 1.3911335468292236 img loss 1.3366705179214478 img loss 1.3475624322891235 img loss 1.2565271854400635 img loss 1.2662663459777832 img loss 1.2583911418914795 img loss 1.377541422843933 img loss 1.353629231452942 img loss 1.3181244134902954 img loss 1.2508119344711304 img loss 1.1807132959365845 img loss 1.3153800964355469 img loss 1.448301076889038 img loss 1.2510286569595337 img loss 1.2914221286773682 img loss 1.32184636592865 img loss 1.3282523155212402 img loss 1.2915798425674438 img loss 1.3220723867416382 img loss 1.3041658401489258 img loss 1.276711344718933 img loss 1.3989955186843872 img loss 1.4278948307037354 img loss 1.4933388233184814 img loss 1.3294918537139893 img loss 1.3836101293563843 img loss 1.43660306930542 img loss 1.3126055002212524 img loss 1.2636685371398926 img loss 1.2728089094161987 img loss 1.313882827758789 img loss 1.2966721057891846 img loss 1.3433114290237427 img loss 1.2664005756378174 img loss 1.2597808837890625 img loss 1.3448824882507324 img loss 1.3515931367874146 img loss 1.3495889902114868 img loss 1.2783554792404175 img loss 1.201830506324768img loss 1.3521578311920166 img loss 1.4152637720108032 img loss 1.2880496978759766 img loss 1.3399348258972168 img loss 1.3616385459899902 img loss 1.2682446241378784 img loss 1.2499154806137085 img loss 1.3268005847930908 img loss 1.2974755764007568 img loss 1.2407329082489014 img loss 1.3712016344070435 img loss 1.281337022781372 img loss 1.3265825510025024 img loss 1.3088668584823608 img loss 1.342658519744873 img loss 1.336485505104065 img loss 1.4199824333190918 img loss 1.322853684425354 img loss 1.3373615741729736 img loss 1.3621439933776855 img loss 1.3661653995513916 img loss 1.3320503234863281 img loss 1.4163415431976318 img loss 1.3941681385040283 img loss 1.2656980752944946 img loss 1.3737404346466064 img loss 1.3809136152267456 img loss 1.2536523342132568 img loss 1.2624887228012085 img loss 1.3750054836273193 img loss 1.3563830852508545 img loss 1.3201088905334473 img loss 1.3312400579452515 img loss 1.3469754457473755 img loss 1.2633683681488037 img loss 1.4660289287567139 img loss 1.3030064105987549 img loss 1.3648018836975098 img loss 1.255710482597351 img loss 1.3571523427963257 img loss 1.2983769178390503 img loss 1.42476224899292 img loss 1.3614325523376465 img loss 1.287891149520874 img loss 1.4423272609710693 img loss 1.248246431350708 img loss 1.2750163078308105 img loss 1.293919324874878 img loss 1.32211172580719 img loss 1.2004495859146118 img loss 1.3731762170791626 img loss 1.2912113666534424 img loss 1.375555157661438 img loss 1.3103728294372559 img loss 1.218315601348877 img loss 1.445678472518921 img loss 1.3397612571716309img loss 1.3657200336456299 img loss 1.3822234869003296 img loss 1.256882667541504 img loss 1.3100697994232178 img loss 1.2755959033966064 img loss 1.258544683456421 img loss 1.3006988763809204 img loss 1.2921892404556274 img loss 1.238059401512146 img loss 1.2692842483520508 img loss 1.3677245378494263 {'loss': 1.3222, 'grad_norm': 0.26689788699150085, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2074029445648193 img loss 1.237364411354065 img loss 1.2694995403289795 img loss 1.2443569898605347 img loss 1.2418286800384521 img loss 1.1821449995040894 img loss 1.2372450828552246 img loss 1.2457642555236816 img loss 1.2802093029022217 img loss 1.2513853311538696 img loss 1.2374674081802368 img loss 1.2679190635681152 img loss 1.2556037902832031 img loss 1.3216586112976074 img loss 1.2651076316833496 img loss 1.1598715782165527 img loss 1.276650071144104 img loss 1.2299494743347168 img loss 1.1654640436172485 img loss 1.1748930215835571 img loss 1.178432822227478 img loss 1.1970261335372925 img loss 1.3016142845153809 img loss 1.1864452362060547 img loss 1.3872056007385254 img loss 1.19957435131073 img loss 1.2827258110046387 img loss 1.2102802991867065 img loss 1.2636127471923828 img loss 1.2775219678878784 img loss 1.2858328819274902 img loss 1.2852245569229126 img loss 1.2779505252838135 img loss 1.2247856855392456 img loss 1.233782410621643 img loss 1.2965283393859863 img loss 1.2773818969726562 img loss 1.2110732793807983 img loss 1.218937873840332 img loss 1.2376114130020142 img loss 1.1871039867401123 img loss 1.2092708349227905 img loss 1.1645867824554443 img loss 1.2450871467590332 img loss 1.2499545812606812 img loss 1.2274653911590576 img loss 1.2837013006210327 img loss 1.3427233695983887 img loss 1.2502872943878174 img loss 1.2135015726089478 img loss 1.3015698194503784 img loss 1.194269061088562 img loss 1.2059062719345093 img loss 1.2246897220611572 img loss 1.2992455959320068 img loss 1.2030948400497437 img loss 1.2439165115356445 img loss 1.219631552696228 img loss 1.248113989830017 img loss 1.318462610244751 img loss 1.2110159397125244 img loss 1.245986819267273 img loss 1.2041871547698975 img loss 1.2969703674316406 img loss 1.194696307182312 img loss 1.2470917701721191 img loss 1.2477779388427734 img loss 1.3312097787857056 img loss 1.1991357803344727 img loss 1.2487379312515259 img loss 1.2323112487792969 img loss 1.2263879776000977 img loss 1.1772931814193726 img loss 1.254615068435669 img loss 1.1631377935409546 img loss 1.2705239057540894 img loss 1.2220391035079956 img loss 1.2650787830352783 img loss 1.3086504936218262 img loss 1.2198513746261597 img loss 1.190048098564148 img loss 1.2124037742614746 img loss 1.2749974727630615 img loss 1.2740178108215332 img loss 1.2265745401382446 img loss 1.2543971538543701 img loss 1.2918423414230347 img loss 1.232999563217163 img loss 1.2098231315612793 img loss 1.293474555015564 img loss 1.2530624866485596 img loss 1.251963496208191 img loss 1.2171075344085693 img loss 1.2757604122161865 img loss 1.322594165802002 img loss 1.281765341758728 img loss 1.2937626838684082 img loss 1.3184789419174194 img loss 1.2432913780212402 img loss 1.2164407968521118 img loss 1.2248802185058594 img loss 1.3102302551269531 img loss 1.2349764108657837 img loss 1.2968730926513672 img loss 1.2425205707550049 img loss 1.2367023229599 img loss 1.2150176763534546 img loss 1.2229355573654175 img loss 1.2276257276535034 img loss 1.2709705829620361 img loss 1.3241875171661377 img loss 1.2189538478851318 img loss 1.2150287628173828 img loss 1.3084139823913574 img loss 1.3290953636169434 img loss 1.4052337408065796 img loss 1.2551913261413574 img loss 1.234679937362671 img loss 1.217635154724121 img loss 1.2828432321548462 img loss 1.274256944656372 img loss 1.274417757987976 img loss 1.201979398727417 img loss 1.2256848812103271 img loss 1.2716424465179443 img loss 1.2216763496398926 img loss 1.287319540977478 img loss 1.2500206232070923 {'loss': 1.2484, 'grad_norm': 0.331202894449234, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.188341736793518 img loss 1.1973016262054443 img loss 1.2187647819519043 img loss 1.1892868280410767 img loss 1.1505063772201538 img loss 1.1501595973968506 img loss 1.1636511087417603 img loss 1.1405781507492065 img loss 1.2196544408798218 img loss 1.2433655261993408 img loss 1.1642793416976929 img loss 1.1796340942382812 img loss 1.2035140991210938 img loss 1.252217173576355 img loss 1.1888855695724487 img loss 1.212138056755066 img loss 1.1664284467697144 img loss 1.1682829856872559 img loss 1.15486478805542 img loss 1.1919586658477783 img loss 1.1714051961898804 img loss 1.2009023427963257 img loss 1.1451276540756226 img loss 1.1126649379730225 img loss 1.2192386388778687 img loss 1.2087249755859375 img loss 1.212867259979248 img loss 1.2022454738616943 img loss 1.141173005104065 img loss 1.1690056324005127 img loss 1.225889801979065 img loss 1.1292128562927246 img loss 1.176931619644165 img loss 1.1876049041748047 img loss 1.2422758340835571 img loss 1.198040246963501 img loss 1.2021864652633667 img loss 1.1672853231430054 img loss 1.2193818092346191 img loss 1.1887177228927612 img loss 1.1413856744766235 img loss 1.1674582958221436 img loss 1.2188093662261963 img loss 1.207537293434143 img loss 1.194187879562378 img loss 1.1175050735473633 img loss 1.1511744260787964 img loss 1.2369894981384277 img loss 1.204573631286621 img loss 1.1621049642562866 img loss 1.1811589002609253 img loss 1.1368976831436157 img loss 1.1593396663665771 img loss 1.1635284423828125 img loss 1.2127792835235596 img loss 1.189470648765564 img loss 1.244515299797058 img loss 1.130561351776123 img loss 1.225820541381836 img loss 1.19969642162323 img loss 1.1996971368789673 img loss 1.217385172843933 img loss 1.1908795833587646 img loss 1.1853803396224976 img loss 1.1619001626968384 img loss 1.1784963607788086 img loss 1.1912665367126465 img loss 1.1532167196273804 img loss 1.1658961772918701 img loss 1.176186442375183 img loss 1.1556193828582764 img loss 1.139944314956665 img loss 1.1373019218444824 img loss 1.2204468250274658 img loss 1.3064600229263306 img loss 1.1052632331848145 img loss 1.1204288005828857 img loss 1.243951678276062 img loss 1.1823220252990723 img loss 1.2026476860046387 img loss 1.1116900444030762 img loss 1.199671983718872 img loss 1.2372188568115234 img loss 1.2448647022247314 img loss 1.2091020345687866 img loss 1.1849511861801147 img loss 1.2068822383880615 img loss 1.2583320140838623 img loss 1.276096224784851 img loss 1.1997718811035156 img loss 1.23675537109375 img loss 1.1707044839859009 img loss 1.281466007232666 img loss 1.1933226585388184 img loss 1.1751240491867065 img loss 1.18818998336792 img loss 1.1129209995269775 img loss 1.1806843280792236 img loss 1.161811113357544 img loss 1.1742804050445557 img loss 1.1800930500030518 img loss 1.161651849746704 img loss 1.1823036670684814 img loss 1.1342566013336182 img loss 1.229156255722046 img loss 1.1362382173538208 img loss 1.1664619445800781 img loss 1.2028987407684326 img loss 1.1630769968032837 img loss 1.2442007064819336 img loss 1.1739976406097412 img loss 1.1682014465332031 img loss 1.3029067516326904 img loss 1.163367509841919 img loss 1.1619457006454468 img loss 1.1747426986694336 img loss 1.164250135421753 img loss 1.2216192483901978 img loss 1.1619579792022705 img loss 1.2209042310714722 img loss 1.1751712560653687 img loss 1.1798603534698486 img loss 1.1302297115325928 img loss 1.1623470783233643 img loss 1.2191921472549438 img loss 1.1879509687423706 img loss 1.1932425498962402 img loss 1.3074499368667603 {'loss': 1.1876, 'grad_norm': 0.22490468621253967, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.172042727470398 img loss 1.1693918704986572 img loss 1.2272148132324219 img loss 1.19940984249115 img loss 1.2601006031036377 img loss 1.163896918296814 img loss 1.2849924564361572 img loss 1.1498725414276123 img loss 1.2311687469482422 img loss 1.3129539489746094 img loss 1.1463762521743774 img loss 1.2289466857910156 img loss 1.2163504362106323 img loss 1.215605616569519 img loss 1.2268575429916382 img loss 1.2527488470077515 img loss 1.1773595809936523 img loss 1.2425588369369507 img loss 1.1890795230865479 img loss 1.2430483102798462 img loss 1.2771800756454468 img loss 1.2844820022583008 img loss 1.1535429954528809 img loss 1.2085107564926147 img loss 1.2249571084976196 img loss 1.170736312866211 img loss 1.1840877532958984 img loss 1.209245204925537 img loss 1.1975419521331787 img loss 1.1775773763656616 img loss 1.1316068172454834 img loss 1.2746021747589111 img loss 1.1829913854599 img loss 1.202239990234375 img loss 1.1639668941497803 img loss 1.2583396434783936 img loss 1.2321202754974365 img loss 1.1908493041992188 img loss 1.2529733180999756 img loss 1.116429328918457 img loss 1.2052143812179565 img loss 1.2608505487442017 img loss 1.2016067504882812 img loss 1.1848907470703125 img loss 1.2046362161636353 img loss 1.2437883615493774 img loss 1.189757227897644 img loss 1.3122564554214478 img loss 1.2124489545822144 img loss 1.2023471593856812 img loss 1.2470848560333252 img loss 1.2560226917266846 img loss 1.157761812210083 img loss 1.244554042816162 img loss 1.2361061573028564 img loss 1.24318265914917 img loss 1.234646201133728 img loss 1.2755131721496582 img loss 1.1877630949020386 img loss 1.1709145307540894 img loss 1.191900610923767 img loss 1.18541419506073 img loss 1.313763976097107 img loss 1.1976817846298218 img loss 1.3005207777023315 img loss 1.2345091104507446 img loss 1.2323750257492065 img loss 1.2994178533554077 img loss 1.2887977361679077 img loss 1.2485336065292358 img loss 1.2796903848648071 img loss 1.250976324081421 img loss 1.2590751647949219 img loss 1.1628528833389282 img loss 1.22117280960083 img loss 1.155989646911621 img loss 1.1673803329467773 img loss 1.268410086631775 img loss 1.3435568809509277 img loss 1.2198768854141235 img loss 1.2111495733261108 img loss 1.178078055381775 img loss 1.1934188604354858 img loss 1.1650574207305908 img loss 1.1438138484954834 img loss 1.1751930713653564 img loss 1.2146841287612915 img loss 1.261492371559143 img loss 1.2109943628311157 img loss 1.2679321765899658 img loss 1.229479432106018 img loss 1.2396987676620483 img loss 1.3062005043029785 img loss 1.1977481842041016 img loss 1.2930138111114502 img loss 1.1936798095703125 img loss 1.159873366355896 img loss 1.1935133934020996 img loss 1.207640290260315 img loss 1.1626830101013184 img loss 1.2274830341339111 img loss 1.231004238128662 img loss 1.20852530002594 img loss 1.1999889612197876 img loss 1.2709357738494873 img loss 1.178749442100525 img loss 1.225562334060669 img loss 1.2434313297271729 img loss 1.1681145429611206 img loss 1.2762750387191772 img loss 1.2230069637298584 img loss 1.2536213397979736 img loss 1.1723344326019287 img loss 1.2180557250976562 img loss 1.2083271741867065 img loss 1.170386552810669 img loss 1.1640300750732422 img loss 1.2110408544540405 img loss 1.2291516065597534 img loss 1.2341372966766357 img loss 1.246099829673767 img loss 1.3282225131988525 img loss 1.2182196378707886 img loss 1.2506077289581299 img loss 1.2366427183151245 img loss 1.211211919784546 img loss 1.2937830686569214 img loss 1.1684224605560303 {'loss': 1.2201, 'grad_norm': 0.2054283767938614, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4711138010025024 img loss 1.4852110147476196 img loss 1.391721248626709 img loss 1.4920496940612793 img loss 1.43674635887146 img loss 1.4763394594192505 img loss 1.5781735181808472 img loss 1.4683072566986084 img loss 1.3911563158035278 img loss 1.4514273405075073 img loss 1.4338020086288452 img loss 1.455487847328186 img loss 1.4508086442947388 img loss 1.4983341693878174 img loss 1.4904781579971313 img loss 1.3326778411865234 img loss 1.4107383489608765 img loss 1.4790987968444824 img loss 1.3458077907562256 img loss 1.3602057695388794 img loss 1.3431522846221924 img loss 1.447493314743042 img loss 1.4703651666641235 img loss 1.5127054452896118 img loss 1.3938138484954834 img loss 1.3583797216415405 img loss 1.425392508506775 img loss 1.4487993717193604 img loss 1.4524348974227905 img loss 1.4461232423782349 img loss 1.499670147895813 img loss 1.423449158668518 img loss 1.5918526649475098 img loss 1.5553240776062012 img loss 1.5071839094161987 img loss 1.436691403388977 img loss 1.381001591682434 img loss 1.4311736822128296 img loss 1.412560224533081 img loss 1.3898152112960815 img loss 1.2636656761169434 img loss 1.4530507326126099 img loss 1.4627498388290405 img loss 1.45033597946167 img loss 1.3639370203018188 img loss 1.552925944328308 img loss 1.5023046731948853 img loss 1.4167295694351196 img loss 1.5229952335357666 img loss 1.4663023948669434 img loss 1.4168870449066162 img loss 1.5081098079681396 img loss 1.3807272911071777 img loss 1.4911617040634155 img loss 1.4402586221694946 img loss 1.4551866054534912 img loss 1.4950487613677979 img loss 1.4211400747299194 img loss 1.2494728565216064 img loss 1.4068092107772827 img loss 1.554449200630188 img loss 1.5488466024398804 img loss 1.3622647523880005 img loss 1.39254891872406 img loss 1.4316121339797974 img loss 1.4721437692642212 img loss 1.5452691316604614 img loss 1.4680997133255005 img loss 1.3713412284851074 img loss 1.417940616607666 img loss 1.506354808807373 img loss 1.4754658937454224 img loss 1.5668493509292603 img loss 1.4455468654632568 img loss 1.461635947227478 img loss 1.511638879776001 img loss 1.3811566829681396 img loss 1.391335368156433 img loss 1.3936737775802612 img loss 1.4881771802902222 img loss 1.5412081480026245 img loss 1.4796150922775269 img loss 1.4606049060821533 img loss 1.4552052021026611 img loss 1.408182978630066 img loss 1.6204965114593506 img loss 1.3852059841156006 img loss 1.4270107746124268 img loss 1.4420230388641357 img loss 1.4332120418548584 img loss 1.4458142518997192 img loss 1.4807687997817993 img loss 1.507433533668518 img loss 1.4954917430877686 img loss 1.5179721117019653 img loss 1.5201386213302612 img loss 1.5399320125579834 img loss 1.5870155096054077 img loss 1.4000508785247803 img loss 1.3692611455917358 img loss 1.4066239595413208 img loss 1.4999687671661377 img loss 1.5913504362106323 img loss 1.3870033025741577 img loss 1.4526365995407104 img loss 1.3977950811386108 img loss 1.3820866346359253 img loss 1.4453188180923462 img loss 1.4803268909454346 img loss 1.6314316987991333 img loss 1.442012071609497 img loss 1.5684951543807983 img loss 1.4001368284225464 img loss 1.5314205884933472 img loss 1.4099724292755127 img loss 1.45850670337677 img loss 1.605559229850769 img loss 1.5567681789398193 img loss 1.4976102113723755 img loss 1.5002788305282593 img loss 1.5632582902908325 img loss 1.4949259757995605 img loss 1.3838051557540894 img loss 1.5005145072937012 img loss 1.51851224899292 img loss 1.4804933071136475 img loss 1.404223918914795 img loss 1.4261013269424438 {'loss': 1.4583, 'grad_norm': 0.2949342131614685, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2175483703613281 img loss 1.2228072881698608 img loss 1.2248972654342651 img loss 1.2818031311035156 img loss 1.163301706314087 img loss 1.1996771097183228 img loss 1.2029705047607422 img loss 1.2285130023956299 img loss 1.1797916889190674 img loss 1.2136543989181519 img loss 1.2156912088394165 img loss 1.220987319946289 img loss 1.2615021467208862 img loss 1.226308822631836 img loss 1.1949646472930908 img loss 1.2371119260787964 img loss 1.1831297874450684 img loss 1.229190707206726 img loss 1.2273576259613037 img loss 1.17733633518219 img loss 1.2514902353286743 img loss 1.2803348302841187 img loss 1.1967684030532837 img loss 1.187986969947815 img loss 1.1947972774505615 img loss 1.2199034690856934 img loss 1.253965139389038 img loss 1.162585735321045 img loss 1.2122617959976196 img loss 1.2123292684555054 img loss 1.2804940938949585 img loss 1.2774914503097534 img loss 1.203203797340393 img loss 1.2610234022140503 img loss 1.206956386566162 img loss 1.2082980871200562 img loss 1.1631237268447876 img loss 1.230547547340393 img loss 1.2035808563232422 img loss 1.2335379123687744 img loss 1.1606156826019287 img loss 1.18169105052948 img loss 1.2233244180679321 img loss 1.2202816009521484 img loss 1.1956114768981934 img loss 1.243950366973877 img loss 1.1829235553741455 img loss 1.204100251197815 img loss 1.2249999046325684 img loss 1.2162747383117676 img loss 1.1166365146636963 img loss 1.2334821224212646 img loss 1.1885945796966553 img loss 1.125105381011963 img loss 1.2242281436920166 img loss 1.2520904541015625 img loss 1.1842823028564453 img loss 1.267412781715393 img loss 1.1902945041656494 img loss 1.214332103729248 img loss 1.2210489511489868 img loss 1.2275192737579346 img loss 1.328813910484314 img loss 1.2426526546478271 img loss 1.1493803262710571 img loss 1.2744184732437134 img loss 1.2302742004394531 img loss 1.2236249446868896 img loss 1.2018870115280151 img loss 1.2117133140563965 img loss 1.2134226560592651 img loss 1.184414267539978 img loss 1.2388224601745605 img loss 1.213716745376587 img loss 1.2518303394317627 img loss 1.2425634860992432 img loss 1.2241324186325073 img loss 1.2465782165527344 img loss 1.147017240524292 img loss 1.166805624961853 img loss 1.2007659673690796 img loss 1.1866683959960938 img loss 1.147438645362854 img loss 1.2192153930664062 img loss 1.2338112592697144 img loss 1.203560471534729 img loss 1.2271854877471924 img loss 1.2141506671905518 img loss 1.2217321395874023 img loss 1.1790387630462646 img loss 1.2044914960861206 img loss 1.2381796836853027 img loss 1.217312216758728 img loss 1.1908689737319946 img loss 1.1797428131103516 img loss 1.2134634256362915 img loss 1.2283446788787842 img loss 1.1942877769470215 img loss 1.2264444828033447 img loss 1.2131131887435913 img loss 1.1900780200958252 img loss 1.203149437904358 img loss 1.251797080039978 img loss 1.1851441860198975 img loss 1.247473955154419 img loss 1.174272894859314 img loss 1.216382622718811 img loss 1.1207530498504639 img loss 1.217237114906311 img loss 1.1869349479675293 img loss 1.2795219421386719 img loss 1.1498745679855347 img loss 1.2105426788330078 img loss 1.215502142906189 img loss 1.1914986371994019 img loss 1.2100603580474854 img loss 1.2462295293807983 img loss 1.2309328317642212 img loss 1.1942789554595947 img loss 1.2300115823745728 img loss 1.155387282371521 img loss 1.2369194030761719 img loss 1.19399893283844 img loss 1.2259507179260254 img loss 1.2136948108673096 img loss 1.1966882944107056 img loss 1.12852942943573 img loss 1.1830886602401733 {'loss': 1.2115, 'grad_norm': 0.21164700388908386, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2286014556884766 img loss 1.2487056255340576 img loss 1.2107048034667969 img loss 1.1356053352355957 img loss 1.1897456645965576 img loss 1.2129080295562744 img loss 1.1582608222961426 img loss 1.1840256452560425 img loss 1.1981706619262695 img loss 1.2726211547851562 img loss 1.2273790836334229 img loss 1.2409963607788086 img loss 1.1683067083358765 img loss 1.1460157632827759 img loss 1.3137582540512085 img loss 1.2694694995880127 img loss 1.169358253479004 img loss 1.2760778665542603 img loss 1.17893648147583 img loss 1.1139932870864868 img loss 1.2317333221435547 img loss 1.1522272825241089 img loss 1.1573596000671387 img loss 1.111243486404419 img loss 1.1716201305389404 img loss 1.1837910413742065 img loss 1.2065950632095337 img loss 1.2212320566177368 img loss 1.1181936264038086 img loss 1.3044655323028564 img loss 1.1898109912872314 img loss 1.1795660257339478 img loss 1.158562183380127 img loss 1.0992294549942017 img loss 1.2141932249069214 img loss 1.1585031747817993 img loss 1.1991218328475952 img loss 1.1616551876068115 img loss 1.148733139038086 img loss 1.1798158884048462 img loss 1.1666914224624634 img loss 1.145190715789795 img loss 1.2505543231964111 img loss 1.1583064794540405 img loss 1.229194164276123 img loss 1.2198435068130493 img loss 1.1980959177017212 img loss 1.2528156042099 img loss 1.170021653175354 img loss 1.1987109184265137 img loss 1.2749098539352417 img loss 1.1980881690979004 img loss 1.2462875843048096 img loss 1.16415274143219img loss 1.1553280353546143 img loss 1.1466127634048462 img loss 1.1760327816009521 img loss 1.1752963066101074 img loss 1.1563148498535156 img loss 1.2398970127105713 img loss 1.217799425125122 img loss 1.1620814800262451 img loss 1.1353428363800049 img loss 1.3702112436294556 img loss 1.1982864141464233 img loss 1.1501868963241577 img loss 1.1614437103271484 img loss 1.2035871744155884 img loss 1.1657214164733887 img loss 1.1074247360229492 img loss 1.1484514474868774 img loss 1.090498447418213 img loss 1.2171648740768433 img loss 1.2045456171035767 img loss 1.2984752655029297 img loss 1.1266030073165894 img loss 1.2149982452392578 img loss 1.2616766691207886 img loss 1.1921221017837524 img loss 1.3396718502044678 img loss 1.2573776245117188 img loss 1.1636587381362915 img loss 1.1927464008331299 img loss 1.0973827838897705 img loss 1.1606906652450562 img loss 1.2345255613327026 img loss 1.202727198600769 img loss 1.158940076828003 img loss 1.155363917350769 img loss 1.2111421823501587 img loss 1.1825348138809204 img loss 1.1604375839233398 img loss 1.1694767475128174 img loss 1.2105737924575806 img loss 1.1841038465499878 img loss 1.278261661529541 img loss 1.179219126701355 img loss 1.1281869411468506 img loss 1.167232871055603 img loss 1.1496590375900269 img loss 1.205512285232544 img loss 1.1632184982299805 img loss 1.200254201889038 img loss 1.1663415431976318 img loss 1.1969361305236816 img loss 1.1051286458969116 img loss 1.2293009757995605 img loss 1.1914784908294678 img loss 1.190781831741333 img loss 1.1323856115341187 img loss 1.222603440284729 img loss 1.2631134986877441 img loss 1.1602312326431274 img loss 1.2560526132583618 img loss 1.2685279846191406 img loss 1.2813289165496826 img loss 1.1111664772033691 img loss 1.1373796463012695 img loss 1.1422580480575562 img loss 1.2633955478668213 img loss 1.1827893257141113 img loss 1.2867964506149292 img loss 1.1284680366516113 img loss 1.1656222343444824 img loss 1.2142596244812012 img loss 1.1873161792755127 img loss 1.1668506860733032 img loss 1.1951860189437866 {'loss': 1.1925, 'grad_norm': 0.20230074226856232, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4070675373077393 img loss 1.5504828691482544 img loss 1.4514212608337402 img loss 1.4234281778335571 img loss 1.4104399681091309 img loss 1.5704706907272339 img loss 1.3594319820404053 img loss 1.3455954790115356 img loss 1.5465651750564575 img loss 1.6389719247817993 img loss 1.3777289390563965 img loss 1.5120753049850464 img loss 1.4107568264007568 img loss 1.5073826313018799 img loss 1.373154878616333 img loss 1.4635138511657715 img loss 1.5686841011047363 img loss 1.4510234594345093 img loss 1.4557422399520874 img loss 1.357223629951477 img loss 1.450559377670288 img loss 1.524462342262268 img loss 1.6158697605133057 img loss 1.4445446729660034 img loss 1.4859620332717896 img loss 1.4504987001419067 img loss 1.4720990657806396 img loss 1.4113070964813232 img loss 1.4581048488616943 img loss 1.508797526359558 img loss 1.394469141960144 img loss 1.405883550643921 img loss 1.3294711112976074 img loss 1.5554603338241577 img loss 1.454330325126648 img loss 1.5511590242385864 img loss 1.4036844968795776 img loss 1.3852801322937012 img loss 1.466541051864624 img loss 1.3511852025985718 img loss 1.4790656566619873 img loss 1.44186532497406 img loss 1.3321093320846558 img loss 1.379520297050476 img loss 1.4908033609390259 img loss 1.3995078802108765 img loss 1.5291050672531128 img loss 1.316506028175354 img loss 1.4581847190856934 img loss 1.384281873703003 img loss 1.3773952722549438 img loss 1.4613089561462402 img loss 1.5260106325149536 img loss 1.4984257221221924 img loss 1.4052850008010864 img loss 1.449340581893921 img loss 1.5101878643035889 img loss 1.3928664922714233 img loss 1.480146050453186 img loss 1.7175538539886475 img loss 1.5603772401809692 img loss 1.474886178970337 img loss 1.4176650047302246 img loss 1.5493366718292236 img loss 1.5513521432876587 img loss 1.4877877235412598 img loss 1.547550916671753 img loss 1.4539697170257568 img loss 1.548620343208313 img loss 1.4016778469085693 img loss 1.492856502532959 img loss 1.4184328317642212 img loss 1.4226632118225098 img loss 1.4427292346954346 img loss 1.462241291999817 img loss 1.4307148456573486 img loss 1.467532992362976 img loss 1.3929312229156494 img loss 1.4903216361999512 img loss 1.4888203144073486 img loss 1.451920747756958 img loss 1.3858816623687744 img loss 1.4938766956329346 img loss 1.4509174823760986 img loss 1.4791933298110962 img loss 1.3760632276535034 img loss 1.4391099214553833 img loss 1.4588457345962524 img loss 1.4679954051971436 img loss 1.4302860498428345 img loss 1.5571205615997314 img loss 1.3845349550247192 img loss 1.5704141855239868 img loss 1.4724828004837036 img loss 1.5377966165542603 img loss 1.6020416021347046 img loss 1.5317250490188599 img loss 1.4350560903549194 img loss 1.419475793838501 img loss 1.4435946941375732 img loss 1.3630330562591553 img loss 1.3515368700027466 img loss 1.4862805604934692 img loss 1.565086007118225 img loss 1.4841612577438354 img loss 1.4587222337722778 img loss 1.330096960067749 img loss 1.4446637630462646 img loss 1.6110265254974365 img loss 1.603847622871399 img loss 1.31539785861969 img loss 1.477759599685669 img loss 1.3970590829849243 img loss 1.4101282358169556 img loss 1.572458028793335 img loss 1.538600206375122 img loss 1.4023505449295044 img loss 1.4532068967819214 img loss 1.613194227218628 img loss 1.4947060346603394 img loss 1.5904542207717896 img loss 1.546466588973999 img loss 1.53885817527771 img loss 1.3923896551132202 img loss 1.428795337677002 img loss 1.4469523429870605 img loss 1.5230299234390259 img loss 1.3731772899627686 img loss 1.334435224533081 {'loss': 1.4643, 'grad_norm': 0.3005540668964386, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4324637651443481 img loss 1.4280952215194702 img loss 1.3943678140640259 img loss 1.4531117677688599 img loss 1.3960182666778564 img loss 1.2998913526535034 img loss 1.3789886236190796 img loss 1.6405980587005615 img loss 1.4489591121673584 img loss 1.449921727180481 img loss 1.3988213539123535 img loss 1.4201146364212036 img loss 1.3541110754013062 img loss 1.551524043083191 img loss 1.4069141149520874 img loss 1.4622992277145386 img loss 1.5634409189224243 img loss 1.4560052156448364 img loss 1.414943814277649 img loss 1.4328696727752686 img loss 1.4374678134918213 img loss 1.4199187755584717 img loss 1.350164771080017 img loss 1.344760537147522 img loss 1.3404830694198608 img loss 1.4071667194366455 img loss 1.272090196609497 img loss 1.4122570753097534 img loss 1.4641950130462646 img loss 1.457987666130066 img loss 1.4815866947174072 img loss 1.4390567541122437 img loss 1.42001473903656 img loss 1.3514081239700317 img loss 1.3329803943634033 img loss 1.615525722503662 img loss 1.3794915676116943 img loss 1.2100838422775269 img loss 1.2342594861984253 img loss 1.3899651765823364 img loss 1.2806282043457031 img loss 1.388232946395874 img loss 1.4718018770217896 img loss 1.3580073118209839 img loss 1.3554898500442505 img loss 1.307455062866211 img loss 1.2910640239715576 img loss 1.344933271408081 img loss 1.3828037977218628 img loss 1.4278314113616943 img loss 1.4885026216506958 img loss 1.4220167398452759 img loss 1.473044991493225 img loss 1.4662216901779175 img loss 1.4342095851898193 img loss 1.4289966821670532 img loss 1.4899001121520996 img loss 1.3763387203216553 img loss 1.4157147407531738 img loss 1.416583776473999 img loss 1.2696192264556885 img loss 1.402544379234314 img loss 1.3446228504180908 img loss 1.3469088077545166 img loss 1.5001527070999146 img loss 1.5276353359222412 img loss 1.2701091766357422 img loss 1.3534607887268066 img loss 1.5769016742706299 img loss 1.3887970447540283 img loss 1.436653733253479 img loss 1.4572536945343018 img loss 1.3544840812683105 img loss 1.390377163887024 img loss 1.2781105041503906 img loss 1.3053855895996094 img loss 1.5558689832687378 img loss 1.2956300973892212 img loss 1.4218947887420654 img loss 1.4711731672286987 img loss 1.5278887748718262 img loss 1.3772224187850952 img loss 1.2704384326934814 img loss 1.4751135110855103 img loss 1.3732008934020996 img loss 1.4582656621932983 img loss 1.4065648317337036 img loss 1.4295800924301147 img loss 1.2748675346374512 img loss 1.4364142417907715 img loss 1.3899580240249634 img loss 1.44929039478302 img loss 1.4086012840270996 img loss 1.229974389076233 img loss 1.472408652305603 img loss 1.4081193208694458 img loss 1.520173192024231 img loss 1.4698021411895752 img loss 1.3922587633132935 img loss 1.3444550037384033 img loss 1.386929988861084 img loss 1.3795874118804932 img loss 1.398110032081604 img loss 1.4317843914031982 img loss 1.3306820392608643 img loss 1.3489776849746704 img loss 1.4031288623809814 img loss 1.4322820901870728 img loss 1.3201545476913452 img loss 1.5367472171783447 img loss 1.4342944622039795 img loss 1.4525120258331299 img loss 1.4048727750778198 img loss 1.4006990194320679 img loss 1.426363468170166 img loss 1.3204292058944702 img loss 1.3744913339614868 img loss 1.3309299945831299 img loss 1.3537516593933105 img loss 1.492616057395935 img loss 1.3391801118850708 img loss 1.4246491193771362 img loss 1.297911524772644 img loss 1.237706184387207 img loss 1.311263084411621 img loss 1.5240780115127563 img loss 1.4131141901016235 {'loss': 1.4021, 'grad_norm': 0.2473609298467636, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1724979877471924 img loss 1.2172260284423828 img loss 1.2542568445205688 img loss 1.2254546880722046 img loss 1.2146939039230347 img loss 1.1897006034851074 img loss 1.2137503623962402 img loss 1.2165672779083252 img loss 1.2204760313034058 img loss 1.270493745803833 img loss 1.2533321380615234 img loss 1.229488730430603 img loss 1.1266379356384277 img loss 1.2844140529632568 img loss 1.2383531332015991 img loss 1.1658467054367065 img loss 1.196082353591919 img loss 1.260980248451233 img loss 1.187630534172058 img loss 1.1596850156784058 img loss 1.2380911111831665 img loss 1.1783729791641235 img loss 1.291848063468933 img loss 1.171544075012207 img loss 1.2278778553009033 img loss 1.1384505033493042 img loss 1.1241047382354736 img loss 1.1988821029663086 img loss 1.1946147680282593 img loss 1.2098731994628906 img loss 1.3359500169754028 img loss 1.3012760877609253 img loss 1.2340540885925293 img loss 1.1820093393325806 img loss 1.2258249521255493 img loss 1.1548963785171509 img loss 1.0929255485534668 img loss 1.2226018905639648 img loss 1.1791455745697021 img loss 1.2620176076889038 img loss 1.218218207359314 img loss 1.170421838760376 img loss 1.1923221349716187 img loss 1.2454289197921753 img loss 1.1812442541122437 img loss 1.297648310661316 img loss 1.31944739818573 img loss 1.1649084091186523 img loss 1.3095529079437256 img loss 1.2010321617126465 img loss 1.2507927417755127 img loss 1.1962330341339111 img loss 1.2453676462173462 img loss 1.2366292476654053 img loss 1.163949966430664 img loss 1.2664135694503784 img loss 1.1361396312713623 img loss 1.2027719020843506 img loss 1.2291113138198853 img loss 1.1633563041687012 img loss 1.261431336402893 img loss 1.2119368314743042 img loss 1.1569647789001465 img loss 1.2415663003921509 img loss 1.2880678176879883 img loss 1.2879619598388672 img loss 1.1892406940460205 img loss 1.1984996795654297 img loss 1.2455867528915405 img loss 1.1930700540542603 img loss 1.3067737817764282 img loss 1.304856777191162 img loss 1.2467468976974487 img loss 1.2009636163711548 img loss 1.1883597373962402 img loss 1.2635492086410522 img loss 1.15929114818573 img loss 1.1807409524917603 img loss 1.394111156463623 img loss 1.19482421875 img loss 1.262541651725769 img loss 1.2308429479599 img loss 1.1592366695404053 img loss 1.1442760229110718 img loss 1.245358943939209 img loss 1.1419962644577026 img loss 1.2077091932296753 img loss 1.2403818368911743 img loss 1.1933144330978394 img loss 1.2687623500823975 img loss 1.2301069498062134 img loss 1.2188975811004639 img loss 1.289802074432373 img loss 1.3028621673583984 img loss 1.2274682521820068 img loss 1.1396863460540771 img loss 1.2593809366226196 img loss 1.1836135387420654 img loss 1.288248062133789 img loss 1.2202255725860596 img loss 1.217632532119751 img loss 1.20278799533844 img loss 1.1939057111740112 img loss 1.171905279159546 img loss 1.2403943538665771 img loss 1.2525758743286133 img loss 1.1995468139648438 img loss 1.1890106201171875 img loss 1.2679636478424072 img loss 1.1714756488800049 img loss 1.262466311454773 img loss 1.2638405561447144 img loss 1.2552049160003662 img loss 1.21737802028656 img loss 1.2070287466049194 img loss 1.1944060325622559 img loss 1.2643356323242188 img loss 1.258043646812439 img loss 1.1668113470077515 img loss 1.2500598430633545 img loss 1.1720695495605469 img loss 1.2241148948669434 img loss 1.1663259267807007 img loss 1.2323389053344727 img loss 1.2134523391723633 img loss 1.2750544548034668 img loss 1.1306744813919067 img loss 1.188105821609497 {'loss': 1.2193, 'grad_norm': 0.26530346274375916, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3096550703048706 img loss 1.272764801979065 img loss 1.199164867401123 img loss 1.1138765811920166 img loss 1.3527789115905762 img loss 1.2288939952850342 img loss 1.2669048309326172 img loss 1.2216593027114868 img loss 1.3351212739944458 img loss 1.2215819358825684 img loss 1.3095836639404297 img loss 1.2745975255966187 img loss 1.3405543565750122 img loss 1.2386622428894043 img loss 1.2219222784042358 img loss 1.2415688037872314 img loss 1.268054485321045 img loss 1.3371304273605347 img loss 1.1690105199813843 img loss 1.2216289043426514 img loss 1.2913908958435059 img loss 1.1761852502822876 img loss 1.2429946660995483 img loss 1.2410871982574463 img loss 1.244124174118042 img loss 1.2928807735443115 img loss 1.1554875373840332 img loss 1.247130274772644 img loss 1.2585242986679077 img loss 1.1927950382232666 img loss 1.244657278060913 img loss 1.2259113788604736 img loss 1.3503491878509521 img loss 1.318120002746582 img loss 1.178826928138733 img loss 1.1662613153457642 img loss 1.3399244546890259 img loss 1.293066382408142 img loss 1.2493400573730469 img loss 1.3110570907592773 img loss 1.2294020652770996 img loss 1.1068387031555176 img loss 1.2616746425628662 img loss 1.2654474973678589 img loss 1.2702229022979736 img loss 1.3217434883117676 img loss 1.2695764303207397 img loss 1.2149711847305298 img loss 1.2693023681640625 img loss 1.4117677211761475 img loss 1.2620131969451904 img loss 1.2234162092208862 img loss 1.1504244804382324 img loss 1.2350983619689941 img loss 1.1758235692977905 img loss 1.1419838666915894 img loss 1.2362841367721558 img loss 1.333739995956421 img loss 1.2499964237213135 img loss 1.2544903755187988 img loss 1.2371495962142944 img loss 1.1792278289794922 img loss 1.3654444217681885 img loss 1.2247769832611084 img loss 1.3267648220062256 img loss 1.272467851638794 img loss 1.3043129444122314 img loss 1.2553277015686035 img loss 1.3178954124450684 img loss 1.2780237197875977 img loss 1.3203394412994385 img loss 1.330209493637085 img loss 1.2877758741378784 img loss 1.2385737895965576 img loss 1.2556819915771484 img loss 1.273259162902832 img loss 1.3446040153503418 img loss 1.1908191442489624 img loss 1.2956516742706299 img loss 1.2498338222503662 img loss 1.2607845067977905 img loss 1.2511353492736816 img loss 1.3631623983383179 img loss 1.2183291912078857 img loss 1.2812309265136719 img loss 1.2016103267669678 img loss 1.090267539024353 img loss 1.1979148387908936 img loss 1.2478445768356323 img loss 1.3098411560058594 img loss 1.2367318868637085 img loss 1.2596842050552368 img loss 1.3052406311035156 img loss 1.2555460929870605 img loss 1.2892427444458008 img loss 1.2478669881820679 img loss 1.2897391319274902 img loss 1.2991031408309937 img loss 1.1146435737609863 img loss 1.204150676727295 img loss 1.2625575065612793 img loss 1.1579424142837524 img loss 1.2662022113800049 img loss 1.1337239742279053 img loss 1.1797442436218262 img loss 1.2064895629882812 img loss 1.2951180934906006 img loss 1.2392345666885376 img loss 1.1855589151382446 img loss 1.2268356084823608 img loss 1.172900915145874 img loss 1.3038324117660522 img loss 1.2183237075805664 img loss 1.260860800743103 img loss 1.3142555952072144 img loss 1.3172556161880493 img loss 1.3521456718444824 img loss 1.3124935626983643 img loss 1.2641795873641968 img loss 1.2424850463867188 img loss 1.3004310131072998 img loss 1.2609325647354126 img loss 1.2633240222930908 img loss 1.3287099599838257 img loss 1.3851643800735474 img loss 1.2137380838394165 img loss 1.2340911626815796 img loss 1.2497379779815674 {'loss': 1.2552, 'grad_norm': 0.272108793258667, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3867162466049194 img loss 1.2624517679214478 img loss 1.2999876737594604 img loss 1.3041187524795532 img loss 1.4190999269485474 img loss 1.3183579444885254 img loss 1.3255934715270996 img loss 1.4173489809036255 img loss 1.408316969871521 img loss 1.396966576576233 img loss 1.316793441772461 img loss 1.4234892129898071 img loss 1.268293023109436 img loss 1.2969555854797363 img loss 1.4187268018722534 img loss 1.3981040716171265 img loss 1.4892632961273193 img loss 1.259922742843628 img loss 1.3444287776947021 img loss 1.3411921262741089 img loss 1.3144760131835938 img loss 1.4517533779144287 img loss 1.4145190715789795 img loss 1.3205288648605347 img loss 1.2336612939834595 img loss 1.2092323303222656 img loss 1.4136927127838135 img loss 1.3851112127304077 img loss 1.3259645700454712 img loss 1.2713876962661743 img loss 1.4811676740646362 img loss 1.2745321989059448 img loss 1.3671720027923584 img loss 1.287215232849121 img loss 1.3433911800384521 img loss 1.4404126405715942 img loss 1.3625977039337158 img loss 1.453757643699646 img loss 1.375392198562622 img loss 1.4987406730651855 img loss 1.3140455484390259 img loss 1.3287686109542847 img loss 1.44045090675354 img loss 1.3388267755508423 img loss 1.5649574995040894 img loss 1.3160700798034668 img loss 1.3722671270370483 img loss 1.332425832748413 img loss 1.4292254447937012 img loss 1.3755539655685425 img loss 1.4130781888961792 img loss 1.2112797498703003 img loss 1.3480538129806519 img loss 1.372950792312622 img loss 1.4774247407913208 img loss 1.309342622756958 img loss 1.3820550441741943 img loss 1.2703832387924194 img loss 1.4143344163894653 img loss 1.5253046751022339 img loss 1.4316537380218506 img loss 1.397804617881775 img loss 1.2629687786102295 img loss 1.244413137435913 img loss 1.4021016359329224 img loss 1.4152629375457764 img loss 1.405730962753296 img loss 1.3837769031524658 img loss 1.3308658599853516 img loss 1.382363200187683 img loss 1.4982082843780518 img loss 1.406218409538269 img loss 1.405687928199768 img loss 1.2953262329101562 img loss 1.2949365377426147 img loss 1.2665245532989502 img loss 1.4220350980758667 img loss 1.3899973630905151 img loss 1.5105270147323608 img loss 1.3805397748947144 img loss 1.3464452028274536 img loss 1.3412299156188965 img loss 1.4288493394851685 img loss 1.3877308368682861 img loss 1.2522646188735962 img loss 1.3544312715530396 img loss 1.284925103187561 img loss 1.414549708366394 img loss 1.3808152675628662 img loss 1.285593867301941 img loss 1.3662651777267456 img loss 1.4962626695632935 img loss 1.390002965927124 img loss 1.4219352006912231 img loss 1.410975694656372 img loss 1.3309720754623413 img loss 1.3562748432159424 img loss 1.4302679300308228 img loss 1.382331371307373 img loss 1.4272997379302979 img loss 1.3233076333999634 img loss 1.31113600730896 img loss 1.4629664421081543 img loss 1.4050720930099487 img loss 1.3926713466644287 img loss 1.3136646747589111 img loss 1.4725337028503418 img loss 1.327439546585083 img loss 1.2915481328964233 img loss 1.379777431488037 img loss 1.4379509687423706 img loss 1.3282228708267212 img loss 1.5209128856658936 img loss 1.5185105800628662 img loss 1.2963567972183228 img loss 1.3910337686538696 img loss 1.4193357229232788 img loss 1.2962970733642578 img loss 1.2590699195861816 img loss 1.3647710084915161 img loss 1.356504201889038 img loss 1.2783082723617554img loss 1.340842604637146 img loss 1.4122508764266968 img loss 1.374711513519287 img loss 1.3685085773468018 img loss 1.4405219554901123 img loss 1.33473539352417 {'loss': 1.3695, 'grad_norm': 0.3518414795398712, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1902681589126587 img loss 1.2935408353805542 img loss 1.3080554008483887 img loss 1.241047739982605 img loss 1.2563109397888184 img loss 1.2238070964813232 img loss 1.30190908908844 img loss 1.2590097188949585 img loss 1.2868400812149048 img loss 1.2341036796569824 img loss 1.3127238750457764 img loss 1.2964937686920166 img loss 1.2408442497253418 img loss 1.2241581678390503 img loss 1.2794703245162964 img loss 1.2843453884124756 img loss 1.2194870710372925 img loss 1.269385576248169 img loss 1.2674412727355957 img loss 1.2884788513183594 img loss 1.2202543020248413 img loss 1.2379052639007568 img loss 1.2683266401290894 img loss 1.272612452507019 img loss 1.2052124738693237 img loss 1.2497433423995972 img loss 1.3108429908752441 img loss 1.2150800228118896 img loss 1.1899322271347046 img loss 1.2155214548110962 img loss 1.2495739459991455 img loss 1.2202777862548828 img loss 1.3124641180038452 img loss 1.2387664318084717 img loss 1.2432072162628174 img loss 1.221200704574585 img loss 1.2929199934005737 img loss 1.2898201942443848 img loss 1.166209101676941 img loss 1.2373137474060059 img loss 1.2775062322616577 img loss 1.2450746297836304 img loss 1.3122403621673584 img loss 1.2651945352554321 img loss 1.2687268257141113 img loss 1.22234046459198 img loss 1.2098019123077393 img loss 1.3033984899520874 img loss 1.2362514734268188 img loss 1.2244287729263306 img loss 1.1860188245773315 img loss 1.2332065105438232 img loss 1.283513069152832 img loss 1.2259154319763184 img loss 1.232150912284851 img loss 1.249476671218872 img loss 1.3032792806625366 img loss 1.280251383781433 img loss 1.2333481311798096 img loss 1.3347389698028564 img loss 1.243044376373291 img loss 1.2090736627578735 img loss 1.2424640655517578 img loss 1.269879698753357 img loss 1.3169949054718018 img loss 1.2247860431671143 img loss 1.2720361948013306 img loss 1.2422990798950195 img loss 1.229500412940979 img loss 1.2873073816299438 img loss 1.230799913406372 img loss 1.2866895198822021 img loss 1.2279601097106934 img loss 1.266158103942871 img loss 1.1679767370224 img loss 1.2394726276397705 img loss 1.2100069522857666 img loss 1.2468922138214111 img loss 1.238512396812439 img loss 1.1976934671401978 img loss 1.232713222503662 img loss 1.2248178720474243 img loss 1.267246961593628 img loss 1.2403534650802612 img loss 1.2647056579589844 img loss 1.2594603300094604 img loss 1.2491375207901 img loss 1.335479497909546 img loss 1.2397682666778564 img loss 1.158768892288208 img loss 1.307352066040039 img loss 1.2495120763778687 img loss 1.2877516746520996 img loss 1.220711350440979 img loss 1.2013119459152222 img loss 1.221901297569275 img loss 1.3495382070541382 img loss 1.2495063543319702 img loss 1.2006125450134277 img loss 1.2310529947280884 img loss 1.2920573949813843 img loss 1.2217128276824951 img loss 1.2715299129486084 img loss 1.2120702266693115 img loss 1.3070462942123413 img loss 1.2637943029403687 img loss 1.2622737884521484 img loss 1.2291630506515503 img loss 1.2519564628601074 img loss 1.2635301351547241 img loss 1.3430367708206177 img loss 1.3085036277770996 img loss 1.2680658102035522 img loss 1.1848267316818237 img loss 1.2620306015014648 img loss 1.19451105594635 img loss 1.2558932304382324 img loss 1.3372008800506592 img loss 1.313584804534912 img loss 1.268174648284912 img loss 1.3175585269927979 img loss 1.2660093307495117 img loss 1.3066624402999878 img loss 1.2381775379180908 img loss 1.250185489654541 img loss 1.2554384469985962 img loss 1.2497014999389648 img loss 1.3123345375061035 {'loss': 1.2548, 'grad_norm': 0.20146547257900238, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2932343482971191 img loss 1.4132983684539795 img loss 1.3195300102233887 img loss 1.4612828493118286 img loss 1.3692352771759033 img loss 1.2815015316009521 img loss 1.4157216548919678 img loss 1.341964840888977 img loss 1.2521257400512695 img loss 1.3518966436386108 img loss 1.2526594400405884 img loss 1.3955732583999634 img loss 1.3179106712341309 img loss 1.3597413301467896 img loss 1.305065631866455 img loss 1.309213399887085 img loss 1.4655787944793701 img loss 1.2682900428771973 img loss 1.3892685174942017 img loss 1.3562661409378052 img loss 1.3577382564544678 img loss 1.2436015605926514 img loss 1.3125194311141968 img loss 1.2911689281463623 img loss 1.3266559839248657img loss 1.3616148233413696 img loss 1.3035591840744019 img loss 1.427791714668274 img loss 1.2205778360366821 img loss 1.2632179260253906 img loss 1.2824294567108154 img loss 1.2725805044174194 img loss 1.4336464405059814 img loss 1.3672406673431396 img loss 1.3446648120880127 img loss 1.330941915512085 img loss 1.341387391090393 img loss 1.423356533050537 img loss 1.4146150350570679 img loss 1.3845816850662231 img loss 1.2692192792892456 img loss 1.3298777341842651 img loss 1.3056761026382446 img loss 1.3392784595489502 img loss 1.3842228651046753 img loss 1.379859447479248 img loss 1.2438037395477295 img loss 1.2842384576797485 img loss 1.3149619102478027 img loss 1.475180983543396 img loss 1.3845746517181396 img loss 1.3095619678497314 img loss 1.3971349000930786 img loss 1.4023642539978027 img loss 1.379157543182373 img loss 1.2731223106384277 img loss 1.3565338850021362 img loss 1.3990956544876099 img loss 1.3311164379119873 img loss 1.4387528896331787 img loss 1.3005123138427734 img loss 1.3258612155914307 img loss 1.4854708909988403 img loss 1.339018702507019 img loss 1.3671308755874634 img loss 1.3333032131195068 img loss 1.2636942863464355 img loss 1.477578043937683 img loss 1.4479657411575317 img loss 1.2949436902999878 img loss 1.302018642425537 img loss 1.3424830436706543 img loss 1.340927243232727 img loss 1.3010376691818237 img loss 1.3294645547866821 img loss 1.3265310525894165 img loss 1.424201250076294 img loss 1.304708480834961 img loss 1.28717041015625 img loss 1.336126685142517 img loss 1.427751898765564 img loss 1.2960470914840698 img loss 1.3756120204925537 img loss 1.300025463104248 img loss 1.3746472597122192 img loss 1.3236331939697266 img loss 1.3469750881195068 img loss 1.3613592386245728 img loss 1.2524760961532593 img loss 1.292243480682373 img loss 1.3495413064956665 img loss 1.2933573722839355 img loss 1.3722199201583862 img loss 1.372383713722229 img loss 1.3725050687789917 img loss 1.359121561050415 img loss 1.4775320291519165 img loss 1.291677474975586 img loss 1.3463937044143677 img loss 1.4438601732254028 img loss 1.3612457513809204 img loss 1.4361968040466309 img loss 1.3267446756362915 img loss 1.4227306842803955 img loss 1.31935715675354 img loss 1.2689837217330933 img loss 1.320189356803894 img loss 1.4051796197891235 img loss 1.319399356842041 img loss 1.2868937253952026 img loss 1.372317910194397 img loss 1.2620062828063965 img loss 1.3573805093765259 img loss 1.291087031364441 img loss 1.3784480094909668 img loss 1.3793429136276245 img loss 1.4275420904159546 img loss 1.2393600940704346 img loss 1.2865898609161377 img loss 1.3036972284317017 img loss 1.3879693746566772 img loss 1.3337817192077637 img loss 1.233959674835205 img loss 1.4237656593322754 img loss 1.2309125661849976 img loss 1.4046231508255005 img loss 1.341478705406189 img loss 1.3036186695098877 {'loss': 1.3438, 'grad_norm': 0.320940762758255, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.578382134437561 img loss 1.6629011631011963 img loss 1.459725022315979 img loss 1.451702356338501 img loss 1.4353816509246826 img loss 1.493262529373169 img loss 1.3822836875915527 img loss 1.420915961265564 img loss 1.661479115486145 img loss 1.3834158182144165 img loss 1.5575603246688843 img loss 1.3864543437957764 img loss 1.4369112253189087 img loss 1.548660397529602 img loss 1.4539493322372437 img loss 1.342038631439209 img loss 1.5175729990005493 img loss 1.306758165359497 img loss 1.384377121925354 img loss 1.621496319770813 img loss 1.5469985008239746 img loss 1.4142085313796997 img loss 1.4846985340118408 img loss 1.3452588319778442 img loss 1.4412766695022583 img loss 1.4183838367462158 img loss 1.5881783962249756 img loss 1.3696459531784058 img loss 1.4811691045761108 img loss 1.384640097618103 img loss 1.4907017946243286 img loss 1.4190503358840942 img loss 1.3458155393600464 img loss 1.6637517213821411 img loss 1.4397093057632446 img loss 1.4815610647201538 img loss 1.245617151260376 img loss 1.4204857349395752 img loss 1.4985077381134033 img loss 1.499546766281128 img loss 1.4544060230255127 img loss 1.644252896308899 img loss 1.406786322593689 img loss 1.4808067083358765 img loss 1.5010803937911987 img loss 1.358561396598816 img loss 1.3653175830841064 img loss 1.5811084508895874 img loss 1.5029274225234985 img loss 1.488982081413269 img loss 1.5873677730560303 img loss 1.4677399396896362 img loss 1.3464328050613403 img loss 1.4970183372497559 img loss 1.6778967380523682 img loss 1.5219619274139404 img loss 1.3371704816818237 img loss 1.4532341957092285 img loss 1.481230616569519 img loss 1.6038557291030884 img loss 1.5220290422439575 img loss 1.3312804698944092 img loss 1.4370671510696411 img loss 1.3738294839859009 img loss 1.5253026485443115 img loss 1.4108535051345825 img loss 1.4113929271697998 img loss 1.4462705850601196 img loss 1.4724249839782715 img loss 1.5102169513702393 img loss 1.4400681257247925 img loss 1.4978883266448975 img loss 1.4544594287872314 img loss 1.4033859968185425 img loss 1.3627821207046509 img loss 1.4376589059829712 img loss 1.4730550050735474 img loss 1.585619330406189 img loss 1.3681445121765137 img loss 1.4168866872787476 img loss 1.476349115371704 img loss 1.456498384475708 img loss 1.4613354206085205 img loss 1.3699780702590942 img loss 1.3467522859573364 img loss 1.4983810186386108 img loss 1.5701016187667847 img loss 1.4797924757003784 img loss 1.4322657585144043 img loss 1.4818403720855713 img loss 1.3821790218353271 img loss 1.395819067955017 img loss 1.28037428855896 img loss 1.4073885679244995 img loss 1.3742139339447021 img loss 1.3880563974380493 img loss 1.5280330181121826 img loss 1.3398747444152832 img loss 1.3462271690368652 img loss 1.3626121282577515 img loss 1.464732050895691 img loss 1.464708685874939 img loss 1.3245662450790405 img loss 1.3860377073287964 img loss 1.485887050628662 img loss 1.4337170124053955 img loss 1.2939475774765015 img loss 1.4495989084243774 img loss 1.665122389793396 img loss 1.582263708114624 img loss 1.3508408069610596 img loss 1.408461332321167 img loss 1.5399500131607056 img loss 1.3673317432403564 img loss 1.4846618175506592 img loss 1.4914761781692505 img loss 1.42112135887146 img loss 1.3984367847442627 img loss 1.402476191520691 img loss 1.3879989385604858 img loss 1.509135127067566 img loss 1.5515515804290771 img loss 1.426669716835022 img loss 1.477891445159912 img loss 1.3337856531143188 img loss 1.4427627325057983 img loss 1.345241904258728 img loss 1.5317193269729614 {'loss': 1.4524, 'grad_norm': 0.2306635081768036, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4363034963607788 img loss 1.3600136041641235 img loss 1.4495902061462402 img loss 1.3475559949874878 img loss 1.4597855806350708 img loss 1.5020989179611206 img loss 1.4534043073654175 img loss 1.4681724309921265 img loss 1.3097842931747437 img loss 1.4293267726898193 img loss 1.3769409656524658 img loss 1.4634824991226196 img loss 1.257695198059082 img loss 1.3046778440475464 img loss 1.323020339012146 img loss 1.3084522485733032 img loss 1.4764748811721802 img loss 1.4556329250335693 img loss 1.4365452527999878 img loss 1.372622013092041 img loss 1.5442298650741577 img loss 1.489115595817566 img loss 1.4994443655014038 img loss 1.4707578420639038 img loss 1.447924017906189 img loss 1.4019423723220825 img loss 1.4802889823913574 img loss 1.4033163785934448 img loss 1.3738453388214111 img loss 1.3947941064834595 img loss 1.4383370876312256 img loss 1.314528465270996 img loss 1.3801051378250122 img loss 1.390727162361145 img loss 1.4517395496368408 img loss 1.2783669233322144 img loss 1.3458189964294434 img loss 1.365979552268982 img loss 1.4051109552383423 img loss 1.2845954895019531 img loss 1.3592664003372192 img loss 1.4785162210464478 img loss 1.4479235410690308 img loss 1.4893174171447754 img loss 1.4319052696228027 img loss 1.4288488626480103 img loss 1.3532993793487549 img loss 1.2705950736999512 img loss 1.359276294708252 img loss 1.2707172632217407 img loss 1.3567308187484741 img loss 1.4177372455596924 img loss 1.288614273071289 img loss 1.5208097696304321 img loss 1.4965929985046387 img loss 1.5214143991470337 img loss 1.2858279943466187 img loss 1.4972307682037354 img loss 1.4847129583358765 img loss 1.3264224529266357 img loss 1.42634916305542 img loss 1.4488775730133057 img loss 1.5057638883590698 img loss 1.3704793453216553 img loss 1.5128587484359741 img loss 1.3492525815963745 img loss 1.3511033058166504 img loss 1.4132940769195557 img loss 1.4179326295852661 img loss 1.324645757675171 img loss 1.361884593963623 img loss 1.418393611907959 img loss 1.5457991361618042 img loss 1.3011984825134277 img loss 1.3313223123550415 img loss 1.4226220846176147 img loss 1.4400105476379395 img loss 1.4714075326919556 img loss 1.3925329446792603 img loss 1.2773597240447998 img loss 1.3889018297195435 img loss 1.3028004169464111 img loss 1.4072519540786743 img loss 1.3966768980026245 img loss 1.586959719657898 img loss 1.3635412454605103 img loss 1.4090611934661865 img loss 1.3213354349136353 img loss 1.38948655128479 img loss 1.3965047597885132 img loss 1.4157501459121704 img loss 1.3111588954925537 img loss 1.3507355451583862 img loss 1.3977296352386475 img loss 1.5370686054229736 img loss 1.4974819421768188 img loss 1.5594532489776611 img loss 1.4280025959014893 img loss 1.3430465459823608 img loss 1.4201794862747192 img loss 1.4003545045852661 img loss 1.3698780536651611 img loss 1.2172722816467285 img loss 1.3279132843017578 img loss 1.353779673576355 img loss 1.4043495655059814 img loss 1.4062484502792358 img loss 1.4417579174041748 img loss 1.457398772239685 img loss 1.3997067213058472 img loss 1.4095938205718994 img loss 1.279752254486084 img loss 1.4798890352249146 img loss 1.3636504411697388 img loss 1.385436773300171 img loss 1.3625987768173218 img loss 1.379093885421753 img loss 1.3795288801193237 img loss 1.367977499961853 img loss 1.46700918674469 img loss 1.5234650373458862 img loss 1.406822919845581 img loss 1.4481966495513916 img loss 1.3593336343765259 img loss 1.3199478387832642 img loss 1.35938560962677 img loss 1.3809794187545776 img loss 1.4387575387954712 {'loss': 1.4018, 'grad_norm': 0.3670680820941925, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4203646183013916 img loss 1.3623639345169067 img loss 1.3589695692062378 img loss 1.4485834836959839 img loss 1.477760672569275 img loss 1.3124215602874756 img loss 1.2904887199401855img loss 1.2834726572036743 img loss 1.414066195487976 img loss 1.4687446355819702 img loss 1.3573845624923706 img loss 1.3211179971694946 img loss 1.3180317878723145 img loss 1.4183080196380615 img loss 1.3100608587265015 img loss 1.2002065181732178 img loss 1.3465803861618042 img loss 1.4677191972732544 img loss 1.3063217401504517 img loss 1.2735830545425415 img loss 1.4276783466339111 img loss 1.3698889017105103 img loss 1.3699946403503418 img loss 1.334775686264038 img loss 1.3285521268844604 img loss 1.4764199256896973 img loss 1.2843624353408813 img loss 1.3664400577545166 img loss 1.3666085004806519 img loss 1.3333954811096191 img loss 1.3733932971954346 img loss 1.397062063217163 img loss 1.2935224771499634 img loss 1.3735136985778809 img loss 1.401489019393921 img loss 1.3182281255722046 img loss 1.4054738283157349 img loss 1.4025582075119019 img loss 1.3714791536331177 img loss 1.2668263912200928 img loss 1.3911736011505127 img loss 1.371184229850769 img loss 1.3526824712753296 img loss 1.2636858224868774 img loss 1.4248766899108887 img loss 1.3472579717636108 img loss 1.3960912227630615 img loss 1.423128366470337 img loss 1.383970856666565 img loss 1.3671717643737793 img loss 1.3784801959991455 img loss 1.5774370431900024 img loss 1.465673565864563 img loss 1.3893444538116455 img loss 1.5169501304626465 img loss 1.4017789363861084 img loss 1.4038443565368652 img loss 1.3583523035049438 img loss 1.308499813079834 img loss 1.387372612953186 img loss 1.4337965250015259 img loss 1.395858883857727 img loss 1.4056384563446045 img loss 1.3730422258377075 img loss 1.2234734296798706 img loss 1.3446413278579712 img loss 1.4139740467071533 img loss 1.4480024576187134 img loss 1.5082975625991821 img loss 1.4039146900177002 img loss 1.402768850326538 img loss 1.4264938831329346 img loss 1.2730392217636108 img loss 1.448550820350647 img loss 1.4000507593154907 img loss 1.4789634943008423 img loss 1.3390713930130005 img loss 1.362493872642517 img loss 1.4848462343215942 img loss 1.3894593715667725 img loss 1.3637709617614746 img loss 1.4805485010147095 img loss 1.3290126323699951 img loss 1.3778412342071533 img loss 1.3067964315414429 img loss 1.5012409687042236 img loss 1.353071928024292 img loss 1.4289910793304443 img loss 1.407856822013855 img loss 1.4267739057540894 img loss 1.3774406909942627 img loss 1.4148280620574951 img loss 1.3645440340042114 img loss 1.350605845451355 img loss 1.5187450647354126 img loss 1.424100637435913 img loss 1.5020886659622192 img loss 1.460060477256775 img loss 1.3498657941818237 img loss 1.3511226177215576 img loss 1.416795015335083 img loss 1.3495947122573853 img loss 1.419803261756897 img loss 1.4374946355819702 img loss 1.3305585384368896 img loss 1.4821860790252686 img loss 1.4433175325393677 img loss 1.283811092376709 img loss 1.4804643392562866 img loss 1.3105303049087524 img loss 1.3822987079620361 img loss 1.4677633047103882 img loss 1.379969835281372 img loss 1.4533408880233765 img loss 1.395695447921753 img loss 1.431371808052063 img loss 1.3588526248931885 img loss 1.4293709993362427 img loss 1.305481195449829img loss 1.4090923070907593 img loss 1.433275580406189 img loss 1.3390368223190308 img loss 1.5086759328842163 img loss 1.3306224346160889 img loss 1.3662358522415161 img loss 1.3551313877105713 img loss 1.44642972946167 img loss 1.341246247291565 {'loss': 1.3864, 'grad_norm': 0.4922293722629547, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2067863941192627 img loss 1.2488107681274414 img loss 1.2559142112731934 img loss 1.1955792903900146 img loss 1.23241126537323 img loss 1.2022337913513184 img loss 1.2279515266418457 img loss 1.2313613891601562 img loss 1.1961612701416016 img loss 1.2287323474884033 img loss 1.2138090133666992 img loss 1.1894583702087402 img loss 1.2281215190887451 img loss 1.1907285451889038 img loss 1.2699114084243774 img loss 1.1918554306030273 img loss 1.20294189453125 img loss 1.191749095916748 img loss 1.180050253868103 img loss 1.229222297668457 img loss 1.1597585678100586 img loss 1.213623046875 img loss 1.2558822631835938 img loss 1.2112044095993042 img loss 1.2450292110443115 img loss 1.218361258506775 img loss 1.2028286457061768 img loss 1.1960266828536987 img loss 1.211271047592163 img loss 1.2744077444076538 img loss 1.2385677099227905 img loss 1.2487330436706543 img loss 1.1696652173995972 img loss 1.1881088018417358 img loss 1.2480270862579346 img loss 1.2095983028411865 img loss 1.2518689632415771 img loss 1.2315887212753296 img loss 1.2485289573669434 img loss 1.2116215229034424 img loss 1.202336072921753 img loss 1.2657116651535034 img loss 1.2451791763305664 img loss 1.2060258388519287 img loss 1.219347596168518 img loss 1.2367864847183228 img loss 1.2511839866638184 img loss 1.156967043876648 img loss 1.2294361591339111 img loss 1.210598349571228 img loss 1.250998854637146 img loss 1.2348216772079468 img loss 1.2358535528182983 img loss 1.2296388149261475 img loss 1.2107871770858765 img loss 1.201225996017456 img loss 1.1719244718551636 img loss 1.2141634225845337 img loss 1.2242679595947266 img loss 1.2201772928237915 img loss 1.2335503101348877 img loss 1.1805169582366943 img loss 1.2269998788833618 img loss 1.2547392845153809 img loss 1.217935562133789 img loss 1.2275583744049072 img loss 1.2454677820205688 img loss 1.2171516418457031 img loss 1.1807878017425537img loss 1.2754623889923096 img loss 1.1748663187026978 img loss 1.227979302406311 img loss 1.1901545524597168 img loss 1.2586640119552612 img loss 1.26608145236969 img loss 1.2369564771652222 img loss 1.1486845016479492 img loss 1.2526061534881592 img loss 1.2097610235214233 img loss 1.2676010131835938 img loss 1.3156733512878418 img loss 1.17482590675354 img loss 1.169610857963562 img loss 1.214066505432129 img loss 1.231222152709961 img loss 1.2670927047729492 img loss 1.2486566305160522 img loss 1.2588878870010376 img loss 1.2095484733581543 img loss 1.2117512226104736 img loss 1.299504280090332 img loss 1.2565163373947144 img loss 1.2070908546447754 img loss 1.2509125471115112 img loss 1.2156691551208496 img loss 1.2909859418869019 img loss 1.2046364545822144 img loss 1.2520081996917725 img loss 1.2272964715957642 img loss 1.2148529291152954 img loss 1.222400188446045 img loss 1.264147400856018 img loss 1.3084620237350464 img loss 1.2380127906799316 img loss 1.21197509765625 img loss 1.2538390159606934 img loss 1.2214409112930298 img loss 1.2004302740097046 img loss 1.207115888595581 img loss 1.1884934902191162 img loss 1.2809890508651733 img loss 1.2562202215194702 img loss 1.2018342018127441 img loss 1.2545114755630493 img loss 1.238645315170288 img loss 1.2433547973632812 img loss 1.2709972858428955 img loss 1.3156172037124634 img loss 1.1326984167099 img loss 1.2418837547302246 img loss 1.2250664234161377 img loss 1.2366230487823486 img loss 1.249523401260376 img loss 1.2475783824920654 img loss 1.2014579772949219 img loss 1.245008111000061 img loss 1.2551460266113281 img loss 1.1910946369171143 {'loss': 1.2264, 'grad_norm': 0.2547217309474945, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2733772993087769 img loss 1.3037852048873901 img loss 1.29606294631958 img loss 1.1851027011871338 img loss 1.2037396430969238 img loss 1.29612135887146 img loss 1.1891849040985107 img loss 1.242713451385498 img loss 1.2440990209579468 img loss 1.2158904075622559 img loss 1.3233073949813843 img loss 1.2845261096954346 img loss 1.227999210357666 img loss 1.2048076391220093 img loss 1.2868051528930664 img loss 1.2693474292755127 img loss 1.2574074268341064 img loss 1.2010637521743774 img loss 1.2159441709518433 img loss 1.3020007610321045 img loss 1.2185474634170532 img loss 1.263181209564209 img loss 1.2145788669586182 img loss 1.2853829860687256 img loss 1.2260832786560059 img loss 1.2839369773864746 img loss 1.2470892667770386 img loss 1.245286226272583 img loss 1.2233765125274658 img loss 1.298449993133545 img loss 1.2415817975997925 img loss 1.2611216306686401 img loss 1.2293201684951782 img loss 1.190948486328125 img loss 1.2500776052474976 img loss 1.2805571556091309 img loss 1.2319949865341187 img loss 1.2546733617782593 img loss 1.262418270111084 img loss 1.158363699913025 img loss 1.251025915145874 img loss 1.2227369546890259 img loss 1.2897776365280151 img loss 1.17460036277771 img loss 1.2462382316589355 img loss 1.2404340505599976 img loss 1.316235065460205 img loss 1.3222899436950684 img loss 1.2713478803634644 img loss 1.2284445762634277 img loss 1.1481736898422241 img loss 1.347062587738037 img loss 1.2558248043060303 img loss 1.2210969924926758 img loss 1.329811930656433 img loss 1.2337477207183838 img loss 1.2449864149093628 img loss 1.2046020030975342 img loss 1.2721076011657715 img loss 1.1962021589279175 img loss 1.2254008054733276 img loss 1.209993839263916 img loss 1.303147554397583 img loss 1.1711090803146362 img loss 1.2306320667266846 img loss 1.2186481952667236 img loss 1.1874245405197144 img loss 1.3275978565216064 img loss 1.2634367942810059 img loss 1.3330111503601074 img loss 1.180651307106018 img loss 1.235236644744873 img loss 1.296558141708374 img loss 1.3191869258880615 img loss 1.18697988986969 img loss 1.245613694190979 img loss 1.2295467853546143 img loss 1.17220938205719 img loss 1.3179371356964111 img loss 1.2711033821105957 img loss 1.323515772819519 img loss 1.3117825984954834 img loss 1.2016634941101074 img loss 1.2785356044769287 img loss 1.2898540496826172 img loss 1.2210769653320312 img loss 1.1751396656036377 img loss 1.2536795139312744 img loss 1.3530348539352417 img loss 1.3103290796279907 img loss 1.2049204111099243 img loss 1.231387734413147 img loss 1.2356696128845215 img loss 1.271807074546814 img loss 1.2228208780288696 img loss 1.1935275793075562 img loss 1.2207138538360596 img loss 1.3192055225372314 img loss 1.2211987972259521 img loss 1.1249550580978394 img loss 1.1934441328048706 img loss 1.2644306421279907 img loss 1.2905791997909546 img loss 1.2933539152145386 img loss 1.2769625186920166 img loss 1.2138391733169556 img loss 1.3987784385681152 img loss 1.3081080913543701 img loss 1.1977784633636475 img loss 1.234065294265747 img loss 1.2356094121932983 img loss 1.284348964691162 img loss 1.1943860054016113 img loss 1.255159854888916 img loss 1.226101279258728 img loss 1.2904382944107056 img loss 1.191112995147705 img loss 1.233994483947754 img loss 1.250009536743164 img loss 1.345737099647522 img loss 1.2386558055877686 img loss 1.2231773138046265 img loss 1.303222417831421 img loss 1.1662731170654297 img loss 1.1731897592544556 img loss 1.2525110244750977 img loss 1.2958011627197266 img loss 1.2363238334655762 {'loss': 1.2489, 'grad_norm': 0.3022582232952118, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2580012083053589 img loss 1.313088059425354 img loss 1.2442359924316406 img loss 1.2547931671142578 img loss 1.3040001392364502 img loss 1.359061598777771 img loss 1.2518205642700195 img loss 1.3201528787612915 img loss 1.1656529903411865 img loss 1.2860302925109863 img loss 1.3105061054229736 img loss 1.251111626625061 img loss 1.259501338005066 img loss 1.2789788246154785 img loss 1.2680904865264893 img loss 1.2556442022323608 img loss 1.3167270421981812 img loss 1.2061035633087158 img loss 1.229755163192749 img loss 1.2272496223449707 img loss 1.2937068939208984 img loss 1.2858452796936035 img loss 1.2490079402923584 img loss 1.2907583713531494 img loss 1.3264954090118408 img loss 1.2560449838638306 img loss 1.231001853942871 img loss 1.332335352897644 img loss 1.2609113454818726 img loss 1.3212552070617676 img loss 1.2319139242172241 img loss 1.2402960062026978 img loss 1.2471650838851929 img loss 1.2473913431167603 img loss 1.4043694734573364 img loss 1.2684876918792725 img loss 1.197680950164795 img loss 1.2730836868286133 img loss 1.2466139793395996 img loss 1.2638435363769531 img loss 1.2579964399337769 img loss 1.2243870496749878 img loss 1.2876536846160889 img loss 1.227202296257019 img loss 1.2854397296905518 img loss 1.2161654233932495 img loss 1.2575002908706665 img loss 1.2737157344818115 img loss 1.3103702068328857 img loss 1.319589376449585 img loss 1.2776631116867065 img loss 1.2238478660583496 img loss 1.2473934888839722 img loss 1.2625324726104736 img loss 1.2628086805343628 img loss 1.4627392292022705 img loss 1.3112419843673706 img loss 1.1627039909362793 img loss 1.246661901473999 img loss 1.17751944065094 img loss 1.158738613128662 img loss 1.2215049266815186 img loss 1.3155696392059326 img loss 1.2302101850509644 img loss 1.3663243055343628 img loss 1.2535960674285889 img loss 1.235510230064392 img loss 1.3660204410552979 img loss 1.2102960348129272 img loss 1.2354406118392944 img loss 1.234963297843933 img loss 1.236427664756775 img loss 1.169985294342041 img loss 1.215759038925171 img loss 1.2903783321380615 img loss 1.2128067016601562 img loss 1.2461097240447998 img loss 1.2553298473358154 img loss 1.1996078491210938 img loss 1.260008692741394 img loss 1.2219312191009521 img loss 1.1981239318847656 img loss 1.3734469413757324 img loss 1.212345838546753 img loss 1.2617014646530151 img loss 1.276365041732788 img loss 1.1965664625167847 img loss 1.2747364044189453 img loss 1.287699580192566 img loss 1.1942479610443115 img loss 1.221286416053772 img loss 1.2164884805679321 img loss 1.2186832427978516 img loss 1.3056023120880127 img loss 1.2822250127792358 img loss 1.2237789630889893 img loss 1.2317818403244019 img loss 1.248077630996704 img loss 1.2498929500579834 img loss 1.2292107343673706 img loss 1.2276026010513306 img loss 1.257066011428833 img loss 1.2770378589630127 img loss 1.2654263973236084 img loss 1.2483913898468018 img loss 1.2788784503936768 img loss 1.2691978216171265 img loss 1.1987757682800293 img loss 1.2602784633636475 img loss 1.2758359909057617 img loss 1.2546498775482178 img loss 1.1787058115005493 img loss 1.2869423627853394 img loss 1.303505301475525 img loss 1.2814077138900757 img loss 1.3053522109985352 img loss 1.292608618736267 img loss 1.2721898555755615 img loss 1.2832486629486084 img loss 1.1930513381958008 img loss 1.306118369102478 img loss 1.3078818321228027 img loss 1.1998299360275269 img loss 1.260619044303894 img loss 1.2861557006835938 img loss 1.2967618703842163 img loss 1.2793025970458984 img loss 1.2853425741195679 {'loss': 1.2609, 'grad_norm': 0.2151329517364502, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2208282947540283 img loss 1.2000998258590698 img loss 1.1511214971542358 img loss 1.202587604522705 img loss 1.2341806888580322 img loss 1.1965610980987549 img loss 1.2329193353652954 img loss 1.1802517175674438 img loss 1.254380702972412 img loss 1.1964507102966309 img loss 1.223264455795288 img loss 1.2002876996994019 img loss 1.2262405157089233 img loss 1.1954946517944336 img loss 1.2458616495132446 img loss 1.214304804801941 img loss 1.2296273708343506 img loss 1.200404405593872 img loss 1.2111443281173706 img loss 1.1712071895599365 img loss 1.1567531824111938 img loss 1.1893681287765503 img loss 1.229506492614746 img loss 1.1673059463500977 img loss 1.2255818843841553 img loss 1.1545753479003906 img loss 1.2268251180648804 img loss 1.271849513053894 img loss 1.2501682043075562 img loss 1.2355916500091553 img loss 1.2450993061065674 img loss 1.2748521566390991 img loss 1.1825785636901855 img loss 1.2463868856430054 img loss 1.2264268398284912 img loss 1.2036842107772827 img loss 1.2209203243255615 img loss 1.1491708755493164 img loss 1.2109041213989258 img loss 1.2413790225982666 img loss 1.199798583984375 img loss 1.194251298904419 img loss 1.229746699333191 img loss 1.2312791347503662 img loss 1.2353248596191406 img loss 1.2022689580917358 img loss 1.2529799938201904 img loss 1.219538927078247 img loss 1.2432968616485596 img loss 1.2397396564483643 img loss 1.2068732976913452 img loss 1.2061188220977783 img loss 1.2303537130355835 img loss 1.280909776687622 img loss 1.221107840538025 img loss 1.2426687479019165 img loss 1.2018029689788818 img loss 1.2219700813293457 img loss 1.1520910263061523 img loss 1.2849171161651611 img loss 1.2402315139770508 img loss 1.2360758781433105 img loss 1.1859155893325806 img loss 1.2083724737167358 img loss 1.199308156967163 img loss 1.2092081308364868 img loss 1.1680872440338135 img loss 1.16680908203125 img loss 1.2069453001022339 img loss 1.154242753982544 img loss 1.2611279487609863 img loss 1.2527375221252441 img loss 1.1990851163864136 img loss 1.2901519536972046 img loss 1.2513984441757202 img loss 1.2633962631225586 img loss 1.2015923261642456 img loss 1.1772390604019165 img loss 1.2145169973373413 img loss 1.173438310623169 img loss 1.2925533056259155 img loss 1.212916612625122 img loss 1.20036780834198 img loss 1.1906166076660156 img loss 1.2184882164001465 img loss 1.229130506515503 img loss 1.1851539611816406 img loss 1.1571617126464844 img loss 1.3118572235107422 img loss 1.1220463514328003 img loss 1.2593530416488647 img loss 1.2237701416015625 img loss 1.228501796722412 img loss 1.266660451889038 img loss 1.1961363554000854 img loss 1.1937812566757202 img loss 1.2102620601654053 img loss 1.1630587577819824 img loss 1.2069920301437378 img loss 1.191032886505127 img loss 1.1975809335708618 img loss 1.1857832670211792 img loss 1.188361644744873 img loss 1.199669361114502 img loss 1.2334007024765015 img loss 1.1841943264007568 img loss 1.240142822265625 img loss 1.1658101081848145 img loss 1.2179416418075562 img loss 1.2133432626724243 img loss 1.2644151449203491 img loss 1.2281461954116821 img loss 1.252936601638794 img loss 1.184588074684143 img loss 1.240224838256836 img loss 1.193393349647522 img loss 1.170251727104187 img loss 1.1379402875900269 img loss 1.2219940423965454 img loss 1.2662594318389893 img loss 1.2258535623550415 img loss 1.1523298025131226 img loss 1.1783268451690674 img loss 1.1729614734649658 img loss 1.1898620128631592 img loss 1.1859949827194214 img loss 1.232550024986267 img loss 1.2877486944198608 {'loss': 1.2135, 'grad_norm': 0.24978120625019073, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2715660333633423 img loss 1.3737788200378418 img loss 1.2604217529296875 img loss 1.3079074621200562 img loss 1.1926666498184204 img loss 1.2940740585327148 img loss 1.273430585861206 img loss 1.2312164306640625 img loss 1.2537188529968262 img loss 1.4143315553665161 img loss 1.2536444664001465 img loss 1.3673741817474365 img loss 1.4744704961776733 img loss 1.351981282234192 img loss 1.4038786888122559 img loss 1.2075639963150024 img loss 1.2505825757980347 img loss 1.2575806379318237 img loss 1.3021595478057861 img loss 1.2193078994750977 img loss 1.2886707782745361 img loss 1.185255527496338 img loss 1.2598923444747925 img loss 1.3092559576034546 img loss 1.1950863599777222 img loss 1.2263906002044678 img loss 1.2633888721466064 img loss 1.2310930490493774 img loss 1.384409785270691 img loss 1.322223424911499 img loss 1.2917916774749756 img loss 1.3639813661575317 img loss 1.27974271774292 img loss 1.2830753326416016 img loss 1.2494194507598877 img loss 1.3169997930526733 img loss 1.283381700515747 img loss 1.349571704864502 img loss 1.376056432723999 img loss 1.2300794124603271 img loss 1.314415693283081 img loss 1.285072684288025 img loss 1.2312835454940796 img loss 1.1736741065979004 img loss 1.1581177711486816 img loss 1.3266361951828003 img loss 1.23558509349823 img loss 1.4078924655914307 img loss 1.277858018875122 img loss 1.2723004817962646 img loss 1.319921851158142 img loss 1.262807846069336 img loss 1.3371299505233765 img loss 1.2672926187515259 img loss 1.2750754356384277 img loss 1.3008756637573242 img loss 1.3736636638641357 img loss 1.3345425128936768 img loss 1.2319793701171875 img loss 1.263609528541565 img loss 1.3984730243682861 img loss 1.3409658670425415 img loss 1.3013900518417358 img loss 1.2124054431915283 img loss 1.2823528051376343 img loss 1.3903509378433228 img loss 1.22746741771698 img loss 1.4049789905548096 img loss 1.1994245052337646 img loss 1.3244171142578125 img loss 1.2763878107070923 img loss 1.3511334657669067 img loss 1.1966643333435059 img loss 1.2750487327575684 img loss 1.314429521560669 img loss 1.3518595695495605 img loss 1.2191765308380127 img loss 1.2736965417861938 img loss 1.3123795986175537 img loss 1.316770315170288 img loss 1.2766213417053223 img loss 1.3683096170425415 img loss 1.4009983539581299 img loss 1.2059369087219238 img loss 1.3139348030090332 img loss 1.24465012550354 img loss 1.4300140142440796 img loss 1.212902307510376 img loss 1.3318116664886475 img loss 1.445715308189392 img loss 1.3160194158554077 img loss 1.289252519607544 img loss 1.335980772972107 img loss 1.2646502256393433 img loss 1.358283281326294 img loss 1.3693501949310303 img loss 1.3141937255859375 img loss 1.3116223812103271 img loss 1.359301209449768 img loss 1.3574124574661255 img loss 1.2659705877304077 img loss 1.2611665725708008 img loss 1.2858179807662964 img loss 1.2915470600128174 img loss 1.2726131677627563 img loss 1.3384135961532593 img loss 1.241801142692566 img loss 1.1798368692398071 img loss 1.2823892831802368 img loss 1.3220490217208862 img loss 1.209834337234497 img loss 1.345288634300232 img loss 1.269060730934143 img loss 1.226247787475586 img loss 1.3242119550704956 img loss 1.3572338819503784 img loss 1.3357406854629517 img loss 1.3180272579193115 img loss 1.346124529838562 img loss 1.3327751159667969 img loss 1.3513638973236084 img loss 1.2242481708526611 img loss 1.3188403844833374 img loss 1.364479422569275 img loss 1.3302741050720215 img loss 1.2517828941345215 img loss 1.3150438070297241 img loss 1.2204941511154175 {'loss': 1.2966, 'grad_norm': 0.2661629915237427, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.249304175376892 img loss 1.186643123626709 img loss 1.3136790990829468 img loss 1.4229979515075684 img loss 1.218096137046814 img loss 1.2918980121612549 img loss 1.331093430519104 img loss 1.246126413345337 img loss 1.2582663297653198 img loss 1.2573193311691284 img loss 1.2945069074630737 img loss 1.3259201049804688 img loss 1.282218337059021 img loss 1.3706237077713013 img loss 1.3054478168487549 img loss 1.309510588645935 img loss 1.3113845586776733 img loss 1.2028032541275024 img loss 1.307766318321228 img loss 1.251940369606018 img loss 1.2584567070007324 img loss 1.4273231029510498 img loss 1.2085239887237549 img loss 1.2650120258331299 img loss 1.3335860967636108 img loss 1.3366444110870361 img loss 1.288877248764038 img loss 1.308793306350708 img loss 1.2811192274093628 img loss 1.3114084005355835 img loss 1.2493131160736084 img loss 1.2555649280548096 img loss 1.3191053867340088 img loss 1.280787467956543 img loss 1.3216995000839233 img loss 1.2376325130462646 img loss 1.2213191986083984 img loss 1.3317667245864868 img loss 1.285567283630371 img loss 1.3720422983169556 img loss 1.2864233255386353 img loss 1.3105496168136597 img loss 1.314705491065979 img loss 1.3150460720062256 img loss 1.277319312095642 img loss 1.2756658792495728 img loss 1.2619389295578003 img loss 1.344218373298645 img loss 1.3367034196853638 img loss 1.2664835453033447 img loss 1.2610098123550415 img loss 1.324693202972412 img loss 1.266797661781311 img loss 1.221920371055603 img loss 1.218065619468689 img loss 1.348129153251648 img loss 1.2907962799072266 img loss 1.302988052368164 img loss 1.3279024362564087 img loss 1.3055082559585571 img loss 1.247989535331726 img loss 1.419327974319458 img loss 1.34211266040802 img loss 1.2433116436004639 img loss 1.1978691816329956 img loss 1.2982046604156494 img loss 1.27264404296875 img loss 1.2600185871124268 img loss 1.274667501449585 img loss 1.329078197479248 img loss 1.2540912628173828 img loss 1.2126915454864502 img loss 1.3525036573410034 img loss 1.2195042371749878 img loss 1.2514472007751465 img loss 1.3410513401031494 img loss 1.26384437084198 img loss 1.3351237773895264 img loss 1.327621340751648 img loss 1.3573853969573975 img loss 1.327003836631775 img loss 1.4522640705108643 img loss 1.225623369216919 img loss 1.3038630485534668 img loss 1.2466135025024414 img loss 1.3133506774902344 img loss 1.2539246082305908 img loss 1.2746555805206299 img loss 1.332545518875122 img loss 1.3045133352279663 img loss 1.3052955865859985 img loss 1.2953516244888306 img loss 1.2649496793746948 img loss 1.3128159046173096 img loss 1.2064297199249268 img loss 1.3319803476333618 img loss 1.2813810110092163 img loss 1.3745815753936768 img loss 1.2627365589141846 img loss 1.2886402606964111 img loss 1.2342369556427002 img loss 1.2398431301116943 img loss 1.2557380199432373 img loss 1.2852931022644043 img loss 1.3447372913360596 img loss 1.3935835361480713 img loss 1.2539085149765015 img loss 1.3167864084243774 img loss 1.3132578134536743 img loss 1.3982454538345337 img loss 1.2376383543014526 img loss 1.2112327814102173 img loss 1.2971224784851074 img loss 1.351548671722412 img loss 1.236421823501587 img loss 1.2637114524841309 img loss 1.2308146953582764 img loss 1.2987401485443115 img loss 1.293678879737854 img loss 1.1734299659729004 img loss 1.209450602531433 img loss 1.2285047769546509 img loss 1.3384522199630737 img loss 1.2364851236343384 img loss 1.280822992324829 img loss 1.3980824947357178 img loss 1.3077216148376465 img loss 1.329357385635376 {'loss': 1.2907, 'grad_norm': 0.26102539896965027, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1559966802597046 img loss 1.1829237937927246 img loss 1.1934044361114502 img loss 1.1478599309921265 img loss 1.1350558996200562 img loss 1.1617615222930908 img loss 1.1845588684082031 img loss 1.1498653888702393 img loss 1.2121906280517578 img loss 1.208706259727478 img loss 1.19296133518219 img loss 1.2234513759613037 img loss 1.2750813961029053 img loss 1.197914719581604 img loss 1.2458317279815674 img loss 1.3011010885238647 img loss 1.1219109296798706 img loss 1.2795718908309937 img loss 1.134533405303955 img loss 1.2127196788787842 img loss 1.1533254384994507 img loss 1.2365736961364746 img loss 1.209837555885315 img loss 1.1339343786239624 img loss 1.2247432470321655 img loss 1.1768317222595215 img loss 1.2168934345245361 img loss 1.1961148977279663 img loss 1.1680381298065186 img loss 1.208247184753418 img loss 1.1562163829803467 img loss 1.1590102910995483 img loss 1.2328709363937378 img loss 1.1890419721603394 img loss 1.2518057823181152 img loss 1.2112776041030884 img loss 1.1351840496063232 img loss 1.2068901062011719 img loss 1.1565557718276978 img loss 1.1340893507003784 img loss 1.1815321445465088 img loss 1.2061394453048706 img loss 1.1973588466644287 img loss 1.2241880893707275 img loss 1.1513957977294922 img loss 1.2353156805038452 img loss 1.1841681003570557 img loss 1.15890371799469 img loss 1.2295238971710205 img loss 1.112450122833252 img loss 1.2385772466659546 img loss 1.2483373880386353 img loss 1.1765615940093994 img loss 1.2643942832946777 img loss 1.193480134010315 img loss 1.186187505722046 img loss 1.1924285888671875 img loss 1.1537718772888184 img loss 1.2092387676239014 img loss 1.2100991010665894 img loss 1.163529872894287 img loss 1.2458118200302124 img loss 1.1881023645401 img loss 1.2633905410766602 img loss 1.2180781364440918 img loss 1.3010625839233398 img loss 1.2433903217315674 img loss 1.2508677244186401 img loss 1.21906316280365 img loss 1.197517991065979 img loss 1.128238320350647 img loss 1.2841932773590088 img loss 1.156085729598999 img loss 1.1987605094909668 img loss 1.2963862419128418 img loss 1.1197247505187988 img loss 1.200639247894287 img loss 1.2681585550308228 img loss 1.160376787185669 img loss 1.2430704832077026 img loss 1.1376272439956665 img loss 1.2363499402999878 img loss 1.2344883680343628 img loss 1.2462631464004517 img loss 1.1702651977539062 img loss 1.1660516262054443 img loss 1.159816026687622 img loss 1.2437556982040405 img loss 1.1939986944198608 img loss 1.2110896110534668 img loss 1.217711091041565 img loss 1.2549536228179932 img loss 1.140393853187561 img loss 1.2424129247665405 img loss 1.2116787433624268 img loss 1.1653097867965698 img loss 1.2076175212860107 img loss 1.1644797325134277 img loss 1.248304009437561 img loss 1.231912612915039 img loss 1.1952552795410156 img loss 1.2022747993469238 img loss 1.1273850202560425 img loss 1.1366289854049683 img loss 1.2720530033111572 img loss 1.2406316995620728 img loss 1.1201547384262085 img loss 1.1999831199645996 img loss 1.2249500751495361 img loss 1.1592726707458496 img loss 1.2220464944839478 img loss 1.1016271114349365 img loss 1.2072514295578003 img loss 1.117520809173584 img loss 1.1628745794296265 img loss 1.2204025983810425 img loss 1.214336633682251 img loss 1.1982978582382202 img loss 1.1569584608078003 img loss 1.1385892629623413 img loss 1.1345208883285522 img loss 1.1650192737579346 img loss 1.222237229347229 img loss 1.1658978462219238 img loss 1.1917088031768799 img loss 1.2061487436294556 img loss 1.2654926776885986 img loss 1.0911492109298706 {'loss': 1.1963, 'grad_norm': 0.23115618526935577, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2887486219406128 img loss 1.2683950662612915 img loss 1.1685861349105835 img loss 1.2008517980575562 img loss 1.196333408355713 img loss 1.2365281581878662 img loss 1.1682946681976318 img loss 1.3400670289993286 img loss 1.2208366394042969 img loss 1.2443491220474243 img loss 1.1911826133728027 img loss 1.2777001857757568 img loss 1.1878246068954468 img loss 1.1766407489776611 img loss 1.2324148416519165 img loss 1.2755626440048218 img loss 1.2029893398284912 img loss 1.23264479637146 img loss 1.2504476308822632 img loss 1.1793707609176636 img loss 1.2054983377456665 img loss 1.307309865951538 img loss 1.2783019542694092 img loss 1.2323483228683472 img loss 1.3422495126724243 img loss 1.2130160331726074 img loss 1.2200274467468262 img loss 1.350469946861267 img loss 1.2026456594467163 img loss 1.2749556303024292 img loss 1.2716338634490967 img loss 1.1815985441207886 img loss 1.2272922992706299 img loss 1.2389824390411377 img loss 1.2437292337417603 img loss 1.203322410583496 img loss 1.2379868030548096 img loss 1.2541630268096924 img loss 1.288560390472412 img loss 1.2299580574035645 img loss 1.2201184034347534 img loss 1.2564762830734253 img loss 1.31966233253479 img loss 1.307677984237671 img loss 1.2531827688217163 img loss 1.317579984664917 img loss 1.110002875328064 img loss 1.2669463157653809 img loss 1.2227461338043213 img loss 1.274065375328064 img loss 1.1908881664276123 img loss 1.2701700925827026 img loss 1.289980411529541 img loss 1.2623165845870972 img loss 1.2096971273422241 img loss 1.2807519435882568 img loss 1.2979674339294434 img loss 1.1640222072601318 img loss 1.214799165725708 img loss 1.2202867269515991 img loss 1.2298760414123535 img loss 1.1978991031646729 img loss 1.2404698133468628 img loss 1.1895225048065186 img loss 1.2214401960372925 img loss 1.2722384929656982 img loss 1.2488231658935547 img loss 1.1853550672531128 img loss 1.103326678276062 img loss 1.2044143676757812 img loss 1.2046114206314087 img loss 1.1365201473236084 img loss 1.203832983970642 img loss 1.1243547201156616 img loss 1.2144075632095337 img loss 1.2201461791992188 img loss 1.1214975118637085 img loss 1.1955552101135254 img loss 1.2652086019515991 img loss 1.159811019897461 img loss 1.2513751983642578 img loss 1.204824447631836 img loss 1.330448865890503 img loss 1.241048812866211 img loss 1.2197401523590088 img loss 1.2194303274154663 img loss 1.3179666996002197 img loss 1.1586174964904785 img loss 1.2535991668701172 img loss 1.2809799909591675 img loss 1.1741913557052612 img loss 1.3163399696350098 img loss 1.2120749950408936 img loss 1.1907572746276855 img loss 1.232169508934021 img loss 1.1768178939819336 img loss 1.1952240467071533 img loss 1.2093842029571533 img loss 1.2222412824630737 img loss 1.3132390975952148 img loss 1.1695889234542847 img loss 1.2932898998260498 img loss 1.1826881170272827 img loss 1.2490304708480835 img loss 1.259450912475586 img loss 1.2103526592254639 img loss 1.331336498260498 img loss 1.183081865310669 img loss 1.2142666578292847 img loss 1.230255126953125 img loss 1.205444574356079 img loss 1.180834412574768 img loss 1.2423796653747559 img loss 1.2653825283050537 img loss 1.1808502674102783 img loss 1.250884771347046 img loss 1.3115615844726562 img loss 1.1546268463134766 img loss 1.2904707193374634 img loss 1.1721012592315674 img loss 1.225064992904663 img loss 1.152502417564392 img loss 1.3619170188903809 img loss 1.2238222360610962 img loss 1.2283178567886353 img loss 1.2024989128112793 img loss 1.247280478477478 img loss 1.2306532859802246 {'loss': 1.2313, 'grad_norm': 0.18846410512924194, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2544834613800049 img loss 1.2004390954971313 img loss 1.2012245655059814 img loss 1.2564773559570312 img loss 1.2569270133972168 img loss 1.1780426502227783 img loss 1.2790026664733887 img loss 1.212614893913269 img loss 1.2331281900405884 img loss 1.1776926517486572 img loss 1.290900468826294 img loss 1.3443974256515503 img loss 1.2514724731445312 img loss 1.185185432434082 img loss 1.1946344375610352 img loss 1.2154568433761597 img loss 1.2347468137741089 img loss 1.1968841552734375 img loss 1.203615665435791 img loss 1.2419300079345703 img loss 1.309760570526123 img loss 1.2421386241912842 img loss 1.2425332069396973 img loss 1.2927583456039429 img loss 1.251173496246338 img loss 1.227610468864441 img loss 1.2359328269958496 img loss 1.3165662288665771 img loss 1.2263091802597046 img loss 1.2547180652618408 img loss 1.2053759098052979 img loss 1.2891573905944824 img loss 1.2753920555114746 img loss 1.2483272552490234 img loss 1.3156572580337524 img loss 1.2062796354293823 img loss 1.202813982963562 img loss 1.2368417978286743 img loss 1.2186827659606934 img loss 1.2150506973266602 img loss 1.2026548385620117 img loss 1.3210177421569824 img loss 1.2115521430969238 img loss 1.2569853067398071 img loss 1.2508457899093628 img loss 1.2518099546432495 img loss 1.2023863792419434 img loss 1.2416857481002808 img loss 1.1822559833526611 img loss 1.2981594800949097 img loss 1.172036051750183 img loss 1.2506306171417236 img loss 1.1945979595184326 img loss 1.2394483089447021 img loss 1.2267614603042603 img loss 1.1922948360443115 img loss 1.267825722694397 img loss 1.2359508275985718 img loss 1.291133165359497 img loss 1.1812903881072998 img loss 1.2121198177337646 img loss 1.2228045463562012 img loss 1.2152470350265503 img loss 1.3132320642471313 img loss 1.2480902671813965 img loss 1.174647569656372 img loss 1.222123384475708 img loss 1.2752981185913086 img loss 1.2836519479751587 img loss 1.2359402179718018 img loss 1.2033355236053467 img loss 1.2135510444641113 img loss 1.256819248199463 img loss 1.242818832397461 img loss 1.2183235883712769 img loss 1.2741401195526123 img loss 1.2870676517486572 img loss 1.2244641780853271 img loss 1.3188676834106445 img loss 1.2397403717041016 img loss 1.2055490016937256 img loss 1.223415732383728 img loss 1.2757824659347534 img loss 1.20767080783844 img loss 1.281792402267456 img loss 1.2324298620224 img loss 1.2022597789764404 img loss 1.241239070892334 img loss 1.2437069416046143 img loss 1.258249044418335 img loss 1.2370212078094482 img loss 1.2168034315109253 img loss 1.2367275953292847 img loss 1.239098072052002 img loss 1.3481266498565674 img loss 1.2307108640670776 img loss 1.2452534437179565 img loss 1.2611814737319946 img loss 1.2792444229125977 img loss 1.250690221786499 img loss 1.2276690006256104 img loss 1.2088122367858887 img loss 1.2142736911773682 img loss 1.2429897785186768 img loss 1.1940386295318604 img loss 1.2466720342636108 img loss 1.1997427940368652 img loss 1.2613906860351562 img loss 1.1795662641525269 img loss 1.232979655265808 img loss 1.3302459716796875 img loss 1.239133358001709 img loss 1.19444739818573 img loss 1.167284607887268 img loss 1.228864073753357 img loss 1.2230576276779175 img loss 1.2521089315414429 img loss 1.282652497291565 img loss 1.1958725452423096 img loss 1.1389731168746948 img loss 1.3307342529296875 img loss 1.2211072444915771 img loss 1.2468926906585693 img loss 1.2742047309875488 img loss 1.2255620956420898 img loss 1.2507232427597046 img loss 1.1899651288986206 img loss 1.2101833820343018 {'loss': 1.2383, 'grad_norm': 0.2166227549314499, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1985859870910645 img loss 1.1978964805603027 img loss 1.2500090599060059 img loss 1.1472508907318115 img loss 1.1653616428375244 img loss 1.1939970254898071 img loss 1.1818766593933105 img loss 1.2096470594406128 img loss 1.1927956342697144 img loss 1.2043808698654175 img loss 1.2298325300216675 img loss 1.2451322078704834 img loss 1.1789090633392334 img loss 1.165482759475708 img loss 1.1541733741760254 img loss 1.1409015655517578 img loss 1.2419731616973877 img loss 1.170653223991394 img loss 1.1836004257202148 img loss 1.228776454925537 img loss 1.2240313291549683 img loss 1.1854721307754517 img loss 1.2266607284545898 img loss 1.229243516921997 img loss 1.2356696128845215 img loss 1.189774990081787 img loss 1.2334355115890503 img loss 1.2280550003051758 img loss 1.2223060131072998 img loss 1.2077045440673828 img loss 1.1696585416793823 img loss 1.2031946182250977 img loss 1.1857203245162964 img loss 1.2981784343719482 img loss 1.2277721166610718 img loss 1.2412033081054688 img loss 1.2285306453704834 img loss 1.1889326572418213 img loss 1.2299832105636597 img loss 1.2131716012954712 img loss 1.2385295629501343 img loss 1.202958106994629 img loss 1.291908860206604 img loss 1.2286670207977295 img loss 1.1597639322280884 img loss 1.1631742715835571 img loss 1.18803870677948 img loss 1.2151708602905273 img loss 1.0787080526351929 img loss 1.2759284973144531 img loss 1.127651572227478 img loss 1.203613042831421 img loss 1.1809040307998657 img loss 1.270702600479126 img loss 1.3052899837493896 img loss 1.1931699514389038 img loss 1.2749149799346924 img loss 1.250992774963379 img loss 1.2227892875671387 img loss 1.1229889392852783 img loss 1.226485252380371 img loss 1.1952714920043945 img loss 1.3248753547668457 img loss 1.1725285053253174 img loss 1.2559467554092407 img loss 1.2218996286392212 img loss 1.2352423667907715 img loss 1.2440924644470215 img loss 1.1843029260635376 img loss 1.1906883716583252 img loss 1.2547574043273926 img loss 1.2244737148284912 img loss 1.2384973764419556 img loss 1.1355798244476318 img loss 1.2090396881103516 img loss 1.2592041492462158 img loss 1.193377137184143 img loss 1.2115874290466309 img loss 1.163476824760437 img loss 1.2066274881362915 img loss 1.156990647315979 img loss 1.0807271003723145 img loss 1.1890496015548706 img loss 1.1239197254180908 img loss 1.225629448890686 img loss 1.1517387628555298 img loss 1.2203013896942139 img loss 1.1494038105010986 img loss 1.116917610168457 img loss 1.2210054397583008 img loss 1.2134268283843994 img loss 1.174038290977478 img loss 1.1671710014343262 img loss 1.2210712432861328 img loss 1.2273744344711304 img loss 1.2427963018417358 img loss 1.1399075984954834 img loss 1.186782717704773 img loss 1.267640471458435 img loss 1.15654456615448 img loss 1.1838140487670898 img loss 1.2534153461456299 img loss 1.2371196746826172 img loss 1.2007664442062378 img loss 1.178049921989441 img loss 1.184851050376892 img loss 1.1698498725891113 img loss 1.139357089996338 img loss 1.1296398639678955 img loss 1.1949326992034912 img loss 1.2269092798233032 img loss 1.2012985944747925 img loss 1.2644516229629517 img loss 1.284536361694336 img loss 1.1860768795013428 img loss 1.1858627796173096 img loss 1.2126147747039795 img loss 1.1447229385375977 img loss 1.1995981931686401 img loss 1.2084267139434814 img loss 1.1808803081512451 img loss 1.2025845050811768 img loss 1.246082067489624 img loss 1.1824413537979126 img loss 1.1762654781341553 img loss 1.2231941223144531 img loss 1.1972365379333496 img loss 1.1204336881637573 {'loss': 1.2027, 'grad_norm': 0.1875080168247223, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2073558568954468 img loss 1.2186874151229858 img loss 1.4137924909591675 img loss 1.2726643085479736 img loss 1.2922827005386353 img loss 1.2597270011901855 img loss 1.2262377738952637 img loss 1.2328331470489502 img loss 1.311022162437439 img loss 1.374908685684204 img loss 1.3597416877746582 img loss 1.3430628776550293 img loss 1.2417407035827637 img loss 1.3203520774841309 img loss 1.2860935926437378 img loss 1.2944984436035156 img loss 1.257622241973877 img loss 1.2597243785858154 img loss 1.2784969806671143 img loss 1.2232937812805176 img loss 1.251833438873291 img loss 1.2811732292175293 img loss 1.2415895462036133 img loss 1.2756824493408203 img loss 1.3612172603607178 img loss 1.2874329090118408 img loss 1.2485640048980713 img loss 1.2731797695159912 img loss 1.3029191493988037 img loss 1.2001378536224365 img loss 1.2326586246490479 img loss 1.2630891799926758 img loss 1.280460000038147 img loss 1.2279853820800781 img loss 1.2665252685546875 img loss 1.2433357238769531 img loss 1.212310552597046 img loss 1.26186203956604 img loss 1.3096060752868652 img loss 1.2195968627929688 img loss 1.2117975950241089 img loss 1.2930188179016113 img loss 1.253628134727478 img loss 1.2996011972427368 img loss 1.3044153451919556 img loss 1.250533938407898img loss 1.3294271230697632 img loss 1.3197171688079834 img loss 1.235360026359558 img loss 1.3847976922988892 img loss 1.3052526712417603 img loss 1.2743555307388306 img loss 1.2599149942398071 img loss 1.29017972946167 img loss 1.1721826791763306 img loss 1.2752280235290527 img loss 1.312208652496338 img loss 1.2063568830490112 img loss 1.2678234577178955 img loss 1.2568297386169434 img loss 1.2726067304611206 img loss 1.306001901626587 img loss 1.3076503276824951 img loss 1.3098042011260986 img loss 1.2483676671981812 img loss 1.2443859577178955 img loss 1.2822239398956299 img loss 1.24051034450531 img loss 1.3480364084243774 img loss 1.3195503950119019 img loss 1.2941592931747437 img loss 1.2707713842391968 img loss 1.2655400037765503 img loss 1.2590503692626953 img loss 1.2976518869400024 img loss 1.3177340030670166 img loss 1.2629942893981934 img loss 1.2280447483062744 img loss 1.2486389875411987 img loss 1.2770527601242065 img loss 1.389389157295227 img loss 1.2701489925384521 img loss 1.225888729095459 img loss 1.2665773630142212 img loss 1.300998568534851 img loss 1.2672089338302612 img loss 1.2992310523986816 img loss 1.3097319602966309 img loss 1.2484679222106934 img loss 1.252816915512085 img loss 1.2822932004928589 img loss 1.195779800415039 img loss 1.2237329483032227 img loss 1.2056301832199097 img loss 1.3972933292388916 img loss 1.281686544418335 img loss 1.2360889911651611 img loss 1.2636866569519043 img loss 1.2620501518249512 img loss 1.2174437046051025 img loss 1.289667010307312 img loss 1.2295358180999756 img loss 1.290850281715393 img loss 1.308889389038086 img loss 1.2706552743911743 img loss 1.2242512702941895 img loss 1.2495815753936768 img loss 1.204261064529419 img loss 1.2654163837432861 img loss 1.3657639026641846 img loss 1.2102677822113037 img loss 1.329962134361267 img loss 1.2249770164489746 img loss 1.190927505493164 img loss 1.21786367893219 img loss 1.2468658685684204 img loss 1.2670464515686035 img loss 1.2876442670822144 img loss 1.2611594200134277 img loss 1.2897822856903076 img loss 1.2987717390060425 img loss 1.2096441984176636 img loss 1.234067678451538 img loss 1.2149721384048462 img loss 1.3047291040420532 img loss 1.2876384258270264 img loss 1.3278355598449707 img loss 1.231503963470459 {'loss': 1.2715, 'grad_norm': 0.44329750537872314, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1792888641357422 img loss 1.1805225610733032 img loss 1.1088030338287354 img loss 1.281201958656311 img loss 1.2238222360610962 img loss 1.183516502380371 img loss 1.3065667152404785 img loss 1.187211036682129 img loss 1.1280419826507568 img loss 1.1339013576507568 img loss 1.1698665618896484 img loss 1.2457523345947266 img loss 1.1949466466903687 img loss 1.2101995944976807 img loss 1.2054041624069214 img loss 1.31462824344635 img loss 1.14742112159729 img loss 1.2708457708358765 img loss 1.2242790460586548 img loss 1.3161338567733765 img loss 1.2368755340576172 img loss 1.209031581878662 img loss 1.2971107959747314 img loss 1.1616606712341309 img loss 1.2210849523544312 img loss 1.2341022491455078 img loss 1.156229853630066 img loss 1.3904367685317993 img loss 1.173346996307373 img loss 1.2714325189590454 img loss 1.1492726802825928 img loss 1.1832116842269897 img loss 1.18878173828125 img loss 1.1454277038574219 img loss 1.2326502799987793 img loss 1.190276026725769 img loss 1.2028656005859375 img loss 1.1513464450836182 img loss 1.2717634439468384 img loss 1.197800636291504 img loss 1.1566085815429688 img loss 1.1902662515640259 img loss 1.2795159816741943 img loss 1.1724352836608887 img loss 1.231539249420166 img loss 1.1681225299835205 img loss 1.2308263778686523 img loss 1.1311907768249512 img loss 1.3090238571166992 img loss 1.1306862831115723 img loss 1.2245248556137085 img loss 1.1397624015808105 img loss 1.1850569248199463 img loss 1.216386079788208 img loss 1.2833149433135986 img loss 1.1242523193359375 img loss 1.2816015481948853 img loss 1.267503261566162 img loss 1.1600946187973022 img loss 1.2446197271347046 img loss 1.165178894996643 img loss 1.175157070159912 img loss 1.1254581212997437 img loss 1.2714283466339111 img loss 1.2980178594589233 img loss 1.2587000131607056 img loss 1.191253662109375 img loss 1.2344262599945068 img loss 1.202250361442566 img loss 1.1405044794082642 img loss 1.2473362684249878 img loss 1.163159966468811 img loss 1.263942003250122 img loss 1.2355518341064453 img loss 1.2098193168640137 img loss 1.3013572692871094 img loss 1.307689905166626 img loss 1.2910549640655518 img loss 1.2123634815216064 img loss 1.2018979787826538 img loss 1.3144727945327759 img loss 1.245879888534546 img loss 1.2575092315673828 img loss 1.2124900817871094 img loss 1.2429474592208862 img loss 1.268919587135315 img loss 1.1553505659103394 img loss 1.1692336797714233 img loss 1.2004311084747314 img loss 1.2107737064361572 img loss 1.1945164203643799 img loss 1.2120246887207031 img loss 1.1853208541870117 img loss 1.2294433116912842 img loss 1.1873812675476074 img loss 1.177021861076355 img loss 1.2246894836425781 img loss 1.235903024673462 img loss 1.1103737354278564 img loss 1.1901416778564453 img loss 1.2721894979476929 img loss 1.2871885299682617 img loss 1.3384557962417603 img loss 1.1691497564315796 img loss 1.2475736141204834 img loss 1.2716201543807983 img loss 1.1695888042449951 img loss 1.2473411560058594 img loss 1.208290696144104 img loss 1.1733490228652954 img loss 1.1622319221496582 img loss 1.209381341934204 img loss 1.2813587188720703 img loss 1.2856042385101318 img loss 1.1519184112548828 img loss 1.2435897588729858 img loss 1.2158312797546387 img loss 1.186248779296875 img loss 1.2167840003967285 img loss 1.2614848613739014 img loss 1.1397618055343628 img loss 1.286397933959961 img loss 1.2199132442474365 img loss 1.2017409801483154 img loss 1.12530517578125 img loss 1.1618304252624512 img loss 1.3053205013275146 img loss 1.3020102977752686 {'loss': 1.2162, 'grad_norm': 0.20485134422779083, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1840709447860718 img loss 1.275062084197998 img loss 1.2637089490890503 img loss 1.2747018337249756 img loss 1.2253731489181519 img loss 1.1590983867645264 img loss 1.2930796146392822 img loss 1.2724590301513672 img loss 1.1718801259994507 img loss 1.2314963340759277 img loss 1.1942986249923706 img loss 1.246665596961975 img loss 1.1958116292953491 img loss 1.1791141033172607 img loss 1.2550733089447021 img loss 1.171083927154541 img loss 1.2051140069961548 img loss 1.1850543022155762 img loss 1.2057768106460571 img loss 1.2217097282409668 img loss 1.2375640869140625 img loss 1.157151699066162 img loss 1.169663429260254 img loss 1.329832673072815 img loss 1.1975822448730469 img loss 1.2720732688903809 img loss 1.2001672983169556 img loss 1.264329433441162 img loss 1.2657619714736938 img loss 1.2154301404953003 img loss 1.2360267639160156 img loss 1.2245434522628784 img loss 1.1840438842773438 img loss 1.149885892868042 img loss 1.3221880197525024 img loss 1.2090080976486206 img loss 1.1674895286560059 img loss 1.2136187553405762 img loss 1.151706337928772 img loss 1.318142294883728 img loss 1.2584227323532104 img loss 1.2667680978775024 img loss 1.1646755933761597 img loss 1.1899418830871582 img loss 1.316173791885376 img loss 1.1842553615570068 img loss 1.1603906154632568 img loss 1.2001012563705444 img loss 1.216465950012207 img loss 1.2370946407318115 img loss 1.232469081878662 img loss 1.222644567489624 img loss 1.3671889305114746 img loss 1.2373409271240234 img loss 1.1392141580581665 img loss 1.2367690801620483 img loss 1.1719214916229248 img loss 1.241557002067566 img loss 1.2694767713546753 img loss 1.2765134572982788 img loss 1.2897802591323853 img loss 1.322040319442749 img loss 1.2643734216690063 img loss 1.3038268089294434 img loss 1.2378435134887695 img loss 1.2340625524520874 img loss 1.2013046741485596 img loss 1.1968169212341309 img loss 1.276627540588379 img loss 1.2695910930633545 img loss 1.1968255043029785 img loss 1.2151265144348145 img loss 1.2424488067626953 img loss 1.2631012201309204 img loss 1.3158679008483887 img loss 1.216092586517334 img loss 1.3786958456039429 img loss 1.1882785558700562 img loss 1.2393337488174438 img loss 1.2292256355285645 img loss 1.218492031097412 img loss 1.2329599857330322 img loss 1.276647925376892 img loss 1.1882858276367188 img loss 1.224373459815979 img loss 1.2669501304626465 img loss 1.213401436805725 img loss 1.250628113746643 img loss 1.1734579801559448 img loss 1.1917145252227783 img loss 1.3056869506835938 img loss 1.168815016746521 img loss 1.323009967803955 img loss 1.2016170024871826 img loss 1.1935701370239258 img loss 1.2008031606674194 img loss 1.2107254266738892 img loss 1.2656534910202026 img loss 1.2645032405853271 img loss 1.2137478590011597 img loss 1.2936348915100098 img loss 1.2929290533065796 img loss 1.4102171659469604 img loss 1.2703078985214233 img loss 1.2136542797088623 img loss 1.1947903633117676 img loss 1.3244800567626953 img loss 1.202051043510437 img loss 1.1559538841247559 img loss 1.2318722009658813 img loss 1.282313346862793 img loss 1.2210091352462769 img loss 1.1958125829696655 img loss 1.284195899963379 img loss 1.2274279594421387 img loss 1.1855065822601318 img loss 1.2605241537094116 img loss 1.2305439710617065 img loss 1.2629921436309814 img loss 1.2246983051300049 img loss 1.295935869216919 img loss 1.2786505222320557 img loss 1.3360925912857056 img loss 1.3383822441101074 img loss 1.1753374338150024 img loss 1.2523112297058105 img loss 1.268330454826355 img loss 1.2621934413909912 {'loss': 1.2369, 'grad_norm': 0.3279295563697815, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4746617078781128 img loss 1.3905918598175049 img loss 1.408589243888855 img loss 1.474924921989441 img loss 1.4258668422698975 img loss 1.5018328428268433 img loss 1.3728740215301514 img loss 1.524355173110962 img loss 1.5408214330673218 img loss 1.3099565505981445 img loss 1.5352184772491455 img loss 1.5496256351470947 img loss 1.4300445318222046 img loss 1.3746191263198853 img loss 1.4721344709396362 img loss 1.4093636274337769 img loss 1.4535441398620605 img loss 1.5657436847686768 img loss 1.5432003736495972 img loss 1.5239723920822144 img loss 1.4502609968185425 img loss 1.5164721012115479 img loss 1.4280104637145996 img loss 1.506149172782898 img loss 1.5067226886749268 img loss 1.5355972051620483 img loss 1.4833025932312012 img loss 1.5874364376068115 img loss 1.4332804679870605 img loss 1.6225695610046387 img loss 1.384216070175171 img loss 1.5010793209075928 img loss 1.5835375785827637 img loss 1.45814049243927 img loss 1.4970118999481201 img loss 1.565874695777893 img loss 1.4605697393417358 img loss 1.4989097118377686 img loss 1.5772547721862793 img loss 1.5289841890335083 img loss 1.4002784490585327 img loss 1.4272340536117554 img loss 1.5136972665786743 img loss 1.4740073680877686 img loss 1.5564934015274048 img loss 1.520147442817688 img loss 1.416348934173584 img loss 1.536506175994873 img loss 1.4185426235198975 img loss 1.3664567470550537 img loss 1.5485881567001343 img loss 1.4123882055282593 img loss 1.5353833436965942 img loss 1.5344542264938354 img loss 1.456418752670288 img loss 1.3868650197982788 img loss 1.5175375938415527 img loss 1.4724222421646118 img loss 1.5035086870193481 img loss 1.5535204410552979 img loss 1.3098533153533936 img loss 1.4596397876739502 img loss 1.4186962842941284 img loss 1.4121488332748413 img loss 1.5556737184524536 img loss 1.3399713039398193 img loss 1.7185781002044678 img loss 1.3319422006607056 img loss 1.457667589187622 img loss 1.403021216392517 img loss 1.364999532699585 img loss 1.724971055984497 img loss 1.3601031303405762 img loss 1.5995986461639404 img loss 1.5671831369400024 img loss 1.485904574394226 img loss 1.6297962665557861 img loss 1.437519907951355 img loss 1.4435216188430786 img loss 1.6562668085098267 img loss 1.55423903465271 img loss 1.479946494102478 img loss 1.6718255281448364 img loss 1.4704718589782715 img loss 1.724114179611206 img loss 1.5374008417129517 img loss 1.5660531520843506 img loss 1.5140403509140015 img loss 1.5398237705230713 img loss 1.446022391319275 img loss 1.3753079175949097 img loss 1.6704014539718628 img loss 1.4523119926452637 img loss 1.601652979850769 img loss 1.360369086265564 img loss 1.5094199180603027 img loss 1.441758632659912 img loss 1.5157196521759033 img loss 1.4903368949890137 img loss 1.559116244316101 img loss 1.3944460153579712 img loss 1.5243734121322632 img loss 1.6721417903900146 img loss 1.4719187021255493 img loss 1.4478687047958374 img loss 1.4339228868484497 img loss 1.606553554534912 img loss 1.5525662899017334 img loss 1.443112850189209 img loss 1.5416871309280396 img loss 1.6120505332946777 img loss 1.4658124446868896 img loss 1.5444036722183228 img loss 1.5347179174423218 img loss 1.5615134239196777 img loss 1.451881766319275 img loss 1.5085946321487427 img loss 1.4593846797943115 img loss 1.407671570777893 img loss 1.6034798622131348 img loss 1.4930576086044312 img loss 1.5615028142929077 img loss 1.4668041467666626 img loss 1.3942536115646362 img loss 1.5390383005142212 img loss 1.6278706789016724 img loss 1.3420521020889282 img loss 1.6268261671066284 {'loss': 1.4954, 'grad_norm': 0.48900964856147766, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3109899759292603 img loss 1.1688973903656006 img loss 1.2392510175704956 img loss 1.2381718158721924 img loss 1.2391839027404785 img loss 1.1811784505844116 img loss 1.1633586883544922 img loss 1.167853593826294 img loss 1.2136027812957764 img loss 1.0983246564865112 img loss 1.2283340692520142 img loss 1.1704816818237305 img loss 1.1367634534835815 img loss 1.2347915172576904 img loss 1.2980209589004517 img loss 1.212791919708252 img loss 1.1777966022491455 img loss 1.2955522537231445 img loss 1.1562707424163818 img loss 1.141058325767517 img loss 1.2582736015319824 img loss 1.166870355606079 img loss 1.1601396799087524 img loss 1.22914457321167 img loss 1.1647955179214478 img loss 1.1214572191238403 img loss 1.2277675867080688 img loss 1.33097505569458 img loss 1.2194037437438965 img loss 1.1768662929534912 img loss 1.181112289428711 img loss 1.1600277423858643 img loss 1.2554377317428589 img loss 1.159839153289795 img loss 1.2133575677871704 img loss 1.2532484531402588 img loss 1.19260573387146 img loss 1.3563367128372192 img loss 1.1985087394714355 img loss 1.2360690832138062 img loss 1.1090896129608154 img loss 1.1919207572937012 img loss 1.1425421237945557 img loss 1.2057634592056274 img loss 1.322888970375061 img loss 1.163329005241394 img loss 1.087787389755249 img loss 1.2505431175231934 img loss 1.2009187936782837 img loss 1.2190756797790527 img loss 1.2190396785736084 img loss 1.1972545385360718 img loss 1.3631519079208374 img loss 1.276092290878296 img loss 1.2411922216415405 img loss 1.158913016319275 img loss 1.1943693161010742 img loss 1.2548484802246094 img loss 1.264095664024353 img loss 1.238218069076538 img loss 1.2561681270599365 img loss 1.2237516641616821 img loss 1.207099199295044 img loss 1.1962151527404785 img loss 1.1577773094177246 img loss 1.2617214918136597 img loss 1.2265112400054932 img loss 1.1705472469329834 img loss 1.17982816696167 img loss 1.3023189306259155 img loss 1.2495332956314087 img loss 1.2178274393081665 img loss 1.2594788074493408 img loss 1.312610387802124 img loss 1.1451901197433472 img loss 1.1484835147857666 img loss 1.2478090524673462 img loss 1.2255301475524902 img loss 1.1994011402130127 img loss 1.1242032051086426 img loss 1.1168222427368164 img loss 1.1745275259017944 img loss 1.2202554941177368 img loss 1.2029281854629517 img loss 1.1474173069000244 img loss 1.1726529598236084 img loss 1.123046636581421 img loss 1.2979782819747925 img loss 1.1954087018966675 img loss 1.2695493698120117 img loss 1.2557508945465088 img loss 1.14139723777771 img loss 1.2722262144088745 img loss 1.176910161972046 img loss 1.214859962463379 img loss 1.2179244756698608 img loss 1.2016143798828125 img loss 1.2479608058929443 img loss 1.200509786605835 img loss 1.240558385848999 img loss 1.2382793426513672 img loss 1.2055273056030273 img loss 1.199268102645874 img loss 1.130621314048767 img loss 1.1454085111618042 img loss 1.2652382850646973 img loss 1.3032028675079346 img loss 1.1909499168395996 img loss 1.2047786712646484 img loss 1.2241042852401733 img loss 1.094071626663208 img loss 1.2741808891296387 img loss 1.2181086540222168 img loss 1.2983967065811157 img loss 1.2591300010681152 img loss 1.208298921585083 img loss 1.1737831830978394 img loss 1.1803778409957886 img loss 1.2488373517990112 img loss 1.1744698286056519 img loss 1.1868534088134766 img loss 1.199436068534851 img loss 1.1678465604782104 img loss 1.2896429300308228 img loss 1.2311042547225952 img loss 1.1945605278015137 img loss 1.2291853427886963 img loss 1.1460280418395996 {'loss': 1.2103, 'grad_norm': 0.1795116662979126, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.249996542930603 img loss 1.246476411819458 img loss 1.211450457572937 img loss 1.2483861446380615 img loss 1.2631947994232178 img loss 1.23336923122406 img loss 1.3790994882583618 img loss 1.2766807079315186 img loss 1.2818056344985962 img loss 1.256406545639038 img loss 1.2415300607681274 img loss 1.2464227676391602 img loss 1.2763876914978027 img loss 1.2816457748413086 img loss 1.3907843828201294 img loss 1.1977155208587646 img loss 1.2704963684082031 img loss 1.2762268781661987 img loss 1.3392894268035889 img loss 1.2898157835006714 img loss 1.27169930934906 img loss 1.1939070224761963 img loss 1.2379753589630127 img loss 1.2793248891830444 img loss 1.3538353443145752 img loss 1.2490417957305908 img loss 1.2301368713378906 img loss 1.2491496801376343 img loss 1.2516602277755737 img loss 1.2466447353363037 img loss 1.247292399406433 img loss 1.376067042350769 img loss 1.3424811363220215 img loss 1.2468562126159668 img loss 1.2240726947784424 img loss 1.2400003671646118 img loss 1.2500367164611816 img loss 1.2723650932312012 img loss 1.252854585647583 img loss 1.2923848628997803 img loss 1.2858126163482666 img loss 1.262377142906189 img loss 1.2992390394210815 img loss 1.2957111597061157 img loss 1.2428793907165527 img loss 1.2646034955978394 img loss 1.2873318195343018 img loss 1.27985417842865 img loss 1.2677934169769287 img loss 1.3134150505065918 img loss 1.2962287664413452 img loss 1.298896074295044 img loss 1.2799394130706787 img loss 1.2890198230743408 img loss 1.2823623418807983 img loss 1.2619550228118896 img loss 1.2801587581634521 img loss 1.257973074913025 img loss 1.312238335609436 img loss 1.2556771039962769 img loss 1.2572304010391235 img loss 1.25062894821167 img loss 1.2463358640670776 img loss 1.320757269859314 img loss 1.2139678001403809 img loss 1.2690876722335815 img loss 1.2750720977783203 img loss 1.2642762660980225 img loss 1.2395228147506714 img loss 1.2926723957061768 img loss 1.2849764823913574 img loss 1.2448753118515015 img loss 1.2844702005386353 img loss 1.2664707899093628 img loss 1.260006308555603 img loss 1.27562415599823 img loss 1.2262290716171265 img loss 1.259540319442749 img loss 1.248248815536499 img loss 1.2182235717773438 img loss 1.3104281425476074 img loss 1.2785500288009644 img loss 1.283713936805725 img loss 1.2052119970321655 img loss 1.2405979633331299 img loss 1.2132196426391602img loss 1.241289734840393 img loss 1.2606054544448853 img loss 1.2410271167755127 img loss 1.3633049726486206 img loss 1.2794227600097656 img loss 1.2858179807662964 img loss 1.2639011144638062 img loss 1.2351069450378418 img loss 1.2644832134246826 img loss 1.2409303188323975 img loss 1.2210266590118408 img loss 1.2186707258224487 img loss 1.2686429023742676 img loss 1.2508454322814941 img loss 1.2892260551452637 img loss 1.269425868988037 img loss 1.2573074102401733 img loss 1.210280418395996 img loss 1.2183195352554321 img loss 1.2197626829147339 img loss 1.250191330909729 img loss 1.3255870342254639 img loss 1.298815369606018 img loss 1.2316814661026 img loss 1.3904701471328735 img loss 1.2658523321151733 img loss 1.242532730102539 img loss 1.210927963256836 img loss 1.2659248113632202 img loss 1.2597761154174805 img loss 1.3326386213302612 img loss 1.2629817724227905 img loss 1.2318344116210938 img loss 1.2558355331420898 img loss 1.2321529388427734 img loss 1.2505877017974854 img loss 1.3140705823898315 img loss 1.3596256971359253 img loss 1.2774425745010376 img loss 1.3004153966903687 img loss 1.2826427221298218 img loss 1.2331565618515015 {'loss': 1.2678, 'grad_norm': 0.2800922989845276, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3275539875030518 img loss 1.3981846570968628 img loss 1.5056942701339722 img loss 1.2997856140136719 img loss 1.5605618953704834 img loss 1.3628166913986206 img loss 1.509334683418274 img loss 1.235497236251831 img loss 1.4684526920318604 img loss 1.348832368850708 img loss 1.25985586643219 img loss 1.4215552806854248 img loss 1.3853455781936646 img loss 1.3350552320480347 img loss 1.308394193649292 img loss 1.408740520477295 img loss 1.3896234035491943 img loss 1.3235619068145752 img loss 1.416351079940796 img loss 1.5130326747894287 img loss 1.3999463319778442 img loss 1.281815528869629 img loss 1.3257725238800049 img loss 1.422634243965149 img loss 1.4913407564163208 img loss 1.4191689491271973 img loss 1.3094537258148193 img loss 1.4138538837432861 img loss 1.4690965414047241 img loss 1.4677971601486206 img loss 1.5507878065109253 img loss 1.3400441408157349 img loss 1.3436732292175293 img loss 1.475211262702942 img loss 1.386764407157898 img loss 1.369112253189087 img loss 1.3275383710861206 img loss 1.5267441272735596 img loss 1.2860920429229736 img loss 1.3261781930923462 img loss 1.4513020515441895 img loss 1.4150100946426392 img loss 1.5065749883651733 img loss 1.4686285257339478 img loss 1.4755619764328003 img loss 1.5165073871612549 img loss 1.3051003217697144 img loss 1.3763339519500732 img loss 1.4895052909851074 img loss 1.2535442113876343 img loss 1.3585366010665894 img loss 1.5206934213638306 img loss 1.4996000528335571 img loss 1.4062243700027466 img loss 1.3050856590270996 img loss 1.37297523021698 img loss 1.4356905221939087 img loss 1.3422505855560303 img loss 1.3769851922988892 img loss 1.4647982120513916 img loss 1.41339910030365 img loss 1.3876500129699707 img loss 1.3827825784683228 img loss 1.4296162128448486 img loss 1.4420735836029053 img loss 1.656354308128357 img loss 1.2895808219909668 img loss 1.461159348487854 img loss 1.3677431344985962 img loss 1.2898393869400024 img loss 1.2773045301437378 img loss 1.387884497642517 img loss 1.369648814201355 img loss 1.5083823204040527 img loss 1.4191943407058716 img loss 1.4850947856903076 img loss 1.3100149631500244 img loss 1.5520085096359253 img loss 1.5508198738098145 img loss 1.4606572389602661 img loss 1.4131547212600708 img loss 1.4419385194778442 img loss 1.4772087335586548 img loss 1.5997225046157837 img loss 1.3783706426620483 img loss 1.419848918914795img loss 1.4753845930099487 img loss 1.4587891101837158 img loss 1.4020482301712036 img loss 1.300585150718689 img loss 1.4519447088241577 img loss 1.413835883140564 img loss 1.3925445079803467 img loss 1.3267910480499268 img loss 1.3005424737930298 img loss 1.4513438940048218 img loss 1.3469401597976685 img loss 1.4628326892852783 img loss 1.4444550275802612 img loss 1.3747458457946777 img loss 1.541067361831665 img loss 1.4175961017608643 img loss 1.4120742082595825 img loss 1.350406289100647 img loss 1.3321044445037842 img loss 1.4435845613479614 img loss 1.5875736474990845 img loss 1.551918387413025 img loss 1.3262765407562256 img loss 1.3936039209365845img loss 1.49193274974823 img loss 1.3891098499298096 img loss 1.4760311841964722 img loss 1.3600833415985107 img loss 1.3698567152023315 img loss 1.4369107484817505 img loss 1.530824899673462 img loss 1.4859864711761475 img loss 1.3072432279586792 img loss 1.4480339288711548 img loss 1.411104440689087 img loss 1.338262915611267 img loss 1.3938727378845215 img loss 1.4230382442474365 img loss 1.5513488054275513 img loss 1.357393741607666 img loss 1.2962727546691895 img loss 1.4657362699508667 {'loss': 1.4118, 'grad_norm': 0.29104769229888916, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5940383672714233 img loss 1.426991581916809 img loss 1.460445761680603 img loss 1.3842661380767822 img loss 1.3137526512145996 img loss 1.3975168466567993 img loss 1.4829879999160767 img loss 1.459870457649231 img loss 1.3102829456329346 img loss 1.4452401399612427 img loss 1.5026652812957764 img loss 1.4689851999282837 img loss 1.3995119333267212 img loss 1.4870741367340088 img loss 1.4628740549087524 img loss 1.2827794551849365 img loss 1.3654309511184692 img loss 1.4984074831008911 img loss 1.3629885911941528 img loss 1.387627124786377 img loss 1.3149226903915405 img loss 1.4983899593353271 img loss 1.4179333448410034 img loss 1.4895344972610474 img loss 1.5488821268081665 img loss 1.4775407314300537 img loss 1.4043819904327393 img loss 1.4256787300109863 img loss 1.5193966627120972 img loss 1.3244354724884033 img loss 1.4107755422592163 img loss 1.3786485195159912 img loss 1.4154980182647705 img loss 1.3702841997146606 img loss 1.3369505405426025 img loss 1.335297703742981 img loss 1.353973627090454 img loss 1.332739233970642 img loss 1.280419945716858 img loss 1.4511644840240479 img loss 1.5316342115402222 img loss 1.295905590057373 img loss 1.378446340560913 img loss 1.399819254875183 img loss 1.4293309450149536 img loss 1.3632208108901978 img loss 1.446265697479248 img loss 1.4390112161636353 img loss 1.5856585502624512 img loss 1.611733317375183 img loss 1.5624043941497803 img loss 1.4084270000457764 img loss 1.3062635660171509 img loss 1.46061110496521 img loss 1.436399221420288 img loss 1.3441293239593506 img loss 1.4343222379684448 img loss 1.5173405408859253 img loss 1.439716100692749 img loss 1.6110016107559204 img loss 1.39468514919281 img loss 1.4011781215667725 img loss 1.4778218269348145 img loss 1.4049955606460571 img loss 1.4292360544204712 img loss 1.5081336498260498 img loss 1.5708022117614746 img loss 1.5449200868606567 img loss 1.4389249086380005 img loss 1.4916541576385498 img loss 1.352687954902649 img loss 1.3719371557235718 img loss 1.4942545890808105 img loss 1.4164808988571167 img loss 1.4797322750091553 img loss 1.5369317531585693 img loss 1.5124515295028687 img loss 1.4226666688919067 img loss 1.3476566076278687 img loss 1.4165352582931519 img loss 1.4242058992385864 img loss 1.3932679891586304 img loss 1.469864010810852 img loss 1.404857873916626 img loss 1.3812193870544434 img loss 1.5327603816986084 img loss 1.4915672540664673 img loss 1.279152512550354 img loss 1.4257681369781494 img loss 1.3815453052520752 img loss 1.4957417249679565 img loss 1.5080130100250244 img loss 1.5790821313858032 img loss 1.4787745475769043 img loss 1.2975633144378662 img loss 1.482890248298645 img loss 1.4053400754928589 img loss 1.4330636262893677 img loss 1.3330574035644531 img loss 1.531342625617981 img loss 1.3174943923950195 img loss 1.3857251405715942 img loss 1.4230962991714478 img loss 1.3599110841751099 img loss 1.3906422853469849 img loss 1.2757885456085205 img loss 1.428645372390747 img loss 1.4610661268234253 img loss 1.5560921430587769 img loss 1.3190147876739502 img loss 1.432339072227478 img loss 1.3030132055282593 img loss 1.3918861150741577 img loss 1.350725531578064 img loss 1.3816062211990356 img loss 1.5015559196472168 img loss 1.4088221788406372 img loss 1.4306999444961548 img loss 1.4494327306747437 img loss 1.4470524787902832 img loss 1.4079324007034302 img loss 1.4115244150161743 img loss 1.5176876783370972 img loss 1.4043065309524536 img loss 1.457703709602356 img loss 1.3590962886810303 img loss 1.359866738319397 img loss 1.3008111715316772 {'loss': 1.4262, 'grad_norm': 0.2735004425048828, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.194021224975586 img loss 1.2927851676940918 img loss 1.1924421787261963 img loss 1.2202575206756592 img loss 1.1637835502624512 img loss 1.2876970767974854 img loss 1.1870428323745728 img loss 1.1252870559692383 img loss 1.143740177154541 img loss 1.1717240810394287 img loss 1.2087501287460327 img loss 1.1675840616226196 img loss 1.2282216548919678 img loss 1.1571966409683228img loss 1.1565557718276978 img loss 1.2018886804580688 img loss 1.1332030296325684 img loss 1.1936591863632202 img loss 1.1837881803512573 img loss 1.1980081796646118 img loss 1.1833285093307495 img loss 1.1634266376495361 img loss 1.2075945138931274 img loss 1.1419053077697754 img loss 1.2565934658050537 img loss 1.2337048053741455 img loss 1.221342921257019 img loss 1.184919834136963 img loss 1.1591790914535522 img loss 1.1601415872573853 img loss 1.2388924360275269 img loss 1.198529601097107 img loss 1.1989035606384277 img loss 1.2596590518951416 img loss 1.195366382598877 img loss 1.1661118268966675 img loss 1.1813886165618896 img loss 1.2453491687774658 img loss 1.1883548498153687 img loss 1.2130612134933472 img loss 1.1934163570404053 img loss 1.2574011087417603 img loss 1.242692232131958 img loss 1.28662109375 img loss 1.228252649307251 img loss 1.1400359869003296 img loss 1.1890232563018799 img loss 1.1178263425827026 img loss 1.208117127418518 img loss 1.1793291568756104 img loss 1.1476026773452759 img loss 1.2106263637542725 img loss 1.1734671592712402 img loss 1.208992838859558 img loss 1.2879785299301147 img loss 1.227149486541748 img loss 1.253907561302185 img loss 1.2654707431793213 img loss 1.240201473236084 img loss 1.2307863235473633 img loss 1.3025553226470947 img loss 1.1684608459472656 img loss 1.2279047966003418 img loss 1.2115702629089355 img loss 1.1554745435714722 img loss 1.1967201232910156 img loss 1.2168363332748413 img loss 1.2485836744308472 img loss 1.1952685117721558 img loss 1.2360161542892456 img loss 1.1638691425323486 img loss 1.1343659162521362 img loss 1.1461063623428345 img loss 1.1160954236984253 img loss 1.1870863437652588 img loss 1.1602634191513062 img loss 1.1917375326156616 img loss 1.2047345638275146 img loss 1.1590006351470947 img loss 1.2014883756637573 img loss 1.2303216457366943 img loss 1.2187812328338623 img loss 1.1670966148376465 img loss 1.1720749139785767 img loss 1.224094033241272 img loss 1.1935241222381592 img loss 1.250678300857544 img loss 1.196004867553711 img loss 1.197731852531433 img loss 1.2420849800109863 img loss 1.1882610321044922 img loss 1.2132469415664673 img loss 1.1488827466964722img loss 1.2602661848068237 img loss 1.1735390424728394 img loss 1.1149191856384277 img loss 1.252217173576355 img loss 1.1600598096847534 img loss 1.1976780891418457 img loss 1.2003202438354492 img loss 1.2249664068222046 img loss 1.218862771987915 img loss 1.1884807348251343 img loss 1.2210873365402222 img loss 1.2522404193878174 img loss 1.199816346168518 img loss 1.1953518390655518 img loss 1.2511452436447144 img loss 1.2102102041244507 img loss 1.129392147064209 img loss 1.2011317014694214 img loss 1.1549241542816162 img loss 1.2284135818481445 img loss 1.196017861366272 img loss 1.1465704441070557 img loss 1.2979748249053955 img loss 1.1974948644638062 img loss 1.2835426330566406 img loss 1.1570830345153809 img loss 1.2294739484786987 img loss 1.2371219396591187 img loss 1.1593358516693115 img loss 1.226332426071167 img loss 1.2067885398864746 img loss 1.190155267715454 img loss 1.1878284215927124 img loss 1.1165425777435303 img loss 1.1839947700500488 {'loss': 1.2001, 'grad_norm': 0.2889074981212616, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2578665018081665 img loss 1.3348101377487183 img loss 1.3683044910430908 img loss 1.2232767343521118 img loss 1.260688066482544 img loss 1.3791319131851196 img loss 1.3665889501571655 img loss 1.3554587364196777 img loss 1.3143504858016968 img loss 1.327970027923584 img loss 1.3316059112548828 img loss 1.2954826354980469 img loss 1.4115138053894043 img loss 1.3134011030197144 img loss 1.3036483526229858 img loss 1.3052613735198975 img loss 1.428707242012024 img loss 1.257536768913269 img loss 1.3820515871047974 img loss 1.3879059553146362 img loss 1.3284986019134521 img loss 1.283437728881836 img loss 1.353705883026123 img loss 1.3336291313171387 img loss 1.3469631671905518 img loss 1.339141607284546 img loss 1.3801970481872559 img loss 1.3212428092956543 img loss 1.277380347251892 img loss 1.3693214654922485 img loss 1.3539496660232544 img loss 1.3186774253845215 img loss 1.2616081237792969 img loss 1.2908918857574463 img loss 1.3051303625106812 img loss 1.3304802179336548 img loss 1.4087668657302856 img loss 1.2977415323257446 img loss 1.3049606084823608 img loss 1.3782678842544556 img loss 1.3213119506835938 img loss 1.3149464130401611 img loss 1.3068469762802124 img loss 1.3629906177520752 img loss 1.3977768421173096 img loss 1.3402398824691772 img loss 1.309802770614624 img loss 1.317075490951538 img loss 1.3644235134124756 img loss 1.3068255186080933 img loss 1.423828363418579 img loss 1.347464680671692 img loss 1.283564805984497 img loss 1.3366786241531372 img loss 1.2733056545257568 img loss 1.2775299549102783 img loss 1.3183820247650146 img loss 1.3248008489608765 img loss 1.4477458000183105 img loss 1.303504467010498 img loss 1.3306787014007568 img loss 1.2981055974960327 img loss 1.2880170345306396 img loss 1.3531402349472046 img loss 1.284952998161316 img loss 1.3729755878448486 img loss 1.2635741233825684 img loss 1.2890671491622925 img loss 1.4017119407653809 img loss 1.2877439260482788 img loss 1.2786802053451538 img loss 1.3376973867416382 img loss 1.3191417455673218 img loss 1.3359743356704712 img loss 1.3141369819641113 img loss 1.3634064197540283 img loss 1.3704066276550293 img loss 1.2976118326187134 img loss 1.3602648973464966 img loss 1.3663551807403564 img loss 1.3617017269134521 img loss 1.3337396383285522 img loss 1.301898717880249 img loss 1.3910362720489502 img loss 1.2897069454193115 img loss 1.4191615581512451 img loss 1.3290013074874878 img loss 1.2868870496749878 img loss 1.2504642009735107 img loss 1.294074535369873 img loss 1.2752225399017334 img loss 1.3003391027450562img loss 1.357692837715149 img loss 1.3893332481384277 img loss 1.3553651571273804 img loss 1.308396816253662 img loss 1.2779268026351929 img loss 1.3188982009887695 img loss 1.526936411857605 img loss 1.3261845111846924 img loss 1.3463739156723022 img loss 1.406154751777649 img loss 1.2789437770843506 img loss 1.3661562204360962 img loss 1.3922951221466064 img loss 1.307328462600708 img loss 1.37492835521698 img loss 1.3469233512878418 img loss 1.3058111667633057 img loss 1.3037300109863281 img loss 1.3033759593963623 img loss 1.395135521888733 img loss 1.361294150352478 img loss 1.281434416770935 img loss 1.316054105758667 img loss 1.231178879737854 img loss 1.2297807931900024 img loss 1.4178539514541626 img loss 1.247414469718933 img loss 1.28175950050354 img loss 1.2712551355361938 img loss 1.332466959953308 img loss 1.3407623767852783 img loss 1.3883907794952393 img loss 1.3096923828125 img loss 1.3089909553527832 img loss 1.3159596920013428 img loss 1.3058875799179077 {'loss': 1.3292, 'grad_norm': 0.3436157703399658, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2363687753677368 img loss 1.2495687007904053 img loss 1.3342229127883911 img loss 1.2952276468276978 img loss 1.318390130996704 img loss 1.1780660152435303 img loss 1.2235933542251587 img loss 1.1186069250106812 img loss 1.2534003257751465 img loss 1.294267177581787 img loss 1.1927127838134766 img loss 1.2516109943389893 img loss 1.310351848602295 img loss 1.362310528755188 img loss 1.2187728881835938 img loss 1.2351043224334717 img loss 1.1392080783843994 img loss 1.2287791967391968 img loss 1.224212646484375 img loss 1.1914005279541016 img loss 1.2620556354522705 img loss 1.2075715065002441 img loss 1.20331609249115 img loss 1.250499963760376 img loss 1.3380166292190552 img loss 1.1782548427581787 img loss 1.3127907514572144 img loss 1.2304455041885376 img loss 1.2576395273208618 img loss 1.2789252996444702 img loss 1.2114441394805908 img loss 1.2177704572677612 img loss 1.2831982374191284 img loss 1.2413259744644165 img loss 1.189615249633789 img loss 1.252084493637085 img loss 1.1722915172576904 img loss 1.2314213514328003 img loss 1.183043122291565 img loss 1.1783815622329712 img loss 1.1444487571716309 img loss 1.2472343444824219 img loss 1.197691798210144 img loss 1.2555116415023804 img loss 1.2587482929229736 img loss 1.3058093786239624 img loss 1.2985055446624756 img loss 1.1610677242279053 img loss 1.310476541519165 img loss 1.1808454990386963 img loss 1.2826263904571533 img loss 1.1951115131378174 img loss 1.1887449026107788 img loss 1.340372920036316 img loss 1.3573057651519775 img loss 1.2948415279388428 img loss 1.2486947774887085 img loss 1.1698312759399414 img loss 1.217171311378479 img loss 1.2891567945480347 img loss 1.222142219543457 img loss 1.213622808456421 img loss 1.3103466033935547 img loss 1.2125658988952637 img loss 1.2522437572479248 img loss 1.218919277191162 img loss 1.21134352684021 img loss 1.264246940612793 img loss 1.2611503601074219 img loss 1.2669705152511597 img loss 1.1744987964630127 img loss 1.1931934356689453 img loss 1.2350709438323975 img loss 1.2480872869491577 img loss 1.301552176475525 img loss 1.1955227851867676 img loss 1.2011655569076538 img loss 1.213904857635498 img loss 1.1826215982437134 img loss 1.2437540292739868 img loss 1.2580296993255615 img loss 1.271371841430664 img loss 1.19667387008667 img loss 1.2579048871994019 img loss 1.2757142782211304 img loss 1.2729661464691162 img loss 1.3336408138275146 img loss 1.173396348953247 img loss 1.2568237781524658 img loss 1.195015788078308 img loss 1.3584691286087036 img loss 1.1805152893066406 img loss 1.2692464590072632 img loss 1.307686448097229 img loss 1.2138609886169434 img loss 1.3311446905136108 img loss 1.330391764640808 img loss 1.1877474784851074 img loss 1.2459392547607422 img loss 1.2958812713623047 img loss 1.2428052425384521 img loss 1.2474663257598877 img loss 1.1871627569198608 img loss 1.2295353412628174 img loss 1.2346327304840088 img loss 1.2778465747833252 img loss 1.2638019323349 img loss 1.1863429546356201 img loss 1.2876837253570557 img loss 1.1689300537109375 img loss 1.229477882385254 img loss 1.1785954236984253 img loss 1.2560909986495972 img loss 1.2162768840789795 img loss 1.2359366416931152 img loss 1.1648892164230347 img loss 1.2729548215866089 img loss 1.284270167350769 img loss 1.16265869140625 img loss 1.1931626796722412 img loss 1.2914402484893799 img loss 1.2315194606781006 img loss 1.3325036764144897 img loss 1.232142448425293 img loss 1.1289812326431274 img loss 1.1886565685272217 img loss 1.1918619871139526 img loss 1.199639916419983 {'loss': 1.2393, 'grad_norm': 0.5356572270393372, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2280592918395996 img loss 1.1929327249526978 img loss 1.162156343460083 img loss 1.142568826675415 img loss 1.2335431575775146 img loss 1.221751093864441 img loss 1.2042220830917358 img loss 1.1936806440353394 img loss 1.1639164686203003 img loss 1.1683088541030884 img loss 1.3026396036148071 img loss 1.1669164896011353 img loss 1.2237119674682617 img loss 1.1755927801132202 img loss 1.2444839477539062 img loss 1.1183723211288452 img loss 1.2118563652038574 img loss 1.1510498523712158 img loss 1.1216819286346436 img loss 1.1781697273254395 img loss 1.2510803937911987 img loss 1.2200822830200195 img loss 1.09518301486969 img loss 1.1775288581848145 img loss 1.2037122249603271 img loss 1.21466863155365 img loss 1.1604022979736328 img loss 1.2117362022399902 img loss 1.0989458560943604 img loss 1.1905992031097412 img loss 1.188345193862915 img loss 1.1577926874160767 img loss 1.2602970600128174 img loss 1.142995834350586 img loss 1.2359504699707031 img loss 1.1625388860702515 img loss 1.2023426294326782 img loss 1.1688264608383179 img loss 1.1931089162826538 img loss 1.1198527812957764 img loss 1.1643540859222412 img loss 1.1068543195724487 img loss 1.257658839225769 img loss 1.1514275074005127 img loss 1.232529640197754 img loss 1.2004141807556152 img loss 1.0852073431015015 img loss 1.1649993658065796 img loss 1.203913688659668 img loss 1.1811898946762085 img loss 1.1868654489517212 img loss 1.1801573038101196 img loss 1.2593599557876587 img loss 1.1596856117248535 img loss 1.1276639699935913 img loss 1.2796751260757446 img loss 1.3211749792099 img loss 1.1920714378356934 img loss 1.1007307767868042 img loss 1.2008148431777954 img loss 1.1785916090011597 img loss 1.148018479347229 img loss 1.2527902126312256 img loss 1.1424638032913208 img loss 1.2211464643478394 img loss 1.1756882667541504 img loss 1.1641963720321655 img loss 1.144140601158142 img loss 1.176327109336853 img loss 1.0829510688781738 img loss 1.1526622772216797 img loss 1.2487465143203735 img loss 1.2396000623703003 img loss 1.1064201593399048 img loss 1.1962648630142212 img loss 1.2677147388458252 img loss 1.086766242980957 img loss 1.21084463596344 img loss 1.1442724466323853 img loss 1.2899584770202637 img loss 1.2425270080566406 img loss 1.0782485008239746 img loss 1.2233412265777588 img loss 1.215327501296997 img loss 1.2231595516204834 img loss 1.1615467071533203 img loss 1.1479029655456543 img loss 1.1974802017211914 img loss 1.2492491006851196 img loss 1.1778740882873535 img loss 1.1429312229156494 img loss 1.0920305252075195 img loss 1.1105763912200928 img loss 1.1416493654251099 img loss 1.1687456369400024 img loss 1.158698558807373 img loss 1.1097053289413452 img loss 1.2178001403808594 img loss 1.2644551992416382 img loss 1.1653544902801514 img loss 1.2304272651672363 img loss 1.187560796737671 img loss 1.2848680019378662 img loss 1.207521915435791 img loss 1.2232931852340698 img loss 1.2288570404052734 img loss 1.1540578603744507 img loss 1.203647255897522 img loss 1.13834810256958 img loss 1.2147884368896484 img loss 1.152677059173584 img loss 1.2876965999603271 img loss 1.1865527629852295 img loss 1.163603663444519 img loss 1.1495568752288818 img loss 1.1720367670059204 img loss 1.1463901996612549 img loss 1.1785629987716675 img loss 1.105583667755127 img loss 1.1404975652694702 img loss 1.21907377243042 img loss 1.141011118888855 img loss 1.0900709629058838 img loss 1.2484893798828125 img loss 1.1466693878173828 img loss 1.265445590019226 img loss 1.2464126348495483 img loss 1.114907145500183 {'loss': 1.1841, 'grad_norm': 0.20909149944782257, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2179656028747559 img loss 1.2246655225753784 img loss 1.2217168807983398 img loss 1.216313123703003 img loss 1.276283860206604 img loss 1.2400404214859009 img loss 1.2696346044540405 img loss 1.2368218898773193 img loss 1.2678115367889404 img loss 1.1723086833953857 img loss 1.2498161792755127 img loss 1.2876876592636108img loss 1.1698452234268188 img loss 1.2331279516220093 img loss 1.2770962715148926 img loss 1.2427231073379517 img loss 1.1922394037246704 img loss 1.1972588300704956 img loss 1.304904818534851 img loss 1.2235076427459717 img loss 1.282162070274353 img loss 1.270281195640564 img loss 1.2342243194580078 img loss 1.2540357112884521 img loss 1.284246802330017 img loss 1.2923094034194946 img loss 1.3136005401611328 img loss 1.2553584575653076 img loss 1.228308081626892 img loss 1.3327492475509644 img loss 1.2459895610809326 img loss 1.2724401950836182 img loss 1.3097434043884277 img loss 1.1971817016601562 img loss 1.2357158660888672 img loss 1.2698897123336792 img loss 1.305565595626831 img loss 1.2472378015518188 img loss 1.3359571695327759 img loss 1.2535425424575806 img loss 1.3065202236175537 img loss 1.2410602569580078 img loss 1.2005738019943237 img loss 1.2478969097137451 img loss 1.3358174562454224 img loss 1.2693779468536377 img loss 1.271374225616455 img loss 1.3201708793640137 img loss 1.195937991142273 img loss 1.3272427320480347 img loss 1.218164324760437 img loss 1.3888742923736572 img loss 1.2586311101913452 img loss 1.2078970670700073 img loss 1.354270339012146 img loss 1.2196519374847412 img loss 1.2324392795562744 img loss 1.1992193460464478 img loss 1.2932735681533813 img loss 1.3305413722991943 img loss 1.2751235961914062 img loss 1.2085111141204834 img loss 1.2642580270767212 img loss 1.3049472570419312 img loss 1.1636254787445068 img loss 1.301701307296753 img loss 1.2419869899749756 img loss 1.2391424179077148 img loss 1.186601996421814 img loss 1.2302080392837524 img loss 1.1897027492523193 img loss 1.2522006034851074 img loss 1.2383496761322021 img loss 1.195936679840088 img loss 1.2877776622772217 img loss 1.3266226053237915 img loss 1.1291111707687378 img loss 1.1810853481292725 img loss 1.3470475673675537 img loss 1.1902947425842285 img loss 1.2549245357513428 img loss 1.2001413106918335 img loss 1.2903984785079956 img loss 1.2647536993026733 img loss 1.3597465753555298 img loss 1.2388581037521362 img loss 1.2360655069351196 img loss 1.2393959760665894 img loss 1.231416940689087 img loss 1.2979488372802734 img loss 1.3240187168121338 img loss 1.2721227407455444 img loss 1.3256990909576416 img loss 1.2058711051940918 img loss 1.2260088920593262 img loss 1.2726173400878906 img loss 1.2686989307403564 img loss 1.292008638381958 img loss 1.2497586011886597 img loss 1.2855802774429321 img loss 1.2737032175064087 img loss 1.327776312828064 img loss 1.1303424835205078 img loss 1.2853233814239502 img loss 1.2437177896499634 img loss 1.2831329107284546 img loss 1.2094616889953613 img loss 1.3021119832992554 img loss 1.234317421913147 img loss 1.2516897916793823 img loss 1.37050199508667 img loss 1.2203154563903809 img loss 1.2504932880401611 img loss 1.31431245803833 img loss 1.2149581909179688 img loss 1.2664326429367065 img loss 1.3256357908248901 img loss 1.2496490478515625 img loss 1.3224595785140991 img loss 1.2372543811798096 img loss 1.2224243879318237 img loss 1.2926404476165771 img loss 1.1761671304702759 img loss 1.345079779624939 img loss 1.2481313943862915 img loss 1.178674578666687 img loss 1.2128826379776 img loss 1.217495322227478 {'loss': 1.2567, 'grad_norm': 0.3457261025905609, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2016806602478027 img loss 1.192712664604187 img loss 1.2193577289581299 img loss 1.2482006549835205 img loss 1.1904939413070679 img loss 1.231203317642212 img loss 1.3430670499801636 img loss 1.177256464958191 img loss 1.2104096412658691 img loss 1.2171167135238647 img loss 1.2385022640228271 img loss 1.281186819076538 img loss 1.2032713890075684 img loss 1.2140581607818604 img loss 1.16586172580719 img loss 1.1909888982772827 img loss 1.2435554265975952 img loss 1.2491669654846191 img loss 1.1798404455184937 img loss 1.191175103187561 img loss 1.1619853973388672 img loss 1.2078466415405273 img loss 1.1715425252914429 img loss 1.278408408164978 img loss 1.2893691062927246 img loss 1.2170593738555908 img loss 1.181414246559143 img loss 1.2167401313781738 img loss 1.3057829141616821 img loss 1.2130368947982788 img loss 1.2290462255477905 img loss 1.16392982006073 img loss 1.1582411527633667 img loss 1.3846733570098877 img loss 1.2334460020065308 img loss 1.1206971406936646 img loss 1.2102971076965332 img loss 1.2334331274032593 img loss 1.1678298711776733 img loss 1.2052974700927734 img loss 1.2097206115722656 img loss 1.2336347103118896 img loss 1.2386815547943115 img loss 1.1636966466903687 img loss 1.2426049709320068 img loss 1.2676209211349487 img loss 1.292792797088623 img loss 1.202684760093689 img loss 1.266453742980957 img loss 1.2075769901275635 img loss 1.2992591857910156 img loss 1.2317287921905518 img loss 1.194779872894287 img loss 1.2507647275924683 img loss 1.2497987747192383 img loss 1.2417216300964355 img loss 1.1577425003051758 img loss 1.222859263420105 img loss 1.2137296199798584 img loss 1.1889288425445557 img loss 1.2004547119140625 img loss 1.2047618627548218 img loss 1.2169418334960938 img loss 1.1840035915374756 img loss 1.1983139514923096 img loss 1.2062697410583496 img loss 1.2429907321929932 img loss 1.2698026895523071 img loss 1.2408775091171265 img loss 1.213520884513855 img loss 1.1369426250457764 img loss 1.0889805555343628 img loss 1.2094383239746094 img loss 1.2494548559188843 img loss 1.159319519996643 img loss 1.2188925743103027 img loss 1.2045955657958984 img loss 1.2345377206802368 img loss 1.1990612745285034 img loss 1.2091175317764282 img loss 1.2303924560546875 img loss 1.2246785163879395 img loss 1.1694777011871338 img loss 1.2475826740264893 img loss 1.2021484375 img loss 1.1883442401885986 img loss 1.136358618736267 img loss 1.301753044128418 img loss 1.1971042156219482 img loss 1.1823205947875977 img loss 1.2250094413757324 img loss 1.2215278148651123 img loss 1.2356314659118652 img loss 1.2104771137237549 img loss 1.2255024909973145 img loss 1.1794674396514893 img loss 1.1995171308517456 img loss 1.2672641277313232 img loss 1.3210419416427612 img loss 1.1948316097259521 img loss 1.22272527217865 img loss 1.266213297843933 img loss 1.1554933786392212 img loss 1.3023852109909058 img loss 1.1870365142822266 img loss 1.237818717956543 img loss 1.230271577835083 img loss 1.2621010541915894 img loss 1.1644599437713623 img loss 1.2484917640686035 img loss 1.2501027584075928 img loss 1.2428245544433594 img loss 1.1797823905944824 img loss 1.2126394510269165 img loss 1.363655924797058 img loss 1.2204468250274658 img loss 1.1903351545333862 img loss 1.2629112005233765 img loss 1.2266743183135986 img loss 1.2351527214050293 img loss 1.2104027271270752 img loss 1.2112585306167603 img loss 1.1681150197982788 img loss 1.253453016281128 img loss 1.1834962368011475 img loss 1.2623951435089111 img loss 1.3168753385543823 img loss 1.1997474431991577 {'loss': 1.2206, 'grad_norm': 0.5070987343788147, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2737308740615845 img loss 1.2502998113632202 img loss 1.3212220668792725 img loss 1.2109991312026978 img loss 1.2274458408355713 img loss 1.2525262832641602 img loss 1.2475121021270752 img loss 1.1802608966827393 img loss 1.2736457586288452 img loss 1.2985761165618896 img loss 1.2479546070098877 img loss 1.3573967218399048 img loss 1.33999764919281 img loss 1.295778512954712 img loss 1.3325457572937012 img loss 1.3389790058135986 img loss 1.3856663703918457 img loss 1.3268373012542725 img loss 1.2159383296966553 img loss 1.2763843536376953 img loss 1.2892377376556396 img loss 1.2138391733169556 img loss 1.3012423515319824 img loss 1.2268364429473877 img loss 1.3087888956069946 img loss 1.2808350324630737 img loss 1.2647786140441895 img loss 1.2557272911071777 img loss 1.3249002695083618 img loss 1.2572052478790283 img loss 1.1454843282699585 img loss 1.276479959487915 img loss 1.4259228706359863 img loss 1.2717307806015015 img loss 1.181208848953247 img loss 1.3164939880371094 img loss 1.2532403469085693 img loss 1.2757161855697632 img loss 1.404778242111206 img loss 1.314745306968689 img loss 1.4009854793548584 img loss 1.2725499868392944 img loss 1.150399923324585 img loss 1.273148775100708 img loss 1.336026906967163 img loss 1.3744601011276245 img loss 1.2085161209106445 img loss 1.2258033752441406 img loss 1.2363462448120117 img loss 1.2825157642364502 img loss 1.3627126216888428 img loss 1.2510265111923218 img loss 1.2106287479400635 img loss 1.3612483739852905 img loss 1.2969785928726196 img loss 1.2081226110458374 img loss 1.3264057636260986 img loss 1.3136122226715088 img loss 1.3258329629898071 img loss 1.3636895418167114 img loss 1.2187937498092651 img loss 1.1465295553207397 img loss 1.3067090511322021 img loss 1.2307188510894775 img loss 1.2895638942718506 img loss 1.2644332647323608 img loss 1.2878799438476562 img loss 1.2513946294784546 img loss 1.2438815832138062 img loss 1.2095625400543213 img loss 1.2522703409194946 img loss 1.2770274877548218 img loss 1.2614448070526123 img loss 1.3624974489212036 img loss 1.2444521188735962 img loss 1.275552749633789 img loss 1.2805626392364502 img loss 1.3556920289993286 img loss 1.3490108251571655 img loss 1.1818649768829346 img loss 1.340986728668213 img loss 1.3210258483886719 img loss 1.3484801054000854 img loss 1.2888964414596558 img loss 1.241923213005066 img loss 1.2077699899673462 img loss 1.3366037607192993 img loss 1.1583330631256104 img loss 1.2476983070373535 img loss 1.3564609289169312 img loss 1.2062126398086548 img loss 1.204914927482605 img loss 1.2668483257293701 img loss 1.3168635368347168 img loss 1.2746715545654297 img loss 1.2365726232528687 img loss 1.312889575958252 img loss 1.2681454420089722 img loss 1.2853211164474487 img loss 1.2924975156784058 img loss 1.3279436826705933 img loss 1.2793598175048828 img loss 1.2750399112701416 img loss 1.3802905082702637 img loss 1.2393276691436768 img loss 1.3019717931747437 img loss 1.2013676166534424 img loss 1.231380820274353 img loss 1.2447068691253662 img loss 1.4079045057296753 img loss 1.259658694267273 img loss 1.2541451454162598 img loss 1.3578259944915771 img loss 1.358943223953247 img loss 1.3069499731063843 img loss 1.170296311378479 img loss 1.269347071647644 img loss 1.1767185926437378 img loss 1.226357340812683 img loss 1.2195568084716797 img loss 1.1650346517562866 img loss 1.2777435779571533 img loss 1.2393678426742554 img loss 1.2235817909240723 img loss 1.282185435295105 img loss 1.3242161273956299 img loss 1.186365008354187 img loss 1.3163752555847168 {'loss': 1.276, 'grad_norm': 0.2316294014453888, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2268074750900269 img loss 1.1952979564666748 img loss 1.2414337396621704 img loss 1.2641533613204956 img loss 1.2653310298919678 img loss 1.1336063146591187 img loss 1.221008062362671 img loss 1.220717430114746 img loss 1.2811535596847534 img loss 1.161777377128601 img loss 1.3148512840270996 img loss 1.1505869626998901 img loss 1.254919409751892 img loss 1.2906126976013184 img loss 1.200717568397522 img loss 1.1738777160644531 img loss 1.1885735988616943 img loss 1.2583242654800415 img loss 1.0608742237091064 img loss 1.2347602844238281 img loss 1.1671875715255737 img loss 1.171191692352295 img loss 1.1979286670684814 img loss 1.2657623291015625 img loss 1.2309982776641846 img loss 1.1458654403686523 img loss 1.1013989448547363 img loss 1.1747832298278809 img loss 1.1762304306030273 img loss 1.241174578666687 img loss 1.1783738136291504 img loss 1.2582858800888062 img loss 1.2168620824813843 img loss 1.1680721044540405 img loss 1.1455276012420654 img loss 1.1879318952560425 img loss 1.2274349927902222 img loss 1.2120137214660645 img loss 1.1547012329101562 img loss 1.3088123798370361 img loss 1.239511251449585 img loss 1.1963790655136108 img loss 1.1935420036315918 img loss 1.2672146558761597 img loss 1.1349855661392212 img loss 1.1612948179244995 img loss 1.1572321653366089 img loss 1.217246413230896 img loss 1.2612149715423584 img loss 1.2183263301849365 img loss 1.261237382888794 img loss 1.1175204515457153 img loss 1.3012586832046509 img loss 1.1787937879562378 img loss 1.1571147441864014 img loss 1.274280309677124 img loss 1.2535645961761475 img loss 1.1985783576965332 img loss 1.1837327480316162 img loss 1.189213514328003 img loss 1.1924501657485962 img loss 1.2919610738754272 img loss 1.2607567310333252 img loss 1.1524426937103271 img loss 1.1681079864501953 img loss 1.162819504737854 img loss 1.2326987981796265 img loss 1.2184741497039795 img loss 1.2365548610687256 img loss 1.203586459159851 img loss 1.2159594297409058 img loss 1.3312908411026 img loss 1.1575706005096436 img loss 1.244423747062683 img loss 1.211180329322815 img loss 1.17721426486969 img loss 1.1856054067611694 img loss 1.178965449333191 img loss 1.1739513874053955 img loss 1.2246360778808594 img loss 1.1980215311050415 img loss 1.2193464040756226 img loss 1.1499751806259155 img loss 1.2790029048919678 img loss 1.169384479522705 img loss 1.2150980234146118 img loss 1.2539328336715698 img loss 1.2391653060913086 img loss 1.251413345336914 img loss 1.321876883506775 img loss 1.2052007913589478 img loss 1.137450098991394 img loss 1.1866642236709595 img loss 1.1702163219451904 img loss 1.220271348953247 img loss 1.1979765892028809 img loss 1.1969343423843384 img loss 1.204122543334961 img loss 1.2069637775421143 img loss 1.231536865234375 img loss 1.1791400909423828 img loss 1.1531236171722412 img loss 1.1770646572113037 img loss 1.2326780557632446 img loss 1.2554280757904053 img loss 1.1879109144210815 img loss 1.132965326309204 img loss 1.2532202005386353 img loss 1.2208648920059204 img loss 1.1248681545257568 img loss 1.3043649196624756 img loss 1.153551459312439 img loss 1.272469401359558 img loss 1.2298163175582886 img loss 1.2329435348510742 img loss 1.3310630321502686 img loss 1.2146939039230347 img loss 1.178168773651123 img loss 1.2025799751281738 img loss 1.1932072639465332 img loss 1.2290540933609009 img loss 1.197424292564392 img loss 1.1757692098617554 img loss 1.1430171728134155 img loss 1.1928201913833618 img loss 1.1388134956359863 img loss 1.2392899990081787 img loss 1.2304368019104004 {'loss': 1.2085, 'grad_norm': 0.24109356105327606, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2326472997665405 img loss 1.223909616470337 img loss 1.218126654624939 img loss 1.193413257598877 img loss 1.1554399728775024 img loss 1.2478232383728027 img loss 1.157654047012329 img loss 1.2612017393112183 img loss 1.1676563024520874 img loss 1.2822216749191284 img loss 1.168247938156128 img loss 1.17291259765625 img loss 1.2849974632263184 img loss 1.236756682395935 img loss 1.1944164037704468 img loss 1.1427966356277466 img loss 1.274102807044983 img loss 1.1892640590667725 img loss 1.1784172058105469 img loss 1.2251091003417969 img loss 1.236710786819458 img loss 1.2761627435684204 img loss 1.146339774131775 img loss 1.2047642469406128 img loss 1.238147258758545 img loss 1.217719554901123 img loss 1.21575129032135 img loss 1.283247709274292 img loss 1.149993658065796 img loss 1.2821393013000488 img loss 1.1050491333007812 img loss 1.2071045637130737 img loss 1.1587393283843994 img loss 1.1122145652770996 img loss 1.263904094696045 img loss 1.3151657581329346 img loss 1.3317806720733643 img loss 1.274678111076355 img loss 1.2665754556655884 img loss 1.1981048583984375 img loss 1.1296117305755615 img loss 1.2466623783111572 img loss 1.2232404947280884 img loss 1.2288126945495605 img loss 1.212418794631958 img loss 1.221922755241394 img loss 1.1614843606948853 img loss 1.168119192123413 img loss 1.179040551185608 img loss 1.0894140005111694 img loss 1.245971441268921 img loss 1.1736702919006348 img loss 1.2145376205444336 img loss 1.2138662338256836 img loss 1.294466495513916 img loss 1.1433075666427612 img loss 1.2862236499786377 img loss 1.2280759811401367 img loss 1.1685374975204468 img loss 1.1721773147583008 img loss 1.2738041877746582 img loss 1.1836878061294556 img loss 1.1463121175765991 img loss 1.1595276594161987 img loss 1.2124546766281128 img loss 1.2137705087661743 img loss 1.2525546550750732 img loss 1.0851987600326538 img loss 1.1731840372085571 img loss 1.216949224472046 img loss 1.2739009857177734 img loss 1.1735420227050781 img loss 1.1380747556686401 img loss 1.1519263982772827 img loss 1.147552490234375 img loss 1.2627724409103394 img loss 1.2132277488708496 img loss 1.1500329971313477 img loss 1.1798063516616821 img loss 1.216267466545105 img loss 1.2045164108276367 img loss 1.241681694984436 img loss 1.2473711967468262 img loss 1.2586352825164795 img loss 1.1556689739227295 img loss 1.2573250532150269 img loss 1.2042932510375977 img loss 1.2119390964508057 img loss 1.1894315481185913 img loss 1.249336838722229 img loss 1.240209937095642 img loss 1.0926717519760132 img loss 1.2237849235534668 img loss 1.2434673309326172 img loss 1.182460069656372 img loss 1.2148693799972534 img loss 1.2087551355361938 img loss 1.1724812984466553 img loss 1.2729777097702026 img loss 1.1543937921524048 img loss 1.1700493097305298 img loss 1.2097370624542236 img loss 1.2267779111862183 img loss 1.1615055799484253 img loss 1.2393677234649658 img loss 1.2379167079925537 img loss 1.195841670036316 img loss 1.3151826858520508 img loss 1.1797627210617065 img loss 1.2636622190475464 img loss 1.182653784751892 img loss 1.178326964378357 img loss 1.1697447299957275 img loss 1.2024664878845215 img loss 1.230459451675415 img loss 1.2654484510421753 img loss 1.1584534645080566 img loss 1.202113151550293 img loss 1.168190836906433 img loss 1.3017199039459229 img loss 1.1683639287948608 img loss 1.2214336395263672 img loss 1.151672124862671 img loss 1.1481300592422485 img loss 1.2135852575302124 img loss 1.1889584064483643 img loss 1.1820796728134155 img loss 1.2697205543518066 {'loss': 1.2074, 'grad_norm': 0.37082627415657043, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2320164442062378 img loss 1.2196375131607056 img loss 1.220411777496338 img loss 1.2554841041564941 img loss 1.3674577474594116 img loss 1.202134132385254 img loss 1.410084843635559 img loss 1.3015053272247314 img loss 1.1774327754974365 img loss 1.2749322652816772 img loss 1.3464964628219604 img loss 1.2831528186798096 img loss 1.3564456701278687 img loss 1.2321456670761108 img loss 1.1613655090332031 img loss 1.3157539367675781 img loss 1.3041069507598877 img loss 1.329972505569458 img loss 1.2005343437194824 img loss 1.3825041055679321 img loss 1.193954348564148 img loss 1.2747083902359009 img loss 1.2575645446777344 img loss 1.3102564811706543 img loss 1.223515272140503 img loss 1.1853489875793457 img loss 1.2525981664657593 img loss 1.3423783779144287 img loss 1.1972897052764893 img loss 1.2431621551513672 img loss 1.33602774143219 img loss 1.3320469856262207 img loss 1.245847225189209 img loss 1.257188320159912 img loss 1.0997955799102783 img loss 1.258169174194336 img loss 1.1704192161560059 img loss 1.2259607315063477 img loss 1.1392107009887695 img loss 1.2455995082855225 img loss 1.262785792350769 img loss 1.1863411664962769 img loss 1.2395474910736084 img loss 1.2245476245880127 img loss 1.290360689163208 img loss 1.3836512565612793 img loss 1.3579636812210083 img loss 1.318257212638855 img loss 1.4382203817367554 img loss 1.2345727682113647 img loss 1.3250995874404907 img loss 1.266075849533081 img loss 1.4666835069656372 img loss 1.4150768518447876 img loss 1.3074941635131836 img loss 1.258654236793518 img loss 1.2837064266204834 img loss 1.278755784034729 img loss 1.1521906852722168 img loss 1.2712037563323975 img loss 1.3499795198440552 img loss 1.3385127782821655 img loss 1.2493666410446167 img loss 1.2366042137145996 img loss 1.2684625387191772 img loss 1.2577937841415405 img loss 1.4456400871276855 img loss 1.3166488409042358 img loss 1.1842231750488281 img loss 1.4451779127120972 img loss 1.4069141149520874 img loss 1.165006399154663 img loss 1.2844123840332031 img loss 1.2591724395751953 img loss 1.2152308225631714 img loss 1.2124773263931274 img loss 1.2075400352478027 img loss 1.2327238321304321 img loss 1.2586185932159424 img loss 1.2287746667861938 img loss 1.2205095291137695 img loss 1.2798213958740234 img loss 1.301979660987854 img loss 1.2631263732910156 img loss 1.3612805604934692 img loss 1.192764163017273 img loss 1.235906958580017 img loss 1.2431973218917847 img loss 1.2696119546890259 img loss 1.1729636192321777 img loss 1.2654385566711426 img loss 1.2718286514282227img loss 1.2308229207992554 img loss 1.28805410861969 img loss 1.2495428323745728 img loss 1.2709306478500366 img loss 1.2929331064224243 img loss 1.1754230260849 img loss 1.313210129737854 img loss 1.2668209075927734 img loss 1.3459993600845337 img loss 1.2297558784484863 img loss 1.266448974609375 img loss 1.2629640102386475 img loss 1.3150465488433838 img loss 1.244177222251892 img loss 1.2699081897735596 img loss 1.2757182121276855 img loss 1.2694697380065918 img loss 1.2064427137374878 img loss 1.2509236335754395 img loss 1.3992283344268799 img loss 1.192698359489441 img loss 1.3993645906448364 img loss 1.3631927967071533 img loss 1.2649940252304077 img loss 1.263598084449768 img loss 1.277127981185913 img loss 1.3379502296447754 img loss 1.3178281784057617 img loss 1.3188236951828003 img loss 1.2147245407104492 img loss 1.3256163597106934 img loss 1.2682567834854126 img loss 1.2094664573669434 img loss 1.24661386013031 img loss 1.3447662591934204 img loss 1.2164616584777832 {'loss': 1.2731, 'grad_norm': 0.3578791916370392, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1774415969848633 img loss 1.172310709953308 img loss 1.2336384057998657 img loss 1.1825586557388306 img loss 1.193350076675415 img loss 1.2187169790267944 img loss 1.2605174779891968 img loss 1.2835383415222168 img loss 1.1514681577682495 img loss 1.1468966007232666 img loss 1.2165639400482178 img loss 1.2662081718444824 img loss 1.2252792119979858 img loss 1.2005884647369385 img loss 1.1177031993865967 img loss 1.1376415491104126 img loss 1.2260348796844482 img loss 1.208688497543335 img loss 1.1918354034423828 img loss 1.1355867385864258 img loss 1.2260386943817139 img loss 1.1571606397628784 img loss 1.2344810962677002 img loss 1.1849173307418823 img loss 1.2262681722640991 img loss 1.2012851238250732 img loss 1.124768614768982 img loss 1.1584885120391846 img loss 1.1895471811294556 img loss 1.1034537553787231 img loss 1.1595957279205322 img loss 1.1928198337554932 img loss 1.1866072416305542 img loss 1.1266053915023804 img loss 1.1759355068206787 img loss 1.1444374322891235 img loss 1.2176064252853394 img loss 1.1621564626693726 img loss 1.1079939603805542 img loss 1.2162542343139648 img loss 1.1763670444488525 img loss 1.2492096424102783 img loss 1.17279851436615 img loss 1.2807691097259521 img loss 1.2584575414657593 img loss 1.2048594951629639 img loss 1.1866340637207031 img loss 1.2590832710266113 img loss 1.182962417602539 img loss 1.195473551750183 img loss 1.1820123195648193 img loss 1.1891850233078003 img loss 1.1920804977416992 img loss 1.1971733570098877 img loss 1.1979048252105713 img loss 1.187885046005249 img loss 1.1465519666671753 img loss 1.2053049802780151 img loss 1.2145229578018188 img loss 1.1334432363510132 img loss 1.304966926574707 img loss 1.2235174179077148 img loss 1.1856578588485718 img loss 1.2008392810821533 img loss 1.268322467803955 img loss 1.1935806274414062 img loss 1.2111625671386719 img loss 1.2114418745040894 img loss 1.1890016794204712 img loss 1.176500916481018 img loss 1.2034066915512085 img loss 1.191234827041626 img loss 1.1850364208221436 img loss 1.1838842630386353 img loss 1.1789510250091553 img loss 1.1882542371749878 img loss 1.216177225112915 img loss 1.2416023015975952 img loss 1.2127468585968018 img loss 1.1693475246429443 img loss 1.3442498445510864 img loss 1.1946840286254883 img loss 1.1239171028137207 img loss 1.1506972312927246 img loss 1.2333821058273315 img loss 1.1579614877700806 img loss 1.2478665113449097 img loss 1.283626914024353 img loss 1.237273931503296 img loss 1.192713975906372 img loss 1.238629698753357 img loss 1.1818151473999023 img loss 1.161994457244873 img loss 1.2274378538131714 img loss 1.1942545175552368 img loss 1.1889714002609253 img loss 1.171820044517517 img loss 1.294684648513794 img loss 1.1757164001464844 img loss 1.170470952987671 img loss 1.1913046836853027 img loss 1.1295487880706787 img loss 1.2617223262786865 img loss 1.172255516052246 img loss 1.2195080518722534 img loss 1.2616045475006104 img loss 1.1939157247543335 img loss 1.1900923252105713 img loss 1.2058725357055664 img loss 1.2269006967544556 img loss 1.3110376596450806 img loss 1.1953626871109009 img loss 1.1329338550567627 img loss 1.242671012878418 img loss 1.1686493158340454 img loss 1.142197608947754 img loss 1.1915035247802734 img loss 1.1807740926742554 img loss 1.138841152191162 img loss 1.1850188970565796 img loss 1.1370012760162354 img loss 1.1564487218856812 img loss 1.2820801734924316 img loss 1.2272796630859375 img loss 1.2130911350250244 img loss 1.2483211755752563 img loss 1.1933339834213257 img loss 1.1542079448699951 {'loss': 1.1978, 'grad_norm': 0.29606544971466064, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.228022575378418 img loss 1.3042957782745361 img loss 1.1771596670150757 img loss 1.2092232704162598 img loss 1.1516462564468384 img loss 1.1896564960479736 img loss 1.319061517715454 img loss 1.367659091949463 img loss 1.2848185300827026 img loss 1.2140840291976929 img loss 1.335702657699585 img loss 1.248103141784668 img loss 1.2008609771728516 img loss 1.2295386791229248 img loss 1.2455775737762451 img loss 1.2898287773132324 img loss 1.2193546295166016 img loss 1.1668649911880493 img loss 1.1690298318862915 img loss 1.2514797449111938 img loss 1.2606489658355713 img loss 1.2209186553955078 img loss 1.24725341796875 img loss 1.2615694999694824 img loss 1.2411315441131592 img loss 1.3236479759216309 img loss 1.1694154739379883 img loss 1.1755414009094238 img loss 1.2601324319839478 img loss 1.332991600036621 img loss 1.2498539686203003 img loss 1.2877397537231445 img loss 1.2376278638839722 img loss 1.277174711227417 img loss 1.2615073919296265 img loss 1.252586841583252 img loss 1.3049554824829102 img loss 1.26785147190094 img loss 1.2955082654953003 img loss 1.1947929859161377 img loss 1.3262012004852295 img loss 1.1457722187042236 img loss 1.293291687965393 img loss 1.2333236932754517 img loss 1.2348352670669556 img loss 1.2378277778625488 img loss 1.2017039060592651 img loss 1.321073293685913 img loss 1.1726014614105225 img loss 1.200302004814148 img loss 1.2038586139678955 img loss 1.2748087644577026 img loss 1.3425555229187012 img loss 1.313697099685669 img loss 1.2616490125656128 img loss 1.2304273843765259 img loss 1.2429500818252563 img loss 1.2069990634918213 img loss 1.1789476871490479 img loss 1.2212494611740112 img loss 1.2611160278320312 img loss 1.1901286840438843 img loss 1.2660579681396484 img loss 1.266520380973816 img loss 1.3043097257614136 img loss 1.1832603216171265 img loss 1.1988567113876343 img loss 1.2478926181793213 img loss 1.2409015893936157 img loss 1.129733681678772 img loss 1.2204713821411133 img loss 1.2270753383636475 img loss 1.1744954586029053 img loss 1.1935585737228394 img loss 1.2092170715332031 img loss 1.30802321434021 img loss 1.2103726863861084 img loss 1.2436714172363281 img loss 1.3292526006698608 img loss 1.1378144025802612 img loss 1.2448933124542236 img loss 1.2684431076049805 img loss 1.2673622369766235 img loss 1.269377589225769 img loss 1.2986254692077637 img loss 1.2544368505477905 img loss 1.2786343097686768 img loss 1.2206480503082275 img loss 1.3069015741348267 img loss 1.1995458602905273 img loss 1.2815784215927124 img loss 1.3083161115646362 img loss 1.2872796058654785 img loss 1.3069360256195068 img loss 1.314287781715393 img loss 1.2524893283843994 img loss 1.230738878250122 img loss 1.2477025985717773 img loss 1.1610132455825806 img loss 1.196789026260376 img loss 1.2267955541610718 img loss 1.2138649225234985 img loss 1.2469253540039062 img loss 1.20033860206604 img loss 1.1760584115982056 img loss 1.2322776317596436 img loss 1.185071587562561 img loss 1.1918044090270996 img loss 1.1977275609970093 img loss 1.2170242071151733 img loss 1.20448637008667 img loss 1.1918745040893555 img loss 1.2424083948135376 img loss 1.254571557044983 img loss 1.2229276895523071 img loss 1.299557089805603 img loss 1.221991777420044 img loss 1.238431453704834 img loss 1.2097301483154297 img loss 1.2257771492004395 img loss 1.1796369552612305 img loss 1.1829569339752197 img loss 1.1793817281723022 img loss 1.2774133682250977 img loss 1.2226513624191284 img loss 1.2024860382080078 img loss 1.2817192077636719 img loss 1.2289299964904785 {'loss': 1.2396, 'grad_norm': 0.25595787167549133, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4188838005065918 img loss 1.3193215131759644 img loss 1.3939340114593506 img loss 1.4611541032791138 img loss 1.4943374395370483 img loss 1.3975075483322144 img loss 1.4077537059783936 img loss 1.3380709886550903 img loss 1.3407518863677979 img loss 1.355128526687622 img loss 1.4162123203277588 img loss 1.4718354940414429 img loss 1.3802098035812378 img loss 1.4489264488220215 img loss 1.60600745677948 img loss 1.505134105682373 img loss 1.4637116193771362 img loss 1.4779108762741089 img loss 1.4049410820007324 img loss 1.5584300756454468 img loss 1.4392470121383667 img loss 1.3179428577423096 img loss 1.3163474798202515 img loss 1.441139817237854 img loss 1.4990260601043701 img loss 1.5247547626495361 img loss 1.5339734554290771 img loss 1.4667571783065796 img loss 1.4648877382278442 img loss 1.545499563217163 img loss 1.494759202003479 img loss 1.4271968603134155 img loss 1.496123194694519 img loss 1.333047866821289 img loss 1.5241930484771729 img loss 1.4126745462417603 img loss 1.3398487567901611 img loss 1.4400174617767334 img loss 1.5421549081802368 img loss 1.389508843421936 img loss 1.5955876111984253 img loss 1.6112637519836426 img loss 1.5077424049377441 img loss 1.3971362113952637 img loss 1.3375877141952515 img loss 1.4765031337738037 img loss 1.4507228136062622 img loss 1.4336209297180176 img loss 1.2942503690719604 img loss 1.5286999940872192 img loss 1.4355347156524658 img loss 1.4257495403289795 img loss 1.5439015626907349 img loss 1.4626318216323853 img loss 1.4785597324371338 img loss 1.445361852645874 img loss 1.4265364408493042 img loss 1.3568084239959717 img loss 1.4615105390548706 img loss 1.4707037210464478img loss 1.3881943225860596 img loss 1.3978207111358643 img loss 1.358396291732788 img loss 1.3495619297027588 img loss 1.4678175449371338 img loss 1.3859413862228394 img loss 1.4983206987380981 img loss 1.4689247608184814 img loss 1.5489872694015503 img loss 1.3979058265686035 img loss 1.3976054191589355 img loss 1.3615710735321045 img loss 1.4959286451339722 img loss 1.427751898765564 img loss 1.4262293577194214 img loss 1.572786569595337 img loss 1.3128838539123535 img loss 1.5894972085952759 img loss 1.490679383277893 img loss 1.46288001537323 img loss 1.424728512763977 img loss 1.3101863861083984 img loss 1.4205682277679443 img loss 1.4109766483306885 img loss 1.4928356409072876 img loss 1.4956589937210083 img loss 1.3674856424331665 img loss 1.552120566368103 img loss 1.5063469409942627 img loss 1.5847495794296265 img loss 1.3998444080352783 img loss 1.514951229095459 img loss 1.3667908906936646 img loss 1.5430208444595337 img loss 1.537150263786316 img loss 1.5642114877700806 img loss 1.381323218345642 img loss 1.571347951889038 img loss 1.4695440530776978 img loss 1.4040476083755493 img loss 1.6080682277679443 img loss 1.3654701709747314 img loss 1.398537039756775 img loss 1.420093059539795 img loss 1.5158113241195679 img loss 1.5641487836837769 img loss 1.557137131690979 img loss 1.388883113861084 img loss 1.440414547920227 img loss 1.4733405113220215 img loss 1.3753803968429565 img loss 1.480701208114624 img loss 1.552903413772583 img loss 1.3543757200241089 img loss 1.493299126625061 img loss 1.4767178297042847 img loss 1.3512110710144043 img loss 1.5733542442321777 img loss 1.57926344871521 img loss 1.5651240348815918 img loss 1.4324582815170288 img loss 1.443510890007019 img loss 1.47407066822052 img loss 1.4983479976654053 img loss 1.4581120014190674 img loss 1.4731534719467163 img loss 1.3887050151824951 img loss 1.4130399227142334 {'loss': 1.453, 'grad_norm': 0.25448814034461975, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3488150835037231 img loss 1.3291256427764893 img loss 1.253570318222046 img loss 1.3012959957122803 img loss 1.3046092987060547 img loss 1.2684288024902344 img loss 1.2674397230148315 img loss 1.316192626953125 img loss 1.3054211139678955 img loss 1.3317787647247314 img loss 1.4084686040878296 img loss 1.2760530710220337 img loss 1.3248114585876465 img loss 1.2543092966079712 img loss 1.24894380569458 img loss 1.31093430519104 img loss 1.3249070644378662 img loss 1.3701115846633911 img loss 1.3384697437286377 img loss 1.3255915641784668 img loss 1.220214605331421 img loss 1.3426326513290405 img loss 1.2494127750396729 img loss 1.2650507688522339 img loss 1.354490041732788 img loss 1.3506819009780884 img loss 1.2937116622924805 img loss 1.2741451263427734 img loss 1.3247756958007812 img loss 1.2373631000518799 img loss 1.3305250406265259 img loss 1.2580301761627197 img loss 1.2512880563735962 img loss 1.2191041707992554 img loss 1.240630030632019 img loss 1.304427146911621 img loss 1.2433565855026245 img loss 1.2615550756454468 img loss 1.3856348991394043 img loss 1.2789385318756104 img loss 1.3108316659927368 img loss 1.2586915493011475 img loss 1.3283672332763672 img loss 1.3402153253555298 img loss 1.2927451133728027 img loss 1.3877789974212646 img loss 1.3165401220321655 img loss 1.2830085754394531 img loss 1.2406518459320068 img loss 1.3182896375656128 img loss 1.3568617105484009 img loss 1.2080446481704712 img loss 1.3340038061141968 img loss 1.2631971836090088 img loss 1.2344963550567627 img loss 1.3230117559432983 img loss 1.2651841640472412 img loss 1.264736533164978 img loss 1.3288007974624634 img loss 1.2687971591949463 img loss 1.368553876876831 img loss 1.2959246635437012 img loss 1.2923707962036133 img loss 1.2986347675323486 img loss 1.2965281009674072 img loss 1.346786379814148 img loss 1.3911939859390259 img loss 1.256506323814392 img loss 1.3215649127960205 img loss 1.2868149280548096 img loss 1.2794349193572998 img loss 1.3216822147369385 img loss 1.2807767391204834 img loss 1.2754987478256226 img loss 1.242921233177185 img loss 1.3444221019744873 img loss 1.2299246788024902 img loss 1.334214687347412 img loss 1.3628097772598267 img loss 1.2516602277755737 img loss 1.2696462869644165 img loss 1.3284504413604736 img loss 1.302340030670166 img loss 1.3225116729736328 img loss 1.2663967609405518 img loss 1.2980542182922363 img loss 1.2864423990249634 img loss 1.3649600744247437 img loss 1.2568600177764893 img loss 1.3132644891738892 img loss 1.2624316215515137 img loss 1.2173579931259155 img loss 1.3087685108184814 img loss 1.27397620677948 img loss 1.3496092557907104 img loss 1.2823606729507446 img loss 1.305030107498169 img loss 1.3283343315124512 img loss 1.266371726989746 img loss 1.2452853918075562 img loss 1.3463244438171387 img loss 1.4231688976287842 img loss 1.2569435834884644 img loss 1.22249174118042 img loss 1.287420630455017 img loss 1.4190194606781006 img loss 1.2042806148529053 img loss 1.3271763324737549 img loss 1.263691782951355 img loss 1.3028029203414917 img loss 1.225702166557312 img loss 1.3235344886779785 img loss 1.2262042760849 img loss 1.4004302024841309 img loss 1.1973507404327393 img loss 1.2624549865722656 img loss 1.277994155883789 img loss 1.3054310083389282 img loss 1.3304401636123657 img loss 1.205493688583374 img loss 1.2888505458831787 img loss 1.353518009185791 img loss 1.2949433326721191 img loss 1.272765874862671 img loss 1.2449524402618408 img loss 1.2791695594787598 img loss 1.26614248752594 img loss 1.2145764827728271 {'loss': 1.2951, 'grad_norm': 0.22167661786079407, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2686766386032104 img loss 1.3193011283874512 img loss 1.2814972400665283 img loss 1.2703759670257568 img loss 1.3067213296890259 img loss 1.3231921195983887 img loss 1.2151695489883423 img loss 1.1984909772872925 img loss 1.2003848552703857 img loss 1.2906265258789062 img loss 1.2654647827148438 img loss 1.2432055473327637 img loss 1.2684563398361206 img loss 1.2648032903671265 img loss 1.2392058372497559 img loss 1.237290620803833 img loss 1.1895862817764282 img loss 1.2675504684448242 img loss 1.2322077751159668 img loss 1.1733057498931885 img loss 1.3422939777374268 img loss 1.309873104095459 img loss 1.213242769241333 img loss 1.2635815143585205 img loss 1.153868556022644 img loss 1.2438952922821045 img loss 1.2362427711486816 img loss 1.2835195064544678 img loss 1.2111718654632568 img loss 1.249847412109375 img loss 1.2534102201461792 img loss 1.3130311965942383 img loss 1.314247488975525 img loss 1.2979096174240112 img loss 1.2359741926193237 img loss 1.2747142314910889 img loss 1.1679043769836426 img loss 1.2539585828781128 img loss 1.2453134059906006 img loss 1.3129520416259766 img loss 1.2326562404632568 img loss 1.1736124753952026 img loss 1.2626148462295532 img loss 1.226015329360962 img loss 1.276099443435669 img loss 1.3270201683044434 img loss 1.257110595703125 img loss 1.1933449506759644 img loss 1.20616614818573 img loss 1.2543578147888184 img loss 1.2494734525680542 img loss 1.2297389507293701 img loss 1.314789056777954 img loss 1.283933162689209 img loss 1.2677993774414062 img loss 1.20176100730896 img loss 1.173616886138916 img loss 1.214487910270691 img loss 1.207126259803772 img loss 1.2547354698181152 img loss 1.3039493560791016 img loss 1.177528977394104 img loss 1.2384010553359985 img loss 1.1381915807724 img loss 1.2245433330535889 img loss 1.146881103515625 img loss 1.1805284023284912 img loss 1.2473934888839722 img loss 1.1792138814926147 img loss 1.2426246404647827 img loss 1.2126816511154175 img loss 1.2973573207855225 img loss 1.1566405296325684 img loss 1.2867306470870972 img loss 1.2380644083023071 img loss 1.1822178363800049 img loss 1.217894196510315 img loss 1.265288233757019 img loss 1.3257687091827393 img loss 1.232040286064148 img loss 1.2202091217041016 img loss 1.183447241783142 img loss 1.256729006767273img loss 1.2869172096252441 img loss 1.1995807886123657 img loss 1.1958770751953125 img loss 1.2161731719970703 img loss 1.2623951435089111 img loss 1.1867632865905762 img loss 1.2273410558700562 img loss 1.385121464729309 img loss 1.2475661039352417 img loss 1.2382467985153198 img loss 1.2480229139328003 img loss 1.3315378427505493 img loss 1.2227963209152222 img loss 1.2490768432617188 img loss 1.2747348546981812 img loss 1.2760770320892334 img loss 1.2235339879989624 img loss 1.390957236289978 img loss 1.2230757474899292 img loss 1.231128215789795 img loss 1.2918951511383057 img loss 1.2277425527572632 img loss 1.2804393768310547 img loss 1.2639858722686768 img loss 1.3412457704544067 img loss 1.3132480382919312 img loss 1.2153304815292358 img loss 1.3027019500732422 img loss 1.291144609451294 img loss 1.2179224491119385 img loss 1.4541023969650269 img loss 1.166655421257019 img loss 1.2457367181777954 img loss 1.2457923889160156 img loss 1.2578290700912476 img loss 1.2010608911514282 img loss 1.2366050481796265 img loss 1.1977038383483887 img loss 1.3026726245880127 img loss 1.2287830114364624 img loss 1.3200136423110962 img loss 1.265204668045044 img loss 1.3073946237564087 img loss 1.2249668836593628 img loss 1.2375751733779907 {'loss': 1.2496, 'grad_norm': 0.20853058993816376, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2767778635025024 img loss 1.1750977039337158 img loss 1.1770110130310059 img loss 1.1207977533340454 img loss 1.2152870893478394 img loss 1.2500513792037964 img loss 1.159623384475708 img loss 1.1524956226348877 img loss 1.2825298309326172 img loss 1.2049181461334229 img loss 1.2359360456466675 img loss 1.1374459266662598 img loss 1.2316454648971558 img loss 1.1212372779846191 img loss 1.1273730993270874 img loss 1.2376346588134766 img loss 1.2153805494308472 img loss 1.223534345626831 img loss 1.2052783966064453 img loss 1.2987946271896362 img loss 1.2077802419662476 img loss 1.2411760091781616 img loss 1.2466652393341064 img loss 1.3325448036193848 img loss 1.2014411687850952 img loss 1.2594050168991089 img loss 1.2865040302276611 img loss 1.241280436515808 img loss 1.112488031387329 img loss 1.249380350112915 img loss 1.1915069818496704 img loss 1.2384594678878784 img loss 1.1478172540664673 img loss 1.2347763776779175 img loss 1.1890199184417725 img loss 1.1870869398117065 img loss 1.2849129438400269 img loss 1.2574455738067627 img loss 1.2682089805603027 img loss 1.1407382488250732 img loss 1.2488644123077393 img loss 1.2642278671264648 img loss 1.285296082496643 img loss 1.2760041952133179 img loss 1.2039248943328857 img loss 1.1751022338867188 img loss 1.2189934253692627 img loss 1.189618706703186 img loss 1.1843210458755493 img loss 1.2483487129211426 img loss 1.164984107017517 img loss 1.1830217838287354 img loss 1.221364974975586 img loss 1.2108749151229858 img loss 1.2171200513839722 img loss 1.1606472730636597 img loss 1.2395237684249878 img loss 1.2246593236923218 img loss 1.1645933389663696 img loss 1.1901085376739502 img loss 1.2163429260253906 img loss 1.2642929553985596 img loss 1.217637538909912 img loss 1.1979305744171143 img loss 1.2245771884918213 img loss 1.17208731174469 img loss 1.2547310590744019 img loss 1.229095220565796 img loss 1.174041509628296 img loss 1.2612032890319824 img loss 1.2459958791732788 img loss 1.2316131591796875 img loss 1.2245445251464844 img loss 1.2906397581100464 img loss 1.2068090438842773 img loss 1.2838788032531738 img loss 1.2067866325378418 img loss 1.2602076530456543 img loss 1.2317984104156494 img loss 1.2494099140167236 img loss 1.2690796852111816 img loss 1.2365366220474243 img loss 1.1732146739959717 img loss 1.205165147781372 img loss 1.2664813995361328 img loss 1.2147266864776611 img loss 1.17985200881958 img loss 1.2785046100616455 img loss 1.250296950340271 img loss 1.2453449964523315 img loss 1.2084583044052124 img loss 1.1410101652145386 img loss 1.1631968021392822 img loss 1.2392548322677612 img loss 1.2471107244491577 img loss 1.1965302228927612 img loss 1.206117868423462 img loss 1.23007071018219 img loss 1.2427557706832886 img loss 1.2798612117767334 img loss 1.1827465295791626 img loss 1.1770938634872437 img loss 1.18464994430542 img loss 1.21164071559906 img loss 1.1713947057724 img loss 1.1815685033798218 img loss 1.195279836654663 img loss 1.2333598136901855 img loss 1.162554383277893 img loss 1.2649242877960205 img loss 1.1802510023117065 img loss 1.333060622215271 img loss 1.2443817853927612 img loss 1.195927381515503 img loss 1.2573765516281128 img loss 1.0998852252960205 img loss 1.2265112400054932 img loss 1.271889328956604 img loss 1.20323646068573 img loss 1.2111066579818726 img loss 1.162974238395691 img loss 1.1973915100097656 img loss 1.2179811000823975 img loss 1.2460238933563232 img loss 1.2277215719223022 img loss 1.285028100013733 img loss 1.2510545253753662 img loss 1.2164685726165771 {'loss': 1.2184, 'grad_norm': 0.24019844830036163, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2097195386886597 img loss 1.2182687520980835 img loss 1.2490448951721191 img loss 1.2581605911254883 img loss 1.1789021492004395 img loss 1.41566801071167 img loss 1.1801464557647705 img loss 1.3606619834899902 img loss 1.1688982248306274 img loss 1.1881306171417236 img loss 1.147190809249878 img loss 1.3401552438735962 img loss 1.3000797033309937 img loss 1.1931341886520386 img loss 1.1976240873336792 img loss 1.2445818185806274 img loss 1.2322696447372437 img loss 1.204788088798523 img loss 1.2229160070419312 img loss 1.244208574295044 img loss 1.2235794067382812 img loss 1.246783971786499 img loss 1.2763688564300537 img loss 1.2792905569076538 img loss 1.1778173446655273 img loss 1.1770731210708618 img loss 1.2219021320343018 img loss 1.1873842477798462 img loss 1.2381378412246704 img loss 1.1893147230148315 img loss 1.1415821313858032 img loss 1.2476844787597656 img loss 1.1826586723327637 img loss 1.2337424755096436 img loss 1.2725045680999756 img loss 1.1906458139419556 img loss 1.269176721572876 img loss 1.1696116924285889 img loss 1.295873999595642 img loss 1.2489994764328003 img loss 1.191649079322815 img loss 1.1832646131515503 img loss 1.2056713104248047 img loss 1.2212635278701782 img loss 1.2037853002548218 img loss 1.313214659690857 img loss 1.2681115865707397 img loss 1.21942937374115 img loss 1.3011767864227295 img loss 1.1701958179473877 img loss 1.189113974571228 img loss 1.2426823377609253 img loss 1.4058223962783813 img loss 1.1865628957748413 img loss 1.2907171249389648 img loss 1.1657538414001465 img loss 1.2290313243865967 img loss 1.2733829021453857 img loss 1.2856146097183228 img loss 1.1417051553726196 img loss 1.402282476425171 img loss 1.192625880241394 img loss 1.1325433254241943 img loss 1.3169410228729248 img loss 1.2401366233825684 img loss 1.2743371725082397 img loss 1.2458090782165527 img loss 1.2960083484649658 img loss 1.2476195096969604 img loss 1.1690348386764526 img loss 1.2575048208236694 img loss 1.3512513637542725 img loss 1.161867380142212 img loss 1.240890383720398 img loss 1.1811370849609375 img loss 1.2429471015930176 img loss 1.2233518362045288 img loss 1.172685980796814 img loss 1.1933019161224365 img loss 1.2807159423828125 img loss 1.3409312963485718 img loss 1.233708143234253 img loss 1.1303061246871948 img loss 1.2725391387939453 img loss 1.1635116338729858 img loss 1.2223800420761108 img loss 1.3179124593734741 img loss 1.2634153366088867 img loss 1.2773396968841553 img loss 1.2674230337142944 img loss 1.1784508228302002 img loss 1.1933940649032593 img loss 1.1896049976348877 img loss 1.260071039199829 img loss 1.2821478843688965 img loss 1.2644760608673096 img loss 1.2842113971710205 img loss 1.1497169733047485 img loss 1.2813680171966553 img loss 1.3948277235031128 img loss 1.281343698501587 img loss 1.2693679332733154 img loss 1.1985454559326172 img loss 1.2135119438171387 img loss 1.2336012125015259 img loss 1.28176748752594 img loss 1.1209784746170044 img loss 1.2371410131454468 img loss 1.184365153312683 img loss 1.2032694816589355 img loss 1.2028995752334595 img loss 1.2267277240753174 img loss 1.1905673742294312 img loss 1.2232335805892944 img loss 1.1799166202545166 img loss 1.3585127592086792 img loss 1.2562623023986816 img loss 1.1804089546203613 img loss 1.2933170795440674 img loss 1.3408817052841187 img loss 1.1923253536224365 img loss 1.2578775882720947 img loss 1.1574372053146362 img loss 1.2648874521255493 img loss 1.2060993909835815 img loss 1.1583274602890015 img loss 1.2898786067962646 img loss 1.2415560483932495 {'loss': 1.2355, 'grad_norm': 0.23304665088653564, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1924329996109009 img loss 1.246103048324585 img loss 1.2488731145858765 img loss 1.2621456384658813 img loss 1.26993727684021 img loss 1.1781059503555298 img loss 1.232881784439087 img loss 1.32395339012146 img loss 1.2514872550964355 img loss 1.2323570251464844 img loss 1.4246424436569214 img loss 1.2539288997650146 img loss 1.2614294290542603 img loss 1.2660518884658813 img loss 1.2548191547393799 img loss 1.3145653009414673 img loss 1.2571144104003906 img loss 1.2898890972137451 img loss 1.2512764930725098 img loss 1.2215486764907837 img loss 1.2594717741012573 img loss 1.2323813438415527 img loss 1.3104133605957031 img loss 1.25743567943573 img loss 1.2095826864242554 img loss 1.262406587600708 img loss 1.2049964666366577 img loss 1.2499918937683105 img loss 1.269468069076538 img loss 1.1990940570831299 img loss 1.2356224060058594 img loss 1.2303550243377686 img loss 1.2714704275131226 img loss 1.1521103382110596 img loss 1.2618156671524048 img loss 1.2304598093032837 img loss 1.1902549266815186 img loss 1.2540696859359741 img loss 1.3148964643478394 img loss 1.1717047691345215 img loss 1.2645931243896484 img loss 1.2349079847335815 img loss 1.267442226409912 img loss 1.2700008153915405 img loss 1.2233517169952393 img loss 1.2774100303649902 img loss 1.21945059299469 img loss 1.308434247970581 img loss 1.2636035680770874 img loss 1.2665302753448486 img loss 1.313913106918335 img loss 1.3019814491271973 img loss 1.2165124416351318 img loss 1.2326940298080444 img loss 1.1979081630706787 img loss 1.2462108135223389 img loss 1.2083981037139893 img loss 1.2826144695281982 img loss 1.2634395360946655 img loss 1.2589097023010254 img loss 1.3831740617752075 img loss 1.1740169525146484 img loss 1.2805514335632324 img loss 1.2780776023864746 img loss 1.306414008140564 img loss 1.2283934354782104 img loss 1.2113746404647827 img loss 1.2441879510879517 img loss 1.2418869733810425 img loss 1.2814992666244507 img loss 1.2406545877456665 img loss 1.2041603326797485 img loss 1.3002829551696777 img loss 1.2483545541763306 img loss 1.1826978921890259 img loss 1.2440985441207886 img loss 1.2739078998565674 img loss 1.260413646697998 img loss 1.2022138833999634 img loss 1.2168002128601074 img loss 1.198056936264038 img loss 1.2996412515640259 img loss 1.1566082239151 img loss 1.3229994773864746 img loss 1.245518684387207 img loss 1.1968809366226196 img loss 1.3947398662567139 img loss 1.2763936519622803 img loss 1.2630504369735718 img loss 1.2525577545166016 img loss 1.2344615459442139 img loss 1.3144123554229736 img loss 1.2016308307647705 img loss 1.3006927967071533 img loss 1.2588518857955933 img loss 1.1826353073120117 img loss 1.2226505279541016 img loss 1.2698370218276978 img loss 1.2225754261016846 img loss 1.2571567296981812 img loss 1.2383354902267456 img loss 1.19832181930542 img loss 1.3230886459350586 img loss 1.2224239110946655 img loss 1.258866548538208 img loss 1.2008198499679565 img loss 1.2375354766845703 img loss 1.2317075729370117 img loss 1.2186815738677979 img loss 1.246203899383545 img loss 1.2551192045211792 img loss 1.238484263420105 img loss 1.1748558282852173 img loss 1.2919317483901978 img loss 1.2392832040786743 img loss 1.309274673461914 img loss 1.318962812423706 img loss 1.283742904663086 img loss 1.247647762298584 img loss 1.150803804397583img loss 1.2335505485534668 img loss 1.2349456548690796 img loss 1.2075247764587402 img loss 1.2336448431015015 img loss 1.1952446699142456 img loss 1.2649726867675781 img loss 1.2174738645553589 img loss 1.2059907913208008 {'loss': 1.249, 'grad_norm': 0.22255638241767883, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.19064199924469 img loss 1.1813691854476929 img loss 1.1847728490829468 img loss 1.162022590637207 img loss 1.208463430404663 img loss 1.210379958152771 img loss 1.159740686416626 img loss 1.1732815504074097 img loss 1.2053327560424805 img loss 1.2141146659851074 img loss 1.2821617126464844 img loss 1.302377462387085 img loss 1.2155059576034546 img loss 1.2044157981872559 img loss 1.1703674793243408 img loss 1.2046726942062378 img loss 1.1805832386016846 img loss 1.258695363998413 img loss 1.2179101705551147 img loss 1.2371243238449097 img loss 1.1582895517349243 img loss 1.1800878047943115 img loss 1.1194185018539429 img loss 1.1924817562103271 img loss 1.2499874830245972 img loss 1.1697170734405518 img loss 1.217201590538025 img loss 1.1433179378509521 img loss 1.2296364307403564 img loss 1.258786916732788 img loss 1.1983847618103027 img loss 1.221296787261963 img loss 1.1885817050933838 img loss 1.1700576543807983 img loss 1.1712369918823242 img loss 1.1909458637237549 img loss 1.2677338123321533 img loss 1.2214630842208862 img loss 1.1958708763122559 img loss 1.1607595682144165 img loss 1.2396570444107056 img loss 1.1383249759674072 img loss 1.148369550704956 img loss 1.2431714534759521 img loss 1.2863976955413818 img loss 1.1833045482635498 img loss 1.1325348615646362 img loss 1.2119081020355225img loss 1.1750417947769165 img loss 1.2555675506591797 img loss 1.185616374015808 img loss 1.228332281112671 img loss 1.2792689800262451 img loss 1.2237974405288696 img loss 1.2232186794281006 img loss 1.1899994611740112 img loss 1.2368720769882202 img loss 1.1156784296035767 img loss 1.1787967681884766 img loss 1.1414097547531128 img loss 1.1623950004577637 img loss 1.1834275722503662 img loss 1.1988139152526855 img loss 1.206845760345459 img loss 1.1812851428985596 img loss 1.2031548023223877 img loss 1.1736587285995483 img loss 1.1959116458892822 img loss 1.2026708126068115 img loss 1.2100924253463745 img loss 1.2500650882720947 img loss 1.2879122495651245 img loss 1.2395881414413452 img loss 1.261230707168579 img loss 1.1622281074523926 img loss 1.179267406463623 img loss 1.2412731647491455 img loss 1.2272405624389648 img loss 1.1970638036727905 img loss 1.2409414052963257 img loss 1.1291389465332031 img loss 1.1870574951171875 img loss 1.2338365316390991 img loss 1.1696605682373047 img loss 1.1220238208770752 img loss 1.2121168375015259 img loss 1.1204833984375 img loss 1.1581577062606812 img loss 1.2115592956542969 img loss 1.1838043928146362 img loss 1.161484956741333 img loss 1.2130846977233887 img loss 1.1948190927505493 img loss 1.1681867837905884 img loss 1.1997439861297607 img loss 1.08542799949646 img loss 1.1111624240875244 img loss 1.1611981391906738 img loss 1.2245097160339355 img loss 1.1831037998199463 img loss 1.1334893703460693 img loss 1.2119042873382568 img loss 1.1761207580566406 img loss 1.158262014389038 img loss 1.261821985244751 img loss 1.229597806930542 img loss 1.2180432081222534 img loss 1.232165813446045 img loss 1.2063270807266235 img loss 1.188957691192627 img loss 1.2460507154464722 img loss 1.2226386070251465 img loss 1.173104166984558 img loss 1.1191675662994385 img loss 1.203395128250122 img loss 1.1612579822540283img loss 1.1958507299423218 img loss 1.155379056930542 img loss 1.2311404943466187 img loss 1.2284348011016846 img loss 1.2250117063522339 img loss 1.3356989622116089 img loss 1.2318124771118164 img loss 1.145342230796814 img loss 1.2918331623077393 img loss 1.2110064029693604 img loss 1.2359765768051147 img loss 1.2209947109222412 {'loss': 1.1998, 'grad_norm': 0.31952422857284546, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2480658292770386 img loss 1.233172059059143 img loss 1.2194594144821167 img loss 1.244314193725586 img loss 1.2385411262512207 img loss 1.16508948802948 img loss 1.2167742252349854 img loss 1.2356404066085815 img loss 1.1649036407470703 img loss 1.2392196655273438 img loss 1.214399814605713 img loss 1.20572030544281 img loss 1.2239738702774048 img loss 1.1579155921936035 img loss 1.1825122833251953 img loss 1.262169361114502 img loss 1.2679779529571533 img loss 1.172379732131958 img loss 1.1856815814971924 img loss 1.2197710275650024 img loss 1.191070556640625 img loss 1.187305212020874 img loss 1.2966687679290771 img loss 1.2054775953292847 img loss 1.199239730834961 img loss 1.3761719465255737 img loss 1.2231334447860718 img loss 1.2428392171859741 img loss 1.2857372760772705 img loss 1.35222327709198 img loss 1.2397031784057617 img loss 1.1839632987976074 img loss 1.0992659330368042 img loss 1.2026293277740479 img loss 1.2040646076202393 img loss 1.2974987030029297 img loss 1.20928156375885 img loss 1.2524725198745728 img loss 1.1637119054794312 img loss 1.2023978233337402 img loss 1.195571780204773 img loss 1.2578896284103394 img loss 1.212475299835205 img loss 1.2018623352050781 img loss 1.3250975608825684 img loss 1.1716499328613281 img loss 1.2673544883728027 img loss 1.2284554243087769 img loss 1.2121093273162842 img loss 1.1932401657104492 img loss 1.2011067867279053 img loss 1.2607827186584473 img loss 1.2569739818572998 img loss 1.2933756113052368 img loss 1.216123104095459 img loss 1.2265328168869019 img loss 1.2017762660980225 img loss 1.2064883708953857 img loss 1.297484278678894 img loss 1.2606277465820312 img loss 1.1427481174468994 img loss 1.237602949142456 img loss 1.240097999572754 img loss 1.1948162317276 img loss 1.2024452686309814 img loss 1.2342687845230103 img loss 1.2737579345703125 img loss 1.2096190452575684 img loss 1.2612836360931396 img loss 1.1646778583526611 img loss 1.1889362335205078 img loss 1.1259702444076538 img loss 1.1746864318847656 img loss 1.194946527481079 img loss 1.2057032585144043 img loss 1.3053911924362183 img loss 1.271043062210083 img loss 1.2209535837173462 img loss 1.296865463256836 img loss 1.2404251098632812 img loss 1.2942835092544556 img loss 1.2344650030136108 img loss 1.2134058475494385 img loss 1.2006759643554688 img loss 1.158830165863037 img loss 1.2347782850265503 img loss 1.1984870433807373 img loss 1.2916271686553955 img loss 1.2779185771942139 img loss 1.1672271490097046 img loss 1.1718099117279053 img loss 1.2111761569976807 img loss 1.1954902410507202 img loss 1.202155351638794 img loss 1.1446460485458374 img loss 1.1463353633880615 img loss 1.2528365850448608 img loss 1.2292399406433105 img loss 1.1782859563827515 img loss 1.2888121604919434 img loss 1.29818856716156 img loss 1.174486517906189 img loss 1.2765285968780518 img loss 1.1456890106201172 img loss 1.2738062143325806 img loss 1.204490065574646 img loss 1.291976809501648 img loss 1.2472213506698608 img loss 1.3109482526779175 img loss 1.2066433429718018 img loss 1.2708574533462524 img loss 1.2397485971450806 img loss 1.210964560508728 img loss 1.1570113897323608 img loss 1.1552904844284058 img loss 1.1882197856903076 img loss 1.179925799369812 img loss 1.2255767583847046 img loss 1.2206419706344604 img loss 1.1973814964294434 img loss 1.1968637704849243 img loss 1.262891411781311 img loss 1.3017429113388062 img loss 1.2159963846206665 img loss 1.123857021331787 img loss 1.1387490034103394 img loss 1.2294241189956665 img loss 1.2105188369750977 {'loss': 1.2221, 'grad_norm': 0.2319442182779312, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.19905424118042 img loss 1.1909101009368896 img loss 1.2737935781478882 img loss 1.148276925086975 img loss 1.1489830017089844 img loss 1.1620733737945557 img loss 1.248100757598877 img loss 1.1525300741195679 img loss 1.1511234045028687 img loss 1.128450870513916 img loss 1.2560986280441284 img loss 1.195032000541687 img loss 1.2281601428985596img loss 1.185403823852539 img loss 1.2067283391952515 img loss 1.2029985189437866 img loss 1.211249828338623 img loss 1.1859538555145264 img loss 1.188981294631958 img loss 1.1675852537155151 img loss 1.1923221349716187 img loss 1.08458411693573 img loss 1.1908937692642212 img loss 1.1528526544570923 img loss 1.2997061014175415 img loss 1.1742405891418457 img loss 1.1798441410064697 img loss 1.211401343345642 img loss 1.1630151271820068 img loss 1.241269588470459 img loss 1.1004239320755005 img loss 1.2157797813415527 img loss 1.2216646671295166 img loss 1.237179160118103 img loss 1.2273319959640503 img loss 1.2053797245025635 img loss 1.219428539276123 img loss 1.2284984588623047 img loss 1.1563963890075684 img loss 1.194884181022644 img loss 1.2012698650360107 img loss 1.1758638620376587 img loss 1.2736589908599854 img loss 1.2592524290084839 img loss 1.1439250707626343 img loss 1.2468218803405762 img loss 1.198362112045288 img loss 1.219143271446228 img loss 1.2189429998397827 img loss 1.2505518198013306 img loss 1.208195686340332 img loss 1.3123301267623901 img loss 1.1304093599319458 img loss 1.1767902374267578 img loss 1.2020930051803589 img loss 1.2126953601837158 img loss 1.246321678161621 img loss 1.1385581493377686 img loss 1.2957653999328613 img loss 1.2078990936279297 img loss 1.2039650678634644 img loss 1.1281062364578247 img loss 1.2443431615829468 img loss 1.1883916854858398 img loss 1.1922011375427246 img loss 1.2125358581542969 img loss 1.230293869972229 img loss 1.184482455253601 img loss 1.191409707069397 img loss 1.1947990655899048 img loss 1.2202503681182861 img loss 1.1971603631973267 img loss 1.145433783531189 img loss 1.2875896692276 img loss 1.2553653717041016 img loss 1.1825588941574097 img loss 1.2820099592208862 img loss 1.1990876197814941 img loss 1.2724642753601074 img loss 1.2140976190567017 img loss 1.1964876651763916 img loss 1.2086461782455444 img loss 1.1627241373062134 img loss 1.2474075555801392 img loss 1.1583271026611328 img loss 1.2187705039978027 img loss 1.1932060718536377 img loss 1.2151768207550049 img loss 1.1579025983810425 img loss 1.185758352279663 img loss 1.307734489440918 img loss 1.1414058208465576 img loss 1.112572431564331 img loss 1.1776233911514282 img loss 1.2571150064468384 img loss 1.357301950454712 img loss 1.1380318403244019 img loss 1.244097113609314 img loss 1.201859712600708 img loss 1.2201515436172485 img loss 1.171078085899353 img loss 1.263615608215332 img loss 1.1710957288742065 img loss 1.178663969039917 img loss 1.1614309549331665 img loss 1.175981879234314 img loss 1.2465379238128662 img loss 1.2291319370269775 img loss 1.2568717002868652 img loss 1.2280641794204712 img loss 1.3129481077194214 img loss 1.19693922996521 img loss 1.2493853569030762 img loss 1.1181457042694092 img loss 1.2361897230148315 img loss 1.2272154092788696 img loss 1.274939775466919 img loss 1.1740528345108032 img loss 1.1924747228622437 img loss 1.298529028892517 img loss 1.257807970046997 img loss 1.2968354225158691 img loss 1.1903409957885742 img loss 1.1800392866134644 img loss 1.2346134185791016 img loss 1.2472918033599854 img loss 1.1983972787857056 img loss 1.211689829826355 {'loss': 1.2075, 'grad_norm': 0.1904783695936203, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2461274862289429 img loss 1.1335089206695557 img loss 1.2055259943008423 img loss 1.1272130012512207 img loss 1.2052239179611206 img loss 1.1978225708007812 img loss 1.2394503355026245 img loss 1.212957739830017 img loss 1.2751375436782837 img loss 1.2857547998428345 img loss 1.2024444341659546 img loss 1.1780815124511719 img loss 1.2186858654022217 img loss 1.1693611145019531 img loss 1.1577050685882568 img loss 1.1828893423080444 img loss 1.217402696609497 img loss 1.2344545125961304 img loss 1.2423657178878784 img loss 1.1963272094726562 img loss 1.224191427230835 img loss 1.2078814506530762 img loss 1.1803938150405884 img loss 1.2374985218048096 img loss 1.1887969970703125 img loss 1.3900033235549927 img loss 1.2550638914108276 img loss 1.2631738185882568 img loss 1.1941899061203003 img loss 1.2459790706634521 img loss 1.2439695596694946 img loss 1.2294063568115234 img loss 1.182921290397644 img loss 1.2809346914291382 img loss 1.1965560913085938 img loss 1.2828730344772339 img loss 1.1673583984375 img loss 1.1630773544311523 img loss 1.2390103340148926 img loss 1.2353042364120483 img loss 1.2015209197998047 img loss 1.2032291889190674 img loss 1.2008721828460693 img loss 1.1735150814056396 img loss 1.1883701086044312 img loss 1.1572527885437012 img loss 1.224215030670166 img loss 1.2675386667251587 img loss 1.2597626447677612 img loss 1.2104012966156006 img loss 1.26316237449646 img loss 1.2780742645263672 img loss 1.239126443862915 img loss 1.1920117139816284 img loss 1.148729681968689 img loss 1.2049648761749268 img loss 1.2775942087173462 img loss 1.2480370998382568 img loss 1.2370976209640503 img loss 1.2105669975280762 img loss 1.1956324577331543 img loss 1.2641655206680298 img loss 1.200510859489441 img loss 1.2650222778320312 img loss 1.3136632442474365 img loss 1.2289742231369019 img loss 1.2358794212341309 img loss 1.2501558065414429 img loss 1.1882495880126953 img loss 1.2150611877441406 img loss 1.2325458526611328 img loss 1.2262952327728271 img loss 1.3089573383331299 img loss 1.2373857498168945 img loss 1.1675385236740112 img loss 1.2761039733886719 img loss 1.2045029401779175 img loss 1.1617329120635986 img loss 1.2203001976013184 img loss 1.2257301807403564 img loss 1.2229456901550293 img loss 1.290894865989685 img loss 1.1932932138442993 img loss 1.241098165512085 img loss 1.252765417098999 img loss 1.2098867893218994 img loss 1.2132539749145508 img loss 1.2212088108062744 img loss 1.2632756233215332 img loss 1.2453457117080688 img loss 1.2130564451217651 img loss 1.2004756927490234 img loss 1.2148373126983643 img loss 1.2125849723815918 img loss 1.2241854667663574 img loss 1.2084757089614868 img loss 1.2412794828414917 img loss 1.205491304397583 img loss 1.221403956413269 img loss 1.2409915924072266 img loss 1.265840768814087 img loss 1.2503139972686768 img loss 1.2129261493682861 img loss 1.2477995157241821 img loss 1.2323826551437378 img loss 1.2896636724472046 img loss 1.1907984018325806 img loss 1.2379205226898193 img loss 1.2030982971191406 img loss 1.2595452070236206 img loss 1.2366039752960205 img loss 1.1659492254257202 img loss 1.183161735534668 img loss 1.145424485206604 img loss 1.2662386894226074 img loss 1.2271625995635986 img loss 1.2268507480621338 img loss 1.2163242101669312 img loss 1.1795313358306885 img loss 1.1836076974868774 img loss 1.2769511938095093 img loss 1.287135124206543 img loss 1.296959638595581 img loss 1.2054466009140015 img loss 1.1803760528564453 img loss 1.26406729221344 img loss 1.2172996997833252 img loss 1.2121250629425049 {'loss': 1.2237, 'grad_norm': 0.22011858224868774, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.268751621246338 img loss 1.2009358406066895 img loss 1.2329843044281006 img loss 1.2487599849700928 img loss 1.3268485069274902 img loss 1.177884817123413 img loss 1.199608325958252 img loss 1.2164223194122314 img loss 1.3823869228363037 img loss 1.2111843824386597 img loss 1.3376004695892334 img loss 1.2470403909683228 img loss 1.2169513702392578 img loss 1.1891793012619019 img loss 1.1955894231796265 img loss 1.1755480766296387 img loss 1.28061842918396 img loss 1.2702146768569946 img loss 1.246722936630249 img loss 1.3013360500335693 img loss 1.3373204469680786 img loss 1.2197462320327759 img loss 1.3718191385269165 img loss 1.307777762413025 img loss 1.3731132745742798 img loss 1.2600436210632324 img loss 1.1945440769195557 img loss 1.176878571510315 img loss 1.3225637674331665 img loss 1.2716825008392334 img loss 1.2802377939224243 img loss 1.205418586730957 img loss 1.4013066291809082 img loss 1.1876068115234375 img loss 1.2828023433685303 img loss 1.388383150100708 img loss 1.2301313877105713 img loss 1.2104533910751343 img loss 1.2458025217056274 img loss 1.2079417705535889 img loss 1.34879469871521 img loss 1.237566351890564 img loss 1.1546474695205688 img loss 1.3595548868179321 img loss 1.1731610298156738 img loss 1.2631243467330933 img loss 1.3387643098831177 img loss 1.2618200778961182 img loss 1.2072887420654297 img loss 1.3410518169403076 img loss 1.2793810367584229 img loss 1.2589250802993774 img loss 1.2389819622039795 img loss 1.3349339962005615 img loss 1.1946104764938354 img loss 1.1999419927597046 img loss 1.26776123046875 img loss 1.1964595317840576 img loss 1.2070903778076172 img loss 1.2407439947128296 img loss 1.3070449829101562 img loss 1.2519556283950806 img loss 1.2599687576293945 img loss 1.351130723953247 img loss 1.3934799432754517 img loss 1.2289979457855225 img loss 1.2586392164230347 img loss 1.3760558366775513 img loss 1.2450965642929077 img loss 1.1681442260742188 img loss 1.2015575170516968 img loss 1.2830877304077148 img loss 1.3185173273086548 img loss 1.1352043151855469 img loss 1.3086708784103394 img loss 1.2829521894454956 img loss 1.290885329246521 img loss 1.255607008934021 img loss 1.3490126132965088 img loss 1.2247145175933838 img loss 1.1878210306167603 img loss 1.2428867816925049 img loss 1.1997146606445312 img loss 1.2626510858535767 img loss 1.1791951656341553 img loss 1.239202857017517 img loss 1.204170823097229 img loss 1.2204468250274658 img loss 1.1915977001190186 img loss 1.3037469387054443 img loss 1.2099252939224243 img loss 1.2533060312271118 img loss 1.2608370780944824 img loss 1.3017687797546387 img loss 1.132507085800171 img loss 1.330390453338623 img loss 1.3275874853134155 img loss 1.3408360481262207 img loss 1.2395198345184326 img loss 1.3283841609954834 img loss 1.1948707103729248 img loss 1.1861836910247803 img loss 1.273496150970459 img loss 1.2514286041259766 img loss 1.196166753768921 img loss 1.2523273229599 img loss 1.185604453086853 img loss 1.2380796670913696 img loss 1.3397451639175415 img loss 1.2344731092453003 img loss 1.2018545866012573 img loss 1.1804431676864624 img loss 1.2136894464492798 img loss 1.2844527959823608 img loss 1.1961065530776978 img loss 1.2403329610824585 img loss 1.2394479513168335 img loss 1.3154550790786743 img loss 1.3828845024108887 img loss 1.2021149396896362 img loss 1.2852957248687744 img loss 1.1829274892807007 img loss 1.2038626670837402 img loss 1.161708116531372 img loss 1.2578082084655762 img loss 1.159656286239624 img loss 1.218630313873291 img loss 1.246448278427124 {'loss': 1.2537, 'grad_norm': 0.21443188190460205, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5411666631698608 img loss 1.5632965564727783 img loss 1.4354737997055054 img loss 1.4618045091629028 img loss 1.4370440244674683 img loss 1.4263213872909546 img loss 1.4136275053024292 img loss 1.4932583570480347 img loss 1.444388508796692 img loss 1.5382658243179321 img loss 1.5635055303573608 img loss 1.5023003816604614 img loss 1.3577659130096436 img loss 1.433236837387085 img loss 1.5690597295761108 img loss 1.4089181423187256 img loss 1.4853595495224 img loss 1.532664179801941 img loss 1.5242117643356323 img loss 1.429643988609314 img loss 1.5456931591033936 img loss 1.5125956535339355 img loss 1.3754689693450928 img loss 1.4245625734329224 img loss 1.5077307224273682 img loss 1.4627366065979004 img loss 1.482295274734497 img loss 1.4621949195861816 img loss 1.512703537940979 img loss 1.3938019275665283 img loss 1.3454474210739136 img loss 1.5033766031265259 img loss 1.3928269147872925 img loss 1.4706889390945435 img loss 1.45333731174469 img loss 1.451682686805725 img loss 1.407428503036499 img loss 1.5707546472549438 img loss 1.4584821462631226 img loss 1.4998276233673096 img loss 1.4199271202087402 img loss 1.3821591138839722 img loss 1.4251210689544678 img loss 1.4539395570755005 img loss 1.580918550491333 img loss 1.598648190498352 img loss 1.4237569570541382 img loss 1.436409831047058 img loss 1.5304211378097534 img loss 1.4571768045425415 img loss 1.535153865814209 img loss 1.4409302473068237 img loss 1.4474234580993652 img loss 1.4623907804489136 img loss 1.4046132564544678 img loss 1.511875867843628 img loss 1.5072739124298096 img loss 1.3540641069412231 img loss 1.4451825618743896 img loss 1.5052969455718994 img loss 1.5261491537094116 img loss 1.5242527723312378 img loss 1.581563115119934img loss 1.4472424983978271 img loss 1.4821393489837646 img loss 1.3975762128829956 img loss 1.407426118850708 img loss 1.380926251411438 img loss 1.524667501449585 img loss 1.5007832050323486 img loss 1.4648691415786743 img loss 1.4220150709152222 img loss 1.498520016670227 img loss 1.356868863105774 img loss 1.4848239421844482 img loss 1.5278857946395874 img loss 1.4581762552261353 img loss 1.4245845079421997 img loss 1.4303908348083496 img loss 1.4402403831481934 img loss 1.469704508781433 img loss 1.5729365348815918 img loss 1.3796740770339966 img loss 1.4357495307922363 img loss 1.5193760395050049 img loss 1.512388825416565 img loss 1.5852230787277222 img loss 1.4300886392593384 img loss 1.5885545015335083 img loss 1.5719640254974365 img loss 1.3824445009231567 img loss 1.4214218854904175 img loss 1.5080621242523193 img loss 1.5052815675735474 img loss 1.4731656312942505 img loss 1.5980485677719116 img loss 1.5029758214950562 img loss 1.5242067575454712 img loss 1.5395089387893677 img loss 1.5541905164718628 img loss 1.5152833461761475 img loss 1.4324262142181396 img loss 1.4857643842697144 img loss 1.623551845550537 img loss 1.562496304512024 img loss 1.514623761177063 img loss 1.5432660579681396 img loss 1.4729024171829224 img loss 1.6142979860305786 img loss 1.5209896564483643 img loss 1.3421320915222168 img loss 1.4821916818618774 img loss 1.4690731763839722 img loss 1.4898231029510498 img loss 1.4824063777923584 img loss 1.6515873670578003 img loss 1.7178252935409546 img loss 1.5635311603546143 img loss 1.570349931716919 img loss 1.4638701677322388 img loss 1.4359261989593506 img loss 1.3730911016464233 img loss 1.4776862859725952 img loss 1.5438066720962524 img loss 1.4727517366409302 img loss 1.4546126127243042 img loss 1.4502354860305786 img loss 1.5626076459884644 {'loss': 1.4825, 'grad_norm': 0.3088594973087311, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2391257286071777 img loss 1.2684688568115234 img loss 1.164557933807373 img loss 1.1522278785705566 img loss 1.2019020318984985 img loss 1.2756983041763306 img loss 1.1989134550094604 img loss 1.2251970767974854 img loss 1.2348841428756714 img loss 1.231919527053833 img loss 1.1884288787841797 img loss 1.131988763809204 img loss 1.189809799194336 img loss 1.247631311416626 img loss 1.1663614511489868 img loss 1.2880481481552124 img loss 1.2128632068634033 img loss 1.1459987163543701 img loss 1.242677927017212 img loss 1.1450059413909912 img loss 1.175201416015625 img loss 1.1952465772628784 img loss 1.198607325553894 img loss 1.2165467739105225 img loss 1.1471503973007202 img loss 1.1960480213165283 img loss 1.277488350868225 img loss 1.1914795637130737 img loss 1.2450201511383057 img loss 1.2349051237106323 img loss 1.2527272701263428 img loss 1.1538342237472534 img loss 1.1467323303222656 img loss 1.1810507774353027 img loss 1.177641749382019 img loss 1.2403876781463623 img loss 1.2024179697036743 img loss 1.1728084087371826 img loss 1.1482588052749634 img loss 1.2019928693771362 img loss 1.222389817237854 img loss 1.2363471984863281 img loss 1.2176885604858398 img loss 1.136567234992981 img loss 1.1655693054199219 img loss 1.2060267925262451 img loss 1.191366195678711 img loss 1.2250877618789673 img loss 1.3143123388290405 img loss 1.251671314239502 img loss 1.1927778720855713 img loss 1.162300944328308 img loss 1.1511931419372559 img loss 1.2213951349258423 img loss 1.1487116813659668 img loss 1.197790503501892 img loss 1.1949630975723267 img loss 1.1939321756362915 img loss 1.1391031742095947 img loss 1.1959712505340576 img loss 1.159177303314209 img loss 1.1957777738571167 img loss 1.2025150060653687 img loss 1.1914429664611816 img loss 1.183680772781372 img loss 1.2029775381088257 img loss 1.2022464275360107 img loss 1.293022871017456 img loss 1.1048721075057983 img loss 1.1775028705596924 img loss 1.2376221418380737 img loss 1.1974016427993774 img loss 1.22260320186615 img loss 1.151737093925476 img loss 1.2603428363800049 img loss 1.2061054706573486 img loss 1.252618432044983 img loss 1.244675636291504 img loss 1.187097430229187 img loss 1.2479698657989502 img loss 1.1062989234924316 img loss 1.177753210067749 img loss 1.137008547782898 img loss 1.2336130142211914 img loss 1.2812999486923218 img loss 1.2298868894577026 img loss 1.215593695640564 img loss 1.2345974445343018 img loss 1.1591241359710693 img loss 1.1250189542770386 img loss 1.1367930173873901 img loss 1.2097333669662476 img loss 1.1184492111206055 img loss 1.2017256021499634 img loss 1.1159292459487915 img loss 1.1599228382110596 img loss 1.1153624057769775 img loss 1.1655020713806152 img loss 1.190781831741333 img loss 1.2806047201156616 img loss 1.1418564319610596 img loss 1.2101367712020874 img loss 1.2123208045959473 img loss 1.192622184753418 img loss 1.2254135608673096 img loss 1.1930289268493652img loss 1.1981675624847412 img loss 1.1194827556610107 img loss 1.2089643478393555 img loss 1.1919803619384766 img loss 1.1064776182174683 img loss 1.19977605342865 img loss 1.2815033197402954img loss 1.209409236907959img loss 1.2277010679244995img loss 1.1756134033203125 img loss 1.2534351348876953 img loss 1.152906060218811 img loss 1.2187556028366089 img loss 1.2663084268569946 img loss 1.1486972570419312img loss 1.1337029933929443 img loss 1.2440954446792603 img loss 1.1811573505401611 img loss 1.2317898273468018 img loss 1.201639175415039 img loss 1.1352884769439697 img loss 1.1424896717071533 {'loss': 1.1968, 'grad_norm': 0.28445911407470703, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2497533559799194 img loss 1.259040117263794 img loss 1.3476042747497559 img loss 1.3154109716415405 img loss 1.2992150783538818 img loss 1.389373540878296 img loss 1.3182544708251953 img loss 1.3736270666122437 img loss 1.3539252281188965 img loss 1.2430660724639893 img loss 1.399854063987732 img loss 1.349413514137268 img loss 1.259497046470642 img loss 1.40524160861969 img loss 1.3002185821533203 img loss 1.34699285030365 img loss 1.2971758842468262 img loss 1.3446991443634033 img loss 1.4269191026687622 img loss 1.26967191696167 img loss 1.3410362005233765 img loss 1.3372275829315186 img loss 1.3180845975875854 img loss 1.3195602893829346 img loss 1.3208996057510376 img loss 1.4627991914749146 img loss 1.2974649667739868 img loss 1.323786973953247 img loss 1.353601336479187 img loss 1.2179982662200928 img loss 1.290138602256775 img loss 1.4230540990829468 img loss 1.349745273590088img loss 1.3866647481918335 img loss 1.3630554676055908 img loss 1.325581431388855 img loss 1.2828073501586914 img loss 1.3917003870010376 img loss 1.2572475671768188 img loss 1.3249839544296265 img loss 1.2862963676452637 img loss 1.2944111824035645 img loss 1.3230621814727783 img loss 1.3094547986984253 img loss 1.345723271369934 img loss 1.3117847442626953 img loss 1.457579255104065 img loss 1.2762401103973389 img loss 1.3038630485534668 img loss 1.401822805404663 img loss 1.3543331623077393 img loss 1.3140980005264282 img loss 1.4046615362167358 img loss 1.3648159503936768 img loss 1.3587915897369385 img loss 1.2674587965011597 img loss 1.5186400413513184 img loss 1.380226731300354 img loss 1.4430829286575317 img loss 1.3262648582458496 img loss 1.360919713973999 img loss 1.4643073081970215 img loss 1.312403917312622 img loss 1.2441716194152832 img loss 1.3357865810394287 img loss 1.320934772491455 img loss 1.2872169017791748 img loss 1.3327759504318237 img loss 1.377845048904419 img loss 1.2869783639907837 img loss 1.3653523921966553 img loss 1.3315131664276123 img loss 1.2768760919570923 img loss 1.318244218826294 img loss 1.2485096454620361 img loss 1.3386635780334473 img loss 1.3213591575622559 img loss 1.2293661832809448 img loss 1.19150710105896 img loss 1.2765166759490967 img loss 1.2841037511825562 img loss 1.4323796033859253 img loss 1.3408665657043457 img loss 1.3955353498458862 img loss 1.2814607620239258 img loss 1.354785680770874 img loss 1.3816885948181152 img loss 1.3668522834777832 img loss 1.3846352100372314 img loss 1.3246204853057861 img loss 1.5352028608322144 img loss 1.2648682594299316 img loss 1.381853461265564 img loss 1.288686752319336 img loss 1.3203063011169434 img loss 1.2438501119613647 img loss 1.3526036739349365 img loss 1.3249318599700928 img loss 1.3618462085723877 img loss 1.3447028398513794 img loss 1.3782356977462769 img loss 1.4081956148147583 img loss 1.334043025970459 img loss 1.3323452472686768img loss 1.3149795532226562 img loss 1.2894203662872314 img loss 1.3311375379562378 img loss 1.2810091972351074 img loss 1.31475830078125 img loss 1.34687077999115 img loss 1.2956829071044922 img loss 1.582576870918274 img loss 1.3024119138717651 img loss 1.3718600273132324 img loss 1.2514489889144897 img loss 1.2920188903808594 img loss 1.358904242515564 img loss 1.2841413021087646 img loss 1.3764711618423462 img loss 1.4045740365982056 img loss 1.2660534381866455 img loss 1.3182077407836914 img loss 1.4079606533050537 img loss 1.4396730661392212 img loss 1.2686593532562256 img loss 1.3150614500045776 img loss 1.2781507968902588 img loss 1.4661098718643188 {'loss': 1.3365, 'grad_norm': 0.25952449440956116, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2187258005142212 img loss 1.2408369779586792 img loss 1.3322514295578003 img loss 1.2207906246185303 img loss 1.2408943176269531 img loss 1.2723498344421387 img loss 1.3318897485733032 img loss 1.2529702186584473 img loss 1.2793936729431152 img loss 1.2734370231628418 img loss 1.2754334211349487 img loss 1.4690736532211304 img loss 1.321484088897705 img loss 1.3164081573486328 img loss 1.2903201580047607 img loss 1.3348146677017212 img loss 1.244964361190796 img loss 1.1480063199996948 img loss 1.1595573425292969 img loss 1.2547022104263306 img loss 1.1685961484909058 img loss 1.2392393350601196 img loss 1.3660756349563599 img loss 1.2679085731506348 img loss 1.4079272747039795 img loss 1.3110913038253784 img loss 1.247786521911621 img loss 1.2358207702636719 img loss 1.2489877939224243 img loss 1.224817156791687 img loss 1.2538623809814453 img loss 1.2902017831802368 img loss 1.2204986810684204 img loss 1.3289155960083008 img loss 1.339038372039795 img loss 1.1808781623840332 img loss 1.2472587823867798 img loss 1.1966519355773926 img loss 1.2998501062393188 img loss 1.4272061586380005 img loss 1.175503134727478 img loss 1.2905353307724 img loss 1.3241475820541382 img loss 1.2221448421478271 img loss 1.2691551446914673 img loss 1.2533318996429443 img loss 1.282927393913269 img loss 1.2523258924484253 img loss 1.1678614616394043 img loss 1.299088954925537 img loss 1.4224960803985596 img loss 1.1721348762512207 img loss 1.2281172275543213 img loss 1.2827892303466797 img loss 1.257739543914795 img loss 1.1768686771392822 img loss 1.2537426948547363 img loss 1.2369229793548584 img loss 1.3474043607711792 img loss 1.3043665885925293 img loss 1.3393137454986572 img loss 1.2914438247680664 img loss 1.360465168952942 img loss 1.2351611852645874 img loss 1.2114713191986084 img loss 1.225386381149292 img loss 1.253656029701233 img loss 1.3125698566436768 img loss 1.2679041624069214 img loss 1.3915680646896362 img loss 1.3033759593963623 img loss 1.270749568939209 img loss 1.2297290563583374 img loss 1.175812005996704 img loss 1.3192967176437378 img loss 1.251725435256958 img loss 1.290560245513916 img loss 1.3954724073410034 img loss 1.304929256439209 img loss 1.3081620931625366 img loss 1.185908555984497 img loss 1.2748832702636719 img loss 1.154239296913147 img loss 1.2320668697357178 img loss 1.139520525932312 img loss 1.2405107021331787 img loss 1.3457342386245728 img loss 1.3941887617111206 img loss 1.1768033504486084 img loss 1.274268388748169 img loss 1.25048828125 img loss 1.3190922737121582 img loss 1.240860939025879 img loss 1.246024489402771 img loss 1.352068305015564 img loss 1.3052338361740112 img loss 1.3192739486694336 img loss 1.315262794494629 img loss 1.265513300895691 img loss 1.3086795806884766 img loss 1.3388830423355103 img loss 1.350121259689331 img loss 1.2039753198623657 img loss 1.4060841798782349 img loss 1.3138511180877686 img loss 1.331031084060669 img loss 1.3500336408615112 img loss 1.416148066520691 img loss 1.1776679754257202 img loss 1.2832601070404053 img loss 1.2199963331222534 img loss 1.3034172058105469 img loss 1.2598938941955566 img loss 1.2046326398849487 img loss 1.1797428131103516 img loss 1.2319971323013306 img loss 1.358195424079895 img loss 1.3520634174346924 img loss 1.2859677076339722 img loss 1.2139595746994019 img loss 1.3319647312164307 img loss 1.328233242034912 img loss 1.178138256072998 img loss 1.3915445804595947 img loss 1.3588345050811768 img loss 1.3103001117706299 img loss 1.241350769996643 img loss 1.323612093925476 {'loss': 1.2775, 'grad_norm': 0.20000532269477844, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3265514373779297 img loss 1.2756307125091553 img loss 1.280571699142456 img loss 1.3513227701187134 img loss 1.274040699005127 img loss 1.270902395248413 img loss 1.3059481382369995 img loss 1.2839858531951904 img loss 1.2474267482757568 img loss 1.3692021369934082 img loss 1.273580551147461 img loss 1.2186009883880615 img loss 1.363898515701294img loss 1.212117075920105 img loss 1.3195351362228394 img loss 1.340497612953186 img loss 1.2736250162124634 img loss 1.333482265472412 img loss 1.2832460403442383 img loss 1.4066258668899536 img loss 1.3517550230026245 img loss 1.2298805713653564 img loss 1.3052036762237549 img loss 1.4244626760482788 img loss 1.3889288902282715 img loss 1.2295197248458862 img loss 1.3039095401763916 img loss 1.2350666522979736 img loss 1.2320096492767334 img loss 1.305606722831726 img loss 1.2817678451538086 img loss 1.3250598907470703 img loss 1.3151510953903198 img loss 1.2466453313827515 img loss 1.305622935295105 img loss 1.354196310043335 img loss 1.3010709285736084 img loss 1.2802244424819946 img loss 1.220076322555542 img loss 1.2398695945739746 img loss 1.181100606918335 img loss 1.2259905338287354 img loss 1.3587956428527832 img loss 1.2849470376968384 img loss 1.201520323753357 img loss 1.2311375141143799 img loss 1.3596197366714478 img loss 1.2720364332199097 img loss 1.3200620412826538 img loss 1.2884960174560547 img loss 1.3526909351348877 img loss 1.311366319656372 img loss 1.255279779434204 img loss 1.243621826171875 img loss 1.2284497022628784 img loss 1.3093880414962769 img loss 1.2857378721237183 img loss 1.25808584690094 img loss 1.357956051826477 img loss 1.1922621726989746 img loss 1.200506567955017 img loss 1.3050084114074707 img loss 1.276061773300171 img loss 1.2218979597091675 img loss 1.4119133949279785 img loss 1.330822229385376 img loss 1.2764582633972168 img loss 1.3970191478729248 img loss 1.2595003843307495 img loss 1.3123613595962524 img loss 1.4203712940216064 img loss 1.3154480457305908 img loss 1.3662456274032593 img loss 1.2428362369537354 img loss 1.2018482685089111 img loss 1.3203362226486206 img loss 1.2502330541610718 img loss 1.2929878234863281 img loss 1.2505730390548706 img loss 1.237151026725769 img loss 1.2107185125350952 img loss 1.3222545385360718 img loss 1.2510122060775757 img loss 1.2221412658691406 img loss 1.1951706409454346 img loss 1.3705483675003052 img loss 1.2230796813964844 img loss 1.2677596807479858 img loss 1.236452579498291 img loss 1.3601794242858887 img loss 1.1687355041503906 img loss 1.303200364112854 img loss 1.256826400756836 img loss 1.176530122756958 img loss 1.3255184888839722 img loss 1.3507329225540161 img loss 1.2424354553222656 img loss 1.2475050687789917 img loss 1.2935253381729126 img loss 1.2752760648727417 img loss 1.2843871116638184 img loss 1.3521006107330322 img loss 1.389267086982727 img loss 1.1810314655303955 img loss 1.3218201398849487 img loss 1.2391631603240967 img loss 1.283806324005127 img loss 1.3352173566818237 img loss 1.2909904718399048 img loss 1.2900192737579346 img loss 1.3680641651153564 img loss 1.3343098163604736 img loss 1.277031421661377 img loss 1.2289377450942993 img loss 1.2502176761627197 img loss 1.261817216873169 img loss 1.3010873794555664 img loss 1.3012504577636719 img loss 1.3128681182861328 img loss 1.2427434921264648 img loss 1.27774977684021 img loss 1.1865853071212769 img loss 1.3223308324813843 img loss 1.318834900856018 img loss 1.331823706626892 img loss 1.1840101480484009 img loss 1.2883859872817993 img loss 1.31944739818573 {'loss': 1.2865, 'grad_norm': 0.6819636225700378, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5855202674865723 img loss 1.388996958732605 img loss 1.6212033033370972 img loss 1.510345697402954 img loss 1.663719892501831 img loss 1.3945025205612183 img loss 1.4281867742538452 img loss 1.440832257270813 img loss 1.5948749780654907 img loss 1.3115959167480469 img loss 1.423072338104248 img loss 1.7281849384307861 img loss 1.4085947275161743 img loss 1.5022259950637817 img loss 1.4052789211273193 img loss 1.5945323705673218 img loss 1.5982681512832642 img loss 1.548656702041626 img loss 1.520789623260498 img loss 1.5093518495559692 img loss 1.440558671951294 img loss 1.6366517543792725 img loss 1.5112926959991455 img loss 1.4271336793899536 img loss 1.4817782640457153 img loss 1.5182321071624756 img loss 1.484289288520813 img loss 1.4443376064300537 img loss 1.4287574291229248 img loss 1.5525985956192017 img loss 1.4211632013320923 img loss 1.5923982858657837 img loss 1.4498318433761597 img loss 1.4507873058319092 img loss 1.6446802616119385 img loss 1.3922746181488037 img loss 1.6198025941848755 img loss 1.5733739137649536 img loss 1.507017970085144 img loss 1.4801450967788696 img loss 1.5107446908950806 img loss 1.5375266075134277 img loss 1.598463535308838 img loss 1.5713316202163696 img loss 1.43337881565094 img loss 1.4002931118011475 img loss 1.5705351829528809 img loss 1.5438265800476074 img loss 1.443676233291626 img loss 1.685341477394104 img loss 1.4592615365982056 img loss 1.5292688608169556 img loss 1.3922737836837769 img loss 1.4215930700302124 img loss 1.5679079294204712 img loss 1.5920045375823975 img loss 1.5196852684020996 img loss 1.5575346946716309 img loss 1.4936670064926147 img loss 1.6150249242782593 img loss 1.49886953830719 img loss 1.5970828533172607 img loss 1.609737515449524 img loss 1.4280788898468018 img loss 1.4504015445709229 img loss 1.4501185417175293 img loss 1.4625800848007202 img loss 1.413753628730774 img loss 1.3890234231948853 img loss 1.658366084098816 img loss 1.5896414518356323 img loss 1.5076918601989746 img loss 1.558363437652588 img loss 1.6440231800079346 img loss 1.4082227945327759 img loss 1.3946489095687866 img loss 1.4345284700393677 img loss 1.5617687702178955 img loss 1.4742475748062134 img loss 1.5417519807815552 img loss 1.3433425426483154 img loss 1.3490804433822632 img loss 1.6100525856018066 img loss 1.536436915397644 img loss 1.4759366512298584 img loss 1.6836506128311157 img loss 1.5222018957138062 img loss 1.4974137544631958 img loss 1.4613792896270752 img loss 1.6031336784362793 img loss 1.5057233572006226 img loss 1.5358643531799316 img loss 1.2839481830596924 img loss 1.5654836893081665 img loss 1.6356648206710815 img loss 1.528807282447815 img loss 1.3012669086456299 img loss 1.5098602771759033 img loss 1.3974422216415405 img loss 1.5078580379486084 img loss 1.566604495048523 img loss 1.6295262575149536 img loss 1.5139206647872925 img loss 1.5181186199188232 img loss 1.5316163301467896 img loss 1.5535856485366821 img loss 1.3926618099212646 img loss 1.516788363456726 img loss 1.418504238128662 img loss 1.667439341545105 img loss 1.4512608051300049 img loss 1.5174225568771362 img loss 1.5349129438400269 img loss 1.487149953842163 img loss 1.542418122291565 img loss 1.6152325868606567 img loss 1.6989634037017822 img loss 1.5405819416046143 img loss 1.4879876375198364 img loss 1.539225697517395 img loss 1.5010842084884644 img loss 1.6087766885757446 img loss 1.3641585111618042 img loss 1.4683479070663452 img loss 1.6763660907745361 img loss 1.4950995445251465 img loss 1.357912540435791 img loss 1.4521015882492065 {'loss': 1.5098, 'grad_norm': 0.23933987319469452, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2001081705093384 img loss 1.3150808811187744 img loss 1.2169430255889893 img loss 1.1945455074310303 img loss 1.230316162109375 img loss 1.246896743774414 img loss 1.213975191116333 img loss 1.183571457862854 img loss 1.3758794069290161 img loss 1.2197721004486084 img loss 1.2527693510055542 img loss 1.296162486076355 img loss 1.2261097431182861 img loss 1.2288845777511597 img loss 1.172097086906433 img loss 1.2442798614501953 img loss 1.25983464717865 img loss 1.269077181816101 img loss 1.2605799436569214 img loss 1.197965145111084 img loss 1.2216506004333496 img loss 1.2526297569274902 img loss 1.1677095890045166 img loss 1.226680040359497 img loss 1.1810919046401978 img loss 1.2068817615509033 img loss 1.2432979345321655 img loss 1.2783770561218262 img loss 1.250601053237915 img loss 1.215002417564392 img loss 1.2724521160125732 img loss 1.2252027988433838 img loss 1.2178356647491455 img loss 1.2372856140136719 img loss 1.1992321014404297 img loss 1.207902431488037 img loss 1.324168086051941 img loss 1.213244915008545 img loss 1.2881208658218384 img loss 1.1656239032745361 img loss 1.2960646152496338 img loss 1.2764257192611694 img loss 1.2237794399261475 img loss 1.260351538658142 img loss 1.246958613395691 img loss 1.2866575717926025 img loss 1.2155852317810059 img loss 1.3087880611419678 img loss 1.2639795541763306 img loss 1.1697602272033691 img loss 1.2295506000518799 img loss 1.3154934644699097 img loss 1.2776985168457031 img loss 1.240770697593689 img loss 1.2948377132415771 img loss 1.2448809146881104 img loss 1.2369855642318726 img loss 1.1950292587280273 img loss 1.19493567943573 img loss 1.293220043182373 img loss 1.3555248975753784 img loss 1.2303874492645264 img loss 1.232934832572937 img loss 1.154295802116394 img loss 1.2336148023605347 img loss 1.2016267776489258 img loss 1.1950039863586426 img loss 1.381639003753662 img loss 1.2861361503601074 img loss 1.2274210453033447 img loss 1.2237465381622314 img loss 1.193109154701233 img loss 1.2396581172943115 img loss 1.2198923826217651 img loss 1.2709578275680542 img loss 1.280160665512085 img loss 1.238237977027893 img loss 1.2908625602722168 img loss 1.2289913892745972 img loss 1.2835140228271484 img loss 1.1909563541412354 img loss 1.2402549982070923 img loss 1.2371876239776611 img loss 1.233590006828308 img loss 1.2610275745391846 img loss 1.2169941663742065 img loss 1.1937179565429688 img loss 1.2195647954940796 img loss 1.2088329792022705 img loss 1.2414134740829468 img loss 1.1989610195159912 img loss 1.2812435626983643 img loss 1.1878032684326172 img loss 1.2179961204528809 img loss 1.2411465644836426 img loss 1.3013544082641602 img loss 1.213480830192566 img loss 1.2677925825119019 img loss 1.2778575420379639 img loss 1.2749269008636475 img loss 1.2612392902374268 img loss 1.2772897481918335 img loss 1.2090826034545898 img loss 1.2007765769958496 img loss 1.2042737007141113 img loss 1.2788043022155762 img loss 1.2221869230270386 img loss 1.292883276939392 img loss 1.1831183433532715 img loss 1.260068416595459 img loss 1.2980583906173706 img loss 1.324949026107788 img loss 1.2333483695983887 img loss 1.198084831237793 img loss 1.2645117044448853 img loss 1.1853668689727783 img loss 1.2150053977966309 img loss 1.1759843826293945 img loss 1.2696661949157715 img loss 1.17277991771698 img loss 1.3344961404800415 img loss 1.2071787118911743 img loss 1.2077558040618896 img loss 1.163882851600647 img loss 1.2497549057006836 img loss 1.2182787656784058 img loss 1.2169923782348633 img loss 1.278350830078125 {'loss': 1.2402, 'grad_norm': 0.5262189507484436, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.361603021621704 img loss 1.2797285318374634 img loss 1.2585514783859253 img loss 1.2643793821334839 img loss 1.2936561107635498 img loss 1.2027021646499634 img loss 1.2890385389328003 img loss 1.3173097372055054 img loss 1.2283470630645752 img loss 1.1845967769622803 img loss 1.2494150400161743 img loss 1.1427122354507446 img loss 1.3172814846038818 img loss 1.2203693389892578 img loss 1.2577251195907593 img loss 1.2399227619171143 img loss 1.2798175811767578 img loss 1.1945596933364868 img loss 1.2584137916564941 img loss 1.249955177307129 img loss 1.2411268949508667 img loss 1.269708514213562 img loss 1.2135056257247925 img loss 1.2452001571655273 img loss 1.2357515096664429 img loss 1.2557820081710815 img loss 1.2611192464828491 img loss 1.2833808660507202 img loss 1.1984832286834717 img loss 1.1954058408737183 img loss 1.2655795812606812 img loss 1.2314611673355103 img loss 1.2391104698181152 img loss 1.2733995914459229 img loss 1.2048335075378418 img loss 1.2010101079940796 img loss 1.1958885192871094 img loss 1.1886738538742065 img loss 1.3211948871612549 img loss 1.2764097452163696 img loss 1.2434241771697998 img loss 1.3077070713043213 img loss 1.3073275089263916 img loss 1.2912557125091553 img loss 1.2361348867416382 img loss 1.2806594371795654 img loss 1.2248425483703613 img loss 1.2093760967254639 img loss 1.322933554649353 img loss 1.2596025466918945 img loss 1.2181448936462402 img loss 1.2016468048095703 img loss 1.2890268564224243 img loss 1.3018338680267334 img loss 1.2584079504013062 img loss 1.2448604106903076 img loss 1.1720781326293945 img loss 1.334287405014038 img loss 1.2602767944335938 img loss 1.2429673671722412 img loss 1.2615084648132324 img loss 1.2516330480575562 img loss 1.2645320892333984 img loss 1.2857143878936768 img loss 1.2603721618652344 img loss 1.2822470664978027 img loss 1.210950493812561 img loss 1.2878198623657227 img loss 1.2640397548675537 img loss 1.3024603128433228 img loss 1.2667875289916992 img loss 1.2603281736373901 img loss 1.2182258367538452 img loss 1.2359726428985596 img loss 1.303015947341919 img loss 1.2566345930099487 img loss 1.2873797416687012 img loss 1.3021057844161987 img loss 1.2218146324157715 img loss 1.2994705438613892 img loss 1.2248268127441406 img loss 1.3040450811386108 img loss 1.2406402826309204 img loss 1.2310255765914917 img loss 1.2233326435089111 img loss 1.1608304977416992 img loss 1.3047616481781006 img loss 1.2305024862289429 img loss 1.2705657482147217 img loss 1.3041777610778809 img loss 1.2771170139312744 img loss 1.264617681503296 img loss 1.2012065649032593 img loss 1.2059186697006226 img loss 1.269998550415039 img loss 1.3058030605316162 img loss 1.2620375156402588 img loss 1.2888562679290771 img loss 1.3039530515670776 img loss 1.2504338026046753 img loss 1.1919329166412354 img loss 1.2812544107437134 img loss 1.2875301837921143 img loss 1.217716932296753 img loss 1.1500571966171265 img loss 1.2777457237243652 img loss 1.2283146381378174 img loss 1.1928585767745972 img loss 1.2538782358169556 img loss 1.2471563816070557 img loss 1.254254698753357 img loss 1.2557348012924194 img loss 1.2407410144805908 img loss 1.2425532341003418 img loss 1.302380084991455 img loss 1.2472504377365112 img loss 1.1936688423156738 img loss 1.262986421585083 img loss 1.2780779600143433 img loss 1.3142120838165283 img loss 1.3216902017593384 img loss 1.1507242918014526 img loss 1.28434419631958 img loss 1.263864278793335 img loss 1.2210428714752197 img loss 1.2970609664916992 img loss 1.2503561973571777 img loss 1.2380247116088867 {'loss': 1.2538, 'grad_norm': 0.5749015212059021, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.404666781425476 img loss 1.5280057191848755 img loss 1.4718786478042603 img loss 1.4743374586105347 img loss 1.410042643547058 img loss 1.4343208074569702 img loss 1.3808194398880005 img loss 1.4950766563415527 img loss 1.3438656330108643 img loss 1.4840952157974243 img loss 1.4841924905776978 img loss 1.4293771982192993 img loss 1.517285943031311 img loss 1.434464693069458 img loss 1.456041693687439 img loss 1.3821438550949097 img loss 1.3183162212371826 img loss 1.3785302639007568 img loss 1.3129678964614868 img loss 1.270301342010498 img loss 1.4242340326309204 img loss 1.3621526956558228 img loss 1.342835545539856 img loss 1.4478954076766968 img loss 1.3381869792938232 img loss 1.4669530391693115 img loss 1.344003438949585 img loss 1.3858033418655396 img loss 1.519720196723938 img loss 1.4426888227462769 img loss 1.451080083847046 img loss 1.31364905834198 img loss 1.4362480640411377 img loss 1.3317514657974243 img loss 1.4379514455795288 img loss 1.348365306854248 img loss 1.3575116395950317 img loss 1.5293503999710083 img loss 1.461780071258545 img loss 1.5014967918395996 img loss 1.4344528913497925 img loss 1.5335015058517456 img loss 1.3763821125030518 img loss 1.4553656578063965 img loss 1.3802002668380737 img loss 1.4753344058990479 img loss 1.4565552473068237 img loss 1.386536955833435 img loss 1.3260964155197144 img loss 1.378546118736267 img loss 1.3202052116394043 img loss 1.478176236152649 img loss 1.3590177297592163 img loss 1.5417898893356323 img loss 1.4352567195892334 img loss 1.4543942213058472 img loss 1.3509458303451538 img loss 1.3226921558380127 img loss 1.6141916513442993 img loss 1.4954651594161987 img loss 1.34809148311615 img loss 1.5419949293136597 img loss 1.5505340099334717 img loss 1.476630687713623 img loss 1.4073588848114014 img loss 1.5069210529327393 img loss 1.3573445081710815 img loss 1.5284560918807983 img loss 1.4135663509368896 img loss 1.4726163148880005 img loss 1.315104365348816 img loss 1.3668487071990967 img loss 1.47787606716156 img loss 1.3035815954208374 img loss 1.5040068626403809 img loss 1.4376269578933716 img loss 1.4851298332214355 img loss 1.5103551149368286 img loss 1.273707628250122 img loss 1.3783717155456543 img loss 1.3783622980117798 img loss 1.4840165376663208 img loss 1.4753327369689941 img loss 1.4499210119247437 img loss 1.3257389068603516 img loss 1.5240099430084229 img loss 1.5174006223678589 img loss 1.4116073846817017 img loss 1.508847951889038 img loss 1.5248119831085205 img loss 1.3520398139953613 img loss 1.437253713607788 img loss 1.4734824895858765 img loss 1.546730637550354 img loss 1.5137460231781006 img loss 1.5081490278244019 img loss 1.4102838039398193 img loss 1.4972424507141113 img loss 1.3813143968582153 img loss 1.4896794557571411 img loss 1.3105921745300293 img loss 1.4330180883407593 img loss 1.404832124710083 img loss 1.5013954639434814 img loss 1.4950109720230103 img loss 1.3704144954681396 img loss 1.4461311101913452 img loss 1.5168195962905884 img loss 1.4731553792953491 img loss 1.463715672492981 img loss 1.445389986038208 img loss 1.3572614192962646 img loss 1.292792797088623 img loss 1.4483978748321533 img loss 1.3064930438995361 img loss 1.4335275888442993 img loss 1.5190978050231934 img loss 1.5335129499435425 img loss 1.390020489692688 img loss 1.49356210231781 img loss 1.4809107780456543 img loss 1.4043724536895752 img loss 1.5214669704437256 img loss 1.4713618755340576 img loss 1.6249630451202393 img loss 1.4142018556594849 img loss 1.4088194370269775 img loss 1.5331451892852783 {'loss': 1.4343, 'grad_norm': 0.2611192762851715, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.155398964881897 img loss 1.1812474727630615 img loss 1.1651099920272827 img loss 1.1724755764007568 img loss 1.1995840072631836 img loss 1.1931759119033813 img loss 1.2150280475616455 img loss 1.212504267692566 img loss 1.1574424505233765 img loss 1.2040138244628906 img loss 1.1459757089614868 img loss 1.2189688682556152 img loss 1.1829637289047241 img loss 1.2294175624847412 img loss 1.2613215446472168 img loss 1.2592915296554565 img loss 1.2256721258163452 img loss 1.1809923648834229 img loss 1.2770373821258545 img loss 1.1733232736587524 img loss 1.238646388053894 img loss 1.19797945022583 img loss 1.237160563468933 img loss 1.20168137550354 img loss 1.2757582664489746img loss 1.2421525716781616 img loss 1.2663471698760986 img loss 1.1841856241226196 img loss 1.2356417179107666 img loss 1.2754478454589844 img loss 1.2423254251480103 img loss 1.2150287628173828 img loss 1.243665337562561 img loss 1.207945466041565 img loss 1.1787763833999634 img loss 1.263915777206421 img loss 1.3007299900054932 img loss 1.1576521396636963 img loss 1.2673728466033936 img loss 1.1922357082366943 img loss 1.17367422580719 img loss 1.2826459407806396 img loss 1.2042863368988037 img loss 1.131268858909607 img loss 1.2037748098373413 img loss 1.1503018140792847 img loss 1.1405259370803833 img loss 1.2301483154296875img loss 1.2515391111373901 img loss 1.2017930746078491 img loss 1.1863254308700562 img loss 1.2291560173034668 img loss 1.1684906482696533 img loss 1.1505241394042969 img loss 1.2347476482391357 img loss 1.2607673406600952 img loss 1.2373584508895874 img loss 1.2009804248809814 img loss 1.2961009740829468 img loss 1.3248506784439087 img loss 1.1551100015640259 img loss 1.1804245710372925 img loss 1.2129805088043213 img loss 1.1683690547943115 img loss 1.1812241077423096 img loss 1.234334945678711 img loss 1.1634163856506348 img loss 1.200923204421997 img loss 1.2259281873703003 img loss 1.1997337341308594 img loss 1.121231198310852 img loss 1.2037217617034912 img loss 1.2712608575820923 img loss 1.237506628036499 img loss 1.2448627948760986 img loss 1.1476597785949707 img loss 1.2147682905197144 img loss 1.1392544507980347 img loss 1.182517647743225 img loss 1.1725656986236572 img loss 1.1338223218917847 img loss 1.241088628768921 img loss 1.2585487365722656 img loss 1.1667158603668213 img loss 1.2050197124481201 img loss 1.190812349319458 img loss 1.208707332611084 img loss 1.1967055797576904 img loss 1.2771830558776855 img loss 1.2726954221725464 img loss 1.253975749015808 img loss 1.3083205223083496 img loss 1.193915843963623 img loss 1.1797699928283691 img loss 1.2157056331634521 img loss 1.1642775535583496 img loss 1.1838005781173706 img loss 1.2307649850845337 img loss 1.1970010995864868 img loss 1.23637855052948 img loss 1.334526777267456 img loss 1.1431585550308228 img loss 1.1996601819992065 img loss 1.2365984916687012 img loss 1.1757590770721436 img loss 1.2142086029052734 img loss 1.2275390625 img loss 1.2204890251159668 img loss 1.1746152639389038 img loss 1.280036211013794 img loss 1.208007574081421 img loss 1.2009934186935425 img loss 1.2617437839508057img loss 1.2088110446929932 img loss 1.1853578090667725 img loss 1.1736993789672852 img loss 1.1924490928649902 img loss 1.2866276502609253 img loss 1.2429649829864502 img loss 1.2083888053894043 img loss 1.2537707090377808 img loss 1.1926071643829346 img loss 1.2742756605148315 img loss 1.2143189907073975 img loss 1.2395521402359009 img loss 1.1501076221466064 img loss 1.2265911102294922 img loss 1.1478668451309204 {'loss': 1.2121, 'grad_norm': 0.4832109212875366, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2086464166641235 img loss 1.166152834892273 img loss 1.2233721017837524 img loss 1.1750240325927734 img loss 1.1579906940460205 img loss 1.2577283382415771 img loss 1.2065998315811157 img loss 1.1395167112350464 img loss 1.1417229175567627 img loss 1.250801920890808 img loss 1.197479248046875 img loss 1.1242256164550781 img loss 1.245233416557312 img loss 1.1830352544784546 img loss 1.125839352607727 img loss 1.1901973485946655 img loss 1.1753329038619995 img loss 1.1785004138946533 img loss 1.225595235824585 img loss 1.1589386463165283 img loss 1.2112547159194946 img loss 1.181587815284729 img loss 1.2205817699432373 img loss 1.1486986875534058 img loss 1.1604900360107422 img loss 1.1651959419250488 img loss 1.2265007495880127 img loss 1.2168595790863037 img loss 1.2083587646484375 img loss 1.1816115379333496 img loss 1.144661545753479 img loss 1.199920654296875 img loss 1.2053894996643066 img loss 1.1570439338684082 img loss 1.1925373077392578 img loss 1.1796175241470337 img loss 1.1463110446929932 img loss 1.239698886871338 img loss 1.2117522954940796 img loss 1.2108882665634155 img loss 1.1818428039550781 img loss 1.196199893951416 img loss 1.2016547918319702 img loss 1.2033655643463135 img loss 1.1950024366378784 img loss 1.2338911294937134 img loss 1.1738728284835815 img loss 1.1967283487319946 img loss 1.2694852352142334 img loss 1.2601635456085205 img loss 1.2374581098556519 img loss 1.149046778678894 img loss 1.20564866065979 img loss 1.1907455921173096 img loss 1.1381968259811401 img loss 1.1743894815444946 img loss 1.180006504058838 img loss 1.2220056056976318 img loss 1.233083963394165 img loss 1.2013609409332275 img loss 1.2060874700546265 img loss 1.1871286630630493 img loss 1.271701693534851 img loss 1.1439424753189087 img loss 1.1929888725280762 img loss 1.2122005224227905 img loss 1.208705186843872 img loss 1.212095856666565 img loss 1.1755625009536743 img loss 1.2113361358642578 img loss 1.2376933097839355 img loss 1.1097371578216553 img loss 1.2262674570083618 img loss 1.1652195453643799 img loss 1.2542670965194702 img loss 1.2195379734039307 img loss 1.315031886100769 img loss 1.1939624547958374 img loss 1.189889669418335 img loss 1.1597998142242432 img loss 1.0885491371154785 img loss 1.1836910247802734 img loss 1.1703745126724243 img loss 1.2081043720245361 img loss 1.2455036640167236 img loss 1.1651997566223145 img loss 1.1943821907043457 img loss 1.2228803634643555 img loss 1.1477073431015015 img loss 1.3481467962265015 img loss 1.2382644414901733 img loss 1.1866921186447144 img loss 1.2314090728759766 img loss 1.1706883907318115 img loss 1.2482150793075562 img loss 1.2873492240905762 img loss 1.3256057500839233 img loss 1.2176690101623535 img loss 1.2491888999938965 img loss 1.1637433767318726 img loss 1.238835096359253 img loss 1.1520999670028687 img loss 1.1845111846923828 img loss 1.187263011932373 img loss 1.1647218465805054 img loss 1.2742955684661865 img loss 1.1900962591171265 img loss 1.1472461223602295 img loss 1.1821751594543457 img loss 1.1782054901123047 img loss 1.1395758390426636 img loss 1.1809946298599243 img loss 1.2462348937988281 img loss 1.22114896774292 img loss 1.2330998182296753 img loss 1.1637346744537354 img loss 1.1467924118041992 img loss 1.2623119354248047 img loss 1.1962631940841675 img loss 1.172422170639038 img loss 1.148059368133545 img loss 1.2735933065414429 img loss 1.1624443531036377 img loss 1.1385996341705322 img loss 1.1979824304580688 img loss 1.4285768270492554 img loss 1.2271007299423218 img loss 1.3044841289520264 {'loss': 1.2009, 'grad_norm': 0.5722198486328125, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3586933612823486 img loss 1.33426034450531 img loss 1.4012341499328613 img loss 1.4090477228164673 img loss 1.3576163053512573 img loss 1.4128979444503784 img loss 1.3032079935073853 img loss 1.3814910650253296 img loss 1.2855745553970337 img loss 1.4413044452667236 img loss 1.33409583568573 img loss 1.3512396812438965 img loss 1.3967138528823853 img loss 1.3834863901138306 img loss 1.4001225233078003 img loss 1.3399971723556519 img loss 1.2774502038955688 img loss 1.4696228504180908 img loss 1.3679499626159668 img loss 1.347357988357544 img loss 1.3244694471359253 img loss 1.377894639968872 img loss 1.3461477756500244 img loss 1.3717402219772339 img loss 1.2485005855560303 img loss 1.3317612409591675 img loss 1.3407671451568604 img loss 1.392492413520813 img loss 1.4285900592803955 img loss 1.34486722946167 img loss 1.4341861009597778 img loss 1.4302469491958618 img loss 1.3584113121032715 img loss 1.3842787742614746 img loss 1.4012402296066284 img loss 1.3516583442687988 img loss 1.3865262269973755 img loss 1.2942891120910645 img loss 1.414533257484436 img loss 1.3663333654403687 img loss 1.4205358028411865 img loss 1.3139927387237549 img loss 1.4718796014785767 img loss 1.3967564105987549 img loss 1.4369113445281982 img loss 1.3935983180999756 img loss 1.3709207773208618 img loss 1.347306728363037 img loss 1.2762373685836792 img loss 1.3026655912399292 img loss 1.3082215785980225 img loss 1.428389072418213 img loss 1.3288803100585938 img loss 1.474326491355896 img loss 1.3895803689956665 img loss 1.3856654167175293 img loss 1.3317718505859375 img loss 1.337831735610962 img loss 1.33549964427948 img loss 1.4004045724868774 img loss 1.2675529718399048 img loss 1.336859941482544 img loss 1.2768865823745728 img loss 1.3689736127853394 img loss 1.366674542427063 img loss 1.4274424314498901 img loss 1.3934741020202637 img loss 1.4167797565460205 img loss 1.3333895206451416 img loss 1.4365731477737427 img loss 1.3975367546081543 img loss 1.3718962669372559 img loss 1.379341959953308 img loss 1.4435467720031738 img loss 1.4430458545684814 img loss 1.3290866613388062 img loss 1.3535147905349731 img loss 1.3035333156585693 img loss 1.2846333980560303 img loss 1.3425294160842896 img loss 1.3549901247024536 img loss 1.315326452255249 img loss 1.363572597503662 img loss 1.3452099561691284 img loss 1.3056846857070923 img loss 1.3524489402770996 img loss 1.3641133308410645 img loss 1.2835650444030762 img loss 1.3828519582748413 img loss 1.3162992000579834 img loss 1.3365156650543213 img loss 1.2804286479949951 img loss 1.4592667818069458 img loss 1.4566670656204224 img loss 1.3740832805633545 img loss 1.3703731298446655 img loss 1.2938036918640137 img loss 1.3688547611236572 img loss 1.3382623195648193 img loss 1.3383004665374756 img loss 1.3773046731948853 img loss 1.3401141166687012 img loss 1.3355000019073486 img loss 1.394694447517395 img loss 1.4338573217391968 img loss 1.4090149402618408 img loss 1.3915207386016846 img loss 1.3800245523452759 img loss 1.4905158281326294 img loss 1.2706005573272705 img loss 1.3316032886505127 img loss 1.4242712259292603 img loss 1.3131767511367798 img loss 1.369818925857544 img loss 1.3935688734054565 img loss 1.363664150238037 img loss 1.408048152923584 img loss 1.3006218671798706 img loss 1.4359824657440186 img loss 1.2794957160949707 img loss 1.2524551153182983 img loss 1.3861238956451416 img loss 1.388388752937317 img loss 1.3672417402267456 img loss 1.4503045082092285 img loss 1.4139374494552612 img loss 1.307043433189392 img loss 1.3659864664077759 {'loss': 1.3655, 'grad_norm': 0.5033406019210815, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3136919736862183 img loss 1.4221786260604858 img loss 1.4122241735458374 img loss 1.3311468362808228 img loss 1.3194292783737183 img loss 1.2893644571304321 img loss 1.4252960681915283 img loss 1.309672236442566 img loss 1.328340768814087 img loss 1.403865098953247 img loss 1.3281093835830688 img loss 1.2493674755096436 img loss 1.2668675184249878 img loss 1.2475731372833252 img loss 1.2287993431091309 img loss 1.371000051498413 img loss 1.2738312482833862 img loss 1.2474334239959717 img loss 1.2695451974868774 img loss 1.3027037382125854 img loss 1.2876890897750854 img loss 1.3394744396209717 img loss 1.4525582790374756 img loss 1.4115498065948486 img loss 1.3411295413970947 img loss 1.3392239809036255 img loss 1.2799110412597656 img loss 1.289886474609375 img loss 1.3706555366516113 img loss 1.426886796951294 img loss 1.2550194263458252 img loss 1.320585012435913 img loss 1.3372389078140259 img loss 1.3376203775405884 img loss 1.2515676021575928 img loss 1.341845154762268 img loss 1.3242686986923218 img loss 1.2428741455078125 img loss 1.377711534500122 img loss 1.2626549005508423 img loss 1.2840622663497925 img loss 1.1962847709655762 img loss 1.2489547729492188 img loss 1.2275049686431885 img loss 1.3040733337402344 img loss 1.3988608121871948 img loss 1.2608106136322021 img loss 1.3056801557540894 img loss 1.2659218311309814 img loss 1.281839370727539 img loss 1.3828831911087036 img loss 1.2571327686309814 img loss 1.266692042350769 img loss 1.2617896795272827 img loss 1.2663781642913818 img loss 1.2560484409332275 img loss 1.2580087184906006 img loss 1.2691940069198608 img loss 1.2896678447723389 img loss 1.304159164428711 img loss 1.3830246925354004 img loss 1.3348640203475952 img loss 1.2469415664672852 img loss 1.2117118835449219 img loss 1.3162959814071655 img loss 1.2204644680023193 img loss 1.4061609506607056 img loss 1.3941667079925537 img loss 1.2291030883789062 img loss 1.4126099348068237 img loss 1.228776216506958 img loss 1.3401992321014404 img loss 1.2355475425720215 img loss 1.4568800926208496 img loss 1.3147462606430054 img loss 1.2481287717819214 img loss 1.3097938299179077 img loss 1.324021577835083 img loss 1.2444264888763428 img loss 1.2476320266723633 img loss 1.3007862567901611 img loss 1.336411714553833 img loss 1.2459957599639893 img loss 1.2467707395553589 img loss 1.216282606124878 img loss 1.3178186416625977 img loss 1.3778642416000366 img loss 1.222307801246643 img loss 1.3457058668136597 img loss 1.3335973024368286 img loss 1.2159743309020996 img loss 1.350565791130066 img loss 1.2280529737472534 img loss 1.245382308959961 img loss 1.3364675045013428 img loss 1.3208907842636108 img loss 1.2889372110366821 img loss 1.1995785236358643 img loss 1.416355848312378 img loss 1.3100755214691162 img loss 1.3451097011566162 img loss 1.367277979850769 img loss 1.3230422735214233 img loss 1.2789109945297241 img loss 1.3952082395553589 img loss 1.2940547466278076 img loss 1.2382510900497437 img loss 1.356829047203064 img loss 1.2957932949066162 img loss 1.3882793188095093 img loss 1.2850984334945679 img loss 1.316310167312622 img loss 1.3981655836105347 img loss 1.3049163818359375 img loss 1.244110345840454 img loss 1.2656471729278564 img loss 1.2840620279312134 img loss 1.2618811130523682 img loss 1.242357850074768 img loss 1.2812743186950684 img loss 1.3420912027359009 img loss 1.3457331657409668 img loss 1.3574541807174683 img loss 1.3175128698349 img loss 1.336174488067627 img loss 1.3118054866790771 img loss 1.314347743988037 img loss 1.2804359197616577 {'loss': 1.3066, 'grad_norm': 0.37501659989356995, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.549075961112976 img loss 1.5983129739761353 img loss 1.4540153741836548 img loss 1.4852092266082764 img loss 1.5240310430526733 img loss 1.5243226289749146 img loss 1.4255998134613037 img loss 1.6112676858901978 img loss 1.7303919792175293 img loss 1.764693260192871 img loss 1.581976294517517 img loss 1.4680049419403076 img loss 1.4998724460601807 img loss 1.694444179534912 img loss 1.5655133724212646 img loss 1.5136016607284546 img loss 1.5035450458526611 img loss 1.6694685220718384 img loss 1.4817557334899902 img loss 1.6533209085464478 img loss 1.539365530014038 img loss 1.5469224452972412 img loss 1.6244816780090332 img loss 1.6091744899749756 img loss 1.5507900714874268 img loss 1.4683860540390015 img loss 1.7013362646102905 img loss 1.583350419998169 img loss 1.5509406328201294 img loss 1.5611125230789185 img loss 1.7597155570983887 img loss 1.6445624828338623 img loss 1.5453075170516968 img loss 1.491428017616272 img loss 1.4704738855361938 img loss 1.599549651145935 img loss 1.7262628078460693 img loss 1.4897665977478027 img loss 1.619910717010498 img loss 1.626685380935669 img loss 1.5557559728622437 img loss 1.4562764167785645 img loss 1.4892865419387817 img loss 1.5624531507492065 img loss 1.526989221572876 img loss 1.544590711593628 img loss 1.5875824689865112 img loss 1.4332090616226196 img loss 1.523364543914795 img loss 1.4812102317810059 img loss 1.6964128017425537 img loss 1.5570698976516724 img loss 1.5775164365768433 img loss 1.5877268314361572 img loss 1.5304486751556396 img loss 1.5527254343032837 img loss 1.6399558782577515 img loss 1.5315228700637817 img loss 1.5007163286209106 img loss 1.8194284439086914 img loss 1.616548776626587 img loss 1.5054848194122314 img loss 1.6488412618637085 img loss 1.6528970003128052 img loss 1.4826821088790894 img loss 1.4756464958190918 img loss 1.5671659708023071 img loss 1.7404013872146606 img loss 1.5651172399520874 img loss 1.764486312866211 img loss 1.4667751789093018 img loss 1.586321473121643 img loss 1.4006789922714233 img loss 1.615679144859314 img loss 1.6536707878112793 img loss 1.4883265495300293 img loss 1.5511834621429443 img loss 1.548012375831604 img loss 1.6537625789642334 img loss 1.748723030090332 img loss 1.6179546117782593 img loss 1.5307252407073975 img loss 1.5189547538757324 img loss 1.5446572303771973 img loss 1.614930510520935 img loss 1.5896681547164917 img loss 1.5789053440093994 img loss 1.6356866359710693 img loss 1.568784475326538 img loss 1.58206045627594 img loss 1.6821379661560059 img loss 1.5350604057312012 img loss 1.5864923000335693 img loss 1.6992239952087402 img loss 1.5293432474136353 img loss 1.566231369972229 img loss 1.6429836750030518 img loss 1.4620764255523682img loss 1.6971211433410645 img loss 1.6364171504974365 img loss 1.4366616010665894 img loss 1.4612685441970825 img loss 1.5564478635787964 img loss 1.5003832578659058 img loss 1.545640468597412 img loss 1.6373603343963623 img loss 1.5726630687713623 img loss 1.5668336153030396 img loss 1.756514549255371 img loss 1.5336531400680542 img loss 1.688206434249878 img loss 1.5657275915145874 img loss 1.7475316524505615 img loss 1.4829232692718506 img loss 1.6008021831512451 img loss 1.6488536596298218 img loss 1.6156232357025146 img loss 1.5689423084259033 img loss 1.5165530443191528 img loss 1.5779693126678467 img loss 1.7112877368927002 img loss 1.5082812309265137 img loss 1.4678617715835571 img loss 1.7030032873153687 img loss 1.4986056089401245 img loss 1.631500005722046 img loss 1.4439176321029663 img loss 1.4743189811706543 {'loss': 1.576, 'grad_norm': 0.5059176087379456, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1696592569351196 img loss 1.151874303817749 img loss 1.3196461200714111 img loss 1.1744120121002197 img loss 1.1959505081176758 img loss 1.1721339225769043 img loss 1.2146457433700562 img loss 1.2259252071380615 img loss 1.2701555490493774 img loss 1.2173393964767456 img loss 1.1956663131713867 img loss 1.1581958532333374 img loss 1.2572780847549438 img loss 1.2178776264190674 img loss 1.2238898277282715 img loss 1.1756712198257446 img loss 1.188338041305542 img loss 1.1474039554595947 img loss 1.1769599914550781 img loss 1.1627296209335327 img loss 1.17366361618042 img loss 1.1603742837905884 img loss 1.271098017692566 img loss 1.117491364479065 img loss 1.1927553415298462 img loss 1.1050480604171753 img loss 1.173567771911621 img loss 1.265968680381775 img loss 1.2743743658065796 img loss 1.2259176969528198 img loss 1.061103105545044 img loss 1.1967302560806274 img loss 1.2487322092056274 img loss 1.1378682851791382 img loss 1.2253124713897705 img loss 1.2212234735488892 img loss 1.2348904609680176 img loss 1.2598891258239746 img loss 1.2011150121688843 img loss 1.1497312784194946 img loss 1.2184025049209595 img loss 1.1733721494674683 img loss 1.1554248332977295 img loss 1.1337324380874634 img loss 1.1635569334030151 img loss 1.250841736793518 img loss 1.1301796436309814 img loss 1.174813985824585 img loss 1.1711586713790894 img loss 1.106339931488037 img loss 1.26267409324646 img loss 1.1662414073944092 img loss 1.2076135873794556 img loss 1.2235803604125977 img loss 1.1997267007827759 img loss 1.1435209512710571 img loss 1.1778526306152344 img loss 1.2098451852798462 img loss 1.2317900657653809 img loss 1.2027604579925537 img loss 1.2842239141464233 img loss 1.118560791015625 img loss 1.2297759056091309 img loss 1.2675138711929321 img loss 1.2001407146453857 img loss 1.211547613143921 img loss 1.1171869039535522 img loss 1.2023346424102783 img loss 1.2093026638031006 img loss 1.1873371601104736 img loss 1.0918816328048706 img loss 1.1704254150390625 img loss 1.2113274335861206 img loss 1.2190608978271484 img loss 1.227236032485962 img loss 1.2313518524169922 img loss 1.2593224048614502 img loss 1.1396563053131104 img loss 1.3904978036880493 img loss 1.2439943552017212 img loss 1.1763399839401245 img loss 1.1608474254608154 img loss 1.3169559240341187 img loss 1.1362359523773193 img loss 1.2220790386199951 img loss 1.187248945236206 img loss 1.2000662088394165 img loss 1.250117301940918 img loss 1.2208809852600098 img loss 1.2123266458511353 img loss 1.1809751987457275 img loss 1.1321420669555664 img loss 1.2428711652755737 img loss 1.1852376461029053 img loss 1.1765254735946655 img loss 1.116612434387207 img loss 1.2421528100967407 img loss 1.249621868133545 img loss 1.2109037637710571 img loss 1.2336574792861938 img loss 1.2959693670272827 img loss 1.2229009866714478 img loss 1.184092402458191 img loss 1.232573390007019 img loss 1.1569808721542358 img loss 1.2568854093551636 img loss 1.2970600128173828 img loss 1.2020765542984009 img loss 1.2503169775009155 img loss 1.2002334594726562 img loss 1.2090747356414795 img loss 1.2229804992675781 img loss 1.2350916862487793 img loss 1.2665382623672485 img loss 1.2416043281555176 img loss 1.2369133234024048 img loss 1.240492820739746 img loss 1.2040528059005737 img loss 1.1953067779541016 img loss 1.2537343502044678 img loss 1.1813766956329346 img loss 1.0939991474151611 img loss 1.1546579599380493 img loss 1.2063452005386353 img loss 1.2228755950927734 img loss 1.148768663406372 img loss 1.1812368631362915 img loss 1.2263683080673218 {'loss': 1.2024, 'grad_norm': 0.278080016374588, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2582204341888428 img loss 1.2631473541259766 img loss 1.2959952354431152 img loss 1.2310564517974854 img loss 1.3041613101959229 img loss 1.280351996421814 img loss 1.2503929138183594 img loss 1.26522696018219 img loss 1.2075650691986084 img loss 1.3641020059585571 img loss 1.2212390899658203 img loss 1.2533079385757446 img loss 1.2980825901031494 img loss 1.2107781171798706 img loss 1.2223942279815674 img loss 1.259120225906372 img loss 1.3091684579849243 img loss 1.2514889240264893 img loss 1.2418756484985352 img loss 1.282944917678833 img loss 1.2694162130355835 img loss 1.2851208448410034 img loss 1.272947072982788 img loss 1.3251171112060547 img loss 1.2773891687393188 img loss 1.2510032653808594 img loss 1.2739462852478027 img loss 1.2379014492034912 img loss 1.23493230342865 img loss 1.2493839263916016 img loss 1.2883403301239014 img loss 1.39179527759552 img loss 1.263440489768982 img loss 1.1929309368133545 img loss 1.280776023864746 img loss 1.2168744802474976 img loss 1.3196032047271729 img loss 1.237422227859497 img loss 1.2574743032455444 img loss 1.2775681018829346 img loss 1.2516274452209473 img loss 1.2344400882720947 img loss 1.2571662664413452 img loss 1.3271929025650024 img loss 1.3067042827606201 img loss 1.2692797183990479 img loss 1.209345817565918 img loss 1.2537076473236084 img loss 1.2612205743789673 img loss 1.3392081260681152 img loss 1.2457739114761353 img loss 1.2741186618804932 img loss 1.2609343528747559 img loss 1.2232043743133545 img loss 1.2555582523345947 img loss 1.2871674299240112 img loss 1.2206436395645142 img loss 1.2878764867782593 img loss 1.2387444972991943 img loss 1.3370916843414307 img loss 1.272223711013794 img loss 1.3244585990905762 img loss 1.2088440656661987 img loss 1.2079389095306396 img loss 1.348395824432373 img loss 1.2095612287521362 img loss 1.2464959621429443 img loss 1.2966721057891846 img loss 1.213619589805603 img loss 1.336264967918396 img loss 1.2400480508804321 img loss 1.2866572141647339 img loss 1.296057939529419 img loss 1.2174783945083618 img loss 1.1984144449234009 img loss 1.2594588994979858 img loss 1.247963309288025 img loss 1.2517837285995483 img loss 1.2862944602966309 img loss 1.27720046043396 img loss 1.2581161260604858 img loss 1.259231448173523 img loss 1.2434204816818237 img loss 1.3712087869644165 img loss 1.209686279296875 img loss 1.2969303131103516 img loss 1.272254467010498 img loss 1.2212729454040527 img loss 1.2660675048828125 img loss 1.3069794178009033 img loss 1.2153606414794922 img loss 1.3211376667022705 img loss 1.2902911901474 img loss 1.2461457252502441 img loss 1.2148512601852417 img loss 1.2761038541793823 img loss 1.2332900762557983 img loss 1.3015642166137695 img loss 1.2915501594543457 img loss 1.2819076776504517 img loss 1.2072657346725464 img loss 1.3378111124038696 img loss 1.262144684791565 img loss 1.256935954093933 img loss 1.256651520729065 img loss 1.295433521270752 img loss 1.2692711353302002 img loss 1.2818810939788818 img loss 1.309924840927124 img loss 1.2862919569015503 img loss 1.2736753225326538 img loss 1.3226332664489746 img loss 1.2720961570739746 img loss 1.2588151693344116 img loss 1.2727916240692139 img loss 1.3206733465194702 img loss 1.2244179248809814 img loss 1.3122868537902832 img loss 1.2311451435089111 img loss 1.234635829925537 img loss 1.219820499420166 img loss 1.1733055114746094 img loss 1.3658777475357056 img loss 1.3089134693145752 img loss 1.2288068532943726 img loss 1.1695802211761475 img loss 1.2390793561935425 img loss 1.3013396263122559 {'loss': 1.2665, 'grad_norm': 0.3326250910758972, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1021432876586914 img loss 1.294594407081604 img loss 1.4261573553085327 img loss 1.3956105709075928 img loss 1.3457878828048706 img loss 1.3141082525253296 img loss 1.2659342288970947 img loss 1.3304615020751953 img loss 1.3159759044647217 img loss 1.2831217050552368 img loss 1.2646373510360718 img loss 1.210410714149475 img loss 1.195136547088623 img loss 1.2973897457122803 img loss 1.2316187620162964 img loss 1.2600370645523071 img loss 1.197082281112671 img loss 1.2047817707061768 img loss 1.356524109840393 img loss 1.3446173667907715 img loss 1.3015046119689941 img loss 1.2235406637191772 img loss 1.1460384130477905 img loss 1.3226078748703003 img loss 1.2922000885009766 img loss 1.3128944635391235 img loss 1.2378406524658203 img loss 1.2769724130630493 img loss 1.2361278533935547 img loss 1.3341078758239746 img loss 1.2014068365097046 img loss 1.2430111169815063 img loss 1.247308611869812 img loss 1.1864755153656006 img loss 1.2298742532730103 img loss 1.2724262475967407 img loss 1.2060133218765259 img loss 1.248133659362793 img loss 1.2450964450836182 img loss 1.1159915924072266 img loss 1.2338638305664062 img loss 1.2258726358413696 img loss 1.1246544122695923 img loss 1.2947723865509033 img loss 1.2304489612579346 img loss 1.2299312353134155 img loss 1.2718836069107056 img loss 1.2231364250183105 img loss 1.4777381420135498 img loss 1.2114742994308472 img loss 1.2506681680679321img loss 1.3042793273925781 img loss 1.2922399044036865 img loss 1.2223589420318604 img loss 1.208556890487671 img loss 1.1507000923156738 img loss 1.2831299304962158 img loss 1.2178382873535156 img loss 1.2222495079040527 img loss 1.1448277235031128 img loss 1.2214304208755493 img loss 1.2393467426300049 img loss 1.3168675899505615 img loss 1.2472655773162842 img loss 1.176604986190796 img loss 1.2155147790908813 img loss 1.2170405387878418 img loss 1.234089732170105 img loss 1.3593369722366333 img loss 1.2927055358886719img loss 1.2759320735931396 img loss 1.22507643699646 img loss 1.3982301950454712 img loss 1.4204614162445068 img loss 1.2205448150634766 img loss 1.3406615257263184 img loss 1.29472017288208 img loss 1.2338275909423828 img loss 1.1082919836044312 img loss 1.251122236251831 img loss 1.3198097944259644 img loss 1.19670569896698 img loss 1.273314356803894 img loss 1.2674384117126465 img loss 1.2844339609146118 img loss 1.2474071979522705 img loss 1.3454664945602417 img loss 1.2807121276855469 img loss 1.3102812767028809 img loss 1.3053253889083862 img loss 1.2020078897476196 img loss 1.2965830564498901 img loss 1.175328254699707 img loss 1.2398346662521362 img loss 1.2757246494293213 img loss 1.2896591424942017 img loss 1.2961162328720093 img loss 1.3218506574630737 img loss 1.221919059753418 img loss 1.3298040628433228 img loss 1.2108410596847534 img loss 1.2300022840499878 img loss 1.1605699062347412 img loss 1.2873066663742065 img loss 1.204331874847412 img loss 1.2107574939727783 img loss 1.275916576385498 img loss 1.2266472578048706 img loss 1.2516177892684937 img loss 1.2933963537216187 img loss 1.2499605417251587 img loss 1.2332773208618164 img loss 1.351941704750061 img loss 1.2562042474746704 img loss 1.3037079572677612 img loss 1.2286944389343262 img loss 1.1800206899642944 img loss 1.1289366483688354 img loss 1.218841314315796 img loss 1.2264277935028076 img loss 1.2425552606582642 img loss 1.3368923664093018 img loss 1.413041353225708 img loss 1.2448534965515137 img loss 1.253324031829834 img loss 1.257981538772583 img loss 1.238885521888733 img loss 1.1483830213546753 {'loss': 1.2576, 'grad_norm': 0.3375582993030548, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4156975746154785 img loss 1.2504011392593384 img loss 1.3503459692001343 img loss 1.30948805809021 img loss 1.274144172668457 img loss 1.374123215675354 img loss 1.2440983057022095 img loss 1.2720463275909424 img loss 1.2723968029022217 img loss 1.3092498779296875 img loss 1.2186832427978516 img loss 1.223259449005127 img loss 1.3165533542633057 img loss 1.3276478052139282 img loss 1.2669872045516968 img loss 1.2525417804718018 img loss 1.275399923324585 img loss 1.4336206912994385 img loss 1.2676395177841187 img loss 1.2687735557556152 img loss 1.4561289548873901 img loss 1.352426290512085 img loss 1.2855459451675415 img loss 1.3738700151443481 img loss 1.3160393238067627 img loss 1.3537904024124146 img loss 1.3535467386245728 img loss 1.2468390464782715 img loss 1.2775026559829712 img loss 1.3215901851654053 img loss 1.2801384925842285 img loss 1.2797901630401611 img loss 1.2783750295639038 img loss 1.362570881843567 img loss 1.3091983795166016 img loss 1.2517943382263184 img loss 1.237689733505249 img loss 1.2946147918701172 img loss 1.3786654472351074 img loss 1.297886610031128 img loss 1.283647060394287 img loss 1.482081651687622 img loss 1.351387619972229 img loss 1.3584285974502563 img loss 1.2706749439239502 img loss 1.2808271646499634 img loss 1.358519434928894 img loss 1.3743692636489868 img loss 1.2994555234909058 img loss 1.2824424505233765 img loss 1.2387847900390625 img loss 1.3443812131881714 img loss 1.3126227855682373 img loss 1.344876766204834 img loss 1.4372284412384033 img loss 1.315112829208374 img loss 1.195142149925232 img loss 1.3124607801437378 img loss 1.3279948234558105 img loss 1.3500744104385376 img loss 1.3861534595489502 img loss 1.3169772624969482 img loss 1.2391856908798218 img loss 1.3832676410675049 img loss 1.2928884029388428 img loss 1.4684315919876099 img loss 1.2184805870056152 img loss 1.3494731187820435 img loss 1.2982995510101318 img loss 1.4030154943466187 img loss 1.2292447090148926 img loss 1.2119865417480469 img loss 1.3363738059997559 img loss 1.2979795932769775 img loss 1.313423991203308 img loss 1.2814536094665527 img loss 1.270115613937378 img loss 1.2584654092788696 img loss 1.2802331447601318 img loss 1.2922759056091309 img loss 1.4493166208267212 img loss 1.4488012790679932 img loss 1.2788593769073486 img loss 1.3896487951278687 img loss 1.4383385181427002 img loss 1.335565209388733 img loss 1.3406522274017334 img loss 1.2964110374450684 img loss 1.3256863355636597 img loss 1.3223596811294556 img loss 1.4270617961883545 img loss 1.3286983966827393 img loss 1.4201388359069824 img loss 1.2914292812347412 img loss 1.3179420232772827 img loss 1.2716858386993408 img loss 1.345874547958374 img loss 1.3078961372375488 img loss 1.1885380744934082 img loss 1.356665849685669 img loss 1.3549703359603882 img loss 1.3435486555099487 img loss 1.3879765272140503 img loss 1.3439314365386963 img loss 1.300410509109497 img loss 1.2720763683319092 img loss 1.3402094841003418 img loss 1.1581703424453735 img loss 1.2802213430404663 img loss 1.4149396419525146 img loss 1.4575458765029907 img loss 1.4392918348312378 img loss 1.353562593460083 img loss 1.3353352546691895 img loss 1.3051238059997559 img loss 1.3079135417938232 img loss 1.3390508890151978 img loss 1.359278917312622 img loss 1.259987711906433 img loss 1.3341764211654663 img loss 1.2638654708862305 img loss 1.3189538717269897 img loss 1.2253563404083252 img loss 1.2919375896453857 img loss 1.2399702072143555 img loss 1.3083622455596924 img loss 1.243468999862671 img loss 1.1882063150405884 {'loss': 1.3166, 'grad_norm': 0.2928457260131836, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1959788799285889 img loss 1.16147780418396 img loss 1.2263495922088623 img loss 1.2168004512786865 img loss 1.2099220752716064 img loss 1.1748600006103516 img loss 1.1853387355804443 img loss 1.3151721954345703 img loss 1.276727557182312 img loss 1.1992114782333374 img loss 1.1291531324386597 img loss 1.1566407680511475 img loss 1.2581545114517212 img loss 1.1634985208511353 img loss 1.2041051387786865 img loss 1.2550514936447144 img loss 1.1780341863632202 img loss 1.278307557106018 img loss 1.2787517309188843 img loss 1.2817186117172241 img loss 1.2044012546539307 img loss 1.2571475505828857 img loss 1.3185055255889893 img loss 1.2475817203521729 img loss 1.2391785383224487 img loss 1.2092889547348022 img loss 1.1820982694625854 img loss 1.2702034711837769 img loss 1.2143694162368774 img loss 1.1787958145141602 img loss 1.1251978874206543 img loss 1.254620909690857 img loss 1.3157867193222046 img loss 1.2530293464660645 img loss 1.2188695669174194 img loss 1.210693597793579 img loss 1.2266432046890259 img loss 1.1736514568328857 img loss 1.2925249338150024 img loss 1.160156011581421 img loss 1.2174782752990723 img loss 1.3101475238800049 img loss 1.2436614036560059 img loss 1.257270097732544 img loss 1.24125075340271 img loss 1.2017831802368164 img loss 1.311249017715454 img loss 1.1869137287139893 img loss 1.3108797073364258 img loss 1.2373557090759277 img loss 1.2146648168563843 img loss 1.2179540395736694 img loss 1.1933269500732422 img loss 1.2163894176483154 img loss 1.3105968236923218 img loss 1.2219922542572021 img loss 1.2542932033538818 img loss 1.119389533996582 img loss 1.221254825592041 img loss 1.264703392982483 img loss 1.2036176919937134 img loss 1.281045913696289 img loss 1.2462257146835327 img loss 1.3282525539398193 img loss 1.2194865942001343 img loss 1.2431740760803223 img loss 1.2272560596466064 img loss 1.230570673942566 img loss 1.1793029308319092 img loss 1.2246098518371582 img loss 1.286943793296814 img loss 1.2147433757781982 img loss 1.1996662616729736 img loss 1.1835424900054932 img loss 1.2293323278427124 img loss 1.2534927129745483 img loss 1.2835607528686523 img loss 1.2476361989974976 img loss 1.243350863456726 img loss 1.2226505279541016 img loss 1.132219672203064 img loss 1.2711542844772339 img loss 1.237713098526001 img loss 1.23496413230896 img loss 1.2102054357528687 img loss 1.2421190738677979 img loss 1.212031602859497 img loss 1.234147310256958 img loss 1.2594883441925049 img loss 1.2450603246688843 img loss 1.2094471454620361 img loss 1.258453130722046 img loss 1.2344497442245483 img loss 1.29146146774292 img loss 1.1630704402923584 img loss 1.2434501647949219 img loss 1.289751410484314 img loss 1.1752049922943115 img loss 1.1708228588104248 img loss 1.2451772689819336 img loss 1.2754467725753784 img loss 1.2077012062072754 img loss 1.265401840209961 img loss 1.2538074254989624 img loss 1.2745418548583984 img loss 1.1742260456085205 img loss 1.3576176166534424 img loss 1.1978099346160889 img loss 1.2965893745422363 img loss 1.2647335529327393 img loss 1.3298330307006836 img loss 1.2759695053100586 img loss 1.2541179656982422 img loss 1.3065297603607178 img loss 1.2017366886138916 img loss 1.2522073984146118 img loss 1.2314739227294922 img loss 1.221068263053894 img loss 1.25155508518219 img loss 1.1994946002960205 img loss 1.2138174772262573 img loss 1.2507076263427734 img loss 1.2253074645996094 img loss 1.203383207321167 img loss 1.1507275104522705 img loss 1.1862233877182007 img loss 1.3024567365646362 img loss 1.2450175285339355 {'loss': 1.233, 'grad_norm': 0.26174208521842957, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1260651350021362 img loss 1.2453184127807617 img loss 1.2862083911895752 img loss 1.1770294904708862 img loss 1.236798882484436 img loss 1.1242811679840088 img loss 1.1706184148788452 img loss 1.1271148920059204 img loss 1.2165263891220093 img loss 1.1977108716964722 img loss 1.1954559087753296 img loss 1.2146084308624268img loss 1.227180004119873 img loss 1.1095069646835327 img loss 1.2298893928527832 img loss 1.2434632778167725 img loss 1.2010934352874756 img loss 1.2218955755233765 img loss 1.1840784549713135 img loss 1.1441190242767334 img loss 1.2434457540512085 img loss 1.1977366209030151 img loss 1.2314039468765259 img loss 1.177027940750122 img loss 1.2102203369140625 img loss 1.1963509321212769 img loss 1.2643508911132812 img loss 1.230344295501709 img loss 1.2110073566436768 img loss 1.1341001987457275 img loss 1.1791900396347046 img loss 1.260082721710205 img loss 1.2375729084014893 img loss 1.2412793636322021 img loss 1.2720094919204712 img loss 1.2709640264511108 img loss 1.27768874168396 img loss 1.176340103149414 img loss 1.2440526485443115 img loss 1.2030950784683228 img loss 1.2228772640228271 img loss 1.1329903602600098 img loss 1.1713149547576904 img loss 1.2871372699737549 img loss 1.1859724521636963 img loss 1.2894320487976074 img loss 1.32197904586792 img loss 1.2735931873321533 img loss 1.1973727941513062 img loss 1.187808632850647 img loss 1.187256097793579 img loss 1.2781107425689697 img loss 1.1565208435058594 img loss 1.276025414466858 img loss 1.2479275465011597 img loss 1.1933627128601074 img loss 1.1671565771102905 img loss 1.1649699211120605 img loss 1.1977050304412842 img loss 1.2012228965759277 img loss 1.2467848062515259 img loss 1.1685138940811157 img loss 1.320242166519165 img loss 1.3272552490234375 img loss 1.1899288892745972 img loss 1.247899055480957 img loss 1.1889050006866455 img loss 1.2691528797149658 img loss 1.1297930479049683 img loss 1.141845464706421 img loss 1.1572906970977783 img loss 1.1625351905822754 img loss 1.2401583194732666 img loss 1.1730976104736328 img loss 1.2176930904388428 img loss 1.292928695678711 img loss 1.2667101621627808 img loss 1.2922110557556152 img loss 1.23109769821167 img loss 1.2672487497329712 img loss 1.16118323802948 img loss 1.2574102878570557 img loss 1.2125980854034424 img loss 1.20027756690979 img loss 1.232242465019226 img loss 1.2071233987808228 img loss 1.2000083923339844 img loss 1.1812938451766968 img loss 1.2225626707077026 img loss 1.2464386224746704 img loss 1.2259982824325562 img loss 1.2139843702316284 img loss 1.2945153713226318 img loss 1.1744625568389893 img loss 1.2494735717773438 img loss 1.216816782951355 img loss 1.2275135517120361 img loss 1.2175569534301758 img loss 1.376220464706421 img loss 1.2763440608978271 img loss 1.2125165462493896 img loss 1.1640865802764893 img loss 1.1523628234863281 img loss 1.2845304012298584 img loss 1.224382996559143 img loss 1.2283252477645874 img loss 1.2347315549850464 img loss 1.221454381942749 img loss 1.2514228820800781 img loss 1.2396808862686157 img loss 1.2380281686782837 img loss 1.3089540004730225 img loss 1.1876506805419922 img loss 1.2276966571807861 img loss 1.192352294921875 img loss 1.250589370727539 img loss 1.128692388534546 img loss 1.1354678869247437 img loss 1.2269169092178345 img loss 1.1907551288604736 img loss 1.1933410167694092 img loss 1.1968787908554077 img loss 1.3051304817199707 img loss 1.20572829246521 img loss 1.223324179649353 img loss 1.1746842861175537 img loss 1.1700050830841064 img loss 1.1775966882705688 {'loss': 1.2168, 'grad_norm': 0.37951168417930603, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.193459153175354 img loss 1.1192631721496582 img loss 1.2150123119354248 img loss 1.2688946723937988 img loss 1.195462942123413 img loss 1.1839590072631836 img loss 1.2404589653015137 img loss 1.2461998462677002 img loss 1.2074573040008545 img loss 1.1767176389694214 img loss 1.2601568698883057 img loss 1.3116486072540283 img loss 1.2775360345840454 img loss 1.2201173305511475 img loss 1.1533854007720947 img loss 1.1846741437911987 img loss 1.2517791986465454 img loss 1.290522813796997 img loss 1.2179350852966309 img loss 1.2292860746383667 img loss 1.1679922342300415 img loss 1.1916803121566772 img loss 1.1705645322799683 img loss 1.2166690826416016 img loss 1.1768401861190796 img loss 1.2208446264266968 img loss 1.196033239364624 img loss 1.1812794208526611 img loss 1.192440390586853 img loss 1.2838109731674194 img loss 1.1747894287109375 img loss 1.1729780435562134 img loss 1.2459238767623901 img loss 1.2397947311401367 img loss 1.244815707206726 img loss 1.1419954299926758 img loss 1.1919033527374268 img loss 1.1696966886520386 img loss 1.175925612449646 img loss 1.2054781913757324 img loss 1.277221441268921 img loss 1.2008013725280762 img loss 1.17959463596344 img loss 1.2241840362548828 img loss 1.2871211767196655 img loss 1.2208411693572998 img loss 1.2873762845993042 img loss 1.2541090250015259 img loss 1.1710963249206543 img loss 1.1931140422821045 img loss 1.1922000646591187 img loss 1.1838270425796509 img loss 1.1789480447769165 img loss 1.2491816282272339 img loss 1.2326114177703857 img loss 1.2314808368682861 img loss 1.2705001831054688 img loss 1.1559233665466309 img loss 1.174020767211914 img loss 1.2076542377471924 img loss 1.2097105979919434 img loss 1.1591668128967285 img loss 1.2687183618545532 img loss 1.1897996664047241 img loss 1.191525936126709 img loss 1.2559583187103271 img loss 1.248672366142273 img loss 1.1737035512924194 img loss 1.189664602279663 img loss 1.322391152381897 img loss 1.1987519264221191 img loss 1.2292524576187134 img loss 1.180337905883789 img loss 1.2074106931686401 img loss 1.3034111261367798 img loss 1.1713294982910156 img loss 1.207793116569519 img loss 1.2388826608657837 img loss 1.2182105779647827 img loss 1.2601345777511597 img loss 1.240896463394165 img loss 1.1856567859649658 img loss 1.1531438827514648 img loss 1.1515241861343384 img loss 1.184330701828003 img loss 1.2753992080688477 img loss 1.1266448497772217 img loss 1.20890474319458 img loss 1.2254084348678589 img loss 1.191310167312622 img loss 1.1601943969726562 img loss 1.204852819442749 img loss 1.193528413772583 img loss 1.2481701374053955 img loss 1.2747361660003662 img loss 1.2002676725387573 img loss 1.203150987625122 img loss 1.2366352081298828 img loss 1.2743792533874512 img loss 1.198554515838623 img loss 1.2440061569213867 img loss 1.1883217096328735 img loss 1.195697546005249 img loss 1.1737419366836548 img loss 1.1486928462982178 img loss 1.2255610227584839 img loss 1.2478101253509521 img loss 1.2530040740966797 img loss 1.1544462442398071 img loss 1.2261146306991577 img loss 1.17922043800354 img loss 1.2339603900909424 img loss 1.2167977094650269 img loss 1.252084493637085 img loss 1.1745336055755615 img loss 1.1545606851577759 img loss 1.2152395248413086 img loss 1.2312262058258057 img loss 1.210442304611206 img loss 1.2687649726867676 img loss 1.2344558238983154 img loss 1.2303900718688965 img loss 1.2151241302490234 img loss 1.185686707496643 img loss 1.2335551977157593 img loss 1.1350191831588745 img loss 1.2529997825622559 img loss 1.1275018453598022 {'loss': 1.2121, 'grad_norm': 0.3490966558456421, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3373266458511353 img loss 1.3084442615509033 img loss 1.2784589529037476 img loss 1.2936168909072876 img loss 1.2973096370697021 img loss 1.3698766231536865 img loss 1.371951699256897 img loss 1.3332915306091309 img loss 1.3051445484161377 img loss 1.2337043285369873 img loss 1.343645453453064 img loss 1.2443875074386597 img loss 1.31427001953125 img loss 1.237831473350525 img loss 1.3071815967559814 img loss 1.312285304069519 img loss 1.3155477046966553 img loss 1.286147952079773 img loss 1.2839323282241821 img loss 1.2847728729248047 img loss 1.2993826866149902 img loss 1.3827437162399292 img loss 1.3682676553726196 img loss 1.2981386184692383 img loss 1.382901668548584 img loss 1.278773546218872 img loss 1.3218717575073242 img loss 1.2991517782211304 img loss 1.2765214443206787 img loss 1.3473793268203735 img loss 1.2860645055770874 img loss 1.3950599431991577 img loss 1.2687468528747559 img loss 1.3107893466949463 img loss 1.3114935159683228 img loss 1.2569739818572998 img loss 1.3372530937194824 img loss 1.2609370946884155 img loss 1.3226531744003296 img loss 1.308593511581421 img loss 1.322338581085205 img loss 1.407438039779663 img loss 1.2486624717712402 img loss 1.4081718921661377 img loss 1.2738064527511597 img loss 1.2721518278121948 img loss 1.4021780490875244 img loss 1.299264669418335 img loss 1.316740870475769 img loss 1.3698780536651611 img loss 1.340820074081421 img loss 1.270777702331543img loss 1.3125447034835815 img loss 1.3423372507095337 img loss 1.2970083951950073 img loss 1.4048857688903809 img loss 1.3440067768096924 img loss 1.2925487756729126 img loss 1.2484573125839233 img loss 1.32176673412323 img loss 1.2838178873062134 img loss 1.414310097694397 img loss 1.2699180841445923 img loss 1.2493120431900024 img loss 1.2757418155670166 img loss 1.2982232570648193 img loss 1.2680022716522217 img loss 1.3731147050857544 img loss 1.184218406677246 img loss 1.2753390073776245 img loss 1.314707636833191 img loss 1.2680364847183228 img loss 1.344173550605774 img loss 1.3479665517807007 img loss 1.2403483390808105 img loss 1.2820255756378174 img loss 1.3958547115325928 img loss 1.3203171491622925 img loss 1.285847544670105 img loss 1.328887701034546 img loss 1.3163813352584839 img loss 1.2538883686065674 img loss 1.2577978372573853 img loss 1.228010654449463 img loss 1.2003684043884277 img loss 1.3688194751739502 img loss 1.3690541982650757 img loss 1.3491841554641724 img loss 1.3321272134780884 img loss 1.3347474336624146 img loss 1.3357068300247192 img loss 1.2542295455932617 img loss 1.258967638015747 img loss 1.3080438375473022 img loss 1.2898495197296143 img loss 1.2538504600524902 img loss 1.2793442010879517 img loss 1.243660569190979 img loss 1.2795007228851318 img loss 1.3459303379058838 img loss 1.3135572671890259 img loss 1.2882894277572632 img loss 1.2740721702575684 img loss 1.3059802055358887img loss 1.2641323804855347 img loss 1.3525372743606567 img loss 1.2857091426849365 img loss 1.3168091773986816 img loss 1.3246796131134033 img loss 1.2852853536605835 img loss 1.3092941045761108 img loss 1.3716635704040527 img loss 1.2888742685317993 img loss 1.3646996021270752 img loss 1.3704068660736084 img loss 1.294773817062378 img loss 1.2745245695114136 img loss 1.2945126295089722 img loss 1.3296324014663696 img loss 1.3409141302108765 img loss 1.385740041732788 img loss 1.2080694437026978 img loss 1.2498468160629272 img loss 1.2923147678375244 img loss 1.3190571069717407 img loss 1.3008028268814087 img loss 1.284696102142334 img loss 1.2904610633850098 {'loss': 1.3073, 'grad_norm': 0.24280928075313568, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2729061841964722 img loss 1.2297451496124268 img loss 1.2638624906539917 img loss 1.2177642583847046 img loss 1.249132752418518 img loss 1.2004648447036743 img loss 1.2407898902893066 img loss 1.2550114393234253 img loss 1.179986834526062 img loss 1.31264066696167 img loss 1.129643201828003 img loss 1.1839148998260498 img loss 1.2112642526626587 img loss 1.1743602752685547 img loss 1.229001522064209 img loss 1.2642940282821655 img loss 1.208961009979248 img loss 1.2960307598114014 img loss 1.269372582435608 img loss 1.2681610584259033 img loss 1.2844326496124268 img loss 1.2592113018035889 img loss 1.2053334712982178 img loss 1.1767311096191406 img loss 1.2266061305999756 img loss 1.2359166145324707 img loss 1.232674479484558 img loss 1.2459087371826172 img loss 1.1472067832946777 img loss 1.2492070198059082 img loss 1.2411235570907593 img loss 1.2276426553726196 img loss 1.155524730682373 img loss 1.197129487991333 img loss 1.2419540882110596 img loss 1.3287487030029297 img loss 1.265246868133545 img loss 1.1941717863082886 img loss 1.3080010414123535 img loss 1.2315967082977295 img loss 1.16239595413208 img loss 1.3089227676391602 img loss 1.2711817026138306 img loss 1.2994053363800049 img loss 1.1680866479873657 img loss 1.3128184080123901 img loss 1.231442928314209 img loss 1.2003757953643799 img loss 1.1864604949951172 img loss 1.159244418144226 img loss 1.2963025569915771 img loss 1.271003246307373 img loss 1.2084274291992188 img loss 1.1638963222503662 img loss 1.1667640209197998 img loss 1.2395576238632202 img loss 1.2352550029754639 img loss 1.2525793313980103 img loss 1.1919875144958496 img loss 1.1982519626617432 img loss 1.2136030197143555 img loss 1.2530784606933594img loss 1.341369390487671 img loss 1.3165571689605713 img loss 1.214951515197754 img loss 1.208399772644043 img loss 1.1853141784667969 img loss 1.1966670751571655 img loss 1.1926822662353516 img loss 1.0913536548614502 img loss 1.20022451877594 img loss 1.2734732627868652 img loss 1.1619915962219238 img loss 1.2442442178726196 img loss 1.2169322967529297 img loss 1.1988239288330078 img loss 1.2305200099945068 img loss 1.3058092594146729 img loss 1.2130813598632812 img loss 1.2241848707199097 img loss 1.2359508275985718 img loss 1.3352774381637573 img loss 1.1976237297058105 img loss 1.2604776620864868 img loss 1.1973141431808472 img loss 1.2158511877059937 img loss 1.2175759077072144 img loss 1.2740607261657715 img loss 1.2741332054138184 img loss 1.2529866695404053 img loss 1.1977335214614868 img loss 1.2046784162521362 img loss 1.2315739393234253 img loss 1.3040175437927246 img loss 1.274971842765808 img loss 1.2206475734710693 img loss 1.278156042098999 img loss 1.2670694589614868 img loss 1.2983002662658691 img loss 1.242043137550354 img loss 1.1986557245254517 img loss 1.1336179971694946 img loss 1.2011559009552002 img loss 1.1939891576766968 img loss 1.2442229986190796 img loss 1.297197699546814 img loss 1.1966947317123413 img loss 1.1679664850234985 img loss 1.255064606666565 img loss 1.278644323348999 img loss 1.2633112668991089 img loss 1.249070644378662 img loss 1.199593186378479 img loss 1.164996862411499 img loss 1.2071729898452759 img loss 1.220855951309204 img loss 1.2749574184417725 img loss 1.2243568897247314 img loss 1.2086771726608276 img loss 1.3194024562835693 img loss 1.2009142637252808 img loss 1.2194429636001587 img loss 1.2438709735870361 img loss 1.222166657447815 img loss 1.2159233093261719 img loss 1.2388947010040283 img loss 1.23372483253479 img loss 1.2093762159347534 {'loss': 1.2311, 'grad_norm': 0.7086460590362549, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.350450038909912 img loss 1.337295413017273 img loss 1.3333218097686768 img loss 1.4421576261520386 img loss 1.4282792806625366 img loss 1.3455004692077637 img loss 1.3924680948257446 img loss 1.350312352180481 img loss 1.4018970727920532 img loss 1.4169162511825562 img loss 1.3356040716171265 img loss 1.376159906387329 img loss 1.3467575311660767 img loss 1.332793116569519 img loss 1.404099941253662 img loss 1.2938610315322876 img loss 1.3298640251159668 img loss 1.3308546543121338 img loss 1.3897980451583862 img loss 1.3304935693740845 img loss 1.3746626377105713 img loss 1.4286484718322754 img loss 1.4177387952804565 img loss 1.4560123682022095 img loss 1.3562090396881104 img loss 1.4128377437591553 img loss 1.3141287565231323 img loss 1.40477454662323 img loss 1.3455764055252075 img loss 1.4157108068466187 img loss 1.356829285621643 img loss 1.4363332986831665 img loss 1.3422964811325073 img loss 1.4251242876052856 img loss 1.4655144214630127 img loss 1.4403408765792847 img loss 1.330329418182373 img loss 1.3918029069900513 img loss 1.41536545753479 img loss 1.3217567205429077 img loss 1.4329630136489868 img loss 1.3887313604354858 img loss 1.322364091873169 img loss 1.3406392335891724 img loss 1.3253332376480103 img loss 1.37277352809906 img loss 1.3877596855163574 img loss 1.2871289253234863 img loss 1.328224539756775 img loss 1.3755621910095215 img loss 1.3807235956192017 img loss 1.4438272714614868 img loss 1.4056323766708374 img loss 1.421983242034912 img loss 1.3934376239776611 img loss 1.3338507413864136 img loss 1.3536616563796997 img loss 1.425971269607544 img loss 1.3406604528427124 img loss 1.382930040359497 img loss 1.355273962020874 img loss 1.3215893507003784 img loss 1.4580022096633911 img loss 1.4122788906097412 img loss 1.4675623178482056 img loss 1.3513376712799072 img loss 1.3599289655685425 img loss 1.355171799659729 img loss 1.3146779537200928 img loss 1.3772939443588257 img loss 1.4986913204193115 img loss 1.4036494493484497 img loss 1.3801747560501099 img loss 1.4304670095443726 img loss 1.3669254779815674 img loss 1.3660637140274048 img loss 1.4060471057891846 img loss 1.3725453615188599 img loss 1.348770022392273 img loss 1.3518942594528198 img loss 1.3561066389083862 img loss 1.3744518756866455 img loss 1.296586275100708 img loss 1.3463053703308105 img loss 1.2904000282287598 img loss 1.39272940158844 img loss 1.3412114381790161 img loss 1.419622778892517 img loss 1.304926872253418 img loss 1.4087084531784058 img loss 1.4690124988555908 img loss 1.355638861656189 img loss 1.4499369859695435 img loss 1.3756781816482544 img loss 1.4117447137832642 img loss 1.3738360404968262 img loss 1.339233160018921 img loss 1.3868777751922607 img loss 1.3707095384597778 img loss 1.501076102256775 img loss 1.3604121208190918 img loss 1.3817521333694458 img loss 1.328768253326416 img loss 1.42897367477417 img loss 1.4224039316177368 img loss 1.2910867929458618 img loss 1.3446100950241089 img loss 1.489633321762085 img loss 1.4582699537277222 img loss 1.43077552318573 img loss 1.3619027137756348 img loss 1.3169349431991577 img loss 1.3584949970245361 img loss 1.4884897470474243 img loss 1.3973883390426636 img loss 1.4112775325775146 img loss 1.3766322135925293 img loss 1.3293280601501465 img loss 1.4276775121688843 img loss 1.5177539587020874 img loss 1.353596568107605 img loss 1.3937389850616455 img loss 1.4458204507827759 img loss 1.3720285892486572 img loss 1.302051305770874 img loss 1.3464194536209106 img loss 1.3128809928894043 img loss 1.342578649520874 {'loss': 1.3798, 'grad_norm': 0.2757483422756195, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3274815082550049 img loss 1.2267881631851196 img loss 1.3214441537857056 img loss 1.248800277709961 img loss 1.3441678285598755 img loss 1.2781827449798584 img loss 1.3138985633850098 img loss 1.255348801612854 img loss 1.284942626953125 img loss 1.190976619720459 img loss 1.2629210948944092 img loss 1.3031641244888306 img loss 1.2995414733886719 img loss 1.2456164360046387 img loss 1.274126648902893 img loss 1.3097374439239502 img loss 1.268507957458496 img loss 1.2797656059265137 img loss 1.2115764617919922 img loss 1.337906002998352 img loss 1.2528660297393799 img loss 1.305580496788025 img loss 1.2384912967681885 img loss 1.3089814186096191 img loss 1.2679214477539062 img loss 1.2815178632736206 img loss 1.3224461078643799 img loss 1.2665557861328125 img loss 1.2321434020996094 img loss 1.2452483177185059 img loss 1.211534023284912 img loss 1.2794170379638672 img loss 1.2786133289337158 img loss 1.2601888179779053 img loss 1.2171339988708496 img loss 1.3542166948318481 img loss 1.1875433921813965 img loss 1.2360047101974487 img loss 1.2339180707931519 img loss 1.2642942667007446 img loss 1.2363197803497314 img loss 1.2764908075332642 img loss 1.2244528532028198 img loss 1.24734365940094 img loss 1.218008041381836 img loss 1.2271757125854492 img loss 1.2790096998214722 img loss 1.179782509803772 img loss 1.3514478206634521 img loss 1.2921078205108643 img loss 1.2044293880462646 img loss 1.3113219738006592 img loss 1.250176191329956 img loss 1.3281925916671753 img loss 1.2939075231552124 img loss 1.2966578006744385 img loss 1.289621114730835 img loss 1.3179305791854858 img loss 1.3423272371292114 img loss 1.267093539237976 img loss 1.164981722831726 img loss 1.2829731702804565 img loss 1.25242280960083 img loss 1.3168445825576782 img loss 1.2375799417495728 img loss 1.2542054653167725 img loss 1.1450426578521729 img loss 1.25503408908844 img loss 1.3135648965835571 img loss 1.33092200756073 img loss 1.2980402708053589 img loss 1.320608377456665 img loss 1.2247873544692993 img loss 1.3644862174987793 img loss 1.248392105102539 img loss 1.430538296699524 img loss 1.2436540126800537 img loss 1.284010410308838 img loss 1.1883947849273682 img loss 1.3650692701339722 img loss 1.2679634094238281 img loss 1.2723137140274048 img loss 1.2311121225357056 img loss 1.3718661069869995 img loss 1.2960704565048218 img loss 1.2259949445724487 img loss 1.332850694656372 img loss 1.3739632368087769 img loss 1.210163950920105 img loss 1.2914215326309204 img loss 1.3094338178634644 img loss 1.2296440601348877 img loss 1.3242229223251343 img loss 1.3215255737304688 img loss 1.2755067348480225 img loss 1.2445731163024902 img loss 1.2889912128448486 img loss 1.2211049795150757 img loss 1.1779704093933105 img loss 1.298754096031189 img loss 1.2044512033462524 img loss 1.267093300819397 img loss 1.2572368383407593 img loss 1.2584389448165894 img loss 1.1711050271987915 img loss 1.2603689432144165 img loss 1.5027260780334473 img loss 1.3318462371826172 img loss 1.2165164947509766 img loss 1.2120373249053955 img loss 1.3455003499984741 img loss 1.231560230255127 img loss 1.3350034952163696 img loss 1.3803343772888184 img loss 1.1906390190124512 img loss 1.1741154193878174 img loss 1.2695751190185547 img loss 1.2284860610961914 img loss 1.282375693321228 img loss 1.3255013227462769 img loss 1.2057278156280518 img loss 1.2965118885040283 img loss 1.294152855873108 img loss 1.2640012502670288 img loss 1.3099076747894287 img loss 1.2056686878204346 img loss 1.333107829093933 img loss 1.2525523900985718 {'loss': 1.2731, 'grad_norm': 0.2676219940185547, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4430230855941772 img loss 1.4655178785324097 img loss 1.4647194147109985 img loss 1.3408881425857544 img loss 1.344048023223877 img loss 1.3650521039962769 img loss 1.4151456356048584 img loss 1.403296709060669 img loss 1.493465542793274 img loss 1.49795401096344 img loss 1.4427887201309204 img loss 1.5033948421478271 img loss 1.3183674812316895 img loss 1.473112940788269 img loss 1.4856001138687134 img loss 1.574750542640686 img loss 1.4976468086242676 img loss 1.4490350484848022 img loss 1.6832234859466553 img loss 1.52350652217865 img loss 1.3629908561706543 img loss 1.413179636001587 img loss 1.428783893585205 img loss 1.3566824197769165 img loss 1.4895879030227661 img loss 1.4567281007766724 img loss 1.2970988750457764 img loss 1.379899263381958 img loss 1.3678371906280518 img loss 1.5689424276351929 img loss 1.5733658075332642 img loss 1.3246902227401733 img loss 1.4613395929336548 img loss 1.3147406578063965 img loss 1.3609455823898315 img loss 1.3851014375686646 img loss 1.4324867725372314 img loss 1.5473486185073853 img loss 1.398128628730774 img loss 1.3472603559494019 img loss 1.3493058681488037 img loss 1.3873746395111084 img loss 1.3671128749847412 img loss 1.5572699308395386 img loss 1.5075831413269043 img loss 1.4570438861846924 img loss 1.4273524284362793 img loss 1.5236626863479614 img loss 1.498095154762268 img loss 1.4372586011886597 img loss 1.3550388813018799 img loss 1.4637919664382935 img loss 1.4754360914230347 img loss 1.4962948560714722 img loss 1.5693237781524658 img loss 1.48008394241333 img loss 1.5911256074905396 img loss 1.5102099180221558 img loss 1.3622071743011475 img loss 1.5842901468276978 img loss 1.4416335821151733 img loss 1.4901412725448608 img loss 1.4382916688919067 img loss 1.404645562171936 img loss 1.5570510625839233 img loss 1.4188121557235718 img loss 1.423143744468689 img loss 1.4924205541610718 img loss 1.4711225032806396 img loss 1.419197916984558 img loss 1.446235179901123 img loss 1.540216326713562 img loss 1.3957505226135254 img loss 1.4714034795761108 img loss 1.6115210056304932 img loss 1.3615715503692627 img loss 1.609473705291748 img loss 1.441591501235962 img loss 1.367938756942749 img loss 1.4066728353500366 img loss 1.5332770347595215 img loss 1.5207536220550537 img loss 1.5249065160751343 img loss 1.5245716571807861 img loss 1.6178507804870605 img loss 1.3939424753189087 img loss 1.5223801136016846 img loss 1.3824002742767334 img loss 1.4852434396743774 img loss 1.4252923727035522 img loss 1.4276071786880493 img loss 1.5905884504318237 img loss 1.410032033920288 img loss 1.4792143106460571 img loss 1.5338044166564941 img loss 1.420528769493103 img loss 1.4936268329620361 img loss 1.3522411584854126 img loss 1.442872166633606 img loss 1.5571852922439575 img loss 1.379125952720642 img loss 1.5455968379974365 img loss 1.5044782161712646 img loss 1.419235348701477 img loss 1.4480918645858765 img loss 1.4626193046569824 img loss 1.3800891637802124 img loss 1.3352655172348022 img loss 1.4947530031204224 img loss 1.461698293685913 img loss 1.3998204469680786 img loss 1.49211585521698 img loss 1.4222066402435303 img loss 1.3795666694641113 img loss 1.2631412744522095 img loss 1.3933345079421997 img loss 1.4468215703964233 img loss 1.5893810987472534 img loss 1.5652424097061157 img loss 1.360933780670166 img loss 1.4384881258010864 img loss 1.4714399576187134 img loss 1.4719254970550537 img loss 1.635574460029602 img loss 1.466978669166565 img loss 1.3539650440216064 img loss 1.3763247728347778 img loss 1.4330097436904907 {'loss': 1.4538, 'grad_norm': 0.5197662711143494, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5076180696487427 img loss 1.6711106300354004 img loss 1.647515892982483 img loss 1.7868562936782837 img loss 1.5984503030776978 img loss 1.5407644510269165 img loss 1.5649460554122925 img loss 1.6184115409851074 img loss 1.5605270862579346 img loss 1.5652931928634644 img loss 1.5861631631851196 img loss 1.54752779006958 img loss 1.4360779523849487 img loss 1.63027024269104 img loss 1.4607304334640503 img loss 1.4507642984390259 img loss 1.627975583076477 img loss 1.6861385107040405 img loss 1.638160228729248 img loss 1.488459825515747 img loss 1.5459363460540771 img loss 1.7945276498794556 img loss 1.5890458822250366 img loss 1.6854060888290405 img loss 1.6964643001556396 img loss 1.560929536819458 img loss 1.5678765773773193 img loss 1.6483880281448364 img loss 1.3713332414627075 img loss 1.6132298707962036 img loss 1.550794243812561 img loss 1.6088824272155762 img loss 1.7494637966156006 img loss 1.6124720573425293 img loss 1.729372501373291 img loss 1.5057872533798218 img loss 1.3630095720291138 img loss 1.552363634109497 img loss 1.5258333683013916 img loss 1.7641032934188843 img loss 1.5913809537887573 img loss 1.703365445137024 img loss 1.4509533643722534 img loss 1.485217809677124 img loss 1.5675275325775146 img loss 1.6027911901474 img loss 1.5803836584091187 img loss 1.6037360429763794 img loss 1.5960896015167236 img loss 1.683073878288269 img loss 1.4556214809417725 img loss 1.5605823993682861 img loss 1.5354039669036865 img loss 1.5463331937789917 img loss 1.648430585861206 img loss 1.5465534925460815 img loss 1.5751147270202637 img loss 1.588758945465088 img loss 1.5345383882522583 img loss 1.6506863832473755 img loss 1.6728273630142212 img loss 1.6565057039260864 img loss 1.4601083993911743 img loss 1.7066439390182495 img loss 1.6141799688339233 img loss 1.5587595701217651 img loss 1.507696270942688 img loss 1.5163804292678833 img loss 1.5482347011566162 img loss 1.6796488761901855 img loss 1.5282822847366333 img loss 1.6980210542678833 img loss 1.5195841789245605 img loss 1.5009251832962036 img loss 1.468686819076538 img loss 1.7005120515823364 img loss 1.5441582202911377 img loss 1.4957128763198853 img loss 1.6415765285491943 img loss 1.5489557981491089 img loss 1.4003909826278687 img loss 1.4343189001083374 img loss 1.4840244054794312 img loss 1.741410255432129 img loss 1.6335079669952393 img loss 1.63044011592865 img loss 1.5432342290878296 img loss 1.7376590967178345 img loss 1.546876311302185 img loss 1.708368182182312 img loss 1.6099228858947754 img loss 1.5917279720306396 img loss 1.7110203504562378 img loss 1.598974585533142 img loss 1.7026972770690918 img loss 1.5607496500015259 img loss 1.6125515699386597 img loss 1.6036486625671387 img loss 1.50400710105896 img loss 1.5712722539901733 img loss 1.6158181428909302 img loss 1.5190203189849854 img loss 1.3586971759796143 img loss 1.4107285737991333 img loss 1.3597750663757324 img loss 1.6107224225997925 img loss 1.5938571691513062 img loss 1.3819624185562134 img loss 1.6334455013275146 img loss 1.6939908266067505 img loss 1.542791485786438 img loss 1.789351224899292 img loss 1.4829069375991821 img loss 1.6975046396255493 img loss 1.596239447593689 img loss 1.6259599924087524 img loss 1.7411415576934814 img loss 1.4440971612930298 img loss 1.5799291133880615 img loss 1.5860050916671753 img loss 1.7490769624710083 img loss 1.3783100843429565 img loss 1.6525121927261353 img loss 1.6063761711120605 img loss 1.5453619956970215 img loss 1.509070873260498 img loss 1.6958786249160767 img loss 1.5914695262908936 {'loss': 1.5831, 'grad_norm': 0.3515837788581848, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.174656629562378 img loss 1.2974004745483398 img loss 1.2136273384094238 img loss 1.3113338947296143 img loss 1.289325475692749 img loss 1.1609103679656982 img loss 1.2568683624267578 img loss 1.2851500511169434 img loss 1.2671149969100952 img loss 1.222316026687622 img loss 1.2273906469345093 img loss 1.2417033910751343 img loss 1.225109338760376 img loss 1.2568533420562744 img loss 1.1733587980270386 img loss 1.246583342552185 img loss 1.2457221746444702 img loss 1.3408435583114624 img loss 1.2771153450012207 img loss 1.2360540628433228 img loss 1.2775474786758423 img loss 1.280313491821289 img loss 1.2384121417999268 img loss 1.1648328304290771 img loss 1.296202540397644 img loss 1.216837763786316 img loss 1.2841148376464844 img loss 1.2647517919540405 img loss 1.205044150352478 img loss 1.252479910850525 img loss 1.3168777227401733 img loss 1.3124229907989502 img loss 1.2337881326675415 img loss 1.2900125980377197 img loss 1.2923954725265503 img loss 1.2155919075012207 img loss 1.2873600721359253 img loss 1.254135012626648 img loss 1.2608046531677246 img loss 1.2891762256622314 img loss 1.1733970642089844 img loss 1.2235527038574219 img loss 1.3304169178009033 img loss 1.3573280572891235 img loss 1.208991289138794 img loss 1.2730261087417603 img loss 1.2498507499694824 img loss 1.2840368747711182 img loss 1.2449816465377808 img loss 1.327133059501648 img loss 1.2537764310836792 img loss 1.3740146160125732 img loss 1.2517058849334717 img loss 1.2931876182556152 img loss 1.24160897731781 img loss 1.2550911903381348 img loss 1.2471927404403687 img loss 1.1731030941009521 img loss 1.290879726409912 img loss 1.2623813152313232 img loss 1.2685906887054443 img loss 1.3442555665969849 img loss 1.311619758605957 img loss 1.2398957014083862 img loss 1.1983898878097534 img loss 1.258546233177185 img loss 1.2977045774459839 img loss 1.3723351955413818 img loss 1.287752389907837 img loss 1.3347777128219604 img loss 1.2300764322280884 img loss 1.2943379878997803 img loss 1.2623828649520874 img loss 1.3467525243759155 img loss 1.225249171257019 img loss 1.2408006191253662 img loss 1.2856597900390625 img loss 1.2286365032196045 img loss 1.2634352445602417 img loss 1.155965805053711 img loss 1.243477463722229 img loss 1.277212142944336 img loss 1.231640338897705 img loss 1.3125388622283936 img loss 1.2584879398345947 img loss 1.2808212041854858 img loss 1.2784209251403809 img loss 1.2829736471176147 img loss 1.3011165857315063 img loss 1.2961944341659546 img loss 1.208399772644043 img loss 1.2557283639907837 img loss 1.2368006706237793 img loss 1.2303555011749268 img loss 1.172426700592041 img loss 1.281933069229126 img loss 1.1942437887191772 img loss 1.2822216749191284 img loss 1.2627713680267334 img loss 1.3043453693389893 img loss 1.2027745246887207 img loss 1.2494053840637207 img loss 1.2167261838912964 img loss 1.2702091932296753 img loss 1.24434232711792 img loss 1.2524327039718628 img loss 1.244085669517517 img loss 1.2377960681915283 img loss 1.3148109912872314 img loss 1.2821025848388672 img loss 1.2230185270309448 img loss 1.230183482170105 img loss 1.2984074354171753 img loss 1.243581771850586 img loss 1.232851266860962 img loss 1.1616106033325195 img loss 1.2658909559249878 img loss 1.3078973293304443 img loss 1.366533875465393 img loss 1.2036999464035034 img loss 1.237587571144104 img loss 1.2296040058135986 img loss 1.2730387449264526 img loss 1.188362717628479 img loss 1.2604063749313354 img loss 1.2459465265274048 img loss 1.2754616737365723 img loss 1.216320276260376 {'loss': 1.2587, 'grad_norm': 0.24889078736305237, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2236082553863525 img loss 1.211875319480896 img loss 1.2397950887680054 img loss 1.190266489982605 img loss 1.210566520690918 img loss 1.236146330833435 img loss 1.2050163745880127 img loss 1.2476900815963745 img loss 1.183863639831543 img loss 1.2238376140594482 img loss 1.178493857383728 img loss 1.2076393365859985 img loss 1.1600871086120605 img loss 1.188022494316101 img loss 1.2496980428695679 img loss 1.2574306726455688 img loss 1.2992205619812012 img loss 1.213903784751892 img loss 1.2541311979293823 img loss 1.2450414896011353 img loss 1.2338980436325073 img loss 1.3037500381469727 img loss 1.2198445796966553 img loss 1.1729750633239746 img loss 1.1751905679702759 img loss 1.2013566493988037 img loss 1.2045319080352783 img loss 1.1916195154190063 img loss 1.2135717868804932 img loss 1.2070633172988892 img loss 1.2555681467056274 img loss 1.182155966758728 img loss 1.2020277976989746 img loss 1.2083721160888672 img loss 1.2208514213562012 img loss 1.184736728668213 img loss 1.256304383277893 img loss 1.2053501605987549 img loss 1.2271054983139038 img loss 1.1737866401672363 img loss 1.1955839395523071 img loss 1.1976016759872437 img loss 1.2011082172393799 img loss 1.2288124561309814 img loss 1.2276310920715332 img loss 1.1930245161056519 img loss 1.216166377067566 img loss 1.2537038326263428 img loss 1.186675786972046 img loss 1.1998831033706665 img loss 1.1853898763656616 img loss 1.2823240756988525 img loss 1.2152624130249023 img loss 1.2058511972427368 img loss 1.1776357889175415 img loss 1.2092422246932983 img loss 1.1828060150146484 img loss 1.2210521697998047 img loss 1.1539108753204346 img loss 1.2838764190673828 img loss 1.2152146100997925 img loss 1.1460509300231934 img loss 1.1591815948486328 img loss 1.217340111732483 img loss 1.2082457542419434 img loss 1.1772456169128418 img loss 1.3168455362319946 img loss 1.2161623239517212 img loss 1.202825903892517 img loss 1.1630487442016602 img loss 1.1706483364105225 img loss 1.2578219175338745 img loss 1.193814754486084 img loss 1.1576478481292725 img loss 1.2370632886886597 img loss 1.2379306554794312 img loss 1.187646508216858 img loss 1.2666882276535034 img loss 1.276360034942627 img loss 1.2300910949707031 img loss 1.2284832000732422 img loss 1.2666549682617188 img loss 1.1847120523452759 img loss 1.2184425592422485 img loss 1.2292256355285645 img loss 1.2093480825424194 img loss 1.1925199031829834 img loss 1.213884711265564 img loss 1.176929235458374 img loss 1.2397596836090088 img loss 1.1820182800292969 img loss 1.309381365776062 img loss 1.228668212890625 img loss 1.2223402261734009 img loss 1.2058357000350952 img loss 1.2390990257263184 img loss 1.195536494255066 img loss 1.2244670391082764 img loss 1.2109698057174683 img loss 1.2131925821304321 img loss 1.2436072826385498 img loss 1.2046741247177124 img loss 1.1928132772445679 img loss 1.1653209924697876 img loss 1.2312390804290771 img loss 1.1736040115356445 img loss 1.236182689666748 img loss 1.1989141702651978 img loss 1.171678066253662 img loss 1.192280650138855 img loss 1.2788203954696655 img loss 1.2131412029266357 img loss 1.2338948249816895 img loss 1.1984752416610718 img loss 1.1681609153747559 img loss 1.19553804397583 img loss 1.293149709701538 img loss 1.2320655584335327 img loss 1.2167247533798218 img loss 1.1966116428375244 img loss 1.2204113006591797 img loss 1.2121772766113281 img loss 1.2081924676895142 img loss 1.201582908630371 img loss 1.128749132156372 img loss 1.2178688049316406 img loss 1.1975700855255127 img loss 1.2144887447357178 {'loss': 1.2137, 'grad_norm': 0.33633312582969666, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1945629119873047 img loss 1.2336626052856445 img loss 1.245039463043213 img loss 1.4374454021453857 img loss 1.3269661664962769 img loss 1.2777923345565796 img loss 1.2997349500656128 img loss 1.3862885236740112 img loss 1.2741501331329346 img loss 1.37285315990448 img loss 1.3589247465133667 img loss 1.2533081769943237 img loss 1.237553358078003 img loss 1.4134271144866943 img loss 1.376827597618103 img loss 1.3361222743988037 img loss 1.4098846912384033 img loss 1.323870062828064 img loss 1.2016748189926147 img loss 1.2429649829864502 img loss 1.4533989429473877img loss 1.3822542428970337 img loss 1.2382018566131592 img loss 1.2366001605987549 img loss 1.218882441520691 img loss 1.274214744567871 img loss 1.199012041091919 img loss 1.2938032150268555 img loss 1.4110249280929565 img loss 1.3811190128326416 img loss 1.33585524559021 img loss 1.3728712797164917 img loss 1.3886686563491821 img loss 1.3528748750686646 img loss 1.3688966035842896 img loss 1.3918030261993408 img loss 1.2873228788375854 img loss 1.2936015129089355 img loss 1.3523472547531128 img loss 1.3327796459197998 img loss 1.3201645612716675 img loss 1.2123980522155762 img loss 1.3036810159683228 img loss 1.2946209907531738 img loss 1.2928422689437866 img loss 1.2040828466415405 img loss 1.2429754734039307 img loss 1.417823076248169 img loss 1.3675872087478638 img loss 1.3975789546966553 img loss 1.161987066268921 img loss 1.348414659500122 img loss 1.3397053480148315 img loss 1.349967360496521 img loss 1.2835955619812012 img loss 1.2861480712890625 img loss 1.2574818134307861 img loss 1.3578178882598877 img loss 1.2500159740447998 img loss 1.3622925281524658 img loss 1.3558390140533447 img loss 1.3798363208770752 img loss 1.2636909484863281 img loss 1.354650616645813 img loss 1.365212082862854 img loss 1.4281448125839233 img loss 1.3907707929611206 img loss 1.4702214002609253 img loss 1.4341362714767456 img loss 1.338692545890808 img loss 1.3856370449066162 img loss 1.26858389377594 img loss 1.249461054801941 img loss 1.2659659385681152 img loss 1.3711069822311401 img loss 1.173966884613037 img loss 1.5021417140960693 img loss 1.3086670637130737 img loss 1.3324882984161377 img loss 1.2134373188018799 img loss 1.4464226961135864 img loss 1.3995424509048462 img loss 1.34569251537323 img loss 1.3216577768325806 img loss 1.3745671510696411 img loss 1.2321840524673462 img loss 1.299743413925171 img loss 1.3624886274337769 img loss 1.2875696420669556 img loss 1.2505649328231812 img loss 1.218989610671997 img loss 1.2417669296264648 img loss 1.2543760538101196 img loss 1.3478643894195557 img loss 1.2874598503112793 img loss 1.2701451778411865 img loss 1.4635356664657593 img loss 1.3158810138702393 img loss 1.3115155696868896 img loss 1.3423283100128174 img loss 1.3963967561721802 img loss 1.3513710498809814 img loss 1.3328139781951904 img loss 1.3416699171066284 img loss 1.372880220413208 img loss 1.3421419858932495 img loss 1.2610305547714233 img loss 1.251442790031433 img loss 1.3092275857925415 img loss 1.3751081228256226 img loss 1.291827917098999 img loss 1.3361119031906128 img loss 1.3709665536880493 img loss 1.2596840858459473 img loss 1.3048661947250366 img loss 1.298918604850769 img loss 1.5268977880477905 img loss 1.2894655466079712 img loss 1.3775789737701416 img loss 1.2765822410583496 img loss 1.3211984634399414 img loss 1.3267724514007568 img loss 1.4627348184585571 img loss 1.2395600080490112 img loss 1.3248004913330078 img loss 1.3123741149902344 img loss 1.2372751235961914 img loss 1.3415868282318115 {'loss': 1.3225, 'grad_norm': 0.3822403848171234, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2381423711776733 img loss 1.2029885053634644 img loss 1.2443273067474365 img loss 1.310898780822754 img loss 1.2714184522628784 img loss 1.2620857954025269 img loss 1.2920548915863037 img loss 1.1933982372283936 img loss 1.3272109031677246 img loss 1.2657675743103027 img loss 1.2454209327697754 img loss 1.220084547996521 img loss 1.3427637815475464 img loss 1.3018004894256592 img loss 1.1870888471603394 img loss 1.275204062461853 img loss 1.3356032371520996 img loss 1.2469195127487183 img loss 1.2544411420822144 img loss 1.2858179807662964 img loss 1.2860794067382812 img loss 1.295377254486084 img loss 1.2290815114974976 img loss 1.2545346021652222 img loss 1.21576726436615 img loss 1.3379197120666504 img loss 1.2834243774414062 img loss 1.1815695762634277 img loss 1.2545948028564453 img loss 1.3370612859725952 img loss 1.2500154972076416 img loss 1.220360279083252 img loss 1.2112364768981934 img loss 1.2761070728302002 img loss 1.2190309762954712 img loss 1.223080039024353 img loss 1.2371164560317993 img loss 1.26189386844635 img loss 1.2404059171676636 img loss 1.29202401638031 img loss 1.219753623008728 img loss 1.2900640964508057 img loss 1.2049415111541748 img loss 1.2779467105865479 img loss 1.2632261514663696 img loss 1.3004614114761353 img loss 1.1982338428497314 img loss 1.2826335430145264 img loss 1.2223495244979858 img loss 1.360957384109497 img loss 1.271315097808838 img loss 1.2492097616195679 img loss 1.2622106075286865 img loss 1.2917828559875488 img loss 1.2431895732879639 img loss 1.256102442741394 img loss 1.2572214603424072 img loss 1.1940531730651855 img loss 1.162410020828247 img loss 1.215780258178711 img loss 1.2197293043136597 img loss 1.420449137687683 img loss 1.3221299648284912 img loss 1.26998770236969 img loss 1.2281908988952637 img loss 1.3398807048797607 img loss 1.2810356616973877 img loss 1.1580027341842651 img loss 1.2655643224716187 img loss 1.2644058465957642 img loss 1.2831648588180542 img loss 1.2324310541152954 img loss 1.294635534286499 img loss 1.241611361503601 img loss 1.2194015979766846 img loss 1.198807954788208 img loss 1.2957358360290527 img loss 1.1668808460235596 img loss 1.2504997253417969 img loss 1.164858341217041 img loss 1.1675031185150146 img loss 1.2492594718933105 img loss 1.374096155166626 img loss 1.2185734510421753 img loss 1.2780780792236328 img loss 1.240079402923584 img loss 1.257534384727478 img loss 1.2455767393112183 img loss 1.301029920578003 img loss 1.2313323020935059 img loss 1.2831722497940063 img loss 1.2821815013885498 img loss 1.2397276163101196 img loss 1.2910436391830444 img loss 1.2287555932998657 img loss 1.2713425159454346 img loss 1.252570390701294 img loss 1.2754606008529663 img loss 1.245345950126648 img loss 1.2869415283203125 img loss 1.2747780084609985 img loss 1.2989192008972168 img loss 1.2141330242156982 img loss 1.2524068355560303 img loss 1.3025805950164795 img loss 1.2393134832382202 img loss 1.2017323970794678 img loss 1.2522691488265991 img loss 1.2271606922149658 img loss 1.3136078119277954 img loss 1.2701488733291626 img loss 1.291276454925537 img loss 1.2252424955368042 img loss 1.2940785884857178 img loss 1.2784322500228882 img loss 1.3273578882217407 img loss 1.268869161605835 img loss 1.2382667064666748 img loss 1.3111580610275269 img loss 1.2543940544128418 img loss 1.253219485282898 img loss 1.2482990026474 img loss 1.2864429950714111 img loss 1.1945991516113281 img loss 1.2760246992111206 img loss 1.2919453382492065 img loss 1.276872158050537 img loss 1.2485578060150146 {'loss': 1.2592, 'grad_norm': 0.2209213525056839, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1463905572891235 img loss 1.2221941947937012 img loss 1.1234797239303589 img loss 1.251859426498413 img loss 1.2390447854995728 img loss 1.2143290042877197 img loss 1.2141590118408203 img loss 1.2405478954315186 img loss 1.1895020008087158 img loss 1.2190203666687012 img loss 1.1432602405548096 img loss 1.1929147243499756 img loss 1.2166664600372314 img loss 1.2068792581558228 img loss 1.2418962717056274 img loss 1.13624906539917 img loss 1.1584553718566895 img loss 1.228998064994812 img loss 1.1636962890625 img loss 1.2103877067565918 img loss 1.2120004892349243 img loss 1.2620294094085693 img loss 1.1623921394348145 img loss 1.2570823431015015 img loss 1.1672102212905884 img loss 1.2176802158355713 img loss 1.2648149728775024 img loss 1.2605469226837158 img loss 1.2504768371582031 img loss 1.2385458946228027 img loss 1.183946967124939 img loss 1.2545582056045532 img loss 1.23216712474823 img loss 1.218157410621643 img loss 1.2058830261230469 img loss 1.211060881614685 img loss 1.2029376029968262 img loss 1.225799798965454 img loss 1.2126909494400024 img loss 1.2502663135528564 img loss 1.2343167066574097 img loss 1.1724298000335693 img loss 1.275705337524414 img loss 1.2333818674087524 img loss 1.221647024154663 img loss 1.1846777200698853 img loss 1.2210049629211426 img loss 1.1957483291625977 img loss 1.2215266227722168 img loss 1.1675772666931152 img loss 1.2040945291519165 img loss 1.2141931056976318 img loss 1.1706137657165527 img loss 1.1804804801940918 img loss 1.2205653190612793 img loss 1.2127492427825928 img loss 1.2218960523605347 img loss 1.2072454690933228 img loss 1.2458488941192627 img loss 1.1888071298599243 img loss 1.202096939086914 img loss 1.162545084953308 img loss 1.224180817604065 img loss 1.2054648399353027 img loss 1.191666841506958 img loss 1.185889720916748 img loss 1.194378137588501 img loss 1.242938756942749 img loss 1.2324920892715454 img loss 1.1998391151428223 img loss 1.1878776550292969 img loss 1.1699612140655518 img loss 1.1684739589691162 img loss 1.2431243658065796 img loss 1.1722878217697144 img loss 1.2201282978057861 img loss 1.3147283792495728 img loss 1.2071373462677002 img loss 1.1703031063079834 img loss 1.22661292552948 img loss 1.1666655540466309img loss 1.1164824962615967 img loss 1.1342166662216187 img loss 1.1651761531829834 img loss 1.169589877128601 img loss 1.0879191160202026 img loss 1.2132385969161987 img loss 1.3235515356063843 img loss 1.2668958902359009 img loss 1.1632307767868042 img loss 1.1681017875671387 img loss 1.1675843000411987 img loss 1.1801135540008545 img loss 1.2099140882492065 img loss 1.2285373210906982 img loss 1.1347814798355103 img loss 1.2173441648483276 img loss 1.174519419670105 img loss 1.1455340385437012 img loss 1.2764440774917603 img loss 1.2237926721572876 img loss 1.2426669597625732 img loss 1.2143642902374268 img loss 1.2529951333999634 img loss 1.2094509601593018 img loss 1.221383810043335 img loss 1.2004209756851196 img loss 1.266052007675171 img loss 1.167754888534546 img loss 1.2116340398788452 img loss 1.2498409748077393 img loss 1.1637077331542969 img loss 1.1894598007202148 img loss 1.2091479301452637 img loss 1.2057435512542725 img loss 1.2022528648376465 img loss 1.221995234489441 img loss 1.140594482421875 img loss 1.173531174659729 img loss 1.2705491781234741 img loss 1.2470066547393799 img loss 1.1817824840545654 img loss 1.218433141708374 img loss 1.2014689445495605 img loss 1.2348320484161377 img loss 1.275519847869873 img loss 1.1765766143798828 img loss 1.2216448783874512 {'loss': 1.2068, 'grad_norm': 0.5179870128631592, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.281859040260315 img loss 1.219978928565979 img loss 1.2036144733428955 img loss 1.2343149185180664 img loss 1.2160074710845947 img loss 1.2338780164718628 img loss 1.2356727123260498 img loss 1.1966480016708374 img loss 1.2271718978881836 img loss 1.2274397611618042 img loss 1.1511681079864502 img loss 1.200944185256958 img loss 1.1792057752609253 img loss 1.259909987449646 img loss 1.1786987781524658 img loss 1.2243397235870361 img loss 1.177506685256958 img loss 1.1538666486740112 img loss 1.1706749200820923 img loss 1.297447681427002 img loss 1.216895580291748 img loss 1.195122480392456 img loss 1.2098915576934814 img loss 1.2196171283721924 img loss 1.2762153148651123 img loss 1.1673791408538818 img loss 1.1674972772598267 img loss 1.224090576171875 img loss 1.234033465385437 img loss 1.2385241985321045 img loss 1.2468369007110596 img loss 1.1987203359603882 img loss 1.1702840328216553 img loss 1.2337841987609863 img loss 1.2889554500579834 img loss 1.2377337217330933 img loss 1.2236888408660889 img loss 1.2261466979980469 img loss 1.2710871696472168 img loss 1.3584715127944946 img loss 1.1772050857543945 img loss 1.1428087949752808 img loss 1.200890064239502 img loss 1.1332515478134155 img loss 1.2224041223526 img loss 1.199641227722168 img loss 1.3018826246261597 img loss 1.1702429056167603 img loss 1.182993769645691 img loss 1.1616228818893433 img loss 1.2194023132324219 img loss 1.2385648488998413 img loss 1.2688617706298828 img loss 1.2720531225204468 img loss 1.1809927225112915 img loss 1.2164192199707031 img loss 1.2385339736938477 img loss 1.2528016567230225 img loss 1.2681138515472412 img loss 1.226356029510498 img loss 1.2295547723770142 img loss 1.2258356809616089 img loss 1.1463645696640015 img loss 1.194061040878296 img loss 1.2866865396499634 img loss 1.1607837677001953 img loss 1.199068546295166 img loss 1.240364909172058 img loss 1.2236552238464355 img loss 1.1855419874191284 img loss 1.209061861038208 img loss 1.1931016445159912 img loss 1.1667193174362183 img loss 1.2394894361495972 img loss 1.279531478881836 img loss 1.243178367614746 img loss 1.2636430263519287 img loss 1.2647731304168701 img loss 1.193029761314392 img loss 1.1946101188659668 img loss 1.1677446365356445 img loss 1.1844812631607056 img loss 1.1897194385528564 img loss 1.212168574333191 img loss 1.3101507425308228 img loss 1.2794421911239624 img loss 1.2207493782043457 img loss 1.2091898918151855 img loss 1.1714884042739868 img loss 1.1346900463104248 img loss 1.224778652191162 img loss 1.2029293775558472 img loss 1.2649801969528198 img loss 1.2023711204528809 img loss 1.313582181930542 img loss 1.197670340538025 img loss 1.1856476068496704 img loss 1.2090510129928589 img loss 1.2211871147155762 img loss 1.1831610202789307 img loss 1.278147578239441 img loss 1.2369416952133179 img loss 1.2002166509628296 img loss 1.1966183185577393 img loss 1.2540769577026367 img loss 1.324594259262085 img loss 1.3183512687683105 img loss 1.2335842847824097 img loss 1.2011475563049316 img loss 1.2413753271102905 img loss 1.2656047344207764 img loss 1.1540987491607666 img loss 1.1924667358398438 img loss 1.212780237197876 img loss 1.2213371992111206 img loss 1.2606052160263062 img loss 1.2152788639068604 img loss 1.2189241647720337 img loss 1.201646327972412 img loss 1.265852689743042 img loss 1.240129828453064 img loss 1.164096474647522 img loss 1.2506041526794434 img loss 1.2054316997528076 img loss 1.1558979749679565 img loss 1.1825870275497437 img loss 1.2725350856781006 img loss 1.116431713104248 {'loss': 1.2192, 'grad_norm': 0.192165806889534, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5630849599838257 img loss 1.6170134544372559 img loss 1.6901843547821045 img loss 1.4761654138565063 img loss 1.6087268590927124 img loss 1.562065839767456 img loss 1.6380635499954224 img loss 1.6527286767959595 img loss 1.622867465019226 img loss 1.6563715934753418 img loss 1.6131815910339355 img loss 1.66273832321167 img loss 1.6453593969345093 img loss 1.4749884605407715 img loss 1.5507962703704834 img loss 1.7396570444107056 img loss 1.7344180345535278 img loss 1.621543049812317 img loss 1.496975302696228 img loss 1.5719892978668213 img loss 1.6268562078475952 img loss 1.597541093826294 img loss 1.6352264881134033 img loss 1.5093327760696411 img loss 1.608713984489441 img loss 1.6470110416412354 img loss 1.648364782333374 img loss 1.8548531532287598 img loss 1.589820384979248 img loss 1.4523212909698486 img loss 1.6288796663284302 img loss 1.5944151878356934 img loss 1.389399766921997 img loss 1.6230683326721191 img loss 1.5741807222366333 img loss 1.6105172634124756 img loss 1.5681177377700806 img loss 1.5907918214797974 img loss 1.6362464427947998 img loss 1.7349908351898193 img loss 1.651597499847412 img loss 1.697015404701233 img loss 1.6207191944122314 img loss 1.6379084587097168 img loss 1.61961829662323 img loss 1.5071747303009033 img loss 1.6045546531677246 img loss 1.5019835233688354 img loss 1.6452833414077759 img loss 1.5767102241516113 img loss 1.5429614782333374 img loss 1.5862797498703003 img loss 1.541303038597107 img loss 1.5929566621780396 img loss 1.5418896675109863 img loss 1.5390394926071167 img loss 1.5859514474868774 img loss 1.7016710042953491 img loss 1.6561232805252075 img loss 1.629269003868103 img loss 1.6256130933761597 img loss 1.840692162513733 img loss 1.5765774250030518 img loss 1.6386933326721191 img loss 1.8427220582962036 img loss 1.5214868783950806 img loss 1.481776475906372 img loss 1.5555760860443115 img loss 1.7374597787857056 img loss 1.6174436807632446 img loss 1.4476147890090942 img loss 1.6270287036895752 img loss 1.4611096382141113 img loss 1.7793011665344238 img loss 1.535600185394287 img loss 1.5722981691360474 img loss 1.6523746252059937 img loss 1.6659778356552124 img loss 1.5584467649459839 img loss 1.7598557472229004 img loss 1.624824047088623 img loss 1.578324794769287 img loss 1.5941756963729858 img loss 1.6437573432922363 img loss 1.7470780611038208 img loss 1.6723064184188843 img loss 1.650054693222046 img loss 1.6821377277374268 img loss 1.6565537452697754 img loss 1.6428887844085693 img loss 1.6797795295715332 img loss 1.541166067123413 img loss 1.5477696657180786 img loss 1.5814166069030762 img loss 1.5057052373886108 img loss 1.5431963205337524 img loss 1.728621006011963 img loss 1.6873120069503784 img loss 1.5769696235656738 img loss 1.4960423707962036 img loss 1.557374119758606 img loss 1.5434156656265259 img loss 1.638552188873291 img loss 1.672959566116333 img loss 1.62821364402771 img loss 1.5302860736846924 img loss 1.6903083324432373 img loss 1.6619046926498413 img loss 1.7400742769241333 img loss 1.713252305984497 img loss 1.53641676902771 img loss 1.751043438911438 img loss 1.5598822832107544 img loss 1.588891625404358 img loss 1.7009708881378174 img loss 1.6339362859725952 img loss 1.6016590595245361 img loss 1.5571668148040771 img loss 1.7362502813339233 img loss 1.5253901481628418 img loss 1.5880789756774902 img loss 1.5235073566436768 img loss 1.5604711771011353 img loss 1.5895980596542358 img loss 1.5662531852722168 img loss 1.5528239011764526 img loss 1.5999354124069214 img loss 1.5810198783874512 {'loss': 1.6118, 'grad_norm': 0.7108810544013977, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.319591999053955 img loss 1.3470762968063354 img loss 1.2311314344406128 img loss 1.346252202987671 img loss 1.2502535581588745 img loss 1.3661028146743774 img loss 1.3049741983413696 img loss 1.3608571290969849 img loss 1.263778567314148 img loss 1.3361842632293701 img loss 1.2973759174346924 img loss 1.4443556070327759 img loss 1.2747952938079834 img loss 1.4177582263946533 img loss 1.3224471807479858 img loss 1.3024849891662598 img loss 1.4390698671340942 img loss 1.303657054901123 img loss 1.2851943969726562 img loss 1.3746305704116821 img loss 1.3618156909942627 img loss 1.3663209676742554 img loss 1.233429193496704 img loss 1.2240312099456787 img loss 1.3152945041656494 img loss 1.2878925800323486 img loss 1.3097246885299683 img loss 1.334657907485962 img loss 1.2144091129302979 img loss 1.2491786479949951 img loss 1.3396650552749634 img loss 1.328946828842163img loss 1.3361955881118774 img loss 1.3742009401321411 img loss 1.3251310586929321 img loss 1.256454348564148 img loss 1.206740140914917 img loss 1.4106675386428833 img loss 1.3778749704360962 img loss 1.3411530256271362 img loss 1.3019144535064697 img loss 1.3741859197616577 img loss 1.3164646625518799 img loss 1.2586885690689087 img loss 1.2290568351745605 img loss 1.3982840776443481 img loss 1.3001835346221924 img loss 1.2475515604019165 img loss 1.3632500171661377 img loss 1.1935293674468994 img loss 1.402557611465454 img loss 1.280340552330017 img loss 1.3513394594192505 img loss 1.3644939661026 img loss 1.3252369165420532 img loss 1.3922942876815796 img loss 1.2605444192886353 img loss 1.2442833185195923 img loss 1.3980752229690552 img loss 1.2367291450500488 img loss 1.3112363815307617 img loss 1.2703924179077148 img loss 1.337816834449768 img loss 1.268776774406433 img loss 1.1989182233810425 img loss 1.2715919017791748 img loss 1.2560594081878662 img loss 1.3673688173294067 img loss 1.3030375242233276 img loss 1.2835321426391602 img loss 1.2326558828353882 img loss 1.3214917182922363 img loss 1.2841037511825562 img loss 1.3644134998321533 img loss 1.3517595529556274 img loss 1.4008396863937378 img loss 1.2156823873519897 img loss 1.3319172859191895 img loss 1.3573342561721802 img loss 1.2799506187438965 img loss 1.2882189750671387 img loss 1.374423861503601 img loss 1.2417938709259033 img loss 1.4117788076400757 img loss 1.3365598917007446 img loss 1.2957957983016968 img loss 1.3894637823104858 img loss 1.33066725730896 img loss 1.2292307615280151 img loss 1.3068201541900635 img loss 1.2939190864562988 img loss 1.3414233922958374 img loss 1.3289070129394531 img loss 1.3412457704544067 img loss 1.3938710689544678 img loss 1.3132078647613525 img loss 1.2015994787216187 img loss 1.2934249639511108 img loss 1.312621831893921 img loss 1.3456693887710571 img loss 1.32346773147583 img loss 1.297614574432373 img loss 1.316333293914795 img loss 1.285853624343872 img loss 1.3136852979660034 img loss 1.325426697731018 img loss 1.3465663194656372 img loss 1.2666631937026978 img loss 1.476394534111023 img loss 1.2491686344146729 img loss 1.3716943264007568 img loss 1.3448729515075684 img loss 1.2583805322647095 img loss 1.3533530235290527 img loss 1.2847222089767456 img loss 1.3420031070709229 img loss 1.3351445198059082 img loss 1.371789574623108 img loss 1.3109575510025024 img loss 1.4332385063171387 img loss 1.2579180002212524 img loss 1.3602627515792847 img loss 1.407469391822815 img loss 1.508467197418213 img loss 1.3217499256134033 img loss 1.3463462591171265 img loss 1.200324296951294 img loss 1.3242223262786865 {'loss': 1.3182, 'grad_norm': 0.4637734591960907, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.21134352684021 img loss 1.1985886096954346 img loss 1.2347283363342285 img loss 1.175771951675415 img loss 1.1673383712768555 img loss 1.2526519298553467 img loss 1.1501272916793823 img loss 1.146181583404541 img loss 1.1939148902893066 img loss 1.2301576137542725 img loss 1.2061774730682373 img loss 1.2513364553451538 img loss 1.1620213985443115 img loss 1.2205824851989746 img loss 1.1557927131652832 img loss 1.0944513082504272 img loss 1.1834540367126465 img loss 1.1509220600128174 img loss 1.2452094554901123 img loss 1.1948422193527222 img loss 1.1972986459732056 img loss 1.2952483892440796 img loss 1.137887954711914 img loss 1.1907823085784912 img loss 1.2363876104354858 img loss 1.1895567178726196 img loss 1.2368015050888062 img loss 1.1351492404937744 img loss 1.1833714246749878 img loss 1.2004272937774658 img loss 1.198390007019043 img loss 1.2157139778137207 img loss 1.2368574142456055 img loss 1.1600358486175537 img loss 1.2188339233398438 img loss 1.1393637657165527 img loss 1.1870025396347046 img loss 1.2331651449203491 img loss 1.2051175832748413 img loss 1.121956706047058 img loss 1.1988168954849243 img loss 1.2081794738769531 img loss 1.2689825296401978 img loss 1.2364033460617065 img loss 1.1868858337402344 img loss 1.2211928367614746 img loss 1.1802747249603271 img loss 1.2121219635009766 img loss 1.1786174774169922 img loss 1.1908291578292847 img loss 1.170328140258789 img loss 1.2177536487579346 img loss 1.1843916177749634 img loss 1.1622986793518066 img loss 1.186022162437439 img loss 1.1744308471679688 img loss 1.185459852218628 img loss 1.1815600395202637 img loss 1.1608527898788452 img loss 1.2500650882720947 img loss 1.1786340475082397 img loss 1.1914650201797485 img loss 1.2321035861968994 img loss 1.1556040048599243 img loss 1.1545504331588745 img loss 1.1600521802902222 img loss 1.2485954761505127 img loss 1.2002499103546143 img loss 1.1822822093963623 img loss 1.181321620941162 img loss 1.161248803138733 img loss 1.1274560689926147 img loss 1.2026841640472412 img loss 1.1788101196289062 img loss 1.1226578950881958 img loss 1.2201476097106934 img loss 1.1954264640808105 img loss 1.1828526258468628 img loss 1.1558302640914917 img loss 1.1868762969970703 img loss 1.1904411315917969 img loss 1.166778802871704 img loss 1.1567554473876953 img loss 1.208234429359436 img loss 1.2712284326553345 img loss 1.180566430091858 img loss 1.2366780042648315 img loss 1.226555347442627 img loss 1.1872451305389404 img loss 1.1501070261001587 img loss 1.2330076694488525 img loss 1.1875942945480347 img loss 1.1979007720947266 img loss 1.201516032218933 img loss 1.1877930164337158 img loss 1.2239187955856323 img loss 1.1677207946777344 img loss 1.2379786968231201 img loss 1.1842622756958008 img loss 1.16903555393219 img loss 1.2236822843551636 img loss 1.2035908699035645 img loss 1.1837592124938965 img loss 1.1458109617233276 img loss 1.2041542530059814 img loss 1.1842992305755615 img loss 1.1737017631530762 img loss 1.2006638050079346 img loss 1.135251522064209 img loss 1.1879117488861084 img loss 1.1843193769454956 img loss 1.2106609344482422 img loss 1.2178786993026733 img loss 1.2038817405700684 img loss 1.1468437910079956 img loss 1.155157446861267 img loss 1.2252506017684937 img loss 1.180606722831726 img loss 1.212580919265747 img loss 1.2089773416519165 img loss 1.1928391456604004 img loss 1.180854082107544 img loss 1.1794686317443848 img loss 1.19365656375885 img loss 1.1789716482162476 img loss 1.160251498222351 img loss 1.2001310586929321 img loss 1.1572250127792358 {'loss': 1.1915, 'grad_norm': 0.26310259103775024, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1603796482086182 img loss 1.1761858463287354 img loss 1.147277593612671 img loss 1.2273544073104858 img loss 1.2812929153442383 img loss 1.1835987567901611 img loss 1.188974142074585 img loss 1.1621017456054688 img loss 1.2365630865097046 img loss 1.2444729804992676 img loss 1.2283865213394165 img loss 1.2405649423599243 img loss 1.2476229667663574 img loss 1.2069085836410522 img loss 1.168919324874878 img loss 1.2148594856262207 img loss 1.2265125513076782 img loss 1.2458162307739258 img loss 1.2032374143600464 img loss 1.274001121520996 img loss 1.1947965621948242 img loss 1.1884206533432007 img loss 1.230132818222046 img loss 1.1714452505111694 img loss 1.2461178302764893 img loss 1.254199504852295 img loss 1.2549858093261719 img loss 1.1796858310699463 img loss 1.1750504970550537 img loss 1.2162975072860718 img loss 1.2599865198135376 img loss 1.2543349266052246 img loss 1.2951085567474365 img loss 1.2296737432479858 img loss 1.210017442703247 img loss 1.2278410196304321 img loss 1.2284526824951172 img loss 1.2029359340667725 img loss 1.1761852502822876 img loss 1.1862168312072754 img loss 1.1461361646652222 img loss 1.2234786748886108 img loss 1.21751070022583 img loss 1.2545006275177002 img loss 1.2321239709854126 img loss 1.210850477218628 img loss 1.213965892791748 img loss 1.20651376247406 img loss 1.2575119733810425 img loss 1.2050918340682983 img loss 1.2133911848068237 img loss 1.198114275932312 img loss 1.2371444702148438 img loss 1.27658212184906 img loss 1.2710150480270386 img loss 1.2411413192749023 img loss 1.228617548942566 img loss 1.1886444091796875 img loss 1.1814324855804443 img loss 1.244577407836914 img loss 1.276811122894287 img loss 1.2058988809585571 img loss 1.211058259010315 img loss 1.2368388175964355 img loss 1.188347578048706 img loss 1.2108901739120483 img loss 1.2848994731903076 img loss 1.218406081199646 img loss 1.1953891515731812 img loss 1.270808458328247 img loss 1.275963544845581 img loss 1.181918978691101 img loss 1.2054280042648315 img loss 1.2909835577011108 img loss 1.2534576654434204 img loss 1.2069873809814453 img loss 1.2415375709533691 img loss 1.2114477157592773 img loss 1.232800841331482 img loss 1.22037672996521 img loss 1.1938618421554565 img loss 1.2241102457046509 img loss 1.262010931968689 img loss 1.2456040382385254 img loss 1.210811972618103 img loss 1.193873643875122 img loss 1.2543624639511108 img loss 1.2164182662963867 img loss 1.208690881729126 img loss 1.1694986820220947 img loss 1.2456676959991455 img loss 1.1998250484466553 img loss 1.2523640394210815 img loss 1.159972071647644 img loss 1.189176321029663 img loss 1.237735629081726 img loss 1.160882830619812 img loss 1.230992078781128 img loss 1.2234687805175781 img loss 1.2259730100631714 img loss 1.2427270412445068 img loss 1.2274079322814941 img loss 1.156084656715393 img loss 1.2342736721038818 img loss 1.236373782157898 img loss 1.219556450843811 img loss 1.2210794687271118 img loss 1.1631639003753662 img loss 1.2449406385421753 img loss 1.1734638214111328 img loss 1.129529595375061 img loss 1.2614291906356812 img loss 1.188858985900879 img loss 1.2035820484161377 img loss 1.2493276596069336 img loss 1.2866432666778564 img loss 1.178128957748413 img loss 1.220947265625 img loss 1.3137428760528564 img loss 1.203741431236267 img loss 1.2165422439575195 img loss 1.1994365453720093 img loss 1.2450546026229858 img loss 1.2358462810516357 img loss 1.3641774654388428 img loss 1.2480534315109253 img loss 1.2673203945159912 img loss 1.2350196838378906 {'loss': 1.2218, 'grad_norm': 0.23429247736930847, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2415802478790283 img loss 1.3635551929473877 img loss 1.1952847242355347 img loss 1.2242348194122314 img loss 1.2386126518249512 img loss 1.2899211645126343 img loss 1.2867891788482666 img loss 1.2466545104980469 img loss 1.2944064140319824 img loss 1.197176218032837 img loss 1.2175376415252686 img loss 1.2049835920333862 img loss 1.246538519859314 img loss 1.2157618999481201 img loss 1.2196029424667358 img loss 1.2389415502548218 img loss 1.1882978677749634 img loss 1.2388648986816406 img loss 1.2672786712646484 img loss 1.2457441091537476 img loss 1.4214028120040894 img loss 1.2227195501327515 img loss 1.2753536701202393 img loss 1.2973788976669312 img loss 1.2898235321044922 img loss 1.2263193130493164 img loss 1.234884262084961 img loss 1.1126753091812134 img loss 1.248774766921997 img loss 1.1955875158309937 img loss 1.248919129371643 img loss 1.24409818649292 img loss 1.263380765914917 img loss 1.3804041147232056 img loss 1.2377994060516357 img loss 1.312493085861206 img loss 1.23508620262146 img loss 1.3138408660888672 img loss 1.254301905632019 img loss 1.2303732633590698 img loss 1.2699260711669922 img loss 1.271682620048523 img loss 1.2232944965362549 img loss 1.2141575813293457img loss 1.29056978225708 img loss 1.2731050252914429 img loss 1.2475632429122925 img loss 1.2991703748703003 img loss 1.2472641468048096 img loss 1.2642946243286133 img loss 1.237404465675354 img loss 1.2822551727294922 img loss 1.2875715494155884 img loss 1.226361870765686 img loss 1.2900742292404175 img loss 1.176607370376587 img loss 1.29153311252594 img loss 1.3057037591934204 img loss 1.1341651678085327 img loss 1.2704435586929321 img loss 1.2708481550216675 img loss 1.180956482887268 img loss 1.309349775314331 img loss 1.2276132106781006 img loss 1.2168939113616943 img loss 1.1939899921417236 img loss 1.3126143217086792 img loss 1.3181419372558594 img loss 1.309997320175171 img loss 1.3334496021270752 img loss 1.2397314310073853 img loss 1.2710227966308594 img loss 1.270139455795288 img loss 1.2962881326675415 img loss 1.2736603021621704 img loss 1.2410897016525269 img loss 1.3496524095535278 img loss 1.241889476776123 img loss 1.1740959882736206 img loss 1.1683647632598877 img loss 1.3069202899932861 img loss 1.233567476272583 img loss 1.1920098066329956 img loss 1.3340040445327759 img loss 1.2131164073944092 img loss 1.2271003723144531 img loss 1.1876064538955688 img loss 1.2557530403137207 img loss 1.2197132110595703 img loss 1.2020405530929565 img loss 1.3137719631195068 img loss 1.3988765478134155 img loss 1.3350884914398193 img loss 1.1298673152923584 img loss 1.270776629447937 img loss 1.1776885986328125 img loss 1.2846475839614868 img loss 1.1500176191329956 img loss 1.2257421016693115 img loss 1.20895254611969 img loss 1.3193902969360352 img loss 1.25064218044281 img loss 1.3017088174819946 img loss 1.2904318571090698 img loss 1.2992150783538818 img loss 1.2423553466796875 img loss 1.2994229793548584 img loss 1.2098840475082397 img loss 1.2782831192016602 img loss 1.123468041419983 img loss 1.197397232055664 img loss 1.2590134143829346 img loss 1.344042181968689 img loss 1.2378511428833008 img loss 1.3307795524597168 img loss 1.1979917287826538 img loss 1.2304428815841675 img loss 1.2239611148834229 img loss 1.1975443363189697 img loss 1.299760341644287 img loss 1.2814617156982422 img loss 1.2792601585388184 img loss 1.1814934015274048 img loss 1.2295078039169312 img loss 1.3272333145141602 img loss 1.2112579345703125 img loss 1.1670738458633423 img loss 1.1276487112045288 {'loss': 1.2517, 'grad_norm': 0.4263627529144287, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2127383947372437 img loss 1.2111576795578003 img loss 1.2303014993667603 img loss 1.2359166145324707 img loss 1.370025396347046 img loss 1.2931854724884033 img loss 1.1643311977386475 img loss 1.241942048072815 img loss 1.1371878385543823 img loss 1.2421550750732422 img loss 1.1953380107879639 img loss 1.221447229385376 img loss 1.1723545789718628 img loss 1.2595680952072144 img loss 1.2329126596450806 img loss 1.2279624938964844 img loss 1.256411075592041 img loss 1.1429898738861084 img loss 1.184884786605835 img loss 1.1191459894180298 img loss 1.2280820608139038 img loss 1.178148865699768 img loss 1.1804674863815308 img loss 1.1462318897247314 img loss 1.2496976852416992 img loss 1.195468783378601 img loss 1.1878808736801147 img loss 1.1466604471206665 img loss 1.2187342643737793 img loss 1.0889419317245483 img loss 1.2139554023742676 img loss 1.1713550090789795 img loss 1.1615623235702515 img loss 1.2235901355743408 img loss 1.2490715980529785 img loss 1.2178611755371094 img loss 1.237936019897461 img loss 1.180783748626709 img loss 1.0957459211349487 img loss 1.2329325675964355 img loss 1.1786391735076904 img loss 1.2034542560577393 img loss 1.1978024244308472 img loss 1.2648571729660034 img loss 1.2077425718307495 img loss 1.2498515844345093 img loss 1.1650751829147339 img loss 1.1431872844696045 img loss 1.2148222923278809 img loss 1.1328458786010742 img loss 1.249927043914795 img loss 1.1690088510513306 img loss 1.2619823217391968 img loss 1.2751519680023193 img loss 1.2801969051361084 img loss 1.1856049299240112 img loss 1.3041245937347412 img loss 1.239073395729065 img loss 1.2624027729034424 img loss 1.1394455432891846 img loss 1.1796354055404663 img loss 1.2015689611434937 img loss 1.2801308631896973 img loss 1.3398182392120361 img loss 1.2012078762054443 img loss 1.2417558431625366 img loss 1.2363628149032593 img loss 1.2512863874435425 img loss 1.1809622049331665 img loss 1.2431919574737549 img loss 1.1769251823425293 img loss 1.2247930765151978 img loss 1.1622934341430664 img loss 1.129783034324646 img loss 1.1144049167633057 img loss 1.1568655967712402 img loss 1.3354010581970215 img loss 1.1446869373321533 img loss 1.2092745304107666 img loss 1.2012100219726562 img loss 1.1807811260223389 img loss 1.2413575649261475 img loss 1.1558444499969482 img loss 1.3036761283874512 img loss 1.2788008451461792 img loss 1.2809749841690063 img loss 1.146425485610962 img loss 1.2396423816680908 img loss 1.1511590480804443 img loss 1.247911810874939 img loss 1.242023229598999 img loss 1.1796009540557861 img loss 1.2200325727462769 img loss 1.163306713104248 img loss 1.1256183385849 img loss 1.2159193754196167 img loss 1.3072144985198975 img loss 1.1578069925308228 img loss 1.1649818420410156 img loss 1.1930958032608032 img loss 1.2471699714660645 img loss 1.1709518432617188 img loss 1.2651351690292358 img loss 1.1926125288009644 img loss 1.2831428050994873 img loss 1.3308839797973633 img loss 1.2436809539794922 img loss 1.1757091283798218 img loss 1.2038010358810425 img loss 1.2620251178741455 img loss 1.1946314573287964 img loss 1.2128534317016602 img loss 1.1727964878082275 img loss 1.2508018016815186 img loss 1.257778525352478 img loss 1.1335773468017578 img loss 1.150519847869873 img loss 1.2388814687728882 img loss 1.2531532049179077 img loss 1.2159719467163086 img loss 1.246581792831421 img loss 1.2252349853515625 img loss 1.1716055870056152 img loss 1.2796522378921509 img loss 1.257582426071167 img loss 1.2225641012191772 img loss 1.2342145442962646 img loss 1.181251049041748 {'loss': 1.2122, 'grad_norm': 0.2677490711212158, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4557560682296753 img loss 1.3014016151428223 img loss 1.4199795722961426 img loss 1.4150445461273193 img loss 1.550552487373352 img loss 1.5326658487319946 img loss 1.4598637819290161 img loss 1.5903096199035645 img loss 1.5097270011901855 img loss 1.5175954103469849 img loss 1.4065817594528198 img loss 1.4108538627624512 img loss 1.430454969406128 img loss 1.5029546022415161 img loss 1.5506536960601807 img loss 1.4804707765579224 img loss 1.3902983665466309 img loss 1.5640169382095337 img loss 1.4995144605636597 img loss 1.492704153060913 img loss 1.4150513410568237 img loss 1.455159306526184 img loss 1.461351990699768 img loss 1.6132298707962036 img loss 1.4649678468704224 img loss 1.5496745109558105 img loss 1.4448987245559692 img loss 1.429787039756775 img loss 1.4969714879989624 img loss 1.469906210899353 img loss 1.3676420450210571 img loss 1.5119011402130127 img loss 1.4157946109771729 img loss 1.4416049718856812 img loss 1.432268738746643 img loss 1.4863110780715942 img loss 1.5681806802749634 img loss 1.3575085401535034 img loss 1.4191005229949951 img loss 1.5604987144470215 img loss 1.515564203262329 img loss 1.5359522104263306 img loss 1.4819005727767944 img loss 1.4563562870025635 img loss 1.45305335521698 img loss 1.5027390718460083 img loss 1.473638653755188 img loss 1.445451259613037 img loss 1.4955309629440308 img loss 1.5603376626968384 img loss 1.5483977794647217 img loss 1.5174202919006348 img loss 1.5186684131622314 img loss 1.6052249670028687 img loss 1.431176781654358 img loss 1.4793552160263062 img loss 1.4794800281524658 img loss 1.4309951066970825 img loss 1.4166399240493774 img loss 1.452174425125122 img loss 1.4379431009292603 img loss 1.4898706674575806 img loss 1.4159246683120728 img loss 1.5371822118759155 img loss 1.441667079925537 img loss 1.4163353443145752 img loss 1.4800982475280762 img loss 1.435624361038208 img loss 1.3880829811096191 img loss 1.5867377519607544 img loss 1.3985857963562012 img loss 1.5096265077590942 img loss 1.467383861541748 img loss 1.4810211658477783 img loss 1.5629265308380127 img loss 1.5606400966644287 img loss 1.502063274383545 img loss 1.6341484785079956 img loss 1.352256417274475 img loss 1.4451558589935303 img loss 1.4976502656936646 img loss 1.5343459844589233 img loss 1.5309278964996338 img loss 1.6316771507263184 img loss 1.3515695333480835 img loss 1.4200313091278076 img loss 1.6219260692596436 img loss 1.3579697608947754 img loss 1.4777110815048218 img loss 1.5529981851577759 img loss 1.4937459230422974 img loss 1.3268612623214722 img loss 1.5067600011825562 img loss 1.510290265083313 img loss 1.5549103021621704 img loss 1.5449421405792236 img loss 1.4245976209640503 img loss 1.7176949977874756 img loss 1.5569913387298584 img loss 1.674790859222412 img loss 1.4486041069030762 img loss 1.430854320526123 img loss 1.533584713935852 img loss 1.4014294147491455 img loss 1.4657227993011475 img loss 1.4159590005874634 img loss 1.5138345956802368 img loss 1.442004919052124 img loss 1.5006763935089111 img loss 1.301039695739746 img loss 1.554747223854065 img loss 1.4529021978378296 img loss 1.5726782083511353 img loss 1.4376300573349 img loss 1.3751345872879028 img loss 1.6331839561462402 img loss 1.4177519083023071 img loss 1.5350362062454224 img loss 1.4925962686538696 img loss 1.4077142477035522 img loss 1.4210532903671265 img loss 1.3626043796539307 img loss 1.4087315797805786 img loss 1.3874014616012573 img loss 1.4810987710952759 img loss 1.5749928951263428 img loss 1.6019470691680908 img loss 1.5318304300308228 {'loss': 1.4811, 'grad_norm': 0.323666512966156, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2258838415145874 img loss 1.2785401344299316 img loss 1.3547394275665283 img loss 1.3349190950393677 img loss 1.3399890661239624 img loss 1.242557406425476 img loss 1.2850563526153564 img loss 1.3224141597747803 img loss 1.2902377843856812 img loss 1.2755259275436401 img loss 1.3265193700790405 img loss 1.309923529624939 img loss 1.3655673265457153 img loss 1.2290433645248413 img loss 1.2279802560806274 img loss 1.295946717262268 img loss 1.2122299671173096 img loss 1.210653305053711 img loss 1.2427031993865967 img loss 1.3101471662521362 img loss 1.2781988382339478 img loss 1.3726842403411865 img loss 1.261736273765564 img loss 1.3298850059509277 img loss 1.3043769598007202 img loss 1.2990878820419312 img loss 1.3017852306365967 img loss 1.3454232215881348 img loss 1.299674391746521 img loss 1.2635750770568848 img loss 1.2767326831817627 img loss 1.2133394479751587 img loss 1.22432279586792 img loss 1.272977590560913 img loss 1.304114580154419 img loss 1.3090360164642334 img loss 1.188067078590393 img loss 1.2822012901306152 img loss 1.3056243658065796 img loss 1.2539079189300537 img loss 1.2727516889572144 img loss 1.2937848567962646 img loss 1.1780856847763062 img loss 1.3166269063949585 img loss 1.1839598417282104 img loss 1.295759916305542 img loss 1.2700190544128418 img loss 1.2345941066741943 img loss 1.3215750455856323 img loss 1.3398258686065674 img loss 1.381440281867981 img loss 1.2492092847824097 img loss 1.3027321100234985 img loss 1.284741759300232 img loss 1.2891156673431396 img loss 1.2290427684783936 img loss 1.2919423580169678 img loss 1.219289779663086 img loss 1.2633531093597412 img loss 1.2841819524765015 img loss 1.2438483238220215 img loss 1.3571465015411377 img loss 1.3174419403076172 img loss 1.1722583770751953 img loss 1.3689957857131958 img loss 1.3555042743682861 img loss 1.189979076385498 img loss 1.3112338781356812 img loss 1.372241735458374 img loss 1.2693541049957275 img loss 1.2822922468185425 img loss 1.300215721130371 img loss 1.2646934986114502 img loss 1.2539361715316772 img loss 1.3025531768798828 img loss 1.2939231395721436 img loss 1.354416012763977 img loss 1.320878267288208 img loss 1.271332025527954 img loss 1.247627854347229 img loss 1.2845484018325806 img loss 1.2943027019500732 img loss 1.247706413269043 img loss 1.335265874862671 img loss 1.276405692100525 img loss 1.2659307718276978 img loss 1.3123109340667725 img loss 1.2914137840270996 img loss 1.2969386577606201 img loss 1.2194989919662476 img loss 1.2960174083709717 img loss 1.2769949436187744 img loss 1.261888861656189 img loss 1.2533454895019531 img loss 1.2517850399017334 img loss 1.2589466571807861 img loss 1.1972490549087524 img loss 1.3043545484542847 img loss 1.2583789825439453 img loss 1.2694470882415771 img loss 1.2385889291763306 img loss 1.3353585004806519 img loss 1.2943904399871826 img loss 1.2907670736312866 img loss 1.266821265220642 img loss 1.2689955234527588 img loss 1.2968095541000366 img loss 1.311572790145874 img loss 1.2607253789901733 img loss 1.252265214920044 img loss 1.3047740459442139 img loss 1.2635540962219238 img loss 1.2847628593444824 img loss 1.2995723485946655 img loss 1.3152297735214233 img loss 1.3337875604629517 img loss 1.3399231433868408 img loss 1.288339614868164 img loss 1.2958080768585205 img loss 1.2967947721481323 img loss 1.262938141822815 img loss 1.2819020748138428 img loss 1.3054842948913574 img loss 1.2146852016448975 img loss 1.3440335988998413 img loss 1.2433931827545166 img loss 1.291070580482483 img loss 1.306139588356018 {'loss': 1.2833, 'grad_norm': 0.23125174641609192, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3480334281921387 img loss 1.3634850978851318 img loss 1.4066412448883057 img loss 1.3151636123657227 img loss 1.2357492446899414 img loss 1.2701449394226074 img loss 1.3296421766281128 img loss 1.2769861221313477 img loss 1.2373085021972656 img loss 1.2711982727050781 img loss 1.4107788801193237 img loss 1.3951613903045654 img loss 1.405363917350769 img loss 1.2575514316558838 img loss 1.394773006439209 img loss 1.3313006162643433 img loss 1.3049246072769165 img loss 1.360496997833252 img loss 1.4115978479385376 img loss 1.3180122375488281 img loss 1.3274650573730469 img loss 1.3266388177871704 img loss 1.376161813735962 img loss 1.3269069194793701 img loss 1.3328758478164673 img loss 1.3538367748260498 img loss 1.3338741064071655 img loss 1.2285617589950562 img loss 1.558782696723938 img loss 1.3601363897323608 img loss 1.321402907371521 img loss 1.3378645181655884 img loss 1.4497092962265015 img loss 1.376632809638977 img loss 1.3294246196746826 img loss 1.294337272644043 img loss 1.2799668312072754 img loss 1.3560625314712524 img loss 1.3807495832443237 img loss 1.3128057718276978 img loss 1.2307603359222412 img loss 1.3251060247421265 img loss 1.2065837383270264 img loss 1.3030543327331543 img loss 1.2667474746704102 img loss 1.2419497966766357 img loss 1.302286148071289 img loss 1.4697346687316895 img loss 1.3039747476577759 img loss 1.361709713935852 img loss 1.4217404127120972 img loss 1.295652151107788 img loss 1.2316137552261353 img loss 1.3121343851089478 img loss 1.4476040601730347 img loss 1.3557270765304565 img loss 1.3778033256530762 img loss 1.2949635982513428 img loss 1.4356276988983154 img loss 1.3366249799728394 img loss 1.4894284009933472 img loss 1.5288015604019165 img loss 1.3702608346939087 img loss 1.3968971967697144 img loss 1.4524013996124268 img loss 1.285172939300537 img loss 1.2972965240478516 img loss 1.2291663885116577 img loss 1.3465996980667114 img loss 1.2644709348678589 img loss 1.437322974205017 img loss 1.2989742755889893 img loss 1.3821429014205933 img loss 1.4166887998580933 img loss 1.3418070077896118 img loss 1.3564693927764893 img loss 1.353256344795227 img loss 1.2980456352233887 img loss 1.3530687093734741 img loss 1.3024094104766846 img loss 1.3437713384628296 img loss 1.4368975162506104 img loss 1.4889737367630005 img loss 1.332223653793335 img loss 1.4196465015411377 img loss 1.2899917364120483 img loss 1.3065931797027588 img loss 1.3862789869308472 img loss 1.3311424255371094 img loss 1.3048235177993774 img loss 1.4674252271652222 img loss 1.2817394733428955 img loss 1.3511481285095215 img loss 1.4425413608551025 img loss 1.2818666696548462 img loss 1.441219449043274 img loss 1.3084924221038818 img loss 1.273565649986267 img loss 1.3495033979415894 img loss 1.2955080270767212 img loss 1.285170078277588 img loss 1.3901965618133545 img loss 1.2902770042419434 img loss 1.4947365522384644 img loss 1.2831629514694214 img loss 1.2913326025009155 img loss 1.3276052474975586 img loss 1.396217942237854 img loss 1.3562840223312378 img loss 1.4150148630142212 img loss 1.4540330171585083 img loss 1.3369661569595337 img loss 1.3628569841384888 img loss 1.3259167671203613 img loss 1.3286646604537964 img loss 1.3066198825836182 img loss 1.320249080657959 img loss 1.309201717376709 img loss 1.363086462020874 img loss 1.33711576461792 img loss 1.3099749088287354 img loss 1.2484056949615479 img loss 1.367195725440979 img loss 1.2560231685638428 img loss 1.273004174232483 img loss 1.350917100906372 img loss 1.4508378505706787 img loss 1.3398902416229248 {'loss': 1.344, 'grad_norm': 0.29212167859077454, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2918556928634644 img loss 1.375945806503296 img loss 1.3189499378204346 img loss 1.2914903163909912 img loss 1.314521312713623 img loss 1.216304063796997 img loss 1.1732068061828613 img loss 1.2914913892745972 img loss 1.2950892448425293 img loss 1.262995719909668 img loss 1.3079107999801636 img loss 1.3223708868026733 img loss 1.3810207843780518 img loss 1.274910807609558 img loss 1.3733954429626465 img loss 1.3418476581573486 img loss 1.282135248184204 img loss 1.2692160606384277 img loss 1.292926549911499 img loss 1.3074356317520142 img loss 1.273638129234314 img loss 1.2922006845474243 img loss 1.2752528190612793 img loss 1.2882086038589478 img loss 1.256826400756836 img loss 1.2998015880584717 img loss 1.307841181755066 img loss 1.3406596183776855 img loss 1.256259799003601 img loss 1.2948874235153198 img loss 1.2719645500183105 img loss 1.3436964750289917 img loss 1.281437635421753 img loss 1.308585524559021 img loss 1.2778377532958984 img loss 1.3247162103652954 img loss 1.267272710800171 img loss 1.2835239171981812 img loss 1.2617480754852295 img loss 1.3807275295257568 img loss 1.3824752569198608 img loss 1.3143818378448486 img loss 1.3710519075393677 img loss 1.2642903327941895 img loss 1.3153085708618164 img loss 1.1935017108917236 img loss 1.352562427520752 img loss 1.2180328369140625 img loss 1.2612465620040894 img loss 1.3419939279556274 img loss 1.3570212125778198 img loss 1.4358210563659668 img loss 1.3378952741622925 img loss 1.297495722770691 img loss 1.2971552610397339 img loss 1.2560018301010132 img loss 1.4077084064483643 img loss 1.3084911108016968 img loss 1.2477220296859741 img loss 1.2943063974380493 img loss 1.2862707376480103 img loss 1.309152603149414 img loss 1.2988252639770508 img loss 1.329787254333496 img loss 1.2945234775543213 img loss 1.2284176349639893 img loss 1.1876301765441895 img loss 1.2913763523101807 img loss 1.3616925477981567 img loss 1.2780146598815918 img loss 1.3391659259796143 img loss 1.2220873832702637 img loss 1.3131479024887085 img loss 1.3009722232818604 img loss 1.3541932106018066 img loss 1.3051964044570923 img loss 1.2924883365631104img loss 1.260804533958435 img loss 1.290950059890747 img loss 1.3016347885131836 img loss 1.2475254535675049 img loss 1.3533018827438354 img loss 1.3119248151779175 img loss 1.3388367891311646 img loss 1.2896404266357422 img loss 1.2738815546035767 img loss 1.2770811319351196 img loss 1.396938443183899 img loss 1.263100028038025 img loss 1.4460610151290894 img loss 1.3267021179199219 img loss 1.209740161895752 img loss 1.298608660697937 img loss 1.3156516551971436 img loss 1.3822815418243408 img loss 1.2827928066253662 img loss 1.3663880825042725 img loss 1.2195489406585693 img loss 1.3165403604507446 img loss 1.3534595966339111 img loss 1.2765867710113525 img loss 1.3175138235092163 img loss 1.4519647359848022 img loss 1.3178026676177979 img loss 1.2751293182373047 img loss 1.3006610870361328 img loss 1.300633430480957 img loss 1.2949600219726562 img loss 1.261299967765808 img loss 1.340150237083435 img loss 1.251860499382019 img loss 1.3211472034454346 img loss 1.2157902717590332 img loss 1.2539703845977783 img loss 1.3061611652374268 img loss 1.3599601984024048 img loss 1.3218927383422852 img loss 1.373289942741394 img loss 1.2681721448898315 img loss 1.213747501373291 img loss 1.393317461013794 img loss 1.2488447427749634 img loss 1.3573839664459229 img loss 1.3347514867782593 img loss 1.3357378244400024 img loss 1.3150923252105713 img loss 1.2942622900009155 img loss 1.2000782489776611 {'loss': 1.3027, 'grad_norm': 0.3827570974826813, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3927969932556152 img loss 1.4589577913284302 img loss 1.4223521947860718 img loss 1.4047595262527466 img loss 1.462591528892517 img loss 1.4588730335235596 img loss 1.4629679918289185 img loss 1.4175268411636353 img loss 1.3674566745758057 img loss 1.4716616868972778 img loss 1.4892337322235107 img loss 1.4572306871414185 img loss 1.3160219192504883 img loss 1.4556831121444702 img loss 1.5436118841171265 img loss 1.551358938217163 img loss 1.5078374147415161 img loss 1.5109630823135376 img loss 1.3466275930404663 img loss 1.3739174604415894 img loss 1.4605604410171509 img loss 1.402435064315796 img loss 1.361863374710083 img loss 1.4508445262908936 img loss 1.3609181642532349 img loss 1.5274083614349365 img loss 1.537566065788269 img loss 1.4561136960983276 img loss 1.6143845319747925 img loss 1.4763861894607544 img loss 1.416068196296692 img loss 1.519150972366333 img loss 1.4263824224472046 img loss 1.4087605476379395 img loss 1.400871753692627 img loss 1.487048625946045 img loss 1.5549105405807495 img loss 1.4164141416549683 img loss 1.4647926092147827 img loss 1.3913798332214355 img loss 1.4401971101760864 img loss 1.440192699432373img loss 1.343010425567627 img loss 1.4189740419387817 img loss 1.3890149593353271 img loss 1.4297878742218018 img loss 1.4636057615280151 img loss 1.5171163082122803 img loss 1.3478492498397827 img loss 1.4313853979110718 img loss 1.3816899061203003 img loss 1.4449068307876587 img loss 1.4217784404754639 img loss 1.4624272584915161 img loss 1.3730145692825317 img loss 1.4538694620132446 img loss 1.532741904258728 img loss 1.4032597541809082 img loss 1.4265464544296265 img loss 1.6763635873794556 img loss 1.3612080812454224 img loss 1.4415199756622314 img loss 1.4833638668060303 img loss 1.3099684715270996 img loss 1.4256398677825928 img loss 1.3712942600250244 img loss 1.4148507118225098 img loss 1.4215565919876099 img loss 1.4437108039855957 img loss 1.3191198110580444 img loss 1.3217805624008179 img loss 1.3975894451141357 img loss 1.359813928604126 img loss 1.508567214012146 img loss 1.4287335872650146 img loss 1.288262128829956 img loss 1.4373687505722046 img loss 1.4371941089630127 img loss 1.3790581226348877 img loss 1.3272738456726074 img loss 1.3933117389678955 img loss 1.4161652326583862 img loss 1.4212278127670288 img loss 1.4518190622329712 img loss 1.5408666133880615 img loss 1.4672611951828003 img loss 1.4047225713729858 img loss 1.491900086402893 img loss 1.3791707754135132 img loss 1.4208849668502808 img loss 1.4739811420440674 img loss 1.3481484651565552 img loss 1.4345667362213135 img loss 1.522018313407898 img loss 1.4450379610061646 img loss 1.4971410036087036 img loss 1.5040258169174194 img loss 1.4144260883331299 img loss 1.4540799856185913 img loss 1.4398064613342285 img loss 1.3930823802947998 img loss 1.3952631950378418 img loss 1.4997349977493286 img loss 1.4412678480148315 img loss 1.6356984376907349 img loss 1.3770009279251099 img loss 1.3837177753448486 img loss 1.3817354440689087 img loss 1.5111161470413208 img loss 1.4825197458267212 img loss 1.4251121282577515 img loss 1.3954064846038818 img loss 1.4536564350128174 img loss 1.451677680015564 img loss 1.4240301847457886 img loss 1.4149271249771118 img loss 1.3814319372177124 img loss 1.4629496335983276 img loss 1.4676549434661865 img loss 1.5517604351043701 img loss 1.3856321573257446 img loss 1.3175179958343506 img loss 1.5184849500656128 img loss 1.378684163093567 img loss 1.2875480651855469 img loss 1.38377046585083 img loss 1.6724464893341064 img loss 1.4448059797286987 {'loss': 1.4369, 'grad_norm': 0.6494038105010986, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2768200635910034 img loss 1.2446563243865967 img loss 1.1977460384368896 img loss 1.255018711090088 img loss 1.250107765197754 img loss 1.1954474449157715 img loss 1.2179903984069824 img loss 1.3120758533477783 img loss 1.22502601146698 img loss 1.2847398519515991 img loss 1.3215656280517578 img loss 1.2627677917480469 img loss 1.2893520593643188 img loss 1.2763324975967407 img loss 1.2456461191177368 img loss 1.302111268043518 img loss 1.2824020385742188 img loss 1.3064656257629395 img loss 1.2464450597763062 img loss 1.2441281080245972 img loss 1.2773642539978027 img loss 1.288854956626892 img loss 1.3194029331207275 img loss 1.3167693614959717 img loss 1.2596354484558105 img loss 1.2633742094039917 img loss 1.2495449781417847 img loss 1.2648413181304932 img loss 1.227821707725525 img loss 1.196258306503296 img loss 1.3298044204711914 img loss 1.253922700881958 img loss 1.3245270252227783 img loss 1.2429518699645996 img loss 1.250257968902588 img loss 1.3364533185958862 img loss 1.2640862464904785 img loss 1.3099335432052612 img loss 1.207802653312683 img loss 1.2429211139678955 img loss 1.2314772605895996 img loss 1.3332599401474 img loss 1.2772762775421143 img loss 1.2345679998397827 img loss 1.296607494354248 img loss 1.3148406744003296 img loss 1.2647862434387207 img loss 1.2191565036773682 img loss 1.379119634628296 img loss 1.3398005962371826 img loss 1.306936264038086 img loss 1.2719650268554688 img loss 1.346596121788025 img loss 1.2456510066986084 img loss 1.2562191486358643 img loss 1.302229642868042 img loss 1.218982458114624 img loss 1.258594036102295 img loss 1.2790532112121582 img loss 1.2412264347076416 img loss 1.2354683876037598 img loss 1.2579504251480103 img loss 1.2901148796081543 img loss 1.3507094383239746 img loss 1.339474081993103 img loss 1.1916821002960205 img loss 1.2480347156524658 img loss 1.2304731607437134 img loss 1.3080780506134033 img loss 1.253237009048462 img loss 1.267553687095642 img loss 1.3146100044250488 img loss 1.3045352697372437 img loss 1.3008410930633545 img loss 1.1854184865951538 img loss 1.284157395362854 img loss 1.2567452192306519 img loss 1.2874276638031006 img loss 1.252455234527588 img loss 1.2566885948181152 img loss 1.3219455480575562 img loss 1.2678717374801636 img loss 1.303184151649475 img loss 1.2284456491470337 img loss 1.1478588581085205 img loss 1.3058106899261475 img loss 1.2723382711410522 img loss 1.2924115657806396 img loss 1.256533145904541 img loss 1.2818031311035156 img loss 1.3139877319335938 img loss 1.2609550952911377 img loss 1.3264260292053223 img loss 1.2748693227767944 img loss 1.2044296264648438 img loss 1.3004207611083984 img loss 1.225520133972168 img loss 1.247556447982788 img loss 1.325385570526123 img loss 1.3128113746643066 img loss 1.2808393239974976 img loss 1.261070728302002 img loss 1.2793612480163574 img loss 1.2965130805969238 img loss 1.2560615539550781 img loss 1.2769441604614258 img loss 1.2195309400558472 img loss 1.2353380918502808 img loss 1.1486053466796875 img loss 1.2324762344360352 img loss 1.2862160205841064 img loss 1.1927967071533203 img loss 1.2705711126327515 img loss 1.2424829006195068img loss 1.2776265144348145 img loss 1.312099814414978 img loss 1.205277681350708 img loss 1.3844712972640991 img loss 1.246990442276001 img loss 1.340419054031372 img loss 1.3285622596740723 img loss 1.2354450225830078 img loss 1.2579110860824585 img loss 1.2563259601593018 img loss 1.2949211597442627 img loss 1.2175507545471191 img loss 1.2838833332061768 img loss 1.1873635053634644 {'loss': 1.2693, 'grad_norm': 0.2622292935848236, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.472452998161316 img loss 1.5372422933578491 img loss 1.419697642326355 img loss 1.5572540760040283 img loss 1.3917745351791382 img loss 1.4871410131454468 img loss 1.4448601007461548 img loss 1.453601360321045 img loss 1.4153087139129639 img loss 1.5853699445724487 img loss 1.5531840324401855 img loss 1.435259222984314 img loss 1.5219980478286743 img loss 1.5360815525054932 img loss 1.518316388130188 img loss 1.4213101863861084 img loss 1.4728217124938965 img loss 1.4116419553756714 img loss 1.5487741231918335 img loss 1.4150060415267944 img loss 1.4066386222839355 img loss 1.4332391023635864 img loss 1.4335867166519165 img loss 1.5163902044296265 img loss 1.5786653757095337 img loss 1.4547317028045654 img loss 1.5957694053649902 img loss 1.5407506227493286 img loss 1.4958207607269287 img loss 1.4965965747833252 img loss 1.4269534349441528 img loss 1.3485519886016846 img loss 1.5449222326278687 img loss 1.4879883527755737 img loss 1.5119737386703491 img loss 1.437251329421997 img loss 1.47933030128479 img loss 1.5297865867614746 img loss 1.4160583019256592 img loss 1.5192925930023193 img loss 1.3578513860702515 img loss 1.4925540685653687 img loss 1.436827540397644 img loss 1.5782605409622192 img loss 1.4356292486190796 img loss 1.561797022819519 img loss 1.4633046388626099 img loss 1.3798264265060425 img loss 1.3754851818084717 img loss 1.4848062992095947 img loss 1.39088773727417 img loss 1.456647515296936 img loss 1.527732491493225 img loss 1.5103954076766968 img loss 1.416197419166565 img loss 1.3958402872085571 img loss 1.5057063102722168 img loss 1.4344981908798218 img loss 1.3643189668655396 img loss 1.4369834661483765 img loss 1.5879327058792114 img loss 1.828935980796814 img loss 1.427030324935913 img loss 1.6170965433120728 img loss 1.455026388168335img loss 1.4326590299606323 img loss 1.4290308952331543 img loss 1.5565540790557861 img loss 1.412399411201477 img loss 1.5303596258163452 img loss 1.5302040576934814 img loss 1.4849793910980225 img loss 1.6807197332382202 img loss 1.3906490802764893 img loss 1.6965981721878052 img loss 1.696801781654358 img loss 1.6761279106140137 img loss 1.5836824178695679 img loss 1.518258810043335 img loss 1.525720238685608 img loss 1.3671456575393677 img loss 1.513456106185913 img loss 1.4020787477493286 img loss 1.4180920124053955 img loss 1.4661797285079956 img loss 1.5137943029403687 img loss 1.4753793478012085 img loss 1.4351685047149658 img loss 1.5347834825515747 img loss 1.4656487703323364 img loss 1.4996082782745361 img loss 1.4910813570022583 img loss 1.5360547304153442 img loss 1.4232908487319946 img loss 1.5380300283432007 img loss 1.5719324350357056 img loss 1.5299969911575317 img loss 1.3384950160980225 img loss 1.483536958694458 img loss 1.3637769222259521 img loss 1.4813835620880127 img loss 1.4901067018508911 img loss 1.4564670324325562 img loss 1.3180397748947144 img loss 1.6094051599502563 img loss 1.437264323234558 img loss 1.582931637763977 img loss 1.5660240650177002 img loss 1.4347633123397827 img loss 1.6523644924163818 img loss 1.4792965650558472 img loss 1.3045635223388672 img loss 1.4784356355667114 img loss 1.5948708057403564 img loss 1.5522730350494385 img loss 1.5646191835403442 img loss 1.5536326169967651 img loss 1.486644983291626 img loss 1.4749619960784912img loss 1.5333857536315918 img loss 1.417316198348999 img loss 1.4085657596588135 img loss 1.4252066612243652 img loss 1.4617857933044434 img loss 1.46467924118042 img loss 1.507238745689392 img loss 1.653052568435669 img loss 1.4492943286895752 {'loss': 1.4885, 'grad_norm': 0.34864044189453125, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2978107929229736 img loss 1.2388763427734375 img loss 1.2456556558609009 img loss 1.2259674072265625 img loss 1.2778667211532593 img loss 1.2230243682861328 img loss 1.2487201690673828 img loss 1.259000301361084 img loss 1.1841388940811157 img loss 1.24287748336792 img loss 1.3231074810028076 img loss 1.1883362531661987 img loss 1.2594105005264282 img loss 1.2527192831039429 img loss 1.3452389240264893 img loss 1.2445943355560303 img loss 1.3796240091323853 img loss 1.2347948551177979 img loss 1.3486683368682861 img loss 1.2972618341445923 img loss 1.3189120292663574 img loss 1.2517956495285034 img loss 1.2072806358337402 img loss 1.269619345664978 img loss 1.3098379373550415 img loss 1.236632227897644 img loss 1.2027170658111572 img loss 1.2534980773925781 img loss 1.2206168174743652 img loss 1.2459383010864258 img loss 1.2328938245773315 img loss 1.2628847360610962 img loss 1.2032619714736938 img loss 1.2174599170684814 img loss 1.293323040008545 img loss 1.2643935680389404 img loss 1.2238457202911377 img loss 1.2428390979766846 img loss 1.2653627395629883 img loss 1.2294260263442993 img loss 1.2392486333847046 img loss 1.2689218521118164 img loss 1.2316160202026367 img loss 1.294736385345459 img loss 1.2242200374603271 img loss 1.1881719827651978 img loss 1.2391151189804077 img loss 1.234211802482605 img loss 1.1935354471206665 img loss 1.24626624584198 img loss 1.2556946277618408 img loss 1.2394987344741821 img loss 1.278511643409729 img loss 1.2465102672576904 img loss 1.2793680429458618 img loss 1.258009672164917 img loss 1.246445894241333 img loss 1.2639110088348389 img loss 1.2611757516860962 img loss 1.2667124271392822 img loss 1.253260850906372 img loss 1.2547752857208252 img loss 1.2596125602722168 img loss 1.334258794784546 img loss 1.208905816078186 img loss 1.2615917921066284 img loss 1.24479079246521 img loss 1.2279026508331299 img loss 1.194854736328125 img loss 1.292510986328125 img loss 1.2286889553070068 img loss 1.2477223873138428 img loss 1.2246513366699219 img loss 1.246760606765747 img loss 1.228484869003296 img loss 1.2655203342437744 img loss 1.2544877529144287 img loss 1.2843303680419922 img loss 1.2683571577072144 img loss 1.2847492694854736 img loss 1.2276356220245361 img loss 1.203894019126892 img loss 1.2613474130630493 img loss 1.2137879133224487 img loss 1.2876594066619873 img loss 1.2242077589035034 img loss 1.217231035232544 img loss 1.1694023609161377 img loss 1.2516742944717407 img loss 1.2095942497253418 img loss 1.2146087884902954 img loss 1.2702401876449585 img loss 1.2182793617248535 img loss 1.1435997486114502img loss 1.238517165184021 img loss 1.255776286125183 img loss 1.1806236505508423 img loss 1.2177170515060425 img loss 1.161149024963379 img loss 1.2363709211349487 img loss 1.2827421426773071 img loss 1.250076174736023 img loss 1.2496373653411865 img loss 1.2309173345565796 img loss 1.2509181499481201 img loss 1.247543215751648 img loss 1.2590044736862183 img loss 1.3002541065216064 img loss 1.2391102313995361 img loss 1.2412937879562378 img loss 1.2824252843856812 img loss 1.2597681283950806 img loss 1.227512240409851 img loss 1.169084906578064 img loss 1.3281915187835693 img loss 1.283271074295044 img loss 1.2914097309112549 img loss 1.2435188293457031 img loss 1.2927392721176147 img loss 1.3016409873962402 img loss 1.2059252262115479 img loss 1.2191485166549683 img loss 1.27751624584198 img loss 1.3243244886398315 img loss 1.2921266555786133 img loss 1.229061484336853 img loss 1.305693507194519 img loss 1.2248239517211914 {'loss': 1.25, 'grad_norm': 0.20909908413887024, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3823645114898682 img loss 1.3786267042160034 img loss 1.3881324529647827 img loss 1.416760802268982 img loss 1.4901611804962158 img loss 1.4889864921569824 img loss 1.4006035327911377 img loss 1.4611256122589111 img loss 1.3760966062545776 img loss 1.4428858757019043 img loss 1.4827799797058105 img loss 1.4086521863937378 img loss 1.3535590171813965 img loss 1.5501216650009155 img loss 1.4297959804534912 img loss 1.5047591924667358 img loss 1.4105637073516846 img loss 1.515195369720459 img loss 1.3891247510910034 img loss 1.328878402709961 img loss 1.5257939100265503 img loss 1.4220572710037231 img loss 1.4328033924102783 img loss 1.4643709659576416 img loss 1.4472566843032837 img loss 1.4117481708526611 img loss 1.424689531326294 img loss 1.4069205522537231 img loss 1.4340437650680542 img loss 1.5044887065887451 img loss 1.5124248266220093 img loss 1.341436743736267 img loss 1.512817144393921 img loss 1.318702220916748 img loss 1.394792079925537 img loss 1.490058183670044 img loss 1.3473522663116455 img loss 1.3245770931243896 img loss 1.4381412267684937 img loss 1.353247880935669img loss 1.4360283613204956 img loss 1.4202466011047363 img loss 1.5083403587341309 img loss 1.443841576576233 img loss 1.3380383253097534 img loss 1.4084103107452393 img loss 1.3770673274993896 img loss 1.3678818941116333 img loss 1.448777437210083 img loss 1.3230199813842773 img loss 1.3846195936203003 img loss 1.404968500137329 img loss 1.5719341039657593 img loss 1.331295371055603 img loss 1.5530651807785034 img loss 1.4399231672286987 img loss 1.4102261066436768 img loss 1.493422031402588 img loss 1.3633149862289429 img loss 1.4623503684997559 img loss 1.3844807147979736 img loss 1.3640456199645996 img loss 1.4384833574295044 img loss 1.42276930809021 img loss 1.4044852256774902 img loss 1.355246663093567 img loss 1.3926907777786255 img loss 1.442516565322876 img loss 1.368843913078308 img loss 1.413840651512146 img loss 1.3449318408966064 img loss 1.3231751918792725 img loss 1.3575856685638428 img loss 1.4379960298538208 img loss 1.5584739446640015 img loss 1.3671529293060303 img loss 1.4967697858810425 img loss 1.4155089855194092 img loss 1.401822566986084 img loss 1.3453541994094849 img loss 1.4466731548309326 img loss 1.4511431455612183 img loss 1.4488708972930908 img loss 1.3645036220550537 img loss 1.402239441871643 img loss 1.3237065076828003 img loss 1.390966773033142 img loss 1.3557772636413574 img loss 1.4056986570358276 img loss 1.3094717264175415 img loss 1.4367746114730835 img loss 1.3158196210861206 img loss 1.3843339681625366 img loss 1.3911105394363403 img loss 1.378050446510315 img loss 1.476616382598877 img loss 1.4051251411437988 img loss 1.4526406526565552 img loss 1.467755913734436 img loss 1.5048432350158691 img loss 1.4335864782333374 img loss 1.4435690641403198 img loss 1.5467616319656372 img loss 1.344275951385498 img loss 1.596014142036438 img loss 1.4237395524978638 img loss 1.4906623363494873 img loss 1.3601399660110474 img loss 1.4743456840515137 img loss 1.5798629522323608 img loss 1.476986289024353 img loss 1.4198781251907349 img loss 1.420080304145813 img loss 1.440221905708313 img loss 1.4193519353866577 img loss 1.519245982170105 img loss 1.4851949214935303 img loss 1.4770939350128174 img loss 1.3943191766738892 img loss 1.4438278675079346 img loss 1.466110348701477 img loss 1.4218603372573853 img loss 1.4151166677474976 img loss 1.3897147178649902 img loss 1.3855994939804077 img loss 1.5638967752456665 img loss 1.4264681339263916 img loss 1.4319088459014893 {'loss': 1.4252, 'grad_norm': 0.26922401785850525, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2035713195800781 img loss 1.3819687366485596 img loss 1.1890051364898682 img loss 1.2598614692687988 img loss 1.3294787406921387 img loss 1.2778373956680298 img loss 1.3222585916519165 img loss 1.2768869400024414 img loss 1.210925817489624 img loss 1.2369158267974854 img loss 1.297403335571289 img loss 1.226300835609436 img loss 1.3496557474136353 img loss 1.2688814401626587 img loss 1.3514599800109863 img loss 1.2974027395248413 img loss 1.2389791011810303 img loss 1.2246168851852417 img loss 1.2312865257263184 img loss 1.1976466178894043 img loss 1.279583215713501 img loss 1.2265592813491821 img loss 1.282107949256897 img loss 1.2845004796981812 img loss 1.2341675758361816 img loss 1.1548652648925781 img loss 1.2407432794570923 img loss 1.4165009260177612 img loss 1.294298768043518 img loss 1.2318795919418335 img loss 1.391101598739624 img loss 1.3238343000411987 img loss 1.3749698400497437 img loss 1.3001394271850586 img loss 1.3154809474945068 img loss 1.3192596435546875 img loss 1.1895685195922852 img loss 1.303206205368042 img loss 1.1955749988555908 img loss 1.2535885572433472 img loss 1.3699259757995605 img loss 1.293410301208496 img loss 1.2788784503936768 img loss 1.2882665395736694 img loss 1.3333263397216797 img loss 1.2643544673919678 img loss 1.2431824207305908 img loss 1.3835155963897705 img loss 1.2630032300949097 img loss 1.1875872611999512 img loss 1.3449538946151733 img loss 1.3397297859191895 img loss 1.2330986261367798 img loss 1.341865062713623 img loss 1.2795982360839844 img loss 1.3716486692428589 img loss 1.3303782939910889 img loss 1.3519116640090942 img loss 1.3165764808654785 img loss 1.2552846670150757 img loss 1.3011598587036133 img loss 1.2669321298599243 img loss 1.1862770318984985 img loss 1.2213233709335327 img loss 1.1956324577331543 img loss 1.2791754007339478 img loss 1.3599324226379395 img loss 1.2958698272705078 img loss 1.272988200187683 img loss 1.3188356161117554 img loss 1.2594026327133179 img loss 1.2613837718963623 img loss 1.3078088760375977 img loss 1.2472038269042969 img loss 1.2868006229400635 img loss 1.264586329460144 img loss 1.2288148403167725 img loss 1.243098497390747 img loss 1.2499549388885498 img loss 1.2288769483566284 img loss 1.2896431684494019 img loss 1.2870515584945679 img loss 1.3512217998504639 img loss 1.2628190517425537 img loss 1.215261459350586 img loss 1.4253510236740112 img loss 1.3126388788223267 img loss 1.2368465662002563 img loss 1.3871315717697144 img loss 1.2346465587615967 img loss 1.2729134559631348 img loss 1.2101408243179321 img loss 1.2502985000610352 img loss 1.3295872211456299 img loss 1.182860016822815 img loss 1.2176936864852905 img loss 1.275589942932129 img loss 1.3112705945968628 img loss 1.271390676498413 img loss 1.2804096937179565 img loss 1.3009581565856934 img loss 1.2740033864974976 img loss 1.3153417110443115 img loss 1.1931190490722656 img loss 1.1694488525390625 img loss 1.2734887599945068 img loss 1.2645100355148315 img loss 1.3356502056121826 img loss 1.2075928449630737 img loss 1.1882609128952026 img loss 1.2875429391860962 img loss 1.2283772230148315 img loss 1.2653793096542358 img loss 1.3072201013565063 img loss 1.323598861694336 img loss 1.2406625747680664 img loss 1.307437777519226 img loss 1.2318222522735596 img loss 1.2654346227645874 img loss 1.2637267112731934 img loss 1.305491328239441 img loss 1.24400794506073 img loss 1.2164437770843506 img loss 1.409472942352295 img loss 1.261338472366333 img loss 1.2693233489990234 img loss 1.2726027965545654 img loss 1.2941346168518066 {'loss': 1.277, 'grad_norm': 0.32512909173965454, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.152627944946289 img loss 1.171717643737793 img loss 1.1802829504013062 img loss 1.2212952375411987 img loss 1.1768720149993896 img loss 1.1995854377746582 img loss 1.1952742338180542 img loss 1.2174047231674194 img loss 1.1804393529891968 img loss 1.2693591117858887 img loss 1.1873019933700562 img loss 1.1975739002227783 img loss 1.23524808883667 img loss 1.2466216087341309 img loss 1.2181661128997803 img loss 1.1984986066818237 img loss 1.3218224048614502 img loss 1.2669734954833984 img loss 1.1870410442352295 img loss 1.1983190774917603 img loss 1.1708061695098877 img loss 1.2225302457809448 img loss 1.2487668991088867 img loss 1.2498668432235718 img loss 1.2361220121383667 img loss 1.221807837486267 img loss 1.211072564125061 img loss 1.1905401945114136 img loss 1.2356789112091064 img loss 1.2650585174560547 img loss 1.1515811681747437 img loss 1.1920461654663086 img loss 1.2219780683517456 img loss 1.222907304763794 img loss 1.2040446996688843 img loss 1.1623026132583618 img loss 1.294147253036499 img loss 1.2180876731872559 img loss 1.2249971628189087 img loss 1.2052159309387207 img loss 1.2168339490890503 img loss 1.2352596521377563 img loss 1.2472319602966309 img loss 1.2572169303894043 img loss 1.2118070125579834 img loss 1.094072937965393img loss 1.1682393550872803 img loss 1.2227686643600464 img loss 1.2020212411880493 img loss 1.237595796585083 img loss 1.2379717826843262 img loss 1.1823145151138306 img loss 1.2159067392349243 img loss 1.2269020080566406 img loss 1.3324416875839233 img loss 1.19986891746521 img loss 1.1960111856460571 img loss 1.2097071409225464 img loss 1.2222495079040527 img loss 1.210913062095642 img loss 1.2241283655166626 img loss 1.2709949016571045 img loss 1.1733076572418213 img loss 1.2902907133102417 img loss 1.1957757472991943 img loss 1.2069141864776611 img loss 1.2011923789978027 img loss 1.1955604553222656 img loss 1.238410234451294 img loss 1.2459406852722168 img loss 1.2317434549331665 img loss 1.2619988918304443 img loss 1.182009220123291 img loss 1.2152680158615112 img loss 1.2385907173156738 img loss 1.234770655632019 img loss 1.1501224040985107 img loss 1.3225735425949097 img loss 1.1749279499053955 img loss 1.2398895025253296 img loss 1.2118258476257324 img loss 1.2170740365982056 img loss 1.1528410911560059 img loss 1.2635149955749512 img loss 1.2290948629379272 img loss 1.1967147588729858 img loss 1.2042293548583984 img loss 1.1918318271636963 img loss 1.225398063659668 img loss 1.209679365158081 img loss 1.1337645053863525 img loss 1.2418326139450073 img loss 1.227634072303772 img loss 1.1595884561538696 img loss 1.1632639169692993 img loss 1.1702533960342407 img loss 1.1927168369293213img loss 1.235167145729065 img loss 1.1814942359924316 img loss 1.1789251565933228 img loss 1.2337322235107422 img loss 1.1775336265563965 img loss 1.2061173915863037 img loss 1.244989275932312 img loss 1.241487979888916 img loss 1.1436631679534912 img loss 1.183492660522461 img loss 1.1446484327316284 img loss 1.199469804763794 img loss 1.1968914270401 img loss 1.177944540977478 img loss 1.2482450008392334 img loss 1.1764129400253296 img loss 1.2006202936172485 img loss 1.2201966047286987 img loss 1.184175968170166 img loss 1.2718361616134644 img loss 1.1967474222183228 img loss 1.1563457250595093 img loss 1.2127432823181152 img loss 1.1846870183944702 img loss 1.1789472103118896 img loss 1.1709498167037964 img loss 1.1713956594467163 img loss 1.2358489036560059 img loss 1.1894302368164062 img loss 1.198122501373291 img loss 1.1837400197982788 {'loss': 1.2102, 'grad_norm': 0.20471464097499847, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3513665199279785 img loss 1.3651442527770996 img loss 1.1626498699188232 img loss 1.4858750104904175 img loss 1.3130499124526978 img loss 1.285805583000183 img loss 1.259324550628662 img loss 1.3369542360305786 img loss 1.286338448524475 img loss 1.3894654512405396 img loss 1.3819338083267212 img loss 1.3982659578323364 img loss 1.2710866928100586 img loss 1.3418740034103394 img loss 1.3051025867462158 img loss 1.2709577083587646 img loss 1.3048118352890015 img loss 1.2967629432678223 img loss 1.4737849235534668 img loss 1.3990713357925415 img loss 1.2097434997558594 img loss 1.2604284286499023 img loss 1.2453148365020752 img loss 1.2049258947372437 img loss 1.2884730100631714 img loss 1.2171214818954468 img loss 1.2845607995986938 img loss 1.3116037845611572 img loss 1.2365878820419312 img loss 1.2548329830169678 img loss 1.2369152307510376 img loss 1.3522038459777832 img loss 1.332223653793335 img loss 1.4036835432052612 img loss 1.3051742315292358 img loss 1.306488037109375 img loss 1.2632434368133545 img loss 1.2738535404205322 img loss 1.3578150272369385 img loss 1.3485716581344604 img loss 1.4075045585632324 img loss 1.310777187347412 img loss 1.2968318462371826 img loss 1.284598708152771 img loss 1.3101783990859985 img loss 1.2455711364746094 img loss 1.3145782947540283 img loss 1.2330586910247803 img loss 1.4469265937805176 img loss 1.328779697418213 img loss 1.3685559034347534 img loss 1.2604866027832031 img loss 1.363763451576233 img loss 1.2732495069503784 img loss 1.3433892726898193 img loss 1.3600605726242065 img loss 1.3283218145370483 img loss 1.3013352155685425 img loss 1.2488620281219482 img loss 1.2721116542816162 img loss 1.392224907875061 img loss 1.2183337211608887 img loss 1.2572351694107056 img loss 1.3352882862091064 img loss 1.3493207693099976 img loss 1.3182381391525269 img loss 1.396106243133545 img loss 1.3202074766159058img loss 1.2227598428726196 img loss 1.2568649053573608 img loss 1.42009699344635 img loss 1.3417552709579468 img loss 1.3312854766845703 img loss 1.2955468893051147 img loss 1.2685046195983887 img loss 1.2755626440048218 img loss 1.3175510168075562 img loss 1.2209163904190063 img loss 1.2919238805770874 img loss 1.2778544425964355 img loss 1.1681545972824097 img loss 1.150968313217163 img loss 1.284502387046814 img loss 1.2989237308502197 img loss 1.343491792678833 img loss 1.1570191383361816 img loss 1.2936339378356934 img loss 1.2734005451202393 img loss 1.4218748807907104 img loss 1.3007738590240479 img loss 1.3411198854446411 img loss 1.2813290357589722 img loss 1.3426510095596313 img loss 1.3480538129806519 img loss 1.2506738901138306 img loss 1.2063119411468506 img loss 1.3373615741729736 img loss 1.3044285774230957 img loss 1.5203853845596313 img loss 1.3042867183685303 img loss 1.4062420129776 img loss 1.3897281885147095 img loss 1.2737187147140503 img loss 1.2847410440444946 img loss 1.262132167816162 img loss 1.331285834312439 img loss 1.3192462921142578 img loss 1.46882963180542 img loss 1.2952696084976196 img loss 1.3404724597930908 img loss 1.2992167472839355 img loss 1.3820339441299438 img loss 1.284219741821289 img loss 1.3292032480239868 img loss 1.2358107566833496 img loss 1.2009159326553345 img loss 1.2082432508468628 img loss 1.3116917610168457 img loss 1.3955318927764893 img loss 1.3414108753204346 img loss 1.3157966136932373 img loss 1.2618725299835205 img loss 1.16789710521698 img loss 1.1840369701385498 img loss 1.2777345180511475 img loss 1.3027703762054443 img loss 1.2485796213150024 img loss 1.2540788650512695 {'loss': 1.3053, 'grad_norm': 0.32959991693496704, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.7671035528182983 img loss 1.409030795097351 img loss 1.4916085004806519 img loss 1.5239479541778564 img loss 1.550135850906372 img loss 1.5368742942810059 img loss 1.4703707695007324 img loss 1.596922755241394 img loss 1.522840142250061 img loss 1.406187891960144 img loss 1.5661444664001465 img loss 1.3830742835998535 img loss 1.4159682989120483 img loss 1.4929677248001099 img loss 1.555458903312683 img loss 1.4401248693466187 img loss 1.5248662233352661 img loss 1.6572775840759277 img loss 1.7002397775650024 img loss 1.452475666999817 img loss 1.5892375707626343 img loss 1.5064817667007446 img loss 1.429978609085083 img loss 1.4315992593765259 img loss 1.5711119174957275 img loss 1.4792519807815552 img loss 1.5465363264083862 img loss 1.4636777639389038 img loss 1.3984307050704956 img loss 1.4320379495620728 img loss 1.5275623798370361 img loss 1.4561811685562134 img loss 1.6510405540466309 img loss 1.571025013923645 img loss 1.4971452951431274 img loss 1.4762122631072998 img loss 1.4503190517425537 img loss 1.3275694847106934 img loss 1.6192848682403564 img loss 1.7081352472305298 img loss 1.5711308717727661 img loss 1.4585667848587036 img loss 1.5702279806137085 img loss 1.6082466840744019 img loss 1.5618635416030884 img loss 1.360979676246643 img loss 1.5720171928405762 img loss 1.5032761096954346 img loss 1.5345369577407837 img loss 1.444693684577942 img loss 1.4710243940353394 img loss 1.5696519613265991 img loss 1.4360642433166504 img loss 1.5322104692459106 img loss 1.5044922828674316 img loss 1.4409420490264893 img loss 1.5312607288360596 img loss 1.5602850914001465 img loss 1.477907657623291 img loss 1.3187527656555176 img loss 1.430111289024353 img loss 1.4920896291732788 img loss 1.6371177434921265 img loss 1.5285322666168213 img loss 1.5345581769943237 img loss 1.52931547164917 img loss 1.4303793907165527 img loss 1.5776697397232056 img loss 1.4137437343597412 img loss 1.5111936330795288 img loss 1.4196858406066895 img loss 1.6169497966766357 img loss 1.5435731410980225 img loss 1.7183382511138916 img loss 1.5538156032562256 img loss 1.5136425495147705 img loss 1.5537253618240356 img loss 1.4518234729766846 img loss 1.6153970956802368 img loss 1.5442631244659424 img loss 1.4293649196624756 img loss 1.651107668876648 img loss 1.5589911937713623 img loss 1.4657986164093018 img loss 1.5279428958892822 img loss 1.5624414682388306 img loss 1.5044232606887817 img loss 1.6272977590560913 img loss 1.4251354932785034 img loss 1.491355061531067 img loss 1.68886137008667 img loss 1.4826301336288452 img loss 1.627750039100647 img loss 1.6252144575119019 img loss 1.6758263111114502 img loss 1.4606019258499146 img loss 1.4255188703536987 img loss 1.4631088972091675 img loss 1.5043038129806519 img loss 1.3888310194015503 img loss 1.416194200515747 img loss 1.3612366914749146 img loss 1.6387487649917603 img loss 1.460639476776123 img loss 1.5716556310653687 img loss 1.4525151252746582 img loss 1.6306869983673096 img loss 1.4705824851989746 img loss 1.5680158138275146 img loss 1.429016351699829 img loss 1.6628330945968628 img loss 1.5463014841079712 img loss 1.532600998878479 img loss 1.4559025764465332 img loss 1.675204873085022 img loss 1.4231566190719604 img loss 1.4797799587249756 img loss 1.519670009613037 img loss 1.475419521331787 img loss 1.615356683731079 img loss 1.6010719537734985 img loss 1.5122272968292236 img loss 1.6551846265792847 img loss 1.581040620803833 img loss 1.6497308015823364 img loss 1.5679337978363037 img loss 1.4891194105148315 img loss 1.4898486137390137 {'loss': 1.5216, 'grad_norm': 0.2400967925786972, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3568724393844604 img loss 1.1939294338226318 img loss 1.3569598197937012 img loss 1.271965742111206 img loss 1.3926283121109009 img loss 1.299428939819336 img loss 1.4049443006515503 img loss 1.3236998319625854 img loss 1.3264073133468628 img loss 1.2945969104766846 img loss 1.2653814554214478 img loss 1.3296531438827515 img loss 1.1909477710723877 img loss 1.344939947128296 img loss 1.2187050580978394 img loss 1.2586902379989624 img loss 1.2509765625 img loss 1.4226197004318237 img loss 1.2903971672058105 img loss 1.2978034019470215 img loss 1.265546202659607 img loss 1.288339614868164 img loss 1.3174684047698975 img loss 1.2818691730499268 img loss 1.2483524084091187 img loss 1.1767101287841797 img loss 1.3427612781524658 img loss 1.3438432216644287 img loss 1.2949020862579346 img loss 1.30807626247406 img loss 1.3088048696517944 img loss 1.3060352802276611 img loss 1.3320860862731934 img loss 1.2686207294464111 img loss 1.1266775131225586 img loss 1.3296012878417969 img loss 1.2983497381210327 img loss 1.3238645792007446 img loss 1.234163761138916 img loss 1.2727696895599365 img loss 1.3370578289031982 img loss 1.292205810546875 img loss 1.2573972940444946 img loss 1.344797968864441 img loss 1.3189324140548706 img loss 1.2329256534576416 img loss 1.2708021402359009 img loss 1.220884919166565 img loss 1.2842001914978027 img loss 1.260388970375061 img loss 1.3079887628555298 img loss 1.3061039447784424 img loss 1.314889669418335 img loss 1.2456188201904297 img loss 1.1612786054611206 img loss 1.249247431755066 img loss 1.252875804901123 img loss 1.2040576934814453 img loss 1.2663320302963257 img loss 1.2187058925628662 img loss 1.285134196281433 img loss 1.3440591096878052 img loss 1.2527439594268799 img loss 1.3005517721176147 img loss 1.2882816791534424 img loss 1.4284226894378662 img loss 1.3840692043304443 img loss 1.2345243692398071 img loss 1.3600407838821411 img loss 1.3358889818191528 img loss 1.3594826459884644 img loss 1.2292745113372803 img loss 1.3309717178344727 img loss 1.2112572193145752 img loss 1.2657699584960938 img loss 1.3303618431091309 img loss 1.3155550956726074 img loss 1.2306970357894897 img loss 1.3655259609222412 img loss 1.2486999034881592 img loss 1.2298905849456787 img loss 1.2078626155853271 img loss 1.2900395393371582 img loss 1.2362087965011597 img loss 1.2741317749023438 img loss 1.2920184135437012 img loss 1.2372363805770874 img loss 1.3373209238052368 img loss 1.2783799171447754 img loss 1.3321682214736938 img loss 1.2726528644561768 img loss 1.2998911142349243 img loss 1.205596923828125 img loss 1.2344163656234741 img loss 1.267809510231018 img loss 1.2897751331329346 img loss 1.278699278831482 img loss 1.2603123188018799 img loss 1.2920221090316772 img loss 1.2642580270767212 img loss 1.2929071187973022 img loss 1.2088598012924194 img loss 1.3248915672302246 img loss 1.2990707159042358 img loss 1.2615278959274292 img loss 1.271848201751709 img loss 1.3129663467407227 img loss 1.2506834268569946 img loss 1.2714868783950806 img loss 1.2972018718719482 img loss 1.3348513841629028 img loss 1.223684310913086 img loss 1.2892985343933105img loss 1.2844682931900024 img loss 1.3092774152755737 img loss 1.3054330348968506 img loss 1.2947778701782227 img loss 1.2838572263717651 img loss 1.2971954345703125 img loss 1.3404496908187866 img loss 1.3439737558364868 img loss 1.2672910690307617 img loss 1.388590693473816 img loss 1.300249695777893 img loss 1.2927377223968506 img loss 1.2428324222564697 img loss 1.2445180416107178 img loss 1.2900559902191162 {'loss': 1.2868, 'grad_norm': 0.521658718585968, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4801535606384277 img loss 1.4232051372528076 img loss 1.479595422744751 img loss 1.4041153192520142 img loss 1.4848248958587646 img loss 1.3632444143295288 img loss 1.5059523582458496 img loss 1.4892617464065552 img loss 1.4738824367523193 img loss 1.4755460023880005 img loss 1.4407684803009033 img loss 1.4287686347961426 img loss 1.3501759767532349 img loss 1.436841368675232 img loss 1.3960435390472412 img loss 1.510781168937683 img loss 1.4198510646820068 img loss 1.4689714908599854 img loss 1.3951281309127808 img loss 1.4635993242263794 img loss 1.5261986255645752 img loss 1.5498366355895996 img loss 1.3564887046813965 img loss 1.4901082515716553 img loss 1.6878678798675537 img loss 1.4201334714889526 img loss 1.601171612739563 img loss 1.5180326700210571 img loss 1.4337592124938965 img loss 1.5132755041122437 img loss 1.4643784761428833 img loss 1.4349606037139893 img loss 1.5557557344436646 img loss 1.4765105247497559 img loss 1.506099820137024 img loss 1.4959073066711426 img loss 1.4317708015441895 img loss 1.49754798412323 img loss 1.5459080934524536 img loss 1.4459147453308105 img loss 1.5391238927841187 img loss 1.346049189567566 img loss 1.409066081047058 img loss 1.3353482484817505 img loss 1.3706501722335815 img loss 1.3901207447052002 img loss 1.5568315982818604 img loss 1.565706491470337 img loss 1.579280972480774 img loss 1.5052341222763062 img loss 1.5959819555282593 img loss 1.4797841310501099 img loss 1.69125235080719 img loss 1.600813627243042 img loss 1.439378261566162 img loss 1.530617594718933 img loss 1.3806411027908325 img loss 1.3934482336044312 img loss 1.3819807767868042 img loss 1.5275967121124268 img loss 1.3967872858047485 img loss 1.4300705194473267 img loss 1.5401358604431152 img loss 1.3445595502853394 img loss 1.3999183177947998 img loss 1.5007812976837158 img loss 1.482784390449524img loss 1.565639615058899 img loss 1.4859530925750732 img loss 1.3900550603866577 img loss 1.4108221530914307 img loss 1.4918698072433472 img loss 1.6143510341644287 img loss 1.3386452198028564 img loss 1.5122607946395874 img loss 1.5409928560256958 img loss 1.4096848964691162 img loss 1.45160710811615 img loss 1.4221519231796265 img loss 1.5174338817596436 img loss 1.3664439916610718 img loss 1.4689533710479736 img loss 1.4454315900802612 img loss 1.4353951215744019 img loss 1.4527074098587036 img loss 1.4621590375900269 img loss 1.4499800205230713 img loss 1.4528725147247314 img loss 1.5158724784851074 img loss 1.568514108657837 img loss 1.4422986507415771img loss 1.500105619430542 img loss 1.3766758441925049 img loss 1.4742541313171387 img loss 1.5288803577423096 img loss 1.5657559633255005 img loss 1.581377625465393 img loss 1.449355959892273 img loss 1.5541102886199951 img loss 1.5369551181793213 img loss 1.5395256280899048 img loss 1.4198211431503296 img loss 1.6337902545928955 img loss 1.4559986591339111 img loss 1.4863159656524658 img loss 1.5010994672775269 img loss 1.411099910736084 img loss 1.4257010221481323 img loss 1.3352949619293213 img loss 1.481661081314087 img loss 1.5473002195358276 img loss 1.3660303354263306 img loss 1.4847851991653442 img loss 1.541627287864685 img loss 1.465829610824585 img loss 1.4063647985458374 img loss 1.628836989402771 img loss 1.6317566633224487 img loss 1.568439245223999 img loss 1.5168511867523193 img loss 1.283305048942566 img loss 1.5888818502426147 img loss 1.5354870557785034 img loss 1.5282732248306274 img loss 1.4293373823165894 img loss 1.555582880973816 img loss 1.4350544214248657 img loss 1.6330673694610596 {'loss': 1.4779, 'grad_norm': 0.561962902545929, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1957669258117676 img loss 1.2303760051727295 img loss 1.1994428634643555 img loss 1.2095370292663574 img loss 1.2952728271484375 img loss 1.1959847211837769 img loss 1.2271537780761719 img loss 1.1815378665924072 img loss 1.2983078956604004 img loss 1.247068166732788 img loss 1.18306565284729 img loss 1.218142032623291 img loss 1.2077120542526245 img loss 1.2109694480895996 img loss 1.3047058582305908 img loss 1.263742446899414 img loss 1.2003268003463745 img loss 1.1962437629699707 img loss 1.1860605478286743 img loss 1.2163132429122925 img loss 1.2585710287094116 img loss 1.1793855428695679img loss 1.2183716297149658 img loss 1.2017457485198975 img loss 1.2147173881530762 img loss 1.2225341796875 img loss 1.1980595588684082 img loss 1.279179334640503 img loss 1.23370361328125 img loss 1.239190936088562 img loss 1.20590078830719 img loss 1.156134843826294 img loss 1.2887619733810425 img loss 1.2406821250915527 img loss 1.2366185188293457 img loss 1.2102315425872803 img loss 1.1826752424240112 img loss 1.1715534925460815 img loss 1.205572485923767 img loss 1.208846926689148 img loss 1.1909407377243042 img loss 1.202777624130249 img loss 1.2034938335418701 img loss 1.2570877075195312 img loss 1.186928391456604 img loss 1.222618579864502 img loss 1.2305638790130615 img loss 1.2387371063232422 img loss 1.2660572528839111 img loss 1.2177053689956665 img loss 1.206418752670288 img loss 1.229949951171875 img loss 1.2119468450546265 img loss 1.2016719579696655 img loss 1.2147260904312134 img loss 1.225360631942749 img loss 1.2445751428604126 img loss 1.2131967544555664 img loss 1.2275235652923584 img loss 1.2588409185409546 img loss 1.2198176383972168 img loss 1.2309421300888062 img loss 1.250636339187622 img loss 1.2358107566833496 img loss 1.1933249235153198 img loss 1.2398850917816162 img loss 1.224363923072815 img loss 1.2153797149658203 img loss 1.2445614337921143 img loss 1.2802340984344482 img loss 1.2092444896697998 img loss 1.2535982131958008 img loss 1.1900612115859985img loss 1.1676870584487915 img loss 1.2350984811782837 img loss 1.2467553615570068 img loss 1.2348499298095703 img loss 1.2462880611419678 img loss 1.2092676162719727 img loss 1.1882356405258179 img loss 1.2220271825790405 img loss 1.283674955368042 img loss 1.225425362586975 img loss 1.2304365634918213 img loss 1.1804940700531006 img loss 1.2262852191925049 img loss 1.1914623975753784 img loss 1.2374377250671387 img loss 1.2156000137329102 img loss 1.2122249603271484 img loss 1.2464693784713745 img loss 1.1761047840118408 img loss 1.254950761795044 img loss 1.2356398105621338 img loss 1.280053973197937 img loss 1.1851344108581543 img loss 1.2655882835388184 img loss 1.2328619956970215 img loss 1.208034873008728 img loss 1.1944605112075806 img loss 1.214975118637085 img loss 1.2357257604599 img loss 1.1584500074386597 img loss 1.1879382133483887 img loss 1.2222931385040283 img loss 1.1956886053085327 img loss 1.2289317846298218 img loss 1.2280619144439697 img loss 1.25260591506958 img loss 1.2302135229110718 img loss 1.2092560529708862 img loss 1.2257063388824463 img loss 1.1652348041534424 img loss 1.247520923614502 img loss 1.1952087879180908 img loss 1.205251932144165 img loss 1.256799578666687 img loss 1.2179832458496094 img loss 1.2296333312988281 img loss 1.2553198337554932 img loss 1.214159607887268 img loss 1.202647089958191 img loss 1.2488540410995483 img loss 1.231378436088562 img loss 1.2358248233795166 img loss 1.2014977931976318 img loss 1.2532278299331665 img loss 1.2366862297058105 {'loss': 1.2225, 'grad_norm': 0.3933389186859131, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2846310138702393 img loss 1.2822165489196777 img loss 1.230211853981018 img loss 1.2610735893249512 img loss 1.2266982793807983 img loss 1.2887481451034546 img loss 1.2504503726959229 img loss 1.3204386234283447 img loss 1.323453426361084 img loss 1.262974739074707 img loss 1.2288339138031006 img loss 1.2404659986495972 img loss 1.3550676107406616 img loss 1.266843557357788 img loss 1.2066149711608887 img loss 1.2169424295425415 img loss 1.2431093454360962 img loss 1.2735822200775146 img loss 1.351377010345459 img loss 1.1755273342132568 img loss 1.2887513637542725 img loss 1.2747379541397095 img loss 1.2548128366470337 img loss 1.1309220790863037 img loss 1.2582117319107056 img loss 1.2696106433868408 img loss 1.3886257410049438 img loss 1.206125259399414 img loss 1.1955125331878662 img loss 1.3643412590026855 img loss 1.2919704914093018 img loss 1.2803581953048706 img loss 1.3162227869033813 img loss 1.2315782308578491 img loss 1.2175166606903076 img loss 1.2468032836914062 img loss 1.3549555540084839 img loss 1.2590136528015137 img loss 1.2367218732833862 img loss 1.2773751020431519 img loss 1.2148795127868652 img loss 1.2831244468688965 img loss 1.2168231010437012 img loss 1.2334827184677124 img loss 1.1994050741195679 img loss 1.3503910303115845 img loss 1.2052675485610962 img loss 1.2150110006332397 img loss 1.2887377738952637 img loss 1.2508474588394165 img loss 1.1909090280532837 img loss 1.2523102760314941img loss 1.2302557229995728 img loss 1.2934818267822266 img loss 1.2485222816467285 img loss 1.252731204032898 img loss 1.3298097848892212 img loss 1.1964377164840698 img loss 1.2616252899169922 img loss 1.256003975868225 img loss 1.2814044952392578 img loss 1.3086894750595093 img loss 1.2721458673477173 img loss 1.2667869329452515 img loss 1.2699629068374634 img loss 1.3200510740280151 img loss 1.2178704738616943 img loss 1.3257420063018799 img loss 1.4494935274124146 img loss 1.2570760250091553 img loss 1.2822712659835815 img loss 1.34597647190094 img loss 1.2812168598175049 img loss 1.2027204036712646 img loss 1.2147345542907715 img loss 1.3109632730484009 img loss 1.2283878326416016 img loss 1.2864990234375 img loss 1.256808876991272 img loss 1.2670751810073853 img loss 1.3382683992385864 img loss 1.2886176109313965 img loss 1.3000010251998901 img loss 1.2023770809173584 img loss 1.2287269830703735 img loss 1.2518901824951172 img loss 1.4259769916534424 img loss 1.294412612915039 img loss 1.2387651205062866 img loss 1.2127994298934937 img loss 1.2187868356704712 img loss 1.2120647430419922 img loss 1.2320184707641602 img loss 1.3112940788269043 img loss 1.2899260520935059 img loss 1.1728652715682983 img loss 1.3103220462799072 img loss 1.3120697736740112 img loss 1.2228893041610718 img loss 1.2815475463867188 img loss 1.258623719215393 img loss 1.2917944192886353 img loss 1.2312778234481812 img loss 1.3094204664230347 img loss 1.288191318511963 img loss 1.2223726511001587 img loss 1.2834904193878174 img loss 1.2462984323501587 img loss 1.2405006885528564 img loss 1.2230243682861328 img loss 1.2278388738632202 img loss 1.2959564924240112 img loss 1.2977960109710693 img loss 1.2682366371154785 img loss 1.3025410175323486 img loss 1.1891582012176514 img loss 1.1903187036514282 img loss 1.303191065788269 img loss 1.2259154319763184 img loss 1.4230396747589111 img loss 1.1919370889663696 img loss 1.272538423538208 img loss 1.3245242834091187 img loss 1.2931774854660034 img loss 1.3782542943954468 img loss 1.2416112422943115 img loss 1.302733302116394 img loss 1.197662591934204 {'loss': 1.2665, 'grad_norm': 0.49305614829063416, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2039811611175537 img loss 1.1800117492675781 img loss 1.3264710903167725 img loss 1.211342692375183 img loss 1.2954597473144531 img loss 1.2037365436553955 img loss 1.2403773069381714 img loss 1.2451509237289429 img loss 1.2527624368667603 img loss 1.276315689086914 img loss 1.2241706848144531 img loss 1.243781566619873 img loss 1.3553625345230103 img loss 1.2667204141616821 img loss 1.238603949546814 img loss 1.2463968992233276 img loss 1.2139415740966797 img loss 1.2071291208267212 img loss 1.237664818763733 img loss 1.204399824142456 img loss 1.18477201461792 img loss 1.2358121871948242 img loss 1.1901700496673584 img loss 1.2762980461120605 img loss 1.219652533531189 img loss 1.2223399877548218 img loss 1.2507389783859253 img loss 1.2230280637741089 img loss 1.273048758506775 img loss 1.247549295425415 img loss 1.2672522068023682 img loss 1.2238491773605347 img loss 1.282313585281372 img loss 1.2505213022232056 img loss 1.2602112293243408img loss 1.2832653522491455 img loss 1.2509112358093262 img loss 1.239141821861267 img loss 1.270265817642212 img loss 1.250512719154358 img loss 1.2537978887557983 img loss 1.2680714130401611 img loss 1.1876118183135986 img loss 1.224255919456482 img loss 1.2582616806030273 img loss 1.2293710708618164 img loss 1.2163482904434204 img loss 1.2670857906341553 img loss 1.2276962995529175 img loss 1.2879513502120972 img loss 1.2864739894866943 img loss 1.2494875192642212 img loss 1.2888468503952026 img loss 1.2804731130599976 img loss 1.185915231704712 img loss 1.2494394779205322 img loss 1.3175058364868164 img loss 1.2487319707870483 img loss 1.2330312728881836 img loss 1.2355674505233765img loss 1.272932529449463 img loss 1.308770775794983 img loss 1.1680047512054443 img loss 1.296959400177002 img loss 1.2668697834014893 img loss 1.210153579711914 img loss 1.2878469228744507 img loss 1.2593296766281128 img loss 1.2397370338439941 img loss 1.2358344793319702 img loss 1.27724289894104 img loss 1.2329356670379639 img loss 1.2338365316390991 img loss 1.2690823078155518 img loss 1.2756307125091553 img loss 1.3280432224273682 img loss 1.2026926279067993 img loss 1.2296408414840698 img loss 1.2582616806030273 img loss 1.2878586053848267 img loss 1.2559890747070312 img loss 1.1999577283859253 img loss 1.3098149299621582 img loss 1.22807776927948 img loss 1.3107889890670776 img loss 1.2321935892105103 img loss 1.1831557750701904 img loss 1.1947158575057983 img loss 1.2259572744369507 img loss 1.2294681072235107 img loss 1.2384519577026367 img loss 1.3204052448272705 img loss 1.176157832145691 img loss 1.2228211164474487 img loss 1.3258318901062012 img loss 1.2333621978759766 img loss 1.217016577720642 img loss 1.2865816354751587 img loss 1.2387375831604004 img loss 1.2490981817245483 img loss 1.29808509349823 img loss 1.2275193929672241 img loss 1.212609052658081 img loss 1.2226595878601074 img loss 1.293543815612793 img loss 1.2446650266647339 img loss 1.2633112668991089 img loss 1.2208495140075684 img loss 1.1755050420761108 img loss 1.2651748657226562img loss 1.2304481267929077 img loss 1.2189340591430664 img loss 1.339450716972351 img loss 1.275474190711975 img loss 1.1733070611953735img loss 1.2633863687515259 img loss 1.202288031578064 img loss 1.2110402584075928 img loss 1.2795723676681519 img loss 1.2028605937957764 img loss 1.2455857992172241 img loss 1.1890544891357422 img loss 1.2904812097549438 img loss 1.2722333669662476 img loss 1.2055251598358154 img loss 1.229993462562561 img loss 1.286564826965332 img loss 1.1965162754058838 {'loss': 1.2463, 'grad_norm': 0.36977142095565796, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1395105123519897 img loss 1.2414581775665283 img loss 1.3031954765319824 img loss 1.1670196056365967 img loss 1.2936196327209473 img loss 1.3356430530548096 img loss 1.3635170459747314 img loss 1.2371987104415894 img loss 1.2600444555282593 img loss 1.3013817071914673 img loss 1.275250792503357 img loss 1.2828519344329834 img loss 1.32768714427948 img loss 1.1942172050476074 img loss 1.2756761312484741 img loss 1.1895967721939087 img loss 1.1900978088378906 img loss 1.2804782390594482 img loss 1.279096007347107 img loss 1.19948410987854 img loss 1.1620087623596191 img loss 1.2245985269546509 img loss 1.3032293319702148img loss 1.29539155960083 img loss 1.3232460021972656 img loss 1.3491685390472412 img loss 1.2147938013076782 img loss 1.3700968027114868 img loss 1.2809085845947266 img loss 1.2681831121444702 img loss 1.3596161603927612 img loss 1.3082566261291504 img loss 1.2153717279434204 img loss 1.3060749769210815 img loss 1.224311351776123 img loss 1.2102558612823486 img loss 1.2811086177825928 img loss 1.2668424844741821 img loss 1.2251410484313965 img loss 1.3412727117538452 img loss 1.17598557472229 img loss 1.3395856618881226 img loss 1.2913718223571777 img loss 1.321235179901123 img loss 1.2438125610351562 img loss 1.3294590711593628 img loss 1.20525062084198 img loss 1.2089163064956665 img loss 1.2764629125595093 img loss 1.2493940591812134 img loss 1.2958731651306152 img loss 1.3321106433868408 img loss 1.3627249002456665 img loss 1.2799508571624756 img loss 1.2432208061218262 img loss 1.2235875129699707 img loss 1.1977781057357788 img loss 1.210162878036499 img loss 1.2444698810577393 img loss 1.447891116142273 img loss 1.3021048307418823 img loss 1.2722370624542236 img loss 1.178718090057373 img loss 1.1815705299377441 img loss 1.2430832386016846 img loss 1.2283451557159424 img loss 1.2415590286254883 img loss 1.3062763214111328 img loss 1.2336499691009521 img loss 1.340503215789795 img loss 1.303329348564148 img loss 1.2676666975021362 img loss 1.3811228275299072 img loss 1.2509262561798096 img loss 1.2447996139526367 img loss 1.3027693033218384 img loss 1.2120558023452759 img loss 1.2584588527679443 img loss 1.2944202423095703 img loss 1.2175612449645996 img loss 1.3447167873382568 img loss 1.2506641149520874 img loss 1.3248249292373657 img loss 1.233697772026062 img loss 1.1786201000213623 img loss 1.3865631818771362 img loss 1.2825257778167725 img loss 1.3011150360107422 img loss 1.2804487943649292 img loss 1.223314881324768 img loss 1.2539857625961304 img loss 1.365932583808899 img loss 1.2403509616851807 img loss 1.2179559469223022 img loss 1.2097563743591309 img loss 1.2541301250457764 img loss 1.2674612998962402 img loss 1.1230435371398926 img loss 1.2629915475845337 img loss 1.2821154594421387 img loss 1.1943929195404053 img loss 1.250502347946167 img loss 1.2674438953399658 img loss 1.2420883178710938 img loss 1.2272652387619019 img loss 1.2974704504013062 img loss 1.1978716850280762 img loss 1.3242299556732178 img loss 1.2311015129089355img loss 1.3152923583984375 img loss 1.2547264099121094 img loss 1.3560632467269897 img loss 1.256094217300415 img loss 1.3306939601898193 img loss 1.2621281147003174 img loss 1.3004403114318848 img loss 1.3032845258712769 img loss 1.2355623245239258 img loss 1.208789348602295 img loss 1.264430284500122 img loss 1.3412617444992065 img loss 1.2493069171905518 img loss 1.2523133754730225 img loss 1.1902823448181152 img loss 1.2300766706466675 img loss 1.337524175643921 img loss 1.331461787223816 img loss 1.1952441930770874 {'loss': 1.2667, 'grad_norm': 0.2049337774515152, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.244011640548706 img loss 1.2475337982177734 img loss 1.2513537406921387 img loss 1.252205491065979 img loss 1.2910645008087158 img loss 1.2728849649429321 img loss 1.1935681104660034 img loss 1.2766786813735962 img loss 1.2677885293960571 img loss 1.2287890911102295 img loss 1.2897717952728271 img loss 1.2093855142593384 img loss 1.3173414468765259 img loss 1.2467325925827026 img loss 1.1806612014770508 img loss 1.2166913747787476 img loss 1.2489575147628784 img loss 1.266538381576538 img loss 1.2840468883514404 img loss 1.2124160528182983 img loss 1.3246885538101196 img loss 1.2534602880477905 img loss 1.2437341213226318 img loss 1.2884129285812378 img loss 1.2114118337631226 img loss 1.261015772819519 img loss 1.2260899543762207 img loss 1.3437319993972778 img loss 1.304950475692749 img loss 1.367209553718567 img loss 1.248974084854126 img loss 1.3715388774871826 img loss 1.2632211446762085 img loss 1.310452938079834 img loss 1.241748571395874 img loss 1.257872462272644 img loss 1.2168763875961304 img loss 1.2859505414962769 img loss 1.306918740272522 img loss 1.1554749011993408 img loss 1.3168468475341797 img loss 1.192779302597046 img loss 1.2550249099731445 img loss 1.2289701700210571 img loss 1.3473879098892212 img loss 1.3987771272659302 img loss 1.3522658348083496 img loss 1.3290822505950928 img loss 1.2576143741607666 img loss 1.266636610031128 img loss 1.3112447261810303 img loss 1.30471670627594 img loss 1.3998572826385498 img loss 1.3044114112854004 img loss 1.3858007192611694 img loss 1.320105791091919 img loss 1.338053584098816 img loss 1.3433201313018799 img loss 1.2248390913009644 img loss 1.3283634185791016 img loss 1.2691020965576172 img loss 1.3035335540771484 img loss 1.3353453874588013 img loss 1.2495392560958862 img loss 1.2937754392623901 img loss 1.238656997680664 img loss 1.3205933570861816 img loss 1.2810933589935303 img loss 1.2834783792495728 img loss 1.3220477104187012 img loss 1.2401156425476074 img loss 1.242948293685913 img loss 1.2816691398620605 img loss 1.334764838218689 img loss 1.3025226593017578 img loss 1.309279203414917 img loss 1.2950835227966309 img loss 1.245010256767273 img loss 1.1748359203338623 img loss 1.2098438739776611 img loss 1.3041614294052124 img loss 1.32355535030365 img loss 1.2728970050811768 img loss 1.3272111415863037 img loss 1.2038147449493408 img loss 1.3578091859817505 img loss 1.2526986598968506 img loss 1.172401785850525 img loss 1.2600746154785156 img loss 1.277191162109375 img loss 1.279651403427124 img loss 1.2351412773132324 img loss 1.4685004949569702 img loss 1.298835039138794 img loss 1.2605171203613281 img loss 1.1999523639678955 img loss 1.2953205108642578 img loss 1.2307279109954834 img loss 1.2718651294708252 img loss 1.2130259275436401 img loss 1.315214991569519 img loss 1.3208411931991577 img loss 1.3285770416259766 img loss 1.2112691402435303 img loss 1.2534308433532715 img loss 1.282282829284668 img loss 1.2906137704849243 img loss 1.3509478569030762 img loss 1.26364266872406 img loss 1.2227814197540283 img loss 1.3449937105178833 img loss 1.3487809896469116 img loss 1.3496941328048706 img loss 1.2824535369873047 img loss 1.2814606428146362 img loss 1.2626351118087769 img loss 1.194568395614624 img loss 1.2750481367111206 img loss 1.3837178945541382 img loss 1.252258062362671 img loss 1.3076037168502808 img loss 1.3913527727127075 img loss 1.245140790939331 img loss 1.2838129997253418 img loss 1.356228232383728 img loss 1.2049057483673096 img loss 1.1732879877090454 img loss 1.2562869787216187 {'loss': 1.2794, 'grad_norm': 0.30411872267723083, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2274175882339478 img loss 1.2274442911148071 img loss 1.1510475873947144 img loss 1.1697237491607666 img loss 1.2109551429748535 img loss 1.1343410015106201 img loss 1.1394165754318237 img loss 1.1013458967208862 img loss 1.2089585065841675 img loss 1.198737382888794 img loss 1.1777712106704712 img loss 1.1869550943374634 img loss 1.1640554666519165 img loss 1.1821649074554443 img loss 1.2494721412658691 img loss 1.208289384841919 img loss 1.2635760307312012 img loss 1.1778631210327148 img loss 1.1885159015655518 img loss 1.2050254344940186 img loss 1.2032952308654785 img loss 1.1719565391540527 img loss 1.2543939352035522 img loss 1.1987005472183228 img loss 1.206250786781311 img loss 1.1378008127212524 img loss 1.179400086402893 img loss 1.1970531940460205 img loss 1.180905818939209 img loss 1.19014310836792 img loss 1.1418190002441406 img loss 1.181801676750183 img loss 1.2618969678878784 img loss 1.250497817993164 img loss 1.141682744026184 img loss 1.2617735862731934 img loss 1.2573721408843994 img loss 1.3222789764404297 img loss 1.2272051572799683 img loss 1.1303619146347046 img loss 1.167466640472412 img loss 1.1815745830535889 img loss 1.186910629272461 img loss 1.1805970668792725 img loss 1.2127294540405273 img loss 1.3229299783706665 img loss 1.1895941495895386 img loss 1.1654685735702515 img loss 1.1989853382110596 img loss 1.2195546627044678 img loss 1.2033209800720215 img loss 1.1743592023849487 img loss 1.163966178894043 img loss 1.1595380306243896 img loss 1.2592341899871826 img loss 1.1314142942428589 img loss 1.1811180114746094 img loss 1.2904200553894043 img loss 1.2123277187347412 img loss 1.205473780632019 img loss 1.1816143989562988 img loss 1.1353397369384766 img loss 1.232325792312622 img loss 1.114130973815918 img loss 1.1816374063491821 img loss 1.1895850896835327 img loss 1.2250044345855713 img loss 1.1109894514083862 img loss 1.1642811298370361 img loss 1.1759107112884521 img loss 1.2043555974960327 img loss 1.2165350914001465 img loss 1.2295384407043457 img loss 1.2813433408737183 img loss 1.1810452938079834 img loss 1.2264838218688965 img loss 1.1240391731262207 img loss 1.2021105289459229 img loss 1.0890836715698242 img loss 1.174696445465088 img loss 1.1378414630889893 img loss 1.1517170667648315 img loss 1.1245403289794922 img loss 1.2889162302017212 img loss 1.2458951473236084 img loss 1.262378454208374 img loss 1.1645784378051758 img loss 1.2646671533584595 img loss 1.1797292232513428 img loss 1.2224857807159424 img loss 1.16916024684906img loss 1.289315938949585 img loss 1.2771135568618774 img loss 1.1292861700057983 img loss 1.162039041519165 img loss 1.165086030960083 img loss 1.2010544538497925 img loss 1.2302639484405518 img loss 1.1801639795303345 img loss 1.1796369552612305 img loss 1.1464298963546753 img loss 1.2796636819839478 img loss 1.2485564947128296 img loss 1.149488925933838 img loss 1.2239993810653687 img loss 1.1944329738616943 img loss 1.231705904006958 img loss 1.0805453062057495 img loss 1.247903823852539 img loss 1.167478084564209 img loss 1.2056522369384766 img loss 1.1558222770690918 img loss 1.1641792058944702 img loss 1.2098143100738525 img loss 1.1733167171478271 img loss 1.1473476886749268 img loss 1.1635807752609253 img loss 1.3082088232040405 img loss 1.1860971450805664 img loss 1.1512601375579834 img loss 1.1514036655426025 img loss 1.1956866979599 img loss 1.1104730367660522 img loss 1.1958001852035522 img loss 1.2459760904312134 img loss 1.2362260818481445 img loss 1.2205909490585327 img loss 1.1728596687316895 {'loss': 1.1946, 'grad_norm': 0.32939520478248596, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4102098941802979 img loss 1.5101008415222168 img loss 1.4300092458724976 img loss 1.413414478302002 img loss 1.3801711797714233 img loss 1.4135228395462036 img loss 1.3894261121749878 img loss 1.341724157333374 img loss 1.3106731176376343 img loss 1.4658198356628418 img loss 1.3796486854553223 img loss 1.493312120437622 img loss 1.406389594078064 img loss 1.3963857889175415 img loss 1.4247201681137085 img loss 1.4550578594207764 img loss 1.3932545185089111 img loss 1.387244701385498 img loss 1.4351783990859985 img loss 1.4459210634231567 img loss 1.2533044815063477 img loss 1.3861204385757446 img loss 1.3707295656204224 img loss 1.4366344213485718 img loss 1.3754106760025024 img loss 1.5150972604751587 img loss 1.4198437929153442 img loss 1.4164555072784424 img loss 1.4707047939300537 img loss 1.4842416048049927 img loss 1.3381308317184448 img loss 1.388149619102478 img loss 1.3882755041122437 img loss 1.4672232866287231 img loss 1.4267772436141968 img loss 1.4446187019348145 img loss 1.4048683643341064 img loss 1.3269100189208984 img loss 1.3066039085388184 img loss 1.3364769220352173 img loss 1.389899730682373 img loss 1.3676918745040894 img loss 1.3725638389587402 img loss 1.4966503381729126 img loss 1.438249111175537 img loss 1.4060890674591064 img loss 1.3767021894454956 img loss 1.4287976026535034 img loss 1.4153317213058472 img loss 1.4176170825958252 img loss 1.4383856058120728 img loss 1.3554320335388184 img loss 1.4969780445098877 img loss 1.3683980703353882 img loss 1.4061132669448853 img loss 1.4447665214538574 img loss 1.3944324254989624 img loss 1.454054594039917 img loss 1.3573604822158813 img loss 1.444367527961731 img loss 1.3604856729507446 img loss 1.4663604497909546 img loss 1.5001860857009888 img loss 1.3343223333358765 img loss 1.3653271198272705 img loss 1.3559800386428833 img loss 1.4311182498931885 img loss 1.3407871723175049 img loss 1.3927712440490723 img loss 1.4601458311080933 img loss 1.415428638458252 img loss 1.418718934059143 img loss 1.3809396028518677 img loss 1.436116099357605 img loss 1.3399393558502197 img loss 1.4747203588485718 img loss 1.3656302690505981 img loss 1.332353115081787 img loss 1.422667145729065 img loss 1.4613593816757202 img loss 1.4849730730056763 img loss 1.3127902746200562 img loss 1.3403246402740479 img loss 1.3986296653747559 img loss 1.5043011903762817 img loss 1.3025156259536743 img loss 1.2890961170196533 img loss 1.3448618650436401 img loss 1.4715988636016846 img loss 1.406461477279663 img loss 1.3587276935577393 img loss 1.4037261009216309 img loss 1.4041539430618286 img loss 1.5110684633255005 img loss 1.5868775844573975img loss 1.392698049545288 img loss 1.3806439638137817 img loss 1.384461760520935 img loss 1.4290516376495361 img loss 1.4652228355407715 img loss 1.3825734853744507 img loss 1.3735913038253784 img loss 1.4361684322357178 img loss 1.2750110626220703 img loss 1.4160677194595337 img loss 1.316222906112671 img loss 1.3949888944625854 img loss 1.3575193881988525 img loss 1.4937957525253296 img loss 1.4278919696807861 img loss 1.450689673423767 img loss 1.3745266199111938 img loss 1.2809046506881714 img loss 1.4551215171813965 img loss 1.4376766681671143 img loss 1.4602333307266235 img loss 1.3951427936553955 img loss 1.370383381843567 img loss 1.4756524562835693 img loss 1.5115479230880737 img loss 1.3135828971862793 img loss 1.5758830308914185 img loss 1.524293303489685 img loss 1.409326434135437 img loss 1.5292398929595947 img loss 1.3673827648162842 img loss 1.4101717472076416 img loss 1.3999016284942627 {'loss': 1.409, 'grad_norm': 0.2636354863643646, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1714366674423218 img loss 1.351215124130249 img loss 1.3092095851898193 img loss 1.2291553020477295 img loss 1.3537050485610962 img loss 1.3647733926773071 img loss 1.2597155570983887 img loss 1.3113834857940674 img loss 1.2794718742370605 img loss 1.2833524942398071 img loss 1.2826255559921265 img loss 1.2434325218200684 img loss 1.3465105295181274 img loss 1.3375495672225952 img loss 1.2725863456726074 img loss 1.3125207424163818 img loss 1.2454458475112915 img loss 1.2161424160003662 img loss 1.2696901559829712 img loss 1.410720944404602 img loss 1.2173658609390259 img loss 1.3452975749969482 img loss 1.245783805847168 img loss 1.2574574947357178 img loss 1.3154646158218384 img loss 1.238529086112976 img loss 1.2740182876586914 img loss 1.2866604328155518 img loss 1.3696247339248657 img loss 1.1487171649932861 img loss 1.2840230464935303 img loss 1.2757059335708618 img loss 1.2992833852767944 img loss 1.4348353147506714 img loss 1.2935796976089478 img loss 1.2338452339172363 img loss 1.3446491956710815 img loss 1.2524380683898926 img loss 1.4119303226470947 img loss 1.2305238246917725 img loss 1.325140357017517 img loss 1.3856452703475952 img loss 1.268242359161377 img loss 1.3800932168960571 img loss 1.2699464559555054 img loss 1.326945185661316 img loss 1.2391040325164795 img loss 1.2391303777694702 img loss 1.2424267530441284 img loss 1.3723118305206299 img loss 1.2327497005462646 img loss 1.3586170673370361 img loss 1.408815622329712 img loss 1.1689085960388184 img loss 1.3205207586288452 img loss 1.3337544202804565 img loss 1.315205454826355 img loss 1.2889918088912964 img loss 1.4460786581039429 img loss 1.2669776678085327 img loss 1.3424811363220215 img loss 1.2712407112121582 img loss 1.189774990081787 img loss 1.2594490051269531 img loss 1.458651065826416 img loss 1.294917345046997 img loss 1.304815649986267 img loss 1.4129739999771118 img loss 1.2269971370697021 img loss 1.3742810487747192 img loss 1.2672795057296753 img loss 1.4093449115753174 img loss 1.254794716835022 img loss 1.3348612785339355 img loss 1.23819100856781 img loss 1.308010458946228 img loss 1.2690606117248535 img loss 1.2719253301620483 img loss 1.2190183401107788 img loss 1.3635066747665405 img loss 1.2539668083190918 img loss 1.3754189014434814 img loss 1.2630141973495483 img loss 1.2887552976608276 img loss 1.3255380392074585 img loss 1.2253968715667725 img loss 1.3310539722442627 img loss 1.3776472806930542 img loss 1.2608286142349243 img loss 1.3136703968048096 img loss 1.2854334115982056 img loss 1.3316926956176758 img loss 1.2785500288009644 img loss 1.3954094648361206 img loss 1.3538516759872437 img loss 1.3300517797470093 img loss 1.2321704626083374 img loss 1.346664547920227 img loss 1.2901756763458252 img loss 1.3097084760665894 img loss 1.347090482711792 img loss 1.3845959901809692 img loss 1.3515266180038452 img loss 1.2231264114379883 img loss 1.2792240381240845 img loss 1.4230066537857056 img loss 1.3225133419036865 img loss 1.2926578521728516 img loss 1.3061225414276123 img loss 1.270859718322754 img loss 1.32855224609375 img loss 1.2471733093261719 img loss 1.3246078491210938 img loss 1.3794773817062378 img loss 1.3011425733566284 img loss 1.327666997909546 img loss 1.2257781028747559 img loss 1.3627723455429077 img loss 1.3278918266296387 img loss 1.2938892841339111 img loss 1.2835187911987305 img loss 1.3554235696792603 img loss 1.2314680814743042 img loss 1.313910961151123 img loss 1.3530808687210083 img loss 1.3606913089752197 img loss 1.3613232374191284 img loss 1.2231731414794922 {'loss': 1.3035, 'grad_norm': 0.4080568552017212, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.530295491218567 img loss 1.5481151342391968 img loss 1.5774277448654175 img loss 1.461743950843811 img loss 1.4992302656173706 img loss 1.6180341243743896 img loss 1.4264849424362183 img loss 1.522464632987976 img loss 1.6946297883987427 img loss 1.5623959302902222 img loss 1.5453535318374634 img loss 1.5615431070327759 img loss 1.8949609994888306 img loss 1.3895422220230103 img loss 1.5421510934829712 img loss 1.5239702463150024 img loss 1.4945473670959473 img loss 1.6040832996368408 img loss 1.546120524406433 img loss 1.5548880100250244 img loss 1.4534565210342407 img loss 1.445926547050476 img loss 1.529002070426941 img loss 1.6233853101730347 img loss 1.6501065492630005 img loss 1.4543477296829224 img loss 1.5137884616851807 img loss 1.551401972770691 img loss 1.5905760526657104 img loss 1.4518389701843262 img loss 1.6180927753448486 img loss 1.7045509815216064 img loss 1.4664305448532104 img loss 1.4995943307876587 img loss 1.707324743270874 img loss 1.4808297157287598 img loss 1.5774667263031006 img loss 1.5100524425506592 img loss 1.5714670419692993 img loss 1.5089753866195679 img loss 1.5072578191757202 img loss 1.5806094408035278 img loss 1.6183515787124634 img loss 1.4750092029571533 img loss 1.5535088777542114 img loss 1.6236838102340698 img loss 1.5331097841262817 img loss 1.5877541303634644 img loss 1.5162748098373413 img loss 1.5541099309921265 img loss 1.6689274311065674 img loss 1.7292675971984863 img loss 1.453630805015564 img loss 1.5210163593292236 img loss 1.5592080354690552 img loss 1.4677881002426147 img loss 1.5885517597198486 img loss 1.620154619216919 img loss 1.6105244159698486 img loss 1.4372566938400269 img loss 1.5026971101760864 img loss 1.4710640907287598 img loss 1.5229991674423218 img loss 1.5901293754577637 img loss 1.6784493923187256 img loss 1.3717607259750366 img loss 1.4470244646072388 img loss 1.5592106580734253 img loss 1.4559968709945679 img loss 1.494332194328308 img loss 1.5803111791610718 img loss 1.5597039461135864 img loss 1.5888229608535767 img loss 1.4489485025405884 img loss 1.5906071662902832 img loss 1.6443572044372559 img loss 1.7452892065048218 img loss 1.5145328044891357 img loss 1.3740814924240112 img loss 1.5302176475524902 img loss 1.4062939882278442 img loss 1.7549982070922852 img loss 1.588863492012024 img loss 1.4878491163253784 img loss 1.6324421167373657 img loss 1.6046044826507568 img loss 1.652646541595459 img loss 1.7290055751800537 img loss 1.650983214378357 img loss 1.6747925281524658 img loss 1.4875991344451904 img loss 1.7756675481796265 img loss 1.5269991159439087 img loss 1.4408138990402222 img loss 1.5096256732940674 img loss 1.5663353204727173 img loss 1.573749303817749 img loss 1.5461632013320923 img loss 1.6420187950134277 img loss 1.3563934564590454 img loss 1.5804580450057983 img loss 1.4834016561508179 img loss 1.6215440034866333 img loss 1.5345577001571655 img loss 1.585229754447937 img loss 1.5102847814559937 img loss 1.5257900953292847 img loss 1.6475083827972412 img loss 1.5216706991195679 img loss 1.5670559406280518 img loss 1.4465842247009277 img loss 1.639433741569519 img loss 1.5225141048431396 img loss 1.5499475002288818 img loss 1.5205484628677368 img loss 1.5461156368255615 img loss 1.5643411874771118 img loss 1.573034644126892 img loss 1.5024197101593018 img loss 1.5093048810958862 img loss 1.4910292625427246 img loss 1.6070619821548462 img loss 1.60935378074646 img loss 1.5352482795715332 img loss 1.4976893663406372 img loss 1.6951632499694824 img loss 1.3687174320220947 img loss 1.6421531438827515 {'loss': 1.5538, 'grad_norm': 0.2995305061340332, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6248024702072144 img loss 1.4729647636413574 img loss 1.5444685220718384 img loss 1.5691425800323486 img loss 1.4933589696884155 img loss 1.381624460220337 img loss 1.5538159608840942 img loss 1.4609953165054321 img loss 1.496715784072876 img loss 1.4203534126281738 img loss 1.3981070518493652 img loss 1.4998470544815063 img loss 1.451830267906189 img loss 1.4574711322784424 img loss 1.5238702297210693 img loss 1.494985818862915 img loss 1.4252314567565918 img loss 1.3648746013641357 img loss 1.7199604511260986 img loss 1.6328200101852417 img loss 1.5742608308792114 img loss 1.5258668661117554 img loss 1.5249040126800537 img loss 1.6968810558319092 img loss 1.3720325231552124 img loss 1.4960678815841675 img loss 1.5549336671829224 img loss 1.5379799604415894 img loss 1.5583633184432983 img loss 1.5812958478927612 img loss 1.4911984205245972 img loss 1.498624563217163 img loss 1.4876824617385864 img loss 1.4864108562469482 img loss 1.585763692855835 img loss 1.574464201927185 img loss 1.47323477268219 img loss 1.4056957960128784 img loss 1.3572629690170288 img loss 1.4670990705490112 img loss 1.4773362874984741 img loss 1.6908081769943237 img loss 1.5971299409866333 img loss 1.4294006824493408 img loss 1.373390555381775 img loss 1.414093255996704 img loss 1.5016196966171265 img loss 1.5669881105422974 img loss 1.6123796701431274 img loss 1.49662446975708 img loss 1.42402982711792 img loss 1.4528615474700928 img loss 1.4212472438812256 img loss 1.4556081295013428 img loss 1.4300333261489868 img loss 1.5069305896759033 img loss 1.5238242149353027 img loss 1.3806869983673096 img loss 1.4109290838241577 img loss 1.5660847425460815 img loss 1.545164704322815 img loss 1.4771109819412231 img loss 1.499773621559143 img loss 1.561997652053833 img loss 1.5874372720718384 img loss 1.4648560285568237 img loss 1.7727711200714111 img loss 1.4528329372406006 img loss 1.4375098943710327 img loss 1.373317003250122 img loss 1.5066360235214233 img loss 1.4278368949890137 img loss 1.6357331275939941 img loss 1.3794167041778564 img loss 1.4396592378616333 img loss 1.4510247707366943 img loss 1.6232229471206665 img loss 1.4306622743606567 img loss 1.6625990867614746 img loss 1.5264922380447388 img loss 1.487247347831726 img loss 1.4378618001937866 img loss 1.400726556777954 img loss 1.6539345979690552 img loss 1.6084303855895996 img loss 1.5302040576934814 img loss 1.4526174068450928 img loss 1.3872065544128418 img loss 1.46049964427948 img loss 1.5348923206329346 img loss 1.4631143808364868 img loss 1.5147737264633179 img loss 1.45107901096344 img loss 1.4478024244308472 img loss 1.4042726755142212 img loss 1.5116667747497559 img loss 1.6060645580291748 img loss 1.6233347654342651 img loss 1.5171457529067993 img loss 1.4727568626403809 img loss 1.3260743618011475 img loss 1.40719473361969 img loss 1.5637654066085815 img loss 1.549811601638794 img loss 1.5222887992858887 img loss 1.426213026046753 img loss 1.5414928197860718 img loss 1.5856937170028687 img loss 1.5250507593154907 img loss 1.3915523290634155 img loss 1.4809157848358154 img loss 1.59190833568573 img loss 1.3593971729278564 img loss 1.5297706127166748 img loss 1.458930253982544 img loss 1.5760481357574463 img loss 1.5351876020431519 img loss 1.5041409730911255 img loss 1.6202197074890137 img loss 1.4242051839828491 img loss 1.4960850477218628 img loss 1.5422462224960327 img loss 1.5501388311386108 img loss 1.4363600015640259 img loss 1.5198029279708862 img loss 1.5794765949249268 img loss 1.69243323802948 img loss 1.5248404741287231 {'loss': 1.5035, 'grad_norm': 0.3523229956626892, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1793922185897827 img loss 1.2071878910064697 img loss 1.2848217487335205 img loss 1.224347710609436 img loss 1.1998289823532104 img loss 1.2103488445281982 img loss 1.207107424736023 img loss 1.2020065784454346 img loss 1.2830743789672852 img loss 1.2187440395355225 img loss 1.3565300703048706 img loss 1.20853590965271 img loss 1.196530818939209 img loss 1.269134283065796 img loss 1.294124960899353 img loss 1.2407211065292358 img loss 1.2292312383651733 img loss 1.2001783847808838 img loss 1.2255674600601196 img loss 1.2292778491973877 img loss 1.1919479370117188 img loss 1.1801786422729492 img loss 1.2991284132003784 img loss 1.2045282125473022 img loss 1.2340524196624756 img loss 1.2172361612319946 img loss 1.2639458179473877 img loss 1.2601888179779053 img loss 1.20870041847229 img loss 1.1657025814056396 img loss 1.242523193359375 img loss 1.2266091108322144 img loss 1.2056329250335693 img loss 1.2184470891952515 img loss 1.2673718929290771 img loss 1.2565531730651855 img loss 1.3114680051803589 img loss 1.1903654336929321 img loss 1.267849326133728 img loss 1.2169170379638672 img loss 1.1711829900741577 img loss 1.1946581602096558 img loss 1.234205961227417 img loss 1.2071081399917603 img loss 1.243241310119629 img loss 1.3465044498443604 img loss 1.176106333732605 img loss 1.2513177394866943 img loss 1.19925856590271 img loss 1.2218132019042969 img loss 1.266904592514038 img loss 1.2840092182159424 img loss 1.217902421951294 img loss 1.1831682920455933 img loss 1.2629684209823608 img loss 1.213226079940796 img loss 1.304429292678833 img loss 1.1747829914093018 img loss 1.1628214120864868 img loss 1.2038326263427734 img loss 1.1950291395187378 img loss 1.1941828727722168 img loss 1.2217210531234741 img loss 1.1875436305999756 img loss 1.2449491024017334 img loss 1.2645529508590698 img loss 1.1845197677612305 img loss 1.1880526542663574 img loss 1.3340917825698853 img loss 1.2718231678009033 img loss 1.335111141204834 img loss 1.1881890296936035 img loss 1.2388156652450562 img loss 1.2369112968444824 img loss 1.2233892679214478 img loss 1.228769302368164 img loss 1.2118972539901733 img loss 1.1776920557022095 img loss 1.198329210281372 img loss 1.2603472471237183 img loss 1.2602107524871826 img loss 1.2307698726654053 img loss 1.1959675550460815 img loss 1.2435855865478516 img loss 1.1976122856140137 img loss 1.1871546506881714 img loss 1.277271032333374 img loss 1.2431977987289429 img loss 1.217905879020691 img loss 1.248754858970642 img loss 1.190895915031433 img loss 1.193398118019104 img loss 1.1956771612167358 img loss 1.3148115873336792 img loss 1.1925415992736816 img loss 1.2674068212509155 img loss 1.299658179283142 img loss 1.2408897876739502 img loss 1.2885843515396118 img loss 1.2799818515777588 img loss 1.2446212768554688 img loss 1.267480492591858 img loss 1.302306056022644 img loss 1.231067180633545 img loss 1.239696979522705 img loss 1.280094861984253 img loss 1.2269401550292969 img loss 1.2810511589050293 img loss 1.1881248950958252 img loss 1.2146029472351074 img loss 1.2436836957931519 img loss 1.2255432605743408 img loss 1.1767387390136719 img loss 1.176236867904663 img loss 1.2406461238861084 img loss 1.169960856437683 img loss 1.210242509841919 img loss 1.2185118198394775 img loss 1.2397829294204712 img loss 1.1572996377944946 img loss 1.250803828239441 img loss 1.201959252357483 img loss 1.228760004043579 img loss 1.2301669120788574 img loss 1.2598956823349 img loss 1.2284702062606812 img loss 1.2480833530426025 img loss 1.2394723892211914 {'loss': 1.2312, 'grad_norm': 0.250509113073349, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3405729532241821 img loss 1.246701717376709 img loss 1.3142883777618408 img loss 1.1629958152770996 img loss 1.2040183544158936 img loss 1.269976258277893 img loss 1.2535693645477295 img loss 1.308826208114624 img loss 1.2902382612228394 img loss 1.2204822301864624 img loss 1.203979730606079 img loss 1.2169443368911743 img loss 1.3255846500396729 img loss 1.2870898246765137 img loss 1.22342848777771 img loss 1.2311828136444092 img loss 1.2515419721603394 img loss 1.244825005531311 img loss 1.2356410026550293 img loss 1.2784475088119507 img loss 1.2055931091308594 img loss 1.316839575767517 img loss 1.2756247520446777 img loss 1.1711721420288086 img loss 1.1959986686706543 img loss 1.2860748767852783 img loss 1.2965068817138672 img loss 1.2356419563293457 img loss 1.2723431587219238 img loss 1.3138155937194824 img loss 1.244436502456665 img loss 1.3029085397720337 img loss 1.2630155086517334 img loss 1.2550547122955322 img loss 1.2784342765808105 img loss 1.2026041746139526 img loss 1.2562503814697266 img loss 1.3263607025146484 img loss 1.3317070007324219 img loss 1.3418853282928467 img loss 1.2570390701293945 img loss 1.2755552530288696 img loss 1.2616322040557861 img loss 1.2082524299621582 img loss 1.2581757307052612 img loss 1.3662337064743042 img loss 1.3561440706253052 img loss 1.3170030117034912 img loss 1.1775568723678589 img loss 1.226599097251892 img loss 1.2140998840332031 img loss 1.2169127464294434 img loss 1.2728815078735352 img loss 1.2824318408966064 img loss 1.303628921508789 img loss 1.2415016889572144 img loss 1.300908088684082 img loss 1.2057695388793945 img loss 1.2569952011108398 img loss 1.256394863128662 img loss 1.3314863443374634 img loss 1.2158688306808472 img loss 1.2050392627716064 img loss 1.2659097909927368 img loss 1.2442982196807861 img loss 1.2302744388580322 img loss 1.3226277828216553 img loss 1.189759612083435 img loss 1.2530220746994019 img loss 1.297890067100525 img loss 1.2427164316177368 img loss 1.2409601211547852 img loss 1.2428196668624878 img loss 1.2165273427963257 img loss 1.284432291984558 img loss 1.2732179164886475 img loss 1.3405404090881348 img loss 1.2403379678726196 img loss 1.2439041137695312 img loss 1.2449922561645508 img loss 1.3261070251464844 img loss 1.2706316709518433 img loss 1.2179014682769775 img loss 1.222391963005066 img loss 1.2213274240493774 img loss 1.246779441833496 img loss 1.2575632333755493 img loss 1.2806274890899658 img loss 1.2894175052642822 img loss 1.1888259649276733 img loss 1.2923862934112549 img loss 1.2339071035385132 img loss 1.2319107055664062 img loss 1.298174262046814 img loss 1.2816810607910156 img loss 1.212349772453308 img loss 1.2133331298828125 img loss 1.237230896949768 img loss 1.287738561630249 img loss 1.2973769903182983 img loss 1.2723051309585571 img loss 1.3659955263137817 img loss 1.1440967321395874 img loss 1.2154871225357056 img loss 1.2118552923202515 img loss 1.2500118017196655 img loss 1.3261492252349854 img loss 1.2843059301376343 img loss 1.2611618041992188 img loss 1.2237141132354736 img loss 1.387917160987854 img loss 1.2170348167419434 img loss 1.24265718460083 img loss 1.318843126296997 img loss 1.2215569019317627 img loss 1.242774486541748 img loss 1.3268344402313232 img loss 1.234503149986267 img loss 1.312701940536499 img loss 1.3045514822006226 img loss 1.2303495407104492 img loss 1.3427602052688599 img loss 1.261773943901062 img loss 1.1879844665527344 img loss 1.2424513101577759 img loss 1.257607340812683 img loss 1.201900839805603 img loss 1.2226181030273438 {'loss': 1.26, 'grad_norm': 0.19832828640937805, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.240380048751831 img loss 1.1938804388046265 img loss 1.1917316913604736 img loss 1.1596007347106934 img loss 1.2355093955993652 img loss 1.2086412906646729 img loss 1.2334580421447754 img loss 1.1578865051269531 img loss 1.1700514554977417 img loss 1.2458339929580688 img loss 1.2807167768478394 img loss 1.2639367580413818 img loss 1.2566514015197754 img loss 1.2448862791061401 img loss 1.2509956359863281 img loss 1.274169683456421 img loss 1.1923441886901855 img loss 1.1353306770324707 img loss 1.2662081718444824 img loss 1.2054944038391113 img loss 1.2809399366378784 img loss 1.323082685470581 img loss 1.1877607107162476 img loss 1.2388666868209839 img loss 1.2993167638778687 img loss 1.2313799858093262 img loss 1.2143895626068115 img loss 1.2561501264572144 img loss 1.2780897617340088 img loss 1.1954256296157837 img loss 1.3076977729797363 img loss 1.2221205234527588 img loss 1.2463096380233765 img loss 1.2327237129211426 img loss 1.130377173423767 img loss 1.2426334619522095 img loss 1.2015774250030518 img loss 1.306962013244629 img loss 1.2147769927978516 img loss 1.2572720050811768img loss 1.2110097408294678 img loss 1.1998755931854248 img loss 1.381343960762024 img loss 1.1985784769058228 img loss 1.2562711238861084 img loss 1.1618086099624634 img loss 1.270455002784729 img loss 1.2274614572525024 img loss 1.196596384048462 img loss 1.2879756689071655 img loss 1.2315868139266968 img loss 1.2403093576431274 img loss 1.2299110889434814 img loss 1.2027899026870728 img loss 1.274992823600769 img loss 1.2385433912277222 img loss 1.225250482559204 img loss 1.1851060390472412 img loss 1.265629529953003 img loss 1.2027199268341064 img loss 1.211763620376587 img loss 1.2665029764175415 img loss 1.2836263179779053 img loss 1.232511043548584 img loss 1.2292126417160034 img loss 1.1938213109970093 img loss 1.2626357078552246 img loss 1.261546015739441 img loss 1.247789978981018 img loss 1.2958824634552002 img loss 1.1724909543991089 img loss 1.1840120553970337 img loss 1.2225277423858643 img loss 1.1692814826965332 img loss 1.2182422876358032 img loss 1.3142898082733154 img loss 1.2817065715789795 img loss 1.2583513259887695 img loss 1.2418123483657837 img loss 1.2554482221603394 img loss 1.3118016719818115 img loss 1.2624948024749756 img loss 1.2463507652282715 img loss 1.1905090808868408 img loss 1.2527908086776733 img loss 1.2438170909881592 img loss 1.3213433027267456 img loss 1.301905632019043 img loss 1.259709119796753 img loss 1.2495238780975342 img loss 1.1922718286514282 img loss 1.2218388319015503 img loss 1.2722593545913696 img loss 1.1924350261688232 img loss 1.2037205696105957 img loss 1.1981350183486938 img loss 1.207033634185791 img loss 1.263196587562561 img loss 1.177042841911316 img loss 1.3166090250015259 img loss 1.2455449104309082 img loss 1.1470067501068115 img loss 1.1835860013961792 img loss 1.1922340393066406 img loss 1.303709626197815 img loss 1.2422077655792236 img loss 1.2231035232543945 img loss 1.1772180795669556 img loss 1.229156494140625 img loss 1.21613347530365 img loss 1.1947342157363892 img loss 1.2712808847427368 img loss 1.110501766204834 img loss 1.239756464958191 img loss 1.2067651748657227 img loss 1.3517498970031738 img loss 1.2643837928771973 img loss 1.2321535348892212img loss 1.146414041519165 img loss 1.226610541343689 img loss 1.2337654829025269 img loss 1.2741340398788452 img loss 1.1978890895843506 img loss 1.3187761306762695 img loss 1.1861965656280518 img loss 1.3075588941574097 img loss 1.2581535577774048 img loss 1.2152342796325684 {'loss': 1.2347, 'grad_norm': 0.31722491979599, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2840371131896973 img loss 1.2751798629760742 img loss 1.2290101051330566 img loss 1.3225215673446655 img loss 1.268244743347168 img loss 1.2527828216552734 img loss 1.2097480297088623 img loss 1.2618114948272705 img loss 1.2477073669433594 img loss 1.2766718864440918 img loss 1.2449616193771362 img loss 1.2417913675308228 img loss 1.2687122821807861 img loss 1.210288643836975 img loss 1.2150568962097168 img loss 1.2737884521484375 img loss 1.2761247158050537 img loss 1.3008030652999878 img loss 1.232550859451294 img loss 1.228086233139038 img loss 1.2206541299819946 img loss 1.1489663124084473 img loss 1.2143877744674683 img loss 1.2404712438583374 img loss 1.3131535053253174 img loss 1.2660812139511108 img loss 1.3597480058670044 img loss 1.1986005306243896 img loss 1.2514132261276245 img loss 1.2295646667480469 img loss 1.2804011106491089 img loss 1.2520631551742554 img loss 1.1994045972824097 img loss 1.2827781438827515 img loss 1.2484012842178345 img loss 1.2076243162155151 img loss 1.2270570993423462 img loss 1.2481845617294312 img loss 1.301425576210022 img loss 1.1948603391647339 img loss 1.256199598312378 img loss 1.2458266019821167 img loss 1.239033579826355 img loss 1.2638070583343506 img loss 1.2701001167297363 img loss 1.176461935043335 img loss 1.244121789932251 img loss 1.2845983505249023 img loss 1.293788194656372 img loss 1.3002976179122925 img loss 1.2326180934906006 img loss 1.2837045192718506 img loss 1.2184197902679443 img loss 1.1834726333618164 img loss 1.1982039213180542 img loss 1.292032241821289 img loss 1.3025015592575073 img loss 1.2704408168792725 img loss 1.2031092643737793 img loss 1.2658207416534424 img loss 1.2893413305282593 img loss 1.2159650325775146 img loss 1.2399914264678955 img loss 1.2837326526641846 img loss 1.2352254390716553img loss 1.2585008144378662 img loss 1.2208397388458252 img loss 1.238863468170166 img loss 1.3183904886245728 img loss 1.1724302768707275 img loss 1.1894183158874512 img loss 1.207514762878418 img loss 1.2636641263961792 img loss 1.205547571182251 img loss 1.3032668828964233 img loss 1.218648910522461 img loss 1.241909384727478 img loss 1.250231385231018 img loss 1.3158899545669556 img loss 1.3208484649658203 img loss 1.1947245597839355 img loss 1.2295475006103516 img loss 1.2529948949813843 img loss 1.2674602270126343 img loss 1.2118628025054932 img loss 1.2487741708755493 img loss 1.1540387868881226 img loss 1.2637766599655151 img loss 1.2732032537460327 img loss 1.2802866697311401 img loss 1.2355053424835205 img loss 1.2202856540679932 img loss 1.2584915161132812 img loss 1.2831429243087769 img loss 1.2102806568145752 img loss 1.2408440113067627 img loss 1.238637924194336 img loss 1.330667495727539 img loss 1.2922042608261108 img loss 1.2554717063903809 img loss 1.2198071479797363 img loss 1.285041332244873 img loss 1.3309497833251953 img loss 1.2441288232803345 img loss 1.2622323036193848 img loss 1.2785043716430664 img loss 1.287300705909729 img loss 1.1817278861999512 img loss 1.2436374425888062 img loss 1.2809994220733643 img loss 1.2814005613327026 img loss 1.2445074319839478 img loss 1.1988062858581543 img loss 1.2519899606704712 img loss 1.1982735395431519 img loss 1.2970993518829346 img loss 1.3036621809005737 img loss 1.3531893491744995 img loss 1.2694132328033447 img loss 1.2676140069961548 img loss 1.329326868057251 img loss 1.2603182792663574 img loss 1.2381080389022827 img loss 1.1829988956451416 img loss 1.2644729614257812 img loss 1.2262508869171143 img loss 1.2771304845809937 img loss 1.3188501596450806 {'loss': 1.2527, 'grad_norm': 0.2728615403175354, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.191536784172058 img loss 1.1672309637069702 img loss 1.2438390254974365 img loss 1.2260745763778687 img loss 1.2349077463150024 img loss 1.0938377380371094 img loss 1.1933256387710571 img loss 1.1956095695495605 img loss 1.1663446426391602 img loss 1.178240180015564 img loss 1.1992136240005493 img loss 1.2022278308868408 img loss 1.1622047424316406 img loss 1.1461261510849 img loss 1.1692562103271484 img loss 1.1614717245101929 img loss 1.1930625438690186 img loss 1.1482833623886108 img loss 1.2434221506118774 img loss 1.1834979057312012 img loss 1.2255862951278687 img loss 1.168089747428894 img loss 1.1874197721481323 img loss 1.2312904596328735 img loss 1.2056525945663452 img loss 1.2127437591552734 img loss 1.1660207509994507 img loss 1.1445585489273071 img loss 1.1762149333953857 img loss 1.1546761989593506 img loss 1.2267502546310425 img loss 1.1886204481124878 img loss 1.1852855682373047 img loss 1.187334656715393 img loss 1.1836013793945312 img loss 1.1477339267730713 img loss 1.1686081886291504 img loss 1.2017825841903687 img loss 1.1524808406829834 img loss 1.2630383968353271 img loss 1.2820568084716797 img loss 1.15190589427948 img loss 1.2028872966766357 img loss 1.1585029363632202 img loss 1.2388606071472168 img loss 1.2930206060409546 img loss 1.197754144668579 img loss 1.1676210165023804 img loss 1.1727474927902222 img loss 1.2101006507873535 img loss 1.23760986328125 img loss 1.2015533447265625 img loss 1.2589547634124756 img loss 1.1632965803146362 img loss 1.1455926895141602 img loss 1.2407128810882568 img loss 1.2483210563659668 img loss 1.182115912437439 img loss 1.234299898147583 img loss 1.178788423538208 img loss 1.1554880142211914 img loss 1.2412363290786743 img loss 1.2229933738708496 img loss 1.2610629796981812 img loss 1.1691213846206665 img loss 1.2249138355255127 img loss 1.194373369216919 img loss 1.209981918334961 img loss 1.1441962718963623 img loss 1.1937429904937744 img loss 1.198358178138733 img loss 1.1845349073410034 img loss 1.2008079290390015 img loss 1.253610372543335 img loss 1.2219129800796509 img loss 1.2126872539520264 img loss 1.229381799697876 img loss 1.1494085788726807 img loss 1.1745407581329346 img loss 1.1332347393035889 img loss 1.2561240196228027 img loss 1.219063401222229 img loss 1.1082499027252197 img loss 1.1677448749542236 img loss 1.1785324811935425 img loss 1.1932063102722168 img loss 1.2147362232208252 img loss 1.2471933364868164 img loss 1.1499574184417725 img loss 1.2100414037704468 img loss 1.1871334314346313 img loss 1.144906997680664 img loss 1.1675870418548584 img loss 1.171440601348877 img loss 1.1892563104629517 img loss 1.1198201179504395 img loss 1.2198421955108643 img loss 1.203357458114624 img loss 1.161737322807312 img loss 1.1916193962097168 img loss 1.2529553174972534 img loss 1.1925239562988281 img loss 1.1645920276641846 img loss 1.1529264450073242 img loss 1.1939582824707031 img loss 1.2627463340759277 img loss 1.1287215948104858 img loss 1.1556899547576904 img loss 1.1721491813659668 img loss 1.1514854431152344 img loss 1.2081983089447021 img loss 1.1602081060409546 img loss 1.1831492185592651 img loss 1.146736741065979 img loss 1.1939142942428589 img loss 1.2188628911972046 img loss 1.122467279434204 img loss 1.1517369747161865 img loss 1.2138785123825073 img loss 1.2072196006774902 img loss 1.1642138957977295 img loss 1.146028757095337 img loss 1.1600568294525146 img loss 1.2536709308624268 img loss 1.227596640586853 img loss 1.1944690942764282 img loss 1.2255243062973022 img loss 1.2100359201431274 {'loss': 1.1917, 'grad_norm': 0.22148002684116364, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.172521948814392 img loss 1.2091965675354004 img loss 1.2034415006637573 img loss 1.2389253377914429 img loss 1.1916515827178955 img loss 1.2136549949645996 img loss 1.1839218139648438 img loss 1.1731821298599243 img loss 1.2200255393981934 img loss 1.1660549640655518 img loss 1.2310112714767456 img loss 1.1861463785171509 img loss 1.2101236581802368 img loss 1.234811782836914 img loss 1.2388527393341064 img loss 1.2583849430084229 img loss 1.2039196491241455 img loss 1.1632399559020996 img loss 1.2050209045410156 img loss 1.205561637878418 img loss 1.2449157238006592 img loss 1.185871958732605 img loss 1.1685504913330078 img loss 1.2022991180419922 img loss 1.1752738952636719 img loss 1.1777234077453613 img loss 1.2193406820297241 img loss 1.217670202255249 img loss 1.2713234424591064 img loss 1.151572585105896 img loss 1.251612663269043 img loss 1.2166937589645386 img loss 1.2378634214401245 img loss 1.168102502822876 img loss 1.211077094078064 img loss 1.2444603443145752 img loss 1.2351020574569702 img loss 1.2916350364685059 img loss 1.2189488410949707 img loss 1.2428030967712402 img loss 1.1651943922042847 img loss 1.3117895126342773img loss 1.2254265546798706 img loss 1.2559131383895874 img loss 1.2029350996017456 img loss 1.196948766708374 img loss 1.2041621208190918 img loss 1.2063040733337402 img loss 1.251815676689148 img loss 1.1771560907363892 img loss 1.1345741748809814 img loss 1.1836470365524292 img loss 1.289183497428894 img loss 1.2141913175582886 img loss 1.168839454650879 img loss 1.1933542490005493 img loss 1.2041114568710327 img loss 1.2336537837982178 img loss 1.1450562477111816 img loss 1.2017005681991577 img loss 1.2259860038757324 img loss 1.2126291990280151 img loss 1.2195185422897339 img loss 1.2926849126815796 img loss 1.1844772100448608 img loss 1.1697887182235718 img loss 1.1666420698165894 img loss 1.1320085525512695 img loss 1.1673848628997803 img loss 1.2000117301940918 img loss 1.1894772052764893 img loss 1.221787691116333 img loss 1.2447108030319214 img loss 1.1470787525177002 img loss 1.1851274967193604 img loss 1.247720718383789 img loss 1.1753052473068237 img loss 1.1851751804351807 img loss 1.2121949195861816 img loss 1.2592445611953735 img loss 1.1443569660186768 img loss 1.2032428979873657 img loss 1.2722792625427246 img loss 1.1971790790557861 img loss 1.2293356657028198 img loss 1.2629642486572266 img loss 1.1857860088348389 img loss 1.2142977714538574 img loss 1.1713374853134155 img loss 1.2967922687530518 img loss 1.2661340236663818 img loss 1.2553229331970215 img loss 1.1822199821472168 img loss 1.2329152822494507 img loss 1.2568817138671875 img loss 1.189391016960144 img loss 1.1613868474960327 img loss 1.2187440395355225 img loss 1.2113378047943115 img loss 1.1482934951782227 img loss 1.2074304819107056 img loss 1.1802082061767578 img loss 1.2396553754806519 img loss 1.2068811655044556 img loss 1.2267588376998901 img loss 1.2337840795516968 img loss 1.2182269096374512 img loss 1.19492506980896 img loss 1.268377661705017 img loss 1.1654763221740723 img loss 1.160835862159729 img loss 1.18447744846344 img loss 1.205727219581604 img loss 1.2316941022872925 img loss 1.232630729675293 img loss 1.203676700592041 img loss 1.1788963079452515 img loss 1.1508212089538574 img loss 1.2037302255630493 img loss 1.1972016096115112 img loss 1.15971839427948 img loss 1.2893434762954712 img loss 1.2328968048095703 img loss 1.227685570716858 img loss 1.2180429697036743 img loss 1.1590664386749268 img loss 1.201540470123291 img loss 1.1677041053771973 {'loss': 1.2086, 'grad_norm': 0.23524954915046692, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2010931968688965 img loss 1.2079668045043945 img loss 1.2110066413879395 img loss 1.2396974563598633 img loss 1.228826880455017 img loss 1.2693307399749756 img loss 1.2952320575714111 img loss 1.3804649114608765 img loss 1.2970845699310303 img loss 1.2669557332992554 img loss 1.2812602519989014 img loss 1.3535655736923218 img loss 1.3988535404205322 img loss 1.282655119895935 img loss 1.3476110696792603 img loss 1.1996990442276 img loss 1.262681007385254 img loss 1.20107901096344 img loss 1.2865428924560547 img loss 1.2704530954360962 img loss 1.250533938407898 img loss 1.2110936641693115 img loss 1.2899281978607178 img loss 1.279201865196228 img loss 1.3099827766418457 img loss 1.2794855833053589 img loss 1.2879024744033813 img loss 1.2812265157699585 img loss 1.3928277492523193 img loss 1.188675880432129 img loss 1.322941780090332 img loss 1.1877630949020386 img loss 1.2180933952331543 img loss 1.3546745777130127 img loss 1.3431857824325562 img loss 1.353401780128479 img loss 1.2586170434951782 img loss 1.2480849027633667 img loss 1.2371881008148193 img loss 1.4023563861846924 img loss 1.247274398803711 img loss 1.29989492893219 img loss 1.2542864084243774 img loss 1.2348251342773438 img loss 1.3035720586776733 img loss 1.3284451961517334 img loss 1.2900612354278564 img loss 1.244883418083191 img loss 1.250441074371338 img loss 1.2522066831588745 img loss 1.2759947776794434 img loss 1.3550944328308105 img loss 1.4182723760604858 img loss 1.2618608474731445 img loss 1.25792396068573 img loss 1.3814386129379272 img loss 1.3386223316192627 img loss 1.2663040161132812 img loss 1.2808418273925781 img loss 1.3348784446716309 img loss 1.304494857788086 img loss 1.320046305656433 img loss 1.2087539434432983 img loss 1.252166748046875 img loss 1.2859094142913818 img loss 1.2183482646942139 img loss 1.2627547979354858 img loss 1.2765575647354126 img loss 1.2551220655441284 img loss 1.2797267436981201 img loss 1.2950681447982788 img loss 1.3250261545181274 img loss 1.2699276208877563 img loss 1.1940796375274658 img loss 1.3345972299575806 img loss 1.3159942626953125 img loss 1.3061414957046509 img loss 1.3736016750335693 img loss 1.284490942955017 img loss 1.3023220300674438 img loss 1.2884724140167236 img loss 1.2832731008529663 img loss 1.2349408864974976 img loss 1.2889463901519775 img loss 1.2997524738311768 img loss 1.2774701118469238 img loss 1.2614622116088867 img loss 1.2572643756866455 img loss 1.3770018815994263 img loss 1.22823965549469 img loss 1.2764993906021118 img loss 1.2495107650756836 img loss 1.2902882099151611 img loss 1.1625633239746094 img loss 1.2924140691757202 img loss 1.26923406124115 img loss 1.2271091938018799 img loss 1.367200255393982 img loss 1.30339777469635 img loss 1.3464787006378174 img loss 1.2224867343902588 img loss 1.3808658123016357 img loss 1.350868582725525 img loss 1.3030846118927002 img loss 1.3031047582626343 img loss 1.207951307296753 img loss 1.2574602365493774 img loss 1.2957396507263184 img loss 1.2563289403915405 img loss 1.2758026123046875 img loss 1.2510361671447754 img loss 1.3388793468475342 img loss 1.3159403800964355 img loss 1.2308965921401978 img loss 1.3437345027923584 img loss 1.2101528644561768 img loss 1.356636881828308 img loss 1.3129361867904663 img loss 1.42737877368927 img loss 1.2832293510437012 img loss 1.2252781391143799 img loss 1.2716057300567627 img loss 1.3553441762924194 img loss 1.228583812713623 img loss 1.3805679082870483 img loss 1.343000888824463 img loss 1.2661523818969727 img loss 1.3306262493133545 {'loss': 1.2862, 'grad_norm': 0.2287304699420929, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2093852758407593 img loss 1.24043607711792 img loss 1.2249677181243896 img loss 1.1945557594299316 img loss 1.240938663482666 img loss 1.239713430404663 img loss 1.1918729543685913 img loss 1.2099593877792358 img loss 1.242021083831787 img loss 1.2177693843841553 img loss 1.227243185043335 img loss 1.252040147781372 img loss 1.27389395236969 img loss 1.2675060033798218 img loss 1.2201297283172607 img loss 1.1769993305206299 img loss 1.2344300746917725 img loss 1.2461395263671875 img loss 1.2546314001083374 img loss 1.2256405353546143 img loss 1.2503175735473633 img loss 1.2231097221374512 img loss 1.2287286520004272 img loss 1.2556393146514893 img loss 1.2119468450546265 img loss 1.2240921258926392 img loss 1.247452974319458 img loss 1.2189290523529053 img loss 1.304696798324585 img loss 1.2330758571624756 img loss 1.235215425491333 img loss 1.1685941219329834 img loss 1.2176698446273804 img loss 1.204966425895691 img loss 1.2641915082931519 img loss 1.2625871896743774 img loss 1.2746644020080566 img loss 1.2665536403656006 img loss 1.235371470451355 img loss 1.2703843116760254 img loss 1.2612384557724 img loss 1.19777250289917 img loss 1.2777702808380127 img loss 1.26161527633667 img loss 1.229780673980713 img loss 1.2259784936904907 img loss 1.2724206447601318 img loss 1.2400587797164917 img loss 1.2103190422058105 img loss 1.2015039920806885 img loss 1.2372238636016846 img loss 1.2585514783859253 img loss 1.2858551740646362 img loss 1.268157958984375 img loss 1.1841930150985718 img loss 1.2705376148223877 img loss 1.2214469909667969 img loss 1.2196972370147705 img loss 1.2491140365600586 img loss 1.2177988290786743 img loss 1.219437599182129 img loss 1.2355358600616455 img loss 1.2820713520050049 img loss 1.2264041900634766 img loss 1.2528594732284546 img loss 1.2033164501190186 img loss 1.2221522331237793 img loss 1.206024408340454 img loss 1.2595436573028564 img loss 1.1978124380111694 img loss 1.1940784454345703 img loss 1.1784242391586304 img loss 1.208262324333191 img loss 1.205220103263855 img loss 1.2326236963272095 img loss 1.2638297080993652 img loss 1.183728814125061 img loss 1.2158628702163696 img loss 1.2837905883789062 img loss 1.229211449623108 img loss 1.2676959037780762 img loss 1.2072722911834717 img loss 1.1606128215789795 img loss 1.2181209325790405 img loss 1.2142919301986694 img loss 1.1964555978775024 img loss 1.21417236328125 img loss 1.2318562269210815 img loss 1.2306621074676514 img loss 1.2734934091567993 img loss 1.1955013275146484 img loss 1.2849584817886353 img loss 1.235642910003662 img loss 1.1741480827331543 img loss 1.275198221206665 img loss 1.1968233585357666 img loss 1.2660346031188965 img loss 1.2311537265777588 img loss 1.262601613998413 img loss 1.238890528678894 img loss 1.2441496849060059 img loss 1.246074914932251 img loss 1.1883429288864136 img loss 1.2566362619400024 img loss 1.2064223289489746 img loss 1.226574420928955 img loss 1.1917738914489746 img loss 1.1935665607452393 img loss 1.2151429653167725 img loss 1.2615216970443726 img loss 1.1877180337905884 img loss 1.2088122367858887 img loss 1.2524597644805908 img loss 1.2219619750976562 img loss 1.2541213035583496 img loss 1.2062656879425049 img loss 1.1994152069091797 img loss 1.2112678289413452 img loss 1.239202857017517 img loss 1.286728858947754 img loss 1.236532211303711 img loss 1.195820689201355 img loss 1.2572095394134521 img loss 1.182592749595642 img loss 1.2417709827423096 img loss 1.230353832244873 img loss 1.2543904781341553 img loss 1.1931853294372559 {'loss': 1.2308, 'grad_norm': 0.25009968876838684, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1754984855651855 img loss 1.1836098432540894 img loss 1.2137329578399658 img loss 1.1591551303863525 img loss 1.1948391199111938 img loss 1.2416999340057373 img loss 1.18205988407135 img loss 1.1789977550506592 img loss 1.1767218112945557 img loss 1.1629140377044678 img loss 1.1575968265533447 img loss 1.1886736154556274 img loss 1.1667616367340088 img loss 1.1736067533493042 img loss 1.1761006116867065 img loss 1.2045724391937256 img loss 1.1763731241226196 img loss 1.1940425634384155 img loss 1.2001417875289917 img loss 1.1507173776626587 img loss 1.1906861066818237 img loss 1.1653732061386108 img loss 1.2230188846588135 img loss 1.1841206550598145 img loss 1.1946067810058594 img loss 1.2341660261154175 img loss 1.2046705484390259 img loss 1.130192518234253 img loss 1.2756403684616089 img loss 1.2359670400619507 img loss 1.1854348182678223 img loss 1.2219884395599365 img loss 1.2004754543304443 img loss 1.1722240447998047 img loss 1.2079076766967773 img loss 1.2674648761749268 img loss 1.1682897806167603 img loss 1.1311357021331787 img loss 1.176918864250183 img loss 1.1814091205596924 img loss 1.2017574310302734 img loss 1.2182202339172363 img loss 1.213956356048584 img loss 1.1552467346191406 img loss 1.1696603298187256 img loss 1.1912550926208496 img loss 1.2644075155258179 img loss 1.148892879486084 img loss 1.1770873069763184 img loss 1.154524564743042 img loss 1.131637454032898 img loss 1.2263091802597046 img loss 1.181362509727478 img loss 1.2128231525421143 img loss 1.1544464826583862 img loss 1.19176185131073 img loss 1.1602001190185547 img loss 1.1535544395446777 img loss 1.1614007949829102 img loss 1.1637718677520752 img loss 1.1656548976898193 img loss 1.1760631799697876 img loss 1.185927391052246 img loss 1.1876884698867798 img loss 1.2176799774169922 img loss 1.257214069366455 img loss 1.1933389902114868 img loss 1.1800925731658936 img loss 1.1829036474227905 img loss 1.1728038787841797 img loss 1.1882069110870361 img loss 1.1997658014297485 img loss 1.1535018682479858 img loss 1.1504199504852295 img loss 1.2636781930923462 img loss 1.1986738443374634 img loss 1.259767770767212 img loss 1.2309653759002686 img loss 1.1843490600585938 img loss 1.1646867990493774 img loss 1.2449867725372314 img loss 1.1689554452896118 img loss 1.1895442008972168 img loss 1.215768814086914 img loss 1.1467947959899902 img loss 1.1650021076202393 img loss 1.1998717784881592 img loss 1.212233066558838 img loss 1.2179009914398193 img loss 1.184993028640747 img loss 1.20677649974823 img loss 1.1822926998138428 img loss 1.1379293203353882 img loss 1.1873737573623657 img loss 1.1764452457427979 img loss 1.2422504425048828 img loss 1.1750848293304443 img loss 1.247391939163208 img loss 1.195259690284729 img loss 1.1619203090667725 img loss 1.1455453634262085 img loss 1.1536800861358643 img loss 1.248380184173584 img loss 1.2319635152816772 img loss 1.1707111597061157 img loss 1.145951509475708 img loss 1.241626501083374 img loss 1.2321646213531494 img loss 1.2236688137054443 img loss 1.1415096521377563 img loss 1.1647508144378662 img loss 1.1448378562927246 img loss 1.1424787044525146 img loss 1.1751822233200073 img loss 1.2458499670028687 img loss 1.225102424621582 img loss 1.144803762435913 img loss 1.217545509338379 img loss 1.258888602256775 img loss 1.1530814170837402 img loss 1.224900484085083 img loss 1.1996065378189087 img loss 1.1656227111816406 img loss 1.196493148803711 img loss 1.2017792463302612 img loss 1.168307900428772 img loss 1.1687843799591064 img loss 1.1679483652114868 {'loss': 1.19, 'grad_norm': 0.3292600214481354, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3198883533477783 img loss 1.1991379261016846 img loss 1.285349726676941 img loss 1.2523088455200195 img loss 1.2222609519958496 img loss 1.1976280212402344 img loss 1.18107008934021 img loss 1.157517671585083 img loss 1.162982702255249 img loss 1.1791960000991821 img loss 1.2396900653839111 img loss 1.1288310289382935 img loss 1.1605650186538696 img loss 1.1516761779785156 img loss 1.201515555381775 img loss 1.2013771533966064 img loss 1.262521743774414 img loss 1.1886295080184937 img loss 1.2295782566070557 img loss 1.298289179801941 img loss 1.146637201309204 img loss 1.2513359785079956 img loss 1.1891474723815918 img loss 1.166182518005371 img loss 1.2082531452178955 img loss 1.13754403591156 img loss 1.1972178220748901 img loss 1.1940937042236328 img loss 1.1882526874542236 img loss 1.252745270729065 img loss 1.2272870540618896 img loss 1.2529370784759521img loss 1.2593395709991455 img loss 1.2467434406280518 img loss 1.1598843336105347 img loss 1.1434389352798462 img loss 1.1319382190704346 img loss 1.1805458068847656 img loss 1.2701351642608643 img loss 1.2141551971435547 img loss 1.139809012413025 img loss 1.1411314010620117 img loss 1.2109112739562988 img loss 1.2259244918823242 img loss 1.2835277318954468 img loss 1.2132946252822876 img loss 1.1567293405532837 img loss 1.219592571258545 img loss 1.2254970073699951 img loss 1.1014724969863892 img loss 1.200995922088623 img loss 1.2336879968643188 img loss 1.2311705350875854 img loss 1.285373568534851 img loss 1.3500069379806519 img loss 1.127597689628601 img loss 1.2360870838165283 img loss 1.1881479024887085 img loss 1.2840337753295898 img loss 1.2382354736328125 img loss 1.1594349145889282 img loss 1.233295202255249 img loss 1.260339379310608 img loss 1.2132620811462402 img loss 1.2119511365890503 img loss 1.2419954538345337 img loss 1.325081706047058 img loss 1.2197680473327637 img loss 1.2102197408676147img loss 1.1883057355880737 img loss 1.2092161178588867 img loss 1.221544623374939 img loss 1.1715790033340454 img loss 1.1805366277694702 img loss 1.2401046752929688 img loss 1.2045042514801025 img loss 1.1599985361099243 img loss 1.2655258178710938 img loss 1.2025718688964844 img loss 1.2522141933441162 img loss 1.1666839122772217 img loss 1.1852527856826782 img loss 1.1619009971618652 img loss 1.1533981561660767 img loss 1.2018253803253174 img loss 1.190462589263916 img loss 1.2351818084716797 img loss 1.1120470762252808 img loss 1.1801096200942993 img loss 1.2668417692184448 img loss 1.256072998046875 img loss 1.2259429693222046 img loss 1.2613940238952637 img loss 1.2209402322769165 img loss 1.209916591644287 img loss 1.2036083936691284 img loss 1.2696446180343628 img loss 1.2492121458053589 img loss 1.2189910411834717 img loss 1.2616525888442993 img loss 1.1804521083831787 img loss 1.1861158609390259 img loss 1.1817783117294312 img loss 1.235309362411499 img loss 1.1750829219818115 img loss 1.2140331268310547 img loss 1.2194995880126953 img loss 1.1805946826934814 img loss 1.2111258506774902 img loss 1.183545470237732 img loss 1.2521553039550781 img loss 1.311869502067566 img loss 1.1828807592391968 img loss 1.262458086013794 img loss 1.2802441120147705 img loss 1.2509348392486572 img loss 1.1256599426269531 img loss 1.1194360256195068 img loss 1.2640376091003418 img loss 1.2212060689926147 img loss 1.1647279262542725 img loss 1.2287089824676514 img loss 1.174895167350769 img loss 1.1308283805847168 img loss 1.263597011566162 img loss 1.1295514106750488 img loss 1.2115486860275269 img loss 1.222802996635437 {'loss': 1.2101, 'grad_norm': 0.27692362666130066, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2564226388931274 img loss 1.322290301322937 img loss 1.187750220298767 img loss 1.1721073389053345 img loss 1.1226037740707397 img loss 1.1661581993103027 img loss 1.1632251739501953 img loss 1.2269163131713867 img loss 1.2265472412109375 img loss 1.19256591796875 img loss 1.1773399114608765 img loss 1.2387313842773438 img loss 1.2102069854736328 img loss 1.236877202987671 img loss 1.2266321182250977 img loss 1.2189353704452515 img loss 1.2079142332077026 img loss 1.2404817342758179 img loss 1.2679346799850464 img loss 1.215643286705017 img loss 1.2128080129623413 img loss 1.2827751636505127 img loss 1.1959460973739624 img loss 1.1517854928970337 img loss 1.1660058498382568 img loss 1.1875035762786865 img loss 1.1888046264648438 img loss 1.1813896894454956 img loss 1.257047176361084 img loss 1.2282503843307495 img loss 1.3314449787139893 img loss 1.185056447982788 img loss 1.2790874242782593 img loss 1.3037227392196655 img loss 1.1304622888565063 img loss 1.2476295232772827 img loss 1.2220473289489746 img loss 1.1832903623580933 img loss 1.1806836128234863 img loss 1.2472052574157715 img loss 1.2663555145263672 img loss 1.1744486093521118 img loss 1.215876817703247 img loss 1.2049232721328735 img loss 1.2068437337875366 img loss 1.2758091688156128 img loss 1.2434916496276855 img loss 1.3082020282745361 img loss 1.2847708463668823 img loss 1.1919841766357422 img loss 1.1600205898284912 img loss 1.1621872186660767 img loss 1.24855637550354 img loss 1.2497040033340454 img loss 1.2283529043197632 img loss 1.2303426265716553 img loss 1.233152151107788 img loss 1.2271652221679688 img loss 1.1574437618255615 img loss 1.321427345275879 img loss 1.2461544275283813 img loss 1.2538046836853027 img loss 1.154449224472046 img loss 1.1889431476593018 img loss 1.1839183568954468 img loss 1.1888105869293213 img loss 1.2022346258163452 img loss 1.2656352519989014 img loss 1.1822128295898438 img loss 1.2325527667999268 img loss 1.1434599161148071 img loss 1.255414366722107 img loss 1.2515815496444702 img loss 1.2209535837173462 img loss 1.2378307580947876 img loss 1.1647100448608398 img loss 1.2625547647476196 img loss 1.162211298942566 img loss 1.3070281744003296 img loss 1.26678466796875 img loss 1.2192071676254272 img loss 1.2291439771652222 img loss 1.2403368949890137 img loss 1.220245122909546 img loss 1.2611740827560425 img loss 1.211513876914978 img loss 1.2740331888198853 img loss 1.2322826385498047 img loss 1.2396636009216309 img loss 1.1306533813476562 img loss 1.2527287006378174 img loss 1.176188349723816 img loss 1.2331137657165527 img loss 1.1963623762130737 img loss 1.1975457668304443 img loss 1.2467526197433472 img loss 1.1484642028808594 img loss 1.2519850730895996 img loss 1.244677186012268 img loss 1.2693936824798584 img loss 1.3149218559265137 img loss 1.2076562643051147 img loss 1.1699111461639404 img loss 1.1496913433074951 img loss 1.2199878692626953 img loss 1.1910760402679443 img loss 1.2412217855453491 img loss 1.1997013092041016 img loss 1.2868876457214355 img loss 1.1911964416503906 img loss 1.2010304927825928 img loss 1.2150895595550537 img loss 1.1802990436553955 img loss 1.184311866760254 img loss 1.1890506744384766 img loss 1.2229702472686768 img loss 1.2644867897033691 img loss 1.2253551483154297 img loss 1.1563739776611328 img loss 1.165766954421997 img loss 1.2240252494812012 img loss 1.3011374473571777 img loss 1.2579675912857056 img loss 1.230207920074463 img loss 1.2327097654342651 img loss 1.1949739456176758 img loss 1.1684741973876953 img loss 1.2742793560028076 {'loss': 1.2198, 'grad_norm': 0.20298446714878082, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.701313853263855 img loss 1.691930890083313 img loss 1.6411874294281006 img loss 1.563534140586853 img loss 1.5401756763458252 img loss 1.6087483167648315 img loss 1.7226678133010864 img loss 1.5696842670440674 img loss 1.7474623918533325 img loss 1.6900646686553955 img loss 1.6346633434295654 img loss 1.7284233570098877 img loss 1.6484789848327637 img loss 1.7752037048339844 img loss 1.5387015342712402 img loss 1.573708176612854 img loss 1.7141222953796387 img loss 1.5651651620864868 img loss 1.7909374237060547 img loss 1.758897066116333 img loss 1.8853622674942017 img loss 1.7826749086380005 img loss 1.6000484228134155 img loss 1.5763155221939087 img loss 1.6240228414535522 img loss 1.6327913999557495 img loss 1.6209816932678223 img loss 1.4727369546890259 img loss 1.775591254234314 img loss 1.596941351890564 img loss 1.541410207748413 img loss 1.6879066228866577 img loss 1.635472059249878 img loss 1.6241028308868408 img loss 1.724158525466919 img loss 1.4700230360031128 img loss 1.6167638301849365 img loss 1.7680896520614624 img loss 1.5926438570022583 img loss 1.6449612379074097 img loss 1.7399922609329224 img loss 1.5894722938537598 img loss 1.7043530941009521 img loss 1.5816277265548706 img loss 1.6490997076034546 img loss 1.6554638147354126 img loss 1.6512874364852905 img loss 1.627845287322998 img loss 1.721228837966919 img loss 1.5144811868667603 img loss 1.4908499717712402 img loss 1.6152358055114746 img loss 1.79957914352417 img loss 1.641976237297058 img loss 1.6914341449737549 img loss 1.6203800439834595 img loss 1.7691749334335327 img loss 1.644715428352356 img loss 1.7215310335159302 img loss 1.735740065574646 img loss 1.6343790292739868 img loss 1.6145848035812378 img loss 1.5281320810317993 img loss 1.5552579164505005 img loss 1.6626113653182983 img loss 1.4324028491973877 img loss 1.619157075881958 img loss 1.5730587244033813 img loss 1.733161449432373 img loss 1.5835367441177368 img loss 1.585848331451416 img loss 1.519187569618225 img loss 1.792466402053833 img loss 1.8088780641555786 img loss 1.5713870525360107 img loss 1.6300908327102661 img loss 1.6753194332122803 img loss 1.7921583652496338 img loss 1.6442408561706543 img loss 1.808343529701233 img loss 1.6803900003433228 img loss 1.7299439907073975 img loss 1.6069775819778442 img loss 1.6910302639007568 img loss 1.5167956352233887 img loss 1.7296737432479858 img loss 1.7273364067077637 img loss 1.7600923776626587 img loss 1.561545491218567 img loss 1.8766093254089355 img loss 1.6780571937561035 img loss 1.5475423336029053 img loss 1.4223040342330933 img loss 1.769493818283081 img loss 1.5616271495819092 img loss 1.5275721549987793 img loss 1.7970014810562134 img loss 1.5519993305206299 img loss 1.6210342645645142 img loss 1.6778862476348877 img loss 1.6381499767303467 img loss 1.5637434720993042 img loss 1.6393885612487793 img loss 1.6231855154037476 img loss 1.5163041353225708img loss 1.659758448600769 img loss 1.5532485246658325 img loss 1.6760228872299194 img loss 1.5475159883499146 img loss 1.4979132413864136 img loss 1.6960381269454956 img loss 1.7793723344802856 img loss 1.8031638860702515 img loss 1.589719533920288 img loss 1.6109925508499146 img loss 1.8419809341430664 img loss 1.703560471534729 img loss 1.6636884212493896 img loss 1.6907826662063599 img loss 1.7230558395385742 img loss 1.8103300333023071 img loss 1.674240231513977 img loss 1.486325740814209 img loss 1.5443862676620483 img loss 1.732125997543335 img loss 1.6225284337997437 img loss 1.590779185295105 img loss 1.6312224864959717 {'loss': 1.6496, 'grad_norm': 0.48048579692840576, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2109732627868652 img loss 1.142007827758789 img loss 1.2944846153259277 img loss 1.2958487272262573 img loss 1.1773916482925415 img loss 1.1928890943527222 img loss 1.2099806070327759 img loss 1.2456104755401611 img loss 1.2143077850341797 img loss 1.3315105438232422 img loss 1.2394177913665771 img loss 1.194995403289795 img loss 1.2303097248077393 img loss 1.1924761533737183 img loss 1.215685486793518 img loss 1.235140085220337 img loss 1.215856909751892 img loss 1.186371088027954 img loss 1.1900856494903564 img loss 1.24759840965271 img loss 1.1462831497192383 img loss 1.169837236404419 img loss 1.229461431503296 img loss 1.221029281616211 img loss 1.174121379852295 img loss 1.1532604694366455 img loss 1.1988829374313354 img loss 1.233110785484314 img loss 1.141669750213623 img loss 1.195948600769043 img loss 1.2284390926361084 img loss 1.1262127161026 img loss 1.1243919134140015 img loss 1.1966990232467651 img loss 1.0816737413406372 img loss 1.204846739768982 img loss 1.1525185108184814 img loss 1.1429322957992554 img loss 1.2458992004394531 img loss 1.197082281112671 img loss 1.1845602989196777 img loss 1.2014689445495605 img loss 1.1376079320907593 img loss 1.2336065769195557 img loss 1.1701490879058838 img loss 1.277021050453186 img loss 1.2354341745376587 img loss 1.1888573169708252 img loss 1.1799252033233643 img loss 1.1449466943740845 img loss 1.2645196914672852 img loss 1.1647937297821045 img loss 1.2470076084136963 img loss 1.2086032629013062 img loss 1.2296695709228516 img loss 1.079761028289795 img loss 1.2577729225158691 img loss 1.2074779272079468 img loss 1.1646416187286377 img loss 1.1829898357391357 img loss 1.1590021848678589 img loss 1.2506383657455444 img loss 1.1261465549468994 img loss 1.239396333694458 img loss 1.2750775814056396 img loss 1.1988108158111572 img loss 1.30987548828125 img loss 1.2964047193527222 img loss 1.1982266902923584 img loss 1.2989659309387207 img loss 1.2400124073028564 img loss 1.2519956827163696 img loss 1.2604022026062012 img loss 1.11399507522583 img loss 1.213051438331604 img loss 1.2144625186920166 img loss 1.1811418533325195 img loss 1.2136199474334717 img loss 1.2338500022888184 img loss 1.2151598930358887 img loss 1.2044868469238281 img loss 1.2258334159851074 img loss 1.2333132028579712 img loss 1.0847010612487793 img loss 1.2684111595153809 img loss 1.2853580713272095 img loss 1.174177646636963 img loss 1.1360756158828735 img loss 1.1405810117721558 img loss 1.2081197500228882 img loss 1.1898974180221558 img loss 1.1909072399139404 img loss 1.0824925899505615 img loss 1.1722654104232788 img loss 1.228950023651123 img loss 1.253098726272583 img loss 1.2917336225509644 img loss 1.224745512008667 img loss 1.22999906539917 img loss 1.219164252281189 img loss 1.2361156940460205 img loss 1.2884161472320557 img loss 1.2211922407150269 img loss 1.211558222770691 img loss 1.1876842975616455 img loss 1.1454153060913086 img loss 1.158193826675415 img loss 1.2585809230804443 img loss 1.2629005908966064 img loss 1.2751777172088623 img loss 1.1681684255599976 img loss 1.1363400220870972 img loss 1.2064697742462158 img loss 1.1779694557189941 img loss 1.1666029691696167 img loss 1.2452657222747803 img loss 1.2788410186767578 img loss 1.149941325187683 img loss 1.2628605365753174 img loss 1.2176939249038696 img loss 1.1537644863128662 img loss 1.1807267665863037 img loss 1.1085500717163086 img loss 1.2516450881958008 img loss 1.1581172943115234 img loss 1.2230756282806396 img loss 1.2533152103424072 img loss 1.2391241788864136 {'loss': 1.2058, 'grad_norm': 0.5478947758674622, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.216135859489441 img loss 1.1992021799087524 img loss 1.1529920101165771 img loss 1.177480936050415 img loss 1.2510566711425781 img loss 1.2750438451766968 img loss 1.2664999961853027 img loss 1.2150986194610596 img loss 1.1501717567443848 img loss 1.1946089267730713 img loss 1.297916054725647 img loss 1.1852293014526367 img loss 1.22674560546875 img loss 1.199944257736206 img loss 1.2646983861923218 img loss 1.3402531147003174 img loss 1.268275499343872 img loss 1.183848261833191 img loss 1.2411202192306519 img loss 1.272326111793518 img loss 1.2022806406021118 img loss 1.2667210102081299 img loss 1.185103178024292 img loss 1.2285268306732178 img loss 1.2083595991134644 img loss 1.3121871948242188 img loss 1.2056888341903687 img loss 1.1937496662139893 img loss 1.1637325286865234 img loss 1.1580138206481934 img loss 1.2201961278915405 img loss 1.2165327072143555 img loss 1.216194748878479 img loss 1.2155154943466187 img loss 1.2782621383666992 img loss 1.2378709316253662 img loss 1.193468451499939 img loss 1.2136328220367432 img loss 1.274340033531189 img loss 1.2586028575897217 img loss 1.2655292749404907 img loss 1.2517311573028564 img loss 1.2584034204483032 img loss 1.2869337797164917 img loss 1.2185375690460205 img loss 1.2220019102096558 img loss 1.1771284341812134 img loss 1.1724287271499634 img loss 1.3238816261291504 img loss 1.1540570259094238 img loss 1.1915987730026245 img loss 1.2019786834716797 img loss 1.215148687362671 img loss 1.1809710264205933 img loss 1.2087688446044922 img loss 1.2235454320907593 img loss 1.2370960712432861 img loss 1.1828362941741943 img loss 1.2746963500976562 img loss 1.2624216079711914 img loss 1.1650316715240479 img loss 1.167751669883728 img loss 1.2704761028289795 img loss 1.2780430316925049 img loss 1.1950839757919312 img loss 1.242973804473877 img loss 1.265428066253662 img loss 1.2874106168746948 img loss 1.2048048973083496 img loss 1.1992124319076538 img loss 1.219024419784546 img loss 1.2364919185638428 img loss 1.134383201599121 img loss 1.2052239179611206 img loss 1.209733009338379 img loss 1.2803138494491577 img loss 1.198130488395691 img loss 1.1681400537490845 img loss 1.2417681217193604 img loss 1.2673568725585938 img loss 1.3193926811218262 img loss 1.1873207092285156 img loss 1.22530996799469 img loss 1.2800657749176025 img loss 1.2836207151412964 img loss 1.2332098484039307 img loss 1.2351596355438232 img loss 1.283420205116272 img loss 1.2634363174438477 img loss 1.192327857017517 img loss 1.133926272392273 img loss 1.2775299549102783 img loss 1.206346035003662 img loss 1.1989147663116455 img loss 1.249563217163086 img loss 1.2983478307724 img loss 1.195223093032837 img loss 1.2462577819824219 img loss 1.2196338176727295 img loss 1.237006664276123 img loss 1.2273352146148682 img loss 1.1771801710128784 img loss 1.162848711013794 img loss 1.1767688989639282 img loss 1.2101473808288574 img loss 1.340715765953064 img loss 1.2570329904556274 img loss 1.3038800954818726 img loss 1.2148383855819702 img loss 1.233220100402832 img loss 1.1681873798370361 img loss 1.2334110736846924 img loss 1.195391058921814 img loss 1.2734160423278809 img loss 1.238155722618103 img loss 1.1941635608673096 img loss 1.2127397060394287 img loss 1.2210005521774292 img loss 1.1941982507705688 img loss 1.1857521533966064 img loss 1.204637050628662 img loss 1.2376993894577026 img loss 1.209316611289978 img loss 1.2720427513122559 img loss 1.195677399635315 img loss 1.1942596435546875 img loss 1.1770331859588623 img loss 1.1469215154647827 {'loss': 1.225, 'grad_norm': 0.23052474856376648, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5408424139022827 img loss 1.5724704265594482 img loss 1.6329209804534912 img loss 1.4549237489700317 img loss 1.4365041255950928 img loss 1.543760061264038 img loss 1.5788648128509521 img loss 1.5776073932647705 img loss 1.5694071054458618 img loss 1.6577832698822021 img loss 1.4245134592056274 img loss 1.4866136312484741 img loss 1.4402871131896973 img loss 1.4806272983551025 img loss 1.5123356580734253 img loss 1.4175963401794434 img loss 1.4948316812515259 img loss 1.6381605863571167 img loss 1.4593228101730347 img loss 1.4658331871032715 img loss 1.501991629600525 img loss 1.6274864673614502 img loss 1.521713376045227 img loss 1.421734094619751 img loss 1.5460307598114014 img loss 1.6340135335922241 img loss 1.5231927633285522 img loss 1.5134251117706299 img loss 1.6210627555847168 img loss 1.4845143556594849 img loss 1.715744972229004 img loss 1.3821829557418823 img loss 1.5531679391860962 img loss 1.6629624366760254 img loss 1.5681947469711304 img loss 1.4749351739883423 img loss 1.557187795639038 img loss 1.635920763015747 img loss 1.512609601020813 img loss 1.484621286392212 img loss 1.5614960193634033 img loss 1.5224045515060425 img loss 1.475071668624878 img loss 1.5009407997131348 img loss 1.6076693534851074 img loss 1.506754755973816 img loss 1.4888033866882324 img loss 1.490883231163025 img loss 1.4626705646514893 img loss 1.5843485593795776 img loss 1.7022041082382202 img loss 1.4219917058944702 img loss 1.569383144378662 img loss 1.5711618661880493 img loss 1.5564954280853271 img loss 1.5257694721221924 img loss 1.4430253505706787 img loss 1.6342103481292725 img loss 1.6259256601333618 img loss 1.6373237371444702 img loss 1.5682660341262817 img loss 1.5109543800354004 img loss 1.5758802890777588 img loss 1.404591679573059 img loss 1.5331919193267822 img loss 1.4310342073440552 img loss 1.3965715169906616 img loss 1.6618083715438843 img loss 1.53550124168396 img loss 1.464025616645813 img loss 1.5184940099716187 img loss 1.645114779472351 img loss 1.5066689252853394 img loss 1.5489230155944824 img loss 1.6127973794937134 img loss 1.4862334728240967 img loss 1.6386443376541138 img loss 1.4585198163986206 img loss 1.5583670139312744 img loss 1.5956056118011475 img loss 1.5071927309036255 img loss 1.6121342182159424 img loss 1.606537938117981 img loss 1.529763102531433 img loss 1.4554673433303833 img loss 1.5313969850540161 img loss 1.50407874584198 img loss 1.6446356773376465 img loss 1.5351386070251465 img loss 1.4836503267288208 img loss 1.5034470558166504 img loss 1.5805468559265137 img loss 1.573872685432434 img loss 1.46488356590271 img loss 1.528983235359192 img loss 1.6349893808364868 img loss 1.6206395626068115 img loss 1.5496898889541626 img loss 1.4913592338562012 img loss 1.6420495510101318 img loss 1.5103058815002441 img loss 1.5448079109191895 img loss 1.4807298183441162 img loss 1.5604279041290283 img loss 1.5433411598205566 img loss 1.5200761556625366 img loss 1.421245813369751 img loss 1.5575302839279175 img loss 1.5099741220474243 img loss 1.5417526960372925 img loss 1.4626070261001587 img loss 1.7376066446304321 img loss 1.519318699836731 img loss 1.5908998250961304 img loss 1.5407646894454956 img loss 1.5316503047943115 img loss 1.61751127243042 img loss 1.590973973274231 img loss 1.5937432050704956 img loss 1.4718440771102905 img loss 1.4802966117858887 img loss 1.640379548072815 img loss 1.8577690124511719 img loss 1.6158243417739868 img loss 1.4486517906188965 img loss 1.6167701482772827 img loss 1.4483215808868408 img loss 1.6718542575836182 {'loss': 1.5429, 'grad_norm': 0.28362998366355896, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1523315906524658 img loss 1.1816072463989258 img loss 1.2057020664215088 img loss 1.172919750213623 img loss 1.2054054737091064 img loss 1.2792341709136963 img loss 1.316698670387268 img loss 1.1781924962997437 img loss 1.1559867858886719 img loss 1.197514533996582 img loss 1.0493431091308594 img loss 1.2301206588745117 img loss 1.1905158758163452 img loss 1.076983094215393 img loss 1.2518627643585205 img loss 1.192685604095459 img loss 1.209219217300415 img loss 1.2170237302780151 img loss 1.2222598791122437 img loss 1.1417460441589355 img loss 1.2368733882904053 img loss 1.2070969343185425 img loss 1.1679729223251343 img loss 1.1807477474212646 img loss 1.167394995689392 img loss 1.2477266788482666 img loss 1.1775319576263428 img loss 1.2017544507980347 img loss 1.2260456085205078 img loss 1.1965701580047607 img loss 1.2444109916687012 img loss 1.1374348402023315 img loss 1.2104843854904175 img loss 1.1397130489349365 img loss 1.1885731220245361 img loss 1.278788447380066 img loss 1.2287368774414062 img loss 1.180450201034546 img loss 1.2179781198501587 img loss 1.1921507120132446 img loss 1.1809660196304321 img loss 1.1808578968048096 img loss 1.225704550743103 img loss 1.2321522235870361 img loss 1.3000507354736328 img loss 1.1829277276992798 img loss 1.253661870956421 img loss 1.2308210134506226 img loss 1.1947994232177734 img loss 1.2722946405410767 img loss 1.2099385261535645 img loss 1.2128089666366577 img loss 1.1610772609710693 img loss 1.0999553203582764 img loss 1.2206789255142212 img loss 1.2144697904586792 img loss 1.263755440711975 img loss 1.160196304321289 img loss 1.1792562007904053 img loss 1.1716583967208862 img loss 1.1726999282836914 img loss 1.1924331188201904 img loss 1.173741102218628 img loss 1.2480828762054443 img loss 1.1671189069747925 img loss 1.1734216213226318 img loss 1.2134426832199097 img loss 1.1363452672958374 img loss 1.1946439743041992 img loss 1.187200903892517 img loss 1.2221622467041016 img loss 1.179827094078064 img loss 1.120039939880371 img loss 1.1723219156265259 img loss 1.2275065183639526 img loss 1.1916887760162354 img loss 1.2199950218200684 img loss 1.1774888038635254 img loss 1.2486885786056519 img loss 1.0966662168502808 img loss 1.2276242971420288 img loss 1.180511236190796 img loss 1.1887215375900269 img loss 1.2794653177261353 img loss 1.139129877090454 img loss 1.2311533689498901 img loss 1.2047942876815796 img loss 1.1941674947738647 img loss 1.1811374425888062 img loss 1.227529525756836 img loss 1.210082769393921 img loss 1.230834722518921 img loss 1.1875511407852173 img loss 1.2343482971191406 img loss 1.2600685358047485 img loss 1.1855823993682861 img loss 1.2044310569763184 img loss 1.2118966579437256 img loss 1.2145037651062012 img loss 1.2396305799484253 img loss 1.2851290702819824 img loss 1.193389654159546 img loss 1.1861073970794678 img loss 1.2037761211395264 img loss 1.2318413257598877 img loss 1.1749908924102783 img loss 1.2775039672851562 img loss 1.2251228094100952 img loss 1.186806559562683 img loss 1.2672629356384277 img loss 1.1504592895507812 img loss 1.415252447128296 img loss 1.2300831079483032 img loss 1.0976717472076416 img loss 1.2659847736358643 img loss 1.2163139581680298 img loss 1.2315815687179565 img loss 1.2175724506378174 img loss 1.2110497951507568 img loss 1.1918033361434937 img loss 1.2203881740570068 img loss 1.1845746040344238 img loss 1.1577229499816895 img loss 1.1900829076766968 img loss 1.2381231784820557 img loss 1.145632266998291 img loss 1.1859486103057861 img loss 1.125157117843628 {'loss': 1.202, 'grad_norm': 0.6796942949295044, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.577396273612976 img loss 1.6334041357040405 img loss 1.6477667093276978 img loss 1.6400505304336548 img loss 1.5021297931671143 img loss 1.5011757612228394 img loss 1.7348445653915405 img loss 1.539821982383728 img loss 1.5950772762298584 img loss 1.7238008975982666 img loss 1.6299082040786743 img loss 1.7098373174667358 img loss 1.6719543933868408 img loss 1.7459602355957031 img loss 1.7007378339767456 img loss 1.6351624727249146 img loss 1.6850703954696655 img loss 1.758553147315979 img loss 1.7429964542388916 img loss 1.6031486988067627 img loss 1.47591233253479 img loss 1.6508476734161377 img loss 1.563421368598938 img loss 1.6739763021469116 img loss 1.4050476551055908 img loss 1.6370927095413208 img loss 1.5807859897613525 img loss 1.6039557456970215 img loss 1.5739189386367798 img loss 1.5887014865875244 img loss 1.5290669202804565 img loss 1.7288402318954468 img loss 1.5726286172866821 img loss 1.597177267074585 img loss 1.6488631963729858 img loss 1.7890161275863647 img loss 1.5502451658248901 img loss 1.5313116312026978 img loss 1.4794561862945557 img loss 1.564785361289978 img loss 1.5052841901779175 img loss 1.6883991956710815 img loss 1.6179836988449097 img loss 1.6048099994659424 img loss 1.5862828493118286 img loss 1.5376288890838623 img loss 1.711635947227478 img loss 1.650560736656189 img loss 1.6428967714309692 img loss 1.6126734018325806 img loss 1.5175156593322754 img loss 1.5363620519638062 img loss 1.372217059135437 img loss 1.535559058189392 img loss 1.5901522636413574 img loss 1.7268892526626587 img loss 1.5541633367538452 img loss 1.5661762952804565 img loss 1.5127533674240112 img loss 1.5899819135665894 img loss 1.6582831144332886 img loss 1.5858609676361084 img loss 1.6161056756973267 img loss 1.5219484567642212 img loss 1.6495448350906372 img loss 1.5308984518051147 img loss 1.6026023626327515 img loss 1.4556490182876587 img loss 1.7230710983276367 img loss 1.4362159967422485 img loss 1.5863572359085083 img loss 1.6013505458831787 img loss 1.5979750156402588 img loss 1.521653652191162 img loss 1.664963960647583 img loss 1.5525202751159668 img loss 1.544124722480774 img loss 1.8531420230865479 img loss 1.4613698720932007 img loss 1.5674415826797485 img loss 1.646821141242981 img loss 1.759893536567688 img loss 1.5244100093841553 img loss 1.701316475868225 img loss 1.629880428314209 img loss 1.6393955945968628 img loss 1.4870003461837769 img loss 1.474596381187439 img loss 1.6000219583511353 img loss 1.5997469425201416 img loss 1.5001248121261597 img loss 1.6405558586120605 img loss 1.564395785331726 img loss 1.4605299234390259 img loss 1.5795499086380005 img loss 1.8125278949737549 img loss 1.658484935760498 img loss 1.5781739950180054 img loss 1.5079594850540161 img loss 1.475831389427185 img loss 1.6935001611709595 img loss 1.5904916524887085 img loss 1.4915859699249268 img loss 1.518969178199768 img loss 1.445473551750183 img loss 1.3783818483352661 img loss 1.6347483396530151 img loss 1.5747259855270386 img loss 1.5718342065811157 img loss 1.5674721002578735 img loss 1.4523004293441772 img loss 1.8514227867126465 img loss 1.4955812692642212 img loss 1.5940173864364624 img loss 1.5597844123840332 img loss 1.6080914735794067 img loss 1.45919668674469 img loss 1.619932770729065 img loss 1.5490362644195557 img loss 1.6296813488006592 img loss 1.5454570055007935 img loss 1.7583553791046143 img loss 1.5299181938171387 img loss 1.4696290493011475 img loss 1.4713002443313599 img loss 1.5285595655441284 img loss 1.507468342781067 img loss 1.5092618465423584 {'loss': 1.5903, 'grad_norm': 0.31185248494148254, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2091281414031982 img loss 1.127498984336853 img loss 1.1706987619400024 img loss 1.1274628639221191 img loss 1.164768934249878 img loss 1.1252516508102417 img loss 1.1116517782211304 img loss 1.1055282354354858 img loss 1.0748480558395386 img loss 1.1335829496383667 img loss 1.127485990524292 img loss 1.2052085399627686 img loss 1.106060266494751 img loss 1.1581999063491821 img loss 1.2700296640396118 img loss 1.1339799165725708 img loss 1.1409939527511597 img loss 1.1812374591827393 img loss 1.1814695596694946 img loss 1.1415010690689087 img loss 1.191638708114624 img loss 1.1498394012451172 img loss 1.1899802684783936 img loss 1.118245005607605 img loss 1.186511516571045 img loss 1.180553674697876 img loss 1.1173347234725952 img loss 1.0891966819763184 img loss 1.1476173400878906 img loss 1.1642110347747803 img loss 1.1538223028182983 img loss 1.1373090744018555 img loss 1.1633247137069702 img loss 1.1475435495376587 img loss 1.0981587171554565 img loss 1.127892255783081 img loss 1.078029990196228 img loss 1.2145146131515503 img loss 1.1524477005004883 img loss 1.0924980640411377 img loss 1.1135772466659546 img loss 1.1592260599136353 img loss 1.121888279914856 img loss 1.194002628326416 img loss 1.1309700012207031 img loss 1.1722941398620605 img loss 1.143859624862671 img loss 1.1526424884796143 img loss 1.158843755722046 img loss 1.128246545791626 img loss 1.0941004753112793 img loss 1.1436127424240112 img loss 1.139562964439392 img loss 1.0804095268249512 img loss 1.187456488609314 img loss 1.105607509613037 img loss 1.1573299169540405 img loss 1.1273179054260254 img loss 1.1547267436981201 img loss 1.1614888906478882 img loss 1.1756248474121094 img loss 1.173235297203064 img loss 1.1427630186080933 img loss 1.095382571220398 img loss 1.088984727859497 img loss 1.1058690547943115 img loss 1.1629856824874878 img loss 1.1845970153808594 img loss 1.1070451736450195 img loss 1.1305370330810547 img loss 1.1909393072128296 img loss 1.1169757843017578 img loss 1.1046472787857056 img loss 1.2480969429016113 img loss 1.1619410514831543 img loss 1.1706494092941284 img loss 1.1118518114089966 img loss 1.0931346416473389 img loss 1.1352550983428955 img loss 1.1196544170379639 img loss 1.1621936559677124 img loss 1.1966831684112549 img loss 1.0833693742752075 img loss 1.1163787841796875 img loss 1.1308770179748535 img loss 1.1108152866363525 img loss 1.1692166328430176 img loss 1.1112051010131836 img loss 1.1609162092208862 img loss 1.1995991468429565 img loss 1.094667911529541 img loss 1.1350775957107544 img loss 1.1014974117279053 img loss 1.1158554553985596 img loss 1.1745353937149048 img loss 1.1560728549957275 img loss 1.178361415863037 img loss 1.1978809833526611 img loss 1.1075342893600464 img loss 1.148490309715271 img loss 1.1612337827682495 img loss 1.126560926437378 img loss 1.1523754596710205 img loss 1.1871604919433594 img loss 1.1750643253326416 img loss 1.1307873725891113 img loss 1.0861310958862305 img loss 1.1477479934692383 img loss 1.1616324186325073 img loss 1.1100765466690063 img loss 1.2053817510604858 img loss 1.1509172916412354 img loss 1.1233514547348022 img loss 1.1326035261154175 img loss 1.1718018054962158 img loss 1.1785295009613037 img loss 1.1546523571014404 img loss 1.142418384552002 img loss 1.117809534072876 img loss 1.0963852405548096 img loss 1.1954491138458252 img loss 1.1967161893844604 img loss 1.2216631174087524 img loss 1.1548775434494019 img loss 1.1297993659973145 img loss 1.0911216735839844 img loss 1.0847285985946655 img loss 1.0998581647872925 {'loss': 1.1444, 'grad_norm': 0.3100094199180603, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3274714946746826 img loss 1.3093422651290894 img loss 1.3270325660705566 img loss 1.377177357673645 img loss 1.299692988395691 img loss 1.2393440008163452 img loss 1.257717490196228 img loss 1.3014408349990845 img loss 1.2925448417663574 img loss 1.3214002847671509 img loss 1.1700167655944824 img loss 1.225860595703125 img loss 1.3313888311386108 img loss 1.226430892944336 img loss 1.2780250310897827 img loss 1.345475435256958 img loss 1.2897669076919556 img loss 1.2889641523361206 img loss 1.3426614999771118 img loss 1.3093212842941284 img loss 1.3227436542510986 img loss 1.3504325151443481 img loss 1.3287510871887207 img loss 1.3469971418380737 img loss 1.353441596031189 img loss 1.3129158020019531 img loss 1.3730548620224 img loss 1.292102336883545 img loss 1.4167152643203735 img loss 1.3590703010559082 img loss 1.3359452486038208 img loss 1.337146520614624 img loss 1.2209155559539795 img loss 1.2541382312774658 img loss 1.2843220233917236 img loss 1.34147047996521 img loss 1.3259410858154297 img loss 1.2873772382736206 img loss 1.2503905296325684 img loss 1.2905186414718628 img loss 1.2936208248138428 img loss 1.310515284538269 img loss 1.3056913614273071 img loss 1.3155144453048706 img loss 1.2719296216964722 img loss 1.298334002494812 img loss 1.2137904167175293 img loss 1.3463650941848755 img loss 1.2336485385894775 img loss 1.3884880542755127 img loss 1.363688349723816 img loss 1.2851380109786987 img loss 1.2804001569747925 img loss 1.2475757598876953 img loss 1.3338847160339355 img loss 1.3896065950393677 img loss 1.3339110612869263 img loss 1.287970781326294 img loss 1.2268425226211548 img loss 1.3006947040557861 img loss 1.2919344902038574 img loss 1.2522826194763184 img loss 1.3116531372070312 img loss 1.2995846271514893 img loss 1.2798982858657837 img loss 1.2788920402526855 img loss 1.3638511896133423 img loss 1.3539105653762817 img loss 1.2692692279815674 img loss 1.2501459121704102 img loss 1.3221180438995361 img loss 1.2632887363433838 img loss 1.3879019021987915 img loss 1.2578346729278564 img loss 1.3052552938461304 img loss 1.2512333393096924 img loss 1.240092158317566 img loss 1.3609925508499146 img loss 1.2239216566085815 img loss 1.2327303886413574 img loss 1.324764609336853 img loss 1.2718961238861084 img loss 1.2382164001464844 img loss 1.2621510028839111 img loss 1.3408024311065674 img loss 1.4116405248641968 img loss 1.3197684288024902 img loss 1.4348820447921753 img loss 1.353737235069275 img loss 1.321704387664795 img loss 1.3729984760284424 img loss 1.2635799646377563 img loss 1.289928674697876 img loss 1.316586971282959 img loss 1.2159168720245361 img loss 1.3042091131210327 img loss 1.324556827545166 img loss 1.255872368812561 img loss 1.2754219770431519 img loss 1.2662429809570312 img loss 1.333073616027832 img loss 1.4107425212860107 img loss 1.3365895748138428 img loss 1.2765333652496338 img loss 1.3571785688400269 img loss 1.2934868335723877 img loss 1.2386887073516846 img loss 1.2787225246429443 img loss 1.3595308065414429 img loss 1.29951810836792 img loss 1.2908782958984375 img loss 1.2608239650726318 img loss 1.3395870923995972 img loss 1.2336649894714355 img loss 1.2687557935714722 img loss 1.286588191986084 img loss 1.2915486097335815 img loss 1.2605836391448975 img loss 1.2270992994308472 img loss 1.233377456665039 img loss 1.2962532043457031 img loss 1.2531425952911377 img loss 1.3176180124282837 img loss 1.2908885478973389 img loss 1.3389278650283813 img loss 1.3724894523620605 img loss 1.1924653053283691 img loss 1.2601933479309082 {'loss': 1.3003, 'grad_norm': 0.8650823831558228, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2520744800567627 img loss 1.2816593647003174 img loss 1.21991765499115 img loss 1.2170261144638062 img loss 1.281442403793335 img loss 1.2137707471847534 img loss 1.220962405204773 img loss 1.2680950164794922 img loss 1.2510099411010742 img loss 1.239384651184082 img loss 1.2655235528945923 img loss 1.2535045146942139 img loss 1.2476537227630615 img loss 1.2872178554534912 img loss 1.2871919870376587 img loss 1.2615073919296265 img loss 1.208126425743103 img loss 1.2160485982894897 img loss 1.264260172843933 img loss 1.2273955345153809 img loss 1.2433875799179077 img loss 1.2439913749694824 img loss 1.2491049766540527 img loss 1.2776821851730347 img loss 1.230284571647644 img loss 1.2568082809448242 img loss 1.2633274793624878 img loss 1.2459678649902344 img loss 1.2548694610595703 img loss 1.214426875114441 img loss 1.2499958276748657 img loss 1.2497577667236328 img loss 1.2258113622665405 img loss 1.2980685234069824 img loss 1.2560564279556274 img loss 1.2957100868225098 img loss 1.235123634338379 img loss 1.2912323474884033 img loss 1.2618200778961182 img loss 1.2543120384216309 img loss 1.2669562101364136 img loss 1.2333415746688843 img loss 1.1801419258117676 img loss 1.2469557523727417 img loss 1.2217419147491455 img loss 1.217549204826355 img loss 1.28544020652771 img loss 1.2001237869262695 img loss 1.24516761302948 img loss 1.2485597133636475 img loss 1.2431319952011108 img loss 1.2426109313964844 img loss 1.325577735900879 img loss 1.2805126905441284 img loss 1.238351583480835 img loss 1.2554008960723877 img loss 1.2188870906829834 img loss 1.238141655921936 img loss 1.2179615497589111 img loss 1.2257486581802368 img loss 1.2739028930664062 img loss 1.2510817050933838 img loss 1.238219976425171 img loss 1.2152502536773682 img loss 1.2427371740341187 img loss 1.240840196609497 img loss 1.2383286952972412 img loss 1.249350905418396 img loss 1.2574278116226196 img loss 1.22586989402771 img loss 1.2385395765304565 img loss 1.2340455055236816 img loss 1.1919965744018555 img loss 1.254433274269104 img loss 1.2307077646255493 img loss 1.237007975578308 img loss 1.2702592611312866 img loss 1.228464126586914 img loss 1.2406336069107056 img loss 1.2783645391464233 img loss 1.2899465560913086 img loss 1.1998865604400635 img loss 1.2729945182800293 img loss 1.2517704963684082 img loss 1.2214668989181519 img loss 1.293952465057373 img loss 1.2121751308441162 img loss 1.2150368690490723 img loss 1.2443275451660156 img loss 1.23309326171875 img loss 1.2690632343292236 img loss 1.2085996866226196 img loss 1.2496840953826904 img loss 1.2101999521255493 img loss 1.2389545440673828 img loss 1.2374948263168335 img loss 1.2342243194580078 img loss 1.2823148965835571 img loss 1.2396692037582397 img loss 1.2280471324920654 img loss 1.2768962383270264 img loss 1.2569911479949951 img loss 1.2213464975357056 img loss 1.2249587774276733 img loss 1.2516809701919556 img loss 1.3027933835983276 img loss 1.2780312299728394 img loss 1.2472798824310303 img loss 1.276807427406311 img loss 1.2770116329193115 img loss 1.2591888904571533 img loss 1.2599799633026123 img loss 1.236489176750183 img loss 1.2469357252120972 img loss 1.2172095775604248 img loss 1.260676383972168 img loss 1.243781566619873 img loss 1.212198257446289 img loss 1.2898956537246704 img loss 1.2281547784805298 img loss 1.2678974866867065 img loss 1.2314172983169556 img loss 1.247477412223816 img loss 1.2878497838974 img loss 1.1947473287582397 img loss 1.2556393146514893 img loss 1.2651593685150146 img loss 1.2624624967575073 {'loss': 1.2472, 'grad_norm': 0.21183331310749054, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2074708938598633 img loss 1.2901214361190796 img loss 1.2364263534545898 img loss 1.227113127708435 img loss 1.2150232791900635 img loss 1.3052270412445068 img loss 1.2914599180221558 img loss 1.2412956953048706 img loss 1.240128993988037 img loss 1.2882587909698486 img loss 1.2869352102279663 img loss 1.2610416412353516 img loss 1.2762190103530884 img loss 1.3019269704818726 img loss 1.3076633214950562 img loss 1.2273107767105103 img loss 1.2502613067626953 img loss 1.2949501276016235 img loss 1.3168200254440308 img loss 1.301653265953064 img loss 1.161304235458374 img loss 1.2917628288269043 img loss 1.3159278631210327 img loss 1.2822452783584595 img loss 1.2709347009658813 img loss 1.3038547039031982 img loss 1.2774767875671387 img loss 1.367958426475525 img loss 1.2580177783966064 img loss 1.2426414489746094 img loss 1.2423608303070068 img loss 1.272608757019043 img loss 1.228729248046875 img loss 1.232189655303955 img loss 1.203560471534729 img loss 1.3832260370254517 img loss 1.2099157571792603 img loss 1.3077894449234009 img loss 1.2196989059448242 img loss 1.2678070068359375 img loss 1.2284396886825562 img loss 1.2764694690704346 img loss 1.3887146711349487 img loss 1.2449419498443604 img loss 1.208454966545105 img loss 1.2589162588119507 img loss 1.2462208271026611 img loss 1.278098464012146 img loss 1.2938181161880493 img loss 1.3034870624542236 img loss 1.2117304801940918 img loss 1.2750784158706665 img loss 1.2930641174316406 img loss 1.2777773141860962 img loss 1.2618871927261353 img loss 1.3216673135757446 img loss 1.4252873659133911 img loss 1.2856470346450806 img loss 1.2897779941558838 img loss 1.2270221710205078 img loss 1.2289135456085205 img loss 1.2378876209259033 img loss 1.2690472602844238 img loss 1.2653687000274658 img loss 1.4588991403579712 img loss 1.2682111263275146 img loss 1.3420761823654175 img loss 1.275832176208496 img loss 1.276911973953247 img loss 1.2702773809432983 img loss 1.3276771306991577 img loss 1.1702594757080078 img loss 1.2158616781234741 img loss 1.329330325126648 img loss 1.3333566188812256 img loss 1.3121812343597412 img loss 1.2319668531417847 img loss 1.230330228805542 img loss 1.2997291088104248 img loss 1.244745135307312 img loss 1.2421764135360718 img loss 1.2699657678604126 img loss 1.2725117206573486 img loss 1.2551863193511963 img loss 1.2570734024047852 img loss 1.250619888305664 img loss 1.2308028936386108 img loss 1.2982549667358398 img loss 1.3203474283218384 img loss 1.2628971338272095 img loss 1.280307650566101 img loss 1.1976492404937744 img loss 1.3128929138183594 img loss 1.2110896110534668 img loss 1.2159621715545654 img loss 1.3252118825912476 img loss 1.3131346702575684 img loss 1.28636634349823 img loss 1.3367475271224976 img loss 1.2187743186950684 img loss 1.3292999267578125 img loss 1.2823289632797241 img loss 1.314125895500183 img loss 1.2569363117218018 img loss 1.254401445388794 img loss 1.3648104667663574 img loss 1.2765824794769287 img loss 1.2460033893585205 img loss 1.3143529891967773 img loss 1.274796485900879 img loss 1.3389993906021118 img loss 1.2183315753936768 img loss 1.3085544109344482 img loss 1.1804203987121582 img loss 1.282367467880249 img loss 1.316470742225647 img loss 1.25857412815094 img loss 1.328995943069458 img loss 1.2695329189300537 img loss 1.258758544921875 img loss 1.323664903640747 img loss 1.2839001417160034 img loss 1.3634556531906128 img loss 1.2607437372207642 img loss 1.2925751209259033 img loss 1.3699406385421753 img loss 1.245204210281372 img loss 1.3624061346054077 {'loss': 1.2768, 'grad_norm': 0.32932817935943604, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.258373498916626 img loss 1.2463117837905884 img loss 1.2135921716690063 img loss 1.1804966926574707 img loss 1.1851482391357422 img loss 1.1717020273208618 img loss 1.2052173614501953 img loss 1.2148268222808838 img loss 1.1872131824493408 img loss 1.1802910566329956 img loss 1.1854743957519531 img loss 1.3519841432571411 img loss 1.1867268085479736 img loss 1.353307843208313 img loss 1.2099506855010986 img loss 1.1448255777359009 img loss 1.25323486328125 img loss 1.1916099786758423 img loss 1.2949917316436768 img loss 1.1587873697280884 img loss 1.2608219385147095 img loss 1.2311608791351318 img loss 1.215070366859436 img loss 1.1848758459091187 img loss 1.2708548307418823 img loss 1.2982704639434814 img loss 1.2741512060165405 img loss 1.304965615272522 img loss 1.2546180486679077 img loss 1.2584177255630493 img loss 1.2065280675888062 img loss 1.2427095174789429 img loss 1.2479147911071777 img loss 1.161532998085022 img loss 1.3381386995315552 img loss 1.1890976428985596 img loss 1.171536922454834 img loss 1.2629703283309937 img loss 1.2048773765563965 img loss 1.1985857486724854 img loss 1.25569486618042 img loss 1.1625244617462158 img loss 1.268294095993042 img loss 1.2161120176315308 img loss 1.229470133781433 img loss 1.1948283910751343 img loss 1.2507538795471191 img loss 1.1500182151794434 img loss 1.2416284084320068 img loss 1.2973721027374268 img loss 1.2383354902267456 img loss 1.231860876083374 img loss 1.2546859979629517 img loss 1.2380611896514893 img loss 1.1990450620651245 img loss 1.1637675762176514 img loss 1.286123514175415 img loss 1.1726216077804565 img loss 1.2477471828460693 img loss 1.2954736948013306 img loss 1.2553648948669434 img loss 1.2248586416244507 img loss 1.2525299787521362 img loss 1.214848518371582 img loss 1.2380504608154297 img loss 1.2702785730361938 img loss 1.1635150909423828 img loss 1.2362618446350098 img loss 1.2364920377731323 img loss 1.1667778491973877 img loss 1.2777936458587646 img loss 1.247542142868042 img loss 1.238259196281433 img loss 1.250382661819458 img loss 1.2241852283477783 img loss 1.2151412963867188 img loss 1.2569267749786377 img loss 1.2323813438415527 img loss 1.1073534488677979 img loss 1.2199592590332031 img loss 1.2343454360961914 img loss 1.1568392515182495 img loss 1.231745958328247 img loss 1.1948292255401611 img loss 1.2204301357269287 img loss 1.2747763395309448 img loss 1.2514337301254272 img loss 1.205766201019287 img loss 1.2252380847930908 img loss 1.3103671073913574 img loss 1.2149981260299683 img loss 1.1632884740829468 img loss 1.214930772781372 img loss 1.2586443424224854 img loss 1.2316035032272339 img loss 1.1720142364501953 img loss 1.18972909450531 img loss 1.1631669998168945 img loss 1.3074674606323242 img loss 1.2032930850982666 img loss 1.2567248344421387 img loss 1.218931794166565 img loss 1.201998233795166 img loss 1.2407989501953125 img loss 1.2005947828292847 img loss 1.3738856315612793 img loss 1.1991585493087769 img loss 1.237821340560913 img loss 1.260345220565796 img loss 1.1756081581115723 img loss 1.256834626197815 img loss 1.187286615371704 img loss 1.2905158996582031 img loss 1.2341687679290771 img loss 1.2005468606948853 img loss 1.2265129089355469 img loss 1.3149621486663818 img loss 1.2452006340026855 img loss 1.229421615600586 img loss 1.2547657489776611 img loss 1.2912137508392334 img loss 1.2632519006729126 img loss 1.254703164100647 img loss 1.3402456045150757 img loss 1.1764438152313232 img loss 1.2589237689971924 img loss 1.184260368347168 img loss 1.306610107421875 {'loss': 1.2311, 'grad_norm': 0.7134707570075989, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2687790393829346 img loss 1.2253336906433105 img loss 1.2485274076461792 img loss 1.269562005996704 img loss 1.2347025871276855 img loss 1.2803810834884644 img loss 1.312903881072998 img loss 1.286298394203186 img loss 1.331262469291687 img loss 1.2868385314941406 img loss 1.3513821363449097 img loss 1.3028782606124878 img loss 1.1925816535949707 img loss 1.28800368309021 img loss 1.299376368522644 img loss 1.2895326614379883 img loss 1.189418077468872 img loss 1.2364957332611084 img loss 1.2260236740112305 img loss 1.2459051609039307 img loss 1.288063883781433 img loss 1.3735917806625366 img loss 1.3108967542648315 img loss 1.2956491708755493 img loss 1.272514820098877 img loss 1.2546976804733276 img loss 1.3164844512939453 img loss 1.2316116094589233 img loss 1.2661254405975342 img loss 1.247658610343933 img loss 1.2452239990234375 img loss 1.3425661325454712 img loss 1.2584270238876343 img loss 1.2822084426879883 img loss 1.269240379333496 img loss 1.1962721347808838 img loss 1.1671682596206665 img loss 1.2475942373275757 img loss 1.2785577774047852 img loss 1.2631336450576782 img loss 1.269809365272522 img loss 1.2454324960708618 img loss 1.2235416173934937 img loss 1.2467854022979736 img loss 1.265270471572876 img loss 1.2410824298858643 img loss 1.2592418193817139 img loss 1.3708118200302124 img loss 1.2284809350967407 img loss 1.2001545429229736 img loss 1.3144540786743164 img loss 1.2507359981536865 img loss 1.2507855892181396 img loss 1.291179895401001 img loss 1.2713875770568848 img loss 1.2255756855010986 img loss 1.3247740268707275 img loss 1.325103998184204 img loss 1.2688567638397217 img loss 1.2656930685043335 img loss 1.2167357206344604 img loss 1.2383480072021484 img loss 1.301112174987793 img loss 1.2667560577392578 img loss 1.2991605997085571 img loss 1.2645622491836548 img loss 1.3183163404464722 img loss 1.2135601043701172 img loss 1.3518928289413452 img loss 1.2822494506835938 img loss 1.277444839477539 img loss 1.3331197500228882 img loss 1.3134063482284546 img loss 1.3772556781768799 img loss 1.4092497825622559 img loss 1.3591405153274536 img loss 1.3428863286972046 img loss 1.291340708732605 img loss 1.2084367275238037 img loss 1.296514868736267 img loss 1.344224452972412 img loss 1.2749404907226562 img loss 1.308851957321167 img loss 1.2964184284210205 img loss 1.2903721332550049 img loss 1.237761378288269 img loss 1.2801481485366821 img loss 1.254685878753662 img loss 1.2332667112350464 img loss 1.203040361404419 img loss 1.2886909246444702 img loss 1.281269907951355 img loss 1.2549346685409546 img loss 1.2845699787139893 img loss 1.1922863721847534 img loss 1.3221365213394165 img loss 1.3135201930999756 img loss 1.3365894556045532 img loss 1.228433609008789 img loss 1.2363450527191162 img loss 1.2370140552520752 img loss 1.276904582977295 img loss 1.2717080116271973 img loss 1.2698208093643188 img loss 1.3453489542007446 img loss 1.256514310836792 img loss 1.2495663166046143 img loss 1.2626571655273438 img loss 1.2908735275268555 img loss 1.2832454442977905 img loss 1.3535170555114746 img loss 1.2977396249771118 img loss 1.348915457725525 img loss 1.3095903396606445 img loss 1.3532606363296509 img loss 1.2436158657073975 img loss 1.2430229187011719 img loss 1.2557830810546875 img loss 1.3035573959350586 img loss 1.3723368644714355 img loss 1.2734332084655762 img loss 1.2833685874938965 img loss 1.2769163846969604 img loss 1.3681517839431763 img loss 1.2787061929702759 img loss 1.346164345741272 img loss 1.224249243736267 img loss 1.2679551839828491 {'loss': 1.2788, 'grad_norm': 0.252314954996109, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1519025564193726 img loss 1.2666667699813843 img loss 1.193441390991211 img loss 1.2056782245635986 img loss 1.1314266920089722 img loss 1.2454054355621338 img loss 1.1675440073013306 img loss 1.1630934476852417 img loss 1.1996259689331055 img loss 1.2343497276306152 img loss 1.1930491924285889 img loss 1.116834044456482 img loss 1.1859543323516846 img loss 1.1993049383163452 img loss 1.1893945932388306 img loss 1.1534124612808228 img loss 1.2105560302734375 img loss 1.1978435516357422 img loss 1.1832082271575928 img loss 1.2493995428085327 img loss 1.231836199760437 img loss 1.1662979125976562 img loss 1.1496480703353882 img loss 1.1966328620910645 img loss 1.1827774047851562 img loss 1.1627492904663086 img loss 1.2576576471328735 img loss 1.147904396057129 img loss 1.158315658569336 img loss 1.2210438251495361 img loss 1.160539984703064 img loss 1.1558490991592407img loss 1.2207598686218262 img loss 1.1780118942260742 img loss 1.1689594984054565 img loss 1.161476731300354 img loss 1.1319400072097778 img loss 1.165096640586853 img loss 1.1432583332061768 img loss 1.2295544147491455 img loss 1.2330527305603027 img loss 1.2034828662872314 img loss 1.1682851314544678 img loss 1.1763662099838257 img loss 1.1891592741012573 img loss 1.2097926139831543 img loss 1.1202306747436523 img loss 1.202852725982666 img loss 1.2310230731964111 img loss 1.1869972944259644 img loss 1.1435714960098267 img loss 1.1620343923568726 img loss 1.288716197013855 img loss 1.2510849237442017 img loss 1.2360708713531494 img loss 1.142061471939087 img loss 1.1359859704971313 img loss 1.1996185779571533 img loss 1.197049856185913 img loss 1.2024599313735962 img loss 1.1550863981246948 img loss 1.225817084312439 img loss 1.2355670928955078 img loss 1.1107521057128906 img loss 1.1801880598068237 img loss 1.15761137008667 img loss 1.1778922080993652 img loss 1.1328325271606445 img loss 1.1481671333312988 img loss 1.1814533472061157 img loss 1.1489133834838867 img loss 1.2430213689804077 img loss 1.153546690940857 img loss 1.177790641784668 img loss 1.2205337285995483 img loss 1.201140284538269 img loss 1.1714767217636108 img loss 1.2080672979354858 img loss 1.1390125751495361 img loss 1.1405432224273682 img loss 1.137899398803711 img loss 1.1748178005218506 img loss 1.2091858386993408 img loss 1.176355242729187 img loss 1.1628146171569824 img loss 1.1726070642471313 img loss 1.2247340679168701 img loss 1.1330711841583252 img loss 1.2252403497695923 img loss 1.1924574375152588 img loss 1.1571142673492432 img loss 1.203840970993042 img loss 1.206713080406189 img loss 1.1038395166397095 img loss 1.1557435989379883 img loss 1.1788125038146973 img loss 1.2529915571212769 img loss 1.1707960367202759 img loss 1.234525442123413 img loss 1.1774429082870483 img loss 1.2051454782485962 img loss 1.1561527252197266 img loss 1.1592987775802612 img loss 1.184312343597412 img loss 1.2066236734390259 img loss 1.2340859174728394 img loss 1.2283540964126587 img loss 1.2060259580612183 img loss 1.1901649236679077 img loss 1.1452375650405884 img loss 1.2130849361419678 img loss 1.1250413656234741 img loss 1.1480772495269775 img loss 1.1519415378570557 img loss 1.168259620666504 img loss 1.1732184886932373 img loss 1.152453899383545 img loss 1.1968799829483032 img loss 1.1238082647323608 img loss 1.232262134552002 img loss 1.1518062353134155 img loss 1.1955207586288452 img loss 1.1844170093536377 img loss 1.1983981132507324 img loss 1.2190399169921875 img loss 1.1593070030212402 img loss 1.193219542503357 img loss 1.1664180755615234 {'loss': 1.1839, 'grad_norm': 0.3480290472507477, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2647931575775146 img loss 1.335201382637024 img loss 1.2529525756835938 img loss 1.322893738746643 img loss 1.2430946826934814 img loss 1.3716171979904175 img loss 1.2762961387634277 img loss 1.2813183069229126 img loss 1.2817413806915283 img loss 1.31449294090271 img loss 1.2946035861968994 img loss 1.2770788669586182 img loss 1.1919281482696533 img loss 1.322077989578247 img loss 1.2585529088974 img loss 1.2936108112335205 img loss 1.403937578201294 img loss 1.2563831806182861 img loss 1.2982934713363647 img loss 1.2054975032806396 img loss 1.1518850326538086 img loss 1.330810546875 img loss 1.209940791130066 img loss 1.2967170476913452 img loss 1.3602783679962158 img loss 1.2415030002593994 img loss 1.2771457433700562 img loss 1.372223973274231 img loss 1.2264446020126343 img loss 1.2913100719451904 img loss 1.1961121559143066 img loss 1.1846909523010254 img loss 1.219385027885437 img loss 1.3335506916046143 img loss 1.249791145324707 img loss 1.2998480796813965 img loss 1.2729089260101318 img loss 1.2849470376968384 img loss 1.2737462520599365 img loss 1.2167274951934814 img loss 1.2131373882293701 img loss 1.33860445022583 img loss 1.2170642614364624 img loss 1.2866017818450928 img loss 1.407183289527893 img loss 1.289670467376709 img loss 1.2944210767745972 img loss 1.3622658252716064 img loss 1.2375028133392334 img loss 1.334513783454895 img loss 1.1829969882965088 img loss 1.4027676582336426 img loss 1.3612971305847168 img loss 1.276521921157837 img loss 1.2808154821395874 img loss 1.3652371168136597 img loss 1.2426620721817017 img loss 1.3131134510040283 img loss 1.2932709455490112 img loss 1.4008305072784424 img loss 1.3427282571792603 img loss 1.2370001077651978 img loss 1.208679437637329 img loss 1.4156264066696167 img loss 1.2101073265075684 img loss 1.3392770290374756 img loss 1.343411922454834 img loss 1.2719846963882446 img loss 1.2510011196136475 img loss 1.3630290031433105 img loss 1.2665653228759766 img loss 1.3220503330230713 img loss 1.2541955709457397 img loss 1.24795401096344 img loss 1.3140379190444946 img loss 1.3383095264434814 img loss 1.315936803817749 img loss 1.41586172580719 img loss 1.3122806549072266 img loss 1.2287099361419678 img loss 1.2763499021530151 img loss 1.3402588367462158 img loss 1.3553433418273926 img loss 1.2777973413467407 img loss 1.2575076818466187 img loss 1.2354907989501953 img loss 1.2673195600509644 img loss 1.349524736404419 img loss 1.2940231561660767 img loss 1.3406685590744019 img loss 1.3515198230743408 img loss 1.2619861364364624 img loss 1.2551100254058838 img loss 1.2259879112243652 img loss 1.3954615592956543 img loss 1.2913413047790527 img loss 1.240904688835144 img loss 1.429026484489441 img loss 1.2946220636367798 img loss 1.328763484954834 img loss 1.3021777868270874img loss 1.2239861488342285 img loss 1.2874534130096436 img loss 1.3681126832962036 img loss 1.2908600568771362 img loss 1.216195821762085 img loss 1.3547557592391968 img loss 1.2513058185577393 img loss 1.334783911705017 img loss 1.2933086156845093 img loss 1.2597748041152954 img loss 1.3498787879943848 img loss 1.1593036651611328 img loss 1.355287790298462 img loss 1.3266160488128662 img loss 1.2873728275299072 img loss 1.2126572132110596 img loss 1.1445242166519165 img loss 1.2824844121932983 img loss 1.2992916107177734 img loss 1.2739386558532715 img loss 1.3190606832504272 img loss 1.2789912223815918 img loss 1.4275490045547485 img loss 1.3500285148620605 img loss 1.3639624118804932 img loss 1.3724572658538818 img loss 1.2854279279708862 {'loss': 1.2928, 'grad_norm': 0.521534264087677, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.284085750579834 img loss 1.4001307487487793 img loss 1.261682391166687 img loss 1.1541544198989868 img loss 1.2057775259017944 img loss 1.2565181255340576 img loss 1.2473033666610718 img loss 1.3193386793136597 img loss 1.276664137840271 img loss 1.240443229675293 img loss 1.2401065826416016 img loss 1.1928074359893799 img loss 1.3384130001068115 img loss 1.2909570932388306 img loss 1.2915139198303223 img loss 1.2886492013931274 img loss 1.2529237270355225 img loss 1.2635622024536133 img loss 1.2015818357467651 img loss 1.2494559288024902 img loss 1.316788911819458img loss 1.2625882625579834 img loss 1.361419439315796 img loss 1.2196563482284546 img loss 1.2624746561050415 img loss 1.2585102319717407 img loss 1.254818320274353 img loss 1.3188098669052124 img loss 1.2769187688827515 img loss 1.2718180418014526 img loss 1.221819519996643 img loss 1.3225866556167603 img loss 1.29779052734375 img loss 1.3229776620864868 img loss 1.1836636066436768 img loss 1.2902294397354126 img loss 1.2658430337905884 img loss 1.2625083923339844 img loss 1.2233225107192993 img loss 1.2761188745498657 img loss 1.264094352722168 img loss 1.2893694639205933 img loss 1.2757818698883057 img loss 1.2467594146728516 img loss 1.2987474203109741 img loss 1.2415995597839355 img loss 1.2915472984313965 img loss 1.3127621412277222 img loss 1.2182066440582275 img loss 1.1888326406478882 img loss 1.2112880945205688 img loss 1.2145037651062012 img loss 1.2815206050872803 img loss 1.3611479997634888 img loss 1.2464604377746582 img loss 1.3154296875 img loss 1.373857021331787 img loss 1.2409471273422241 img loss 1.2729018926620483 img loss 1.2017781734466553 img loss 1.296109676361084 img loss 1.2057476043701172 img loss 1.1684982776641846 img loss 1.2583996057510376 img loss 1.2375684976577759 img loss 1.2987186908721924 img loss 1.3195204734802246img loss 1.3166624307632446 img loss 1.3570001125335693img loss 1.2729573249816895 img loss 1.305571436882019 img loss 1.2709274291992188 img loss 1.340807557106018 img loss 1.2160576581954956 img loss 1.2086310386657715 img loss 1.2257370948791504 img loss 1.244907259941101 img loss 1.2892645597457886 img loss 1.2830944061279297 img loss 1.2835791110992432 img loss 1.2268381118774414 img loss 1.1992335319519043 img loss 1.2999873161315918 img loss 1.1942518949508667 img loss 1.199989914894104 img loss 1.2904490232467651 img loss 1.261713981628418 img loss 1.2446907758712769 img loss 1.2191377878189087 img loss 1.3427064418792725 img loss 1.2986767292022705 img loss 1.2914470434188843 img loss 1.3312362432479858 img loss 1.2727811336517334 img loss 1.281703233718872 img loss 1.3042300939559937 img loss 1.3543699979782104 img loss 1.2963182926177979 img loss 1.2223122119903564 img loss 1.308292269706726 img loss 1.2978771924972534 img loss 1.1757538318634033 img loss 1.3406261205673218 img loss 1.1957247257232666 img loss 1.2518107891082764 img loss 1.2217788696289062 img loss 1.3188855648040771 img loss 1.2619786262512207 img loss 1.2921364307403564 img loss 1.330873966217041 img loss 1.1747920513153076 img loss 1.3748834133148193 img loss 1.292614459991455 img loss 1.2680153846740723 img loss 1.3300933837890625 img loss 1.3338440656661987 img loss 1.1937344074249268 img loss 1.2600305080413818 img loss 1.2817825078964233 img loss 1.3458988666534424 img loss 1.2824369668960571 img loss 1.2413952350616455 img loss 1.2408393621444702 img loss 1.2073509693145752 img loss 1.2871450185775757 img loss 1.2680615186691284 img loss 1.3293533325195312 img loss 1.1916776895523071 {'loss': 1.2696, 'grad_norm': 0.22840076684951782, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3009288311004639 img loss 1.3515427112579346 img loss 1.303515076637268 img loss 1.3768106698989868 img loss 1.38130521774292 img loss 1.329525351524353 img loss 1.411773920059204 img loss 1.3165587186813354 img loss 1.3025859594345093 img loss 1.379268765449524 img loss 1.4006389379501343 img loss 1.3232008218765259 img loss 1.3918482065200806 img loss 1.2906181812286377 img loss 1.3948122262954712 img loss 1.3217188119888306 img loss 1.4353134632110596 img loss 1.3628830909729004 img loss 1.337828516960144 img loss 1.3081188201904297 img loss 1.2520111799240112 img loss 1.3770455121994019 img loss 1.36355459690094 img loss 1.3527880907058716 img loss 1.360597848892212 img loss 1.3270907402038574 img loss 1.2932405471801758 img loss 1.3067617416381836 img loss 1.3618160486221313 img loss 1.2973965406417847 img loss 1.4364314079284668 img loss 1.423506498336792 img loss 1.4477430582046509 img loss 1.3520257472991943 img loss 1.350077509880066 img loss 1.307794213294983 img loss 1.3424257040023804 img loss 1.3453181982040405 img loss 1.419122576713562 img loss 1.4091722965240479 img loss 1.3955122232437134 img loss 1.3014335632324219 img loss 1.2953681945800781 img loss 1.409501314163208 img loss 1.383949637413025 img loss 1.372076153755188 img loss 1.4118508100509644 img loss 1.3961424827575684 img loss 1.349519968032837 img loss 1.4466063976287842 img loss 1.3524937629699707 img loss 1.4101299047470093 img loss 1.3410906791687012 img loss 1.3263708353042603 img loss 1.43135404586792 img loss 1.3699281215667725 img loss 1.3469816446304321 img loss 1.3360228538513184 img loss 1.3115469217300415 img loss 1.3186992406845093 img loss 1.3327544927597046 img loss 1.330784559249878 img loss 1.4276902675628662 img loss 1.2410331964492798 img loss 1.4189801216125488 img loss 1.3669956922531128 img loss 1.3521448373794556 img loss 1.4077779054641724 img loss 1.3259950876235962 img loss 1.3432432413101196 img loss 1.353095531463623 img loss 1.3344391584396362 img loss 1.2251625061035156 img loss 1.3332467079162598 img loss 1.3966106176376343 img loss 1.3415707349777222 img loss 1.4321120977401733 img loss 1.3849847316741943 img loss 1.2953548431396484 img loss 1.328185796737671 img loss 1.438015341758728 img loss 1.3899524211883545 img loss 1.403161644935608 img loss 1.3377877473831177 img loss 1.3260735273361206 img loss 1.341489553451538 img loss 1.3357861042022705 img loss 1.3033299446105957 img loss 1.2864021062850952 img loss 1.3421369791030884 img loss 1.3847920894622803 img loss 1.3680404424667358 img loss 1.3348873853683472 img loss 1.3746201992034912 img loss 1.4887067079544067 img loss 1.4020692110061646 img loss 1.3686925172805786 img loss 1.374814748764038 img loss 1.4514001607894897 img loss 1.4568822383880615 img loss 1.3248915672302246 img loss 1.439895749092102 img loss 1.3950345516204834 img loss 1.3095775842666626 img loss 1.3261125087738037 img loss 1.2877737283706665 img loss 1.3173155784606934 img loss 1.4067857265472412 img loss 1.3141040802001953 img loss 1.3782455921173096 img loss 1.383104681968689 img loss 1.385647177696228 img loss 1.3850398063659668 img loss 1.3914196491241455 img loss 1.3180965185165405 img loss 1.3670905828475952 img loss 1.3672864437103271 img loss 1.393344759941101 img loss 1.3665435314178467 img loss 1.3199834823608398 img loss 1.3321958780288696 img loss 1.4102990627288818 img loss 1.3440916538238525 img loss 1.4262837171554565 img loss 1.3568919897079468 img loss 1.3685088157653809 img loss 1.3427451848983765 img loss 1.3653699159622192 {'loss': 1.3598, 'grad_norm': 0.25787580013275146, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3277130126953125 img loss 1.2323042154312134 img loss 1.1872868537902832 img loss 1.2092280387878418 img loss 1.2031662464141846 img loss 1.3150943517684937 img loss 1.1869992017745972 img loss 1.1946420669555664 img loss 1.266516923904419 img loss 1.1291908025741577 img loss 1.1758549213409424 img loss 1.2810062170028687 img loss 1.2408733367919922 img loss 1.210049033164978 img loss 1.2296807765960693 img loss 1.2805246114730835 img loss 1.2385320663452148 img loss 1.192064881324768 img loss 1.2259114980697632 img loss 1.2185778617858887 img loss 1.2503447532653809 img loss 1.1971356868743896 img loss 1.2879555225372314 img loss 1.2346954345703125 img loss 1.2383124828338623 img loss 1.2295931577682495 img loss 1.1349931955337524 img loss 1.275827407836914 img loss 1.2551014423370361 img loss 1.368000864982605 img loss 1.3482680320739746 img loss 1.2882437705993652 img loss 1.17789626121521 img loss 1.204722285270691 img loss 1.2465732097625732 img loss 1.2980467081069946 img loss 1.3060463666915894 img loss 1.298186182975769 img loss 1.24187171459198 img loss 1.2306256294250488 img loss 1.2447227239608765 img loss 1.255833625793457 img loss 1.2768914699554443 img loss 1.2681279182434082 img loss 1.3410680294036865 img loss 1.2641223669052124 img loss 1.199194312095642 img loss 1.3500467538833618 img loss 1.1876962184906006 img loss 1.1657414436340332 img loss 1.193448543548584 img loss 1.229594111442566 img loss 1.183100938796997 img loss 1.3083562850952148 img loss 1.2405627965927124 img loss 1.2628848552703857 img loss 1.328246831893921 img loss 1.1364582777023315 img loss 1.2781234979629517 img loss 1.1835200786590576 img loss 1.233933687210083 img loss 1.1840794086456299 img loss 1.2539076805114746 img loss 1.1844418048858643 img loss 1.1834874153137207 img loss 1.2328108549118042 img loss 1.2157011032104492 img loss 1.2410286664962769 img loss 1.2757599353790283 img loss 1.207063913345337 img loss 1.3110748529434204 img loss 1.2681759595870972 img loss 1.2122859954833984 img loss 1.1844240427017212 img loss 1.2390592098236084 img loss 1.237109661102295 img loss 1.2539258003234863 img loss 1.1983155012130737 img loss 1.2077128887176514 img loss 1.2775208950042725 img loss 1.3511775732040405 img loss 1.1578075885772705 img loss 1.3510993719100952 img loss 1.196633219718933 img loss 1.1981686353683472 img loss 1.2442607879638672 img loss 1.1773804426193237 img loss 1.2757399082183838 img loss 1.249375820159912 img loss 1.2752182483673096 img loss 1.1910552978515625 img loss 1.3434168100357056 img loss 1.2420389652252197 img loss 1.1560982465744019 img loss 1.2819068431854248 img loss 1.2312999963760376 img loss 1.2328498363494873 img loss 1.1698896884918213 img loss 1.2644356489181519 img loss 1.2739299535751343 img loss 1.2367502450942993 img loss 1.1901254653930664 img loss 1.2216078042984009 img loss 1.4052366018295288 img loss 1.1426957845687866 img loss 1.2862002849578857 img loss 1.1672757863998413 img loss 1.243035912513733 img loss 1.3313965797424316 img loss 1.223301887512207 img loss 1.3165342807769775 img loss 1.262321949005127 img loss 1.3413394689559937 img loss 1.2450789213180542 img loss 1.1743013858795166 img loss 1.2464046478271484 img loss 1.250242829322815 img loss 1.241175651550293 img loss 1.2478853464126587 img loss 1.1449254751205444 img loss 1.165911316871643 img loss 1.25982666015625 img loss 1.2511076927185059 img loss 1.2347896099090576 img loss 1.261035680770874 img loss 1.307104468345642 img loss 1.1435412168502808 img loss 1.2300457954406738 {'loss': 1.2406, 'grad_norm': 0.3962385654449463, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2943391799926758 img loss 1.325290560722351 img loss 1.4498894214630127 img loss 1.345477819442749 img loss 1.3296198844909668 img loss 1.2935478687286377 img loss 1.5473017692565918 img loss 1.25629460811615 img loss 1.358496904373169 img loss 1.337962031364441 img loss 1.355007529258728 img loss 1.4504050016403198 img loss 1.3862569332122803 img loss 1.2635332345962524 img loss 1.4111430644989014 img loss 1.4852287769317627 img loss 1.4525625705718994 img loss 1.4515074491500854 img loss 1.5661189556121826 img loss 1.4006837606430054 img loss 1.246738076210022 img loss 1.3837040662765503 img loss 1.262892484664917 img loss 1.3855093717575073 img loss 1.337274193763733 img loss 1.3130996227264404 img loss 1.3901807069778442 img loss 1.501711130142212 img loss 1.3591638803482056 img loss 1.4146578311920166 img loss 1.362461805343628 img loss 1.4413599967956543 img loss 1.4556514024734497 img loss 1.4031471014022827 img loss 1.4287638664245605 img loss 1.3758965730667114 img loss 1.4948495626449585 img loss 1.3345379829406738 img loss 1.4963419437408447 img loss 1.2835156917572021 img loss 1.4194546937942505 img loss 1.3362220525741577 img loss 1.423418402671814 img loss 1.4710713624954224 img loss 1.398621916770935 img loss 1.3280795812606812 img loss 1.3033984899520874 img loss 1.3181766271591187 img loss 1.3692494630813599 img loss 1.4643393754959106 img loss 1.2536872625350952 img loss 1.3874841928482056 img loss 1.3005996942520142 img loss 1.5001972913742065 img loss 1.2716610431671143 img loss 1.1741938591003418 img loss 1.3721213340759277 img loss 1.256924033164978 img loss 1.3624478578567505 img loss 1.5003583431243896 img loss 1.3729592561721802 img loss 1.3089656829833984 img loss 1.295058250427246 img loss 1.4584527015686035 img loss 1.4436341524124146 img loss 1.365853190422058 img loss 1.4587661027908325 img loss 1.4386118650436401 img loss 1.4358890056610107 img loss 1.378078579902649 img loss 1.374568223953247 img loss 1.491865873336792 img loss 1.4316030740737915 img loss 1.2867023944854736 img loss 1.3226544857025146 img loss 1.3944474458694458 img loss 1.4715789556503296 img loss 1.3273123502731323 img loss 1.4242427349090576 img loss 1.2971690893173218 img loss 1.421537160873413 img loss 1.4377005100250244 img loss 1.3734151124954224 img loss 1.5465515851974487 img loss 1.3791836500167847 img loss 1.4162510633468628 img loss 1.5427368879318237 img loss 1.4435007572174072 img loss 1.3747369050979614 img loss 1.4132970571517944 img loss 1.246008276939392 img loss 1.31057608127594 img loss 1.3490126132965088 img loss 1.4809048175811768 img loss 1.4217803478240967 img loss 1.464645504951477 img loss 1.3575555086135864 img loss 1.3819340467453003 img loss 1.402340054512024 img loss 1.4902077913284302 img loss 1.461785078048706 img loss 1.4019110202789307 img loss 1.4545012712478638 img loss 1.3613663911819458 img loss 1.363468885421753 img loss 1.3883603811264038 img loss 1.433510422706604 img loss 1.3856403827667236 img loss 1.52396821975708 img loss 1.3431274890899658 img loss 1.3044222593307495 img loss 1.3087303638458252 img loss 1.2819569110870361 img loss 1.4012047052383423 img loss 1.2852249145507812 img loss 1.4221771955490112 img loss 1.3958351612091064 img loss 1.3244065046310425 img loss 1.3967783451080322 img loss 1.4336965084075928 img loss 1.4202851057052612 img loss 1.53048574924469 img loss 1.3313969373703003 img loss 1.3440269231796265 img loss 1.3170597553253174 img loss 1.367680311203003 img loss 1.3985955715179443 img loss 1.4417588710784912 {'loss': 1.3867, 'grad_norm': 0.3948928415775299, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.377822995185852 img loss 1.3854529857635498 img loss 1.3491342067718506 img loss 1.577319860458374 img loss 1.33595609664917 img loss 1.331197738647461 img loss 1.31875479221344 img loss 1.583687663078308 img loss 1.352174162864685 img loss 1.299250841140747 img loss 1.429118037223816 img loss 1.3565800189971924 img loss 1.3470746278762817 img loss 1.2741259336471558 img loss 1.2880226373672485 img loss 1.469604253768921 img loss 1.255898356437683 img loss 1.4041669368743896 img loss 1.6088157892227173 img loss 1.3977973461151123 img loss 1.362290859222412 img loss 1.3410495519638062 img loss 1.2845064401626587 img loss 1.3511862754821777 img loss 1.3331890106201172 img loss 1.4276796579360962 img loss 1.4543672800064087 img loss 1.3205102682113647 img loss 1.4545649290084839 img loss 1.3003729581832886 img loss 1.3396427631378174 img loss 1.5680009126663208 img loss 1.395251989364624 img loss 1.3216863870620728 img loss 1.307237982749939 img loss 1.3701527118682861 img loss 1.366593837738037 img loss 1.3936762809753418 img loss 1.2998138666152954 img loss 1.3633573055267334 img loss 1.302605152130127 img loss 1.3812081813812256 img loss 1.5002366304397583 img loss 1.2780067920684814 img loss 1.3292680978775024 img loss 1.4296995401382446 img loss 1.3909897804260254 img loss 1.4040685892105103 img loss 1.4639416933059692 img loss 1.3715084791183472 img loss 1.4063137769699097 img loss 1.3451117277145386 img loss 1.4010299444198608 img loss 1.3599549531936646 img loss 1.4982281923294067 img loss 1.3187572956085205img loss 1.4444280862808228 img loss 1.4631465673446655 img loss 1.4391449689865112 img loss 1.4025720357894897 img loss 1.3015106916427612 img loss 1.3235138654708862 img loss 1.3016140460968018 img loss 1.428636074066162 img loss 1.3806618452072144 img loss 1.4434888362884521 img loss 1.3988566398620605 img loss 1.3939201831817627 img loss 1.3094899654388428 img loss 1.364246129989624 img loss 1.324446678161621 img loss 1.3261288404464722 img loss 1.2425447702407837 img loss 1.4282456636428833 img loss 1.3006470203399658 img loss 1.3945767879486084 img loss 1.336358666419983 img loss 1.4018282890319824 img loss 1.4633110761642456 img loss 1.4823309183120728 img loss 1.3336117267608643 img loss 1.3769408464431763 img loss 1.391430139541626 img loss 1.3932547569274902 img loss 1.4129841327667236 img loss 1.4510855674743652 img loss 1.3884633779525757 img loss 1.3236653804779053 img loss 1.3181025981903076 img loss 1.411688208580017 img loss 1.3885724544525146 img loss 1.34902822971344 img loss 1.33820641040802 img loss 1.438031792640686 img loss 1.329534888267517 img loss 1.3861536979675293 img loss 1.3097314834594727 img loss 1.393083095550537 img loss 1.3567410707473755 img loss 1.3521177768707275 img loss 1.375454068183899 img loss 1.3223189115524292 img loss 1.3334544897079468 img loss 1.321831226348877 img loss 1.4267630577087402 img loss 1.3078030347824097 img loss 1.3592240810394287 img loss 1.3161325454711914 img loss 1.5539826154708862 img loss 1.411546230316162 img loss 1.413451910018921 img loss 1.3747674226760864 img loss 1.3339769840240479 img loss 1.3311915397644043 img loss 1.2212612628936768 img loss 1.4083586931228638 img loss 1.2876877784729004 img loss 1.3880077600479126 img loss 1.3876935243606567 img loss 1.3426214456558228 img loss 1.3689688444137573 img loss 1.4037184715270996 img loss 1.3223891258239746 img loss 1.4011285305023193 img loss 1.3093174695968628 img loss 1.2825212478637695 img loss 1.4254847764968872 img loss 1.3550130128860474 {'loss': 1.3742, 'grad_norm': 0.23610596358776093, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4455610513687134 img loss 1.479949712753296 img loss 1.428375482559204 img loss 1.5237743854522705 img loss 1.4849770069122314 img loss 1.411263346672058 img loss 1.4780064821243286 img loss 1.4608787298202515 img loss 1.559550404548645 img loss 1.4967480897903442 img loss 1.4571359157562256 img loss 1.395192265510559 img loss 1.4690998792648315 img loss 1.5586265325546265 img loss 1.5933098793029785 img loss 1.4430581331253052 img loss 1.5346254110336304 img loss 1.492668628692627 img loss 1.3368456363677979img loss 1.365193247795105 img loss 1.4365867376327515 img loss 1.4405531883239746 img loss 1.5386701822280884 img loss 1.48330557346344 img loss 1.5487278699874878 img loss 1.5389955043792725 img loss 1.402485728263855 img loss 1.4110163450241089 img loss 1.4466665983200073 img loss 1.42623770236969 img loss 1.5279326438903809 img loss 1.5157452821731567 img loss 1.431353211402893 img loss 1.508306622505188 img loss 1.5882303714752197 img loss 1.6105495691299438 img loss 1.613171935081482 img loss 1.3749943971633911 img loss 1.4083164930343628 img loss 1.5905269384384155 img loss 1.5767327547073364 img loss 1.546904444694519 img loss 1.52314293384552 img loss 1.4910131692886353 img loss 1.436893343925476 img loss 1.421572208404541 img loss 1.4334254264831543 img loss 1.4775091409683228 img loss 1.4692161083221436 img loss 1.5673401355743408 img loss 1.3263882398605347 img loss 1.5653760433197021 img loss 1.4909453392028809 img loss 1.437963843345642 img loss 1.415984869003296 img loss 1.5567364692687988 img loss 1.5808905363082886 img loss 1.4350266456604004 img loss 1.609750509262085 img loss 1.4671159982681274 img loss 1.646350383758545 img loss 1.4704968929290771 img loss 1.5155643224716187 img loss 1.4590122699737549 img loss 1.5181019306182861 img loss 1.6132107973098755 img loss 1.6514067649841309 img loss 1.4096295833587646 img loss 1.499807596206665 img loss 1.524625301361084 img loss 1.565144419670105 img loss 1.6918504238128662 img loss 1.4645493030548096 img loss 1.495032548904419 img loss 1.495024561882019 img loss 1.5660583972930908 img loss 1.3306479454040527 img loss 1.381954312324524 img loss 1.5379735231399536 img loss 1.6124030351638794 img loss 1.5599135160446167 img loss 1.364287257194519 img loss 1.5312751531600952 img loss 1.5123389959335327 img loss 1.5810189247131348 img loss 1.3985360860824585 img loss 1.4587680101394653 img loss 1.5061215162277222 img loss 1.425614833831787 img loss 1.550482988357544 img loss 1.45796537399292 img loss 1.6075431108474731 img loss 1.4293960332870483 img loss 1.5305418968200684 img loss 1.4471367597579956 img loss 1.440916657447815 img loss 1.3637889623641968 img loss 1.6420085430145264 img loss 1.5406053066253662 img loss 1.476590871810913 img loss 1.43630850315094 img loss 1.4070042371749878 img loss 1.3886582851409912 img loss 1.385251760482788 img loss 1.455768346786499 img loss 1.4764344692230225 img loss 1.4286636114120483 img loss 1.5219806432724 img loss 1.4429887533187866 img loss 1.4939932823181152 img loss 1.6076992750167847 img loss 1.450705647468567 img loss 1.5672484636306763 img loss 1.413947582244873 img loss 1.538748025894165 img loss 1.482408046722412 img loss 1.5692678689956665 img loss 1.531951665878296 img loss 1.4842336177825928 img loss 1.4811732769012451 img loss 1.462844729423523 img loss 1.4871821403503418 img loss 1.5126975774765015 img loss 1.4506782293319702 img loss 1.3782404661178589 img loss 1.525912880897522 img loss 1.5129752159118652 img loss 1.5776779651641846 {'loss': 1.4909, 'grad_norm': 0.46592965722084045, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3405042886734009 img loss 1.2493408918380737 img loss 1.338965892791748 img loss 1.225358486175537 img loss 1.288189172744751 img loss 1.3844027519226074 img loss 1.263052225112915 img loss 1.2306160926818848 img loss 1.2785745859146118 img loss 1.258715033531189 img loss 1.256773829460144 img loss 1.2270009517669678 img loss 1.2709683179855347 img loss 1.2979955673217773 img loss 1.2558801174163818 img loss 1.241482138633728 img loss 1.2131717205047607 img loss 1.2970904111862183 img loss 1.3406015634536743 img loss 1.2309985160827637 img loss 1.2674384117126465 img loss 1.4178580045700073 img loss 1.2485344409942627 img loss 1.28280770778656 img loss 1.3235992193222046 img loss 1.3692044019699097 img loss 1.2980107069015503 img loss 1.2856138944625854 img loss 1.3276352882385254 img loss 1.3347151279449463 img loss 1.2927536964416504 img loss 1.2907309532165527 img loss 1.3468326330184937 img loss 1.322853684425354 img loss 1.331012487411499 img loss 1.321075439453125 img loss 1.4233797788619995 img loss 1.2303261756896973 img loss 1.286676287651062 img loss 1.2678800821304321 img loss 1.2718205451965332 img loss 1.3267319202423096 img loss 1.2746484279632568 img loss 1.2506393194198608 img loss 1.3012704849243164 img loss 1.2738056182861328 img loss 1.3134437799453735 img loss 1.2849873304367065 img loss 1.2394134998321533 img loss 1.2724566459655762 img loss 1.2241007089614868 img loss 1.2873995304107666 img loss 1.2986602783203125 img loss 1.3185243606567383 img loss 1.3120112419128418 img loss 1.2948354482650757 img loss 1.313591718673706 img loss 1.3534189462661743 img loss 1.2732694149017334 img loss 1.2456965446472168 img loss 1.2268505096435547 img loss 1.3186335563659668 img loss 1.316489815711975 img loss 1.2674235105514526 img loss 1.2510639429092407 img loss 1.2509515285491943 img loss 1.2919031381607056 img loss 1.239006757736206 img loss 1.2353371381759644 img loss 1.2480303049087524 img loss 1.3146870136260986 img loss 1.2888153791427612 img loss 1.2847235202789307 img loss 1.2681610584259033 img loss 1.252546787261963 img loss 1.2572226524353027 img loss 1.2773816585540771 img loss 1.33468496799469 img loss 1.2683814764022827 img loss 1.219286561012268 img loss 1.3032310009002686 img loss 1.2645443677902222 img loss 1.265592098236084 img loss 1.3227661848068237 img loss 1.183631420135498 img loss 1.3029221296310425 img loss 1.2812633514404297 img loss 1.2827391624450684 img loss 1.237465739250183 img loss 1.2655080556869507 img loss 1.2540251016616821 img loss 1.3003160953521729 img loss 1.335810899734497 img loss 1.3468364477157593 img loss 1.3022994995117188 img loss 1.2617346048355103 img loss 1.2043757438659668 img loss 1.3734586238861084 img loss 1.2934874296188354 img loss 1.3586708307266235 img loss 1.3592149019241333 img loss 1.202685832977295 img loss 1.3384051322937012 img loss 1.2284481525421143 img loss 1.2959975004196167 img loss 1.2586443424224854 img loss 1.2753772735595703 img loss 1.314502239227295 img loss 1.273672103881836 img loss 1.278212070465088 img loss 1.3063428401947021 img loss 1.2726764678955078 img loss 1.3115217685699463 img loss 1.3602519035339355img loss 1.355589509010315 img loss 1.2544599771499634 img loss 1.2631237506866455 img loss 1.2557324171066284 img loss 1.2694758176803589 img loss 1.2483630180358887 img loss 1.2189983129501343 img loss 1.3309779167175293 img loss 1.333402395248413 img loss 1.271470308303833 img loss 1.1617233753204346 img loss 1.318285346031189 img loss 1.3250815868377686 img loss 1.3239898681640625 {'loss': 1.2863, 'grad_norm': 0.3130601942539215, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4163610935211182 img loss 1.3523467779159546 img loss 1.440945029258728 img loss 1.3996044397354126 img loss 1.3584269285202026 img loss 1.4320017099380493 img loss 1.3676952123641968 img loss 1.3462413549423218 img loss 1.3360114097595215 img loss 1.4797861576080322 img loss 1.4884947538375854 img loss 1.4672293663024902 img loss 1.3567954301834106 img loss 1.458579659461975 img loss 1.5120652914047241 img loss 1.3727291822433472 img loss 1.4098533391952515 img loss 1.430712342262268 img loss 1.4614545106887817 img loss 1.4841054677963257 img loss 1.4333298206329346 img loss 1.3569939136505127 img loss 1.5170657634735107 img loss 1.4017574787139893 img loss 1.4169554710388184 img loss 1.4708982706069946 img loss 1.3048367500305176 img loss 1.3911875486373901 img loss 1.3878662586212158 img loss 1.3123455047607422 img loss 1.4453959465026855 img loss 1.445472240447998 img loss 1.465822458267212 img loss 1.4638381004333496 img loss 1.3524609804153442 img loss 1.412286639213562 img loss 1.3245972394943237 img loss 1.375810980796814 img loss 1.3553645610809326 img loss 1.5333243608474731 img loss 1.338616967201233 img loss 1.4508713483810425 img loss 1.44508695602417 img loss 1.3639826774597168 img loss 1.3791314363479614 img loss 1.4365241527557373 img loss 1.5211460590362549 img loss 1.4222139120101929 img loss 1.440210223197937 img loss 1.3479340076446533 img loss 1.2953050136566162 img loss 1.395121455192566 img loss 1.4949700832366943 img loss 1.372632622718811 img loss 1.4575068950653076 img loss 1.4628854990005493 img loss 1.4223990440368652 img loss 1.455049991607666 img loss 1.4665638208389282 img loss 1.4673689603805542 img loss 1.401204228401184 img loss 1.3692505359649658 img loss 1.443734884262085 img loss 1.348950982093811 img loss 1.3974617719650269 img loss 1.539061188697815 img loss 1.5050936937332153 img loss 1.518343448638916 img loss 1.369096040725708 img loss 1.3986561298370361 img loss 1.3395144939422607 img loss 1.345694661140442 img loss 1.4564013481140137 img loss 1.33371102809906 img loss 1.513020396232605 img loss 1.3846193552017212 img loss 1.397385835647583 img loss 1.410433053970337 img loss 1.4400676488876343 img loss 1.4167581796646118 img loss 1.3937262296676636 img loss 1.471739649772644 img loss 1.3227245807647705 img loss 1.351812481880188 img loss 1.3661445379257202 img loss 1.3427773714065552 img loss 1.3697279691696167 img loss 1.426424503326416 img loss 1.3962393999099731 img loss 1.5232220888137817 img loss 1.343961477279663 img loss 1.3872506618499756 img loss 1.3871484994888306 img loss 1.4320701360702515 img loss 1.5118929147720337 img loss 1.3818423748016357 img loss 1.3787896633148193 img loss 1.3151296377182007 img loss 1.4311062097549438 img loss 1.4011781215667725 img loss 1.3436963558197021 img loss 1.3640178442001343 img loss 1.364559531211853 img loss 1.4146486520767212 img loss 1.3185242414474487 img loss 1.4754966497421265 img loss 1.4329060316085815 img loss 1.2989246845245361 img loss 1.402011752128601 img loss 1.4582724571228027 img loss 1.4654691219329834 img loss 1.3698770999908447 img loss 1.38502836227417 img loss 1.432213306427002 img loss 1.4739192724227905 img loss 1.4687855243682861 img loss 1.4239037036895752 img loss 1.3933707475662231 img loss 1.4131734371185303 img loss 1.3595634698867798 img loss 1.3890691995620728 img loss 1.3849035501480103 img loss 1.2862719297409058 img loss 1.365018606185913 img loss 1.4729952812194824 img loss 1.430144190788269 img loss 1.411869764328003 img loss 1.319374442100525 {'loss': 1.409, 'grad_norm': 0.2711670398712158, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1882052421569824 img loss 1.14934241771698 img loss 1.1733225584030151 img loss 1.209194540977478 img loss 1.159206748008728 img loss 1.2622199058532715 img loss 1.2428319454193115 img loss 1.173713207244873 img loss 1.1350609064102173 img loss 1.2220929861068726 img loss 1.2585996389389038 img loss 1.1793091297149658 img loss 1.1738615036010742 img loss 1.171533465385437 img loss 1.2020081281661987 img loss 1.2308094501495361 img loss 1.3142130374908447 img loss 1.0930615663528442 img loss 1.2070279121398926 img loss 1.198262095451355 img loss 1.1741150617599487 img loss 1.1360571384429932 img loss 1.2043590545654297 img loss 1.1422793865203857 img loss 1.192945957183838 img loss 1.2328001260757446 img loss 1.1768887042999268 img loss 1.2291377782821655 img loss 1.2135679721832275 img loss 1.2104943990707397 img loss 1.2485392093658447 img loss 1.1678003072738647 img loss 1.1996548175811768 img loss 1.1964060068130493 img loss 1.1043968200683594 img loss 1.2484676837921143 img loss 1.1151347160339355 img loss 1.152266502380371 img loss 1.2381025552749634 img loss 1.3018136024475098 img loss 1.2491004467010498 img loss 1.2126842737197876 img loss 1.1741859912872314 img loss 1.172512412071228 img loss 1.1240993738174438 img loss 1.2303656339645386 img loss 1.2053865194320679 img loss 1.2906938791275024 img loss 1.1865288019180298 img loss 1.2646511793136597 img loss 1.178138256072998 img loss 1.2357702255249023 img loss 1.2514419555664062 img loss 1.1574140787124634 img loss 1.2428487539291382 img loss 1.1770504713058472 img loss 1.1608771085739136 img loss 1.29193115234375 img loss 1.2831867933273315 img loss 1.1606262922286987 img loss 1.2083444595336914 img loss 1.199733018875122 img loss 1.1750078201293945 img loss 1.1091859340667725 img loss 1.3046634197235107 img loss 1.192681074142456 img loss 1.1933071613311768 img loss 1.1503151655197144 img loss 1.1721694469451904 img loss 1.2232997417449951 img loss 1.1746042966842651 img loss 1.229068636894226 img loss 1.2810087203979492 img loss 1.1583598852157593 img loss 1.159035325050354 img loss 1.2214374542236328 img loss 1.188394546508789 img loss 1.1826356649398804 img loss 1.2611740827560425 img loss 1.1920493841171265 img loss 1.1858946084976196 img loss 1.1151527166366577 img loss 1.2264944314956665 img loss 1.2157608270645142 img loss 1.2191286087036133 img loss 1.1403183937072754 img loss 1.2018647193908691 img loss 1.1913524866104126 img loss 1.1366046667099 img loss 1.147154688835144 img loss 1.224205732345581 img loss 1.2080304622650146 img loss 1.1662120819091797 img loss 1.1969621181488037 img loss 1.1456656455993652 img loss 1.1431331634521484 img loss 1.2057163715362549 img loss 1.131870985031128 img loss 1.2111923694610596 img loss 1.1921017169952393 img loss 1.2055513858795166 img loss 1.1775639057159424 img loss 1.2246432304382324 img loss 1.1462923288345337 img loss 1.149330735206604 img loss 1.1209226846694946 img loss 1.1398308277130127 img loss 1.2277982234954834 img loss 1.17732834815979 img loss 1.2453734874725342 img loss 1.1503686904907227 img loss 1.275368332862854 img loss 1.1432417631149292 img loss 1.2253650426864624 img loss 1.1830974817276 img loss 1.1901005506515503 img loss 1.176424503326416 img loss 1.1736286878585815 img loss 1.12889564037323 img loss 1.177014708518982 img loss 1.2929494380950928 img loss 1.1708409786224365 img loss 1.2122814655303955 img loss 1.223404884338379 img loss 1.1911697387695312 img loss 1.1875190734863281 img loss 1.185111403465271 img loss 1.1966270208358765 {'loss': 1.195, 'grad_norm': 0.22118671238422394, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1704514026641846 img loss 1.2213845252990723 img loss 1.2234101295471191 img loss 1.1748197078704834 img loss 1.2022193670272827 img loss 1.15999174118042 img loss 1.3011891841888428 img loss 1.177811622619629 img loss 1.241426706314087 img loss 1.2356036901474 img loss 1.2373079061508179 img loss 1.388292908668518 img loss 1.2030166387557983 img loss 1.2168760299682617 img loss 1.147438406944275 img loss 1.3142611980438232 img loss 1.2079426050186157 img loss 1.2368996143341064 img loss 1.1691700220108032 img loss 1.1628203392028809 img loss 1.2012951374053955 img loss 1.3509620428085327 img loss 1.2429988384246826 img loss 1.1145099401474 img loss 1.328115701675415 img loss 1.1806831359863281 img loss 1.2369773387908936 img loss 1.2698001861572266 img loss 1.2803113460540771 img loss 1.2453850507736206 img loss 1.2160192728042603 img loss 1.2430988550186157 img loss 1.2523598670959473 img loss 1.148059606552124 img loss 1.3456676006317139 img loss 1.1260671615600586 img loss 1.3916937112808228 img loss 1.220988154411316 img loss 1.2911522388458252 img loss 1.1782859563827515 img loss 1.2488149404525757 img loss 1.2463786602020264 img loss 1.248130440711975 img loss 1.216819167137146 img loss 1.284619688987732 img loss 1.2359626293182373 img loss 1.2487233877182007 img loss 1.1943631172180176 img loss 1.216652750968933 img loss 1.194130539894104 img loss 1.2290852069854736 img loss 1.2166296243667603 img loss 1.1443465948104858 img loss 1.2920453548431396 img loss 1.1806282997131348 img loss 1.1431201696395874 img loss 1.2599493265151978 img loss 1.2263176441192627 img loss 1.2021372318267822 img loss 1.165526270866394 img loss 1.2981115579605103 img loss 1.2622487545013428 img loss 1.1834235191345215 img loss 1.238722562789917 img loss 1.2526363134384155 img loss 1.1721975803375244 img loss 1.2614296674728394 img loss 1.3367258310317993 img loss 1.1709827184677124 img loss 1.2497602701187134 img loss 1.1748926639556885 img loss 1.2169116735458374 img loss 1.2598024606704712 img loss 1.1198043823242188 img loss 1.2430006265640259 img loss 1.1149239540100098 img loss 1.164408564567566 img loss 1.208880066871643 img loss 1.2248454093933105 img loss 1.2360069751739502 img loss 1.1523301601409912 img loss 1.223370909690857 img loss 1.203242540359497 img loss 1.2039960622787476 img loss 1.1415189504623413 img loss 1.1226465702056885 img loss 1.1834033727645874 img loss 1.296230673789978 img loss 1.140557050704956 img loss 1.2023131847381592 img loss 1.174659013748169 img loss 1.2952494621276855 img loss 1.31600821018219 img loss 1.349951982498169 img loss 1.2565972805023193 img loss 1.211032509803772 img loss 1.221816062927246 img loss 1.1075670719146729 img loss 1.2236350774765015 img loss 1.2635968923568726 img loss 1.168731927871704 img loss 1.430080771446228 img loss 1.158237338066101 img loss 1.2586570978164673 img loss 1.1873016357421875 img loss 1.2273896932601929 img loss 1.1938227415084839 img loss 1.1898027658462524 img loss 1.2267892360687256 img loss 1.193172812461853 img loss 1.1492440700531006 img loss 1.2906429767608643 img loss 1.1058285236358643 img loss 1.2432869672775269 img loss 1.1929445266723633 img loss 1.2364870309829712 img loss 1.2623554468154907 img loss 1.3136001825332642 img loss 1.1552541255950928 img loss 1.2193602323532104 img loss 1.1948974132537842 img loss 1.2047237157821655 img loss 1.2280200719833374 img loss 1.225991129875183 img loss 1.1766608953475952 img loss 1.2799575328826904 img loss 1.2137868404388428 img loss 1.182891845703125 {'loss': 1.2222, 'grad_norm': 0.2863102853298187, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2041091918945312 img loss 1.1739444732666016 img loss 1.1956886053085327 img loss 1.1853606700897217 img loss 1.1762415170669556 img loss 1.0780744552612305 img loss 1.149623155593872 img loss 1.2253618240356445 img loss 1.238336443901062 img loss 1.208597183227539 img loss 1.261545181274414 img loss 1.2709335088729858 img loss 1.2491047382354736 img loss 1.213627815246582 img loss 1.2193174362182617 img loss 1.259010672569275 img loss 1.2835307121276855 img loss 1.2293325662612915 img loss 1.289306640625 img loss 1.2149174213409424 img loss 1.1423165798187256 img loss 1.2334587574005127 img loss 1.177984595298767 img loss 1.3045381307601929 img loss 1.225142478942871 img loss 1.2381781339645386 img loss 1.3274017572402954 img loss 1.2236125469207764 img loss 1.1816660165786743 img loss 1.1730687618255615 img loss 1.2149380445480347 img loss 1.1526930332183838 img loss 1.236794352531433 img loss 1.2148606777191162 img loss 1.2598774433135986 img loss 1.2159448862075806 img loss 1.152025818824768 img loss 1.242753267288208 img loss 1.2762603759765625 img loss 1.2476619482040405 img loss 1.1680107116699219 img loss 1.214882731437683 img loss 1.0855437517166138 img loss 1.1790214776992798 img loss 1.202879786491394 img loss 1.2871822118759155 img loss 1.174512505531311 img loss 1.2294044494628906 img loss 1.1684976816177368 img loss 1.2349960803985596 img loss 1.1719005107879639 img loss 1.1535478830337524 img loss 1.232647180557251 img loss 1.2192109823226929 img loss 1.180261492729187 img loss 1.2718346118927002 img loss 1.311098575592041 img loss 1.188454270362854 img loss 1.2600152492523193 img loss 1.3005541563034058 img loss 1.2282871007919312 img loss 1.2479485273361206img loss 1.1862907409667969 img loss 1.2300806045532227 img loss 1.1708096265792847 img loss 1.2316925525665283 img loss 1.1764845848083496 img loss 1.2526698112487793 img loss 1.200183629989624 img loss 1.2606109380722046 img loss 1.2500419616699219img loss 1.2348381280899048 img loss 1.3740969896316528 img loss 1.1523094177246094 img loss 1.311256766319275 img loss 1.2846348285675049 img loss 1.2410454750061035 img loss 1.330230951309204 img loss 1.254739761352539 img loss 1.1983113288879395 img loss 1.191430926322937 img loss 1.266430139541626 img loss 1.2155555486679077 img loss 1.2035715579986572 img loss 1.309983253479004 img loss 1.1617274284362793 img loss 1.1514086723327637 img loss 1.3649035692214966 img loss 1.2567439079284668 img loss 1.260778784751892 img loss 1.2338120937347412 img loss 1.2173800468444824 img loss 1.168312668800354 img loss 1.2608970403671265 img loss 1.2250791788101196 img loss 1.302694320678711 img loss 1.2472116947174072 img loss 1.204688310623169 img loss 1.2697198390960693 img loss 1.176861047744751 img loss 1.2420191764831543 img loss 1.2963669300079346 img loss 1.2378567457199097 img loss 1.19985830783844 img loss 1.2773823738098145 img loss 1.2590898275375366 img loss 1.2947869300842285 img loss 1.1872886419296265 img loss 1.152693510055542 img loss 1.2076863050460815 img loss 1.267470359802246 img loss 1.223240613937378 img loss 1.1864674091339111 img loss 1.1660664081573486 img loss 1.292077660560608 img loss 1.2123457193374634 img loss 1.3064278364181519 img loss 1.1996386051177979 img loss 1.1715863943099976 img loss 1.2363789081573486 img loss 1.2118945121765137 img loss 1.3061984777450562 img loss 1.210795283317566 img loss 1.187011957168579 img loss 1.26190185546875 img loss 1.2586708068847656 img loss 1.2058982849121094 img loss 1.284461259841919 {'loss': 1.227, 'grad_norm': 0.40726590156555176, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4756768941879272 img loss 1.6024224758148193 img loss 1.4842989444732666 img loss 1.4875363111495972 img loss 1.5708039999008179 img loss 1.5196280479431152 img loss 1.554247260093689 img loss 1.3589478731155396 img loss 1.5449415445327759 img loss 1.4796892404556274 img loss 1.4619724750518799 img loss 1.5032225847244263 img loss 1.4351916313171387 img loss 1.3846403360366821 img loss 1.4534375667572021 img loss 1.3855634927749634 img loss 1.558958649635315 img loss 1.3968795537948608 img loss 1.4465240240097046 img loss 1.5388795137405396 img loss 1.4076591730117798 img loss 1.4913153648376465 img loss 1.4610365629196167 img loss 1.4317749738693237 img loss 1.3033862113952637 img loss 1.406267523765564 img loss 1.6128655672073364 img loss 1.5423343181610107 img loss 1.6004080772399902 img loss 1.513339638710022 img loss 1.517686367034912 img loss 1.4603114128112793 img loss 1.4351471662521362 img loss 1.458612084388733 img loss 1.6059712171554565 img loss 1.5705188512802124 img loss 1.4521002769470215 img loss 1.4595741033554077 img loss 1.4964845180511475 img loss 1.379382848739624 img loss 1.3921939134597778 img loss 1.5229722261428833 img loss 1.5502846240997314 img loss 1.4737303256988525 img loss 1.434169888496399 img loss 1.6069037914276123 img loss 1.3695622682571411 img loss 1.5629582405090332 img loss 1.5631657838821411 img loss 1.5684741735458374 img loss 1.4212689399719238 img loss 1.4433423280715942 img loss 1.3203948736190796 img loss 1.5360318422317505 img loss 1.5288931131362915 img loss 1.446026086807251 img loss 1.3926479816436768 img loss 1.657885193824768 img loss 1.590544581413269 img loss 1.466801404953003 img loss 1.513810634613037 img loss 1.5311825275421143 img loss 1.5655148029327393 img loss 1.5310168266296387 img loss 1.503214716911316 img loss 1.5478466749191284 img loss 1.511378526687622 img loss 1.458565592765808 img loss 1.4901843070983887 img loss 1.3694747686386108 img loss 1.570801019668579 img loss 1.5994012355804443 img loss 1.439888596534729 img loss 1.580310344696045 img loss 1.6425942182540894 img loss 1.4421623945236206 img loss 1.4942671060562134 img loss 1.4839271306991577 img loss 1.553235411643982 img loss 1.4014276266098022 img loss 1.5608799457550049 img loss 1.4629590511322021 img loss 1.530590534210205 img loss 1.5489628314971924 img loss 1.4621762037277222 img loss 1.5776044130325317 img loss 1.3563748598098755 img loss 1.5519073009490967 img loss 1.528245210647583 img loss 1.501678705215454 img loss 1.3307619094848633 img loss 1.3970255851745605 img loss 1.625135064125061 img loss 1.477782130241394 img loss 1.5136897563934326 img loss 1.4336066246032715 img loss 1.5086926221847534 img loss 1.5405395030975342 img loss 1.5497807264328003 img loss 1.5884912014007568 img loss 1.4265040159225464 img loss 1.625463843345642 img loss 1.4363877773284912 img loss 1.5121185779571533 img loss 1.460210919380188 img loss 1.3203518390655518 img loss 1.3982218503952026 img loss 1.395422339439392 img loss 1.4401215314865112 img loss 1.5116136074066162 img loss 1.4730305671691895 img loss 1.551201343536377 img loss 1.6299389600753784 img loss 1.6122887134552002 img loss 1.5054222345352173 img loss 1.4569135904312134 img loss 1.4732717275619507 img loss 1.4260905981063843 img loss 1.64560866355896 img loss 1.4496605396270752 img loss 1.6597707271575928 img loss 1.5971620082855225 img loss 1.5892506837844849 img loss 1.559127926826477 img loss 1.4559956789016724 img loss 1.5125452280044556 img loss 1.5398985147476196 img loss 1.4057260751724243 {'loss': 1.4957, 'grad_norm': 0.4022718667984009, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.0987755060195923 img loss 1.27718985080719 img loss 1.2028331756591797 img loss 1.1977335214614868 img loss 1.1281976699829102 img loss 1.229763388633728 img loss 1.1874785423278809 img loss 1.2356719970703125 img loss 1.2310848236083984 img loss 1.1518713235855103 img loss 1.1534819602966309 img loss 1.2158410549163818 img loss 1.1932275295257568 img loss 1.1886463165283203 img loss 1.2291150093078613 img loss 1.172724723815918 img loss 1.1782050132751465 img loss 1.203150987625122 img loss 1.1567579507827759 img loss 1.2749207019805908 img loss 1.1983659267425537 img loss 1.1473972797393799 img loss 1.1665982007980347 img loss 1.2320170402526855 img loss 1.2140470743179321 img loss 1.191200852394104 img loss 1.158383846282959 img loss 1.2720202207565308 img loss 1.1989655494689941 img loss 1.218493938446045 img loss 1.2146068811416626 img loss 1.2020667791366577 img loss 1.210707187652588 img loss 1.1789196729660034 img loss 1.201607346534729 img loss 1.1500916481018066 img loss 1.202788233757019 img loss 1.249915361404419 img loss 1.2106523513793945 img loss 1.1556743383407593 img loss 1.1796785593032837 img loss 1.1532124280929565 img loss 1.2141088247299194 img loss 1.1139320135116577 img loss 1.22296142578125 img loss 1.1851755380630493 img loss 1.2208218574523926 img loss 1.1805343627929688 img loss 1.1722660064697266 img loss 1.1210429668426514 img loss 1.1656596660614014 img loss 1.333423137664795 img loss 1.180511474609375 img loss 1.243091344833374 img loss 1.2227554321289062 img loss 1.2012672424316406 img loss 1.1602810621261597 img loss 1.201362133026123 img loss 1.1440823078155518 img loss 1.2188870906829834 img loss 1.2424275875091553 img loss 1.217246651649475 img loss 1.155800223350525 img loss 1.1980540752410889 img loss 1.1924711465835571 img loss 1.1253610849380493 img loss 1.144700050354004 img loss 1.1535437107086182 img loss 1.2394251823425293 img loss 1.2475435733795166 img loss 1.2142568826675415 img loss 1.1553585529327393 img loss 1.2818231582641602 img loss 1.1371887922286987 img loss 1.1561988592147827 img loss 1.1688942909240723 img loss 1.1845568418502808 img loss 1.1952052116394043 img loss 1.211047649383545 img loss 1.2535167932510376 img loss 1.0962510108947754 img loss 1.20437490940094 img loss 1.2250603437423706 img loss 1.1844733953475952 img loss 1.1391597986221313 img loss 1.150631308555603 img loss 1.1836570501327515 img loss 1.247340440750122 img loss 1.2126966714859009 img loss 1.2086257934570312 img loss 1.2340848445892334 img loss 1.2560217380523682 img loss 1.2205053567886353 img loss 1.1717947721481323 img loss 1.178178310394287 img loss 1.2529147863388062 img loss 1.1579742431640625 img loss 1.2316489219665527 img loss 1.192175269126892 img loss 1.2646310329437256 img loss 1.3489909172058105 img loss 1.1551164388656616 img loss 1.1721537113189697 img loss 1.2207056283950806 img loss 1.2963091135025024 img loss 1.2421616315841675 img loss 1.1618263721466064 img loss 1.156620979309082 img loss 1.2570856809616089 img loss 1.2152248620986938 img loss 1.2247841358184814 img loss 1.2163145542144775 img loss 1.1811422109603882 img loss 1.1979453563690186 img loss 1.2204453945159912 img loss 1.1847339868545532 img loss 1.260717749595642 img loss 1.2291104793548584 img loss 1.214671015739441 img loss 1.1964081525802612 img loss 1.1896556615829468 img loss 1.1846033334732056 img loss 1.1905746459960938 img loss 1.1795796155929565 img loss 1.1603220701217651 img loss 1.2577755451202393 img loss 1.1833126544952393 img loss 1.2040765285491943 {'loss': 1.1993, 'grad_norm': 0.3984868824481964, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.224265694618225 img loss 1.0988106727600098 img loss 1.1847474575042725 img loss 1.1844736337661743 img loss 1.1706798076629639 img loss 1.1591145992279053 img loss 1.1770799160003662 img loss 1.1798580884933472 img loss 1.2251372337341309 img loss 1.1649489402770996 img loss 1.2208489179611206 img loss 1.2506240606307983 img loss 1.181792140007019 img loss 1.2066080570220947 img loss 1.1254496574401855 img loss 1.1881897449493408 img loss 1.14964759349823 img loss 1.264177680015564 img loss 1.129350185394287 img loss 1.1599161624908447 img loss 1.2208735942840576 img loss 1.1798025369644165 img loss 1.162405014038086 img loss 1.1556386947631836 img loss 1.2049630880355835 img loss 1.1992686986923218 img loss 1.144482135772705 img loss 1.1640832424163818 img loss 1.1328914165496826 img loss 1.2032508850097656 img loss 1.1608167886734009 img loss 1.1534576416015625 img loss 1.1569236516952515 img loss 1.1170657873153687 img loss 1.174576759338379 img loss 1.1644121408462524 img loss 1.1415414810180664 img loss 1.1536645889282227 img loss 1.1940717697143555 img loss 1.1825240850448608 img loss 1.2434780597686768 img loss 1.2398319244384766 img loss 1.1539134979248047 img loss 1.1747334003448486 img loss 1.2424237728118896 img loss 1.1817678213119507 img loss 1.1639974117279053 img loss 1.1713885068893433 img loss 1.131888747215271 img loss 1.1793787479400635 img loss 1.1524085998535156 img loss 1.2086225748062134 img loss 1.209102988243103 img loss 1.1702619791030884 img loss 1.164590835571289 img loss 1.1479934453964233 img loss 1.1496309041976929 img loss 1.1713157892227173 img loss 1.1742727756500244 img loss 1.250676155090332 img loss 1.1735752820968628 img loss 1.1624369621276855 img loss 1.227607250213623 img loss 1.1514980792999268 img loss 1.1938130855560303 img loss 1.1240373849868774 img loss 1.1357942819595337 img loss 1.1788980960845947 img loss 1.1764521598815918 img loss 1.1785120964050293 img loss 1.131507396697998 img loss 1.1629154682159424 img loss 1.276211142539978 img loss 1.1589264869689941 img loss 1.15413236618042 img loss 1.0930249691009521 img loss 1.3032153844833374 img loss 1.1320472955703735 img loss 1.2200634479522705 img loss 1.1476311683654785 img loss 1.186967372894287 img loss 1.153436541557312 img loss 1.2153258323669434 img loss 1.1822150945663452 img loss 1.1783655881881714 img loss 1.1946302652359009 img loss 1.1217806339263916 img loss 1.1593120098114014 img loss 1.2220176458358765 img loss 1.236661434173584 img loss 1.1970981359481812 img loss 1.1463617086410522 img loss 1.1359150409698486 img loss 1.2294347286224365 img loss 1.2226028442382812 img loss 1.1491307020187378 img loss 1.18873929977417 img loss 1.1450741291046143 img loss 1.145326018333435 img loss 1.1625709533691406 img loss 1.257317066192627 img loss 1.2211878299713135 img loss 1.2017924785614014 img loss 1.1810517311096191 img loss 1.219835638999939 img loss 1.1743172407150269 img loss 1.2131726741790771 img loss 1.2452943325042725 img loss 1.1811845302581787 img loss 1.1744712591171265 img loss 1.1370242834091187 img loss 1.1779426336288452 img loss 1.2522186040878296 img loss 1.1402868032455444 img loss 1.1545450687408447 img loss 1.1891264915466309 img loss 1.1668598651885986 img loss 1.1623035669326782 img loss 1.152720332145691 img loss 1.1970348358154297 img loss 1.2405213117599487 img loss 1.1644513607025146 img loss 1.2260044813156128 img loss 1.226491928100586 img loss 1.1994385719299316 img loss 1.1509097814559937 img loss 1.185645341873169 img loss 1.1961536407470703 {'loss': 1.1808, 'grad_norm': 0.2776077687740326, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3022563457489014 img loss 1.3730978965759277 img loss 1.2894315719604492 img loss 1.2954429388046265 img loss 1.231841802597046 img loss 1.3138443231582642 img loss 1.2860121726989746 img loss 1.2868210077285767 img loss 1.333251714706421 img loss 1.2913768291473389 img loss 1.2710669040679932 img loss 1.2570507526397705 img loss 1.2672030925750732 img loss 1.196830153465271 img loss 1.2594389915466309 img loss 1.278533697128296 img loss 1.3070529699325562 img loss 1.323473334312439 img loss 1.2791509628295898 img loss 1.4393872022628784 img loss 1.3429161310195923 img loss 1.2786606550216675 img loss 1.3614649772644043 img loss 1.33124577999115 img loss 1.34296715259552 img loss 1.4175785779953003 img loss 1.384203314781189 img loss 1.399762749671936 img loss 1.281428337097168 img loss 1.3069982528686523 img loss 1.3089519739151 img loss 1.3575981855392456 img loss 1.3942300081253052 img loss 1.2934156656265259 img loss 1.2857884168624878 img loss 1.2923789024353027 img loss 1.2872787714004517 img loss 1.3396931886672974 img loss 1.3063583374023438 img loss 1.2774900197982788 img loss 1.3280187845230103 img loss 1.3140783309936523 img loss 1.386350154876709 img loss 1.2844758033752441 img loss 1.2902456521987915 img loss 1.2259854078292847 img loss 1.4249192476272583 img loss 1.3311593532562256 img loss 1.3694300651550293 img loss 1.376482605934143 img loss 1.2835571765899658 img loss 1.3825172185897827 img loss 1.333815097808838 img loss 1.3965657949447632 img loss 1.3132507801055908 img loss 1.341974139213562 img loss 1.3854550123214722 img loss 1.3615976572036743 img loss 1.3221391439437866 img loss 1.3306386470794678 img loss 1.3087882995605469 img loss 1.268134355545044 img loss 1.3094124794006348 img loss 1.3400533199310303 img loss 1.3531185388565063 img loss 1.422165036201477 img loss 1.3280224800109863 img loss 1.31570565700531 img loss 1.3238446712493896 img loss 1.3302369117736816 img loss 1.2469563484191895 img loss 1.2499865293502808 img loss 1.3127039670944214 img loss 1.352535605430603 img loss 1.3015129566192627 img loss 1.3072398900985718 img loss 1.2610138654708862 img loss 1.290725588798523 img loss 1.3757742643356323 img loss 1.2938793897628784 img loss 1.2922700643539429 img loss 1.2738367319107056 img loss 1.309975266456604 img loss 1.2682664394378662 img loss 1.3730900287628174 img loss 1.341254472732544 img loss 1.3273180723190308 img loss 1.1942787170410156 img loss 1.2996463775634766 img loss 1.389390230178833 img loss 1.3315882682800293 img loss 1.3294874429702759 img loss 1.3726937770843506 img loss 1.3244540691375732 img loss 1.2786169052124023 img loss 1.2257181406021118 img loss 1.3140772581100464 img loss 1.3563469648361206 img loss 1.3286490440368652 img loss 1.3720475435256958 img loss 1.2786508798599243 img loss 1.4184849262237549 img loss 1.4335262775421143 img loss 1.3479130268096924 img loss 1.3569486141204834 img loss 1.2941023111343384 img loss 1.3561590909957886 img loss 1.3193166255950928 img loss 1.306957483291626 img loss 1.3329613208770752 img loss 1.2431516647338867 img loss 1.3361413478851318 img loss 1.3450102806091309 img loss 1.2689549922943115 img loss 1.3191114664077759 img loss 1.2009525299072266 img loss 1.3382418155670166 img loss 1.282239317893982 img loss 1.4542956352233887 img loss 1.3253122568130493 img loss 1.3687965869903564 img loss 1.4306896924972534 img loss 1.28498113155365 img loss 1.2770681381225586 img loss 1.3608089685440063 img loss 1.3448244333267212 img loss 1.3235561847686768 img loss 1.30344557762146 {'loss': 1.3211, 'grad_norm': 0.3277365565299988, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4585633277893066 img loss 1.3170050382614136 img loss 1.4467651844024658 img loss 1.5138758420944214 img loss 1.4030306339263916 img loss 1.3823305368423462 img loss 1.3903603553771973 img loss 1.522212266921997 img loss 1.6513190269470215 img loss 1.3490245342254639 img loss 1.551001787185669 img loss 1.3755098581314087 img loss 1.3984984159469604 img loss 1.363972544670105 img loss 1.4333319664001465 img loss 1.4166611433029175 img loss 1.3379127979278564 img loss 1.4295554161071777 img loss 1.343169093132019 img loss 1.6104369163513184 img loss 1.406148076057434 img loss 1.292641520500183 img loss 1.415529727935791 img loss 1.3558472394943237 img loss 1.4907472133636475 img loss 1.4016077518463135 img loss 1.391306757926941 img loss 1.3270561695098877 img loss 1.4499043226242065 img loss 1.412738561630249 img loss 1.4689316749572754 img loss 1.4579702615737915 img loss 1.4580695629119873 img loss 1.4709875583648682 img loss 1.3494113683700562 img loss 1.401171088218689 img loss 1.2929985523223877 img loss 1.324059009552002 img loss 1.5211282968521118 img loss 1.4187620878219604 img loss 1.3978402614593506 img loss 1.4592053890228271 img loss 1.4071255922317505 img loss 1.5443366765975952 img loss 1.3835140466690063 img loss 1.4036904573440552 img loss 1.464279294013977 img loss 1.4748046398162842 img loss 1.4413093328475952 img loss 1.5668476819992065 img loss 1.459245204925537 img loss 1.359286904335022 img loss 1.3246159553527832 img loss 1.3083232641220093 img loss 1.359555721282959 img loss 1.4031226634979248 img loss 1.3180711269378662 img loss 1.3978546857833862 img loss 1.5280201435089111 img loss 1.4662805795669556 img loss 1.3597943782806396 img loss 1.4690767526626587 img loss 1.3337992429733276 img loss 1.4663525819778442 img loss 1.4547368288040161 img loss 1.4031078815460205 img loss 1.3956817388534546 img loss 1.4740155935287476 img loss 1.2437673807144165 img loss 1.4089159965515137 img loss 1.4204248189926147 img loss 1.418439507484436 img loss 1.337295413017273 img loss 1.3919103145599365 img loss 1.438382625579834 img loss 1.4677069187164307 img loss 1.4044289588928223 img loss 1.4370322227478027 img loss 1.3807286024093628 img loss 1.4524399042129517 img loss 1.4518133401870728 img loss 1.4286704063415527 img loss 1.372617483139038 img loss 1.4369232654571533 img loss 1.311825156211853 img loss 1.3366808891296387 img loss 1.3301912546157837 img loss 1.4129306077957153img loss 1.5412919521331787 img loss 1.4197490215301514 img loss 1.4720131158828735 img loss 1.4228577613830566 img loss 1.319506049156189 img loss 1.3258110284805298 img loss 1.4813729524612427 img loss 1.4145537614822388 img loss 1.3476841449737549 img loss 1.242584466934204 img loss 1.3485807180404663 img loss 1.4064351320266724 img loss 1.4107083082199097 img loss 1.352096438407898 img loss 1.345029592514038 img loss 1.392519235610962 img loss 1.5727307796478271img loss 1.4509713649749756 img loss 1.3391152620315552 img loss 1.3497010469436646 img loss 1.422186017036438 img loss 1.4289298057556152 img loss 1.4478601217269897 img loss 1.474099040031433 img loss 1.3501102924346924 img loss 1.4193103313446045 img loss 1.5512480735778809 img loss 1.3789652585983276 img loss 1.458027958869934 img loss 1.5549814701080322 img loss 1.332284927368164 img loss 1.3697197437286377 img loss 1.3522236347198486 img loss 1.4687515497207642 img loss 1.4998033046722412 img loss 1.3693783283233643 img loss 1.4652928113937378 img loss 1.3948343992233276 img loss 1.386568546295166 img loss 1.350509524345398 {'loss': 1.4136, 'grad_norm': 0.3406207859516144, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.0873091220855713 img loss 1.1896679401397705 img loss 1.190649390220642 img loss 1.1428028345108032 img loss 1.2575099468231201img loss 1.1206157207489014 img loss 1.1908873319625854 img loss 1.202167272567749 img loss 1.2438665628433228 img loss 1.1320167779922485 img loss 1.1350092887878418 img loss 1.2388731241226196 img loss 1.1212022304534912 img loss 1.2999807596206665 img loss 1.2766730785369873 img loss 1.194801926612854 img loss 1.2073450088500977 img loss 1.1359440088272095 img loss 1.2213513851165771 img loss 1.113836407661438 img loss 1.2485796213150024 img loss 1.1881382465362549 img loss 1.2343616485595703 img loss 1.2779403924942017 img loss 1.2708849906921387 img loss 1.1576590538024902 img loss 1.1517876386642456 img loss 1.1812689304351807 img loss 1.170446753501892 img loss 1.1744486093521118 img loss 1.211920976638794 img loss 1.295269250869751 img loss 1.230760097503662 img loss 1.1719331741333008 img loss 1.3673491477966309 img loss 1.1946947574615479 img loss 1.2532975673675537 img loss 1.2643404006958008 img loss 1.2111252546310425 img loss 1.3420225381851196 img loss 1.1862213611602783 img loss 1.2109851837158203 img loss 1.2129963636398315 img loss 1.1854060888290405 img loss 1.182639479637146 img loss 1.1948494911193848 img loss 1.1886974573135376 img loss 1.2087993621826172 img loss 1.1832339763641357 img loss 1.1615896224975586 img loss 1.1790469884872437 img loss 1.1576849222183228img loss 1.2967561483383179 img loss 1.2386388778686523 img loss 1.1454646587371826 img loss 1.1965583562850952 img loss 1.2571027278900146 img loss 1.1484971046447754 img loss 1.1571533679962158 img loss 1.1492233276367188 img loss 1.2004950046539307 img loss 1.282752275466919 img loss 1.2134952545166016 img loss 1.2068172693252563 img loss 1.3710218667984009 img loss 1.251873254776001 img loss 1.131914496421814 img loss 1.1688804626464844 img loss 1.1938880681991577 img loss 1.1608150005340576 img loss 1.2769787311553955 img loss 1.2103790044784546 img loss 1.1935306787490845 img loss 1.2108629941940308 img loss 1.2227388620376587 img loss 1.2317452430725098 img loss 1.2027641534805298 img loss 1.1659287214279175 img loss 1.2509464025497437 img loss 1.2491363286972046 img loss 1.2623331546783447 img loss 1.1951329708099365 img loss 1.3826329708099365 img loss 1.309823751449585 img loss 1.2465591430664062 img loss 1.2324514389038086 img loss 1.2755334377288818 img loss 1.1907907724380493 img loss 1.1038340330123901 img loss 1.198137879371643 img loss 1.2537708282470703 img loss 1.199171543121338 img loss 1.1973580121994019 img loss 1.1729873418807983 img loss 1.1624619960784912 img loss 1.1735693216323853 img loss 1.2024569511413574 img loss 1.2356631755828857 img loss 1.2491590976715088 img loss 1.1600532531738281 img loss 1.1412914991378784 img loss 1.2006967067718506 img loss 1.2326349020004272 img loss 1.1950256824493408 img loss 1.1588983535766602 img loss 1.1939266920089722 img loss 1.2304514646530151 img loss 1.2314774990081787 img loss 1.1791166067123413 img loss 1.2423760890960693 img loss 1.2179558277130127 img loss 1.240770697593689 img loss 1.149086833000183 img loss 1.173225998878479 img loss 1.2458938360214233 img loss 1.1562656164169312 img loss 1.2564902305603027 img loss 1.2195767164230347 img loss 1.2436518669128418 img loss 1.2125605344772339 img loss 1.1268954277038574 img loss 1.254876732826233 img loss 1.2365959882736206 img loss 1.3255237340927124 img loss 1.2725162506103516 img loss 1.277069091796875 img loss 1.2323493957519531 img loss 1.191058874130249 {'loss': 1.2108, 'grad_norm': 0.2667889893054962, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2153708934783936 img loss 1.299543857574463 img loss 1.1964315176010132 img loss 1.1878886222839355 img loss 1.233165979385376 img loss 1.2201250791549683 img loss 1.273195743560791 img loss 1.2638949155807495 img loss 1.2782334089279175 img loss 1.2692104578018188 img loss 1.291054368019104 img loss 1.2705963850021362 img loss 1.2669765949249268 img loss 1.2727779150009155 img loss 1.381615400314331 img loss 1.3069809675216675 img loss 1.2340084314346313 img loss 1.2198752164840698 img loss 1.262528657913208 img loss 1.2118675708770752 img loss 1.2351925373077393 img loss 1.1862682104110718 img loss 1.2617775201797485 img loss 1.2695873975753784 img loss 1.3028815984725952 img loss 1.2157928943634033 img loss 1.2854890823364258 img loss 1.3380035161972046 img loss 1.2362325191497803 img loss 1.2053190469741821 img loss 1.1884872913360596 img loss 1.2475134134292603 img loss 1.3558897972106934 img loss 1.2745702266693115 img loss 1.2427420616149902 img loss 1.3080339431762695 img loss 1.2733951807022095 img loss 1.310382604598999 img loss 1.3266407251358032 img loss 1.3333041667938232 img loss 1.2480436563491821 img loss 1.257056713104248 img loss 1.3191895484924316 img loss 1.2926976680755615 img loss 1.2294328212738037 img loss 1.2835402488708496 img loss 1.2569406032562256 img loss 1.257971167564392 img loss 1.2442041635513306 img loss 1.2459709644317627 img loss 1.2405273914337158 img loss 1.228972315788269 img loss 1.2727206945419312 img loss 1.1888965368270874 img loss 1.299980878829956 img loss 1.1975889205932617 img loss 1.2517585754394531 img loss 1.30333411693573 img loss 1.279119849205017 img loss 1.3093866109848022 img loss 1.2139915227890015 img loss 1.1969646215438843 img loss 1.2480645179748535 img loss 1.2721312046051025 img loss 1.2104381322860718 img loss 1.3165757656097412 img loss 1.2720972299575806 img loss 1.1447200775146484 img loss 1.194517970085144 img loss 1.317635178565979 img loss 1.298065423965454 img loss 1.2742103338241577 img loss 1.2394498586654663 img loss 1.295819640159607 img loss 1.1826204061508179 img loss 1.220731258392334 img loss 1.2705351114273071 img loss 1.2759299278259277 img loss 1.3157439231872559 img loss 1.2975481748580933 img loss 1.2572267055511475 img loss 1.2187862396240234 img loss 1.2447879314422607 img loss 1.3068451881408691 img loss 1.225807547569275 img loss 1.2949116230010986 img loss 1.2280960083007812 img loss 1.212188482284546 img loss 1.2048505544662476 img loss 1.293760895729065 img loss 1.1953179836273193 img loss 1.1894997358322144 img loss 1.2739495038986206 img loss 1.3310984373092651 img loss 1.2830616235733032 img loss 1.2454169988632202 img loss 1.2559369802474976 img loss 1.1907552480697632 img loss 1.246565580368042 img loss 1.252021074295044 img loss 1.2097259759902954 img loss 1.2289551496505737 img loss 1.265450358390808 img loss 1.2750134468078613 img loss 1.2238467931747437 img loss 1.2326523065567017 img loss 1.1967484951019287 img loss 1.3612881898880005 img loss 1.2755554914474487 img loss 1.257790446281433 img loss 1.22519850730896 img loss 1.1941899061203003 img loss 1.2383170127868652 img loss 1.2335758209228516 img loss 1.1854491233825684 img loss 1.2462354898452759 img loss 1.192570447921753 img loss 1.24309504032135 img loss 1.2353718280792236 img loss 1.2560316324234009 img loss 1.2702833414077759 img loss 1.1915658712387085 img loss 1.2088743448257446 img loss 1.2189154624938965 img loss 1.2575104236602783 img loss 1.276557207107544 img loss 1.268610954284668 img loss 1.2536945343017578 {'loss': 1.2538, 'grad_norm': 0.2978878915309906, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2925134897232056 img loss 1.2734057903289795 img loss 1.3220676183700562 img loss 1.2899868488311768 img loss 1.2832683324813843 img loss 1.2944254875183105 img loss 1.2757863998413086 img loss 1.3364356756210327 img loss 1.2786306142807007 img loss 1.2638849020004272 img loss 1.3625409603118896 img loss 1.3232077360153198 img loss 1.2054613828659058 img loss 1.3769558668136597 img loss 1.2929598093032837 img loss 1.3005564212799072 img loss 1.3231005668640137 img loss 1.1942284107208252 img loss 1.276991367340088 img loss 1.2205784320831299 img loss 1.3449949026107788 img loss 1.3331694602966309 img loss 1.305349349975586 img loss 1.2627842426300049 img loss 1.5037496089935303 img loss 1.343890905380249 img loss 1.239670753479004 img loss 1.208768606185913 img loss 1.293049693107605 img loss 1.2283995151519775 img loss 1.3054041862487793 img loss 1.2004835605621338 img loss 1.2942380905151367 img loss 1.2651503086090088 img loss 1.1945866346359253 img loss 1.2573493719100952 img loss 1.2563997507095337 img loss 1.2574245929718018 img loss 1.327459692955017 img loss 1.262786865234375 img loss 1.3681979179382324 img loss 1.2375227212905884 img loss 1.3102259635925293 img loss 1.2267754077911377 img loss 1.241657018661499 img loss 1.2941513061523438 img loss 1.248705267906189 img loss 1.3112090826034546 img loss 1.2615067958831787 img loss 1.2779005765914917 img loss 1.258409023284912 img loss 1.2574061155319214 img loss 1.2458971738815308 img loss 1.2495774030685425 img loss 1.1599252223968506 img loss 1.3783100843429565 img loss 1.2281630039215088 img loss 1.2823013067245483 img loss 1.3470731973648071 img loss 1.2783867120742798 img loss 1.3191699981689453 img loss 1.316706895828247 img loss 1.2660434246063232 img loss 1.2670152187347412 img loss 1.284541130065918 img loss 1.3452380895614624 img loss 1.285083532333374 img loss 1.1372438669204712 img loss 1.2851835489273071 img loss 1.367745041847229 img loss 1.3004179000854492 img loss 1.260000228881836 img loss 1.210226058959961 img loss 1.2927783727645874 img loss 1.3300014734268188 img loss 1.3591526746749878 img loss 1.3465898036956787 img loss 1.2583004236221313 img loss 1.210226058959961 img loss 1.2757059335708618 img loss 1.2849668264389038 img loss 1.2757573127746582 img loss 1.3010658025741577 img loss 1.2567307949066162 img loss 1.277228832244873 img loss 1.228188395500183 img loss 1.3315846920013428 img loss 1.2976570129394531 img loss 1.2656917572021484 img loss 1.2219271659851074 img loss 1.2926075458526611 img loss 1.2846897840499878 img loss 1.2832810878753662 img loss 1.3279842138290405 img loss 1.2960381507873535 img loss 1.2428021430969238 img loss 1.2655937671661377 img loss 1.3929927349090576 img loss 1.2493317127227783 img loss 1.3546595573425293 img loss 1.2950197458267212 img loss 1.2367581129074097 img loss 1.2755768299102783 img loss 1.311125636100769 img loss 1.2864655256271362 img loss 1.2477253675460815 img loss 1.2875993251800537 img loss 1.260542392730713 img loss 1.2513900995254517 img loss 1.2855075597763062 img loss 1.3099489212036133 img loss 1.2606863975524902 img loss 1.2931513786315918 img loss 1.2765748500823975 img loss 1.3216497898101807 img loss 1.2475121021270752 img loss 1.1973780393600464 img loss 1.371821641921997 img loss 1.2384240627288818 img loss 1.2625579833984375 img loss 1.2186888456344604 img loss 1.314212679862976 img loss 1.2498576641082764 img loss 1.2660584449768066 img loss 1.2792527675628662 img loss 1.3189340829849243 img loss 1.253502368927002 img loss 1.3005101680755615 {'loss': 1.282, 'grad_norm': 0.31691473722457886, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2311701774597168 img loss 1.1829833984375 img loss 1.1869080066680908 img loss 1.1162605285644531 img loss 1.2936227321624756 img loss 1.1761620044708252 img loss 1.279038667678833 img loss 1.2341543436050415 img loss 1.1676985025405884 img loss 1.2987695932388306 img loss 1.3145973682403564 img loss 1.1294715404510498 img loss 1.211917519569397 img loss 1.1969956159591675 img loss 1.206271767616272 img loss 1.1306157112121582 img loss 1.2164729833602905 img loss 1.1037238836288452 img loss 1.207180380821228 img loss 1.1867507696151733 img loss 1.2560774087905884 img loss 1.1978893280029297 img loss 1.2251343727111816 img loss 1.2022864818572998 img loss 1.209036111831665 img loss 1.1897131204605103 img loss 1.1898839473724365 img loss 1.1953461170196533 img loss 1.2221542596817017 img loss 1.2262219190597534 img loss 1.1930655241012573 img loss 1.3181463479995728 img loss 1.239875316619873 img loss 1.1955193281173706 img loss 1.1993833780288696 img loss 1.2221248149871826 img loss 1.1420835256576538 img loss 1.2312865257263184 img loss 1.2021374702453613 img loss 1.2018096446990967 img loss 1.18113112449646 img loss 1.223592758178711 img loss 1.1873289346694946 img loss 1.208661437034607 img loss 1.2370164394378662 img loss 1.2346750497817993 img loss 1.1575989723205566 img loss 1.1748874187469482 img loss 1.131795883178711 img loss 1.19109308719635 img loss 1.247567892074585 img loss 1.1498914957046509 img loss 1.1735856533050537 img loss 1.204534888267517 img loss 1.366180181503296 img loss 1.2664425373077393 img loss 1.2116657495498657 img loss 1.2871493101119995 img loss 1.2065376043319702 img loss 1.1952203512191772 img loss 1.2177321910858154 img loss 1.3069568872451782 img loss 1.2320916652679443 img loss 1.1433244943618774 img loss 1.2420189380645752 img loss 1.1986820697784424 img loss 1.2582950592041016 img loss 1.2111420631408691 img loss 1.201119303703308 img loss 1.2414641380310059 img loss 1.1711547374725342 img loss 1.150256633758545 img loss 1.2010349035263062 img loss 1.2888141870498657 img loss 1.2652901411056519 img loss 1.225290060043335 img loss 1.2213513851165771 img loss 1.1425955295562744 img loss 1.2531477212905884 img loss 1.1685184240341187 img loss 1.1805121898651123 img loss 1.266741156578064 img loss 1.2684754133224487 img loss 1.2154918909072876 img loss 1.189675211906433 img loss 1.1988880634307861 img loss 1.1853017807006836 img loss 1.1400141716003418 img loss 1.2942044734954834 img loss 1.2188745737075806 img loss 1.2093558311462402 img loss 1.184153437614441 img loss 1.1859766244888306 img loss 1.1736969947814941 img loss 1.3174091577529907 img loss 1.17654287815094 img loss 1.2623109817504883 img loss 1.2002918720245361 img loss 1.2874590158462524 img loss 1.1776148080825806 img loss 1.1634596586227417 img loss 1.2424551248550415 img loss 1.2192468643188477 img loss 1.1276042461395264 img loss 1.1743686199188232 img loss 1.1735649108886719 img loss 1.2375514507293701 img loss 1.1520813703536987 img loss 1.228851556777954 img loss 1.2603943347930908 img loss 1.2755136489868164 img loss 1.1713876724243164 img loss 1.2226648330688477 img loss 1.2160459756851196 img loss 1.2124429941177368 img loss 1.24575936794281 img loss 1.2011982202529907 img loss 1.195906639099121 img loss 1.2516855001449585 img loss 1.1707302331924438 img loss 1.20494544506073 img loss 1.22030770778656 img loss 1.2363418340682983 img loss 1.2723318338394165 img loss 1.18507719039917 img loss 1.2344791889190674 img loss 1.1986957788467407 img loss 1.244443655014038 {'loss': 1.2123, 'grad_norm': 0.2716293931007385, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3221261501312256 img loss 1.2666141986846924 img loss 1.2533693313598633 img loss 1.2747466564178467 img loss 1.2012275457382202 img loss 1.2700891494750977 img loss 1.2399001121520996 img loss 1.2318047285079956 img loss 1.2624881267547607 img loss 1.2682185173034668 img loss 1.2189526557922363 img loss 1.2536627054214478 img loss 1.3252054452896118 img loss 1.2930080890655518 img loss 1.2246556282043457 img loss 1.2634186744689941 img loss 1.1929057836532593 img loss 1.2383695840835571 img loss 1.2348283529281616 img loss 1.2493360042572021 img loss 1.2113207578659058 img loss 1.2728021144866943 img loss 1.252942442893982 img loss 1.231967806816101 img loss 1.2243621349334717 img loss 1.274625301361084 img loss 1.282576560974121 img loss 1.3017208576202393 img loss 1.2325705289840698 img loss 1.3256174325942993 img loss 1.2102971076965332 img loss 1.2369545698165894 img loss 1.2285172939300537 img loss 1.2074421644210815 img loss 1.2073694467544556 img loss 1.242976427078247 img loss 1.3053662776947021 img loss 1.2111892700195312 img loss 1.3056954145431519 img loss 1.2368618249893188 img loss 1.2350482940673828 img loss 1.242531657218933 img loss 1.162574291229248 img loss 1.2521953582763672 img loss 1.2576003074645996 img loss 1.197934627532959 img loss 1.2092761993408203 img loss 1.216883659362793 img loss 1.27911376953125 img loss 1.3033616542816162 img loss 1.3049687147140503 img loss 1.2981995344161987 img loss 1.3089624643325806 img loss 1.2002609968185425 img loss 1.262337327003479 img loss 1.2236850261688232 img loss 1.2053184509277344 img loss 1.2422070503234863 img loss 1.2614389657974243 img loss 1.255252718925476 img loss 1.2764654159545898 img loss 1.3344298601150513 img loss 1.1874665021896362 img loss 1.2938421964645386 img loss 1.280131220817566 img loss 1.236933946609497 img loss 1.1922239065170288 img loss 1.1861073970794678 img loss 1.222086787223816 img loss 1.2478817701339722 img loss 1.29669189453125 img loss 1.2102739810943604 img loss 1.2214717864990234 img loss 1.247373342514038 img loss 1.3094879388809204 img loss 1.2598665952682495 img loss 1.2064045667648315 img loss 1.2080398797988892 img loss 1.2580726146697998 img loss 1.2473530769348145 img loss 1.2053179740905762 img loss 1.2747187614440918 img loss 1.2728736400604248 img loss 1.2523058652877808 img loss 1.2566111087799072 img loss 1.2452024221420288 img loss 1.3246469497680664 img loss 1.2873691320419312 img loss 1.3266112804412842 img loss 1.1767371892929077 img loss 1.264290690422058 img loss 1.2741553783416748 img loss 1.3108280897140503 img loss 1.244093418121338 img loss 1.2412506341934204 img loss 1.2777513265609741 img loss 1.239626407623291 img loss 1.228039026260376 img loss 1.2813498973846436 img loss 1.261340856552124 img loss 1.2466520071029663 img loss 1.1999939680099487 img loss 1.3044384717941284 img loss 1.2930519580841064 img loss 1.1808947324752808 img loss 1.239605188369751 img loss 1.2122056484222412 img loss 1.225269079208374 img loss 1.2491072416305542 img loss 1.2281477451324463 img loss 1.1921026706695557 img loss 1.251619577407837 img loss 1.2255322933197021 img loss 1.221459984779358 img loss 1.2529425621032715 img loss 1.1850650310516357 img loss 1.2625293731689453 img loss 1.2901225090026855 img loss 1.2234066724777222 img loss 1.2511640787124634 img loss 1.2365961074829102 img loss 1.2886675596237183 img loss 1.291069507598877 img loss 1.212884545326233 img loss 1.254474401473999 img loss 1.229938268661499 img loss 1.262568712234497 img loss 1.2048912048339844 {'loss': 1.2492, 'grad_norm': 0.38154593110084534, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3803943395614624 img loss 1.385414481163025 img loss 1.4658701419830322 img loss 1.4383127689361572 img loss 1.4399769306182861 img loss 1.4031336307525635 img loss 1.5508780479431152 img loss 1.343567132949829 img loss 1.3071987628936768 img loss 1.4219948053359985 img loss 1.2905700206756592 img loss 1.3596745729446411 img loss 1.4051991701126099 img loss 1.4520937204360962 img loss 1.4063154458999634 img loss 1.338311791419983 img loss 1.4431214332580566 img loss 1.3482778072357178 img loss 1.3722374439239502 img loss 1.4139560461044312 img loss 1.318194031715393 img loss 1.3124511241912842 img loss 1.4514267444610596 img loss 1.3342100381851196 img loss 1.327380657196045 img loss 1.3458622694015503 img loss 1.4817105531692505 img loss 1.2610230445861816 img loss 1.5000958442687988 img loss 1.4420195817947388 img loss 1.4798492193222046 img loss 1.4098252058029175 img loss 1.367122769355774 img loss 1.4063624143600464 img loss 1.3573925495147705 img loss 1.380813717842102 img loss 1.3177151679992676 img loss 1.3613321781158447 img loss 1.3710932731628418 img loss 1.3999048471450806 img loss 1.365519404411316 img loss 1.4935108423233032 img loss 1.3028655052185059 img loss 1.351244568824768 img loss 1.3276073932647705 img loss 1.5725935697555542 img loss 1.3704502582550049 img loss 1.4069675207138062 img loss 1.3177580833435059 img loss 1.4649827480316162 img loss 1.3467789888381958 img loss 1.4150837659835815 img loss 1.4636571407318115 img loss 1.4210447072982788 img loss 1.425351619720459 img loss 1.3826042413711548 img loss 1.3912967443466187 img loss 1.353090763092041 img loss 1.4733997583389282 img loss 1.5057613849639893 img loss 1.4138816595077515 img loss 1.3372617959976196 img loss 1.3973623514175415 img loss 1.3184435367584229 img loss 1.531286597251892 img loss 1.3976085186004639 img loss 1.425940752029419 img loss 1.3569647073745728 img loss 1.384824514389038 img loss 1.3293297290802002 img loss 1.3822828531265259 img loss 1.408189296722412 img loss 1.5139100551605225 img loss 1.438974142074585 img loss 1.40774667263031 img loss 1.5493086576461792 img loss 1.2960413694381714 img loss 1.3112270832061768 img loss 1.4273064136505127 img loss 1.436885118484497 img loss 1.4463542699813843 img loss 1.4226306676864624 img loss 1.3642009496688843 img loss 1.3557305335998535 img loss 1.2992722988128662 img loss 1.4244486093521118 img loss 1.2799875736236572 img loss 1.4853694438934326 img loss 1.4392660856246948 img loss 1.5271207094192505 img loss 1.419718623161316 img loss 1.384832739830017 img loss 1.3720335960388184 img loss 1.407605528831482 img loss 1.412742018699646 img loss 1.3023346662521362 img loss 1.461758017539978 img loss 1.4396374225616455 img loss 1.3394099473953247 img loss 1.388168215751648 img loss 1.3333157300949097 img loss 1.4213836193084717 img loss 1.3434990644454956 img loss 1.3717780113220215 img loss 1.3322771787643433 img loss 1.3664861917495728 img loss 1.5628056526184082 img loss 1.3976616859436035 img loss 1.5259220600128174 img loss 1.2135752439498901 img loss 1.4325287342071533 img loss 1.344180941581726 img loss 1.3872567415237427 img loss 1.384182333946228 img loss 1.3592053651809692 img loss 1.3858462572097778 img loss 1.3480075597763062 img loss 1.4482886791229248 img loss 1.3770629167556763 img loss 1.4542988538742065 img loss 1.3821474313735962 img loss 1.377232313156128 img loss 1.3670791387557983 img loss 1.481619119644165 img loss 1.4359018802642822 img loss 1.3753944635391235 img loss 1.4349795579910278 img loss 1.4727129936218262 {'loss': 1.3976, 'grad_norm': 0.378325879573822, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.468309760093689 img loss 1.5032289028167725 img loss 1.4632097482681274 img loss 1.356177568435669 img loss 1.3593693971633911 img loss 1.3704698085784912 img loss 1.371802568435669 img loss 1.3993430137634277 img loss 1.4621913433074951 img loss 1.3776310682296753 img loss 1.55007004737854 img loss 1.5366342067718506 img loss 1.4725803136825562 img loss 1.566473364830017 img loss 1.42261803150177 img loss 1.359434962272644 img loss 1.361376166343689 img loss 1.3793514966964722 img loss 1.3021609783172607 img loss 1.365347981452942 img loss 1.5392388105392456 img loss 1.4433563947677612 img loss 1.473496913909912 img loss 1.52177894115448 img loss 1.3149992227554321 img loss 1.385788083076477 img loss 1.348093867301941 img loss 1.4451225996017456 img loss 1.4170931577682495 img loss 1.4520150423049927 img loss 1.4092552661895752 img loss 1.4504131078720093 img loss 1.4115394353866577 img loss 1.4506199359893799 img loss 1.3406188488006592 img loss 1.4311922788619995 img loss 1.3016403913497925 img loss 1.3870688676834106 img loss 1.448700189590454 img loss 1.3646924495697021 img loss 1.5198127031326294 img loss 1.3830300569534302 img loss 1.4002211093902588 img loss 1.364978313446045 img loss 1.489477276802063 img loss 1.5078880786895752 img loss 1.370927095413208 img loss 1.3944590091705322 img loss 1.639292597770691 img loss 1.430075764656067 img loss 1.434424877166748 img loss 1.543473482131958 img loss 1.5221394300460815 img loss 1.4782273769378662 img loss 1.5633480548858643 img loss 1.3828213214874268 img loss 1.4425970315933228 img loss 1.4339711666107178 img loss 1.3836003541946411 img loss 1.4175158739089966 img loss 1.3167946338653564 img loss 1.3823901414871216 img loss 1.458586573600769 img loss 1.4434504508972168 img loss 1.4333813190460205 img loss 1.3805981874465942 img loss 1.4470365047454834 img loss 1.3581761121749878 img loss 1.4850019216537476 img loss 1.412359356880188 img loss 1.3679927587509155 img loss 1.379492998123169 img loss 1.3111040592193604img loss 1.3831360340118408 img loss 1.400668978691101 img loss 1.4751580953598022 img loss 1.4206315279006958 img loss 1.4974442720413208 img loss 1.3762942552566528 img loss 1.3454935550689697 img loss 1.4545046091079712 img loss 1.404161810874939 img loss 1.5120435953140259 img loss 1.499289631843567 img loss 1.5160174369812012 img loss 1.4257464408874512 img loss 1.388710379600525 img loss 1.468607783317566 img loss 1.3892958164215088 img loss 1.5209964513778687 img loss 1.435322642326355 img loss 1.5114327669143677 img loss 1.3456257581710815 img loss 1.4360276460647583 img loss 1.4834349155426025 img loss 1.3899201154708862 img loss 1.4044287204742432 img loss 1.4707986116409302 img loss 1.3134915828704834 img loss 1.4237614870071411 img loss 1.5186711549758911 img loss 1.3660799264907837 img loss 1.4919278621673584 img loss 1.2308458089828491 img loss 1.4700227975845337 img loss 1.3760067224502563 img loss 1.4163451194763184 img loss 1.3932242393493652 img loss 1.5299876928329468 img loss 1.4690051078796387 img loss 1.3826003074645996 img loss 1.3263230323791504 img loss 1.4233553409576416 img loss 1.3594847917556763 img loss 1.3389360904693604 img loss 1.3869249820709229 img loss 1.4861633777618408 img loss 1.5420197248458862 img loss 1.3644410371780396 img loss 1.41306471824646 img loss 1.5165668725967407 img loss 1.3661028146743774 img loss 1.460587978363037 img loss 1.3717697858810425 img loss 1.398602843284607 img loss 1.409745693206787 img loss 1.4715348482131958 img loss 1.4505438804626465 {'loss': 1.4257, 'grad_norm': 0.2714904546737671, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2703922986984253 img loss 1.2676712274551392 img loss 1.2571700811386108 img loss 1.28480863571167 img loss 1.2178354263305664 img loss 1.1930346488952637 img loss 1.234988808631897 img loss 1.2433973550796509 img loss 1.195116639137268 img loss 1.266887903213501 img loss 1.3291743993759155 img loss 1.2974891662597656 img loss 1.206072449684143 img loss 1.2452436685562134 img loss 1.2711704969406128 img loss 1.2618772983551025 img loss 1.2620090246200562 img loss 1.2796255350112915 img loss 1.2874994277954102 img loss 1.254331111907959 img loss 1.2160019874572754 img loss 1.2473578453063965 img loss 1.3162250518798828 img loss 1.2546013593673706 img loss 1.248567819595337 img loss 1.2631657123565674 img loss 1.270445466041565 img loss 1.3065910339355469 img loss 1.2453311681747437 img loss 1.2673029899597168 img loss 1.190826177597046 img loss 1.2844493389129639 img loss 1.2314174175262451 img loss 1.2305673360824585 img loss 1.2559773921966553 img loss 1.2978140115737915 img loss 1.1957659721374512 img loss 1.26244056224823 img loss 1.2437381744384766 img loss 1.1734964847564697 img loss 1.271897554397583 img loss 1.1937086582183838 img loss 1.1861337423324585 img loss 1.3015081882476807 img loss 1.2830727100372314 img loss 1.230180263519287 img loss 1.2269959449768066 img loss 1.2278894186019897 img loss 1.2969601154327393 img loss 1.2596511840820312 img loss 1.2505651712417603 img loss 1.2479865550994873 img loss 1.2867636680603027 img loss 1.2482390403747559 img loss 1.2263407707214355 img loss 1.2502727508544922 img loss 1.3181918859481812 img loss 1.2245166301727295 img loss 1.2376148700714111 img loss 1.2281761169433594 img loss 1.228728175163269 img loss 1.231134295463562 img loss 1.2883434295654297 img loss 1.1914408206939697 img loss 1.2808337211608887 img loss 1.186774730682373 img loss 1.2515838146209717 img loss 1.2244713306427002 img loss 1.3566409349441528 img loss 1.2732460498809814 img loss 1.2185896635055542 img loss 1.3059213161468506 img loss 1.2600150108337402 img loss 1.1991851329803467 img loss 1.214268445968628 img loss 1.2529044151306152 img loss 1.2616710662841797 img loss 1.2017017602920532 img loss 1.1940069198608398img loss 1.2302098274230957 img loss 1.2339653968811035 img loss 1.2571989297866821 img loss 1.2509196996688843 img loss 1.2194020748138428 img loss 1.2052757740020752 img loss 1.3019688129425049 img loss 1.2636642456054688 img loss 1.2260663509368896 img loss 1.2657231092453003 img loss 1.1767505407333374 img loss 1.3267475366592407 img loss 1.2316491603851318 img loss 1.2762165069580078 img loss 1.2244380712509155 img loss 1.228297472000122 img loss 1.2802839279174805 img loss 1.2647918462753296 img loss 1.213051438331604 img loss 1.2670314311981201 img loss 1.2135097980499268 img loss 1.2329515218734741 img loss 1.3018240928649902 img loss 1.231605887413025 img loss 1.225663423538208 img loss 1.230212926864624 img loss 1.2716071605682373 img loss 1.2043299674987793 img loss 1.1902135610580444 img loss 1.2358169555664062 img loss 1.2527470588684082 img loss 1.2327841520309448 img loss 1.2793779373168945 img loss 1.2728341817855835 img loss 1.3092224597930908 img loss 1.2304036617279053 img loss 1.234683632850647 img loss 1.1665242910385132 img loss 1.330910325050354 img loss 1.2760757207870483 img loss 1.2799935340881348 img loss 1.2705419063568115 img loss 1.2491534948349 img loss 1.3001728057861328 img loss 1.2239125967025757 img loss 1.2676482200622559 img loss 1.2507444620132446 img loss 1.172410249710083 img loss 1.2600866556167603 {'loss': 1.2491, 'grad_norm': 0.308011919260025, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4416981935501099 img loss 1.352850079536438 img loss 1.3756992816925049 img loss 1.472378134727478 img loss 1.6529618501663208 img loss 1.4227004051208496 img loss 1.4715973138809204 img loss 1.4466642141342163 img loss 1.3514456748962402 img loss 1.4437193870544434 img loss 1.4694656133651733 img loss 1.4559407234191895 img loss 1.444417119026184 img loss 1.5276051759719849 img loss 1.4854589700698853 img loss 1.5197848081588745 img loss 1.4542272090911865 img loss 1.6235798597335815 img loss 1.455135464668274 img loss 1.5542093515396118 img loss 1.5287023782730103 img loss 1.3729504346847534 img loss 1.404985785484314 img loss 1.4218766689300537 img loss 1.368985891342163 img loss 1.4083384275436401 img loss 1.421882152557373 img loss 1.5338122844696045 img loss 1.4600841999053955 img loss 1.3602019548416138 img loss 1.5011413097381592 img loss 1.4038399457931519 img loss 1.3083698749542236 img loss 1.4136658906936646 img loss 1.5081442594528198 img loss 1.5012857913970947 img loss 1.434719443321228 img loss 1.4058362245559692 img loss 1.5138200521469116 img loss 1.4466193914413452 img loss 1.4543172121047974 img loss 1.3906925916671753 img loss 1.326378583908081 img loss 1.4613686800003052 img loss 1.5042628049850464 img loss 1.481207013130188 img loss 1.3810431957244873 img loss 1.403632640838623 img loss 1.5016722679138184 img loss 1.5646439790725708 img loss 1.2640738487243652 img loss 1.461912751197815 img loss 1.4902145862579346 img loss 1.4622581005096436 img loss 1.368831992149353 img loss 1.5308932065963745 img loss 1.4027783870697021 img loss 1.454628825187683 img loss 1.4214650392532349 img loss 1.5226441621780396 img loss 1.3934656381607056 img loss 1.4416242837905884 img loss 1.4326578378677368 img loss 1.4527640342712402 img loss 1.5658706426620483 img loss 1.4072277545928955 img loss 1.5340276956558228 img loss 1.438557505607605 img loss 1.4588773250579834 img loss 1.3584486246109009 img loss 1.3921762704849243 img loss 1.4664102792739868 img loss 1.500507116317749 img loss 1.3364442586898804 img loss 1.5313807725906372 img loss 1.4117387533187866 img loss 1.436785101890564 img loss 1.5076335668563843 img loss 1.5637115240097046 img loss 1.4206254482269287 img loss 1.5101697444915771 img loss 1.567700743675232 img loss 1.4974111318588257 img loss 1.4468896389007568 img loss 1.4608243703842163 img loss 1.5723029375076294 img loss 1.3959227800369263 img loss 1.5639749765396118 img loss 1.394666314125061 img loss 1.4788788557052612 img loss 1.386213779449463 img loss 1.427722692489624 img loss 1.3349839448928833 img loss 1.6137478351593018 img loss 1.5850626230239868 img loss 1.4590542316436768 img loss 1.3502345085144043 img loss 1.5065633058547974 img loss 1.5899865627288818 img loss 1.3825633525848389 img loss 1.4398733377456665 img loss 1.499935269355774 img loss 1.241418480873108 img loss 1.3433672189712524 img loss 1.5182503461837769 img loss 1.48928964138031 img loss 1.4512460231781006 img loss 1.4783235788345337 img loss 1.490328311920166 img loss 1.458288311958313 img loss 1.5374633073806763 img loss 1.454723834991455 img loss 1.579607605934143 img loss 1.5455586910247803 img loss 1.5070189237594604 img loss 1.5182912349700928 img loss 1.5576666593551636 img loss 1.6006324291229248 img loss 1.446343183517456 img loss 1.4893115758895874 img loss 1.531875491142273 img loss 1.4623616933822632 img loss 1.5181370973587036 img loss 1.474639654159546 img loss 1.4817111492156982 img loss 1.549755573272705 img loss 1.49277663230896 img loss 1.4759366512298584 {'loss': 1.4625, 'grad_norm': 0.33692729473114014, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3381556272506714 img loss 1.2798833847045898 img loss 1.276110053062439 img loss 1.249903917312622 img loss 1.256932258605957 img loss 1.2415622472763062 img loss 1.2605892419815063 img loss 1.303072452545166 img loss 1.2936391830444336 img loss 1.2660661935806274 img loss 1.3330128192901611 img loss 1.2776999473571777 img loss 1.256824016571045 img loss 1.2393680810928345 img loss 1.3147363662719727 img loss 1.2844161987304688 img loss 1.2450556755065918 img loss 1.229328989982605 img loss 1.183691382408142 img loss 1.2552757263183594 img loss 1.1995548009872437 img loss 1.1645238399505615 img loss 1.3206942081451416 img loss 1.234194040298462 img loss 1.2491425275802612 img loss 1.247456431388855 img loss 1.4125627279281616 img loss 1.2726316452026367 img loss 1.27885901927948 img loss 1.2936413288116455 img loss 1.237004280090332 img loss 1.222383975982666 img loss 1.1636685132980347 img loss 1.319265604019165 img loss 1.3031831979751587 img loss 1.3721932172775269 img loss 1.2158769369125366 img loss 1.3047001361846924 img loss 1.2138394117355347 img loss 1.3227665424346924 img loss 1.170838713645935 img loss 1.216853380203247 img loss 1.1843477487564087 img loss 1.224020004272461 img loss 1.1721352338790894 img loss 1.2691149711608887 img loss 1.2596261501312256 img loss 1.29936945438385 img loss 1.164563536643982 img loss 1.1473627090454102 img loss 1.2879669666290283 img loss 1.2494962215423584 img loss 1.2419655323028564 img loss 1.3183363676071167 img loss 1.2058452367782593 img loss 1.255233645439148 img loss 1.2660402059555054 img loss 1.283801794052124 img loss 1.2810972929000854 img loss 1.1482118368148804 img loss 1.3037879467010498 img loss 1.2666195631027222 img loss 1.3573094606399536 img loss 1.262686014175415 img loss 1.287010669708252 img loss 1.2981562614440918 img loss 1.25789213180542 img loss 1.2610931396484375 img loss 1.2591675519943237 img loss 1.2801860570907593 img loss 1.307653784751892 img loss 1.2727115154266357 img loss 1.3328322172164917 img loss 1.2598965167999268 img loss 1.265438437461853 img loss 1.2206995487213135 img loss 1.2621591091156006 img loss 1.2696367502212524 img loss 1.208719253540039 img loss 1.2069519758224487 img loss 1.2716693878173828 img loss 1.196582555770874 img loss 1.2780308723449707 img loss 1.192473292350769 img loss 1.2702951431274414 img loss 1.2100577354431152 img loss 1.2871887683868408 img loss 1.3157936334609985 img loss 1.3146580457687378 img loss 1.2097454071044922 img loss 1.2080882787704468 img loss 1.3159332275390625 img loss 1.2379158735275269 img loss 1.266488790512085 img loss 1.2203528881072998 img loss 1.227936029434204 img loss 1.362750768661499 img loss 1.326178789138794 img loss 1.2333990335464478 img loss 1.1945164203643799 img loss 1.266993761062622 img loss 1.224975347518921 img loss 1.2469885349273682 img loss 1.2217296361923218 img loss 1.2896455526351929img loss 1.314603328704834 img loss 1.296425223350525 img loss 1.2386488914489746 img loss 1.2212481498718262 img loss 1.3368487358093262 img loss 1.2336187362670898 img loss 1.2154009342193604 img loss 1.3566380739212036 img loss 1.2944849729537964 img loss 1.1973159313201904 img loss 1.2950466871261597 img loss 1.320717692375183 img loss 1.30418860912323 img loss 1.3131721019744873 img loss 1.2241874933242798 img loss 1.29886794090271 img loss 1.252323031425476 img loss 1.274285912513733 img loss 1.1717092990875244 img loss 1.2676218748092651 img loss 1.219541311264038 img loss 1.283059000968933 img loss 1.3848955631256104 {'loss': 1.2619, 'grad_norm': 0.22849181294441223, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3295507431030273 img loss 1.3132543563842773 img loss 1.3233981132507324 img loss 1.3539069890975952 img loss 1.3530421257019043 img loss 1.2561029195785522 img loss 1.3368709087371826 img loss 1.3313337564468384 img loss 1.2485045194625854 img loss 1.3484904766082764 img loss 1.293445110321045 img loss 1.2419750690460205 img loss 1.3683819770812988 img loss 1.3368860483169556 img loss 1.2792495489120483 img loss 1.3738895654678345 img loss 1.3204354047775269 img loss 1.2636852264404297 img loss 1.3254749774932861 img loss 1.292337417602539 img loss 1.351238489151001 img loss 1.2166626453399658 img loss 1.3134350776672363 img loss 1.29515540599823 img loss 1.3596786260604858 img loss 1.2543888092041016 img loss 1.3742188215255737 img loss 1.371314525604248 img loss 1.3724305629730225 img loss 1.1968220472335815 img loss 1.3408887386322021 img loss 1.3486841917037964 img loss 1.2281712293624878 img loss 1.3407970666885376 img loss 1.3344098329544067 img loss 1.3221758604049683 img loss 1.3194451332092285 img loss 1.3160518407821655 img loss 1.3641753196716309 img loss 1.2815372943878174 img loss 1.3310112953186035 img loss 1.3517974615097046 img loss 1.3596704006195068 img loss 1.3362680673599243 img loss 1.2974798679351807 img loss 1.3596543073654175 img loss 1.4137190580368042 img loss 1.137179970741272 img loss 1.3648618459701538 img loss 1.2759103775024414 img loss 1.2073310613632202 img loss 1.4571982622146606 img loss 1.4634143114089966 img loss 1.45680570602417img loss 1.379819393157959 img loss 1.3751215934753418 img loss 1.3468552827835083 img loss 1.4182771444320679 img loss 1.2874926328659058 img loss 1.2890160083770752 img loss 1.3215668201446533 img loss 1.3011449575424194 img loss 1.2668859958648682 img loss 1.2715721130371094 img loss 1.2488465309143066 img loss 1.359154224395752 img loss 1.3099392652511597 img loss 1.324096441268921 img loss 1.3355553150177002 img loss 1.3557268381118774 img loss 1.2456926107406616 img loss 1.33601713180542 img loss 1.2886768579483032 img loss 1.4131475687026978 img loss 1.3810887336730957 img loss 1.2767902612686157 img loss 1.431049108505249 img loss 1.3134956359863281 img loss 1.3325614929199219 img loss 1.360716462135315 img loss 1.376305103302002 img loss 1.4624896049499512 img loss 1.4843146800994873 img loss 1.4580390453338623 img loss 1.329129934310913 img loss 1.5157215595245361 img loss 1.321732997894287 img loss 1.455432653427124 img loss 1.2785568237304688 img loss 1.316896677017212 img loss 1.3447527885437012 img loss 1.442576289176941 img loss 1.3378913402557373 img loss 1.3729727268218994 img loss 1.3401318788528442 img loss 1.4017795324325562 img loss 1.264768123626709 img loss 1.3906515836715698 img loss 1.3180488348007202 img loss 1.3198215961456299 img loss 1.4397624731063843 img loss 1.2350270748138428 img loss 1.341283917427063 img loss 1.4678179025650024 img loss 1.321065902709961 img loss 1.3230526447296143 img loss 1.3251863718032837 img loss 1.2428438663482666 img loss 1.3853744268417358 img loss 1.332969069480896 img loss 1.3479570150375366 img loss 1.3843713998794556 img loss 1.3569903373718262 img loss 1.2880233526229858 img loss 1.2474572658538818 img loss 1.325495958328247 img loss 1.3395966291427612 img loss 1.3158272504806519 img loss 1.218650460243225 img loss 1.4343068599700928 img loss 1.3216732740402222 img loss 1.2724536657333374 img loss 1.35708487033844 img loss 1.3401323556900024 img loss 1.3534363508224487 img loss 1.3373675346374512 img loss 1.4681885242462158 img loss 1.3355540037155151 {'loss': 1.3357, 'grad_norm': 0.29881200194358826, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2409286499023438 img loss 1.2761772871017456 img loss 1.232590913772583 img loss 1.2159432172775269 img loss 1.2657915353775024 img loss 1.2894608974456787 img loss 1.2325180768966675 img loss 1.1844242811203003 img loss 1.1654075384140015 img loss 1.3200515508651733 img loss 1.2793009281158447 img loss 1.1870626211166382 img loss 1.21945059299469 img loss 1.2015149593353271 img loss 1.2274715900421143 img loss 1.256027102470398 img loss 1.2109854221343994 img loss 1.364182710647583 img loss 1.1952108144760132 img loss 1.221739649772644 img loss 1.206816554069519 img loss 1.2233843803405762 img loss 1.2080272436141968 img loss 1.1900614500045776 img loss 1.2135276794433594 img loss 1.181435465812683 img loss 1.2274049520492554 img loss 1.2620670795440674 img loss 1.3042973279953003 img loss 1.2225265502929688 img loss 1.2744183540344238 img loss 1.2865527868270874 img loss 1.2100368738174438 img loss 1.1627612113952637 img loss 1.309963583946228 img loss 1.248796820640564 img loss 1.228149175643921 img loss 1.1632124185562134 img loss 1.2284588813781738 img loss 1.1752583980560303 img loss 1.2190996408462524 img loss 1.215659737586975 img loss 1.2335346937179565 img loss 1.162757396697998 img loss 1.255399465560913 img loss 1.2498016357421875 img loss 1.2386444807052612 img loss 1.2310322523117065 img loss 1.1401652097702026 img loss 1.3239705562591553 img loss 1.257531762123108 img loss 1.2608669996261597 img loss 1.2816089391708374 img loss 1.25002121925354 img loss 1.2449640035629272 img loss 1.1425718069076538 img loss 1.161349892616272 img loss 1.2335782051086426 img loss 1.1817655563354492 img loss 1.1955379247665405 img loss 1.2276142835617065 img loss 1.1585209369659424 img loss 1.1829538345336914 img loss 1.260537028312683 img loss 1.2311826944351196 img loss 1.17244553565979 img loss 1.229364275932312 img loss 1.205329418182373 img loss 1.196423888206482 img loss 1.2615936994552612 img loss 1.2255522012710571 img loss 1.2042049169540405 img loss 1.292932391166687 img loss 1.1694905757904053 img loss 1.1938469409942627 img loss 1.1749906539916992 img loss 1.2501455545425415 img loss 1.2561205625534058img loss 1.3230011463165283 img loss 1.2101503610610962 img loss 1.220475435256958 img loss 1.1894316673278809 img loss 1.1974797248840332 img loss 1.2113491296768188 img loss 1.1968138217926025 img loss 1.2265366315841675 img loss 1.2272758483886719 img loss 1.3200814723968506 img loss 1.2400617599487305 img loss 1.270236611366272 img loss 1.2606533765792847 img loss 1.2349700927734375 img loss 1.2047475576400757 img loss 1.1990013122558594 img loss 1.2621768712997437 img loss 1.2188916206359863 img loss 1.2373628616333008 img loss 1.200297236442566 img loss 1.2984129190444946 img loss 1.2630054950714111 img loss 1.1892457008361816 img loss 1.1719169616699219 img loss 1.1856333017349243 img loss 1.2778491973876953 img loss 1.2763928174972534 img loss 1.2381550073623657 img loss 1.2326055765151978 img loss 1.2607364654541016 img loss 1.1970951557159424 img loss 1.226030945777893 img loss 1.2212324142456055 img loss 1.1740257740020752 img loss 1.13683021068573 img loss 1.1681607961654663 img loss 1.2150609493255615 img loss 1.2413383722305298 img loss 1.234552264213562 img loss 1.2342493534088135 img loss 1.2075748443603516 img loss 1.2334269285202026 img loss 1.2481696605682373 img loss 1.2339448928833008 img loss 1.2098290920257568 img loss 1.2084282636642456 img loss 1.1950081586837769 img loss 1.193663477897644 img loss 1.2023553848266602 img loss 1.1108136177062988 {'loss': 1.2252, 'grad_norm': 0.21757489442825317, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2601099014282227 img loss 1.2253388166427612 img loss 1.2447271347045898 img loss 1.219248652458191 img loss 1.276139497756958 img loss 1.212806224822998 img loss 1.3239326477050781 img loss 1.2236775159835815 img loss 1.21817147731781 img loss 1.2063305377960205 img loss 1.2021958827972412 img loss 1.2597965002059937 img loss 1.181591272354126 img loss 1.1871566772460938 img loss 1.1747769117355347 img loss 1.3054752349853516 img loss 1.2551839351654053 img loss 1.298309087753296 img loss 1.2246910333633423 img loss 1.2871699333190918 img loss 1.2507350444793701 img loss 1.2465158700942993 img loss 1.2895801067352295 img loss 1.2807669639587402 img loss 1.2989859580993652 img loss 1.2122868299484253 img loss 1.274820327758789 img loss 1.2072781324386597 img loss 1.3090152740478516 img loss 1.1849445104599 img loss 1.1713578701019287 img loss 1.193321943283081 img loss 1.2534259557724 img loss 1.1993911266326904 img loss 1.1931880712509155 img loss 1.2713987827301025 img loss 1.2177724838256836 img loss 1.3370777368545532 img loss 1.313429355621338 img loss 1.2309627532958984 img loss 1.2687405347824097 img loss 1.2092326879501343 img loss 1.1725895404815674 img loss 1.306520938873291 img loss 1.221023440361023 img loss 1.2854279279708862 img loss 1.1879749298095703 img loss 1.2510004043579102 img loss 1.27242910861969 img loss 1.2750282287597656 img loss 1.2412850856781006 img loss 1.3072456121444702 img loss 1.217909812927246 img loss 1.2306121587753296 img loss 1.2809460163116455 img loss 1.2123196125030518 img loss 1.2188012599945068 img loss 1.2239346504211426 img loss 1.269752860069275 img loss 1.2614243030548096img loss 1.2612738609313965 img loss 1.313547968864441 img loss 1.1857953071594238 img loss 1.2882399559020996 img loss 1.211469292640686 img loss 1.2457224130630493 img loss 1.2444521188735962 img loss 1.1928669214248657 img loss 1.2522464990615845 img loss 1.2186411619186401 img loss 1.2349700927734375 img loss 1.2660067081451416 img loss 1.308726191520691 img loss 1.2538049221038818 img loss 1.2460932731628418 img loss 1.3386634588241577 img loss 1.2555036544799805 img loss 1.1928114891052246 img loss 1.2397360801696777 img loss 1.232176661491394 img loss 1.2691973447799683 img loss 1.253336787223816 img loss 1.2088947296142578 img loss 1.2233257293701172 img loss 1.2329604625701904 img loss 1.2343019247055054 img loss 1.2708699703216553 img loss 1.2515003681182861 img loss 1.2585124969482422 img loss 1.2777438163757324 img loss 1.2970417737960815 img loss 1.214206576347351 img loss 1.2773593664169312 img loss 1.316607117652893 img loss 1.2776850461959839 img loss 1.2902982234954834 img loss 1.3352844715118408 img loss 1.3235126733779907 img loss 1.2439229488372803 img loss 1.2252936363220215 img loss 1.2866312265396118 img loss 1.24320387840271 img loss 1.2369060516357422 img loss 1.2676938772201538 img loss 1.2462537288665771 img loss 1.2598837614059448 img loss 1.3274033069610596 img loss 1.200211763381958 img loss 1.208174228668213 img loss 1.2236353158950806 img loss 1.4353196620941162 img loss 1.2424167394638062 img loss 1.2631962299346924 img loss 1.242559790611267 img loss 1.240705966949463 img loss 1.3085706233978271 img loss 1.2889868021011353 img loss 1.2064224481582642 img loss 1.2076829671859741 img loss 1.2572306394577026 img loss 1.1787102222442627 img loss 1.2565453052520752 img loss 1.2110710144042969 img loss 1.233503818511963 img loss 1.203134536743164 img loss 1.2345232963562012 img loss 1.2526888847351074 img loss 1.2497999668121338 {'loss': 1.2493, 'grad_norm': 0.27750957012176514, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3940826654434204 img loss 1.3298031091690063 img loss 1.4691983461380005 img loss 1.3899686336517334 img loss 1.3284258842468262 img loss 1.4255791902542114 img loss 1.3479647636413574 img loss 1.4214402437210083 img loss 1.3786273002624512 img loss 1.2838294506072998 img loss 1.3710538148880005 img loss 1.3621279001235962 img loss 1.4369170665740967 img loss 1.4635493755340576 img loss 1.3701326847076416 img loss 1.394241452217102 img loss 1.3765774965286255 img loss 1.3745044469833374 img loss 1.4134953022003174 img loss 1.298040747642517 img loss 1.2438340187072754 img loss 1.3477474451065063 img loss 1.3516830205917358 img loss 1.4264981746673584 img loss 1.400143027305603 img loss 1.314488172531128 img loss 1.3487621545791626 img loss 1.490497350692749 img loss 1.2015272378921509 img loss 1.2724621295928955 img loss 1.3628019094467163 img loss 1.2550379037857056 img loss 1.3276523351669312 img loss 1.3471928834915161 img loss 1.303292155265808 img loss 1.4164358377456665 img loss 1.2798069715499878 img loss 1.381181001663208 img loss 1.4298756122589111 img loss 1.297728419303894 img loss 1.361212968826294 img loss 1.3835870027542114 img loss 1.3973047733306885 img loss 1.3438735008239746 img loss 1.391089916229248 img loss 1.3962901830673218 img loss 1.3507808446884155 img loss 1.4005217552185059 img loss 1.3521021604537964 img loss 1.3273558616638184 img loss 1.397591471672058 img loss 1.4431387186050415 img loss 1.3904213905334473 img loss 1.3172954320907593 img loss 1.3596084117889404 img loss 1.3821736574172974 img loss 1.3118454217910767 img loss 1.3134362697601318 img loss 1.4332325458526611 img loss 1.3385258913040161 img loss 1.3988960981369019 img loss 1.317435622215271 img loss 1.3975577354431152 img loss 1.2466528415679932 img loss 1.4291249513626099 img loss 1.3779950141906738 img loss 1.3698738813400269 img loss 1.4703706502914429 img loss 1.3159089088439941 img loss 1.4281363487243652 img loss 1.4267243146896362 img loss 1.363165259361267 img loss 1.3076837062835693 img loss 1.361224889755249 img loss 1.3007738590240479 img loss 1.2881033420562744 img loss 1.4759443998336792 img loss 1.3859801292419434 img loss 1.3193219900131226 img loss 1.407039761543274 img loss 1.3966606855392456 img loss 1.3136528730392456 img loss 1.303264856338501 img loss 1.274553656578064 img loss 1.308924913406372 img loss 1.3958898782730103 img loss 1.3926876783370972 img loss 1.3766030073165894 img loss 1.231692910194397 img loss 1.4156779050827026 img loss 1.4547024965286255 img loss 1.2949455976486206 img loss 1.461734414100647 img loss 1.4449580907821655 img loss 1.298558235168457 img loss 1.173978567123413 img loss 1.4852527379989624 img loss 1.3558870553970337 img loss 1.4806996583938599 img loss 1.2764928340911865 img loss 1.4554179906845093 img loss 1.3699709177017212 img loss 1.6259413957595825 img loss 1.2730201482772827 img loss 1.458097219467163img loss 1.2871302366256714 img loss 1.3366416692733765 img loss 1.4118092060089111 img loss 1.3187339305877686 img loss 1.2259422540664673 img loss 1.3867460489273071 img loss 1.3894164562225342 img loss 1.4925976991653442 img loss 1.3854674100875854 img loss 1.3622645139694214 img loss 1.4440289735794067 img loss 1.3481647968292236 img loss 1.4117072820663452 img loss 1.3271052837371826 img loss 1.3665673732757568 img loss 1.3655486106872559 img loss 1.3236140012741089 img loss 1.4013291597366333 img loss 1.3780990839004517 img loss 1.3696894645690918 img loss 1.4085590839385986 img loss 1.3401917219161987 img loss 1.4192872047424316 img loss 1.2642452716827393 img loss 1.198555588722229 img loss 1.131641149520874 img loss 1.167479157447815 img loss 1.125625491142273 img loss 1.2217382192611694 img loss 1.1489648818969727 img loss 1.2166519165039062 img loss 1.2909064292907715 img loss 1.2049624919891357 img loss 1.1529786586761475 img loss 1.272692322731018 img loss 1.261349081993103 img loss 1.196757197380066 img loss 1.230527639389038 img loss 1.215259313583374 img loss 1.078978419303894 img loss 1.2693510055541992 img loss 1.178820252418518 img loss 1.204261064529419 img loss 1.2040122747421265 img loss 1.1909691095352173 img loss 1.209837555885315 img loss 1.1484019756317139 img loss 1.251526117324829 img loss 1.209912657737732 img loss 1.2598834037780762 img loss 1.2623579502105713 img loss 1.15045166015625 img loss 1.2542600631713867 img loss 1.1725611686706543 img loss 1.273834228515625 img loss 1.1453208923339844 img loss 1.268251895904541 img loss 1.1783206462860107 img loss 1.2138032913208008 img loss 1.1882864236831665 img loss 1.1856040954589844 img loss 1.1659626960754395 img loss 1.2094955444335938 img loss 1.1936721801757812 img loss 1.1771379709243774 img loss 1.228827714920044 img loss 1.2211050987243652 img loss 1.099406123161316 img loss 1.1766287088394165 img loss 1.2130436897277832 img loss 1.1825613975524902 img loss 1.182299256324768 img loss 1.1879221200942993 img loss 1.2104182243347168 img loss 1.2966301441192627 img loss 1.2307957410812378 img loss 1.2275091409683228 img loss 1.2021130323410034 img loss 1.170815348625183 img loss 1.161738395690918 img loss 1.1460500955581665 img loss 1.1347545385360718 img loss 1.1282908916473389 img loss 1.2635693550109863 img loss 1.1455426216125488 img loss 1.202256202697754 img loss 1.157978892326355 img loss 1.2055408954620361 img loss 1.248239517211914 img loss 1.196794867515564 img loss 1.1644834280014038 img loss 1.219526767730713 img loss 1.1853817701339722 img loss 1.189761996269226 img loss 1.2488950490951538 img loss 1.241095781326294 img loss 1.22861647605896 img loss 1.233201265335083 img loss 1.2278382778167725 img loss 1.1956180334091187 img loss 1.181971788406372 img loss 1.217219591140747 img loss 1.3244596719741821 img loss 1.3259930610656738 img loss 1.1713186502456665 img loss 1.1669200658798218 img loss 1.2478578090667725 img loss 1.2145811319351196 img loss 1.1730153560638428 img loss 1.2136939764022827 img loss 1.188521146774292 img loss 1.1855731010437012 img loss 1.1639070510864258 img loss 1.1833946704864502 img loss 1.286118984222412 img loss 1.1524757146835327 img loss 1.152576208114624 img loss 1.16387140750885 img loss 1.207351565361023 img loss 1.1725047826766968 img loss 1.280816674232483 img loss 1.2524371147155762 img loss 1.303308129310608 img loss 1.2143588066101074 img loss 1.14667546749115 img loss 1.3626502752304077 img loss 1.1578693389892578 img loss 1.194679856300354 img loss 1.1739628314971924 img loss 1.129852533340454 img loss 1.2262924909591675 img loss 1.1627483367919922 img loss 1.1659390926361084 img loss 1.230364203453064 img loss 1.221853256225586 img loss 1.1927149295806885 img loss 1.180762529373169 img loss 1.1460676193237305 img loss 1.1993632316589355 img loss 1.1477019786834717 img loss 1.2057539224624634 img loss 1.1248193979263306 img loss 1.2058601379394531 img loss 1.1051130294799805 img loss 1.279499888420105 img loss 1.201972484588623 img loss 1.1470706462860107 img loss 1.2202110290527344 img loss 1.17866849899292 img loss 1.1833393573760986 {'loss': 1.3674, 'grad_norm': 0.36762651801109314, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1483309268951416 {'loss': 1.2007, 'grad_norm': 0.33631759881973267, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2305715084075928 img loss 1.2316532135009766 img loss 1.2455066442489624 img loss 1.1796387434005737 img loss 1.2281149625778198 img loss 1.3189712762832642 img loss 1.1686216592788696 img loss 1.3020267486572266 img loss 1.1843279600143433 img loss 1.2198402881622314 img loss 1.2404201030731201 img loss 1.2266967296600342 img loss 1.0846108198165894 img loss 1.2264962196350098 img loss 1.2058101892471313 img loss 1.1578748226165771 img loss 1.2033404111862183 img loss 1.1999690532684326 img loss 1.2294546365737915 img loss 1.2539961338043213 img loss 1.1522613763809204 img loss 1.1723352670669556 img loss 1.1658527851104736 img loss 1.194464921951294 img loss 1.2069953680038452 img loss 1.1900973320007324 img loss 1.2433677911758423 img loss 1.2662023305892944 img loss 1.2622992992401123 img loss 1.2542657852172852 img loss 1.2682557106018066 img loss 1.284767508506775 img loss 1.297619342803955 img loss 1.1383488178253174 img loss 1.2111209630966187 img loss 1.208709716796875 img loss 1.2649539709091187 img loss 1.3035255670547485 img loss 1.2223535776138306 img loss 1.2521533966064453 img loss 1.2309950590133667 img loss 1.1665403842926025 img loss 1.2615461349487305 img loss 1.161064863204956 img loss 1.2302742004394531 img loss 1.2980666160583496 img loss 1.1955790519714355 img loss 1.2304408550262451 img loss 1.2573603391647339 img loss 1.1201289892196655 img loss 1.1962242126464844 img loss 1.2662999629974365 img loss 1.1271084547042847 img loss 1.25690495967865 img loss 1.2354779243469238 img loss 1.291468858718872 img loss 1.1964561939239502 img loss 1.2459144592285156 img loss 1.2426859140396118 img loss 1.271130084991455 img loss 1.3385869264602661 img loss 1.22660231590271 img loss 1.0728439092636108 img loss 1.2556285858154297 img loss 1.2653815746307373 img loss 1.1689401865005493 img loss 1.323197603225708 img loss 1.247843623161316 img loss 1.2484798431396484 img loss 1.2206637859344482 img loss 1.1927947998046875 img loss 1.2014038562774658 img loss 1.2780187129974365 img loss 1.2782328128814697 img loss 1.2971748113632202 img loss 1.2652490139007568 img loss 1.291694164276123 img loss 1.208115577697754 img loss 1.2566078901290894 img loss 1.1591768264770508 img loss 1.208286166191101 img loss 1.1462419033050537 img loss 1.1982389688491821 img loss 1.130378246307373 img loss 1.237322211265564 img loss 1.2569795846939087 img loss 1.1743755340576172 img loss 1.3222068548202515 img loss 1.1330389976501465 img loss 1.2220426797866821 img loss 1.236569881439209 img loss 1.3135509490966797 img loss 1.1992584466934204 img loss 1.2722699642181396 img loss 1.1917011737823486 img loss 1.197946548461914 img loss 1.2361114025115967 img loss 1.195697546005249 img loss 1.1298811435699463 img loss 1.2333400249481201 img loss 1.1734848022460938 img loss 1.2017029523849487 img loss 1.1292645931243896 img loss 1.2047741413116455 img loss 1.269855260848999 img loss 1.2522634267807007 img loss 1.1810228824615479 img loss 1.2258930206298828 img loss 1.2630412578582764 img loss 1.1391407251358032 img loss 1.1929596662521362 img loss 1.2363581657409668 img loss 1.1863359212875366 img loss 1.2079815864562988 img loss 1.3159159421920776 img loss 1.1944624185562134 img loss 1.2052305936813354 img loss 1.2157138586044312 img loss 1.2400267124176025 img loss 1.233957052230835 img loss 1.1210602521896362 img loss 1.1836105585098267 img loss 1.2365764379501343 img loss 1.2448539733886719 img loss 1.1552526950836182 img loss 1.3653913736343384 img loss 1.26129150390625 img loss 1.2373853921890259 {'loss': 1.2226, 'grad_norm': 0.32120418548583984, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.244776964187622 img loss 1.2271369695663452 img loss 1.3065105676651 img loss 1.2724069356918335 img loss 1.2463762760162354img loss 1.284854769706726 img loss 1.3155198097229004 img loss 1.3253967761993408 img loss 1.23358952999115 img loss 1.2759650945663452 img loss 1.3505589962005615 img loss 1.2642490863800049 img loss 1.2188549041748047 img loss 1.2905759811401367 img loss 1.262528896331787 img loss 1.3219854831695557 img loss 1.2833524942398071 img loss 1.245223879814148 img loss 1.303984522819519 img loss 1.3190701007843018 img loss 1.2867788076400757 img loss 1.1911580562591553 img loss 1.204949975013733 img loss 1.2367502450942993 img loss 1.3264578580856323 img loss 1.2391088008880615 img loss 1.2929342985153198 img loss 1.23256254196167 img loss 1.2312120199203491 img loss 1.3124831914901733 img loss 1.3219366073608398 img loss 1.2696280479431152 img loss 1.2696707248687744 img loss 1.3610032796859741 img loss 1.3170791864395142 img loss 1.3037441968917847 img loss 1.309687852859497 img loss 1.3110120296478271 img loss 1.2100849151611328 img loss 1.296212911605835 img loss 1.2057852745056152 img loss 1.3007367849349976 img loss 1.3010635375976562 img loss 1.3480451107025146 img loss 1.3067443370819092 img loss 1.262132167816162 img loss 1.2698599100112915 img loss 1.2747573852539062 img loss 1.3396252393722534 img loss 1.2597019672393799 img loss 1.2520396709442139 img loss 1.200621485710144 img loss 1.2163761854171753 img loss 1.2206826210021973 img loss 1.258623719215393 img loss 1.2861868143081665 img loss 1.238033652305603 img loss 1.3085410594940186 img loss 1.3047411441802979 img loss 1.345956563949585 img loss 1.2706491947174072 img loss 1.195251226425171 img loss 1.2695538997650146 img loss 1.2824268341064453 img loss 1.23509681224823 img loss 1.245665431022644 img loss 1.254096269607544 img loss 1.3955155611038208 img loss 1.2967655658721924 img loss 1.2617394924163818 img loss 1.2508041858673096 img loss 1.2366082668304443 img loss 1.2945524454116821 img loss 1.354975938796997 img loss 1.2545804977416992 img loss 1.2609210014343262 img loss 1.2361352443695068 img loss 1.22542142868042 img loss 1.262221336364746 img loss 1.241167426109314 img loss 1.3393127918243408 img loss 1.249060869216919 img loss 1.2847944498062134 img loss 1.3424241542816162 img loss 1.3073252439498901 img loss 1.2926336526870728 img loss 1.2841529846191406 img loss 1.263161540031433 img loss 1.3976776599884033 img loss 1.1996936798095703 img loss 1.2951345443725586 img loss 1.2357807159423828 img loss 1.245526671409607 img loss 1.2556641101837158 img loss 1.294568419456482 img loss 1.2794852256774902 img loss 1.3452683687210083 img loss 1.2861649990081787 img loss 1.2285417318344116 img loss 1.3014215230941772 img loss 1.2400559186935425 img loss 1.2458276748657227 img loss 1.356359839439392 img loss 1.20066237449646 img loss 1.2454842329025269 img loss 1.2124841213226318 img loss 1.2258418798446655 img loss 1.2160440683364868 img loss 1.2942731380462646 img loss 1.356894612312317 img loss 1.2523019313812256 img loss 1.2742342948913574 img loss 1.1795347929000854 img loss 1.2183183431625366 img loss 1.1779413223266602 img loss 1.3243376016616821 img loss 1.3519078493118286 img loss 1.3044408559799194 img loss 1.2433925867080688 img loss 1.3450149297714233 img loss 1.260477900505066 img loss 1.2024182081222534 img loss 1.2777881622314453 img loss 1.3967007398605347 img loss 1.3452404737472534 img loss 1.2720311880111694 img loss 1.3071789741516113 img loss 1.2208685874938965 {'loss': 1.2751, 'grad_norm': 0.30793502926826477, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.167151689529419 img loss 1.2190710306167603 img loss 1.1650636196136475 img loss 1.1783447265625 img loss 1.202674150466919 img loss 1.1719430685043335 img loss 1.0974881649017334 img loss 1.1355006694793701 img loss 1.1186579465866089 img loss 1.1901272535324097 img loss 1.1867259740829468 img loss 1.2045660018920898 img loss 1.248947024345398 img loss 1.2065749168395996 img loss 1.1805638074874878 img loss 1.1940001249313354 img loss 1.117932677268982 img loss 1.1963493824005127 img loss 1.2736079692840576 img loss 1.195505976676941 img loss 1.2408818006515503 img loss 1.1533215045928955 img loss 1.1200546026229858 img loss 1.170763611793518 img loss 1.2176661491394043 img loss 1.144429087638855 img loss 1.1396393775939941 img loss 1.1694364547729492 img loss 1.208586573600769 img loss 1.1820673942565918 img loss 1.2105731964111328 img loss 1.1507697105407715 img loss 1.2857351303100586 img loss 1.0802254676818848 img loss 1.1612786054611206 img loss 1.2309967279434204 img loss 1.1867974996566772 img loss 1.2655084133148193 img loss 1.1861987113952637 img loss 1.0826191902160645 img loss 1.1237537860870361 img loss 1.2347608804702759 img loss 1.230902075767517 img loss 1.1918284893035889 img loss 1.24847412109375 img loss 1.1337840557098389 img loss 1.1541365385055542 img loss 1.1230121850967407 img loss 1.1921155452728271 img loss 1.1863850355148315 img loss 1.1767075061798096 img loss 1.1772518157958984 img loss 1.1064820289611816 img loss 1.1745045185089111 img loss 1.3141424655914307 img loss 1.1909496784210205 img loss 1.2566251754760742 img loss 1.1683332920074463 img loss 1.2479366064071655 img loss 1.1509995460510254 img loss 1.1757606267929077 img loss 1.1857521533966064 img loss 1.2173174619674683 img loss 1.216545820236206 img loss 1.1262671947479248 img loss 1.1780582666397095 img loss 1.1331357955932617 img loss 1.1842838525772095 img loss 1.233702301979065 img loss 1.1264013051986694 img loss 1.2156480550765991 img loss 1.2792843580245972 img loss 1.2268824577331543 img loss 1.217406988143921 img loss 1.117126703262329 img loss 1.1426723003387451 img loss 1.1599037647247314 img loss 1.1532726287841797 img loss 1.1841763257980347 img loss 1.1738243103027344 img loss 1.1620651483535767 img loss 1.2119348049163818 img loss 1.1467348337173462 img loss 1.1793392896652222 img loss 1.1656378507614136 img loss 1.2534795999526978 img loss 1.1749969720840454 img loss 1.144701361656189 img loss 1.1671347618103027 img loss 1.2700315713882446 img loss 1.1953613758087158 img loss 1.1861701011657715 img loss 1.2425535917282104 img loss 1.0951330661773682 img loss 1.2589253187179565 img loss 1.2225688695907593 img loss 1.199698805809021 img loss 1.1115727424621582 img loss 1.1585445404052734 img loss 1.1252273321151733 img loss 1.188218593597412 img loss 1.179157018661499 img loss 1.2044968605041504 img loss 1.1553494930267334 img loss 1.1891381740570068 img loss 1.2284152507781982 img loss 1.1270194053649902 img loss 1.1637333631515503 img loss 1.2373937368392944 img loss 1.2092212438583374 img loss 1.2035092115402222 img loss 1.1762497425079346 img loss 1.198088526725769 img loss 1.188727617263794 img loss 1.1522390842437744 img loss 1.2653404474258423 img loss 1.184530258178711 img loss 1.2149032354354858 img loss 1.1946461200714111 img loss 1.2061092853546143 img loss 1.1822192668914795 img loss 1.1920068264007568 img loss 1.2786140441894531 img loss 1.1551799774169922 img loss 1.2459166049957275 img loss 1.1196974515914917 img loss 1.2186713218688965 img loss 1.2116678953170776 {'loss': 1.186, 'grad_norm': 0.23635748028755188, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6572705507278442 img loss 1.4991850852966309 img loss 1.4714912176132202 img loss 1.4676127433776855 img loss 1.4647307395935059 img loss 1.3933167457580566 img loss 1.423280119895935 img loss 1.4352900981903076 img loss 1.432921051979065 img loss 1.5111711025238037 img loss 1.635046124458313 img loss 1.4097094535827637 img loss 1.4070404767990112 img loss 1.4019068479537964 img loss 1.4419926404953003 img loss 1.3469767570495605 img loss 1.4340461492538452 img loss 1.542312741279602 img loss 1.6957128047943115 img loss 1.645168423652649 img loss 1.6520558595657349 img loss 1.538755178451538 img loss 1.4820457696914673 img loss 1.497872233390808 img loss 1.4214826822280884 img loss 1.4944872856140137 img loss 1.616301417350769 img loss 1.5378414392471313 img loss 1.545540452003479 img loss 1.6662516593933105 img loss 1.493119478225708 img loss 1.4465384483337402 img loss 1.422147512435913 img loss 1.5059510469436646 img loss 1.4855583906173706 img loss 1.4465582370758057 img loss 1.5455914735794067 img loss 1.3829253911972046 img loss 1.6610740423202515 img loss 1.569974422454834 img loss 1.4948365688323975 img loss 1.5462148189544678 img loss 1.5928393602371216 img loss 1.6079059839248657 img loss 1.5117528438568115 img loss 1.45161771774292 img loss 1.4039682149887085 img loss 1.5100693702697754 img loss 1.3491894006729126 img loss 1.4735838174819946 img loss 1.5028470754623413 img loss 1.4614490270614624 img loss 1.4878060817718506 img loss 1.4856106042861938 img loss 1.4655110836029053 img loss 1.5161054134368896 img loss 1.532075047492981 img loss 1.68290114402771 img loss 1.4608073234558105 img loss 1.5783120393753052 img loss 1.3868237733840942 img loss 1.5617207288742065 img loss 1.5212479829788208 img loss 1.5080126523971558 img loss 1.4371846914291382 img loss 1.4593321084976196 img loss 1.4854886531829834 img loss 1.5187054872512817 img loss 1.5012414455413818 img loss 1.553518533706665 img loss 1.649444341659546 img loss 1.4963982105255127 img loss 1.5197367668151855 img loss 1.603599190711975 img loss 1.4090478420257568 img loss 1.3573887348175049 img loss 1.5922244787216187 img loss 1.4030181169509888 img loss 1.5003834962844849 img loss 1.5219943523406982 img loss 1.5130561590194702 img loss 1.4805903434753418 img loss 1.425534725189209 img loss 1.5630202293395996 img loss 1.5107614994049072 img loss 1.5398180484771729 img loss 1.6744028329849243 img loss 1.5721724033355713 img loss 1.4982435703277588 img loss 1.598468542098999 img loss 1.4746328592300415 img loss 1.4306418895721436 img loss 1.4489415884017944 img loss 1.520930528640747 img loss 1.3963841199874878 img loss 1.5948052406311035 img loss 1.5030834674835205 img loss 1.560990571975708 img loss 1.5316550731658936 img loss 1.5241484642028809 img loss 1.504757046699524 img loss 1.653497338294983 img loss 1.553890585899353 img loss 1.5182512998580933 img loss 1.5712220668792725 img loss 1.4660097360610962 img loss 1.5521368980407715 img loss 1.4629155397415161 img loss 1.385076642036438 img loss 1.6330115795135498 img loss 1.6002610921859741 img loss 1.6174638271331787 img loss 1.6492606401443481 img loss 1.3521459102630615 img loss 1.5764195919036865 img loss 1.4752694368362427 img loss 1.5176430940628052 img loss 1.537623643875122 img loss 1.5075269937515259 img loss 1.4588853120803833 img loss 1.580849051475525 img loss 1.6350799798965454 img loss 1.4248582124710083 img loss 1.4454114437103271 img loss 1.5341547727584839 img loss 1.448370337486267 img loss 1.6176892518997192 img loss 1.5247395038604736 {'loss': 1.5109, 'grad_norm': 0.2174481451511383, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1031765937805176 img loss 1.165225625038147 img loss 1.1874058246612549 img loss 1.165234088897705 img loss 1.2455657720565796 img loss 1.1437736749649048 img loss 1.1543827056884766 img loss 1.188138484954834 img loss 1.1417146921157837 img loss 1.1452579498291016 img loss 1.1334625482559204 img loss 1.188454031944275 img loss 1.1979869604110718 img loss 1.1733479499816895 img loss 1.137371301651001 img loss 1.2146954536437988 img loss 1.2871482372283936 img loss 1.1643471717834473 img loss 1.224872350692749 img loss 1.161219596862793 img loss 1.2152986526489258 img loss 1.1633223295211792 img loss 1.1813000440597534 img loss 1.2088541984558105 img loss 1.2357944250106812 img loss 1.2689247131347656 img loss 1.187629222869873 img loss 1.124903917312622 img loss 1.1775633096694946 img loss 1.2223913669586182 img loss 1.201621651649475 img loss 1.2415357828140259 img loss 1.2375731468200684 img loss 1.1482806205749512 img loss 1.2147936820983887 img loss 1.2033631801605225 img loss 1.1260151863098145 img loss 1.2070178985595703 img loss 1.248991847038269 img loss 1.192307472229004 img loss 1.1789404153823853 img loss 1.319358468055725 img loss 1.1999390125274658 img loss 1.2280946969985962 img loss 1.1511750221252441 img loss 1.1922001838684082 img loss 1.135956048965454 img loss 1.2056337594985962 img loss 1.176434874534607 img loss 1.1621023416519165 img loss 1.293662428855896 img loss 1.1966934204101562 img loss 1.1902790069580078 img loss 1.3569591045379639 img loss 1.2025456428527832 img loss 1.1820815801620483 img loss 1.207226037979126 img loss 1.1898361444473267 img loss 1.2044365406036377 img loss 1.1306707859039307 img loss 1.2365988492965698 img loss 1.2657418251037598 img loss 1.2229764461517334 img loss 1.1638238430023193 img loss 1.1767371892929077 img loss 1.2883281707763672 img loss 1.1857733726501465 img loss 1.2305848598480225 img loss 1.1359456777572632 img loss 1.2656700611114502 img loss 1.2293609380722046 img loss 1.267507791519165 img loss 1.1220694780349731 img loss 1.194555640220642 img loss 1.1311962604522705 img loss 1.1244500875473022 img loss 1.172039270401001 img loss 1.1891319751739502 img loss 1.1240668296813965 img loss 1.2627713680267334 img loss 1.3114585876464844 img loss 1.1899161338806152 img loss 1.1264795064926147 img loss 1.1720385551452637 img loss 1.2307265996932983 img loss 1.2024908065795898 img loss 1.1831278800964355 img loss 1.2138928174972534 img loss 1.1903003454208374 img loss 1.1551002264022827 img loss 1.203698992729187 img loss 1.1692322492599487 img loss 1.2157135009765625 img loss 1.1503781080245972 img loss 1.1898534297943115 img loss 1.1714495420455933 img loss 1.145644187927246 img loss 1.1792755126953125 img loss 1.1904226541519165 img loss 1.2632005214691162 img loss 1.1428463459014893 img loss 1.2487850189208984 img loss 1.2033748626708984 img loss 1.1963831186294556 img loss 1.1240406036376953 img loss 1.204007863998413 img loss 1.18537175655365 img loss 1.1432329416275024 img loss 1.1925334930419922 img loss 1.211921215057373 img loss 1.1911884546279907 img loss 1.2389931678771973 img loss 1.1816126108169556 img loss 1.2751668691635132 img loss 1.1739182472229004 img loss 1.302988886833191 img loss 1.1980760097503662 img loss 1.1508740186691284 img loss 1.2018628120422363 img loss 1.2312036752700806 img loss 1.2692055702209473 img loss 1.2003542184829712 img loss 1.2471932172775269 img loss 1.2314602136611938 img loss 1.1019856929779053 img loss 1.1660702228546143 img loss 1.344662070274353 img loss 1.226970911026001 {'loss': 1.1974, 'grad_norm': 0.195846289396286, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 2.005988121032715 img loss 1.8166370391845703 img loss 1.895986557006836 img loss 1.8954499959945679 img loss 1.8899624347686768 img loss 1.6826168298721313 img loss 1.6650089025497437 img loss 1.8403191566467285 img loss 1.7077528238296509 img loss 1.9273004531860352 img loss 1.6499449014663696 img loss 1.689459204673767 img loss 1.8013025522232056 img loss 1.7177796363830566 img loss 1.8478667736053467 img loss 1.756871223449707 img loss 1.6421760320663452 img loss 1.7480014562606812 img loss 1.9431028366088867 img loss 1.8708384037017822 img loss 1.8195210695266724 img loss 1.7783007621765137 img loss 1.587479829788208 img loss 1.6267496347427368 img loss 1.9115986824035645 img loss 1.695217490196228 img loss 1.79899001121521 img loss 1.9229371547698975 img loss 1.8238084316253662 img loss 1.7386709451675415 img loss 2.039525270462036 img loss 1.7352395057678223 img loss 1.9792643785476685 img loss 1.9251608848571777 img loss 1.7464030981063843 img loss 1.8333313465118408 img loss 1.8745313882827759 img loss 2.030264377593994 img loss 1.7609292268753052 img loss 1.8320670127868652 img loss 1.635689377784729 img loss 1.7204762697219849 img loss 1.889137625694275 img loss 1.9197461605072021 img loss 1.8570809364318848 img loss 1.833427906036377 img loss 1.9503912925720215 img loss 1.5713979005813599 img loss 1.963620662689209 img loss 1.8992799520492554 img loss 1.8619327545166016 img loss 1.6544080972671509 img loss 1.790541172027588 img loss 1.5718480348587036 img loss 1.6997754573822021 img loss 1.9633800983428955 img loss 1.8844690322875977 img loss 1.8271986246109009 img loss 1.9728140830993652 img loss 1.7317521572113037 img loss 1.6855788230895996 img loss 2.1181817054748535 img loss 1.5822261571884155 img loss 1.9748015403747559 img loss 1.961777687072754 img loss 1.9366991519927979 img loss 1.7557045221328735 img loss 1.8899002075195312 img loss 1.587288498878479 img loss 2.002955913543701 img loss 1.9009103775024414 img loss 1.646012783050537img loss 1.697757363319397 img loss 1.6185564994812012 img loss 1.8283053636550903 img loss 1.5452638864517212 img loss 1.7276015281677246 img loss 1.955894947052002 img loss 1.7758748531341553 img loss 1.7568280696868896 img loss 1.7076466083526611 img loss 1.8365129232406616 img loss 1.8062039613723755 img loss 2.0449421405792236 img loss 1.9754148721694946 img loss 2.0345287322998047 img loss 1.8782472610473633 img loss 1.804176926612854 img loss 1.8988337516784668 img loss 1.8310425281524658 img loss 1.9657713174819946 img loss 1.8429477214813232 img loss 1.682881474494934 img loss 1.8605337142944336 img loss 1.7311475276947021 img loss 1.7912962436676025 img loss 1.8711740970611572 img loss 1.5967684984207153 img loss 1.8014118671417236 img loss 1.950843334197998 img loss 2.0015435218811035 img loss 1.8152284622192383 img loss 1.8560125827789307 img loss 1.7522573471069336 img loss 1.848480463027954 img loss 1.722583293914795 img loss 1.7988731861114502 img loss 1.9412251710891724 img loss 1.9035342931747437 img loss 1.9535413980484009 img loss 1.6338869333267212 img loss 1.9752765893936157 img loss 2.2425074577331543 img loss 1.775576114654541 img loss 1.9613714218139648 img loss 1.784350037574768 img loss 1.7837867736816406 img loss 1.8479219675064087 img loss 1.7495074272155762 img loss 1.7715904712677002 img loss 1.5364195108413696 img loss 1.745018720626831 img loss 1.8834733963012695 img loss 2.018125057220459 img loss 1.7887909412384033 img loss 1.8269065618515015 img loss 1.7598598003387451 img loss 1.8869997262954712 {'loss': 1.8209, 'grad_norm': 0.33794498443603516, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3654077053070068 img loss 1.2780860662460327 img loss 1.3430737257003784 img loss 1.349784255027771 img loss 1.348225474357605 img loss 1.3487857580184937 img loss 1.3167444467544556 img loss 1.3507126569747925 img loss 1.3554909229278564 img loss 1.4602652788162231 img loss 1.2896912097930908 img loss 1.378994107246399 img loss 1.3966305255889893 img loss 1.3110297918319702 img loss 1.2889279127120972 img loss 1.3369091749191284 img loss 1.4268336296081543 img loss 1.3603827953338623 img loss 1.347815990447998 img loss 1.3336700201034546 img loss 1.3572012186050415 img loss 1.3627530336380005 img loss 1.4018927812576294 img loss 1.411811113357544 img loss 1.301877737045288 img loss 1.354699969291687 img loss 1.4839214086532593 img loss 1.4267922639846802 img loss 1.4132295846939087 img loss 1.3427083492279053 img loss 1.3695038557052612 img loss 1.355484127998352 img loss 1.432908535003662 img loss 1.4873336553573608 img loss 1.3689824342727661 img loss 1.2857259511947632 img loss 1.3211781978607178 img loss 1.3766061067581177 img loss 1.3619654178619385 img loss 1.3457369804382324 img loss 1.3494418859481812 img loss 1.2898707389831543 img loss 1.408706784248352 img loss 1.3881926536560059 img loss 1.5279051065444946 img loss 1.274755835533142 img loss 1.4137517213821411 img loss 1.4113801717758179 img loss 1.332096815109253 img loss 1.357529878616333 img loss 1.2728211879730225 img loss 1.330157995223999 img loss 1.3877350091934204 img loss 1.3510518074035645 img loss 1.3280797004699707 img loss 1.3737329244613647 img loss 1.4258911609649658 img loss 1.3874142169952393 img loss 1.5543042421340942 img loss 1.3909748792648315 img loss 1.3349615335464478 img loss 1.3851792812347412 img loss 1.3097410202026367 img loss 1.3961679935455322 img loss 1.3606791496276855 img loss 1.4470106363296509 img loss 1.2592990398406982 img loss 1.284185767173767 img loss 1.4613244533538818 img loss 1.334591031074524 img loss 1.3783528804779053 img loss 1.3063472509384155 img loss 1.4471100568771362 img loss 1.4676146507263184 img loss 1.3769451379776 img loss 1.4671918153762817 img loss 1.4448498487472534 img loss 1.2542378902435303 img loss 1.4018021821975708 img loss 1.3688023090362549 img loss 1.3820843696594238 img loss 1.37041175365448 img loss 1.3189692497253418 img loss 1.3832148313522339 img loss 1.4176143407821655 img loss 1.414620280265808 img loss 1.3949697017669678 img loss 1.3978607654571533 img loss 1.3210371732711792 img loss 1.4032186269760132 img loss 1.3992931842803955 img loss 1.4134876728057861 img loss 1.4575085639953613 img loss 1.3284897804260254 img loss 1.4196993112564087 img loss 1.287876009941101 img loss 1.3100123405456543 img loss 1.407060980796814 img loss 1.567736029624939 img loss 1.472439169883728img loss 1.5222057104110718 img loss 1.4871944189071655img loss 1.3019598722457886 img loss 1.3247389793395996 img loss 1.4996780157089233 img loss 1.3960107564926147 img loss 1.439799189567566 img loss 1.3155765533447266 img loss 1.3591368198394775 img loss 1.2993932962417603 img loss 1.4508310556411743 img loss 1.319614052772522 img loss 1.3228733539581299 img loss 1.2729567289352417 img loss 1.4443787336349487 img loss 1.401378870010376 img loss 1.4541095495224 img loss 1.3721963167190552 img loss 1.347347378730774 img loss 1.431161642074585 img loss 1.3859751224517822 img loss 1.333581566810608 img loss 1.338016390800476 img loss 1.4449409246444702 img loss 1.3385590314865112 img loss 1.3712068796157837 img loss 1.4049957990646362 img loss 1.402247667312622 {'loss': 1.3769, 'grad_norm': 0.3332614302635193, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3206571340560913 img loss 1.450583577156067 img loss 1.3825888633728027 img loss 1.3364428281784058 img loss 1.1759756803512573 img loss 1.2748568058013916 img loss 1.3303639888763428 img loss 1.237317442893982 img loss 1.3511263132095337 img loss 1.2213287353515625 img loss 1.2794454097747803 img loss 1.2822633981704712 img loss 1.175811529159546 img loss 1.1945627927780151 img loss 1.1598305702209473 img loss 1.2524687051773071 img loss 1.2887096405029297 img loss 1.405116319656372 img loss 1.3804795742034912 img loss 1.364603877067566 img loss 1.250148057937622 img loss 1.2759062051773071 img loss 1.2339224815368652 img loss 1.3338885307312012 img loss 1.3674012422561646 img loss 1.3674442768096924 img loss 1.2895841598510742 img loss 1.2262823581695557img loss 1.3871105909347534 img loss 1.187265396118164 img loss 1.4523411989212036 img loss 1.4174424409866333 img loss 1.4415841102600098 img loss 1.3149807453155518 img loss 1.261866569519043 img loss 1.3420740365982056 img loss 1.2952215671539307 img loss 1.2326788902282715 img loss 1.323960542678833 img loss 1.287173867225647 img loss 1.3435664176940918 img loss 1.311906099319458 img loss 1.2519965171813965 img loss 1.2927879095077515 img loss 1.3070448637008667 img loss 1.2586249113082886 img loss 1.2716233730316162 img loss 1.3231229782104492 img loss 1.416139841079712 img loss 1.263643503189087 img loss 1.3068346977233887 img loss 1.2189915180206299 img loss 1.3334847688674927 img loss 1.4071987867355347 img loss 1.434382677078247 img loss 1.2766470909118652 img loss 1.300845742225647 img loss 1.3479424715042114 img loss 1.3144222497940063 img loss 1.2641912698745728 img loss 1.3499504327774048 img loss 1.2196550369262695 img loss 1.2238658666610718 img loss 1.2874380350112915 img loss 1.3118089437484741 img loss 1.3296918869018555 img loss 1.2698410749435425 img loss 1.372819423675537 img loss 1.2282471656799316 img loss 1.2294435501098633 img loss 1.2614686489105225 img loss 1.3037891387939453 img loss 1.392661690711975 img loss 1.4064947366714478 img loss 1.3275736570358276 img loss 1.3356117010116577 img loss 1.3175930976867676 img loss 1.2435194253921509 img loss 1.3385004997253418 img loss 1.2195996046066284 img loss 1.1971068382263184 img loss 1.221861720085144 img loss 1.300901174545288 img loss 1.3525482416152954 img loss 1.3349922895431519 img loss 1.4135898351669312 img loss 1.2779451608657837 img loss 1.4171607494354248 img loss 1.3563209772109985 img loss 1.2810969352722168 img loss 1.3680790662765503 img loss 1.3113439083099365 img loss 1.320394515991211 img loss 1.249765396118164 img loss 1.3671048879623413 img loss 1.198014497756958 img loss 1.3777172565460205 img loss 1.288733720779419 img loss 1.3406397104263306 img loss 1.3787554502487183 img loss 1.3242332935333252 img loss 1.0975990295410156 img loss 1.2667633295059204 img loss 1.3978532552719116 img loss 1.2726558446884155 img loss 1.3355048894882202 img loss 1.2999333143234253 img loss 1.241573691368103 img loss 1.2640329599380493 img loss 1.3014949560165405 img loss 1.2465040683746338 img loss 1.2507189512252808 img loss 1.2944163084030151 img loss 1.2746412754058838 img loss 1.2425360679626465 img loss 1.2803001403808594 img loss 1.3185631036758423 img loss 1.216342568397522 img loss 1.3280304670333862 img loss 1.2400137186050415 img loss 1.3127069473266602 img loss 1.165663242340088 img loss 1.359870195388794 img loss 1.2915832996368408 img loss 1.402174472808838 img loss 1.2807252407073975 img loss 1.2341960668563843 img loss 1.289567232131958 {'loss': 1.3012, 'grad_norm': 0.46644285321235657, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2616972923278809 img loss 1.2323107719421387 img loss 1.219087839126587 img loss 1.217301607131958 img loss 1.2717469930648804 img loss 1.2676610946655273 img loss 1.1546510457992554 img loss 1.3178602457046509 img loss 1.2692465782165527 img loss 1.23334538936615 img loss 1.229288101196289 img loss 1.278649926185608 img loss 1.2691303491592407 img loss 1.2543482780456543 img loss 1.2027769088745117 img loss 1.158543348312378 img loss 1.2563602924346924 img loss 1.2147358655929565 img loss 1.2279624938964844 img loss 1.1827119588851929 img loss 1.194994568824768 img loss 1.1632957458496094 img loss 1.1941150426864624 img loss 1.2242745161056519 img loss 1.1758953332901 img loss 1.2085280418395996 img loss 1.2345726490020752 img loss 1.222397804260254 img loss 1.2363030910491943 img loss 1.2148252725601196 img loss 1.2297089099884033 img loss 1.3319776058197021 img loss 1.186337947845459 img loss 1.2033523321151733 img loss 1.2249069213867188 img loss 1.2574509382247925 img loss 1.2607592344284058 img loss 1.2446727752685547 img loss 1.2473671436309814 img loss 1.2061686515808105 img loss 1.1922527551651 img loss 1.2967281341552734 img loss 1.2098846435546875 img loss 1.2341727018356323 img loss 1.2914263010025024 img loss 1.237321138381958 img loss 1.2156314849853516 img loss 1.209383487701416 img loss 1.2494723796844482 img loss 1.2630226612091064 img loss 1.197735071182251 img loss 1.2266676425933838 img loss 1.1940524578094482 img loss 1.2451666593551636 img loss 1.2554845809936523 img loss 1.1971116065979004 img loss 1.2175730466842651 img loss 1.2180413007736206 img loss 1.2238168716430664 img loss 1.2318906784057617 img loss 1.2858178615570068 img loss 1.254655361175537 img loss 1.2044552564620972 img loss 1.2227153778076172 img loss 1.2270076274871826 img loss 1.2726463079452515 img loss 1.2246673107147217 img loss 1.2793018817901611 img loss 1.1547355651855469 img loss 1.1737778186798096 img loss 1.1958160400390625 img loss 1.1907668113708496 img loss 1.246766448020935 img loss 1.2036454677581787 img loss 1.2458902597427368 img loss 1.1773655414581299 img loss 1.329363465309143 img loss 1.3445489406585693 img loss 1.315548300743103 img loss 1.2992714643478394 img loss 1.2850282192230225 img loss 1.2324377298355103 img loss 1.2648643255233765 img loss 1.270397663116455 img loss 1.2827576398849487 img loss 1.2467020750045776 img loss 1.3012025356292725 img loss 1.2393157482147217 img loss 1.3203476667404175 img loss 1.1789257526397705 img loss 1.229020595550537 img loss 1.214414119720459 img loss 1.2504174709320068 img loss 1.1683273315429688 img loss 1.2219475507736206 img loss 1.2183479070663452 img loss 1.2800960540771484 img loss 1.1831398010253906 img loss 1.2566016912460327 img loss 1.2870985269546509 img loss 1.2274388074874878 img loss 1.2119114398956299 img loss 1.2187522649765015 img loss 1.2180860042572021 img loss 1.246840238571167 img loss 1.3678592443466187 img loss 1.266433596611023 img loss 1.272100806236267 img loss 1.2074607610702515 img loss 1.2666298151016235 img loss 1.2496066093444824 img loss 1.241584300994873 img loss 1.2906863689422607 img loss 1.2539610862731934 img loss 1.19766104221344 img loss 1.2400492429733276 img loss 1.3035800457000732 img loss 1.2822320461273193 img loss 1.2624351978302002 img loss 1.1716350317001343 img loss 1.2925065755844116 img loss 1.1433799266815186 img loss 1.2073109149932861 img loss 1.1950035095214844 img loss 1.201406478881836 img loss 1.2787444591522217 img loss 1.3058840036392212 img loss 1.2251789569854736 {'loss': 1.2376, 'grad_norm': 0.2222948968410492, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.24489426612854 img loss 1.2403342723846436 img loss 1.2193603515625 img loss 1.1830782890319824 img loss 1.2586017847061157 img loss 1.2469478845596313 img loss 1.3406649827957153 img loss 1.2949295043945312 img loss 1.2392959594726562 img loss 1.2747087478637695 img loss 1.2316921949386597 img loss 1.197983980178833 img loss 1.2783372402191162 img loss 1.2624564170837402 img loss 1.227929949760437 img loss 1.1783363819122314 img loss 1.231072187423706 img loss 1.3610947132110596 img loss 1.1395599842071533 img loss 1.2361412048339844 img loss 1.2848246097564697 img loss 1.2087198495864868 img loss 1.2465044260025024 img loss 1.1863869428634644 img loss 1.249976396560669 img loss 1.2341008186340332 img loss 1.2319363355636597 img loss 1.2969889640808105 img loss 1.2634633779525757 img loss 1.2026290893554688 img loss 1.2379965782165527 img loss 1.2744338512420654 img loss 1.3006540536880493 img loss 1.204179048538208 img loss 1.2684754133224487 img loss 1.2694823741912842 img loss 1.3406634330749512 img loss 1.2408405542373657 img loss 1.2341444492340088 img loss 1.3057979345321655 img loss 1.2792608737945557 img loss 1.195754885673523 img loss 1.2258870601654053 img loss 1.1462427377700806 img loss 1.293962001800537 img loss 1.2728939056396484 img loss 1.2056736946105957 img loss 1.25301194190979 img loss 1.159041166305542 img loss 1.2485721111297607 img loss 1.2809643745422363 img loss 1.2008241415023804 img loss 1.2597858905792236 img loss 1.3019837141036987 img loss 1.2370033264160156 img loss 1.205317735671997 img loss 1.231940746307373 img loss 1.204119086265564 img loss 1.253121256828308 img loss 1.3379244804382324 img loss 1.2757335901260376 img loss 1.2459796667099 img loss 1.2025697231292725 img loss 1.239187479019165 img loss 1.3123830556869507 img loss 1.2266604900360107 img loss 1.296457290649414 img loss 1.1923284530639648 img loss 1.2129939794540405 img loss 1.2340091466903687 img loss 1.2469804286956787 img loss 1.3138827085494995 img loss 1.186152696609497 img loss 1.2353477478027344 img loss 1.289408564567566 img loss 1.2584874629974365 img loss 1.235185980796814img loss 1.2997527122497559 img loss 1.2726895809173584 img loss 1.208983302116394 img loss 1.300123929977417 img loss 1.2384488582611084 img loss 1.189074158668518 img loss 1.308685541152954 img loss 1.2924407720565796 img loss 1.1799362897872925 img loss 1.1864676475524902 img loss 1.1881999969482422 img loss 1.1960846185684204 img loss 1.2834293842315674 img loss 1.297911524772644 img loss 1.2789462804794312 img loss 1.2520477771759033img loss 1.2526371479034424 img loss 1.2422412633895874 img loss 1.2552120685577393 img loss 1.2546087503433228 img loss 1.3093308210372925 img loss 1.258000135421753 img loss 1.1588821411132812 img loss 1.1772174835205078 img loss 1.3889256715774536 img loss 1.3257032632827759 img loss 1.2071864604949951 img loss 1.1698267459869385 img loss 1.267438292503357 img loss 1.199297308921814 img loss 1.224198818206787 img loss 1.3137485980987549 img loss 1.313579797744751 img loss 1.2190284729003906 img loss 1.2346165180206299 img loss 1.2200359106063843 img loss 1.2709182500839233 img loss 1.188823938369751 img loss 1.2077445983886719 img loss 1.1851381063461304 img loss 1.2011574506759644 img loss 1.2460181713104248 img loss 1.1729589700698853 img loss 1.1865782737731934 img loss 1.267022967338562 img loss 1.2158071994781494 img loss 1.2734266519546509 img loss 1.1874401569366455 img loss 1.2371184825897217 img loss 1.3113629817962646 img loss 1.2215582132339478 {'loss': 1.2446, 'grad_norm': 0.3056342899799347, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5190978050231934 img loss 1.4381368160247803 img loss 1.410245656967163 img loss 1.3655116558074951 img loss 1.4548228979110718 img loss 1.348530650138855 img loss 1.4050990343093872 img loss 1.4828990697860718 img loss 1.5011422634124756 img loss 1.5131890773773193 img loss 1.5573475360870361 img loss 1.4052664041519165 img loss 1.505225658416748 img loss 1.4629162549972534 img loss 1.4689834117889404 img loss 1.5907855033874512 img loss 1.4968937635421753 img loss 1.5025578737258911 img loss 1.466080904006958 img loss 1.2703511714935303 img loss 1.4514893293380737 img loss 1.4926011562347412 img loss 1.5388778448104858 img loss 1.3912479877471924 img loss 1.4973810911178589 img loss 1.4714434146881104 img loss 1.43709135055542 img loss 1.4657971858978271 img loss 1.4864380359649658 img loss 1.4399974346160889 img loss 1.4666497707366943 img loss 1.4638217687606812 img loss 1.4479024410247803 img loss 1.5838648080825806 img loss 1.4245277643203735 img loss 1.535946011543274 img loss 1.3828461170196533 img loss 1.4353276491165161 img loss 1.3664259910583496 img loss 1.4427281618118286 img loss 1.5244985818862915 img loss 1.3823920488357544 img loss 1.3254201412200928 img loss 1.4239202737808228 img loss 1.419009804725647 img loss 1.6417850255966187 img loss 1.2951886653900146 img loss 1.4238380193710327 img loss 1.4491974115371704 img loss 1.4498496055603027 img loss 1.495818018913269 img loss 1.451133370399475 img loss 1.4579211473464966 img loss 1.3686856031417847 img loss 1.594499111175537 img loss 1.5409191846847534 img loss 1.4719655513763428 img loss 1.4196988344192505 img loss 1.3916081190109253 img loss 1.5829927921295166 img loss 1.3930468559265137 img loss 1.5277215242385864 img loss 1.4674094915390015 img loss 1.6384283304214478 img loss 1.5922108888626099 img loss 1.5323947668075562 img loss 1.4271652698516846 img loss 1.5104920864105225 img loss 1.6353923082351685 img loss 1.402240514755249 img loss 1.4985793828964233 img loss 1.4963265657424927 img loss 1.5712651014328003 img loss 1.560081124305725 img loss 1.5328739881515503 img loss 1.3850287199020386 img loss 1.4750914573669434 img loss 1.6366580724716187 img loss 1.6739516258239746 img loss 1.3517886400222778 img loss 1.4251797199249268 img loss 1.524457573890686 img loss 1.5098706483840942 img loss 1.519895315170288 img loss 1.4394506216049194 img loss 1.4763615131378174 img loss 1.342776894569397 img loss 1.5172035694122314 img loss 1.3717721700668335 img loss 1.417702555656433 img loss 1.4669536352157593 img loss 1.3364312648773193 img loss 1.3919726610183716 img loss 1.4261888265609741 img loss 1.4118998050689697 img loss 1.461268663406372 img loss 1.3724610805511475 img loss 1.392518162727356 img loss 1.3774082660675049 img loss 1.517116904258728 img loss 1.5660659074783325 img loss 1.4735838174819946 img loss 1.5674655437469482 img loss 1.5187573432922363 img loss 1.3309704065322876 img loss 1.4611319303512573 img loss 1.3842660188674927 img loss 1.4837697744369507 img loss 1.518865942955017 img loss 1.5565258264541626 img loss 1.3917394876480103 img loss 1.3984304666519165 img loss 1.5319100618362427 img loss 1.3824018239974976 img loss 1.427805781364441 img loss 1.5971232652664185 img loss 1.4798833131790161 img loss 1.4308685064315796 img loss 1.4396413564682007 img loss 1.4899400472640991 img loss 1.443599820137024 img loss 1.3160438537597656 img loss 1.569311499595642 img loss 1.5330613851547241 img loss 1.5144298076629639 img loss 1.4934741258621216 img loss 1.5221012830734253 img loss 1.5976204872131348 {'loss': 1.4682, 'grad_norm': 0.3757278621196747, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4483798742294312 img loss 1.3255866765975952 img loss 1.3571999073028564 img loss 1.3823953866958618 img loss 1.2685178518295288 img loss 1.3104488849639893 img loss 1.4082176685333252 img loss 1.5003107786178589 img loss 1.3015941381454468 img loss 1.3715367317199707 img loss 1.3634885549545288 img loss 1.412372350692749 img loss 1.329797387123108 img loss 1.3695954084396362 img loss 1.4266666173934937 img loss 1.4642164707183838 img loss 1.3163604736328125 img loss 1.333778977394104 img loss 1.4152922630310059 img loss 1.3236091136932373 img loss 1.426155686378479 img loss 1.295670986175537 img loss 1.3512450456619263 img loss 1.4098376035690308 img loss 1.3620429039001465 img loss 1.352881908416748 img loss 1.3680604696273804 img loss 1.4323395490646362 img loss 1.4011492729187012 img loss 1.3021135330200195 img loss 1.3701226711273193 img loss 1.313473105430603 img loss 1.3899842500686646 img loss 1.3623372316360474 img loss 1.3788282871246338 img loss 1.3636480569839478 img loss 1.3751133680343628 img loss 1.3558732271194458 img loss 1.432717204093933 img loss 1.4695065021514893 img loss 1.4604326486587524 img loss 1.3153550624847412 img loss 1.3763004541397095 img loss 1.2965772151947021 img loss 1.3282277584075928 img loss 1.327372431755066 img loss 1.3340386152267456 img loss 1.3618195056915283 img loss 1.2326580286026 img loss 1.4357637166976929 img loss 1.4277864694595337 img loss 1.3945835828781128 img loss 1.2981071472167969 img loss 1.3126888275146484 img loss 1.399796724319458 img loss 1.5184528827667236 img loss 1.361461877822876 img loss 1.4450689554214478 img loss 1.421038031578064 img loss 1.3485268354415894 img loss 1.3105299472808838 img loss 1.3292217254638672 img loss 1.4676101207733154 img loss 1.406215786933899 img loss 1.4457732439041138 img loss 1.4562411308288574 img loss 1.2862361669540405 img loss 1.316410779953003 img loss 1.3504841327667236 img loss 1.3629876375198364 img loss 1.3380191326141357 img loss 1.4890750646591187 img loss 1.373392939567566 img loss 1.4399038553237915 img loss 1.4894031286239624 img loss 1.315142035484314 img loss 1.3651721477508545 img loss 1.3409340381622314 img loss 1.3909354209899902img loss 1.4450428485870361 img loss 1.4483582973480225 img loss 1.3755271434783936 img loss 1.3129738569259644 img loss 1.4338194131851196 img loss 1.3923933506011963 img loss 1.4084852933883667 img loss 1.5499320030212402 img loss 1.3951078653335571 img loss 1.3648850917816162 img loss 1.433003306388855 img loss 1.4308665990829468 img loss 1.4151071310043335 img loss 1.503546953201294 img loss 1.3482310771942139 img loss 1.3940683603286743 img loss 1.5118438005447388 img loss 1.3090779781341553 img loss 1.4259690046310425 img loss 1.3548119068145752 img loss 1.3819613456726074 img loss 1.4295262098312378 img loss 1.3556933403015137 img loss 1.4207006692886353 img loss 1.3560808897018433 img loss 1.4010087251663208 img loss 1.3864167928695679 img loss 1.329610824584961 img loss 1.361751914024353 img loss 1.4621615409851074 img loss 1.3574402332305908 img loss 1.2802551984786987 img loss 1.302398681640625 img loss 1.3764910697937012 img loss 1.2715173959732056 img loss 1.3542181253433228 img loss 1.2971662282943726 img loss 1.4475321769714355 img loss 1.323606252670288 img loss 1.5281203985214233 img loss 1.3409088850021362 img loss 1.446058750152588 img loss 1.2612348794937134 img loss 1.3793843984603882 img loss 1.4216210842132568 img loss 1.41153883934021 img loss 1.4161933660507202 img loss 1.327582836151123 img loss 1.3251938819885254 {'loss': 1.3798, 'grad_norm': 0.2869732677936554, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3425172567367554 img loss 1.3133779764175415 img loss 1.2178890705108643 img loss 1.3909623622894287 img loss 1.4162428379058838 img loss 1.404500126838684 img loss 1.3225024938583374 img loss 1.4110256433486938 img loss 1.3095988035202026 img loss 1.3388901948928833 img loss 1.3760583400726318 img loss 1.350175142288208 img loss 1.426072597503662 img loss 1.3408516645431519 img loss 1.3460415601730347 img loss 1.3192901611328125 img loss 1.3483303785324097 img loss 1.3267595767974854 img loss 1.3576829433441162 img loss 1.4623020887374878 img loss 1.3338971138000488 img loss 1.3585448265075684 img loss 1.2817051410675049 img loss 1.347013235092163 img loss 1.277656078338623 img loss 1.3215376138687134 img loss 1.310381293296814 img loss 1.323331356048584 img loss 1.2493098974227905 img loss 1.4134260416030884 img loss 1.3778380155563354 img loss 1.3277748823165894 img loss 1.3504420518875122 img loss 1.3517911434173584 img loss 1.415047287940979 img loss 1.348975419998169 img loss 1.4201712608337402 img loss 1.343522310256958 img loss 1.2674916982650757 img loss 1.3497369289398193 img loss 1.322331190109253 img loss 1.3443130254745483 img loss 1.381485104560852 img loss 1.4421240091323853 img loss 1.2903498411178589 img loss 1.311532974243164 img loss 1.3511977195739746 img loss 1.369615912437439 img loss 1.355639934539795 img loss 1.3268054723739624 img loss 1.318901777267456 img loss 1.4087741374969482 img loss 1.3164951801300049 img loss 1.3796956539154053 img loss 1.490638017654419 img loss 1.2433421611785889 img loss 1.312305212020874 img loss 1.2207696437835693 img loss 1.3348631858825684 img loss 1.3025338649749756 img loss 1.3313833475112915 img loss 1.5483061075210571 img loss 1.2868530750274658 img loss 1.2447859048843384 img loss 1.198750376701355 img loss 1.3074404001235962 img loss 1.4216350317001343 img loss 1.4058526754379272 img loss 1.3857333660125732 img loss 1.3357857465744019 img loss 1.3340507745742798 img loss 1.3554608821868896 img loss 1.2573505640029907 img loss 1.351619005203247 img loss 1.449364185333252 img loss 1.3609187602996826 img loss 1.3202414512634277 img loss 1.3209034204483032 img loss 1.2298922538757324 img loss 1.5199838876724243 img loss 1.2484703063964844 img loss 1.376298427581787 img loss 1.3450604677200317 img loss 1.3697282075881958 img loss 1.3827592134475708 img loss 1.2449698448181152 img loss 1.3187689781188965 img loss 1.3395028114318848 img loss 1.3337007761001587 img loss 1.431957483291626 img loss 1.3387969732284546 img loss 1.242457389831543 img loss 1.381022334098816 img loss 1.2262194156646729 img loss 1.4126354455947876 img loss 1.3177564144134521 img loss 1.2903718948364258 img loss 1.2874653339385986 img loss 1.331830620765686 img loss 1.2277408838272095 img loss 1.3674758672714233 img loss 1.3693268299102783 img loss 1.3277348279953003 img loss 1.3193562030792236 img loss 1.3397680521011353 img loss 1.3717691898345947 img loss 1.4093266725540161 img loss 1.4095113277435303 img loss 1.3736079931259155 img loss 1.2497705221176147 img loss 1.2852723598480225 img loss 1.4100500345230103 img loss 1.3005527257919312 img loss 1.2638479471206665 img loss 1.3663554191589355 img loss 1.3817460536956787 img loss 1.3471100330352783 img loss 1.299354910850525 img loss 1.3798469305038452 img loss 1.349523663520813 img loss 1.3015897274017334 img loss 1.3579046726226807 img loss 1.2928918600082397 img loss 1.33406662940979 img loss 1.2736448049545288 img loss 1.3609931468963623 img loss 1.2639092206954956 img loss 1.3432018756866455 {'loss': 1.3405, 'grad_norm': 0.24064859747886658, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2635166645050049 img loss 1.2301030158996582 img loss 1.2881760597229004 img loss 1.2143123149871826 img loss 1.304136037826538 img loss 1.2969133853912354 img loss 1.3054325580596924 img loss 1.2593019008636475 img loss 1.235827088356018 img loss 1.3426721096038818 img loss 1.2771202325820923 img loss 1.3207718133926392 img loss 1.2389658689498901 img loss 1.1460670232772827 img loss 1.226858139038086 img loss 1.1646355390548706 img loss 1.2782419919967651 img loss 1.249826192855835 img loss 1.2475725412368774 img loss 1.1868195533752441 img loss 1.2377965450286865 img loss 1.24006986618042 img loss 1.180887222290039 img loss 1.2248249053955078 img loss 1.216204047203064 img loss 1.2328020334243774 img loss 1.256234884262085 img loss 1.2322056293487549 img loss 1.3489203453063965 img loss 1.3663243055343628 img loss 1.2186329364776611 img loss 1.205432415008545 img loss 1.2542955875396729 img loss 1.2708454132080078 img loss 1.1779332160949707 img loss 1.2678253650665283 img loss 1.2640187740325928 img loss 1.3485816717147827 img loss 1.2541316747665405 img loss 1.2612431049346924 img loss 1.1679329872131348 img loss 1.241420030593872 img loss 1.1979141235351562 img loss 1.2601326704025269 img loss 1.278569221496582 img loss 1.1951652765274048 img loss 1.2265251874923706 img loss 1.2156028747558594 img loss 1.2938209772109985 img loss 1.2275794744491577 img loss 1.2633259296417236 img loss 1.3369497060775757 img loss 1.2428789138793945 img loss 1.225663661956787 img loss 1.2507904767990112 img loss 1.2467230558395386 img loss 1.2663064002990723 img loss 1.1006269454956055 img loss 1.2239614725112915 img loss 1.2616477012634277 img loss 1.248557448387146 img loss 1.1444790363311768 img loss 1.2633299827575684 img loss 1.2298353910446167 img loss 1.2142975330352783 img loss 1.217191219329834 img loss 1.2374660968780518 img loss 1.2925362586975098 img loss 1.2274651527404785 img loss 1.1701815128326416 img loss 1.2704453468322754 img loss 1.2787871360778809 img loss 1.268450140953064 img loss 1.2088717222213745 img loss 1.2459529638290405 img loss 1.232166051864624 img loss 1.196164846420288 img loss 1.2833013534545898 img loss 1.2626231908798218 img loss 1.2025833129882812 img loss 1.2569677829742432 img loss 1.1075736284255981 img loss 1.1685150861740112 img loss 1.2220624685287476 img loss 1.2656151056289673 img loss 1.2057640552520752 img loss 1.270422339439392 img loss 1.2521995306015015 img loss 1.196264624595642 img loss 1.1705780029296875 img loss 1.1935336589813232 img loss 1.3696491718292236 img loss 1.2779642343521118 img loss 1.3150403499603271 img loss 1.274290680885315 img loss 1.259258508682251 img loss 1.2179460525512695 img loss 1.3093712329864502 img loss 1.2812199592590332 img loss 1.1883691549301147 img loss 1.2068732976913452 img loss 1.2351216077804565 img loss 1.2070060968399048 img loss 1.2675977945327759 img loss 1.1623423099517822 img loss 1.2176470756530762 img loss 1.2114843130111694 img loss 1.240678071975708 img loss 1.2479205131530762 img loss 1.3037385940551758 img loss 1.2971341609954834 img loss 1.2508407831192017 img loss 1.2860431671142578 img loss 1.2349427938461304 img loss 1.2567596435546875 img loss 1.1797300577163696 img loss 1.1968982219696045 img loss 1.1593353748321533 img loss 1.3032268285751343 img loss 1.2979398965835571 img loss 1.2283321619033813 img loss 1.2429752349853516 img loss 1.2208471298217773 img loss 1.2315807342529297 img loss 1.2243804931640625 img loss 1.2544550895690918 img loss 1.2599399089813232 img loss 1.2253358364105225 {'loss': 1.2423, 'grad_norm': 0.2645542621612549, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.21237313747406 img loss 1.2328050136566162 img loss 1.2567791938781738 img loss 1.1843674182891846 img loss 1.3062962293624878 img loss 1.2426906824111938 img loss 1.159936547279358 img loss 1.2677675485610962 img loss 1.2346231937408447 img loss 1.1642494201660156 img loss 1.2391846179962158 img loss 1.2044272422790527 img loss 1.2186425924301147 img loss 1.1913905143737793 img loss 1.2892614603042603 img loss 1.2282837629318237 img loss 1.2473171949386597 img loss 1.1682658195495605 img loss 1.2623947858810425 img loss 1.2925662994384766 img loss 1.163039207458496 img loss 1.2371171712875366 img loss 1.2013006210327148 img loss 1.2229889631271362 img loss 1.2266478538513184 img loss 1.1746944189071655 img loss 1.3400324583053589 img loss 1.2361855506896973 img loss 1.294777512550354 img loss 1.3183695077896118 img loss 1.2352402210235596 img loss 1.2076364755630493 img loss 1.2608155012130737 img loss 1.2665575742721558 img loss 1.3136155605316162 img loss 1.2259938716888428 img loss 1.2720130681991577 img loss 1.2516381740570068 img loss 1.1799730062484741 img loss 1.20999014377594 img loss 1.200439214706421 img loss 1.202142357826233 img loss 1.145457148551941 img loss 1.2639747858047485 img loss 1.2300350666046143 img loss 1.2137293815612793 img loss 1.2776391506195068 img loss 1.245758295059204 img loss 1.2346899509429932 img loss 1.2425782680511475 img loss 1.2266039848327637 img loss 1.237428903579712 img loss 1.283437728881836 img loss 1.1916872262954712 img loss 1.1601557731628418 img loss 1.1483664512634277 img loss 1.270920753479004 img loss 1.3205387592315674 img loss 1.2454065084457397 img loss 1.2016470432281494 img loss 1.2439913749694824 img loss 1.1946953535079956 img loss 1.2798792123794556 img loss 1.2230924367904663 img loss 1.2338494062423706 img loss 1.2352757453918457 img loss 1.2332980632781982 img loss 1.2001923322677612 img loss 1.2453001737594604 img loss 1.191915512084961 img loss 1.2287129163742065 img loss 1.294673204421997 img loss 1.2677065134048462 img loss 1.1641898155212402 img loss 1.2172646522521973 img loss 1.2336244583129883 img loss 1.2444195747375488 img loss 1.2213443517684937 img loss 1.2382428646087646 img loss 1.1766581535339355 img loss 1.1801751852035522 img loss 1.208243727684021 img loss 1.1696269512176514 img loss 1.2037855386734009 img loss 1.2302268743515015 img loss 1.1958950757980347 img loss 1.208107352256775 img loss 1.1827058792114258 img loss 1.1829371452331543 img loss 1.234475016593933 img loss 1.2626609802246094 img loss 1.1895630359649658 img loss 1.2087409496307373 img loss 1.2414028644561768 img loss 1.28191339969635 img loss 1.2292954921722412 img loss 1.258085012435913 img loss 1.21254301071167 img loss 1.3119739294052124 img loss 1.1844825744628906 img loss 1.2351367473602295 img loss 1.1755988597869873 img loss 1.2321323156356812 img loss 1.236045241355896 img loss 1.2835625410079956 img loss 1.2704176902770996 img loss 1.183133602142334 img loss 1.2206004858016968 img loss 1.215759515762329 img loss 1.1702423095703125 img loss 1.2499431371688843 img loss 1.2350287437438965 img loss 1.2305984497070312 img loss 1.2282911539077759 img loss 1.144676923751831 img loss 1.2668365240097046 img loss 1.3081239461898804 img loss 1.2645695209503174 img loss 1.2269198894500732 img loss 1.2134052515029907 img loss 1.2031621932983398 img loss 1.234421968460083 img loss 1.2421903610229492 img loss 1.254557490348816 img loss 1.2060154676437378 img loss 1.1738312244415283 img loss 1.142303705215454 img loss 1.166330337524414 {'loss': 1.2277, 'grad_norm': 0.28609535098075867, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1018414497375488 img loss 1.1889991760253906 img loss 1.1542526483535767 img loss 1.1856491565704346 img loss 1.218450903892517 img loss 1.2343801259994507 img loss 1.2083631753921509 img loss 1.1610840559005737 img loss 1.1693443059921265 img loss 1.168344259262085 img loss 1.1418344974517822 img loss 1.1544733047485352 img loss 1.1838592290878296 img loss 1.215084433555603 img loss 1.161608099937439 img loss 1.1874117851257324 img loss 1.1825531721115112 img loss 1.1314235925674438 img loss 1.2252346277236938 img loss 1.227231740951538 img loss 1.2678278684616089 img loss 1.206915259361267 img loss 1.1342233419418335 img loss 1.1586765050888062 img loss 1.2906503677368164 img loss 1.1233491897583008 img loss 1.0915344953536987 img loss 1.2609671354293823 img loss 1.1720826625823975 img loss 1.1369612216949463 img loss 1.2800824642181396 img loss 1.1609290838241577 img loss 1.2409416437149048 img loss 1.1348079442977905 img loss 1.1929445266723633 img loss 1.183030366897583 img loss 1.1702854633331299 img loss 1.1872714757919312 img loss 1.2514424324035645 img loss 1.2041605710983276 img loss 1.2210454940795898 img loss 1.196939468383789 img loss 1.1691805124282837 img loss 1.2085580825805664 img loss 1.2650517225265503 img loss 1.1710240840911865 img loss 1.197812795639038 img loss 1.2981411218643188 img loss 1.211851954460144 img loss 1.1712853908538818 img loss 1.1430280208587646 img loss 1.1625021696090698 img loss 1.209423303604126 img loss 1.1875165700912476 img loss 1.1694672107696533 img loss 1.2255791425704956 img loss 1.2220321893692017 img loss 1.1521018743515015 img loss 1.2402701377868652 img loss 1.2078157663345337 img loss 1.178321123123169 img loss 1.1741573810577393 img loss 1.2519816160202026 img loss 1.1912238597869873 img loss 1.1645303964614868 img loss 1.1710487604141235 img loss 1.2051162719726562 img loss 1.20876944065094 img loss 1.2034004926681519 img loss 1.2249459028244019 img loss 1.1633408069610596 img loss 1.2378944158554077 img loss 1.2479807138442993 img loss 1.2660101652145386 img loss 1.1882078647613525 img loss 1.2389997243881226 img loss 1.1919755935668945 img loss 1.1433194875717163 img loss 1.235013723373413 img loss 1.1701513528823853 img loss 1.167650818824768 img loss 1.208031177520752 img loss 1.1563361883163452 img loss 1.218261480331421 img loss 1.1259572505950928 img loss 1.1352262496948242 img loss 1.1003469228744507 img loss 1.154928207397461 img loss 1.1608442068099976 img loss 1.2007306814193726 img loss 1.1928175687789917 img loss 1.1232614517211914 img loss 1.21053147315979 img loss 1.2081198692321777 img loss 1.1701388359069824 img loss 1.2245852947235107 img loss 1.2153348922729492 img loss 1.1494191884994507 img loss 1.2220350503921509 img loss 1.1888408660888672 img loss 1.2147679328918457 img loss 1.1845594644546509 img loss 1.185934066772461 img loss 1.1281572580337524 img loss 1.1284840106964111 img loss 1.2168519496917725 img loss 1.133244276046753 img loss 1.2577192783355713 img loss 1.2063636779785156 img loss 1.1787831783294678 img loss 1.2008312940597534 img loss 1.221800684928894 img loss 1.1522196531295776 img loss 1.1760754585266113 img loss 1.1862330436706543 img loss 1.1674076318740845 img loss 1.2063626050949097 img loss 1.269188404083252 img loss 1.1932291984558105 img loss 1.1563427448272705 img loss 1.1883485317230225 img loss 1.1478996276855469 img loss 1.173925757408142 img loss 1.1586884260177612 img loss 1.1657413244247437 img loss 1.1644865274429321 img loss 1.2007721662521362 img loss 1.1557426452636719 {'loss': 1.189, 'grad_norm': 0.30559468269348145, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.7308104038238525 img loss 1.5676671266555786 img loss 1.5956343412399292 img loss 1.6502788066864014 img loss 1.6830273866653442 img loss 1.6224322319030762 img loss 1.6396572589874268 img loss 1.6654293537139893 img loss 1.5060515403747559 img loss 1.5521924495697021 img loss 1.4689265489578247 img loss 1.6408534049987793 img loss 1.493979573249817 img loss 1.4946235418319702 img loss 1.5057995319366455 img loss 1.4119617938995361 img loss 1.720464825630188 img loss 1.6547760963439941 img loss 1.5192469358444214 img loss 1.8107744455337524 img loss 1.4880211353302002 img loss 1.573973298072815 img loss 1.7167969942092896 img loss 1.6217519044876099 img loss 1.5276800394058228 img loss 1.5527347326278687 img loss 1.7703499794006348 img loss 1.5148327350616455 img loss 1.601631760597229 img loss 1.4418662786483765 img loss 1.5687397718429565 img loss 1.6505743265151978 img loss 1.5968440771102905 img loss 1.5289928913116455 img loss 1.564971685409546 img loss 1.5405808687210083 img loss 1.4395670890808105 img loss 1.5812277793884277 img loss 1.6026575565338135 img loss 1.4886949062347412 img loss 1.5475691556930542 img loss 1.482022762298584 img loss 1.4815475940704346 img loss 1.6457018852233887 img loss 1.613412618637085 img loss 1.6844829320907593 img loss 1.7484322786331177 img loss 1.5743253231048584 img loss 1.4900001287460327 img loss 1.6976004838943481 img loss 1.5962567329406738img loss 1.6453994512557983 img loss 1.61089289188385 img loss 1.5116946697235107 img loss 1.560271143913269 img loss 1.5785983800888062 img loss 1.6026511192321777 img loss 1.607785940170288 img loss 1.4992035627365112 img loss 1.5950192213058472 img loss 1.6485179662704468 img loss 1.533311367034912 img loss 1.6490501165390015 img loss 1.7251980304718018 img loss 1.7533632516860962 img loss 1.4777833223342896 img loss 1.4699655771255493 img loss 1.8161965608596802 img loss 1.7316293716430664 img loss 1.5234686136245728 img loss 1.6436926126480103 img loss 1.5671401023864746 img loss 1.648118495941162 img loss 1.6126395463943481 img loss 1.5240367650985718 img loss 1.5519421100616455 img loss 1.6181139945983887 img loss 1.4859756231307983 img loss 1.4124921560287476 img loss 1.403383493423462 img loss 1.3722293376922607 img loss 1.7685890197753906 img loss 1.698472499847412 img loss 1.4417344331741333 img loss 1.4189590215682983 img loss 1.6353205442428589 img loss 1.5451980829238892 img loss 1.5280464887619019 img loss 1.5610681772232056 img loss 1.5199857950210571 img loss 1.5210274457931519 img loss 1.5480865240097046 img loss 1.781354308128357 img loss 1.4411700963974 img loss 1.5435941219329834 img loss 1.6130651235580444 img loss 1.5297226905822754 img loss 1.5916950702667236 img loss 1.5339491367340088 img loss 1.467626690864563 img loss 1.7469428777694702 img loss 1.6038305759429932 img loss 1.6049202680587769img loss 1.4900546073913574 img loss 1.5630075931549072 img loss 1.6265226602554321 img loss 1.5070586204528809 img loss 1.5357040166854858 img loss 1.617003321647644 img loss 1.596954107284546 img loss 1.5136027336120605 img loss 1.689190149307251 img loss 1.6173434257507324 img loss 1.5417835712432861 img loss 1.6427013874053955 img loss 1.6627815961837769 img loss 1.3797539472579956 img loss 1.6358288526535034 img loss 1.693959355354309 img loss 1.5401455163955688 img loss 1.4976451396942139 img loss 1.4950225353240967 img loss 1.6502182483673096 img loss 1.6517959833145142 img loss 1.5801604986190796 img loss 1.5951855182647705 img loss 1.5388929843902588 img loss 1.628996729850769 {'loss': 1.5811, 'grad_norm': 0.403719425201416, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3740363121032715 img loss 1.31371009349823 img loss 1.7136424779891968 img loss 1.2809343338012695 img loss 1.453242540359497 img loss 1.4669133424758911 img loss 1.2807918787002563 img loss 1.341530442237854 img loss 1.3244168758392334 img loss 1.403541922569275 img loss 1.451235055923462 img loss 1.4207481145858765 img loss 1.432167887687683 img loss 1.5414329767227173 img loss 1.3667042255401611 img loss 1.4374744892120361 img loss 1.4183322191238403 img loss 1.4183058738708496 img loss 1.3729987144470215 img loss 1.3809698820114136 img loss 1.3914768695831299 img loss 1.444159746170044 img loss 1.392078161239624 img loss 1.5302331447601318 img loss 1.3945575952529907 img loss 1.2160699367523193 img loss 1.4630666971206665 img loss 1.3388572931289673 img loss 1.4615092277526855 img loss 1.452480673789978 img loss 1.703696608543396 img loss 1.3311686515808105 img loss 1.3306277990341187 img loss 1.3273247480392456 img loss 1.447126030921936 img loss 1.2817037105560303 img loss 1.4483076333999634 img loss 1.4317586421966553 img loss 1.3426214456558228 img loss 1.2967194318771362 img loss 1.3981302976608276 img loss 1.4018787145614624 img loss 1.4216638803482056 img loss 1.4350608587265015 img loss 1.4675530195236206 img loss 1.3824217319488525 img loss 1.483031988143921 img loss 1.454230546951294 img loss 1.367963194847107 img loss 1.5917813777923584 img loss 1.4160453081130981 img loss 1.479413628578186 img loss 1.346523404121399 img loss 1.415563941001892 img loss 1.3476473093032837 img loss 1.387260913848877 img loss 1.5050264596939087 img loss 1.4295488595962524 img loss 1.4752944707870483 img loss 1.3281655311584473 img loss 1.4213807582855225 img loss 1.4731124639511108 img loss 1.3261302709579468 img loss 1.536149501800537 img loss 1.3802989721298218 img loss 1.362598180770874 img loss 1.482815146446228 img loss 1.370715618133545 img loss 1.4299982786178589 img loss 1.4145071506500244 img loss 1.582830548286438 img loss 1.4367585182189941 img loss 1.4358433485031128 img loss 1.3882795572280884 img loss 1.3486692905426025 img loss 1.520383358001709 img loss 1.3864872455596924 img loss 1.247351050376892 img loss 1.4920490980148315 img loss 1.5023027658462524 img loss 1.3778598308563232 img loss 1.46573007106781 img loss 1.5636471509933472 img loss 1.4362751245498657 img loss 1.474731683731079 img loss 1.3241115808486938 img loss 1.329660177230835 img loss 1.371211290359497 img loss 1.4499554634094238 img loss 1.4645135402679443 img loss 1.362574815750122 img loss 1.4575135707855225 img loss 1.4188437461853027 img loss 1.4831372499465942 img loss 1.4249409437179565 img loss 1.3840497732162476 img loss 1.3360326290130615 img loss 1.4791606664657593 img loss 1.3299140930175781 img loss 1.3789442777633667 img loss 1.283908486366272 img loss 1.6835110187530518 img loss 1.453454852104187 img loss 1.280744194984436 img loss 1.4768974781036377 img loss 1.3665961027145386 img loss 1.4440101385116577 img loss 1.4399904012680054 img loss 1.505708932876587 img loss 1.4741960763931274 img loss 1.3900134563446045 img loss 1.413955807685852 img loss 1.366705060005188 img loss 1.2420698404312134 img loss 1.440477728843689 img loss 1.3833898305892944 img loss 1.4756377935409546 img loss 1.444587230682373 img loss 1.3336970806121826 img loss 1.435810923576355 img loss 1.627561330795288 img loss 1.4040608406066895 img loss 1.307171106338501 img loss 1.5390177965164185 img loss 1.3641676902770996 img loss 1.4226887226104736 img loss 1.3228973150253296 img loss 1.4612029790878296 {'loss': 1.4171, 'grad_norm': 0.2917848825454712, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3089847564697266 img loss 1.3485004901885986 img loss 1.3741251230239868 img loss 1.5142773389816284 img loss 1.3523832559585571 img loss 1.367247462272644 img loss 1.331186056137085 img loss 1.4593521356582642 img loss 1.31080961227417 img loss 1.4871457815170288 img loss 1.4223448038101196 img loss 1.3930479288101196 img loss 1.238047480583191 img loss 1.3996026515960693 img loss 1.488135814666748 img loss 1.437477469444275 img loss 1.4321905374526978 img loss 1.4491921663284302 img loss 1.4186471700668335 img loss 1.443285346031189 img loss 1.3501182794570923 img loss 1.3774858713150024 img loss 1.4230644702911377 img loss 1.3811813592910767 img loss 1.4446791410446167 img loss 1.3449290990829468 img loss 1.402701497077942 img loss 1.246014952659607 img loss 1.4602643251419067 img loss 1.3185722827911377 img loss 1.338610053062439 img loss 1.3985027074813843 img loss 1.3428877592086792 img loss 1.4817984104156494 img loss 1.441088080406189 img loss 1.4755102396011353 img loss 1.472414493560791 img loss 1.48612380027771 img loss 1.3885207176208496 img loss 1.432919979095459 img loss 1.4042060375213623 img loss 1.3125073909759521 img loss 1.4602758884429932 img loss 1.3810296058654785 img loss 1.3105273246765137 img loss 1.3762234449386597 img loss 1.2889516353607178 img loss 1.4064059257507324 img loss 1.3857948780059814 img loss 1.4128777980804443 img loss 1.3441640138626099 img loss 1.321563959121704 img loss 1.4215991497039795 img loss 1.230910062789917 img loss 1.3054274320602417 img loss 1.4409359693527222 img loss 1.4071202278137207 img loss 1.3260393142700195 img loss 1.3164604902267456 img loss 1.4028443098068237 img loss 1.4038537740707397 img loss 1.376746654510498 img loss 1.3234877586364746 img loss 1.4046580791473389 img loss 1.5546009540557861 img loss 1.4058974981307983 img loss 1.328378677368164 img loss 1.3430348634719849 img loss 1.3359005451202393 img loss 1.4225232601165771 img loss 1.3807578086853027 img loss 1.4077221155166626 img loss 1.3754435777664185 img loss 1.4230507612228394 img loss 1.3829166889190674 img loss 1.3167247772216797 img loss 1.4138857126235962 img loss 1.503595232963562 img loss 1.4386229515075684 img loss 1.3751051425933838 img loss 1.5015842914581299 img loss 1.3342963457107544 img loss 1.325502872467041 img loss 1.4877580404281616 img loss 1.4820197820663452 img loss 1.33450186252594 img loss 1.5149281024932861 img loss 1.4029057025909424 img loss 1.354649305343628 img loss 1.3230780363082886 img loss 1.448108196258545 img loss 1.4101139307022095 img loss 1.4449290037155151 img loss 1.3917505741119385 img loss 1.2819048166275024 img loss 1.3240156173706055 img loss 1.4849029779434204 img loss 1.4008572101593018 img loss 1.2704310417175293 img loss 1.4338666200637817 img loss 1.4058775901794434 img loss 1.3548513650894165 img loss 1.366036057472229 img loss 1.4144679307937622 img loss 1.5167368650436401 img loss 1.5380431413650513 img loss 1.325344443321228 img loss 1.4214814901351929 img loss 1.391720175743103 img loss 1.353973150253296 img loss 1.4477112293243408 img loss 1.409740686416626 img loss 1.5132442712783813 img loss 1.4010761976242065 img loss 1.366733431816101 img loss 1.4138656854629517 img loss 1.367287278175354 img loss 1.3547884225845337 img loss 1.3815466165542603 img loss 1.4379981756210327 img loss 1.4069691896438599 img loss 1.3355027437210083 img loss 1.3725053071975708 img loss 1.3882943391799927 img loss 1.427681565284729 img loss 1.2937273979187012 img loss 1.420936107635498 img loss 1.4056302309036255 {'loss': 1.3933, 'grad_norm': 0.6442244052886963, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1825463771820068 img loss 1.1636561155319214 img loss 1.1895185708999634 img loss 1.1431902647018433 img loss 1.166879653930664 img loss 1.1692006587982178 img loss 1.1788452863693237 img loss 1.2141807079315186 img loss 1.218392014503479 img loss 1.1955382823944092 img loss 1.158372402191162 img loss 1.1829103231430054 img loss 1.1204495429992676 img loss 1.1699280738830566 img loss 1.2347573041915894 img loss 1.1735262870788574 img loss 1.229994535446167 img loss 1.1394847631454468 img loss 1.157982587814331 img loss 1.1550979614257812 img loss 1.2167515754699707 img loss 1.1720036268234253 img loss 1.1567312479019165 img loss 1.2117105722427368 img loss 1.2210402488708496 img loss 1.1221716403961182 img loss 1.195900321006775 img loss 1.2143932580947876 img loss 1.1428250074386597 img loss 1.2371069192886353 img loss 1.1440908908843994 img loss 1.1897902488708496 img loss 1.17853581905365 img loss 1.1255316734313965 img loss 1.1569130420684814 img loss 1.2298649549484253 img loss 1.240433931350708 img loss 1.1967629194259644 img loss 1.1665363311767578 img loss 1.2261394262313843 img loss 1.2890162467956543 img loss 1.126694679260254 img loss 1.2435815334320068 img loss 1.2159385681152344 img loss 1.183560848236084 img loss 1.2423124313354492 img loss 1.1906869411468506 img loss 1.1879221200942993 img loss 1.1916656494140625 img loss 1.2007040977478027 img loss 1.1550965309143066 img loss 1.199777364730835 img loss 1.1211957931518555 img loss 1.2416696548461914 img loss 1.1948812007904053 img loss 1.1496753692626953 img loss 1.1885340213775635 img loss 1.204931616783142 img loss 1.219126582145691 img loss 1.2414976358413696 img loss 1.1839103698730469 img loss 1.1521985530853271 img loss 1.2298011779785156 img loss 1.1632696390151978 img loss 1.1808373928070068 img loss 1.1734468936920166 img loss 1.2183893918991089 img loss 1.183417797088623 img loss 1.1776542663574219 img loss 1.1872304677963257 img loss 1.240380883216858 img loss 1.2373895645141602 img loss 1.1987732648849487 img loss 1.2706758975982666 img loss 1.1380735635757446 img loss 1.208329439163208 img loss 1.2509729862213135 img loss 1.1339225769042969 img loss 1.1650079488754272 img loss 1.19887113571167 img loss 1.164182424545288 img loss 1.170666217803955 img loss 1.1713123321533203 img loss 1.189448356628418 img loss 1.2059192657470703 img loss 1.1448194980621338 img loss 1.176028847694397 img loss 1.2059931755065918 img loss 1.1480395793914795 img loss 1.1614516973495483 img loss 1.2197110652923584 img loss 1.2221168279647827 img loss 1.207862377166748 img loss 1.164991855621338 img loss 1.2746787071228027 img loss 1.1669920682907104 img loss 1.1672998666763306 img loss 1.1803109645843506 img loss 1.2810624837875366 img loss 1.2794245481491089 img loss 1.1359468698501587 img loss 1.197115182876587 img loss 1.2092912197113037 img loss 1.1193748712539673 img loss 1.15142023563385 img loss 1.117281198501587 img loss 1.2179571390151978 img loss 1.2617292404174805 img loss 1.2061409950256348 img loss 1.134702444076538 img loss 1.1780184507369995 img loss 1.2028582096099854 img loss 1.1596049070358276 img loss 1.2538038492202759 img loss 1.1594765186309814 img loss 1.1937191486358643 img loss 1.1664669513702393 img loss 1.1665937900543213 img loss 1.2132844924926758 img loss 1.165136694908142 img loss 1.2619524002075195 img loss 1.20527982711792 img loss 1.2108958959579468 img loss 1.223508596420288 img loss 1.2363790273666382 img loss 1.27194082736969 img loss 1.1243400573730469 img loss 1.2091236114501953 {'loss': 1.1908, 'grad_norm': 0.36066940426826477, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6269924640655518img loss 1.7306702136993408 img loss 1.9344818592071533 img loss 1.638869047164917 img loss 1.7059671878814697 img loss 1.5880885124206543 img loss 1.6580498218536377 img loss 1.529119849205017 img loss 1.7099583148956299 img loss 1.8714876174926758 img loss 1.679777979850769 img loss 1.417223334312439 img loss 1.6838539838790894 img loss 1.6109576225280762 img loss 1.5949684381484985 img loss 1.6788464784622192 img loss 1.6735764741897583 img loss 1.6619518995285034 img loss 1.6518759727478027 img loss 1.7915548086166382 img loss 1.6101462841033936 img loss 1.6443675756454468 img loss 1.4735273122787476 img loss 1.7306857109069824 img loss 1.8381754159927368 img loss 1.6170649528503418 img loss 1.9161020517349243 img loss 1.7952120304107666 img loss 1.6894422769546509 img loss 1.7654682397842407 img loss 1.6577709913253784 img loss 1.7006897926330566 img loss 1.5977345705032349 img loss 1.4968477487564087 img loss 1.7386680841445923 img loss 1.8676038980484009 img loss 1.8018099069595337 img loss 1.64141047000885 img loss 1.5370787382125854 img loss 1.9517488479614258 img loss 1.7504842281341553 img loss 1.7860435247421265 img loss 1.657103419303894 img loss 1.588622808456421 img loss 1.6088347434997559 img loss 1.6192147731781006 img loss 1.7862582206726074 img loss 1.6219218969345093 img loss 1.769910216331482 img loss 1.7152979373931885 img loss 1.7694385051727295 img loss 1.6589800119400024 img loss 1.7853012084960938 img loss 1.6619538068771362 img loss 1.738756537437439 img loss 1.617540955543518 img loss 1.7535327672958374 img loss 1.807425618171692 img loss 1.7698469161987305 img loss 1.6263915300369263 img loss 1.7511990070343018 img loss 1.654553771018982 img loss 1.810956597328186 img loss 1.6127651929855347 img loss 1.689685583114624 img loss 1.5904746055603027 img loss 1.7152822017669678 img loss 1.7343217134475708 img loss 1.719590187072754 img loss 1.675657868385315 img loss 1.5959680080413818 img loss 1.6870462894439697 img loss 1.620216727256775 img loss 1.7346519231796265 img loss 1.9073026180267334 img loss 1.8550193309783936 img loss 1.6420222520828247 img loss 1.739356279373169 img loss 1.5496554374694824 img loss 1.7759835720062256 img loss 1.7759392261505127 img loss 1.7521098852157593 img loss 1.7722740173339844 img loss 1.6291534900665283 img loss 1.5213698148727417 img loss 1.5279717445373535 img loss 1.6828521490097046 img loss 1.6235352754592896 img loss 1.6625174283981323 img loss 1.8099921941757202 img loss 1.6920381784439087 img loss 1.5711480379104614 img loss 1.87696373462677 img loss 1.6318919658660889 img loss 1.6403075456619263 img loss 1.5493327379226685 img loss 1.63663911819458 img loss 1.733441710472107 img loss 1.8588173389434814 img loss 1.7403287887573242 img loss 1.5764164924621582 img loss 1.796627402305603 img loss 1.8396259546279907 img loss 1.647131323814392 img loss 1.8266559839248657 img loss 1.6061135530471802 img loss 1.7872326374053955 img loss 1.590347409248352 img loss 1.6451553106307983 img loss 1.8039144277572632 img loss 1.6288422346115112 img loss 1.4875388145446777 img loss 1.516115427017212 img loss 1.7961270809173584 img loss 1.895622968673706 img loss 1.7280093431472778 img loss 1.756082534790039 img loss 1.703866720199585 img loss 1.6596964597702026 img loss 1.8306705951690674 img loss 1.5402750968933105 img loss 1.7937865257263184 img loss 1.5381534099578857 img loss 1.7942748069763184 img loss 1.802019715309143 img loss 1.5846803188323975 img loss 1.674098253250122 img loss 1.6701120138168335 {'loss': 1.6943, 'grad_norm': 0.6039033532142639, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3202342987060547 img loss 1.1626766920089722 img loss 1.258780837059021 img loss 1.168028473854065 img loss 1.2351367473602295 img loss 1.2787383794784546 img loss 1.2501461505889893 img loss 1.2492793798446655 img loss 1.2289351224899292 img loss 1.2254626750946045 img loss 1.1888337135314941 img loss 1.24215567111969 img loss 1.2565512657165527 img loss 1.2181332111358643 img loss 1.2642637491226196 img loss 1.2447353601455688 img loss 1.2606712579727173 img loss 1.2945430278778076 img loss 1.231408715248108 img loss 1.1286197900772095 img loss 1.2785859107971191 img loss 1.2758915424346924 img loss 1.1930818557739258 img loss 1.1700568199157715 img loss 1.2278015613555908 img loss 1.3150603771209717 img loss 1.2284189462661743 img loss 1.2389439344406128 img loss 1.223233938217163 img loss 1.266404628753662 img loss 1.2507202625274658 img loss 1.2780930995941162 img loss 1.1804299354553223 img loss 1.2638766765594482 img loss 1.2370166778564453 img loss 1.1627616882324219 img loss 1.310057520866394 img loss 1.241426944732666 img loss 1.2160834074020386 img loss 1.1851733922958374 img loss 1.1613690853118896 img loss 1.3235021829605103 img loss 1.2756446599960327 img loss 1.2984662055969238 img loss 1.1804683208465576 img loss 1.2163772583007812 img loss 1.1709092855453491 img loss 1.2435394525527954 img loss 1.2778733968734741 img loss 1.2267277240753174 img loss 1.235605001449585 img loss 1.236214518547058 img loss 1.1484146118164062 img loss 1.249753475189209 img loss 1.247545838356018 img loss 1.2772634029388428 img loss 1.232791781425476 img loss 1.2210582494735718 img loss 1.2635834217071533 img loss 1.2263884544372559 img loss 1.3421066999435425 img loss 1.1903040409088135 img loss 1.1702183485031128 img loss 1.2619502544403076 img loss 1.3023431301116943 img loss 1.2147133350372314 img loss 1.2293994426727295 img loss 1.255441665649414 img loss 1.2147266864776611 img loss 1.271945595741272 img loss 1.3113102912902832 img loss 1.2184653282165527 img loss 1.2710422277450562 img loss 1.1658233404159546 img loss 1.245588779449463 img loss 1.2035716772079468 img loss 1.2431116104125977 img loss 1.2767658233642578 img loss 1.1878851652145386 img loss 1.182148814201355 img loss 1.230362892150879 img loss 1.2379169464111328 img loss 1.1685009002685547 img loss 1.2231018543243408 img loss 1.2116038799285889 img loss 1.2900689840316772 img loss 1.2116448879241943 img loss 1.2635598182678223 img loss 1.3888297080993652 img loss 1.2363007068634033 img loss 1.2558492422103882 img loss 1.184131145477295 img loss 1.2766797542572021 img loss 1.1730504035949707 img loss 1.2233637571334839 img loss 1.299391746520996 img loss 1.1584641933441162 img loss 1.2442810535430908 img loss 1.2566184997558594 img loss 1.1872104406356812 img loss 1.234713077545166 img loss 1.238980770111084 img loss 1.2363865375518799 img loss 1.214629054069519 img loss 1.185706615447998 img loss 1.337774634361267 img loss 1.189246654510498 img loss 1.1489231586456299 img loss 1.2122788429260254 img loss 1.2209261655807495 img loss 1.293093204498291 img loss 1.1928240060806274 img loss 1.2237122058868408 img loss 1.231241226196289 img loss 1.2003891468048096 img loss 1.275538682937622 img loss 1.1287775039672852 img loss 1.2541941404342651 img loss 1.2007907629013062 img loss 1.2275843620300293 img loss 1.1483128070831299 img loss 1.2018142938613892 img loss 1.2661116123199463 img loss 1.3091397285461426 img loss 1.2551445960998535 img loss 1.2714555263519287 img loss 1.1860758066177368 img loss 1.2418556213378906 {'loss': 1.2342, 'grad_norm': 0.31106311082839966, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2764661312103271 img loss 1.239403486251831 img loss 1.2928752899169922 img loss 1.2766945362091064 img loss 1.2144941091537476 img loss 1.090498685836792 img loss 1.1383403539657593 img loss 1.1649675369262695 img loss 1.188399076461792 img loss 1.1772096157073975 img loss 1.2650517225265503 img loss 1.2044905424118042 img loss 1.1308326721191406 img loss 1.2241235971450806 img loss 1.1832096576690674 img loss 1.2134698629379272 img loss 1.14987313747406img loss 1.1664780378341675 img loss 1.4421601295471191 img loss 1.1700208187103271 img loss 1.2269611358642578 img loss 1.1678767204284668 img loss 1.1407251358032227 img loss 1.1874173879623413 img loss 1.1198638677597046 img loss 1.1648603677749634 img loss 1.150583267211914 img loss 1.1849390268325806 img loss 1.2699527740478516 img loss 1.1673187017440796 img loss 1.1655535697937012 img loss 1.1879339218139648 img loss 1.1340036392211914 img loss 1.215017318725586 img loss 1.25481379032135 img loss 1.175470232963562 img loss 1.1413545608520508 img loss 1.1044076681137085 img loss 1.2023289203643799 img loss 1.204679012298584 img loss 1.2670702934265137 img loss 1.1917177438735962 img loss 1.3282984495162964 img loss 1.1547131538391113 img loss 1.1774520874023438 img loss 1.1930789947509766 img loss 1.1698673963546753 img loss 1.1510581970214844 img loss 1.1745030879974365 img loss 1.2448511123657227 img loss 1.2146601676940918 img loss 1.1721900701522827 img loss 1.225947380065918 img loss 1.221637487411499 img loss 1.1960185766220093 img loss 1.2405200004577637 img loss 1.1991074085235596 img loss 1.174476146697998 img loss 1.1855335235595703 img loss 1.1956827640533447 img loss 1.1795647144317627 img loss 1.1831848621368408 img loss 1.2097020149230957 img loss 1.1222460269927979 img loss 1.1952881813049316 img loss 1.3071609735488892 img loss 1.1419970989227295 img loss 1.13912832736969 img loss 1.2301080226898193 img loss 1.2047909498214722 img loss 1.2429898977279663 img loss 1.1789573431015015 img loss 1.159956932067871 img loss 1.1566765308380127 img loss 1.171203374862671 img loss 1.155882477760315 img loss 1.2833830118179321 img loss 1.1880749464035034 img loss 1.1804815530776978 img loss 1.160314917564392 img loss 1.3026463985443115 img loss 1.18551766872406 img loss 1.1665451526641846 img loss 1.2382400035858154 img loss 1.1586118936538696 img loss 1.2265942096710205 img loss 1.1608805656433105 img loss 1.1587035655975342 img loss 1.203355312347412 img loss 1.1809308528900146 img loss 1.2657603025436401 img loss 1.284258246421814 img loss 1.1492431163787842 img loss 1.1607507467269897 img loss 1.1237938404083252 img loss 1.1477410793304443 img loss 1.1933395862579346 img loss 1.2160208225250244 img loss 1.0881890058517456 img loss 1.2594269514083862 img loss 1.1356433629989624 img loss 1.155168056488037 img loss 1.2219610214233398 img loss 1.1400365829467773 img loss 1.137166976928711 img loss 1.2657487392425537 img loss 1.160081386566162 img loss 1.1763191223144531 img loss 1.2152345180511475 img loss 1.169340968132019 img loss 1.320848822593689 img loss 1.1422570943832397 img loss 1.1952961683273315 img loss 1.1798253059387207 img loss 1.1402677297592163 img loss 1.1486847400665283 img loss 1.1442722082138062 img loss 1.1912590265274048 img loss 1.1128381490707397 img loss 1.224222183227539 img loss 1.1118075847625732 img loss 1.2139841318130493 img loss 1.2163097858428955 img loss 1.1703134775161743 img loss 1.2066986560821533 img loss 1.1776235103607178 img loss 1.2100485563278198 img loss 1.2114500999450684 {'loss': 1.1923, 'grad_norm': 0.24242958426475525, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3737338781356812 img loss 1.3016592264175415 img loss 1.3235833644866943 img loss 1.4276753664016724 img loss 1.308211326599121 img loss 1.3312199115753174 img loss 1.2040584087371826 img loss 1.3038482666015625 img loss 1.2357085943222046 img loss 1.3139656782150269 img loss 1.2870428562164307 img loss 1.399067759513855 img loss 1.270822286605835 img loss 1.2428112030029297 img loss 1.3196322917938232 img loss 1.3333661556243896 img loss 1.2625397443771362 img loss 1.4573959112167358 img loss 1.3087036609649658 img loss 1.28508460521698 img loss 1.268747329711914 img loss 1.351465106010437 img loss 1.2947689294815063 img loss 1.3042045831680298 img loss 1.342329502105713 img loss 1.274179220199585 img loss 1.3424808979034424 img loss 1.4090484380722046 img loss 1.3453705310821533 img loss 1.2838339805603027 img loss 1.3268855810165405 img loss 1.294594168663025 img loss 1.2605701684951782 img loss 1.3591116666793823 img loss 1.2247071266174316 img loss 1.2591965198516846 img loss 1.279722809791565 img loss 1.2115097045898438 img loss 1.282801866531372 img loss 1.3297322988510132 img loss 1.3551385402679443 img loss 1.3083422183990479 img loss 1.3674455881118774 img loss 1.3220833539962769 img loss 1.3123950958251953 img loss 1.3938357830047607 img loss 1.308570384979248 img loss 1.3045861721038818 img loss 1.4331940412521362 img loss 1.2707502841949463 img loss 1.2747997045516968 img loss 1.312509536743164 img loss 1.2608251571655273 img loss 1.308894157409668 img loss 1.299953818321228 img loss 1.380824327468872 img loss 1.359220266342163img loss 1.4326268434524536 img loss 1.2910202741622925 img loss 1.2652945518493652 img loss 1.3205152750015259 img loss 1.2744593620300293 img loss 1.32635498046875 img loss 1.3116289377212524 img loss 1.318807601928711 img loss 1.2763150930404663 img loss 1.3459134101867676 img loss 1.2410399913787842 img loss 1.3459149599075317 img loss 1.3800408840179443 img loss 1.3216168880462646 img loss 1.2372770309448242 img loss 1.3107621669769287 img loss 1.2700258493423462 img loss 1.316332221031189 img loss 1.3523105382919312 img loss 1.331358790397644 img loss 1.2692779302597046 img loss 1.3372372388839722 img loss 1.3490122556686401 img loss 1.2384488582611084 img loss 1.3496966361999512 img loss 1.277902364730835 img loss 1.2414860725402832 img loss 1.3538506031036377 img loss 1.3012924194335938 img loss 1.3881127834320068 img loss 1.2626855373382568 img loss 1.3188968896865845 img loss 1.225217580795288 img loss 1.2618639469146729 img loss 1.3103995323181152 img loss 1.2919338941574097 img loss 1.3175201416015625 img loss 1.2600796222686768 img loss 1.2864280939102173 img loss 1.333009958267212 img loss 1.418256163597107 img loss 1.4124149084091187 img loss 1.3940900564193726 img loss 1.3037490844726562 img loss 1.3132426738739014 img loss 1.3610966205596924 img loss 1.4053280353546143 img loss 1.420657753944397 img loss 1.3316034078598022 img loss 1.362438678741455 img loss 1.305835247039795 img loss 1.2373310327529907 img loss 1.2444308996200562 img loss 1.2947053909301758 img loss 1.2985864877700806img loss 1.365309476852417 img loss 1.3249356746673584 img loss 1.3365651369094849 img loss 1.3705954551696777 img loss 1.2611645460128784 img loss 1.3878957033157349 img loss 1.3094666004180908 img loss 1.261934518814087 img loss 1.3466112613677979 img loss 1.307318925857544 img loss 1.3483985662460327 img loss 1.266648769378662 img loss 1.2414207458496094 img loss 1.2785632610321045 img loss 1.3015543222427368 img loss 1.2909514904022217 {'loss': 1.3145, 'grad_norm': 0.2536451816558838, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2617707252502441 img loss 1.2550700902938843 img loss 1.2616100311279297 img loss 1.2212600708007812 img loss 1.2619844675064087 img loss 1.247183084487915 img loss 1.2213876247406006 img loss 1.279201865196228 img loss 1.2510499954223633 img loss 1.2569613456726074 img loss 1.2574881315231323 img loss 1.2789372205734253 img loss 1.2914597988128662 img loss 1.3333466053009033 img loss 1.2702711820602417 img loss 1.2515910863876343 img loss 1.1943531036376953 img loss 1.2602165937423706 img loss 1.286268949508667 img loss 1.3234212398529053 img loss 1.2578319311141968 img loss 1.258649468421936 img loss 1.2348051071166992img loss 1.2991567850112915 img loss 1.226460337638855 img loss 1.234229326248169 img loss 1.246071219444275 img loss 1.2667521238327026 img loss 1.2653967142105103 img loss 1.3187592029571533 img loss 1.2843351364135742 img loss 1.3005226850509644 img loss 1.2658933401107788 img loss 1.2224023342132568 img loss 1.276157021522522 img loss 1.2194671630859375 img loss 1.321489691734314img loss 1.2850489616394043 img loss 1.256611704826355 img loss 1.2217079401016235 img loss 1.2676968574523926 img loss 1.2418882846832275 img loss 1.2980514764785767 img loss 1.262407660484314 img loss 1.3292863368988037 img loss 1.3213002681732178 img loss 1.3047306537628174 img loss 1.3002238273620605 img loss 1.2538979053497314 img loss 1.287583827972412 img loss 1.2273845672607422 img loss 1.276426911354065 img loss 1.279994010925293 img loss 1.2429637908935547 img loss 1.3187212944030762 img loss 1.2689942121505737 img loss 1.295121669769287 img loss 1.2926756143569946 img loss 1.25767982006073 img loss 1.3126296997070312 img loss 1.2324492931365967 img loss 1.2760424613952637 img loss 1.3008588552474976 img loss 1.2708686590194702 img loss 1.2882559299468994 img loss 1.2539867162704468 img loss 1.2549669742584229 img loss 1.2389256954193115 img loss 1.251319408416748 img loss 1.2704298496246338 img loss 1.2623919248580933 img loss 1.2873542308807373 img loss 1.286526083946228 img loss 1.2656246423721313 img loss 1.2474201917648315 img loss 1.2506093978881836 img loss 1.229583501815796 img loss 1.2820978164672852 img loss 1.247861385345459 img loss 1.2490586042404175 img loss 1.3332245349884033 img loss 1.3009333610534668 img loss 1.2428652048110962 img loss 1.204719066619873 img loss 1.2502644062042236 img loss 1.2574689388275146 img loss 1.3137508630752563 img loss 1.3390430212020874 img loss 1.2592344284057617 img loss 1.237116813659668 img loss 1.2817445993423462 img loss 1.2518194913864136 img loss 1.3042793273925781 img loss 1.2774986028671265 img loss 1.3221606016159058 img loss 1.2849935293197632 img loss 1.228617548942566 img loss 1.295877456665039 img loss 1.263608694076538 img loss 1.288163661956787 img loss 1.3105828762054443 img loss 1.2955775260925293 img loss 1.3318356275558472 img loss 1.3311794996261597 img loss 1.27767813205719 img loss 1.259318232536316 img loss 1.2674174308776855 img loss 1.29233980178833 img loss 1.2570106983184814 img loss 1.2427260875701904 img loss 1.2329914569854736 img loss 1.2081102132797241 img loss 1.3417400121688843 img loss 1.300240397453308 img loss 1.224008560180664 img loss 1.2840843200683594 img loss 1.3194084167480469 img loss 1.2858383655548096 img loss 1.2642710208892822 img loss 1.2759642601013184 img loss 1.236863374710083 img loss 1.259308099746704 img loss 1.26425039768219 img loss 1.273763656616211 img loss 1.2770370244979858 img loss 1.3019444942474365 img loss 1.2418699264526367 img loss 1.273792028427124 {'loss': 1.2709, 'grad_norm': 0.28187280893325806, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2071579694747925 img loss 1.2517040967941284 img loss 1.1719107627868652 img loss 1.1661018133163452 img loss 1.2883212566375732 img loss 1.2215203046798706 img loss 1.1831867694854736 img loss 1.272204875946045 img loss 1.1647355556488037 img loss 1.2100814580917358 img loss 1.2141411304473877 img loss 1.2558218240737915 img loss 1.2627700567245483 img loss 1.278932809829712 img loss 1.1337249279022217 img loss 1.278247356414795 img loss 1.2873061895370483 img loss 1.22365403175354 img loss 1.1979442834854126 img loss 1.2186237573623657 img loss 1.2502425909042358 img loss 1.2413537502288818 img loss 1.210746169090271 img loss 1.2298104763031006 img loss 1.287757158279419 img loss 1.2116628885269165 img loss 1.2953428030014038 img loss 1.2017521858215332 img loss 1.2258707284927368 img loss 1.2575629949569702 img loss 1.2283047437667847 img loss 1.224109172821045 img loss 1.2204402685165405 img loss 1.2168372869491577 img loss 1.264754295349121 img loss 1.3016563653945923 img loss 1.2236346006393433 img loss 1.2304275035858154 img loss 1.2177101373672485 img loss 1.2774910926818848 img loss 1.1871092319488525 img loss 1.273051142692566 img loss 1.1686170101165771 img loss 1.2053169012069702 img loss 1.2219499349594116 img loss 1.2499847412109375 img loss 1.2317103147506714 img loss 1.2651938199996948 img loss 1.1644384860992432 img loss 1.2741771936416626 img loss 1.221982717514038 img loss 1.2230995893478394 img loss 1.216623067855835 img loss 1.2406619787216187 img loss 1.3224072456359863 img loss 1.2645448446273804 img loss 1.1820383071899414 img loss 1.1936439275741577 img loss 1.237842082977295 img loss 1.246434211730957 img loss 1.2755922079086304 img loss 1.167582392692566 img loss 1.1901564598083496 img loss 1.2462910413742065 img loss 1.2112318277359009 img loss 1.1994396448135376 img loss 1.213538646697998 img loss 1.2863659858703613 img loss 1.302668809890747 img loss 1.2667632102966309 img loss 1.2656387090682983 img loss 1.2347685098648071 img loss 1.1941925287246704 img loss 1.2298229932785034 img loss 1.2174986600875854 img loss 1.2295395135879517 img loss 1.2158817052841187 img loss 1.2825454473495483 img loss 1.2127822637557983 img loss 1.223077654838562 img loss 1.228101134300232 img loss 1.2828477621078491 img loss 1.2172656059265137 img loss 1.1714189052581787 img loss 1.1766488552093506 img loss 1.1912972927093506 img loss 1.1950395107269287 img loss 1.2947546243667603 img loss 1.2162976264953613 img loss 1.22177255153656 img loss 1.263529658317566 img loss 1.2469804286956787 img loss 1.216482400894165 img loss 1.2320265769958496 img loss 1.2312926054000854 img loss 1.171989917755127 img loss 1.2404320240020752 img loss 1.2630982398986816 img loss 1.1953932046890259 img loss 1.2284886837005615 img loss 1.2722610235214233 img loss 1.216559648513794 img loss 1.2095417976379395 img loss 1.2772260904312134 img loss 1.2265981435775757 img loss 1.2441450357437134 img loss 1.2051842212677002 img loss 1.276750087738037 img loss 1.1973185539245605 img loss 1.2418930530548096 img loss 1.1765094995498657 img loss 1.2117111682891846 img loss 1.2582659721374512 img loss 1.2342605590820312 img loss 1.2225021123886108 img loss 1.2676109075546265 img loss 1.186291217803955 img loss 1.2748030424118042 img loss 1.2467901706695557 img loss 1.1899532079696655 img loss 1.2313823699951172 img loss 1.1985373497009277 img loss 1.2016843557357788 img loss 1.2538856267929077 img loss 1.1726536750793457 img loss 1.1516273021697998 img loss 1.2974436283111572 img loss 1.2412172555923462 {'loss': 1.2299, 'grad_norm': 0.29049304127693176, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3316744565963745 img loss 1.2904506921768188 img loss 1.4013794660568237 img loss 1.432294487953186 img loss 1.2988815307617188 img loss 1.270188570022583 img loss 1.2898015975952148 img loss 1.2726991176605225 img loss 1.2372791767120361 img loss 1.3340771198272705 img loss 1.277815341949463 img loss 1.3278405666351318 img loss 1.3524166345596313 img loss 1.3379560708999634 img loss 1.3171905279159546 img loss 1.2811304330825806 img loss 1.342694878578186 img loss 1.4236074686050415 img loss 1.2266759872436523 img loss 1.3097585439682007 img loss 1.2780656814575195 img loss 1.203535556793213 img loss 1.27567458152771 img loss 1.3519856929779053 img loss 1.3283722400665283 img loss 1.2713487148284912 img loss 1.3532527685165405 img loss 1.2834351062774658 img loss 1.2607877254486084 img loss 1.2782567739486694 img loss 1.3476110696792603 img loss 1.275431513786316 img loss 1.2904447317123413 img loss 1.2749637365341187 img loss 1.2811180353164673 img loss 1.2837644815444946 img loss 1.25722336769104 img loss 1.3551520109176636 img loss 1.20980703830719 img loss 1.2848289012908936 img loss 1.362008810043335 img loss 1.2501294612884521 img loss 1.3270721435546875 img loss 1.2496525049209595 img loss 1.4310004711151123img loss 1.286529302597046 img loss 1.3217227458953857 img loss 1.2754621505737305 img loss 1.2476842403411865 img loss 1.301489233970642 img loss 1.4080320596694946 img loss 1.3751167058944702 img loss 1.2848434448242188 img loss 1.2962315082550049 img loss 1.2297643423080444 img loss 1.3492032289505005 img loss 1.3455702066421509 img loss 1.366082787513733 img loss 1.3429162502288818 img loss 1.3898149728775024 img loss 1.3965613842010498 img loss 1.3418265581130981 img loss 1.1825634241104126 img loss 1.4312338829040527 img loss 1.2558915615081787 img loss 1.3917176723480225 img loss 1.3075807094573975 img loss 1.2040722370147705 img loss 1.4820363521575928 img loss 1.5967766046524048 img loss 1.405583143234253 img loss 1.2617241144180298 img loss 1.3919100761413574 img loss 1.34817636013031 img loss 1.3266760110855103 img loss 1.3000491857528687 img loss 1.2774789333343506 img loss 1.255109429359436 img loss 1.2609761953353882 img loss 1.3802649974822998 img loss 1.3262277841567993 img loss 1.2410551309585571 img loss 1.3064515590667725 img loss 1.1925462484359741 img loss 1.291053056716919 img loss 1.2177979946136475 img loss 1.3329923152923584 img loss 1.3198771476745605 img loss 1.3595768213272095 img loss 1.324044108390808 img loss 1.2911534309387207 img loss 1.291685700416565 img loss 1.3388965129852295 img loss 1.2768734693527222 img loss 1.3004176616668701 img loss 1.3233215808868408 img loss 1.2258650064468384 img loss 1.267337441444397 img loss 1.266831874847412 img loss 1.261073350906372 img loss 1.3426145315170288 img loss 1.3595129251480103 img loss 1.3340322971343994 img loss 1.230027437210083 img loss 1.2476640939712524 img loss 1.2563862800598145 img loss 1.3132598400115967 img loss 1.234424352645874 img loss 1.2443935871124268 img loss 1.3795065879821777 img loss 1.3783202171325684 img loss 1.4186104536056519 img loss 1.3463393449783325 img loss 1.3481743335723877 img loss 1.3097628355026245 img loss 1.3668779134750366 img loss 1.32457435131073 img loss 1.276637315750122 img loss 1.334659457206726 img loss 1.3104491233825684 img loss 1.293505311012268 img loss 1.301825761795044 img loss 1.301489233970642 img loss 1.3203705549240112 img loss 1.191531777381897 img loss 1.3560525178909302 img loss 1.339893102645874 img loss 1.3278100490570068 {'loss': 1.3116, 'grad_norm': 0.33976197242736816, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3171886205673218 img loss 1.2474238872528076 img loss 1.2540514469146729 img loss 1.254962682723999 img loss 1.340372920036316 img loss 1.3390514850616455 img loss 1.314142107963562 img loss 1.2946035861968994 img loss 1.3494484424591064 img loss 1.198056936264038 img loss 1.3848117589950562 img loss 1.2165443897247314 img loss 1.3797948360443115 img loss 1.2513914108276367 img loss 1.2220875024795532 img loss 1.3255428075790405 img loss 1.2301573753356934 img loss 1.2911598682403564 img loss 1.3227157592773438 img loss 1.1766799688339233 img loss 1.213934302330017 img loss 1.3666504621505737 img loss 1.2048461437225342 img loss 1.2713091373443604 img loss 1.3096632957458496 img loss 1.2423995733261108 img loss 1.2918380498886108 img loss 1.2625759840011597 img loss 1.2136437892913818 img loss 1.2994341850280762 img loss 1.1966522932052612 img loss 1.275909662246704 img loss 1.176720142364502 img loss 1.3586726188659668 img loss 1.3330150842666626 img loss 1.2239646911621094 img loss 1.3083616495132446 img loss 1.2575414180755615 img loss 1.305737018585205 img loss 1.2546520233154297 img loss 1.2312541007995605 img loss 1.243396520614624 img loss 1.2340019941329956 img loss 1.2332396507263184 img loss 1.3260493278503418 img loss 1.2472833395004272 img loss 1.236109972000122 img loss 1.2260444164276123 img loss 1.2608286142349243 img loss 1.1720446348190308 img loss 1.2375141382217407 img loss 1.3291294574737549 img loss 1.2176541090011597 img loss 1.2637460231781006 img loss 1.243483066558838 img loss 1.4472225904464722 img loss 1.195701003074646 img loss 1.2638921737670898 img loss 1.266422986984253 img loss 1.3288166522979736 img loss 1.2467117309570312 img loss 1.4206660985946655 img loss 1.225765585899353 img loss 1.2555874586105347 img loss 1.255007028579712 img loss 1.2850669622421265 img loss 1.2410955429077148 img loss 1.3944525718688965 img loss 1.309049129486084 img loss 1.2542117834091187 img loss 1.221940040588379 img loss 1.239113450050354 img loss 1.2617555856704712 img loss 1.2346826791763306 img loss 1.3489350080490112 img loss 1.292107343673706 img loss 1.2988595962524414 img loss 1.164651870727539 img loss 1.2338201999664307 img loss 1.2228835821151733 img loss 1.176213026046753 img loss 1.2535732984542847 img loss 1.210763692855835 img loss 1.300484299659729 img loss 1.398876428604126 img loss 1.1208990812301636 img loss 1.248817801475525 img loss 1.2427352666854858 img loss 1.4048212766647339 img loss 1.2304706573486328 img loss 1.2891361713409424 img loss 1.3028053045272827 img loss 1.239632487297058 img loss 1.3142660856246948 img loss 1.3209187984466553 img loss 1.2867391109466553 img loss 1.2338560819625854 img loss 1.2326173782348633 img loss 1.375433325767517 img loss 1.2617062330245972 img loss 1.195563793182373 img loss 1.2348973751068115 img loss 1.3849526643753052 img loss 1.2653045654296875 img loss 1.3100152015686035 img loss 1.2202801704406738 img loss 1.3175872564315796 img loss 1.2540593147277832 img loss 1.3319419622421265 img loss 1.2636553049087524 img loss 1.1985996961593628 img loss 1.2687816619873047 img loss 1.2632365226745605 img loss 1.2238739728927612 img loss 1.3300037384033203 img loss 1.2140339612960815 img loss 1.3384236097335815 img loss 1.2094923257827759 img loss 1.2758054733276367 img loss 1.2143058776855469 img loss 1.2386544942855835 img loss 1.3225300312042236 img loss 1.3845913410186768 img loss 1.262499213218689 img loss 1.2494739294052124 img loss 1.2417128086090088 img loss 1.2293633222579956 img loss 1.317474603652954 {'loss': 1.271, 'grad_norm': 0.3061400353908539, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3217090368270874 img loss 1.3215363025665283 img loss 1.3058642148971558 img loss 1.2826728820800781 img loss 1.2927206754684448 img loss 1.284968614578247 img loss 1.3140296936035156 img loss 1.3386403322219849 img loss 1.3396614789962769 img loss 1.3572927713394165 img loss 1.3732377290725708 img loss 1.2969839572906494 img loss 1.3011301755905151 img loss 1.328834891319275 img loss 1.354009985923767 img loss 1.2875158786773682 img loss 1.274978518486023 img loss 1.4432785511016846 img loss 1.2705940008163452 img loss 1.35776686668396 img loss 1.2706209421157837 img loss 1.2740983963012695img loss 1.359840750694275 img loss 1.3437514305114746 img loss 1.347998023033142 img loss 1.3356130123138428 img loss 1.3174995183944702 img loss 1.2224584817886353 img loss 1.2943074703216553 img loss 1.3585349321365356 img loss 1.2633423805236816 img loss 1.3305786848068237 img loss 1.289963960647583 img loss 1.2818031311035156 img loss 1.3320748805999756 img loss 1.2773290872573853 img loss 1.4026187658309937 img loss 1.3830097913742065 img loss 1.3903335332870483 img loss 1.343225359916687 img loss 1.2878608703613281 img loss 1.2966392040252686 img loss 1.2500169277191162 img loss 1.2972625494003296 img loss 1.3152891397476196 img loss 1.339927315711975 img loss 1.323960542678833 img loss 1.2841968536376953 img loss 1.2896069288253784 img loss 1.3399523496627808 img loss 1.3029658794403076 img loss 1.3256335258483887 img loss 1.3649767637252808 img loss 1.3309234380722046 img loss 1.362574815750122 img loss 1.3261040449142456 img loss 1.328812837600708 img loss 1.3014341592788696 img loss 1.2260900735855103 img loss 1.3492391109466553 img loss 1.2956063747406006 img loss 1.3266019821166992 img loss 1.3517953157424927 img loss 1.404762864112854 img loss 1.3154137134552002 img loss 1.3627878427505493 img loss 1.3677748441696167 img loss 1.3482071161270142 img loss 1.285882830619812 img loss 1.3466154336929321 img loss 1.3122875690460205 img loss 1.2725929021835327 img loss 1.2856794595718384 img loss 1.2449328899383545 img loss 1.2828620672225952 img loss 1.280996322631836 img loss 1.2421807050704956 img loss 1.3227348327636719 img loss 1.3108488321304321 img loss 1.3028665781021118 img loss 1.3684704303741455 img loss 1.3109581470489502 img loss 1.323454737663269 img loss 1.3286187648773193 img loss 1.2673799991607666 img loss 1.3449500799179077 img loss 1.3199880123138428 img loss 1.2623716592788696 img loss 1.3862712383270264 img loss 1.3468146324157715 img loss 1.338301181793213 img loss 1.3925172090530396 img loss 1.3545606136322021 img loss 1.219962477684021 img loss 1.2742972373962402 img loss 1.4522370100021362 img loss 1.3416682481765747 img loss 1.3719886541366577 img loss 1.3239984512329102 img loss 1.3419911861419678 img loss 1.3396495580673218 img loss 1.2597053050994873 img loss 1.415424108505249 img loss 1.270771861076355 img loss 1.2990175485610962 img loss 1.4016631841659546 img loss 1.2646458148956299 img loss 1.3294254541397095 img loss 1.3717294931411743 img loss 1.3978126049041748 img loss 1.303272008895874 img loss 1.3261408805847168 img loss 1.2772654294967651 img loss 1.420676589012146 img loss 1.369258999824524 img loss 1.3177626132965088 img loss 1.3813947439193726 img loss 1.2957834005355835 img loss 1.3289936780929565 img loss 1.288194179534912 img loss 1.2403885126113892 img loss 1.4014321565628052 img loss 1.3846094608306885 img loss 1.3436903953552246 img loss 1.263973593711853 img loss 1.3380643129348755 img loss 1.2976621389389038 img loss 1.3033398389816284 {'loss': 1.3225, 'grad_norm': 0.3408183157444, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.199377417564392 img loss 1.213605523109436 img loss 1.2832010984420776 img loss 1.1774322986602783 img loss 1.185280680656433 img loss 1.215253233909607 img loss 1.179568886756897 img loss 1.2404545545578003 img loss 1.2265803813934326 img loss 1.1947284936904907 img loss 1.1965588331222534 img loss 1.2138216495513916 img loss 1.1791911125183105 img loss 1.210853934288025 img loss 1.2276309728622437 img loss 1.2299162149429321 img loss 1.1805051565170288img loss 1.2405859231948853 img loss 1.2217686176300049 img loss 1.2170013189315796 img loss 1.2149693965911865 img loss 1.2082465887069702 img loss 1.2121479511260986 img loss 1.1877578496932983 img loss 1.1942975521087646 img loss 1.2277030944824219 img loss 1.208840250968933 img loss 1.2504656314849854 img loss 1.3008308410644531 img loss 1.2424671649932861 img loss 1.2637561559677124 img loss 1.1888235807418823 img loss 1.187273621559143 img loss 1.2614061832427979 img loss 1.2319469451904297 img loss 1.219704031944275 img loss 1.245773196220398 img loss 1.2795937061309814 img loss 1.2415456771850586 img loss 1.301213264465332 img loss 1.2031972408294678 img loss 1.2109618186950684 img loss 1.212825059890747 img loss 1.181382179260254 img loss 1.2067867517471313 img loss 1.1438758373260498 img loss 1.2173696756362915 img loss 1.2235641479492188 img loss 1.246514081954956 img loss 1.2240447998046875 img loss 1.2289347648620605 img loss 1.2688616514205933 img loss 1.1996792554855347 img loss 1.2358802556991577 img loss 1.1671775579452515 img loss 1.1637170314788818 img loss 1.1668238639831543 img loss 1.2378345727920532 img loss 1.2493008375167847 img loss 1.2159478664398193 img loss 1.2379295825958252 img loss 1.2791675329208374 img loss 1.208411693572998 img loss 1.1895802021026611 img loss 1.1811504364013672 img loss 1.3016936779022217 img loss 1.2491976022720337 img loss 1.234737753868103 img loss 1.2103826999664307 img loss 1.2037416696548462 img loss 1.2563285827636719 img loss 1.190613031387329 img loss 1.2290829420089722 img loss 1.194775938987732 img loss 1.1839078664779663 img loss 1.1807969808578491 img loss 1.180159091949463 img loss 1.2117421627044678 img loss 1.2550106048583984 img loss 1.1912983655929565 img loss 1.1954065561294556 img loss 1.2923227548599243 img loss 1.2607667446136475 img loss 1.211708664894104 img loss 1.2024924755096436 img loss 1.1998499631881714 img loss 1.2190814018249512 img loss 1.2272508144378662 img loss 1.1672794818878174 img loss 1.228407859802246 img loss 1.2630680799484253 img loss 1.1997694969177246 img loss 1.2126812934875488 img loss 1.1870659589767456 img loss 1.2527422904968262 img loss 1.1969621181488037 img loss 1.2241523265838623 img loss 1.2273415327072144 img loss 1.2308019399642944 img loss 1.2214975357055664 img loss 1.159263014793396 img loss 1.1997959613800049 img loss 1.1862175464630127 img loss 1.1658239364624023 img loss 1.201137900352478 img loss 1.2339524030685425 img loss 1.1873403787612915 img loss 1.2185369729995728 img loss 1.237012505531311 img loss 1.2140989303588867 img loss 1.241816759109497 img loss 1.2476619482040405 img loss 1.1960891485214233 img loss 1.26595938205719 img loss 1.2267003059387207 img loss 1.2745864391326904 img loss 1.246864676475525 img loss 1.2753987312316895 img loss 1.2012156248092651 img loss 1.236851453781128 img loss 1.2092089653015137 img loss 1.2415063381195068 img loss 1.2658321857452393 img loss 1.2304279804229736 img loss 1.1669071912765503 img loss 1.2082875967025757 img loss 1.152585506439209 img loss 1.1964926719665527 {'loss': 1.2186, 'grad_norm': 0.3010527193546295, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2288057804107666 img loss 1.3512235879898071 img loss 1.2506641149520874 img loss 1.2391172647476196 img loss 1.2730708122253418 img loss 1.2979280948638916 img loss 1.2825188636779785 img loss 1.2164199352264404 img loss 1.3019691705703735 img loss 1.3169279098510742 img loss 1.2500944137573242 img loss 1.1811504364013672 img loss 1.289412498474121 img loss 1.2207691669464111 img loss 1.2456212043762207 img loss 1.2100887298583984 img loss 1.3199291229248047 img loss 1.1633474826812744 img loss 1.2640125751495361 img loss 1.2000653743743896 img loss 1.1923222541809082 img loss 1.2350116968154907 img loss 1.2214868068695068 img loss 1.2425981760025024 img loss 1.2358251810073853 img loss 1.1863571405410767 img loss 1.1874561309814453 img loss 1.416422963142395 img loss 1.2447876930236816 img loss 1.2691930532455444 img loss 1.1996463537216187 img loss 1.178293228149414 img loss 1.322780966758728 img loss 1.2344095706939697 img loss 1.1795734167099 img loss 1.181273102760315 img loss 1.2070534229278564 img loss 1.2443766593933105 img loss 1.1978100538253784 img loss 1.2440590858459473 img loss 1.33143949508667 img loss 1.3023250102996826 img loss 1.3085107803344727 img loss 1.2400734424591064 img loss 1.2370151281356812 img loss 1.219338059425354 img loss 1.3335884809494019 img loss 1.2523730993270874 img loss 1.3563206195831299 img loss 1.2525274753570557 img loss 1.3481422662734985 img loss 1.2709177732467651 img loss 1.226790189743042 img loss 1.2392653226852417 img loss 1.296182632446289 img loss 1.2342822551727295 img loss 1.206552267074585 img loss 1.2175794839859009 img loss 1.198427438735962 img loss 1.2681721448898315 img loss 1.344844937324524 img loss 1.2538164854049683 img loss 1.3227736949920654 img loss 1.1806938648223877 img loss 1.2195777893066406 img loss 1.2263911962509155 img loss 1.3173469305038452 img loss 1.281853199005127 img loss 1.2645701169967651 img loss 1.232123613357544 img loss 1.243548035621643 img loss 1.2086244821548462 img loss 1.3451827764511108 img loss 1.3008537292480469 img loss 1.2751169204711914 img loss 1.2394499778747559 img loss 1.2715296745300293 img loss 1.3140300512313843 img loss 1.243609070777893 img loss 1.2564512491226196 img loss 1.2534626722335815 img loss 1.2554765939712524 img loss 1.1820755004882812 img loss 1.2471685409545898 img loss 1.1522419452667236 img loss 1.2575373649597168 img loss 1.2396481037139893 img loss 1.303328514099121 img loss 1.1925971508026123 img loss 1.2100536823272705 img loss 1.2231673002243042 img loss 1.2991336584091187 img loss 1.2752039432525635 img loss 1.2310583591461182 img loss 1.2395464181900024 img loss 1.1716275215148926 img loss 1.2641222476959229 img loss 1.2441562414169312 img loss 1.2596935033798218 img loss 1.2783482074737549 img loss 1.2837038040161133 img loss 1.308603048324585 img loss 1.1668617725372314 img loss 1.2376272678375244 img loss 1.2162824869155884 img loss 1.3227847814559937 img loss 1.2549068927764893 img loss 1.2565298080444336 img loss 1.2296968698501587 img loss 1.135796070098877 img loss 1.1975464820861816 img loss 1.2445436716079712 img loss 1.2877075672149658 img loss 1.1821696758270264 img loss 1.2066532373428345 img loss 1.2929331064224243 img loss 1.2383126020431519 img loss 1.220966100692749 img loss 1.273939847946167 img loss 1.2202293872833252 img loss 1.314044713973999 img loss 1.340018630027771 img loss 1.2326009273529053 img loss 1.2455010414123535 img loss 1.326616644859314 img loss 1.1883771419525146 img loss 1.2400697469711304 img loss 1.244309663772583 {'loss': 1.2507, 'grad_norm': 0.19870103895664215, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3420608043670654 img loss 1.1994342803955078 img loss 1.1422123908996582 img loss 1.218332290649414 img loss 1.1749355792999268 img loss 1.3048436641693115 img loss 1.2028923034667969 img loss 1.3181310892105103 img loss 1.2155048847198486img loss 1.2588074207305908 img loss 1.2826972007751465 img loss 1.2434905767440796 img loss 1.192713975906372 img loss 1.2030017375946045 img loss 1.2381408214569092 img loss 1.295882225036621 img loss 1.2306979894638062 img loss 1.2538831233978271 img loss 1.312681794166565 img loss 1.2498526573181152 img loss 1.1627800464630127 img loss 1.227637529373169 img loss 1.2764272689819336 img loss 1.1837126016616821 img loss 1.3137558698654175 img loss 1.2302403450012207 img loss 1.2562193870544434 img loss 1.2664902210235596 img loss 1.1972579956054688 img loss 1.278418779373169 img loss 1.3229032754898071 img loss 1.2493109703063965 img loss 1.2589553594589233 img loss 1.2573087215423584 img loss 1.2845571041107178 img loss 1.2767722606658936 img loss 1.2721831798553467 img loss 1.29775071144104 img loss 1.2801201343536377 img loss 1.2185319662094116 img loss 1.133577823638916 img loss 1.2181528806686401 img loss 1.1715919971466064 img loss 1.2639470100402832 img loss 1.323564052581787 img loss 1.2739638090133667 img loss 1.317284107208252 img loss 1.2649974822998047 img loss 1.2464908361434937 img loss 1.196642279624939 img loss 1.2992782592773438 img loss 1.177739143371582 img loss 1.3191688060760498 img loss 1.227036476135254 img loss 1.1565903425216675 img loss 1.2298094034194946 img loss 1.2409756183624268 img loss 1.200925350189209 img loss 1.2433668375015259 img loss 1.2599643468856812 img loss 1.2005242109298706 img loss 1.2160881757736206 img loss 1.218472957611084 img loss 1.270058035850525 img loss 1.2352246046066284 img loss 1.2138848304748535 img loss 1.218442678451538 img loss 1.212970495223999 img loss 1.1965548992156982 img loss 1.3342013359069824 img loss 1.3340775966644287 img loss 1.3367602825164795 img loss 1.2357234954833984 img loss 1.2450861930847168 img loss 1.3408058881759644 img loss 1.3549761772155762 img loss 1.1946207284927368 img loss 1.195393443107605 img loss 1.1833527088165283 img loss 1.2370469570159912 img loss 1.249255657196045 img loss 1.2833209037780762 img loss 1.2135374546051025 img loss 1.3347656726837158 img loss 1.2013548612594604 img loss 1.189382553100586 img loss 1.2452683448791504 img loss 1.1944255828857422 img loss 1.2069313526153564 img loss 1.2323859930038452 img loss 1.3122637271881104 img loss 1.216149926185608 img loss 1.2012304067611694 img loss 1.1987264156341553 img loss 1.18752920627594 img loss 1.219964623451233 img loss 1.2785954475402832 img loss 1.2176814079284668 img loss 1.3052527904510498 img loss 1.316331386566162 img loss 1.3048971891403198 img loss 1.2878605127334595 img loss 1.2760061025619507 img loss 1.2288522720336914 img loss 1.2184534072875977 img loss 1.3367283344268799 img loss 1.285607933998108 img loss 1.2607272863388062 img loss 1.286857008934021 img loss 1.2073367834091187 img loss 1.2553105354309082 img loss 1.2777878046035767 img loss 1.2809443473815918 img loss 1.2315624952316284 img loss 1.2019481658935547 img loss 1.3831790685653687 img loss 1.3131862878799438 img loss 1.3897138833999634 img loss 1.2934175729751587 img loss 1.2115274667739868 img loss 1.3392033576965332 img loss 1.317025065422058 img loss 1.2277401685714722 img loss 1.261909008026123 img loss 1.3053250312805176 img loss 1.2121065855026245 img loss 1.2268288135528564 img loss 1.241586446762085 {'loss': 1.2516, 'grad_norm': 0.22435526549816132, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4245054721832275 img loss 1.4568613767623901 img loss 1.4525655508041382 img loss 1.4173235893249512 img loss 1.4519250392913818 img loss 1.457126259803772 img loss 1.3153942823410034 img loss 1.4991101026535034 img loss 1.4068490266799927 img loss 1.4244768619537354 img loss 1.4224110841751099 img loss 1.4676264524459839 img loss 1.4453694820404053 img loss 1.5432865619659424 img loss 1.4979355335235596 img loss 1.4817522764205933 img loss 1.3978415727615356 img loss 1.4420831203460693 img loss 1.3886219263076782 img loss 1.4335724115371704 img loss 1.361649990081787 img loss 1.6339128017425537 img loss 1.4886829853057861 img loss 1.4172072410583496 img loss 1.449525237083435 img loss 1.447748064994812 img loss 1.4232736825942993 img loss 1.4326602220535278 img loss 1.487498164176941 img loss 1.4245401620864868 img loss 1.5818498134613037 img loss 1.4614781141281128 img loss 1.448546290397644 img loss 1.4492613077163696 img loss 1.5484696626663208 img loss 1.6184735298156738 img loss 1.4969426393508911 img loss 1.4395396709442139 img loss 1.4291472434997559 img loss 1.435916543006897 img loss 1.4553707838058472 img loss 1.4618195295333862 img loss 1.5910500288009644 img loss 1.4398033618927002 img loss 1.4207168817520142 img loss 1.4234004020690918 img loss 1.378159999847412 img loss 1.5073708295822144 img loss 1.411602258682251 img loss 1.448310375213623 img loss 1.3345271348953247 img loss 1.5612367391586304 img loss 1.5189000368118286 img loss 1.4472891092300415 img loss 1.5724406242370605 img loss 1.4413330554962158 img loss 1.4158543348312378 img loss 1.5056674480438232 img loss 1.3803627490997314 img loss 1.541399359703064 img loss 1.4548790454864502 img loss 1.4100639820098877 img loss 1.4884936809539795 img loss 1.362069845199585 img loss 1.4845492839813232 img loss 1.3727281093597412 img loss 1.3826874494552612 img loss 1.398525595664978 img loss 1.5031859874725342 img loss 1.318227767944336 img loss 1.4412449598312378 img loss 1.591164469718933 img loss 1.4035619497299194 img loss 1.4380974769592285 img loss 1.438626766204834 img loss 1.4863693714141846 img loss 1.4206860065460205 img loss 1.5155714750289917 img loss 1.4135686159133911 img loss 1.4959654808044434 img loss 1.4933826923370361 img loss 1.4390466213226318 img loss 1.482924222946167 img loss 1.4479504823684692 img loss 1.4672067165374756 img loss 1.5052651166915894 img loss 1.431763768196106 img loss 1.4398913383483887 img loss 1.3608696460723877 img loss 1.4972608089447021 img loss 1.4231640100479126 img loss 1.4953118562698364img loss 1.4865533113479614 img loss 1.5293238162994385 img loss 1.5876352787017822 img loss 1.501721978187561 img loss 1.45201575756073 img loss 1.493585228919983 img loss 1.423507571220398 img loss 1.5349639654159546 img loss 1.5585671663284302 img loss 1.354049801826477 img loss 1.4432371854782104 img loss 1.502529263496399 img loss 1.5255062580108643 img loss 1.658389687538147 img loss 1.4940284490585327 img loss 1.3786962032318115 img loss 1.3434332609176636 img loss 1.501271367073059 img loss 1.4331202507019043 img loss 1.4097468852996826 img loss 1.4665364027023315 img loss 1.5980591773986816 img loss 1.3722788095474243 img loss 1.4233647584915161 img loss 1.4666928052902222 img loss 1.510351300239563 img loss 1.5347418785095215 img loss 1.5119773149490356 img loss 1.515588402748108 img loss 1.4754942655563354 img loss 1.5670034885406494 img loss 1.5288816690444946 img loss 1.4415438175201416 img loss 1.4926542043685913 img loss 1.4906344413757324 img loss 1.3989487886428833 {'loss': 1.4631, 'grad_norm': 0.3648115396499634, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4823248386383057 img loss 1.6306490898132324 img loss 1.5684441328048706 img loss 1.4906879663467407 img loss 1.5507962703704834 img loss 1.5588469505310059 img loss 1.6175627708435059 img loss 1.5078215599060059 img loss 1.4987950325012207 img loss 1.6498353481292725 img loss 1.5991246700286865 img loss 1.5026357173919678 img loss 1.6553919315338135 img loss 1.501922369003296 img loss 1.5949331521987915 img loss 1.6490577459335327 img loss 1.7059098482131958 img loss 1.562741994857788 img loss 1.5601723194122314 img loss 1.6847559213638306 img loss 1.5708779096603394 img loss 1.581723928451538 img loss 1.5014500617980957 img loss 1.4358599185943604 img loss 1.514339804649353 img loss 1.5795395374298096 img loss 1.5442851781845093 img loss 1.6138635873794556 img loss 1.48795747756958 img loss 1.6568149328231812 img loss 1.5651488304138184 img loss 1.635290503501892 img loss 1.6805775165557861 img loss 1.492641806602478 img loss 1.518912672996521 img loss 1.5164726972579956 img loss 1.5982328653335571 img loss 1.5836271047592163 img loss 1.6701388359069824 img loss 1.506305456161499 img loss 1.4539822340011597 img loss 1.6031922101974487 img loss 1.6839553117752075 img loss 1.5324023962020874 img loss 1.6345065832138062 img loss 1.6102864742279053 img loss 1.6165934801101685 img loss 1.568021297454834 img loss 1.6613554954528809 img loss 1.6990694999694824 img loss 1.5416969060897827 img loss 1.6815040111541748 img loss 1.5283204317092896 img loss 1.5212950706481934 img loss 1.5891001224517822 img loss 1.5816757678985596 img loss 1.4402973651885986 img loss 1.5154106616973877 img loss 1.732874870300293 img loss 1.6577786207199097 img loss 1.661786675453186 img loss 1.4594424962997437 img loss 1.4629484415054321 img loss 1.5455138683319092 img loss 1.621040940284729 img loss 1.561287522315979 img loss 1.6152619123458862 img loss 1.5494459867477417 img loss 1.5324934720993042 img loss 1.5625468492507935 img loss 1.6040427684783936 img loss 1.4782499074935913 img loss 1.5859016180038452 img loss 1.459113597869873 img loss 1.4912701845169067 img loss 1.6859883069992065 img loss 1.5819462537765503 img loss 1.561094880104065 img loss 1.5952503681182861 img loss 1.5664340257644653 img loss 1.5837963819503784 img loss 1.4810022115707397 img loss 1.473254919052124 img loss 1.649950385093689 img loss 1.5380533933639526 img loss 1.6305707693099976 img loss 1.5615452527999878 img loss 1.567842960357666 img loss 1.7482786178588867 img loss 1.6307452917099 img loss 1.5622025728225708 img loss 1.4267522096633911 img loss 1.5993962287902832 img loss 1.636164903640747 img loss 1.701872706413269 img loss 1.7456880807876587 img loss 1.5279468297958374 img loss 1.6903746128082275 img loss 1.5135321617126465 img loss 1.6368250846862793 img loss 1.512374758720398 img loss 1.570156216621399 img loss 1.465671420097351 img loss 1.5323117971420288 img loss 1.5228297710418701 img loss 1.6411182880401611 img loss 1.6506438255310059 img loss 1.6836153268814087 img loss 1.5742466449737549 img loss 1.570198893547058 img loss 1.6695835590362549 img loss 1.6529422998428345 img loss 1.5891072750091553 img loss 1.5640567541122437 img loss 1.5036591291427612 img loss 1.463906168937683 img loss 1.5559017658233643 img loss 1.492106318473816 img loss 1.6303727626800537 img loss 1.5787413120269775 img loss 1.5986037254333496 img loss 1.576200008392334 img loss 1.6927781105041504 img loss 1.4857772588729858 img loss 1.563974142074585 img loss 1.6527867317199707 img loss 1.600968599319458 img loss 1.4831156730651855 {'loss': 1.5769, 'grad_norm': 0.4408266544342041, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3228914737701416 img loss 1.2775700092315674 img loss 1.3965023756027222 img loss 1.350035548210144 img loss 1.238668441772461 img loss 1.2426955699920654 img loss 1.268750548362732 img loss 1.3670189380645752 img loss 1.3477790355682373 img loss 1.2662206888198853 img loss 1.3728306293487549 img loss 1.3477051258087158 img loss 1.2932758331298828 img loss 1.3219860792160034 img loss 1.2473602294921875 img loss 1.3048433065414429 img loss 1.2627757787704468 img loss 1.1972401142120361 img loss 1.2765593528747559 img loss 1.3434817790985107 img loss 1.3078726530075073 img loss 1.3264888525009155 img loss 1.3746447563171387 img loss 1.2361540794372559 img loss 1.3237051963806152 img loss 1.289353609085083 img loss 1.2758079767227173 img loss 1.256239414215088 img loss 1.2789545059204102 img loss 1.3414514064788818 img loss 1.2044057846069336 img loss 1.228259801864624 img loss 1.341507077217102 img loss 1.196608066558838 img loss 1.2461001873016357 img loss 1.2994855642318726 img loss 1.1458616256713867 img loss 1.34702467918396 img loss 1.3146953582763672 img loss 1.3266838788986206 img loss 1.2265706062316895 img loss 1.3184247016906738 img loss 1.2482620477676392 img loss 1.234351396560669 img loss 1.319602608680725 img loss 1.4085301160812378 img loss 1.322176456451416 img loss 1.2570531368255615 img loss 1.274491310119629 img loss 1.2367339134216309 img loss 1.3108619451522827 img loss 1.3127694129943848 img loss 1.3151702880859375 img loss 1.2765315771102905 img loss 1.2655863761901855 img loss 1.2469478845596313 img loss 1.3327172994613647 img loss 1.280555009841919 img loss 1.3136215209960938 img loss 1.2645893096923828 img loss 1.4319473505020142 img loss 1.280631422996521 img loss 1.374083161354065 img loss 1.3705894947052002 img loss 1.350551962852478 img loss 1.3181101083755493 img loss 1.2753939628601074 img loss 1.471361756324768 img loss 1.2231462001800537 img loss 1.3116960525512695 img loss 1.3651186227798462 img loss 1.320682406425476 img loss 1.3001728057861328 img loss 1.2748112678527832 img loss 1.259289264678955 img loss 1.390816569328308 img loss 1.268257737159729 img loss 1.2848923206329346 img loss 1.2926654815673828 img loss 1.4363030195236206 img loss 1.3332722187042236 img loss 1.2179580926895142 img loss 1.34066641330719 img loss 1.357408046722412 img loss 1.3046401739120483 img loss 1.320037603378296 img loss 1.3266700506210327 img loss 1.250098705291748 img loss 1.3471087217330933 img loss 1.318407416343689 img loss 1.3317450284957886 img loss 1.2634367942810059 img loss 1.37068510055542 img loss 1.3094823360443115 img loss 1.2975952625274658 img loss 1.269984245300293 img loss 1.2884008884429932 img loss 1.2594175338745117 img loss 1.2451694011688232 img loss 1.4167416095733643 img loss 1.335727334022522 img loss 1.2766225337982178 img loss 1.233070731163025 img loss 1.3405416011810303 img loss 1.2910078763961792 img loss 1.3141428232192993 img loss 1.3774120807647705 img loss 1.3057780265808105 img loss 1.3694027662277222 img loss 1.1656118631362915 img loss 1.2531627416610718 img loss 1.2841733694076538 img loss 1.3602381944656372 img loss 1.4308627843856812 img loss 1.2815494537353516 img loss 1.4115370512008667 img loss 1.4566174745559692 img loss 1.1933326721191406 img loss 1.2469183206558228 img loss 1.3176336288452148 img loss 1.2306036949157715 img loss 1.3268940448760986 img loss 1.294324278831482 img loss 1.377029299736023 img loss 1.1855707168579102 img loss 1.3195070028305054 img loss 1.3403239250183105 img loss 1.2796351909637451 {'loss': 1.3035, 'grad_norm': 0.2503708600997925, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2216253280639648 img loss 1.2318801879882812 img loss 1.2046482563018799 img loss 1.230912685394287 img loss 1.1644703149795532 img loss 1.193103313446045 img loss 1.25542151927948 img loss 1.2252919673919678 img loss 1.2718924283981323 img loss 1.2833495140075684 img loss 1.2640947103500366img loss 1.2754828929901123 img loss 1.2444804906845093 img loss 1.1964266300201416 img loss 1.2637783288955688 img loss 1.2023613452911377 img loss 1.2399004697799683 img loss 1.305173635482788 img loss 1.2065322399139404 img loss 1.1889450550079346 img loss 1.1669880151748657 img loss 1.2533682584762573 img loss 1.2193893194198608 img loss 1.3003357648849487 img loss 1.17268705368042 img loss 1.258980393409729 img loss 1.2516553401947021 img loss 1.2635868787765503 img loss 1.205652117729187 img loss 1.2658089399337769 img loss 1.2282549142837524 img loss 1.2262121438980103 img loss 1.2001882791519165 img loss 1.2516273260116577 img loss 1.2549911737442017 img loss 1.2344907522201538 img loss 1.1422845125198364 img loss 1.24241042137146 img loss 1.2065558433532715 img loss 1.2502758502960205 img loss 1.2616326808929443 img loss 1.207728385925293 img loss 1.203196406364441 img loss 1.1923134326934814 img loss 1.2634438276290894 img loss 1.2667988538742065 img loss 1.2308268547058105 img loss 1.2286971807479858 img loss 1.2653321027755737 img loss 1.2471840381622314 img loss 1.2061171531677246 img loss 1.2377609014511108img loss 1.2224243879318237 img loss 1.2260017395019531 img loss 1.261526107788086 img loss 1.287243366241455 img loss 1.3061859607696533 img loss 1.2116457223892212 img loss 1.1934895515441895 img loss 1.1988344192504883 img loss 1.182654857635498 img loss 1.2380955219268799 img loss 1.3077735900878906 img loss 1.2647022008895874 img loss 1.2284916639328003 img loss 1.2567189931869507 img loss 1.2209843397140503 img loss 1.2885631322860718 img loss 1.2610976696014404 img loss 1.2533106803894043 img loss 1.2251813411712646 img loss 1.2194206714630127 img loss 1.3793082237243652 img loss 1.1695960760116577 img loss 1.2548717260360718 img loss 1.2599862813949585 img loss 1.2135767936706543 img loss 1.2252566814422607 img loss 1.2155838012695312 img loss 1.2570289373397827 img loss 1.226991057395935 img loss 1.2450649738311768 img loss 1.1755456924438477 img loss 1.2437180280685425 img loss 1.221511721611023 img loss 1.2306486368179321 img loss 1.2375373840332031 img loss 1.2237218618392944 img loss 1.1875156164169312 img loss 1.2342910766601562 img loss 1.3504358530044556 img loss 1.2209341526031494 img loss 1.210365891456604 img loss 1.215330958366394 img loss 1.2803306579589844 img loss 1.2421692609786987 img loss 1.2648876905441284 img loss 1.2980895042419434 img loss 1.2096364498138428 img loss 1.2612231969833374 img loss 1.2764832973480225 img loss 1.3067190647125244 img loss 1.320706844329834 img loss 1.2755849361419678 img loss 1.205989122390747 img loss 1.2171659469604492 img loss 1.2105337381362915 img loss 1.2448734045028687 img loss 1.2169426679611206 img loss 1.2393956184387207 img loss 1.2579848766326904 img loss 1.211841106414795 img loss 1.282769799232483 img loss 1.240140676498413 img loss 1.2570037841796875 img loss 1.254523754119873 img loss 1.2082099914550781 img loss 1.2826988697052002 img loss 1.2798099517822266 img loss 1.2525901794433594 img loss 1.2123963832855225 img loss 1.2363780736923218 img loss 1.2748618125915527 img loss 1.2684063911437988 img loss 1.286417007446289 img loss 1.2753032445907593 img loss 1.2817789316177368 img loss 1.2742999792099 {'loss': 1.2409, 'grad_norm': 0.3956329822540283, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2436052560806274 img loss 1.1892436742782593 img loss 1.2075233459472656 img loss 1.1479334831237793 img loss 1.1783987283706665 img loss 1.265906572341919 img loss 1.2580859661102295 img loss 1.1816387176513672 img loss 1.2483996152877808 img loss 1.252944827079773 img loss 1.212633490562439 img loss 1.2110317945480347 img loss 1.286532998085022 img loss 1.163947582244873 img loss 1.2291802167892456 img loss 1.3244303464889526 img loss 1.2258927822113037 img loss 1.3021665811538696 img loss 1.252989411354065 img loss 1.2232398986816406 img loss 1.245483160018921 img loss 1.1995636224746704 img loss 1.163301944732666 img loss 1.2381161451339722 img loss 1.1586954593658447 img loss 1.1839488744735718 img loss 1.2718939781188965 img loss 1.1810872554779053 img loss 1.1804156303405762 img loss 1.2165184020996094 img loss 1.1826412677764893 img loss 1.1638543605804443 img loss 1.1725890636444092 img loss 1.1881580352783203 img loss 1.2049307823181152 img loss 1.2380459308624268 img loss 1.217468500137329 img loss 1.1809964179992676 img loss 1.2051441669464111 img loss 1.2553402185440063 img loss 1.2729767560958862 img loss 1.1892106533050537 img loss 1.2532024383544922 img loss 1.1960159540176392 img loss 1.2339725494384766 img loss 1.1791785955429077 img loss 1.1916662454605103 img loss 1.176722764968872 img loss 1.2213658094406128 img loss 1.2530256509780884 img loss 1.2423232793807983 img loss 1.1435168981552124 img loss 1.2213882207870483 img loss 1.2376102209091187 img loss 1.210648536682129 img loss 1.1891248226165771 img loss 1.1880937814712524 img loss 1.234722375869751 img loss 1.1744801998138428 img loss 1.2151988744735718 img loss 1.276660680770874 img loss 1.2402886152267456 img loss 1.2415205240249634 img loss 1.2012407779693604img loss 1.2127571105957031 img loss 1.2154581546783447 img loss 1.1156680583953857 img loss 1.1972675323486328 img loss 1.2066612243652344 img loss 1.2273170948028564 img loss 1.2828186750411987 img loss 1.3332366943359375 img loss 1.2342355251312256 img loss 1.2071611881256104 img loss 1.2896207571029663 img loss 1.1838616132736206 img loss 1.1910293102264404 img loss 1.2572243213653564 img loss 1.2255184650421143 img loss 1.1952033042907715 img loss 1.2053589820861816 img loss 1.1563650369644165 img loss 1.2369816303253174 img loss 1.2854913473129272 img loss 1.2084746360778809 img loss 1.2252148389816284 img loss 1.2537115812301636 img loss 1.1888052225112915 img loss 1.306700348854065 img loss 1.160468578338623 img loss 1.1625933647155762 img loss 1.2366507053375244 img loss 1.2750965356826782 img loss 1.3024578094482422 img loss 1.2178668975830078 img loss 1.230814814567566 img loss 1.282956600189209 img loss 1.1717668771743774 img loss 1.142082691192627 img loss 1.1637767553329468 img loss 1.2504481077194214 img loss 1.25641667842865 img loss 1.2511672973632812 img loss 1.208603858947754 img loss 1.2247493267059326 img loss 1.224209189414978 img loss 1.279613971710205 img loss 1.1403864622116089 img loss 1.2293851375579834 img loss 1.174721360206604 img loss 1.3015151023864746 img loss 1.2635170221328735 img loss 1.2343705892562866 img loss 1.218523621559143 img loss 1.232682704925537 img loss 1.2067497968673706 img loss 1.2115058898925781 img loss 1.3467211723327637 img loss 1.317888855934143 img loss 1.2013883590698242 img loss 1.2519545555114746 img loss 1.1675297021865845 img loss 1.2079485654830933 img loss 1.1681053638458252 img loss 1.2207813262939453 img loss 1.2601436376571655 img loss 1.2551512718200684 img loss 1.1767077445983887 {'loss': 1.2212, 'grad_norm': 0.20356594026088715, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3455179929733276 img loss 1.2733039855957031 img loss 1.2727454900741577 img loss 1.2094577550888062 img loss 1.3292756080627441 img loss 1.3617208003997803 img loss 1.429909348487854 img loss 1.304844856262207 img loss 1.3661104440689087 img loss 1.3836694955825806img loss 1.4922125339508057 img loss 1.2816517353057861 img loss 1.4285589456558228 img loss 1.3563740253448486 img loss 1.4066293239593506 img loss 1.345558762550354 img loss 1.2698644399642944 img loss 1.3457238674163818 img loss 1.4725430011749268 img loss 1.3146730661392212 img loss 1.2783191204071045 img loss 1.4371308088302612 img loss 1.4460564851760864 img loss 1.4527485370635986 img loss 1.3882534503936768 img loss 1.487799882888794 img loss 1.565162181854248 img loss 1.385773777961731 img loss 1.2985070943832397 img loss 1.4655567407608032 img loss 1.3101041316986084 img loss 1.4308040142059326 img loss 1.4154151678085327 img loss 1.3873482942581177 img loss 1.4443161487579346 img loss 1.4199167490005493 img loss 1.4698565006256104 img loss 1.3939988613128662 img loss 1.4233781099319458 img loss 1.4115632772445679 img loss 1.3118292093276978 img loss 1.3720308542251587 img loss 1.3452322483062744 img loss 1.4081777334213257 img loss 1.4539605379104614 img loss 1.3997896909713745 img loss 1.41886305809021 img loss 1.3364465236663818 img loss 1.5729782581329346 img loss 1.3002182245254517 img loss 1.410304307937622 img loss 1.50761878490448 img loss 1.5306130647659302 img loss 1.2412118911743164 img loss 1.4308712482452393 img loss 1.3577240705490112 img loss 1.3654135465621948 img loss 1.393771767616272 img loss 1.2827056646347046 img loss 1.3495811223983765 img loss 1.3619292974472046 img loss 1.2850884199142456 img loss 1.3400883674621582 img loss 1.4177374839782715 img loss 1.3950811624526978 img loss 1.2201523780822754 img loss 1.3746495246887207 img loss 1.5856817960739136 img loss 1.2674616575241089 img loss 1.4960874319076538 img loss 1.356265664100647 img loss 1.3337817192077637 img loss 1.5219206809997559 img loss 1.285581111907959 img loss 1.3034762144088745 img loss 1.269537329673767 img loss 1.3193087577819824 img loss 1.460308313369751 img loss 1.3262076377868652 img loss 1.3980525732040405 img loss 1.5045840740203857 img loss 1.2352288961410522 img loss 1.3647314310073853 img loss 1.5714420080184937 img loss 1.3883990049362183 img loss 1.396188497543335 img loss 1.4699151515960693 img loss 1.427369475364685 img loss 1.369996190071106 img loss 1.4451020956039429 img loss 1.4227478504180908 img loss 1.378890872001648 img loss 1.2754329442977905 img loss 1.439184308052063 img loss 1.3523857593536377 img loss 1.3293788433074951 img loss 1.3470488786697388 img loss 1.4127758741378784 img loss 1.3716896772384644 img loss 1.3324930667877197 img loss 1.4547812938690186 img loss 1.3821591138839722 img loss 1.484350323677063 img loss 1.3499706983566284 img loss 1.310257911682129 img loss 1.342415452003479 img loss 1.491650938987732 img loss 1.3280150890350342 img loss 1.3124077320098877img loss 1.4724786281585693 img loss 1.5003529787063599 img loss 1.3744663000106812 img loss 1.5187076330184937 img loss 1.4206866025924683 img loss 1.3999731540679932 img loss 1.3679758310317993 img loss 1.3409048318862915 img loss 1.4684021472930908 img loss 1.3899972438812256 img loss 1.503222107887268 img loss 1.305335521697998 img loss 1.2486156225204468 img loss 1.3153703212738037 img loss 1.4062544107437134 img loss 1.4528173208236694 img loss 1.3175324201583862 img loss 1.2541344165802002 img loss 1.4873747825622559 {'loss': 1.3847, 'grad_norm': 0.4221489727497101, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2716783285140991 img loss 1.2075132131576538 img loss 1.2058066129684448 img loss 1.2338050603866577 img loss 1.2187650203704834 img loss 1.2289743423461914 img loss 1.2368968725204468 img loss 1.263762354850769 img loss 1.233877182006836 img loss 1.2308974266052246 img loss 1.2428388595581055 img loss 1.1990362405776978 img loss 1.2467159032821655 img loss 1.2502058744430542 img loss 1.2381285429000854 img loss 1.2129135131835938 img loss 1.246509313583374 img loss 1.2468550205230713 img loss 1.2082903385162354 img loss 1.1579176187515259 img loss 1.225604772567749 img loss 1.1918060779571533 img loss 1.2499027252197266 img loss 1.168582797050476 img loss 1.1701955795288086 img loss 1.1796139478683472 img loss 1.2270710468292236 img loss 1.172473669052124 img loss 1.1794288158416748 img loss 1.2785669565200806 img loss 1.2103849649429321 img loss 1.2535711526870728 img loss 1.2069084644317627 img loss 1.2111930847167969 img loss 1.27968168258667 img loss 1.1925817728042603 img loss 1.27599036693573 img loss 1.2865650653839111 img loss 1.1661876440048218 img loss 1.2258689403533936 img loss 1.232611060142517 img loss 1.1776881217956543 img loss 1.246713638305664 img loss 1.1663249731063843 img loss 1.204689860343933 img loss 1.23582923412323 img loss 1.1874440908432007 img loss 1.2678545713424683 img loss 1.2382563352584839 img loss 1.193169116973877 img loss 1.2492822408676147 img loss 1.2496795654296875 img loss 1.1979670524597168 img loss 1.2799745798110962 img loss 1.1989917755126953 img loss 1.2272895574569702 img loss 1.224694013595581 img loss 1.1776738166809082 img loss 1.218729853630066 img loss 1.16329824924469 img loss 1.187309741973877 img loss 1.2376505136489868 img loss 1.1923084259033203 img loss 1.213163137435913 img loss 1.2008907794952393 img loss 1.2374924421310425 img loss 1.1948156356811523 img loss 1.1707253456115723 img loss 1.1678030490875244 img loss 1.1961027383804321 img loss 1.1980422735214233 img loss 1.2747658491134644 img loss 1.1426819562911987 img loss 1.2010563611984253 img loss 1.1795681715011597 img loss 1.2957820892333984 img loss 1.156663417816162 img loss 1.290464162826538 img loss 1.2694103717803955 img loss 1.1917641162872314 img loss 1.2258687019348145 img loss 1.2399319410324097 img loss 1.2269506454467773 img loss 1.2800078392028809 img loss 1.1371158361434937 img loss 1.1839311122894287 img loss 1.2213282585144043 img loss 1.2861601114273071 img loss 1.2113606929779053 img loss 1.201535940170288 img loss 1.214647650718689 img loss 1.1979186534881592 img loss 1.2219371795654297 img loss 1.1864360570907593 img loss 1.1954845190048218 img loss 1.2116612195968628 img loss 1.1919093132019043 img loss 1.2353686094284058 img loss 1.1776013374328613 img loss 1.2832685708999634 img loss 1.197023630142212 img loss 1.1914643049240112 img loss 1.2505825757980347 img loss 1.2192132472991943 img loss 1.2016692161560059 img loss 1.2086368799209595 img loss 1.1935553550720215 img loss 1.215884804725647 img loss 1.1953611373901367 img loss 1.1564067602157593 img loss 1.2105393409729004 img loss 1.1707348823547363 img loss 1.23077392578125 img loss 1.1635617017745972 img loss 1.2282848358154297 img loss 1.2548569440841675 img loss 1.2137588262557983 img loss 1.2219414710998535 img loss 1.2181587219238281 img loss 1.1993783712387085 img loss 1.2182022333145142 img loss 1.1839027404785156 img loss 1.2270748615264893 img loss 1.2034635543823242 img loss 1.2817318439483643 img loss 1.246644377708435 img loss 1.2441692352294922 img loss 1.1217503547668457 {'loss': 1.2162, 'grad_norm': 0.26365941762924194, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1432452201843262 img loss 1.218272089958191 img loss 1.1939656734466553 img loss 1.2200908660888672 img loss 1.1670398712158203 img loss 1.1747673749923706 img loss 1.1993215084075928 img loss 1.1329641342163086 img loss 1.1517326831817627 img loss 1.1540840864181519 img loss 1.1791003942489624 img loss 1.174255132675171 img loss 1.1858785152435303 img loss 1.1670137643814087 img loss 1.1583317518234253 img loss 1.1684093475341797 img loss 1.154357671737671 img loss 1.1649421453475952 img loss 1.2275054454803467 img loss 1.2617852687835693 img loss 1.1669234037399292 img loss 1.165686011314392 img loss 1.1653614044189453 img loss 1.163428544998169 img loss 1.1508266925811768 img loss 1.170257329940796 img loss 1.1853442192077637 img loss 1.1543478965759277 img loss 1.2303879261016846 img loss 1.2184350490570068 img loss 1.1985576152801514 img loss 1.1281479597091675 img loss 1.1732677221298218 img loss 1.1856689453125img loss 1.1488155126571655 img loss 1.236943006515503 img loss 1.1592644453048706 img loss 1.201136589050293 img loss 1.1800752878189087 img loss 1.1356637477874756 img loss 1.1974080801010132 img loss 1.1752896308898926 img loss 1.2811415195465088 img loss 1.2223966121673584 img loss 1.195147156715393 img loss 1.1583811044692993 img loss 1.1293007135391235 img loss 1.1755319833755493 img loss 1.1974424123764038 img loss 1.2042009830474854 img loss 1.157228946685791 img loss 1.188033103942871 img loss 1.102515697479248 img loss 1.1475028991699219 img loss 1.1550486087799072 img loss 1.2224889993667603 img loss 1.2085167169570923 img loss 1.1350948810577393 img loss 1.1974351406097412 img loss 1.1566412448883057 img loss 1.190001130104065 img loss 1.2268686294555664 img loss 1.1407455205917358 img loss 1.1934696435928345 img loss 1.1429755687713623 img loss 1.183289885520935 img loss 1.1753299236297607 img loss 1.1917431354522705 img loss 1.2043359279632568 img loss 1.1802810430526733 img loss 1.1434866189956665 img loss 1.1855037212371826 img loss 1.1375941038131714 img loss 1.1748366355895996 img loss 1.1870096921920776 img loss 1.2076075077056885 img loss 1.1619993448257446 img loss 1.2160074710845947 img loss 1.1827120780944824 img loss 1.2421077489852905 img loss 1.2246252298355103 img loss 1.1839786767959595 img loss 1.1799094676971436 img loss 1.2006620168685913 img loss 1.1955522298812866 img loss 1.1768139600753784 img loss 1.1492817401885986 img loss 1.1390254497528076 img loss 1.1368464231491089 img loss 1.1672453880310059 img loss 1.1563987731933594 img loss 1.2182347774505615 img loss 1.2172753810882568 img loss 1.174558401107788 img loss 1.2358551025390625 img loss 1.189318299293518 img loss 1.250974416732788 img loss 1.1877161264419556 img loss 1.1579786539077759 img loss 1.1707663536071777 img loss 1.135247826576233 img loss 1.2205075025558472 img loss 1.1619346141815186 img loss 1.1762491464614868 img loss 1.112886667251587 img loss 1.2702969312667847 img loss 1.171507716178894 img loss 1.2680538892745972 img loss 1.1978836059570312 img loss 1.1449942588806152 img loss 1.1510114669799805 img loss 1.1315548419952393 img loss 1.1443983316421509 img loss 1.211352825164795 img loss 1.2085293531417847 img loss 1.1630979776382446 img loss 1.183608055114746 img loss 1.2293676137924194 img loss 1.225764513015747 img loss 1.2408020496368408 img loss 1.1830743551254272 img loss 1.1420135498046875 img loss 1.2215344905853271 img loss 1.1520971059799194 img loss 1.1979827880859375 img loss 1.1852372884750366 img loss 1.161280632019043 img loss 1.2141039371490479 {'loss': 1.1821, 'grad_norm': 0.3523106276988983, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2545589208602905 img loss 1.2878315448760986 img loss 1.2126730680465698 img loss 1.265005350112915 img loss 1.2130985260009766 img loss 1.3031519651412964 img loss 1.2474457025527954 img loss 1.2348706722259521 img loss 1.2068274021148682 img loss 1.251353144645691 img loss 1.2948358058929443 img loss 1.3054485321044922 img loss 1.3328723907470703 img loss 1.2329635620117188 img loss 1.2686381340026855 img loss 1.3609968423843384 img loss 1.2478258609771729 img loss 1.244131088256836 img loss 1.219539999961853 img loss 1.2306163311004639 img loss 1.2811381816864014 img loss 1.2523095607757568 img loss 1.2547485828399658 img loss 1.2127258777618408 img loss 1.2741326093673706 img loss 1.1465091705322266 img loss 1.2865757942199707 img loss 1.3132023811340332 img loss 1.2875592708587646 img loss 1.2754299640655518 img loss 1.2727293968200684 img loss 1.3380000591278076 img loss 1.2797791957855225 img loss 1.3120248317718506 img loss 1.3304163217544556 img loss 1.2912710905075073 img loss 1.206398367881775 img loss 1.3160977363586426 img loss 1.2829416990280151 img loss 1.2786269187927246 img loss 1.295925498008728 img loss 1.3225655555725098 img loss 1.365587830543518 img loss 1.2402756214141846 img loss 1.3135695457458496 img loss 1.2717390060424805 img loss 1.2434964179992676 img loss 1.3223661184310913img loss 1.2455962896347046 img loss 1.2330050468444824 img loss 1.2261545658111572 img loss 1.2705005407333374 img loss 1.2261890172958374 img loss 1.3313992023468018 img loss 1.2891432046890259 img loss 1.292173981666565 img loss 1.2702689170837402 img loss 1.2758667469024658 img loss 1.2777127027511597 img loss 1.3377339839935303 img loss 1.1604503393173218 img loss 1.2123899459838867 img loss 1.2686980962753296 img loss 1.2577991485595703 img loss 1.214125156402588 img loss 1.3059580326080322 img loss 1.2557988166809082 img loss 1.2449079751968384 img loss 1.2495367527008057 img loss 1.2717845439910889 img loss 1.2418262958526611 img loss 1.2746005058288574 img loss 1.3042371273040771 img loss 1.213249921798706 img loss 1.2873356342315674 img loss 1.1982580423355103 img loss 1.349229335784912 img loss 1.2579138278961182 img loss 1.3549124002456665 img loss 1.2450379133224487 img loss 1.2483360767364502 img loss 1.2733376026153564 img loss 1.4035178422927856 img loss 1.1888978481292725 img loss 1.272050380706787 img loss 1.260219931602478 img loss 1.2846230268478394 img loss 1.226230502128601 img loss 1.1877082586288452 img loss 1.2999818325042725 img loss 1.2384613752365112 img loss 1.243647813796997 img loss 1.2827318906784058 img loss 1.2613409757614136 img loss 1.2743726968765259 img loss 1.342739224433899 img loss 1.2642974853515625 img loss 1.2453539371490479 img loss 1.3646810054779053 img loss 1.3121432065963745 img loss 1.292754054069519 img loss 1.2462704181671143 img loss 1.3465183973312378 img loss 1.3121899366378784 img loss 1.1488807201385498 img loss 1.1934460401535034 img loss 1.3010362386703491 img loss 1.3155683279037476 img loss 1.2957534790039062 img loss 1.3052252531051636 img loss 1.2796375751495361 img loss 1.3836586475372314 img loss 1.2513256072998047 img loss 1.3000578880310059 img loss 1.2687228918075562 img loss 1.2693724632263184 img loss 1.2447925806045532 img loss 1.2230751514434814 img loss 1.3010013103485107 img loss 1.2466961145401 img loss 1.223819375038147 img loss 1.3600610494613647 img loss 1.3794785737991333 img loss 1.2225192785263062 img loss 1.235041856765747 img loss 1.3014343976974487 img loss 1.2195137739181519 img loss 1.2774406671524048 {'loss': 1.2715, 'grad_norm': 0.37792500853538513, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2703430652618408 img loss 1.22360098361969 img loss 1.2629715204238892 img loss 1.2179789543151855 img loss 1.218377947807312 img loss 1.2398589849472046 img loss 1.2194857597351074 img loss 1.285398006439209 img loss 1.1857235431671143 img loss 1.2748956680297852 img loss 1.226611614227295 img loss 1.2233282327651978 img loss 1.3534687757492065 img loss 1.2581576108932495 img loss 1.281309962272644 img loss 1.1982991695404053 img loss 1.2115669250488281 img loss 1.166849970817566 img loss 1.2078956365585327 img loss 1.1722397804260254 img loss 1.222137451171875 img loss 1.176658034324646 img loss 1.2274926900863647 img loss 1.3182902336120605 img loss 1.1549538373947144 img loss 1.2693989276885986 img loss 1.397035837173462 img loss 1.139095425605774 img loss 1.2490713596343994 img loss 1.239043116569519 img loss 1.2414976358413696 img loss 1.2069110870361328 img loss 1.211269736289978 img loss 1.2067203521728516 img loss 1.211140513420105 img loss 1.1409437656402588 img loss 1.200040340423584 img loss 1.1563040018081665 img loss 1.1911063194274902 img loss 1.3353627920150757 img loss 1.237192988395691 img loss 1.2669885158538818 img loss 1.2534730434417725 img loss 1.2474476099014282 img loss 1.1979475021362305 img loss 1.1432139873504639 img loss 1.2232273817062378 img loss 1.213627576828003 img loss 1.1811633110046387 img loss 1.249732255935669 img loss 1.1981244087219238 img loss 1.3257231712341309 img loss 1.2366173267364502 img loss 1.3392078876495361 img loss 1.1756491661071777 img loss 1.271955132484436 img loss 1.2421135902404785 img loss 1.2368344068527222 img loss 1.2609885931015015 img loss 1.192314863204956 img loss 1.3206007480621338 img loss 1.2506741285324097 img loss 1.1796374320983887 img loss 1.2826168537139893 img loss 1.2213548421859741 img loss 1.3070387840270996 img loss 1.2923816442489624 img loss 1.2220122814178467 img loss 1.1977455615997314 img loss 1.1867541074752808 img loss 1.2302078008651733 img loss 1.2446047067642212 img loss 1.195380687713623 img loss 1.2402348518371582 img loss 1.1214722394943237 img loss 1.1517835855484009 img loss 1.2898679971694946 img loss 1.1370666027069092 img loss 1.261139154434204 img loss 1.2441024780273438 img loss 1.1428163051605225 img loss 1.3052380084991455 img loss 1.3218560218811035 img loss 1.1474660634994507 img loss 1.1283721923828125 img loss 1.1866517066955566 img loss 1.1442887783050537 img loss 1.1889339685440063 img loss 1.1672420501708984 img loss 1.3033697605133057 img loss 1.2501291036605835 img loss 1.2717307806015015 img loss 1.1467446088790894 img loss 1.2366565465927124 img loss 1.3376801013946533 img loss 1.1448712348937988 img loss 1.2066378593444824 img loss 1.160041332244873 img loss 1.2708033323287964 img loss 1.1385526657104492 img loss 1.1906594038009644 img loss 1.1912250518798828 img loss 1.2279562950134277 img loss 1.249657392501831 img loss 1.2949870824813843 img loss 1.2264862060546875 img loss 1.259727120399475 img loss 1.2574714422225952 img loss 1.2842276096343994 img loss 1.3047990798950195 img loss 1.2785468101501465 img loss 1.190551519393921 img loss 1.2673945426940918 img loss 1.300898790359497 img loss 1.1858553886413574 img loss 1.2531516551971436 img loss 1.28457510471344 img loss 1.1721832752227783 img loss 1.224967360496521 img loss 1.2460240125656128 img loss 1.1707866191864014img loss 1.184205412864685 img loss 1.2599334716796875 img loss 1.1615873575210571 img loss 1.2270303964614868 img loss 1.1725940704345703 img loss 1.1889194250106812 img loss 1.1303396224975586 {'loss': 1.227, 'grad_norm': 0.22023902833461761, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2135158777236938 img loss 1.2416470050811768 img loss 1.2133474349975586 img loss 1.2515294551849365 img loss 1.1995062828063965 img loss 1.1296405792236328 img loss 1.1127244234085083 img loss 1.2329542636871338 img loss 1.1858164072036743 img loss 1.2857840061187744 img loss 1.2536170482635498 img loss 1.1716411113739014 img loss 1.1414060592651367 img loss 1.172229528427124 img loss 1.2028363943099976 img loss 1.1571013927459717 img loss 1.2534825801849365 img loss 1.1264028549194336 img loss 1.2037301063537598 img loss 1.1444010734558105 img loss 1.205565333366394 img loss 1.1917576789855957 img loss 1.2665008306503296 img loss 1.260508418083191 img loss 1.1208667755126953 img loss 1.1457951068878174 img loss 1.1320469379425049 img loss 1.1380276679992676 img loss 1.2002112865447998 img loss 1.1211793422698975 img loss 1.1990327835083008 img loss 1.2393519878387451 img loss 1.1355507373809814 img loss 1.2761914730072021 img loss 1.173542857170105 img loss 1.1914494037628174 img loss 1.2692533731460571 img loss 1.1786346435546875 img loss 1.3212125301361084 img loss 1.2415741682052612 img loss 1.1665939092636108 img loss 1.0831594467163086 img loss 1.166680097579956 img loss 1.2238283157348633 img loss 1.2706120014190674 img loss 1.3072718381881714 img loss 1.225549340248108 img loss 1.1554014682769775 img loss 1.1384518146514893 img loss 1.161505103111267 img loss 1.1624325513839722 img loss 1.180214524269104 img loss 1.192207932472229 img loss 1.2516943216323853 img loss 1.2112336158752441 img loss 1.1650205850601196 img loss 1.283980131149292 img loss 1.140655279159546 img loss 1.22017240524292 img loss 1.2292249202728271 img loss 1.1309456825256348 img loss 1.2712634801864624 img loss 1.1026414632797241 img loss 1.1459481716156006 img loss 1.1575236320495605 img loss 1.2148102521896362 img loss 1.1741256713867188 img loss 1.1524560451507568 img loss 1.0841991901397705 img loss 1.2367981672286987 img loss 1.2090511322021484 img loss 1.1108592748641968 img loss 1.1037378311157227 img loss 1.1443281173706055 img loss 1.2399077415466309 img loss 1.2750942707061768 img loss 1.1687335968017578 img loss 1.2102253437042236 img loss 1.1825287342071533 img loss 1.2244353294372559 img loss 1.1128849983215332 img loss 1.1213595867156982 img loss 1.166228175163269 img loss 1.209102988243103 img loss 1.2173923254013062 img loss 1.1356332302093506 img loss 1.2141451835632324 img loss 1.1367294788360596 img loss 1.2222867012023926 img loss 1.181086540222168 img loss 1.166656255722046 img loss 1.2406415939331055 img loss 1.1823471784591675 img loss 1.195494532585144 img loss 1.2158540487289429 img loss 1.1646050214767456 img loss 1.2444730997085571 img loss 1.2185966968536377 img loss 1.0965675115585327 img loss 1.2523362636566162 img loss 1.189145565032959 img loss 1.143980622291565 img loss 1.3008110523223877 img loss 1.2260611057281494 img loss 1.2753961086273193 img loss 1.1382328271865845 img loss 1.191413164138794 img loss 1.2030006647109985 img loss 1.2038242816925049 img loss 1.2168163061141968 img loss 1.233657717704773 img loss 1.231548547744751 img loss 1.240750789642334 img loss 1.281722068786621 img loss 1.1928613185882568 img loss 1.252165675163269 img loss 1.232125163078308 img loss 1.1885335445404053 img loss 1.1669650077819824 img loss 1.1952147483825684 img loss 1.2165229320526123 img loss 1.218719482421875 img loss 1.216132640838623 img loss 1.1891319751739502 img loss 1.1523253917694092 img loss 1.310348391532898 img loss 1.134932279586792 img loss 1.1793570518493652 {'loss': 1.1953, 'grad_norm': 0.25589215755462646, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3242566585540771 img loss 1.3378243446350098 img loss 1.2625335454940796 img loss 1.294820785522461 img loss 1.2022032737731934 img loss 1.2651748657226562 img loss 1.289480209350586 img loss 1.315190315246582 img loss 1.3135547637939453 img loss 1.2792084217071533 img loss 1.3525059223175049 img loss 1.248274326324463 img loss 1.2870750427246094 img loss 1.2437833547592163 img loss 1.3290423154830933 img loss 1.2460602521896362 img loss 1.2756903171539307 img loss 1.2003276348114014 img loss 1.2313657999038696 img loss 1.3641502857208252 img loss 1.2217464447021484 img loss 1.3949729204177856 img loss 1.319481372833252 img loss 1.2851636409759521 img loss 1.3381747007369995 img loss 1.3328723907470703 img loss 1.3089340925216675 img loss 1.3338710069656372 img loss 1.2431610822677612 img loss 1.2593265771865845 img loss 1.2588963508605957 img loss 1.2895997762680054 img loss 1.3376580476760864 img loss 1.3042570352554321 img loss 1.2668018341064453 img loss 1.3920719623565674 img loss 1.4094483852386475 img loss 1.3063106536865234 img loss 1.214107871055603 img loss 1.253591775894165 img loss 1.2320536375045776 img loss 1.2895429134368896 img loss 1.4306436777114868 img loss 1.2545737028121948 img loss 1.2607805728912354 img loss 1.297676920890808 img loss 1.2943719625473022 img loss 1.2947736978530884 img loss 1.3091604709625244 img loss 1.2638801336288452 img loss 1.2996509075164795 img loss 1.32242751121521 img loss 1.4165207147598267 img loss 1.4169100522994995 img loss 1.3745487928390503 img loss 1.2509602308273315 img loss 1.3223236799240112 img loss 1.2376763820648193 img loss 1.232276439666748 img loss 1.3062433004379272 img loss 1.278721809387207 img loss 1.363472580909729 img loss 1.3287910223007202 img loss 1.2093380689620972 img loss 1.322462797164917 img loss 1.3166637420654297 img loss 1.3257678747177124 img loss 1.2416470050811768 img loss 1.3225589990615845 img loss 1.252944827079773 img loss 1.3408056497573853 img loss 1.2175133228302002 img loss 1.2826069593429565 img loss 1.320703387260437 img loss 1.310404658317566 img loss 1.2687482833862305 img loss 1.3026319742202759 img loss 1.2717541456222534 img loss 1.2930434942245483 img loss 1.2784446477890015 img loss 1.3440848588943481 img loss 1.2989740371704102 img loss 1.340728521347046 img loss 1.2985410690307617 img loss 1.263522982597351 img loss 1.320712924003601 img loss 1.3443909883499146 img loss 1.2310723066329956 img loss 1.2542804479599 img loss 1.3322958946228027 img loss 1.2337435483932495 img loss 1.3622376918792725 img loss 1.2274775505065918 img loss 1.1960052251815796 img loss 1.2704282999038696 img loss 1.3382686376571655 img loss 1.3669246435165405 img loss 1.3220783472061157 img loss 1.2437615394592285 img loss 1.301626205444336 img loss 1.411484956741333 img loss 1.2712604999542236 img loss 1.3574566841125488 img loss 1.3006523847579956 img loss 1.2888731956481934 img loss 1.3887341022491455 img loss 1.3001844882965088 img loss 1.50001859664917 img loss 1.3094158172607422 img loss 1.2546403408050537 img loss 1.2173173427581787 img loss 1.3785024881362915 img loss 1.2992876768112183 img loss 1.294561743736267 img loss 1.339538812637329 img loss 1.2487035989761353 img loss 1.227907657623291 img loss 1.2500154972076416 img loss 1.325830340385437 img loss 1.2730697393417358 img loss 1.3033469915390015 img loss 1.4540773630142212 img loss 1.3494601249694824 img loss 1.2605037689208984 img loss 1.2944469451904297 img loss 1.2520480155944824 img loss 1.3126219511032104 img loss 1.2445238828659058 {'loss': 1.2991, 'grad_norm': 0.21757246553897858, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.25832998752594 img loss 1.2053741216659546 img loss 1.2439930438995361 img loss 1.2253119945526123 img loss 1.2673439979553223 img loss 1.279222846031189 img loss 1.2126060724258423 img loss 1.2688934803009033 img loss 1.204504370689392 img loss 1.2077025175094604 img loss 1.2872579097747803 img loss 1.297778606414795 img loss 1.2686948776245117 img loss 1.2562577724456787 img loss 1.323249101638794 img loss 1.238776445388794 img loss 1.351836919784546 img loss 1.2985972166061401 img loss 1.2516379356384277 img loss 1.2561355829238892 img loss 1.263299584388733 img loss 1.2380907535552979 img loss 1.2939050197601318 img loss 1.3577526807785034 img loss 1.2318851947784424 img loss 1.2666577100753784 img loss 1.2447795867919922 img loss 1.2790625095367432 img loss 1.203850269317627 img loss 1.2023825645446777 img loss 1.2364771366119385 img loss 1.2658299207687378 img loss 1.187835931777954 img loss 1.2701115608215332 img loss 1.1510772705078125 img loss 1.2555923461914062 img loss 1.271228551864624 img loss 1.2827479839324951 img loss 1.181854248046875 img loss 1.2705817222595215 img loss 1.2342145442962646 img loss 1.3070210218429565 img loss 1.2441030740737915 img loss 1.226810097694397 img loss 1.2757866382598877 img loss 1.170031189918518 img loss 1.2396862506866455 img loss 1.3390772342681885 img loss 1.2163492441177368 img loss 1.2073328495025635 img loss 1.2594554424285889 img loss 1.211604356765747 img loss 1.182678461074829 img loss 1.1981419324874878 img loss 1.2398793697357178img loss 1.2135757207870483 img loss 1.3424842357635498 img loss 1.2846283912658691 img loss 1.2009539604187012 img loss 1.2558183670043945 img loss 1.3076661825180054 img loss 1.2310606241226196 img loss 1.1795811653137207 img loss 1.2680017948150635 img loss 1.23175048828125 img loss 1.2028926610946655 img loss 1.2601293325424194 img loss 1.2818645238876343 img loss 1.1665810346603394 img loss 1.2127087116241455 img loss 1.2292072772979736 img loss 1.3036199808120728 img loss 1.1639240980148315 img loss 1.3405097723007202 img loss 1.3641406297683716 img loss 1.254874587059021 img loss 1.3293344974517822 img loss 1.271636724472046 img loss 1.2538641691207886 img loss 1.2992347478866577 img loss 1.2997946739196777 img loss 1.2717525959014893 img loss 1.216625452041626 img loss 1.1972874402999878 img loss 1.3406965732574463 img loss 1.138080358505249 img loss 1.204383134841919 img loss 1.2873462438583374 img loss 1.2143588066101074 img loss 1.242013931274414 img loss 1.2704086303710938 img loss 1.2580980062484741 img loss 1.2823129892349243 img loss 1.240734577178955 img loss 1.2766220569610596 img loss 1.2584418058395386 img loss 1.2298516035079956 img loss 1.2890104055404663 img loss 1.1959378719329834 img loss 1.2223724126815796 img loss 1.2740567922592163 img loss 1.2085678577423096 img loss 1.3231858015060425 img loss 1.2407779693603516 img loss 1.2432408332824707 img loss 1.3348191976547241 img loss 1.226640224456787 img loss 1.240573763847351 img loss 1.3003267049789429 img loss 1.262315034866333 img loss 1.1499789953231812 img loss 1.2886219024658203 img loss 1.2655397653579712 img loss 1.1820309162139893 img loss 1.2143089771270752 img loss 1.2796224355697632 img loss 1.2490901947021484 img loss 1.2498003244400024 img loss 1.2843574285507202 img loss 1.1971529722213745img loss 1.2901434898376465 img loss 1.222490906715393 img loss 1.2188595533370972 img loss 1.2157853841781616 img loss 1.1928513050079346 img loss 1.1945643424987793 img loss 1.3244062662124634 img loss 1.2423561811447144 {'loss': 1.2501, 'grad_norm': 0.21744872629642487, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3409936428070068 img loss 1.304715633392334 img loss 1.51219642162323 img loss 1.3004804849624634 img loss 1.4669163227081299 img loss 1.5275863409042358 img loss 1.4468244314193726 img loss 1.4727318286895752 img loss 1.4922682046890259 img loss 1.599521279335022 img loss 1.5575315952301025 img loss 1.560034155845642 img loss 1.3343422412872314 img loss 1.382006287574768 img loss 1.3797322511672974 img loss 1.4275038242340088img loss 1.513343334197998 img loss 1.416774868965149 img loss 1.4453043937683105 img loss 1.488204836845398 img loss 1.2995589971542358 img loss 1.4606635570526123 img loss 1.4429564476013184 img loss 1.4840656518936157 img loss 1.3474485874176025 img loss 1.4665724039077759 img loss 1.5147608518600464 img loss 1.4230438470840454 img loss 1.504759430885315 img loss 1.360337734222412 img loss 1.4328720569610596 img loss 1.4812829494476318 img loss 1.3367403745651245 img loss 1.4472553730010986 img loss 1.4447009563446045 img loss 1.3637336492538452 img loss 1.4694876670837402 img loss 1.3785885572433472 img loss 1.4313464164733887 img loss 1.397003412246704 img loss 1.306462049484253 img loss 1.4656647443771362 img loss 1.4090344905853271 img loss 1.3193674087524414 img loss 1.441795825958252 img loss 1.3431111574172974 img loss 1.5377800464630127 img loss 1.2521319389343262 img loss 1.5111793279647827 img loss 1.520514965057373 img loss 1.3768848180770874 img loss 1.3768270015716553 img loss 1.4311527013778687 img loss 1.543493628501892 img loss 1.3512898683547974 img loss 1.3467894792556763 img loss 1.5487949848175049 img loss 1.4289227724075317 img loss 1.6399182081222534 img loss 1.3873820304870605 img loss 1.4768434762954712 img loss 1.4199773073196411 img loss 1.5716215372085571 img loss 1.4467747211456299 img loss 1.4868525266647339 img loss 1.4727035760879517 img loss 1.4668574333190918 img loss 1.4142111539840698 img loss 1.3898712396621704 img loss 1.4570449590682983 img loss 1.4436625242233276 img loss 1.2799911499023438 img loss 1.4385582208633423 img loss 1.651016354560852 img loss 1.3959400653839111 img loss 1.4151443243026733 img loss 1.5372859239578247 img loss 1.3736680746078491 img loss 1.3993151187896729 img loss 1.4890085458755493 img loss 1.345236897468567 img loss 1.6616657972335815 img loss 1.4619792699813843 img loss 1.3658597469329834 img loss 1.4536417722702026 img loss 1.4658912420272827 img loss 1.5947022438049316 img loss 1.389888048171997 img loss 1.4163061380386353 img loss 1.4337204694747925 img loss 1.5097371339797974 img loss 1.625454306602478 img loss 1.3333481550216675 img loss 1.4159191846847534 img loss 1.424185037612915 img loss 1.3164879083633423 img loss 1.346467137336731 img loss 1.4369672536849976 img loss 1.3028786182403564 img loss 1.3671361207962036 img loss 1.4654220342636108 img loss 1.267505168914795 img loss 1.4771358966827393 img loss 1.2224878072738647 img loss 1.47353196144104img loss 1.4397027492523193 img loss 1.3646851778030396 img loss 1.3340078592300415 img loss 1.5047937631607056 img loss 1.5756555795669556 img loss 1.4404942989349365 img loss 1.424924612045288 img loss 1.4365586042404175 img loss 1.4586656093597412 img loss 1.5025913715362549 img loss 1.3418926000595093 img loss 1.480649709701538 img loss 1.465888261795044 img loss 1.4337878227233887 img loss 1.4571337699890137 img loss 1.4239914417266846img loss 1.3341940641403198 img loss 1.4220881462097168 img loss 1.3875772953033447 img loss 1.4330676794052124 img loss 1.449745535850525 img loss 1.3038774728775024 img loss 1.4959652423858643 {'loss': 1.4336, 'grad_norm': 0.4731501340866089, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2534348964691162 img loss 1.2263380289077759 img loss 1.2790181636810303 img loss 1.2036182880401611 img loss 1.1938987970352173 img loss 1.3455337285995483 img loss 1.2503585815429688 img loss 1.2485227584838867 img loss 1.2920029163360596 img loss 1.1829760074615479 img loss 1.2349882125854492 img loss 1.2423970699310303 img loss 1.2467085123062134 img loss 1.2637951374053955 img loss 1.233737587928772 img loss 1.2584667205810547 img loss 1.2260985374450684 img loss 1.3050254583358765 img loss 1.2283514738082886 img loss 1.3246198892593384 img loss 1.2139906883239746 img loss 1.1563313007354736 img loss 1.3030331134796143 img loss 1.2151495218276978 img loss 1.4202090501785278 img loss 1.251451015472412 img loss 1.1981762647628784 img loss 1.2947516441345215 img loss 1.2232987880706787 img loss 1.1583976745605469 img loss 1.2189764976501465 img loss 1.2889809608459473 img loss 1.2239902019500732 img loss 1.2314810752868652 img loss 1.299885630607605 img loss 1.2106800079345703 img loss 1.370103359222412 img loss 1.2600951194763184 img loss 1.2681901454925537 img loss 1.2426352500915527 img loss 1.2423275709152222 img loss 1.2099967002868652 img loss 1.2053250074386597 img loss 1.232308030128479 img loss 1.2026687860488892 img loss 1.2802032232284546 img loss 1.2687807083129883 img loss 1.2595716714859009 img loss 1.3085602521896362 img loss 1.214856505393982 img loss 1.2360467910766602 img loss 1.2678345441818237 img loss 1.2266037464141846 img loss 1.2438862323760986 img loss 1.2116146087646484 img loss 1.2122681140899658 img loss 1.3432796001434326 img loss 1.2426278591156006 img loss 1.2141728401184082 img loss 1.1833140850067139 img loss 1.227281093597412 img loss 1.1591447591781616 img loss 1.2193745374679565 img loss 1.168238639831543 img loss 1.213889479637146 img loss 1.2906664609909058 img loss 1.234438419342041 img loss 1.3108935356140137 img loss 1.3199362754821777 img loss 1.242285966873169 img loss 1.2883572578430176 img loss 1.1753548383712769 img loss 1.2246700525283813 img loss 1.2627918720245361 img loss 1.2616102695465088 img loss 1.319577693939209 img loss 1.2711578607559204 img loss 1.24724280834198 img loss 1.2576656341552734 img loss 1.2092018127441406 img loss 1.2604721784591675 img loss 1.3006960153579712 img loss 1.201079249382019 img loss 1.1976417303085327 img loss 1.15183687210083 img loss 1.1851366758346558 img loss 1.1898237466812134 img loss 1.2629473209381104 img loss 1.194870948791504 img loss 1.1800439357757568 img loss 1.3439968824386597 img loss 1.1984373331069946 img loss 1.1756452322006226 img loss 1.343752145767212 img loss 1.2558857202529907 img loss 1.1563080549240112 img loss 1.2817751169204712 img loss 1.3312057256698608 img loss 1.3011858463287354 img loss 1.278666377067566 img loss 1.2865846157073975 img loss 1.2207355499267578 img loss 1.2834956645965576 img loss 1.247035026550293 img loss 1.2394790649414062 img loss 1.3589426279067993 img loss 1.2900103330612183 img loss 1.1995806694030762 img loss 1.2794358730316162 img loss 1.236257791519165 img loss 1.2211875915527344 img loss 1.1750094890594482 img loss 1.2112540006637573 img loss 1.222969889640808 img loss 1.1850321292877197 img loss 1.2856760025024414 img loss 1.2963045835494995 img loss 1.3427716493606567 img loss 1.2985305786132812 img loss 1.2061257362365723 img loss 1.2099270820617676 img loss 1.2619017362594604 img loss 1.213581919670105 img loss 1.202247142791748 img loss 1.247240662574768 img loss 1.198744773864746 img loss 1.1830657720565796 img loss 1.235079288482666 {'loss': 1.2455, 'grad_norm': 0.33234110474586487, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4454166889190674 img loss 1.2544618844985962 img loss 1.332374930381775 img loss 1.389724612236023 img loss 1.3045251369476318 img loss 1.3291900157928467 img loss 1.408814787864685 img loss 1.2278350591659546 img loss 1.2632384300231934 img loss 1.2988367080688477 img loss 1.3402467966079712 img loss 1.259600043296814 img loss 1.2079273462295532 img loss 1.3343404531478882 img loss 1.314629077911377 img loss 1.2729172706604004 img loss 1.2607219219207764 img loss 1.26607346534729 img loss 1.352192759513855 img loss 1.2911161184310913 img loss 1.2585177421569824 img loss 1.3223168849945068 img loss 1.3179128170013428 img loss 1.2412515878677368 img loss 1.3174408674240112 img loss 1.2996896505355835 img loss 1.3276506662368774 img loss 1.35359787940979 img loss 1.3002249002456665 img loss 1.2964110374450684 img loss 1.3942879438400269img loss 1.3027257919311523 img loss 1.138529658317566 img loss 1.2820957899093628 img loss 1.3204452991485596 img loss 1.3007663488388062 img loss 1.282060146331787 img loss 1.3082005977630615 img loss 1.2756264209747314 img loss 1.3408781290054321 img loss 1.4331616163253784 img loss 1.2810776233673096 img loss 1.2802120447158813 img loss 1.3769824504852295 img loss 1.2485806941986084 img loss 1.3075323104858398 img loss 1.2449992895126343 img loss 1.2719329595565796 img loss 1.2805144786834717 img loss 1.2672666311264038 img loss 1.3430075645446777 img loss 1.3658477067947388 img loss 1.3194414377212524 img loss 1.2725982666015625 img loss 1.27297842502594 img loss 1.2638157606124878 img loss 1.2887367010116577 img loss 1.3650939464569092 img loss 1.2449530363082886 img loss 1.29135000705719 img loss 1.2521320581436157 img loss 1.3434854745864868 img loss 1.2522379159927368 img loss 1.2720766067504883 img loss 1.3575549125671387 img loss 1.3103652000427246 img loss 1.2259241342544556 img loss 1.2774600982666016 img loss 1.3119722604751587 img loss 1.3789387941360474 img loss 1.400657296180725 img loss 1.2628307342529297 img loss 1.2762266397476196 img loss 1.358306646347046 img loss 1.3218029737472534 img loss 1.470590353012085 img loss 1.3057363033294678 img loss 1.2500041723251343 img loss 1.5008037090301514 img loss 1.380767583847046 img loss 1.3898252248764038 img loss 1.2870234251022339 img loss 1.3406882286071777 img loss 1.27767813205719 img loss 1.2545307874679565 img loss 1.3030331134796143 img loss 1.256008505821228 img loss 1.1271917819976807 img loss 1.4052807092666626 img loss 1.24101722240448 img loss 1.2879631519317627 img loss 1.4735181331634521 img loss 1.349422574043274 img loss 1.3422410488128662 img loss 1.235776662826538 img loss 1.3487590551376343 img loss 1.3748517036437988 img loss 1.260229468345642 img loss 1.2800211906433105 img loss 1.2825053930282593 img loss 1.4134010076522827 img loss 1.2457332611083984 img loss 1.2375895977020264 img loss 1.2704025506973267 img loss 1.3471635580062866 img loss 1.339282512664795 img loss 1.2971961498260498 img loss 1.2562997341156006 img loss 1.3174113035202026 img loss 1.3629294633865356 img loss 1.2739555835723877 img loss 1.2866954803466797 img loss 1.2407162189483643 img loss 1.3476542234420776 img loss 1.2869209051132202 img loss 1.2617841958999634 img loss 1.3051279783248901 img loss 1.312212586402893 img loss 1.3173422813415527 img loss 1.28584623336792 img loss 1.3912451267242432 img loss 1.1953495740890503 img loss 1.2728772163391113 img loss 1.2790635824203491 img loss 1.2407186031341553 img loss 1.3229424953460693 img loss 1.3075270652770996 img loss 1.2936031818389893 {'loss': 1.3054, 'grad_norm': 0.2254643589258194, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3004039525985718 img loss 1.4362627267837524 img loss 1.4477097988128662 img loss 1.2842116355895996 img loss 1.3296018838882446 img loss 1.337889313697815 img loss 1.183174729347229 img loss 1.287779450416565 img loss 1.3238604068756104 img loss 1.3440210819244385 img loss 1.2984619140625 img loss 1.2166212797164917 img loss 1.277848720550537 img loss 1.2828037738800049 img loss 1.3883016109466553 img loss 1.3265405893325806 img loss 1.2988404035568237 img loss 1.3563802242279053 img loss 1.2888787984848022 img loss 1.2643582820892334 img loss 1.3205198049545288 img loss 1.3230738639831543 img loss 1.3083330392837524 img loss 1.3731635808944702 img loss 1.360026478767395 img loss 1.3782217502593994 img loss 1.3843719959259033 img loss 1.2681403160095215 img loss 1.3497107028961182 img loss 1.2598950862884521 img loss 1.3520883321762085 img loss 1.227964997291565 img loss 1.407271146774292 img loss 1.2819947004318237 img loss 1.2927101850509644 img loss 1.4149811267852783 img loss 1.2646574974060059 img loss 1.32570219039917 img loss 1.3026745319366455 img loss 1.2496627569198608 img loss 1.4369823932647705 img loss 1.3108341693878174 img loss 1.388651728630066 img loss 1.3566584587097168 img loss 1.297773003578186 img loss 1.299142837524414 img loss 1.377323031425476 img loss 1.2317050695419312 img loss 1.34697687625885 img loss 1.2796189785003662img loss 1.3735066652297974 img loss 1.2566320896148682 img loss 1.349525809288025 img loss 1.4360400438308716 img loss 1.296777606010437 img loss 1.2843998670578003 img loss 1.3749066591262817 img loss 1.3697725534439087 img loss 1.3303784132003784 img loss 1.3291137218475342 img loss 1.2793829441070557 img loss 1.3407419919967651 img loss 1.321848750114441 img loss 1.2538217306137085 img loss 1.351068139076233 img loss 1.3667261600494385 img loss 1.307149887084961 img loss 1.3987324237823486 img loss 1.3497062921524048 img loss 1.2727818489074707 img loss 1.3492672443389893 img loss 1.3205714225769043 img loss 1.289015293121338 img loss 1.3438364267349243 img loss 1.267061471939087 img loss 1.3381237983703613 img loss 1.3051496744155884 img loss 1.231880784034729 img loss 1.3349744081497192 img loss 1.327662706375122 img loss 1.3242716789245605 img loss 1.2707149982452393 img loss 1.319429874420166 img loss 1.3761619329452515 img loss 1.3644477128982544 img loss 1.3760323524475098 img loss 1.3653723001480103 img loss 1.3753060102462769 img loss 1.3518832921981812 img loss 1.4089895486831665 img loss 1.284368872642517 img loss 1.3622785806655884 img loss 1.2846293449401855 img loss 1.3421975374221802 img loss 1.2633479833602905 img loss 1.3630058765411377 img loss 1.3118641376495361 img loss 1.3107858896255493 img loss 1.3323720693588257 img loss 1.3647154569625854 img loss 1.218496561050415 img loss 1.3054167032241821 img loss 1.3494378328323364img loss 1.2834498882293701 img loss 1.3215311765670776 img loss 1.414585828781128 img loss 1.3769736289978027 img loss 1.3841935396194458 img loss 1.2846091985702515 img loss 1.3488162755966187 img loss 1.328428864479065 img loss 1.345277190208435 img loss 1.3527628183364868 img loss 1.4092954397201538 img loss 1.273411750793457img loss 1.244533896446228img loss 1.4123882055282593 img loss 1.273759365081787 img loss 1.3638900518417358 img loss 1.4723467826843262 img loss 1.4158574342727661 img loss 1.303923487663269 img loss 1.3411259651184082 img loss 1.259093165397644 img loss 1.2739676237106323 img loss 1.215816855430603 img loss 1.2197496891021729 img loss 1.4002174139022827 {'loss': 1.3261, 'grad_norm': 0.244740292429924, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3555153608322144 img loss 1.3112049102783203 img loss 1.42918860912323 img loss 1.3467745780944824 img loss 1.383017659187317 img loss 1.3641448020935059 img loss 1.2516216039657593 img loss 1.3548216819763184 img loss 1.2727619409561157 img loss 1.273394227027893 img loss 1.29843008518219 img loss 1.3688290119171143 img loss 1.343775987625122 img loss 1.279573678970337 img loss 1.4265284538269043 img loss 1.4643375873565674 img loss 1.4371066093444824 img loss 1.4693201780319214 img loss 1.3041791915893555 img loss 1.4143445491790771 img loss 1.363124966621399 img loss 1.3880127668380737 img loss 1.2711503505706787 img loss 1.352756381034851 img loss 1.3971335887908936 img loss 1.3698872327804565 img loss 1.250905990600586 img loss 1.2990955114364624 img loss 1.3126004934310913 img loss 1.2684111595153809 img loss 1.4049465656280518 img loss 1.3844735622406006 img loss 1.3713041543960571 img loss 1.3231315612792969 img loss 1.3465325832366943 img loss 1.3132004737854004 img loss 1.2475639581680298 img loss 1.3283231258392334 img loss 1.3597491979599 img loss 1.355937123298645 img loss 1.4647881984710693 img loss 1.2436214685440063 img loss 1.3555941581726074 img loss 1.4007519483566284 img loss 1.3529726266860962 img loss 1.3501230478286743 img loss 1.4475373029708862 img loss 1.3111786842346191 img loss 1.2846112251281738 img loss 1.3462040424346924 img loss 1.2898606061935425 img loss 1.3946751356124878 img loss 1.3306801319122314 img loss 1.2351375818252563 img loss 1.3177076578140259 img loss 1.3894470930099487 img loss 1.419026255607605 img loss 1.3120907545089722 img loss 1.3225303888320923 img loss 1.3555045127868652 img loss 1.3402409553527832 img loss 1.3016690015792847 img loss 1.443925380706787 img loss 1.2083613872528076 img loss 1.3474087715148926 img loss 1.237635612487793 img loss 1.314450740814209 img loss 1.3429275751113892 img loss 1.385947823524475 img loss 1.3485997915267944 img loss 1.4116756916046143 img loss 1.3264944553375244 img loss 1.2979806661605835 img loss 1.2673958539962769 img loss 1.2916367053985596 img loss 1.306457281112671 img loss 1.2438411712646484 img loss 1.3716638088226318 img loss 1.4581141471862793 img loss 1.2708863019943237 img loss 1.407847285270691 img loss 1.3897734880447388 img loss 1.274626612663269 img loss 1.334826946258545 img loss 1.270711898803711 img loss 1.4156888723373413 img loss 1.3556197881698608img loss 1.3163161277770996 img loss 1.3106470108032227 img loss 1.3758682012557983 img loss 1.3179244995117188 img loss 1.3051929473876953 img loss 1.345845103263855 img loss 1.258972406387329 img loss 1.4881532192230225 img loss 1.26593816280365 img loss 1.3242318630218506 img loss 1.2613086700439453 img loss 1.3636339902877808 img loss 1.3023810386657715 img loss 1.4388943910598755 img loss 1.29575514793396 img loss 1.4587630033493042 img loss 1.4265131950378418 img loss 1.4438210725784302 img loss 1.283361792564392 img loss 1.456124186515808 img loss 1.4333134889602661 img loss 1.4502294063568115 img loss 1.3464772701263428 img loss 1.331841230392456 img loss 1.2576385736465454 img loss 1.361810564994812 img loss 1.3238052129745483 img loss 1.3817360401153564 img loss 1.2547597885131836 img loss 1.3182644844055176 img loss 1.4313277006149292 img loss 1.3270440101623535 img loss 1.339036226272583 img loss 1.3499940633773804 img loss 1.4113661050796509 img loss 1.2457258701324463 img loss 1.2443981170654297 img loss 1.2462382316589355 img loss 1.3345234394073486 img loss 1.2572128772735596 img loss 1.3370426893234253 {'loss': 1.342, 'grad_norm': 0.30737462639808655, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2943567037582397 img loss 1.3278411626815796 img loss 1.2546534538269043 img loss 1.4087949991226196 img loss 1.3163913488388062 img loss 1.4194806814193726 img loss 1.2381514310836792 img loss 1.3573719263076782 img loss 1.4074246883392334 img loss 1.3135268688201904 img loss 1.3405829668045044 img loss 1.3725162744522095 img loss 1.2283741235733032 img loss 1.2925028800964355 img loss 1.3203530311584473 img loss 1.4340959787368774 img loss 1.4001983404159546 img loss 1.368615984916687 img loss 1.2903856039047241 img loss 1.4259113073349 img loss 1.4439855813980103 img loss 1.2446191310882568 img loss 1.3093540668487549 img loss 1.2613435983657837 img loss 1.3833187818527222 img loss 1.3049640655517578 img loss 1.442500352859497 img loss 1.3965479135513306 img loss 1.378463625907898 img loss 1.403070330619812 img loss 1.4000433683395386 img loss 1.302585244178772 img loss 1.3702034950256348 img loss 1.3360635042190552 img loss 1.3947831392288208 img loss 1.3709954023361206 img loss 1.4414722919464111 img loss 1.2662138938903809 img loss 1.3317190408706665 img loss 1.4848698377609253 img loss 1.4026148319244385 img loss 1.3688862323760986 img loss 1.350857138633728 img loss 1.4117121696472168 img loss 1.403103232383728 img loss 1.491640329360962 img loss 1.3452515602111816 img loss 1.2929565906524658 img loss 1.3022053241729736 img loss 1.3452236652374268 img loss 1.3272454738616943 img loss 1.311201810836792 img loss 1.574286937713623 img loss 1.323474407196045 img loss 1.3183115720748901 img loss 1.3446707725524902 img loss 1.375145673751831 img loss 1.3252454996109009 img loss 1.425350308418274 img loss 1.3898524045944214 img loss 1.4085650444030762 img loss 1.3274493217468262 img loss 1.2645988464355469 img loss 1.3695615530014038 img loss 1.2614283561706543 img loss 1.258575439453125 img loss 1.3545546531677246 img loss 1.3710328340530396 img loss 1.4269455671310425 img loss 1.320142149925232 img loss 1.3250702619552612 img loss 1.3560129404067993 img loss 1.4364736080169678 img loss 1.500763177871704 img loss 1.2148637771606445 img loss 1.2737354040145874 img loss 1.4225369691848755 img loss 1.3417094945907593 img loss 1.303278923034668 img loss 1.565463662147522 img loss 1.2520557641983032 img loss 1.3959375619888306 img loss 1.373572826385498 img loss 1.464881181716919 img loss 1.3248212337493896 img loss 1.4648844003677368 img loss 1.526772379875183 img loss 1.198620080947876 img loss 1.4014067649841309 img loss 1.2533602714538574 img loss 1.409058928489685 img loss 1.3276653289794922 img loss 1.3916115760803223 img loss 1.3031501770019531 img loss 1.3046486377716064 img loss 1.442612886428833 img loss 1.4801524877548218 img loss 1.4388624429702759 img loss 1.1884114742279053 img loss 1.3055346012115479 img loss 1.4471057653427124 img loss 1.3724194765090942 img loss 1.380165934562683 img loss 1.4382346868515015 img loss 1.192110538482666 img loss 1.497921109199524 img loss 1.2379626035690308 img loss 1.321602702140808 img loss 1.4330494403839111 img loss 1.371245265007019 img loss 1.3136463165283203 img loss 1.4382256269454956 img loss 1.3295321464538574 img loss 1.4376860857009888 img loss 1.465248942375183 img loss 1.3512308597564697 img loss 1.3384349346160889 img loss 1.5091012716293335 img loss 1.3842957019805908 img loss 1.2703293561935425 img loss 1.4372116327285767 img loss 1.3671555519104004 img loss 1.4102948904037476 img loss 1.3995600938796997 img loss 1.4376864433288574 img loss 1.481827974319458 img loss 1.3351638317108154 img loss 1.4642232656478882 {'loss': 1.365, 'grad_norm': 0.41530802845954895, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2798868417739868 img loss 1.3574563264846802 img loss 1.3751450777053833 img loss 1.3086919784545898 img loss 1.280383825302124 img loss 1.2815465927124023 img loss 1.283219814300537 img loss 1.2431522607803345 img loss 1.2764663696289062 img loss 1.2803910970687866 img loss 1.2772917747497559 img loss 1.2635269165039062 img loss 1.2749781608581543 img loss 1.2756190299987793 img loss 1.2127315998077393 img loss 1.3188272714614868 img loss 1.333461046218872 img loss 1.3602570295333862 img loss 1.3728302717208862 img loss 1.2544445991516113 img loss 1.3123443126678467 img loss 1.3463914394378662 img loss 1.333759069442749 img loss 1.3722245693206787 img loss 1.256590485572815 img loss 1.2577593326568604 img loss 1.1780544519424438 img loss 1.248136281967163 img loss 1.3635919094085693 img loss 1.31979238986969 img loss 1.2810282707214355 img loss 1.2747337818145752 img loss 1.310599684715271 img loss 1.3848508596420288 img loss 1.250475525856018 img loss 1.264800786972046 img loss 1.3711621761322021 img loss 1.3185958862304688 img loss 1.1673977375030518 img loss 1.250919222831726 img loss 1.3389500379562378 img loss 1.2111186981201172 img loss 1.2398793697357178 img loss 1.1938297748565674 img loss 1.2083271741867065 img loss 1.2295063734054565 img loss 1.3494716882705688 img loss 1.3716689348220825 img loss 1.2444987297058105 img loss 1.1934343576431274 img loss 1.201149344444275 img loss 1.2729142904281616 img loss 1.3283305168151855 img loss 1.3006019592285156 img loss 1.364451289176941 img loss 1.3250868320465088 img loss 1.2244806289672852 img loss 1.3325650691986084 img loss 1.2365813255310059 img loss 1.2820193767547607 img loss 1.2050694227218628 img loss 1.243437647819519 img loss 1.3410584926605225 img loss 1.2555702924728394 img loss 1.2014575004577637 img loss 1.280515193939209 img loss 1.1854654550552368 img loss 1.2446531057357788 img loss 1.2686057090759277 img loss 1.3812752962112427 img loss 1.2769140005111694 img loss 1.2938750982284546 img loss 1.2704062461853027 img loss 1.2989590167999268 img loss 1.3050954341888428 img loss 1.2796684503555298 img loss 1.2003635168075562 img loss 1.3501830101013184 img loss 1.4597951173782349 img loss 1.2897069454193115 img loss 1.3243095874786377 img loss 1.2841538190841675 img loss 1.3026940822601318 img loss 1.2261674404144287 img loss 1.2831834554672241 img loss 1.402900218963623 img loss 1.3395397663116455 img loss 1.216364860534668 img loss 1.2123550176620483 img loss 1.245286464691162 img loss 1.25901198387146 img loss 1.3406964540481567 img loss 1.2644686698913574 img loss 1.1978347301483154 img loss 1.4018174409866333 img loss 1.2999876737594604 img loss 1.249967098236084 img loss 1.266062617301941 img loss 1.504891276359558 img loss 1.2426118850708008 img loss 1.248755693435669 img loss 1.2312724590301514 img loss 1.3386183977127075 img loss 1.3688946962356567 img loss 1.2685863971710205 img loss 1.3125776052474976 img loss 1.265392780303955 img loss 1.2456988096237183 img loss 1.35065495967865 img loss 1.295852541923523 img loss 1.3271825313568115 img loss 1.196717619895935 img loss 1.392830491065979 img loss 1.2513631582260132 img loss 1.2864480018615723 img loss 1.3082098960876465 img loss 1.3392202854156494 img loss 1.306965708732605 img loss 1.2536647319793701 img loss 1.2552646398544312 img loss 1.2478336095809937 img loss 1.3134886026382446 img loss 1.2170536518096924 img loss 1.2917526960372925 img loss 1.260292887687683 img loss 1.3342621326446533 img loss 1.2685585021972656 img loss 1.176429271697998 {'loss': 1.2865, 'grad_norm': 0.21552450954914093, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1874459981918335 img loss 1.1554477214813232 img loss 1.1607797145843506 img loss 1.234298586845398 img loss 1.1677011251449585 img loss 1.2009875774383545 img loss 1.2477978467941284 img loss 1.1802120208740234 img loss 1.21901535987854 img loss 1.1732815504074097 img loss 1.273781418800354 img loss 1.115500807762146 img loss 1.222226619720459 img loss 1.2152268886566162 img loss 1.1558566093444824 img loss 1.1928174495697021 img loss 1.2133359909057617 img loss 1.188405990600586 img loss 1.1822351217269897 img loss 1.1892848014831543 img loss 1.2240715026855469 img loss 1.1967580318450928 img loss 1.197298288345337 img loss 1.2553069591522217 img loss 1.1808257102966309 img loss 1.165622353553772 img loss 1.2153841257095337 img loss 1.2774513959884644 img loss 1.1975840330123901 img loss 1.1846163272857666 img loss 1.1826157569885254img loss 1.1515957117080688 img loss 1.1449134349822998 img loss 1.1832051277160645 img loss 1.1584995985031128 img loss 1.1955465078353882 img loss 1.227328896522522 img loss 1.220544695854187 img loss 1.2084344625473022 img loss 1.2243696451187134 img loss 1.2356055974960327 img loss 1.3105329275131226 img loss 1.2163742780685425 img loss 1.218237280845642 img loss 1.2019051313400269 img loss 1.1750397682189941 img loss 1.1577380895614624 img loss 1.171722412109375 img loss 1.159301519393921 img loss 1.2050554752349854 img loss 1.181200623512268 img loss 1.203256607055664 img loss 1.284728765487671 img loss 1.2968336343765259 img loss 1.1967427730560303 img loss 1.2153258323669434 img loss 1.2392539978027344 img loss 1.2228630781173706 img loss 1.1886224746704102 img loss 1.21309232711792 img loss 1.1610116958618164 img loss 1.11786949634552 img loss 1.2926673889160156 img loss 1.1791572570800781 img loss 1.1776962280273438 img loss 1.1402907371520996 img loss 1.1953493356704712 img loss 1.150001049041748 img loss 1.1477959156036377 img loss 1.1426057815551758 img loss 1.1848156452178955 img loss 1.2302122116088867 img loss 1.1315343379974365 img loss 1.1168534755706787 img loss 1.2102307081222534 img loss 1.2318389415740967 img loss 1.204779863357544 img loss 1.232521414756775 img loss 1.140755295753479 img loss 1.156365990638733 img loss 1.224375605583191 img loss 1.2046771049499512 img loss 1.2190641164779663 img loss 1.1350313425064087 img loss 1.2320530414581299 img loss 1.2322044372558594 img loss 1.242981195449829 img loss 1.1107946634292603 img loss 1.1927485466003418 img loss 1.1739834547042847 img loss 1.2607243061065674 img loss 1.169921636581421 img loss 1.216312050819397 img loss 1.1833463907241821 img loss 1.25167715549469 img loss 1.1956326961517334 img loss 1.1561764478683472 img loss 1.2283008098602295 img loss 1.2873589992523193 img loss 1.2642531394958496 img loss 1.1528031826019287 img loss 1.2710717916488647 img loss 1.2060420513153076 img loss 1.1886768341064453 img loss 1.2545169591903687 img loss 1.2443509101867676 img loss 1.1782631874084473 img loss 1.2002302408218384 img loss 1.1464262008666992 img loss 1.245187759399414 img loss 1.109084963798523 img loss 1.1857666969299316 img loss 1.1950030326843262 img loss 1.1525160074234009 img loss 1.2308835983276367 img loss 1.2769094705581665 img loss 1.1071439981460571 img loss 1.2253364324569702 img loss 1.1433541774749756 img loss 1.2122917175292969 img loss 1.1587164402008057 img loss 1.1905930042266846 img loss 1.1712802648544312 img loss 1.1856496334075928 img loss 1.1646144390106201 img loss 1.2356665134429932 img loss 1.1854074001312256 img loss 1.1613948345184326 {'loss': 1.1974, 'grad_norm': 0.24404747784137726, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2218958139419556 img loss 1.1737791299819946 img loss 1.2512550354003906 img loss 1.2249802350997925 img loss 1.189841628074646 img loss 1.3016104698181152 img loss 1.1959495544433594 img loss 1.1659330129623413 img loss 1.1031240224838257 img loss 1.249813437461853 img loss 1.19220769405365 img loss 1.2216870784759521 img loss 1.1929450035095215 img loss 1.2119731903076172 img loss 1.1359471082687378 img loss 1.224099040031433 img loss 1.2221821546554565 img loss 1.2318004369735718 img loss 1.1856911182403564 img loss 1.1464351415634155 img loss 1.1634745597839355 img loss 1.219408631324768 img loss 1.2236493825912476 img loss 1.2142324447631836 img loss 1.1791248321533203 img loss 1.2048568725585938 img loss 1.3021562099456787 img loss 1.2055805921554565 img loss 1.3036623001098633 img loss 1.2012442350387573 img loss 1.0947717428207397 img loss 1.1394294500350952 img loss 1.1910583972930908 img loss 1.2367935180664062 img loss 1.2091184854507446 img loss 1.1511096954345703 img loss 1.2859824895858765 img loss 1.2785252332687378 img loss 1.160168170928955 img loss 1.3309705257415771 img loss 1.2059705257415771 img loss 1.2200416326522827 img loss 1.2280421257019043 img loss 1.1583261489868164 img loss 1.20041024684906 img loss 1.2343162298202515 img loss 1.2402358055114746 img loss 1.1641114950180054 img loss 1.2224116325378418 img loss 1.1796822547912598 img loss 1.1700884103775024 img loss 1.2342123985290527 img loss 1.171156883239746 img loss 1.1889424324035645 img loss 1.2413074970245361 img loss 1.1714389324188232 img loss 1.2484409809112549 img loss 1.1641879081726074 img loss 1.1984437704086304 img loss 1.1424633264541626 img loss 1.1888779401779175 img loss 1.1534252166748047 img loss 1.2988113164901733 img loss 1.1868752241134644 img loss 1.2057923078536987 img loss 1.185991883277893 img loss 1.2145874500274658 img loss 1.170129656791687 img loss 1.2153383493423462 img loss 1.2745901346206665 img loss 1.1421916484832764 img loss 1.1749191284179688 img loss 1.1529604196548462 img loss 1.2455008029937744 img loss 1.1268336772918701 img loss 1.1360125541687012 img loss 1.1614340543746948 img loss 1.1694821119308472 img loss 1.147363543510437 img loss 1.2037385702133179 img loss 1.211578130722046 img loss 1.1793886423110962 img loss 1.1599345207214355 img loss 1.1448326110839844 img loss 1.1906914710998535 img loss 1.1375994682312012 img loss 1.2197279930114746 img loss 1.2335351705551147 img loss 1.2182613611221313 img loss 1.2010555267333984 img loss 1.1864794492721558 img loss 1.1671020984649658 img loss 1.2515389919281006 img loss 1.2092370986938477 img loss 1.1541002988815308 img loss 1.1738426685333252 img loss 1.2168220281600952 img loss 1.2090225219726562 img loss 1.1618437767028809 img loss 1.1520994901657104 img loss 1.1844792366027832 img loss 1.1694122552871704 img loss 1.1522833108901978 img loss 1.1986490488052368 img loss 1.200812578201294 img loss 1.1708072423934937 img loss 1.249410629272461 img loss 1.2773891687393188 img loss 1.1448700428009033 img loss 1.3630516529083252 img loss 1.202531337738037 img loss 1.2602245807647705 img loss 1.1732333898544312 img loss 1.1891847848892212 img loss 1.1528542041778564 img loss 1.2167024612426758 img loss 1.140238642692566 img loss 1.1670559644699097 img loss 1.2739018201828003 img loss 1.1459184885025024 img loss 1.2546600103378296 img loss 1.267188310623169 img loss 1.2744314670562744 img loss 1.1949357986450195 img loss 1.2314884662628174 img loss 1.224802017211914 img loss 1.193753719329834 img loss 1.192726731300354 {'loss': 1.201, 'grad_norm': 0.2228938490152359, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2811487913131714 img loss 1.3019137382507324 img loss 1.2602020502090454 img loss 1.2005226612091064 img loss 1.2454349994659424 img loss 1.2192363739013672 img loss 1.2261549234390259 img loss 1.205285906791687 img loss 1.2389730215072632 img loss 1.2618420124053955 img loss 1.2855733633041382 img loss 1.2224373817443848 img loss 1.2232589721679688 img loss 1.2962461709976196 img loss 1.2170990705490112 img loss 1.2864906787872314 img loss 1.2775821685791016 img loss 1.2463302612304688 img loss 1.2650387287139893 img loss 1.1833540201187134 img loss 1.2599034309387207 img loss 1.226977825164795 img loss 1.2749614715576172 img loss 1.173741102218628 img loss 1.2944679260253906 img loss 1.3319565057754517 img loss 1.2482681274414062 img loss 1.236265778541565 img loss 1.271812915802002 img loss 1.23452627658844 img loss 1.2015600204467773 img loss 1.280689001083374 img loss 1.2066326141357422 img loss 1.1872658729553223 img loss 1.2767903804779053 img loss 1.370388388633728 img loss 1.2956302165985107 img loss 1.2367091178894043 img loss 1.2516975402832031 img loss 1.2542383670806885 img loss 1.2210111618041992 img loss 1.2595363855361938 img loss 1.2804921865463257 img loss 1.293228030204773 img loss 1.2512032985687256 img loss 1.2780736684799194 img loss 1.2413066625595093 img loss 1.271836519241333 img loss 1.2631480693817139 img loss 1.1907132863998413 img loss 1.3375128507614136 img loss 1.2401118278503418 img loss 1.3233598470687866 img loss 1.2034387588500977 img loss 1.1831154823303223 img loss 1.234044075012207 img loss 1.2730553150177002 img loss 1.2419198751449585 img loss 1.3040313720703125 img loss 1.3109374046325684 img loss 1.2421692609786987 img loss 1.199561357498169 img loss 1.293118953704834 img loss 1.2504899501800537 img loss 1.1898932456970215 img loss 1.2364495992660522 img loss 1.261257529258728 img loss 1.245642066001892 img loss 1.2893633842468262 img loss 1.3063963651657104 img loss 1.1847909688949585 img loss 1.1920397281646729 img loss 1.1898753643035889 img loss 1.1766033172607422 img loss 1.1760185956954956 img loss 1.253376841545105 img loss 1.254067301750183 img loss 1.2012548446655273 img loss 1.2661511898040771 img loss 1.2268929481506348 img loss 1.2540147304534912 img loss 1.289907455444336 img loss 1.2077598571777344 img loss 1.1896227598190308 img loss 1.404596209526062 img loss 1.2814381122589111 img loss 1.2697206735610962 img loss 1.2552428245544434 img loss 1.1465250253677368 img loss 1.2854032516479492 img loss 1.2969584465026855 img loss 1.3034379482269287 img loss 1.1496738195419312 img loss 1.2373512983322144 img loss 1.2740604877471924 img loss 1.2615604400634766 img loss 1.2594255208969116 img loss 1.2316875457763672 img loss 1.2490592002868652 img loss 1.2441109418869019 img loss 1.2691667079925537 img loss 1.1874706745147705 img loss 1.2558481693267822 img loss 1.2197548151016235 img loss 1.2093181610107422 img loss 1.321702241897583 img loss 1.2454559803009033 img loss 1.3294320106506348 img loss 1.1729791164398193 img loss 1.2935543060302734 img loss 1.3101335763931274img loss 1.2377222776412964 img loss 1.2433890104293823 img loss 1.309775948524475 img loss 1.1855828762054443 img loss 1.1872031688690186 img loss 1.1943796873092651 img loss 1.267600655555725 img loss 1.2476096153259277 img loss 1.33369779586792 img loss 1.286450982093811 img loss 1.321496844291687 img loss 1.2126531600952148 img loss 1.3259994983673096 img loss 1.1752393245697021 img loss 1.2560951709747314 img loss 1.2171072959899902 img loss 1.3177610635757446 {'loss': 1.251, 'grad_norm': 0.2122393250465393, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4762269258499146 img loss 1.4419106245040894 img loss 1.3681317567825317 img loss 1.3247569799423218 img loss 1.5035923719406128 img loss 1.616738200187683 img loss 1.4356390237808228 img loss 1.4444166421890259 img loss 1.5148934125900269 img loss 1.410733938217163 img loss 1.385319471359253 img loss 1.575918436050415 img loss 1.441815972328186 img loss 1.3640682697296143 img loss 1.4804301261901855 img loss 1.4364947080612183 img loss 1.374010682106018 img loss 1.3536118268966675 img loss 1.3678752183914185 img loss 1.4397646188735962 img loss 1.5968235731124878 img loss 1.393504023551941 img loss 1.5290769338607788 img loss 1.3992637395858765 img loss 1.3855044841766357 img loss 1.5090758800506592 img loss 1.4855300188064575 img loss 1.433203101158142 img loss 1.500104308128357 img loss 1.4358521699905396 img loss 1.4089961051940918 img loss 1.4756722450256348 img loss 1.4280418157577515 img loss 1.5134187936782837 img loss 1.429614782333374 img loss 1.3906331062316895 img loss 1.484332799911499 img loss 1.2871100902557373 img loss 1.5179260969161987 img loss 1.3926395177841187 img loss 1.4436142444610596 img loss 1.3914868831634521 img loss 1.5042309761047363 img loss 1.4133230447769165 img loss 1.3711903095245361 img loss 1.419602870941162 img loss 1.5175336599349976 img loss 1.522080659866333 img loss 1.3433890342712402 img loss 1.383840799331665 img loss 1.3348535299301147 img loss 1.4731667041778564 img loss 1.3736830949783325 img loss 1.4634865522384644 img loss 1.454323172569275 img loss 1.471208930015564 img loss 1.4352837800979614 img loss 1.3244271278381348 img loss 1.593519687652588 img loss 1.5079426765441895 img loss 1.4565708637237549 img loss 1.4792954921722412 img loss 1.4872239828109741 img loss 1.457082986831665 img loss 1.549042820930481 img loss 1.541164517402649 img loss 1.4709497690200806 img loss 1.415955901145935 img loss 1.3783869743347168 img loss 1.4118611812591553 img loss 1.367648720741272 img loss 1.4687994718551636 img loss 1.3926748037338257 img loss 1.3933767080307007 img loss 1.5174161195755005 img loss 1.4633594751358032 img loss 1.3389641046524048 img loss 1.3889126777648926 img loss 1.4517391920089722 img loss 1.4073301553726196 img loss 1.443814754486084 img loss 1.4293745756149292 img loss 1.4870747327804565 img loss 1.4969496726989746 img loss 1.3838629722595215 img loss 1.3829762935638428 img loss 1.4036939144134521 img loss 1.413077473640442 img loss 1.4676282405853271 img loss 1.5131847858428955 img loss 1.481590747833252 img loss 1.3325116634368896 img loss 1.4085230827331543 img loss 1.476948618888855 img loss 1.3939837217330933 img loss 1.3832229375839233 img loss 1.4403843879699707 img loss 1.4393151998519897 img loss 1.4462510347366333 img loss 1.4151246547698975 img loss 1.3907065391540527 img loss 1.3450796604156494 img loss 1.5193485021591187 img loss 1.4737122058868408 img loss 1.505582332611084 img loss 1.363189458847046 img loss 1.4619719982147217 img loss 1.429754376411438 img loss 1.4358826875686646 img loss 1.3642680644989014 img loss 1.5019433498382568 img loss 1.4871317148208618 img loss 1.443078637123108 img loss 1.5105540752410889 img loss 1.5543019771575928 img loss 1.3522733449935913 img loss 1.3400465250015259 img loss 1.3398454189300537 img loss 1.5044959783554077 img loss 1.4367384910583496 img loss 1.3490830659866333 img loss 1.42726469039917 img loss 1.3207250833511353 img loss 1.3986414670944214 img loss 1.4053874015808105 img loss 1.4667116403579712 img loss 1.4634076356887817 img loss 1.4171322584152222 {'loss': 1.4373, 'grad_norm': 0.46698877215385437, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5711649656295776 img loss 1.4355727434158325 img loss 1.51695716381073 img loss 1.542950987815857 img loss 1.460710883140564 img loss 1.5141950845718384 img loss 1.560571312904358 img loss 1.4238333702087402 img loss 1.4532904624938965 img loss 1.4054509401321411 img loss 1.5198121070861816 img loss 1.5991681814193726 img loss 1.367725133895874 img loss 1.2923325300216675 img loss 1.53007173538208 img loss 1.4063069820404053 img loss 1.5228991508483887 img loss 1.3572535514831543 img loss 1.4310691356658936 img loss 1.386063814163208 img loss 1.5400742292404175 img loss 1.493804693222046 img loss 1.5026733875274658 img loss 1.6387245655059814 img loss 1.4529896974563599 img loss 1.472674012184143 img loss 1.3765771389007568 img loss 1.479735016822815 img loss 1.483479380607605 img loss 1.3187404870986938 img loss 1.5264925956726074 img loss 1.62494957447052 img loss 1.5144212245941162 img loss 1.382003903388977 img loss 1.5677502155303955 img loss 1.3969027996063232 img loss 1.3906406164169312 img loss 1.4455103874206543 img loss 1.4790445566177368 img loss 1.6034138202667236 img loss 1.3976256847381592 img loss 1.4944684505462646 img loss 1.4991737604141235 img loss 1.3886035680770874 img loss 1.397297739982605 img loss 1.636867880821228 img loss 1.3502860069274902 img loss 1.3214356899261475 img loss 1.4965506792068481 img loss 1.3987414836883545 img loss 1.445383906364441 img loss 1.5119112730026245 img loss 1.4741054773330688 img loss 1.4358837604522705 img loss 1.5041447877883911 img loss 1.4778934717178345 img loss 1.4901063442230225 img loss 1.4086298942565918 img loss 1.4252293109893799 img loss 1.4070372581481934 img loss 1.455756664276123 img loss 1.4228273630142212 img loss 1.4662362337112427 img loss 1.484192132949829 img loss 1.5071766376495361 img loss 1.5049251317977905 img loss 1.5057408809661865 img loss 1.602121114730835 img loss 1.4320279359817505 img loss 1.454914927482605 img loss 1.4122378826141357 img loss 1.493882417678833 img loss 1.3986283540725708 img loss 1.4322956800460815 img loss 1.3777782917022705 img loss 1.3745436668395996 img loss 1.4583157300949097 img loss 1.536639928817749 img loss 1.4447953701019287 img loss 1.8073407411575317 img loss 1.5080592632293701 img loss 1.5851002931594849 img loss 1.347369909286499 img loss 1.356695532798767 img loss 1.3882321119308472 img loss 1.4480174779891968 img loss 1.3951271772384644 img loss 1.4762873649597168 img loss 1.539152979850769 img loss 1.4279543161392212 img loss 1.433138370513916 img loss 1.4748777151107788 img loss 1.377681016921997 img loss 1.4888509511947632 img loss 1.4146524667739868 img loss 1.4236236810684204 img loss 1.4203706979751587 img loss 1.5491575002670288 img loss 1.4737058877944946 img loss 1.530036211013794 img loss 1.4579650163650513 img loss 1.4276645183563232 img loss 1.5774741172790527 img loss 1.5140643119812012 img loss 1.6090244054794312 img loss 1.3969624042510986 img loss 1.4392669200897217 img loss 1.5705211162567139 img loss 1.422379732131958 img loss 1.4223803281784058 img loss 1.4719960689544678 img loss 1.3149926662445068 img loss 1.5224909782409668 img loss 1.3889447450637817 img loss 1.2969698905944824 img loss 1.5542360544204712 img loss 1.4370392560958862 img loss 1.3764768838882446 img loss 1.4625910520553589 img loss 1.5704351663589478 img loss 1.4641040563583374 img loss 1.4934722185134888 img loss 1.4443055391311646 img loss 1.5187479257583618 img loss 1.4496699571609497 img loss 1.5602768659591675 img loss 1.350716233253479 img loss 1.4722999334335327 {'loss': 1.4654, 'grad_norm': 0.24447837471961975, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5150772333145142 img loss 1.5508307218551636 img loss 1.5894615650177002 img loss 1.5300133228302002 img loss 1.6014649868011475 img loss 1.4980570077896118 img loss 1.6120566129684448 img loss 1.6176695823669434 img loss 1.5186189413070679 img loss 1.702156662940979 img loss 1.5890225172042847 img loss 1.5192044973373413 img loss 1.6596906185150146 img loss 1.4234325885772705 img loss 1.5046274662017822 img loss 1.6590481996536255 img loss 1.793839454650879 img loss 1.538144826889038 img loss 1.602549433708191 img loss 1.5154366493225098 img loss 1.649590253829956 img loss 1.801609992980957 img loss 1.5632984638214111 img loss 1.6077698469161987 img loss 1.5240296125411987 img loss 1.6706140041351318 img loss 1.4777480363845825 img loss 1.5538910627365112 img loss 1.4708515405654907 img loss 1.5147594213485718 img loss 1.630539059638977 img loss 1.7176557779312134 img loss 1.5128387212753296 img loss 1.8380814790725708 img loss 1.5047471523284912 img loss 1.5934263467788696 img loss 1.558721899986267 img loss 1.4667893648147583 img loss 1.5272495746612549 img loss 1.4431251287460327 img loss 1.5666829347610474 img loss 1.6179715394973755 img loss 1.574461579322815 img loss 1.5656094551086426 img loss 1.5523864030838013 img loss 1.470409870147705 img loss 1.502376914024353 img loss 1.527260184288025 img loss 1.4479105472564697 img loss 1.5000509023666382 img loss 1.6394528150558472 img loss 1.5719443559646606 img loss 1.5576794147491455 img loss 1.532344937324524 img loss 1.405640959739685 img loss 1.5277715921401978 img loss 1.5595077276229858 img loss 1.6231986284255981 img loss 1.4760689735412598 img loss 1.67122220993042 img loss 1.624873399734497 img loss 1.5658106803894043 img loss 1.7921909093856812 img loss 1.502229928970337 img loss 1.558454155921936 img loss 1.5981228351593018 img loss 1.5242847204208374 img loss 1.6726707220077515 img loss 1.6741583347320557 img loss 1.5893579721450806 img loss 1.5232261419296265 img loss 1.551140546798706 img loss 1.5184757709503174 img loss 1.563171148300171 img loss 1.5265179872512817 img loss 1.6009587049484253 img loss 1.5674790143966675 img loss 1.6008789539337158 img loss 1.5005191564559937 img loss 1.5533385276794434 img loss 1.523924708366394 img loss 1.68961501121521 img loss 1.5903726816177368 img loss 1.5327824354171753 img loss 1.4812718629837036 img loss 1.625651240348816 img loss 1.4587883949279785 img loss 1.4777156114578247 img loss 1.54179048538208 img loss 1.538375735282898 img loss 1.5567952394485474 img loss 1.7064509391784668 img loss 1.5683929920196533 img loss 1.6621631383895874 img loss 1.5933737754821777 img loss 1.4680917263031006 img loss 1.6567933559417725 img loss 1.4698494672775269 img loss 1.5326075553894043 img loss 1.6316256523132324 img loss 1.6129603385925293 img loss 1.5662237405776978 img loss 1.486581563949585 img loss 1.6121774911880493 img loss 1.724697470664978 img loss 1.6535274982452393 img loss 1.446683645248413 img loss 1.4658104181289673 img loss 1.5296227931976318 img loss 1.6606593132019043 img loss 1.6188807487487793 img loss 1.4944393634796143 img loss 1.4022184610366821 img loss 1.4925674200057983 img loss 1.6628881692886353 img loss 1.7751230001449585 img loss 1.5055155754089355 img loss 1.5163638591766357 img loss 1.514607310295105 img loss 1.682745099067688 img loss 1.9429875612258911 img loss 1.5878081321716309 img loss 1.5079548358917236 img loss 1.6290851831436157 img loss 1.5569852590560913 img loss 1.539960503578186 img loss 1.4951224327087402 img loss 1.5662513971328735 {'loss': 1.5721, 'grad_norm': 0.45547857880592346, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.294626235961914 img loss 1.3324493169784546 img loss 1.276574969291687 img loss 1.2124688625335693 img loss 1.1344164609909058 img loss 1.1485496759414673 img loss 1.2405999898910522 img loss 1.21388578414917 img loss 1.1709516048431396 img loss 1.1831300258636475 img loss 1.3050167560577393 img loss 1.187469244003296 img loss 1.2372626066207886 img loss 1.1606053113937378 img loss 1.2195545434951782 img loss 1.1987495422363281 img loss 1.1988571882247925 img loss 1.2373472452163696 img loss 1.222557783126831 img loss 1.2020714282989502 img loss 1.1939711570739746 img loss 1.2465647459030151 img loss 1.2190909385681152 img loss 1.235948085784912 img loss 1.249342441558838 img loss 1.2856355905532837 img loss 1.2379225492477417 img loss 1.2295100688934326 img loss 1.2431435585021973 img loss 1.2578624486923218 img loss 1.2297638654708862 img loss 1.3093265295028687 img loss 1.3128305673599243 img loss 1.173729658126831img loss 1.2089104652404785 img loss 1.2323650121688843 img loss 1.1418883800506592 img loss 1.2507245540618896 img loss 1.240907907485962 img loss 1.243128776550293 img loss 1.2618160247802734 img loss 1.2642065286636353 img loss 1.2505823373794556 img loss 1.325579047203064 img loss 1.2197245359420776 img loss 1.2036221027374268 img loss 1.1812551021575928 img loss 1.2044501304626465 img loss 1.1941896677017212 img loss 1.2865852117538452 img loss 1.3394850492477417 img loss 1.3492944240570068 img loss 1.2663459777832031 img loss 1.2658888101577759 img loss 1.2137935161590576 img loss 1.2025809288024902 img loss 1.2527101039886475 img loss 1.2216556072235107 img loss 1.2241426706314087 img loss 1.2441844940185547 img loss 1.281252384185791 img loss 1.242030382156372 img loss 1.2769695520401 img loss 1.2345173358917236 img loss 1.251603603363037 img loss 1.1936063766479492 img loss 1.3116703033447266 img loss 1.241384506225586 img loss 1.2543569803237915 img loss 1.2024860382080078 img loss 1.2123610973358154 img loss 1.2300209999084473 img loss 1.1926697492599487 img loss 1.3196204900741577 img loss 1.2530807256698608 img loss 1.1913511753082275 img loss 1.2744941711425781 img loss 1.2519636154174805 img loss 1.2015380859375 img loss 1.236259937286377 img loss 1.2335431575775146 img loss 1.178961992263794 img loss 1.2264561653137207 img loss 1.2617518901824951 img loss 1.215597152709961 img loss 1.267157793045044 img loss 1.1938377618789673 img loss 1.2213910818099976 img loss 1.2386482954025269 img loss 1.244227409362793 img loss 1.2046256065368652 img loss 1.245388388633728 img loss 1.2789067029953003 img loss 1.2595372200012207 img loss 1.2638413906097412 img loss 1.2486910820007324 img loss 1.2661221027374268 img loss 1.2644884586334229 img loss 1.2276362180709839 img loss 1.1674126386642456 img loss 1.280107021331787 img loss 1.197650671005249 img loss 1.298032283782959 img loss 1.2638931274414062 img loss 1.26884925365448 img loss 1.194873332977295 img loss 1.2329974174499512 img loss 1.245142936706543 img loss 1.2431793212890625 img loss 1.3209009170532227 img loss 1.2528586387634277 img loss 1.2300647497177124 img loss 1.1919581890106201 img loss 1.1932481527328491 img loss 1.2279071807861328 img loss 1.2420539855957031 img loss 1.285029649734497 img loss 1.1833992004394531 img loss 1.1999534368515015 img loss 1.2776000499725342 img loss 1.220163345336914 img loss 1.1984169483184814 img loss 1.2909435033798218 img loss 1.2446178197860718 img loss 1.2115734815597534 img loss 1.2742104530334473 img loss 1.2113862037658691 img loss 1.227447271347046 {'loss': 1.2372, 'grad_norm': 0.3334537148475647, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3697049617767334 img loss 1.365046739578247 img loss 1.4124500751495361 img loss 1.5025813579559326 img loss 1.4065572023391724 img loss 1.4713890552520752 img loss 1.3272254467010498 img loss 1.3255674839019775 img loss 1.3843932151794434 img loss 1.437566876411438 img loss 1.3519835472106934 img loss 1.4240481853485107 img loss 1.3190866708755493 img loss 1.251723289489746 img loss 1.377022385597229 img loss 1.3653630018234253 img loss 1.4831509590148926 img loss 1.3511930704116821 img loss 1.4010132551193237 img loss 1.4614909887313843 img loss 1.368131160736084 img loss 1.3427056074142456 img loss 1.4496731758117676 img loss 1.3319048881530762 img loss 1.4164372682571411 img loss 1.3045759201049805 img loss 1.3476418256759644 img loss 1.3154247999191284 img loss 1.3951469659805298 img loss 1.2715258598327637 img loss 1.3379921913146973 img loss 1.470713496208191 img loss 1.404201626777649 img loss 1.3783901929855347 img loss 1.354487657546997 img loss 1.3847687244415283 img loss 1.37125563621521 img loss 1.4879878759384155 img loss 1.4588295221328735 img loss 1.3933231830596924 img loss 1.3838694095611572 img loss 1.3738089799880981 img loss 1.439440369606018 img loss 1.3872967958450317 img loss 1.3635685443878174 img loss 1.403770923614502 img loss 1.3545787334442139 img loss 1.3426271677017212 img loss 1.3930317163467407 img loss 1.3010200262069702 img loss 1.3545235395431519 img loss 1.3706374168395996 img loss 1.3700493574142456 img loss 1.3555608987808228 img loss 1.3140532970428467 img loss 1.3652633428573608 img loss 1.3225330114364624 img loss 1.290148377418518 img loss 1.3928570747375488 img loss 1.2884726524353027 img loss 1.3105847835540771 img loss 1.4632163047790527 img loss 1.345531940460205 img loss 1.3815948963165283 img loss 1.428027868270874 img loss 1.3564800024032593 img loss 1.3910340070724487 img loss 1.288806676864624 img loss 1.355246663093567 img loss 1.360278844833374 img loss 1.423043966293335 img loss 1.3350634574890137 img loss 1.3250389099121094 img loss 1.4144288301467896 img loss 1.4185388088226318 img loss 1.3877454996109009 img loss 1.3399149179458618 img loss 1.381245493888855 img loss 1.4041802883148193 img loss 1.3722548484802246 img loss 1.3818413019180298 img loss 1.3003278970718384 img loss 1.3114013671875 img loss 1.3339807987213135 img loss 1.3544942140579224 img loss 1.3489593267440796 img loss 1.4117108583450317 img loss 1.4333406686782837 img loss 1.3505891561508179 img loss 1.462296724319458 img loss 1.3804967403411865 img loss 1.340744137763977 img loss 1.4346340894699097 img loss 1.4051601886749268 img loss 1.4012904167175293 img loss 1.305011510848999 img loss 1.4482792615890503 img loss 1.4116357564926147 img loss 1.3188446760177612 img loss 1.3237090110778809img loss 1.4069372415542603 img loss 1.3880627155303955 img loss 1.3384718894958496 img loss 1.3473824262619019 img loss 1.4545923471450806 img loss 1.4129003286361694 img loss 1.478205919265747 img loss 1.4148722887039185 img loss 1.2657830715179443 img loss 1.2790826559066772 img loss 1.400065302848816 img loss 1.3845512866973877 img loss 1.4003770351409912 img loss 1.3477274179458618 img loss 1.4786804914474487 img loss 1.4250251054763794 img loss 1.449010968208313 img loss 1.4174391031265259 img loss 1.3040761947631836 img loss 1.3597195148468018 img loss 1.3747938871383667 img loss 1.2792770862579346 img loss 1.4256187677383423 img loss 1.5012125968933105 img loss 1.3393691778182983 img loss 1.4540274143218994 img loss 1.4416239261627197 img loss 1.3308532238006592 {'loss': 1.378, 'grad_norm': 0.23842604458332062, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3482918739318848 img loss 1.4061752557754517 img loss 1.417052984237671 img loss 1.4530800580978394 img loss 1.3445448875427246 img loss 1.3244479894638062 img loss 1.36546790599823 img loss 1.3808177709579468 img loss 1.3422962427139282 img loss 1.4807789325714111 img loss 1.3609682321548462 img loss 1.317171573638916 img loss 1.3048121929168701 img loss 1.3871111869812012 img loss 1.4280530214309692 img loss 1.4237933158874512 img loss 1.2977581024169922 img loss 1.3536401987075806 img loss 1.4433096647262573 img loss 1.4026015996932983 img loss 1.3289531469345093 img loss 1.4072777032852173 img loss 1.4570739269256592 img loss 1.3721296787261963 img loss 1.2626962661743164 img loss 1.39035964012146 img loss 1.3827335834503174 img loss 1.3160679340362549 img loss 1.4275991916656494 img loss 1.219417929649353 img loss 1.551817536354065 img loss 1.3177098035812378 img loss 1.4348715543746948 img loss 1.4710482358932495 img loss 1.376783013343811 img loss 1.3726400136947632 img loss 1.3769432306289673 img loss 1.3294175863265991 img loss 1.31241774559021 img loss 1.449980616569519 img loss 1.4578710794448853 img loss 1.3123488426208496 img loss 1.414389729499817 img loss 1.429499864578247 img loss 1.3631832599639893 img loss 1.3667550086975098 img loss 1.366562008857727 img loss 1.333227515220642 img loss 1.3972296714782715 img loss 1.4954701662063599 img loss 1.345900058746338 img loss 1.3624323606491089 img loss 1.425782322883606 img loss 1.394608736038208 img loss 1.4718070030212402 img loss 1.3194719552993774 img loss 1.2849777936935425 img loss 1.3805806636810303 img loss 1.3816512823104858 img loss 1.357500433921814 img loss 1.4516339302062988 img loss 1.3642557859420776 img loss 1.4525917768478394 img loss 1.3670189380645752 img loss 1.4489705562591553 img loss 1.2959513664245605 img loss 1.187734842300415 img loss 1.3630625009536743 img loss 1.5197536945343018 img loss 1.5301038026809692 img loss 1.3324841260910034 img loss 1.4179071187973022 img loss 1.355405330657959 img loss 1.19734525680542 img loss 1.3975478410720825 img loss 1.3669084310531616 img loss 1.3717457056045532 img loss 1.390871524810791 img loss 1.3390063047409058 img loss 1.4166147708892822 img loss 1.43916916847229 img loss 1.580969214439392 img loss 1.37815260887146 img loss 1.4257389307022095 img loss 1.3564693927764893 img loss 1.3430383205413818 img loss 1.4788391590118408 img loss 1.3688050508499146 img loss 1.4270577430725098 img loss 1.3470714092254639 img loss 1.4460043907165527 img loss 1.357746958732605 img loss 1.3258951902389526 img loss 1.3561968803405762 img loss 1.2971100807189941 img loss 1.4741665124893188 img loss 1.4089348316192627 img loss 1.4058232307434082 img loss 1.2426954507827759 img loss 1.2061504125595093 img loss 1.3846555948257446 img loss 1.3511914014816284 img loss 1.316199779510498 img loss 1.339210033416748 img loss 1.4706534147262573 img loss 1.2919366359710693 img loss 1.4218145608901978 img loss 1.329018235206604 img loss 1.4625451564788818 img loss 1.3308571577072144 img loss 1.3653019666671753 img loss 1.3912409543991089 img loss 1.565528392791748 img loss 1.394034743309021 img loss 1.344976544380188 img loss 1.3544456958770752 img loss 1.4249922037124634 img loss 1.316813349723816 img loss 1.290418267250061 img loss 1.4581856727600098 img loss 1.3908945322036743 img loss 1.33561110496521 img loss 1.3115050792694092 img loss 1.4785279035568237 img loss 1.3378548622131348 img loss 1.4115012884140015 img loss 1.450385332107544 img loss 1.3439608812332153 {'loss': 1.3805, 'grad_norm': 0.4144939184188843, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.160173773765564 img loss 1.2901109457015991 img loss 1.1900535821914673 img loss 1.2663906812667847 img loss 1.1782188415527344 img loss 1.1900326013565063 img loss 1.2109593152999878 img loss 1.2161165475845337 img loss 1.201311707496643 img loss 1.302903652191162 img loss 1.1813862323760986 img loss 1.2015607357025146 img loss 1.235398530960083 img loss 1.2462034225463867 img loss 1.2365115880966187 img loss 1.2048892974853516 img loss 1.2056149244308472 img loss 1.1763896942138672 img loss 1.1795539855957031 img loss 1.2639167308807373 img loss 1.2720669507980347 img loss 1.2324947118759155 img loss 1.2899826765060425 img loss 1.1999489068984985 img loss 1.233293056488037 img loss 1.1879894733428955 img loss 1.277451753616333 img loss 1.1667383909225464 img loss 1.1841951608657837img loss 1.2063696384429932 img loss 1.1762771606445312 img loss 1.268198847770691 img loss 1.2877540588378906 img loss 1.174716830253601 img loss 1.1622942686080933 img loss 1.1367979049682617 img loss 1.2191672325134277 img loss 1.2160812616348267 img loss 1.2454957962036133 img loss 1.22068452835083 img loss 1.2360033988952637 img loss 1.249902606010437 img loss 1.1910557746887207 img loss 1.1757128238677979 img loss 1.2165170907974243 img loss 1.2117807865142822 img loss 1.1855754852294922img loss 1.2659904956817627 img loss 1.25653874874115 img loss 1.1366961002349854 img loss 1.2503210306167603 img loss 1.2228626012802124 img loss 1.2336342334747314 img loss 1.3226410150527954 img loss 1.2711079120635986 img loss 1.275133728981018 img loss 1.1704914569854736 img loss 1.17562735080719 img loss 1.187255620956421 img loss 1.3153202533721924 img loss 1.2475402355194092 img loss 1.1561192274093628 img loss 1.1351546049118042 img loss 1.2370233535766602 img loss 1.2409684658050537 img loss 1.1974270343780518 img loss 1.1862213611602783 img loss 1.2350800037384033 img loss 1.1584193706512451 img loss 1.22914457321167 img loss 1.2058351039886475 img loss 1.2745680809020996 img loss 1.2737411260604858 img loss 1.241909384727478 img loss 1.1900458335876465 img loss 1.2059773206710815 img loss 1.1858934164047241 img loss 1.2196019887924194 img loss 1.200208067893982 img loss 1.2699044942855835 img loss 1.2738642692565918 img loss 1.1892495155334473img loss 1.1524791717529297 img loss 1.2610355615615845 img loss 1.2033134698867798 img loss 1.2094844579696655 img loss 1.215343713760376 img loss 1.2248042821884155 img loss 1.165861964225769 img loss 1.2349162101745605 img loss 1.1701568365097046 img loss 1.2662255764007568 img loss 1.2012525796890259 img loss 1.2609026432037354 img loss 1.2884323596954346 img loss 1.1646636724472046 img loss 1.2402920722961426 img loss 1.232601523399353 img loss 1.1599459648132324 img loss 1.293953776359558 img loss 1.2420262098312378 img loss 1.1619802713394165 img loss 1.2373608350753784 img loss 1.1254565715789795 img loss 1.1995881795883179 img loss 1.2377259731292725 img loss 1.2551863193511963 img loss 1.2931537628173828 img loss 1.2662509679794312 img loss 1.1931030750274658 img loss 1.29253351688385 img loss 1.2522331476211548 img loss 1.191462755203247 img loss 1.2053828239440918 img loss 1.1672041416168213 img loss 1.206231713294983 img loss 1.226220726966858 img loss 1.1742885112762451 img loss 1.1689584255218506 img loss 1.2306932210922241 img loss 1.167475700378418 img loss 1.304900884628296 img loss 1.1562718152999878 img loss 1.2674152851104736 img loss 1.1620129346847534 img loss 1.2386659383773804 img loss 1.1906356811523438 img loss 1.1834633350372314 {'loss': 1.2183, 'grad_norm': 0.4321049153804779, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.237547516822815 img loss 1.2067232131958008 img loss 1.2573935985565186 img loss 1.2046161890029907 img loss 1.2212419509887695 img loss 1.2407383918762207 img loss 1.2871335744857788 img loss 1.295688509941101 img loss 1.19381582736969 img loss 1.2777460813522339 img loss 1.2452752590179443 img loss 1.199507474899292 img loss 1.3044312000274658 img loss 1.2261909246444702 img loss 1.2213170528411865 img loss 1.2025580406188965 img loss 1.27228581905365 img loss 1.2974929809570312 img loss 1.2338101863861084 img loss 1.233893871307373 img loss 1.2741427421569824 img loss 1.2243611812591553 img loss 1.2417175769805908 img loss 1.3235746622085571 img loss 1.196976900100708 img loss 1.314354658126831 img loss 1.355313777923584 img loss 1.2205625772476196 img loss 1.2442706823349 img loss 1.3518593311309814 img loss 1.215912103652954 img loss 1.3417073488235474 img loss 1.1959757804870605 img loss 1.2165979146957397 img loss 1.238863229751587 img loss 1.1984952688217163 img loss 1.2659860849380493 img loss 1.2162280082702637 img loss 1.2378997802734375 img loss 1.2709190845489502 img loss 1.2823328971862793 img loss 1.2196369171142578 img loss 1.3462492227554321 img loss 1.1722816228866577 img loss 1.2289799451828003 img loss 1.2778898477554321 img loss 1.3330914974212646 img loss 1.289498209953308 img loss 1.2472949028015137 img loss 1.1628928184509277 img loss 1.3460959196090698 img loss 1.2948241233825684 img loss 1.2424567937850952 img loss 1.3792420625686646 img loss 1.2608776092529297 img loss 1.2618169784545898 img loss 1.3195809125900269 img loss 1.2738291025161743 img loss 1.1927680969238281 img loss 1.264015555381775 img loss 1.3023302555084229 img loss 1.1909555196762085 img loss 1.3317935466766357 img loss 1.2847884893417358 img loss 1.2326579093933105 img loss 1.2401866912841797 img loss 1.2466695308685303 img loss 1.2857271432876587 img loss 1.3255239725112915 img loss 1.1769859790802002 img loss 1.2041648626327515 img loss 1.257372498512268 img loss 1.3257133960723877 img loss 1.2418427467346191 img loss 1.2231249809265137 img loss 1.427212119102478 img loss 1.1596179008483887 img loss 1.2680261135101318 img loss 1.295641541481018 img loss 1.2780348062515259 img loss 1.3178727626800537 img loss 1.3291765451431274 img loss 1.1420552730560303 img loss 1.2358359098434448 img loss 1.2624424695968628 img loss 1.2956960201263428 img loss 1.2915557622909546 img loss 1.1925150156021118 img loss 1.2377420663833618 img loss 1.3117287158966064 img loss 1.2410914897918701 img loss 1.2944140434265137 img loss 1.1784008741378784 img loss 1.2301357984542847 img loss 1.2122780084609985 img loss 1.303636908531189 img loss 1.2388873100280762 img loss 1.2512664794921875 img loss 1.2552937269210815 img loss 1.2592419385910034img loss 1.2618802785873413 img loss 1.3653548955917358 img loss 1.3322110176086426 img loss 1.2654346227645874 img loss 1.2775019407272339 img loss 1.3261353969573975 img loss 1.374956727027893 img loss 1.3064008951187134 img loss 1.2201993465423584 img loss 1.2643245458602905 img loss 1.240963339805603 img loss 1.2788094282150269 img loss 1.2259505987167358 img loss 1.2078590393066406 img loss 1.316782832145691 img loss 1.2309160232543945 img loss 1.196582317352295 img loss 1.3017529249191284 img loss 1.2838410139083862 img loss 1.2851208448410034 img loss 1.2965372800827026 img loss 1.2516989707946777 img loss 1.2214456796646118 img loss 1.2139819860458374 img loss 1.2183805704116821 img loss 1.2311158180236816 img loss 1.2738780975341797 img loss 1.3424512147903442 {'loss': 1.2609, 'grad_norm': 0.28386279940605164, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2407333850860596 img loss 1.2109127044677734 img loss 1.260920524597168 img loss 1.1566331386566162 img loss 1.206591248512268 img loss 1.1920888423919678 img loss 1.2341587543487549 img loss 1.1720818281173706 img loss 1.2362520694732666 img loss 1.1696938276290894 img loss 1.1876686811447144 img loss 1.1955347061157227 img loss 1.172614336013794 img loss 1.1685998439788818img loss 1.2425775527954102 img loss 1.1942218542099 img loss 1.3037755489349365 img loss 1.1192935705184937 img loss 1.1717818975448608 img loss 1.1382088661193848 img loss 1.2159432172775269 img loss 1.1816691160202026 img loss 1.156840205192566 img loss 1.1183476448059082 img loss 1.223628282546997 img loss 1.14999258518219 img loss 1.1467902660369873 img loss 1.1095093488693237 img loss 1.099173903465271 img loss 1.1775028705596924 img loss 1.116950511932373 img loss 1.084494948387146 img loss 1.2799718379974365 img loss 1.136391282081604 img loss 1.120529294013977 img loss 1.1778156757354736 img loss 1.2427594661712646 img loss 1.2133315801620483 img loss 1.1798532009124756 img loss 1.0876611471176147 img loss 1.0880799293518066 img loss 1.2366892099380493 img loss 1.065775752067566 img loss 1.1722723245620728 img loss 1.2098679542541504 img loss 1.1222740411758423 img loss 1.1734071969985962 img loss 1.1580791473388672 img loss 1.2620590925216675 img loss 1.213225245475769 img loss 1.1436980962753296 img loss 1.2148350477218628 img loss 1.123874545097351 img loss 1.16717529296875 img loss 1.1473686695098877 img loss 1.2127522230148315 img loss 1.2050987482070923 img loss 1.0843594074249268 img loss 1.171007513999939 img loss 1.2131294012069702 img loss 1.1550356149673462 img loss 1.111699104309082 img loss 1.1456034183502197 img loss 1.19158935546875 img loss 1.1957651376724243 img loss 1.1309303045272827 img loss 1.1940149068832397 img loss 1.1884959936141968 img loss 1.1444963216781616 img loss 1.2717440128326416 img loss 1.1520437002182007 img loss 1.170588731765747 img loss 1.2049074172973633 img loss 1.2364513874053955 img loss 1.122787356376648 img loss 1.1838573217391968 img loss 1.1933027505874634 img loss 1.2437766790390015 img loss 1.163994312286377 img loss 1.2372071743011475 img loss 1.1888617277145386 img loss 1.1045597791671753 img loss 1.1757739782333374 img loss 1.1545034646987915 img loss 1.2567142248153687 img loss 1.1978625059127808 img loss 1.1508196592330933 img loss 1.2074593305587769 img loss 1.2651251554489136 img loss 1.1624927520751953 img loss 1.1575361490249634 img loss 1.1937100887298584 img loss 1.1523603200912476 img loss 1.153665542602539 img loss 1.1532186269760132 img loss 1.1488510370254517 img loss 1.1138887405395508 img loss 1.156104326248169 img loss 1.166685938835144 img loss 1.1543782949447632 img loss 1.1314141750335693 img loss 1.1889253854751587 img loss 1.1483800411224365 img loss 1.1307011842727661 img loss 1.191523790359497 img loss 1.161740779876709 img loss 1.1879829168319702 img loss 1.1418873071670532 img loss 1.1669963598251343 img loss 1.1886907815933228 img loss 1.2108982801437378 img loss 1.1648693084716797 img loss 1.1870733499526978 img loss 1.1988528966903687 img loss 1.168945550918579 img loss 1.166788101196289 img loss 1.0768758058547974 img loss 1.1595232486724854 img loss 1.1813257932662964 img loss 1.1951435804367065 img loss 1.1628429889678955 img loss 1.1725609302520752 img loss 1.1412051916122437 img loss 1.093745470046997 img loss 1.233025074005127 img loss 1.1867680549621582 img loss 1.1542713642120361 img loss 1.164743185043335 {'loss': 1.1741, 'grad_norm': 0.5545609593391418, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3597055673599243 img loss 1.3372197151184082 img loss 1.4882014989852905 img loss 1.439954161643982 img loss 1.3720611333847046 img loss 1.3519924879074097 img loss 1.382333517074585 img loss 1.3067442178726196 img loss 1.4113398790359497 img loss 1.3189775943756104 img loss 1.2994418144226074 img loss 1.2542046308517456 img loss 1.2432349920272827 img loss 1.326134443283081 img loss 1.333301067352295 img loss 1.4122873544692993 img loss 1.376510739326477 img loss 1.4225574731826782 img loss 1.4236489534378052 img loss 1.200151801109314 img loss 1.2763680219650269 img loss 1.4080004692077637 img loss 1.4621903896331787 img loss 1.3426376581192017 img loss 1.3701748847961426 img loss 1.35405433177948 img loss 1.4608638286590576 img loss 1.3764296770095825 img loss 1.3362853527069092 img loss 1.377307653427124 img loss 1.3324949741363525 img loss 1.3719450235366821 img loss 1.3952027559280396 img loss 1.3184866905212402 img loss 1.3317254781723022 img loss 1.407856822013855 img loss 1.4348578453063965 img loss 1.3529576063156128 img loss 1.4669435024261475 img loss 1.426249384880066 img loss 1.27107834815979 img loss 1.3660069704055786 img loss 1.4162535667419434 img loss 1.3100340366363525 img loss 1.334197759628296 img loss 1.3474881649017334 img loss 1.4237335920333862 img loss 1.4055399894714355 img loss 1.4406750202178955 img loss 1.4011503458023071 img loss 1.3300355672836304 img loss 1.3660646677017212 img loss 1.31123685836792 img loss 1.3621238470077515 img loss 1.3976291418075562 img loss 1.3567078113555908 img loss 1.2294902801513672 img loss 1.3666911125183105 img loss 1.376990556716919 img loss 1.3421118259429932 img loss 1.3465149402618408 img loss 1.3717362880706787 img loss 1.299656867980957 img loss 1.332863450050354 img loss 1.2376439571380615 img loss 1.3633854389190674 img loss 1.3507214784622192 img loss 1.3117128610610962 img loss 1.4459160566329956 img loss 1.4272494316101074 img loss 1.352783441543579 img loss 1.347196340560913 img loss 1.2462459802627563 img loss 1.3658164739608765 img loss 1.4155429601669312 img loss 1.4125144481658936 img loss 1.3254716396331787 img loss 1.3774864673614502 img loss 1.2861628532409668 img loss 1.3073762655258179 img loss 1.3703892230987549 img loss 1.3565508127212524 img loss 1.335390567779541img loss 1.306282639503479 img loss 1.3704850673675537 img loss 1.3590130805969238 img loss 1.3527942895889282 img loss 1.3677397966384888 img loss 1.3514314889907837 img loss 1.308473825454712 img loss 1.4347084760665894 img loss 1.4338356256484985 img loss 1.312839388847351 img loss 1.4138505458831787 img loss 1.4420303106307983 img loss 1.3237659931182861 img loss 1.2901108264923096 img loss 1.2597322463989258 img loss 1.449987530708313 img loss 1.3136515617370605 img loss 1.393632411956787 img loss 1.2896504402160645 img loss 1.349097490310669 img loss 1.284078598022461 img loss 1.4165695905685425 img loss 1.3670769929885864 img loss 1.3227508068084717 img loss 1.3689099550247192 img loss 1.2636079788208008 img loss 1.3731850385665894 img loss 1.3268276453018188 img loss 1.4133108854293823 img loss 1.3856663703918457 img loss 1.3899352550506592 img loss 1.3655625581741333 img loss 1.3290328979492188 img loss 1.2847446203231812 img loss 1.3856804370880127 img loss 1.4607518911361694 img loss 1.4277091026306152 img loss 1.2767250537872314 img loss 1.3615230321884155 img loss 1.3321239948272705 img loss 1.3654464483261108 img loss 1.522120714187622 img loss 1.2945568561553955 img loss 1.3545372486114502 img loss 1.3680377006530762 {'loss': 1.3591, 'grad_norm': 0.3369480073451996, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.34919011592865 img loss 1.3981462717056274 img loss 1.4048190116882324 img loss 1.341580867767334 img loss 1.308255910873413 img loss 1.2999114990234375 img loss 1.3919531106948853 img loss 1.3985248804092407 img loss 1.3700554370880127 img loss 1.4135526418685913 img loss 1.2880897521972656 img loss 1.3120774030685425 img loss 1.4342787265777588 img loss 1.3463045358657837 img loss 1.4121413230895996 img loss 1.353242039680481 img loss 1.3415043354034424 img loss 1.2762924432754517 img loss 1.289947509765625 img loss 1.3920972347259521 img loss 1.3068684339523315 img loss 1.333527684211731 img loss 1.2833459377288818 img loss 1.2782715559005737 img loss 1.3436733484268188 img loss 1.3130066394805908 img loss 1.3348897695541382 img loss 1.3486498594284058 img loss 1.2598541975021362 img loss 1.3150256872177124 img loss 1.2994877099990845 img loss 1.3894599676132202 img loss 1.3261982202529907 img loss 1.2385344505310059 img loss 1.3423097133636475 img loss 1.387625813484192 img loss 1.346055269241333 img loss 1.4329663515090942 img loss 1.4306976795196533 img loss 1.3750026226043701 img loss 1.303239345550537 img loss 1.3692376613616943 img loss 1.2786530256271362 img loss 1.3612573146820068 img loss 1.4330626726150513 img loss 1.3801356554031372 img loss 1.302217721939087 img loss 1.4660171270370483 img loss 1.3113038539886475 img loss 1.342145323753357 img loss 1.357763409614563 img loss 1.360302448272705 img loss 1.3483399152755737 img loss 1.346427321434021 img loss 1.246996283531189 img loss 1.35305655002594 img loss 1.6621776819229126 img loss 1.3314170837402344 img loss 1.2613083124160767 img loss 1.4225131273269653 img loss 1.28151535987854 img loss 1.3260610103607178 img loss 1.4302666187286377 img loss 1.3982239961624146 img loss 1.4703737497329712 img loss 1.338154911994934 img loss 1.4860609769821167 img loss 1.3033878803253174 img loss 1.4007400274276733 img loss 1.3210080862045288 img loss 1.3823047876358032 img loss 1.4228001832962036 img loss 1.3039937019348145 img loss 1.282367467880249 img loss 1.3021618127822876 img loss 1.3023687601089478 img loss 1.4042211771011353 img loss 1.335595726966858 img loss 1.3925249576568604 img loss 1.497831106185913 img loss 1.367096185684204 img loss 1.4161213636398315 img loss 1.4102838039398193 img loss 1.3622759580612183 img loss 1.3150062561035156 img loss 1.338652491569519 img loss 1.379638433456421 img loss 1.3657482862472534 img loss 1.2377668619155884 img loss 1.3229681253433228 img loss 1.3964250087738037 img loss 1.2633299827575684 img loss 1.309093952178955 img loss 1.4030853509902954 img loss 1.3319675922393799 img loss 1.3433067798614502 img loss 1.3324244022369385 img loss 1.424888253211975 img loss 1.3482871055603027 img loss 1.3581788539886475 img loss 1.4070650339126587 img loss 1.3883966207504272 img loss 1.25615656375885 img loss 1.3083105087280273 img loss 1.2538517713546753 img loss 1.435607671737671 img loss 1.3808248043060303 img loss 1.3578647375106812 img loss 1.3224999904632568 img loss 1.3063104152679443 img loss 1.2884691953659058 img loss 1.371741533279419 img loss 1.2698283195495605 img loss 1.3564764261245728 img loss 1.3950694799423218 img loss 1.4860284328460693 img loss 1.2348358631134033 img loss 1.3275229930877686 img loss 1.1724026203155518 img loss 1.410693883895874 img loss 1.3283796310424805img loss 1.3808919191360474 img loss 1.2122405767440796 img loss 1.295558214187622 img loss 1.4334588050842285 img loss 1.3565754890441895 img loss 1.3432523012161255 img loss 1.3735363483428955 {'loss': 1.3508, 'grad_norm': 0.3915637731552124, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.0982317924499512 img loss 1.148063063621521 img loss 1.1111633777618408 img loss 1.1708227396011353 img loss 1.1693371534347534 img loss 1.1474883556365967 img loss 1.1503676176071167 img loss 1.1691358089447021 img loss 1.0880998373031616 img loss 1.1305382251739502 img loss 1.2364516258239746 img loss 1.1786192655563354 img loss 1.1336296796798706 img loss 1.1546601057052612 img loss 1.2338905334472656 img loss 1.1280319690704346 img loss 1.1064189672470093 img loss 1.1922974586486816 img loss 1.1434314250946045 img loss 1.1701064109802246 img loss 1.22557532787323 img loss 1.1612190008163452 img loss 1.126538634300232 img loss 1.0696513652801514 img loss 1.20939302444458 img loss 1.080706000328064 img loss 1.126855731010437 img loss 1.140179991722107 img loss 1.22362220287323 img loss 1.1920340061187744 img loss 1.1848580837249756 img loss 1.1235685348510742 img loss 1.1569766998291016 img loss 1.108515739440918 img loss 1.2295061349868774 img loss 1.1355719566345215 img loss 1.1102056503295898 img loss 1.2371361255645752 img loss 1.2460826635360718 img loss 1.2327384948730469 img loss 1.237059235572815 img loss 1.1833064556121826 img loss 1.1749521493911743 img loss 1.273240327835083 img loss 1.1645945310592651 img loss 1.1119921207427979 img loss 1.1910285949707031 img loss 1.2299588918685913 img loss 1.2209346294403076 img loss 1.175321102142334 img loss 1.2146700620651245 img loss 1.1540968418121338 img loss 1.2354068756103516 img loss 1.1240030527114868 img loss 1.1431100368499756 img loss 1.1627461910247803 img loss 1.145254135131836 img loss 1.1868345737457275 img loss 1.2175846099853516 img loss 1.1933352947235107 img loss 1.183902382850647 img loss 1.3106005191802979 img loss 1.1401115655899048 img loss 1.2346113920211792 img loss 1.1814755201339722 img loss 1.1330556869506836 img loss 1.2146824598312378 img loss 1.085618257522583 img loss 1.2127411365509033 img loss 1.1027756929397583 img loss 1.1513497829437256 img loss 1.1539007425308228 img loss 1.1549525260925293 img loss 1.236280918121338 img loss 1.179124355316162 img loss 1.1914743185043335 img loss 1.2239071130752563 img loss 1.2320045232772827 img loss 1.144734263420105 img loss 1.1747492551803589 img loss 1.1292622089385986 img loss 1.1517133712768555 img loss 1.2029738426208496 img loss 1.1381051540374756 img loss 1.1447933912277222 img loss 1.2184456586837769 img loss 1.1657127141952515 img loss 1.1927202939987183 img loss 1.1383492946624756 img loss 1.1982005834579468 img loss 1.1687917709350586 img loss 1.1228787899017334 img loss 1.2022132873535156 img loss 1.1336191892623901 img loss 1.1588435173034668 img loss 1.1229910850524902 img loss 1.16254460811615 img loss 1.1709010601043701 img loss 1.172243595123291 img loss 1.1690483093261719 img loss 1.1826863288879395 img loss 1.1453933715820312 img loss 1.1552051305770874 img loss 1.191518783569336 img loss 1.190489411354065 img loss 1.1587200164794922 img loss 1.1498218774795532 img loss 1.1907204389572144 img loss 1.1530383825302124 img loss 1.1378726959228516 img loss 1.1400325298309326 img loss 1.168013572692871 img loss 1.2276341915130615 img loss 1.1134467124938965 img loss 1.0956695079803467 img loss 1.1931990385055542 img loss 1.1254767179489136 img loss 1.1347458362579346 img loss 1.2196063995361328 img loss 1.1761270761489868 img loss 1.1706101894378662 img loss 1.234269142150879 img loss 1.1798911094665527 img loss 1.161478877067566 img loss 1.1507688760757446 img loss 1.1682791709899902 img loss 1.1392334699630737 img loss 1.1871095895767212 {'loss': 1.1693, 'grad_norm': 0.5377863049507141, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2215522527694702 img loss 1.2327789068222046 img loss 1.2049179077148438 img loss 1.1969059705734253 img loss 1.1373599767684937 img loss 1.230036735534668 img loss 1.2482175827026367 img loss 1.1997945308685303 img loss 1.2159470319747925 img loss 1.1870287656784058 img loss 1.250903844833374 img loss 1.189936637878418 img loss 1.1550167798995972 img loss 1.2344262599945068 img loss 1.274827241897583 img loss 1.2145328521728516 img loss 1.157199501991272 img loss 1.2575289011001587 img loss 1.2423003911972046 img loss 1.2826029062271118 img loss 1.2437692880630493 img loss 1.2314205169677734 img loss 1.236800193786621 img loss 1.123464584350586 img loss 1.1459827423095703 img loss 1.3058545589447021 img loss 1.1992918252944946 img loss 1.155287742614746 img loss 1.2192827463150024 img loss 1.2535216808319092 img loss 1.206234335899353 img loss 1.247019648551941 img loss 1.188231110572815 img loss 1.2453562021255493 img loss 1.2617297172546387 img loss 1.2107343673706055 img loss 1.2766950130462646 img loss 1.2568905353546143 img loss 1.190006971359253 img loss 1.1783640384674072 img loss 1.2630687952041626 img loss 1.1975321769714355 img loss 1.2131744623184204 img loss 1.1986502408981323 img loss 1.179580569267273 img loss 1.142824411392212 img loss 1.336613416671753 img loss 1.145150899887085 img loss 1.241249918937683 img loss 1.2919460535049438 img loss 1.2044931650161743 img loss 1.2396663427352905 img loss 1.1796188354492188 img loss 1.267104983329773 img loss 1.1731058359146118 img loss 1.2094274759292603 img loss 1.1636532545089722 img loss 1.3058905601501465 img loss 1.1846874952316284 img loss 1.2380592823028564 img loss 1.1666061878204346 img loss 1.2122669219970703 img loss 1.2170171737670898 img loss 1.1295398473739624 img loss 1.2523493766784668 img loss 1.1667866706848145 img loss 1.199298620223999 img loss 1.1723482608795166 img loss 1.1644424200057983 img loss 1.2167805433273315 img loss 1.1762661933898926 img loss 1.279561996459961 img loss 1.2394611835479736 img loss 1.2369534969329834 img loss 1.2286005020141602 img loss 1.1295201778411865 img loss 1.2001662254333496 img loss 1.3057502508163452 img loss 1.1538543701171875 img loss 1.2167898416519165 img loss 1.1561508178710938 img loss 1.2065479755401611 img loss 1.2486588954925537 img loss 1.2016851902008057 img loss 1.2468748092651367 img loss 1.2086130380630493img loss 1.210318922996521 img loss 1.171846866607666 img loss 1.2135127782821655 img loss 1.2264636754989624 img loss 1.1824817657470703 img loss 1.2757279872894287 img loss 1.1734298467636108 img loss 1.2422804832458496 img loss 1.2350311279296875 img loss 1.1384800672531128 img loss 1.1556682586669922 img loss 1.1402020454406738 img loss 1.2308356761932373 img loss 1.180009365081787 img loss 1.2912400960922241 img loss 1.2246489524841309 img loss 1.2038452625274658 img loss 1.2098315954208374 img loss 1.310279369354248 img loss 1.1123932600021362 img loss 1.1477220058441162 img loss 1.2829391956329346 img loss 1.1994926929473877 img loss 1.1857210397720337 img loss 1.1559604406356812 img loss 1.2539561986923218 img loss 1.3008602857589722 img loss 1.304450273513794 img loss 1.2183704376220703 img loss 1.1558210849761963 img loss 1.2100698947906494 img loss 1.2207268476486206 img loss 1.1275514364242554 img loss 1.1976711750030518 img loss 1.1705493927001953 img loss 1.1946046352386475 img loss 1.3203821182250977 img loss 1.2038105726242065 img loss 1.2658647298812866 img loss 1.2785686254501343 img loss 1.2527985572814941 img loss 1.2348408699035645 {'loss': 1.2143, 'grad_norm': 0.3780541718006134, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.7714999914169312 img loss 1.5541455745697021 img loss 1.503591775894165 img loss 1.6713625192642212 img loss 1.4698035717010498 img loss 1.5118378400802612 img loss 1.6776665449142456 img loss 1.5972707271575928 img loss 1.6641258001327515 img loss 1.6511871814727783 img loss 1.5855695009231567 img loss 1.5439950227737427 img loss 1.6632306575775146 img loss 1.5876761674880981 img loss 1.5580190420150757 img loss 1.5106967687606812 img loss 1.612778902053833 img loss 1.5536644458770752 img loss 1.5918506383895874 img loss 1.8110390901565552 img loss 1.5784302949905396 img loss 1.4790337085723877 img loss 1.5655133724212646 img loss 1.4629746675491333 img loss 1.481095552444458 img loss 1.605617880821228 img loss 1.427270531654358 img loss 1.705505132675171 img loss 1.6973596811294556 img loss 1.4484692811965942 img loss 1.6565585136413574 img loss 1.5299702882766724 img loss 1.6676955223083496 img loss 1.6522620916366577 img loss 1.7075661420822144 img loss 1.830165982246399 img loss 1.7700145244598389 img loss 1.6431405544281006 img loss 1.6481013298034668 img loss 1.6792540550231934 img loss 1.515830397605896 img loss 1.5566660165786743 img loss 1.5780742168426514 img loss 1.6211457252502441 img loss 1.5168845653533936 img loss 1.5953789949417114 img loss 1.6553900241851807 img loss 1.650004506111145 img loss 1.6945940256118774 img loss 1.6299420595169067 img loss 1.61130690574646 img loss 1.4898754358291626 img loss 1.6584182977676392 img loss 1.5789536237716675 img loss 1.6316057443618774 img loss 1.579537272453308 img loss 1.5324615240097046 img loss 1.722617268562317 img loss 1.652539849281311 img loss 1.6252824068069458 img loss 1.554622769355774 img loss 1.7414029836654663 img loss 1.6724731922149658 img loss 1.4224663972854614 img loss 1.5411803722381592 img loss 1.5686829090118408 img loss 1.475196361541748 img loss 1.4239033460617065 img loss 1.5246797800064087 img loss 1.5107684135437012 img loss 1.6274608373641968 img loss 1.679379940032959 img loss 1.6103532314300537 img loss 1.6085724830627441 img loss 1.5983699560165405 img loss 1.5230926275253296 img loss 1.6199649572372437 img loss 1.4493272304534912 img loss 1.5799505710601807 img loss 1.522754192352295 img loss 1.6529629230499268 img loss 1.618395209312439 img loss 1.520678162574768 img loss 1.558355450630188 img loss 1.562180757522583 img loss 1.5437283515930176 img loss 1.6674991846084595 img loss 1.6229130029678345 img loss 1.672805905342102 img loss 1.5145992040634155 img loss 1.3839613199234009 img loss 1.6849913597106934 img loss 1.8510574102401733 img loss 1.5594149827957153 img loss 1.5839574337005615 img loss 1.6255619525909424 img loss 1.600225567817688 img loss 1.6696900129318237 img loss 1.606256365776062 img loss 1.555435299873352 img loss 1.5036574602127075 img loss 1.5402287244796753 img loss 1.5090320110321045 img loss 1.4681957960128784 img loss 1.6111876964569092 img loss 1.5979176759719849 img loss 1.7203967571258545 img loss 1.5540696382522583 img loss 1.6309059858322144 img loss 1.5515379905700684 img loss 1.5451524257659912 img loss 1.6066420078277588 img loss 1.6527920961380005 img loss 1.554161787033081 img loss 1.610217809677124 img loss 1.6302951574325562 img loss 1.5828375816345215 img loss 1.6040136814117432 img loss 1.6373409032821655 img loss 1.6231416463851929 img loss 1.522079586982727 img loss 1.4630719423294067 img loss 1.682444453239441 img loss 1.6218692064285278 img loss 1.6107922792434692 img loss 1.6466259956359863 img loss 1.624851107597351 img loss 1.7784236669540405 {'loss': 1.597, 'grad_norm': 0.4118388295173645, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.225642442703247 img loss 1.183375597000122 img loss 1.1982039213180542 img loss 1.1816234588623047 img loss 1.1523759365081787 img loss 1.2621790170669556 img loss 1.2513240575790405 img loss 1.2551616430282593 img loss 1.2057263851165771 img loss 1.1840834617614746 img loss 1.2546565532684326 img loss 1.2765555381774902 img loss 1.1840143203735352 img loss 1.2402409315109253 img loss 1.1957441568374634 img loss 1.147042155265808 img loss 1.2180839776992798 img loss 1.17491614818573 img loss 1.2270386219024658 img loss 1.2222198247909546 img loss 1.1854126453399658 img loss 1.1347979307174683 img loss 1.1286569833755493 img loss 1.2782009840011597 img loss 1.2005603313446045 img loss 1.2052801847457886 img loss 1.2140138149261475 img loss 1.196084976196289 img loss 1.1811027526855469 img loss 1.2128909826278687 img loss 1.2169618606567383 img loss 1.209551215171814 img loss 1.2128276824951172 img loss 1.2125933170318604 img loss 1.164049744606018 img loss 1.2527658939361572 img loss 1.1682507991790771 img loss 1.1879863739013672 img loss 1.2055206298828125 img loss 1.2209818363189697 img loss 1.160461664199829 img loss 1.135003924369812 img loss 1.1477012634277344 img loss 1.2176393270492554 img loss 1.2273590564727783 img loss 1.235527753829956 img loss 1.1887727975845337 img loss 1.1633918285369873 img loss 1.2494690418243408 img loss 1.1644095182418823 img loss 1.1846463680267334 img loss 1.1159266233444214 img loss 1.267833948135376 img loss 1.1941982507705688 img loss 1.1828445196151733 img loss 1.2378453016281128 img loss 1.2013776302337646 img loss 1.1872831583023071 img loss 1.1895043849945068 img loss 1.1720625162124634 img loss 1.1764297485351562 img loss 1.1916080713272095 img loss 1.321144938468933 img loss 1.3066883087158203 img loss 1.2475621700286865 img loss 1.2055764198303223img loss 1.1970762014389038 img loss 1.2472140789031982 img loss 1.1407500505447388 img loss 1.2172276973724365 img loss 1.2440001964569092 img loss 1.2824175357818604 img loss 1.2058972120285034 img loss 1.1676340103149414 img loss 1.1780180931091309 img loss 1.2100093364715576 img loss 1.225286841392517 img loss 1.1360176801681519 img loss 1.1280169486999512 img loss 1.2152481079101562 img loss 1.231515884399414 img loss 1.1790424585342407 img loss 1.1023181676864624 img loss 1.1818370819091797 img loss 1.2184101343154907 img loss 1.219152808189392 img loss 1.1750390529632568 img loss 1.225691318511963 img loss 1.171618938446045 img loss 1.139394998550415 img loss 1.1457970142364502 img loss 1.185015320777893 img loss 1.1715784072875977 img loss 1.2003684043884277 img loss 1.2427829504013062 img loss 1.2911828756332397img loss 1.195320963859558 img loss 1.1680113077163696 img loss 1.2022075653076172 img loss 1.2600009441375732 img loss 1.1334903240203857 img loss 1.2193546295166016 img loss 1.233400821685791 img loss 1.1861404180526733 img loss 1.2164404392242432 img loss 1.1946266889572144 img loss 1.2546000480651855 img loss 1.3207006454467773 img loss 1.2566697597503662 img loss 1.2253036499023438 img loss 1.201124906539917 img loss 1.1908501386642456 img loss 1.116922378540039 img loss 1.1893411874771118 img loss 1.164163589477539 img loss 1.1866172552108765 img loss 1.2855027914047241 img loss 1.176170825958252 img loss 1.151650071144104 img loss 1.1838165521621704 img loss 1.124825358390808 img loss 1.1963989734649658 img loss 1.173205852508545 img loss 1.1982837915420532 img loss 1.1795586347579956 img loss 1.190185546875 img loss 1.2166286706924438 img loss 1.1909319162368774 {'loss': 1.2012, 'grad_norm': 0.3253660500049591, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3345601558685303 img loss 1.2650134563446045 img loss 1.1719460487365723 img loss 1.1253517866134644 img loss 1.137345552444458 img loss 1.193841814994812 img loss 1.1486618518829346 img loss 1.183514952659607 img loss 1.190587043762207 img loss 1.1691179275512695 img loss 1.1632494926452637 img loss 1.1862869262695312 img loss 1.1430096626281738 img loss 1.1217710971832275 img loss 1.170915961265564 img loss 1.2397774457931519 img loss 1.233151912689209 img loss 1.203704833984375 img loss 1.1608803272247314 img loss 1.2543909549713135 img loss 1.274693489074707 img loss 1.2050977945327759 img loss 1.238834023475647 img loss 1.3067872524261475 img loss 1.2780510187149048 img loss 1.2229936122894287 img loss 1.2672078609466553 img loss 1.1752374172210693 img loss 1.2276372909545898 img loss 1.2150275707244873 img loss 1.295758605003357 img loss 1.2325208187103271img loss 1.1994965076446533 img loss 1.2303922176361084 img loss 1.1750805377960205 img loss 1.1472108364105225 img loss 1.1114494800567627 img loss 1.3153032064437866 img loss 1.211855173110962 img loss 1.2190550565719604 img loss 1.2512859106063843 img loss 1.2154747247695923 img loss 1.156860113143921 img loss 1.0803961753845215 img loss 1.167488694190979 img loss 1.1958814859390259 img loss 1.1534357070922852 img loss 1.1852118968963623 img loss 1.2098677158355713 img loss 1.188762903213501 img loss 1.2156481742858887 img loss 1.2928218841552734 img loss 1.2115800380706787 img loss 1.164011836051941 img loss 1.1640563011169434 img loss 1.2093738317489624 img loss 1.204162359237671 img loss 1.2730387449264526 img loss 1.2192649841308594 img loss 1.164184331893921 img loss 1.1885831356048584 img loss 1.2704557180404663 img loss 1.2497742176055908 img loss 1.1840320825576782 img loss 1.2436165809631348 img loss 1.159062385559082 img loss 1.2267110347747803 img loss 1.2856535911560059 img loss 1.2171440124511719 img loss 1.1235442161560059 img loss 1.181313157081604 img loss 1.2355515956878662 img loss 1.1895407438278198 img loss 1.287260890007019 img loss 1.211880087852478 img loss 1.237648844718933 img loss 1.1821590662002563 img loss 1.1943542957305908 img loss 1.2126691341400146 img loss 1.145219326019287 img loss 1.1128696203231812 img loss 1.2161544561386108 img loss 1.2731350660324097 img loss 1.233903408050537 img loss 1.202268123626709 img loss 1.1985857486724854 img loss 1.2040531635284424 img loss 1.1267924308776855 img loss 1.1877870559692383 img loss 1.2035280466079712 img loss 1.1277186870574951 img loss 1.288370132446289 img loss 1.1702479124069214 img loss 1.2133272886276245 img loss 1.3103809356689453 img loss 1.188250184059143 img loss 1.1697320938110352 img loss 1.2794721126556396 img loss 1.2053940296173096 img loss 1.2891584634780884 img loss 1.2013174295425415 img loss 1.2345746755599976 img loss 1.2390713691711426 img loss 1.2072982788085938 img loss 1.1880848407745361 img loss 1.15647554397583 img loss 1.1954693794250488 img loss 1.2105004787445068 img loss 1.1469428539276123 img loss 1.1696341037750244 img loss 1.1465723514556885 img loss 1.217402696609497 img loss 1.261025071144104 img loss 1.2490373849868774 img loss 1.2128112316131592 img loss 1.153745412826538 img loss 1.2071176767349243 img loss 1.1744848489761353 img loss 1.1964746713638306 img loss 1.1717954874038696 img loss 1.1700752973556519 img loss 1.1601791381835938 img loss 1.255470633506775 img loss 1.2925361394882202 img loss 1.1399970054626465 img loss 1.1676832437515259 img loss 1.229319453239441 img loss 1.146583914756775 {'loss': 1.2047, 'grad_norm': 0.3440839350223541, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2836086750030518 img loss 1.3445979356765747 img loss 1.264378309249878 img loss 1.202988862991333 img loss 1.242377758026123 img loss 1.2380492687225342 img loss 1.253382921218872 img loss 1.229982614517212 img loss 1.2530063390731812 img loss 1.2893844842910767 img loss 1.1886030435562134 img loss 1.2593358755111694 img loss 1.2451101541519165 img loss 1.2386901378631592 img loss 1.2378450632095337 img loss 1.237673044204712 img loss 1.2443264722824097 img loss 1.2334636449813843 img loss 1.237593412399292 img loss 1.324462652206421 img loss 1.2366523742675781 img loss 1.2164933681488037 img loss 1.1709871292114258 img loss 1.1943457126617432 img loss 1.2584409713745117 img loss 1.2598211765289307 img loss 1.2358375787734985 img loss 1.2642815113067627 img loss 1.2498024702072144 img loss 1.259029746055603 img loss 1.2139151096343994 img loss 1.2566479444503784 img loss 1.207571029663086 img loss 1.1921013593673706 img loss 1.180529236793518 img loss 1.243106484413147 img loss 1.310625672340393 img loss 1.2379300594329834 img loss 1.250575304031372 img loss 1.281234622001648 img loss 1.2678707838058472 img loss 1.2847075462341309 img loss 1.2315853834152222 img loss 1.2697327136993408 img loss 1.2320753335952759 img loss 1.2005122900009155 img loss 1.2632031440734863 img loss 1.2948042154312134 img loss 1.304325819015503 img loss 1.2038040161132812 img loss 1.235574722290039 img loss 1.2283871173858643 img loss 1.3152921199798584 img loss 1.2581284046173096 img loss 1.2233057022094727 img loss 1.2860761880874634 img loss 1.2328956127166748 img loss 1.3255904912948608 img loss 1.2212634086608887 img loss 1.289867639541626 img loss 1.24803626537323 img loss 1.2058738470077515 img loss 1.2186388969421387 img loss 1.250220775604248 img loss 1.2514097690582275 img loss 1.2516624927520752 img loss 1.1989741325378418 img loss 1.2915016412734985 img loss 1.183605670928955 img loss 1.2515534162521362 img loss 1.2630062103271484 img loss 1.2913368940353394 img loss 1.180459976196289 img loss 1.263796091079712 img loss 1.2617342472076416 img loss 1.265472173690796 img loss 1.2795791625976562 img loss 1.2493876218795776 img loss 1.2459194660186768 img loss 1.2584303617477417 img loss 1.2659642696380615 img loss 1.233567237854004 img loss 1.1660150289535522 img loss 1.228922724723816 img loss 1.3540712594985962 img loss 1.2311441898345947 img loss 1.2859638929367065 img loss 1.2628225088119507 img loss 1.2737631797790527 img loss 1.2791647911071777 img loss 1.137748122215271 img loss 1.2005772590637207 img loss 1.2489267587661743 img loss 1.2839431762695312 img loss 1.214474081993103 img loss 1.272912859916687 img loss 1.2673828601837158 img loss 1.2586256265640259 img loss 1.2325595617294312 img loss 1.3176496028900146 img loss 1.2274847030639648 img loss 1.2599267959594727 img loss 1.2598844766616821 img loss 1.1566015481948853 img loss 1.2579387426376343 img loss 1.2249372005462646 img loss 1.2787549495697021 img loss 1.2718623876571655 img loss 1.2658672332763672 img loss 1.1995857954025269 img loss 1.1814000606536865 img loss 1.2956924438476562 img loss 1.293503761291504 img loss 1.315463900566101 img loss 1.3089990615844727 img loss 1.2664151191711426 img loss 1.3221100568771362 img loss 1.168321967124939 img loss 1.2164654731750488 img loss 1.2716022729873657 img loss 1.2170231342315674 img loss 1.2660984992980957 img loss 1.3099125623703003 img loss 1.2785472869873047 img loss 1.3218507766723633 img loss 1.2107787132263184 img loss 1.1934278011322021 img loss 1.2942173480987549 {'loss': 1.25, 'grad_norm': 0.23419588804244995, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3855317831039429 img loss 1.1731281280517578 img loss 1.379050612449646 img loss 1.3317010402679443 img loss 1.3699545860290527 img loss 1.2626490592956543 img loss 1.361180067062378 img loss 1.3567322492599487 img loss 1.3370884656906128 img loss 1.277727484703064 img loss 1.2841557264328003 img loss 1.365077257156372 img loss 1.3396275043487549 img loss 1.2398087978363037 img loss 1.4161220788955688 img loss 1.2926058769226074 img loss 1.3762218952178955 img loss 1.3845436573028564 img loss 1.4026844501495361 img loss 1.2744605541229248 img loss 1.3382118940353394 img loss 1.299359917640686 img loss 1.3227471113204956 img loss 1.2941720485687256 img loss 1.3100364208221436 img loss 1.359590768814087 img loss 1.3417271375656128 img loss 1.386753797531128 img loss 1.3705509901046753 img loss 1.4755418300628662 img loss 1.4219707250595093 img loss 1.265454649925232 img loss 1.206989049911499 img loss 1.3204166889190674 img loss 1.3166937828063965 img loss 1.3108563423156738 img loss 1.4023911952972412 img loss 1.2609646320343018 img loss 1.27448308467865 img loss 1.2890695333480835 img loss 1.2475131750106812 img loss 1.3911564350128174 img loss 1.2564826011657715 img loss 1.3406128883361816 img loss 1.3668954372406006 img loss 1.3191078901290894 img loss 1.3054778575897217 img loss 1.3259837627410889 img loss 1.2167854309082031 img loss 1.2719639539718628 img loss 1.1856954097747803 img loss 1.342404842376709 img loss 1.336292028427124 img loss 1.3436386585235596 img loss 1.2468693256378174 img loss 1.2711687088012695 img loss 1.2422919273376465 img loss 1.3061414957046509 img loss 1.3003716468811035 img loss 1.2786860466003418 img loss 1.390419363975525 img loss 1.3096332550048828 img loss 1.311279296875 img loss 1.3103783130645752 img loss 1.394405722618103 img loss 1.3045834302902222 img loss 1.1898638010025024 img loss 1.3039774894714355 img loss 1.295215129852295 img loss 1.3407405614852905 img loss 1.3271751403808594 img loss 1.2641372680664062 img loss 1.3405393362045288 img loss 1.1849384307861328 img loss 1.3243359327316284 img loss 1.3116534948349 img loss 1.3547993898391724 img loss 1.404049038887024 img loss 1.3474667072296143 img loss 1.2867170572280884 img loss 1.2801778316497803 img loss 1.193600058555603 img loss 1.3835641145706177 img loss 1.3318639993667603 img loss 1.4824329614639282 img loss 1.307714819908142 img loss 1.3349518775939941 img loss 1.3421604633331299 img loss 1.4080337285995483 img loss 1.305019736289978 img loss 1.3481377363204956img loss 1.3810511827468872 img loss 1.4360891580581665 img loss 1.234514594078064 img loss 1.3564060926437378 img loss 1.2887721061706543 img loss 1.3537317514419556 img loss 1.3079346418380737 img loss 1.385953664779663 img loss 1.2518870830535889 img loss 1.2985695600509644 img loss 1.4216043949127197 img loss 1.2614845037460327 img loss 1.26918625831604 img loss 1.3091858625411987 img loss 1.349552035331726 img loss 1.3940939903259277 img loss 1.384851098060608 img loss 1.2971161603927612 img loss 1.3463151454925537 img loss 1.3227880001068115 img loss 1.331154227256775 img loss 1.279679536819458 img loss 1.3371495008468628 img loss 1.2997138500213623 img loss 1.266568660736084 img loss 1.3598378896713257 img loss 1.3898452520370483 img loss 1.3155722618103027 img loss 1.3826662302017212 img loss 1.2935967445373535img loss 1.2704333066940308 img loss 1.3467543125152588 img loss 1.2484862804412842 img loss 1.275734782218933 img loss 1.344042181968689 img loss 1.3838675022125244 img loss 1.3125234842300415 {'loss': 1.3217, 'grad_norm': 0.30016595125198364, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5442100763320923 img loss 1.3868086338043213 img loss 1.401591420173645 img loss 1.3924262523651123 img loss 1.43960440158844 img loss 1.321774959564209 img loss 1.3490132093429565 img loss 1.4175249338150024 img loss 1.4647818803787231 img loss 1.317975640296936 img loss 1.3809703588485718 img loss 1.2805722951889038 img loss 1.3564382791519165 img loss 1.4308884143829346 img loss 1.4498088359832764 img loss 1.4293437004089355 img loss 1.2765382528305054 img loss 1.4788851737976074 img loss 1.308870792388916 img loss 1.4049599170684814 img loss 1.411575198173523 img loss 1.4564200639724731 img loss 1.4851834774017334 img loss 1.4328542947769165 img loss 1.3786128759384155 img loss 1.4770911931991577 img loss 1.2970528602600098 img loss 1.4815261363983154 img loss 1.362169861793518 img loss 1.4666882753372192 img loss 1.3541524410247803 img loss 1.4052331447601318 img loss 1.3680388927459717 img loss 1.359882116317749 img loss 1.4487709999084473 img loss 1.3021769523620605 img loss 1.4165669679641724 img loss 1.3990429639816284 img loss 1.4205960035324097 img loss 1.4443246126174927 img loss 1.2353577613830566 img loss 1.3791444301605225 img loss 1.3301807641983032 img loss 1.3512080907821655 img loss 1.3022555112838745 img loss 1.4337583780288696 img loss 1.4119151830673218 img loss 1.4684786796569824 img loss 1.4457210302352905 img loss 1.4005323648452759 img loss 1.3715461492538452 img loss 1.332573652267456 img loss 1.432603359222412 img loss 1.4605201482772827 img loss 1.456971526145935 img loss 1.4422913789749146 img loss 1.4787516593933105 img loss 1.266116976737976 img loss 1.455917477607727 img loss 1.3561694622039795 img loss 1.3703725337982178 img loss 1.3818765878677368 img loss 1.3687489032745361 img loss 1.4554122686386108 img loss 1.4461559057235718 img loss 1.43514883518219 img loss 1.4297226667404175 img loss 1.354730486869812 img loss 1.3111093044281006 img loss 1.4517877101898193 img loss 1.288759469985962 img loss 1.3419212102890015 img loss 1.5226558446884155 img loss 1.340795636177063 img loss 1.4804069995880127 img loss 1.4301773309707642 img loss 1.4930311441421509 img loss 1.4457627534866333 img loss 1.4297257661819458 img loss 1.3376281261444092 img loss 1.27684485912323 img loss 1.3000614643096924 img loss 1.375964879989624 img loss 1.3678871393203735 img loss 1.5707741975784302 img loss 1.2532672882080078 img loss 1.4559885263442993 img loss 1.35793936252594 img loss 1.387508511543274 img loss 1.3288159370422363 img loss 1.4835851192474365 img loss 1.385178804397583 img loss 1.3907015323638916 img loss 1.3507291078567505 img loss 1.5100473165512085 img loss 1.4153754711151123 img loss 1.3238105773925781 img loss 1.41898775100708 img loss 1.3102784156799316 img loss 1.39372718334198 img loss 1.4276316165924072 img loss 1.3978644609451294 img loss 1.3063360452651978 img loss 1.4287798404693604 img loss 1.446439504623413 img loss 1.3946484327316284 img loss 1.400560736656189 img loss 1.642815351486206 img loss 1.410353183746338 img loss 1.2846791744232178 img loss 1.563797116279602 img loss 1.408486008644104 img loss 1.442412257194519 img loss 1.5456725358963013 img loss 1.3238931894302368 img loss 1.4088371992111206 img loss 1.4128400087356567 img loss 1.3185343742370605 img loss 1.3926422595977783 img loss 1.398658275604248 img loss 1.4047895669937134 img loss 1.270477533340454 img loss 1.2567315101623535 img loss 1.5075490474700928 img loss 1.3788834810256958 img loss 1.387825846672058 img loss 1.416383981704712 img loss 1.3544776439666748 {'loss': 1.3978, 'grad_norm': 0.4066014289855957, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3723949193954468 img loss 1.3516194820404053 img loss 1.3030028343200684 img loss 1.3531688451766968 img loss 1.3986220359802246 img loss 1.4582597017288208 img loss 1.3680263757705688 img loss 1.340299367904663 img loss 1.3199539184570312 img loss 1.4251837730407715 img loss 1.302680253982544 img loss 1.3420430421829224 img loss 1.2767412662506104 img loss 1.2975382804870605 img loss 1.400755524635315 img loss 1.3790929317474365 img loss 1.4087806940078735 img loss 1.306929111480713 img loss 1.402717113494873 img loss 1.2703700065612793 img loss 1.3433830738067627 img loss 1.2797484397888184 img loss 1.3649399280548096 img loss 1.3874281644821167 img loss 1.2735470533370972 img loss 1.3211420774459839img loss 1.395202398300171 img loss 1.267169713973999 img loss 1.309591293334961 img loss 1.3829312324523926 img loss 1.300954818725586 img loss 1.4293278455734253 img loss 1.3706423044204712 img loss 1.3752278089523315 img loss 1.3977547883987427 img loss 1.2500332593917847 img loss 1.3329685926437378 img loss 1.3707419633865356 img loss 1.3232485055923462 img loss 1.3345874547958374 img loss 1.3137305974960327 img loss 1.3565903902053833 img loss 1.3031829595565796 img loss 1.3554378747940063 img loss 1.3603177070617676 img loss 1.4014151096343994 img loss 1.3133214712142944 img loss 1.3166168928146362 img loss 1.4755655527114868 img loss 1.3518586158752441 img loss 1.327656626701355 img loss 1.3613766431808472 img loss 1.3435797691345215 img loss 1.3149912357330322 img loss 1.3867524862289429 img loss 1.2620614767074585 img loss 1.315326452255249 img loss 1.2835805416107178 img loss 1.2982527017593384 img loss 1.4213627576828003 img loss 1.3399399518966675 img loss 1.473923921585083 img loss 1.251676321029663 img loss 1.3397202491760254 img loss 1.385267734527588 img loss 1.3813855648040771 img loss 1.2844051122665405 img loss 1.3225654363632202 img loss 1.412328839302063 img loss 1.3736454248428345 img loss 1.3082809448242188 img loss 1.3320212364196777 img loss 1.3654850721359253 img loss 1.3138806819915771 img loss 1.3665837049484253 img loss 1.3608479499816895 img loss 1.3051738739013672 img loss 1.3365862369537354 img loss 1.294565200805664 img loss 1.507085919380188 img loss 1.3326239585876465 img loss 1.3424986600875854 img loss 1.369004487991333 img loss 1.4400112628936768 img loss 1.336240530014038 img loss 1.2397445440292358 img loss 1.4130359888076782 img loss 1.383009433746338 img loss 1.442198395729065 img loss 1.2593330144882202 img loss 1.261844515800476 img loss 1.2854394912719727 img loss 1.3104676008224487 img loss 1.2201324701309204 img loss 1.3421279191970825 img loss 1.336661696434021 img loss 1.3883689641952515 img loss 1.2385218143463135 img loss 1.3144997358322144 img loss 1.3661305904388428 img loss 1.333140254020691 img loss 1.2516121864318848 img loss 1.4423259496688843 img loss 1.2449451684951782 img loss 1.301943063735962 img loss 1.339586615562439 img loss 1.3643893003463745 img loss 1.366819143295288 img loss 1.4520515203475952 img loss 1.2347137928009033 img loss 1.2338205575942993 img loss 1.409769892692566 img loss 1.3522266149520874 img loss 1.3208459615707397 img loss 1.3096575736999512 img loss 1.278118371963501 img loss 1.3523614406585693 img loss 1.3632837533950806 img loss 1.3601490259170532 img loss 1.3690305948257446 img loss 1.3956630229949951 img loss 1.4282580614089966 img loss 1.2853574752807617 img loss 1.3212884664535522 img loss 1.2742726802825928 img loss 1.3590153455734253 img loss 1.2994976043701172 img loss 1.3746495246887207 {'loss': 1.3426, 'grad_norm': 0.2921338975429535, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2696102857589722 img loss 1.1903444528579712 img loss 1.2161537408828735 img loss 1.1437959671020508 img loss 1.1211702823638916 img loss 1.2193989753723145 img loss 1.1561942100524902 img loss 1.1589782238006592 img loss 1.178573489189148 img loss 1.2899491786956787 img loss 1.1615663766860962 img loss 1.25131356716156 img loss 1.2155113220214844 img loss 1.235358715057373 img loss 1.250253677368164 img loss 1.1770679950714111 img loss 1.2818708419799805 img loss 1.175074577331543 img loss 1.183593511581421 img loss 1.2657926082611084 img loss 1.1615852117538452 img loss 1.2360198497772217 img loss 1.253272294998169 img loss 1.2534446716308594 img loss 1.1260566711425781 img loss 1.1218056678771973 img loss 1.222524881362915 img loss 1.2544782161712646 img loss 1.1894147396087646 img loss 1.2227110862731934 img loss 1.154496669769287 img loss 1.1656677722930908 img loss 1.2308927774429321 img loss 1.3178790807724 img loss 1.2420471906661987 img loss 1.217281699180603 img loss 1.182666540145874 img loss 1.1624057292938232 img loss 1.2009730339050293 img loss 1.1868748664855957 img loss 1.206581711769104 img loss 1.347551941871643 img loss 1.2286325693130493 img loss 1.19454824924469 img loss 1.1521987915039062 img loss 1.2172515392303467 img loss 1.1756043434143066 img loss 1.1894463300704956 img loss 1.232967734336853 img loss 1.1679502725601196 img loss 1.20011305809021 img loss 1.1996476650238037 img loss 1.197924017906189 img loss 1.3106940984725952 img loss 1.1521072387695312 img loss 1.1448893547058105 img loss 1.1891601085662842 img loss 1.2032251358032227 img loss 1.306321382522583 img loss 1.1916078329086304 img loss 1.184417724609375 img loss 1.2009010314941406 img loss 1.2090030908584595 img loss 1.1882883310317993 img loss 1.1445198059082031 img loss 1.2688517570495605 img loss 1.2221198081970215 img loss 1.2489784955978394 img loss 1.160667061805725 img loss 1.20106840133667 img loss 1.1774948835372925 img loss 1.205177903175354 img loss 1.2092100381851196 img loss 1.1801884174346924 img loss 1.159483790397644img loss 1.2281486988067627 img loss 1.2625491619110107 img loss 1.2670255899429321 img loss 1.2168943881988525 img loss 1.2143195867538452 img loss 1.1675868034362793 img loss 1.2409417629241943 img loss 1.197188138961792 img loss 1.1857044696807861 img loss 1.2229552268981934 img loss 1.219362497329712 img loss 1.182819128036499 img loss 1.1538628339767456 img loss 1.2073895931243896 img loss 1.2249637842178345 img loss 1.1841061115264893 img loss 1.0978797674179077 img loss 1.2338247299194336 img loss 1.3034396171569824 img loss 1.1877045631408691 img loss 1.1372582912445068 img loss 1.1396565437316895 img loss 1.2684650421142578 img loss 1.2308019399642944 img loss 1.178454041481018 img loss 1.2206127643585205 img loss 1.2029768228530884 img loss 1.2697079181671143 img loss 1.1752182245254517 img loss 1.2619893550872803 img loss 1.1596546173095703 img loss 1.1909270286560059 img loss 1.2372840642929077 img loss 1.23888099193573 img loss 1.2066097259521484 img loss 1.1743485927581787 img loss 1.1794956922531128 img loss 1.1717464923858643 img loss 1.2394499778747559 img loss 1.2203311920166016 img loss 1.210245966911316 img loss 1.1386440992355347 img loss 1.2241445779800415 img loss 1.1769376993179321 img loss 1.2577718496322632 img loss 1.1754329204559326 img loss 1.1311540603637695 img loss 1.2125160694122314 img loss 1.1851316690444946 img loss 1.1880329847335815 img loss 1.2621673345565796 img loss 1.1829513311386108 img loss 1.198891043663025 {'loss': 1.2052, 'grad_norm': 0.204278826713562, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.440627932548523 img loss 1.4349149465560913 img loss 1.3837618827819824 img loss 1.3587377071380615 img loss 1.4916355609893799 img loss 1.5594382286071777 img loss 1.4934031963348389 img loss 1.3132003545761108 img loss 1.631364107131958 img loss 1.4059239625930786 img loss 1.4886006116867065 img loss 1.4638454914093018 img loss 1.4328471422195435 img loss 1.2766691446304321 img loss 1.5117682218551636 img loss 1.5234369039535522 img loss 1.482455849647522 img loss 1.4589754343032837 img loss 1.4749599695205688 img loss 1.46322500705719 img loss 1.3729914426803589 img loss 1.451243281364441 img loss 1.508368968963623 img loss 1.4610822200775146 img loss 1.4663609266281128 img loss 1.5189738273620605 img loss 1.5371448993682861 img loss 1.475415587425232 img loss 1.5304871797561646 img loss 1.4482324123382568 img loss 1.518152117729187 img loss 1.3910232782363892 img loss 1.4245903491973877 img loss 1.5724793672561646 img loss 1.3840022087097168 img loss 1.3910397291183472 img loss 1.4714869260787964 img loss 1.476946473121643 img loss 1.5367563962936401 img loss 1.4936730861663818 img loss 1.3953744173049927 img loss 1.4249857664108276 img loss 1.4683343172073364 img loss 1.5111891031265259 img loss 1.4458270072937012 img loss 1.4679991006851196 img loss 1.463897466659546 img loss 1.6074093580245972 img loss 1.399213433265686 img loss 1.3739426136016846 img loss 1.4878089427947998 img loss 1.412635087966919 img loss 1.3596702814102173 img loss 1.3751275539398193 img loss 1.339064121246338 img loss 1.467947244644165 img loss 1.3739120960235596 img loss 1.4149138927459717 img loss 1.3900054693222046 img loss 1.4506500959396362 img loss 1.4154771566390991 img loss 1.6328965425491333 img loss 1.5722109079360962 img loss 1.4473164081573486 img loss 1.5081597566604614 img loss 1.4867864847183228 img loss 1.3664028644561768 img loss 1.484443187713623 img loss 1.5574815273284912 img loss 1.378811001777649 img loss 1.5117648839950562 img loss 1.4806535243988037 img loss 1.3182415962219238 img loss 1.3465596437454224 img loss 1.4061753749847412 img loss 1.45554518699646 img loss 1.4222358465194702 img loss 1.5362128019332886 img loss 1.539109706878662 img loss 1.4227808713912964 img loss 1.4934660196304321 img loss 1.2791942358016968 img loss 1.4025291204452515 img loss 1.4660192728042603 img loss 1.3287285566329956 img loss 1.4856361150741577 img loss 1.5422685146331787 img loss 1.5807770490646362 img loss 1.3931962251663208 img loss 1.4025689363479614 img loss 1.4525951147079468 img loss 1.4775487184524536 img loss 1.5918329954147339 img loss 1.5155813694000244 img loss 1.4388763904571533 img loss 1.3561866283416748 img loss 1.6490533351898193 img loss 1.4603688716888428 img loss 1.3972704410552979 img loss 1.4155634641647339 img loss 1.6037582159042358 img loss 1.4927366971969604 img loss 1.4485944509506226 img loss 1.4550907611846924 img loss 1.4394773244857788 img loss 1.4580433368682861 img loss 1.3684964179992676 img loss 1.3397775888442993 img loss 1.4353619813919067 img loss 1.462875485420227 img loss 1.489454984664917 img loss 1.3510088920593262 img loss 1.474517583847046 img loss 1.5845484733581543 img loss 1.3866384029388428 img loss 1.5120251178741455 img loss 1.3681460618972778 img loss 1.4025568962097168 img loss 1.3533360958099365 img loss 1.3124808073043823 img loss 1.3635481595993042 img loss 1.476681113243103 img loss 1.40475332736969 img loss 1.3715078830718994 img loss 1.3186267614364624 img loss 1.3969026803970337 img loss 1.5349146127700806 img loss 1.5682406425476074 {'loss': 1.4511, 'grad_norm': 0.3755178153514862, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1532363891601562 img loss 1.1728918552398682 img loss 1.1948240995407104 img loss 1.1803758144378662 img loss 1.1355290412902832 img loss 1.2905491590499878 img loss 1.2955024242401123 img loss 1.1706212759017944 img loss 1.214954137802124 img loss 1.1491413116455078 img loss 1.2505128383636475 img loss 1.1758835315704346 img loss 1.3247654438018799 img loss 1.2704476118087769 img loss 1.2430875301361084 img loss 1.2430423498153687 img loss 1.180235505104065 img loss 1.2072776556015015 img loss 1.1697824001312256 img loss 1.1804604530334473 img loss 1.2717307806015015 img loss 1.2590969800949097 img loss 1.1801239252090454 img loss 1.1436792612075806 img loss 1.302438497543335 img loss 1.1899776458740234 img loss 1.32637619972229 img loss 1.20090913772583 img loss 1.240759253501892 img loss 1.212656855583191 img loss 1.1791118383407593 img loss 1.2191543579101562 img loss 1.223909616470337 img loss 1.194335699081421 img loss 1.1864800453186035 img loss 1.217237114906311 img loss 1.1727100610733032 img loss 1.2105051279067993 img loss 1.199920415878296 img loss 1.173902153968811 img loss 1.1578649282455444 img loss 1.1691508293151855 img loss 1.1922287940979004 img loss 1.2583595514297485 img loss 1.160907506942749 img loss 1.2816948890686035 img loss 1.1676576137542725 img loss 1.21133291721344 img loss 1.2273590564727783 img loss 1.2465095520019531 img loss 1.2319658994674683 img loss 1.2054535150527954 img loss 1.296102523803711 img loss 1.2513607740402222 img loss 1.1097056865692139 img loss 1.154884696006775 img loss 1.1888526678085327 img loss 1.1679251194000244 img loss 1.1625713109970093 img loss 1.1672968864440918 img loss 1.2233129739761353 img loss 1.2361769676208496 img loss 1.1577295064926147 img loss 1.2149337530136108 img loss 1.1762927770614624 img loss 1.2720364332199097 img loss 1.2219383716583252 img loss 1.1436651945114136 img loss 1.2126083374023438 img loss 1.1458710432052612 img loss 1.1911702156066895 img loss 1.1197422742843628 img loss 1.251805305480957 img loss 1.2092689275741577 img loss 1.1993212699890137 img loss 1.1884645223617554 img loss 1.205224633216858 img loss 1.22213876247406 img loss 1.2074089050292969 img loss 1.1947695016860962 img loss 1.3013405799865723 img loss 1.2138051986694336 img loss 1.2127646207809448 img loss 1.3055638074874878 img loss 1.2469831705093384 img loss 1.1912535429000854 img loss 1.1742390394210815 img loss 1.1507673263549805 img loss 1.2856156826019287 img loss 1.230049967765808 img loss 1.266823649406433 img loss 1.1942272186279297 img loss 1.3139110803604126 img loss 1.2766424417495728 img loss 1.1601415872573853 img loss 1.1650009155273438 img loss 1.2246112823486328 img loss 1.22646164894104 img loss 1.2569442987442017 img loss 1.2116239070892334 img loss 1.2386062145233154 img loss 1.1901510953903198 img loss 1.192723274230957 img loss 1.201863169670105 img loss 1.2035863399505615 img loss 1.2788037061691284 img loss 1.2658735513687134 img loss 1.2465304136276245 img loss 1.2154587507247925 img loss 1.2662370204925537 img loss 1.248471975326538 img loss 1.1964406967163086 img loss 1.2051693201065063 img loss 1.188586950302124 img loss 1.1733307838439941 img loss 1.3050894737243652 img loss 1.1654554605484009 img loss 1.2861740589141846 img loss 1.3479011058807373 img loss 1.3038220405578613 img loss 1.2128647565841675 img loss 1.1726230382919312 img loss 1.3115832805633545 img loss 1.138211965560913 img loss 1.1902462244033813 img loss 1.2947628498077393 img loss 1.2555559873580933 img loss 1.243151307106018 {'loss': 1.2161, 'grad_norm': 0.2759914994239807, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1244865655899048 img loss 1.2276873588562012 img loss 1.3202043771743774 img loss 1.1707977056503296 img loss 1.1811156272888184 img loss 1.22808039188385 img loss 1.251353144645691 img loss 1.2396678924560547 img loss 1.195027232170105 img loss 1.1950221061706543 img loss 1.2122814655303955 img loss 1.2404371500015259 img loss 1.2216439247131348 img loss 1.2549736499786377 img loss 1.193177580833435 img loss 1.3140476942062378 img loss 1.2199281454086304 img loss 1.2241467237472534 img loss 1.206244707107544 img loss 1.2501351833343506 img loss 1.2628341913223267 img loss 1.2448718547821045 img loss 1.202095627784729 img loss 1.2968573570251465 img loss 1.2518784999847412 img loss 1.2548942565917969 img loss 1.2098205089569092 img loss 1.2588615417480469 img loss 1.2076091766357422 img loss 1.2558703422546387 img loss 1.1952099800109863 img loss 1.2694834470748901 img loss 1.2186920642852783 img loss 1.2186750173568726 img loss 1.2633154392242432 img loss 1.2276270389556885 img loss 1.2311720848083496 img loss 1.301021933555603 img loss 1.2014710903167725 img loss 1.3325343132019043 img loss 1.2655699253082275 img loss 1.223153829574585 img loss 1.1776386499404907 img loss 1.2382795810699463 img loss 1.211257815361023 img loss 1.2012180089950562 img loss 1.2138592004776 img loss 1.2566585540771484 img loss 1.2875404357910156 img loss 1.2127254009246826 img loss 1.2209738492965698 img loss 1.2578833103179932 img loss 1.2349739074707031 img loss 1.2557607889175415 img loss 1.1811741590499878 img loss 1.2058043479919434 img loss 1.2241625785827637 img loss 1.3168423175811768 img loss 1.2839552164077759 img loss 1.2535362243652344 img loss 1.2824407815933228 img loss 1.1889114379882812 img loss 1.2412259578704834 img loss 1.2794129848480225 img loss 1.226090908050537 img loss 1.23056161403656 img loss 1.2478845119476318 img loss 1.2364424467086792 img loss 1.239422082901001 img loss 1.2478928565979004 img loss 1.1592336893081665 img loss 1.2267911434173584 img loss 1.260641098022461 img loss 1.1722774505615234 img loss 1.287513256072998 img loss 1.315555214881897 img loss 1.215422511100769 img loss 1.2679184675216675 img loss 1.2568566799163818 img loss 1.195850133895874 img loss 1.2685441970825195 img loss 1.250394582748413 img loss 1.234740972518921 img loss 1.3534356355667114 img loss 1.222874641418457 img loss 1.2844622135162354 img loss 1.2614482641220093 img loss 1.2797647714614868 img loss 1.279984474182129 img loss 1.260507345199585 img loss 1.2937148809432983 img loss 1.2073912620544434 img loss 1.2447030544281006 img loss 1.2477787733078003 img loss 1.2635160684585571 img loss 1.2149040699005127 img loss 1.239736795425415 img loss 1.2140040397644043 img loss 1.2503026723861694 img loss 1.2461260557174683 img loss 1.2387512922286987 img loss 1.2334483861923218 img loss 1.2360575199127197 img loss 1.197317123413086 img loss 1.3041542768478394 img loss 1.2491220235824585 img loss 1.2087609767913818 img loss 1.2222976684570312 img loss 1.2353029251098633 img loss 1.2359867095947266 img loss 1.2432063817977905 img loss 1.214629888534546 img loss 1.2960799932479858 img loss 1.1630091667175293 img loss 1.218451738357544 img loss 1.2795932292938232 img loss 1.1948612928390503 img loss 1.2227001190185547 img loss 1.300729751586914 img loss 1.1772637367248535 img loss 1.2802728414535522 img loss 1.2286741733551025 img loss 1.2305667400360107 img loss 1.2622709274291992 img loss 1.2810672521591187 img loss 1.2296103239059448 img loss 1.278493881225586 img loss 1.3254646062850952 {'loss': 1.2405, 'grad_norm': 0.25536295771598816, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1691559553146362 img loss 1.1967099905014038 img loss 1.2434996366500854 img loss 1.2575812339782715 img loss 1.231269121170044 img loss 1.2169407606124878 img loss 1.2678264379501343 img loss 1.2809041738510132 img loss 1.2341383695602417 img loss 1.149808406829834 img loss 1.2209895849227905 img loss 1.2262862920761108 img loss 1.2094948291778564 img loss 1.216044306755066 img loss 1.32225501537323 img loss 1.2380279302597046 img loss 1.2867354154586792 img loss 1.2731411457061768 img loss 1.2553157806396484 img loss 1.2042498588562012 img loss 1.1917251348495483 img loss 1.2225492000579834 img loss 1.2136036157608032 img loss 1.2208983898162842 img loss 1.2205151319503784 img loss 1.1489043235778809 img loss 1.0885485410690308 img loss 1.2826604843139648 img loss 1.2544485330581665 img loss 1.231864333152771 img loss 1.2021805047988892 img loss 1.2721080780029297 img loss 1.1891167163848877 img loss 1.1740559339523315 img loss 1.181665062904358 img loss 1.3166446685791016 img loss 1.2468714714050293 img loss 1.1580337285995483 img loss 1.235879898071289 img loss 1.2332969903945923 img loss 1.2465518712997437 img loss 1.277174949645996 img loss 1.2421283721923828 img loss 1.1849751472473145 img loss 1.3808518648147583 img loss 1.1525912284851074 img loss 1.2780570983886719 img loss 1.1999479532241821 img loss 1.2433083057403564 img loss 1.2213878631591797 img loss 1.1648403406143188 img loss 1.2223414182662964 img loss 1.2804628610610962 img loss 1.2349039316177368 img loss 1.3241033554077148 img loss 1.2089089155197144 img loss 1.2581011056900024 img loss 1.1930195093154907 img loss 1.2513481378555298 img loss 1.2139018774032593 img loss 1.1616878509521484 img loss 1.16222083568573 img loss 1.1047362089157104 img loss 1.2561686038970947 img loss 1.2218127250671387 img loss 1.2997515201568604 img loss 1.37798273563385 img loss 1.2466648817062378 img loss 1.2481144666671753 img loss 1.1822984218597412 img loss 1.1033661365509033 img loss 1.212681531906128 img loss 1.167954683303833 img loss 1.2676701545715332 img loss 1.1839730739593506 img loss 1.2127007246017456 img loss 1.2468212842941284 img loss 1.1919885873794556 img loss 1.2565727233886719 img loss 1.191978931427002 img loss 1.221383810043335 img loss 1.2254360914230347 img loss 1.22842276096344 img loss 1.286272406578064 img loss 1.1952265501022339 img loss 1.1759181022644043 img loss 1.2721078395843506 img loss 1.2380822896957397 img loss 1.3023887872695923 img loss 1.1449711322784424 img loss 1.3106478452682495 img loss 1.2842282056808472 img loss 1.1554707288742065 img loss 1.1221482753753662 img loss 1.1546344757080078 img loss 1.2705458402633667 img loss 1.2698185443878174 img loss 1.1983355283737183 img loss 1.1967673301696777 img loss 1.2189911603927612 img loss 1.2048301696777344 img loss 1.234865427017212 img loss 1.2034777402877808 img loss 1.1784958839416504 img loss 1.2527211904525757 img loss 1.3229882717132568 img loss 1.2689491510391235 img loss 1.3783456087112427 img loss 1.1685889959335327 img loss 1.1816002130508423 img loss 1.163948655128479 img loss 1.126714825630188 img loss 1.2989780902862549 img loss 1.2795939445495605img loss 1.2364250421524048 img loss 1.1312624216079712 img loss 1.2509349584579468 img loss 1.157429575920105 img loss 1.2511558532714844 img loss 1.1989772319793701 img loss 1.216986060142517 img loss 1.139419436454773 img loss 1.0846614837646484 img loss 1.2937142848968506 img loss 1.188184142112732 img loss 1.2496373653411865 img loss 1.166500449180603 img loss 1.158465027809143 {'loss': 1.2228, 'grad_norm': 0.18713614344596863, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6072217226028442 img loss 1.5281462669372559 img loss 1.4312150478363037 img loss 1.305476427078247 img loss 1.3655610084533691 img loss 1.4456928968429565 img loss 1.4285130500793457 img loss 1.438462734222412 img loss 1.3406387567520142 img loss 1.5824596881866455 img loss 1.5382219552993774 img loss 1.3664811849594116 img loss 1.448645830154419 img loss 1.325863242149353 img loss 1.3776768445968628 img loss 1.5012469291687012 img loss 1.4936306476593018 img loss 1.36112380027771 img loss 1.4116791486740112 img loss 1.4095959663391113 img loss 1.3635965585708618 img loss 1.4760193824768066 img loss 1.494868516921997 img loss 1.2860069274902344 img loss 1.3170665502548218 img loss 1.434760570526123 img loss 1.409216284751892 img loss 1.4347864389419556 img loss 1.3338215351104736 img loss 1.3977876901626587 img loss 1.4188593626022339 img loss 1.4038901329040527 img loss 1.376320242881775 img loss 1.416876196861267 img loss 1.4761557579040527 img loss 1.3031036853790283 img loss 1.487345814704895 img loss 1.4392801523208618 img loss 1.474096417427063 img loss 1.3686110973358154 img loss 1.4249110221862793 img loss 1.3281564712524414 img loss 1.4157541990280151 img loss 1.4583207368850708 img loss 1.441712737083435 img loss 1.5323765277862549 img loss 1.463581919670105 img loss 1.3358595371246338 img loss 1.5570324659347534 img loss 1.3080650568008423 img loss 1.3938401937484741 img loss 1.405371904373169 img loss 1.3582972288131714 img loss 1.575984239578247 img loss 1.4079899787902832 img loss 1.4141675233840942 img loss 1.421039342880249 img loss 1.4947057962417603 img loss 1.3956360816955566 img loss 1.3792351484298706 img loss 1.405028223991394 img loss 1.4541058540344238 img loss 1.4008231163024902 img loss 1.4173699617385864 img loss 1.5865557193756104 img loss 1.5415741205215454 img loss 1.4559134244918823 img loss 1.3729666471481323 img loss 1.3758633136749268 img loss 1.4685150384902954 img loss 1.3624532222747803 img loss 1.4140222072601318 img loss 1.4034359455108643 img loss 1.4495667219161987 img loss 1.4461238384246826 img loss 1.3565610647201538 img loss 1.3776870965957642 img loss 1.468536615371704 img loss 1.4459103345870972 img loss 1.527980923652649 img loss 1.3149521350860596 img loss 1.509202241897583 img loss 1.4653242826461792 img loss 1.3470791578292847 img loss 1.4899952411651611 img loss 1.3994160890579224 img loss 1.475382924079895 img loss 1.395268201828003 img loss 1.3411166667938232 img loss 1.410764455795288 img loss 1.4110666513442993 img loss 1.4377245903015137 img loss 1.3955270051956177 img loss 1.3314069509506226 img loss 1.3573555946350098 img loss 1.3788341283798218 img loss 1.3817648887634277 img loss 1.3559482097625732 img loss 1.4432648420333862 img loss 1.359798789024353 img loss 1.381614327430725 img loss 1.3414137363433838 img loss 1.4018607139587402 img loss 1.2640457153320312 img loss 1.5040500164031982 img loss 1.458935260772705 img loss 1.3536173105239868 img loss 1.3581061363220215 img loss 1.3527528047561646 img loss 1.3444865942001343 img loss 1.4205137491226196 img loss 1.4571611881256104 img loss 1.336679220199585 img loss 1.403163194656372 img loss 1.3466591835021973 img loss 1.445818543434143 img loss 1.476396918296814 img loss 1.4459446668624878 img loss 1.4427932500839233 img loss 1.4097908735275269 img loss 1.4218677282333374 img loss 1.4604370594024658 img loss 1.3554993867874146 img loss 1.3429738283157349 img loss 1.4170784950256348 img loss 1.3746041059494019 img loss 1.4278539419174194 img loss 1.448999285697937 {'loss': 1.4161, 'grad_norm': 0.4370745122432709, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2255738973617554 img loss 1.2524296045303345 img loss 1.2086399793624878 img loss 1.281032919883728 img loss 1.1375688314437866 img loss 1.2585258483886719 img loss 1.2061572074890137 img loss 1.1361498832702637 img loss 1.2438783645629883 img loss 1.2968628406524658 img loss 1.1692402362823486 img loss 1.1604562997817993 img loss 1.2340694665908813 img loss 1.1928861141204834 img loss 1.1669567823410034 img loss 1.0900682210922241 img loss 1.166256308555603 img loss 1.176324486732483 img loss 1.283926010131836 img loss 1.2377127408981323 img loss 1.2355769872665405 img loss 1.1680810451507568 img loss 1.2166862487792969 img loss 1.1486653089523315 img loss 1.211570143699646 img loss 1.1994280815124512 img loss 1.253647804260254 img loss 1.2169464826583862 img loss 1.173824667930603 img loss 1.2008651494979858 img loss 1.2939069271087646 img loss 1.220284104347229 img loss 1.2367687225341797 img loss 1.1865278482437134 img loss 1.1974802017211914 img loss 1.1974377632141113 img loss 1.1891593933105469 img loss 1.2174084186553955img loss 1.1914031505584717 img loss 1.2280110120773315 img loss 1.20083487033844 img loss 1.1304022073745728 img loss 1.2695021629333496 img loss 1.2421118021011353 img loss 1.1781362295150757 img loss 1.168716311454773 img loss 1.2642713785171509 img loss 1.1595959663391113 img loss 1.1858700513839722 img loss 1.3122586011886597 img loss 1.19890296459198 img loss 1.2225704193115234 img loss 1.1430437564849854 img loss 1.2407605648040771 img loss 1.1093345880508423 img loss 1.2856175899505615 img loss 1.2287654876708984 img loss 1.245893955230713 img loss 1.1748393774032593 img loss 1.244455337524414 img loss 1.2636644840240479 img loss 1.2247614860534668 img loss 1.1184418201446533 img loss 1.2561204433441162 img loss 1.2478842735290527 img loss 1.1501507759094238 img loss 1.1487200260162354 img loss 1.1759376525878906 img loss 1.2063772678375244 img loss 1.2117260694503784 img loss 1.1745407581329346 img loss 1.2155729532241821 img loss 1.2596749067306519 img loss 1.258776068687439 img loss 1.2115988731384277 img loss 1.2088079452514648 img loss 1.2502750158309937 img loss 1.2003207206726074 img loss 1.1799982786178589 img loss 1.3022658824920654 img loss 1.1943691968917847 img loss 1.16861891746521 img loss 1.1104457378387451 img loss 1.211881160736084 img loss 1.2066218852996826 img loss 1.210889220237732 img loss 1.2214492559432983 img loss 1.271687388420105 img loss 1.252480387687683 img loss 1.2142845392227173 img loss 1.1581865549087524 img loss 1.2194099426269531 img loss 1.1450543403625488 img loss 1.1539256572723389 img loss 1.2501991987228394 img loss 1.2455902099609375 img loss 1.208749532699585 img loss 1.1813602447509766 img loss 1.233627200126648 img loss 1.2246993780136108 img loss 1.2740038633346558 img loss 1.2154080867767334 img loss 1.3647112846374512 img loss 1.2088239192962646 img loss 1.2100534439086914 img loss 1.1816985607147217 img loss 1.186134934425354 img loss 1.254562258720398 img loss 1.1857390403747559 img loss 1.1219167709350586 img loss 1.2402656078338623 img loss 1.1890497207641602 img loss 1.2355265617370605 img loss 1.1640124320983887 img loss 1.20701265335083 img loss 1.2203247547149658 img loss 1.2193018198013306 img loss 1.1875641345977783 img loss 1.2643592357635498 img loss 1.1212341785430908 img loss 1.2266480922698975 img loss 1.176554560661316 img loss 1.1786744594573975 img loss 1.1998443603515625 img loss 1.163118600845337 img loss 1.2553383111953735 img loss 1.2371877431869507 img loss 1.2363033294677734 {'loss': 1.2093, 'grad_norm': 0.3252638280391693, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2281663417816162 img loss 1.3366364240646362 img loss 1.227038025856018 img loss 1.2447009086608887 img loss 1.2587589025497437 img loss 1.338631510734558 img loss 1.219153881072998 img loss 1.2284358739852905 img loss 1.1881948709487915 img loss 1.2841423749923706 img loss 1.2418687343597412 img loss 1.207006812095642 img loss 1.2562365531921387 img loss 1.165509581565857 img loss 1.1626163721084595 img loss 1.171294093132019 img loss 1.2601866722106934 img loss 1.1568635702133179 img loss 1.1437381505966187 img loss 1.2149313688278198 img loss 1.214232325553894 img loss 1.2369778156280518 img loss 1.2331466674804688 img loss 1.1650112867355347 img loss 1.3523423671722412 img loss 1.3811184167861938 img loss 1.2918298244476318 img loss 1.1534194946289062 img loss 1.2666462659835815 img loss 1.2171436548233032 img loss 1.2429250478744507 img loss 1.3106411695480347 img loss 1.2410078048706055 img loss 1.3275190591812134 img loss 1.3362606763839722 img loss 1.260643720626831 img loss 1.3974159955978394 img loss 1.2425769567489624 img loss 1.3228603601455688 img loss 1.243254542350769 img loss 1.3530782461166382 img loss 1.2047449350357056 img loss 1.2616924047470093 img loss 1.2800575494766235 img loss 1.2231404781341553 img loss 1.2850464582443237 img loss 1.3190827369689941 img loss 1.2896641492843628 img loss 1.3790165185928345 img loss 1.2145942449569702 img loss 1.2447582483291626 img loss 1.2992188930511475 img loss 1.2842001914978027 img loss 1.1951673030853271 img loss 1.2495120763778687 img loss 1.2443335056304932 img loss 1.243222951889038 img loss 1.2001953125 img loss 1.188455581665039 img loss 1.2005175352096558 img loss 1.293543815612793 img loss 1.3173280954360962 img loss 1.3127212524414062 img loss 1.2416658401489258 img loss 1.2742352485656738 img loss 1.2959022521972656 img loss 1.221555233001709 img loss 1.249958872795105 img loss 1.1997311115264893 img loss 1.2091424465179443 img loss 1.256834864616394 img loss 1.2388520240783691img loss 1.246031403541565 img loss 1.2563194036483765 img loss 1.2624820470809937 img loss 1.2387546300888062 img loss 1.3390076160430908 img loss 1.2998528480529785 img loss 1.286634922027588 img loss 1.2224771976470947 img loss 1.2024779319763184 img loss 1.2335808277130127 img loss 1.2632839679718018 img loss 1.1973063945770264 img loss 1.2508678436279297 img loss 1.2381519079208374 img loss 1.2876735925674438 img loss 1.3302700519561768 img loss 1.2396169900894165 img loss 1.1762676239013672 img loss 1.2052927017211914 img loss 1.2791824340820312 img loss 1.30608069896698 img loss 1.2357603311538696 img loss 1.1949307918548584 img loss 1.2527074813842773 img loss 1.159156084060669 img loss 1.2480055093765259 img loss 1.2605952024459839 img loss 1.1873676776885986 img loss 1.2360881567001343 img loss 1.2816323041915894 img loss 1.2372349500656128 img loss 1.2297229766845703 img loss 1.2716686725616455 img loss 1.2147343158721924 img loss 1.1919214725494385 img loss 1.2845478057861328 img loss 1.2277531623840332 img loss 1.3159297704696655 img loss 1.2589972019195557 img loss 1.2519077062606812 img loss 1.2060537338256836 img loss 1.1665606498718262 img loss 1.2450774908065796 img loss 1.2888072729110718 img loss 1.2690986394882202 img loss 1.2006678581237793 img loss 1.204857587814331 img loss 1.2527923583984375 img loss 1.2281620502471924 img loss 1.258185863494873 img loss 1.178294062614441 img loss 1.3240669965744019 img loss 1.233802318572998 img loss 1.3060652017593384 img loss 1.1763330698013306 img loss 1.290116310119629 {'loss': 1.2498, 'grad_norm': 0.22265329957008362, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.187437891960144 img loss 1.2056950330734253 img loss 1.22001314163208 img loss 1.2300976514816284 img loss 1.1961755752563477 img loss 1.23944890499115 img loss 1.190189003944397 img loss 1.243342399597168 img loss 1.2670711278915405 img loss 1.2857825756072998 img loss 1.24509596824646 img loss 1.272555947303772 img loss 1.2317107915878296 img loss 1.2370022535324097 img loss 1.2733473777770996 img loss 1.283797025680542 img loss 1.1840566396713257 img loss 1.1548092365264893 img loss 1.2419078350067139 img loss 1.2758352756500244 img loss 1.2789890766143799 img loss 1.2880597114562988 img loss 1.2137730121612549 img loss 1.2515372037887573 img loss 1.218502402305603 img loss 1.2424275875091553 img loss 1.2612495422363281 img loss 1.2012051343917847 img loss 1.255635142326355 img loss 1.303478479385376 img loss 1.2365646362304688 img loss 1.2062877416610718 img loss 1.2098121643066406 img loss 1.19197416305542 img loss 1.240972876548767 img loss 1.2663695812225342 img loss 1.233864665031433 img loss 1.2346549034118652 img loss 1.2742457389831543 img loss 1.2561156749725342 img loss 1.2392791509628296 img loss 1.3065059185028076 img loss 1.2689443826675415 img loss 1.273443579673767 img loss 1.1915994882583618 img loss 1.22267484664917 img loss 1.2788450717926025 img loss 1.2351881265640259 img loss 1.1392593383789062 img loss 1.2297987937927246 img loss 1.182602882385254 img loss 1.2099634408950806 img loss 1.2618517875671387 img loss 1.236478567123413 img loss 1.1988296508789062 img loss 1.2127331495285034 img loss 1.21292245388031 img loss 1.2095609903335571 img loss 1.250905990600586 img loss 1.2468887567520142 img loss 1.2933151721954346 img loss 1.2415571212768555 img loss 1.1926244497299194 img loss 1.2361993789672852 img loss 1.2276418209075928 img loss 1.2666699886322021 img loss 1.215590238571167 img loss 1.2136304378509521 img loss 1.2576372623443604 img loss 1.2443550825119019 img loss 1.1978278160095215 img loss 1.2050285339355469 img loss 1.2871110439300537 img loss 1.2310518026351929 img loss 1.2549424171447754 img loss 1.247129201889038 img loss 1.2913645505905151 img loss 1.191526174545288 img loss 1.2622793912887573 img loss 1.254865288734436 img loss 1.2800779342651367 img loss 1.2753623723983765 img loss 1.2665127515792847 img loss 1.274158000946045 img loss 1.1698654890060425 img loss 1.230506181716919 img loss 1.376062273979187 img loss 1.2697739601135254 img loss 1.1429340839385986 img loss 1.2622406482696533 img loss 1.2523068189620972 img loss 1.2543493509292603 img loss 1.2535481452941895 img loss 1.2253841161727905 img loss 1.3171135187149048 img loss 1.2676467895507812 img loss 1.229335069656372 img loss 1.2009754180908203 img loss 1.2550963163375854 img loss 1.3118202686309814 img loss 1.2747830152511597 img loss 1.2750606536865234 img loss 1.269518494606018 img loss 1.262438416481018 img loss 1.2910380363464355 img loss 1.269564151763916 img loss 1.255995273590088 img loss 1.2784963846206665 img loss 1.1839739084243774 img loss 1.3125418424606323 img loss 1.2803066968917847 img loss 1.2308521270751953 img loss 1.2807539701461792 img loss 1.2013882398605347 img loss 1.184483289718628 img loss 1.237869143486023 img loss 1.3126490116119385 img loss 1.2440894842147827 img loss 1.2498180866241455 img loss 1.2273029088974 img loss 1.2103525400161743 img loss 1.2317602634429932 img loss 1.2357209920883179 img loss 1.247147560119629 img loss 1.2149689197540283 img loss 1.2310140132904053 img loss 1.1889342069625854 img loss 1.2999944686889648 {'loss': 1.2426, 'grad_norm': 0.2592717111110687, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1950910091400146 img loss 1.2988885641098022 img loss 1.307006597518921 img loss 1.404997706413269 img loss 1.3473013639450073 img loss 1.3129584789276123 img loss 1.294306993484497 img loss 1.2819180488586426 img loss 1.3863145112991333 img loss 1.2627289295196533 img loss 1.250080943107605 img loss 1.2629354000091553 img loss 1.2936418056488037 img loss 1.299377679824829 img loss 1.341597080230713 img loss 1.2579116821289062 img loss 1.3595738410949707 img loss 1.256818413734436 img loss 1.3410334587097168 img loss 1.3483918905258179 img loss 1.357417345046997 img loss 1.3637832403182983 img loss 1.260599970817566 img loss 1.284031629562378 img loss 1.3196525573730469 img loss 1.317185640335083 img loss 1.35386323928833 img loss 1.3038727045059204 img loss 1.3564914464950562 img loss 1.3331618309020996 img loss 1.3659828901290894 img loss 1.270790696144104 img loss 1.4177809953689575 img loss 1.3024616241455078 img loss 1.314313530921936 img loss 1.3280775547027588 img loss 1.2483621835708618 img loss 1.3277263641357422 img loss 1.267176866531372 img loss 1.3358910083770752 img loss 1.4062752723693848 img loss 1.2910456657409668 img loss 1.3692643642425537 img loss 1.306751012802124 img loss 1.269402027130127 img loss 1.2820783853530884 img loss 1.2287811040878296 img loss 1.3160771131515503 img loss 1.4095877408981323 img loss 1.3490827083587646 img loss 1.2566697597503662 img loss 1.236459732055664 img loss 1.3076531887054443 img loss 1.2744888067245483 img loss 1.3367526531219482 img loss 1.2894184589385986 img loss 1.3601444959640503 img loss 1.348049283027649 img loss 1.3146495819091797 img loss 1.3014922142028809 img loss 1.266291856765747 img loss 1.2689259052276611 img loss 1.2772406339645386 img loss 1.291844367980957 img loss 1.3040735721588135 img loss 1.258439064025879 img loss 1.3091782331466675 img loss 1.3151612281799316 img loss 1.3223602771759033 img loss 1.2941607236862183 img loss 1.3377329111099243 img loss 1.3034172058105469 img loss 1.2745593786239624 img loss 1.358491063117981 img loss 1.31682550907135 img loss 1.2776226997375488 img loss 1.3162014484405518 img loss 1.3441758155822754 img loss 1.2726943492889404 img loss 1.3503649234771729 img loss 1.324275016784668 img loss 1.2951942682266235 img loss 1.2661666870117188 img loss 1.2918524742126465 img loss 1.2517417669296265 img loss 1.243288278579712 img loss 1.3284595012664795 img loss 1.3704296350479126 img loss 1.2840380668640137 img loss 1.2863433361053467 img loss 1.2456210851669312 img loss 1.2470624446868896 img loss 1.313852310180664 img loss 1.311258316040039 img loss 1.352242112159729 img loss 1.2566750049591064 img loss 1.3143749237060547 img loss 1.3687368631362915 img loss 1.2644786834716797 img loss 1.3193585872650146 img loss 1.298094630241394 img loss 1.2402305603027344 img loss 1.4242790937423706 img loss 1.2411415576934814 img loss 1.2343508005142212 img loss 1.316253423690796 img loss 1.3251997232437134 img loss 1.3210198879241943 img loss 1.2950341701507568 img loss 1.2842292785644531 img loss 1.312150239944458 img loss 1.281246542930603 img loss 1.3183655738830566 img loss 1.356937289237976 img loss 1.361436128616333 img loss 1.2858091592788696 img loss 1.2687044143676758 img loss 1.2705634832382202 img loss 1.3348138332366943 img loss 1.2926971912384033 img loss 1.2451190948486328 img loss 1.2838064432144165 img loss 1.28146231174469 img loss 1.3619649410247803 img loss 1.2817952632904053 img loss 1.2832458019256592 img loss 1.2266805171966553 img loss 1.3336127996444702 {'loss': 1.3058, 'grad_norm': 0.2683129608631134, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2289154529571533 img loss 1.1916158199310303 img loss 1.345725417137146 img loss 1.174017310142517 img loss 1.36338472366333 img loss 1.2885658740997314 img loss 1.3031996488571167 img loss 1.1903748512268066 img loss 1.2508753538131714 img loss 1.2808609008789062 img loss 1.1467450857162476 img loss 1.2369227409362793 img loss 1.289659857749939 img loss 1.3196310997009277 img loss 1.2079790830612183 img loss 1.31017005443573 img loss 1.3053747415542603 img loss 1.2407994270324707 img loss 1.3103901147842407 img loss 1.3225924968719482 img loss 1.3464399576187134 img loss 1.330783724784851 img loss 1.203695297241211 img loss 1.237176775932312 img loss 1.2855219841003418 img loss 1.3201936483383179 img loss 1.2561248540878296 img loss 1.3815232515335083 img loss 1.3306045532226562 img loss 1.230608582496643 img loss 1.2493789196014404 img loss 1.3700283765792847 img loss 1.2661250829696655 img loss 1.315093994140625 img loss 1.3037155866622925 img loss 1.288909912109375 img loss 1.2685590982437134 img loss 1.3583375215530396 img loss 1.330286979675293 img loss 1.3089627027511597 img loss 1.286167860031128 img loss 1.2652552127838135 img loss 1.2653768062591553 img loss 1.3837872743606567 img loss 1.2460066080093384 img loss 1.2872451543807983 img loss 1.309264063835144 img loss 1.223203182220459 img loss 1.3642433881759644 img loss 1.2894200086593628 img loss 1.1747558116912842 img loss 1.1441072225570679 img loss 1.455937147140503 img loss 1.1688382625579834 img loss 1.1853774785995483 img loss 1.310380458831787 img loss 1.3300740718841553 img loss 1.428615689277649 img loss 1.3171676397323608 img loss 1.326249361038208 img loss 1.2934975624084473 img loss 1.2216118574142456 img loss 1.33591628074646 img loss 1.2924201488494873 img loss 1.3578650951385498 img loss 1.24491548538208 img loss 1.456234335899353 img loss 1.2344311475753784 img loss 1.3737303018569946 img loss 1.1955392360687256 img loss 1.4490398168563843 img loss 1.3148818016052246 img loss 1.3156135082244873 img loss 1.3844603300094604 img loss 1.2782342433929443 img loss 1.334419846534729 img loss 1.2533172369003296 img loss 1.3039755821228027 img loss 1.247294306755066 img loss 1.2829079627990723 img loss 1.1989315748214722 img loss 1.3402092456817627 img loss 1.3005398511886597 img loss 1.250611662864685 img loss 1.310046672821045 img loss 1.2052243947982788 img loss 1.2440871000289917 img loss 1.217942714691162 img loss 1.3850514888763428 img loss 1.2424063682556152 img loss 1.3003796339035034 img loss 1.306290864944458 img loss 1.268980622291565 img loss 1.263650894165039 img loss 1.3270282745361328 img loss 1.3436955213546753 img loss 1.2452806234359741 img loss 1.2228721380233765 img loss 1.1732313632965088 img loss 1.3069171905517578 img loss 1.287466049194336 img loss 1.2828302383422852 img loss 1.2868773937225342 img loss 1.2630577087402344 img loss 1.2512495517730713 img loss 1.1682720184326172 img loss 1.2861192226409912 img loss 1.504037618637085 img loss 1.296212077140808 img loss 1.3170745372772217 img loss 1.329188346862793 img loss 1.2877298593521118 img loss 1.3157545328140259 img loss 1.3319439888000488 img loss 1.2850054502487183 img loss 1.1955426931381226 img loss 1.295164942741394 img loss 1.2450684309005737 img loss 1.239396572113037 img loss 1.421199083328247 img loss 1.230000376701355 img loss 1.2188165187835693 img loss 1.2279956340789795 img loss 1.2740472555160522 img loss 1.255528450012207 img loss 1.2462929487228394 img loss 1.327760100364685 img loss 1.2367091178894043 {'loss': 1.2858, 'grad_norm': 0.22154133021831512, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3070600032806396 img loss 1.2584482431411743 img loss 1.2067365646362305 img loss 1.2663896083831787 img loss 1.2374428510665894 img loss 1.1986956596374512 img loss 1.120788812637329 img loss 1.2489112615585327 img loss 1.2819747924804688 img loss 1.1420412063598633 img loss 1.2000255584716797 img loss 1.2142860889434814 img loss 1.1790064573287964 img loss 1.1133617162704468 img loss 1.1368098258972168 img loss 1.243710994720459 img loss 1.2058522701263428 img loss 1.22672438621521 img loss 1.167211890220642img loss 1.1736663579940796 img loss 1.1673287153244019 img loss 1.2270923852920532 img loss 1.2948614358901978 img loss 1.1908588409423828 img loss 1.1944020986557007 img loss 1.2146228551864624 img loss 1.1671360731124878 img loss 1.2121161222457886 img loss 1.2277343273162842 img loss 1.2754642963409424 img loss 1.2316489219665527 img loss 1.2335115671157837 img loss 1.2197312116622925 img loss 1.1875523328781128 img loss 1.2444610595703125 img loss 1.2913074493408203 img loss 1.1964231729507446 img loss 1.2198930978775024 img loss 1.222036600112915 img loss 1.21238374710083 img loss 1.2131156921386719 img loss 1.2127389907836914 img loss 1.1212217807769775 img loss 1.1788578033447266 img loss 1.1726869344711304 img loss 1.1885839700698853 img loss 1.2011632919311523 img loss 1.1801785230636597 img loss 1.23671555519104 img loss 1.2580363750457764 img loss 1.141709804534912 img loss 1.2008028030395508 img loss 1.1601576805114746 img loss 1.1766877174377441 img loss 1.1833324432373047 img loss 1.2452785968780518 img loss 1.2553622722625732 img loss 1.2603237628936768 img loss 1.1406186819076538 img loss 1.2938108444213867 img loss 1.2041776180267334 img loss 1.2407028675079346 img loss 1.222723364830017 img loss 1.1789186000823975 img loss 1.184722900390625 img loss 1.2165944576263428 img loss 1.1839011907577515 img loss 1.1493176221847534 img loss 1.2890262603759766 img loss 1.1972986459732056 img loss 1.22702157497406 img loss 1.195074439048767 img loss 1.2623528242111206 img loss 1.1547186374664307 img loss 1.1148022413253784 img loss 1.1143816709518433 img loss 1.292904257774353 img loss 1.1686527729034424 img loss 1.230648398399353 img loss 1.2479991912841797 img loss 1.1866251230239868 img loss 1.2409892082214355 img loss 1.190367341041565 img loss 1.2201915979385376 img loss 1.2083783149719238 img loss 1.2261884212493896 img loss 1.1327403783798218 img loss 1.1624655723571777 img loss 1.2079509496688843 img loss 1.257541298866272 img loss 1.2205114364624023 img loss 1.2360692024230957 img loss 1.2047038078308105 img loss 1.2272398471832275 img loss 1.2700088024139404 img loss 1.1867568492889404 img loss 1.1676219701766968 img loss 1.2327628135681152 img loss 1.2353405952453613 img loss 1.1687812805175781 img loss 1.1725976467132568 img loss 1.1906487941741943 img loss 1.2034021615982056 img loss 1.2146421670913696 img loss 1.1630178689956665 img loss 1.1756033897399902 img loss 1.1796938180923462 img loss 1.271492600440979 img loss 1.204776406288147 img loss 1.1267547607421875 img loss 1.2325267791748047 img loss 1.3068679571151733 img loss 1.1393624544143677 img loss 1.162811040878296 img loss 1.1385180950164795 img loss 1.2400448322296143 img loss 1.2366684675216675 img loss 1.2034119367599487 img loss 1.1665513515472412 img loss 1.2343863248825073 img loss 1.227754831314087img loss 1.2745062112808228 img loss 1.2457389831542969 img loss 1.301617980003357 img loss 1.2246822118759155 img loss 1.1926348209381104 img loss 1.2628211975097656 img loss 1.2434875965118408 {'loss': 1.2092, 'grad_norm': 0.20454570651054382, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2882883548736572 img loss 1.2704018354415894 img loss 1.2522690296173096 img loss 1.2364113330841064 img loss 1.2759841680526733 img loss 1.2424684762954712 img loss 1.1851962804794312 img loss 1.2187155485153198 img loss 1.2573087215423584 img loss 1.3649235963821411 img loss 1.236459732055664img loss 1.2069752216339111 img loss 1.1992168426513672 img loss 1.1727681159973145 img loss 1.2506731748580933 img loss 1.2285308837890625 img loss 1.227418303489685 img loss 1.2615182399749756 img loss 1.2153562307357788 img loss 1.275931715965271 img loss 1.227675437927246 img loss 1.2284444570541382 img loss 1.2956138849258423 img loss 1.200456976890564 img loss 1.242635726928711 img loss 1.2108999490737915 img loss 1.2944625616073608 img loss 1.2797139883041382 img loss 1.2840458154678345 img loss 1.264269471168518 img loss 1.2414891719818115 img loss 1.2839274406433105 img loss 1.3065292835235596 img loss 1.2342995405197144 img loss 1.2980226278305054 img loss 1.2981785535812378 img loss 1.2106870412826538 img loss 1.2199862003326416 img loss 1.198401927947998 img loss 1.3132226467132568 img loss 1.317044734954834 img loss 1.2746052742004395 img loss 1.2468479871749878 img loss 1.2545413970947266 img loss 1.3010475635528564 img loss 1.255291223526001 img loss 1.2904636859893799 img loss 1.2382553815841675 img loss 1.262795329093933 img loss 1.2682021856307983 img loss 1.2650425434112549 img loss 1.2338600158691406 img loss 1.2637362480163574 img loss 1.269690990447998 img loss 1.2063452005386353 img loss 1.278738021850586 img loss 1.217163324356079 img loss 1.252210259437561 img loss 1.2138408422470093 img loss 1.2591387033462524 img loss 1.2202175855636597 img loss 1.2139813899993896 img loss 1.2236675024032593 img loss 1.2439064979553223 img loss 1.2695157527923584 img loss 1.224893569946289 img loss 1.2276530265808105 img loss 1.2801536321640015 img loss 1.2707674503326416 img loss 1.2224924564361572 img loss 1.2300543785095215 img loss 1.1927506923675537 img loss 1.2106146812438965 img loss 1.2545104026794434 img loss 1.2393137216567993 img loss 1.2211633920669556 img loss 1.2732746601104736 img loss 1.2487518787384033 img loss 1.2480623722076416 img loss 1.2160428762435913 img loss 1.2890961170196533 img loss 1.239012598991394 img loss 1.2720673084259033 img loss 1.273505449295044 img loss 1.215379238128662 img loss 1.2430353164672852 img loss 1.2920650243759155 img loss 1.270376205444336 img loss 1.2853268384933472 img loss 1.2876617908477783 img loss 1.1899783611297607 img loss 1.2719331979751587 img loss 1.2365635633468628 img loss 1.2329363822937012 img loss 1.2257522344589233 img loss 1.2668908834457397 img loss 1.2706613540649414 img loss 1.2087130546569824 img loss 1.224358320236206 img loss 1.2703807353973389 img loss 1.2258795499801636 img loss 1.2830199003219604 img loss 1.2115501165390015 img loss 1.2284810543060303 img loss 1.2893034219741821 img loss 1.2076060771942139 img loss 1.241373896598816 img loss 1.252706527709961 img loss 1.2792460918426514 img loss 1.2712345123291016 img loss 1.2381949424743652 img loss 1.2467961311340332img loss 1.2568000555038452 img loss 1.192654013633728 img loss 1.2046421766281128 img loss 1.2308927774429321 img loss 1.2799748182296753 img loss 1.2920279502868652 img loss 1.228330373764038 img loss 1.2265360355377197 img loss 1.2134850025177002 img loss 1.2642641067504883 img loss 1.2342846393585205 img loss 1.2453292608261108 img loss 1.2844966650009155 img loss 1.2523384094238281 img loss 1.2216039896011353 img loss 1.2524242401123047 {'loss': 1.2486, 'grad_norm': 0.25570982694625854, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3683925867080688 img loss 1.4523921012878418 img loss 1.4286431074142456 img loss 1.437068223953247 img loss 1.5741180181503296 img loss 1.450506329536438 img loss 1.3145374059677124 img loss 1.5206891298294067 img loss 1.5879780054092407 img loss 1.4631037712097168 img loss 1.545174479484558 img loss 1.490322232246399 img loss 1.3145301342010498 img loss 1.5359522104263306 img loss 1.4710379838943481 img loss 1.4130171537399292 img loss 1.4780067205429077 img loss 1.4919170141220093 img loss 1.4505832195281982 img loss 1.3774316310882568 img loss 1.302162766456604 img loss 1.4230040311813354 img loss 1.385522723197937 img loss 1.4677411317825317 img loss 1.5026710033416748 img loss 1.5757874250411987 img loss 1.3625500202178955 img loss 1.5367076396942139 img loss 1.3841841220855713 img loss 1.4877955913543701 img loss 1.5470682382583618 img loss 1.380215048789978 img loss 1.5282337665557861 img loss 1.5849248170852661 img loss 1.5858162641525269 img loss 1.4517937898635864 img loss 1.5726466178894043 img loss 1.4093929529190063 img loss 1.4268620014190674 img loss 1.4306951761245728 img loss 1.2973335981369019 img loss 1.4521136283874512 img loss 1.5953484773635864 img loss 1.578061819076538 img loss 1.5084785223007202 img loss 1.5599875450134277 img loss 1.4362865686416626 img loss 1.5099694728851318 img loss 1.5248092412948608 img loss 1.4823099374771118 img loss 1.370156168937683 img loss 1.4528285264968872 img loss 1.3184595108032227 img loss 1.5149868726730347 img loss 1.325741171836853 img loss 1.430781602859497 img loss 1.5642368793487549 img loss 1.505106806755066 img loss 1.4243279695510864 img loss 1.6713976860046387 img loss 1.6107733249664307 img loss 1.5323110818862915 img loss 1.5309597253799438 img loss 1.5518265962600708 img loss 1.4396147727966309 img loss 1.3973602056503296 img loss 1.3459588289260864 img loss 1.4061391353607178 img loss 1.3576923608779907 img loss 1.4842230081558228 img loss 1.531887173652649 img loss 1.5822592973709106 img loss 1.3391083478927612 img loss 1.3015555143356323 img loss 1.4728361368179321 img loss 1.5609796047210693 img loss 1.5169938802719116 img loss 1.5405772924423218 img loss 1.4109660387039185 img loss 1.5352357625961304 img loss 1.4556316137313843 img loss 1.5509933233261108 img loss 1.6325297355651855 img loss 1.4052101373672485 img loss 1.3767517805099487 img loss 1.661582350730896 img loss 1.4788328409194946 img loss 1.4938682317733765 img loss 1.4133375883102417 img loss 1.3287954330444336 img loss 1.3800126314163208 img loss 1.408186674118042 img loss 1.3650861978530884 img loss 1.4715803861618042 img loss 1.5953259468078613 img loss 1.5505187511444092 img loss 1.542769193649292 img loss 1.5873570442199707 img loss 1.4783564805984497 img loss 1.4695688486099243 img loss 1.6090028285980225 img loss 1.4329943656921387 img loss 1.4714664220809937 img loss 1.4151966571807861 img loss 1.3652796745300293 img loss 1.300920009613037 img loss 1.4540059566497803 img loss 1.5604904890060425 img loss 1.4253593683242798 img loss 1.416934847831726 img loss 1.4279037714004517 img loss 1.482475757598877 img loss 1.4583054780960083 img loss 1.645811676979065 img loss 1.4316141605377197 img loss 1.4331010580062866 img loss 1.3988549709320068 img loss 1.4387555122375488 img loss 1.44219172000885 img loss 1.4733701944351196 img loss 1.5447124242782593 img loss 1.5896133184432983 img loss 1.442863941192627 img loss 1.4642159938812256 img loss 1.5164612531661987 img loss 1.4064444303512573 img loss 1.3593508005142212 img loss 1.410188913345337 {'loss': 1.4683, 'grad_norm': 0.3945944011211395, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3422086238861084 img loss 1.4318503141403198 img loss 1.423298716545105 img loss 1.561381220817566 img loss 1.4398938417434692 img loss 1.3690608739852905 img loss 1.3683594465255737 img loss 1.4482406377792358 img loss 1.3131436109542847 img loss 1.3227643966674805 img loss 1.3141040802001953 img loss 1.3777310848236084 img loss 1.4222055673599243 img loss 1.3958631753921509 img loss 1.3081496953964233 img loss 1.3355138301849365 img loss 1.400406002998352 img loss 1.454658031463623 img loss 1.2514755725860596 img loss 1.4443843364715576 img loss 1.4650143384933472 img loss 1.405640721321106 img loss 1.3633791208267212 img loss 1.312212347984314 img loss 1.278147578239441 img loss 1.3414355516433716 img loss 1.40079665184021 img loss 1.400854229927063 img loss 1.4195412397384644 img loss 1.45572030544281 img loss 1.4690521955490112 img loss 1.2441800832748413img loss 1.495474934577942 img loss 1.43864905834198 img loss 1.234041452407837 img loss 1.5396091938018799 img loss 1.3369667530059814 img loss 1.4430619478225708 img loss 1.4142823219299316 img loss 1.4284714460372925 img loss 1.3636025190353394 img loss 1.6115224361419678 img loss 1.3266539573669434 img loss 1.3976099491119385 img loss 1.4674885272979736 img loss 1.4124852418899536 img loss 1.3735195398330688 img loss 1.5521117448806763 img loss 1.4659154415130615 img loss 1.3539685010910034 img loss 1.4563335180282593 img loss 1.3675764799118042 img loss 1.4275434017181396 img loss 1.3640694618225098 img loss 1.3681930303573608 img loss 1.5861538648605347 img loss 1.4029748439788818 img loss 1.4232429265975952 img loss 1.469001054763794 img loss 1.3007431030273438 img loss 1.5568104982376099 img loss 1.4193665981292725 img loss 1.380753993988037 img loss 1.4535354375839233 img loss 1.4190537929534912 img loss 1.4625746011734009 img loss 1.4201862812042236 img loss 1.5266244411468506 img loss 1.3214486837387085 img loss 1.5563722848892212 img loss 1.4239262342453003 img loss 1.3893332481384277 img loss 1.511184811592102 img loss 1.4769896268844604 img loss 1.4736980199813843 img loss 1.4306223392486572 img loss 1.461771845817566 img loss 1.3406014442443848 img loss 1.4333081245422363 img loss 1.5560171604156494 img loss 1.3274097442626953 img loss 1.3432492017745972 img loss 1.4586961269378662 img loss 1.4341565370559692 img loss 1.5262740850448608 img loss 1.373416543006897 img loss 1.3808872699737549 img loss 1.3697627782821655 img loss 1.422755479812622 img loss 1.3271852731704712 img loss 1.585091233253479 img loss 1.5152264833450317 img loss 1.3101614713668823 img loss 1.2555874586105347 img loss 1.43529212474823 img loss 1.3317545652389526 img loss 1.5425289869308472 img loss 1.2872570753097534 img loss 1.3398054838180542 img loss 1.370404839515686 img loss 1.352385401725769 img loss 1.3073585033416748 img loss 1.433122158050537 img loss 1.4258530139923096 img loss 1.4280925989151 img loss 1.3305423259735107 img loss 1.3490138053894043 img loss 1.299754023551941 img loss 1.4102157354354858 img loss 1.478594422340393 img loss 1.3212295770645142 img loss 1.4525126218795776 img loss 1.4124045372009277 img loss 1.2465332746505737 img loss 1.2954940795898438 img loss 1.3479812145233154 img loss 1.5493197441101074 img loss 1.3790123462677002 img loss 1.3214058876037598 img loss 1.2989953756332397 img loss 1.3049777746200562 img loss 1.375088095664978 img loss 1.4100998640060425 img loss 1.3660638332366943 img loss 1.3400830030441284 img loss 1.31938636302948 img loss 1.414674162864685 img loss 1.3451822996139526 {'loss': 1.4013, 'grad_norm': 0.2712650001049042, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6001620292663574 img loss 1.7261593341827393 img loss 1.7666393518447876 img loss 1.5886132717132568 img loss 1.6368108987808228 img loss 1.3867284059524536 img loss 1.6573034524917603 img loss 1.5018060207366943 img loss 1.597267508506775 img loss 1.4794851541519165 img loss 1.5981385707855225 img loss 1.7061092853546143 img loss 1.5921986103057861 img loss 1.5459843873977661 img loss 1.59452223777771 img loss 1.6151736974716187 img loss 1.6373108625411987 img loss 1.5396806001663208 img loss 1.5265519618988037 img loss 1.656967043876648 img loss 1.5825775861740112 img loss 1.5720621347427368 img loss 1.5280362367630005 img loss 1.4861981868743896 img loss 1.5758147239685059 img loss 1.4813605546951294 img loss 1.5633084774017334 img loss 1.5926145315170288 img loss 1.6049551963806152 img loss 1.6759912967681885 img loss 1.412876844406128 img loss 1.5744500160217285 img loss 1.5963528156280518 img loss 1.6477906703948975 img loss 1.6662747859954834 img loss 1.5666333436965942 img loss 1.6650642156600952 img loss 1.636548638343811 img loss 1.4856221675872803 img loss 1.519560694694519 img loss 1.6254820823669434 img loss 1.7019593715667725 img loss 1.6055563688278198 img loss 1.7435545921325684 img loss 1.655861735343933 img loss 1.6290286779403687 img loss 1.6329236030578613 img loss 1.4276565313339233 img loss 1.7808237075805664 img loss 1.4410653114318848 img loss 1.61609947681427 img loss 1.705675482749939 img loss 1.6665767431259155 img loss 1.6027008295059204 img loss 1.506299614906311 img loss 1.5143896341323853 img loss 1.5164525508880615 img loss 1.8057222366333008 img loss 1.618558645248413 img loss 1.7146048545837402 img loss 1.504404902458191 img loss 1.5166261196136475 img loss 1.566493272781372 img loss 1.5709139108657837 img loss 1.6637026071548462 img loss 1.8650836944580078 img loss 1.6625351905822754 img loss 1.515852689743042 img loss 1.550363302230835 img loss 1.4288249015808105 img loss 1.7158496379852295 img loss 1.6656211614608765 img loss 1.548511028289795 img loss 1.5164055824279785 img loss 1.6288816928863525 img loss 1.5142724514007568 img loss 1.6098169088363647 img loss 1.6258009672164917 img loss 1.7685033082962036 img loss 1.7465779781341553 img loss 1.4644687175750732 img loss 1.5689632892608643 img loss 1.5404020547866821 img loss 1.712600827217102 img loss 1.59735906124115 img loss 1.752416729927063 img loss 1.5293108224868774 img loss 1.655122995376587 img loss 1.571826457977295 img loss 1.4657318592071533 img loss 1.6425422430038452 img loss 1.529701828956604 img loss 1.6029096841812134 img loss 1.6807286739349365 img loss 1.6353764533996582 img loss 1.393386960029602 img loss 1.5656017065048218 img loss 1.6065436601638794 img loss 1.5303939580917358 img loss 1.5410552024841309 img loss 1.6389994621276855 img loss 1.532325267791748 img loss 1.6224818229675293 img loss 1.6553540229797363 img loss 1.7228970527648926 img loss 1.6577563285827637 img loss 1.423962950706482 img loss 1.617979645729065 img loss 1.5602351427078247 img loss 1.6100270748138428 img loss 1.5252244472503662 img loss 1.7968132495880127 img loss 1.786668062210083 img loss 1.5526388883590698 img loss 1.553552508354187 img loss 1.6455901861190796 img loss 1.6109111309051514 img loss 1.7550818920135498 img loss 1.4986565113067627 img loss 1.621978998184204 img loss 1.5745643377304077 img loss 1.6875046491622925 img loss 1.517629861831665 img loss 1.5058845281600952 img loss 1.5917086601257324 img loss 1.6923903226852417 img loss 1.6823586225509644 img loss 1.6114999055862427 {'loss': 1.601, 'grad_norm': 0.4185049533843994, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.485502004623413 img loss 1.427376389503479 img loss 1.4104794263839722 img loss 1.433958649635315 img loss 1.5129563808441162 img loss 1.3433282375335693 img loss 1.436231255531311 img loss 1.4370404481887817 img loss 1.3986694812774658 img loss 1.3580104112625122 img loss 1.440061092376709 img loss 1.4995139837265015 img loss 1.4358086585998535 img loss 1.420255422592163 img loss 1.479560136795044 img loss 1.473304033279419 img loss 1.4999130964279175 img loss 1.3890677690505981 img loss 1.2768503427505493 img loss 1.4864685535430908 img loss 1.518691897392273 img loss 1.4464291334152222 img loss 1.4314056634902954 img loss 1.4720841646194458 img loss 1.3466354608535767 img loss 1.3997132778167725 img loss 1.5858582258224487 img loss 1.4966576099395752 img loss 1.5154017210006714 img loss 1.4568431377410889 img loss 1.6152498722076416 img loss 1.5435364246368408 img loss 1.4001795053482056 img loss 1.5254076719284058 img loss 1.4510751962661743 img loss 1.3004660606384277 img loss 1.5137826204299927 img loss 1.4337681531906128 img loss 1.4968878030776978 img loss 1.3762714862823486 img loss 1.5732696056365967 img loss 1.282268762588501 img loss 1.3624860048294067 img loss 1.3723164796829224 img loss 1.394528865814209 img loss 1.3902604579925537 img loss 1.5004079341888428 img loss 1.4269688129425049 img loss 1.328867793083191 img loss 1.3746992349624634 img loss 1.5663150548934937 img loss 1.3810858726501465 img loss 1.3716422319412231 img loss 1.3883874416351318 img loss 1.441572904586792 img loss 1.4267767667770386 img loss 1.471429467201233 img loss 1.4725884199142456 img loss 1.5951435565948486 img loss 1.3559497594833374 img loss 1.409013271331787 img loss 1.6136143207550049 img loss 1.4422943592071533 img loss 1.5058482885360718 img loss 1.473102331161499 img loss 1.5867377519607544 img loss 1.508111596107483 img loss 1.4370417594909668 img loss 1.4348300695419312 img loss 1.3438470363616943 img loss 1.4965177774429321 img loss 1.3514350652694702 img loss 1.4257519245147705 img loss 1.3115825653076172 img loss 1.4601635932922363 img loss 1.4796839952468872 img loss 1.485369086265564 img loss 1.409721851348877 img loss 1.5505200624465942 img loss 1.5192246437072754 img loss 1.4657243490219116 img loss 1.3971455097198486 img loss 1.342130184173584 img loss 1.3983380794525146 img loss 1.5397820472717285 img loss 1.421815276145935 img loss 1.4599432945251465 img loss 1.4188421964645386 img loss 1.3972218036651611 img loss 1.3982716798782349 img loss 1.7019647359848022 img loss 1.376863718032837 img loss 1.4073454141616821 img loss 1.4955079555511475 img loss 1.4198148250579834 img loss 1.3665268421173096 img loss 1.5258018970489502 img loss 1.3671371936798096 img loss 1.3390730619430542 img loss 1.4362252950668335 img loss 1.4975727796554565 img loss 1.434993863105774 img loss 1.3590589761734009 img loss 1.4476983547210693 img loss 1.5745136737823486 img loss 1.4832408428192139 img loss 1.3852324485778809 img loss 1.51775062084198 img loss 1.3907305002212524 img loss 1.404030442237854 img loss 1.4065178632736206 img loss 1.2691792249679565 img loss 1.527910590171814 img loss 1.5132352113723755 img loss 1.2823024988174438 img loss 1.4294946193695068 img loss 1.3902409076690674 img loss 1.451473355293274 img loss 1.5705491304397583 img loss 1.5776152610778809 img loss 1.418176293373108 img loss 1.351296305656433 img loss 1.4817396402359009 img loss 1.4297726154327393 img loss 1.3470486402511597 img loss 1.5704478025436401 img loss 1.5142098665237427 img loss 1.5333359241485596 {'loss': 1.4447, 'grad_norm': 0.2534736692905426, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2393548488616943 img loss 1.2124192714691162 img loss 1.2968209981918335 img loss 1.2318767309188843 img loss 1.185512900352478 img loss 1.228066086769104 img loss 1.3091646432876587 img loss 1.3709796667099 img loss 1.2819242477416992 img loss 1.2897038459777832 img loss 1.2242649793624878 img loss 1.226525902748108 img loss 1.2367660999298096 img loss 1.2799322605133057 img loss 1.209572672843933 img loss 1.2921053171157837 img loss 1.3118910789489746 img loss 1.2431330680847168 img loss 1.3040215969085693 img loss 1.3012360334396362 img loss 1.229770541191101 img loss 1.2918325662612915 img loss 1.2922111749649048 img loss 1.3037221431732178 img loss 1.292588233947754 img loss 1.183240532875061 img loss 1.2048664093017578 img loss 1.267769694328308 img loss 1.2279828786849976 img loss 1.2846615314483643 img loss 1.2872098684310913 img loss 1.2075984477996826 img loss 1.2859877347946167 img loss 1.2081148624420166 img loss 1.229500412940979 img loss 1.3017257452011108 img loss 1.2290470600128174 img loss 1.26546049118042 img loss 1.2041974067687988 img loss 1.289268136024475 img loss 1.264434576034546 img loss 1.2837860584259033 img loss 1.2441596984863281 img loss 1.2651413679122925 img loss 1.2530243396759033 img loss 1.1895979642868042 img loss 1.271461844444275 img loss 1.2118675708770752 img loss 1.296717882156372 img loss 1.265029788017273 img loss 1.2563070058822632 img loss 1.2077105045318604 img loss 1.1959240436553955 img loss 1.2414541244506836 img loss 1.2122888565063477 img loss 1.2292484045028687 img loss 1.2280291318893433 img loss 1.2198967933654785 img loss 1.278968095779419 img loss 1.2680964469909668 img loss 1.2262580394744873 img loss 1.2070670127868652 img loss 1.2163265943527222 img loss 1.2374941110610962 img loss 1.2363618612289429 img loss 1.2925620079040527 img loss 1.3084897994995117 img loss 1.2572436332702637 img loss 1.1916749477386475 img loss 1.1982593536376953 img loss 1.2511935234069824 img loss 1.2041518688201904 img loss 1.2310236692428589 img loss 1.2370752096176147 img loss 1.221156120300293 img loss 1.255836844444275 img loss 1.3318438529968262 img loss 1.2741583585739136 img loss 1.2826026678085327 img loss 1.2337641716003418 img loss 1.2375597953796387 img loss 1.2118701934814453 img loss 1.2344028949737549 img loss 1.3093384504318237 img loss 1.2357208728790283 img loss 1.31782865524292 img loss 1.2661738395690918 img loss 1.215535044670105 img loss 1.232217788696289 img loss 1.3378593921661377 img loss 1.3438054323196411 img loss 1.2506883144378662 img loss 1.213794231414795 img loss 1.1973775625228882 img loss 1.2532042264938354 img loss 1.2678905725479126 img loss 1.2389259338378906 img loss 1.205256700515747 img loss 1.269217848777771 img loss 1.2005890607833862 img loss 1.2684963941574097 img loss 1.237318754196167 img loss 1.251582384109497 img loss 1.3020505905151367 img loss 1.1805375814437866 img loss 1.3064082860946655 img loss 1.2002737522125244 img loss 1.2543407678604126 img loss 1.3764469623565674 img loss 1.2776240110397339 img loss 1.2295048236846924 img loss 1.3160905838012695 img loss 1.1985996961593628 img loss 1.273069977760315 img loss 1.2484835386276245 img loss 1.2723325490951538 img loss 1.2171227931976318 img loss 1.1910332441329956 img loss 1.3252441883087158 img loss 1.169915795326233 img loss 1.2831034660339355 img loss 1.2619986534118652 img loss 1.2410284280776978 img loss 1.2728432416915894 img loss 1.2141914367675781 img loss 1.2533221244812012 img loss 1.2313393354415894 img loss 1.2961444854736328 {'loss': 1.2526, 'grad_norm': 0.2755221724510193, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1789416074752808 img loss 1.1600271463394165 img loss 1.2587032318115234 img loss 1.2452409267425537 img loss 1.2403086423873901 img loss 1.260520339012146 img loss 1.2242382764816284 img loss 1.2273304462432861 img loss 1.297970175743103 img loss 1.3134597539901733 img loss 1.1333613395690918 img loss 1.1585174798965454 img loss 1.1847946643829346 img loss 1.227222204208374 img loss 1.2210667133331299 img loss 1.217469573020935 img loss 1.1598211526870728 img loss 1.2228323221206665 img loss 1.1924915313720703 img loss 1.225547432899475 img loss 1.1589183807373047 img loss 1.2244890928268433 img loss 1.2462472915649414 img loss 1.2387112379074097 img loss 1.2607131004333496 img loss 1.1799461841583252 img loss 1.189821720123291 img loss 1.187492847442627 img loss 1.1823065280914307 img loss 1.2923637628555298 img loss 1.271321177482605 img loss 1.3952672481536865 img loss 1.1625621318817139 img loss 1.2026724815368652 img loss 1.1510536670684814 img loss 1.1250828504562378 img loss 1.243264079093933 img loss 1.1466894149780273 img loss 1.2534863948822021 img loss 1.2064123153686523 img loss 1.2124229669570923 img loss 1.1886409521102905 img loss 1.170222520828247 img loss 1.2692514657974243 img loss 1.2394893169403076 img loss 1.2514625787734985 img loss 1.2100749015808105 img loss 1.1776622533798218 img loss 1.1672399044036865 img loss 1.2533438205718994 img loss 1.1944869756698608 img loss 1.2491850852966309 img loss 1.2044265270233154 img loss 1.212633728981018 img loss 1.1920133829116821 img loss 1.1521799564361572 img loss 1.2455843687057495 img loss 1.3328876495361328 img loss 1.2135542631149292 img loss 1.2969340085983276 img loss 1.1853426694869995 img loss 1.168383002281189 img loss 1.2090339660644531 img loss 1.150625467300415 img loss 1.2483692169189453 img loss 1.2565542459487915 img loss 1.2529404163360596 img loss 1.1557190418243408 img loss 1.2062467336654663 img loss 1.2225806713104248 img loss 1.2726566791534424 img loss 1.3059096336364746 img loss 1.2111492156982422 img loss 1.1426331996917725 img loss 1.2351691722869873 img loss 1.209639549255371 img loss 1.1604410409927368 img loss 1.2247049808502197 img loss 1.1710277795791626 img loss 1.2149889469146729 img loss 1.1775109767913818 img loss 1.142572283744812 img loss 1.2233734130859375 img loss 1.1140590906143188 img loss 1.239056944847107 img loss 1.215431571006775 img loss 1.1580238342285156 img loss 1.228748083114624 img loss 1.2157961130142212 img loss 1.2064176797866821 img loss 1.1928800344467163 img loss 1.2480615377426147 img loss 1.1907246112823486 img loss 1.2102993726730347 img loss 1.2213988304138184 img loss 1.2616809606552124 img loss 1.2050278186798096 img loss 1.1833845376968384 img loss 1.1923288106918335 img loss 1.2748199701309204 img loss 1.3058680295944214img loss 1.2353630065917969 img loss 1.1749578714370728 img loss 1.2354532480239868 img loss 1.2857320308685303 img loss 1.2652066946029663 img loss 1.1931885480880737 img loss 1.331276774406433 img loss 1.230455756187439 img loss 1.242384433746338 img loss 1.255541205406189 img loss 1.2024049758911133 img loss 1.270862340927124 img loss 1.2414946556091309 img loss 1.1897920370101929 img loss 1.2104828357696533 img loss 1.2583553791046143 img loss 1.2178407907485962 img loss 1.216403603553772 img loss 1.2268788814544678 img loss 1.2093409299850464 img loss 1.2518398761749268 img loss 1.2252717018127441 img loss 1.148392915725708 img loss 1.313575267791748 img loss 1.3172509670257568 img loss 1.3041422367095947 img loss 1.2860172986984253 {'loss': 1.2207, 'grad_norm': 0.21527764201164246, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2223525047302246 img loss 1.218826174736023 img loss 1.3205562829971313 img loss 1.1983858346939087 img loss 1.307066559791565 img loss 1.1488800048828125 img loss 1.2543760538101196 img loss 1.1445530652999878 img loss 1.2135071754455566 img loss 1.2400476932525635 img loss 1.1558654308319092 img loss 1.2149486541748047 img loss 1.2504615783691406 img loss 1.1838476657867432 img loss 1.2327369451522827 img loss 1.2354525327682495 img loss 1.1729586124420166 img loss 1.2545289993286133 img loss 1.2031574249267578 img loss 1.245927333831787 img loss 1.2985092401504517 img loss 1.1727417707443237 img loss 1.183786153793335 img loss 1.167721152305603 img loss 1.2344608306884766 img loss 1.1590675115585327 img loss 1.2551956176757812 img loss 1.226230502128601 img loss 1.184180736541748 img loss 1.226030945777893 img loss 1.1821962594985962 img loss 1.2133145332336426 img loss 1.1677337884902954 img loss 1.2690702676773071 img loss 1.195238471031189 img loss 1.139897346496582 img loss 1.231937289237976 img loss 1.3074296712875366 img loss 1.1981853246688843 img loss 1.2264314889907837 img loss 1.2423022985458374 img loss 1.2122626304626465 img loss 1.2193071842193604 img loss 1.2844479084014893 img loss 1.206613302230835 img loss 1.228301763534546 img loss 1.2020933628082275 img loss 1.2670912742614746 img loss 1.2050079107284546 img loss 1.1760151386260986 img loss 1.2175216674804688 img loss 1.3045589923858643 img loss 1.2470567226409912 img loss 1.2204617261886597 img loss 1.2474372386932373 img loss 1.2207237482070923 img loss 1.1803698539733887 img loss 1.155396819114685 img loss 1.2170219421386719 img loss 1.2915657758712769 img loss 1.1542069911956787 img loss 1.2502045631408691 img loss 1.1463584899902344 img loss 1.2268006801605225 img loss 1.205796480178833 img loss 1.2704401016235352 img loss 1.1503803730010986 img loss 1.2677209377288818 img loss 1.2436256408691406 img loss 1.2428410053253174 img loss 1.2004411220550537 img loss 1.1556448936462402 img loss 1.1669787168502808 img loss 1.1838488578796387 img loss 1.2253904342651367 img loss 1.307276964187622 img loss 1.2002073526382446 img loss 1.276573896408081 img loss 1.179197072982788 img loss 1.1633050441741943 img loss 1.2959568500518799 img loss 1.2479650974273682 img loss 1.1948010921478271 img loss 1.178532361984253 img loss 1.289697527885437 img loss 1.2823017835617065 img loss 1.23824143409729 img loss 1.2550959587097168 img loss 1.1805557012557983 img loss 1.1914269924163818 img loss 1.2570185661315918 img loss 1.1592934131622314 img loss 1.2560594081878662 img loss 1.129916787147522 img loss 1.3142526149749756 img loss 1.2453303337097168 img loss 1.2057193517684937 img loss 1.1915651559829712 img loss 1.2138020992279053 img loss 1.3542721271514893 img loss 1.2116882801055908 img loss 1.2464439868927002 img loss 1.2419617176055908 img loss 1.2832130193710327 img loss 1.207025408744812 img loss 1.2823574542999268 img loss 1.1710633039474487 img loss 1.21280038356781 img loss 1.2751667499542236 img loss 1.2379534244537354 img loss 1.2564619779586792img loss 1.2280746698379517 img loss 1.150075912475586 img loss 1.200679063796997 img loss 1.1895229816436768 img loss 1.2738168239593506 img loss 1.1706321239471436 img loss 1.1624603271484375 img loss 1.2137489318847656 img loss 1.2533414363861084 img loss 1.202451229095459 img loss 1.2795759439468384 img loss 1.2277824878692627 img loss 1.2394988536834717 img loss 1.2154040336608887 img loss 1.287851333618164 img loss 1.2624605894088745 img loss 1.211756944656372 {'loss': 1.2226, 'grad_norm': 0.37256523966789246, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3243080377578735 img loss 1.223710060119629 img loss 1.2361009120941162 img loss 1.231431484222412 img loss 1.211098074913025 img loss 1.212938666343689 img loss 1.240285873413086 img loss 1.229540467262268 img loss 1.2458553314208984 img loss 1.211669921875 img loss 1.2847810983657837 img loss 1.1701483726501465 img loss 1.1801049709320068 img loss 1.2378767728805542 img loss 1.2693073749542236 img loss 1.163712739944458 img loss 1.2661468982696533 img loss 1.2674946784973145 img loss 1.1568235158920288 img loss 1.242377519607544 img loss 1.2101153135299683 img loss 1.2971690893173218 img loss 1.1792722940444946 img loss 1.2827072143554688 img loss 1.2086372375488281 img loss 1.2113326787948608 img loss 1.312286615371704 img loss 1.3962864875793457 img loss 1.2182260751724243 img loss 1.1803406476974487 img loss 1.2828311920166016 img loss 1.1758695840835571 img loss 1.2752089500427246 img loss 1.224050760269165 img loss 1.2344751358032227 img loss 1.2819781303405762 img loss 1.180053472518921 img loss 1.229479432106018 img loss 1.2780855894088745 img loss 1.1807349920272827 img loss 1.2293990850448608img loss 1.2883671522140503 img loss 1.1462879180908203 img loss 1.239207148551941 img loss 1.3178551197052002 img loss 1.2370465993881226 img loss 1.2779219150543213 img loss 1.2428393363952637 img loss 1.2267093658447266 img loss 1.2211642265319824 img loss 1.1548088788986206 img loss 1.2050729990005493 img loss 1.2579495906829834 img loss 1.2221641540527344 img loss 1.2504011392593384 img loss 1.2562532424926758 img loss 1.28493332862854 img loss 1.1841564178466797 img loss 1.2343451976776123 img loss 1.2915581464767456 img loss 1.2389247417449951 img loss 1.249085783958435 img loss 1.1936630010604858 img loss 1.2892526388168335 img loss 1.243930697441101 img loss 1.3141288757324219 img loss 1.2161873579025269 img loss 1.2788677215576172 img loss 1.1863802671432495 img loss 1.2336362600326538 img loss 1.2787693738937378 img loss 1.2623655796051025 img loss 1.2245628833770752 img loss 1.2882264852523804 img loss 1.2121702432632446 img loss 1.209269404411316 img loss 1.2417807579040527 img loss 1.145851969718933 img loss 1.3780388832092285 img loss 1.255481243133545 img loss 1.2748857736587524 img loss 1.2253708839416504 img loss 1.2593777179718018 img loss 1.1843724250793457 img loss 1.285022497177124 img loss 1.206133484840393 img loss 1.3001219034194946 img loss 1.3085907697677612 img loss 1.2336156368255615 img loss 1.1723599433898926 img loss 1.13429594039917 img loss 1.3003840446472168 img loss 1.27031409740448 img loss 1.265061855316162 img loss 1.1945931911468506 img loss 1.3279385566711426 img loss 1.196856141090393 img loss 1.2753595113754272 img loss 1.2442777156829834 img loss 1.3312443494796753 img loss 1.2801332473754883 img loss 1.311410665512085 img loss 1.251137137413025 img loss 1.2146999835968018 img loss 1.284096121788025 img loss 1.1986016035079956 img loss 1.215880036354065 img loss 1.2327580451965332 img loss 1.217155933380127 img loss 1.2449924945831299 img loss 1.3274065256118774 img loss 1.2266309261322021 img loss 1.2215560674667358 img loss 1.3423200845718384 img loss 1.2685487270355225 img loss 1.1761785745620728 img loss 1.1680511236190796 img loss 1.1412646770477295 img loss 1.161689281463623 img loss 1.1894147396087646 img loss 1.1874959468841553 img loss 1.1741786003112793 img loss 1.2254928350448608 img loss 1.1929404735565186 img loss 1.2312761545181274 img loss 1.368873953819275 img loss 1.1491225957870483 img loss 1.2927175760269165 {'loss': 1.2394, 'grad_norm': 0.21616169810295105, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1172491312026978 img loss 1.2076375484466553 img loss 1.209039330482483 img loss 1.1760220527648926 img loss 1.1552740335464478 img loss 1.2136597633361816 img loss 1.1674208641052246 img loss 1.1521133184432983 img loss 1.1568167209625244 img loss 1.2446444034576416 img loss 1.2242554426193237 img loss 1.1387498378753662 img loss 1.1213263273239136 img loss 1.121720790863037 img loss 1.2293009757995605 img loss 1.1315639019012451 img loss 1.2775903940200806 img loss 1.2078475952148438 img loss 1.2889668941497803 img loss 1.2632842063903809 img loss 1.1690081357955933 img loss 1.165637493133545 img loss 1.205858588218689 img loss 1.2361363172531128 img loss 1.2576911449432373 img loss 1.1699397563934326 img loss 1.178239107131958 img loss 1.20698881149292 img loss 1.2235896587371826 img loss 1.1923121213912964 img loss 1.2789547443389893 img loss 1.2892115116119385 img loss 1.248023509979248 img loss 1.2878384590148926 img loss 1.229872226715088 img loss 1.2335150241851807 img loss 1.1720123291015625 img loss 1.151885747909546 img loss 1.1660292148590088 img loss 1.275207757949829 img loss 1.2545278072357178 img loss 1.1660501956939697 img loss 1.1780503988265991 img loss 1.225516676902771 img loss 1.2062410116195679 img loss 1.1386680603027344 img loss 1.2239519357681274 img loss 1.1773195266723633 img loss 1.181317925453186 img loss 1.2182080745697021 img loss 1.2488536834716797 img loss 1.1837831735610962 img loss 1.2328293323516846 img loss 1.1660648584365845 img loss 1.2254654169082642 img loss 1.197150707244873 img loss 1.2303638458251953 img loss 1.2369765043258667 img loss 1.0852077007293701 img loss 1.1934374570846558 img loss 1.2403297424316406 img loss 1.1393250226974487 img loss 1.2200727462768555 img loss 1.167482852935791 img loss 1.1342658996582031 img loss 1.113128900527954 img loss 1.2035367488861084 img loss 1.2027430534362793 img loss 1.1572402715682983 img loss 1.1505659818649292 img loss 1.2223789691925049 img loss 1.2573374509811401 img loss 1.1237294673919678 img loss 1.1629034280776978 img loss 1.3493626117706299 img loss 1.281182885169983 img loss 1.134922742843628 img loss 1.221435546875 img loss 1.2582000494003296 img loss 1.1525007486343384 img loss 1.1223890781402588 img loss 1.249037742614746 img loss 1.215417504310608 img loss 1.1273607015609741 img loss 1.1902798414230347 img loss 1.1860015392303467 img loss 1.1706749200820923 img loss 1.212715983390808 img loss 1.124580979347229 img loss 1.1607557535171509 img loss 1.1816641092300415 img loss 1.212407112121582 img loss 1.2257407903671265 img loss 1.192086100578308 img loss 1.2312332391738892 img loss 1.1415324211120605 img loss 1.210111141204834 img loss 1.1719940900802612 img loss 1.1864327192306519 img loss 1.180844783782959 img loss 1.2364939451217651 img loss 1.245879888534546 img loss 1.2365144491195679 img loss 1.1854872703552246 img loss 1.1925123929977417 img loss 1.1464145183563232 img loss 1.178252935409546 img loss 1.1592143774032593 img loss 1.1776280403137207 img loss 1.187182068824768 img loss 1.2381043434143066 img loss 1.218109130859375 img loss 1.2229933738708496 img loss 1.16842782497406 img loss 1.2298307418823242 img loss 1.2312793731689453 img loss 1.2034915685653687 img loss 1.1905773878097534 img loss 1.1842796802520752 img loss 1.18038010597229 img loss 1.1686480045318604 img loss 1.2462291717529297 img loss 1.2078078985214233 img loss 1.1907074451446533 img loss 1.1851041316986084 img loss 1.174731969833374 img loss 1.10198974609375 img loss 1.152866005897522 {'loss': 1.1964, 'grad_norm': 0.449374258518219, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.449988603591919 img loss 1.3189018964767456 img loss 1.4332480430603027 img loss 1.3116819858551025 img loss 1.428146243095398 img loss 1.3619414567947388img loss 1.409703016281128 img loss 1.3872452974319458 img loss 1.2741199731826782 img loss 1.31504225730896 img loss 1.330828309059143 img loss 1.4024765491485596 img loss 1.4713892936706543 img loss 1.3404752016067505 img loss 1.367431402206421 img loss 1.3121823072433472 img loss 1.284425139427185 img loss 1.3305596113204956 img loss 1.2756404876708984 img loss 1.3427865505218506 img loss 1.335092306137085 img loss 1.3056256771087646 img loss 1.3676469326019287 img loss 1.313297986984253 img loss 1.3786635398864746 img loss 1.4766790866851807 img loss 1.3323220014572144 img loss 1.347011923789978 img loss 1.4722979068756104 img loss 1.3463748693466187 img loss 1.361928105354309 img loss 1.3500694036483765 img loss 1.3377572298049927 img loss 1.4432471990585327 img loss 1.2197284698486328 img loss 1.3782981634140015 img loss 1.435553789138794 img loss 1.2751306295394897 img loss 1.5093547105789185 img loss 1.367573618888855 img loss 1.4684112071990967 img loss 1.3931719064712524 img loss 1.4268088340759277 img loss 1.4371849298477173 img loss 1.3870577812194824 img loss 1.3805480003356934 img loss 1.3214848041534424 img loss 1.3155230283737183 img loss 1.3648287057876587 img loss 1.3255839347839355 img loss 1.2757991552352905 img loss 1.4257112741470337 img loss 1.2579267024993896 img loss 1.3643122911453247 img loss 1.304671287536621 img loss 1.2780015468597412 img loss 1.360992193222046 img loss 1.3333723545074463 img loss 1.3752881288528442 img loss 1.3722140789031982 img loss 1.4475346803665161 img loss 1.2836849689483643 img loss 1.3063991069793701 img loss 1.385344386100769 img loss 1.40739905834198 img loss 1.326485514640808 img loss 1.3207191228866577 img loss 1.4214116334915161 img loss 1.3940883874893188 img loss 1.2774219512939453 img loss 1.4025225639343262 img loss 1.4172760248184204 img loss 1.3262900114059448 img loss 1.3121328353881836 img loss 1.4056999683380127 img loss 1.317726731300354 img loss 1.3916839361190796 img loss 1.2846895456314087 img loss 1.3022688627243042 img loss 1.3203190565109253 img loss 1.437459111213684 img loss 1.2917799949645996 img loss 1.461228609085083 img loss 1.5164649486541748 img loss 1.4682729244232178 img loss 1.4214584827423096 img loss 1.3728077411651611 img loss 1.3054951429367065 img loss 1.3477846384048462 img loss 1.3026214838027954 img loss 1.2973273992538452 img loss 1.3982897996902466 img loss 1.3597878217697144 img loss 1.328761339187622 img loss 1.3053913116455078 img loss 1.335634708404541 img loss 1.3169045448303223 img loss 1.4260581731796265 img loss 1.5241395235061646 img loss 1.3245166540145874 img loss 1.4195448160171509 img loss 1.300525426864624 img loss 1.331969976425171 img loss 1.2648673057556152 img loss 1.3285410404205322 img loss 1.2925207614898682 img loss 1.3786474466323853 img loss 1.3917955160140991 img loss 1.3090938329696655 img loss 1.3937513828277588 img loss 1.2853541374206543 img loss 1.3868352174758911 img loss 1.2208918333053589 img loss 1.4014016389846802 img loss 1.3372111320495605 img loss 1.4732387065887451 img loss 1.4658704996109009 img loss 1.4041122198104858 img loss 1.383929967880249 img loss 1.3600494861602783 img loss 1.3638135194778442 img loss 1.378204107284546 img loss 1.3981603384017944 img loss 1.3010389804840088 img loss 1.3334075212478638 img loss 1.3243539333343506 img loss 1.329851508140564 img loss 1.2779337167739868 {'loss': 1.3602, 'grad_norm': 0.268380343914032, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4593392610549927 img loss 1.411179780960083 img loss 1.4456595182418823 img loss 1.6019748449325562 img loss 1.4944716691970825 img loss 1.4161382913589478 img loss 1.5515438318252563 img loss 1.4776142835617065 img loss 1.5218465328216553 img loss 1.4734280109405518 img loss 1.47452712059021 img loss 1.395198941230774 img loss 1.563778281211853 img loss 1.634670376777649 img loss 1.5214356184005737 img loss 1.5241913795471191 img loss 1.4351755380630493 img loss 1.4691482782363892 img loss 1.5105278491973877 img loss 1.4771162271499634 img loss 1.4127413034439087 img loss 1.4713793992996216 img loss 1.4058492183685303 img loss 1.4828715324401855 img loss 1.5061835050582886 img loss 1.552414059638977 img loss 1.5105892419815063 img loss 1.528099536895752 img loss 1.485796332359314 img loss 1.6261776685714722 img loss 1.5008753538131714 img loss 1.3649499416351318 img loss 1.5125430822372437 img loss 1.5995838642120361 img loss 1.6874785423278809 img loss 1.539180874824524 img loss 1.5950554609298706 img loss 1.5006117820739746 img loss 1.4739967584609985 img loss 1.4778494834899902 img loss 1.5401251316070557 img loss 1.5468229055404663 img loss 1.4968265295028687 img loss 1.5528703927993774 img loss 1.611253261566162 img loss 1.594867467880249 img loss 1.5656864643096924 img loss 1.479033350944519 img loss 1.4508997201919556 img loss 1.5564548969268799 img loss 1.4920984506607056 img loss 1.5703574419021606 img loss 1.3736077547073364 img loss 1.2888007164001465 img loss 1.543582797050476img loss 1.4538596868515015 img loss 1.4997164011001587 img loss 1.5324585437774658 img loss 1.5354827642440796 img loss 1.5839444398880005 img loss 1.4509629011154175 img loss 1.4451171159744263 img loss 1.470662236213684 img loss 1.6033720970153809 img loss 1.5397957563400269 img loss 1.4841059446334839 img loss 1.5042672157287598 img loss 1.639237880706787 img loss 1.413865327835083 img loss 1.646175742149353 img loss 1.4701017141342163 img loss 1.5885262489318848 img loss 1.6176875829696655 img loss 1.518165946006775 img loss 1.4921776056289673 img loss 1.5652393102645874 img loss 1.4906100034713745 img loss 1.5809301137924194 img loss 1.3806450366973877 img loss 1.7511415481567383 img loss 1.3727469444274902 img loss 1.5430881977081299 img loss 1.5902235507965088 img loss 1.5146836042404175 img loss 1.4726576805114746 img loss 1.5346847772598267 img loss 1.4915639162063599 img loss 1.4628852605819702 img loss 1.55472993850708 img loss 1.4118577241897583 img loss 1.4381678104400635 img loss 1.4896851778030396 img loss 1.6362234354019165 img loss 1.614942193031311 img loss 1.458961844444275 img loss 1.5669970512390137 img loss 1.4579154253005981 img loss 1.6842362880706787 img loss 1.5088422298431396 img loss 1.426214337348938 img loss 1.4583046436309814 img loss 1.5701324939727783 img loss 1.4438680410385132 img loss 1.5073111057281494 img loss 1.5799201726913452 img loss 1.5269043445587158 img loss 1.4837024211883545 img loss 1.4451543092727661 img loss 1.532916784286499 img loss 1.4356608390808105 img loss 1.576614260673523 img loss 1.5600006580352783 img loss 1.4670288562774658 img loss 1.4293553829193115 img loss 1.4461629390716553 img loss 1.5465322732925415 img loss 1.5065512657165527 img loss 1.475703477859497 img loss 1.5540648698806763 img loss 1.5131354331970215 img loss 1.5540350675582886 img loss 1.3396847248077393 img loss 1.4911617040634155 img loss 1.544067144393921 img loss 1.4689069986343384 img loss 1.600105881690979 img loss 1.424056887626648 img loss 1.465381145477295 {'loss': 1.5093, 'grad_norm': 0.6399455666542053, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.247200846672058 img loss 1.1949360370635986 img loss 1.1992607116699219 img loss 1.219736933708191 img loss 1.2394417524337769 img loss 1.2202985286712646 img loss 1.2122830152511597 img loss 1.22588050365448 img loss 1.1803574562072754 img loss 1.291515827178955 img loss 1.3460508584976196 img loss 1.1899681091308594 img loss 1.2490899562835693 img loss 1.2628726959228516 img loss 1.2675700187683105 img loss 1.1812207698822021 img loss 1.1796772480010986 img loss 1.2964333295822144 img loss 1.1794416904449463 img loss 1.316074252128601 img loss 1.176591396331787 img loss 1.199899673461914 img loss 1.2176469564437866 img loss 1.1864362955093384 img loss 1.233476996421814 img loss 1.306312918663025 img loss 1.2166166305541992 img loss 1.2010866403579712 img loss 1.2204176187515259 img loss 1.1374306678771973 img loss 1.1987453699111938 img loss 1.2319210767745972 img loss 1.2570476531982422 img loss 1.242662787437439 img loss 1.203631043434143 img loss 1.2400792837142944 img loss 1.3366461992263794 img loss 1.1920946836471558 img loss 1.2277973890304565 img loss 1.2512493133544922 img loss 1.1847732067108154 img loss 1.14126718044281 img loss 1.210618495941162 img loss 1.2561585903167725 img loss 1.2287458181381226 img loss 1.1811273097991943 img loss 1.2889584302902222 img loss 1.2844921350479126 img loss 1.2504123449325562 img loss 1.2009834051132202 img loss 1.2735710144042969 img loss 1.1917976140975952 img loss 1.2366180419921875 img loss 1.2863407135009766 img loss 1.2080703973770142 img loss 1.179206371307373 img loss 1.2588934898376465 img loss 1.2249892950057983 img loss 1.2393760681152344 img loss 1.1801618337631226 img loss 1.2017930746078491 img loss 1.2200974225997925 img loss 1.2030556201934814 img loss 1.2292327880859375 img loss 1.1989600658416748 img loss 1.2380332946777344 img loss 1.2259849309921265 img loss 1.2067474126815796 img loss 1.338376522064209 img loss 1.344653844833374 img loss 1.2411140203475952 img loss 1.207935094833374 img loss 1.2898927927017212 img loss 1.2245558500289917 img loss 1.1796374320983887 img loss 1.148141622543335 img loss 1.2469322681427002 img loss 1.233890175819397 img loss 1.2610435485839844 img loss 1.283098578453064 img loss 1.1285988092422485 img loss 1.2390015125274658 img loss 1.3252103328704834 img loss 1.21724534034729 img loss 1.2242169380187988 img loss 1.251798391342163 img loss 1.2485954761505127 img loss 1.2474722862243652 img loss 1.2633624076843262 img loss 1.207192063331604 img loss 1.2722746133804321 img loss 1.2723674774169922 img loss 1.2014864683151245 img loss 1.219528079032898 img loss 1.183398723602295 img loss 1.1923340559005737 img loss 1.2382233142852783 img loss 1.2449270486831665 img loss 1.2421025037765503 img loss 1.2827622890472412 img loss 1.2308489084243774 img loss 1.2468961477279663 img loss 1.2278282642364502 img loss 1.2409825325012207 img loss 1.235473871231079 img loss 1.2633394002914429 img loss 1.2099148035049438 img loss 1.3188190460205078 img loss 1.2940853834152222 img loss 1.248077154159546 img loss 1.1996769905090332 img loss 1.1580042839050293 img loss 1.3748387098312378 img loss 1.2398210763931274 img loss 1.2176960706710815 img loss 1.201974630355835 img loss 1.251207947731018 img loss 1.1623930931091309 img loss 1.2971243858337402 img loss 1.292142391204834 img loss 1.26754629611969 img loss 1.232065200805664 img loss 1.2497947216033936 img loss 1.2368639707565308 img loss 1.1762444972991943 img loss 1.1917189359664917 img loss 1.2309150695800781 img loss 1.1691317558288574 {'loss': 1.2326, 'grad_norm': 0.43377915024757385, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4608122110366821 img loss 1.5097981691360474 img loss 1.510404348373413 img loss 1.3410476446151733 img loss 1.544493556022644 img loss 1.4191511869430542 img loss 1.5604759454727173 img loss 1.4268126487731934 img loss 1.4930464029312134 img loss 1.353327989578247 img loss 1.4999538660049438 img loss 1.5253338813781738 img loss 1.3581300973892212 img loss 1.512161374092102 img loss 1.3967558145523071 img loss 1.4515732526779175 img loss 1.359900712966919 img loss 1.4313881397247314 img loss 1.4655320644378662 img loss 1.4825260639190674 img loss 1.4681203365325928 img loss 1.3741918802261353 img loss 1.3950097560882568 img loss 1.493232011795044 img loss 1.5059033632278442 img loss 1.4396536350250244 img loss 1.5345102548599243 img loss 1.3942286968231201 img loss 1.430411696434021 img loss 1.5163823366165161 img loss 1.5650523900985718 img loss 1.484276294708252 img loss 1.5144413709640503 img loss 1.4852519035339355 img loss 1.4795507192611694 img loss 1.609951376914978 img loss 1.5540614128112793 img loss 1.342714548110962 img loss 1.4831050634384155 img loss 1.4282031059265137 img loss 1.3582531213760376 img loss 1.345150113105774 img loss 1.3567200899124146 img loss 1.4135887622833252 img loss 1.4761922359466553 img loss 1.5574867725372314 img loss 1.4125443696975708 img loss 1.4478929042816162 img loss 1.3662374019622803 img loss 1.4812123775482178 img loss 1.4196304082870483 img loss 1.3340188264846802 img loss 1.3814536333084106 img loss 1.4439362287521362 img loss 1.3315861225128174 img loss 1.4701765775680542 img loss 1.5178786516189575 img loss 1.2977732419967651 img loss 1.4111791849136353 img loss 1.439805507659912 img loss 1.3822588920593262 img loss 1.4160468578338623 img loss 1.3408259153366089 img loss 1.4953160285949707 img loss 1.3681446313858032 img loss 1.4604347944259644 img loss 1.4801825284957886 img loss 1.4879649877548218 img loss 1.4462268352508545 img loss 1.6174176931381226 img loss 1.3603631258010864 img loss 1.380334496498108 img loss 1.4886929988861084 img loss 1.3247525691986084 img loss 1.3885611295700073 img loss 1.485389232635498 img loss 1.4708362817764282 img loss 1.5743763446807861 img loss 1.4070746898651123 img loss 1.3085808753967285 img loss 1.4234050512313843 img loss 1.5437705516815186 img loss 1.5157898664474487 img loss 1.425117015838623 img loss 1.5422672033309937 img loss 1.4317783117294312 img loss 1.5199837684631348 img loss 1.3739988803863525 img loss 1.567646861076355 img loss 1.325844407081604 img loss 1.3819893598556519 img loss 1.5096760988235474 img loss 1.35614812374115 img loss 1.3435755968093872 img loss 1.4341374635696411 img loss 1.4476025104522705 img loss 1.3972070217132568 img loss 1.4422248601913452 img loss 1.4810677766799927 img loss 1.3945339918136597 img loss 1.4408456087112427 img loss 1.4003949165344238 img loss 1.5163747072219849 img loss 1.3118951320648193 img loss 1.2902939319610596 img loss 1.5211424827575684 img loss 1.5342966318130493 img loss 1.4319978952407837 img loss 1.5547655820846558 img loss 1.4923330545425415 img loss 1.3573167324066162 img loss 1.2921497821807861 img loss 1.5122473239898682 img loss 1.5092542171478271 img loss 1.3976739645004272 img loss 1.5190130472183228 img loss 1.4544020891189575 img loss 1.427876353263855 img loss 1.3941080570220947 img loss 1.50548255443573 img loss 1.3348346948623657 img loss 1.3898588418960571 img loss 1.4489866495132446 img loss 1.4186347723007202 img loss 1.4855505228042603 img loss 1.3724204301834106 img loss 1.4371979236602783 img loss 1.406541109085083 {'loss': 1.4419, 'grad_norm': 0.2829248905181885, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2158238887786865 img loss 1.1987779140472412 img loss 1.1941797733306885 img loss 1.1783154010772705 img loss 1.2347668409347534 img loss 1.2211954593658447 img loss 1.2405695915222168 img loss 1.2335412502288818 img loss 1.2536427974700928 img loss 1.2609484195709229 img loss 1.2240530252456665 img loss 1.2080841064453125 img loss 1.1970813274383545 img loss 1.240075707435608 img loss 1.2915226221084595 img loss 1.2417397499084473 img loss 1.2255380153656006 img loss 1.1873592138290405 img loss 1.1245707273483276 img loss 1.3173673152923584 img loss 1.2484272718429565 img loss 1.1306593418121338 img loss 1.2353551387786865 img loss 1.2125691175460815 img loss 1.2209633588790894 img loss 1.160886287689209 img loss 1.1509956121444702 img loss 1.226296305656433 img loss 1.2008435726165771 img loss 1.1979261636734009 img loss 1.2211464643478394 img loss 1.1490349769592285 img loss 1.2511013746261597 img loss 1.2064464092254639 img loss 1.1562190055847168 img loss 1.1978206634521484 img loss 1.296041488647461 img loss 1.2414355278015137 img loss 1.2172966003417969 img loss 1.1654891967773438 img loss 1.1130845546722412 img loss 1.1889293193817139 img loss 1.248091459274292 img loss 1.166184902191162 img loss 1.1575698852539062 img loss 1.2136341333389282 img loss 1.2134273052215576 img loss 1.2135225534439087 img loss 1.2696795463562012 img loss 1.2642935514450073 img loss 1.2150084972381592 img loss 1.2231745719909668 img loss 1.2150728702545166 img loss 1.1729004383087158 img loss 1.2270557880401611 img loss 1.126608967781067 img loss 1.225776195526123 img loss 1.2172045707702637 img loss 1.1673905849456787 img loss 1.1737408638000488 img loss 1.2616729736328125 img loss 1.1597944498062134 img loss 1.2953159809112549 img loss 1.1860836744308472 img loss 1.1763708591461182 img loss 1.2945308685302734 img loss 1.2218401432037354 img loss 1.176741123199463 img loss 1.1858173608779907 img loss 1.2697062492370605 img loss 1.1866142749786377 img loss 1.2890307903289795 img loss 1.195366621017456 img loss 1.2013782262802124 img loss 1.2067875862121582 img loss 1.2593066692352295 img loss 1.2375768423080444 img loss 1.2324261665344238 img loss 1.2427282333374023 img loss 1.2135894298553467 img loss 1.219286322593689 img loss 1.1472182273864746 img loss 1.221101999282837 img loss 1.1729693412780762 img loss 1.2082551717758179 img loss 1.2076241970062256 img loss 1.203382968902588 img loss 1.2286516427993774 img loss 1.2374560832977295 img loss 1.2564480304718018 img loss 1.1920316219329834 img loss 1.2446799278259277 img loss 1.2176690101623535 img loss 1.2581275701522827 img loss 1.2644869089126587 img loss 1.265558123588562 img loss 1.1924790143966675 img loss 1.2421722412109375 img loss 1.1967252492904663 img loss 1.2595367431640625 img loss 1.2340105772018433 img loss 1.2479740381240845 img loss 1.1931965351104736 img loss 1.1878875494003296 img loss 1.3075110912322998 img loss 1.1789345741271973 img loss 1.1979129314422607 img loss 1.1729472875595093 img loss 1.2596256732940674 img loss 1.28173828125 img loss 1.2248132228851318 img loss 1.1889780759811401 img loss 1.1914193630218506 img loss 1.2559980154037476 img loss 1.2205421924591064 img loss 1.1550309658050537 img loss 1.3093992471694946 img loss 1.2041621208190918 img loss 1.214741587638855 img loss 1.2031049728393555 img loss 1.1464574337005615 img loss 1.1053012609481812 img loss 1.2445741891860962 img loss 1.2125500440597534 img loss 1.2376630306243896 img loss 1.260709285736084 img loss 1.2455776929855347 img loss 1.175431728363037 {'loss': 1.2154, 'grad_norm': 0.2808105945587158, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2585480213165283 img loss 1.1588062047958374 img loss 1.2372651100158691 img loss 1.236853003501892 img loss 1.1716101169586182 img loss 1.2574657201766968 img loss 1.1736252307891846 img loss 1.2035108804702759 img loss 1.1747658252716064 img loss 1.1426770687103271 img loss 1.1667598485946655 img loss 1.2410199642181396 img loss 1.184333324432373 img loss 1.2700546979904175 img loss 1.1607301235198975 img loss 1.2746200561523438 img loss 1.1705607175827026 img loss 1.2378603219985962 img loss 1.2092901468276978 img loss 1.333188772201538 img loss 1.283559799194336 img loss 1.1813759803771973 img loss 1.1541165113449097 img loss 1.185442566871643 img loss 1.1429100036621094 img loss 1.1914583444595337 img loss 1.193412184715271 img loss 1.184467077255249 img loss 1.1818684339523315 img loss 1.21400785446167 img loss 1.16829514503479 img loss 1.1414610147476196 img loss 1.2466773986816406 img loss 1.1970566511154175 img loss 1.1913973093032837 img loss 1.1492552757263184 img loss 1.1849392652511597 img loss 1.15752112865448 img loss 1.233309268951416 img loss 1.2199844121932983 img loss 1.1264259815216064 img loss 1.1943981647491455 img loss 1.2529706954956055 img loss 1.1485141515731812 img loss 1.230332612991333 img loss 1.2813851833343506img loss 1.1825990676879883 img loss 1.2174453735351562 img loss 1.2771449089050293 img loss 1.2681646347045898 img loss 1.2490395307540894 img loss 1.1681456565856934 img loss 1.2239195108413696 img loss 1.2990412712097168 img loss 1.2839562892913818 img loss 1.1819908618927002 img loss 1.1867570877075195 img loss 1.2879561185836792 img loss 1.1930007934570312 img loss 1.1685090065002441 img loss 1.3514803647994995 img loss 1.2468197345733643 img loss 1.23392653465271 img loss 1.1647354364395142 img loss 1.2323923110961914 img loss 1.2763571739196777 img loss 1.2637953758239746 img loss 1.17768132686615 img loss 1.1941953897476196 img loss 1.1551387310028076 img loss 1.2440365552902222 img loss 1.1976985931396484 img loss 1.2546669244766235 img loss 1.2987728118896484 img loss 1.2231107950210571 img loss 1.2073408365249634 img loss 1.18272864818573 img loss 1.2047871351242065 img loss 1.2073860168457031 img loss 1.1547338962554932 img loss 1.1387594938278198 img loss 1.300586223602295 img loss 1.2268952131271362 img loss 1.2000858783721924 img loss 1.1638087034225464 img loss 1.261137843132019 img loss 1.1064995527267456 img loss 1.2097506523132324 img loss 1.2105019092559814 img loss 1.2213208675384521 img loss 1.2356467247009277 img loss 1.168774127960205 img loss 1.187867522239685 img loss 1.1625385284423828 img loss 1.1882202625274658 img loss 1.1779396533966064 img loss 1.1793426275253296 img loss 1.2203396558761597 img loss 1.2537182569503784 img loss 1.2325493097305298 img loss 1.3767030239105225 img loss 1.239261269569397 img loss 1.1360671520233154 img loss 1.2597559690475464 img loss 1.1280015707015991 img loss 1.231542944908142 img loss 1.1778175830841064 img loss 1.14031982421875 img loss 1.2366243600845337 img loss 1.2866239547729492 img loss 1.1811407804489136 img loss 1.1240125894546509 img loss 1.2763400077819824 img loss 1.1976670026779175 img loss 1.2495434284210205 img loss 1.1671969890594482 img loss 1.1790156364440918 img loss 1.1869146823883057 img loss 1.195090651512146 img loss 1.2039403915405273 img loss 1.2067831754684448 img loss 1.172677755355835 img loss 1.2202281951904297 img loss 1.184618353843689 img loss 1.190447449684143 img loss 1.1909054517745972 img loss 1.231542944908142 img loss 1.1980268955230713 {'loss': 1.2092, 'grad_norm': 0.35552656650543213, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2416284084320068 img loss 1.2612155675888062 img loss 1.2572567462921143 img loss 1.2251789569854736 img loss 1.1833767890930176 img loss 1.179146409034729 img loss 1.2557986974716187 img loss 1.2029621601104736 img loss 1.2214819192886353 img loss 1.2271627187728882 img loss 1.2294968366622925 img loss 1.3739508390426636 img loss 1.2560901641845703 img loss 1.1978886127471924 img loss 1.2203402519226074 img loss 1.1827729940414429 img loss 1.2300933599472046 img loss 1.2383244037628174 img loss 1.2458908557891846 img loss 1.2794593572616577 img loss 1.2065155506134033 img loss 1.2131986618041992 img loss 1.2318127155303955 img loss 1.2010043859481812 img loss 1.2585875988006592 img loss 1.2256850004196167 img loss 1.2266002893447876 img loss 1.2339214086532593 img loss 1.192949891090393 img loss 1.2596858739852905 img loss 1.249415397644043 img loss 1.219527244567871 img loss 1.2413194179534912 img loss 1.2440305948257446 img loss 1.2335484027862549 img loss 1.2248878479003906 img loss 1.280898928642273 img loss 1.247279405593872 img loss 1.2814311981201172 img loss 1.2359838485717773 img loss 1.2280176877975464 img loss 1.2703641653060913 img loss 1.216030478477478 img loss 1.2664897441864014 img loss 1.2286920547485352 img loss 1.2129029035568237 img loss 1.192164659500122 img loss 1.2088561058044434 img loss 1.3100171089172363 img loss 1.2277448177337646 img loss 1.2250022888183594 img loss 1.2516095638275146 img loss 1.2176498174667358 img loss 1.2362160682678223 img loss 1.2281761169433594 img loss 1.2307287454605103 img loss 1.2514389753341675 img loss 1.271360993385315 img loss 1.1767075061798096 img loss 1.2912224531173706 img loss 1.22160005569458 img loss 1.1893141269683838 img loss 1.2100162506103516 img loss 1.1536667346954346 img loss 1.220794439315796 img loss 1.229506254196167 img loss 1.241982102394104 img loss 1.2399241924285889 img loss 1.2508430480957031 img loss 1.1831921339035034 img loss 1.210965871810913 img loss 1.2129738330841064 img loss 1.1854733228683472 img loss 1.2706629037857056 img loss 1.2521709203720093 img loss 1.1636301279067993 img loss 1.254699945449829 img loss 1.2264842987060547 img loss 1.2221102714538574 img loss 1.194505214691162 img loss 1.2389801740646362 img loss 1.2153027057647705 img loss 1.2296786308288574 img loss 1.234126091003418 img loss 1.3376909494400024 img loss 1.1834354400634766 img loss 1.2352848052978516 img loss 1.2205626964569092 img loss 1.2599788904190063 img loss 1.2195277214050293 img loss 1.29375422000885 img loss 1.2293895483016968 img loss 1.2559616565704346 img loss 1.223733901977539 img loss 1.2388956546783447 img loss 1.2346216440200806 img loss 1.2021757364273071 img loss 1.2875293493270874 img loss 1.2333296537399292 img loss 1.1897966861724854 img loss 1.199012041091919 img loss 1.16521155834198 img loss 1.2370986938476562 img loss 1.2029492855072021 img loss 1.2666888236999512 img loss 1.2362585067749023 img loss 1.2202403545379639 img loss 1.2133487462997437 img loss 1.2595596313476562 img loss 1.2024328708648682 img loss 1.2307829856872559 img loss 1.1951512098312378 img loss 1.2310683727264404img loss 1.257570743560791img loss 1.2209961414337158 img loss 1.1990890502929688 img loss 1.2487058639526367 img loss 1.2081432342529297 img loss 1.2448943853378296 img loss 1.2411918640136719img loss 1.1775720119476318img loss 1.1808160543441772 img loss 1.2168282270431519 img loss 1.243147373199463 img loss 1.3124662637710571 img loss 1.179236650466919 img loss 1.1810234785079956 img loss 1.2269073724746704 {'loss': 1.2301, 'grad_norm': 0.2550225257873535, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2425875663757324 img loss 1.283953070640564 img loss 1.221858263015747 img loss 1.2392489910125732 img loss 1.223710298538208 img loss 1.320535659790039 img loss 1.284850001335144 img loss 1.1776320934295654 img loss 1.2763605117797852 img loss 1.234843134880066 img loss 1.2454913854599 img loss 1.2358107566833496 img loss 1.1877295970916748 img loss 1.25099778175354 img loss 1.2512927055358887 img loss 1.2698066234588623 img loss 1.2484323978424072 img loss 1.2259352207183838 img loss 1.2248570919036865 img loss 1.1916840076446533 img loss 1.2271543741226196 img loss 1.2518259286880493 img loss 1.3136022090911865 img loss 1.221437692642212 img loss 1.183775544166565 img loss 1.1912779808044434 img loss 1.2012850046157837 img loss 1.2341148853302002 img loss 1.2329295873641968 img loss 1.1883466243743896 img loss 1.1951956748962402 img loss 1.2000088691711426 img loss 1.2665070295333862 img loss 1.1857683658599854 img loss 1.1123024225234985 img loss 1.2684516906738281 img loss 1.212850570678711 img loss 1.2825145721435547 img loss 1.2436977624893188 img loss 1.2711204290390015 img loss 1.1717877388000488 img loss 1.155361533164978 img loss 1.1645439863204956 img loss 1.2613129615783691 img loss 1.1953321695327759 img loss 1.1891826391220093 img loss 1.222705602645874 img loss 1.2572598457336426 img loss 1.1917804479599 img loss 1.165723443031311 img loss 1.2034986019134521 img loss 1.1842752695083618 img loss 1.2582710981369019 img loss 1.2021484375 img loss 1.1870934963226318 img loss 1.2088165283203125 img loss 1.2007999420166016 img loss 1.1894135475158691 img loss 1.3001377582550049 img loss 1.2536115646362305 img loss 1.2606098651885986 img loss 1.1720854043960571 img loss 1.2147411108016968 img loss 1.2935879230499268 img loss 1.3149380683898926 img loss 1.2606167793273926 img loss 1.278725266456604 img loss 1.1952462196350098 img loss 1.2221026420593262 img loss 1.2479408979415894 img loss 1.1966893672943115 img loss 1.177690863609314 img loss 1.197904109954834 img loss 1.1773459911346436 img loss 1.2412327527999878 img loss 1.1658309698104858img loss 1.2872772216796875 img loss 1.208495855331421 img loss 1.2276710271835327 img loss 1.2522838115692139 img loss 1.2111468315124512 img loss 1.2334932088851929 img loss 1.2042555809020996 img loss 1.1956267356872559 img loss 1.1648824214935303 img loss 1.2395038604736328 img loss 1.2327089309692383 img loss 1.3362078666687012 img loss 1.264697551727295 img loss 1.256560206413269 img loss 1.4009560346603394 img loss 1.2301080226898193 img loss 1.1889857053756714 img loss 1.1838806867599487 img loss 1.2302577495574951 img loss 1.3645447492599487 img loss 1.2249042987823486 img loss 1.2738144397735596 img loss 1.209888219833374 img loss 1.1990877389907837 img loss 1.1931564807891846 img loss 1.2257838249206543 img loss 1.1498363018035889 img loss 1.22459876537323 img loss 1.2407594919204712 img loss 1.1908024549484253 img loss 1.1002627611160278 img loss 1.306834101676941 img loss 1.200944185256958 img loss 1.3029640913009644 img loss 1.173516035079956 img loss 1.3219013214111328 img loss 1.188245415687561 img loss 1.1447950601577759 img loss 1.2290072441101074 img loss 1.3279953002929688 img loss 1.2416695356369019 img loss 1.2473562955856323 img loss 1.2459322214126587 img loss 1.1739754676818848 img loss 1.256797194480896 img loss 1.163590908050537 img loss 1.162927508354187 img loss 1.1685009002685547 img loss 1.2660335302352905 img loss 1.2454372644424438 img loss 1.207086443901062 img loss 1.2408071756362915 {'loss': 1.2271, 'grad_norm': 0.4027087688446045, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2455717325210571 img loss 1.3983180522918701 img loss 1.322548747062683 img loss 1.214821219444275 img loss 1.4043220281600952 img loss 1.2345373630523682 img loss 1.250698447227478 img loss 1.2869064807891846 img loss 1.3566287755966187 img loss 1.5402133464813232 img loss 1.322170615196228 img loss 1.366711974143982 img loss 1.3494077920913696 img loss 1.255806565284729 img loss 1.2860355377197266 img loss 1.2786293029785156 img loss 1.30133056640625 img loss 1.344698429107666 img loss 1.214441180229187 img loss 1.3589085340499878 img loss 1.2993874549865723 img loss 1.2292709350585938 img loss 1.2356261014938354 img loss 1.2109988927841187 img loss 1.280778408050537 img loss 1.2253739833831787 img loss 1.2910047769546509 img loss 1.2653394937515259 img loss 1.2699607610702515 img loss 1.287279725074768 img loss 1.3172740936279297 img loss 1.3235304355621338 img loss 1.2263367176055908 img loss 1.2655367851257324 img loss 1.3851046562194824 img loss 1.303626537322998 img loss 1.303137183189392 img loss 1.1689528226852417 img loss 1.309748649597168 img loss 1.3151500225067139 img loss 1.264583945274353 img loss 1.2863987684249878 img loss 1.2923123836517334 img loss 1.289072036743164 img loss 1.2805851697921753 img loss 1.3200995922088623 img loss 1.349253535270691 img loss 1.2698475122451782 img loss 1.3245391845703125 img loss 1.2159688472747803 img loss 1.31691312789917 img loss 1.266599178314209 img loss 1.1993060111999512 img loss 1.3136297464370728 img loss 1.31398344039917 img loss 1.4560534954071045 img loss 1.4263726472854614 img loss 1.3543994426727295 img loss 1.3604613542556763 img loss 1.2913473844528198 img loss 1.247740626335144 img loss 1.2220255136489868 img loss 1.320905089378357 img loss 1.3540128469467163 img loss 1.2651925086975098 img loss 1.3636616468429565 img loss 1.2547683715820312 img loss 1.3242887258529663 img loss 1.3038396835327148 img loss 1.3326467275619507 img loss 1.3382242918014526 img loss 1.2298946380615234 img loss 1.3431761264801025 img loss 1.3436185121536255 img loss 1.2492116689682007 img loss 1.2994039058685303 img loss 1.2111281156539917 img loss 1.3406864404678345 img loss 1.2458930015563965 img loss 1.3607529401779175 img loss 1.2434639930725098 img loss 1.326464295387268 img loss 1.2787699699401855 img loss 1.387770175933838 img loss 1.3162559270858765 img loss 1.2592852115631104 img loss 1.2976783514022827 img loss 1.2832856178283691 img loss 1.3444101810455322 img loss 1.2060588598251343 img loss 1.260414719581604 img loss 1.2623133659362793 img loss 1.2491533756256104 img loss 1.3444432020187378 img loss 1.2802181243896484 img loss 1.2432260513305664 img loss 1.3006551265716553 img loss 1.1842594146728516 img loss 1.2873215675354004 img loss 1.3343462944030762 img loss 1.372911810874939 img loss 1.2058988809585571 img loss 1.2384361028671265 img loss 1.2789143323898315 img loss 1.3433688879013062 img loss 1.1639881134033203 img loss 1.226505160331726 img loss 1.3931320905685425 img loss 1.3162691593170166img loss 1.2429323196411133 img loss 1.2459667921066284 img loss 1.310185194015503 img loss 1.283848762512207 img loss 1.299860954284668 img loss 1.2927956581115723 img loss 1.3328536748886108 img loss 1.2350788116455078 img loss 1.246902346611023 img loss 1.2214860916137695 img loss 1.3547252416610718 img loss 1.3308950662612915img loss 1.4124757051467896img loss 1.2164099216461182img loss 1.2842979431152344 img loss 1.3916916847229004 img loss 1.2645254135131836 img loss 1.261224627494812 img loss 1.2617220878601074 {'loss': 1.2946, 'grad_norm': 0.3187994360923767, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3227652311325073 img loss 1.2115882635116577 img loss 1.231688141822815 img loss 1.322922945022583 img loss 1.1805862188339233 img loss 1.253260850906372 img loss 1.2527403831481934 img loss 1.2834968566894531 img loss 1.3378536701202393 img loss 1.2255699634552002 img loss 1.204891562461853 img loss 1.2698789834976196 img loss 1.2663888931274414 img loss 1.2342242002487183 img loss 1.3163751363754272 img loss 1.423656940460205 img loss 1.2481954097747803 img loss 1.2686781883239746 img loss 1.3500745296478271 img loss 1.283435583114624 img loss 1.3229918479919434 img loss 1.2501389980316162 img loss 1.255126953125 img loss 1.3545724153518677 img loss 1.2460646629333496 img loss 1.2591084241867065 img loss 1.2801347970962524 img loss 1.2598520517349243 img loss 1.2760587930679321 img loss 1.2206100225448608 img loss 1.189314842224121 img loss 1.2345073223114014 img loss 1.2333252429962158 img loss 1.2746467590332031 img loss 1.26738703250885 img loss 1.276627779006958 img loss 1.2622699737548828 img loss 1.222436785697937 img loss 1.3195126056671143 img loss 1.324898362159729 img loss 1.2548092603683472 img loss 1.2797716856002808 img loss 1.3636406660079956 img loss 1.3375808000564575 img loss 1.2620359659194946 img loss 1.3189218044281006 img loss 1.2459121942520142 img loss 1.219369649887085 img loss 1.3535199165344238 img loss 1.264062762260437 img loss 1.2623887062072754 img loss 1.2711910009384155 img loss 1.1517412662506104 img loss 1.3443673849105835 img loss 1.1827245950698853 img loss 1.294211745262146 img loss 1.166878342628479 img loss 1.242811918258667 img loss 1.2975788116455078 img loss 1.2927993535995483 img loss 1.152994155883789 img loss 1.2798802852630615 img loss 1.219241976737976 img loss 1.2910429239273071 img loss 1.2751938104629517 img loss 1.3775488138198853 img loss 1.2715171575546265 img loss 1.168323040008545img loss 1.2578033208847046 img loss 1.3620867729187012 img loss 1.2693771123886108 img loss 1.3313915729522705 img loss 1.2009128332138062 img loss 1.3194602727890015 img loss 1.3079524040222168 img loss 1.2504328489303589 img loss 1.2070820331573486 img loss 1.3361862897872925 img loss 1.249574899673462 img loss 1.2293322086334229 img loss 1.2422538995742798 img loss 1.2683513164520264 img loss 1.2066700458526611 img loss 1.3032336235046387 img loss 1.2674258947372437 img loss 1.3461072444915771 img loss 1.1949632167816162 img loss 1.199668526649475 img loss 1.2697951793670654 img loss 1.2989792823791504 img loss 1.2686506509780884 img loss 1.3051507472991943 img loss 1.3316454887390137 img loss 1.1520326137542725 img loss 1.2017573118209839 img loss 1.2051514387130737 img loss 1.1259253025054932 img loss 1.1422938108444214 img loss 1.2662609815597534 img loss 1.26412832736969 img loss 1.1610304117202759 img loss 1.3061044216156006 img loss 1.2731596231460571 img loss 1.1618984937667847 img loss 1.2641977071762085 img loss 1.376663088798523 img loss 1.2084696292877197 img loss 1.1522958278656006 img loss 1.2395226955413818 img loss 1.2365726232528687 img loss 1.2914519309997559 img loss 1.2752227783203125 img loss 1.3961020708084106 img loss 1.4082417488098145 img loss 1.2795650959014893img loss 1.2725183963775635 img loss 1.1969305276870728 img loss 1.1780235767364502 img loss 1.2745976448059082 img loss 1.2001409530639648 img loss 1.2266939878463745 img loss 1.2915806770324707 img loss 1.2740455865859985 img loss 1.2684574127197266 img loss 1.3408647775650024 img loss 1.3552099466323853 img loss 1.2674787044525146 img loss 1.2043918371200562 {'loss': 1.2642, 'grad_norm': 0.28620582818984985, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2625688314437866 img loss 1.2452853918075562 img loss 1.2668673992156982 img loss 1.1949188709259033 img loss 1.2214311361312866 img loss 1.1695067882537842 img loss 1.1986937522888184 img loss 1.1325422525405884 img loss 1.1939897537231445 img loss 1.1637464761734009 img loss 1.2342586517333984 img loss 1.2071683406829834 img loss 1.146710753440857 img loss 1.1996691226959229 img loss 1.252687692642212 img loss 1.2223392724990845 img loss 1.1860491037368774 img loss 1.2507623434066772 img loss 1.2508463859558105 img loss 1.179499864578247 img loss 1.1213469505310059 img loss 1.24965238571167 img loss 1.140226125717163 img loss 1.1704609394073486 img loss 1.2174530029296875 img loss 1.1628482341766357 img loss 1.175728678703308 img loss 1.1471521854400635 img loss 1.2184600830078125 img loss 1.2159013748168945 img loss 1.176456093788147 img loss 1.179907202720642 img loss 1.2244575023651123 img loss 1.2103899717330933 img loss 1.161679983139038 img loss 1.234505295753479 img loss 1.2099339962005615 img loss 1.2400143146514893 img loss 1.3322762250900269 img loss 1.267739176750183 img loss 1.1253553628921509 img loss 1.2700016498565674 img loss 1.1489503383636475 img loss 1.2348603010177612 img loss 1.196582555770874 img loss 1.1338927745819092 img loss 1.2449902296066284 img loss 1.213377594947815 img loss 1.1652567386627197 img loss 1.1745200157165527 img loss 1.1633155345916748 img loss 1.150555968284607 img loss 1.2091975212097168 img loss 1.132758378982544 img loss 1.1792067289352417 img loss 1.2276238203048706 img loss 1.1879128217697144 img loss 1.209859848022461 img loss 1.1693538427352905 img loss 1.2857273817062378 img loss 1.2304567098617554 img loss 1.1797012090682983 img loss 1.1308598518371582 img loss 1.2492055892944336 img loss 1.1914622783660889 img loss 1.2089296579360962 img loss 1.2191388607025146 img loss 1.1671146154403687 img loss 1.2127685546875 img loss 1.2675907611846924 img loss 1.2178969383239746 img loss 1.1877529621124268 img loss 1.1753787994384766 img loss 1.219612956047058 img loss 1.1787312030792236 img loss 1.23800790309906 img loss 1.1313365697860718 img loss 1.1867910623550415 img loss 1.250169038772583 img loss 1.153639793395996 img loss 1.1522682905197144 img loss 1.1999680995941162 img loss 1.1406229734420776 img loss 1.245337963104248 img loss 1.2401968240737915 img loss 1.1745965480804443 img loss 1.1742396354675293 img loss 1.1948448419570923 img loss 1.2102134227752686 img loss 1.2536437511444092 img loss 1.182755947113037 img loss 1.2425744533538818 img loss 1.2170462608337402 img loss 1.168299913406372 img loss 1.2014424800872803 img loss 1.1735739707946777 img loss 1.1794153451919556 img loss 1.2015231847763062 img loss 1.1640857458114624 img loss 1.2256320714950562 img loss 1.1258033514022827 img loss 1.2098497152328491 img loss 1.2280458211898804 img loss 1.1656720638275146 img loss 1.1523332595825195 img loss 1.1928890943527222 img loss 1.207834005355835 img loss 1.2033814191818237 img loss 1.3240313529968262 img loss 1.2340227365493774 img loss 1.215797781944275 img loss 1.2323213815689087 img loss 1.081221103668213 img loss 1.128947138786316 img loss 1.168298602104187 img loss 1.2116807699203491 img loss 1.1964784860610962 img loss 1.2002867460250854 img loss 1.1683518886566162 img loss 1.1897063255310059 img loss 1.2455635070800781 img loss 1.1651424169540405 img loss 1.2253636121749878 img loss 1.2076290845870972 img loss 1.1995337009429932 img loss 1.1866575479507446 img loss 1.2225549221038818 img loss 1.1455814838409424 {'loss': 1.1987, 'grad_norm': 0.39606598019599915, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2173770666122437 img loss 1.3083434104919434 img loss 1.3158966302871704 img loss 1.2339012622833252 img loss 1.351878046989441 img loss 1.2986359596252441 img loss 1.2985649108886719 img loss 1.363991379737854 img loss 1.3000000715255737 img loss 1.3437939882278442 img loss 1.2555696964263916 img loss 1.312996506690979 img loss 1.2683346271514893 img loss 1.3310421705245972 img loss 1.239047646522522 img loss 1.3361018896102905 img loss 1.3696932792663574 img loss 1.3323395252227783 img loss 1.34709894657135 img loss 1.282367467880249 img loss 1.3777416944503784 img loss 1.2447094917297363 img loss 1.3596526384353638 img loss 1.3086591958999634 img loss 1.3048489093780518 img loss 1.2896406650543213 img loss 1.344876766204834 img loss 1.3199681043624878 img loss 1.3535683155059814 img loss 1.2844074964523315 img loss 1.3091968297958374 img loss 1.2569769620895386 img loss 1.248302698135376 img loss 1.2436760663986206 img loss 1.386319637298584 img loss 1.2999529838562012 img loss 1.3279621601104736 img loss 1.262493371963501 img loss 1.275277018547058 img loss 1.3558293581008911 img loss 1.2427853345870972 img loss 1.2529551982879639 img loss 1.282598853111267 img loss 1.2529395818710327 img loss 1.3074194192886353 img loss 1.2562408447265625 img loss 1.2772493362426758 img loss 1.367636799812317 img loss 1.3060880899429321 img loss 1.3099794387817383 img loss 1.257897973060608 img loss 1.2901806831359863 img loss 1.311618447303772 img loss 1.2980248928070068 img loss 1.2736942768096924 img loss 1.2815598249435425 img loss 1.3908820152282715 img loss 1.339267373085022 img loss 1.2671759128570557 img loss 1.2891902923583984 img loss 1.2650226354599 img loss 1.3169854879379272 img loss 1.295244812965393 img loss 1.2268494367599487 img loss 1.3183584213256836 img loss 1.2484259605407715 img loss 1.2748914957046509 img loss 1.295758605003357 img loss 1.2228176593780518 img loss 1.26430344581604 img loss 1.351928949356079 img loss 1.302668571472168 img loss 1.3058295249938965 img loss 1.2924026250839233 img loss 1.2630889415740967 img loss 1.2960891723632812 img loss 1.2316434383392334 img loss 1.2365224361419678 img loss 1.2895777225494385 img loss 1.2229697704315186 img loss 1.238187313079834 img loss 1.243944764137268 img loss 1.2741097211837769 img loss 1.3461642265319824 img loss 1.2188485860824585 img loss 1.34529447555542 img loss 1.3041973114013672 img loss 1.2758439779281616 img loss 1.2506518363952637 img loss 1.3570126295089722 img loss 1.3427797555923462 img loss 1.2203266620635986 img loss 1.2848085165023804 img loss 1.2242274284362793 img loss 1.3103512525558472 img loss 1.2646204233169556 img loss 1.3045215606689453 img loss 1.2825459241867065 img loss 1.3257725238800049 img loss 1.3066660165786743 img loss 1.4238178730010986 img loss 1.254233956336975 img loss 1.3119633197784424 img loss 1.30158269405365 img loss 1.2985143661499023 img loss 1.2399039268493652 img loss 1.249387264251709 img loss 1.3004891872406006 img loss 1.3004608154296875 img loss 1.2755217552185059 img loss 1.2629218101501465 img loss 1.3317234516143799 img loss 1.3472049236297607 img loss 1.3186163902282715 img loss 1.2516469955444336 img loss 1.2571656703948975 img loss 1.3205773830413818 img loss 1.2214202880859375 img loss 1.2870566844940186 img loss 1.373294472694397 img loss 1.2788269519805908 img loss 1.3750488758087158 img loss 1.2194232940673828 img loss 1.2617437839508057 img loss 1.231462001800537 img loss 1.2576969861984253 img loss 1.2393383979797363 img loss 1.257918357849121 {'loss': 1.2922, 'grad_norm': 0.2668629586696625, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2241015434265137 img loss 1.1612825393676758 img loss 1.2157996892929077 img loss 1.251333475112915 img loss 1.169501543045044 img loss 1.2055517435073853 img loss 1.1809473037719727 img loss 1.1899425983428955 img loss 1.1997997760772705 img loss 1.241701364517212 img loss 1.2266106605529785 img loss 1.2190747261047363 img loss 1.225304365158081 img loss 1.2042474746704102 img loss 1.2326945066452026 img loss 1.2146562337875366 img loss 1.2016304731369019 img loss 1.2680282592773438 img loss 1.2427037954330444 img loss 1.1972519159317017 img loss 1.2514350414276123 img loss 1.2224986553192139 img loss 1.1999367475509644 img loss 1.2309620380401611 img loss 1.284184217453003 img loss 1.217753291130066 img loss 1.1938947439193726 img loss 1.2180681228637695 img loss 1.268096685409546 img loss 1.2330217361450195 img loss 1.2334963083267212 img loss 1.22413969039917 img loss 1.1809381246566772 img loss 1.2058032751083374 img loss 1.240264892578125 img loss 1.2363840341567993 img loss 1.1896638870239258 img loss 1.144653081893921 img loss 1.1844009160995483 img loss 1.270348072052002 img loss 1.1676876544952393 img loss 1.2523168325424194 img loss 1.273753046989441 img loss 1.2263462543487549 img loss 1.2820544242858887 img loss 1.2104012966156006 img loss 1.259535789489746 img loss 1.2698811292648315 img loss 1.17696213722229 img loss 1.2309579849243164 img loss 1.2193807363510132 img loss 1.2052770853042603 img loss 1.180320382118225 img loss 1.2696174383163452 img loss 1.2162550687789917 img loss 1.2404019832611084 img loss 1.2260870933532715 img loss 1.1921541690826416 img loss 1.191495656967163 img loss 1.2307548522949219 img loss 1.3373329639434814 img loss 1.1921504735946655 img loss 1.205531358718872 img loss 1.203529953956604img loss 1.22084641456604 img loss 1.2140634059906006 img loss 1.1922162771224976 img loss 1.2420955896377563 img loss 1.2042040824890137 img loss 1.2274121046066284 img loss 1.166612148284912 img loss 1.19589102268219 img loss 1.2344465255737305 img loss 1.169334888458252 img loss 1.2019693851470947 img loss 1.289803385734558 img loss 1.1840417385101318 img loss 1.2567914724349976 img loss 1.2175911664962769 img loss 1.1808193922042847 img loss 1.177083969116211 img loss 1.1970795392990112 img loss 1.2584376335144043 img loss 1.2267290353775024 img loss 1.2449142932891846 img loss 1.2191898822784424 img loss 1.2633846998214722 img loss 1.1710102558135986 img loss 1.1792057752609253 img loss 1.1992580890655518 img loss 1.2783374786376953 img loss 1.2281718254089355 img loss 1.1859833002090454 img loss 1.212892770767212 img loss 1.1548421382904053 img loss 1.2762999534606934 img loss 1.1938300132751465 img loss 1.2544586658477783 img loss 1.1480060815811157 img loss 1.2473207712173462 img loss 1.2872482538223267 img loss 1.20010244846344 img loss 1.2366578578948975 img loss 1.2187151908874512 img loss 1.16361665725708 img loss 1.2905768156051636 img loss 1.2102293968200684 img loss 1.2370316982269287 img loss 1.1943182945251465 img loss 1.2208694219589233 img loss 1.1930040121078491 img loss 1.2338510751724243 img loss 1.2256056070327759 img loss 1.2304418087005615 img loss 1.1945736408233643 img loss 1.17819082736969 img loss 1.196142554283142 img loss 1.2601803541183472 img loss 1.2091059684753418 img loss 1.1957651376724243 img loss 1.2112621068954468 img loss 1.188002347946167 img loss 1.1445229053497314 img loss 1.2994420528411865 img loss 1.2745622396469116 img loss 1.2213037014007568 img loss 1.1734764575958252 img loss 1.1962926387786865 {'loss': 1.2185, 'grad_norm': 0.245448499917984, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.487194538116455 img loss 1.451309323310852 img loss 1.3856719732284546 img loss 1.6139510869979858 img loss 1.6063952445983887 img loss 1.5963209867477417 img loss 1.4978419542312622 img loss 1.4235661029815674 img loss 1.626359224319458 img loss 1.471375823020935 img loss 1.534637212753296 img loss 1.3956053256988525 img loss 1.5281964540481567 img loss 1.4306646585464478 img loss 1.326769471168518 img loss 1.6444729566574097 img loss 1.5346075296401978 img loss 1.4807480573654175 img loss 1.5457195043563843 img loss 1.4637267589569092 img loss 1.4182850122451782 img loss 1.5501768589019775 img loss 1.552916407585144 img loss 1.52098548412323 img loss 1.3962881565093994 img loss 1.5145183801651 img loss 1.531223177909851 img loss 1.4079487323760986 img loss 1.5066192150115967 img loss 1.5122087001800537 img loss 1.6927026510238647 img loss 1.4809870719909668 img loss 1.3860117197036743 img loss 1.5408002138137817 img loss 1.5812866687774658 img loss 1.5805855989456177 img loss 1.4847928285598755 img loss 1.4615947008132935 img loss 1.5229119062423706 img loss 1.4657021760940552 img loss 1.5745724439620972 img loss 1.6054848432540894 img loss 1.4738808870315552 img loss 1.6078823804855347 img loss 1.6148725748062134 img loss 1.452636957168579 img loss 1.614101767539978 img loss 1.4994808435440063 img loss 1.5580966472625732 img loss 1.5416522026062012 img loss 1.4859243631362915 img loss 1.4005695581436157 img loss 1.3452461957931519 img loss 1.5357125997543335 img loss 1.5153840780258179 img loss 1.4875372648239136 img loss 1.6589072942733765 img loss 1.313231110572815 img loss 1.4248825311660767 img loss 1.444546103477478 img loss 1.5604592561721802 img loss 1.416038990020752 img loss 1.4183701276779175 img loss 1.512328863143921 img loss 1.563543438911438 img loss 1.5063395500183105 img loss 1.3731175661087036 img loss 1.4154810905456543 img loss 1.4587377309799194 img loss 1.5428779125213623 img loss 1.4762413501739502 img loss 1.4091551303863525 img loss 1.4217581748962402 img loss 1.413891077041626 img loss 1.564932942390442 img loss 1.4908673763275146 img loss 1.465174913406372 img loss 1.4530636072158813 img loss 1.7531988620758057 img loss 1.561637043952942 img loss 1.4415584802627563 img loss 1.5515227317810059 img loss 1.587302803993225 img loss 1.4566842317581177 img loss 1.4014233350753784 img loss 1.4507561922073364 img loss 1.4232732057571411 img loss 1.5067929029464722 img loss 1.5286141633987427img loss 1.6338754892349243 img loss 1.3494614362716675 img loss 1.4587215185165405 img loss 1.5966064929962158 img loss 1.557015061378479 img loss 1.5556756258010864 img loss 1.4925782680511475 img loss 1.4005072116851807 img loss 1.5412620306015015 img loss 1.607616901397705 img loss 1.4974697828292847 img loss 1.4674075841903687 img loss 1.4542956352233887 img loss 1.4481548070907593 img loss 1.598099946975708 img loss 1.5304874181747437 img loss 1.5990500450134277 img loss 1.4792249202728271 img loss 1.4915659427642822 img loss 1.412250280380249 img loss 1.367469310760498 img loss 1.4825427532196045 img loss 1.5784735679626465 img loss 1.5337796211242676 img loss 1.5221298933029175 img loss 1.44003164768219 img loss 1.5954591035842896 img loss 1.5432770252227783 img loss 1.5410617589950562 img loss 1.5092436075210571 img loss 1.3916985988616943 img loss 1.565038800239563 img loss 1.5738739967346191 img loss 1.5363560914993286 img loss 1.4633898735046387 img loss 1.5538800954818726 img loss 1.6886547803878784 img loss 1.5580273866653442 img loss 1.5035563707351685 {'loss': 1.5043, 'grad_norm': 0.4332756996154785, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1761927604675293 img loss 1.129828691482544 img loss 1.2646383047103882 img loss 1.2461210489273071 img loss 1.240888237953186 img loss 1.278549075126648 img loss 1.3190248012542725 img loss 1.3260066509246826 img loss 1.1438636779785156 img loss 1.3468544483184814 img loss 1.2094473838806152 img loss 1.1952450275421143 img loss 1.2241405248641968 img loss 1.2720288038253784 img loss 1.2980259656906128 img loss 1.2012622356414795 img loss 1.3419106006622314 img loss 1.2286862134933472 img loss 1.3449721336364746 img loss 1.1951206922531128 img loss 1.2117754220962524 img loss 1.3198312520980835 img loss 1.1988632678985596 img loss 1.2242450714111328 img loss 1.2635607719421387 img loss 1.3205492496490479 img loss 1.126544713973999 img loss 1.2509020566940308 img loss 1.232614278793335 img loss 1.2301061153411865 img loss 1.2620435953140259 img loss 1.225082278251648 img loss 1.2161585092544556 img loss 1.300685167312622 img loss 1.2145416736602783 img loss 1.2744572162628174 img loss 1.346818208694458 img loss 1.2007019519805908 img loss 1.2317023277282715 img loss 1.2315220832824707 img loss 1.2144699096679688 img loss 1.230028748512268 img loss 1.2502636909484863 img loss 1.2024612426757812 img loss 1.3090176582336426 img loss 1.2683223485946655 img loss 1.219881534576416 img loss 1.407462239265442 img loss 1.2152029275894165 img loss 1.3755069971084595 img loss 1.1898123025894165 img loss 1.3220621347427368 img loss 1.242201805114746 img loss 1.2637643814086914 img loss 1.31479811668396 img loss 1.2260596752166748 img loss 1.3253569602966309 img loss 1.186295509338379 img loss 1.2039027214050293 img loss 1.2967431545257568 img loss 1.3167247772216797 img loss 1.2792761325836182 img loss 1.3126728534698486 img loss 1.1895402669906616 img loss 1.2828034162521362 img loss 1.211348533630371 img loss 1.2160557508468628 img loss 1.2570862770080566 img loss 1.3197487592697144 img loss 1.2318060398101807 img loss 1.2754876613616943 img loss 1.295123815536499 img loss 1.2213826179504395 img loss 1.2240813970565796 img loss 1.2533191442489624 img loss 1.2212653160095215 img loss 1.2731653451919556 img loss 1.2709699869155884 img loss 1.2235172986984253 img loss 1.2796986103057861 img loss 1.1812388896942139 img loss 1.2892303466796875 img loss 1.2282907962799072 img loss 1.1903738975524902 img loss 1.2600798606872559 img loss 1.3243449926376343 img loss 1.2151325941085815 img loss 1.195335030555725 img loss 1.2810710668563843 img loss 1.1796836853027344 img loss 1.2335995435714722 img loss 1.1598204374313354 img loss 1.258449912071228 img loss 1.200318694114685 img loss 1.2683919668197632 img loss 1.25644850730896 img loss 1.3089102506637573 img loss 1.1402909755706787 img loss 1.2419623136520386 img loss 1.3361318111419678 img loss 1.2800555229187012 img loss 1.2083759307861328 img loss 1.2056403160095215 img loss 1.2622705698013306 img loss 1.1973888874053955 img loss 1.2646034955978394 img loss 1.2846927642822266 img loss 1.3345855474472046 img loss 1.2297039031982422 img loss 1.3358961343765259 img loss 1.2241493463516235 img loss 1.298104166984558 img loss 1.384879469871521 img loss 1.3156055212020874 img loss 1.1913213729858398 img loss 1.248820185661316 img loss 1.2508573532104492 img loss 1.2460248470306396 img loss 1.2989709377288818 img loss 1.313480019569397 img loss 1.2636864185333252 img loss 1.22848641872406 img loss 1.1692519187927246 img loss 1.3041270971298218 img loss 1.21310555934906 img loss 1.2969471216201782 img loss 1.323258638381958 img loss 1.155544638633728 {'loss': 1.2528, 'grad_norm': 0.2851739823818207, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.130635142326355 img loss 1.1981217861175537 img loss 1.2243945598602295 img loss 1.1028826236724854 img loss 1.2143772840499878 img loss 1.3039472103118896 img loss 1.3033626079559326 img loss 1.2473734617233276 img loss 1.2245372533798218 img loss 1.1928730010986328 img loss 1.1952842473983765 img loss 1.1951788663864136 img loss 1.1868605613708496 img loss 1.1592998504638672 img loss 1.2724394798278809 img loss 1.28920316696167 img loss 1.1223353147506714 img loss 1.2149702310562134 img loss 1.1963250637054443 img loss 1.2527168989181519 img loss 1.2465999126434326 img loss 1.2535208463668823 img loss 1.1674091815948486 img loss 1.2420889139175415 img loss 1.1178715229034424 img loss 1.2313522100448608 img loss 1.2268682718276978 img loss 1.2334212064743042 img loss 1.118492603302002 img loss 1.1999773979187012 img loss 1.1524484157562256 img loss 1.162405014038086 img loss 1.2751080989837646 img loss 1.1585321426391602 img loss 1.2351559400558472 img loss 1.1677124500274658 img loss 1.2122007608413696 img loss 1.1599375009536743 img loss 1.152891755104065 img loss 1.2201552391052246 img loss 1.249110460281372 img loss 1.211012840270996 img loss 1.1171042919158936 img loss 1.2122397422790527 img loss 1.1869478225708008 img loss 1.1752837896347046 img loss 1.2215989828109741 img loss 1.1541622877120972 img loss 1.1938831806182861 img loss 1.2485039234161377 img loss 1.218287706375122 img loss 1.302112340927124 img loss 1.1884979009628296 img loss 1.2099807262420654 img loss 1.1227457523345947 img loss 1.232488989830017 img loss 1.1352096796035767 img loss 1.328113317489624 img loss 1.141202449798584 img loss 1.1928261518478394 img loss 1.1784149408340454 img loss 1.252956748008728 img loss 1.2400096654891968 img loss 1.2119548320770264 img loss 1.1638835668563843 img loss 1.2934144735336304 img loss 1.1473907232284546 img loss 1.2142854928970337 img loss 1.1423996686935425 img loss 1.2923473119735718 img loss 1.1588979959487915 img loss 1.198409914970398 img loss 1.2225288152694702 img loss 1.1581499576568604 img loss 1.2868355512619019 img loss 1.1588491201400757 img loss 1.2202045917510986 img loss 1.1620402336120605 img loss 1.1892335414886475 img loss 1.2269365787506104 img loss 1.1454604864120483 img loss 1.1849583387374878 img loss 1.219447374343872 img loss 1.2625004053115845 img loss 1.195420742034912 img loss 1.32170569896698 img loss 1.216882348060608 img loss 1.1610348224639893 img loss 1.1943368911743164 img loss 1.2093136310577393 img loss 1.2580307722091675 img loss 1.2037404775619507 img loss 1.222198486328125 img loss 1.2970874309539795 img loss 1.1785593032836914 img loss 1.2235325574874878 img loss 1.2242857217788696 img loss 1.265623927116394 img loss 1.1604804992675781 img loss 1.2008743286132812 img loss 1.2149394750595093 img loss 1.2790673971176147 img loss 1.2066261768341064 img loss 1.1887778043746948 img loss 1.157786250114441 img loss 1.3133267164230347 img loss 1.1498939990997314 img loss 1.2302273511886597 img loss 1.238545298576355 img loss 1.1669936180114746 img loss 1.2535243034362793 img loss 1.1661639213562012 img loss 1.2070633172988892 img loss 1.177203893661499 img loss 1.1396458148956299 img loss 1.2648147344589233 img loss 1.2237809896469116 img loss 1.1455094814300537 img loss 1.2009193897247314 img loss 1.2314141988754272 img loss 1.1700360774993896 img loss 1.2024129629135132 img loss 1.1444534063339233 img loss 1.2254379987716675 img loss 1.1878725290298462 img loss 1.2069196701049805 img loss 1.2717335224151611 img loss 1.21293044090271 {'loss': 1.2066, 'grad_norm': 0.23422420024871826, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3596957921981812 img loss 1.4929840564727783 img loss 1.263096809387207 img loss 1.334713101387024 img loss 1.44444739818573 img loss 1.3868839740753174 img loss 1.4756137132644653 img loss 1.5406242609024048 img loss 1.5650144815444946 img loss 1.3380128145217896 img loss 1.5072039365768433 img loss 1.3162425756454468 img loss 1.5306880474090576 img loss 1.3893784284591675 img loss 1.485156774520874 img loss 1.3371710777282715 img loss 1.426029920578003 img loss 1.403823971748352 img loss 1.41702139377594 img loss 1.2869961261749268 img loss 1.5424026250839233 img loss 1.534758448600769 img loss 1.4043532609939575 img loss 1.3860580921173096 img loss 1.4169360399246216 img loss 1.5122665166854858 img loss 1.380612850189209 img loss 1.5669653415679932 img loss 1.3319752216339111 img loss 1.392076015472412 img loss 1.4818861484527588 img loss 1.405638337135315 img loss 1.3661497831344604 img loss 1.4013783931732178 img loss 1.3813210725784302 img loss 1.5730727910995483 img loss 1.3935675621032715 img loss 1.393974781036377 img loss 1.46271550655365 img loss 1.51364004611969 img loss 1.3340040445327759 img loss 1.4675146341323853 img loss 1.5336095094680786 img loss 1.3820862770080566 img loss 1.5651699304580688 img loss 1.4490578174591064 img loss 1.4040342569351196 img loss 1.4915602207183838 img loss 1.381489634513855 img loss 1.4694817066192627 img loss 1.4065123796463013 img loss 1.4408921003341675 img loss 1.5356764793395996 img loss 1.427917242050171 img loss 1.41221022605896 img loss 1.4950613975524902 img loss 1.5202316045761108 img loss 1.5930454730987549 img loss 1.3913798332214355 img loss 1.4953659772872925 img loss 1.3616728782653809 img loss 1.392364263534546 img loss 1.4983117580413818 img loss 1.5169562101364136 img loss 1.58277428150177 img loss 1.4811145067214966 img loss 1.4214036464691162 img loss 1.3217495679855347 img loss 1.4388231039047241 img loss 1.4324463605880737 img loss 1.5358006954193115 img loss 1.3774210214614868 img loss 1.2903202772140503 img loss 1.4965623617172241 img loss 1.429944634437561 img loss 1.3914285898208618 img loss 1.3472174406051636 img loss 1.3946138620376587 img loss 1.5660253763198853 img loss 1.347469449043274 img loss 1.4064785242080688 img loss 1.5084431171417236 img loss 1.4915658235549927 img loss 1.452584147453308 img loss 1.464293122291565 img loss 1.4749963283538818 img loss 1.485828161239624 img loss 1.4033156633377075 img loss 1.3623393774032593 img loss 1.4024903774261475 img loss 1.3050670623779297 img loss 1.511512279510498 img loss 1.427314043045044 img loss 1.403869867324829 img loss 1.5312093496322632 img loss 1.5096083879470825 img loss 1.368666172027588 img loss 1.3980375528335571 img loss 1.5019382238388062 img loss 1.5309463739395142 img loss 1.2542614936828613 img loss 1.4277299642562866 img loss 1.4868115186691284 img loss 1.4477617740631104 img loss 1.3731648921966553 img loss 1.4472861289978027 img loss 1.5367554426193237 img loss 1.3581148386001587 img loss 1.6640464067459106 img loss 1.3627959489822388 img loss 1.5816584825515747 img loss 1.479984164237976 img loss 1.4077324867248535 img loss 1.4782216548919678 img loss 1.4926273822784424 img loss 1.4280784130096436 img loss 1.451526165008545 img loss 1.4956377744674683 img loss 1.4808604717254639 img loss 1.5427840948104858 img loss 1.418982744216919 img loss 1.4301402568817139 img loss 1.490729570388794 img loss 1.5118080377578735 img loss 1.3854507207870483 img loss 1.3955285549163818 img loss 1.4253123998641968 img loss 1.2897919416427612 {'loss': 1.441, 'grad_norm': 0.4212196171283722, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.288973093032837 img loss 1.5287175178527832 img loss 1.341378927230835 img loss 1.3237245082855225 img loss 1.3284122943878174 img loss 1.4204031229019165 img loss 1.2632707357406616 img loss 1.3723673820495605 img loss 1.341192603111267 img loss 1.3022820949554443 img loss 1.3529354333877563 img loss 1.3615854978561401 img loss 1.3311885595321655 img loss 1.426147222518921 img loss 1.4164067506790161 img loss 1.4074996709823608 img loss 1.3200738430023193 img loss 1.3549023866653442 img loss 1.497808814048767 img loss 1.404781699180603 img loss 1.469200611114502 img loss 1.3375146389007568 img loss 1.3875263929367065 img loss 1.4561558961868286 img loss 1.450305700302124 img loss 1.3158469200134277 img loss 1.4051308631896973 img loss 1.3129738569259644 img loss 1.4076802730560303 img loss 1.437442421913147 img loss 1.3864482641220093 img loss 1.3952962160110474 img loss 1.4175562858581543 img loss 1.4351763725280762 img loss 1.35666823387146 img loss 1.3152122497558594 img loss 1.3094202280044556 img loss 1.409462809562683 img loss 1.2862170934677124 img loss 1.3852269649505615 img loss 1.4190853834152222 img loss 1.3107811212539673 img loss 1.4682966470718384 img loss 1.3569778203964233 img loss 1.3893635272979736 img loss 1.376367449760437 img loss 1.3313608169555664 img loss 1.2698370218276978 img loss 1.4791761636734009 img loss 1.3122656345367432 img loss 1.3893054723739624 img loss 1.4484608173370361 img loss 1.2739111185073853 img loss 1.3293793201446533 img loss 1.5631273984909058 img loss 1.3457378149032593 img loss 1.422023892402649 img loss 1.3957639932632446 img loss 1.4306094646453857 img loss 1.3648699522018433 img loss 1.4061743021011353 img loss 1.423242211341858 img loss 1.5174165964126587 img loss 1.4745516777038574 img loss 1.4769123792648315 img loss 1.3704921007156372 img loss 1.314224123954773 img loss 1.4554531574249268 img loss 1.416127324104309 img loss 1.3798359632492065 img loss 1.3429265022277832 img loss 1.3696744441986084 img loss 1.40096914768219 img loss 1.3743056058883667 img loss 1.2987382411956787 img loss 1.308775544166565 img loss 1.4293863773345947 img loss 1.4499155282974243 img loss 1.323489785194397 img loss 1.2329539060592651 img loss 1.421811580657959 img loss 1.3462765216827393 img loss 1.31235933303833 img loss 1.2869372367858887 img loss 1.4011286497116089 img loss 1.3615281581878662 img loss 1.4850651025772095 img loss 1.4321074485778809 img loss 1.206152319908142 img loss 1.6177986860275269 img loss 1.4430615901947021 img loss 1.3398501873016357 img loss 1.4121356010437012 img loss 1.3717118501663208 img loss 1.4054129123687744 img loss 1.4937173128128052 img loss 1.4147838354110718 img loss 1.4354501962661743 img loss 1.4268711805343628 img loss 1.4312406778335571 img loss 1.4666551351547241 img loss 1.3571804761886597 img loss 1.4133323431015015 img loss 1.5771191120147705 img loss 1.4000862836837769 img loss 1.340180516242981 img loss 1.3862308263778687 img loss 1.507720708847046 img loss 1.292834758758545 img loss 1.2774865627288818 img loss 1.4940227270126343 img loss 1.287900447845459 img loss 1.3600342273712158 img loss 1.409044623374939 img loss 1.4415580034255981 img loss 1.4724267721176147 img loss 1.3460161685943604 img loss 1.463777780532837 img loss 1.399997353553772 img loss 1.5677028894424438 img loss 1.4576455354690552 img loss 1.372536301612854 img loss 1.4688184261322021 img loss 1.4618427753448486 img loss 1.3875622749328613 img loss 1.541223406791687 img loss 1.321831226348877 img loss 1.51029372215271 {'loss': 1.3932, 'grad_norm': 0.28298985958099365, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2122669219970703 img loss 1.1985523700714111 img loss 1.1922714710235596 img loss 1.2974941730499268 img loss 1.2433381080627441 img loss 1.2683944702148438 img loss 1.238865852355957 img loss 1.1304008960723877 img loss 1.3387759923934937 img loss 1.180370569229126 img loss 1.2003830671310425 img loss 1.2478923797607422 img loss 1.2374646663665771 img loss 1.2799042463302612 img loss 1.1814531087875366 img loss 1.1945548057556152 img loss 1.180410623550415 img loss 1.247809886932373 img loss 1.2564032077789307 img loss 1.2327488660812378 img loss 1.2454859018325806 img loss 1.2230148315429688 img loss 1.2537930011749268 img loss 1.1890171766281128 img loss 1.1874089241027832 img loss 1.1056053638458252 img loss 1.1861671209335327 img loss 1.2452962398529053 img loss 1.248549461364746 img loss 1.2143464088439941 img loss 1.2583022117614746 img loss 1.1713758707046509 img loss 1.2351486682891846 img loss 1.2336262464523315 img loss 1.2448208332061768 img loss 1.2954950332641602 img loss 1.170228362083435 img loss 1.253986120223999 img loss 1.2201718091964722 img loss 1.1714929342269897 img loss 1.1906013488769531 img loss 1.2294225692749023 img loss 1.1771026849746704 img loss 1.2076165676116943 img loss 1.2886085510253906 img loss 1.2345752716064453 img loss 1.1938446760177612 img loss 1.3270715475082397 img loss 1.1826142072677612 img loss 1.1887257099151611 img loss 1.1835225820541382 img loss 1.2888104915618896 img loss 1.2430213689804077 img loss 1.156206727027893 img loss 1.184800624847412 img loss 1.2116563320159912 img loss 1.1417934894561768 img loss 1.298928141593933 img loss 1.207863211631775 img loss 1.2344186305999756 img loss 1.2338656187057495 img loss 1.1378192901611328 img loss 1.2876776456832886 img loss 1.2964061498641968 img loss 1.2152400016784668 img loss 1.2353886365890503 img loss 1.181260108947754 img loss 1.2039135694503784 img loss 1.1992619037628174 img loss 1.1937322616577148 img loss 1.1612226963043213 img loss 1.196001410484314 img loss 1.2650905847549438 img loss 1.2136462926864624 img loss 1.1761062145233154 img loss 1.202012300491333 img loss 1.216568946838379 img loss 1.1933424472808838 img loss 1.1854565143585205 img loss 1.196972131729126 img loss 1.198542833328247 img loss 1.214398741722107 img loss 1.3846962451934814 img loss 1.2273924350738525 img loss 1.2365798950195312 img loss 1.2366894483566284 img loss 1.2316429615020752 img loss 1.176126480102539 img loss 1.2214229106903076 img loss 1.2351242303848267 img loss 1.2012403011322021 img loss 1.2558491230010986 img loss 1.2213338613510132 img loss 1.278900146484375 img loss 1.1794426441192627 img loss 1.2482393980026245 img loss 1.1908071041107178 img loss 1.2598727941513062 img loss 1.1747949123382568 img loss 1.2204344272613525 img loss 1.207850694656372 img loss 1.1965032815933228 img loss 1.2489242553710938 img loss 1.1907662153244019 img loss 1.2128310203552246 img loss 1.151776909828186 img loss 1.2306946516036987 img loss 1.3154042959213257 img loss 1.2717872858047485 img loss 1.3054300546646118 img loss 1.2641117572784424 img loss 1.1552815437316895 img loss 1.1216403245925903 img loss 1.2194676399230957 img loss 1.2783522605895996 img loss 1.1860692501068115 img loss 1.201577067375183 img loss 1.2075351476669312 img loss 1.2217884063720703 img loss 1.3000447750091553 img loss 1.1800134181976318 img loss 1.2073304653167725 img loss 1.140121579170227 img loss 1.1880614757537842 img loss 1.1880099773406982 img loss 1.1780388355255127 img loss 1.1801505088806152 img loss 1.1942291259765625 {'loss': 1.2188, 'grad_norm': 0.2324671447277069, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4065004587173462 img loss 1.2721799612045288 img loss 1.2705506086349487 img loss 1.3320121765136719 img loss 1.1542153358459473 img loss 1.2730392217636108 img loss 1.3462375402450562 img loss 1.2660088539123535 img loss 1.2622623443603516 img loss 1.283588171005249 img loss 1.3518177270889282 img loss 1.2161388397216797 img loss 1.273141860961914 img loss 1.2580997943878174 img loss 1.293703556060791 img loss 1.369312047958374 img loss 1.3169182538986206 img loss 1.318159580230713 img loss 1.241912841796875 img loss 1.3084148168563843 img loss 1.3706718683242798 img loss 1.233356237411499 img loss 1.238527536392212 img loss 1.311498999595642 img loss 1.355414867401123 img loss 1.2315995693206787 img loss 1.4177800416946411 img loss 1.2765718698501587 img loss 1.3110535144805908 img loss 1.2102359533309937 img loss 1.2893588542938232 img loss 1.2195593118667603 img loss 1.2865428924560547 img loss 1.3240028619766235 img loss 1.2927963733673096 img loss 1.2535896301269531 img loss 1.25009024143219 img loss 1.25253164768219 img loss 1.2785614728927612 img loss 1.3154864311218262 img loss 1.1654555797576904 img loss 1.3054277896881104 img loss 1.2921777963638306 img loss 1.3439394235610962 img loss 1.2672175168991089 img loss 1.2685441970825195 img loss 1.3495813608169556 img loss 1.3155609369277954 img loss 1.330200433731079 img loss 1.2562787532806396 img loss 1.307021141052246 img loss 1.3591140508651733 img loss 1.2880157232284546 img loss 1.3216904401779175 img loss 1.315503478050232 img loss 1.3460917472839355 img loss 1.3036832809448242 img loss 1.3671681880950928 img loss 1.2925300598144531 img loss 1.2130178213119507 img loss 1.3025798797607422 img loss 1.3609521389007568 img loss 1.33449125289917 img loss 1.2167117595672607 img loss 1.3265800476074219 img loss 1.2789642810821533 img loss 1.2727594375610352 img loss 1.2311359643936157 img loss 1.3093286752700806 img loss 1.330990195274353 img loss 1.3148207664489746 img loss 1.2303500175476074 img loss 1.2707751989364624 img loss 1.3876564502716064 img loss 1.2384138107299805 img loss 1.3520811796188354 img loss 1.2867159843444824 img loss 1.2549304962158203 img loss 1.3369476795196533 img loss 1.2852513790130615 img loss 1.2747865915298462 img loss 1.1876500844955444 img loss 1.2719978094100952 img loss 1.2761623859405518 img loss 1.2975552082061768 img loss 1.2419699430465698 img loss 1.2471401691436768 img loss 1.3202710151672363 img loss 1.3183073997497559 img loss 1.3156778812408447 img loss 1.2922008037567139 img loss 1.3822823762893677 img loss 1.2251348495483398 img loss 1.3361856937408447 img loss 1.3382503986358643 img loss 1.3013026714324951 img loss 1.375003457069397 img loss 1.2014808654785156 img loss 1.2760390043258667 img loss 1.286478042602539 img loss 1.2828936576843262 img loss 1.3848354816436768 img loss 1.2970587015151978 img loss 1.2000656127929688 img loss 1.2578392028808594 img loss 1.2747766971588135 img loss 1.3774535655975342 img loss 1.299058198928833 img loss 1.262255072593689 img loss 1.2616289854049683 img loss 1.2311466932296753 img loss 1.2879977226257324 img loss 1.3456666469573975 img loss 1.2678048610687256 img loss 1.276578664779663 img loss 1.3335877656936646 img loss 1.284990906715393 img loss 1.280946135520935 img loss 1.2375668287277222 img loss 1.2264063358306885 img loss 1.2186310291290283 img loss 1.327265977859497 img loss 1.2591921091079712 img loss 1.2757843732833862 img loss 1.2866092920303345 img loss 1.244644045829773 img loss 1.2885584831237793 img loss 1.344728708267212 {'loss': 1.2902, 'grad_norm': 0.257259339094162, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2128252983093262 img loss 1.200356364250183 img loss 1.2918528318405151 img loss 1.2500567436218262 img loss 1.2475284337997437 img loss 1.2541961669921875 img loss 1.2505897283554077 img loss 1.1470459699630737 img loss 1.201830267906189 img loss 1.2119219303131104 img loss 1.2480077743530273 img loss 1.1862133741378784 img loss 1.2852483987808228 img loss 1.1869206428527832 img loss 1.2305662631988525 img loss 1.2516627311706543 img loss 1.2637016773223877 img loss 1.2153822183609009 img loss 1.2050156593322754 img loss 1.2115881443023682 img loss 1.2543871402740479 img loss 1.2021212577819824 img loss 1.2895402908325195 img loss 1.2300255298614502 img loss 1.1917656660079956 img loss 1.1991695165634155 img loss 1.2025688886642456 img loss 1.2211687564849854 img loss 1.1960365772247314 img loss 1.230481743812561 img loss 1.2607452869415283 img loss 1.2536067962646484 img loss 1.2236590385437012 img loss 1.1783865690231323 img loss 1.2250069379806519 img loss 1.230943202972412 img loss 1.239296317100525 img loss 1.2343076467514038 img loss 1.2274835109710693 img loss 1.227020025253296 img loss 1.212790846824646 img loss 1.183645486831665 img loss 1.2910683155059814 img loss 1.216768503189087 img loss 1.2315037250518799 img loss 1.1754482984542847 img loss 1.2312390804290771 img loss 1.2292810678482056 img loss 1.22272527217865 img loss 1.2201870679855347 img loss 1.1908752918243408 img loss 1.246578574180603 img loss 1.2348334789276123 img loss 1.2328178882598877 img loss 1.1840580701828003 img loss 1.248491644859314 img loss 1.208646535873413 img loss 1.2610223293304443 img loss 1.2249139547348022 img loss 1.214952826499939 img loss 1.2473399639129639 img loss 1.1717106103897095 img loss 1.2619647979736328 img loss 1.2365610599517822 img loss 1.1856138706207275 img loss 1.1740036010742188 img loss 1.2714860439300537 img loss 1.1953779458999634 img loss 1.2060661315917969 img loss 1.238725185394287 img loss 1.2235039472579956 img loss 1.2323325872421265 img loss 1.2152211666107178 img loss 1.2777506113052368 img loss 1.2113447189331055 img loss 1.2086718082427979 img loss 1.210766315460205 img loss 1.2000198364257812 img loss 1.2136081457138062 img loss 1.2850326299667358 img loss 1.1572288274765015 img loss 1.2454675436019897 img loss 1.1860789060592651 img loss 1.2085727453231812 img loss 1.2150484323501587 img loss 1.2697633504867554 img loss 1.2102521657943726 img loss 1.2441561222076416 img loss 1.27915620803833 img loss 1.169561743736267 img loss 1.2202726602554321 img loss 1.217647910118103 img loss 1.1917120218276978 img loss 1.2007975578308105 img loss 1.1550102233886719 img loss 1.1893290281295776 img loss 1.1883924007415771 img loss 1.2511513233184814 img loss 1.2102208137512207 img loss 1.2290633916854858 img loss 1.2612285614013672 img loss 1.2761263847351074 img loss 1.253844141960144 img loss 1.2545284032821655 img loss 1.2227129936218262 img loss 1.1729600429534912 img loss 1.254453182220459 img loss 1.2046544551849365 img loss 1.2341727018356323 img loss 1.180910348892212 img loss 1.2286591529846191 img loss 1.2560375928878784 img loss 1.2332684993743896 img loss 1.1939988136291504 img loss 1.1909252405166626 img loss 1.2879481315612793 img loss 1.1869852542877197 img loss 1.2698934078216553 img loss 1.3043129444122314 img loss 1.1855703592300415 img loss 1.3174785375595093 img loss 1.1883018016815186 img loss 1.2272486686706543 img loss 1.261889934539795 img loss 1.1850659847259521 img loss 1.171326994895935 img loss 1.1998343467712402 img loss 1.250498652458191 {'loss': 1.2242, 'grad_norm': 0.22341293096542358, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1495281457901 img loss 1.074823260307312 img loss 1.1457246541976929 img loss 1.1506506204605103 img loss 1.2022138833999634 img loss 1.2338817119598389 img loss 1.1325527429580688 img loss 1.1996906995773315 img loss 1.2022805213928223 img loss 1.209184169769287 img loss 1.100701928138733 img loss 1.0926179885864258 img loss 1.1382725238800049 img loss 1.2111146450042725 img loss 1.1753424406051636 img loss 1.1806520223617554 img loss 1.2026913166046143 img loss 1.1898236274719238 img loss 1.1923569440841675 img loss 1.2180280685424805 img loss 1.1611179113388062 img loss 1.1906384229660034 img loss 1.2172296047210693 img loss 1.2044681310653687 img loss 1.184263825416565 img loss 1.1813408136367798 img loss 1.2025444507598877 img loss 1.0551255941390991 img loss 1.1323829889297485 img loss 1.169144868850708 img loss 1.2014602422714233 img loss 1.1702648401260376 img loss 1.1963304281234741 img loss 1.1887457370758057 img loss 1.2008764743804932 img loss 1.1544348001480103 img loss 1.2595847845077515 img loss 1.2055184841156006 img loss 1.1400688886642456 img loss 1.1617403030395508 img loss 1.1213421821594238 img loss 1.2009128332138062 img loss 1.1610791683197021 img loss 1.132805347442627 img loss 1.178753137588501 img loss 1.106745958328247 img loss 1.1116622686386108 img loss 1.0936964750289917 img loss 1.109480619430542 img loss 1.0756573677062988 img loss 1.1500214338302612 img loss 1.124898910522461 img loss 1.1096444129943848 img loss 1.1428868770599365 img loss 1.2253386974334717 img loss 1.1472519636154175 img loss 1.205268383026123 img loss 1.1537442207336426 img loss 1.181352972984314 img loss 1.1416934728622437 img loss 1.1147665977478027 img loss 1.1776230335235596 img loss 1.1347362995147705 img loss 1.251692533493042 img loss 1.2061964273452759 img loss 1.2291181087493896 img loss 1.1859978437423706 img loss 1.1762109994888306img loss 1.0978773832321167 img loss 1.1563184261322021 img loss 1.161456823348999 img loss 1.2252197265625 img loss 1.1207349300384521 img loss 1.1385881900787354 img loss 1.150327205657959 img loss 1.1765916347503662 img loss 1.1724159717559814 img loss 1.132686972618103 img loss 1.16288423538208 img loss 1.1180952787399292 img loss 1.1751459836959839 img loss 1.2030599117279053 img loss 1.1646685600280762 img loss 1.1799238920211792 img loss 1.188305377960205 img loss 1.2072386741638184 img loss 1.1087956428527832 img loss 1.1135486364364624 img loss 1.1609350442886353 img loss 1.2005398273468018 img loss 1.1277611255645752 img loss 1.1270359754562378 img loss 1.151415467262268 img loss 1.1948193311691284 img loss 1.162363052368164 img loss 1.1553200483322144 img loss 1.1886085271835327 img loss 1.1904995441436768 img loss 1.1707110404968262 img loss 1.1314915418624878 img loss 1.1355398893356323 img loss 1.1493247747421265 img loss 1.0647953748703003 img loss 1.11784827709198 img loss 1.104135274887085 img loss 1.189493179321289 img loss 1.2439236640930176 img loss 1.2065544128417969 img loss 1.1570079326629639 img loss 1.1178958415985107 img loss 1.1395838260650635 img loss 1.130544662475586 img loss 1.1400446891784668 img loss 1.2190465927124023 img loss 1.2239645719528198 img loss 1.129209041595459 img loss 1.1061124801635742 img loss 1.102428674697876 img loss 1.1683835983276367 img loss 1.1926313638687134 img loss 1.195728063583374 img loss 1.1225831508636475 img loss 1.2636337280273438 img loss 1.231444239616394 img loss 1.179460883140564 img loss 1.170386791229248 img loss 1.1918890476226807 img loss 1.1822479963302612 {'loss': 1.1642, 'grad_norm': 0.22167818248271942, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2599226236343384 img loss 1.087578535079956 img loss 1.1618143320083618 img loss 1.1230201721191406 img loss 1.1890827417373657 img loss 1.1736263036727905 img loss 1.2517379522323608 img loss 1.136225700378418 img loss 1.1497606039047241 img loss 1.1660842895507812 img loss 1.196672797203064 img loss 1.2118167877197266 img loss 1.1764073371887207 img loss 1.239610195159912 img loss 1.2278056144714355 img loss 1.2829277515411377 img loss 1.1626602411270142 img loss 1.2906839847564697 img loss 1.2356293201446533 img loss 1.198171854019165img loss 1.2271745204925537 img loss 1.2518537044525146 img loss 1.1625394821166992 img loss 1.1795859336853027 img loss 1.2677456140518188 img loss 1.241758108139038 img loss 1.1838390827178955 img loss 1.2086340188980103 img loss 1.2248632907867432 img loss 1.2793277502059937 img loss 1.236911416053772 img loss 1.2161152362823486 img loss 1.1930187940597534 img loss 1.2616287469863892 img loss 1.1406223773956299 img loss 1.1881622076034546 img loss 1.2627453804016113 img loss 1.2237118482589722 img loss 1.1659133434295654 img loss 1.2062664031982422 img loss 1.1317895650863647 img loss 1.1696038246154785 img loss 1.1997928619384766 img loss 1.1934185028076172 img loss 1.1872106790542603 img loss 1.2326664924621582 img loss 1.219462275505066 img loss 1.25277578830719 img loss 1.1478991508483887 img loss 1.2149397134780884 img loss 1.1999396085739136 img loss 1.1754522323608398 img loss 1.2088329792022705 img loss 1.2511757612228394 img loss 1.217712163925171 img loss 1.2101179361343384 img loss 1.254391074180603 img loss 1.226173996925354 img loss 1.1673587560653687 img loss 1.1527836322784424 img loss 1.1300647258758545 img loss 1.1343790292739868 img loss 1.229421854019165 img loss 1.1936956644058228 img loss 1.1145762205123901 img loss 1.1817173957824707 img loss 1.1711750030517578 img loss 1.1089237928390503 img loss 1.1801742315292358 img loss 1.214394450187683 img loss 1.2178637981414795 img loss 1.1870801448822021 img loss 1.2097948789596558 img loss 1.157015085220337 img loss 1.223196029663086 img loss 1.2719964981079102 img loss 1.2224020957946777 img loss 1.1489605903625488 img loss 1.1698507070541382 img loss 1.2468845844268799 img loss 1.2123383283615112 img loss 1.1742782592773438 img loss 1.2282569408416748img loss 1.3243530988693237 img loss 1.2164446115493774 img loss 1.2437434196472168 img loss 1.2146490812301636 img loss 1.2871582508087158 img loss 1.281470775604248 img loss 1.116532564163208 img loss 1.2581790685653687 img loss 1.2438033819198608 img loss 1.2021030187606812 img loss 1.2597019672393799 img loss 1.2567423582077026 img loss 1.1753915548324585 img loss 1.2215378284454346 img loss 1.2235758304595947 img loss 1.2312783002853394 img loss 1.2107051610946655 img loss 1.178829550743103 img loss 1.3466675281524658 img loss 1.159894347190857 img loss 1.2909832000732422 img loss 1.1884353160858154 img loss 1.203122615814209 img loss 1.2234351634979248 img loss 1.2688125371932983 img loss 1.2063710689544678 img loss 1.1734672784805298 img loss 1.2306212186813354 img loss 1.1744896173477173 img loss 1.1911207437515259 img loss 1.14589262008667 img loss 1.1446040868759155 img loss 1.1986443996429443 img loss 1.2059330940246582 img loss 1.1610620021820068 img loss 1.2697166204452515 img loss 1.2435147762298584 img loss 1.1761951446533203 img loss 1.216835618019104 img loss 1.2060202360153198 img loss 1.2249208688735962 img loss 1.2028915882110596 img loss 1.1315782070159912 img loss 1.1570364236831665 img loss 1.2431191205978394 {'loss': 1.2056, 'grad_norm': 0.22006231546401978, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2060413360595703 img loss 1.236976981163025 img loss 1.2091057300567627 img loss 1.1844230890274048 img loss 1.228910207748413 img loss 1.1584032773971558 img loss 1.2247233390808105 img loss 1.2772266864776611 img loss 1.2512331008911133 img loss 1.263569712638855 img loss 1.232743740081787 img loss 1.2303738594055176 img loss 1.1934360265731812 img loss 1.2476872205734253 img loss 1.1739156246185303 img loss 1.2141748666763306 img loss 1.211516261100769 img loss 1.1619901657104492 img loss 1.2553455829620361 img loss 1.1602363586425781 img loss 1.266121506690979 img loss 1.257302165031433 img loss 1.2586734294891357 img loss 1.2317955493927002 img loss 1.273421049118042 img loss 1.1958096027374268 img loss 1.1428065299987793 img loss 1.3017387390136719 img loss 1.2384666204452515 img loss 1.1711978912353516 img loss 1.2480871677398682 img loss 1.1829853057861328 img loss 1.1572818756103516 img loss 1.2140820026397705 img loss 1.2312448024749756 img loss 1.262979507446289 img loss 1.2620750665664673 img loss 1.230435848236084 img loss 1.1970523595809937 img loss 1.2957885265350342 img loss 1.1226284503936768 img loss 1.2442878484725952 img loss 1.2767200469970703 img loss 1.1986032724380493 img loss 1.198279857635498 img loss 1.183558464050293 img loss 1.1604506969451904 img loss 1.2353038787841797 img loss 1.180156946182251 img loss 1.2301925420761108 img loss 1.2297472953796387 img loss 1.2011336088180542 img loss 1.237984299659729 img loss 1.1839202642440796 img loss 1.273707628250122 img loss 1.243638515472412 img loss 1.188271164894104 img loss 1.1776797771453857 img loss 1.183395266532898 img loss 1.2198982238769531 img loss 1.2158399820327759 img loss 1.2516353130340576 img loss 1.1809074878692627 img loss 1.2775163650512695 img loss 1.1902862787246704 img loss 1.2051002979278564 img loss 1.1960128545761108 img loss 1.2532432079315186 img loss 1.24191153049469 img loss 1.166410207748413 img loss 1.2122702598571777 img loss 1.1746151447296143 img loss 1.1465787887573242 img loss 1.3015903234481812 img loss 1.2239532470703125 img loss 1.2486555576324463 img loss 1.2194007635116577 img loss 1.281699776649475 img loss 1.3058407306671143 img loss 1.1929377317428589 img loss 1.2347831726074219 img loss 1.170612096786499 img loss 1.4004569053649902 img loss 1.2133749723434448 img loss 1.2097958326339722 img loss 1.2053464651107788 img loss 1.264655590057373 img loss 1.218178391456604 img loss 1.215166687965393 img loss 1.206992745399475 img loss 1.2749593257904053 img loss 1.194506049156189 img loss 1.1656277179718018 img loss 1.2640204429626465 img loss 1.2401145696640015 img loss 1.187356948852539 img loss 1.2844959497451782 img loss 1.2372468709945679 img loss 1.2890909910202026 img loss 1.200568675994873 img loss 1.321190595626831 img loss 1.2285430431365967 img loss 1.1718535423278809 img loss 1.1422888040542603 img loss 1.2101831436157227 img loss 1.2572849988937378 img loss 1.192275047302246 img loss 1.3188823461532593 img loss 1.2534458637237549 img loss 1.1812041997909546 img loss 1.2778942584991455 img loss 1.262866497039795 img loss 1.1646759510040283 img loss 1.3023712635040283 img loss 1.1566369533538818 img loss 1.2946666479110718 img loss 1.2009737491607666 img loss 1.150161623954773 img loss 1.2194316387176514 img loss 1.1839605569839478 img loss 1.219839096069336 img loss 1.2206951379776 img loss 1.2860369682312012 img loss 1.2739309072494507 img loss 1.1692111492156982 img loss 1.2034451961517334 img loss 1.248653769493103 img loss 1.1777167320251465 {'loss': 1.2232, 'grad_norm': 0.2454943209886551, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.442673921585083 img loss 1.3483765125274658 img loss 1.271493911743164 img loss 1.3931132555007935 img loss 1.3497754335403442 img loss 1.3955624103546143 img loss 1.2836750745773315 img loss 1.2477391958236694 img loss 1.4480046033859253 img loss 1.3634556531906128 img loss 1.266052484512329 img loss 1.2620409727096558 img loss 1.3575986623764038 img loss 1.3894160985946655 img loss 1.3727434873580933 img loss 1.3891844749450684 img loss 1.3578011989593506 img loss 1.2158838510513306 img loss 1.4884889125823975 img loss 1.2794585227966309 img loss 1.3597897291183472 img loss 1.4103575944900513 img loss 1.4934077262878418 img loss 1.3401154279708862 img loss 1.3237993717193604 img loss 1.37679922580719 img loss 1.3847109079360962 img loss 1.3343361616134644 img loss 1.3490922451019287 img loss 1.3912774324417114 img loss 1.3309773206710815 img loss 1.3309180736541748 img loss 1.3055548667907715 img loss 1.3614751100540161 img loss 1.3235613107681274 img loss 1.364680528640747 img loss 1.3561434745788574 img loss 1.3311342000961304 img loss 1.349185585975647img loss 1.3262486457824707 img loss 1.3059468269348145 img loss 1.4308956861495972 img loss 1.3950504064559937 img loss 1.301147699356079 img loss 1.342373251914978 img loss 1.3921315670013428 img loss 1.3766406774520874 img loss 1.4467297792434692 img loss 1.3643953800201416 img loss 1.326204776763916 img loss 1.5293277502059937 img loss 1.3430176973342896 img loss 1.4017107486724854 img loss 1.2448409795761108 img loss 1.3621963262557983 img loss 1.4400635957717896 img loss 1.3435814380645752 img loss 1.2085975408554077 img loss 1.4298747777938843 img loss 1.361279010772705 img loss 1.4070181846618652 img loss 1.2780665159225464 img loss 1.3223110437393188 img loss 1.2568482160568237 img loss 1.3359755277633667 img loss 1.3272746801376343 img loss 1.3317070007324219 img loss 1.309504508972168 img loss 1.2578800916671753 img loss 1.529730200767517 img loss 1.424522042274475 img loss 1.4095085859298706 img loss 1.4318643808364868 img loss 1.3189328908920288 img loss 1.3340392112731934 img loss 1.3025232553482056 img loss 1.4178880453109741 img loss 1.4081963300704956 img loss 1.3901798725128174 img loss 1.3928182125091553 img loss 1.2966636419296265 img loss 1.4246745109558105 img loss 1.3942817449569702 img loss 1.3720053434371948 img loss 1.2336822748184204 img loss 1.3472765684127808 img loss 1.2663415670394897 img loss 1.3099998235702515 img loss 1.4786732196807861 img loss 1.2571132183074951 img loss 1.415360689163208 img loss 1.327484369277954 img loss 1.282854437828064 img loss 1.3460211753845215 img loss 1.3073087930679321 img loss 1.3333185911178589 img loss 1.4106780290603638 img loss 1.4239240884780884 img loss 1.2500090599060059 img loss 1.395042896270752 img loss 1.4644291400909424 img loss 1.321936845779419 img loss 1.3590360879898071 img loss 1.2714976072311401 img loss 1.373975396156311 img loss 1.3386929035186768 img loss 1.3922162055969238 img loss 1.361550211906433 img loss 1.3599287271499634 img loss 1.331709861755371 img loss 1.36954665184021 img loss 1.3684191703796387 img loss 1.3231452703475952 img loss 1.320014476776123 img loss 1.3660480976104736 img loss 1.3308581113815308 img loss 1.463323950767517 img loss 1.3664851188659668 img loss 1.2327827215194702 img loss 1.4230223894119263 img loss 1.296168327331543 img loss 1.3597828149795532 img loss 1.347191572189331 img loss 1.288677453994751 img loss 1.2752621173858643 img loss 1.5609380006790161 img loss 1.3348548412322998 img loss 1.390554666519165 {'loss': 1.3552, 'grad_norm': 0.3085481524467468, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3086782693862915 img loss 1.4771524667739868 img loss 1.3918397426605225 img loss 1.3404440879821777 img loss 1.3781578540802002 img loss 1.3389027118682861img loss 1.3306254148483276 img loss 1.3467915058135986 img loss 1.2672154903411865 img loss 1.3910809755325317 img loss 1.2994400262832642 img loss 1.311389446258545 img loss 1.282301425933838 img loss 1.4768205881118774 img loss 1.40925931930542 img loss 1.3009990453720093 img loss 1.3589451313018799 img loss 1.3358771800994873 img loss 1.3605666160583496 img loss 1.366117000579834 img loss 1.3089264631271362 img loss 1.4869309663772583 img loss 1.3681179285049438 img loss 1.297650933265686 img loss 1.3941730260849 img loss 1.3712037801742554 img loss 1.3052241802215576 img loss 1.3600815534591675 img loss 1.440489411354065 img loss 1.2934341430664062 img loss 1.3540598154067993 img loss 1.323756456375122 img loss 1.351866364479065 img loss 1.3460489511489868 img loss 1.2889623641967773 img loss 1.5341124534606934 img loss 1.3903448581695557 img loss 1.323767066001892 img loss 1.3648006916046143 img loss 1.3923051357269287 img loss 1.447295069694519 img loss 1.334258794784546img loss 1.2972197532653809 img loss 1.2640613317489624 img loss 1.3749555349349976 img loss 1.3582051992416382 img loss 1.4161609411239624 img loss 1.3567506074905396 img loss 1.3288624286651611 img loss 1.320075511932373 img loss 1.3589178323745728 img loss 1.3315380811691284 img loss 1.3072556257247925 img loss 1.3252007961273193 img loss 1.3220536708831787 img loss 1.344345211982727 img loss 1.3291319608688354 img loss 1.349352240562439 img loss 1.4202516078948975 img loss 1.3009629249572754 img loss 1.3586915731430054 img loss 1.312654972076416 img loss 1.4474464654922485 img loss 1.4039260149002075 img loss 1.3289631605148315 img loss 1.3302688598632812 img loss 1.3569515943527222 img loss 1.287814736366272 img loss 1.326168417930603 img loss 1.2771342992782593 img loss 1.3209670782089233 img loss 1.3238385915756226 img loss 1.264349341392517 img loss 1.2633980512619019 img loss 1.3193691968917847 img loss 1.36579167842865 img loss 1.2442235946655273 img loss 1.280177116394043 img loss 1.2936171293258667 img loss 1.267020583152771 img loss 1.3028342723846436 img loss 1.262509822845459 img loss 1.3696562051773071 img loss 1.3465648889541626 img loss 1.3015546798706055 img loss 1.3402665853500366 img loss 1.3333786725997925 img loss 1.2495561838150024 img loss 1.3165309429168701 img loss 1.4340627193450928 img loss 1.2907863855361938 img loss 1.360082983970642 img loss 1.378284215927124 img loss 1.2926993370056152 img loss 1.3138830661773682 img loss 1.3784719705581665 img loss 1.3427541255950928 img loss 1.3371676206588745 img loss 1.3375874757766724 img loss 1.2915161848068237 img loss 1.3769363164901733 img loss 1.3769899606704712 img loss 1.341011881828308 img loss 1.3490149974822998 img loss 1.3459099531173706 img loss 1.370990514755249 img loss 1.3284441232681274 img loss 1.3154654502868652 img loss 1.3776494264602661 img loss 1.4363962411880493 img loss 1.3411616086959839 img loss 1.2686960697174072 img loss 1.33596670627594 img loss 1.4786697626113892 img loss 1.3608314990997314 img loss 1.3009942770004272 img loss 1.3553284406661987 img loss 1.330207109451294 img loss 1.324967622756958 img loss 1.3048510551452637 img loss 1.404857873916626 img loss 1.3555763959884644 img loss 1.3683865070343018 img loss 1.4236496686935425 img loss 1.3141435384750366 img loss 1.311287760734558 img loss 1.3475946187973022 img loss 1.3870443105697632 {'loss': 1.3449, 'grad_norm': 0.2656404376029968, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.309218406677246 img loss 1.2112901210784912 img loss 1.2628936767578125 img loss 1.2138841152191162 img loss 1.298962950706482 img loss 1.3040294647216797 img loss 1.2723698616027832 img loss 1.239571213722229 img loss 1.3338942527770996 img loss 1.3227455615997314 img loss 1.2607885599136353 img loss 1.3238165378570557 img loss 1.303518295288086 img loss 1.3513808250427246 img loss 1.301870346069336 img loss 1.2341469526290894 img loss 1.2433843612670898 img loss 1.1737463474273682 img loss 1.2540335655212402 img loss 1.2332892417907715 img loss 1.338955283164978 img loss 1.3350814580917358 img loss 1.3096023797988892 img loss 1.2492488622665405 img loss 1.235612392425537 img loss 1.198314905166626 img loss 1.2877277135849 img loss 1.226223349571228 img loss 1.283762812614441 img loss 1.375587821006775 img loss 1.3197988271713257 img loss 1.2196851968765259 img loss 1.250794768333435 img loss 1.263707160949707 img loss 1.1762701272964478 img loss 1.2255628108978271 img loss 1.1757570505142212 img loss 1.2848255634307861 img loss 1.2287200689315796 img loss 1.2554830312728882 img loss 1.3189582824707031 img loss 1.3123352527618408 img loss 1.1849364042282104 img loss 1.195788025856018 img loss 1.2682996988296509 img loss 1.351077914237976 img loss 1.1495485305786133 img loss 1.264052152633667 img loss 1.341191053390503 img loss 1.1775784492492676 img loss 1.2664525508880615 img loss 1.2047550678253174 img loss 1.2283657789230347 img loss 1.3464608192443848 img loss 1.3193705081939697 img loss 1.1510165929794312 img loss 1.2371050119400024 img loss 1.3425991535186768 img loss 1.317098617553711 img loss 1.336380124092102 img loss 1.27114999294281 img loss 1.2542474269866943 img loss 1.2461093664169312 img loss 1.2822097539901733 img loss 1.439244031906128 img loss 1.3134753704071045 img loss 1.2643625736236572 img loss 1.1816593408584595 img loss 1.30540931224823 img loss 1.2800216674804688 img loss 1.266800880432129 img loss 1.3504364490509033 img loss 1.35550856590271 img loss 1.298086404800415 img loss 1.211558222770691 img loss 1.2792953252792358 img loss 1.3867642879486084 img loss 1.2262015342712402 img loss 1.2372016906738281 img loss 1.329370379447937 img loss 1.2948195934295654 img loss 1.2753334045410156 img loss 1.184294581413269 img loss 1.2281149625778198 img loss 1.2399975061416626 img loss 1.217822551727295 img loss 1.310590386390686 img loss 1.2003237009048462 img loss 1.306012749671936img loss 1.277492880821228 img loss 1.2695280313491821 img loss 1.2429101467132568 img loss 1.295526385307312 img loss 1.1822096109390259 img loss 1.3024929761886597 img loss 1.3118915557861328 img loss 1.3201301097869873 img loss 1.347450852394104 img loss 1.2589612007141113 img loss 1.3129802942276 img loss 1.2764774560928345 img loss 1.3859971761703491 img loss 1.2659454345703125 img loss 1.19221830368042 img loss 1.3109521865844727 img loss 1.2067255973815918 img loss 1.2178585529327393 img loss 1.3592473268508911 img loss 1.253617525100708 img loss 1.2877949476242065 img loss 1.2439762353897095 img loss 1.3296244144439697 img loss 1.304848074913025 img loss 1.2560700178146362 img loss 1.2562732696533203 img loss 1.2735066413879395 img loss 1.2727264165878296 img loss 1.233536958694458 img loss 1.3043733835220337 img loss 1.3449026346206665 img loss 1.314049482345581 img loss 1.3816605806350708 img loss 1.327035903930664 img loss 1.2317042350769043 img loss 1.264725923538208 img loss 1.2166703939437866 img loss 1.2132028341293335 img loss 1.2639024257659912 {'loss': 1.2731, 'grad_norm': 0.19952191412448883, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4088422060012817 img loss 1.400397539138794 img loss 1.385033130645752 img loss 1.2904345989227295 img loss 1.4023029804229736 img loss 1.4560654163360596 img loss 1.459185242652893 img loss 1.4895485639572144 img loss 1.3828701972961426 img loss 1.4306445121765137 img loss 1.435817837715149 img loss 1.3511110544204712 img loss 1.4030919075012207 img loss 1.4598734378814697 img loss 1.362229824066162 img loss 1.4605515003204346 img loss 1.3379634618759155 img loss 1.4201363325119019 img loss 1.3836287260055542 img loss 1.4324973821640015 img loss 1.3362776041030884 img loss 1.3263658285140991 img loss 1.4141438007354736 img loss 1.3903326988220215 img loss 1.5256503820419312 img loss 1.4315844774246216 img loss 1.343858242034912 img loss 1.3588989973068237 img loss 1.3888784646987915 img loss 1.4282453060150146 img loss 1.441059947013855 img loss 1.3140475749969482 img loss 1.4558664560317993 img loss 1.3827013969421387 img loss 1.3300708532333374 img loss 1.42096745967865 img loss 1.353973150253296 img loss 1.3620129823684692 img loss 1.4400875568389893 img loss 1.3192204236984253 img loss 1.4058846235275269 img loss 1.3916981220245361 img loss 1.363512635231018 img loss 1.3898764848709106 img loss 1.3371509313583374 img loss 1.4855560064315796 img loss 1.4013465642929077 img loss 1.3609545230865479 img loss 1.5204565525054932 img loss 1.3846662044525146 img loss 1.3420274257659912 img loss 1.32624089717865 img loss 1.4057347774505615 img loss 1.4487035274505615 img loss 1.4098721742630005 img loss 1.388610601425171 img loss 1.348889708518982 img loss 1.3829054832458496 img loss 1.3558703660964966 img loss 1.4684641361236572img loss 1.4158390760421753 img loss 1.3229000568389893 img loss 1.3631188869476318 img loss 1.556708574295044 img loss 1.3982024192810059 img loss 1.453386902809143 img loss 1.5228970050811768 img loss 1.4302862882614136 img loss 1.4359945058822632 img loss 1.3786567449569702 img loss 1.395587682723999 img loss 1.4778822660446167 img loss 1.5175267457962036 img loss 1.3793584108352661 img loss 1.396328091621399 img loss 1.3457342386245728 img loss 1.3990098237991333 img loss 1.3870924711227417 img loss 1.3681529760360718 img loss 1.304349422454834 img loss 1.3745834827423096 img loss 1.54271399974823 img loss 1.4724794626235962 img loss 1.425697922706604 img loss 1.403159737586975 img loss 1.2885969877243042 img loss 1.4489473104476929 img loss 1.4314295053482056 img loss 1.3908326625823975 img loss 1.4450771808624268 img loss 1.4580130577087402 img loss 1.488775610923767 img loss 1.3760262727737427 img loss 1.462342381477356 img loss 1.4093724489212036 img loss 1.454722285270691 img loss 1.4082939624786377 img loss 1.394007921218872 img loss 1.3824340105056763 img loss 1.405746579170227 img loss 1.424953579902649 img loss 1.405110239982605 img loss 1.466854453086853 img loss 1.3731969594955444 img loss 1.379393219947815 img loss 1.51239812374115 img loss 1.337949514389038 img loss 1.3976548910140991 img loss 1.4783564805984497 img loss 1.3531687259674072 img loss 1.361794114112854 img loss 1.3803918361663818 img loss 1.3469977378845215 img loss 1.4052153825759888 img loss 1.3304698467254639 img loss 1.4726769924163818 img loss 1.4268687963485718 img loss 1.271413803100586 img loss 1.439882755279541 img loss 1.36813223361969 img loss 1.420884370803833 img loss 1.3477836847305298 img loss 1.3795374631881714 img loss 1.422139048576355 img loss 1.4921984672546387 img loss 1.4813333749771118 img loss 1.4174115657806396 img loss 1.3829811811447144 {'loss': 1.4049, 'grad_norm': 0.539570689201355, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2543985843658447 img loss 1.1892545223236084 img loss 1.153377890586853 img loss 1.1460278034210205 img loss 1.1407157182693481 img loss 1.1263788938522339 img loss 1.190103530883789 img loss 1.1363226175308228 img loss 1.1485841274261475 img loss 1.232701063156128 img loss 1.2423896789550781 img loss 1.2202364206314087 img loss 1.0999242067337036 img loss 1.2268891334533691 img loss 1.2400394678115845 img loss 1.156493902206421 img loss 1.2044060230255127 img loss 1.2645008563995361 img loss 1.1507320404052734 img loss 1.2493064403533936 img loss 1.1585896015167236 img loss 1.265319585800171 img loss 1.2760610580444336 img loss 1.175033450126648 img loss 1.2858667373657227 img loss 1.2309057712554932 img loss 1.2494480609893799 img loss 1.22929847240448 img loss 1.2039453983306885 img loss 1.1844691038131714 img loss 1.2742106914520264 img loss 1.1178258657455444 img loss 1.2126269340515137 img loss 1.1466912031173706 img loss 1.1721137762069702 img loss 1.2049839496612549 img loss 1.1168627738952637 img loss 1.1659663915634155 img loss 1.2380470037460327 img loss 1.2160084247589111 img loss 1.1483665704727173 img loss 1.1728997230529785 img loss 1.1820131540298462 img loss 1.1474192142486572 img loss 1.1507415771484375 img loss 1.1626393795013428 img loss 1.2224323749542236 img loss 1.2687983512878418 img loss 1.1482492685317993 img loss 1.1694416999816895 img loss 1.1462064981460571 img loss 1.228864312171936 img loss 1.2212533950805664 img loss 1.1551713943481445 img loss 1.1909501552581787 img loss 1.2092634439468384 img loss 1.2182635068893433 img loss 1.1998116970062256 img loss 1.1725656986236572 img loss 1.2146096229553223 img loss 1.1529229879379272 img loss 1.2018945217132568 img loss 1.1566485166549683img loss 1.129377007484436 img loss 1.1739840507507324 img loss 1.1504130363464355 img loss 1.1646125316619873 img loss 1.2149966955184937 img loss 1.1518287658691406 img loss 1.2365134954452515 img loss 1.195015549659729 img loss 1.2809194326400757 img loss 1.151227593421936 img loss 1.247359275817871 img loss 1.1960529088974 img loss 1.1380265951156616 img loss 1.219287395477295 img loss 1.1794183254241943 img loss 1.212806224822998 img loss 1.1343696117401123 img loss 1.2190197706222534 img loss 1.1531981229782104 img loss 1.1324889659881592 img loss 1.1389586925506592 img loss 1.1675695180892944 img loss 1.1616170406341553 img loss 1.1812703609466553 img loss 1.1797864437103271 img loss 1.1317743062973022 img loss 1.2054626941680908 img loss 1.2548032999038696 img loss 1.1702194213867188 img loss 1.2018146514892578 img loss 1.136899709701538 img loss 1.2414413690567017 img loss 1.166579246520996 img loss 1.1907804012298584 img loss 1.1279826164245605 img loss 1.2378978729248047 img loss 1.247883677482605 img loss 1.164660930633545 img loss 1.2098721265792847 img loss 1.201629877090454 img loss 1.1169743537902832 img loss 1.2476223707199097 img loss 1.2630113363265991 img loss 1.161266565322876 img loss 1.16280198097229 img loss 1.211352825164795 img loss 1.3102507591247559 img loss 1.2608360052108765 img loss 1.217831015586853 img loss 1.2276771068572998 img loss 1.2145311832427979 img loss 1.2081860303878784 img loss 1.2969731092453003 img loss 1.1516337394714355 img loss 1.1501457691192627 img loss 1.1546767950057983 img loss 1.186382532119751 img loss 1.16960608959198 img loss 1.1964539289474487 img loss 1.2700858116149902 img loss 1.2653205394744873 img loss 1.2983548641204834 img loss 1.1937421560287476 img loss 1.1566693782806396 img loss 1.2098126411437988 {'loss': 1.1941, 'grad_norm': 0.19997653365135193, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2426831722259521 img loss 1.2344015836715698 img loss 1.2098546028137207 img loss 1.2109037637710571 img loss 1.2418875694274902 img loss 1.1283838748931885 img loss 1.2317225933074951 img loss 1.2581676244735718 img loss 1.1251373291015625 img loss 1.19504714012146 img loss 1.273846983909607 img loss 1.2237571477890015 img loss 1.1809732913970947 img loss 1.1894525289535522 img loss 1.2218575477600098 img loss 1.2396275997161865 img loss 1.2350997924804688 img loss 1.2671926021575928 img loss 1.1772125959396362 img loss 1.1785926818847656 img loss 1.2476392984390259 img loss 1.2000070810317993 img loss 1.2484982013702393 img loss 1.2301298379898071 img loss 1.23031747341156 img loss 1.21137273311615 img loss 1.228475570678711 img loss 1.2127269506454468 img loss 1.2732256650924683 img loss 1.205017328262329 img loss 1.2297743558883667 img loss 1.255448818206787 img loss 1.2329633235931396 img loss 1.1769630908966064 img loss 1.2165011167526245 img loss 1.243893027305603 img loss 1.202161192893982 img loss 1.2064192295074463 img loss 1.1883465051651 img loss 1.2673214673995972 img loss 1.1933090686798096 img loss 1.2383079528808594 img loss 1.298735499382019 img loss 1.107521414756775 img loss 1.226218819618225 img loss 1.2026538848876953 img loss 1.2756258249282837 img loss 1.210984706878662 img loss 1.2541049718856812 img loss 1.2301690578460693 img loss 1.2034926414489746 img loss 1.291471242904663 img loss 1.2361085414886475 img loss 1.2019166946411133 img loss 1.2301578521728516 img loss 1.2078742980957031 img loss 1.244486689567566 img loss 1.2147555351257324 img loss 1.270974040031433 img loss 1.221120834350586 img loss 1.2826285362243652 img loss 1.193843126296997 img loss 1.1967722177505493 img loss 1.194138765335083 img loss 1.2416714429855347 img loss 1.2359659671783447 img loss 1.2202786207199097 img loss 1.1965965032577515 img loss 1.275504469871521 img loss 1.1969201564788818 img loss 1.2471096515655518 img loss 1.2619543075561523 img loss 1.274884819984436 img loss 1.2705960273742676 img loss 1.2431137561798096 img loss 1.1923140287399292 img loss 1.173519492149353 img loss 1.2106907367706299 img loss 1.2273273468017578 img loss 1.2590092420578003 img loss 1.2163704633712769 img loss 1.2670702934265137 img loss 1.2159645557403564 img loss 1.2413156032562256 img loss 1.1682286262512207 img loss 1.217822790145874 img loss 1.2026920318603516 img loss 1.203022837638855 img loss 1.2635201215744019 img loss 1.273751974105835 img loss 1.1607065200805664 img loss 1.2537422180175781 img loss 1.284524917602539 img loss 1.2761874198913574 img loss 1.3271127939224243 img loss 1.2016152143478394 img loss 1.1997485160827637 img loss 1.2721773386001587 img loss 1.2368789911270142 img loss 1.1729540824890137 img loss 1.2152727842330933 img loss 1.2082009315490723 img loss 1.269338607788086 img loss 1.277222990989685 img loss 1.2929874658584595 img loss 1.1900696754455566 img loss 1.2579736709594727 img loss 1.252581000328064 img loss 1.2424941062927246 img loss 1.2809324264526367 img loss 1.2930846214294434 img loss 1.2464526891708374 img loss 1.2378957271575928 img loss 1.1684234142303467 img loss 1.1332463026046753 img loss 1.225104570388794 img loss 1.2643721103668213 img loss 1.2575310468673706 img loss 1.2805103063583374 img loss 1.2246004343032837 img loss 1.2061920166015625 img loss 1.2224116325378418 img loss 1.238230586051941 img loss 1.263967752456665 img loss 1.2211525440216064 img loss 1.1862406730651855 img loss 1.2342207431793213 img loss 1.2783279418945312 {'loss': 1.2285, 'grad_norm': 0.2681875228881836, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4141372442245483 img loss 1.5136473178863525 img loss 1.48741614818573 img loss 1.4375275373458862 img loss 1.3436529636383057 img loss 1.4685882329940796 img loss 1.4401218891143799 img loss 1.3672302961349487 img loss 1.3940645456314087 img loss 1.3692234754562378 img loss 1.4246701002120972 img loss 1.3638542890548706 img loss 1.3738106489181519 img loss 1.3433620929718018 img loss 1.3682276010513306 img loss 1.5050033330917358 img loss 1.4315630197525024 img loss 1.3769152164459229 img loss 1.413847804069519 img loss 1.3021072149276733 img loss 1.4624230861663818 img loss 1.338477611541748 img loss 1.454627275466919 img loss 1.4436615705490112 img loss 1.440116286277771 img loss 1.4241626262664795 img loss 1.432888150215149 img loss 1.433990240097046 img loss 1.3845218420028687 img loss 1.3910820484161377 img loss 1.4825061559677124 img loss 1.420212984085083 img loss 1.4438502788543701 img loss 1.398123025894165 img loss 1.328286051750183 img loss 1.441428303718567 img loss 1.3631672859191895 img loss 1.4463967084884644 img loss 1.3993127346038818 img loss 1.3918899297714233 img loss 1.3228281736373901 img loss 1.3487297296524048 img loss 1.502480387687683 img loss 1.5398694276809692 img loss 1.4814139604568481 img loss 1.4274210929870605 img loss 1.3892079591751099 img loss 1.4763082265853882 img loss 1.397571086883545 img loss 1.3792023658752441 img loss 1.3822182416915894 img loss 1.352947473526001 img loss 1.4622334241867065 img loss 1.4168574810028076 img loss 1.3521538972854614 img loss 1.3290657997131348 img loss 1.4930307865142822 img loss 1.4815129041671753 img loss 1.503456950187683 img loss 1.387927770614624 img loss 1.4605263471603394 img loss 1.3663010597229004 img loss 1.3331784009933472 img loss 1.3808722496032715 img loss 1.357399821281433 img loss 1.4323785305023193 img loss 1.5485767126083374 img loss 1.3187168836593628 img loss 1.3196885585784912 img loss 1.4142943620681763 img loss 1.4167885780334473 img loss 1.3881146907806396 img loss 1.3993734121322632 img loss 1.4829760789871216 img loss 1.5739409923553467 img loss 1.3573402166366577 img loss 1.4803135395050049 img loss 1.4286186695098877 img loss 1.3930226564407349 img loss 1.3444247245788574 img loss 1.4510043859481812 img loss 1.4343360662460327 img loss 1.359128475189209 img loss 1.4155343770980835 img loss 1.315986156463623 img loss 1.4026304483413696 img loss 1.4155739545822144 img loss 1.4758789539337158 img loss 1.3863091468811035 img loss 1.4680533409118652 img loss 1.3397959470748901 img loss 1.482580542564392 img loss 1.5691384077072144 img loss 1.381341576576233 img loss 1.387519359588623 img loss 1.565324306488037 img loss 1.4562870264053345 img loss 1.4240189790725708 img loss 1.4876559972763062 img loss 1.3930895328521729 img loss 1.3972275257110596 img loss 1.4049683809280396 img loss 1.382331132888794 img loss 1.4956614971160889 img loss 1.3876709938049316 img loss 1.3146569728851318 img loss 1.4266287088394165 img loss 1.441206455230713 img loss 1.4851222038269043 img loss 1.3847492933273315 img loss 1.4939600229263306 img loss 1.3536382913589478 img loss 1.4233328104019165 img loss 1.3668252229690552 img loss 1.4694267511367798 img loss 1.3677254915237427 img loss 1.4782532453536987 img loss 1.6820509433746338 img loss 1.373315691947937 img loss 1.4467519521713257 img loss 1.3326433897018433 img loss 1.3353716135025024 img loss 1.4170297384262085 img loss 1.3024390935897827 img loss 1.4185575246810913 img loss 1.290740966796875 img loss 1.3490029573440552 img loss 1.5301975011825562 {'loss': 1.416, 'grad_norm': 0.3390811085700989, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2412306070327759 img loss 1.1561245918273926 img loss 1.2061529159545898 img loss 1.2427687644958496 img loss 1.3655205965042114 img loss 1.2350796461105347 img loss 1.3519805669784546 img loss 1.2432581186294556 img loss 1.2541980743408203 img loss 1.2692841291427612 img loss 1.284501552581787 img loss 1.2621135711669922 img loss 1.3654778003692627 img loss 1.221604824066162 img loss 1.1972450017929077 img loss 1.238662600517273 img loss 1.282499074935913 img loss 1.2679954767227173 img loss 1.286803960800171 img loss 1.2769438028335571 img loss 1.2598795890808105 img loss 1.361031174659729 img loss 1.2924950122833252 img loss 1.3143937587738037 img loss 1.3055490255355835 img loss 1.2414746284484863 img loss 1.24436354637146 img loss 1.279418706893921 img loss 1.3246245384216309 img loss 1.2894953489303589 img loss 1.3013193607330322 img loss 1.3199342489242554 img loss 1.3022425174713135 img loss 1.3395527601242065 img loss 1.2524776458740234 img loss 1.2026668787002563 img loss 1.2688610553741455 img loss 1.2756184339523315 img loss 1.2259044647216797 img loss 1.2928520441055298 img loss 1.282684087753296 img loss 1.3025859594345093 img loss 1.1614608764648438 img loss 1.2123249769210815 img loss 1.2686392068862915 img loss 1.2841541767120361 img loss 1.2235740423202515 img loss 1.2004820108413696 img loss 1.3109768629074097 img loss 1.2697656154632568 img loss 1.4185200929641724 img loss 1.2959518432617188 img loss 1.3248833417892456 img loss 1.2491083145141602 img loss 1.274822473526001 img loss 1.3269014358520508 img loss 1.2630621194839478 img loss 1.2383720874786377 img loss 1.3295315504074097 img loss 1.3491307497024536 img loss 1.2075426578521729 img loss 1.1859391927719116 img loss 1.2391026020050049 img loss 1.2945431470870972 img loss 1.2575920820236206 img loss 1.3080418109893799 img loss 1.3481345176696777 img loss 1.224892258644104 img loss 1.2868022918701172 img loss 1.289750576019287 img loss 1.3089466094970703 img loss 1.24114990234375 img loss 1.2210766077041626 img loss 1.3287544250488281 img loss 1.2472374439239502 img loss 1.3041019439697266 img loss 1.268597960472107 img loss 1.3276500701904297 img loss 1.308835506439209 img loss 1.3374056816101074 img loss 1.2262437343597412 img loss 1.3830286264419556 img loss 1.264715552330017 img loss 1.2282758951187134 img loss 1.2691104412078857 img loss 1.231775164604187 img loss 1.268696665763855 img loss 1.4158142805099487 img loss 1.2335647344589233 img loss 1.427661657333374 img loss 1.2607190608978271 img loss 1.2604081630706787 img loss 1.3231827020645142 img loss 1.2445608377456665 img loss 1.3182951211929321 img loss 1.2485198974609375 img loss 1.2989109754562378 img loss 1.2824304103851318 img loss 1.257302165031433 img loss 1.2669657468795776 img loss 1.3518731594085693 img loss 1.2083408832550049 img loss 1.3778541088104248 img loss 1.2793710231781006 img loss 1.41081702709198 img loss 1.3731372356414795 img loss 1.2508856058120728 img loss 1.3569246530532837 img loss 1.2401106357574463 img loss 1.418840765953064 img loss 1.1682014465332031 img loss 1.3169662952423096 img loss 1.2219609022140503 img loss 1.3308792114257812 img loss 1.3001480102539062 img loss 1.3133481740951538 img loss 1.2454757690429688 img loss 1.2369009256362915 img loss 1.2865759134292603 img loss 1.2329206466674805 img loss 1.225630760192871 img loss 1.1907000541687012 img loss 1.2147958278656006 img loss 1.3572694063186646 img loss 1.2557263374328613 img loss 1.2578996419906616 img loss 1.2865034341812134 img loss 1.2071384191513062 {'loss': 1.2789, 'grad_norm': 0.3514019250869751, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2367817163467407 img loss 1.3324058055877686 img loss 1.4147732257843018 img loss 1.3127715587615967 img loss 1.2733925580978394 img loss 1.303577184677124 img loss 1.2427953481674194 img loss 1.339512586593628 img loss 1.3895405530929565 img loss 1.2778366804122925 img loss 1.269299864768982 img loss 1.3602358102798462 img loss 1.197680950164795 img loss 1.265947937965393 img loss 1.315416693687439 img loss 1.257566213607788 img loss 1.4095361232757568 img loss 1.2662473917007446 img loss 1.3290239572525024 img loss 1.383194088935852 img loss 1.3141894340515137 img loss 1.3242801427841187 img loss 1.211525797843933 img loss 1.2796932458877563 img loss 1.2677396535873413 img loss 1.33893620967865 img loss 1.212071180343628 img loss 1.2137943506240845 img loss 1.2890393733978271 img loss 1.2301816940307617 img loss 1.3483786582946777 img loss 1.3834989070892334 img loss 1.2029838562011719 img loss 1.2493345737457275 img loss 1.3109238147735596 img loss 1.4394558668136597 img loss 1.461166501045227 img loss 1.369807481765747 img loss 1.309330701828003 img loss 1.3660069704055786 img loss 1.1629555225372314 img loss 1.2149139642715454 img loss 1.2681001424789429 img loss 1.415648341178894 img loss 1.1912286281585693img loss 1.2198539972305298 img loss 1.3311220407485962 img loss 1.2853752374649048 img loss 1.3505189418792725 img loss 1.3407334089279175 img loss 1.411363959312439 img loss 1.3313918113708496 img loss 1.270108699798584 img loss 1.335414171218872 img loss 1.3065944910049438 img loss 1.3416818380355835 img loss 1.2262475490570068 img loss 1.4136077165603638 img loss 1.2584466934204102 img loss 1.3665281534194946 img loss 1.2705669403076172 img loss 1.3687589168548584 img loss 1.2792448997497559 img loss 1.3254244327545166 img loss 1.2705789804458618 img loss 1.2646631002426147 img loss 1.2181113958358765 img loss 1.348099946975708 img loss 1.3360539674758911 img loss 1.3489162921905518 img loss 1.3553202152252197 img loss 1.3813883066177368 img loss 1.2410926818847656 img loss 1.2829374074935913 img loss 1.2978794574737549 img loss 1.3233665227890015 img loss 1.2843395471572876 img loss 1.3620426654815674 img loss 1.255133867263794 img loss 1.2547794580459595 img loss 1.2721664905548096 img loss 1.3395830392837524 img loss 1.3034965991973877 img loss 1.2683424949645996 img loss 1.2762525081634521 img loss 1.3620415925979614 img loss 1.2938365936279297 img loss 1.3009107112884521 img loss 1.3803881406784058 img loss 1.4376341104507446 img loss 1.2260185480117798 img loss 1.325059413909912 img loss 1.2721221446990967 img loss 1.2764819860458374 img loss 1.3194961547851562 img loss 1.3243598937988281 img loss 1.3058433532714844 img loss 1.2065092325210571 img loss 1.1808382272720337 img loss 1.3448119163513184 img loss 1.2927069664001465 img loss 1.3435672521591187 img loss 1.342759609222412 img loss 1.3000190258026123 img loss 1.390403151512146 img loss 1.4789612293243408 img loss 1.3284015655517578 img loss 1.3483816385269165 img loss 1.279104471206665 img loss 1.3442394733428955 img loss 1.3639718294143677 img loss 1.2701892852783203 img loss 1.2886205911636353 img loss 1.3088136911392212 img loss 1.4065247774124146 img loss 1.3731235265731812 img loss 1.3490954637527466 img loss 1.2258965969085693 img loss 1.358548641204834 img loss 1.3802902698516846 img loss 1.3075758218765259 img loss 1.2348461151123047 img loss 1.259056806564331 img loss 1.354819416999817 img loss 1.2927203178405762 img loss 1.3993321657180786 img loss 1.3417221307754517 img loss 1.2944341897964478 {'loss': 1.31, 'grad_norm': 0.2871507406234741, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2262734174728394 img loss 1.3117616176605225 img loss 1.2940059900283813 img loss 1.379594087600708 img loss 1.2399280071258545 img loss 1.3083195686340332 img loss 1.3658959865570068 img loss 1.3250958919525146 img loss 1.39891517162323 img loss 1.332655429840088 img loss 1.2990078926086426 img loss 1.2984040975570679 img loss 1.4635790586471558 img loss 1.398714542388916 img loss 1.3288171291351318 img loss 1.455196499824524 img loss 1.3434481620788574 img loss 1.2861886024475098 img loss 1.3632938861846924 img loss 1.2911217212677002 img loss 1.429186224937439 img loss 1.3340516090393066 img loss 1.3269481658935547 img loss 1.3289878368377686 img loss 1.3667174577713013 img loss 1.3533415794372559 img loss 1.3783153295516968 img loss 1.4937567710876465 img loss 1.3788256645202637 img loss 1.2864084243774414 img loss 1.4281411170959473 img loss 1.3640210628509521 img loss 1.227468729019165 img loss 1.3918957710266113 img loss 1.2960388660430908 img loss 1.425986647605896 img loss 1.326219916343689 img loss 1.3318219184875488 img loss 1.2361412048339844 img loss 1.3216559886932373 img loss 1.3510253429412842 img loss 1.2998418807983398 img loss 1.3366711139678955 img loss 1.3651765584945679 img loss 1.3408334255218506 img loss 1.3869116306304932 img loss 1.3519186973571777 img loss 1.4213303327560425 img loss 1.3043197393417358 img loss 1.3402222394943237 img loss 1.4094510078430176 img loss 1.3840550184249878 img loss 1.2638015747070312 img loss 1.2627065181732178 img loss 1.3104243278503418 img loss 1.3996026515960693 img loss 1.4071049690246582 img loss 1.2781838178634644 img loss 1.3764599561691284 img loss 1.4213001728057861 img loss 1.2751233577728271 img loss 1.3763185739517212 img loss 1.381332516670227 img loss 1.264608383178711 img loss 1.2773876190185547 img loss 1.2800042629241943 img loss 1.4445509910583496 img loss 1.400697946548462 img loss 1.3301385641098022img loss 1.3511699438095093 img loss 1.497606873512268 img loss 1.388004183769226 img loss 1.2625735998153687 img loss 1.4418509006500244 img loss 1.484390139579773 img loss 1.363113284111023 img loss 1.330675721168518 img loss 1.3212003707885742 img loss 1.214232087135315 img loss 1.486610770225525 img loss 1.308086633682251 img loss 1.341110110282898 img loss 1.4203141927719116 img loss 1.3538116216659546 img loss 1.3768011331558228 img loss 1.5378639698028564 img loss 1.4400089979171753 img loss 1.334604024887085 img loss 1.3400312662124634 img loss 1.3387501239776611 img loss 1.3972737789154053 img loss 1.445401906967163 img loss 1.318803310394287 img loss 1.287198543548584 img loss 1.329179286956787 img loss 1.3606441020965576 img loss 1.3517974615097046 img loss 1.2790117263793945 img loss 1.2875932455062866 img loss 1.3420789241790771 img loss 1.3596060276031494 img loss 1.3115533590316772 img loss 1.3891156911849976 img loss 1.4080098867416382 img loss 1.399981141090393 img loss 1.3754947185516357 img loss 1.3065006732940674 img loss 1.3217140436172485 img loss 1.4440617561340332 img loss 1.3838417530059814 img loss 1.308666706085205 img loss 1.3422757387161255 img loss 1.3749268054962158 img loss 1.3918732404708862 img loss 1.3557336330413818 img loss 1.364919900894165 img loss 1.3796943426132202 img loss 1.2959574460983276 img loss 1.4319660663604736 img loss 1.3247255086898804 img loss 1.2824559211730957 img loss 1.2904709577560425 img loss 1.358789324760437 img loss 1.3600858449935913 img loss 1.3185687065124512 img loss 1.3822543621063232 img loss 1.2650498151779175 img loss 1.3644577264785767 {'loss': 1.3516, 'grad_norm': 0.3542916178703308, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2122738361358643 img loss 1.1822419166564941 img loss 1.2352241277694702 img loss 1.2467073202133179 img loss 1.2972466945648193 img loss 1.2553558349609375 img loss 1.2112460136413574 img loss 1.2065448760986328 img loss 1.2561168670654297 img loss 1.2231981754302979 img loss 1.3013877868652344 img loss 1.2028682231903076 img loss 1.2066090106964111 img loss 1.2449157238006592 img loss 1.2072988748550415 img loss 1.2270870208740234 img loss 1.1774648427963257 img loss 1.2217955589294434 img loss 1.2311491966247559 img loss 1.2092525959014893 img loss 1.2670843601226807 img loss 1.275744080543518 img loss 1.2064239978790283 img loss 1.193786382675171 img loss 1.2211602926254272 img loss 1.234474778175354 img loss 1.2989861965179443 img loss 1.1687850952148438 img loss 1.2193325757980347 img loss 1.1898419857025146 img loss 1.2242239713668823 img loss 1.2357254028320312 img loss 1.2187824249267578 img loss 1.2538635730743408 img loss 1.2252172231674194 img loss 1.1945171356201172 img loss 1.2224452495574951 img loss 1.25801682472229 img loss 1.1832367181777954 img loss 1.2839162349700928 img loss 1.14983069896698 img loss 1.260831594467163 img loss 1.2143833637237549 img loss 1.2064182758331299 img loss 1.2510528564453125 img loss 1.26665198802948 img loss 1.2071260213851929 img loss 1.2148535251617432 img loss 1.2442359924316406 img loss 1.2433804273605347 img loss 1.2393347024917603 img loss 1.2049493789672852 img loss 1.3045074939727783 img loss 1.2922567129135132 img loss 1.2456188201904297 img loss 1.2977337837219238 img loss 1.2295055389404297 img loss 1.1854273080825806 img loss 1.257310390472412img loss 1.2757303714752197 img loss 1.2175483703613281 img loss 1.243223786354065 img loss 1.2018647193908691 img loss 1.2908759117126465 img loss 1.3093125820159912 img loss 1.2392810583114624 img loss 1.2395567893981934 img loss 1.1918224096298218 img loss 1.2588474750518799 img loss 1.214775800704956 img loss 1.2334007024765015 img loss 1.2215089797973633 img loss 1.2302931547164917 img loss 1.2491884231567383 img loss 1.1947237253189087 img loss 1.269971489906311 img loss 1.2505297660827637 img loss 1.2760279178619385 img loss 1.2524011135101318 img loss 1.2647560834884644 img loss 1.2130002975463867 img loss 1.2015671730041504 img loss 1.1801066398620605 img loss 1.2488950490951538 img loss 1.2193717956542969 img loss 1.2056244611740112 img loss 1.1735203266143799 img loss 1.3018405437469482 img loss 1.2093719244003296 img loss 1.217428207397461 img loss 1.2084345817565918 img loss 1.232879400253296 img loss 1.2349355220794678 img loss 1.2076383829116821 img loss 1.2156169414520264 img loss 1.2150852680206299 img loss 1.2458641529083252 img loss 1.1569209098815918 img loss 1.212821364402771 img loss 1.2607427835464478 img loss 1.1810224056243896 img loss 1.179339051246643 img loss 1.2719751596450806 img loss 1.1903940439224243 img loss 1.2138702869415283 img loss 1.2694143056869507 img loss 1.3047999143600464 img loss 1.1822466850280762 img loss 1.230812430381775 img loss 1.2387150526046753 img loss 1.2094295024871826 img loss 1.2674038410186768 img loss 1.2368035316467285 img loss 1.1816864013671875 img loss 1.301440954208374 img loss 1.2353471517562866 img loss 1.235002040863037 img loss 1.203634262084961 img loss 1.2134077548980713 img loss 1.2198455333709717 img loss 1.2236160039901733 img loss 1.2425440549850464 img loss 1.2002111673355103 img loss 1.1907289028167725 img loss 1.2583537101745605 img loss 1.2514493465423584 img loss 1.2008923292160034 img loss 1.2129254341125488 {'loss': 1.2303, 'grad_norm': 0.30177298188209534, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2522599697113037 img loss 1.2917373180389404 img loss 1.180281639099121 img loss 1.1716740131378174 img loss 1.1932340860366821 img loss 1.186511516571045 img loss 1.1626278162002563 img loss 1.2428213357925415 img loss 1.2159409523010254 img loss 1.2552670240402222 img loss 1.2610327005386353 img loss 1.1867681741714478 img loss 1.2021149396896362img loss 1.2218818664550781 img loss 1.2511062622070312 img loss 1.1606853008270264 img loss 1.200338363647461 img loss 1.2994191646575928 img loss 1.1765491962432861 img loss 1.2350653409957886 img loss 1.2329330444335938 img loss 1.1566436290740967 img loss 1.1517901420593262 img loss 1.1426613330841064 img loss 1.2990671396255493 img loss 1.2177538871765137 img loss 1.2151397466659546 img loss 1.2542446851730347img loss 1.2689125537872314 img loss 1.2041049003601074 img loss 1.2345192432403564 img loss 1.2753490209579468 img loss 1.2364697456359863 img loss 1.2014518976211548 img loss 1.2580721378326416 img loss 1.1384261846542358 img loss 1.1681618690490723 img loss 1.2746245861053467 img loss 1.2011302709579468 img loss 1.277390956878662 img loss 1.1955218315124512 img loss 1.2463053464889526 img loss 1.1565130949020386 img loss 1.2274516820907593 img loss 1.1505639553070068 img loss 1.2298939228057861 img loss 1.1884572505950928 img loss 1.2162880897521973 img loss 1.229867935180664 img loss 1.2024730443954468 img loss 1.2748860120773315 img loss 1.1852318048477173 img loss 1.2211861610412598 img loss 1.2450478076934814 img loss 1.2599072456359863 img loss 1.1986751556396484 img loss 1.2352694272994995 img loss 1.2233775854110718 img loss 1.2052321434020996 img loss 1.21522855758667 img loss 1.2511634826660156 img loss 1.1508642435073853 img loss 1.1366584300994873 img loss 1.2049463987350464 img loss 1.2422630786895752 img loss 1.2010743618011475 img loss 1.196449637413025 img loss 1.210813283920288 img loss 1.2623668909072876 img loss 1.293108344078064 img loss 1.2920200824737549 img loss 1.3485465049743652 img loss 1.232276439666748 img loss 1.233890175819397 img loss 1.1860671043395996 img loss 1.1918684244155884 img loss 1.246957540512085 img loss 1.1904033422470093 img loss 1.2265747785568237 img loss 1.124451994895935 img loss 1.2563751935958862 img loss 1.2230141162872314 img loss 1.2519718408584595 img loss 1.185640573501587 img loss 1.2550599575042725 img loss 1.24433171749115 img loss 1.1544699668884277 img loss 1.198311448097229 img loss 1.21989905834198 img loss 1.2025688886642456 img loss 1.2092573642730713 img loss 1.237457513809204 img loss 1.3248494863510132 img loss 1.1949352025985718 img loss 1.2733635902404785 img loss 1.1882920265197754 img loss 1.2281768321990967 img loss 1.1997727155685425 img loss 1.2487671375274658 img loss 1.2624858617782593 img loss 1.1934146881103516 img loss 1.1504696607589722 img loss 1.260135531425476 img loss 1.2786839008331299 img loss 1.1733978986740112 img loss 1.2169177532196045 img loss 1.30372953414917 img loss 1.2083219289779663 img loss 1.134732961654663 img loss 1.1766283512115479 img loss 1.1861251592636108 img loss 1.2322410345077515 img loss 1.169679045677185 img loss 1.1742368936538696 img loss 1.2252118587493896 img loss 1.3149675130844116 img loss 1.2182273864746094 img loss 1.2224544286727905 img loss 1.2421696186065674 img loss 1.170045256614685 img loss 1.198676347732544 img loss 1.1684341430664062 img loss 1.2210654020309448 img loss 1.2040510177612305 img loss 1.2083725929260254 img loss 1.2286933660507202 img loss 1.2110103368759155 img loss 1.2317538261413574 {'loss': 1.2185, 'grad_norm': 0.2639172673225403, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3628783226013184 img loss 1.3482394218444824 img loss 1.3518816232681274 img loss 1.310270071029663 img loss 1.3625150918960571 img loss 1.3194918632507324 img loss 1.2843369245529175 img loss 1.4022290706634521 img loss 1.2911535501480103 img loss 1.3060649633407593 img loss 1.1872450113296509 img loss 1.284990668296814 img loss 1.2969697713851929 img loss 1.2782909870147705 img loss 1.2101490497589111 img loss 1.2335124015808105 img loss 1.2461570501327515 img loss 1.2360379695892334 img loss 1.3043622970581055 img loss 1.268654704093933 img loss 1.2362276315689087 img loss 1.2973783016204834 img loss 1.2901206016540527 img loss 1.3635741472244263 img loss 1.2670866250991821 img loss 1.277683973312378 img loss 1.2459074258804321 img loss 1.2376973628997803 img loss 1.3637210130691528 img loss 1.2779457569122314 img loss 1.323136806488037 img loss 1.3217312097549438 img loss 1.2568771839141846 img loss 1.3539549112319946 img loss 1.2217209339141846 img loss 1.2079131603240967 img loss 1.2234503030776978 img loss 1.33334481716156 img loss 1.3051459789276123 img loss 1.2369664907455444 img loss 1.3795326948165894 img loss 1.396053671836853 img loss 1.2060235738754272 img loss 1.1949012279510498 img loss 1.222553014755249 img loss 1.2861971855163574 img loss 1.3093093633651733 img loss 1.2582896947860718 img loss 1.1422312259674072 img loss 1.29835844039917 img loss 1.3064367771148682img loss 1.3241299390792847 img loss 1.2780996561050415 img loss 1.224364995956421 img loss 1.2298113107681274 img loss 1.315536379814148 img loss 1.3291171789169312 img loss 1.4060875177383423 img loss 1.2225971221923828 img loss 1.2082695960998535 img loss 1.391945481300354 img loss 1.2869621515274048 img loss 1.327409029006958 img loss 1.2441481351852417 img loss 1.3248960971832275 img loss 1.2748031616210938 img loss 1.3712934255599976 img loss 1.28737473487854 img loss 1.2333316802978516 img loss 1.3011175394058228 img loss 1.2393690347671509 img loss 1.3171318769454956 img loss 1.2046222686767578 img loss 1.1780341863632202 img loss 1.3723444938659668 img loss 1.3159332275390625 img loss 1.25560462474823 img loss 1.1721681356430054 img loss 1.414557695388794 img loss 1.2887132167816162 img loss 1.318419337272644 img loss 1.2482869625091553 img loss 1.2855552434921265 img loss 1.2794278860092163 img loss 1.4055296182632446 img loss 1.3003486394882202 img loss 1.2382290363311768 img loss 1.2247146368026733 img loss 1.2456194162368774 img loss 1.2730934619903564 img loss 1.350878357887268 img loss 1.233312964439392 img loss 1.2242436408996582 img loss 1.214845895767212 img loss 1.2960429191589355 img loss 1.166952133178711 img loss 1.3770439624786377 img loss 1.3025840520858765 img loss 1.2860227823257446 img loss 1.3334957361221313 img loss 1.250056505203247 img loss 1.37148118019104 img loss 1.1481852531433105 img loss 1.2352148294448853 img loss 1.2861311435699463 img loss 1.2649964094161987 img loss 1.3143919706344604 img loss 1.3021591901779175 img loss 1.3106755018234253 img loss 1.3050540685653687 img loss 1.3099591732025146 img loss 1.3020095825195312 img loss 1.4057413339614868 img loss 1.346945881843567 img loss 1.1670966148376465 img loss 1.3750172853469849 img loss 1.3129396438598633 img loss 1.2139527797698975 img loss 1.3018497228622437 img loss 1.2750144004821777 img loss 1.308077096939087 img loss 1.363661289215088 img loss 1.3040646314620972 img loss 1.2448183298110962 img loss 1.32144033908844 img loss 1.2103344202041626 img loss 1.251434087753296 img loss 1.3240684270858765 {'loss': 1.2859, 'grad_norm': 0.2291453778743744, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4607280492782593 img loss 1.5016497373580933 img loss 1.5436691045761108 img loss 1.5655862092971802 img loss 1.4825208187103271 img loss 1.4961267709732056 img loss 1.4744607210159302 img loss 1.373879313468933 img loss 1.4640653133392334 img loss 1.5980900526046753 img loss 1.4241997003555298 img loss 1.5821181535720825 img loss 1.5372672080993652 img loss 1.4092638492584229 img loss 1.4498714208602905 img loss 1.478104829788208 img loss 1.463453769683838 img loss 1.390795350074768 img loss 1.4440966844558716 img loss 1.4136091470718384 img loss 1.5118814706802368 img loss 1.4773451089859009 img loss 1.546889066696167 img loss 1.5457369089126587 img loss 1.4383866786956787 img loss 1.4582324028015137 img loss 1.4098585844039917 img loss 1.5123180150985718 img loss 1.587506651878357 img loss 1.481343150138855 img loss 1.457619071006775 img loss 1.5560253858566284 img loss 1.490649938583374 img loss 1.3752715587615967 img loss 1.4435336589813232 img loss 1.6350022554397583 img loss 1.4178884029388428 img loss 1.5127424001693726 img loss 1.5190452337265015 img loss 1.5771278142929077 img loss 1.5304187536239624 img loss 1.509832739830017 img loss 1.4822871685028076 img loss 1.6148282289505005 img loss 1.524821162223816 img loss 1.436195969581604 img loss 1.5965708494186401 img loss 1.4943088293075562 img loss 1.4629437923431396 img loss 1.4840060472488403 img loss 1.6304945945739746 img loss 1.4828459024429321 img loss 1.3382967710494995 img loss 1.4327114820480347 img loss 1.4331905841827393 img loss 1.5317612886428833 img loss 1.4485065937042236 img loss 1.5482914447784424 img loss 1.4556547403335571 img loss 1.3895360231399536 img loss 1.4663500785827637 img loss 1.391162633895874 img loss 1.5599950551986694 img loss 1.5991290807724 img loss 1.552865743637085 img loss 1.5293782949447632 img loss 1.4562313556671143 img loss 1.52595055103302 img loss 1.5255004167556763 img loss 1.506345510482788 img loss 1.5046346187591553 img loss 1.4577610492706299 img loss 1.4817410707473755 img loss 1.5388184785842896 img loss 1.5312858819961548 img loss 1.732060194015503 img loss 1.3745747804641724 img loss 1.5259546041488647 img loss 1.615658164024353 img loss 1.3207730054855347 img loss 1.5184482336044312 img loss 1.4358209371566772 img loss 1.5291374921798706 img loss 1.5759156942367554 img loss 1.435165524482727 img loss 1.4547734260559082 img loss 1.4031212329864502 img loss 1.3472950458526611 img loss 1.37208890914917 img loss 1.471555471420288 img loss 1.4228169918060303 img loss 1.4429479837417603 img loss 1.6125661134719849 img loss 1.4553967714309692 img loss 1.4331532716751099 img loss 1.5359911918640137 img loss 1.3899048566818237 img loss 1.6118080615997314 img loss 1.5060607194900513 img loss 1.4906346797943115 img loss 1.4559980630874634 img loss 1.584468960762024 img loss 1.5461796522140503 img loss 1.556965947151184 img loss 1.6505283117294312 img loss 1.3908021450042725 img loss 1.506341576576233 img loss 1.3984416723251343 img loss 1.455209493637085 img loss 1.4372570514678955 img loss 1.4077792167663574 img loss 1.533347487449646 img loss 1.465044617652893 img loss 1.5785918235778809 img loss 1.4961687326431274 img loss 1.429977536201477 img loss 1.4999679327011108 img loss 1.3718515634536743 img loss 1.4802080392837524 img loss 1.6222831010818481 img loss 1.4629130363464355 img loss 1.4737212657928467 img loss 1.4899030923843384 img loss 1.5091472864151 img loss 1.5157579183578491 img loss 1.5110738277435303 img loss 1.4159905910491943 img loss 1.3694967031478882 {'loss': 1.489, 'grad_norm': 0.3165987432003021, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4537370204925537 img loss 1.3141860961914062 img loss 1.479215383529663 img loss 1.6387280225753784 img loss 1.5309374332427979 img loss 1.539609432220459 img loss 1.5458502769470215 img loss 1.5390210151672363 img loss 1.5302430391311646 img loss 1.581032633781433 img loss 1.6450915336608887 img loss 1.5362342596054077 img loss 1.517218828201294 img loss 1.6721298694610596 img loss 1.4460076093673706 img loss 1.770025610923767 img loss 1.587085485458374 img loss 1.5846765041351318 img loss 1.6909235715866089 img loss 1.5911993980407715 img loss 1.625858187675476 img loss 1.6062166690826416 img loss 1.5520634651184082 img loss 1.57697331905365 img loss 1.5091941356658936 img loss 1.60004723072052 img loss 1.392598032951355 img loss 1.6167985200881958 img loss 1.7516372203826904 img loss 1.6036794185638428 img loss 1.6462113857269287 img loss 1.7108992338180542 img loss 1.635798692703247 img loss 1.4458526372909546 img loss 1.6383262872695923 img loss 1.6315629482269287 img loss 1.5191231966018677 img loss 1.599355936050415 img loss 1.6248472929000854 img loss 1.6750093698501587 img loss 1.4338325262069702 img loss 1.5189687013626099 img loss 1.5741726160049438 img loss 1.4424220323562622 img loss 1.6455258131027222 img loss 1.5386707782745361 img loss 1.5089384317398071 img loss 1.7761094570159912 img loss 1.477754831314087 img loss 1.557959794998169 img loss 1.4938973188400269 img loss 1.3069673776626587 img loss 1.6158883571624756 img loss 1.6802369356155396 img loss 1.479169249534607 img loss 1.592103362083435 img loss 1.6042836904525757 img loss 1.5971440076828003 img loss 1.5635441541671753 img loss 1.4721394777297974 img loss 1.6394425630569458 img loss 1.684333086013794 img loss 1.6760671138763428 img loss 1.5534027814865112 img loss 1.5573962926864624 img loss 1.5994724035263062 img loss 1.4936696290969849 img loss 1.6121145486831665 img loss 1.5896906852722168 img loss 1.54361891746521 img loss 1.608690857887268 img loss 1.4663869142532349 img loss 1.6093995571136475 img loss 1.522153377532959 img loss 1.5425485372543335 img loss 1.633134365081787 img loss 1.5953190326690674 img loss 1.6170355081558228 img loss 1.6745091676712036 img loss 1.5246564149856567 img loss 1.561023235321045 img loss 1.5788007974624634 img loss 1.4837737083435059 img loss 1.775152325630188 img loss 1.4503977298736572 img loss 1.5544854402542114 img loss 1.5758172273635864 img loss 1.4111571311950684 img loss 1.5696114301681519 img loss 1.470246434211731 img loss 1.7028316259384155 img loss 1.5460267066955566 img loss 1.559852123260498 img loss 1.426525354385376 img loss 1.694678544998169 img loss 1.4580533504486084 img loss 1.4789049625396729 img loss 1.499578595161438 img loss 1.568153977394104 img loss 1.584991216659546 img loss 1.5448235273361206 img loss 1.5996016263961792 img loss 1.5534981489181519 img loss 1.554081678390503 img loss 1.534608006477356 img loss 1.6237714290618896 img loss 1.7806302309036255 img loss 1.6405833959579468 img loss 1.446205735206604 img loss 1.5305390357971191 img loss 1.5584989786148071 img loss 1.5586549043655396 img loss 1.4987647533416748 img loss 1.646776556968689 img loss 1.6677993535995483 img loss 1.4582072496414185 img loss 1.6889313459396362 img loss 1.6910077333450317 img loss 1.539192795753479 img loss 1.6314098834991455 img loss 1.5596400499343872 img loss 1.5128856897354126 img loss 1.56053626537323 img loss 1.6216237545013428 img loss 1.4663625955581665 img loss 1.8390893936157227 img loss 1.6874157190322876 img loss 1.7984871864318848 {'loss': 1.5744, 'grad_norm': 0.3283489942550659, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2489982843399048 img loss 1.235978364944458 img loss 1.2626539468765259 img loss 1.247952938079834 img loss 1.2007328271865845 img loss 1.2336719036102295 img loss 1.2312865257263184 img loss 1.1889569759368896 img loss 1.2618430852890015 img loss 1.2094887495040894 img loss 1.205543875694275 img loss 1.2675445079803467 img loss 1.2671135663986206 img loss 1.291276454925537 img loss 1.1843655109405518 img loss 1.22684907913208 img loss 1.2570520639419556 img loss 1.2830168008804321 img loss 1.2081997394561768 img loss 1.1988410949707031 img loss 1.2643779516220093 img loss 1.2369617223739624 img loss 1.2248291969299316 img loss 1.2932898998260498 img loss 1.2511818408966064 img loss 1.2388010025024414 img loss 1.2740503549575806 img loss 1.2460523843765259 img loss 1.1801344156265259 img loss 1.3356451988220215 img loss 1.2479276657104492 img loss 1.2493643760681152 img loss 1.1957346200942993 img loss 1.1992062330245972 img loss 1.2996515035629272 img loss 1.2729029655456543 img loss 1.2787078619003296 img loss 1.2314562797546387 img loss 1.202014446258545 img loss 1.385168433189392 img loss 1.1985585689544678 img loss 1.268155574798584 img loss 1.285020112991333 img loss 1.173901915550232 img loss 1.2228178977966309 img loss 1.2476823329925537 img loss 1.2099602222442627 img loss 1.3406602144241333 img loss 1.2837629318237305 img loss 1.2305799722671509 img loss 1.2522882223129272 img loss 1.2666248083114624 img loss 1.2439254522323608 img loss 1.2357091903686523 img loss 1.2212316989898682 img loss 1.2313753366470337 img loss 1.20428466796875 img loss 1.2522709369659424 img loss 1.270213007926941 img loss 1.1777960062026978 img loss 1.2251741886138916 img loss 1.210354208946228 img loss 1.269660472869873 img loss 1.3534928560256958 img loss 1.3293840885162354 img loss 1.258650779724121 img loss 1.1912466287612915 img loss 1.4095219373703003 img loss 1.3030955791473389 img loss 1.2830322980880737 img loss 1.235979437828064 img loss 1.251356840133667 img loss 1.2742942571640015 img loss 1.2009069919586182 img loss 1.2013996839523315 img loss 1.1718978881835938 img loss 1.2674070596694946 img loss 1.2570654153823853 img loss 1.1955007314682007 img loss 1.2650879621505737 img loss 1.2298903465270996 img loss 1.1818959712982178 img loss 1.21295166015625 img loss 1.1988308429718018 img loss 1.2058486938476562 img loss 1.2329200506210327 img loss 1.231499433517456 img loss 1.2657215595245361 img loss 1.2162106037139893 img loss 1.2794437408447266 img loss 1.2378374338150024 img loss 1.2735220193862915 img loss 1.2572925090789795 img loss 1.3002736568450928 img loss 1.287172794342041 img loss 1.2763671875 img loss 1.2140001058578491 img loss 1.284391164779663 img loss 1.2580761909484863 img loss 1.244814395904541 img loss 1.1899218559265137 img loss 1.3448433876037598 img loss 1.216469168663025 img loss 1.2525110244750977 img loss 1.3005671501159668 img loss 1.2431883811950684 img loss 1.2074934244155884 img loss 1.2089176177978516 img loss 1.3136284351348877 img loss 1.2526425123214722 img loss 1.2054904699325562 img loss 1.232000708580017 img loss 1.2843292951583862 img loss 1.1863033771514893 img loss 1.2078027725219727 img loss 1.2509483098983765 img loss 1.2822214365005493 img loss 1.225954294204712 img loss 1.2163056135177612 img loss 1.3435437679290771 img loss 1.3416677713394165 img loss 1.2204469442367554 img loss 1.3358689546585083 img loss 1.2112621068954468 img loss 1.185234785079956 img loss 1.2270021438598633 img loss 1.2866395711898804 img loss 1.178799033164978 {'loss': 1.2471, 'grad_norm': 0.21840374171733856, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1454439163208008 img loss 1.2036513090133667 img loss 1.2109346389770508 img loss 1.1529852151870728 img loss 1.2196893692016602 img loss 1.2485077381134033 img loss 1.210590124130249 img loss 1.207527756690979 img loss 1.2812649011611938 img loss 1.2210323810577393 img loss 1.2040716409683228 img loss 1.2155976295471191 img loss 1.2342045307159424 img loss 1.2300083637237549 img loss 1.2575037479400635 img loss 1.2952492237091064 img loss 1.200249195098877 img loss 1.1687867641448975 img loss 1.231784462928772 img loss 1.1631969213485718 img loss 1.2385601997375488 img loss 1.230057716369629 img loss 1.1856858730316162 img loss 1.2423559427261353 img loss 1.1590203046798706 img loss 1.198207139968872 img loss 1.2066795825958252 img loss 1.1920993328094482 img loss 1.3126786947250366 img loss 1.1651710271835327 img loss 1.1904027462005615 img loss 1.3368228673934937 img loss 1.2390713691711426 img loss 1.2181682586669922 img loss 1.1702970266342163 img loss 1.2730529308319092 img loss 1.2561348676681519 img loss 1.181925654411316 img loss 1.2698959112167358 img loss 1.2871811389923096 img loss 1.271582841873169 img loss 1.226011872291565 img loss 1.1658748388290405 img loss 1.1974010467529297 img loss 1.2446625232696533 img loss 1.2031997442245483 img loss 1.205226182937622 img loss 1.185778260231018 img loss 1.1817653179168701 img loss 1.266922950744629 img loss 1.1692771911621094 img loss 1.2341082096099854 img loss 1.3377841711044312 img loss 1.1527607440948486 img loss 1.2231707572937012 img loss 1.1815954446792603 img loss 1.1967322826385498 img loss 1.1939016580581665 img loss 1.2209614515304565 img loss 1.2859095335006714 img loss 1.1780213117599487 img loss 1.212534785270691 img loss 1.1692243814468384 img loss 1.2616362571716309 img loss 1.2452988624572754 img loss 1.2672877311706543 img loss 1.2315666675567627 img loss 1.1724573373794556 img loss 1.258019208908081 img loss 1.208978295326233 img loss 1.1791998147964478 img loss 1.2713322639465332 img loss 1.220547080039978 img loss 1.2049980163574219 img loss 1.1974844932556152 img loss 1.2754061222076416 img loss 1.1564711332321167 img loss 1.2487658262252808 img loss 1.215079665184021 img loss 1.2484030723571777 img loss 1.1458826065063477 img loss 1.2772250175476074 img loss 1.1799780130386353 img loss 1.2600876092910767 img loss 1.2469128370285034 img loss 1.2434673309326172 img loss 1.1805548667907715 img loss 1.2158074378967285 img loss 1.1534526348114014 img loss 1.265018343925476 img loss 1.2295585870742798 img loss 1.263623833656311 img loss 1.2302756309509277 img loss 1.2304315567016602 img loss 1.2654187679290771 img loss 1.2470519542694092 img loss 1.2346910238265991 img loss 1.2557587623596191 img loss 1.186282992362976 img loss 1.1518083810806274 img loss 1.3141354322433472 img loss 1.2178747653961182 img loss 1.2881094217300415 img loss 1.2394280433654785 img loss 1.2553703784942627 img loss 1.1660614013671875 img loss 1.3052672147750854 img loss 1.2763303518295288 img loss 1.1900638341903687 img loss 1.2572836875915527 img loss 1.1796143054962158 img loss 1.2289739847183228 img loss 1.260032296180725 img loss 1.246347188949585 img loss 1.2636713981628418 img loss 1.2096576690673828 img loss 1.235684871673584 img loss 1.2314668893814087 img loss 1.2537285089492798 img loss 1.210415244102478 img loss 1.2295384407043457 img loss 1.245549201965332 img loss 1.2108190059661865 img loss 1.146213412284851 img loss 1.2885633707046509 img loss 1.1635117530822754 img loss 1.1860793828964233 img loss 1.2288097143173218 {'loss': 1.2236, 'grad_norm': 0.29183489084243774, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1713905334472656 img loss 1.356129765510559 img loss 1.2768542766571045 img loss 1.3093212842941284 img loss 1.2202856540679932 img loss 1.2707865238189697 img loss 1.2817655801773071 img loss 1.238772988319397 img loss 1.2176952362060547 img loss 1.339797854423523 img loss 1.327248215675354 img loss 1.255696177482605 img loss 1.2823083400726318 img loss 1.3657145500183105 img loss 1.2693060636520386 img loss 1.2703996896743774img loss 1.2987616062164307 img loss 1.2895939350128174 img loss 1.3529468774795532 img loss 1.2075977325439453 img loss 1.2895587682724 img loss 1.2506557703018188 img loss 1.272631049156189 img loss 1.2498270273208618 img loss 1.3317044973373413 img loss 1.2236746549606323 img loss 1.2476543188095093 img loss 1.233863115310669 img loss 1.1995388269424438 img loss 1.2861922979354858 img loss 1.2012569904327393 img loss 1.1468191146850586 img loss 1.3529878854751587 img loss 1.2790791988372803 img loss 1.4113975763320923 img loss 1.3144197463989258 img loss 1.257670283317566 img loss 1.3466136455535889 img loss 1.2022907733917236 img loss 1.3301560878753662 img loss 1.2870298624038696 img loss 1.2137970924377441 img loss 1.3031396865844727 img loss 1.2059110403060913 img loss 1.3104523420333862 img loss 1.3311703205108643 img loss 1.2598918676376343 img loss 1.2832530736923218 img loss 1.2524553537368774 img loss 1.2985671758651733 img loss 1.3536522388458252 img loss 1.277585744857788 img loss 1.2501916885375977 img loss 1.3068251609802246 img loss 1.2764196395874023 img loss 1.3059943914413452 img loss 1.2630805969238281 img loss 1.2294764518737793 img loss 1.3368563652038574 img loss 1.296086072921753 img loss 1.302753210067749 img loss 1.335436463356018 img loss 1.2611044645309448 img loss 1.2321895360946655 img loss 1.2297606468200684 img loss 1.2582805156707764 img loss 1.2717176675796509 img loss 1.3423397541046143 img loss 1.2199089527130127 img loss 1.3129733800888062 img loss 1.285917043685913 img loss 1.2588790655136108 img loss 1.3409740924835205 img loss 1.2955121994018555 img loss 1.2697252035140991 img loss 1.2819221019744873 img loss 1.2024234533309937 img loss 1.3029534816741943 img loss 1.276235580444336 img loss 1.2160797119140625 img loss 1.3419163227081299 img loss 1.355513095855713 img loss 1.2138792276382446 img loss 1.3336666822433472 img loss 1.313433051109314 img loss 1.395806074142456 img loss 1.2547401189804077 img loss 1.2477717399597168 img loss 1.3134121894836426 img loss 1.1568145751953125 img loss 1.2955563068389893 img loss 1.2129539251327515 img loss 1.3546150922775269 img loss 1.259469747543335 img loss 1.2187108993530273 img loss 1.2609227895736694 img loss 1.2475041151046753 img loss 1.2659186124801636 img loss 1.25920569896698 img loss 1.2322094440460205 img loss 1.2536743879318237 img loss 1.3280024528503418 img loss 1.240476131439209 img loss 1.2840282917022705 img loss 1.2278950214385986 img loss 1.236628532409668 img loss 1.2828673124313354 img loss 1.2877225875854492 img loss 1.3632721900939941 img loss 1.318297028541565 img loss 1.2170801162719727 img loss 1.4073127508163452 img loss 1.3061145544052124 img loss 1.2459582090377808 img loss 1.3656401634216309 img loss 1.2902412414550781 img loss 1.2787432670593262 img loss 1.1950855255126953 img loss 1.3182415962219238 img loss 1.2509483098983765 img loss 1.3951843976974487 img loss 1.3360192775726318 img loss 1.219524621963501 img loss 1.2817152738571167 img loss 1.2756752967834473 img loss 1.3284114599227905 img loss 1.317042350769043 img loss 1.2603459358215332 {'loss': 1.2798, 'grad_norm': 0.19856712222099304, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.337626576423645 img loss 1.3612006902694702 img loss 1.321428894996643 img loss 1.275194525718689 img loss 1.364800214767456 img loss 1.3545297384262085 img loss 1.3836349248886108 img loss 1.3499616384506226 img loss 1.4366075992584229 img loss 1.331860065460205 img loss 1.3916264772415161 img loss 1.481854796409607 img loss 1.3540618419647217 img loss 1.3681946992874146 img loss 1.2865605354309082 img loss 1.4650282859802246 img loss 1.3270010948181152 img loss 1.3509565591812134 img loss 1.2808787822723389 img loss 1.3522893190383911 img loss 1.414993405342102 img loss 1.4106061458587646 img loss 1.4395736455917358 img loss 1.3815741539001465 img loss 1.4126694202423096 img loss 1.4728549718856812 img loss 1.4121088981628418 img loss 1.3954358100891113 img loss 1.3584181070327759 img loss 1.5108572244644165 img loss 1.4319946765899658 img loss 1.3895905017852783 img loss 1.2910031080245972 img loss 1.3564950227737427 img loss 1.3834834098815918 img loss 1.4722696542739868 img loss 1.4518206119537354 img loss 1.4294159412384033 img loss 1.337558627128601 img loss 1.459194540977478 img loss 1.4291882514953613 img loss 1.3504520654678345 img loss 1.3866606950759888 img loss 1.39724600315094 img loss 1.4573266506195068 img loss 1.3892706632614136 img loss 1.311774730682373 img loss 1.340243935585022 img loss 1.2530434131622314 img loss 1.3890517950057983 img loss 1.4612616300582886 img loss 1.4206959009170532 img loss 1.3253711462020874 img loss 1.3593060970306396 img loss 1.4112293720245361 img loss 1.3367139101028442 img loss 1.4220634698867798 img loss 1.31964111328125 img loss 1.3848378658294678 img loss 1.263850212097168 img loss 1.3739268779754639 img loss 1.3087871074676514 img loss 1.4099644422531128 img loss 1.3452430963516235 img loss 1.2874443531036377 img loss 1.4240756034851074 img loss 1.2907638549804688 img loss 1.4184505939483643 img loss 1.3952596187591553 img loss 1.420833945274353 img loss 1.3695409297943115 img loss 1.3924161195755005 img loss 1.3171173334121704 img loss 1.418739676475525 img loss 1.3780341148376465 img loss 1.3579976558685303 img loss 1.4613245725631714 img loss 1.3348067998886108 img loss 1.4118311405181885 img loss 1.4350441694259644 img loss 1.4402687549591064 img loss 1.390529990196228 img loss 1.3565380573272705 img loss 1.4266703128814697 img loss 1.6413743495941162 img loss 1.3252149820327759 img loss 1.397965669631958 img loss 1.4805279970169067 img loss 1.41391122341156 img loss 1.4030966758728027 img loss 1.4046250581741333 img loss 1.3733643293380737 img loss 1.439819097518921 img loss 1.4833557605743408 img loss 1.4741579294204712 img loss 1.3550188541412354 img loss 1.324429988861084 img loss 1.424656629562378 img loss 1.4219216108322144 img loss 1.356920838356018 img loss 1.3726551532745361 img loss 1.3985339403152466 img loss 1.3413242101669312 img loss 1.4635666608810425 img loss 1.3674336671829224 img loss 1.3500655889511108 img loss 1.3868507146835327 img loss 1.4976564645767212 img loss 1.4303644895553589 img loss 1.4579846858978271 img loss 1.2738029956817627 img loss 1.3191670179367065 img loss 1.3690450191497803 img loss 1.4551784992218018 img loss 1.4091715812683105 img loss 1.3993726968765259 img loss 1.4456032514572144 img loss 1.3598144054412842 img loss 1.4581410884857178 img loss 1.3992698192596436 img loss 1.4749807119369507 img loss 1.3021208047866821 img loss 1.3079209327697754 img loss 1.3331794738769531 img loss 1.3128384351730347 img loss 1.3274658918380737 img loss 1.3739386796951294 img loss 1.3168127536773682 {'loss': 1.3858, 'grad_norm': 0.4152173399925232, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1876957416534424img loss 1.2337665557861328 img loss 1.2877914905548096 img loss 1.203185796737671 img loss 1.1818983554840088 img loss 1.1850464344024658 img loss 1.215296983718872 img loss 1.1685900688171387 img loss 1.219757080078125 img loss 1.1755996942520142 img loss 1.2194454669952393 img loss 1.1644233465194702 img loss 1.087798833847046 img loss 1.253585696220398 img loss 1.210257887840271 img loss 1.185892105102539 img loss 1.2243341207504272 img loss 1.2858507633209229 img loss 1.2040261030197144 img loss 1.2029403448104858 img loss 1.147463083267212 img loss 1.1259037256240845 img loss 1.1506328582763672 img loss 1.1464146375656128 img loss 1.2601425647735596 img loss 1.243937373161316 img loss 1.2391266822814941 img loss 1.2101980447769165 img loss 1.3595227003097534 img loss 1.139972448348999 img loss 1.2416104078292847 img loss 1.1895021200180054 img loss 1.2860816717147827 img loss 1.193632960319519 img loss 1.176946997642517 img loss 1.2558996677398682 img loss 1.215617060661316 img loss 1.2149639129638672 img loss 1.2393608093261719 img loss 1.174095630645752 img loss 1.161669135093689 img loss 1.227283000946045 img loss 1.2633857727050781 img loss 1.2296479940414429 img loss 1.2527236938476562 img loss 1.16542649269104 img loss 1.207062005996704 img loss 1.371387243270874 img loss 1.1382088661193848 img loss 1.2154109477996826 img loss 1.1703910827636719 img loss 1.2905250787734985 img loss 1.2682147026062012 img loss 1.2298972606658936 img loss 1.2713454961776733 img loss 1.2007652521133423 img loss 1.140824556350708 img loss 1.2563326358795166 img loss 1.0719636678695679 img loss 1.2085708379745483 img loss 1.2273807525634766 img loss 1.1975945234298706 img loss 1.2375805377960205 img loss 1.1933977603912354 img loss 1.2179306745529175 img loss 1.191323161125183 img loss 1.240865707397461 img loss 1.2763817310333252 img loss 1.1775673627853394 img loss 1.3084205389022827 img loss 1.2653584480285645 img loss 1.2550010681152344 img loss 1.2444454431533813 img loss 1.1737381219863892 img loss 1.159112572669983 img loss 1.3021204471588135 img loss 1.2221825122833252 img loss 1.320696234703064 img loss 1.2226375341415405 img loss 1.1670849323272705 img loss 1.159111499786377 img loss 1.230659008026123img loss 1.1526787281036377 img loss 1.21346914768219 img loss 1.2490439414978027 img loss 1.1409310102462769 img loss 1.1857868432998657 img loss 1.164480209350586 img loss 1.2223783731460571 img loss 1.1434342861175537 img loss 1.2426056861877441 img loss 1.2540009021759033 img loss 1.2208490371704102 img loss 1.2121727466583252 img loss 1.218263864517212 img loss 1.194902777671814 img loss 1.2750269174575806 img loss 1.269651174545288 img loss 1.1597316265106201 img loss 1.1856497526168823 img loss 1.2075746059417725 img loss 1.2755489349365234 img loss 1.2561397552490234 img loss 1.173660159111023 img loss 1.2689059972763062 img loss 1.1723145246505737 img loss 1.1994001865386963 img loss 1.1658718585968018 img loss 1.1533408164978027 img loss 1.1551274061203003 img loss 1.1924922466278076 img loss 1.1540184020996094 img loss 1.2075945138931274 img loss 1.1039505004882812 img loss 1.1117452383041382 img loss 1.225356101989746 img loss 1.1265219449996948 img loss 1.1876648664474487 img loss 1.1968692541122437 img loss 1.1282660961151123 img loss 1.2472610473632812 img loss 1.076801061630249 img loss 1.271103858947754 img loss 1.1909058094024658 img loss 1.0895156860351562 img loss 1.1365065574645996 img loss 1.1733089685440063 img loss 1.181557536125183 {'loss': 1.206, 'grad_norm': 0.2057059407234192, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.167388677597046 img loss 1.2110458612442017 img loss 1.2297676801681519 img loss 1.2246173620224 img loss 1.2719064950942993 img loss 1.2332149744033813 img loss 1.253759741783142 img loss 1.166481375694275 img loss 1.1805120706558228 img loss 1.203452467918396 img loss 1.1801121234893799 img loss 1.2485605478286743 img loss 1.246516227722168 img loss 1.178947925567627 img loss 1.2362687587738037 img loss 1.2287836074829102 img loss 1.1477879285812378 img loss 1.322549819946289 img loss 1.2204631567001343 img loss 1.1904805898666382 img loss 1.2613104581832886 img loss 1.2002620697021484 img loss 1.163622498512268 img loss 1.1971288919448853 img loss 1.24125075340271 img loss 1.229482889175415 img loss 1.1329599618911743 img loss 1.2555060386657715 img loss 1.3296806812286377 img loss 1.1650055646896362 img loss 1.2464184761047363 img loss 1.2120846509933472 img loss 1.242074966430664 img loss 1.2227815389633179 img loss 1.2676005363464355 img loss 1.1925082206726074 img loss 1.20936918258667 img loss 1.2137587070465088 img loss 1.1723250150680542 img loss 1.2066620588302612 img loss 1.1941543817520142 img loss 1.2339601516723633 img loss 1.2302050590515137 img loss 1.2653155326843262 img loss 1.2498327493667603 img loss 1.2051589488983154 img loss 1.2270978689193726 img loss 1.2430381774902344 img loss 1.1903218030929565 img loss 1.1992509365081787 img loss 1.2224525213241577 img loss 1.2047895193099976 img loss 1.163745403289795 img loss 1.1853684186935425 img loss 1.201352596282959 img loss 1.2453556060791016 img loss 1.2033348083496094 img loss 1.1189286708831787 img loss 1.220710277557373 img loss 1.2001965045928955 img loss 1.2656619548797607 img loss 1.2962961196899414 img loss 1.2171134948730469 img loss 1.2234771251678467 img loss 1.2681877613067627 img loss 1.1505781412124634 img loss 1.2514986991882324 img loss 1.2181761264801025 img loss 1.2200422286987305 img loss 1.2057011127471924 img loss 1.1109070777893066 img loss 1.2623248100280762 img loss 1.2078155279159546 img loss 1.215606927871704 img loss 1.2119824886322021 img loss 1.2026779651641846 img loss 1.2040270566940308 img loss 1.2356467247009277 img loss 1.1914188861846924 img loss 1.174367904663086 img loss 1.1626192331314087 img loss 1.2818015813827515 img loss 1.179011583328247 img loss 1.240212082862854 img loss 1.0956628322601318 img loss 1.2307102680206299 img loss 1.2544397115707397 img loss 1.209643006324768 img loss 1.1931921243667603 img loss 1.23479163646698 img loss 1.2328598499298096 img loss 1.1966403722763062 img loss 1.226325511932373 img loss 1.2817140817642212 img loss 1.297820806503296 img loss 1.2358596324920654 img loss 1.1582077741622925 img loss 1.213519811630249 img loss 1.236153244972229 img loss 1.2457014322280884 img loss 1.2985570430755615 img loss 1.2401750087738037 img loss 1.2545324563980103 img loss 1.1739387512207031 img loss 1.3185641765594482 img loss 1.1390994787216187 img loss 1.2340149879455566 img loss 1.2775702476501465 img loss 1.279279351234436 img loss 1.2239710092544556 img loss 1.2449902296066284 img loss 1.3134464025497437 img loss 1.213457465171814 img loss 1.252830982208252 img loss 1.2405210733413696 img loss 1.2615476846694946 img loss 1.1831861734390259 img loss 1.1971648931503296 img loss 1.2130100727081299 img loss 1.3005685806274414 img loss 1.2494165897369385 img loss 1.217753291130066 img loss 1.2227566242218018 img loss 1.1911827325820923 img loss 1.1898305416107178 img loss 1.2040983438491821 img loss 1.2273834943771362 img loss 1.2003142833709717 {'loss': 1.2204, 'grad_norm': 0.24451994895935059, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3697532415390015 img loss 1.2206887006759644 img loss 1.2430137395858765 img loss 1.1967188119888306 img loss 1.250934362411499 img loss 1.234173059463501 img loss 1.256313681602478 img loss 1.312408447265625 img loss 1.2831064462661743 img loss 1.2881903648376465 img loss 1.2448818683624268 img loss 1.2594212293624878 img loss 1.1852015256881714 img loss 1.2515454292297363 img loss 1.31061589717865 img loss 1.199223279953003 img loss 1.2451461553573608 img loss 1.26903235912323 img loss 1.3964003324508667 img loss 1.1741690635681152 img loss 1.332444429397583 img loss 1.3228620290756226 img loss 1.3274974822998047 img loss 1.271944522857666 img loss 1.213915467262268 img loss 1.3335192203521729 img loss 1.2294992208480835 img loss 1.1624772548675537 img loss 1.2179783582687378 img loss 1.2189451456069946 img loss 1.2497286796569824 img loss 1.2806165218353271 img loss 1.1871846914291382 img loss 1.2669179439544678 img loss 1.3727867603302002 img loss 1.3253005743026733 img loss 1.287434458732605 img loss 1.2516639232635498 img loss 1.297776460647583 img loss 1.2062281370162964 img loss 1.195103645324707 img loss 1.2905614376068115 img loss 1.306681513786316 img loss 1.3167572021484375 img loss 1.3408849239349365 img loss 1.2767146825790405 img loss 1.2027748823165894 img loss 1.2419828176498413 img loss 1.277744174003601 img loss 1.2256717681884766 img loss 1.2058864831924438 img loss 1.2765862941741943 img loss 1.3228422403335571 img loss 1.2520439624786377 img loss 1.2618811130523682 img loss 1.296976089477539 img loss 1.2759132385253906 img loss 1.2995322942733765 img loss 1.2382452487945557 img loss 1.4628506898880005 img loss 1.3561524152755737 img loss 1.2170875072479248 img loss 1.2180194854736328 img loss 1.1289722919464111 img loss 1.2204933166503906 img loss 1.2317731380462646 img loss 1.308201789855957 img loss 1.295290231704712 img loss 1.2383077144622803 img loss 1.2962554693222046 img loss 1.2399728298187256 img loss 1.2613718509674072 img loss 1.237468957901001 img loss 1.287035584449768 img loss 1.29561185836792 img loss 1.2711999416351318 img loss 1.2414144277572632 img loss 1.2773462533950806 img loss 1.2637449502944946 img loss 1.249759554862976 img loss 1.2504924535751343 img loss 1.3248029947280884 img loss 1.4139829874038696 img loss 1.2201064825057983 img loss 1.2283096313476562 img loss 1.245633602142334 img loss 1.203644037246704 img loss 1.2540653944015503 img loss 1.2018483877182007 img loss 1.240202784538269 img loss 1.3860251903533936 img loss 1.2429507970809937 img loss 1.1772754192352295 img loss 1.2646855115890503 img loss 1.1824121475219727 img loss 1.2760052680969238 img loss 1.2890022993087769 img loss 1.2361347675323486 img loss 1.2671291828155518 img loss 1.1720730066299438 img loss 1.301114559173584 img loss 1.260273814201355 img loss 1.1990749835968018 img loss 1.3622000217437744 img loss 1.1991785764694214 img loss 1.2184604406356812 img loss 1.3606493473052979 img loss 1.2473795413970947 img loss 1.3127326965332031 img loss 1.3306035995483398 img loss 1.2615896463394165 img loss 1.2520897388458252 img loss 1.310236930847168 img loss 1.2526018619537354 img loss 1.302502155303955 img loss 1.2641007900238037 img loss 1.2727601528167725 img loss 1.2091645002365112 img loss 1.2936115264892578 img loss 1.291750431060791 img loss 1.2137190103530884 img loss 1.3790041208267212 img loss 1.3250490427017212 img loss 1.3269827365875244 img loss 1.2125544548034668 img loss 1.2993501424789429 img loss 1.279116153717041 img loss 1.1811078786849976 {'loss': 1.266, 'grad_norm': 0.3806912899017334, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.142356276512146 img loss 1.2134320735931396 img loss 1.178648829460144 img loss 1.2495266199111938 img loss 1.2013405561447144 img loss 1.1366420984268188 img loss 1.2195955514907837 img loss 1.19769287109375 img loss 1.1341443061828613 img loss 1.2193355560302734 img loss 1.2631299495697021 img loss 1.1893261671066284 img loss 1.2882707118988037 img loss 1.2345373630523682 img loss 1.2032949924468994 img loss 1.1788266897201538 img loss 1.2269176244735718 img loss 1.2044811248779297 img loss 1.2462996244430542 img loss 1.201890230178833 img loss 1.1518539190292358 img loss 1.3046743869781494 img loss 1.1807342767715454 img loss 1.1748298406600952 img loss 1.1589323282241821 img loss 1.1223886013031006 img loss 1.273932933807373 img loss 1.1560628414154053 img loss 1.2467024326324463 img loss 1.2578232288360596 img loss 1.186983346939087 img loss 1.19747793674469 img loss 1.1579341888427734 img loss 1.1881307363510132 img loss 1.2048587799072266 img loss 1.279599905014038 img loss 1.1816112995147705 img loss 1.2017769813537598 img loss 1.2788399457931519 img loss 1.261187195777893 img loss 1.2131948471069336 img loss 1.2358510494232178 img loss 1.1969448328018188 img loss 1.2492212057113647 img loss 1.1860575675964355 img loss 1.17365300655365 img loss 1.1367449760437012 img loss 1.2435071468353271 img loss 1.2455246448516846 img loss 1.273099422454834 img loss 1.2069424390792847 img loss 1.2331527471542358 img loss 1.1939862966537476 img loss 1.2334916591644287 img loss 1.2173603773117065 img loss 1.2469128370285034 img loss 1.204201579093933 img loss 1.1317414045333862 img loss 1.2250933647155762 img loss 1.2391237020492554 img loss 1.1722325086593628 img loss 1.1950830221176147 img loss 1.1596407890319824 img loss 1.2012455463409424 img loss 1.236473798751831 img loss 1.1638789176940918 img loss 1.1427918672561646 img loss 1.2621577978134155 img loss 1.2177047729492188 img loss 1.2467952966690063 img loss 1.2049471139907837 img loss 1.2192184925079346 img loss 1.1211130619049072 img loss 1.2173957824707031 img loss 1.193642020225525 img loss 1.2591995000839233 img loss 1.290709137916565 img loss 1.2645423412322998 img loss 1.2764604091644287 img loss 1.2011393308639526 img loss 1.2157254219055176 img loss 1.1959075927734375 img loss 1.1956993341445923 img loss 1.185072898864746 img loss 1.2667853832244873 img loss 1.146992564201355 img loss 1.1272629499435425 img loss 1.1438764333724976 img loss 1.2692394256591797 img loss 1.1287992000579834 img loss 1.2204694747924805 img loss 1.2002781629562378 img loss 1.1776864528656006 img loss 1.2855336666107178 img loss 1.1826856136322021 img loss 1.25634765625 img loss 1.3113987445831299 img loss 1.2944560050964355 img loss 1.2463815212249756 img loss 1.1905924081802368 img loss 1.2329176664352417 img loss 1.2068345546722412 img loss 1.2681591510772705 img loss 1.2502819299697876 img loss 1.232004165649414 img loss 1.1948479413986206 img loss 1.2711933851242065 img loss 1.1437885761260986 img loss 1.2557042837142944 img loss 1.233847975730896 img loss 1.1781457662582397 img loss 1.1418392658233643 img loss 1.2347729206085205 img loss 1.1507267951965332 img loss 1.2412528991699219 img loss 1.1663216352462769 img loss 1.183976411819458 img loss 1.2302727699279785 img loss 1.243910551071167 img loss 1.204771876335144 img loss 1.1733567714691162 img loss 1.178544521331787 img loss 1.251595139503479 img loss 1.1956982612609863 img loss 1.1961462497711182 img loss 1.2248048782348633 img loss 1.1441736221313477 img loss 1.278224229812622 {'loss': 1.2108, 'grad_norm': 0.26272663474082947, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3232955932617188 img loss 1.3107202053070068 img loss 1.3260855674743652 img loss 1.2861868143081665 img loss 1.2289543151855469 img loss 1.2639750242233276 img loss 1.30271315574646 img loss 1.2770456075668335 img loss 1.2684921026229858 img loss 1.2277679443359375 img loss 1.2314121723175049 img loss 1.3186874389648438 img loss 1.3332983255386353 img loss 1.3574031591415405 img loss 1.2784664630889893 img loss 1.3081295490264893 img loss 1.300474762916565 img loss 1.2450957298278809 img loss 1.3080213069915771 img loss 1.271209478378296 img loss 1.3552535772323608 img loss 1.250771403312683 img loss 1.2262911796569824 img loss 1.2465505599975586 img loss 1.2541683912277222 img loss 1.2928926944732666 img loss 1.2227728366851807 img loss 1.2290436029434204 img loss 1.2157840728759766 img loss 1.2231489419937134 img loss 1.3207365274429321 img loss 1.2723393440246582 img loss 1.3259730339050293 img loss 1.227304458618164 img loss 1.4490196704864502 img loss 1.2822542190551758 img loss 1.2371246814727783 img loss 1.2767713069915771 img loss 1.3280245065689087 img loss 1.4432612657546997 img loss 1.2847150564193726 img loss 1.2616591453552246 img loss 1.3166773319244385 img loss 1.279453992843628 img loss 1.315265417098999 img loss 1.339984655380249 img loss 1.3311794996261597 img loss 1.3239846229553223 img loss 1.312471628189087 img loss 1.3256405591964722 img loss 1.2579221725463867 img loss 1.3141224384307861 img loss 1.2867066860198975 img loss 1.3830807209014893 img loss 1.3127199411392212 img loss 1.2835184335708618 img loss 1.3681625127792358 img loss 1.3608635663986206 img loss 1.2871644496917725 img loss 1.364925503730774 img loss 1.2016587257385254 img loss 1.299521803855896 img loss 1.3097014427185059 img loss 1.3359265327453613 img loss 1.358916163444519 img loss 1.318092703819275 img loss 1.2734942436218262 img loss 1.27352774143219 img loss 1.2637748718261719 img loss 1.2544193267822266 img loss 1.3655459880828857 img loss 1.268988013267517 img loss 1.2718007564544678 img loss 1.2902473211288452 img loss 1.207756519317627 img loss 1.2776198387145996 img loss 1.2414907217025757 img loss 1.2993710041046143 img loss 1.3176801204681396 img loss 1.351325511932373 img loss 1.2606194019317627 img loss 1.3166918754577637 img loss 1.2674299478530884 img loss 1.2284570932388306 img loss 1.1720924377441406 img loss 1.2803610563278198 img loss 1.2928615808486938 img loss 1.3199841976165771 img loss 1.2559661865234375 img loss 1.2041375637054443 img loss 1.3604748249053955 img loss 1.3421409130096436 img loss 1.2894617319107056 img loss 1.3130117654800415 img loss 1.2680457830429077 img loss 1.424606442451477 img loss 1.2803198099136353 img loss 1.2660398483276367 img loss 1.3937504291534424 img loss 1.3560301065444946 img loss 1.3082636594772339 img loss 1.264917016029358 img loss 1.2825454473495483 img loss 1.4053254127502441 img loss 1.229386806488037 img loss 1.304078459739685 img loss 1.3421037197113037 img loss 1.2781116962432861 img loss 1.3021137714385986 img loss 1.253913164138794 img loss 1.2870956659317017 img loss 1.3257049322128296 img loss 1.3557831048965454 img loss 1.3161156177520752 img loss 1.2565422058105469 img loss 1.2284584045410156 img loss 1.2416765689849854 img loss 1.2947382926940918 img loss 1.2488142251968384 img loss 1.2584774494171143 img loss 1.3150324821472168 img loss 1.389206051826477 img loss 1.3016115427017212 img loss 1.223101019859314 img loss 1.2921628952026367 img loss 1.2570825815200806 img loss 1.2564103603363037 img loss 1.2358750104904175 {'loss': 1.2929, 'grad_norm': 0.22897052764892578, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2513474225997925 img loss 1.3058980703353882 img loss 1.2047923803329468 img loss 1.1882318258285522 img loss 1.1878823041915894 img loss 1.2442452907562256 img loss 1.294419765472412 img loss 1.2060225009918213 img loss 1.2302277088165283 img loss 1.2755239009857178 img loss 1.21099853515625 img loss 1.2605558633804321 img loss 1.2598263025283813 img loss 1.235107660293579 img loss 1.2584494352340698 img loss 1.2651680707931519 img loss 1.1868698596954346 img loss 1.128566026687622 img loss 1.206325888633728 img loss 1.2204205989837646 img loss 1.200945258140564 img loss 1.206365942955017 img loss 1.2148678302764893 img loss 1.2091288566589355 img loss 1.2227113246917725 img loss 1.2306468486785889 img loss 1.1596657037734985 img loss 1.1688554286956787 img loss 1.2125412225723267 img loss 1.181065320968628 img loss 1.312491774559021 img loss 1.204321265220642 img loss 1.2256983518600464 img loss 1.273255705833435 img loss 1.2155604362487793 img loss 1.234478235244751 img loss 1.2236533164978027 img loss 1.2514923810958862 img loss 1.1606782674789429 img loss 1.1922353506088257 img loss 1.2219536304473877 img loss 1.1941251754760742 img loss 1.2309061288833618 img loss 1.192664623260498 img loss 1.206329584121704 img loss 1.247309684753418 img loss 1.2139896154403687 img loss 1.299082636833191 img loss 1.2050751447677612 img loss 1.1663851737976074 img loss 1.1986576318740845 img loss 1.2753348350524902 img loss 1.2373626232147217 img loss 1.215065598487854 img loss 1.310729742050171 img loss 1.2109359502792358 img loss 1.2444828748703003 img loss 1.1979433298110962 img loss 1.2197271585464478 img loss 1.217650294303894 img loss 1.1739610433578491 img loss 1.170023798942566 img loss 1.2694950103759766 img loss 1.2226918935775757 img loss 1.224656105041504 img loss 1.1877316236495972 img loss 1.2494019269943237 img loss 1.2102669477462769 img loss 1.2383995056152344 img loss 1.2218501567840576 img loss 1.2187962532043457 img loss 1.2169145345687866 img loss 1.25606369972229 img loss 1.219692587852478 img loss 1.1909048557281494 img loss 1.2105140686035156 img loss 1.1970876455307007 img loss 1.1833313703536987 img loss 1.181702971458435 img loss 1.2271742820739746 img loss 1.2099456787109375 img loss 1.1697845458984375 img loss 1.2255384922027588 img loss 1.2234110832214355 img loss 1.2792315483093262 img loss 1.2213616371154785 img loss 1.2347087860107422 img loss 1.2811616659164429 img loss 1.2161463499069214 img loss 1.2079923152923584 img loss 1.1975854635238647 img loss 1.209402084350586 img loss 1.2266111373901367 img loss 1.1859558820724487 img loss 1.2399718761444092 img loss 1.2340151071548462 img loss 1.1828687191009521 img loss 1.2306652069091797 img loss 1.1975284814834595 img loss 1.2353193759918213 img loss 1.2500402927398682 img loss 1.278140902519226 img loss 1.2568002939224243 img loss 1.226801872253418 img loss 1.1899056434631348 img loss 1.1746044158935547 img loss 1.2354549169540405 img loss 1.2761868238449097 img loss 1.2707147598266602 img loss 1.3087772130966187 img loss 1.228900671005249 img loss 1.1926610469818115 img loss 1.2533087730407715 img loss 1.2348911762237549 img loss 1.2515041828155518 img loss 1.2550432682037354 img loss 1.2116644382476807 img loss 1.26224946975708 img loss 1.1611665487289429 img loss 1.1818585395812988 img loss 1.220712423324585img loss 1.2127342224121094 img loss 1.2603745460510254 img loss 1.251569151878357 img loss 1.2236323356628418 img loss 1.231360912322998 img loss 1.229683518409729 img loss 1.2846659421920776 {'loss': 1.2244, 'grad_norm': 0.27220773696899414, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2221653461456299 img loss 1.2658805847167969 img loss 1.2126402854919434 img loss 1.2797484397888184 img loss 1.229743480682373 img loss 1.2387632131576538 img loss 1.1831673383712769 img loss 1.1892752647399902 img loss 1.2165220975875854 img loss 1.25291907787323 img loss 1.2105530500411987 img loss 1.2264950275421143 img loss 1.203463077545166 img loss 1.2920281887054443 img loss 1.2641632556915283 img loss 1.1702260971069336 img loss 1.248171091079712 img loss 1.287190318107605 img loss 1.244987964630127 img loss 1.2413158416748047 img loss 1.1782629489898682 img loss 1.225042700767517 img loss 1.1776833534240723 img loss 1.2455891370773315 img loss 1.1559274196624756 img loss 1.3121684789657593 img loss 1.20726478099823 img loss 1.293405532836914 img loss 1.3098790645599365 img loss 1.2830122709274292 img loss 1.2334399223327637 img loss 1.2388641834259033 img loss 1.172438383102417 img loss 1.1944817304611206 img loss 1.172446608543396 img loss 1.2756800651550293 img loss 1.2114636898040771 img loss 1.2306221723556519 img loss 1.2061833143234253 img loss 1.2381070852279663 img loss 1.1509075164794922 img loss 1.3121311664581299 img loss 1.2066612243652344 img loss 1.2304942607879639 img loss 1.2612535953521729 img loss 1.212297797203064 img loss 1.2409578561782837 img loss 1.244728684425354 img loss 1.209578275680542 img loss 1.2474488019943237 img loss 1.2196807861328125 img loss 1.232298493385315 img loss 1.2359697818756104 img loss 1.1712983846664429 img loss 1.1970951557159424 img loss 1.336106777191162 img loss 1.2298229932785034 img loss 1.229180097579956 img loss 1.2281993627548218 img loss 1.2076915502548218 img loss 1.1748671531677246 img loss 1.1819653511047363 img loss 1.2074707746505737 img loss 1.250683069229126 img loss 1.1960086822509766 img loss 1.1564021110534668 img loss 1.2349693775177002 img loss 1.241136074066162 img loss 1.2072547674179077 img loss 1.2652220726013184 img loss 1.224912166595459 img loss 1.2484264373779297 img loss 1.321493148803711 img loss 1.182223916053772 img loss 1.2449488639831543 img loss 1.224798560142517 img loss 1.132250189781189 img loss 1.1245900392532349 img loss 1.2259554862976074 img loss 1.1191465854644775 img loss 1.1846061944961548 img loss 1.215658187866211 img loss 1.1880956888198853 img loss 1.2168729305267334 img loss 1.2526594400405884 img loss 1.208850383758545 img loss 1.1934046745300293 img loss 1.20841383934021 img loss 1.1769208908081055 img loss 1.2887396812438965 img loss 1.2998368740081787 img loss 1.2650337219238281 img loss 1.2628023624420166 img loss 1.1603035926818848 img loss 1.1785731315612793 img loss 1.2303638458251953 img loss 1.1608161926269531 img loss 1.297033667564392 img loss 1.2192842960357666 img loss 1.2212293148040771 img loss 1.3078113794326782 img loss 1.2450922727584839 img loss 1.219165325164795 img loss 1.2299314737319946img loss 1.2242742776870728 img loss 1.225615382194519img loss 1.1812902688980103 img loss 1.174134612083435 img loss 1.1723213195800781 img loss 1.15989351272583 img loss 1.1663055419921875 img loss 1.2302883863449097 img loss 1.229968786239624 img loss 1.2851699590682983 img loss 1.1755412817001343 img loss 1.1369023323059082 img loss 1.25972318649292 img loss 1.1710803508758545 img loss 1.1979305744171143 img loss 1.2177261114120483 img loss 1.2303227186203003 img loss 1.2001721858978271 img loss 1.2436211109161377 img loss 1.2487624883651733 img loss 1.2120020389556885 img loss 1.1695058345794678 img loss 1.208796739578247 img loss 1.177375316619873 {'loss': 1.2214, 'grad_norm': 0.3468674123287201, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2431838512420654 img loss 1.2750213146209717 img loss 1.2433726787567139 img loss 1.300201177597046 img loss 1.2563368082046509 img loss 1.2767893075942993 img loss 1.2756001949310303 img loss 1.2392929792404175 img loss 1.1663912534713745 img loss 1.205708384513855 img loss 1.2091078758239746 img loss 1.2273471355438232 img loss 1.2434816360473633 img loss 1.3195732831954956 img loss 1.220486044883728 img loss 1.2175506353378296 img loss 1.1945632696151733 img loss 1.2044504880905151 img loss 1.2520883083343506 img loss 1.3108316659927368 img loss 1.1836700439453125 img loss 1.201770305633545 img loss 1.239195704460144 img loss 1.2829468250274658 img loss 1.2154836654663086 img loss 1.2920125722885132 img loss 1.2281169891357422 img loss 1.1758055686950684 img loss 1.2962923049926758 img loss 1.221451759338379 img loss 1.2518784999847412 img loss 1.2417194843292236 img loss 1.2382973432540894 img loss 1.2558313608169556 img loss 1.173521876335144 img loss 1.192493200302124 img loss 1.2213515043258667 img loss 1.2366262674331665 img loss 1.2312726974487305 img loss 1.3209295272827148 img loss 1.2077479362487793 img loss 1.2154819965362549 img loss 1.1805744171142578 img loss 1.1541193723678589 img loss 1.2625693082809448 img loss 1.238036870956421 img loss 1.2413079738616943 img loss 1.1582138538360596 img loss 1.2898811101913452 img loss 1.2318562269210815 img loss 1.1966981887817383 img loss 1.1921896934509277 img loss 1.1935155391693115 img loss 1.2261993885040283 img loss 1.2681488990783691 img loss 1.199386477470398 img loss 1.180206298828125 img loss 1.2461153268814087 img loss 1.4114574193954468 img loss 1.325456976890564 img loss 1.2002474069595337 img loss 1.258450984954834 img loss 1.2699334621429443 img loss 1.3235275745391846 img loss 1.2659235000610352 img loss 1.224661111831665img loss 1.2160544395446777 img loss 1.2476924657821655 img loss 1.2147136926651 img loss 1.2807718515396118 img loss 1.2457144260406494 img loss 1.1543821096420288 img loss 1.1893796920776367 img loss 1.2421166896820068 img loss 1.2408021688461304 img loss 1.2035784721374512 img loss 1.2589695453643799 img loss 1.1590651273727417 img loss 1.2136740684509277 img loss 1.1934854984283447 img loss 1.212918758392334 img loss 1.2588863372802734 img loss 1.2506738901138306 img loss 1.2263212203979492 img loss 1.2543960809707642 img loss 1.2140001058578491 img loss 1.2370107173919678 img loss 1.239614725112915 img loss 1.2022823095321655 img loss 1.2770843505859375 img loss 1.2675261497497559 img loss 1.2313945293426514 img loss 1.1640753746032715 img loss 1.2037386894226074 img loss 1.168915033340454 img loss 1.2461820840835571 img loss 1.257184386253357 img loss 1.314041018486023 img loss 1.1901987791061401 img loss 1.1679530143737793 img loss 1.1898959875106812 img loss 1.237321376800537 img loss 1.211944341659546 img loss 1.2643828392028809 img loss 1.2532047033309937 img loss 1.2044508457183838 img loss 1.221936583518982 img loss 1.2123162746429443 img loss 1.2194969654083252 img loss 1.23077392578125 img loss 1.2244644165039062 img loss 1.2057956457138062 img loss 1.234614610671997 img loss 1.2015262842178345 img loss 1.2605605125427246 img loss 1.1832385063171387 img loss 1.218991994857788 img loss 1.243729829788208 img loss 1.2136669158935547 img loss 1.245036005973816 img loss 1.1892155408859253 img loss 1.2258344888687134 img loss 1.2569071054458618 img loss 1.2925822734832764 img loss 1.2105216979980469 img loss 1.2270829677581787 img loss 1.2087501287460327 img loss 1.2605031728744507 {'loss': 1.2323, 'grad_norm': 0.3140280246734619, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5244430303573608 img loss 1.4292043447494507 img loss 1.4141100645065308 img loss 1.5628348588943481 img loss 1.425181269645691 img loss 1.391372799873352 img loss 1.3902655839920044 img loss 1.367431879043579 img loss 1.3176772594451904 img loss 1.5092252492904663 img loss 1.3490842580795288 img loss 1.416308879852295 img loss 1.504778265953064 img loss 1.4509708881378174 img loss 1.3915669918060303 img loss 1.3380367755889893 img loss 1.4507025480270386 img loss 1.3433462381362915 img loss 1.4971506595611572 img loss 1.4638909101486206 img loss 1.4047808647155762 img loss 1.4684494733810425 img loss 1.3686188459396362 img loss 1.3746237754821777 img loss 1.3734346628189087 img loss 1.3760205507278442 img loss 1.44613516330719 img loss 1.2647216320037842 img loss 1.4413371086120605 img loss 1.4561856985092163 img loss 1.415108561515808 img loss 1.439355731010437 img loss 1.472115159034729 img loss 1.4679292440414429 img loss 1.338662028312683 img loss 1.4225229024887085 img loss 1.3971383571624756 img loss 1.4656621217727661 img loss 1.4003654718399048 img loss 1.5233566761016846 img loss 1.435321569442749 img loss 1.345284342765808 img loss 1.3868296146392822 img loss 1.3297566175460815 img loss 1.3707150220870972 img loss 1.3223423957824707 img loss 1.3456165790557861 img loss 1.396636724472046 img loss 1.3317854404449463 img loss 1.4218194484710693 img loss 1.306750774383545 img loss 1.3593672513961792 img loss 1.4836843013763428 img loss 1.4637421369552612 img loss 1.477127194404602 img loss 1.4059178829193115 img loss 1.4411942958831787 img loss 1.407758355140686 img loss 1.4228729009628296 img loss 1.3232741355895996 img loss 1.4584254026412964 img loss 1.543028712272644 img loss 1.4402172565460205 img loss 1.3925440311431885 img loss 1.6454071998596191 img loss 1.5340495109558105 img loss 1.330878734588623 img loss 1.44883131980896 img loss 1.478330373764038 img loss 1.4456554651260376 img loss 1.3955069780349731 img loss 1.4581490755081177 img loss 1.4041768312454224 img loss 1.4213156700134277 img loss 1.4758734703063965 img loss 1.5063151121139526 img loss 1.3401761054992676 img loss 1.41389799118042 img loss 1.4862614870071411 img loss 1.4982270002365112 img loss 1.388530969619751 img loss 1.480021357536316 img loss 1.451870083808899 img loss 1.47543466091156 img loss 1.3229602575302124 img loss 1.3903993368148804 img loss 1.3927342891693115 img loss 1.379900574684143 img loss 1.2908623218536377 img loss 1.4208225011825562 img loss 1.492388367652893 img loss 1.4946472644805908 img loss 1.3387550115585327 img loss 1.4138017892837524 img loss 1.3886733055114746 img loss 1.302288293838501 img loss 1.5199402570724487 img loss 1.4237016439437866 img loss 1.43167245388031 img loss 1.437425136566162 img loss 1.4017990827560425 img loss 1.402464747428894 img loss 1.482092022895813 img loss 1.4710325002670288 img loss 1.318528175354004 img loss 1.3032268285751343 img loss 1.3471310138702393 img loss 1.4010634422302246 img loss 1.4555141925811768 img loss 1.3402544260025024 img loss 1.321399211883545 img loss 1.4056233167648315 img loss 1.3589870929718018 img loss 1.254042625427246 img loss 1.4386721849441528 img loss 1.3647453784942627 img loss 1.4859232902526855 img loss 1.3525470495224 img loss 1.487709641456604 img loss 1.330514907836914 img loss 1.3501436710357666 img loss 1.38644278049469 img loss 1.371253490447998 img loss 1.4352161884307861 img loss 1.428770661354065 img loss 1.3929182291030884 img loss 1.3058303594589233 img loss 1.5149033069610596 {'loss': 1.4132, 'grad_norm': 0.28683897852897644, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3871957063674927 img loss 1.4579473733901978 img loss 1.5700987577438354 img loss 1.4154846668243408 img loss 1.439369559288025 img loss 1.4869705438613892 img loss 1.4567495584487915 img loss 1.4735532999038696 img loss 1.502294898033142 img loss 1.3612862825393677 img loss 1.3071140050888062 img loss 1.3535219430923462 img loss 1.337540864944458 img loss 1.314671516418457 img loss 1.392842173576355 img loss 1.4977895021438599 img loss 1.336748719215393 img loss 1.5168681144714355 img loss 1.4591906070709229 img loss 1.4326109886169434 img loss 1.3745262622833252 img loss 1.3929989337921143 img loss 1.4478367567062378 img loss 1.5389673709869385 img loss 1.6051031351089478 img loss 1.3359891176223755 img loss 1.4870648384094238 img loss 1.4431099891662598 img loss 1.4640623331069946 img loss 1.4804295301437378 img loss 1.4678012132644653 img loss 1.521929383277893 img loss 1.5046521425247192 img loss 1.3234269618988037 img loss 1.450217843055725 img loss 1.4702202081680298 img loss 1.3977802991867065 img loss 1.3536266088485718 img loss 1.569877028465271 img loss 1.5863089561462402 img loss 1.351280927658081 img loss 1.4196598529815674 img loss 1.5425728559494019 img loss 1.4916913509368896 img loss 1.3772380352020264 img loss 1.5630844831466675 img loss 1.5487933158874512 img loss 1.4356111288070679 img loss 1.5515960454940796 img loss 1.5958354473114014 img loss 1.4348695278167725 img loss 1.4402130842208862 img loss 1.5699050426483154 img loss 1.4637457132339478 img loss 1.4461807012557983 img loss 1.4521695375442505 img loss 1.4740525484085083 img loss 1.426265835762024 img loss 1.4326674938201904 img loss 1.363379716873169 img loss 1.3926293849945068 img loss 1.6315538883209229 img loss 1.4168603420257568 img loss 1.6250253915786743 img loss 1.357142686843872 img loss 1.4312344789505005 img loss 1.3602241277694702 img loss 1.4032591581344604 img loss 1.4680514335632324 img loss 1.477793574333191 img loss 1.4422087669372559 img loss 1.4913842678070068 img loss 1.3869595527648926 img loss 1.5076448917388916 img loss 1.2931734323501587 img loss 1.549008846282959 img loss 1.501231074333191 img loss 1.3467158079147339 img loss 1.486925482749939 img loss 1.4784523248672485 img loss 1.4086158275604248 img loss 1.3961899280548096 img loss 1.3717888593673706 img loss 1.4308654069900513 img loss 1.444595456123352 img loss 1.3921228647232056 img loss 1.4316352605819702 img loss 1.4649007320404053 img loss 1.432433843612671 img loss 1.5485336780548096 img loss 1.4536731243133545 img loss 1.5142430067062378 img loss 1.4505140781402588 img loss 1.4099255800247192 img loss 1.5655701160430908 img loss 1.4191406965255737 img loss 1.3943151235580444 img loss 1.5590556859970093 img loss 1.4498032331466675 img loss 1.4992872476577759 img loss 1.3279310464859009 img loss 1.486704707145691 img loss 1.428283452987671 img loss 1.4513341188430786 img loss 1.4237250089645386 img loss 1.5288845300674438 img loss 1.4796416759490967 img loss 1.5136035680770874 img loss 1.5937683582305908 img loss 1.4565445184707642 img loss 1.3766692876815796 img loss 1.6320658922195435 img loss 1.4123369455337524 img loss 1.348081350326538 img loss 1.3682082891464233 img loss 1.5040932893753052 img loss 1.4448771476745605 img loss 1.414204716682434 img loss 1.5899434089660645 img loss 1.557165503501892 img loss 1.4098455905914307 img loss 1.499468445777893 img loss 1.4759272336959839 img loss 1.496270775794983 img loss 1.4684442281723022 img loss 1.3236839771270752 img loss 1.446948766708374 img loss 1.415256142616272 {'loss': 1.4536, 'grad_norm': 0.3342928886413574, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4371373653411865 img loss 1.4160279035568237 img loss 1.4396148920059204 img loss 1.3750792741775513 img loss 1.4444849491119385 img loss 1.338893175125122 img loss 1.3550447225570679 img loss 1.4733691215515137 img loss 1.3759229183197021 img loss 1.512886881828308 img loss 1.419827938079834 img loss 1.5219849348068237 img loss 1.4902167320251465 img loss 1.5124027729034424 img loss 1.4369580745697021 img loss 1.3420231342315674 img loss 1.4231797456741333 img loss 1.3889689445495605 img loss 1.4135202169418335 img loss 1.4971768856048584 img loss 1.429073691368103 img loss 1.4911118745803833 img loss 1.4371503591537476 img loss 1.4491771459579468 img loss 1.3695366382598877 img loss 1.4108320474624634 img loss 1.4355169534683228 img loss 1.4696062803268433 img loss 1.3223356008529663 img loss 1.4701615571975708 img loss 1.4292339086532593 img loss 1.5172957181930542 img loss 1.418117642402649 img loss 1.4487206935882568 img loss 1.407957673072815 img loss 1.4621542692184448 img loss 1.5085690021514893 img loss 1.2980504035949707 img loss 1.4148648977279663 img loss 1.5511062145233154 img loss 1.3475559949874878 img loss 1.3595633506774902 img loss 1.4009498357772827 img loss 1.3831900358200073 img loss 1.5141831636428833 img loss 1.4775269031524658 img loss 1.4484840631484985 img loss 1.4945157766342163 img loss 1.4598771333694458 img loss 1.5186219215393066 img loss 1.3741577863693237 img loss 1.5731786489486694 img loss 1.366245150566101 img loss 1.5554436445236206 img loss 1.3132743835449219 img loss 1.390930414199829 img loss 1.4383457899093628 img loss 1.4692778587341309 img loss 1.4243721961975098 img loss 1.368351697921753 img loss 1.3631809949874878 img loss 1.3760994672775269 img loss 1.366782546043396 img loss 1.3715565204620361 img loss 1.330359935760498 img loss 1.4473270177841187 img loss 1.3684134483337402 img loss 1.548141360282898 img loss 1.40937077999115 img loss 1.4262974262237549 img loss 1.491241216659546 img loss 1.4129151105880737 img loss 1.3818191289901733 img loss 1.403673768043518 img loss 1.4407708644866943 img loss 1.3936656713485718 img loss 1.4610130786895752 img loss 1.378312349319458 img loss 1.571589708328247 img loss 1.3975498676300049 img loss 1.4561455249786377 img loss 1.2795460224151611 img loss 1.3843785524368286 img loss 1.2662395238876343 img loss 1.437548279762268 img loss 1.4838186502456665 img loss 1.490723729133606 img loss 1.3725935220718384 img loss 1.3875385522842407 img loss 1.3756531476974487 img loss 1.3396488428115845 img loss 1.4429880380630493 img loss 1.3766226768493652 img loss 1.4306845664978027 img loss 1.3288027048110962 img loss 1.4948995113372803 img loss 1.3781627416610718 img loss 1.3446794748306274 img loss 1.567266583442688 img loss 1.4176706075668335 img loss 1.579979658126831 img loss 1.408240556716919 img loss 1.5061928033828735 img loss 1.4954200983047485 img loss 1.4572550058364868 img loss 1.3357574939727783 img loss 1.4094736576080322 img loss 1.3998361825942993 img loss 1.4570682048797607 img loss 1.4279237985610962 img loss 1.4842766523361206 img loss 1.492629885673523 img loss 1.3964769840240479 img loss 1.453314185142517 img loss 1.4216229915618896 img loss 1.4546886682510376 img loss 1.4130088090896606 img loss 1.3823877573013306 img loss 1.4876954555511475 img loss 1.5174059867858887 img loss 1.27470064163208 img loss 1.4192606210708618 img loss 1.5496598482131958 img loss 1.37692129611969 img loss 1.6313188076019287 img loss 1.4298886060714722 img loss 1.5339568853378296 img loss 1.5243735313415527 {'loss': 1.4309, 'grad_norm': 0.2782561480998993, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4107915163040161 img loss 1.6470364332199097 img loss 1.4765361547470093 img loss 1.729885220527649 img loss 1.5676624774932861 img loss 1.4217267036437988 img loss 1.4657368659973145 img loss 1.4280799627304077 img loss 1.3433442115783691 img loss 1.4760822057724 img loss 1.4235821962356567 img loss 1.4578831195831299 img loss 1.5412964820861816 img loss 1.4508280754089355 img loss 1.6268227100372314 img loss 1.4484583139419556 img loss 1.5178096294403076 img loss 1.4922012090682983 img loss 1.4623405933380127 img loss 1.4974035024642944 img loss 1.3915318250656128 img loss 1.3938615322113037 img loss 1.550488829612732 img loss 1.321831226348877 img loss 1.4484719038009644 img loss 1.4197793006896973 img loss 1.3778417110443115 img loss 1.393478274345398 img loss 1.356892466545105 img loss 1.409051775932312 img loss 1.415960669517517 img loss 1.287575125694275 img loss 1.4763925075531006 img loss 1.4116867780685425 img loss 1.5052058696746826 img loss 1.601996660232544 img loss 1.4001771211624146 img loss 1.5060490369796753 img loss 1.3853793144226074 img loss 1.367113471031189 img loss 1.4312084913253784 img loss 1.50139319896698 img loss 1.5256762504577637 img loss 1.4993178844451904 img loss 1.498935580253601 img loss 1.3451329469680786 img loss 1.5820292234420776 img loss 1.4940427541732788 img loss 1.4730168581008911 img loss 1.4183323383331299 img loss 1.4963804483413696 img loss 1.4919179677963257 img loss 1.4124830961227417 img loss 1.4956034421920776 img loss 1.4250210523605347 img loss 1.5427464246749878 img loss 1.5599445104599 img loss 1.5565972328186035 img loss 1.517756700515747 img loss 1.4826538562774658 img loss 1.3179229497909546 img loss 1.4268428087234497 img loss 1.4905937910079956 img loss 1.5103212594985962 img loss 1.362760305404663 img loss 1.4025217294692993 img loss 1.332763433456421 img loss 1.4707427024841309 img loss 1.5523160696029663 img loss 1.432020902633667 img loss 1.294226050376892 img loss 1.5531269311904907 img loss 1.4632319211959839 img loss 1.3176199197769165 img loss 1.439502239227295 img loss 1.49631667137146 img loss 1.3533552885055542 img loss 1.3656266927719116 img loss 1.5635894536972046 img loss 1.4507204294204712 img loss 1.384520411491394 img loss 1.5909531116485596 img loss 1.4564177989959717 img loss 1.6846435070037842 img loss 1.5042927265167236 img loss 1.4887537956237793 img loss 1.5199310779571533 img loss 1.4315942525863647 img loss 1.528387427330017 img loss 1.3220839500427246 img loss 1.451454520225525 img loss 1.5458674430847168 img loss 1.3348639011383057 img loss 1.4852344989776611 img loss 1.4959262609481812 img loss 1.4322164058685303 img loss 1.4479814767837524 img loss 1.3788195848464966 img loss 1.5578014850616455 img loss 1.406295895576477 img loss 1.5800471305847168 img loss 1.56571364402771 img loss 1.4585297107696533 img loss 1.4202641248703003 img loss 1.424586534500122 img loss 1.4405173063278198 img loss 1.4933892488479614 img loss 1.373130202293396 img loss 1.5291696786880493 img loss 1.457922339439392 img loss 1.3636901378631592 img loss 1.4646108150482178 img loss 1.4103723764419556 img loss 1.393664002418518 img loss 1.4399800300598145 img loss 1.4625318050384521 img loss 1.5033036470413208 img loss 1.4095406532287598 img loss 1.5319901704788208 img loss 1.5647094249725342 img loss 1.417618989944458 img loss 1.3749403953552246 img loss 1.7426540851593018 img loss 1.5146905183792114 img loss 1.3761755228042603 img loss 1.4710155725479126 img loss 1.3628685474395752 img loss 1.5313879251480103 {'loss': 1.4623, 'grad_norm': 0.41168269515037537, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3523794412612915 img loss 1.3033854961395264 img loss 1.381142497062683 img loss 1.3333326578140259 img loss 1.369444727897644 img loss 1.3748717308044434 img loss 1.3583617210388184 img loss 1.2964197397232056 img loss 1.3316549062728882 img loss 1.3861830234527588 img loss 1.3936091661453247 img loss 1.4897516965866089 img loss 1.3666856288909912 img loss 1.3301626443862915 img loss 1.4089418649673462 img loss 1.3949449062347412 img loss 1.469090223312378 img loss 1.2659327983856201 img loss 1.3281097412109375 img loss 1.392417311668396 img loss 1.3669174909591675 img loss 1.4467850923538208 img loss 1.3779690265655518 img loss 1.385265588760376 img loss 1.2597308158874512 img loss 1.3756811618804932 img loss 1.3519889116287231 img loss 1.4177769422531128 img loss 1.4564306735992432 img loss 1.4079623222351074 img loss 1.3930760622024536 img loss 1.356762409210205 img loss 1.468627691268921 img loss 1.4723868370056152 img loss 1.3636857271194458 img loss 1.32275390625 img loss 1.4048384428024292 img loss 1.2762486934661865 img loss 1.3756864070892334 img loss 1.3646138906478882 img loss 1.3205349445343018 img loss 1.5370010137557983 img loss 1.3963615894317627 img loss 1.4597151279449463 img loss 1.3346048593521118 img loss 1.2108781337738037 img loss 1.327623963356018 img loss 1.3560938835144043 img loss 1.3556448221206665 img loss 1.4368417263031006 img loss 1.4185532331466675 img loss 1.3887876272201538 img loss 1.3941541910171509 img loss 1.3125394582748413 img loss 1.4448916912078857 img loss 1.3326857089996338 img loss 1.2687363624572754 img loss 1.4009255170822144 img loss 1.3812471628189087 img loss 1.4767554998397827 img loss 1.4668059349060059 img loss 1.5397273302078247 img loss 1.5574281215667725 img loss 1.2837949991226196 img loss 1.2152044773101807 img loss 1.4151321649551392 img loss 1.481391429901123 img loss 1.4508130550384521 img loss 1.285461187362671 img loss 1.292941927909851 img loss 1.3255757093429565 img loss 1.3684108257293701 img loss 1.4016376733779907 img loss 1.4037203788757324 img loss 1.3201229572296143 img loss 1.3807355165481567 img loss 1.2378101348876953 img loss 1.4370888471603394 img loss 1.3481497764587402 img loss 1.3215159177780151 img loss 1.4644027948379517 img loss 1.3170136213302612 img loss 1.433570146560669 img loss 1.3740553855895996 img loss 1.3334157466888428 img loss 1.4579488039016724 img loss 1.2185802459716797 img loss 1.4012070894241333 img loss 1.4008125066757202 img loss 1.397649884223938 img loss 1.2326891422271729 img loss 1.2263257503509521 img loss 1.3265049457550049 img loss 1.3260588645935059 img loss 1.2450695037841797 img loss 1.214150309562683 img loss 1.2656067609786987 img loss 1.319965124130249 img loss 1.2357736825942993 img loss 1.391318917274475 img loss 1.3094711303710938 img loss 1.3241288661956787 img loss 1.3391661643981934 img loss 1.3358367681503296 img loss 1.3223117589950562 img loss 1.3501627445220947 img loss 1.3940808773040771 img loss 1.3307790756225586 img loss 1.3206828832626343 img loss 1.320960521697998 img loss 1.3685386180877686 img loss 1.2217657566070557 img loss 1.4473499059677124 img loss 1.3595930337905884 img loss 1.3112843036651611 img loss 1.3347452878952026 img loss 1.3438748121261597 img loss 1.2816028594970703 img loss 1.3851821422576904 img loss 1.248035192489624 img loss 1.4364793300628662 img loss 1.4212086200714111 img loss 1.339220404624939 img loss 1.357786774635315 img loss 1.4091023206710815 img loss 1.3458056449890137 img loss 1.3474992513656616 img loss 1.2520192861557007 {'loss': 1.3609, 'grad_norm': 0.35538366436958313, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2523181438446045 img loss 1.1745036840438843 img loss 1.1873115301132202 img loss 1.2645626068115234 img loss 1.2186168432235718 img loss 1.1785095930099487 img loss 1.2419079542160034 img loss 1.253780722618103 img loss 1.236497402191162 img loss 1.3264212608337402 img loss 1.233330249786377 img loss 1.200913906097412 img loss 1.2472845315933228 img loss 1.2157849073410034 img loss 1.238136649131775 img loss 1.2668215036392212 img loss 1.2925217151641846 img loss 1.113377332687378 img loss 1.2440048456192017 img loss 1.2438526153564453 img loss 1.234952449798584 img loss 1.2400054931640625 img loss 1.2406278848648071 img loss 1.227943778038025 img loss 1.1629352569580078 img loss 1.1649107933044434 img loss 1.137744665145874 img loss 1.2566572427749634 img loss 1.2146042585372925 img loss 1.312494158744812 img loss 1.2721288204193115 img loss 1.2386802434921265 img loss 1.229999303817749 img loss 1.1884663105010986 img loss 1.1532917022705078img loss 1.1886725425720215 img loss 1.173927664756775 img loss 1.261616587638855 img loss 1.23692786693573 img loss 1.2717002630233765 img loss 1.1563305854797363 img loss 1.2766426801681519 img loss 1.2986843585968018 img loss 1.1696314811706543 img loss 1.2103497982025146 img loss 1.2206945419311523 img loss 1.245276927947998 img loss 1.3129676580429077 img loss 1.2593762874603271 img loss 1.2606987953186035 img loss 1.1308529376983643 img loss 1.2552683353424072 img loss 1.2566105127334595 img loss 1.275529146194458 img loss 1.3009986877441406 img loss 1.2712572813034058 img loss 1.3362454175949097 img loss 1.2202928066253662 img loss 1.2121903896331787 img loss 1.1732832193374634 img loss 1.2334861755371094 img loss 1.2450776100158691 img loss 1.1497135162353516 img loss 1.2028307914733887 img loss 1.1619662046432495 img loss 1.1764072179794312 img loss 1.235687255859375 img loss 1.2191479206085205 img loss 1.212152123451233 img loss 1.258128046989441 img loss 1.2331832647323608 img loss 1.2900199890136719 img loss 1.2177939414978027 img loss 1.246138334274292 img loss 1.231016755104065 img loss 1.1735308170318604 img loss 1.278032660484314 img loss 1.157642126083374 img loss 1.22726309299469 img loss 1.1565278768539429 img loss 1.260851502418518 img loss 1.259527564048767 img loss 1.2630586624145508 img loss 1.2781933546066284 img loss 1.2338027954101562 img loss 1.2192877531051636 img loss 1.2412508726119995 img loss 1.1920527219772339 img loss 1.235579013824463 img loss 1.278511643409729 img loss 1.2227106094360352 img loss 1.2319706678390503 img loss 1.3087049722671509 img loss 1.3371974229812622 img loss 1.1819885969161987 img loss 1.2646178007125854 img loss 1.1519359350204468 img loss 1.3094556331634521 img loss 1.1715316772460938 img loss 1.2649284601211548 img loss 1.1939904689788818 img loss 1.196549892425537 img loss 1.267707347869873 img loss 1.2406443357467651 img loss 1.3098455667495728 img loss 1.2009598016738892 img loss 1.1568416357040405 img loss 1.2397606372833252 img loss 1.1976158618927002 img loss 1.1883833408355713 img loss 1.2761168479919434 img loss 1.1940752267837524 img loss 1.2192189693450928 img loss 1.2229126691818237 img loss 1.3460767269134521 img loss 1.171947956085205 img loss 1.2327423095703125 img loss 1.2185087203979492 img loss 1.2810128927230835 img loss 1.2454248666763306 img loss 1.2445160150527954 img loss 1.2468276023864746 img loss 1.281916856765747 img loss 1.219457983970642 img loss 1.2730190753936768 img loss 1.2378120422363281 img loss 1.2713217735290527 img loss 1.2431573867797852 {'loss': 1.2321, 'grad_norm': 0.19901104271411896, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2037010192871094 img loss 1.2407286167144775 img loss 1.229713797569275 img loss 1.2314995527267456 img loss 1.2345709800720215 img loss 1.2849841117858887 img loss 1.2000073194503784 img loss 1.2778297662734985 img loss 1.226701021194458 img loss 1.2578648328781128 img loss 1.211126685142517 img loss 1.296832799911499 img loss 1.2202743291854858 img loss 1.2126582860946655 img loss 1.2334798574447632 img loss 1.313621163368225 img loss 1.1993321180343628 img loss 1.2046170234680176 img loss 1.2593406438827515 img loss 1.2710072994232178 img loss 1.231679916381836 img loss 1.2568719387054443 img loss 1.2508299350738525 img loss 1.2348816394805908 img loss 1.2343709468841553 img loss 1.2390812635421753 img loss 1.298309564590454 img loss 1.2188154458999634 img loss 1.18402898311615 img loss 1.2085061073303223 img loss 1.298332929611206 img loss 1.2236191034317017 img loss 1.2482733726501465 img loss 1.2707643508911133 img loss 1.2094879150390625 img loss 1.2290592193603516 img loss 1.219935655593872 img loss 1.2545169591903687 img loss 1.2541136741638184 img loss 1.2393455505371094 img loss 1.2009642124176025 img loss 1.2388205528259277 img loss 1.2503161430358887 img loss 1.258246898651123 img loss 1.2514501810073853 img loss 1.2426798343658447 img loss 1.1930965185165405 img loss 1.185605525970459 img loss 1.2737236022949219 img loss 1.2084358930587769 img loss 1.2772451639175415 img loss 1.1958492994308472 img loss 1.2381082773208618 img loss 1.2301061153411865 img loss 1.269430160522461 img loss 1.2738300561904907 img loss 1.229981780052185 img loss 1.253709077835083 img loss 1.2963463068008423 img loss 1.245704174041748 img loss 1.251231074333191 img loss 1.253725528717041 img loss 1.1545848846435547 img loss 1.2534921169281006 img loss 1.2690162658691406 img loss 1.2906993627548218 img loss 1.2727270126342773 img loss 1.3021256923675537 img loss 1.219063401222229 img loss 1.2556169033050537 img loss 1.3031539916992188 img loss 1.2438058853149414 img loss 1.24199378490448 img loss 1.3025496006011963 img loss 1.2355387210845947 img loss 1.2488741874694824 img loss 1.2855393886566162 img loss 1.2552597522735596 img loss 1.1907081604003906 img loss 1.263513445854187 img loss 1.2380157709121704 img loss 1.2414135932922363 img loss 1.2985222339630127 img loss 1.249468445777893 img loss 1.2177151441574097 img loss 1.2870385646820068 img loss 1.2184829711914062 img loss 1.2503303289413452 img loss 1.2442867755889893 img loss 1.2667157649993896 img loss 1.2814420461654663 img loss 1.2700470685958862 img loss 1.2411856651306152 img loss 1.2314707040786743 img loss 1.2980763912200928 img loss 1.2904162406921387 img loss 1.2676578760147095 img loss 1.1869970560073853 img loss 1.183885931968689 img loss 1.2780636548995972 img loss 1.258256435394287 img loss 1.2400615215301514 img loss 1.2787879705429077 img loss 1.270764708518982 img loss 1.200010895729065 img loss 1.24186372756958 img loss 1.2265290021896362 img loss 1.2290712594985962 img loss 1.2793407440185547 img loss 1.2297366857528687 img loss 1.2743408679962158 img loss 1.2533180713653564 img loss 1.2625654935836792 img loss 1.2016105651855469 img loss 1.2388006448745728 img loss 1.2840383052825928 img loss 1.2991646528244019 img loss 1.314112901687622 img loss 1.2557700872421265 img loss 1.2164520025253296 img loss 1.2228363752365112 img loss 1.2367075681686401 img loss 1.1871356964111328 img loss 1.2443859577178955 img loss 1.2200641632080078 img loss 1.2227951288223267 img loss 1.2180814743041992 img loss 1.2336995601654053 {'loss': 1.2453, 'grad_norm': 0.5151544213294983, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2451167106628418 img loss 1.282413125038147 img loss 1.3112430572509766 img loss 1.273285150527954 img loss 1.3404432535171509 img loss 1.3169851303100586 img loss 1.2702568769454956 img loss 1.3243255615234375 img loss 1.3194234371185303 img loss 1.2436665296554565 img loss 1.1898672580718994 img loss 1.2727909088134766 img loss 1.2871230840682983 img loss 1.3074747323989868 img loss 1.252234935760498 img loss 1.2599586248397827 img loss 1.2407373189926147 img loss 1.3112637996673584 img loss 1.2666263580322266 img loss 1.357734203338623 img loss 1.2792372703552246 img loss 1.28673255443573 img loss 1.247287631034851 img loss 1.3246980905532837 img loss 1.2561357021331787 img loss 1.2712980508804321 img loss 1.3014665842056274 img loss 1.2604910135269165 img loss 1.2186931371688843 img loss 1.2801278829574585 img loss 1.2378599643707275 img loss 1.2582296133041382 img loss 1.29481840133667 img loss 1.2533501386642456 img loss 1.2535433769226074 img loss 1.2595312595367432 img loss 1.3678069114685059 img loss 1.2708454132080078 img loss 1.2837737798690796 img loss 1.2555302381515503 img loss 1.2325791120529175 img loss 1.3212248086929321 img loss 1.2720378637313843 img loss 1.2118101119995117 img loss 1.3302806615829468 img loss 1.2648967504501343 img loss 1.2615752220153809 img loss 1.227081060409546 img loss 1.2651127576828003 img loss 1.2944878339767456 img loss 1.3752888441085815 img loss 1.299323558807373 img loss 1.2684333324432373 img loss 1.2621904611587524 img loss 1.3627240657806396 img loss 1.2624174356460571 img loss 1.2374744415283203 img loss 1.2650574445724487 img loss 1.2498825788497925 img loss 1.223681092262268 img loss 1.3504453897476196 img loss 1.2684154510498047 img loss 1.3096243143081665 img loss 1.2507015466690063 img loss 1.3046776056289673 img loss 1.2762640714645386 img loss 1.2386975288391113 img loss 1.2580547332763672 img loss 1.2138738632202148 img loss 1.3319244384765625 img loss 1.3251882791519165 img loss 1.36350417137146 img loss 1.2661197185516357 img loss 1.310384750366211 img loss 1.2173503637313843 img loss 1.23618745803833 img loss 1.3272643089294434 img loss 1.3040401935577393 img loss 1.3011823892593384 img loss 1.298854112625122 img loss 1.2392890453338623 img loss 1.2884180545806885 img loss 1.2982147932052612 img loss 1.2933958768844604 img loss 1.3595911264419556 img loss 1.2381635904312134 img loss 1.224604845046997 img loss 1.3004906177520752 img loss 1.3098636865615845 img loss 1.2521405220031738 img loss 1.3133034706115723 img loss 1.2484164237976074 img loss 1.2622722387313843 img loss 1.2929301261901855 img loss 1.3111507892608643 img loss 1.265288233757019 img loss 1.3187665939331055 img loss 1.2413753271102905 img loss 1.2564806938171387 img loss 1.4184659719467163 img loss 1.287467360496521 img loss 1.2897601127624512 img loss 1.3028240203857422 img loss 1.214334487915039 img loss 1.2635478973388672 img loss 1.3112376928329468 img loss 1.2332960367202759 img loss 1.2594213485717773 img loss 1.3270256519317627 img loss 1.262253761291504 img loss 1.3491450548171997 img loss 1.2811005115509033 img loss 1.2675796747207642 img loss 1.30653977394104 img loss 1.2443393468856812 img loss 1.3083319664001465 img loss 1.2018165588378906 img loss 1.2296165227890015 img loss 1.2392984628677368 img loss 1.1924175024032593 img loss 1.3212916851043701 img loss 1.2922625541687012 img loss 1.3334332704544067 img loss 1.2681195735931396 img loss 1.2837527990341187 img loss 1.3097599744796753 img loss 1.282670497894287 img loss 1.2964286804199219 {'loss': 1.2802, 'grad_norm': 0.27610358595848083, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1638730764389038 img loss 1.1550499200820923 img loss 1.1187328100204468 img loss 1.1508419513702393 img loss 1.2329063415527344 img loss 1.1048692464828491 img loss 1.1308631896972656 img loss 1.1089839935302734 img loss 1.2126801013946533 img loss 1.2007604837417603 img loss 1.2675930261611938 img loss 1.1933138370513916 img loss 1.173141360282898 img loss 1.2240889072418213 img loss 1.1732450723648071 img loss 1.079966425895691 img loss 1.186440348625183 img loss 1.116724967956543 img loss 1.1796674728393555 img loss 1.1845893859863281 img loss 1.1541905403137207 img loss 1.2351219654083252 img loss 1.1565287113189697 img loss 1.156564712524414 img loss 1.133041262626648 img loss 1.2653909921646118 img loss 1.2558587789535522 img loss 1.1729646921157837 img loss 1.249346375465393 img loss 1.1969865560531616 img loss 1.1873506307601929 img loss 1.1227837800979614 img loss 1.1705344915390015 img loss 1.1437487602233887 img loss 1.1208465099334717 img loss 1.140102505683899 img loss 1.160341501235962 img loss 1.1167407035827637 img loss 1.3006772994995117 img loss 1.2110029458999634 img loss 1.2748684883117676 img loss 1.143075704574585 img loss 1.20052969455719 img loss 1.2240707874298096 img loss 1.112278699874878 img loss 1.272883653640747 img loss 1.2233343124389648 img loss 1.2126725912094116 img loss 1.180938720703125 img loss 1.1991184949874878 img loss 1.1741777658462524 img loss 1.1071699857711792 img loss 1.1338201761245728 img loss 1.1525893211364746 img loss 1.1095244884490967 img loss 1.1971180438995361 img loss 1.2754271030426025 img loss 1.1109002828598022 img loss 1.1488134860992432 img loss 1.2165955305099487 img loss 1.125827670097351 img loss 1.1762447357177734 img loss 1.1766612529754639 img loss 1.1914294958114624 img loss 1.2238998413085938 img loss 1.1375818252563477 img loss 1.2564142942428589 img loss 1.1921623945236206img loss 1.189565896987915 img loss 1.121763825416565 img loss 1.1000102758407593 img loss 1.192492127418518 img loss 1.180884838104248 img loss 1.1668726205825806 img loss 1.1201636791229248 img loss 1.0845870971679688 img loss 1.1599349975585938 img loss 1.1830068826675415 img loss 1.122327208518982 img loss 1.3171589374542236 img loss 1.096785545349121 img loss 1.1461069583892822 img loss 1.1551309823989868 img loss 1.1951345205307007 img loss 1.3133424520492554 img loss 1.1350332498550415 img loss 1.0795879364013672 img loss 1.1601299047470093 img loss 1.1267211437225342 img loss 1.1774767637252808 img loss 1.1775774955749512 img loss 1.239256739616394 img loss 1.144792079925537 img loss 1.056934118270874 img loss 1.1605287790298462 img loss 1.2253608703613281 img loss 1.1827105283737183 img loss 1.1562998294830322 img loss 1.209852933883667 img loss 1.1553634405136108 img loss 1.2636293172836304 img loss 1.1793303489685059 img loss 1.2042043209075928 img loss 1.1502912044525146 img loss 1.222415804862976 img loss 1.2389963865280151 img loss 1.0787385702133179 img loss 1.1357781887054443 img loss 1.0700515508651733 img loss 1.205425500869751 img loss 1.2003183364868164 img loss 1.1138098239898682 img loss 1.286542296409607 img loss 1.2265403270721436 img loss 1.0789024829864502 img loss 1.2150599956512451 img loss 1.1959137916564941 img loss 1.1519677639007568 img loss 1.2827180624008179 img loss 1.133488655090332 img loss 1.1233949661254883 img loss 1.2154569625854492 img loss 1.1519050598144531 img loss 1.2228188514709473 img loss 1.144095778465271 img loss 1.2633450031280518 img loss 1.2291326522827148 img loss 1.1530870199203491 {'loss': 1.176, 'grad_norm': 0.3041430413722992, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2865122556686401 img loss 1.2470638751983643 img loss 1.2899246215820312 img loss 1.3126630783081055 img loss 1.3582091331481934 img loss 1.3378283977508545 img loss 1.3393588066101074 img loss 1.2172925472259521 img loss 1.4122506380081177 img loss 1.1650224924087524 img loss 1.1532316207885742 img loss 1.2970777750015259 img loss 1.2532411813735962 img loss 1.2533308267593384 img loss 1.247246265411377 img loss 1.3306941986083984 img loss 1.2798799276351929 img loss 1.210365653038025 img loss 1.2234735488891602 img loss 1.2524317502975464 img loss 1.2570137977600098 img loss 1.2591564655303955 img loss 1.2918148040771484 img loss 1.3594495058059692 img loss 1.2864432334899902 img loss 1.3358174562454224 img loss 1.2814496755599976 img loss 1.3490502834320068 img loss 1.273958683013916 img loss 1.2323120832443237 img loss 1.3085811138153076 img loss 1.2471768856048584img loss 1.2921580076217651 img loss 1.3116681575775146 img loss 1.3938816785812378 img loss 1.3179785013198853 img loss 1.2091734409332275 img loss 1.2276216745376587 img loss 1.3757458925247192 img loss 1.3831571340560913 img loss 1.3401702642440796img loss 1.3368412256240845 img loss 1.3194406032562256 img loss 1.3513388633728027 img loss 1.2964357137680054 img loss 1.3537355661392212 img loss 1.3043521642684937 img loss 1.2672399282455444 img loss 1.311134934425354 img loss 1.2833995819091797 img loss 1.2216068506240845 img loss 1.2651901245117188 img loss 1.4296387434005737 img loss 1.3237653970718384 img loss 1.2803274393081665 img loss 1.295480728149414 img loss 1.2644026279449463 img loss 1.2005256414413452 img loss 1.3038129806518555 img loss 1.2924906015396118 img loss 1.2147150039672852 img loss 1.4228943586349487 img loss 1.3243712186813354 img loss 1.3291125297546387 img loss 1.3056188821792603 img loss 1.3174561262130737 img loss 1.3367245197296143 img loss 1.2257156372070312 img loss 1.3060784339904785 img loss 1.2226626873016357 img loss 1.3832547664642334 img loss 1.2964568138122559 img loss 1.3299602270126343 img loss 1.270228624343872 img loss 1.3732537031173706 img loss 1.2679433822631836 img loss 1.2705562114715576 img loss 1.2744193077087402 img loss 1.2192318439483643 img loss 1.3030954599380493 img loss 1.3074525594711304 img loss 1.2411425113677979 img loss 1.2716397047042847 img loss 1.374239206314087 img loss 1.3024238348007202 img loss 1.3276203870773315 img loss 1.3218724727630615 img loss 1.2378897666931152 img loss 1.2766708135604858 img loss 1.176046371459961 img loss 1.1914360523223877 img loss 1.2590597867965698 img loss 1.165027141571045 img loss 1.3232953548431396 img loss 1.243177056312561 img loss 1.2163769006729126 img loss 1.2545273303985596 img loss 1.2565701007843018 img loss 1.2889679670333862 img loss 1.3777861595153809 img loss 1.2515405416488647 img loss 1.242358684539795 img loss 1.3018032312393188 img loss 1.260338306427002 img loss 1.3669246435165405 img loss 1.2082411050796509 img loss 1.2072690725326538 img loss 1.2612552642822266 img loss 1.3374143838882446 img loss 1.2295355796813965 img loss 1.3353362083435059 img loss 1.3263328075408936img loss 1.2772138118743896img loss 1.212074875831604img loss 1.3500664234161377 img loss 1.257401466369629 img loss 1.2811546325683594 img loss 1.2986674308776855 img loss 1.2946348190307617 img loss 1.303891658782959 img loss 1.3380255699157715 img loss 1.4125092029571533 img loss 1.3314822912216187 img loss 1.2713391780853271 img loss 1.2626259326934814 img loss 1.1957509517669678 img loss 1.3266733884811401 img loss 1.231605052947998 {'loss': 1.2881, 'grad_norm': 0.3282409906387329, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2688387632369995 img loss 1.2146157026290894 img loss 1.192447543144226 img loss 1.197770357131958 img loss 1.3144649267196655 img loss 1.2665576934814453 img loss 1.2945070266723633 img loss 1.2559493780136108 img loss 1.2358872890472412 img loss 1.1084175109863281 img loss 1.2619295120239258 img loss 1.1638717651367188img loss 1.2895805835723877 img loss 1.1690784692764282 img loss 1.2286468744277954 img loss 1.328433871269226 img loss 1.1938726902008057 img loss 1.3389554023742676 img loss 1.3346400260925293 img loss 1.2422676086425781 img loss 1.2336018085479736 img loss 1.2262142896652222 img loss 1.1892828941345215 img loss 1.2231420278549194 img loss 1.2141916751861572 img loss 1.231077790260315 img loss 1.1741118431091309 img loss 1.1662992238998413 img loss 1.295265555381775 img loss 1.2353543043136597 img loss 1.2600882053375244 img loss 1.1327879428863525 img loss 1.2856457233428955 img loss 1.2371355295181274 img loss 1.1990597248077393 img loss 1.2868897914886475 img loss 1.2443726062774658 img loss 1.2666888236999512 img loss 1.2689855098724365 img loss 1.2863633632659912 img loss 1.2949055433273315 img loss 1.2266685962677002 img loss 1.1593565940856934 img loss 1.2263109683990479 img loss 1.2387046813964844 img loss 1.241392731666565 img loss 1.229997158050537 img loss 1.1759586334228516 img loss 1.3191875219345093 img loss 1.2843945026397705 img loss 1.245718240737915 img loss 1.224534273147583 img loss 1.156594157218933 img loss 1.197985291481018 img loss 1.237199306488037 img loss 1.2120137214660645 img loss 1.2140024900436401 img loss 1.190049648284912 img loss 1.1891883611679077 img loss 1.226321816444397 img loss 1.155099868774414 img loss 1.289364218711853 img loss 1.2081142663955688 img loss 1.2874189615249634 img loss 1.185718297958374 img loss 1.298174262046814 img loss 1.214638352394104 img loss 1.2422508001327515 img loss 1.2267472743988037 img loss 1.281165599822998 img loss 1.2965400218963623 img loss 1.185011625289917 img loss 1.155068278312683 img loss 1.2654825448989868 img loss 1.2096518278121948 img loss 1.2126868963241577 img loss 1.2078757286071777 img loss 1.2849586009979248 img loss 1.2558072805404663 img loss 1.2918895483016968 img loss 1.2445777654647827 img loss 1.2617824077606201 img loss 1.289658784866333 img loss 1.2382194995880127 img loss 1.2099497318267822 img loss 1.2110283374786377 img loss 1.2361586093902588img loss 1.2000186443328857 img loss 1.1888738870620728 img loss 1.232149600982666 img loss 1.2797691822052002 img loss 1.2021214962005615 img loss 1.1983158588409424 img loss 1.312253713607788 img loss 1.1636772155761719 img loss 1.2681372165679932 img loss 1.2972679138183594 img loss 1.1567357778549194 img loss 1.1913807392120361 img loss 1.1949119567871094 img loss 1.1702488660812378 img loss 1.294511079788208 img loss 1.3204150199890137 img loss 1.17197585105896 img loss 1.2469151020050049 img loss 1.3080997467041016 img loss 1.1885523796081543 img loss 1.1999109983444214 img loss 1.2111095190048218 img loss 1.319159746170044 img loss 1.3027156591415405 img loss 1.1913212537765503 img loss 1.2237766981124878 img loss 1.2704250812530518 img loss 1.2510074377059937 img loss 1.2558130025863647 img loss 1.2164480686187744 img loss 1.2866592407226562 img loss 1.254631757736206 img loss 1.20292067527771 img loss 1.1932992935180664 img loss 1.307152509689331 img loss 1.222104549407959 img loss 1.2299859523773193 img loss 1.203865647315979 img loss 1.2214367389678955 img loss 1.203163981437683 img loss 1.174570918083191 {'loss': 1.2345, 'grad_norm': 0.5540555119514465, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1981239318847656 img loss 1.1981620788574219 img loss 1.1589882373809814 img loss 1.2204898595809937 img loss 1.163082480430603 img loss 1.2056326866149902 img loss 1.161247730255127 img loss 1.1151041984558105 img loss 1.1734528541564941 img loss 1.150098443031311 img loss 1.1790510416030884 img loss 1.1581310033798218 img loss 1.189517617225647 img loss 1.2071388959884644 img loss 1.1886008977890015 img loss 1.1781939268112183 img loss 1.1926902532577515 img loss 1.1875814199447632 img loss 1.1878843307495117 img loss 1.2271325588226318 img loss 1.1778583526611328 img loss 1.1618313789367676 img loss 1.1929006576538086 img loss 1.16189444065094 img loss 1.2171168327331543 img loss 1.1451358795166016 img loss 1.2242655754089355 img loss 1.2195345163345337 img loss 1.2486538887023926 img loss 1.1370759010314941 img loss 1.2026152610778809 img loss 1.1359140872955322 img loss 1.2639009952545166 img loss 1.1718448400497437 img loss 1.1097420454025269 img loss 1.2020320892333984 img loss 1.2313460111618042 img loss 1.1494648456573486 img loss 1.1736468076705933 img loss 1.1774051189422607 img loss 1.1436914205551147 img loss 1.1034106016159058 img loss 1.1717056035995483 img loss 1.172206163406372 img loss 1.1300593614578247 img loss 1.1380075216293335 img loss 1.1501394510269165 img loss 1.2128334045410156 img loss 1.1623609066009521 img loss 1.168421745300293 img loss 1.181881308555603 img loss 1.2024953365325928 img loss 1.3063758611679077 img loss 1.2052675485610962 img loss 1.1255639791488647 img loss 1.1571229696273804 img loss 1.2102091312408447 img loss 1.1404387950897217 img loss 1.2595220804214478 img loss 1.210281252861023 img loss 1.1240971088409424 img loss 1.1839981079101562 img loss 1.21519935131073 img loss 1.2497968673706055 img loss 1.15885329246521 img loss 1.2475945949554443 img loss 1.2020061016082764 img loss 1.1402101516723633 img loss 1.2113367319107056 img loss 1.177933931350708 img loss 1.3246381282806396 img loss 1.179842233657837 img loss 1.1277103424072266 img loss 1.2796876430511475 img loss 1.128056287765503 img loss 1.1773982048034668 img loss 1.1768875122070312 img loss 1.1932123899459839 img loss 1.23717200756073 img loss 1.2213976383209229 img loss 1.1736993789672852 img loss 1.2946637868881226 img loss 1.1968355178833008 img loss 1.1775619983673096 img loss 1.2206839323043823 img loss 1.1510571241378784 img loss 1.1657109260559082 img loss 1.1939425468444824 img loss 1.1541748046875 img loss 1.1628248691558838img loss 1.1726469993591309 img loss 1.2213809490203857 img loss 1.2473257780075073 img loss 1.138702630996704 img loss 1.254159927368164 img loss 1.1537443399429321 img loss 1.1217373609542847 img loss 1.1356405019760132 img loss 1.2393063306808472 img loss 1.2322461605072021 img loss 1.106466293334961 img loss 1.1394470930099487 img loss 1.1295874118804932 img loss 1.1492506265640259 img loss 1.1733708381652832 img loss 1.2454280853271484 img loss 1.1484895944595337 img loss 1.177685260772705 img loss 1.2033319473266602 img loss 1.238420844078064 img loss 1.1990249156951904 img loss 1.1834728717803955 img loss 1.19232177734375 img loss 1.1521209478378296 img loss 1.151405930519104 img loss 1.2636600732803345 img loss 1.2160347700119019 img loss 1.2055591344833374 img loss 1.134436845779419 img loss 1.173693299293518 img loss 1.1170775890350342 img loss 1.149330735206604 img loss 1.1695423126220703 img loss 1.199475646018982 img loss 1.125117540359497 img loss 1.2224221229553223 img loss 1.1565049886703491 img loss 1.1580536365509033 {'loss': 1.1839, 'grad_norm': 0.23721101880073547, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2781119346618652 img loss 1.29964017868042 img loss 1.3136978149414062 img loss 1.298413634300232 img loss 1.2496490478515625 img loss 1.4401973485946655 img loss 1.2210907936096191 img loss 1.3110637664794922 img loss 1.365565538406372 img loss 1.3524985313415527 img loss 1.2442725896835327 img loss 1.2905845642089844 img loss 1.2584643363952637 img loss 1.3343850374221802 img loss 1.3652729988098145 img loss 1.3039960861206055 img loss 1.1909301280975342 img loss 1.2410709857940674 img loss 1.3055857419967651 img loss 1.2795242071151733 img loss 1.2673457860946655 img loss 1.2788009643554688 img loss 1.308294653892517 img loss 1.2595049142837524 img loss 1.293646216392517 img loss 1.31362783908844 img loss 1.2588027715682983 img loss 1.2642803192138672 img loss 1.298496961593628 img loss 1.3133983612060547 img loss 1.2369617223739624 img loss 1.290308952331543 img loss 1.2907212972640991 img loss 1.2452143430709839 img loss 1.2627992630004883 img loss 1.2682194709777832 img loss 1.3923393487930298 img loss 1.312998652458191 img loss 1.235292911529541 img loss 1.2605741024017334 img loss 1.3099907636642456 img loss 1.3178070783615112 img loss 1.3442682027816772 img loss 1.3120455741882324 img loss 1.2899112701416016 img loss 1.3004769086837769 img loss 1.2374595403671265 img loss 1.3053948879241943 img loss 1.2730406522750854 img loss 1.2629460096359253 img loss 1.3290594816207886 img loss 1.2771403789520264 img loss 1.248503565788269 img loss 1.2675719261169434 img loss 1.2465124130249023 img loss 1.318921685218811 img loss 1.3649998903274536img loss 1.3051327466964722 img loss 1.293335199356079 img loss 1.409624457359314 img loss 1.3798755407333374 img loss 1.3439756631851196 img loss 1.3440358638763428 img loss 1.2444270849227905 img loss 1.289790391921997 img loss 1.2278486490249634 img loss 1.2685372829437256 img loss 1.2496999502182007 img loss 1.2097890377044678 img loss 1.2708593606948853 img loss 1.2973148822784424 img loss 1.3553071022033691 img loss 1.2664906978607178 img loss 1.3121280670166016 img loss 1.3292372226715088 img loss 1.3124207258224487 img loss 1.2710901498794556 img loss 1.2884259223937988 img loss 1.305770754814148 img loss 1.2202805280685425 img loss 1.2238985300064087 img loss 1.2602524757385254 img loss 1.3229312896728516 img loss 1.3292672634124756 img loss 1.3567206859588623 img loss 1.2340754270553589 img loss 1.3473124504089355 img loss 1.2761561870574951 img loss 1.314746379852295 img loss 1.2389730215072632 img loss 1.2962852716445923 img loss 1.318640947341919 img loss 1.2897212505340576 img loss 1.2724435329437256 img loss 1.250933051109314 img loss 1.365252137184143 img loss 1.3767129182815552 img loss 1.2826660871505737 img loss 1.215208649635315 img loss 1.342434048652649 img loss 1.2716572284698486 img loss 1.334823727607727 img loss 1.308711290359497 img loss 1.2236095666885376 img loss 1.3110357522964478 img loss 1.2843421697616577 img loss 1.327414870262146 img loss 1.2265316247940063 img loss 1.2773869037628174 img loss 1.3074736595153809 img loss 1.2203730344772339 img loss 1.3871058225631714 img loss 1.394507884979248 img loss 1.2918031215667725 img loss 1.2494618892669678 img loss 1.3201817274093628 img loss 1.23847234249115 img loss 1.270460844039917 img loss 1.2870241403579712 img loss 1.2895128726959229 img loss 1.351151704788208 img loss 1.3326009511947632 img loss 1.1991779804229736 img loss 1.280534267425537 img loss 1.2851393222808838 img loss 1.2652218341827393 img loss 1.2714786529541016 img loss 1.3475717306137085 {'loss': 1.2927, 'grad_norm': 0.31132832169532776, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.654542088508606 img loss 1.7134603261947632 img loss 1.8851476907730103 img loss 1.9114999771118164 img loss 1.8040211200714111 img loss 1.754646897315979 img loss 1.8050477504730225 img loss 1.8195300102233887 img loss 1.7977088689804077 img loss 1.9003515243530273 img loss 1.7681126594543457 img loss 1.8347984552383423 img loss 1.928871750831604 img loss 1.815898060798645 img loss 1.7133936882019043 img loss 1.9302995204925537 img loss 1.8108458518981934 img loss 1.9241851568222046 img loss 1.9307224750518799 img loss 1.7607637643814087 img loss 1.9226360321044922 img loss 1.7409124374389648 img loss 1.8221737146377563 img loss 1.9743903875350952 img loss 1.744423508644104 img loss 1.8474410772323608 img loss 1.7547818422317505 img loss 1.7217199802398682 img loss 1.8312877416610718 img loss 1.859192967414856 img loss 1.7715246677398682 img loss 1.7096387147903442 img loss 1.8440288305282593 img loss 1.825739860534668 img loss 1.9787652492523193 img loss 1.8122520446777344 img loss 1.807559609413147 img loss 1.9120640754699707 img loss 1.901430368423462 img loss 1.861049771308899 img loss 1.6580747365951538 img loss 1.7716623544692993 img loss 1.894418716430664 img loss 1.7323647737503052 img loss 1.9470940828323364 img loss 1.9941025972366333 img loss 1.8390127420425415 img loss 1.8574397563934326 img loss 1.9415456056594849 img loss 1.8795095682144165 img loss 1.9152603149414062 img loss 1.782721996307373 img loss 1.9052212238311768 img loss 2.0176045894622803 img loss 1.8807597160339355 img loss 1.8719860315322876 img loss 1.83307945728302 img loss 1.717976689338684 img loss 1.8930909633636475 img loss 1.8587439060211182 img loss 1.7878994941711426 img loss 1.8151636123657227 img loss 1.9361274242401123 img loss 1.9379712343215942 img loss 1.673345923423767 img loss 1.858292818069458 img loss 1.7667156457901 img loss 1.8307452201843262 img loss 1.8724989891052246 img loss 1.851631760597229 img loss 1.7648288011550903 img loss 1.7507896423339844 img loss 1.7303996086120605 img loss 1.7001785039901733 img loss 1.898343563079834 img loss 1.9172720909118652 img loss 1.9567770957946777 img loss 1.6279970407485962 img loss 1.7821321487426758 img loss 1.9507379531860352 img loss 1.8037452697753906 img loss 1.637466311454773 img loss 1.9221206903457642 img loss 1.9675161838531494 img loss 1.7831693887710571 img loss 1.823840856552124 img loss 1.8113542795181274 img loss 1.7942261695861816 img loss 1.818926215171814 img loss 1.6002787351608276 img loss 2.039330244064331 img loss 1.852765440940857 img loss 1.767981767654419 img loss 2.0059502124786377 img loss 1.7561334371566772 img loss 1.8817769289016724 img loss 1.7885290384292603 img loss 1.856123447418213 img loss 1.7949016094207764 img loss 1.6775416135787964 img loss 1.7401623725891113 img loss 1.8373825550079346 img loss 1.915368676185608 img loss 1.7312489748001099 img loss 1.7076877355575562 img loss 1.8821301460266113 img loss 1.9103562831878662 img loss 1.7704850435256958 img loss 1.81412672996521 img loss 1.6602283716201782 img loss 1.8335154056549072 img loss 1.8746589422225952 img loss 1.9482938051223755 img loss 1.7603267431259155 img loss 1.798568844795227 img loss 1.8336013555526733 img loss 1.8028947114944458 img loss 1.9220266342163086 img loss 1.7452605962753296 img loss 1.7791173458099365 img loss 1.8106073141098022 img loss 1.8516002893447876 img loss 1.7423217296600342 img loss 1.8364393711090088 img loss 1.856959581375122 img loss 1.9617754220962524 img loss 1.7627861499786377 img loss 1.936284065246582 {'loss': 1.829, 'grad_norm': 0.47605764865875244, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.635026454925537 img loss 1.374580979347229 img loss 1.67301607131958 img loss 1.453122615814209 img loss 1.4569618701934814 img loss 1.5147980451583862 img loss 1.7578980922698975 img loss 1.581174373626709 img loss 1.5437647104263306 img loss 1.6344201564788818 img loss 1.5164128541946411 img loss 1.5391145944595337 img loss 1.6254804134368896 img loss 1.533987283706665 img loss 1.5755850076675415 img loss 1.4457690715789795 img loss 1.4909886121749878 img loss 1.4584729671478271 img loss 1.650530219078064 img loss 1.6015125513076782 img loss 1.5033137798309326 img loss 1.5976437330245972 img loss 1.5139931440353394 img loss 1.5846898555755615 img loss 1.4529045820236206 img loss 1.542202115058899 img loss 1.6728358268737793 img loss 1.6046072244644165 img loss 1.5521947145462036 img loss 1.4077370166778564 img loss 1.6423637866973877 img loss 1.702742099761963 img loss 1.4965537786483765 img loss 1.4829323291778564 img loss 1.5704920291900635 img loss 1.75785231590271 img loss 1.5297013521194458 img loss 1.6089520454406738 img loss 1.5975896120071411 img loss 1.549386739730835 img loss 1.5911718606948853 img loss 1.7820764780044556 img loss 1.6377288103103638 img loss 1.6050469875335693 img loss 1.5585500001907349 img loss 1.6832215785980225 img loss 1.6554902791976929 img loss 1.5879372358322144 img loss 1.455471158027649 img loss 1.5750272274017334 img loss 1.3399852514266968 img loss 1.5381104946136475 img loss 1.5705904960632324 img loss 1.609818696975708 img loss 1.5925887823104858 img loss 1.6099532842636108 img loss 1.6599538326263428 img loss 1.5466259717941284 img loss 1.6277177333831787 img loss 1.4907532930374146 img loss 1.5529102087020874 img loss 1.7530872821807861 img loss 1.5504372119903564 img loss 1.6831306219100952 img loss 1.4340498447418213 img loss 1.5911345481872559 img loss 1.4383362531661987 img loss 1.648168921470642 img loss 1.5778069496154785 img loss 1.572151780128479 img loss 1.6930142641067505 img loss 1.562287449836731 img loss 1.5922973155975342 img loss 1.5526306629180908 img loss 1.6848323345184326 img loss 1.622032880783081 img loss 1.7305562496185303 img loss 1.4457545280456543 img loss 1.6043936014175415 img loss 1.5335549116134644 img loss 1.4349114894866943 img loss 1.4245827198028564 img loss 1.5839228630065918 img loss 1.626850962638855 img loss 1.5048772096633911 img loss 1.6355892419815063 img loss 1.6823790073394775 img loss 1.5331758260726929 img loss 1.4960429668426514 img loss 1.5722918510437012 img loss 1.5986710786819458 img loss 1.5710561275482178 img loss 1.5824018716812134 img loss 1.5665974617004395 img loss 1.727850079536438 img loss 1.6449730396270752 img loss 1.5731655359268188 img loss 1.5950382947921753 img loss 1.6225926876068115 img loss 1.627119779586792 img loss 1.6371607780456543 img loss 1.7083028554916382 img loss 1.4359147548675537 img loss 1.6331642866134644 img loss 1.4853063821792603 img loss 1.591264247894287 img loss 1.5357807874679565 img loss 1.649945616722107 img loss 1.526289463043213 img loss 1.4477713108062744 img loss 1.3829976320266724 img loss 1.8458034992218018 img loss 1.7461360692977905 img loss 1.638679027557373 img loss 1.5057578086853027 img loss 1.423324704170227 img loss 1.64921236038208 img loss 1.595723271369934 img loss 1.559810996055603 img loss 1.59153151512146 img loss 1.5004172325134277 img loss 1.5866730213165283 img loss 1.6708128452301025 img loss 1.582292079925537 img loss 1.4983046054840088 img loss 1.686193823814392 img loss 1.5533074140548706 img loss 1.5051605701446533 {'loss': 1.5762, 'grad_norm': 0.5072190165519714, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3835780620574951 img loss 1.3767199516296387 img loss 1.4704936742782593 img loss 1.3496290445327759 img loss 1.357735514640808 img loss 1.3466618061065674 img loss 1.4821728467941284 img loss 1.3339648246765137 img loss 1.3900864124298096 img loss 1.3615676164627075 img loss 1.4970002174377441 img loss 1.450901746749878 img loss 1.3464148044586182 img loss 1.4302058219909668 img loss 1.4054256677627563 img loss 1.2951396703720093 img loss 1.3150441646575928 img loss 1.5023611783981323 img loss 1.5460838079452515 img loss 1.2987709045410156 img loss 1.4542549848556519 img loss 1.4575661420822144 img loss 1.2614433765411377 img loss 1.3975865840911865 img loss 1.4734269380569458 img loss 1.4549773931503296 img loss 1.3514717817306519 img loss 1.331122636795044 img loss 1.3017914295196533 img loss 1.4122765064239502 img loss 1.2832229137420654 img loss 1.2578907012939453 img loss 1.5190422534942627 img loss 1.395226001739502 img loss 1.3357594013214111 img loss 1.4200482368469238 img loss 1.392210841178894 img loss 1.3690295219421387 img loss 1.4264756441116333 img loss 1.3451342582702637 img loss 1.2661250829696655 img loss 1.4457365274429321 img loss 1.2799806594848633 img loss 1.3837510347366333 img loss 1.4550122022628784 img loss 1.4912865161895752 img loss 1.3313369750976562 img loss 1.596596121788025 img loss 1.239235520362854 img loss 1.315874695777893 img loss 1.4156666994094849 img loss 1.3877959251403809 img loss 1.3568371534347534 img loss 1.3817782402038574 img loss 1.5322929620742798 img loss 1.588199496269226 img loss 1.2654359340667725 img loss 1.418657660484314 img loss 1.5175508260726929 img loss 1.5050597190856934 img loss 1.28285551071167 img loss 1.2560019493103027 img loss 1.5055201053619385 img loss 1.3540699481964111 img loss 1.403949499130249img loss 1.395055890083313 img loss 1.5062813758850098 img loss 1.52571439743042 img loss 1.2983438968658447 img loss 1.2885475158691406 img loss 1.3606741428375244 img loss 1.3039817810058594 img loss 1.4074124097824097 img loss 1.3460215330123901 img loss 1.2782646417617798 img loss 1.4381133317947388 img loss 1.4230729341506958 img loss 1.3802800178527832img loss 1.3769584894180298 img loss 1.3500468730926514 img loss 1.4070574045181274 img loss 1.4831984043121338 img loss 1.388176441192627 img loss 1.446236491203308 img loss 1.4605358839035034 img loss 1.3706775903701782 img loss 1.3852585554122925 img loss 1.3854060173034668 img loss 1.42196786403656 img loss 1.4167956113815308 img loss 1.3292574882507324 img loss 1.306075930595398 img loss 1.3772460222244263 img loss 1.2701094150543213 img loss 1.3334910869598389 img loss 1.5205048322677612 img loss 1.3829389810562134 img loss 1.3707058429718018 img loss 1.3802369832992554 img loss 1.4879783391952515 img loss 1.4804080724716187 img loss 1.439316987991333 img loss 1.303262710571289 img loss 1.5283743143081665 img loss 1.3554078340530396 img loss 1.44796621799469 img loss 1.4011956453323364 img loss 1.625881552696228 img loss 1.330780267715454 img loss 1.4145963191986084 img loss 1.60654616355896 img loss 1.3430432081222534 img loss 1.387052059173584 img loss 1.619167447090149 img loss 1.3558385372161865 img loss 1.3604748249053955 img loss 1.3032277822494507 img loss 1.3691105842590332 img loss 1.3514158725738525 img loss 1.3406563997268677img loss 1.4666247367858887 img loss 1.4167824983596802 img loss 1.3679978847503662 img loss 1.2599760293960571 img loss 1.389457106590271 img loss 1.444868803024292 img loss 1.41146719455719 img loss 1.5371347665786743 {'loss': 1.397, 'grad_norm': 0.2686482071876526, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3475565910339355 img loss 1.2515158653259277 img loss 1.2037571668624878 img loss 1.1618094444274902 img loss 1.1825717687606812 img loss 1.2480252981185913 img loss 1.230493426322937 img loss 1.2207026481628418 img loss 1.2051007747650146 img loss 1.2624781131744385 img loss 1.2052924633026123 img loss 1.228088140487671 img loss 1.2759106159210205 img loss 1.2262009382247925 img loss 1.2301816940307617 img loss 1.2122788429260254 img loss 1.1497149467468262 img loss 1.33918035030365 img loss 1.2751233577728271 img loss 1.235612392425537 img loss 1.2172001600265503 img loss 1.2599217891693115 img loss 1.1614110469818115 img loss 1.2438061237335205 img loss 1.2392709255218506 img loss 1.266501784324646 img loss 1.2751743793487549 img loss 1.2726638317108154 img loss 1.2188800573349 img loss 1.2111351490020752 img loss 1.2075239419937134 img loss 1.2491750717163086 img loss 1.2499070167541504 img loss 1.2920840978622437 img loss 1.2446237802505493 img loss 1.25669527053833 img loss 1.2395156621932983 img loss 1.1822712421417236 img loss 1.264870285987854 img loss 1.2824506759643555 img loss 1.2520262002944946 img loss 1.2869558334350586 img loss 1.217965841293335 img loss 1.2079881429672241 img loss 1.2764217853546143 img loss 1.247550368309021 img loss 1.2345309257507324 img loss 1.2349753379821777 img loss 1.299245834350586 img loss 1.2631582021713257 img loss 1.1861292123794556 img loss 1.2412456274032593 img loss 1.238691806793213 img loss 1.2721264362335205 img loss 1.2024435997009277 img loss 1.2401204109191895 img loss 1.255869746208191 img loss 1.275204062461853 img loss 1.2455812692642212 img loss 1.2134121656417847 img loss 1.2378387451171875 img loss 1.2051639556884766 img loss 1.215299129486084 img loss 1.1967055797576904 img loss 1.244044303894043 img loss 1.2327818870544434 img loss 1.208101511001587 img loss 1.2861254215240479 img loss 1.2537860870361328 img loss 1.2056926488876343 img loss 1.2477377653121948 img loss 1.237331748008728 img loss 1.234855055809021 img loss 1.244585633277893 img loss 1.2231239080429077 img loss 1.2603216171264648 img loss 1.2624439001083374 img loss 1.2713416814804077 img loss 1.2222527265548706 img loss 1.2588019371032715 img loss 1.2787431478500366 img loss 1.2768762111663818 img loss 1.1674959659576416 img loss 1.2125052213668823 img loss 1.2056840658187866 img loss 1.2623447179794312 img loss 1.2737435102462769 img loss 1.2335216999053955img loss 1.2873960733413696 img loss 1.21617591381073 img loss 1.2869160175323486 img loss 1.239742636680603 img loss 1.2520853281021118 img loss 1.2089887857437134 img loss 1.2979106903076172 img loss 1.1789770126342773 img loss 1.2190766334533691 img loss 1.263730525970459 img loss 1.3517210483551025 img loss 1.2724336385726929 img loss 1.2462005615234375 img loss 1.2180862426757812 img loss 1.2797664403915405 img loss 1.2313143014907837 img loss 1.2556328773498535 img loss 1.235306978225708 img loss 1.2564575672149658 img loss 1.199234962463379 img loss 1.3134651184082031 img loss 1.246401071548462 img loss 1.278277039527893 img loss 1.210577368736267 img loss 1.207249402999878 img loss 1.2469255924224854 img loss 1.1928596496582031 img loss 1.2331682443618774 img loss 1.216451644897461 img loss 1.1953247785568237 img loss 1.2723921537399292 img loss 1.1982386112213135 img loss 1.2379940748214722 img loss 1.2002835273742676 img loss 1.2539122104644775 img loss 1.210468053817749 img loss 1.2176640033721924 img loss 1.2572319507598877 img loss 1.2341638803482056 img loss 1.275533676147461 {'loss': 1.2404, 'grad_norm': 0.23621946573257446, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.237301230430603 img loss 1.265019178390503 img loss 1.3428541421890259 img loss 1.186130166053772 img loss 1.2462220191955566 img loss 1.2016454935073853 img loss 1.2379025220870972 img loss 1.2710051536560059 img loss 1.2385520935058594 img loss 1.1933724880218506 img loss 1.2422194480895996 img loss 1.3839157819747925 img loss 1.167811393737793 img loss 1.1983702182769775 img loss 1.246242880821228 img loss 1.1954740285873413 img loss 1.245750069618225 img loss 1.3034166097640991 img loss 1.3651645183563232 img loss 1.255210518836975 img loss 1.2236963510513306 img loss 1.2354434728622437 img loss 1.2918819189071655 img loss 1.2664321660995483 img loss 1.2696702480316162 img loss 1.299296259880066 img loss 1.2322947978973389 img loss 1.2079975605010986 img loss 1.2277532815933228 img loss 1.2362953424453735 img loss 1.1884058713912964 img loss 1.3917725086212158 img loss 1.280383586883545 img loss 1.2170541286468506 img loss 1.2571176290512085 img loss 1.291980504989624 img loss 1.275414228439331 img loss 1.272387146949768 img loss 1.195860743522644 img loss 1.398527979850769 img loss 1.291994571685791 img loss 1.2573899030685425 img loss 1.2903791666030884 img loss 1.2422503232955933 img loss 1.2618253231048584 img loss 1.2202565670013428 img loss 1.2600904703140259 img loss 1.2507156133651733 img loss 1.2592809200286865 img loss 1.2411383390426636 img loss 1.2146031856536865 img loss 1.2506967782974243 img loss 1.2806382179260254 img loss 1.2984565496444702 img loss 1.3188238143920898 img loss 1.2190746068954468 img loss 1.3730394840240479 img loss 1.1819911003112793 img loss 1.223710060119629 img loss 1.310624599456787 img loss 1.2657362222671509 img loss 1.3238170146942139 img loss 1.20966374874115 img loss 1.3121957778930664 img loss 1.2643887996673584 img loss 1.2911670207977295 img loss 1.3174762725830078 img loss 1.2085472345352173 img loss 1.2868717908859253 img loss 1.2272334098815918 img loss 1.202049732208252 img loss 1.2578729391098022 img loss 1.1516895294189453 img loss 1.3243772983551025 img loss 1.2790679931640625 img loss 1.3070467710494995 img loss 1.2857722043991089 img loss 1.287126898765564 img loss 1.3533862829208374 img loss 1.2819222211837769 img loss 1.2439396381378174 img loss 1.303422212600708 img loss 1.2163474559783936 img loss 1.2192797660827637 img loss 1.240548014640808 img loss 1.1723651885986328 img loss 1.2273222208023071 img loss 1.306152105331421 img loss 1.2831281423568726 img loss 1.2605117559432983 img loss 1.2628536224365234 img loss 1.2320789098739624 img loss 1.2244832515716553 img loss 1.2277815341949463 img loss 1.2728391885757446 img loss 1.2657936811447144 img loss 1.2299392223358154 img loss 1.2221617698669434 img loss 1.310059905052185 img loss 1.3001079559326172 img loss 1.2561030387878418 img loss 1.2713769674301147 img loss 1.2993618249893188 img loss 1.2354782819747925 img loss 1.243111491203308 img loss 1.2408126592636108 img loss 1.363746166229248 img loss 1.2132129669189453 img loss 1.1687061786651611 img loss 1.1917057037353516 img loss 1.1513745784759521 img loss 1.2471169233322144 img loss 1.1943920850753784 img loss 1.3883870840072632 img loss 1.2801913022994995 img loss 1.2283633947372437 img loss 1.2577118873596191 img loss 1.288643717765808 img loss 1.2868515253067017 img loss 1.2083027362823486 img loss 1.1916699409484863 img loss 1.1780717372894287 img loss 1.4141384363174438 img loss 1.3999135494232178 img loss 1.231580376625061 img loss 1.2024692296981812 img loss 1.2965139150619507 img loss 1.1712108850479126 img loss 1.342708706855774 img loss 1.3005974292755127 img loss 1.256722092628479 img loss 1.3001502752304077 img loss 1.347713828086853 img loss 1.264453649520874 img loss 1.2644670009613037 img loss 1.3036893606185913 img loss 1.2943568229675293 img loss 1.2853344678878784 img loss 1.2789045572280884 img loss 1.3111413717269897 {'loss': 1.2585, 'grad_norm': 0.2451532483100891, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.30492103099823 img loss 1.293735384941101 img loss 1.2762513160705566 img loss 1.2736107110977173 img loss 1.196895956993103 img loss 1.3419018983840942 img loss 1.329239845275879 img loss 1.325896143913269 img loss 1.2761080265045166 img loss 1.3000577688217163 img loss 1.3089479207992554 img loss 1.3743504285812378 img loss 1.2744423151016235 img loss 1.3488690853118896 img loss 1.250589370727539 img loss 1.3266037702560425 img loss 1.3035433292388916 img loss 1.2607592344284058 img loss 1.280861496925354 img loss 1.284980297088623 img loss 1.3336694240570068 img loss 1.3924657106399536 img loss 1.3476256132125854 img loss 1.2347906827926636 img loss 1.2397631406784058 img loss 1.22943913936615 img loss 1.3174207210540771 img loss 1.267221212387085 img loss 1.2965903282165527 img loss 1.3242528438568115 img loss 1.2409571409225464 img loss 1.288110613822937 img loss 1.2967476844787598 img loss 1.3325920104980469 img loss 1.3367706537246704 img loss 1.2506957054138184 img loss 1.365670084953308 img loss 1.294399619102478 img loss 1.3379132747650146 img loss 1.317800521850586 img loss 1.216638207435608 img loss 1.3974719047546387 img loss 1.293164849281311 img loss 1.2715939283370972 img loss 1.2336812019348145 img loss 1.281757116317749 img loss 1.3189117908477783 img loss 1.3321751356124878 img loss 1.3440543413162231 img loss 1.3344868421554565 img loss 1.3917168378829956 img loss 1.2854105234146118 img loss 1.2933623790740967 img loss 1.302018165588379 img loss 1.306008219718933 img loss 1.2505539655685425 img loss 1.2602170705795288 img loss 1.2922645807266235 img loss 1.339656114578247 img loss 1.2659987211227417 img loss 1.3048733472824097 img loss 1.3943438529968262 img loss 1.2850044965744019 img loss 1.307487964630127 img loss 1.370519995689392 img loss 1.3850781917572021 img loss 1.3038568496704102 img loss 1.3131166696548462 img loss 1.240638017654419 img loss 1.4091802835464478 img loss 1.3063468933105469 img loss 1.2987240552902222 img loss 1.2947559356689453 img loss 1.2904036045074463 img loss 1.3007186651229858 img loss 1.3330836296081543 img loss 1.238481879234314 img loss 1.3376107215881348 img loss 1.2940707206726074 img loss 1.3753970861434937 img loss 1.293379783630371 img loss 1.2972859144210815 img loss 1.3069404363632202 img loss 1.3399583101272583 img loss 1.363531470298767 img loss 1.3362548351287842 img loss 1.392500638961792 img loss 1.3511265516281128 img loss 1.3530815839767456 img loss 1.3295034170150757 img loss 1.2280272245407104 img loss 1.3224823474884033 img loss 1.3333793878555298 img loss 1.2906519174575806 img loss 1.2945297956466675 img loss 1.3136403560638428 img loss 1.2716525793075562 img loss 1.2411772012710571 img loss 1.3093979358673096 img loss 1.2765722274780273 img loss 1.246659755706787 img loss 1.2324111461639404 img loss 1.2930169105529785 img loss 1.285331130027771 img loss 1.2190195322036743 img loss 1.3004204034805298 img loss 1.3641200065612793 img loss 1.2498801946640015 img loss 1.3681129217147827 img loss 1.3655906915664673 img loss 1.3611681461334229 img loss 1.292849063873291 img loss 1.2662343978881836 img loss 1.2624099254608154 img loss 1.3689796924591064 img loss 1.3002078533172607 {'loss': 1.3043, 'grad_norm': 0.38342711329460144, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1805472373962402 img loss 1.2202160358428955 img loss 1.2162967920303345 img loss 1.24489164352417 img loss 1.2662217617034912 img loss 1.2262959480285645 img loss 1.250731110572815 img loss 1.2206840515136719 img loss 1.2468374967575073 img loss 1.2053465843200684 img loss 1.2317909002304077 img loss 1.2391653060913086 img loss 1.1776049137115479 img loss 1.226352572441101 img loss 1.2592830657958984 img loss 1.2442467212677002 img loss 1.2543855905532837 img loss 1.2722947597503662 img loss 1.27872633934021 img loss 1.2205979824066162 img loss 1.2137097120285034 img loss 1.237056016921997 img loss 1.2484428882598877 img loss 1.283879280090332 img loss 1.2499291896820068 img loss 1.2328802347183228 img loss 1.2630293369293213 img loss 1.219947099685669 img loss 1.2246489524841309 img loss 1.2403600215911865 img loss 1.1850340366363525 img loss 1.2704969644546509 img loss 1.214277744293213 img loss 1.2356200218200684 img loss 1.2154115438461304 img loss 1.2290968894958496 img loss 1.2565226554870605 img loss 1.2508991956710815 img loss 1.3159077167510986 img loss 1.2528749704360962 img loss 1.1939043998718262 img loss 1.1902434825897217 img loss 1.2716906070709229 img loss 1.281838297843933 img loss 1.314584493637085 img loss 1.2214282751083374 img loss 1.212135672569275 img loss 1.2522900104522705 img loss 1.207586646080017 img loss 1.2525181770324707 img loss 1.3122870922088623 img loss 1.2404682636260986 img loss 1.267852783203125 img loss 1.218870759010315 img loss 1.2521981000900269 img loss 1.216559648513794 img loss 1.223558783531189 img loss 1.1880134344100952 img loss 1.1957359313964844 img loss 1.2338745594024658 img loss 1.249599814414978 img loss 1.1921591758728027 img loss 1.1989463567733765 img loss 1.237762212753296 img loss 1.2376960515975952 img loss 1.2407028675079346 img loss 1.2758266925811768 img loss 1.2903107404708862 img loss 1.253814935684204 img loss 1.2879565954208374 img loss 1.1952567100524902 img loss 1.2417089939117432 img loss 1.1972559690475464 img loss 1.2205164432525635 img loss 1.3390122652053833 img loss 1.1742169857025146 img loss 1.2306841611862183 img loss 1.241720199584961 img loss 1.226682424545288 img loss 1.221190333366394 img loss 1.303416132926941 img loss 1.2496542930603027 img loss 1.2343088388442993 img loss 1.2107508182525635 img loss 1.2341628074645996 img loss 1.2081953287124634 img loss 1.2692699432373047 img loss 1.2874822616577148 img loss 1.255224585533142 img loss 1.2630904912948608 img loss 1.2755026817321777 img loss 1.2160447835922241img loss 1.2131201028823853 img loss 1.203498363494873 img loss 1.2277352809906006 img loss 1.2310001850128174 img loss 1.2395390272140503 img loss 1.255573034286499 img loss 1.2217687368392944 img loss 1.2310949563980103 img loss 1.2068769931793213 img loss 1.2067434787750244 img loss 1.2740246057510376 img loss 1.2329933643341064 img loss 1.2030177116394043 img loss 1.1744053363800049 img loss 1.2829170227050781 img loss 1.2064223289489746 img loss 1.2355374097824097 img loss 1.2203993797302246 img loss 1.2310923337936401 img loss 1.2738947868347168 img loss 1.2319622039794922 img loss 1.3039613962173462 img loss 1.182199478149414 img loss 1.2247575521469116 img loss 1.2570719718933105 img loss 1.2380585670471191 img loss 1.2411020994186401 img loss 1.2923884391784668 img loss 1.2024048566818237 img loss 1.2362960577011108 img loss 1.2657192945480347 img loss 1.2030576467514038 img loss 1.2038811445236206 img loss 1.2568553686141968 img loss 1.2186298370361328 img loss 1.2124217748641968 {'loss': 1.2373, 'grad_norm': 0.28979238867759705, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4007614850997925 img loss 1.2619495391845703 img loss 1.382708191871643 img loss 1.3993688821792603 img loss 1.4338409900665283 img loss 1.325218677520752 img loss 1.4213082790374756 img loss 1.3100508451461792 img loss 1.33769690990448 img loss 1.3463083505630493 img loss 1.43613862991333 img loss 1.3670227527618408 img loss 1.4111627340316772 img loss 1.3528059720993042 img loss 1.3993474245071411 img loss 1.3135905265808105 img loss 1.311648964881897 img loss 1.337567687034607 img loss 1.4266276359558105 img loss 1.3936772346496582 img loss 1.2512452602386475 img loss 1.3461459875106812 img loss 1.3448466062545776 img loss 1.4816230535507202 img loss 1.4165093898773193 img loss 1.3753807544708252 img loss 1.3979607820510864 img loss 1.4383984804153442 img loss 1.2770414352416992 img loss 1.4611060619354248 img loss 1.3127658367156982 img loss 1.3427075147628784 img loss 1.4972487688064575 img loss 1.3883308172225952 img loss 1.5060040950775146 img loss 1.3498543500900269 img loss 1.367857575416565 img loss 1.4569947719573975 img loss 1.5588926076889038 img loss 1.3372550010681152 img loss 1.3852721452713013 img loss 1.500499963760376 img loss 1.378039002418518 img loss 1.3254097700119019 img loss 1.453009009361267 img loss 1.2539557218551636 img loss 1.4299324750900269 img loss 1.442706823348999 img loss 1.3644840717315674 img loss 1.2987747192382812 img loss 1.26860773563385 img loss 1.4064538478851318 img loss 1.2489895820617676 img loss 1.310411810874939 img loss 1.3764973878860474 img loss 1.380867600440979 img loss 1.4207227230072021 img loss 1.317563533782959 img loss 1.4429367780685425 img loss 1.3787120580673218 img loss 1.2861288785934448 img loss 1.3207063674926758 img loss 1.3882191181182861 img loss 1.4334534406661987 img loss 1.3041542768478394 img loss 1.2393665313720703 img loss 1.4364854097366333 img loss 1.4262921810150146 img loss 1.3126904964447021 img loss 1.3511930704116821 img loss 1.3826498985290527 img loss 1.2813621759414673 img loss 1.3920124769210815 img loss 1.3002651929855347 img loss 1.3883765935897827 img loss 1.454174518585205 img loss 1.452114462852478 img loss 1.3420239686965942 img loss 1.3145185708999634 img loss 1.3483998775482178 img loss 1.41593599319458 img loss 1.3923009634017944 img loss 1.324510097503662 img loss 1.296854019165039 img loss 1.3772681951522827 img loss 1.3148481845855713 img loss 1.3066242933273315 img loss 1.3390920162200928 img loss 1.3129643201828003 img loss 1.271128535270691 img loss 1.3960473537445068 img loss 1.3475748300552368 img loss 1.3497394323349 img loss 1.3006439208984375 img loss 1.4014360904693604 img loss 1.3924111127853394 img loss 1.4247729778289795 img loss 1.3154914379119873 img loss 1.4157865047454834 img loss 1.3625638484954834 img loss 1.3293806314468384 img loss 1.375671148300171 img loss 1.3697962760925293 img loss 1.236661672592163 img loss 1.3328218460083008 img loss 1.3471328020095825 img loss 1.4222466945648193 img loss 1.374029278755188 img loss 1.5158830881118774 img loss 1.3751896619796753 img loss 1.4452372789382935 img loss 1.310707926750183 img loss 1.4137200117111206 img loss 1.3365147113800049 img loss 1.277449369430542 img loss 1.2888542413711548 img loss 1.336077332496643 img loss 1.385058045387268 img loss 1.2797963619232178 img loss 1.4017797708511353 img loss 1.2811715602874756 img loss 1.3356069326400757 img loss 1.4193710088729858 img loss 1.4370217323303223 img loss 1.2742537260055542 img loss 1.2289400100708008 img loss 1.2911531925201416 img loss 1.3248436450958252 {'loss': 1.3642, 'grad_norm': 0.3550369441509247, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.306583285331726 img loss 1.3214250802993774 img loss 1.2161098718643188 img loss 1.1611957550048828 img loss 1.2284986972808838 img loss 1.2698618173599243 img loss 1.2512733936309814 img loss 1.2348220348358154 img loss 1.4328360557556152 img loss 1.283498764038086 img loss 1.2933887243270874 img loss 1.3003895282745361 img loss 1.2254829406738281 img loss 1.2732090950012207 img loss 1.2853574752807617 img loss 1.248340368270874 img loss 1.2348617315292358 img loss 1.2337301969528198 img loss 1.3275296688079834 img loss 1.3024744987487793 img loss 1.2488465309143066 img loss 1.3285906314849854 img loss 1.2513113021850586 img loss 1.207787275314331 img loss 1.3032066822052002 img loss 1.2860445976257324 img loss 1.1336653232574463 img loss 1.338351845741272 img loss 1.1621299982070923 img loss 1.2337137460708618 img loss 1.3034906387329102 img loss 1.2252672910690308 img loss 1.2635645866394043 img loss 1.1895933151245117 img loss 1.250556468963623 img loss 1.2394845485687256 img loss 1.2664343118667603 img loss 1.2066551446914673 img loss 1.231451392173767 img loss 1.2088258266448975 img loss 1.176500678062439 img loss 1.2117656469345093 img loss 1.2867389917373657 img loss 1.365992784500122 img loss 1.2451505661010742 img loss 1.2669938802719116 img loss 1.3242768049240112 img loss 1.2702653408050537 img loss 1.3267782926559448 img loss 1.3173463344573975 img loss 1.2187389135360718 img loss 1.2393395900726318 img loss 1.3372496366500854 img loss 1.2740254402160645 img loss 1.1997461318969727 img loss 1.28971266746521 img loss 1.2055325508117676 img loss 1.2444270849227905 img loss 1.1712758541107178 img loss 1.1903733015060425 img loss 1.2123849391937256 img loss 1.2372243404388428 img loss 1.2678159475326538 img loss 1.262036919593811 img loss 1.2683359384536743 img loss 1.2885379791259766 img loss 1.1977565288543701 img loss 1.199534296989441 img loss 1.1998108625411987 img loss 1.351054072380066 img loss 1.290570616722107 img loss 1.2275071144104004 img loss 1.2123370170593262 img loss 1.376297116279602 img loss 1.2658240795135498 img loss 1.1713508367538452 img loss 1.2945804595947266 img loss 1.2034881114959717 img loss 1.2520978450775146 img loss 1.3032472133636475 img loss 1.3170820474624634 img loss 1.1745071411132812 img loss 1.2229012250900269 img loss 1.2408758401870728 img loss 1.2657002210617065 img loss 1.237003207206726 img loss 1.2204920053482056 img loss 1.1861999034881592 img loss 1.2070000171661377 img loss 1.3199564218521118 img loss 1.3107713460922241 img loss 1.2227283716201782 img loss 1.243768334388733 img loss 1.265824556350708 img loss 1.2669610977172852 img loss 1.2627360820770264 img loss 1.2770626544952393 img loss 1.2056258916854858 img loss 1.279401421546936 img loss 1.2216603755950928 img loss 1.2166247367858887 img loss 1.210364818572998 img loss 1.2378935813903809 img loss 1.2321385145187378 img loss 1.2333229780197144 img loss 1.188128113746643 img loss 1.4061554670333862 img loss 1.2522159814834595 img loss 1.1839559078216553 img loss 1.3186945915222168 img loss 1.201646089553833 img loss 1.2460463047027588 img loss 1.2950146198272705 img loss 1.2995166778564453 img loss 1.1751514673233032 img loss 1.2236971855163574 img loss 1.3430391550064087 img loss 1.3816578388214111 img loss 1.376197099685669 img loss 1.1951415538787842 img loss 1.209175705909729 img loss 1.280381202697754 img loss 1.3128440380096436 img loss 1.2112165689468384 img loss 1.2530875205993652 img loss 1.1995571851730347 img loss 1.3259966373443604 img loss 1.2076374292373657 {'loss': 1.2556, 'grad_norm': 0.22007830440998077, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1935948133468628 img loss 1.209439992904663 img loss 1.160703182220459 img loss 1.3043559789657593 img loss 1.178575873374939 img loss 1.22447669506073 img loss 1.2491474151611328 img loss 1.239762544631958 img loss 1.2212049961090088 img loss 1.2205537557601929 img loss 1.2879996299743652 img loss 1.2550004720687866 img loss 1.2780907154083252 img loss 1.3181365728378296 img loss 1.285348892211914 img loss 1.2258820533752441 img loss 1.2576038837432861 img loss 1.2458837032318115 img loss 1.223833441734314 img loss 1.1947472095489502 img loss 1.2403796911239624 img loss 1.263718843460083 img loss 1.2293550968170166 img loss 1.1625562906265259 img loss 1.2023663520812988 img loss 1.2555373907089233 img loss 1.2523359060287476 img loss 1.2058080434799194 img loss 1.2414228916168213 img loss 1.2017120122909546 img loss 1.241721749305725 img loss 1.1788053512573242 img loss 1.2018122673034668 img loss 1.2979180812835693 img loss 1.2517662048339844 img loss 1.2566838264465332 img loss 1.240239143371582 img loss 1.2268121242523193 img loss 1.2713550329208374 img loss 1.2084412574768066 img loss 1.2257479429244995 img loss 1.2367042303085327 img loss 1.2272865772247314 img loss 1.2294299602508545 img loss 1.2244571447372437 img loss 1.23866605758667 img loss 1.2179304361343384 img loss 1.196244478225708 img loss 1.2758594751358032 img loss 1.2540644407272339 img loss 1.2506005764007568 img loss 1.2671217918395996 img loss 1.1921952962875366 img loss 1.1761643886566162 img loss 1.2170894145965576 img loss 1.1921615600585938 img loss 1.2933120727539062 img loss 1.1782958507537842 img loss 1.273751139640808 img loss 1.2517410516738892 img loss 1.1772416830062866 img loss 1.2732247114181519 img loss 1.270721435546875 img loss 1.2057865858078003 img loss 1.2383884191513062 img loss 1.2528246641159058 img loss 1.2210625410079956 img loss 1.2302420139312744 img loss 1.1502808332443237 img loss 1.2540403604507446 img loss 1.301748275756836 img loss 1.2166986465454102 img loss 1.2262241840362549 img loss 1.2447518110275269 img loss 1.22130286693573 img loss 1.1724984645843506 img loss 1.2198309898376465 img loss 1.2724225521087646 img loss 1.2302682399749756 img loss 1.2287001609802246 img loss 1.19304358959198 img loss 1.1588350534439087 img loss 1.2145428657531738 img loss 1.1993783712387085 img loss 1.2223811149597168 img loss 1.2949856519699097 img loss 1.2390646934509277 img loss 1.202057123184204 img loss 1.269250512123108 img loss 1.2390800714492798 img loss 1.2717721462249756 img loss 1.2264515161514282 img loss 1.2780441045761108 img loss 1.237465500831604 img loss 1.2621474266052246 img loss 1.2313477993011475 img loss 1.2287124395370483 img loss 1.2152645587921143 img loss 1.2518075704574585 img loss 1.3210749626159668 img loss 1.2815990447998047 img loss 1.231689214706421 img loss 1.198472023010254 img loss 1.196613073348999 img loss 1.2384033203125 img loss 1.1916470527648926 img loss 1.2287588119506836 img loss 1.2376247644424438 img loss 1.2592750787734985 img loss 1.2458701133728027 img loss 1.223283290863037 img loss 1.2074122428894043 img loss 1.212899923324585 img loss 1.1983686685562134 img loss 1.2238343954086304 img loss 1.2718241214752197 img loss 1.2074569463729858 img loss 1.2178524732589722 img loss 1.1868637800216675 img loss 1.2344430685043335 img loss 1.267242670059204 img loss 1.2064427137374878 img loss 1.2154114246368408 img loss 1.2272850275039673 img loss 1.2876001596450806 img loss 1.2650368213653564 img loss 1.1958060264587402 img loss 1.2098826169967651 {'loss': 1.2325, 'grad_norm': 0.25028011202812195, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3604493141174316 img loss 1.3084577322006226 img loss 1.3107086420059204 img loss 1.2629934549331665 img loss 1.2589682340621948 img loss 1.2506918907165527 img loss 1.2084879875183105 img loss 1.1497905254364014 img loss 1.2669891119003296 img loss 1.2471669912338257 img loss 1.3290852308273315 img loss 1.2375434637069702 img loss 1.2823089361190796 img loss 1.2528865337371826 img loss 1.3484110832214355 img loss 1.2617568969726562 img loss 1.2255332469940186 img loss 1.2028076648712158 img loss 1.2409818172454834 img loss 1.3668431043624878 img loss 1.2700659036636353 img loss 1.2875877618789673 img loss 1.271270990371704 img loss 1.2411503791809082 img loss 1.2562167644500732 img loss 1.2888429164886475 img loss 1.30902898311615 img loss 1.3041589260101318 img loss 1.2593209743499756 img loss 1.2305047512054443 img loss 1.3951127529144287 img loss 1.2978867292404175 img loss 1.32866370677948 img loss 1.2717907428741455 img loss 1.2243868112564087 img loss 1.263742208480835 img loss 1.2383689880371094 img loss 1.2898691892623901 img loss 1.3071101903915405 img loss 1.309560775756836 img loss 1.1821162700653076 img loss 1.2863481044769287 img loss 1.2548185586929321 img loss 1.2636487483978271 img loss 1.2855658531188965 img loss 1.1757864952087402 img loss 1.1913597583770752 img loss 1.2622623443603516 img loss 1.2519673109054565 img loss 1.1326769590377808 img loss 1.2540024518966675 img loss 1.2481493949890137 img loss 1.240412950515747 img loss 1.298629641532898 img loss 1.208990454673767 img loss 1.2402706146240234 img loss 1.1651045083999634 img loss 1.3093464374542236 img loss 1.2816863059997559 img loss 1.2247214317321777 img loss 1.2661389112472534 img loss 1.2987399101257324 img loss 1.231810212135315 img loss 1.271767497062683 img loss 1.3295457363128662 img loss 1.2271584272384644 img loss 1.220569372177124 img loss 1.238430380821228 img loss 1.237971544265747 img loss 1.1779056787490845 img loss 1.2317451238632202 img loss 1.2376956939697266 img loss 1.304813027381897 img loss 1.3046263456344604 img loss 1.233097791671753 img loss 1.240862250328064 img loss 1.3037227392196655 img loss 1.240586280822754 img loss 1.2361178398132324 img loss 1.2273070812225342 img loss 1.260270357131958 img loss 1.2724722623825073 img loss 1.2501779794692993 img loss 1.2846391201019287 img loss 1.1813373565673828 img loss 1.2501041889190674 img loss 1.3280481100082397 img loss 1.2380750179290771 img loss 1.2574809789657593 img loss 1.1634794473648071 img loss 1.2783092260360718 img loss 1.2519090175628662 img loss 1.2488758563995361 img loss 1.2755086421966553 img loss 1.2956633567810059 img loss 1.2091319561004639 img loss 1.2959437370300293 img loss 1.2307238578796387 img loss 1.2345225811004639 img loss 1.25291907787323 img loss 1.2580296993255615 img loss 1.2510210275650024 img loss 1.1635968685150146 img loss 1.3207978010177612 img loss 1.2824972867965698 img loss 1.277718186378479 img loss 1.2121447324752808 img loss 1.2735326290130615 img loss 1.1944507360458374 img loss 1.1975641250610352 img loss 1.2628040313720703 img loss 1.1512953042984009 img loss 1.253217339515686 img loss 1.222485899925232 img loss 1.2248365879058838 img loss 1.2916094064712524 img loss 1.205592393875122 img loss 1.2205981016159058 img loss 1.2846248149871826 img loss 1.3181384801864624 img loss 1.2258166074752808 img loss 1.2115601301193237 img loss 1.250895380973816 img loss 1.2514978647232056 img loss 1.392578363418579 img loss 1.2407554388046265 img loss 1.1940850019454956 img loss 1.1908128261566162 {'loss': 1.2556, 'grad_norm': 0.24558047950267792, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2424824237823486 img loss 1.218640685081482 img loss 1.318626046180725 img loss 1.2624869346618652 img loss 1.3193286657333374 img loss 1.227601408958435 img loss 1.2801775932312012 img loss 1.304139494895935 img loss 1.299831748008728 img loss 1.3638609647750854 img loss 1.3001636266708374 img loss 1.2952382564544678 img loss 1.2866287231445312 img loss 1.1750059127807617 img loss 1.280111312866211 img loss 1.2815532684326172 img loss 1.1894935369491577 img loss 1.2398866415023804 img loss 1.1608349084854126 img loss 1.3387974500656128 img loss 1.2405210733413696 img loss 1.2332419157028198 img loss 1.2545511722564697 img loss 1.2535984516143799 img loss 1.2747448682785034 img loss 1.2781541347503662 img loss 1.285158395767212 img loss 1.2106869220733643 img loss 1.2442731857299805 img loss 1.1884262561798096 img loss 1.212812066078186 img loss 1.2494194507598877 img loss 1.2540861368179321 img loss 1.2363632917404175 img loss 1.3397891521453857 img loss 1.2746120691299438 img loss 1.2947298288345337 img loss 1.2928953170776367img loss 1.305161952972412 img loss 1.2440311908721924 img loss 1.2212576866149902 img loss 1.0972883701324463 img loss 1.2297775745391846 img loss 1.217372179031372 img loss 1.30048406124115 img loss 1.1572628021240234 img loss 1.240179419517517 img loss 1.3072823286056519 img loss 1.2825405597686768 img loss 1.1906524896621704 img loss 1.2823549509048462 img loss 1.3105701208114624 img loss 1.3394176959991455 img loss 1.2334543466567993 img loss 1.2410087585449219 img loss 1.4404107332229614 img loss 1.2183506488800049 img loss 1.2820587158203125 img loss 1.2159465551376343 img loss 1.3342536687850952 img loss 1.2489169836044312 img loss 1.2726892232894897 img loss 1.2861074209213257 img loss 1.3284231424331665 img loss 1.2717607021331787 img loss 1.1982853412628174 img loss 1.1781872510910034 img loss 1.2741096019744873img loss 1.2848289012908936 img loss 1.2858750820159912 img loss 1.293757677078247 img loss 1.297027826309204 img loss 1.2923595905303955 img loss 1.1560096740722656 img loss 1.2931272983551025 img loss 1.3285642862319946 img loss 1.2549889087677002 img loss 1.3057525157928467 img loss 1.2925735712051392 img loss 1.2400920391082764 img loss 1.2861789464950562 img loss 1.2991843223571777 img loss 1.22304105758667 img loss 1.1804050207138062 img loss 1.2931772470474243 img loss 1.329577088356018 img loss 1.2830731868743896 img loss 1.34565007686615 img loss 1.2760303020477295 img loss 1.3909852504730225 img loss 1.2447335720062256 img loss 1.2765337228775024 img loss 1.3245859146118164 img loss 1.2138837575912476 img loss 1.2888619899749756 img loss 1.2825956344604492 img loss 1.245779037475586 img loss 1.3071657419204712 img loss 1.1853262186050415 img loss 1.2840533256530762img loss 1.3323568105697632 img loss 1.2508491277694702 img loss 1.2795451879501343 img loss 1.1943050622940063 img loss 1.2800520658493042 img loss 1.3334271907806396 img loss 1.3284000158309937 img loss 1.2503042221069336 img loss 1.3382964134216309 img loss 1.2298564910888672 img loss 1.208452582359314 img loss 1.239420771598816 img loss 1.228000283241272 img loss 1.2170746326446533 img loss 1.230364203453064 img loss 1.3312571048736572 img loss 1.254052996635437 img loss 1.2882955074310303 img loss 1.3064227104187012 img loss 1.220890760421753 img loss 1.2245969772338867 img loss 1.247969388961792 img loss 1.21910560131073 img loss 1.3627232313156128 img loss 1.2902411222457886 img loss 1.269408106803894 img loss 1.2494853734970093 img loss 1.261068344116211 {'loss': 1.2664, 'grad_norm': 0.32451939582824707, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.243902564048767 img loss 1.24574613571167 img loss 1.2843537330627441 img loss 1.2479437589645386 img loss 1.2371129989624023 img loss 1.2371573448181152 img loss 1.2741062641143799 img loss 1.2506277561187744 img loss 1.2197576761245728 img loss 1.257385492324829 img loss 1.2565243244171143 img loss 1.2318075895309448 img loss 1.2653836011886597 img loss 1.2379345893859863 img loss 1.2865612506866455 img loss 1.2793231010437012 img loss 1.2532639503479004 img loss 1.213480830192566 img loss 1.2153476476669312 img loss 1.23085618019104 img loss 1.2010544538497925 img loss 1.2741650342941284 img loss 1.2371463775634766 img loss 1.3049339056015015 img loss 1.2429351806640625 img loss 1.2974395751953125 img loss 1.2613166570663452 img loss 1.2488714456558228 img loss 1.2382646799087524 img loss 1.236796259880066 img loss 1.2984592914581299 img loss 1.228217363357544 img loss 1.2781437635421753 img loss 1.249074935913086 img loss 1.2288150787353516 img loss 1.2764495611190796 img loss 1.1630724668502808 img loss 1.2829227447509766 img loss 1.233041763305664 img loss 1.2731598615646362 img loss 1.2385224103927612 img loss 1.2516268491744995 img loss 1.2883367538452148 img loss 1.2163814306259155 img loss 1.2183271646499634 img loss 1.2952191829681396 img loss 1.240338921546936 img loss 1.2435836791992188 img loss 1.2623059749603271 img loss 1.215736985206604 img loss 1.2631689310073853 img loss 1.2766022682189941 img loss 1.2673784494400024 img loss 1.2435204982757568 img loss 1.2251336574554443 img loss 1.2807124853134155 img loss 1.2003583908081055 img loss 1.2375324964523315 img loss 1.3225500583648682 img loss 1.2288845777511597 img loss 1.2237058877944946 img loss 1.2211425304412842 img loss 1.3288288116455078 img loss 1.2396533489227295 img loss 1.2329930067062378 img loss 1.2615174055099487 img loss 1.2350032329559326 img loss 1.2345911264419556 img loss 1.2643855810165405 img loss 1.2107102870941162 img loss 1.2334998846054077 img loss 1.2292652130126953 img loss 1.3091882467269897 img loss 1.25319242477417 img loss 1.3312358856201172 img loss 1.218239188194275 img loss 1.2792460918426514 img loss 1.257707118988037 img loss 1.2314777374267578 img loss 1.2244362831115723 img loss 1.2396435737609863 img loss 1.2798411846160889 img loss 1.23654043674469 img loss 1.2596371173858643 img loss 1.2326445579528809 img loss 1.25182044506073 img loss 1.2047505378723145 img loss 1.2480621337890625 img loss 1.3101015090942383 img loss 1.2254972457885742 img loss 1.2392128705978394 img loss 1.2509584426879883 img loss 1.2413134574890137 img loss 1.2721607685089111 img loss 1.214781403541565 img loss 1.2109160423278809 img loss 1.21454656124115 img loss 1.248577356338501 img loss 1.2213459014892578 img loss 1.2677974700927734 img loss 1.2677159309387207 img loss 1.2587413787841797 img loss 1.2409334182739258 img loss 1.204487681388855 img loss 1.2583907842636108 img loss 1.2523722648620605 img loss 1.3081363439559937 img loss 1.23721182346344 img loss 1.2554558515548706 img loss 1.2335169315338135 img loss 1.2820552587509155 img loss 1.223284125328064 img loss 1.3185309171676636 img loss 1.245967149734497 img loss 1.2149770259857178 img loss 1.2365927696228027 img loss 1.2581108808517456 img loss 1.227482557296753 img loss 1.2538751363754272img loss 1.18629789352417 img loss 1.2719043493270874 img loss 1.2259833812713623 img loss 1.2524049282073975 img loss 1.1972723007202148 img loss 1.2640498876571655 img loss 1.2556874752044678 img loss 1.2156835794448853 img loss 1.2224448919296265 {'loss': 1.2484, 'grad_norm': 0.3028782904148102, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3256535530090332 img loss 1.32302987575531 img loss 1.2921409606933594 img loss 1.3036869764328003 img loss 1.320472002029419 img loss 1.2739235162734985 img loss 1.3579223155975342 img loss 1.5086296796798706 img loss 1.3054033517837524 img loss 1.271775722503662 img loss 1.3257122039794922 img loss 1.2810454368591309 img loss 1.3237342834472656 img loss 1.326018214225769 img loss 1.3786966800689697 img loss 1.31655752658844 img loss 1.2689405679702759 img loss 1.3604216575622559img loss 1.2974140644073486 img loss 1.4125192165374756 img loss 1.4407994747161865 img loss 1.30466628074646 img loss 1.3575447797775269 img loss 1.3927620649337769 img loss 1.433651328086853 img loss 1.2197202444076538 img loss 1.2201759815216064 img loss 1.3756155967712402 img loss 1.3135840892791748 img loss 1.376372218132019 img loss 1.2927145957946777 img loss 1.2801207304000854 img loss 1.279138207435608 img loss 1.3851726055145264 img loss 1.3907209634780884 img loss 1.325212836265564 img loss 1.4386142492294312 img loss 1.3335553407669067 img loss 1.2846676111221313 img loss 1.339209794998169 img loss 1.3190330266952515 img loss 1.3414781093597412 img loss 1.329752802848816 img loss 1.32608962059021 img loss 1.2357839345932007 img loss 1.2384083271026611 img loss 1.3230490684509277 img loss 1.3308902978897095 img loss 1.348110556602478 img loss 1.3316657543182373 img loss 1.2913273572921753 img loss 1.390316367149353 img loss 1.2484204769134521 img loss 1.3479492664337158 img loss 1.4041730165481567 img loss 1.3839138746261597 img loss 1.3026025295257568 img loss 1.327768325805664 img loss 1.423621416091919 img loss 1.3226733207702637 img loss 1.3601280450820923 img loss 1.4223088026046753 img loss 1.385811686515808 img loss 1.2832088470458984 img loss 1.3221237659454346 img loss 1.3315668106079102 img loss 1.3737508058547974 img loss 1.2749861478805542 img loss 1.340665578842163 img loss 1.3954291343688965 img loss 1.385311245918274 img loss 1.3179429769515991 img loss 1.4064595699310303 img loss 1.349953532218933 img loss 1.404550313949585 img loss 1.3601973056793213 img loss 1.3466416597366333 img loss 1.3616889715194702 img loss 1.33625328540802 img loss 1.2957546710968018 img loss 1.23158860206604 img loss 1.2775176763534546 img loss 1.4146708250045776 img loss 1.3454687595367432 img loss 1.224618673324585 img loss 1.3526318073272705 img loss 1.3849629163742065 img loss 1.3940280675888062 img loss 1.3671729564666748 img loss 1.3445487022399902 img loss 1.3956555128097534 img loss 1.2891819477081299 img loss 1.2712877988815308 img loss 1.3079570531845093 img loss 1.2312465906143188 img loss 1.335771918296814 img loss 1.291887640953064 img loss 1.3108227252960205 img loss 1.2774410247802734 img loss 1.3720335960388184 img loss 1.3244168758392334 img loss 1.3843673467636108 img loss 1.375225305557251 img loss 1.3984811305999756 img loss 1.4200693368911743 img loss 1.4881985187530518 img loss 1.3439034223556519 img loss 1.348365306854248 img loss 1.3866095542907715 img loss 1.2872486114501953 img loss 1.3345110416412354 img loss 1.3939683437347412 img loss 1.3125520944595337 img loss 1.4057368040084839 img loss 1.2927370071411133 img loss 1.269747257232666 img loss 1.3639253377914429 img loss 1.3871792554855347 img loss 1.2742363214492798 img loss 1.3421742916107178 img loss 1.298949956893921 img loss 1.2961173057556152 img loss 1.3440946340560913 img loss 1.341783046722412 img loss 1.3561493158340454 img loss 1.4038150310516357 img loss 1.3058538436889648 img loss 1.409085750579834 {'loss': 1.3382, 'grad_norm': 0.46036407351493835, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.256810188293457 img loss 1.2511649131774902 img loss 1.2357133626937866 img loss 1.2384145259857178 img loss 1.1936912536621094 img loss 1.2411308288574219 img loss 1.2671400308609009 img loss 1.2494921684265137 img loss 1.222458839416504 img loss 1.206601858139038 img loss 1.2763735055923462 img loss 1.236876130104065 img loss 1.2796335220336914 img loss 1.2360546588897705 img loss 1.2594705820083618 img loss 1.2488635778427124 img loss 1.2639089822769165 img loss 1.2572463750839233 img loss 1.2480759620666504 img loss 1.24968421459198 img loss 1.2145397663116455 img loss 1.262376070022583 img loss 1.2243047952651978 img loss 1.254770278930664 img loss 1.2579911947250366 img loss 1.2711615562438965 img loss 1.2828574180603027 img loss 1.2291629314422607 img loss 1.2516207695007324 img loss 1.254650592803955 img loss 1.2945201396942139 img loss 1.2452404499053955 img loss 1.2579841613769531 img loss 1.2772116661071777 img loss 1.220790147781372 img loss 1.2765153646469116 img loss 1.255954623222351 img loss 1.2099206447601318 img loss 1.2642133235931396 img loss 1.2545554637908936 img loss 1.2655448913574219 img loss 1.262642741203308 img loss 1.2553030252456665 img loss 1.2271535396575928 img loss 1.2113420963287354 img loss 1.210573673248291 img loss 1.2430952787399292 img loss 1.2364662885665894 img loss 1.180010437965393 img loss 1.2417593002319336 img loss 1.2684471607208252 img loss 1.2231926918029785 img loss 1.26976478099823 img loss 1.2567479610443115img loss 1.2519786357879639 img loss 1.2361587285995483 img loss 1.21890127658844 img loss 1.270082712173462 img loss 1.2594964504241943 img loss 1.297492265701294 img loss 1.2539348602294922 img loss 1.2598834037780762 img loss 1.2165409326553345 img loss 1.2270208597183228 img loss 1.2294669151306152 img loss 1.202507734298706 img loss 1.275357723236084 img loss 1.209876537322998 img loss 1.2048027515411377 img loss 1.2758309841156006 img loss 1.2630650997161865 img loss 1.2419487237930298 img loss 1.2649592161178589 img loss 1.2885662317276 img loss 1.2505052089691162 img loss 1.2116281986236572 img loss 1.2528507709503174 img loss 1.28233802318573 img loss 1.2201353311538696 img loss 1.26394784450531 img loss 1.2343542575836182 img loss 1.2311443090438843 img loss 1.2193026542663574 img loss 1.2074859142303467 img loss 1.2881885766983032 img loss 1.2311378717422485 img loss 1.2677124738693237 img loss 1.213027834892273 img loss 1.2187004089355469 img loss 1.2186740636825562 img loss 1.2747942209243774 img loss 1.1772356033325195 img loss 1.2564506530761719 img loss 1.2675487995147705 img loss 1.2221870422363281 img loss 1.2268166542053223 img loss 1.3044995069503784 img loss 1.2194154262542725 img loss 1.2829551696777344 img loss 1.2180486917495728 img loss 1.2494804859161377 img loss 1.2578537464141846 img loss 1.2557700872421265 img loss 1.1940741539001465 img loss 1.28322172164917 img loss 1.2295467853546143 img loss 1.2960182428359985 img loss 1.2394112348556519 img loss 1.2212170362472534 img loss 1.2346224784851074 img loss 1.2260794639587402 img loss 1.2621703147888184 img loss 1.2874990701675415 img loss 1.19402015209198 img loss 1.2284303903579712 img loss 1.1841284036636353 img loss 1.1970083713531494 img loss 1.2519466876983643 img loss 1.2489651441574097 img loss 1.2685115337371826 img loss 1.2314592599868774 img loss 1.198595643043518 img loss 1.210827112197876 img loss 1.2363554239273071 img loss 1.2385153770446777 img loss 1.2384499311447144 img loss 1.2473865747451782 img loss 1.3026989698410034 {'loss': 1.2442, 'grad_norm': 0.22164463996887207, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1739294528961182 img loss 1.259131908416748 img loss 1.3007701635360718 img loss 1.2585514783859253 img loss 1.2629659175872803 img loss 1.172705888748169 img loss 1.2753899097442627 img loss 1.326385498046875 img loss 1.257251262664795 img loss 1.2061378955841064 img loss 1.251368761062622 img loss 1.2534353733062744 img loss 1.189758062362671 img loss 1.3740038871765137 img loss 1.2654422521591187 img loss 1.2578243017196655 img loss 1.2298336029052734 img loss 1.33579421043396 img loss 1.2818912267684937 img loss 1.2151756286621094 img loss 1.308534026145935 img loss 1.2418665885925293 img loss 1.1934913396835327 img loss 1.309611201286316 img loss 1.267491102218628 img loss 1.343985676765442 img loss 1.3051540851593018 img loss 1.2000774145126343 img loss 1.2062437534332275 img loss 1.2791770696640015 img loss 1.252920150756836 img loss 1.2138011455535889 img loss 1.200356364250183 img loss 1.3113174438476562 img loss 1.2743239402770996 img loss 1.2384999990463257 img loss 1.2397427558898926 img loss 1.3445961475372314 img loss 1.2463802099227905 img loss 1.3214616775512695 img loss 1.2194154262542725 img loss 1.2383170127868652 img loss 1.2705609798431396 img loss 1.2294554710388184 img loss 1.2732051610946655 img loss 1.221709132194519 img loss 1.2771797180175781 img loss 1.2698618173599243 img loss 1.2675294876098633 img loss 1.3640984296798706 img loss 1.2982193231582642 img loss 1.2723095417022705 img loss 1.2413609027862549 img loss 1.2685890197753906 img loss 1.3288391828536987 img loss 1.252423882484436 img loss 1.2606121301651 img loss 1.2329306602478027 img loss 1.222136378288269 img loss 1.1908018589019775 img loss 1.2288188934326172 img loss 1.329424262046814 img loss 1.2913055419921875 img loss 1.36551034450531 img loss 1.2693426609039307 img loss 1.3077892065048218 img loss 1.2396807670593262 img loss 1.249038577079773 img loss 1.3041595220565796 img loss 1.2089909315109253 img loss 1.27094304561615 img loss 1.264136552810669 img loss 1.3412035703659058 img loss 1.2972339391708374 img loss 1.2565313577651978 img loss 1.3203123807907104 img loss 1.2755317687988281 img loss 1.250096082687378 img loss 1.294829249382019 img loss 1.2903820276260376 img loss 1.353460431098938 img loss 1.2826080322265625 img loss 1.3155254125595093 img loss 1.2160661220550537 img loss 1.3531043529510498 img loss 1.3280467987060547 img loss 1.2304761409759521 img loss 1.3143419027328491 img loss 1.3274016380310059 img loss 1.2768617868423462 img loss 1.227873682975769 img loss 1.2777645587921143 img loss 1.269636631011963 img loss 1.2165082693099976 img loss 1.3157256841659546 img loss 1.2850444316864014 img loss 1.2007365226745605 img loss 1.283202052116394 img loss 1.3410887718200684 img loss 1.2973623275756836 img loss 1.3096541166305542 img loss 1.212386131286621 img loss 1.2900837659835815 img loss 1.2352843284606934 img loss 1.2689844369888306 img loss 1.1773046255111694 img loss 1.3087217807769775 img loss 1.269605040550232 img loss 1.271103858947754 img loss 1.3156425952911377 img loss 1.2860082387924194 img loss 1.3135621547698975 img loss 1.271299123764038 img loss 1.2626184225082397 img loss 1.2595964670181274 img loss 1.302538514137268 img loss 1.2106335163116455 img loss 1.2771631479263306 img loss 1.3097658157348633 img loss 1.2238715887069702 img loss 1.410975694656372 img loss 1.157013177871704 img loss 1.2668184041976929 img loss 1.3248953819274902 img loss 1.3188881874084473 img loss 1.293861746788025 img loss 1.347987413406372 img loss 1.271378993988037 {'loss': 1.2717, 'grad_norm': 0.27329158782958984, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1640117168426514 img loss 1.2388951778411865 img loss 1.2292134761810303 img loss 1.2464224100112915 img loss 1.1502693891525269 img loss 1.183383822441101 img loss 1.1996726989746094 img loss 1.2002179622650146 img loss 1.2605947256088257 img loss 1.1659085750579834 img loss 1.2846441268920898 img loss 1.1508476734161377 img loss 1.2106926441192627 img loss 1.1628044843673706 img loss 1.1096271276474 img loss 1.1923270225524902 img loss 1.179776668548584 img loss 1.2142865657806396 img loss 1.188239574432373 img loss 1.1634852886199951 img loss 1.1841615438461304 img loss 1.261041283607483 img loss 1.2968107461929321 img loss 1.1581302881240845 img loss 1.1838301420211792 img loss 1.1729074716567993 img loss 1.1615676879882812 img loss 1.1517422199249268 img loss 1.1869100332260132 img loss 1.1825180053710938 img loss 1.2681699991226196 img loss 1.1384245157241821 img loss 1.1263182163238525 img loss 1.1294230222702026 img loss 1.2312657833099365 img loss 1.270707607269287 img loss 1.2147517204284668 img loss 1.2741942405700684 img loss 1.262974739074707 img loss 1.2443968057632446 img loss 1.2092758417129517 img loss 1.1293952465057373 img loss 1.1221802234649658 img loss 1.1456857919692993 img loss 1.2833201885223389 img loss 1.208687424659729 img loss 1.1647838354110718 img loss 1.2155760526657104 img loss 1.1684329509735107 img loss 1.1956818103790283 img loss 1.1983038187026978 img loss 1.1899292469024658 img loss 1.1893848180770874 img loss 1.263168215751648 img loss 1.1669758558273315 img loss 1.1311391592025757 img loss 1.2239032983779907 img loss 1.1803079843521118 img loss 1.2695108652114868 img loss 1.1484078168869019 img loss 1.1375917196273804 img loss 1.2333492040634155 img loss 1.1815662384033203 img loss 1.1594871282577515 img loss 1.2045484781265259 img loss 1.22090482711792 img loss 1.183434247970581 img loss 1.1602470874786377 img loss 1.1880676746368408 img loss 1.1627483367919922 img loss 1.2109811305999756 img loss 1.248876929283142 img loss 1.1807141304016113 img loss 1.2305376529693604 img loss 1.283860445022583 img loss 1.2327505350112915 img loss 1.1966923475265503 img loss 1.1585452556610107 img loss 1.2312800884246826 img loss 1.2201355695724487 img loss 1.1860344409942627 img loss 1.208275318145752 img loss 1.2215999364852905 img loss 1.2743089199066162 img loss 1.1668639183044434 img loss 1.2596313953399658 img loss 1.1781654357910156 img loss 1.286630630493164 img loss 1.2367503643035889 img loss 1.2603647708892822 img loss 1.244500994682312 img loss 1.2340198755264282 img loss 1.2581367492675781 img loss 1.1315120458602905 img loss 1.158350944519043 img loss 1.1902117729187012 img loss 1.2308540344238281 img loss 1.2168015241622925 img loss 1.2199721336364746 img loss 1.1720259189605713 img loss 1.2278976440429688 img loss 1.1621754169464111 img loss 1.2488077878952026 img loss 1.1886367797851562 img loss 1.2123676538467407 img loss 1.1374027729034424 img loss 1.1603296995162964 img loss 1.2110309600830078 img loss 1.179239273071289 img loss 1.1653934717178345 img loss 1.1995067596435547 img loss 1.1489931344985962 img loss 1.1606593132019043 img loss 1.202388048171997 img loss 1.1629142761230469 img loss 1.209749698638916 img loss 1.2364113330841064 img loss 1.160315752029419 img loss 1.208784580230713 img loss 1.189828872680664 img loss 1.1708706617355347 img loss 1.2286266088485718 img loss 1.2078689336776733 img loss 1.1743682622909546 img loss 1.1802842617034912 img loss 1.2345227003097534 img loss 1.2078208923339844 img loss 1.3160995244979858 {'loss': 1.2004, 'grad_norm': 0.3276478946208954, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.266316294670105 img loss 1.2141401767730713 img loss 1.2403600215911865 img loss 1.2860500812530518 img loss 1.2732429504394531 img loss 1.27813720703125 img loss 1.252248764038086 img loss 1.2347043752670288 img loss 1.22079598903656 img loss 1.2216380834579468 img loss 1.1795763969421387 img loss 1.2050392627716064 img loss 1.2072389125823975 img loss 1.1950221061706543 img loss 1.183562159538269 img loss 1.2650598287582397 img loss 1.2292485237121582 img loss 1.26057767868042 img loss 1.1890188455581665 img loss 1.2477962970733643 img loss 1.2723350524902344 img loss 1.196614146232605 img loss 1.2528330087661743 img loss 1.2352780103683472 img loss 1.326775312423706 img loss 1.2973812818527222 img loss 1.2353521585464478 img loss 1.1736363172531128 img loss 1.1408166885375977 img loss 1.2817128896713257 img loss 1.227018117904663 img loss 1.2185295820236206 img loss 1.2601743936538696 img loss 1.2443701028823853 img loss 1.1879782676696777 img loss 1.2108981609344482 img loss 1.2616839408874512 img loss 1.27152419090271 img loss 1.1650733947753906 img loss 1.2583681344985962 img loss 1.2610507011413574 img loss 1.2369065284729004 img loss 1.2172834873199463 img loss 1.267890214920044 img loss 1.1843451261520386 img loss 1.1929171085357666 img loss 1.3126375675201416 img loss 1.2916982173919678 img loss 1.224271535873413 img loss 1.2040932178497314 img loss 1.2754369974136353 img loss 1.220968246459961 img loss 1.2086188793182373 img loss 1.3068841695785522 img loss 1.2312335968017578 img loss 1.303323745727539 img loss 1.2629430294036865 img loss 1.2075021266937256 img loss 1.2462284564971924 img loss 1.2324951887130737 img loss 1.2569313049316406 img loss 1.3016144037246704 img loss 1.3100954294204712 img loss 1.2100838422775269 img loss 1.2243343591690063 img loss 1.3002277612686157 img loss 1.2159550189971924 img loss 1.1922955513000488 img loss 1.2764949798583984 img loss 1.2183250188827515 img loss 1.2720333337783813 img loss 1.2728585004806519 img loss 1.2467693090438843 img loss 1.3272452354431152 img loss 1.2707065343856812 img loss 1.32479727268219 img loss 1.1644901037216187 img loss 1.3066000938415527 img loss 1.314186930656433 img loss 1.2183990478515625 img loss 1.2317394018173218 img loss 1.2216631174087524 img loss 1.2708086967468262 img loss 1.1843276023864746 img loss 1.225001335144043 img loss 1.2502551078796387 img loss 1.2385356426239014 img loss 1.2873518466949463 img loss 1.2236133813858032 img loss 1.2040917873382568 img loss 1.2628087997436523 img loss 1.2642186880111694 img loss 1.2433172464370728 img loss 1.26967191696167 img loss 1.2619869709014893 img loss 1.320594310760498 img loss 1.292738676071167 img loss 1.2510675191879272 img loss 1.277198314666748 img loss 1.2411960363388062 img loss 1.2926676273345947 img loss 1.2609217166900635 img loss 1.2730766534805298 img loss 1.2035375833511353 img loss 1.2053155899047852 img loss 1.266754150390625 img loss 1.193938970565796 img loss 1.233453392982483 img loss 1.1948143243789673 img loss 1.264201045036316 img loss 1.1932286024093628 img loss 1.2636046409606934 img loss 1.1884902715682983 img loss 1.176617980003357 img loss 1.3013670444488525 img loss 1.2037400007247925 img loss 1.2165961265563965 img loss 1.2694206237792969 img loss 1.2510130405426025 img loss 1.2330880165100098 img loss 1.234038233757019 img loss 1.2238221168518066 img loss 1.2418687343597412 img loss 1.2417703866958618 img loss 1.194151759147644 img loss 1.2022175788879395 img loss 1.2505946159362793 img loss 1.2641019821166992 {'loss': 1.2425, 'grad_norm': 0.2784566879272461, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2990360260009766 img loss 1.2598236799240112 img loss 1.2802841663360596 img loss 1.3005863428115845 img loss 1.280649185180664 img loss 1.4075748920440674 img loss 1.2490298748016357 img loss 1.2919209003448486 img loss 1.2112083435058594 img loss 1.3111090660095215 img loss 1.315616250038147 img loss 1.3202035427093506 img loss 1.286102533340454 img loss 1.2780758142471313 img loss 1.2939213514328003 img loss 1.225023865699768 img loss 1.2091842889785767 img loss 1.276937484741211 img loss 1.2659462690353394 img loss 1.2248213291168213 img loss 1.2726634740829468 img loss 1.2689989805221558 img loss 1.3456952571868896 img loss 1.232066035270691 img loss 1.2739841938018799 img loss 1.273991346359253 img loss 1.3800501823425293 img loss 1.2070053815841675 img loss 1.2927069664001465 img loss 1.3052093982696533 img loss 1.2651830911636353 img loss 1.3150177001953125 img loss 1.3601213693618774 img loss 1.3261727094650269 img loss 1.239866018295288 img loss 1.212228775024414 img loss 1.323220133781433 img loss 1.2637004852294922 img loss 1.2949413061141968 img loss 1.439585566520691 img loss 1.4300674200057983 img loss 1.218759536743164 img loss 1.254359483718872 img loss 1.394382119178772 img loss 1.2297359704971313 img loss 1.2120417356491089 img loss 1.3100389242172241 img loss 1.3280738592147827 img loss 1.2720885276794434 img loss 1.2497895956039429 img loss 1.3288745880126953 img loss 1.250610589981079 img loss 1.2487590312957764 img loss 1.264472484588623 img loss 1.3550279140472412 img loss 1.3657313585281372 img loss 1.3299500942230225 img loss 1.1460527181625366 img loss 1.2682445049285889 img loss 1.3095366954803467 img loss 1.29502534866333 img loss 1.2346959114074707 img loss 1.2421276569366455 img loss 1.2591348886489868 img loss 1.277990698814392 img loss 1.2639907598495483 img loss 1.2812097072601318 img loss 1.2757837772369385 img loss 1.2266497611999512 img loss 1.3375375270843506 img loss 1.2458614110946655 img loss 1.2983454465866089 img loss 1.2900638580322266 img loss 1.2034059762954712 img loss 1.2882919311523438 img loss 1.1899181604385376 img loss 1.2133922576904297 img loss 1.1932790279388428 img loss 1.2873952388763428 img loss 1.2379909753799438 img loss 1.293642520904541 img loss 1.3064520359039307 img loss 1.291797161102295 img loss 1.2511279582977295 img loss 1.2804162502288818 img loss 1.2638872861862183 img loss 1.2584246397018433 img loss 1.309244155883789 img loss 1.3506630659103394 img loss 1.3539944887161255 img loss 1.3501341342926025 img loss 1.2118738889694214 img loss 1.2439391613006592 img loss 1.276244878768921 img loss 1.294625997543335 img loss 1.3444215059280396 img loss 1.227335810661316 img loss 1.2871451377868652 img loss 1.1841347217559814 img loss 1.319313883781433 img loss 1.327072024345398 img loss 1.2752670049667358 img loss 1.2629997730255127 img loss 1.278699517250061 img loss 1.2560182809829712 img loss 1.2407649755477905 img loss 1.2687485218048096 img loss 1.240044116973877 img loss 1.2417747974395752 img loss 1.254626750946045 img loss 1.2420564889907837 img loss 1.3288912773132324 img loss 1.313592553138733 img loss 1.322566270828247 img loss 1.2651079893112183 img loss 1.2665241956710815 img loss 1.3549206256866455 img loss 1.2040117979049683 img loss 1.2903274297714233 img loss 1.290753722190857 img loss 1.2748819589614868 img loss 1.2567962408065796 img loss 1.317704439163208 img loss 1.2788368463516235 img loss 1.206620693206787 img loss 1.2470537424087524 img loss 1.3186283111572266 img loss 1.2599152326583862 {'loss': 1.2795, 'grad_norm': 0.2916238307952881, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.159674882888794 img loss 1.264624834060669 img loss 1.248067855834961 img loss 1.2697168588638306 img loss 1.2655200958251953 img loss 1.2884050607681274 img loss 1.3590086698532104 img loss 1.280081033706665 img loss 1.3115427494049072 img loss 1.2486262321472168 img loss 1.3441966772079468 img loss 1.302552580833435 img loss 1.2570877075195312 img loss 1.306118369102478 img loss 1.2859500646591187 img loss 1.2490808963775635 img loss 1.3041489124298096 img loss 1.2409424781799316 img loss 1.2868056297302246 img loss 1.2630517482757568 img loss 1.2892957925796509 img loss 1.374189853668213 img loss 1.236883521080017 img loss 1.2764067649841309 img loss 1.237118124961853 img loss 1.2915642261505127 img loss 1.2804373502731323 img loss 1.3084319829940796 img loss 1.2965774536132812 img loss 1.2341669797897339 img loss 1.3350145816802979 img loss 1.3379852771759033 img loss 1.2606884241104126 img loss 1.3287153244018555 img loss 1.2931993007659912 img loss 1.2915165424346924 img loss 1.2974128723144531 img loss 1.2861727476119995 img loss 1.321934700012207 img loss 1.2793012857437134 img loss 1.229222297668457 img loss 1.2477033138275146 img loss 1.300026774406433 img loss 1.3029499053955078 img loss 1.299124002456665 img loss 1.2223824262619019 img loss 1.3226845264434814 img loss 1.346901297569275 img loss 1.2771406173706055 img loss 1.2404870986938477 img loss 1.252716064453125 img loss 1.2180594205856323 img loss 1.2897462844848633 img loss 1.2218722105026245 img loss 1.2871837615966797 img loss 1.2215880155563354 img loss 1.2619011402130127 img loss 1.256049633026123 img loss 1.2490782737731934 img loss 1.2551953792572021 img loss 1.2549419403076172 img loss 1.2566879987716675 img loss 1.2122849225997925 img loss 1.2749048471450806 img loss 1.2565430402755737 img loss 1.3507157564163208 img loss 1.2497060298919678 img loss 1.280415415763855 img loss 1.3506951332092285 img loss 1.3211112022399902 img loss 1.259269118309021 img loss 1.2040423154830933 img loss 1.1752598285675049 img loss 1.3311889171600342 img loss 1.2560367584228516 img loss 1.2295925617218018 img loss 1.3170191049575806 img loss 1.2550607919692993 img loss 1.2918078899383545 img loss 1.282813310623169 img loss 1.268521785736084 img loss 1.235103964805603 img loss 1.2178138494491577 img loss 1.1923538446426392 img loss 1.2677011489868164 img loss 1.196867823600769 img loss 1.2303532361984253 img loss 1.2091659307479858 img loss 1.325581431388855 img loss 1.2616087198257446 img loss 1.2576274871826172 img loss 1.2658735513687134 img loss 1.244128942489624 img loss 1.2697502374649048 img loss 1.2687010765075684 img loss 1.3262150287628174 img loss 1.2855509519577026 img loss 1.2490090131759644 img loss 1.2517849206924438 img loss 1.1987431049346924 img loss 1.2866477966308594 img loss 1.2572532892227173 img loss 1.287289023399353 img loss 1.3002827167510986 img loss 1.3029879331588745 img loss 1.3657431602478027 img loss 1.3791488409042358 img loss 1.3122481107711792 img loss 1.3185632228851318 img loss 1.250803828239441 img loss 1.3103357553482056 img loss 1.238602876663208 img loss 1.2606241703033447 img loss 1.2514861822128296 img loss 1.2731077671051025 img loss 1.3325793743133545 img loss 1.2996879816055298 img loss 1.3032957315444946 img loss 1.278226613998413 img loss 1.261179804801941 img loss 1.3105430603027344 img loss 1.1982593536376953 img loss 1.3469488620758057 img loss 1.2968189716339111 img loss 1.2315895557403564 img loss 1.355406641960144 img loss 1.247017502784729 img loss 1.3329148292541504 {'loss': 1.2759, 'grad_norm': 0.33024585247039795, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4718424081802368 img loss 1.3677006959915161 img loss 1.4772192239761353 img loss 1.406848669052124 img loss 1.3867672681808472 img loss 1.5452295541763306 img loss 1.4487489461898804 img loss 1.4709370136260986 img loss 1.4363281726837158 img loss 1.4485106468200684 img loss 1.404201865196228 img loss 1.5560706853866577 img loss 1.5736855268478394 img loss 1.4783979654312134 img loss 1.39333176612854 img loss 1.4071577787399292 img loss 1.458837866783142 img loss 1.3894267082214355 img loss 1.3825219869613647 img loss 1.5027638673782349 img loss 1.377528429031372 img loss 1.3970898389816284 img loss 1.391597032546997 img loss 1.43355131149292 img loss 1.3503222465515137 img loss 1.3415776491165161 img loss 1.3875194787979126 img loss 1.5585685968399048 img loss 1.4576611518859863 img loss 1.4478999376296997 img loss 1.4731148481369019 img loss 1.5550636053085327 img loss 1.5285592079162598 img loss 1.5029491186141968 img loss 1.3544037342071533 img loss 1.4343575239181519 img loss 1.5189603567123413 img loss 1.366268515586853 img loss 1.471315860748291 img loss 1.3197834491729736 img loss 1.3426464796066284 img loss 1.3376514911651611 img loss 1.4622060060501099 img loss 1.2613258361816406 img loss 1.396112084388733 img loss 1.516760230064392 img loss 1.341601014137268 img loss 1.3425852060317993 img loss 1.3731693029403687 img loss 1.475996732711792 img loss 1.5606648921966553 img loss 1.3880776166915894 img loss 1.5278289318084717 img loss 1.3843863010406494 img loss 1.5666354894638062 img loss 1.4225558042526245 img loss 1.293204665184021 img loss 1.315084457397461 img loss 1.314595103263855 img loss 1.4057319164276123 img loss 1.4904714822769165 img loss 1.4050320386886597 img loss 1.3153959512710571 img loss 1.5135751962661743 img loss 1.3358800411224365 img loss 1.2345298528671265 img loss 1.3755682706832886 img loss 1.4367272853851318 img loss 1.2328495979309082 img loss 1.490527868270874 img loss 1.3284151554107666 img loss 1.4673895835876465 img loss 1.382759690284729 img loss 1.436394214630127 img loss 1.373923420906067 img loss 1.446173071861267 img loss 1.3428969383239746 img loss 1.5484750270843506 img loss 1.3089993000030518 img loss 1.5854401588439941 img loss 1.4597593545913696 img loss 1.4936597347259521 img loss 1.3603938817977905 img loss 1.422709584236145 img loss 1.3103268146514893 img loss 1.4674623012542725 img loss 1.389279842376709 img loss 1.3660184144973755 img loss 1.337812066078186 img loss 1.3970497846603394 img loss 1.3920872211456299 img loss 1.4731069803237915 img loss 1.4028900861740112 img loss 1.4022074937820435 img loss 1.4943534135818481 img loss 1.4175703525543213 img loss 1.464974284172058 img loss 1.317216157913208 img loss 1.436928629875183 img loss 1.4497610330581665 img loss 1.4948142766952515 img loss 1.360748052597046 img loss 1.4487520456314087 img loss 1.4757095575332642 img loss 1.5198098421096802 img loss 1.4556288719177246 img loss 1.474392056465149 img loss 1.3610413074493408 img loss 1.5028170347213745 img loss 1.3714067935943604 img loss 1.375201940536499 img loss 1.3777005672454834 img loss 1.3052929639816284 img loss 1.4493077993392944 img loss 1.2983300685882568 img loss 1.4761502742767334 img loss 1.5042803287506104 img loss 1.4365652799606323 img loss 1.3215653896331787 img loss 1.4583343267440796 img loss 1.4112190008163452 img loss 1.3789547681808472 img loss 1.452105164527893 img loss 1.4137426614761353 img loss 1.4867844581604004 img loss 1.5313962697982788 img loss 1.4706484079360962 img loss 1.495320200920105 {'loss': 1.4228, 'grad_norm': 0.5393427610397339, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2947438955307007 img loss 1.3344838619232178 img loss 1.2576379776000977 img loss 1.2672920227050781 img loss 1.2875537872314453 img loss 1.2084829807281494 img loss 1.2477271556854248 img loss 1.2222636938095093 img loss 1.1905779838562012 img loss 1.2197692394256592 img loss 1.4489166736602783 img loss 1.251348853111267 img loss 1.1943049430847168 img loss 1.2276262044906616 img loss 1.3320623636245728 img loss 1.2598928213119507 img loss 1.260221004486084 img loss 1.347984790802002 img loss 1.275801181793213 img loss 1.3201806545257568 img loss 1.291152834892273 img loss 1.2528847455978394 img loss 1.2618494033813477 img loss 1.3621469736099243 img loss 1.2849938869476318 img loss 1.3715989589691162 img loss 1.3158965110778809 img loss 1.269639015197754 img loss 1.3968945741653442 img loss 1.2277292013168335 img loss 1.2936897277832031 img loss 1.2140640020370483 img loss 1.237130880355835 img loss 1.2542403936386108 img loss 1.1981281042099 img loss 1.2750084400177002 img loss 1.2531850337982178 img loss 1.2524652481079102 img loss 1.2463812828063965 img loss 1.3756070137023926 img loss 1.275837779045105 img loss 1.2503360509872437 img loss 1.249011516571045 img loss 1.4368149042129517 img loss 1.2137961387634277 img loss 1.2964591979980469 img loss 1.1843944787979126 img loss 1.212796688079834 img loss 1.2739593982696533 img loss 1.3655539751052856 img loss 1.2829355001449585 img loss 1.228339672088623 img loss 1.36136794090271 img loss 1.3715099096298218 img loss 1.327513337135315 img loss 1.343971610069275 img loss 1.2313934564590454 img loss 1.1619137525558472 img loss 1.2955986261367798 img loss 1.2632023096084595 img loss 1.2297362089157104 img loss 1.3095954656600952 img loss 1.3420650959014893 img loss 1.1955937147140503 img loss 1.2739627361297607 img loss 1.4421305656433105 img loss 1.2594257593154907 img loss 1.2830684185028076 img loss 1.3311293125152588 img loss 1.234148621559143 img loss 1.301784873008728 img loss 1.1914376020431519 img loss 1.345442533493042 img loss 1.3096914291381836 img loss 1.1614140272140503 img loss 1.2831734418869019 img loss 1.2436230182647705 img loss 1.2522752285003662 img loss 1.3018779754638672 img loss 1.1923949718475342 img loss 1.274938941001892 img loss 1.288940191268921 img loss 1.4174538850784302 img loss 1.20549476146698 img loss 1.2193670272827148 img loss 1.2606403827667236 img loss 1.1826229095458984 img loss 1.3287590742111206 img loss 1.2498098611831665 img loss 1.3054128885269165 img loss 1.2315082550048828 img loss 1.2991037368774414 img loss 1.2953795194625854 img loss 1.3056678771972656 img loss 1.2583694458007812 img loss 1.326248049736023 img loss 1.325860619544983 img loss 1.171873688697815 img loss 1.2702358961105347 img loss 1.2367851734161377 img loss 1.2996068000793457 img loss 1.2468761205673218 img loss 1.246640920639038 img loss 1.2707281112670898 img loss 1.1809427738189697 img loss 1.26418137550354 img loss 1.3527759313583374 img loss 1.3854520320892334 img loss 1.2719272375106812 img loss 1.294414758682251 img loss 1.269761323928833 img loss 1.3856755495071411 img loss 1.4260499477386475 img loss 1.2553046941757202 img loss 1.2407423257827759 img loss 1.325314998626709 img loss 1.273353934288025 img loss 1.241351842880249 img loss 1.2950892448425293 img loss 1.1732277870178223 img loss 1.236836314201355 img loss 1.3656550645828247 img loss 1.2704212665557861 img loss 1.3489463329315186 img loss 1.2566627264022827 img loss 1.3141536712646484 img loss 1.2949612140655518 img loss 1.2657583951950073 {'loss': 1.2789, 'grad_norm': 0.4527491629123688, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.24365234375 img loss 1.2075414657592773 img loss 1.229612946510315 img loss 1.2877349853515625 img loss 1.2171505689620972 img loss 1.264703392982483 img loss 1.3004016876220703 img loss 1.2796348333358765 img loss 1.204249620437622 img loss 1.3168169260025024 img loss 1.2429012060165405 img loss 1.0878523588180542 img loss 1.1777313947677612 img loss 1.2346844673156738 img loss 1.2019801139831543 img loss 1.225938081741333 img loss 1.2244067192077637 img loss 1.274892807006836 img loss 1.2862436771392822 img loss 1.4187008142471313 img loss 1.1990041732788086 img loss 1.161424160003662 img loss 1.1546990871429443 img loss 1.2649497985839844 img loss 1.1351232528686523 img loss 1.2304261922836304 img loss 1.2037702798843384 img loss 1.1591823101043701 img loss 1.2379759550094604 img loss 1.2463014125823975 img loss 1.2987250089645386 img loss 1.2427945137023926 img loss 1.2461278438568115 img loss 1.1918632984161377 img loss 1.1892635822296143 img loss 1.1897436380386353 img loss 1.278396487236023 img loss 1.243689775466919 img loss 1.238091230392456 img loss 1.2664108276367188 img loss 1.259164571762085 img loss 1.2621324062347412 img loss 1.2690906524658203 img loss 1.368614912033081 img loss 1.3127179145812988 img loss 1.220925211906433 img loss 1.2890560626983643 img loss 1.1594960689544678 img loss 1.1688101291656494 img loss 1.3126707077026367 img loss 1.3643368482589722 img loss 1.2888392210006714 img loss 1.206225037574768 img loss 1.2535673379898071 img loss 1.2518038749694824 img loss 1.2908265590667725 img loss 1.2290802001953125 img loss 1.2032641172409058 img loss 1.2552646398544312 img loss 1.2331676483154297 img loss 1.2635811567306519 img loss 1.2086337804794312 img loss 1.341081142425537 img loss 1.271013617515564 img loss 1.2536263465881348 img loss 1.2921326160430908 img loss 1.1682900190353394 img loss 1.435505986213684 img loss 1.2794277667999268 img loss 1.2004332542419434 img loss 1.1994857788085938 img loss 1.2283623218536377 img loss 1.3049139976501465 img loss 1.3061014413833618 img loss 1.249308466911316 img loss 1.2534840106964111 img loss 1.16148042678833 img loss 1.1978040933609009 img loss 1.1021525859832764 img loss 1.2740398645401 img loss 1.2430570125579834 img loss 1.3428715467453003 img loss 1.212001085281372 img loss 1.2614716291427612 img loss 1.3004645109176636 img loss 1.2877506017684937 img loss 1.2522425651550293 img loss 1.359924077987671 img loss 1.2154481410980225 img loss 1.2665698528289795 img loss 1.3048374652862549 img loss 1.3071342706680298 img loss 1.3267643451690674 img loss 1.317897081375122 img loss 1.1826332807540894 img loss 1.3066697120666504 img loss 1.3217651844024658 img loss 1.2021632194519043 img loss 1.2011940479278564 img loss 1.3141573667526245 img loss 1.2287958860397339 img loss 1.3091542720794678 img loss 1.174206256866455 img loss 1.14621102809906 img loss 1.2757548093795776 img loss 1.2612823247909546 img loss 1.307355523109436 img loss 1.1991002559661865 img loss 1.239012360572815 img loss 1.2339253425598145 img loss 1.2781157493591309 img loss 1.3668051958084106 img loss 1.302572250366211 img loss 1.2793394327163696 img loss 1.3358765840530396 img loss 1.267098307609558 img loss 1.2474734783172607 img loss 1.1908762454986572 img loss 1.1898313760757446 img loss 1.3535549640655518 img loss 1.2748031616210938 img loss 1.2570035457611084 img loss 1.217150092124939 img loss 1.2035356760025024 img loss 1.2677119970321655 img loss 1.1934945583343506 img loss 1.2995685338974 img loss 1.2037051916122437 {'loss': 1.251, 'grad_norm': 0.6503849625587463, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4227385520935059 img loss 1.3220404386520386 img loss 1.3573181629180908 img loss 1.4125186204910278 img loss 1.347152590751648 img loss 1.3872205018997192 img loss 1.3708957433700562 img loss 1.3698432445526123 img loss 1.3762215375900269 img loss 1.3159550428390503 img loss 1.4575412273406982 img loss 1.3893539905548096 img loss 1.4644407033920288 img loss 1.377144694328308 img loss 1.2464109659194946 img loss 1.3833681344985962 img loss 1.395699143409729 img loss 1.3922669887542725 img loss 1.3924881219863892 img loss 1.424994945526123 img loss 1.3482862710952759 img loss 1.407700777053833 img loss 1.3478890657424927 img loss 1.342942714691162 img loss 1.3366901874542236 img loss 1.2749680280685425 img loss 1.2865585088729858 img loss 1.3337711095809937 img loss 1.4228135347366333 img loss 1.4278786182403564 img loss 1.3427337408065796 img loss 1.3233234882354736 img loss 1.4486405849456787 img loss 1.3090742826461792 img loss 1.3628346920013428 img loss 1.4600074291229248 img loss 1.3980813026428223 img loss 1.4152886867523193 img loss 1.3948767185211182 img loss 1.274118185043335 img loss 1.3311790227890015 img loss 1.4374796152114868 img loss 1.390897274017334 img loss 1.4522712230682373 img loss 1.458936333656311 img loss 1.31138014793396 img loss 1.3331544399261475 img loss 1.4346452951431274 img loss 1.2486572265625 img loss 1.4173628091812134 img loss 1.318475365638733 img loss 1.3315086364746094 img loss 1.4114530086517334 img loss 1.2586125135421753 img loss 1.3292746543884277 img loss 1.2918671369552612 img loss 1.3632415533065796 img loss 1.4314684867858887 img loss 1.4283173084259033 img loss 1.4141792058944702 img loss 1.3237885236740112 img loss 1.3241956233978271 img loss 1.485568881034851 img loss 1.3119187355041504 img loss 1.3682150840759277 img loss 1.3719966411590576 img loss 1.3287479877471924 img loss 1.4049144983291626 img loss 1.3696354627609253 img loss 1.4505425691604614 img loss 1.3547866344451904 img loss 1.2905386686325073 img loss 1.3157905340194702 img loss 1.2943066358566284 img loss 1.328286051750183 img loss 1.480265736579895 img loss 1.3894647359848022 img loss 1.3308227062225342 img loss 1.4530953168869019 img loss 1.3486793041229248 img loss 1.4604681730270386 img loss 1.331468105316162 img loss 1.416864275932312 img loss 1.3150891065597534 img loss 1.3914159536361694 img loss 1.4496296644210815 img loss 1.2606735229492188 img loss 1.4251954555511475 img loss 1.3263391256332397 img loss 1.4220139980316162 img loss 1.2916524410247803 img loss 1.4072442054748535 img loss 1.4007947444915771 img loss 1.3279685974121094 img loss 1.4142800569534302 img loss 1.4079642295837402 img loss 1.3990395069122314 img loss 1.3180198669433594 img loss 1.3928455114364624 img loss 1.3511173725128174 img loss 1.3905446529388428 img loss 1.3283491134643555 img loss 1.3826569318771362 img loss 1.351043462753296 img loss 1.3808553218841553 img loss 1.3826948404312134 img loss 1.4012248516082764 img loss 1.3392754793167114 img loss 1.3584074974060059 img loss 1.331005573272705 img loss 1.3245289325714111 img loss 1.3826874494552612 img loss 1.299444556236267 img loss 1.3952981233596802 img loss 1.3780419826507568 img loss 1.4357495307922363 img loss 1.3321259021759033 img loss 1.4294660091400146 img loss 1.3904070854187012 img loss 1.346465826034546 img loss 1.3893781900405884 img loss 1.3252781629562378 img loss 1.413411259651184 img loss 1.3339848518371582 img loss 1.3307710886001587 img loss 1.3198926448822021 img loss 1.399497628211975 img loss 1.345531702041626 {'loss': 1.3696, 'grad_norm': 0.3344725966453552, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.354804277420044 img loss 1.3800987005233765 img loss 1.370344638824463 img loss 1.3024619817733765 img loss 1.358703851699829 img loss 1.532947301864624 img loss 1.3812804222106934 img loss 1.3037136793136597 img loss 1.395452857017517 img loss 1.4154293537139893 img loss 1.3016554117202759 img loss 1.2202348709106445 img loss 1.3525691032409668 img loss 1.431302785873413 img loss 1.395024061203003 img loss 1.3679388761520386 img loss 1.3221039772033691 img loss 1.2294836044311523 img loss 1.3861949443817139 img loss 1.3494633436203003 img loss 1.4178563356399536 img loss 1.3449267148971558 img loss 1.1901021003723145 img loss 1.2674471139907837 img loss 1.19649076461792 img loss 1.3769763708114624 img loss 1.3126205205917358 img loss 1.3746575117111206 img loss 1.2860065698623657 img loss 1.3040142059326172 img loss 1.317966103553772 img loss 1.3879495859146118 img loss 1.297530174255371 img loss 1.4431955814361572 img loss 1.4025746583938599 img loss 1.3694976568222046 img loss 1.3273158073425293 img loss 1.3111146688461304 img loss 1.3207106590270996 img loss 1.2964050769805908 img loss 1.2841295003890991 img loss 1.469247579574585 img loss 1.4361120462417603 img loss 1.387809157371521 img loss 1.4066723585128784 img loss 1.3570151329040527 img loss 1.3789575099945068 img loss 1.3539440631866455 img loss 1.4257718324661255 img loss 1.3238188028335571 img loss 1.4104382991790771 img loss 1.2306832075119019 img loss 1.3492611646652222 img loss 1.285589575767517 img loss 1.3266406059265137 img loss 1.2783138751983643 img loss 1.3389757871627808 img loss 1.4418410062789917 img loss 1.360785961151123 img loss 1.4405733346939087 img loss 1.2951209545135498 img loss 1.3591595888137817 img loss 1.3479715585708618 img loss 1.3928059339523315 img loss 1.3735829591751099 img loss 1.3576200008392334 img loss 1.3415051698684692 img loss 1.2903732061386108 img loss 1.4008862972259521 img loss 1.3942912817001343 img loss 1.2905081510543823 img loss 1.3300491571426392 img loss 1.3660461902618408 img loss 1.349855899810791 img loss 1.2761094570159912 img loss 1.4360766410827637 img loss 1.4896548986434937 img loss 1.34099543094635 img loss 1.3267310857772827 img loss 1.339732050895691 img loss 1.4759364128112793 img loss 1.3310974836349487 img loss 1.2213283777236938 img loss 1.342206597328186 img loss 1.311112642288208 img loss 1.3333408832550049 img loss 1.2859690189361572 img loss 1.267255425453186 img loss 1.3512598276138306 img loss 1.4040249586105347 img loss 1.4725661277770996 img loss 1.2637972831726074 img loss 1.3843711614608765 img loss 1.2965635061264038 img loss 1.3845301866531372 img loss 1.461627721786499 img loss 1.3025774955749512 img loss 1.2045633792877197 img loss 1.3343513011932373 img loss 1.3624249696731567 img loss 1.3499853610992432 img loss 1.28793466091156 img loss 1.3640395402908325 img loss 1.4759680032730103 img loss 1.359379529953003 img loss 1.3651872873306274 img loss 1.3595077991485596 img loss 1.2845607995986938 img loss 1.355811357498169 img loss 1.3608838319778442 img loss 1.3859061002731323 img loss 1.4003936052322388 img loss 1.5011723041534424 img loss 1.3649163246154785 img loss 1.4486008882522583 img loss 1.3077704906463623 img loss 1.3598202466964722 img loss 1.3322961330413818 img loss 1.300822138786316 img loss 1.4334865808486938 img loss 1.254499912261963 img loss 1.349563479423523 img loss 1.3436592817306519 img loss 1.247465968132019 img loss 1.3844048976898193 img loss 1.2969211339950562 img loss 1.238452672958374 img loss 1.2893292903900146 {'loss': 1.349, 'grad_norm': 0.24642978608608246, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4591482877731323 img loss 1.4555513858795166 img loss 1.4066883325576782 img loss 1.4379346370697021 img loss 1.417222261428833 img loss 1.636245608329773 img loss 1.4510518312454224 img loss 1.3307281732559204 img loss 1.5062859058380127 img loss 1.5196346044540405 img loss 1.3792684078216553 img loss 1.3716109991073608 img loss 1.3306255340576172 img loss 1.4953080415725708 img loss 1.4512141942977905 img loss 1.4589498043060303 img loss 1.5504858493804932 img loss 1.5304228067398071 img loss 1.5058056116104126 img loss 1.470848798751831 img loss 1.4265648126602173 img loss 1.4084038734436035 img loss 1.432747483253479 img loss 1.430267095565796 img loss 1.4676252603530884 img loss 1.5009907484054565 img loss 1.458982229232788 img loss 1.4851089715957642 img loss 1.6038731336593628 img loss 1.544715404510498 img loss 1.3788330554962158 img loss 1.430207371711731 img loss 1.583791971206665 img loss 1.4963984489440918 img loss 1.3925634622573853 img loss 1.463710904121399 img loss 1.4264684915542603 img loss 1.531612753868103 img loss 1.386680006980896 img loss 1.505318522453308 img loss 1.5948079824447632 img loss 1.5115233659744263 img loss 1.4710153341293335 img loss 1.5928423404693604 img loss 1.3765684366226196 img loss 1.5383979082107544 img loss 1.520180344581604 img loss 1.480069637298584 img loss 1.4024361371994019 img loss 1.5202252864837646 img loss 1.487038493156433 img loss 1.6003233194351196 img loss 1.5871964693069458 img loss 1.3974909782409668 img loss 1.4464480876922607 img loss 1.4333622455596924 img loss 1.5383189916610718 img loss 1.4681288003921509 img loss 1.4684293270111084 img loss 1.517442226409912 img loss 1.3338669538497925 img loss 1.441066861152649 img loss 1.5021302700042725 img loss 1.5758376121520996 img loss 1.4239815473556519 img loss 1.4307888746261597 img loss 1.6271178722381592 img loss 1.2907301187515259 img loss 1.5910431146621704 img loss 1.4530408382415771 img loss 1.439392328262329 img loss 1.4411942958831787 img loss 1.5382767915725708 img loss 1.5443154573440552 img loss 1.3583897352218628 img loss 1.5587036609649658 img loss 1.3667619228363037 img loss 1.5015146732330322 img loss 1.4516161680221558 img loss 1.3267858028411865 img loss 1.5383927822113037 img loss 1.3602099418640137 img loss 1.5546330213546753 img loss 1.4556416273117065 img loss 1.307401418685913 img loss 1.4240994453430176 img loss 1.4345049858093262 img loss 1.391162395477295 img loss 1.3520712852478027 img loss 1.529540777206421 img loss 1.5410281419754028 img loss 1.5125148296356201 img loss 1.476052165031433 img loss 1.455222249031067 img loss 1.4156514406204224 img loss 1.4186394214630127 img loss 1.5813535451889038 img loss 1.421404480934143 img loss 1.4756911993026733 img loss 1.6615259647369385 img loss 1.4199875593185425 img loss 1.53044593334198 img loss 1.3537275791168213 img loss 1.5051653385162354 img loss 1.4675530195236206 img loss 1.3339427709579468 img loss 1.5269176959991455 img loss 1.5587197542190552 img loss 1.4499669075012207 img loss 1.3745169639587402 img loss 1.3963631391525269 img loss 1.316739797592163 img loss 1.5045517683029175 img loss 1.465440273284912 img loss 1.5181742906570435 img loss 1.3984811305999756 img loss 1.370259165763855 img loss 1.4064594507217407 img loss 1.5434553623199463 img loss 1.5691970586776733 img loss 1.4218153953552246 img loss 1.3592420816421509 img loss 1.4571735858917236 img loss 1.3295637369155884 img loss 1.3548285961151123 img loss 1.4487147331237793 img loss 1.500191569328308 img loss 1.4620015621185303 {'loss': 1.4634, 'grad_norm': 0.40609145164489746, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3487906455993652 img loss 1.354153037071228 img loss 1.2723373174667358 img loss 1.3569763898849487 img loss 1.3696902990341187 img loss 1.4550234079360962 img loss 1.28673255443573 img loss 1.347825288772583 img loss 1.3316360712051392 img loss 1.2764590978622437 img loss 1.3525975942611694 img loss 1.3664957284927368 img loss 1.2922706604003906 img loss 1.2479356527328491 img loss 1.3295531272888184 img loss 1.3548529148101807 img loss 1.3013131618499756 img loss 1.297856330871582 img loss 1.4040312767028809 img loss 1.1998389959335327 img loss 1.299208641052246 img loss 1.2610787153244019 img loss 1.3533949851989746 img loss 1.3323068618774414 img loss 1.3516438007354736 img loss 1.3321104049682617 img loss 1.2621725797653198 img loss 1.253883957862854 img loss 1.3382552862167358 img loss 1.365867257118225 img loss 1.2996011972427368 img loss 1.2930824756622314 img loss 1.3050845861434937 img loss 1.3177756071090698 img loss 1.3186901807785034 img loss 1.234265685081482 img loss 1.2421650886535645 img loss 1.302080512046814 img loss 1.3681962490081787 img loss 1.3688069581985474 img loss 1.2860660552978516 img loss 1.2529990673065186 img loss 1.3766165971755981 img loss 1.3082690238952637 img loss 1.3147389888763428 img loss 1.3483835458755493 img loss 1.3849951028823853 img loss 1.3023052215576172 img loss 1.2789173126220703 img loss 1.1958258152008057 img loss 1.4054558277130127 img loss 1.4114900827407837 img loss 1.2357972860336304 img loss 1.3618875741958618 img loss 1.305140733718872 img loss 1.281969428062439 img loss 1.3279552459716797 img loss 1.3617987632751465 img loss 1.2543333768844604 img loss 1.3464266061782837 img loss 1.3167117834091187 img loss 1.2696865797042847 img loss 1.3378263711929321 img loss 1.337530255317688 img loss 1.4007819890975952 img loss 1.2468280792236328 img loss 1.282465934753418 img loss 1.3561373949050903 img loss 1.3968021869659424 img loss 1.302642583847046 img loss 1.3482117652893066 img loss 1.2973231077194214 img loss 1.283427119255066 img loss 1.3081355094909668 img loss 1.3148401975631714 img loss 1.2205524444580078 img loss 1.2901638746261597 img loss 1.2678207159042358 img loss 1.320242166519165 img loss 1.3182655572891235 img loss 1.3069034814834595 img loss 1.4043926000595093 img loss 1.3184727430343628 img loss 1.2883830070495605 img loss 1.2898119688034058 img loss 1.370805263519287 img loss 1.2637925148010254 img loss 1.2779775857925415 img loss 1.311937689781189 img loss 1.2383151054382324 img loss 1.342237114906311 img loss 1.2828524112701416 img loss 1.2770702838897705 img loss 1.3362107276916504 img loss 1.3313450813293457 img loss 1.3149969577789307 img loss 1.2887448072433472 img loss 1.3029203414916992 img loss 1.3791223764419556 img loss 1.294135570526123 img loss 1.2738895416259766 img loss 1.3145232200622559 img loss 1.364052414894104 img loss 1.3810232877731323 img loss 1.2931660413742065 img loss 1.3251197338104248 img loss 1.273495078086853 img loss 1.3314480781555176 img loss 1.2678513526916504 img loss 1.3070356845855713 img loss 1.296441674232483 img loss 1.3534152507781982 img loss 1.404506802558899 img loss 1.3779150247573853 img loss 1.3567392826080322 img loss 1.2968182563781738 img loss 1.2585504055023193 img loss 1.4446057081222534 img loss 1.2584346532821655 img loss 1.322885513305664 img loss 1.3189715147018433 img loss 1.3350107669830322 img loss 1.37006413936615 img loss 1.3113765716552734 img loss 1.2747119665145874 img loss 1.2515414953231812 img loss 1.3142871856689453 img loss 1.3488355875015259 {'loss': 1.3168, 'grad_norm': 0.2629844546318054, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.347052812576294 img loss 1.3852986097335815 img loss 1.3692516088485718 img loss 1.4364351034164429 img loss 1.2418180704116821 img loss 1.300919532775879 img loss 1.3717701435089111 img loss 1.3985143899917603 img loss 1.4771560430526733 img loss 1.4096471071243286 img loss 1.273925542831421 img loss 1.2784206867218018 img loss 1.3613075017929077 img loss 1.3255952596664429 img loss 1.3593355417251587 img loss 1.3978530168533325 img loss 1.4647680521011353 img loss 1.483496069908142 img loss 1.3514388799667358 img loss 1.3118816614151 img loss 1.3254849910736084 img loss 1.3179101943969727 img loss 1.4352068901062012 img loss 1.3769395351409912 img loss 1.3875572681427002 img loss 1.339059591293335 img loss 1.4546897411346436 img loss 1.3310743570327759 img loss 1.3157780170440674 img loss 1.3383677005767822 img loss 1.3572466373443604 img loss 1.345130205154419 img loss 1.29579496383667 img loss 1.4455572366714478 img loss 1.404466986656189 img loss 1.2792832851409912 img loss 1.4004509449005127 img loss 1.3300509452819824 img loss 1.397465467453003 img loss 1.3595775365829468 img loss 1.368282437324524 img loss 1.3299834728240967 img loss 1.2687995433807373 img loss 1.4669841527938843 img loss 1.311551570892334 img loss 1.3585877418518066 img loss 1.4226833581924438 img loss 1.3292465209960938 img loss 1.3369228839874268 img loss 1.4194004535675049 img loss 1.428657054901123 img loss 1.2630743980407715 img loss 1.433101773262024 img loss 1.3165749311447144 img loss 1.3884800672531128 img loss 1.461708903312683 img loss 1.295454502105713 img loss 1.446406602859497 img loss 1.385019063949585 img loss 1.4010698795318604 img loss 1.346869945526123 img loss 1.4393532276153564 img loss 1.4062165021896362 img loss 1.4613453149795532 img loss 1.4046094417572021 img loss 1.3399351835250854 img loss 1.3890427350997925 img loss 1.3843296766281128 img loss 1.3487876653671265 img loss 1.4576137065887451 img loss 1.4173815250396729 img loss 1.4061944484710693 img loss 1.2362041473388672 img loss 1.283581018447876 img loss 1.373706579208374 img loss 1.306078553199768 img loss 1.2946373224258423 img loss 1.3259804248809814 img loss 1.2794538736343384 img loss 1.3347352743148804 img loss 1.319601058959961 img loss 1.4734567403793335 img loss 1.4396889209747314 img loss 1.3830534219741821 img loss 1.3065563440322876 img loss 1.4273200035095215 img loss 1.4353166818618774 img loss 1.4864999055862427 img loss 1.514880657196045 img loss 1.5163722038269043 img loss 1.4212058782577515 img loss 1.4276576042175293 img loss 1.284034013748169 img loss 1.4174962043762207 img loss 1.2702827453613281 img loss 1.360888123512268 img loss 1.3935762643814087 img loss 1.412985920906067 img loss 1.4302068948745728 img loss 1.3346391916275024 img loss 1.2606762647628784 img loss 1.365356683731079 img loss 1.474599003791809 img loss 1.3758940696716309 img loss 1.3876111507415771 img loss 1.3442469835281372 img loss 1.3527241945266724 img loss 1.2662465572357178 img loss 1.33919358253479 img loss 1.3865578174591064 img loss 1.3425278663635254 img loss 1.4890401363372803 img loss 1.4289276599884033 img loss 1.4075701236724854 img loss 1.3533345460891724 img loss 1.3732198476791382 img loss 1.3625617027282715 img loss 1.3976370096206665 img loss 1.3370811939239502 img loss 1.3071341514587402 img loss 1.313353419303894 img loss 1.5162039995193481 img loss 1.419891119003296 img loss 1.4362998008728027 img loss 1.376574993133545 img loss 1.3802220821380615 img loss 1.4465092420578003 img loss 1.3474029302597046 {'loss': 1.3742, 'grad_norm': 0.33046382665634155, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1969757080078125 img loss 1.1568344831466675 img loss 1.2486388683319092 img loss 1.2015979290008545 img loss 1.28469979763031 img loss 1.207158088684082 img loss 1.2797285318374634 img loss 1.2682991027832031 img loss 1.2183489799499512 img loss 1.2077769041061401 img loss 1.2680470943450928 img loss 1.1903984546661377 img loss 1.1463764905929565 img loss 1.1677383184432983 img loss 1.2729250192642212 img loss 1.1925022602081299 img loss 1.1215863227844238 img loss 1.2236435413360596 img loss 1.1482253074645996 img loss 1.1667665243148804 img loss 1.1410194635391235 img loss 1.2707685232162476 img loss 1.1919163465499878 img loss 1.224302053451538 img loss 1.2085659503936768 img loss 1.2028738260269165 img loss 1.1581568717956543 img loss 1.2263628244400024 img loss 1.2357568740844727 img loss 1.220395565032959 img loss 1.1262884140014648 img loss 1.2051314115524292 img loss 1.2253764867782593 img loss 1.229212760925293 img loss 1.329927682876587img loss 1.196279525756836 img loss 1.2001698017120361 img loss 1.2203454971313477 img loss 1.2275415658950806 img loss 1.183612585067749 img loss 1.376979112625122 img loss 1.1948120594024658 img loss 1.1740950345993042 img loss 1.1884551048278809 img loss 1.1983888149261475 img loss 1.248846411705017img loss 1.2410674095153809 img loss 1.2929881811141968 img loss 1.2289271354675293 img loss 1.218056559562683 img loss 1.2115789651870728 img loss 1.2257448434829712 img loss 1.3117493391036987 img loss 1.2037060260772705 img loss 1.245456337928772 img loss 1.164976954460144 img loss 1.1975587606430054 img loss 1.1988279819488525 img loss 1.2137470245361328 img loss 1.176588773727417 img loss 1.1961777210235596 img loss 1.2017828226089478 img loss 1.156899333000183 img loss 1.1654785871505737 img loss 1.2128098011016846 img loss 1.1864162683486938 img loss 1.2366750240325928 img loss 1.218468427658081 img loss 1.1866289377212524 img loss 1.1923516988754272 img loss 1.2070003747940063 img loss 1.2238900661468506 img loss 1.1931965351104736 img loss 1.2471144199371338 img loss 1.18328058719635 img loss 1.2966282367706299 img loss 1.227358341217041 img loss 1.174155831336975 img loss 1.196441411972046 img loss 1.25373113155365 img loss 1.2807648181915283 img loss 1.2673290967941284 img loss 1.2180562019348145 img loss 1.2237801551818848 img loss 1.1781924962997437 img loss 1.2459232807159424 img loss 1.159738540649414 img loss 1.2217738628387451 img loss 1.2464231252670288 img loss 1.1744850873947144 img loss 1.1673768758773804 img loss 1.1671338081359863 img loss 1.1968321800231934 img loss 1.2031340599060059 img loss 1.2067594528198242 img loss 1.2674708366394043 img loss 1.1574944257736206 img loss 1.2789363861083984 img loss 1.2306524515151978 img loss 1.2133240699768066 img loss 1.254881739616394 img loss 1.2362192869186401 img loss 1.145294189453125 img loss 1.1557413339614868 img loss 1.1367225646972656 img loss 1.2056301832199097 img loss 1.2415623664855957 img loss 1.16262686252594 img loss 1.214444637298584 img loss 1.179762601852417 img loss 1.2406717538833618 img loss 1.1266937255859375 img loss 1.1739429235458374 img loss 1.174894094467163 img loss 1.2023849487304688 img loss 1.232882022857666 img loss 1.175702452659607 img loss 1.2169424295425415 img loss 1.2294219732284546 img loss 1.2425000667572021 img loss 1.3051657676696777 img loss 1.2548744678497314 img loss 1.1665058135986328 img loss 1.1884140968322754 img loss 1.3690439462661743 img loss 1.2410577535629272 img loss 1.2305045127868652 img loss 1.307054042816162 {'loss': 1.2139, 'grad_norm': 0.25497108697891235, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.225520133972168 img loss 1.2935197353363037 img loss 1.3119921684265137 img loss 1.3168586492538452 img loss 1.169382095336914 img loss 1.2781728506088257 img loss 1.2227426767349243 img loss 1.2980972528457642 img loss 1.1921238899230957 img loss 1.3324016332626343 img loss 1.2485895156860352 img loss 1.2652534246444702 img loss 1.3059344291687012 img loss 1.2656329870224 img loss 1.2139065265655518 img loss 1.2302665710449219 img loss 1.2265620231628418 img loss 1.2884572744369507 img loss 1.2339451313018799 img loss 1.288448691368103 img loss 1.3086026906967163 img loss 1.2164340019226074 img loss 1.1100108623504639 img loss 1.306658148765564 img loss 1.2832320928573608 img loss 1.2430317401885986 img loss 1.373138666152954 img loss 1.268120527267456 img loss 1.3739551305770874 img loss 1.2512125968933105 img loss 1.2041425704956055 img loss 1.3877596855163574 img loss 1.1524165868759155 img loss 1.2723530530929565 img loss 1.2983758449554443 img loss 1.3706425428390503 img loss 1.2490074634552002 img loss 1.1754077672958374 img loss 1.2214092016220093 img loss 1.2117671966552734 img loss 1.2176954746246338 img loss 1.2821323871612549 img loss 1.1964985132217407 img loss 1.2915445566177368 img loss 1.2423982620239258 img loss 1.3301198482513428 img loss 1.2146624326705933 img loss 1.267337679862976 img loss 1.2017977237701416 img loss 1.2226911783218384 img loss 1.2835203409194946 img loss 1.2198681831359863 img loss 1.2384980916976929 img loss 1.3400721549987793 img loss 1.3263981342315674 img loss 1.2660239934921265 img loss 1.2123627662658691 img loss 1.3748772144317627 img loss 1.2625740766525269 img loss 1.3325048685073853 img loss 1.2883012294769287 img loss 1.2456210851669312 img loss 1.2571285963058472 img loss 1.3380634784698486 img loss 1.2282047271728516 img loss 1.1668888330459595 img loss 1.177550196647644 img loss 1.1973941326141357 img loss 1.3056305646896362 img loss 1.2157992124557495 img loss 1.2372554540634155 img loss 1.2391881942749023 img loss 1.2305494546890259 img loss 1.199996829032898 img loss 1.1987762451171875 img loss 1.1888290643692017 img loss 1.2923345565795898 img loss 1.2478433847427368 img loss 1.3092350959777832 img loss 1.254077434539795 img loss 1.2261418104171753 img loss 1.3249653577804565 img loss 1.2476394176483154 img loss 1.1723979711532593 img loss 1.3076565265655518 img loss 1.3184436559677124 img loss 1.2094999551773071 img loss 1.2066524028778076 img loss 1.2314980030059814 img loss 1.203098177909851 img loss 1.306995153427124 img loss 1.1506179571151733 img loss 1.2045730352401733 img loss 1.2916157245635986 img loss 1.2737559080123901 img loss 1.2871451377868652 img loss 1.278283953666687 img loss 1.2760213613510132 img loss 1.2564148902893066 img loss 1.168877363204956 img loss 1.172064185142517 img loss 1.2792856693267822 img loss 1.164823293685913 img loss 1.3338345289230347 img loss 1.3149445056915283 img loss 1.2042438983917236 img loss 1.3663439750671387 img loss 1.1948741674423218 img loss 1.252602458000183 img loss 1.3263468742370605 img loss 1.2108814716339111 img loss 1.2157760858535767 img loss 1.1731585264205933 img loss 1.2700459957122803 img loss 1.2067142724990845 img loss 1.2256284952163696 img loss 1.2633411884307861 img loss 1.2374337911605835 img loss 1.1516075134277344 img loss 1.2347943782806396 img loss 1.277674913406372 img loss 1.3603469133377075 img loss 1.2558116912841797 img loss 1.260240912437439 img loss 1.2536451816558838 img loss 1.2430137395858765 img loss 1.2711576223373413 img loss 1.2038973569869995 {'loss': 1.2539, 'grad_norm': 0.3003596067428589, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1760143041610718 img loss 1.22188138961792 img loss 1.20340895652771 img loss 1.3330763578414917 img loss 1.2647206783294678 img loss 1.2765867710113525 img loss 1.2174228429794312 img loss 1.2261323928833008 img loss 1.1917610168457031 img loss 1.2622621059417725 img loss 1.2524120807647705 img loss 1.1506298780441284 img loss 1.231086254119873 img loss 1.2281420230865479 img loss 1.2011464834213257 img loss 1.256994605064392 img loss 1.2639083862304688 img loss 1.2936416864395142 img loss 1.2404123544692993 img loss 1.210126519203186 img loss 1.1883667707443237 img loss 1.2950081825256348 img loss 1.242717981338501 img loss 1.3307578563690186 img loss 1.2734984159469604 img loss 1.2729519605636597 img loss 1.2072244882583618 img loss 1.2740049362182617 img loss 1.223348617553711 img loss 1.241324782371521 img loss 1.307868242263794 img loss 1.256534457206726 img loss 1.2478573322296143 img loss 1.1568458080291748 img loss 1.2866886854171753 img loss 1.1535420417785645 img loss 1.2355753183364868 img loss 1.317217469215393 img loss 1.2097935676574707 img loss 1.2679601907730103 img loss 1.216905117034912 img loss 1.274930477142334 img loss 1.1556514501571655 img loss 1.161939263343811 img loss 1.2120519876480103 img loss 1.2468442916870117 img loss 1.2006934881210327 img loss 1.2522470951080322 img loss 1.10648775100708 img loss 1.1467310190200806 img loss 1.2605650424957275 img loss 1.1442515850067139 img loss 1.1680452823638916 img loss 1.2662540674209595 img loss 1.0539219379425049 img loss 1.2252171039581299 img loss 1.2447469234466553 img loss 1.1576809883117676 img loss 1.2121580839157104 img loss 1.1995127201080322 img loss 1.2335666418075562 img loss 1.2556695938110352 img loss 1.2562679052352905 img loss 1.2214329242706299 img loss 1.2783777713775635 img loss 1.2310174703598022 img loss 1.2821035385131836 img loss 1.2122713327407837 img loss 1.2619541883468628 img loss 1.2715535163879395 img loss 1.2791497707366943 img loss 1.2377599477767944 img loss 1.2447824478149414 img loss 1.168773889541626 img loss 1.228461742401123 img loss 1.2693754434585571 img loss 1.2250103950500488 img loss 1.2207460403442383 img loss 1.1605815887451172 img loss 1.241818904876709 img loss 1.228049635887146 img loss 1.111472249031067 img loss 1.2106609344482422 img loss 1.2939938306808472 img loss 1.3118314743041992 img loss 1.2223892211914062 img loss 1.1626291275024414 img loss 1.1943954229354858 img loss 1.341097116470337 img loss 1.2779501676559448 img loss 1.3752398490905762 img loss 1.1877641677856445 img loss 1.1873613595962524 img loss 1.215946078300476 img loss 1.1941152811050415 img loss 1.294589638710022 img loss 1.293700933456421 img loss 1.25332510471344 img loss 1.2362269163131714 img loss 1.168191909790039 img loss 1.3038946390151978 img loss 1.2278612852096558 img loss 1.1973851919174194 img loss 1.364291787147522 img loss 1.283359169960022 img loss 1.3151297569274902 img loss 1.139234185218811 img loss 1.1532789468765259 img loss 1.1283442974090576 img loss 1.2798995971679688 img loss 1.240085482597351 img loss 1.3272594213485718 img loss 1.2347720861434937 img loss 1.239924669265747 img loss 1.216362476348877 img loss 1.31252121925354 img loss 1.2483125925064087 img loss 1.2822210788726807 img loss 1.238171935081482 img loss 1.1406611204147339 img loss 1.2265557050704956 img loss 1.272128939628601 img loss 1.1823291778564453 img loss 1.169594168663025 img loss 1.1755796670913696 img loss 1.3247356414794922 img loss 1.1260197162628174 img loss 1.1995346546173096 {'loss': 1.2319, 'grad_norm': 0.1895855963230133, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2292237281799316 img loss 1.3082598447799683 img loss 1.1902889013290405 img loss 1.2897453308105469 img loss 1.2192378044128418 img loss 1.2784041166305542 img loss 1.1986653804779053 img loss 1.1524066925048828 img loss 1.2516613006591797 img loss 1.2656705379486084 img loss 1.2199300527572632 img loss 1.2413393259048462 img loss 1.3177791833877563 img loss 1.2157325744628906 img loss 1.1877892017364502 img loss 1.271761417388916 img loss 1.2272629737854004 img loss 1.2281757593154907 img loss 1.2916531562805176 img loss 1.2705520391464233 img loss 1.1850390434265137 img loss 1.2710005044937134 img loss 1.2517657279968262 img loss 1.2118182182312012 img loss 1.2616991996765137 img loss 1.2783527374267578 img loss 1.2707703113555908 img loss 1.2521564960479736 img loss 1.2503331899642944 img loss 1.2357783317565918 img loss 1.2554106712341309 img loss 1.2497215270996094 img loss 1.2061293125152588 img loss 1.2224949598312378 img loss 1.175938606262207 img loss 1.247403621673584 img loss 1.2634328603744507 img loss 1.236558198928833 img loss 1.2754257917404175 img loss 1.297210454940796 img loss 1.2392525672912598 img loss 1.2704628705978394 img loss 1.2883763313293457 img loss 1.1920571327209473 img loss 1.2127659320831299 img loss 1.2948527336120605 img loss 1.1900148391723633 img loss 1.2110908031463623 img loss 1.247254729270935 img loss 1.2662322521209717 img loss 1.2956442832946777 img loss 1.2615151405334473 img loss 1.2363837957382202 img loss 1.236395239830017 img loss 1.253161072731018 img loss 1.2476717233657837 img loss 1.2612426280975342 img loss 1.2629247903823853 img loss 1.2265175580978394 img loss 1.2368396520614624 img loss 1.2267529964447021 img loss 1.2533307075500488 img loss 1.2435146570205688 img loss 1.2515180110931396 img loss 1.309029221534729 img loss 1.3212591409683228 img loss 1.2370374202728271 img loss 1.236196517944336 img loss 1.2636107206344604 img loss 1.301409363746643 img loss 1.2301677465438843 img loss 1.24306058883667 img loss 1.246256709098816 img loss 1.2747302055358887 img loss 1.2562158107757568 img loss 1.2388155460357666 img loss 1.1981773376464844 img loss 1.2206707000732422 img loss 1.29861319065094 img loss 1.2640399932861328 img loss 1.2531753778457642 img loss 1.240879774093628 img loss 1.2180590629577637 img loss 1.238006591796875 img loss 1.2961124181747437 img loss 1.2638585567474365 img loss 1.2412874698638916 img loss 1.2763582468032837 img loss 1.1771788597106934 img loss 1.234824538230896 img loss 1.2111122608184814 img loss 1.2422484159469604 img loss 1.262080430984497 img loss 1.2669556140899658 img loss 1.2394602298736572 img loss 1.2184253931045532 img loss 1.2632570266723633 img loss 1.226196527481079 img loss 1.3141534328460693 img loss 1.1973519325256348 img loss 1.2344592809677124 img loss 1.2815437316894531 img loss 1.2227115631103516 img loss 1.2402949333190918 img loss 1.258679747581482 img loss 1.2515366077423096 img loss 1.244631052017212 img loss 1.179482102394104 img loss 1.240466594696045 img loss 1.31743586063385 img loss 1.2399537563323975 img loss 1.245727300643921 img loss 1.2362310886383057 img loss 1.2697807550430298 img loss 1.2564929723739624 img loss 1.223242998123169 img loss 1.3114142417907715 img loss 1.2397006750106812 img loss 1.2745366096496582 img loss 1.24448561668396 img loss 1.216394305229187 img loss 1.3061273097991943 img loss 1.230662226676941 img loss 1.2356823682785034 img loss 1.2522023916244507 img loss 1.1771581172943115 img loss 1.2541651725769043 img loss 1.2580209970474243 {'loss': 1.2471, 'grad_norm': 0.33008334040641785, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2749931812286377 img loss 1.2137138843536377 img loss 1.2032479047775269 img loss 1.2223232984542847 img loss 1.3021636009216309 img loss 1.2565577030181885 img loss 1.2520418167114258 img loss 1.233771800994873 img loss 1.277050495147705 img loss 1.2679383754730225 img loss 1.2314648628234863 img loss 1.3489667177200317 img loss 1.268792986869812 img loss 1.233559012413025 img loss 1.2476098537445068 img loss 1.2930458784103394 img loss 1.170555591583252 img loss 1.2608141899108887 img loss 1.2748435735702515 img loss 1.3522374629974365 img loss 1.2483347654342651 img loss 1.251381516456604 img loss 1.1995590925216675 img loss 1.2521281242370605 img loss 1.2548820972442627 img loss 1.2214783430099487 img loss 1.2318944931030273 img loss 1.216773271560669 img loss 1.2140166759490967 img loss 1.2653149366378784 img loss 1.1772091388702393 img loss 1.2831010818481445 img loss 1.227534294128418 img loss 1.168548822402954 img loss 1.250609278678894 img loss 1.2844886779785156 img loss 1.2376188039779663 img loss 1.198145866394043 img loss 1.2341527938842773 img loss 1.248626470565796 img loss 1.2361371517181396 img loss 1.245877742767334 img loss 1.1785293817520142 img loss 1.2642029523849487 img loss 1.3150438070297241 img loss 1.25007963180542 img loss 1.24723482131958 img loss 1.2311023473739624 img loss 1.2722358703613281 img loss 1.1825107336044312 img loss 1.1728323698043823 img loss 1.2252568006515503 img loss 1.2619599103927612 img loss 1.235921859741211 img loss 1.2221416234970093 img loss 1.19894278049469 img loss 1.2791638374328613 img loss 1.2269409894943237 img loss 1.2277791500091553 img loss 1.252834677696228 img loss 1.3095664978027344 img loss 1.2262392044067383 img loss 1.2948182821273804 img loss 1.1993004083633423 img loss 1.226845383644104 img loss 1.2365738153457642 img loss 1.2140042781829834 img loss 1.2256678342819214 img loss 1.2362396717071533 img loss 1.256903052330017 img loss 1.2569032907485962 img loss 1.1965302228927612 img loss 1.2237162590026855 img loss 1.188719391822815 img loss 1.2116438150405884 img loss 1.2689274549484253 img loss 1.2322819232940674 img loss 1.1534152030944824 img loss 1.177339792251587 img loss 1.2428369522094727 img loss 1.2134605646133423 img loss 1.2739719152450562 img loss 1.2874958515167236 img loss 1.2237334251403809 img loss 1.2935543060302734 img loss 1.283521294593811 img loss 1.2065902948379517 img loss 1.2421050071716309 img loss 1.1816619634628296 img loss 1.2467632293701172 img loss 1.2359905242919922 img loss 1.233497142791748 img loss 1.2222718000411987 img loss 1.2277140617370605 img loss 1.2119382619857788 img loss 1.2403351068496704 img loss 1.2760862112045288 img loss 1.191260576248169 img loss 1.2392382621765137 img loss 1.3379861116409302 img loss 1.2570043802261353 img loss 1.1734645366668701img loss 1.2278172969818115 img loss 1.280978798866272 img loss 1.2355022430419922 img loss 1.2170381546020508 img loss 1.2865593433380127 img loss 1.23625648021698 img loss 1.2192915678024292 img loss 1.1829899549484253 img loss 1.255887746810913 img loss 1.2385269403457642 img loss 1.2356576919555664 img loss 1.2757192850112915 img loss 1.303096055984497 img loss 1.229172706604004 img loss 1.2526291608810425 img loss 1.2091572284698486 img loss 1.19198477268219 img loss 1.2392696142196655 img loss 1.236053466796875 img loss 1.334804654121399 img loss 1.2193058729171753 img loss 1.258920669555664 img loss 1.2609872817993164 img loss 1.3068535327911377 img loss 1.276766061782837 img loss 1.2556495666503906 {'loss': 1.2416, 'grad_norm': 0.26035165786743164, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.265299677848816 img loss 1.2235263586044312 img loss 1.2671983242034912 img loss 1.2391655445098877 img loss 1.237253189086914 img loss 1.262702465057373 img loss 1.2571356296539307 img loss 1.2443363666534424 img loss 1.2647068500518799 img loss 1.23932683467865 img loss 1.181030511856079 img loss 1.2694008350372314 img loss 1.2226608991622925 img loss 1.204919457435608 img loss 1.2360944747924805 img loss 1.2269060611724854 img loss 1.195992350578308 img loss 1.2586088180541992 img loss 1.2349728345870972 img loss 1.2678332328796387 img loss 1.219817876815796 img loss 1.210303783416748 img loss 1.2383121252059937 img loss 1.2581114768981934 img loss 1.266376256942749 img loss 1.1712473630905151 img loss 1.227007269859314 img loss 1.207601547241211 img loss 1.2301987409591675 img loss 1.2316837310791016 img loss 1.2291723489761353 img loss 1.312027931213379 img loss 1.2730754613876343 img loss 1.2395938634872437 img loss 1.3244140148162842 img loss 1.2509839534759521 img loss 1.2233078479766846 img loss 1.299594759941101 img loss 1.2442667484283447 img loss 1.2621160745620728 img loss 1.2710386514663696 img loss 1.226601243019104 img loss 1.3250738382339478 img loss 1.2339274883270264 img loss 1.2945210933685303 img loss 1.2169222831726074 img loss 1.2656406164169312 img loss 1.220332145690918 img loss 1.215250849723816 img loss 1.2907066345214844 img loss 1.2839077711105347 img loss 1.26799476146698 img loss 1.2741634845733643 img loss 1.212536096572876 img loss 1.165025234222412 img loss 1.1757615804672241 img loss 1.24448561668396 img loss 1.287790060043335 img loss 1.2372044324874878 img loss 1.2185959815979004 img loss 1.2763569355010986 img loss 1.217410922050476 img loss 1.2740092277526855 img loss 1.2087892293930054 img loss 1.2021015882492065 img loss 1.20603346824646 img loss 1.1939542293548584 img loss 1.2364110946655273 img loss 1.1961086988449097 img loss 1.2101845741271973 img loss 1.2551038265228271 img loss 1.184506893157959 img loss 1.2225892543792725 img loss 1.2316625118255615 img loss 1.1556816101074219 img loss 1.2346382141113281 img loss 1.2661380767822266 img loss 1.2780125141143799 img loss 1.1502999067306519 img loss 1.2683384418487549 img loss 1.2403007745742798 img loss 1.2086806297302246 img loss 1.3278052806854248 img loss 1.2344343662261963 img loss 1.2473076581954956 img loss 1.2562839984893799 img loss 1.3530523777008057 img loss 1.2610080242156982 img loss 1.1665000915527344 img loss 1.2774547338485718 img loss 1.2264984846115112 img loss 1.2249910831451416 img loss 1.223210334777832 img loss 1.2144479751586914 img loss 1.2549524307250977 img loss 1.2332667112350464 img loss 1.2000558376312256 img loss 1.2955766916275024 img loss 1.202072024345398 img loss 1.2776048183441162 img loss 1.3058693408966064 img loss 1.2188680171966553 img loss 1.3034747838974 img loss 1.2322243452072144 img loss 1.2800620794296265 img loss 1.2906649112701416 img loss 1.1747653484344482 img loss 1.2686498165130615 img loss 1.2913026809692383 img loss 1.249793291091919 img loss 1.2675280570983887 img loss 1.1295751333236694 img loss 1.3134956359863281 img loss 1.2212555408477783 img loss 1.19694983959198 img loss 1.2267217636108398 img loss 1.260754108428955 img loss 1.1912128925323486 img loss 1.234113097190857 img loss 1.2137335538864136 img loss 1.2717941999435425 img loss 1.2112058401107788 img loss 1.232750654220581 img loss 1.1946531534194946 img loss 1.2437256574630737 img loss 1.2587666511535645 img loss 1.203009009361267 img loss 1.2786130905151367 {'loss': 1.2407, 'grad_norm': 0.306183397769928, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2660202980041504 img loss 1.302518367767334 img loss 1.315073847770691 img loss 1.2651907205581665 img loss 1.2572530508041382 img loss 1.4048391580581665 img loss 1.2686371803283691 img loss 1.2888832092285156 img loss 1.239588737487793 img loss 1.2011470794677734 img loss 1.2690351009368896 img loss 1.3217504024505615 img loss 1.285504937171936 img loss 1.171385645866394 img loss 1.356594204902649 img loss 1.2489585876464844 img loss 1.2628860473632812 img loss 1.2640223503112793 img loss 1.1492283344268799 img loss 1.3704466819763184 img loss 1.3851149082183838 img loss 1.3616623878479004 img loss 1.348395824432373 img loss 1.3035458326339722 img loss 1.2998161315917969 img loss 1.393885850906372 img loss 1.2920105457305908 img loss 1.274627923965454 img loss 1.23793363571167 img loss 1.3065905570983887 img loss 1.4010604619979858 img loss 1.2664694786071777 img loss 1.2936325073242188 img loss 1.2011480331420898 img loss 1.3353190422058105 img loss 1.2655181884765625 img loss 1.223522424697876 img loss 1.285645842552185 img loss 1.3158339262008667 img loss 1.2086710929870605 img loss 1.2102127075195312 img loss 1.2898838520050049 img loss 1.3590737581253052 img loss 1.2482513189315796 img loss 1.3184078931808472 img loss 1.3146742582321167 img loss 1.2866076231002808img loss 1.292125940322876 img loss 1.2277212142944336 img loss 1.2955408096313477 img loss 1.2391802072525024 img loss 1.300223708152771 img loss 1.241474986076355 img loss 1.1860569715499878 img loss 1.3338762521743774 img loss 1.3089689016342163 img loss 1.3595268726348877 img loss 1.3343311548233032 img loss 1.3227698802947998 img loss 1.4049359560012817 img loss 1.3329498767852783 img loss 1.276144027709961 img loss 1.3331648111343384 img loss 1.3234336376190186 img loss 1.2474839687347412 img loss 1.2484498023986816 img loss 1.437660813331604 img loss 1.3071755170822144 img loss 1.3721328973770142 img loss 1.3026789426803589 img loss 1.2902109622955322 img loss 1.312445878982544 img loss 1.332610845565796 img loss 1.346968173980713 img loss 1.249039888381958 img loss 1.1955899000167847 img loss 1.3071341514587402 img loss 1.2963693141937256 img loss 1.3371392488479614 img loss 1.3324480056762695 img loss 1.4067370891571045 img loss 1.3314239978790283 img loss 1.2998870611190796 img loss 1.3579251766204834 img loss 1.2771075963974 img loss 1.3406364917755127 img loss 1.2281990051269531 img loss 1.4076792001724243 img loss 1.4168869256973267 img loss 1.286699891090393 img loss 1.2481091022491455 img loss 1.2554024457931519 img loss 1.437121033668518 img loss 1.31454598903656 img loss 1.2398208379745483 img loss 1.3123598098754883 img loss 1.3195526599884033 img loss 1.386753797531128 img loss 1.1837949752807617 img loss 1.4101444482803345 img loss 1.2333770990371704 img loss 1.4347894191741943 img loss 1.3305820226669312 img loss 1.26701819896698 img loss 1.3624883890151978 img loss 1.2290740013122559 img loss 1.3368557691574097 img loss 1.290022850036621 img loss 1.3412214517593384 img loss 1.2922964096069336 img loss 1.3657268285751343img loss 1.3902353048324585 img loss 1.3018171787261963 img loss 1.2835896015167236 img loss 1.3383088111877441 img loss 1.3839212656021118 img loss 1.253470778465271 img loss 1.2594953775405884 img loss 1.3756587505340576 img loss 1.3463727235794067 img loss 1.3084867000579834 img loss 1.350755214691162 img loss 1.2781301736831665 img loss 1.2521507740020752 img loss 1.3421350717544556 img loss 1.2801655530929565 img loss 1.2677682638168335 img loss 1.332061767578125 {'loss': 1.3035, 'grad_norm': 0.23837096989154816, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2614141702651978 img loss 1.323850154876709 img loss 1.3787249326705933 img loss 1.2910953760147095 img loss 1.3106467723846436 img loss 1.3091979026794434 img loss 1.3905844688415527 img loss 1.316891074180603 img loss 1.3750903606414795 img loss 1.3458402156829834 img loss 1.3365895748138428 img loss 1.2964264154434204 img loss 1.3220869302749634 img loss 1.299793004989624 img loss 1.3514939546585083 img loss 1.3336573839187622 img loss 1.2885048389434814 img loss 1.292333960533142 img loss 1.2907404899597168 img loss 1.3249754905700684 img loss 1.3130035400390625 img loss 1.209899663925171 img loss 1.3121061325073242 img loss 1.3798673152923584 img loss 1.311336874961853 img loss 1.3589097261428833 img loss 1.3141493797302246 img loss 1.3598335981369019 img loss 1.4352058172225952 img loss 1.2498114109039307 img loss 1.4150958061218262 img loss 1.2898080348968506 img loss 1.449650526046753 img loss 1.3587696552276611 img loss 1.3104374408721924 img loss 1.2919946908950806 img loss 1.2780778408050537 img loss 1.3631575107574463 img loss 1.2836582660675049 img loss 1.3879138231277466 img loss 1.335289478302002img loss 1.3446441888809204 img loss 1.2170263528823853 img loss 1.3235669136047363 img loss 1.3552464246749878 img loss 1.3186793327331543 img loss 1.3087908029556274 img loss 1.366207242012024 img loss 1.3120793104171753 img loss 1.3093189001083374 img loss 1.3327083587646484 img loss 1.3200668096542358 img loss 1.296324372291565 img loss 1.293866515159607 img loss 1.341566801071167 img loss 1.2396591901779175 img loss 1.4239524602890015 img loss 1.3957712650299072 img loss 1.3057831525802612 img loss 1.2518134117126465 img loss 1.3335731029510498 img loss 1.3094024658203125 img loss 1.2956771850585938 img loss 1.414689540863037 img loss 1.2880827188491821 img loss 1.2823171615600586 img loss 1.222494125366211 img loss 1.3252978324890137 img loss 1.2934825420379639 img loss 1.2821335792541504 img loss 1.3208701610565186 img loss 1.3283551931381226 img loss 1.2239964008331299 img loss 1.2410314083099365 img loss 1.3429440259933472 img loss 1.216671347618103 img loss 1.3157294988632202 img loss 1.4162030220031738 img loss 1.2575725317001343 img loss 1.3233894109725952 img loss 1.435299277305603 img loss 1.2481902837753296 img loss 1.366117000579834 img loss 1.271410584449768 img loss 1.297645092010498 img loss 1.3056191205978394 img loss 1.3266270160675049 img loss 1.2427515983581543 img loss 1.315596342086792 img loss 1.3320890665054321 img loss 1.2464878559112549 img loss 1.31216299533844 img loss 1.2980998754501343 img loss 1.2816216945648193 img loss 1.3215293884277344 img loss 1.3014816045761108 img loss 1.4802451133728027 img loss 1.2853126525878906 img loss 1.2852294445037842 img loss 1.309528112411499 img loss 1.374511957168579 img loss 1.3663926124572754 img loss 1.3543108701705933 img loss 1.3014086484909058 img loss 1.2532281875610352 img loss 1.2223366498947144 img loss 1.1844167709350586 img loss 1.3585731983184814 img loss 1.2865031957626343 img loss 1.3077099323272705 img loss 1.2800394296646118 img loss 1.3506252765655518 img loss 1.3803578615188599 img loss 1.2749698162078857 img loss 1.2871004343032837 img loss 1.4050887823104858 img loss 1.27949857711792 img loss 1.3155158758163452 img loss 1.471585988998413 img loss 1.3227345943450928 img loss 1.2572917938232422 img loss 1.2978931665420532 img loss 1.3709237575531006 img loss 1.2359120845794678 img loss 1.2012656927108765 img loss 1.2549223899841309 img loss 1.255527138710022 img loss 1.3104990720748901 {'loss': 1.3153, 'grad_norm': 0.2577173411846161, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1774662733078003 img loss 1.1697803735733032 img loss 1.1206880807876587 img loss 1.210456132888794 img loss 1.157458782196045 img loss 1.1493830680847168 img loss 1.131536841392517 img loss 1.1484313011169434 img loss 1.103946328163147 img loss 1.1433544158935547 img loss 1.1303845643997192 img loss 1.1826213598251343 img loss 1.166082739830017 img loss 1.177844762802124 img loss 1.1288870573043823 img loss 1.2481379508972168 img loss 1.163216471672058 img loss 1.155853271484375 img loss 1.1614357233047485 img loss 1.1137624979019165 img loss 1.166987419128418 img loss 1.1230003833770752 img loss 1.170096755027771 img loss 1.1776800155639648 img loss 1.1984779834747314 img loss 1.1805123090744019 img loss 1.2051852941513062 img loss 1.2413568496704102 img loss 1.1387364864349365 img loss 1.1855299472808838 img loss 1.2151477336883545 img loss 1.140166163444519 img loss 1.0977838039398193 img loss 1.1911864280700684 img loss 1.1160167455673218 img loss 1.1036137342453003 img loss 1.1005867719650269 img loss 1.1487737894058228 img loss 1.1793421506881714 img loss 1.1684538125991821 img loss 1.2349445819854736 img loss 1.1406872272491455 img loss 1.1687595844268799 img loss 1.1146647930145264 img loss 1.2254421710968018 img loss 1.1781408786773682 img loss 1.1391234397888184 img loss 1.1192315816879272 img loss 1.1391351222991943 img loss 1.1620527505874634 img loss 1.1945586204528809 img loss 1.2680920362472534 img loss 1.1844420433044434 img loss 1.1420855522155762 img loss 1.1868746280670166 img loss 1.1902375221252441 img loss 1.1598732471466064 img loss 1.2266614437103271 img loss 1.2720222473144531 img loss 1.1507314443588257 img loss 1.2474322319030762 img loss 1.1196013689041138 img loss 1.1286299228668213 img loss 1.1730973720550537 img loss 1.1841124296188354 img loss 1.133814811706543 img loss 1.1869874000549316 img loss 1.2047725915908813 img loss 1.0962131023406982img loss 1.1639339923858643 img loss 1.1580829620361328 img loss 1.2004354000091553 img loss 1.2809518575668335 img loss 1.3007806539535522 img loss 1.1761821508407593 img loss 1.17826247215271 img loss 1.1542870998382568 img loss 1.2041254043579102 img loss 1.204197883605957 img loss 1.20225191116333 img loss 1.1907774209976196 img loss 1.1114790439605713 img loss 1.166690707206726 img loss 1.073123812675476 img loss 1.1340538263320923 img loss 1.214123249053955 img loss 1.185729742050171 img loss 1.1686046123504639 img loss 1.1972278356552124 img loss 1.1458090543746948 img loss 1.2219094038009644 img loss 1.202627182006836 img loss 1.1909335851669312 img loss 1.176196575164795 img loss 1.1485179662704468 img loss 1.2766411304473877 img loss 1.1688592433929443 img loss 1.2011771202087402 img loss 1.2356880903244019 img loss 1.1854480504989624 img loss 1.1757234334945679 img loss 1.1274012327194214 img loss 1.1455000638961792 img loss 1.1800543069839478 img loss 1.1784517765045166 img loss 1.1350964307785034 img loss 1.1760845184326172 img loss 1.2195228338241577 img loss 1.1205379962921143 img loss 1.2112072706222534 img loss 1.1992084980010986 img loss 1.1996341943740845 img loss 1.2315095663070679 img loss 1.2159569263458252 img loss 1.1637992858886719 img loss 1.1373004913330078 img loss 1.1795278787612915 img loss 1.1981041431427002 img loss 1.1209551095962524 img loss 1.1656091213226318 img loss 1.217718482017517 img loss 1.1451129913330078 img loss 1.1378746032714844 img loss 1.176703929901123 img loss 1.1229132413864136 img loss 1.0944956541061401 img loss 1.1318289041519165 img loss 1.2030730247497559 {'loss': 1.1718, 'grad_norm': 0.3353636860847473, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3981196880340576 img loss 1.358211636543274 img loss 1.2375218868255615 img loss 1.3099606037139893 img loss 1.253239631652832 img loss 1.3955777883529663 img loss 1.2952072620391846 img loss 1.240442156791687 img loss 1.536891222000122 img loss 1.4037985801696777 img loss 1.3870090246200562 img loss 1.2885109186172485 img loss 1.3867714405059814 img loss 1.471043348312378 img loss 1.370603322982788 img loss 1.2331475019454956 img loss 1.268975019454956 img loss 1.3492836952209473 img loss 1.3467209339141846 img loss 1.34053373336792 img loss 1.3798973560333252 img loss 1.357453465461731 img loss 1.3245378732681274 img loss 1.362141489982605 img loss 1.2347302436828613 img loss 1.3429862260818481 img loss 1.317523717880249 img loss 1.2883700132369995 img loss 1.3803893327713013 img loss 1.3044238090515137 img loss 1.37043297290802 img loss 1.246640682220459 img loss 1.2407455444335938 img loss 1.2921701669692993 img loss 1.3369117975234985 img loss 1.3658778667449951 img loss 1.313552737236023 img loss 1.2346121072769165 img loss 1.41262686252594 img loss 1.3848096132278442 img loss 1.2718312740325928 img loss 1.4066216945648193 img loss 1.3465460538864136 img loss 1.3170087337493896 img loss 1.300510287284851 img loss 1.2241300344467163 img loss 1.342710018157959 img loss 1.398384690284729 img loss 1.3270704746246338 img loss 1.2849174737930298 img loss 1.3356883525848389 img loss 1.3712265491485596 img loss 1.3673745393753052 img loss 1.3519699573516846 img loss 1.338087558746338 img loss 1.2713353633880615 img loss 1.3247569799423218 img loss 1.2483432292938232 img loss 1.3026268482208252 img loss 1.3102161884307861 img loss 1.3528436422348022 img loss 1.2755601406097412 img loss 1.3409056663513184 img loss 1.302103877067566 img loss 1.3211452960968018 img loss 1.2864344120025635 img loss 1.3206409215927124 img loss 1.3556143045425415 img loss 1.314292311668396 img loss 1.3280943632125854 img loss 1.5069066286087036 img loss 1.339219331741333 img loss 1.2462801933288574 img loss 1.3802284002304077 img loss 1.3259215354919434 img loss 1.2966200113296509 img loss 1.329277515411377 img loss 1.3364861011505127 img loss 1.292933464050293 img loss 1.3755605220794678 img loss 1.297716736793518 img loss 1.3167575597763062 img loss 1.3276389837265015 img loss 1.2928390502929688 img loss 1.3629406690597534 img loss 1.2432129383087158 img loss 1.3411511182785034 img loss 1.4248270988464355 img loss 1.4044053554534912 img loss 1.334438443183899 img loss 1.388689398765564 img loss 1.4620612859725952 img loss 1.2974284887313843 img loss 1.4376877546310425 img loss 1.2862907648086548 img loss 1.4169785976409912 img loss 1.2658178806304932 img loss 1.2703584432601929 img loss 1.3544048070907593 img loss 1.3710353374481201 img loss 1.38996160030365 img loss 1.3692834377288818 img loss 1.338429570198059 img loss 1.301842451095581 img loss 1.303389310836792 img loss 1.3223514556884766 img loss 1.2973936796188354 img loss 1.3579399585723877 img loss 1.237283706665039 img loss 1.6940054893493652 img loss 1.3008027076721191 img loss 1.2325072288513184 img loss 1.4131770133972168 img loss 1.3939127922058105 img loss 1.3431849479675293 img loss 1.2995939254760742 img loss 1.4393104314804077 img loss 1.2770715951919556 img loss 1.3801934719085693 img loss 1.2384426593780518 img loss 1.2874133586883545 img loss 1.3719499111175537 img loss 1.4397480487823486 img loss 1.2727245092391968 img loss 1.2637481689453125 img loss 1.3429648876190186 img loss 1.3292982578277588 img loss 1.4071173667907715 {'loss': 1.3357, 'grad_norm': 0.25690630078315735, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2391923666000366 img loss 1.360559344291687 img loss 1.2874410152435303 img loss 1.3513950109481812 img loss 1.3147451877593994 img loss 1.3631540536880493 img loss 1.2872917652130127 img loss 1.254788875579834 img loss 1.2824586629867554 img loss 1.386519193649292 img loss 1.3294705152511597 img loss 1.2634918689727783 img loss 1.1893877983093262 img loss 1.2618346214294434 img loss 1.2933920621871948 img loss 1.3964217901229858 img loss 1.3069902658462524 img loss 1.4025781154632568 img loss 1.2516674995422363 img loss 1.2783533334732056 img loss 1.3573426008224487 img loss 1.4589828252792358 img loss 1.3324388265609741 img loss 1.3462022542953491 img loss 1.3564118146896362 img loss 1.3285068273544312 img loss 1.326060175895691 img loss 1.4138742685317993 img loss 1.2738739252090454 img loss 1.3319443464279175 img loss 1.3569037914276123 img loss 1.3215358257293701 img loss 1.2626545429229736 img loss 1.2704311609268188 img loss 1.3300209045410156 img loss 1.2429065704345703 img loss 1.2727893590927124 img loss 1.349931001663208 img loss 1.3950132131576538 img loss 1.3558456897735596 img loss 1.246762990951538 img loss 1.2898273468017578 img loss 1.3204267024993896 img loss 1.318629503250122 img loss 1.361420750617981 img loss 1.3563134670257568 img loss 1.2647535800933838 img loss 1.3116105794906616 img loss 1.3437539339065552 img loss 1.3017317056655884 img loss 1.3440629243850708 img loss 1.330582857131958 img loss 1.2758102416992188 img loss 1.2586039304733276 img loss 1.3268555402755737 img loss 1.3637257814407349 img loss 1.3971351385116577 img loss 1.3184349536895752 img loss 1.2555216550827026 img loss 1.374291181564331 img loss 1.3125654458999634 img loss 1.3455442190170288 img loss 1.3529733419418335 img loss 1.3050129413604736 img loss 1.3711353540420532 img loss 1.3028749227523804 img loss 1.2734339237213135 img loss 1.255948781967163 img loss 1.2889654636383057 img loss 1.4269071817398071 img loss 1.3155523538589478 img loss 1.3435508012771606 img loss 1.2933298349380493 img loss 1.3851256370544434 img loss 1.289005160331726 img loss 1.3550560474395752 img loss 1.2697867155075073 img loss 1.2724939584732056 img loss 1.357785940170288 img loss 1.4118620157241821 img loss 1.3503155708312988 img loss 1.3139714002609253 img loss 1.3924651145935059 img loss 1.3078727722167969 img loss 1.327887773513794 img loss 1.3281105756759644 img loss 1.341436743736267 img loss 1.400436282157898 img loss 1.354907512664795 img loss 1.3336602449417114 img loss 1.3411794900894165 img loss 1.3640755414962769 img loss 1.2489923238754272 img loss 1.3216187953948975 img loss 1.3587437868118286 img loss 1.3182264566421509 img loss 1.2527779340744019 img loss 1.3341144323349 img loss 1.2978540658950806 img loss 1.4057713747024536 img loss 1.309347152709961 img loss 1.3820831775665283 img loss 1.3762755393981934 img loss 1.3526084423065186 img loss 1.4073631763458252 img loss 1.350059986114502 img loss 1.306491732597351 img loss 1.3563082218170166 img loss 1.2839984893798828 img loss 1.1960444450378418 img loss 1.3010419607162476 img loss 1.363385558128357 img loss 1.2928799390792847 img loss 1.2090051174163818 img loss 1.3250346183776855 img loss 1.2681629657745361 img loss 1.3488141298294067 img loss 1.2624263763427734 img loss 1.394824504852295 img loss 1.3263697624206543 img loss 1.330187439918518 img loss 1.4204843044281006 img loss 1.369146466255188 img loss 1.2898993492126465 img loss 1.3531832695007324 img loss 1.3251413106918335 img loss 1.2785898447036743 img loss 1.3439961671829224 {'loss': 1.3242, 'grad_norm': 0.2607153356075287, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1949619054794312 img loss 1.165483832359314 img loss 1.225868582725525 img loss 1.2195966243743896 img loss 1.1473909616470337 img loss 1.2342535257339478 img loss 1.215348720550537 img loss 1.196673035621643 img loss 1.2191864252090454 img loss 1.175279140472412 img loss 1.1759638786315918 img loss 1.2475695610046387 img loss 1.2029683589935303 img loss 1.1798381805419922 img loss 1.2527645826339722 img loss 1.2105244398117065 img loss 1.17336905002594 img loss 1.1515734195709229 img loss 1.1983646154403687 img loss 1.2018406391143799 img loss 1.2287330627441406 img loss 1.2060822248458862 img loss 1.2485986948013306 img loss 1.2271103858947754 img loss 1.2608397006988525 img loss 1.2158046960830688 img loss 1.1899921894073486 img loss 1.1993030309677124 img loss 1.1527683734893799 img loss 1.22057044506073 img loss 1.154783844947815 img loss 1.1654853820800781 img loss 1.2355754375457764 img loss 1.283597707748413img loss 1.2883955240249634 img loss 1.234576940536499 img loss 1.1869051456451416 img loss 1.3266258239746094 img loss 1.2709696292877197 img loss 1.2070152759552002 img loss 1.2123850584030151 img loss 1.1583998203277588 img loss 1.172105312347412 img loss 1.129698634147644 img loss 1.2297794818878174 img loss 1.1996517181396484 img loss 1.268262267112732 img loss 1.2600514888763428 img loss 1.1637167930603027 img loss 1.2177873849868774 img loss 1.2217729091644287 img loss 1.22329580783844 img loss 1.2197074890136719 img loss 1.2314810752868652 img loss 1.2152800559997559 img loss 1.168975591659546 img loss 1.2177456617355347 img loss 1.2224544286727905 img loss 1.217191219329834 img loss 1.2558972835540771 img loss 1.2658756971359253 img loss 1.2802492380142212 img loss 1.1992084980010986 img loss 1.2008873224258423 img loss 1.2203490734100342 img loss 1.2386813163757324 img loss 1.203011155128479 img loss 1.1682747602462769 img loss 1.2041900157928467 img loss 1.186749815940857 img loss 1.183580756187439 img loss 1.202979564666748 img loss 1.231859803199768 img loss 1.2373046875 img loss 1.249611735343933 img loss 1.1606892347335815 img loss 1.1857188940048218 img loss 1.1781537532806396 img loss 1.293941855430603 img loss 1.1823087930679321 img loss 1.0955897569656372 img loss 1.2589056491851807 img loss 1.2189996242523193 img loss 1.259478211402893 img loss 1.221893310546875 img loss 1.2132519483566284 img loss 1.237120509147644 img loss 1.207202434539795 img loss 1.160154938697815 img loss 1.2819600105285645 img loss 1.2219551801681519 img loss 1.1849615573883057 img loss 1.2442967891693115 img loss 1.2171310186386108 img loss 1.2188230752944946 img loss 1.2084873914718628 img loss 1.1378623247146606 img loss 1.1959900856018066 img loss 1.185546636581421 img loss 1.2163541316986084 img loss 1.18169367313385 img loss 1.19381844997406 img loss 1.2027480602264404 img loss 1.1909340620040894 img loss 1.2797924280166626 img loss 1.1946340799331665 img loss 1.2854936122894287 img loss 1.212194800376892 img loss 1.1910065412521362 img loss 1.1828563213348389 img loss 1.193745493888855 img loss 1.2100492715835571 img loss 1.2997794151306152 img loss 1.1457767486572266 img loss 1.209665060043335 img loss 1.1677887439727783 img loss 1.1861895322799683 img loss 1.1898645162582397 img loss 1.2160648107528687 img loss 1.2628587484359741 img loss 1.2609424591064453 img loss 1.2522438764572144 img loss 1.2255187034606934 img loss 1.232965111732483 img loss 1.2157115936279297 img loss 1.1886223554611206 img loss 1.2377808094024658 img loss 1.2018383741378784 {'loss': 1.2123, 'grad_norm': 0.2435312718153, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.288897156715393 img loss 1.2235255241394043 img loss 1.2091997861862183 img loss 1.2251012325286865 img loss 1.118107795715332 img loss 1.2431086301803589 img loss 1.1983689069747925 img loss 1.260497808456421 img loss 1.1997092962265015 img loss 1.2399710416793823 img loss 1.1727818250656128 img loss 1.1914057731628418 img loss 1.1320016384124756 img loss 1.2903721332550049 img loss 1.2739614248275757 img loss 1.1905437707901 img loss 1.272560715675354 img loss 1.118749976158142 img loss 1.271431803703308 img loss 1.2373411655426025 img loss 1.1673723459243774 img loss 1.2904701232910156 img loss 1.1981226205825806 img loss 1.1505857706069946 img loss 1.1376147270202637 img loss 1.1789709329605103 img loss 1.193239450454712 img loss 1.1989790201187134 img loss 1.1871744394302368 img loss 1.2064223289489746 img loss 1.2345131635665894 img loss 1.2406187057495117 img loss 1.2676517963409424 img loss 1.1883541345596313 img loss 1.1863961219787598 img loss 1.2569375038146973 img loss 1.2188680171966553 img loss 1.22018563747406 img loss 1.2944024801254272 img loss 1.1782604455947876 img loss 1.1973628997802734 img loss 1.152016043663025 img loss 1.1655070781707764 img loss 1.1543883085250854 img loss 1.2473629713058472 img loss 1.2323658466339111 img loss 1.2078070640563965 img loss 1.126753807067871 img loss 1.1928420066833496 img loss 1.2668193578720093 img loss 1.2091869115829468 img loss 1.2916901111602783 img loss 1.202918291091919 img loss 1.1783514022827148 img loss 1.1924946308135986 img loss 1.1069941520690918 img loss 1.1941094398498535 img loss 1.2341641187667847 img loss 1.1659084558486938 img loss 1.1461864709854126 img loss 1.2136204242706299 img loss 1.177273154258728 img loss 1.2170765399932861 img loss 1.2771538496017456 img loss 1.1325533390045166 img loss 1.233834147453308 img loss 1.3572531938552856 img loss 1.2225532531738281 img loss 1.2457722425460815 img loss 1.1728204488754272 img loss 1.1656821966171265 img loss 1.2300411462783813 img loss 1.1868312358856201 img loss 1.1714483499526978 img loss 1.1612399816513062 img loss 1.269582748413086 img loss 1.183664321899414 img loss 1.174729824066162 img loss 1.3063615560531616 img loss 1.159395456314087 img loss 1.2076499462127686 img loss 1.2046339511871338 img loss 1.1971819400787354 img loss 1.2360811233520508 img loss 1.2872178554534912 img loss 1.202772855758667 img loss 1.1141246557235718 img loss 1.2497496604919434 img loss 1.207678198814392 img loss 1.1608948707580566 img loss 1.193674921989441 img loss 1.28136146068573 img loss 1.1828935146331787 img loss 1.2472994327545166 img loss 1.2114533185958862 img loss 1.2331329584121704 img loss 1.1439785957336426 img loss 1.145862340927124 img loss 1.245464563369751 img loss 1.2296497821807861 img loss 1.1712960004806519 img loss 1.2287966012954712 img loss 1.2366328239440918 img loss 1.2826077938079834 img loss 1.1241974830627441 img loss 1.1704412698745728 img loss 1.2214000225067139 img loss 1.2378008365631104 img loss 1.1110420227050781 img loss 1.218485713005066 img loss 1.2350261211395264 img loss 1.2511707544326782 img loss 1.22163987159729 img loss 1.1482311487197876 img loss 1.1523816585540771 img loss 1.2539297342300415 img loss 1.2156819105148315 img loss 1.235943078994751 img loss 1.125942349433899 img loss 1.2121567726135254 img loss 1.3622933626174927 img loss 1.2033017873764038 img loss 1.2085833549499512 img loss 1.1630074977874756 img loss 1.2269283533096313 img loss 1.2390549182891846 img loss 1.3432382345199585 img loss 1.1667145490646362 {'loss': 1.2096, 'grad_norm': 0.45207640528678894, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1886916160583496 img loss 1.1353751420974731 img loss 1.147152304649353 img loss 1.2752277851104736 img loss 1.1776597499847412 img loss 1.230647325515747 img loss 1.2188241481781006 img loss 1.1757304668426514 img loss 1.1781952381134033 img loss 1.1852740049362183 img loss 1.2400529384613037 img loss 1.1849392652511597 img loss 1.2774386405944824 img loss 1.1358883380889893 img loss 1.1584917306900024 img loss 1.243995189666748 img loss 1.1889456510543823 img loss 1.1370131969451904 img loss 1.22091543674469 img loss 1.1967062950134277 img loss 1.162790060043335 img loss 1.1868559122085571 img loss 1.2205222845077515 img loss 1.2548636198043823 img loss 1.0840022563934326 img loss 1.1629395484924316 img loss 1.219969630241394 img loss 1.1780681610107422 img loss 1.282927393913269 img loss 1.2102383375167847 img loss 1.1711573600769043 img loss 1.2017959356307983 img loss 1.1513659954071045 img loss 1.13507878780365 img loss 1.1955199241638184 img loss 1.1180535554885864 img loss 1.1493492126464844 img loss 1.235410451889038 img loss 1.1844704151153564 img loss 1.178153395652771 img loss 1.1686930656433105 img loss 1.2592451572418213 img loss 1.2396550178527832 img loss 1.1847665309906006 img loss 1.235676646232605 img loss 1.2525707483291626 img loss 1.1687589883804321 img loss 1.1534770727157593 img loss 1.1859368085861206 img loss 1.2251269817352295 img loss 1.1887763738632202 img loss 1.16352117061615 img loss 1.187691330909729 img loss 1.2770036458969116 img loss 1.288780689239502 img loss 1.2011868953704834 img loss 1.2416388988494873 img loss 1.1831412315368652 img loss 1.2060784101486206 img loss 1.159051775932312 img loss 1.232365369796753 img loss 1.132819652557373 img loss 1.1268326044082642 img loss 1.2275683879852295 img loss 1.2552423477172852 img loss 1.2000806331634521 img loss 1.2237348556518555 img loss 1.193730115890503 img loss 1.2266216278076172 img loss 1.2209446430206299 img loss 1.1416937112808228 img loss 1.203744649887085 img loss 1.2436493635177612 img loss 1.195920467376709 img loss 1.1280030012130737 img loss 1.1949329376220703 img loss 1.1880073547363281 img loss 1.2270123958587646 img loss 1.2065856456756592 img loss 1.1445024013519287 img loss 1.1757062673568726 img loss 1.1888189315795898 img loss 1.1919727325439453 img loss 1.2804291248321533 img loss 1.1679046154022217 img loss 1.2026920318603516 img loss 1.2350924015045166 img loss 1.1809176206588745 img loss 1.2555869817733765 img loss 1.2092187404632568 img loss 1.197944164276123 img loss 1.2304750680923462 img loss 1.2371230125427246 img loss 1.2486205101013184 img loss 1.1659150123596191 img loss 1.1642978191375732 img loss 1.1759939193725586 img loss 1.1455405950546265 img loss 1.19036066532135 img loss 1.1737048625946045 img loss 1.3012809753417969 img loss 1.2166974544525146 img loss 1.267616629600525 img loss 1.1808984279632568 img loss 1.2808531522750854 img loss 1.2328100204467773 img loss 1.3069928884506226 img loss 1.1479415893554688 img loss 1.188503623008728 img loss 1.1827553510665894 img loss 1.3114601373672485 img loss 1.1976234912872314 img loss 1.1748536825180054 img loss 1.235216498374939 img loss 1.2479604482650757 img loss 1.2534809112548828 img loss 1.1854052543640137 img loss 1.198868989944458 img loss 1.2391388416290283 img loss 1.1919749975204468 img loss 1.1927276849746704 img loss 1.1763737201690674 img loss 1.2287148237228394 img loss 1.227771520614624 img loss 1.1925798654556274 img loss 1.3157227039337158 img loss 1.2105517387390137 img loss 1.274781584739685 {'loss': 1.2035, 'grad_norm': 0.262607604265213, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.25862455368042 img loss 1.2772067785263062 img loss 1.297258973121643 img loss 1.276564598083496 img loss 1.2803617715835571 img loss 1.358812928199768 img loss 1.2534191608428955 img loss 1.2500684261322021 img loss 1.337963581085205 img loss 1.3908182382583618 img loss 1.2941169738769531 img loss 1.3206290006637573 img loss 1.2368412017822266 img loss 1.2429780960083008 img loss 1.3293980360031128 img loss 1.3380192518234253 img loss 1.4181458950042725 img loss 1.216215968132019 img loss 1.3447299003601074 img loss 1.2553367614746094 img loss 1.2548081874847412 img loss 1.273937463760376 img loss 1.3527740240097046 img loss 1.3481717109680176 img loss 1.2976564168930054 img loss 1.3168654441833496 img loss 1.2992639541625977 img loss 1.3712745904922485 img loss 1.42426598072052 img loss 1.336493730545044 img loss 1.2512272596359253 img loss 1.4047666788101196img loss 1.4108383655548096 img loss 1.30106520652771 img loss 1.33309805393219 img loss 1.2489303350448608 img loss 1.3299212455749512 img loss 1.264406681060791 img loss 1.303423523902893 img loss 1.3254830837249756 img loss 1.2651760578155518 img loss 1.3357479572296143 img loss 1.2944809198379517 img loss 1.3225430250167847 img loss 1.2586064338684082 img loss 1.3254971504211426 img loss 1.2495465278625488 img loss 1.2197909355163574 img loss 1.2790597677230835 img loss 1.293783187866211 img loss 1.2948994636535645 img loss 1.2594330310821533 img loss 1.4015482664108276 img loss 1.2846715450286865 img loss 1.3924918174743652 img loss 1.3928664922714233 img loss 1.2949947118759155 img loss 1.3578976392745972 img loss 1.3317458629608154 img loss 1.3043276071548462 img loss 1.2916278839111328 img loss 1.2471288442611694 img loss 1.2712559700012207 img loss 1.3199656009674072 img loss 1.3092972040176392 img loss 1.2420448064804077 img loss 1.4073493480682373 img loss 1.2194229364395142 img loss 1.3077548742294312 img loss 1.397562861442566 img loss 1.2707439661026 img loss 1.3116005659103394 img loss 1.3351147174835205img loss 1.2532209157943726 img loss 1.2927336692810059 img loss 1.3573567867279053 img loss 1.3463066816329956 img loss 1.288537859916687 img loss 1.3360248804092407 img loss 1.2679831981658936 img loss 1.3357213735580444 img loss 1.357002854347229 img loss 1.3017971515655518 img loss 1.3321834802627563 img loss 1.312988042831421 img loss 1.3138692378997803 img loss 1.277038335800171 img loss 1.3187159299850464 img loss 1.2144936323165894 img loss 1.3922040462493896 img loss 1.2563567161560059 img loss 1.3799920082092285 img loss 1.343481421470642 img loss 1.3770534992218018 img loss 1.3599077463150024 img loss 1.2506927251815796 img loss 1.3116575479507446 img loss 1.184576392173767 img loss 1.2939081192016602 img loss 1.3639750480651855 img loss 1.298736572265625 img loss 1.2781004905700684 img loss 1.3060134649276733 img loss 1.2509534358978271 img loss 1.1960413455963135 img loss 1.2727760076522827 img loss 1.3390947580337524 img loss 1.2662023305892944 img loss 1.2003734111785889 img loss 1.2398399114608765 img loss 1.3329217433929443 img loss 1.3098057508468628 img loss 1.1942894458770752 img loss 1.3475922346115112 img loss 1.3319852352142334 img loss 1.2300701141357422 img loss 1.2638626098632812 img loss 1.3576551675796509 img loss 1.3428864479064941 img loss 1.3550454378128052 img loss 1.1909148693084717 img loss 1.3029698133468628 img loss 1.2842203378677368 img loss 1.314219355583191 img loss 1.311490535736084 img loss 1.3062288761138916 img loss 1.299741268157959 img loss 1.2913941144943237 {'loss': 1.3043, 'grad_norm': 0.6361759901046753, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2389161586761475 img loss 1.333290457725525 img loss 1.251755952835083 img loss 1.3705772161483765 img loss 1.3139384984970093 img loss 1.3092464208602905 img loss 1.257589340209961 img loss 1.3552029132843018 img loss 1.2099742889404297 img loss 1.285500407218933 img loss 1.2266106605529785 img loss 1.2620429992675781 img loss 1.274584412574768 img loss 1.3753430843353271 img loss 1.2787998914718628 img loss 1.2517210245132446 img loss 1.4119898080825806 img loss 1.287543535232544 img loss 1.209040880203247 img loss 1.2461017370224 img loss 1.3082842826843262 img loss 1.2813459634780884 img loss 1.3041954040527344 img loss 1.223230242729187 img loss 1.2958426475524902 img loss 1.1552953720092773 img loss 1.297978401184082 img loss 1.3236370086669922 img loss 1.1767191886901855 img loss 1.153761863708496 img loss 1.2293815612792969 img loss 1.2756526470184326 img loss 1.3474202156066895 img loss 1.2172539234161377 img loss 1.210598349571228 img loss 1.2432796955108643 img loss 1.2498115301132202 img loss 1.3227629661560059 img loss 1.2910809516906738 img loss 1.2300770282745361 img loss 1.348831295967102 img loss 1.2113940715789795 img loss 1.2791457176208496 img loss 1.4684451818466187 img loss 1.251911997795105 img loss 1.280748724937439 img loss 1.3743294477462769 img loss 1.289484977722168 img loss 1.223975419998169 img loss 1.3922117948532104 img loss 1.262042760848999 img loss 1.2806752920150757 img loss 1.2657005786895752 img loss 1.2308317422866821 img loss 1.308632731437683 img loss 1.2340930700302124 img loss 1.2953096628189087 img loss 1.2530477046966553 img loss 1.250722885131836 img loss 1.277557134628296 img loss 1.1090525388717651 img loss 1.2429660558700562 img loss 1.2248055934906006 img loss 1.4050549268722534 img loss 1.347457766532898 img loss 1.2214536666870117 img loss 1.265307068824768 img loss 1.2846759557724 img loss 1.1923128366470337 img loss 1.2588551044464111 img loss 1.3124109506607056 img loss 1.2506903409957886 img loss 1.223528265953064 img loss 1.2306475639343262 img loss 1.2983348369598389 img loss 1.2775198221206665 img loss 1.2120776176452637 img loss 1.2702356576919556 img loss 1.295653223991394 img loss 1.2420954704284668 img loss 1.1974196434020996 img loss 1.2866352796554565 img loss 1.3576217889785767 img loss 1.2242761850357056 img loss 1.221461534500122 img loss 1.2813314199447632 img loss 1.1962441205978394 img loss 1.2732081413269043 img loss 1.185652256011963 img loss 1.172381043434143 img loss 1.416938304901123 img loss 1.1994311809539795 img loss 1.2062116861343384 img loss 1.4255293607711792 img loss 1.3236539363861084 img loss 1.171750783920288 img loss 1.2451456785202026 img loss 1.3008297681808472 img loss 1.2800312042236328 img loss 1.1647042036056519 img loss 1.2605987787246704 img loss 1.2974809408187866 img loss 1.2622382640838623 img loss 1.28591787815094 img loss 1.2673299312591553 img loss 1.363765835762024 img loss 1.2813687324523926 img loss 1.242269515991211 img loss 1.3391822576522827 img loss 1.204248070716858 img loss 1.2200262546539307 img loss 1.2185213565826416 img loss 1.2941157817840576 img loss 1.2464942932128906 img loss 1.3411911725997925 img loss 1.3503592014312744 img loss 1.4509938955307007 img loss 1.1886627674102783 img loss 1.1910955905914307 img loss 1.2179598808288574 img loss 1.3781554698944092 img loss 1.3493081331253052 img loss 1.266489028930664 img loss 1.1847741603851318 img loss 1.2656140327453613 img loss 1.2038360834121704 img loss 1.206686019897461 img loss 1.2321982383728027 {'loss': 1.2701, 'grad_norm': 0.20837245881557465, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2699954509735107 img loss 1.3331962823867798 img loss 1.3037267923355103 img loss 1.375246286392212 img loss 1.346312403678894 img loss 1.3127765655517578 img loss 1.435077428817749 img loss 1.345296025276184 img loss 1.2956838607788086 img loss 1.3516666889190674 img loss 1.4024097919464111 img loss 1.4583754539489746 img loss 1.360703706741333 img loss 1.2531555891036987 img loss 1.4059875011444092 img loss 1.3054519891738892 img loss 1.3523987531661987 img loss 1.3895314931869507 img loss 1.345832347869873 img loss 1.4482640027999878 img loss 1.4110997915267944 img loss 1.5394816398620605 img loss 1.4242775440216064 img loss 1.4874943494796753 img loss 1.2948017120361328 img loss 1.4104951620101929 img loss 1.3636682033538818 img loss 1.2809492349624634 img loss 1.4016554355621338 img loss 1.2516701221466064 img loss 1.4446204900741577 img loss 1.3785420656204224 img loss 1.3455337285995483 img loss 1.1918785572052002 img loss 1.3019949197769165 img loss 1.3799641132354736 img loss 1.3346917629241943 img loss 1.3069267272949219 img loss 1.3764431476593018 img loss 1.4474732875823975 img loss 1.3724091053009033 img loss 1.2923550605773926 img loss 1.326475977897644 img loss 1.3631235361099243 img loss 1.3841897249221802 img loss 1.2828203439712524 img loss 1.3815406560897827 img loss 1.3591606616973877 img loss 1.3846534490585327 img loss 1.3646591901779175 img loss 1.3863799571990967 img loss 1.3684687614440918 img loss 1.387528657913208 img loss 1.272602915763855 img loss 1.5052120685577393img loss 1.3825504779815674 img loss 1.3584359884262085 img loss 1.3829810619354248 img loss 1.2975711822509766 img loss 1.3125827312469482 img loss 1.5016109943389893 img loss 1.3031145334243774 img loss 1.360065221786499 img loss 1.5529096126556396 img loss 1.3575900793075562 img loss 1.3183507919311523 img loss 1.3566644191741943 img loss 1.36284601688385 img loss 1.334125280380249 img loss 1.2945072650909424 img loss 1.449218988418579 img loss 1.3548214435577393 img loss 1.3525453805923462 img loss 1.2916101217269897 img loss 1.5284266471862793 img loss 1.3252979516983032 img loss 1.4062378406524658 img loss 1.4278653860092163 img loss 1.4690748453140259 img loss 1.3763772249221802 img loss 1.282243251800537 img loss 1.3373609781265259 img loss 1.3467830419540405 img loss 1.41294264793396 img loss 1.3111861944198608 img loss 1.319233775138855 img loss 1.4979608058929443 img loss 1.361094355583191 img loss 1.3780205249786377 img loss 1.3978111743927002 img loss 1.309443712234497 img loss 1.352268099784851 img loss 1.352790355682373 img loss 1.318681001663208 img loss 1.4329875707626343 img loss 1.4106889963150024 img loss 1.315958023071289 img loss 1.2847696542739868 img loss 1.3675240278244019 img loss 1.2760016918182373 img loss 1.4109047651290894 img loss 1.344952940940857 img loss 1.4375134706497192 img loss 1.2986810207366943 img loss 1.320639967918396 img loss 1.4389262199401855 img loss 1.553249716758728 img loss 1.3367133140563965 img loss 1.4391300678253174 img loss 1.4539111852645874 img loss 1.4360462427139282 img loss 1.2560975551605225 img loss 1.2807629108428955 img loss 1.397621750831604 img loss 1.3139108419418335 img loss 1.3659120798110962 img loss 1.2841238975524902 img loss 1.3544535636901855 img loss 1.403939962387085 img loss 1.2824987173080444 img loss 1.2699644565582275 img loss 1.2332881689071655 img loss 1.2889516353607178 img loss 1.2392183542251587 img loss 1.3091167211532593 img loss 1.3827952146530151 img loss 1.3273028135299683 img loss 1.3374969959259033 {'loss': 1.3611, 'grad_norm': 0.4892820417881012, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.234405279159546 img loss 1.1947187185287476 img loss 1.2009177207946777 img loss 1.2475584745407104 img loss 1.2464044094085693 img loss 1.195745825767517 img loss 1.1959590911865234 img loss 1.1917989253997803 img loss 1.2267045974731445 img loss 1.2268108129501343 img loss 1.2236746549606323 img loss 1.2032002210617065 img loss 1.2339080572128296 img loss 1.270714521408081 img loss 1.2568267583847046 img loss 1.2426732778549194 img loss 1.2462505102157593 img loss 1.2067978382110596 img loss 1.2226637601852417 img loss 1.3369160890579224 img loss 1.242161750793457 img loss 1.1840131282806396 img loss 1.3215874433517456 img loss 1.2385715246200562 img loss 1.3420344591140747 img loss 1.2254383563995361 img loss 1.3315024375915527 img loss 1.2407374382019043 img loss 1.2172139883041382 img loss 1.2283105850219727 img loss 1.210479497909546 img loss 1.2129199504852295 img loss 1.1661955118179321 img loss 1.1852657794952393 img loss 1.2191346883773804 img loss 1.1775894165039062 img loss 1.2224206924438477 img loss 1.2225077152252197 img loss 1.2281475067138672 img loss 1.1912932395935059 img loss 1.2014604806900024 img loss 1.2889199256896973 img loss 1.2707239389419556 img loss 1.2587051391601562 img loss 1.2467148303985596 img loss 1.2427394390106201 img loss 1.2507435083389282 img loss 1.1996066570281982 img loss 1.2334492206573486 img loss 1.2011475563049316 img loss 1.2384804487228394 img loss 1.2118744850158691 img loss 1.3110274076461792 img loss 1.2207125425338745 img loss 1.1991353034973145 img loss 1.203255534172058 img loss 1.2608678340911865 img loss 1.1907790899276733 img loss 1.1978079080581665 img loss 1.2133086919784546 img loss 1.196379542350769 img loss 1.1673380136489868 img loss 1.2591173648834229 img loss 1.1625093221664429 img loss 1.161566138267517 img loss 1.2068183422088623 img loss 1.236036777496338 img loss 1.2371095418930054 img loss 1.203587532043457 img loss 1.2384213209152222 img loss 1.2080601453781128 img loss 1.2813944816589355 img loss 1.2402065992355347 img loss 1.2104809284210205 img loss 1.247363805770874 img loss 1.2067457437515259 img loss 1.2556777000427246 img loss 1.2378594875335693 img loss 1.2521103620529175 img loss 1.2076330184936523 img loss 1.2287538051605225 img loss 1.2125279903411865 img loss 1.1682490110397339 img loss 1.2056242227554321 img loss 1.2855890989303589 img loss 1.2509651184082031 img loss 1.2319042682647705 img loss 1.2073980569839478 img loss 1.1842033863067627 img loss 1.2475202083587646 img loss 1.2332916259765625 img loss 1.3070515394210815 img loss 1.1966828107833862 img loss 1.239793062210083 img loss 1.2220655679702759 img loss 1.2201515436172485 img loss 1.2164677381515503 img loss 1.2487443685531616 img loss 1.169799566268921 img loss 1.2113261222839355 img loss 1.210204839706421 img loss 1.261846899986267 img loss 1.1988006830215454 img loss 1.2633633613586426 img loss 1.244623064994812 img loss 1.3014229536056519 img loss 1.203728199005127 img loss 1.2537916898727417 img loss 1.253951907157898 img loss 1.1545047760009766 img loss 1.3473618030548096 img loss 1.2218290567398071 img loss 1.2187470197677612 img loss 1.250259280204773 img loss 1.1903431415557861 img loss 1.2037547826766968 img loss 1.1974198818206787 img loss 1.1724152565002441 img loss 1.2352558374404907 img loss 1.2069685459136963 img loss 1.2099635601043701 img loss 1.255968451499939 img loss 1.1747020483016968 img loss 1.220235824584961 img loss 1.2831103801727295 img loss 1.2945702075958252 img loss 1.2606744766235352 img loss 1.2114908695220947 {'loss': 1.2286, 'grad_norm': 0.33059853315353394, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.141852855682373 img loss 1.102126121520996 img loss 1.2287123203277588 img loss 1.1678004264831543 img loss 1.1055424213409424 img loss 1.143066167831421 img loss 1.112760066986084 img loss 1.1442387104034424 img loss 1.1785430908203125 img loss 1.0942730903625488 img loss 1.1300019025802612 img loss 1.2151942253112793 img loss 1.0946279764175415 img loss 1.233450174331665 img loss 1.194388747215271 img loss 1.2082080841064453 img loss 1.1447089910507202 img loss 1.1018576622009277 img loss 1.1813322305679321 img loss 1.1544157266616821 img loss 1.1688140630722046 img loss 1.145167589187622 img loss 1.1584640741348267 img loss 1.1362392902374268 img loss 1.1083787679672241 img loss 1.1675026416778564 img loss 1.165395736694336 img loss 1.215651512145996 img loss 1.0917162895202637 img loss 1.1764752864837646 img loss 1.1470253467559814 img loss 1.1478824615478516 img loss 1.1980092525482178 img loss 1.18673574924469 img loss 1.1789052486419678 img loss 1.1567578315734863 img loss 1.0848850011825562 img loss 1.10673189163208 img loss 1.1746478080749512 img loss 1.155809998512268 img loss 1.221605896949768 img loss 1.2100942134857178 img loss 1.1089011430740356 img loss 1.0950510501861572 img loss 1.183912754058838 img loss 1.225908875465393 img loss 1.172768235206604 img loss 1.1643002033233643 img loss 1.1246240139007568 img loss 1.2108678817749023 img loss 1.1809971332550049 img loss 1.1888020038604736 img loss 1.1436575651168823 img loss 1.136390209197998 img loss 1.315657615661621 img loss 1.1437660455703735 img loss 1.2166067361831665 img loss 1.1608244180679321 img loss 1.0942981243133545 img loss 1.1799381971359253 img loss 1.1659778356552124 img loss 1.1212486028671265 img loss 1.1485918760299683 img loss 1.2348008155822754 img loss 1.1965041160583496 img loss 1.1636974811553955 img loss 1.1500461101531982 img loss 1.1599174737930298 img loss 1.164496660232544 img loss 1.1983826160430908 img loss 1.1353315114974976 img loss 1.1417133808135986 img loss 1.1063019037246704 img loss 1.1856409311294556 img loss 1.145952820777893 img loss 1.1202783584594727 img loss 1.1640783548355103 img loss 1.1424260139465332 img loss 1.123658537864685 img loss 1.2166332006454468 img loss 1.1951665878295898 img loss 1.1811168193817139 img loss 1.1525769233703613 img loss 1.2527092695236206 img loss 1.1454085111618042 img loss 1.2020163536071777 img loss 1.2571702003479004 img loss 1.1448419094085693img loss 1.1700117588043213 img loss 1.128249168395996 img loss 1.1480650901794434 img loss 1.1789109706878662 img loss 1.2144407033920288 img loss 1.2239919900894165 img loss 1.166990041732788 img loss 1.1280008554458618 img loss 1.1538653373718262 img loss 1.1810210943222046 img loss 1.2208032608032227 img loss 1.1280823945999146 img loss 1.1937508583068848 img loss 1.150368571281433 img loss 1.209993600845337 img loss 1.1750919818878174 img loss 1.1691772937774658 img loss 1.159661054611206 img loss 1.1343107223510742 img loss 1.1952403783798218 img loss 1.1123558282852173 img loss 1.2238448858261108 img loss 1.1366043090820312 img loss 1.305876612663269 img loss 1.1596344709396362 img loss 1.1287163496017456 img loss 1.2586398124694824 img loss 1.2140812873840332 img loss 1.1484227180480957 img loss 1.0940920114517212 img loss 1.1094944477081299 img loss 1.1249032020568848 img loss 1.124800205230713 img loss 1.195433259010315 img loss 1.1263751983642578 img loss 1.1383771896362305 img loss 1.1429414749145508 img loss 1.168181300163269 img loss 1.2905794382095337 img loss 1.126152753829956 {'loss': 1.1649, 'grad_norm': 0.23207662999629974, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2289389371871948 img loss 1.1751235723495483 img loss 1.2383240461349487 img loss 1.31876540184021 img loss 1.186415672302246 img loss 1.2329124212265015 img loss 1.2495813369750977 img loss 1.1632952690124512 img loss 1.1892610788345337 img loss 1.1588495969772339 img loss 1.220396637916565 img loss 1.1875368356704712 img loss 1.1806690692901611 img loss 1.3127224445343018 img loss 1.197594165802002 img loss 1.2457711696624756 img loss 1.3367860317230225 img loss 1.203376054763794 img loss 1.2602951526641846 img loss 1.2042484283447266 img loss 1.1690614223480225 img loss 1.0884990692138672 img loss 1.276390790939331img loss 1.2524406909942627 img loss 1.219885230064392 img loss 1.2223325967788696 img loss 1.2298953533172607 img loss 1.1538140773773193 img loss 1.2619539499282837 img loss 1.2372239828109741 img loss 1.1967413425445557 img loss 1.1651360988616943 img loss 1.1849098205566406 img loss 1.2896181344985962 img loss 1.169938564300537 img loss 1.1705230474472046 img loss 1.1421210765838623 img loss 1.2686160802841187 img loss 1.2443445920944214 img loss 1.1883387565612793 img loss 1.1841144561767578 img loss 1.2283029556274414 img loss 1.1412115097045898 img loss 1.3065147399902344 img loss 1.212506651878357 img loss 1.20287024974823 img loss 1.1929433345794678 img loss 1.2304131984710693 img loss 1.154187798500061 img loss 1.227502465248108 img loss 1.1912931203842163 img loss 1.1678276062011719 img loss 1.2111027240753174 img loss 1.2177064418792725 img loss 1.1790279150009155 img loss 1.1149885654449463 img loss 1.182600975036621 img loss 1.2004640102386475 img loss 1.1949188709259033 img loss 1.2298657894134521 img loss 1.2241945266723633 img loss 1.239529013633728 img loss 1.220754861831665 img loss 1.2970727682113647 img loss 1.1436537504196167 img loss 1.297838807106018 img loss 1.2368953227996826 img loss 1.2372944355010986 img loss 1.2197277545928955 img loss 1.1584739685058594 img loss 1.1875617504119873 img loss 1.2996840476989746 img loss 1.2392122745513916 img loss 1.2815673351287842 img loss 1.2692961692810059 img loss 1.2699931859970093 img loss 1.2059037685394287 img loss 1.1735408306121826 img loss 1.1875813007354736img loss 1.16416335105896 img loss 1.183802604675293 img loss 1.2405176162719727 img loss 1.1996501684188843 img loss 1.2393085956573486 img loss 1.2115522623062134 img loss 1.1563347578048706 img loss 1.2071526050567627 img loss 1.1313154697418213 img loss 1.2155873775482178 img loss 1.272594690322876 img loss 1.2491673231124878 img loss 1.1847141981124878 img loss 1.241968035697937 img loss 1.2695496082305908 img loss 1.192134141921997 img loss 1.3216807842254639 img loss 1.2583853006362915 img loss 1.149857997894287 img loss 1.1976207494735718 img loss 1.159476637840271 img loss 1.1936564445495605 img loss 1.1859005689620972 img loss 1.3002122640609741 img loss 1.2395986318588257 img loss 1.2038109302520752 img loss 1.2185664176940918 img loss 1.22933828830719 img loss 1.2256287336349487 img loss 1.2492436170578003 img loss 1.1634491682052612 img loss 1.2028751373291016 img loss 1.2980971336364746 img loss 1.22592294216156 img loss 1.252172827720642 img loss 1.230635404586792 img loss 1.200782060623169 img loss 1.2282109260559082 img loss 1.2101383209228516 img loss 1.1582163572311401 img loss 1.198553442955017 img loss 1.226291298866272 img loss 1.2045749425888062 img loss 1.1453475952148438 img loss 1.196519374847412 img loss 1.2054493427276611 img loss 1.169389247894287 img loss 1.1824955940246582 img loss 1.1541601419448853 {'loss': 1.2135, 'grad_norm': 0.3656832277774811, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.293647289276123 img loss 1.220771312713623 img loss 1.2794342041015625 img loss 1.3634251356124878 img loss 1.4490485191345215 img loss 1.268810510635376 img loss 1.3564465045928955 img loss 1.27763831615448 img loss 1.2375764846801758 img loss 1.3827662467956543 img loss 1.3737446069717407 img loss 1.3606728315353394 img loss 1.2716782093048096 img loss 1.2728900909423828 img loss 1.3529146909713745 img loss 1.3261780738830566 img loss 1.2986979484558105 img loss 1.2945516109466553 img loss 1.284192681312561 img loss 1.2817912101745605 img loss 1.2352303266525269 img loss 1.3800225257873535 img loss 1.3366252183914185 img loss 1.2894361019134521 img loss 1.4351202249526978 img loss 1.3841067552566528 img loss 1.2747560739517212 img loss 1.437923789024353 img loss 1.4690090417861938 img loss 1.4761841297149658 img loss 1.4805505275726318 img loss 1.31282377243042 img loss 1.412682294845581 img loss 1.3537328243255615 img loss 1.4173833131790161 img loss 1.3361173868179321 img loss 1.2450107336044312 img loss 1.3272855281829834 img loss 1.4285045862197876 img loss 1.3321456909179688 img loss 1.4099668264389038 img loss 1.338333010673523 img loss 1.424468755722046 img loss 1.2932687997817993 img loss 1.4117013216018677 img loss 1.294944405555725 img loss 1.3992758989334106 img loss 1.4237805604934692 img loss 1.4209891557693481 img loss 1.3818752765655518 img loss 1.3401062488555908 img loss 1.3143352270126343 img loss 1.4208706617355347 img loss 1.4283993244171143 img loss 1.2606066465377808 img loss 1.401639461517334 img loss 1.2597804069519043 img loss 1.3008962869644165 img loss 1.3335093259811401 img loss 1.308152675628662 img loss 1.2717721462249756 img loss 1.3907266855239868 img loss 1.3380987644195557 img loss 1.319080114364624 img loss 1.293494701385498 img loss 1.315987467765808 img loss 1.3777458667755127 img loss 1.345967173576355 img loss 1.3994389772415161 img loss 1.3073768615722656 img loss 1.3896571397781372 img loss 1.3142452239990234 img loss 1.271594762802124 img loss 1.3126940727233887 img loss 1.3683316707611084 img loss 1.425873041152954 img loss 1.3829758167266846 img loss 1.2485164403915405 img loss 1.3444855213165283 img loss 1.3706551790237427 img loss 1.314409613609314 img loss 1.366221308708191 img loss 1.3672813177108765 img loss 1.3729891777038574 img loss 1.3886332511901855 img loss 1.3507912158966064 img loss 1.261338710784912 img loss 1.3553987741470337 img loss 1.2538279294967651 img loss 1.3419349193572998 img loss 1.2663484811782837 img loss 1.3852256536483765 img loss 1.3690478801727295 img loss 1.2409387826919556 img loss 1.3451249599456787 img loss 1.4272007942199707 img loss 1.3530031442642212 img loss 1.4240251779556274 img loss 1.348919153213501 img loss 1.3383610248565674 img loss 1.3627625703811646 img loss 1.288813829421997 img loss 1.2983936071395874 img loss 1.3808397054672241 img loss 1.3378814458847046 img loss 1.334480881690979 img loss 1.4168835878372192 img loss 1.3766664266586304 img loss 1.3712286949157715 img loss 1.3288863897323608 img loss 1.4407159090042114 img loss 1.332955002784729 img loss 1.3309406042099 img loss 1.3942043781280518 img loss 1.2305066585540771 img loss 1.4658032655715942 img loss 1.1805247068405151 img loss 1.4537084102630615 img loss 1.287896752357483 img loss 1.401975154876709 img loss 1.279325008392334 img loss 1.420548915863037 img loss 1.381435751914978 img loss 1.2579166889190674 img loss 1.3606873750686646 img loss 1.4253098964691162 img loss 1.3396698236465454 img loss 1.3764816522598267 {'loss': 1.3461, 'grad_norm': 0.2622825801372528, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1692780256271362 img loss 1.1766419410705566 img loss 1.1389720439910889 img loss 1.1344406604766846 img loss 1.1549783945083618 img loss 1.2088549137115479 img loss 1.1735098361968994 img loss 1.1423182487487793 img loss 1.2097675800323486 img loss 1.1335548162460327 img loss 1.1715672016143799 img loss 1.1810829639434814 img loss 1.213458776473999 img loss 1.2558510303497314 img loss 1.1314823627471924 img loss 1.1862103939056396 img loss 1.1407541036605835 img loss 1.0692057609558105 img loss 1.2393298149108887 img loss 1.1245536804199219 img loss 1.1277337074279785 img loss 1.1535128355026245 img loss 1.1657745838165283 img loss 1.2139275074005127 img loss 1.178372859954834 img loss 1.1121779680252075 img loss 1.2303704023361206 img loss 1.223224401473999 img loss 1.229173183441162 img loss 1.195688009262085 img loss 1.1771931648254395 img loss 1.1730854511260986 img loss 1.251532793045044 img loss 1.215767741203308 img loss 1.1257634162902832 img loss 1.1954436302185059 img loss 1.067097544670105 img loss 1.2349200248718262 img loss 1.183988332748413 img loss 1.1602948904037476 img loss 1.1735174655914307 img loss 1.137276530265808 img loss 1.148611068725586 img loss 1.1835014820098877 img loss 1.2417773008346558 img loss 1.1334432363510132 img loss 1.1489598751068115 img loss 1.174831748008728 img loss 1.1470369100570679 img loss 1.1917721033096313 img loss 1.185471773147583 img loss 1.2118490934371948 img loss 1.212794542312622 img loss 1.1068897247314453 img loss 1.1365864276885986 img loss 1.19176185131073 img loss 1.1157540082931519 img loss 1.1848835945129395 img loss 1.126388430595398img loss 1.0722942352294922 img loss 1.2287768125534058 img loss 1.259474754333496 img loss 1.1538739204406738 img loss 1.265419602394104 img loss 1.2263338565826416 img loss 1.1799845695495605 img loss 1.1634037494659424 img loss 1.1371817588806152 img loss 1.2245690822601318 img loss 1.1577609777450562 img loss 1.139626145362854 img loss 1.1301335096359253 img loss 1.105319857597351 img loss 1.2054471969604492 img loss 1.1653283834457397 img loss 1.180251121520996 img loss 1.2679057121276855 img loss 1.1440967321395874 img loss 1.1080543994903564 img loss 1.1874538660049438 img loss 1.197981595993042 img loss 1.217486023902893 img loss 1.1484752893447876 img loss 1.1458995342254639 img loss 1.1394217014312744 img loss 1.1866438388824463 img loss 1.1656064987182617 img loss 1.212618350982666 img loss 1.3123325109481812 img loss 1.1414012908935547 img loss 1.2034896612167358 img loss 1.2038793563842773 img loss 1.1698044538497925 img loss 1.173313856124878 img loss 1.1163276433944702 img loss 1.2851918935775757 img loss 1.209407091140747 img loss 1.1699339151382446 img loss 1.1810078620910645 img loss 1.1458228826522827 img loss 1.1722959280014038 img loss 1.2285029888153076 img loss 1.1384570598602295 img loss 1.0916001796722412 img loss 1.1683650016784668 img loss 1.2049607038497925 img loss 1.1500797271728516 img loss 1.2584351301193237 img loss 1.0901668071746826 img loss 1.2104153633117676 img loss 1.2871322631835938 img loss 1.1363883018493652 img loss 1.1084953546524048 img loss 1.1958082914352417 img loss 1.2354495525360107 img loss 1.099618911743164 img loss 1.1538931131362915 img loss 1.2698543071746826 img loss 1.2054857015609741 img loss 1.134446144104004 img loss 1.2001656293869019 img loss 1.1604723930358887 img loss 1.184323787689209 img loss 1.2315768003463745 img loss 1.1184005737304688 img loss 1.1635767221450806 img loss 1.2238361835479736 img loss 1.1374704837799072 {'loss': 1.1759, 'grad_norm': 0.18402035534381866, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2161850929260254 img loss 1.2369682788848877 img loss 1.224327802658081 img loss 1.1853187084197998 img loss 1.2435276508331299 img loss 1.2180163860321045 img loss 1.1790080070495605 img loss 1.206507921218872 img loss 1.1167421340942383 img loss 1.249686598777771 img loss 1.1991804838180542 img loss 1.242564082145691 img loss 1.1972029209136963 img loss 1.231860876083374 img loss 1.208979606628418 img loss 1.2776840925216675 img loss 1.184387445449829 img loss 1.2462539672851562 img loss 1.1781749725341797 img loss 1.2428330183029175 img loss 1.2063032388687134 img loss 1.2440170049667358 img loss 1.232114315032959 img loss 1.1763925552368164 img loss 1.2081388235092163 img loss 1.2224634885787964 img loss 1.2122337818145752 img loss 1.1963846683502197 img loss 1.1795158386230469 img loss 1.2291349172592163 img loss 1.2597084045410156 img loss 1.196518898010254 img loss 1.2578245401382446 img loss 1.2049330472946167 img loss 1.1602187156677246 img loss 1.1689653396606445 img loss 1.2056446075439453 img loss 1.2244796752929688 img loss 1.233103632926941 img loss 1.190368890762329 img loss 1.2082347869873047 img loss 1.1666496992111206 img loss 1.2147552967071533 img loss 1.2207828760147095 img loss 1.1750586032867432 img loss 1.1568220853805542 img loss 1.159644603729248 img loss 1.1882526874542236 img loss 1.2169263362884521 img loss 1.2213876247406006 img loss 1.223515272140503 img loss 1.2074639797210693 img loss 1.2208937406539917 img loss 1.161843180656433 img loss 1.1923296451568604 img loss 1.247124433517456 img loss 1.230777382850647 img loss 1.1994073390960693 img loss 1.185606598854065 img loss 1.2475600242614746 img loss 1.1807141304016113 img loss 1.2216031551361084 img loss 1.224927306175232 img loss 1.2188953161239624 img loss 1.197018027305603 img loss 1.2314796447753906 img loss 1.2094447612762451 img loss 1.20212721824646 img loss 1.1841320991516113 img loss 1.198134183883667 img loss 1.2754567861557007 img loss 1.2532095909118652 img loss 1.2462518215179443 img loss 1.2292677164077759 img loss 1.13468599319458 img loss 1.2070064544677734 img loss 1.2179958820343018 img loss 1.1924819946289062 img loss 1.2111743688583374 img loss 1.1848900318145752 img loss 1.1880431175231934 img loss 1.1265745162963867 img loss 1.1983911991119385 img loss 1.222630262374878 img loss 1.2474663257598877 img loss 1.277403712272644 img loss 1.2005136013031006 img loss 1.209791898727417 img loss 1.2561367750167847 img loss 1.221442699432373 img loss 1.1998133659362793 img loss 1.2201039791107178 img loss 1.2076002359390259 img loss 1.216631293296814 img loss 1.2537248134613037 img loss 1.2226170301437378 img loss 1.2043412923812866 img loss 1.2217488288879395 img loss 1.2281121015548706 img loss 1.2538414001464844 img loss 1.1901592016220093 img loss 1.2047607898712158 img loss 1.2815468311309814 img loss 1.2247593402862549 img loss 1.2125282287597656 img loss 1.1836543083190918 img loss 1.2147783041000366 img loss 1.1892120838165283 img loss 1.210326075553894 img loss 1.1852307319641113 img loss 1.2199914455413818 img loss 1.1755321025848389 img loss 1.1526501178741455 img loss 1.1756980419158936 img loss 1.202573537826538 img loss 1.2138792276382446 img loss 1.209761381149292 img loss 1.1317366361618042 img loss 1.2398418188095093 img loss 1.2086765766143799 img loss 1.1918245553970337 img loss 1.1991239786148071 img loss 1.276505708694458 img loss 1.1845088005065918 img loss 1.2336634397506714 img loss 1.2058883905410767 img loss 1.1608831882476807 img loss 1.249982237815857 {'loss': 1.2099, 'grad_norm': 0.2478167712688446, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1805216073989868 img loss 1.3252276182174683 img loss 1.3623814582824707 img loss 1.37370765209198 img loss 1.2054328918457031 img loss 1.2533481121063232 img loss 1.2027729749679565 img loss 1.2672855854034424 img loss 1.3210585117340088 img loss 1.2467973232269287 img loss 1.357010006904602 img loss 1.3248882293701172 img loss 1.2823165655136108 img loss 1.330674409866333 img loss 1.2018076181411743 img loss 1.2742838859558105 img loss 1.2450976371765137 img loss 1.3820765018463135 img loss 1.2804393768310547 img loss 1.2085301876068115 img loss 1.1866768598556519 img loss 1.2735583782196045 img loss 1.1440882682800293 img loss 1.2237986326217651 img loss 1.3128511905670166 img loss 1.172938346862793 img loss 1.3814566135406494 img loss 1.325748324394226 img loss 1.1880367994308472 img loss 1.2482270002365112 img loss 1.2295494079589844 img loss 1.1944984197616577 img loss 1.2341984510421753 img loss 1.1190931797027588 img loss 1.1524090766906738 img loss 1.244924545288086 img loss 1.269381046295166 img loss 1.3164558410644531 img loss 1.2350468635559082 img loss 1.3137584924697876 img loss 1.2988314628601074 img loss 1.199570655822754 img loss 1.3262821435928345 img loss 1.2422096729278564 img loss 1.2862223386764526 img loss 1.1997218132019043 img loss 1.2390916347503662 img loss 1.2682899236679077 img loss 1.2753132581710815 img loss 1.2002018690109253 img loss 1.2406635284423828 img loss 1.2420308589935303 img loss 1.1618446111679077 img loss 1.1706033945083618 img loss 1.3235987424850464 img loss 1.3200774192810059 img loss 1.2525808811187744 img loss 1.3934683799743652 img loss 1.230376124382019 img loss 1.3297383785247803 img loss 1.2423681020736694 img loss 1.246445894241333 img loss 1.2422884702682495 img loss 1.2470810413360596 img loss 1.3413430452346802 img loss 1.2250139713287354 img loss 1.2555043697357178 img loss 1.2432368993759155 img loss 1.3171098232269287 img loss 1.201342225074768 img loss 1.4280186891555786 img loss 1.2154163122177124 img loss 1.2697768211364746 img loss 1.3001365661621094 img loss 1.3636354207992554 img loss 1.1611679792404175 img loss 1.1930994987487793 img loss 1.2717443704605103 img loss 1.2434723377227783 img loss 1.2225337028503418 img loss 1.2114843130111694 img loss 1.266019344329834 img loss 1.232491135597229 img loss 1.2025083303451538 img loss 1.2562912702560425 img loss 1.2826982736587524 img loss 1.277368187904358 img loss 1.2544111013412476 img loss 1.400924801826477 img loss 1.375566840171814 img loss 1.253498911857605 img loss 1.195037841796875 img loss 1.3278419971466064 img loss 1.2641589641571045 img loss 1.2705363035202026 img loss 1.2750473022460938 img loss 1.1968934535980225 img loss 1.2476117610931396 img loss 1.3155220746994019 img loss 1.2926987409591675 img loss 1.276361346244812 img loss 1.227105975151062 img loss 1.4392651319503784 img loss 1.065966010093689 img loss 1.19734525680542 img loss 1.3076483011245728 img loss 1.299363374710083 img loss 1.2468851804733276 img loss 1.281437635421753 img loss 1.2562111616134644 img loss 1.2619116306304932 img loss 1.312872290611267 img loss 1.4171239137649536 img loss 1.284006953239441 img loss 1.2157626152038574 img loss 1.226959228515625 img loss 1.2948095798492432 img loss 1.2198598384857178 img loss 1.2718374729156494 img loss 1.2723764181137085 img loss 1.267586350440979 img loss 1.2807509899139404 img loss 1.2239359617233276 img loss 1.280271291732788 img loss 1.2153818607330322 img loss 1.491760492324829 img loss 1.4125397205352783 img loss 1.2964324951171875 {'loss': 1.2661, 'grad_norm': 0.2623327374458313, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2900017499923706 img loss 1.2284077405929565 img loss 1.2891392707824707 img loss 1.3401952981948853 img loss 1.3489378690719604 img loss 1.417069673538208 img loss 1.3083559274673462 img loss 1.2723127603530884 img loss 1.3833280801773071 img loss 1.3269046545028687 img loss 1.1657294034957886 img loss 1.284106969833374 img loss 1.3316662311553955 img loss 1.2239909172058105 img loss 1.4026366472244263 img loss 1.318420171737671 img loss 1.2770336866378784 img loss 1.1811623573303223 img loss 1.3048889636993408 img loss 1.176361322402954 img loss 1.3095729351043701 img loss 1.2876718044281006 img loss 1.2897663116455078 img loss 1.251621127128601 img loss 1.255897879600525 img loss 1.2158257961273193 img loss 1.2801384925842285 img loss 1.3109474182128906 img loss 1.1653459072113037 img loss 1.42257559299469 img loss 1.295267939567566 img loss 1.2650593519210815 img loss 1.345106601715088 img loss 1.2334895133972168 img loss 1.20384681224823 img loss 1.1796965599060059 img loss 1.2550060749053955 img loss 1.2170825004577637 img loss 1.3793305158615112 img loss 1.2382525205612183 img loss 1.2949050664901733 img loss 1.2773975133895874 img loss 1.361792802810669 img loss 1.3488233089447021 img loss 1.3178257942199707 img loss 1.2498784065246582 img loss 1.3482921123504639 img loss 1.2391014099121094 img loss 1.2502102851867676 img loss 1.3592885732650757 img loss 1.2711281776428223 img loss 1.3337714672088623 img loss 1.3154776096343994 img loss 1.248103380203247 img loss 1.2932589054107666 img loss 1.2144086360931396 img loss 1.2783517837524414 img loss 1.2698521614074707 img loss 1.3514105081558228 img loss 1.3451629877090454 img loss 1.211199164390564 img loss 1.3060338497161865 img loss 1.4009522199630737 img loss 1.234296441078186 img loss 1.2581727504730225 img loss 1.3529149293899536 img loss 1.354163408279419 img loss 1.2089909315109253 img loss 1.398079514503479 img loss 1.3010313510894775 img loss 1.2988224029541016 img loss 1.3603355884552002 img loss 1.175775170326233 img loss 1.2030141353607178 img loss 1.3059349060058594 img loss 1.2861067056655884 img loss 1.3564982414245605 img loss 1.306689739227295 img loss 1.2606014013290405 img loss 1.2887680530548096 img loss 1.2702795267105103 img loss 1.3433268070220947 img loss 1.3192087411880493 img loss 1.3088440895080566 img loss 1.342134952545166 img loss 1.3373386859893799 img loss 1.2015537023544312 img loss 1.258082628250122 img loss 1.2115318775177002 img loss 1.2662023305892944 img loss 1.2851824760437012 img loss 1.2826428413391113 img loss 1.2390469312667847 img loss 1.3538156747817993 img loss 1.2992483377456665 img loss 1.1887857913970947 img loss 1.3148589134216309 img loss 1.3433849811553955 img loss 1.1772257089614868 img loss 1.3321678638458252 img loss 1.2328112125396729 img loss 1.45560622215271 img loss 1.2645142078399658 img loss 1.323952078819275 img loss 1.1095227003097534 img loss 1.3872177600860596 img loss 1.2826675176620483 img loss 1.3212436437606812 img loss 1.2463501691818237 img loss 1.261709213256836img loss 1.2730358839035034 img loss 1.2740446329116821 img loss 1.2654190063476562 img loss 1.274208664894104 img loss 1.3355036973953247 img loss 1.2788364887237549 img loss 1.2808178663253784 img loss 1.2207916975021362 img loss 1.2765377759933472 img loss 1.2365295886993408 img loss 1.2564904689788818 img loss 1.247701644897461 img loss 1.40272057056427 img loss 1.2137489318847656 img loss 1.2704472541809082 img loss 1.284020185470581 img loss 1.3483742475509644 img loss 1.346186876296997 {'loss': 1.2871, 'grad_norm': 0.2507455050945282, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4593149423599243 img loss 1.4515929222106934 img loss 1.523595929145813 img loss 1.4944294691085815 img loss 1.4024304151535034 img loss 1.4996165037155151 img loss 1.544744610786438 img loss 1.444934606552124 img loss 1.3874764442443848 img loss 1.4055947065353394 img loss 1.3898378610610962 img loss 1.3717598915100098 img loss 1.596911072731018 img loss 1.5090662240982056 img loss 1.4569650888442993 img loss 1.3785253763198853img loss 1.4069573879241943 img loss 1.501944661140442 img loss 1.5017386674880981 img loss 1.663702130317688 img loss 1.5897809267044067 img loss 1.5460556745529175 img loss 1.4437353610992432 img loss 1.4655680656433105 img loss 1.4665868282318115 img loss 1.417545199394226 img loss 1.4519374370574951 img loss 1.4222185611724854 img loss 1.5053906440734863 img loss 1.5140182971954346 img loss 1.5465420484542847 img loss 1.4737428426742554 img loss 1.5472750663757324 img loss 1.4451472759246826 img loss 1.5387156009674072 img loss 1.5423496961593628 img loss 1.4097446203231812 img loss 1.4610230922698975 img loss 1.5806492567062378 img loss 1.4806872606277466 img loss 1.3702832460403442 img loss 1.6567081212997437 img loss 1.3567808866500854 img loss 1.464253306388855 img loss 1.4815915822982788 img loss 1.4419056177139282 img loss 1.547338843345642 img loss 1.487566590309143 img loss 1.4725289344787598 img loss 1.4741946458816528 img loss 1.4499067068099976 img loss 1.4337373971939087 img loss 1.404250979423523 img loss 1.4890669584274292 img loss 1.4595495462417603 img loss 1.4141713380813599 img loss 1.371590495109558 img loss 1.4740703105926514 img loss 1.38266921043396 img loss 1.4255385398864746 img loss 1.5605618953704834 img loss 1.368548035621643 img loss 1.5925527811050415 img loss 1.48119056224823 img loss 1.6611872911453247 img loss 1.5076533555984497 img loss 1.4074909687042236 img loss 1.474119782447815 img loss 1.3339440822601318 img loss 1.3583089113235474 img loss 1.6155219078063965 img loss 1.5585472583770752 img loss 1.622676134109497 img loss 1.5725849866867065 img loss 1.417894959449768 img loss 1.4947093725204468 img loss 1.527958631515503 img loss 1.6005014181137085 img loss 1.539783239364624 img loss 1.6061328649520874 img loss 1.5929096937179565 img loss 1.4912102222442627 img loss 1.6627434492111206 img loss 1.5173389911651611 img loss 1.3982142210006714 img loss 1.5155032873153687 img loss 1.539458155632019 img loss 1.39133882522583 img loss 1.5489537715911865 img loss 1.4489562511444092 img loss 1.4972018003463745 img loss 1.3860365152359009 img loss 1.5526601076126099 img loss 1.4705512523651123 img loss 1.4506676197052002 img loss 1.4076710939407349 img loss 1.4497226476669312 img loss 1.483798623085022 img loss 1.5089592933654785 img loss 1.375049352645874 img loss 1.55897855758667 img loss 1.4723331928253174 img loss 1.4935606718063354 img loss 1.4640085697174072 img loss 1.4921698570251465 img loss 1.3113218545913696 img loss 1.5780370235443115 img loss 1.4432107210159302 img loss 1.384920597076416 img loss 1.4377676248550415 img loss 1.4614585638046265 img loss 1.4446089267730713 img loss 1.4395403861999512 img loss 1.4905741214752197 img loss 1.3521695137023926 img loss 1.3788312673568726 img loss 1.451535701751709 img loss 1.3933378458023071 img loss 1.4504739046096802 img loss 1.5988762378692627 img loss 1.5242544412612915 img loss 1.4980292320251465 img loss 1.4078673124313354 img loss 1.4392279386520386 img loss 1.4652917385101318 img loss 1.4312150478363037 img loss 1.4758728742599487 img loss 1.4481734037399292 {'loss': 1.4772, 'grad_norm': 0.28606459498405457, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2636656761169434 img loss 1.3025431632995605 img loss 1.279510259628296 img loss 1.265249252319336 img loss 1.3215659856796265 img loss 1.323839783668518 img loss 1.2356173992156982 img loss 1.3900606632232666 img loss 1.2689193487167358 img loss 1.3366190195083618 img loss 1.1828663349151611 img loss 1.2967076301574707 img loss 1.271751880645752 img loss 1.3908888101577759 img loss 1.3830331563949585 img loss 1.3325574398040771 img loss 1.306190848350525 img loss 1.3623688220977783 img loss 1.23819899559021 img loss 1.184006690979004 img loss 1.2397780418395996 img loss 1.2689690589904785 img loss 1.2527483701705933 img loss 1.274361491203308 img loss 1.4109102487564087 img loss 1.2757714986801147 img loss 1.2315114736557007 img loss 1.2547645568847656 img loss 1.28544020652771 img loss 1.2322423458099365 img loss 1.2978352308273315 img loss 1.3324626684188843 img loss 1.277008295059204 img loss 1.393459439277649 img loss 1.3426460027694702 img loss 1.2712675333023071 img loss 1.3515533208847046 img loss 1.2216336727142334 img loss 1.231850028038025 img loss 1.2394310235977173 img loss 1.3451005220413208 img loss 1.325476884841919 img loss 1.3961094617843628 img loss 1.341965913772583 img loss 1.3075464963912964 img loss 1.312316656112671 img loss 1.2690191268920898 img loss 1.398041844367981 img loss 1.2561496496200562 img loss 1.3025507926940918 img loss 1.2900574207305908 img loss 1.236894130706787 img loss 1.2820478677749634 img loss 1.2539246082305908 img loss 1.2688088417053223 img loss 1.3436721563339233 img loss 1.2935528755187988 img loss 1.2512692213058472 img loss 1.3799622058868408 img loss 1.3481913805007935 img loss 1.2812741994857788 img loss 1.3145954608917236 img loss 1.260387659072876 img loss 1.412335991859436 img loss 1.299159288406372 img loss 1.3839067220687866 img loss 1.2551169395446777 img loss 1.2958269119262695 img loss 1.4195210933685303 img loss 1.2706536054611206 img loss 1.2269318103790283 img loss 1.4361389875411987 img loss 1.2358204126358032 img loss 1.2875401973724365 img loss 1.2927623987197876 img loss 1.2318241596221924 img loss 1.3154730796813965 img loss 1.3278378248214722 img loss 1.2672269344329834 img loss 1.317044734954834 img loss 1.3592616319656372 img loss 1.2230618000030518 img loss 1.2820624113082886 img loss 1.368516445159912 img loss 1.2850759029388428 img loss 1.277137279510498 img loss 1.2892475128173828 img loss 1.2908856868743896 img loss 1.4234503507614136 img loss 1.244089126586914 img loss 1.2986178398132324 img loss 1.2932857275009155 img loss 1.3144512176513672 img loss 1.4364644289016724 img loss 1.3067126274108887 img loss 1.2525581121444702 img loss 1.3277086019515991 img loss 1.26934015750885 img loss 1.3219860792160034 img loss 1.208170771598816 img loss 1.269171953201294 img loss 1.2147729396820068 img loss 1.2718833684921265 img loss 1.302085518836975 img loss 1.2892415523529053 img loss 1.2981457710266113 img loss 1.260960578918457 img loss 1.34426748752594 img loss 1.2964788675308228 img loss 1.381356954574585 img loss 1.357140302658081 img loss 1.3176958560943604 img loss 1.2566932439804077 img loss 1.3051990270614624 img loss 1.3461326360702515 img loss 1.3141053915023804 img loss 1.3402236700057983img loss 1.2347110509872437 img loss 1.3241591453552246 img loss 1.2920156717300415 img loss 1.3910212516784668 img loss 1.2922968864440918 img loss 1.2223773002624512 img loss 1.2721391916275024 img loss 1.2604175806045532 img loss 1.3105734586715698 img loss 1.3736603260040283 img loss 1.2752360105514526 {'loss': 1.3003, 'grad_norm': 0.25499847531318665, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4759910106658936 img loss 1.4980814456939697 img loss 1.40236234664917 img loss 1.3704049587249756 img loss 1.4561874866485596 img loss 1.45078706741333 img loss 1.43559730052948 img loss 1.5040624141693115 img loss 1.4459564685821533 img loss 1.4422107934951782 img loss 1.4583827257156372 img loss 1.3518110513687134 img loss 1.392148494720459 img loss 1.3202035427093506 img loss 1.4090237617492676 img loss 1.4347277879714966 img loss 1.4468365907669067 img loss 1.4852774143218994 img loss 1.5595742464065552 img loss 1.3687764406204224 img loss 1.4203630685806274 img loss 1.3775490522384644 img loss 1.3872305154800415 img loss 1.3943798542022705 img loss 1.5776426792144775 img loss 1.4617323875427246 img loss 1.3746339082717896 img loss 1.3047995567321777 img loss 1.437846064567566 img loss 1.4476596117019653 img loss 1.406388521194458 img loss 1.3358961343765259 img loss 1.4022295475006104 img loss 1.2878159284591675 img loss 1.441256046295166 img loss 1.479586124420166 img loss 1.4105433225631714 img loss 1.4524929523468018 img loss 1.3358876705169678 img loss 1.4766418933868408 img loss 1.4505091905593872 img loss 1.4233018159866333 img loss 1.3798776865005493 img loss 1.4024666547775269 img loss 1.4986016750335693 img loss 1.4764009714126587 img loss 1.338829755783081 img loss 1.3268845081329346 img loss 1.35086989402771 img loss 1.4280388355255127 img loss 1.5682986974716187 img loss 1.3888161182403564 img loss 1.4920192956924438 img loss 1.4117554426193237 img loss 1.548964262008667 img loss 1.2921276092529297 img loss 1.517095923423767 img loss 1.3443306684494019 img loss 1.5049992799758911 img loss 1.3439934253692627 img loss 1.2939817905426025 img loss 1.3991621732711792 img loss 1.6283079385757446 img loss 1.467549204826355 img loss 1.3486878871917725 img loss 1.4044357538223267 img loss 1.4106937646865845 img loss 1.4984328746795654 img loss 1.3709737062454224 img loss 1.418699026107788 img loss 1.5226891040802002 img loss 1.3315094709396362 img loss 1.4059146642684937 img loss 1.3453805446624756 img loss 1.3469367027282715 img loss 1.4234946966171265 img loss 1.428501009941101 img loss 1.3570411205291748 img loss 1.314217448234558 img loss 1.4111522436141968 img loss 1.4347957372665405 img loss 1.3556519746780396 img loss 1.4718035459518433 img loss 1.344754934310913 img loss 1.396509051322937 img loss 1.3724055290222168 img loss 1.4990853071212769 img loss 1.3298845291137695 img loss 1.5638669729232788 img loss 1.3889695405960083 img loss 1.5022609233856201 img loss 1.4568277597427368 img loss 1.3046150207519531 img loss 1.4112942218780518 img loss 1.4157369136810303 img loss 1.3914588689804077 img loss 1.51581609249115 img loss 1.3686128854751587 img loss 1.2975990772247314 img loss 1.4011842012405396 img loss 1.3474565744400024 img loss 1.3206199407577515 img loss 1.5862329006195068 img loss 1.3844877481460571 img loss 1.4591422080993652 img loss 1.423825740814209 img loss 1.460273027420044 img loss 1.3149703741073608 img loss 1.3684639930725098 img loss 1.4187840223312378 img loss 1.4508007764816284 img loss 1.40440833568573 img loss 1.4220412969589233 img loss 1.4902132749557495 img loss 1.4102282524108887 img loss 1.319535732269287 img loss 1.444045901298523 img loss 1.3215689659118652 img loss 1.4269862174987793 img loss 1.4565751552581787 img loss 1.4425362348556519 img loss 1.3230654001235962 img loss 1.4121524095535278 img loss 1.487727403640747 img loss 1.3434091806411743 img loss 1.396939992904663 img loss 1.3930726051330566 img loss 1.400356411933899 {'loss': 1.4155, 'grad_norm': 0.263640820980072, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2391726970672607 img loss 1.201094627380371 img loss 1.3216278553009033 img loss 1.2453560829162598 img loss 1.2321255207061768 img loss 1.2858270406723022 img loss 1.2689034938812256 img loss 1.1508934497833252 img loss 1.176591396331787 img loss 1.2565158605575562 img loss 1.2021079063415527 img loss 1.2610384225845337 img loss 1.3627235889434814 img loss 1.247302532196045 img loss 1.2169650793075562 img loss 1.2009825706481934 img loss 1.247671127319336 img loss 1.2350187301635742 img loss 1.286424994468689 img loss 1.233590841293335 img loss 1.2793233394622803 img loss 1.172157645225525 img loss 1.2518961429595947 img loss 1.237309217453003 img loss 1.2160173654556274 img loss 1.2435089349746704 img loss 1.2802886962890625 img loss 1.1834360361099243 img loss 1.2350859642028809 img loss 1.2593485116958618 img loss 1.2255195379257202 img loss 1.2111213207244873 img loss 1.267864465713501 img loss 1.26314115524292 img loss 1.250325083732605 img loss 1.2157024145126343 img loss 1.2059333324432373 img loss 1.1570067405700684 img loss 1.2671942710876465 img loss 1.2829639911651611 img loss 1.234290361404419 img loss 1.1805469989776611 img loss 1.173365592956543 img loss 1.2407987117767334 img loss 1.2248190641403198 img loss 1.2746772766113281 img loss 1.1937198638916016 img loss 1.2493410110473633 img loss 1.3114827871322632 img loss 1.226541519165039 img loss 1.2552833557128906 img loss 1.2068300247192383 img loss 1.1895445585250854 img loss 1.208886981010437 img loss 1.2432276010513306 img loss 1.3063205480575562 img loss 1.2059955596923828 img loss 1.1710022687911987 img loss 1.2530169486999512 img loss 1.2587612867355347 img loss 1.252813696861267 img loss 1.2844643592834473 img loss 1.228195071220398 img loss 1.3158905506134033 img loss 1.1945583820343018 img loss 1.2872024774551392 img loss 1.237241268157959 img loss 1.2424311637878418 img loss 1.1988317966461182 img loss 1.272843360900879 img loss 1.2562780380249023 img loss 1.2696290016174316 img loss 1.2189650535583496 img loss 1.223925232887268 img loss 1.231536626815796 img loss 1.2252230644226074 img loss 1.2355560064315796 img loss 1.22604238986969 img loss 1.2320390939712524 img loss 1.281935691833496 img loss 1.2677056789398193 img loss 1.2338794469833374 img loss 1.297524094581604 img loss 1.2953952550888062 img loss 1.2541154623031616 img loss 1.2087558507919312 img loss 1.216265320777893 img loss 1.2833136320114136 img loss 1.2627427577972412 img loss 1.3030142784118652 img loss 1.1731224060058594 img loss 1.2367818355560303 img loss 1.1815376281738281 img loss 1.2815535068511963 img loss 1.1889790296554565 img loss 1.238572597503662 img loss 1.3552995920181274 img loss 1.2593226432800293 img loss 1.2053254842758179img loss 1.2305123805999756 img loss 1.228068232536316 img loss 1.210827112197876 img loss 1.2778377532958984 img loss 1.235816240310669 img loss 1.1801304817199707 img loss 1.2322866916656494 img loss 1.2128040790557861 img loss 1.1858468055725098 img loss 1.2040786743164062 img loss 1.2175718545913696 img loss 1.3175493478775024 img loss 1.2394875288009644 img loss 1.255921721458435 img loss 1.266156554222107 img loss 1.2480758428573608 img loss 1.2642734050750732 img loss 1.2230639457702637 img loss 1.2535240650177002 img loss 1.1645044088363647 img loss 1.3245161771774292 img loss 1.1938656568527222 img loss 1.2525570392608643 img loss 1.23204505443573 img loss 1.199723482131958 img loss 1.2584481239318848 img loss 1.2436845302581787 img loss 1.2404615879058838 img loss 1.2928617000579834 {'loss': 1.2401, 'grad_norm': 0.2223813831806183, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4461637735366821 img loss 1.755855679512024 img loss 1.5444945096969604 img loss 1.5123305320739746 img loss 1.6313790082931519 img loss 1.6732770204544067 img loss 1.5886491537094116 img loss 1.6628612279891968 img loss 1.6524674892425537 img loss 1.538784384727478 img loss 1.4677315950393677 img loss 1.5379844903945923 img loss 1.6134768724441528 img loss 1.785506248474121 img loss 1.7200185060501099 img loss 1.623721957206726 img loss 1.5097699165344238 img loss 1.5590158700942993 img loss 1.5251606702804565 img loss 1.5763428211212158 img loss 1.5894429683685303 img loss 1.5995287895202637 img loss 1.4192843437194824 img loss 1.6470351219177246 img loss 1.762355089187622 img loss 1.7010806798934937 img loss 1.528566598892212 img loss 1.4988592863082886 img loss 1.64595627784729 img loss 1.673266887664795 img loss 1.6744933128356934 img loss 1.5111621618270874 img loss 1.6023012399673462 img loss 1.608276128768921 img loss 1.5799095630645752 img loss 1.6118237972259521 img loss 1.4452507495880127 img loss 1.6689810752868652 img loss 1.6543610095977783 img loss 1.7517770528793335 img loss 1.5171185731887817 img loss 1.516183614730835 img loss 1.5254626274108887 img loss 1.5302942991256714 img loss 1.5749390125274658 img loss 1.5547734498977661 img loss 1.5576401948928833 img loss 1.60100257396698 img loss 1.4576269388198853 img loss 1.5279029607772827 img loss 1.5516875982284546 img loss 1.4871658086776733 img loss 1.4842050075531006 img loss 1.5968739986419678 img loss 1.6478054523468018 img loss 1.5935776233673096 img loss 1.6222031116485596 img loss 1.5033833980560303 img loss 1.5133492946624756 img loss 1.4788212776184082 img loss 1.5402153730392456 img loss 1.6966289281845093 img loss 1.5354282855987549 img loss 1.6134079694747925 img loss 1.4638879299163818 img loss 1.6702091693878174 img loss 1.494033694267273 img loss 1.4617007970809937 img loss 1.612098217010498 img loss 1.5084866285324097 img loss 1.6030620336532593 img loss 1.5042023658752441 img loss 1.5499423742294312 img loss 1.3975950479507446 img loss 1.6868830919265747 img loss 1.7203857898712158 img loss 1.625293254852295 img loss 1.5963619947433472 img loss 1.4274976253509521 img loss 1.429674506187439 img loss 1.5750539302825928 img loss 1.6662927865982056 img loss 1.6674147844314575 img loss 1.4393599033355713 img loss 1.5541985034942627 img loss 1.4990613460540771 img loss 1.5991665124893188 img loss 1.6573008298873901 img loss 1.4660528898239136 img loss 1.6632312536239624 img loss 1.508612036705017img loss 1.6577705144882202 img loss 1.507856011390686 img loss 1.5207111835479736 img loss 1.578833818435669 img loss 1.707589030265808 img loss 1.4974907636642456 img loss 1.5690667629241943 img loss 1.6286523342132568 img loss 1.6249881982803345 img loss 1.726770043373108 img loss 1.6289246082305908 img loss 1.6672866344451904 img loss 1.4967825412750244 img loss 1.5706665515899658 img loss 1.5334866046905518 img loss 1.668808102607727 img loss 1.593653917312622 img loss 1.619144320487976 img loss 1.6784470081329346 img loss 1.5291005373001099 img loss 1.5587761402130127 img loss 1.506346344947815 img loss 1.6168955564498901 img loss 1.4768660068511963 img loss 1.4885995388031006 img loss 1.5630905628204346 img loss 1.6033320426940918 img loss 1.486950159072876 img loss 1.5110560655593872 img loss 1.6188071966171265 img loss 1.5933297872543335 img loss 1.6507900953292847 img loss 1.5771257877349854 img loss 1.4434425830841064 img loss 1.474637746810913 img loss 1.3817354440689087 img loss 1.5323163270950317 {'loss': 1.5739, 'grad_norm': 0.5077258944511414, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.242265224456787 img loss 1.2140467166900635 img loss 1.2149579524993896 img loss 1.255021095275879 img loss 1.1580671072006226 img loss 1.2722843885421753 img loss 1.194326400756836 img loss 1.270322322845459 img loss 1.2630131244659424 img loss 1.1734005212783813 img loss 1.2019680738449097 img loss 1.1350618600845337 img loss 1.3090320825576782 img loss 1.1879796981811523 img loss 1.2175977230072021 img loss 1.246252417564392 img loss 1.2115564346313477 img loss 1.3099517822265625 img loss 1.2077293395996094 img loss 1.1632933616638184 img loss 1.232804298400879 img loss 1.20168936252594 img loss 1.2797088623046875 img loss 1.2152283191680908 img loss 1.2106736898422241 img loss 1.1974025964736938 img loss 1.2869453430175781 img loss 1.2003166675567627 img loss 1.2229204177856445 img loss 1.2226459980010986 img loss 1.215868592262268 img loss 1.1635525226593018 img loss 1.2374083995819092 img loss 1.301566481590271 img loss 1.1765828132629395 img loss 1.1951122283935547 img loss 1.2220392227172852 img loss 1.2761778831481934 img loss 1.1849725246429443 img loss 1.1410034894943237 img loss 1.1597734689712524 img loss 1.1648993492126465 img loss 1.2386188507080078 img loss 1.1394599676132202 img loss 1.2255960702896118 img loss 1.2128714323043823 img loss 1.2021394968032837 img loss 1.2695850133895874 img loss 1.2438265085220337 img loss 1.1723390817642212 img loss 1.2044754028320312 img loss 1.1909196376800537 img loss 1.2088401317596436 img loss 1.221956491470337 img loss 1.2528913021087646 img loss 1.141007900238037 img loss 1.2548463344573975 img loss 1.2663990259170532 img loss 1.2295641899108887 img loss 1.2327227592468262 img loss 1.2338073253631592 img loss 1.2464630603790283 img loss 1.2345311641693115 img loss 1.1855483055114746 img loss 1.1795728206634521 img loss 1.1837940216064453 img loss 1.2422319650650024 img loss 1.1061880588531494 img loss 1.1992816925048828 img loss 1.199451208114624 img loss 1.2092806100845337 img loss 1.2173347473144531 img loss 1.1680903434753418 img loss 1.1468067169189453 img loss 1.1753406524658203 img loss 1.1969045400619507 img loss 1.1971354484558105 img loss 1.2824757099151611 img loss 1.256643295288086 img loss 1.1761232614517212 img loss 1.2179914712905884 img loss 1.170885443687439 img loss 1.2450196743011475 img loss 1.2072508335113525 img loss 1.227320909500122 img loss 1.1919596195220947 img loss 1.181393027305603 img loss 1.2862991094589233 img loss 1.1787980794906616 img loss 1.1881107091903687 img loss 1.1940431594848633 img loss 1.1852970123291016 img loss 1.2186739444732666 img loss 1.1898903846740723 img loss 1.1889355182647705 img loss 1.1278033256530762 img loss 1.2899478673934937 img loss 1.236336350440979 img loss 1.1572797298431396 img loss 1.1411675214767456 img loss 1.2081718444824219 img loss 1.2814252376556396 img loss 1.2129671573638916 img loss 1.2435823678970337 img loss 1.1539751291275024 img loss 1.2294707298278809 img loss 1.2236320972442627 img loss 1.216227412223816 img loss 1.1809488534927368 img loss 1.2959771156311035 img loss 1.2086511850357056 img loss 1.2470602989196777 img loss 1.2795721292495728 img loss 1.2341957092285156 img loss 1.2266396284103394 img loss 1.1428196430206299 img loss 1.1019843816757202 img loss 1.1654103994369507 img loss 1.2133846282958984 img loss 1.2059904336929321 img loss 1.2042444944381714 img loss 1.204606294631958 img loss 1.293103575706482 img loss 1.2210263013839722 img loss 1.1916602849960327 img loss 1.185677409172058 img loss 1.2384775876998901 img loss 1.2081393003463745 {'loss': 1.2121, 'grad_norm': 0.28962060809135437, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.216673731803894 img loss 1.1772831678390503 img loss 1.2247647047042847 img loss 1.2463470697402954 img loss 1.2681063413619995 img loss 1.263079047203064 img loss 1.251482367515564 img loss 1.2321076393127441 img loss 1.240800380706787 img loss 1.3063243627548218 img loss 1.2747081518173218 img loss 1.2289295196533203 img loss 1.2630285024642944 img loss 1.2071350812911987 img loss 1.209761142730713 img loss 1.3259623050689697 img loss 1.2149074077606201 img loss 1.2928438186645508 img loss 1.2644909620285034 img loss 1.2542613744735718 img loss 1.1975711584091187 img loss 1.178497314453125 img loss 1.261428713798523 img loss 1.2178620100021362 img loss 1.2917976379394531 img loss 1.2640373706817627 img loss 1.2043850421905518 img loss 1.2657610177993774img loss 1.2951371669769287 img loss 1.3078449964523315 img loss 1.285054087638855 img loss 1.2153115272521973 img loss 1.3232234716415405 img loss 1.2120980024337769 img loss 1.2207740545272827 img loss 1.1817753314971924 img loss 1.2015186548233032 img loss 1.2774693965911865 img loss 1.2332868576049805 img loss 1.2272889614105225 img loss 1.2553412914276123 img loss 1.1375569105148315 img loss 1.2843735218048096 img loss 1.2633569240570068 img loss 1.2756175994873047 img loss 1.2550239562988281 img loss 1.2033963203430176 img loss 1.2180639505386353 img loss 1.3007370233535767 img loss 1.2139065265655518 img loss 1.3392198085784912 img loss 1.1994374990463257 img loss 1.1672849655151367 img loss 1.2419134378433228 img loss 1.271775484085083 img loss 1.284555435180664 img loss 1.219178557395935 img loss 1.2152992486953735 img loss 1.2326873540878296 img loss 1.2292509078979492 img loss 1.1736644506454468 img loss 1.23361074924469 img loss 1.227752447128296 img loss 1.2345908880233765 img loss 1.248258113861084 img loss 1.2416867017745972 img loss 1.2716268301010132 img loss 1.2055405378341675 img loss 1.233741044998169 img loss 1.2216933965682983 img loss 1.302923560142517 img loss 1.2621005773544312 img loss 1.1700623035430908 img loss 1.2309691905975342 img loss 1.2071808576583862 img loss 1.2650703191757202 img loss 1.199903130531311 img loss 1.2752885818481445 img loss 1.271083116531372 img loss 1.2095187902450562 img loss 1.2271727323532104 img loss 1.2109720706939697img loss 1.1789096593856812 img loss 1.205476999282837 img loss 1.2513377666473389 img loss 1.2898991107940674 img loss 1.2263035774230957 img loss 1.2620528936386108 img loss 1.25923490524292 img loss 1.1510236263275146 img loss 1.2253611087799072 img loss 1.255082368850708 img loss 1.2263846397399902 img loss 1.249890685081482 img loss 1.3230736255645752 img loss 1.261744737625122 img loss 1.295972466468811 img loss 1.3186672925949097 img loss 1.2181307077407837 img loss 1.2174991369247437 img loss 1.2967528104782104 img loss 1.2527471780776978 img loss 1.243834137916565 img loss 1.2364068031311035 img loss 1.2012269496917725 img loss 1.270466685295105 img loss 1.2251167297363281 img loss 1.2244465351104736 img loss 1.2481560707092285 img loss 1.2145445346832275 img loss 1.1866708993911743 img loss 1.174694299697876 img loss 1.2394427061080933 img loss 1.137729525566101 img loss 1.1933444738388062 img loss 1.2687853574752808 img loss 1.2593104839324951 img loss 1.2866489887237549 img loss 1.250784158706665 img loss 1.1384848356246948 img loss 1.2322279214859009img loss 1.2314690351486206 img loss 1.176155686378479img loss 1.1570688486099243 img loss 1.2596220970153809 img loss 1.3055635690689087 img loss 1.2273006439208984 img loss 1.2610822916030884 {'loss': 1.2389, 'grad_norm': 0.22601071000099182, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.231044054031372 img loss 1.1963279247283936 img loss 1.1124569177627563 img loss 1.1965765953063965 img loss 1.1707369089126587 img loss 1.1873137950897217 img loss 1.2083956003189087 img loss 1.2429949045181274 img loss 1.127709150314331 img loss 1.241591453552246 img loss 1.1571063995361328 img loss 1.2416912317276 img loss 1.1804224252700806 img loss 1.1509664058685303 img loss 1.15935480594635 img loss 1.2365424633026123 img loss 1.2508931159973145 img loss 1.1397643089294434 img loss 1.1923145055770874 img loss 1.155277967453003 img loss 1.1943275928497314 img loss 1.132982611656189 img loss 1.1559098958969116 img loss 1.1471667289733887 img loss 1.1768298149108887 img loss 1.1332144737243652 img loss 1.177903413772583 img loss 1.1960113048553467 img loss 1.1970173120498657 img loss 1.2090883255004883 img loss 1.25655996799469 img loss 1.1843500137329102 img loss 1.1762211322784424 img loss 1.2330058813095093 img loss 1.133535385131836 img loss 1.2504099607467651 img loss 1.1912908554077148 img loss 1.318539023399353 img loss 1.236978530883789 img loss 1.1582767963409424 img loss 1.1574876308441162 img loss 1.2644824981689453 img loss 1.1474250555038452 img loss 1.2008787393569946 img loss 1.2264149188995361 img loss 1.1719321012496948 img loss 1.2322582006454468 img loss 1.1917953491210938 img loss 1.2083804607391357 img loss 1.1831507682800293 img loss 1.2387109994888306 img loss 1.206794261932373 img loss 1.1611993312835693 img loss 1.1827783584594727 img loss 1.1858335733413696 img loss 1.1563080549240112 img loss 1.1856828927993774 img loss 1.188667893409729 img loss 1.1804676055908203 img loss 1.1308178901672363 img loss 1.1505540609359741 img loss 1.165117859840393 img loss 1.1929829120635986 img loss 1.284982681274414 img loss 1.211605429649353 img loss 1.1986804008483887 img loss 1.2007299661636353 img loss 1.1867567300796509 img loss 1.1391419172286987 img loss 1.1453957557678223 img loss 1.2224453687667847 img loss 1.2079699039459229 img loss 1.1684906482696533 img loss 1.1988804340362549 img loss 1.3209950923919678 img loss 1.2530502080917358 img loss 1.3185030221939087 img loss 1.1370208263397217 img loss 1.2165346145629883 img loss 1.210537314414978 img loss 1.2145222425460815 img loss 1.2024586200714111 img loss 1.1797966957092285 img loss 1.1862634420394897 img loss 1.1888006925582886 img loss 1.2079654932022095 img loss 1.1581944227218628 img loss 1.195564866065979 img loss 1.2130783796310425 img loss 1.2351192235946655 img loss 1.1979576349258423 img loss 1.1803066730499268 img loss 1.2112354040145874 img loss 1.192256212234497 img loss 1.2075601816177368 img loss 1.1861627101898193 img loss 1.14444100856781 img loss 1.2089866399765015 img loss 1.1700780391693115 img loss 1.1643837690353394 img loss 1.1261738538742065 img loss 1.1493277549743652 img loss 1.2050223350524902 img loss 1.1567373275756836 img loss 1.1970179080963135 img loss 1.192879557609558 img loss 1.1735934019088745 img loss 1.224835991859436 img loss 1.1681045293807983 img loss 1.2277309894561768 img loss 1.2024409770965576 img loss 1.1944177150726318 img loss 1.22281813621521 img loss 1.162474513053894 img loss 1.1722240447998047 img loss 1.2231419086456299 img loss 1.2413080930709839 img loss 1.2053661346435547 img loss 1.1817052364349365 img loss 1.1704620122909546 img loss 1.174403190612793 img loss 1.1918892860412598 img loss 1.161603331565857 img loss 1.2420027256011963 img loss 1.1974446773529053 img loss 1.1775434017181396 img loss 1.2424581050872803 img loss 1.2275081872940063 {'loss': 1.194, 'grad_norm': 0.3058033883571625, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.494067907333374 img loss 1.506941318511963 img loss 1.4024176597595215 img loss 1.57483971118927 img loss 1.4799859523773193 img loss 1.425380825996399 img loss 1.3692843914031982 img loss 1.5256096124649048 img loss 1.4612950086593628 img loss 1.4835152626037598 img loss 1.5251448154449463 img loss 1.4338313341140747 img loss 1.4459294080734253 img loss 1.5574384927749634 img loss 1.42006254196167 img loss 1.401081919670105 img loss 1.466704249382019 img loss 1.577349066734314 img loss 1.520137071609497 img loss 1.5258479118347168 img loss 1.458300232887268 img loss 1.3027381896972656 img loss 1.4110223054885864 img loss 1.5202479362487793 img loss 1.505695104598999 img loss 1.4337366819381714 img loss 1.5108705759048462 img loss 1.3963345289230347 img loss 1.5432783365249634 img loss 1.4397369623184204 img loss 1.4659100770950317 img loss 1.430670976638794 img loss 1.536110758781433 img loss 1.4634233713150024 img loss 1.4890639781951904 img loss 1.5170689821243286img loss 1.3690799474716187 img loss 1.5152828693389893 img loss 1.5645860433578491 img loss 1.4904723167419434 img loss 1.5149762630462646 img loss 1.3863003253936768 img loss 1.5509682893753052 img loss 1.4747774600982666 img loss 1.5362522602081299 img loss 1.5200488567352295 img loss 1.5919386148452759 img loss 1.520747423171997 img loss 1.479326844215393 img loss 1.42244553565979 img loss 1.4265822172164917 img loss 1.5826172828674316 img loss 1.4473482370376587 img loss 1.4649789333343506 img loss 1.4050278663635254 img loss 1.5855542421340942 img loss 1.3601107597351074 img loss 1.5355597734451294 img loss 1.4759455919265747 img loss 1.4668891429901123 img loss 1.5319031476974487 img loss 1.4785306453704834 img loss 1.5204272270202637 img loss 1.4459675550460815 img loss 1.4525574445724487 img loss 1.566192388534546 img loss 1.5197144746780396 img loss 1.360630750656128 img loss 1.4691672325134277 img loss 1.5506905317306519 img loss 1.394490122795105 img loss 1.6066200733184814 img loss 1.4721263647079468 img loss 1.58208167552948 img loss 1.3727041482925415 img loss 1.4019215106964111 img loss 1.4328510761260986 img loss 1.34584379196167 img loss 1.485629677772522 img loss 1.5352721214294434 img loss 1.4169323444366455 img loss 1.4447047710418701 img loss 1.3597290515899658 img loss 1.4667092561721802 img loss 1.5127272605895996 img loss 1.38080632686615 img loss 1.5652958154678345 img loss 1.4243427515029907 img loss 1.5051977634429932 img loss 1.516035795211792 img loss 1.5438488721847534 img loss 1.5376579761505127 img loss 1.4227557182312012 img loss 1.5723007917404175 img loss 1.4635463953018188 img loss 1.3826647996902466 img loss 1.4987825155258179 img loss 1.4346777200698853 img loss 1.4422907829284668 img loss 1.5308492183685303 img loss 1.384570837020874 img loss 1.405580997467041 img loss 1.5234893560409546 img loss 1.3467923402786255 img loss 1.5145817995071411 img loss 1.4745584726333618 img loss 1.4736989736557007 img loss 1.4943881034851074 img loss 1.464698314666748 img loss 1.4995366334915161 img loss 1.4434109926223755 img loss 1.5832818746566772 img loss 1.469610571861267 img loss 1.452420949935913 img loss 1.5373530387878418 img loss 1.536232829093933 img loss 1.385566234588623 img loss 1.4252383708953857 img loss 1.2822890281677246 img loss 1.38285231590271 img loss 1.3435168266296387 img loss 1.5526471138000488 img loss 1.499032735824585 img loss 1.4930917024612427 img loss 1.5266375541687012 img loss 1.4934278726577759 img loss 1.4800522327423096 img loss 1.4281820058822632 {'loss': 1.4731, 'grad_norm': 1.1825659275054932, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6927502155303955 img loss 1.604672908782959 img loss 1.645933747291565 img loss 1.5578726530075073 img loss 1.488803744316101 img loss 1.618602991104126 img loss 1.6569372415542603 img loss 1.4782230854034424 img loss 1.5070236921310425 img loss 1.730445384979248 img loss 1.54761803150177 img loss 1.6045660972595215 img loss 1.7150218486785889 img loss 1.5295244455337524 img loss 1.5346827507019043 img loss 1.479803442955017 img loss 1.602216124534607 img loss 1.3659807443618774 img loss 1.49269437789917 img loss 1.6046143770217896 img loss 1.6790663003921509 img loss 1.565201997756958 img loss 1.5620075464248657 img loss 1.6610815525054932 img loss 1.7288343906402588 img loss 1.526118516921997 img loss 1.700337529182434 img loss 1.5508099794387817 img loss 1.4540793895721436 img loss 1.57151198387146 img loss 1.633155107498169 img loss 1.6184895038604736 img loss 1.6421713829040527 img loss 1.6277234554290771 img loss 1.6795791387557983 img loss 1.3735681772232056 img loss 1.7077594995498657 img loss 1.4910705089569092 img loss 1.5635026693344116 img loss 1.6286495923995972 img loss 1.5453436374664307 img loss 1.7276560068130493 img loss 1.6623655557632446 img loss 1.7016512155532837 img loss 1.623308777809143 img loss 1.555482029914856 img loss 1.6116036176681519 img loss 1.5395392179489136 img loss 1.5224741697311401 img loss 1.5588072538375854 img loss 1.719632863998413 img loss 1.7193301916122437 img loss 1.6440026760101318 img loss 1.4705383777618408 img loss 1.522399663925171 img loss 1.6562645435333252 img loss 1.5424460172653198 img loss 1.5464587211608887 img loss 1.5302045345306396 img loss 1.6083884239196777 img loss 1.656673789024353 img loss 1.5335888862609863 img loss 1.4493612051010132 img loss 1.6307820081710815 img loss 1.612467885017395 img loss 1.5152729749679565 img loss 1.430604338645935 img loss 1.5365239381790161 img loss 1.5951484441757202 img loss 1.6025655269622803 img loss 1.6028589010238647 img loss 1.551938772201538 img loss 1.6404967308044434 img loss 1.6622593402862549 img loss 1.3263912200927734 img loss 1.623380422592163 img loss 1.6477694511413574 img loss 1.5689880847930908 img loss 1.5122449398040771 img loss 1.6036579608917236 img loss 1.6107525825500488 img loss 1.6349519491195679 img loss 1.606319785118103 img loss 1.5626232624053955 img loss 1.5943334102630615 img loss 1.6643601655960083 img loss 1.7163212299346924 img loss 1.5667821168899536 img loss 1.632088541984558 img loss 1.5419045686721802 img loss 1.60067880153656 img loss 1.646941900253296 img loss 1.6446490287780762 img loss 1.584977626800537 img loss 1.4369690418243408 img loss 1.5704370737075806 img loss 1.710059404373169 img loss 1.4634175300598145 img loss 1.7078732252120972 img loss 1.5301005840301514 img loss 1.7879490852355957 img loss 1.5618480443954468 img loss 1.6107100248336792 img loss 1.5462229251861572 img loss 1.7453386783599854 img loss 1.5562270879745483 img loss 1.6134804487228394 img loss 1.5802686214447021 img loss 1.5818904638290405 img loss 1.6297703981399536 img loss 1.4316327571868896 img loss 1.5916606187820435 img loss 1.625709891319275 img loss 1.5259476900100708 img loss 1.59059476852417 img loss 1.6283138990402222 img loss 1.6840548515319824 img loss 1.6049047708511353 img loss 1.6390759944915771 img loss 1.6391329765319824 img loss 1.56534743309021 img loss 1.6652776002883911 img loss 1.6062922477722168 img loss 1.661845088005066 img loss 1.624793291091919 img loss 1.5611730813980103 img loss 1.5268913507461548 img loss 1.472086787223816 {'loss': 1.5908, 'grad_norm': 1.138636589050293, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3595378398895264 img loss 1.4181231260299683 img loss 1.3364919424057007 img loss 1.4713833332061768 img loss 1.4712101221084595 img loss 1.3912861347198486 img loss 1.4983270168304443 img loss 1.388849139213562 img loss 1.3920683860778809 img loss 1.462165355682373 img loss 1.4419986009597778 img loss 1.425929307937622 img loss 1.4965327978134155 img loss 1.5622336864471436 img loss 1.5232285261154175 img loss 1.5428546667099 img loss 1.4983032941818237 img loss 1.5640679597854614 img loss 1.508176565170288 img loss 1.5707948207855225 img loss 1.6214135885238647 img loss 1.543921709060669 img loss 1.5381146669387817 img loss 1.442368745803833 img loss 1.5085850954055786 img loss 1.4122198820114136 img loss 1.3660095930099487 img loss 1.4136565923690796 img loss 1.4526188373565674 img loss 1.5314809083938599 img loss 1.5211759805679321 img loss 1.5330445766448975 img loss 1.4715685844421387 img loss 1.4768096208572388 img loss 1.5570940971374512 img loss 1.3849378824234009 img loss 1.4236276149749756 img loss 1.6040151119232178 img loss 1.3859894275665283 img loss 1.4827438592910767 img loss 1.313779592514038 img loss 1.4634144306182861 img loss 1.3830626010894775 img loss 1.4489907026290894 img loss 1.3562871217727661 img loss 1.38251531124115 img loss 1.4895436763763428 img loss 1.434691309928894 img loss 1.5424443483352661 img loss 1.5125267505645752 img loss 1.5084197521209717 img loss 1.566455364227295 img loss 1.563371181488037 img loss 1.394652247428894 img loss 1.4980117082595825 img loss 1.4392333030700684 img loss 1.546661138534546 img loss 1.426273226737976 img loss 1.3517968654632568 img loss 1.5023363828659058 img loss 1.4631726741790771 img loss 1.4352965354919434 img loss 1.4340423345565796 img loss 1.449631929397583 img loss 1.4596850872039795 img loss 1.533955454826355 img loss 1.6518893241882324 img loss 1.4682059288024902 img loss 1.4673601388931274 img loss 1.4185020923614502 img loss 1.5467028617858887 img loss 1.517475962638855 img loss 1.4444468021392822 img loss 1.4214102029800415 img loss 1.4705754518508911 img loss 1.4899499416351318 img loss 1.501556158065796 img loss 1.4385123252868652 img loss 1.394842505455017 img loss 1.4956930875778198 img loss 1.5277658700942993 img loss 1.3121936321258545 img loss 1.4987419843673706 img loss 1.4902225732803345 img loss 1.589978814125061 img loss 1.402772068977356 img loss 1.3886973857879639 img loss 1.4390809535980225 img loss 1.3890013694763184 img loss 1.5044137239456177 img loss 1.364722728729248 img loss 1.4054473638534546 img loss 1.4926518201828003 img loss 1.4898028373718262 img loss 1.5901572704315186 img loss 1.5110958814620972 img loss 1.4105724096298218 img loss 1.514336347579956 img loss 1.5943561792373657 img loss 1.4752116203308105 img loss 1.3018567562103271 img loss 1.4549931287765503 img loss 1.7023918628692627 img loss 1.4666553735733032 img loss 1.4646868705749512 img loss 1.4264607429504395 img loss 1.5070700645446777 img loss 1.5535023212432861 img loss 1.5222653150558472 img loss 1.424607753753662 img loss 1.4025568962097168 img loss 1.6561681032180786 img loss 1.4920350313186646 img loss 1.41531240940094 img loss 1.5109423398971558 img loss 1.4012503623962402 img loss 1.5127431154251099 img loss 1.5100643634796143 img loss 1.4275864362716675 img loss 1.4682008028030396 img loss 1.41425621509552 img loss 1.290671706199646 img loss 1.5805678367614746 img loss 1.482898235321045 img loss 1.5043672323226929 img loss 1.4848850965499878 img loss 1.536616563796997 img loss 1.3949062824249268 {'loss': 1.4713, 'grad_norm': 0.3349950909614563, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3642420768737793 img loss 1.39375638961792 img loss 1.4556450843811035 img loss 1.5154997110366821 img loss 1.450659990310669 img loss 1.3718315362930298 img loss 1.4603817462921143 img loss 1.3588494062423706 img loss 1.5579861402511597 img loss 1.4533778429031372 img loss 1.4811111688613892 img loss 1.417221188545227 img loss 1.4666192531585693 img loss 1.4583245515823364 img loss 1.4838277101516724 img loss 1.3993912935256958 img loss 1.5111134052276611 img loss 1.5502291917800903 img loss 1.4568716287612915 img loss 1.4958335161209106 img loss 1.4959510564804077 img loss 1.4200303554534912 img loss 1.4309223890304565 img loss 1.4600942134857178 img loss 1.328092336654663 img loss 1.4192970991134644 img loss 1.5700526237487793 img loss 1.4436322450637817 img loss 1.51747727394104 img loss 1.4478509426116943 img loss 1.3302114009857178 img loss 1.359046220779419 img loss 1.3719671964645386 img loss 1.373018741607666 img loss 1.5668877363204956 img loss 1.5011589527130127 img loss 1.475166916847229 img loss 1.4533603191375732 img loss 1.4563132524490356 img loss 1.3639214038848877 img loss 1.4960687160491943 img loss 1.513413906097412 img loss 1.5057255029678345 img loss 1.5248242616653442 img loss 1.357946753501892 img loss 1.4866665601730347 img loss 1.385489821434021 img loss 1.449001431465149 img loss 1.5248429775238037 img loss 1.3835607767105103 img loss 1.493714451789856 img loss 1.3811733722686768 img loss 1.4730744361877441 img loss 1.5011333227157593 img loss 1.418367862701416 img loss 1.4483548402786255 img loss 1.497844934463501 img loss 1.336129903793335 img loss 1.4840734004974365 img loss 1.5205750465393066 img loss 1.443752408027649 img loss 1.4170476198196411 img loss 1.3639625310897827 img loss 1.3596693277359009 img loss 1.458258867263794 img loss 1.393600583076477 img loss 1.4272592067718506 img loss 1.3953922986984253 img loss 1.4249937534332275 img loss 1.4094793796539307 img loss 1.462980031967163 img loss 1.4476572275161743 img loss 1.5486418008804321 img loss 1.436606764793396 img loss 1.3966771364212036 img loss 1.4156574010849 img loss 1.3141515254974365 img loss 1.5068371295928955 img loss 1.4827333688735962 img loss 1.38132643699646 img loss 1.4035722017288208 img loss 1.3116921186447144 img loss 1.404654622077942 img loss 1.4086312055587769 img loss 1.5874398946762085 img loss 1.3054978847503662 img loss 1.4138723611831665 img loss 1.5326482057571411 img loss 1.3958078622817993 img loss 1.3707873821258545 img loss 1.4901872873306274 img loss 1.2754743099212646 img loss 1.525819182395935 img loss 1.434815526008606 img loss 1.5741482973098755 img loss 1.469836950302124 img loss 1.4034632444381714 img loss 1.3924599885940552 img loss 1.4995875358581543 img loss 1.3843903541564941 img loss 1.509886622428894 img loss 1.414508581161499 img loss 1.4132494926452637 img loss 1.4468690156936646 img loss 1.4487388134002686 img loss 1.4365990161895752 img loss 1.6057441234588623 img loss 1.3627474308013916 img loss 1.298001766204834 img loss 1.3885529041290283 img loss 1.458585500717163 img loss 1.3495688438415527 img loss 1.4460221529006958 img loss 1.434014916419983 img loss 1.4106707572937012 img loss 1.4500114917755127 img loss 1.4213303327560425 img loss 1.5017491579055786 img loss 1.473469614982605 img loss 1.4549998044967651 img loss 1.394701361656189 img loss 1.3609497547149658 img loss 1.429582118988037 img loss 1.4328869581222534 img loss 1.4661552906036377 img loss 1.369644284248352 img loss 1.4285871982574463 img loss 1.4564661979675293 {'loss': 1.4391, 'grad_norm': 0.3827116787433624, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2920989990234375 img loss 1.2029024362564087 img loss 1.2214787006378174 img loss 1.2238126993179321 img loss 1.2309715747833252 img loss 1.2780455350875854 img loss 1.2210595607757568 img loss 1.248043417930603 img loss 1.2290464639663696 img loss 1.2606207132339478 img loss 1.2388581037521362 img loss 1.2551170587539673 img loss 1.2466858625411987 img loss 1.266944408416748 img loss 1.2976088523864746 img loss 1.2056888341903687 img loss 1.3100624084472656 img loss 1.2556877136230469 img loss 1.2981878519058228 img loss 1.216681957244873 img loss 1.234929084777832 img loss 1.20941162109375 img loss 1.2941573858261108 img loss 1.2161951065063477 img loss 1.3016248941421509 img loss 1.3220043182373047 img loss 1.2727773189544678 img loss 1.2933213710784912 img loss 1.2552223205566406 img loss 1.2780871391296387 img loss 1.2836936712265015 img loss 1.2664244174957275 img loss 1.2260650396347046 img loss 1.3140857219696045 img loss 1.3016903400421143 img loss 1.2520661354064941 img loss 1.1989790201187134 img loss 1.2436330318450928 img loss 1.2439994812011719 img loss 1.228859782218933 img loss 1.2765579223632812 img loss 1.195932149887085 img loss 1.2865275144577026 img loss 1.3045413494110107 img loss 1.207048773765564 img loss 1.299861192703247 img loss 1.1949677467346191 img loss 1.2284294366836548 img loss 1.2321679592132568 img loss 1.2566184997558594 img loss 1.2401235103607178 img loss 1.2961924076080322 img loss 1.2974649667739868 img loss 1.2286319732666016 img loss 1.1944071054458618 img loss 1.2236756086349487 img loss 1.2211754322052002 img loss 1.242365837097168 img loss 1.2042019367218018 img loss 1.3486007452011108 img loss 1.232043981552124 img loss 1.2377817630767822 img loss 1.2396259307861328 img loss 1.3038469552993774 img loss 1.2759373188018799 img loss 1.2835986614227295 img loss 1.2174047231674194 img loss 1.2283257246017456 img loss 1.187120795249939 img loss 1.2754486799240112 img loss 1.2643086910247803 img loss 1.2582828998565674 img loss 1.298806071281433 img loss 1.2079291343688965 img loss 1.217206358909607 img loss 1.1716889142990112 img loss 1.2557075023651123 img loss 1.2464714050292969 img loss 1.253242015838623 img loss 1.258286476135254 img loss 1.1803330183029175 img loss 1.2862972021102905 img loss 1.2405564785003662 img loss 1.144111156463623 img loss 1.1842803955078125 img loss 1.2257353067398071 img loss 1.2360988855361938 img loss 1.2533327341079712 img loss 1.2807029485702515 img loss 1.2458614110946655 img loss 1.2886483669281006 img loss 1.2964262962341309 img loss 1.2047271728515625 img loss 1.2228301763534546 img loss 1.2494115829467773 img loss 1.2335656881332397 img loss 1.1958725452423096 img loss 1.2742669582366943 img loss 1.1590288877487183 img loss 1.265834093093872 img loss 1.2606910467147827 img loss 1.2317497730255127 img loss 1.2580114603042603 img loss 1.2203259468078613 img loss 1.3690145015716553 img loss 1.2280492782592773 img loss 1.273972749710083 img loss 1.2108711004257202 img loss 1.2961772680282593 img loss 1.2027162313461304 img loss 1.312436819076538 img loss 1.1998915672302246 img loss 1.3478935956954956 img loss 1.212962031364441 img loss 1.2529929876327515 img loss 1.270362138748169 img loss 1.220991611480713 img loss 1.2407420873641968 img loss 1.2687418460845947 img loss 1.2284393310546875 img loss 1.2824009656906128 img loss 1.1786845922470093 img loss 1.237163782119751 img loss 1.2652262449264526 img loss 1.242276668548584 img loss 1.1993147134780884 img loss 1.2928789854049683 img loss 1.2957613468170166 {'loss': 1.2492, 'grad_norm': 0.2509767413139343, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2003397941589355 img loss 1.3205207586288452 img loss 1.1733410358428955 img loss 1.4063283205032349 img loss 1.369612216949463 img loss 1.2770107984542847 img loss 1.244600534439087 img loss 1.3330048322677612 img loss 1.366568922996521 img loss 1.3437355756759644 img loss 1.2893198728561401 img loss 1.4028633832931519 img loss 1.3110949993133545 img loss 1.2891795635223389 img loss 1.2527968883514404 img loss 1.3102816343307495 img loss 1.2472994327545166 img loss 1.2064776420593262 img loss 1.3526993989944458 img loss 1.2814432382583618 img loss 1.1466081142425537 img loss 1.3364107608795166 img loss 1.379867434501648 img loss 1.2667243480682373 img loss 1.3089545965194702 img loss 1.235215663909912 img loss 1.4356859922409058 img loss 1.275857925415039 img loss 1.3077926635742188 img loss 1.271248459815979 img loss 1.357134222984314 img loss 1.3407753705978394 img loss 1.2952017784118652 img loss 1.2424191236495972 img loss 1.2870080471038818 img loss 1.370564341545105 img loss 1.296893835067749 img loss 1.3765183687210083 img loss 1.3490971326828003 img loss 1.326788306236267 img loss 1.2930219173431396 img loss 1.2688578367233276 img loss 1.2887585163116455 img loss 1.209093689918518 img loss 1.3792614936828613 img loss 1.3436421155929565 img loss 1.255936622619629 img loss 1.3039064407348633 img loss 1.2675479650497437 img loss 1.2420978546142578 img loss 1.3604365587234497 img loss 1.3153038024902344 img loss 1.4272109270095825 img loss 1.312109351158142 img loss 1.266588807106018 img loss 1.2822574377059937 img loss 1.2651423215866089 img loss 1.2910733222961426 img loss 1.3217356204986572 img loss 1.3208248615264893 img loss 1.3192079067230225 img loss 1.2197978496551514 img loss 1.3153536319732666 img loss 1.3215988874435425 img loss 1.4539906978607178 img loss 1.3338063955307007 img loss 1.3536713123321533 img loss 1.217305064201355 img loss 1.274320125579834 img loss 1.2772563695907593 img loss 1.3154809474945068 img loss 1.3440470695495605 img loss 1.166276454925537 img loss 1.2531158924102783 img loss 1.2289979457855225 img loss 1.2307071685791016 img loss 1.3115592002868652 img loss 1.3395863771438599 img loss 1.47586190700531 img loss 1.3427413702011108 img loss 1.290992021560669 img loss 1.192723035812378 img loss 1.2680108547210693 img loss 1.3453277349472046 img loss 1.2254551649093628 img loss 1.256805658340454 img loss 1.3634907007217407 img loss 1.2599931955337524 img loss 1.2328531742095947 img loss 1.2969415187835693 img loss 1.2012146711349487 img loss 1.2544136047363281 img loss 1.2367552518844604 img loss 1.2496503591537476 img loss 1.3100765943527222 img loss 1.2449802160263062 img loss 1.1650031805038452 img loss 1.1794979572296143 img loss 1.288686752319336 img loss 1.3327890634536743 img loss 1.296471118927002 img loss 1.2727245092391968 img loss 1.290717363357544 img loss 1.2952840328216553 img loss 1.1921659708023071 img loss 1.2815111875534058 img loss 1.2320467233657837 img loss 1.2572158575057983 img loss 1.2383224964141846 img loss 1.2953706979751587 img loss 1.2493137121200562 img loss 1.2323442697525024 img loss 1.2659920454025269 img loss 1.2449464797973633 img loss 1.3435059785842896 img loss 1.347746729850769 img loss 1.2451152801513672 img loss 1.2670156955718994 img loss 1.3183321952819824 img loss 1.2739908695220947img loss 1.337391972541809img loss 1.3897768259048462 img loss 1.2033138275146484 img loss 1.2637758255004883 img loss 1.2946585416793823 img loss 1.20135498046875 img loss 1.2049787044525146 img loss 1.306783676147461 {'loss': 1.2901, 'grad_norm': 0.25653037428855896, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1967103481292725 img loss 1.2468843460083008 img loss 1.2335548400878906 img loss 1.2760663032531738 img loss 1.1954762935638428 img loss 1.1912343502044678 img loss 1.2158923149108887 img loss 1.2591969966888428 img loss 1.177945613861084 img loss 1.1964645385742188 img loss 1.2571018934249878 img loss 1.2525115013122559 img loss 1.2843468189239502 img loss 1.1476778984069824 img loss 1.2241911888122559 img loss 1.2321571111679077 img loss 1.257738471031189 img loss 1.1839897632598877 img loss 1.2108445167541504 img loss 1.197661280632019 img loss 1.2300450801849365 img loss 1.2678735256195068 img loss 1.150040626525879 img loss 1.2591094970703125 img loss 1.1911303997039795 img loss 1.1948938369750977 img loss 1.2509238719940186 img loss 1.227271556854248 img loss 1.2383445501327515 img loss 1.1850852966308594 img loss 1.1976473331451416 img loss 1.235539197921753 img loss 1.196399450302124 img loss 1.2103617191314697 img loss 1.2621283531188965 img loss 1.207151174545288 img loss 1.2230116128921509 img loss 1.1876678466796875 img loss 1.173167109489441 img loss 1.2184280157089233 img loss 1.206664800643921 img loss 1.1971435546875 img loss 1.193023681640625 img loss 1.164823293685913 img loss 1.2436338663101196 img loss 1.2299854755401611 img loss 1.2144384384155273 img loss 1.188855767250061 img loss 1.2456344366073608 img loss 1.2315242290496826 img loss 1.2242317199707031 img loss 1.2237519025802612 img loss 1.1977174282073975 img loss 1.1970365047454834 img loss 1.2025142908096313 img loss 1.258823037147522 img loss 1.202880859375 img loss 1.2516793012619019 img loss 1.2054857015609741 img loss 1.1623766422271729 img loss 1.2393213510513306 img loss 1.2493817806243896 img loss 1.1204943656921387 img loss 1.2576568126678467 img loss 1.2842634916305542 img loss 1.2896655797958374 img loss 1.186315894126892 img loss 1.2024250030517578 img loss 1.2981257438659668 img loss 1.22891104221344 img loss 1.219002366065979 img loss 1.228644609451294 img loss 1.2822861671447754 img loss 1.2743053436279297 img loss 1.2262604236602783 img loss 1.2312054634094238 img loss 1.2362645864486694 img loss 1.2895381450653076 img loss 1.2241531610488892 img loss 1.1660141944885254 img loss 1.2820394039154053 img loss 1.2471386194229126 img loss 1.2332427501678467 img loss 1.214301586151123 img loss 1.2405070066452026 img loss 1.2485980987548828 img loss 1.2399917840957642 img loss 1.1589094400405884 img loss 1.2078958749771118 img loss 1.2762531042099 img loss 1.2364649772644043 img loss 1.1868946552276611 img loss 1.2656192779541016 img loss 1.2154862880706787 img loss 1.227151870727539 img loss 1.2233142852783203 img loss 1.1925897598266602 img loss 1.211144208908081 img loss 1.2040574550628662 img loss 1.184615969657898 img loss 1.257554292678833 img loss 1.2479515075683594 img loss 1.3191410303115845 img loss 1.2380088567733765 img loss 1.1777031421661377 img loss 1.215703010559082 img loss 1.1826448440551758 img loss 1.2643688917160034 img loss 1.1765975952148438 img loss 1.2253464460372925 img loss 1.2753198146820068 img loss 1.226165771484375 img loss 1.2044198513031006 img loss 1.2038830518722534 img loss 1.2381632328033447 img loss 1.2311149835586548 img loss 1.1737191677093506 img loss 1.1930032968521118 img loss 1.2206228971481323 img loss 1.2001670598983765 img loss 1.235530138015747 img loss 1.270811676979065 img loss 1.2284342050552368 img loss 1.2126610279083252 img loss 1.2383742332458496 img loss 1.211144208908081 img loss 1.213592529296875 img loss 1.2366044521331787 {'loss': 1.2229, 'grad_norm': 0.2944902777671814, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1820510625839233 img loss 1.2442651987075806 img loss 1.2008310556411743 img loss 1.2751271724700928 img loss 1.2323455810546875 img loss 1.2832601070404053 img loss 1.2603774070739746 img loss 1.2258453369140625 img loss 1.177300214767456 img loss 1.20012366771698 img loss 1.307271957397461 img loss 1.293675422668457 img loss 1.3265798091888428 img loss 1.2430847883224487 img loss 1.216883659362793 img loss 1.3142526149749756 img loss 1.1538612842559814 img loss 1.238633394241333 img loss 1.1882108449935913 img loss 1.2696632146835327 img loss 1.1994597911834717 img loss 1.2812645435333252 img loss 1.2485747337341309 img loss 1.2169092893600464 img loss 1.1512823104858398 img loss 1.28812837600708 img loss 1.264621376991272 img loss 1.2078262567520142 img loss 1.2052291631698608 img loss 1.2066473960876465 img loss 1.2369384765625 img loss 1.2099602222442627 img loss 1.2479872703552246 img loss 1.239327073097229 img loss 1.203857183456421 img loss 1.2651703357696533 img loss 1.2302930355072021 img loss 1.2400249242782593 img loss 1.359645962715149 img loss 1.2728601694107056 img loss 1.2165831327438354 img loss 1.2735230922698975 img loss 1.2945611476898193 img loss 1.2421698570251465 img loss 1.1994346380233765 img loss 1.2448060512542725 img loss 1.1963365077972412 img loss 1.1808466911315918 img loss 1.3006846904754639 img loss 1.2232670783996582 img loss 1.3803049325942993 img loss 1.1769331693649292 img loss 1.3378714323043823 img loss 1.2661224603652954 img loss 1.2468414306640625 img loss 1.3033815622329712 img loss 1.2270963191986084 img loss 1.1916910409927368 img loss 1.2220520973205566 img loss 1.2059322595596313 img loss 1.1974817514419556 img loss 1.1768922805786133 img loss 1.1866564750671387 img loss 1.300584077835083 img loss 1.2396578788757324 img loss 1.207869529724121 img loss 1.2240571975708008 img loss 1.1905765533447266 img loss 1.2735214233398438 img loss 1.3541432619094849 img loss 1.276120662689209 img loss 1.2072807550430298 img loss 1.250183343887329 img loss 1.25004243850708 img loss 1.2096176147460938 img loss 1.2111470699310303 img loss 1.270883321762085 img loss 1.2200417518615723 img loss 1.2650731801986694 img loss 1.2509922981262207 img loss 1.333021640777588 img loss 1.225231647491455 img loss 1.197455644607544 img loss 1.2952581644058228 img loss 1.2166800498962402 img loss 1.250453233718872 img loss 1.2259345054626465 img loss 1.1682426929473877 img loss 1.209409236907959 img loss 1.2659811973571777 img loss 1.2028224468231201 img loss 1.2565827369689941 img loss 1.238161325454712 img loss 1.321619987487793 img loss 1.1873490810394287 img loss 1.285593867301941 img loss 1.2171214818954468 img loss 1.1824851036071777 img loss 1.1951158046722412 img loss 1.2452232837677002 img loss 1.3676437139511108 img loss 1.2617839574813843 img loss 1.259474515914917 img loss 1.3366179466247559 img loss 1.2915210723876953 img loss 1.2588363885879517 img loss 1.2089314460754395 img loss 1.171163558959961 img loss 1.3248714208602905 img loss 1.2354633808135986 img loss 1.1863998174667358 img loss 1.2855793237686157 img loss 1.2614147663116455 img loss 1.342690110206604 img loss 1.211972713470459 img loss 1.3096885681152344 img loss 1.169145941734314 img loss 1.2965691089630127img loss 1.3258435726165771 img loss 1.1571261882781982 img loss 1.1779292821884155 img loss 1.3047993183135986 img loss 1.1868294477462769 img loss 1.2552098035812378 img loss 1.2596046924591064 img loss 1.2985920906066895 img loss 1.1368378400802612 img loss 1.2301853895187378 {'loss': 1.2432, 'grad_norm': 0.21705052256584167, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2361481189727783 img loss 1.3202695846557617 img loss 1.3776601552963257 img loss 1.267843246459961 img loss 1.2735713720321655 img loss 1.196659803390503 img loss 1.2386467456817627 img loss 1.2859325408935547 img loss 1.2911211252212524 img loss 1.2393172979354858 img loss 1.3014366626739502 img loss 1.206882357597351 img loss 1.2724789381027222 img loss 1.3028589487075806 img loss 1.2038644552230835 img loss 1.3191670179367065 img loss 1.333716630935669 img loss 1.2879616022109985 img loss 1.2610071897506714 img loss 1.2712781429290771 img loss 1.158169150352478 img loss 1.2793843746185303 img loss 1.2650320529937744 img loss 1.3482109308242798 img loss 1.2867834568023682 img loss 1.3447540998458862 img loss 1.198085069656372 img loss 1.275620698928833 img loss 1.3476347923278809img loss 1.2522826194763184 img loss 1.2300240993499756 img loss 1.2666479349136353 img loss 1.2314033508300781 img loss 1.2617919445037842 img loss 1.371785044670105 img loss 1.234688401222229 img loss 1.2296682596206665 img loss 1.2726662158966064 img loss 1.2943036556243896 img loss 1.2832603454589844 img loss 1.2697596549987793 img loss 1.2734782695770264 img loss 1.3435657024383545 img loss 1.2199066877365112 img loss 1.2999905347824097 img loss 1.360156536102295 img loss 1.3058441877365112 img loss 1.3368345499038696 img loss 1.2880791425704956 img loss 1.233039140701294 img loss 1.3127822875976562 img loss 1.3871967792510986 img loss 1.2718446254730225 img loss 1.1513789892196655 img loss 1.3286552429199219 img loss 1.2554019689559937 img loss 1.3007228374481201 img loss 1.2768685817718506 img loss 1.3045777082443237 img loss 1.252886414527893 img loss 1.2373590469360352 img loss 1.190651535987854 img loss 1.290378212928772 img loss 1.2191623449325562 img loss 1.2392804622650146 img loss 1.3034381866455078 img loss 1.310990571975708 img loss 1.2171058654785156 img loss 1.3116079568862915 img loss 1.2558493614196777 img loss 1.2380939722061157 img loss 1.3008265495300293 img loss 1.3383781909942627 img loss 1.2773451805114746 img loss 1.2814388275146484 img loss 1.212557077407837 img loss 1.25030517578125 img loss 1.2279094457626343 img loss 1.3027112483978271 img loss 1.3677006959915161 img loss 1.2949165105819702 img loss 1.2339041233062744 img loss 1.3436552286148071 img loss 1.3087996244430542 img loss 1.2290130853652954 img loss 1.3132084608078003 img loss 1.2760967016220093 img loss 1.3502238988876343 img loss 1.3810731172561646 img loss 1.230103850364685 img loss 1.1832987070083618 img loss 1.2822719812393188 img loss 1.2599798440933228 img loss 1.2618927955627441 img loss 1.1452593803405762 img loss 1.2936519384384155 img loss 1.3325409889221191 img loss 1.3563412427902222 img loss 1.2173248529434204 img loss 1.263960838317871 img loss 1.2992584705352783 img loss 1.2910622358322144 img loss 1.3013687133789062 img loss 1.2521672248840332 img loss 1.2575305700302124 img loss 1.2239669561386108img loss 1.261460542678833 img loss 1.315406084060669 img loss 1.3159806728363037 img loss 1.293028473854065 img loss 1.303721308708191 img loss 1.2113462686538696 img loss 1.2659269571304321 img loss 1.3021583557128906 img loss 1.3121821880340576 img loss 1.3113934993743896 img loss 1.2022749185562134 img loss 1.2652771472930908 img loss 1.2693696022033691 img loss 1.3295475244522095 img loss 1.256355881690979 img loss 1.2542122602462769 img loss 1.2345167398452759 img loss 1.3382576704025269 img loss 1.3535398244857788 img loss 1.2422488927841187 img loss 1.259534478187561 img loss 1.301608681678772 {'loss': 1.2769, 'grad_norm': 0.2321559637784958, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1698557138442993 img loss 1.221143126487732 img loss 1.2261064052581787 img loss 1.256211280822754 img loss 1.1679470539093018 img loss 1.2981343269348145 img loss 1.1550930738449097 img loss 1.208608865737915 img loss 1.1203360557556152 img loss 1.206968903541565 img loss 1.2286102771759033 img loss 1.2140252590179443 img loss 1.174349069595337 img loss 1.1495612859725952 img loss 1.2281101942062378 img loss 1.1895782947540283 img loss 1.1948593854904175 img loss 1.2105801105499268 img loss 1.1802709102630615 img loss 1.2174639701843262 img loss 1.1844701766967773 img loss 1.24351966381073 img loss 1.3418928384780884 img loss 1.2467224597930908 img loss 1.154032588005066 img loss 1.296549677848816 img loss 1.1737089157104492 img loss 1.2806230783462524 img loss 1.2429633140563965 img loss 1.1694793701171875 img loss 1.207080364227295 img loss 1.2429707050323486 img loss 1.2707518339157104 img loss 1.2456824779510498 img loss 1.1679069995880127 img loss 1.183741569519043 img loss 1.153257966041565 img loss 1.2110979557037354 img loss 1.1999166011810303 img loss 1.2385585308074951 img loss 1.2075353860855103 img loss 1.2742619514465332 img loss 1.206135630607605 img loss 1.2685208320617676 img loss 1.1770310401916504 img loss 1.1809425354003906 img loss 1.2204560041427612 img loss 1.177610158920288 img loss 1.2056803703308105 img loss 1.2073478698730469 img loss 1.2608060836791992 img loss 1.264178991317749 img loss 1.2449671030044556 img loss 1.1884002685546875 img loss 1.258878469467163 img loss 1.1773300170898438 img loss 1.2271002531051636 img loss 1.2962898015975952 img loss 1.2900952100753784 img loss 1.2453322410583496 img loss 1.2357094287872314 img loss 1.2829922437667847 img loss 1.1904770135879517 img loss 1.1828022003173828 img loss 1.2156264781951904 img loss 1.29099702835083 img loss 1.2621369361877441 img loss 1.1731590032577515 img loss 1.2006739377975464 img loss 1.2940376996994019 img loss 1.289772868156433 img loss 1.2171753644943237 img loss 1.2118200063705444 img loss 1.1950008869171143 img loss 1.2148882150650024 img loss 1.1816954612731934 img loss 1.2304496765136719 img loss 1.2114272117614746 img loss 1.222815752029419 img loss 1.1730473041534424 img loss 1.1803064346313477 img loss 1.19099760055542 img loss 1.264004111289978 img loss 1.2607295513153076 img loss 1.2621550559997559 img loss 1.202193021774292 img loss 1.2446659803390503 img loss 1.2090383768081665 img loss 1.217037558555603 img loss 1.312752604484558 img loss 1.1649998426437378 img loss 1.2149871587753296 img loss 1.2370927333831787 img loss 1.2493095397949219 img loss 1.224039912223816 img loss 1.2070459127426147 img loss 1.1772899627685547 img loss 1.2108101844787598 img loss 1.2955849170684814 img loss 1.1904815435409546 img loss 1.1972700357437134 img loss 1.2234185934066772 img loss 1.203266978263855 img loss 1.1761224269866943 img loss 1.2067327499389648 img loss 1.27800714969635 img loss 1.225005865097046 img loss 1.2232327461242676 img loss 1.2418888807296753 img loss 1.2752306461334229 img loss 1.2093520164489746 img loss 1.1733626127243042 img loss 1.2127622365951538 img loss 1.2374663352966309 img loss 1.2117286920547485 img loss 1.2208285331726074 img loss 1.238350749015808 img loss 1.2373539209365845 img loss 1.1434742212295532 img loss 1.2873172760009766 img loss 1.190798282623291 img loss 1.2153067588806152 img loss 1.2082462310791016 img loss 1.2873950004577637 img loss 1.1639982461929321 img loss 1.3645358085632324 img loss 1.2560527324676514 img loss 1.2173588275909424 {'loss': 1.2216, 'grad_norm': 0.23899255692958832, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1608688831329346 img loss 1.1610373258590698 img loss 1.2388005256652832 img loss 1.2305431365966797 img loss 1.223008394241333 img loss 1.137377381324768 img loss 1.136523723602295 img loss 1.131134033203125 img loss 1.2560267448425293 img loss 1.158465027809143 img loss 1.171831727027893 img loss 1.1518690586090088 img loss 1.1386744976043701 img loss 1.1841353178024292 img loss 1.1775321960449219 img loss 1.1969438791275024 img loss 1.2041184902191162 img loss 1.20341956615448 img loss 1.228746771812439 img loss 1.185873031616211 img loss 1.2513052225112915 img loss 1.2239298820495605 img loss 1.1993321180343628 img loss 1.1490240097045898 img loss 1.1373575925827026 img loss 1.2235088348388672 img loss 1.1974964141845703 img loss 1.2056201696395874 img loss 1.257820963859558 img loss 1.2064759731292725 img loss 1.133880853652954 img loss 1.1150832176208496 img loss 1.2065935134887695 img loss 1.224975347518921 img loss 1.1233961582183838 img loss 1.2169773578643799 img loss 1.1835870742797852 img loss 1.2350685596466064 img loss 1.250777006149292 img loss 1.2182962894439697 img loss 1.2923682928085327 img loss 1.199477195739746 img loss 1.1489204168319702 img loss 1.2571090459823608 img loss 1.2061214447021484 img loss 1.235793113708496 img loss 1.2110661268234253 img loss 1.1917632818222046 img loss 1.1988661289215088 img loss 1.1428604125976562 img loss 1.162726879119873 img loss 1.1586626768112183 img loss 1.1188467741012573 img loss 1.2841391563415527 img loss 1.237412929534912 img loss 1.1635262966156006 img loss 1.1367335319519043 img loss 1.1986299753189087 img loss 1.250015139579773 img loss 1.1997261047363281 img loss 1.121016025543213 img loss 1.1799535751342773 img loss 1.1207048892974854 img loss 1.202379584312439 img loss 1.2233588695526123 img loss 1.1977708339691162 img loss 1.1768336296081543 img loss 1.178391933441162 img loss 1.1507080793380737 img loss 1.1421399116516113 img loss 1.240192174911499 img loss 1.132792353630066 img loss 1.2173393964767456 img loss 1.2225931882858276 img loss 1.172607421875 img loss 1.1658819913864136 img loss 1.208950400352478 img loss 1.2124069929122925 img loss 1.2008814811706543 img loss 1.2588496208190918 img loss 1.2198957204818726 img loss 1.2117383480072021 img loss 1.1900758743286133 img loss 1.1568806171417236 img loss 1.1675995588302612 img loss 1.1802349090576172 img loss 1.1352035999298096 img loss 1.124243140220642 img loss 1.1728442907333374 img loss 1.1871384382247925 img loss 1.2156271934509277 img loss 1.1593973636627197 img loss 1.183545708656311 img loss 1.205972671508789 img loss 1.2268205881118774 img loss 1.1888329982757568 img loss 1.2076634168624878 img loss 1.2068049907684326 img loss 1.1792644262313843 img loss 1.1216076612472534 img loss 1.2831863164901733 img loss 1.1587281227111816img loss 1.1822617053985596 img loss 1.1498664617538452 img loss 1.1973857879638672 img loss 1.2246357202529907 img loss 1.2843881845474243 img loss 1.1355561017990112 img loss 1.1655080318450928 img loss 1.1745532751083374 img loss 1.1687657833099365 img loss 1.1365692615509033 img loss 1.1430916786193848 img loss 1.2443580627441406 img loss 1.235656976699829 img loss 1.2389534711837769 img loss 1.2125533819198608 img loss 1.2137913703918457 img loss 1.1857267618179321 img loss 1.189194679260254 img loss 1.1754412651062012 img loss 1.2531611919403076 img loss 1.1849714517593384 img loss 1.28044593334198 img loss 1.1991748809814453 img loss 1.157307505607605 img loss 1.1682707071304321 img loss 1.1104592084884644 {'loss': 1.191, 'grad_norm': 0.19523128867149353, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2985252141952515 img loss 1.188791036605835 img loss 1.2229647636413574 img loss 1.2280550003051758 img loss 1.2746636867523193 img loss 1.2519166469573975 img loss 1.1785774230957031 img loss 1.3297675848007202 img loss 1.2616591453552246 img loss 1.2643988132476807 img loss 1.226954460144043 img loss 1.2567534446716309 img loss 1.2942081689834595 img loss 1.2358036041259766 img loss 1.2604436874389648 img loss 1.3224024772644043 img loss 1.236363172531128 img loss 1.2460030317306519 img loss 1.2048149108886719 img loss 1.237088680267334 img loss 1.2045438289642334 img loss 1.196024775505066 img loss 1.240224838256836 img loss 1.2171777486801147 img loss 1.2562164068222046 img loss 1.1940860748291016 img loss 1.257946491241455 img loss 1.200469970703125 img loss 1.3863435983657837 img loss 1.221134066581726 img loss 1.2871778011322021 img loss 1.2996740341186523 img loss 1.2473496198654175 img loss 1.2406408786773682 img loss 1.1952779293060303 img loss 1.2456308603286743 img loss 1.1904761791229248 img loss 1.1965827941894531 img loss 1.2909562587738037 img loss 1.268052101135254 img loss 1.296440839767456 img loss 1.2773892879486084 img loss 1.211967945098877 img loss 1.206168532371521 img loss 1.2555618286132812 img loss 1.2419155836105347 img loss 1.2541970014572144 img loss 1.2066248655319214 img loss 1.3071038722991943 img loss 1.2578223943710327 img loss 1.3143677711486816 img loss 1.2143138647079468 img loss 1.2007871866226196 img loss 1.2647199630737305 img loss 1.231316089630127 img loss 1.2657676935195923 img loss 1.2140841484069824 img loss 1.2301777601242065 img loss 1.2179923057556152 img loss 1.204696536064148 img loss 1.2144882678985596 img loss 1.2699611186981201 img loss 1.2518093585968018 img loss 1.2810628414154053 img loss 1.2329821586608887 img loss 1.2317509651184082 img loss 1.3202450275421143 img loss 1.227100133895874 img loss 1.2572681903839111 img loss 1.3122296333312988 img loss 1.2635810375213623 img loss 1.2157055139541626 img loss 1.1612045764923096 img loss 1.2517305612564087 img loss 1.2890968322753906 img loss 1.2497488260269165 img loss 1.308153510093689 img loss 1.2402828931808472 img loss 1.2236789464950562 img loss 1.2067625522613525 img loss 1.2855881452560425 img loss 1.3362212181091309 img loss 1.2918533086776733 img loss 1.2929189205169678 img loss 1.2290644645690918 img loss 1.246113657951355 img loss 1.229590654373169 img loss 1.2971014976501465 img loss 1.2561020851135254 img loss 1.2171751260757446 img loss 1.2194914817810059 img loss 1.2218692302703857 img loss 1.2569258213043213 img loss 1.1649887561798096 img loss 1.2294584512710571 img loss 1.235908031463623 img loss 1.321857213973999 img loss 1.2690056562423706 img loss 1.2116285562515259 img loss 1.2178090810775757 img loss 1.2774600982666016 img loss 1.292794942855835 img loss 1.227976679801941 img loss 1.2430065870285034 img loss 1.247064471244812 img loss 1.2703908681869507 img loss 1.2923483848571777 img loss 1.1901367902755737 img loss 1.2646231651306152 img loss 1.1960800886154175 img loss 1.203684687614441 img loss 1.2027277946472168 img loss 1.2766189575195312 img loss 1.2652498483657837 img loss 1.2492731809616089 img loss 1.2325363159179688 img loss 1.2255715131759644 img loss 1.192291021347046 img loss 1.325122594833374 img loss 1.2479767799377441 img loss 1.353493332862854 img loss 1.2461459636688232 img loss 1.286153793334961 img loss 1.2470448017120361 img loss 1.2077991962432861 img loss 1.2305649518966675 img loss 1.2641353607177734 img loss 1.1818015575408936 {'loss': 1.2477, 'grad_norm': 0.30880624055862427, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2828832864761353 img loss 1.3070592880249023 img loss 1.333604335784912 img loss 1.3432432413101196 img loss 1.2975082397460938 img loss 1.3030763864517212 img loss 1.3237559795379639 img loss 1.1917270421981812 img loss 1.3141924142837524 img loss 1.3613297939300537 img loss 1.293021559715271 img loss 1.2255923748016357 img loss 1.3317160606384277 img loss 1.2774903774261475 img loss 1.3581922054290771 img loss 1.2777961492538452 img loss 1.3194105625152588 img loss 1.3280622959136963 img loss 1.2669851779937744 img loss 1.2285913228988647 img loss 1.271780252456665 img loss 1.257598876953125 img loss 1.3149057626724243 img loss 1.3718619346618652 img loss 1.295473575592041 img loss 1.234399437904358 img loss 1.2530252933502197 img loss 1.2410643100738525 img loss 1.287262201309204 img loss 1.3016433715820312 img loss 1.3249272108078003 img loss 1.306091547012329 img loss 1.4364622831344604 img loss 1.287133812904358 img loss 1.3371427059173584 img loss 1.264115571975708 img loss 1.198594570159912 img loss 1.3098512887954712 img loss 1.2587391138076782 img loss 1.331113576889038 img loss 1.3495680093765259 img loss 1.3411144018173218 img loss 1.4213368892669678 img loss 1.3483402729034424 img loss 1.333779215812683 img loss 1.2465388774871826 img loss 1.2590588331222534 img loss 1.353277564048767 img loss 1.3898417949676514 img loss 1.2559534311294556 img loss 1.2923235893249512 img loss 1.2444510459899902 img loss 1.3279227018356323 img loss 1.329617977142334 img loss 1.2957568168640137 img loss 1.2969878911972046 img loss 1.2071495056152344 img loss 1.222238302230835 img loss 1.2974857091903687 img loss 1.2565948963165283 img loss 1.2735356092453003 img loss 1.2845377922058105 img loss 1.336708664894104 img loss 1.2671265602111816 img loss 1.2942613363265991 img loss 1.2603404521942139 img loss 1.2563997507095337 img loss 1.3217744827270508 img loss 1.444555401802063 img loss 1.319256067276001 img loss 1.2921909093856812 img loss 1.3127458095550537 img loss 1.2714173793792725 img loss 1.2721163034439087 img loss 1.3314121961593628 img loss 1.4055553674697876 img loss 1.2329092025756836 img loss 1.2449296712875366 img loss 1.3505464792251587 img loss 1.297472596168518 img loss 1.2933592796325684 img loss 1.3025808334350586 img loss 1.3227617740631104 img loss 1.305876612663269 img loss 1.3970630168914795 img loss 1.2783174514770508 img loss 1.378234624862671 img loss 1.3490267992019653 img loss 1.2661354541778564 img loss 1.3353933095932007 img loss 1.296576976776123 img loss 1.2674789428710938 img loss 1.2885500192642212 img loss 1.2969576120376587 img loss 1.2418186664581299 img loss 1.2925429344177246 img loss 1.2467765808105469 img loss 1.3541951179504395 img loss 1.3831216096878052 img loss 1.2307047843933105 img loss 1.2171151638031006 img loss 1.3107104301452637 img loss 1.3466821908950806 img loss 1.2422316074371338 img loss 1.378650426864624 img loss 1.3820521831512451 img loss 1.1673345565795898 img loss 1.2696795463562012 img loss 1.2462927103042603 img loss 1.2214696407318115 img loss 1.465380072593689 img loss 1.311892032623291 img loss 1.315407156944275 img loss 1.236410140991211 img loss 1.2426083087921143 img loss 1.3521244525909424 img loss 1.415648341178894 img loss 1.2914059162139893 img loss 1.2769453525543213 img loss 1.2694637775421143 img loss 1.3414279222488403 img loss 1.2472223043441772 img loss 1.2500965595245361 img loss 1.387644648551941 img loss 1.3027828931808472 img loss 1.2441282272338867 img loss 1.2642940282821655 img loss 1.2752126455307007 {'loss': 1.2999, 'grad_norm': 0.24290409684181213, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5546926259994507 img loss 1.634238362312317 img loss 1.6067893505096436 img loss 1.5853904485702515 img loss 1.691149353981018 img loss 1.5819040536880493 img loss 1.5908247232437134 img loss 1.6992838382720947 img loss 1.4920109510421753 img loss 1.5671486854553223 img loss 1.783787727355957 img loss 1.4848144054412842 img loss 1.4740370512008667 img loss 1.6577306985855103 img loss 1.4633182287216187 img loss 1.791646957397461 img loss 1.5408380031585693 img loss 1.619799256324768 img loss 1.5088303089141846 img loss 1.4536606073379517 img loss 1.561377763748169 img loss 1.486977458000183 img loss 1.5818474292755127 img loss 1.7217597961425781 img loss 1.7188830375671387 img loss 1.507829189300537 img loss 1.4257500171661377 img loss 1.5880751609802246 img loss 1.5817360877990723 img loss 1.491600513458252 img loss 1.645517110824585 img loss 1.5164357423782349 img loss 1.551817774772644 img loss 1.6562440395355225 img loss 1.2891383171081543 img loss 1.6369134187698364 img loss 1.5497663021087646 img loss 1.52505624294281 img loss 1.6843899488449097 img loss 1.5825707912445068 img loss 1.5113455057144165 img loss 1.6909688711166382 img loss 1.5385764837265015 img loss 1.527116298675537 img loss 1.497169017791748 img loss 1.5706790685653687 img loss 1.634233832359314 img loss 1.640592098236084 img loss 1.6573885679244995 img loss 1.6132508516311646 img loss 1.5652602910995483 img loss 1.8046841621398926 img loss 1.520443320274353 img loss 1.5064456462860107 img loss 1.481261134147644 img loss 1.5913493633270264 img loss 1.4589444398880005 img loss 1.6332365274429321 img loss 1.6105729341506958 img loss 1.622575283050537 img loss 1.6050269603729248 img loss 1.5632226467132568 img loss 1.463618516921997 img loss 1.6810052394866943 img loss 1.5568524599075317 img loss 1.7441563606262207 img loss 1.4711700677871704 img loss 1.7158219814300537 img loss 1.6610347032546997 img loss 1.6615077257156372 img loss 1.7032567262649536 img loss 1.6503432989120483 img loss 1.5949997901916504 img loss 1.6088483333587646 img loss 1.4892213344573975 img loss 1.639793872833252 img loss 1.7712804079055786 img loss 1.6529959440231323 img loss 1.486568808555603 img loss 1.5425461530685425 img loss 1.5064481496810913 img loss 1.5478806495666504 img loss 1.5245634317398071 img loss 1.4675800800323486 img loss 1.5602924823760986 img loss 1.8554248809814453 img loss 1.448238730430603 img loss 1.5983421802520752 img loss 1.5438153743743896 img loss 1.6313031911849976 img loss 1.5603238344192505 img loss 1.5141838788986206 img loss 1.5712822675704956 img loss 1.4942371845245361 img loss 1.3941620588302612 img loss 1.6395204067230225 img loss 1.6700631380081177 img loss 1.5485137701034546 img loss 1.4877941608428955 img loss 1.614457607269287 img loss 1.3694123029708862 img loss 1.4989619255065918 img loss 1.6238071918487549 img loss 1.5466420650482178 img loss 1.433731198310852 img loss 1.6232703924179077 img loss 1.5620239973068237 img loss 1.5632193088531494 img loss 1.5714125633239746 img loss 1.7136403322219849 img loss 1.5346723794937134 img loss 1.3793675899505615 img loss 1.6406012773513794 img loss 1.4734759330749512 img loss 1.4068549871444702 img loss 1.573283076286316 img loss 1.483977198600769 img loss 1.6587841510772705 img loss 1.557341456413269 img loss 1.4690150022506714 img loss 1.625852346420288 img loss 1.6205923557281494 img loss 1.578946590423584 img loss 1.6529334783554077 img loss 1.408630609512329 img loss 1.7488102912902832 img loss 1.5756580829620361 img loss 1.4877445697784424 {'loss': 1.5749, 'grad_norm': 0.8958121538162231, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2493228912353516 img loss 1.49886953830719 img loss 1.2886662483215332 img loss 1.287431001663208 img loss 1.328329086303711 img loss 1.3077480792999268 img loss 1.3576010465621948 img loss 1.3101822137832642 img loss 1.3620598316192627 img loss 1.2996042966842651 img loss 1.3519952297210693 img loss 1.2003974914550781 img loss 1.3489595651626587 img loss 1.285292387008667 img loss 1.2671598196029663 img loss 1.3971410989761353 img loss 1.2485016584396362 img loss 1.2784563302993774 img loss 1.4116244316101074 img loss 1.2846482992172241 img loss 1.4381147623062134 img loss 1.2636908292770386 img loss 1.3096139430999756 img loss 1.2533539533615112 img loss 1.3215479850769043 img loss 1.3146541118621826 img loss 1.455371379852295 img loss 1.3158215284347534 img loss 1.304811716079712 img loss 1.2454203367233276 img loss 1.3589142560958862 img loss 1.2734416723251343 img loss 1.3229115009307861 img loss 1.3142629861831665 img loss 1.2201735973358154 img loss 1.3213200569152832 img loss 1.288659930229187 img loss 1.3099874258041382 img loss 1.2523517608642578 img loss 1.306038737297058 img loss 1.2376903295516968 img loss 1.3796041011810303 img loss 1.3064334392547607 img loss 1.2964980602264404 img loss 1.3303817510604858 img loss 1.2498663663864136 img loss 1.3190444707870483 img loss 1.334539532661438 img loss 1.323455810546875 img loss 1.317323088645935 img loss 1.3727128505706787 img loss 1.3030028343200684 img loss 1.3917511701583862 img loss 1.2825977802276611 img loss 1.3596704006195068 img loss 1.4277145862579346 img loss 1.3528211116790771 img loss 1.2340898513793945 img loss 1.407904028892517 img loss 1.1019963026046753 img loss 1.3234834671020508 img loss 1.294908046722412 img loss 1.3537647724151611 img loss 1.2245129346847534 img loss 1.3423341512680054 img loss 1.4995207786560059 img loss 1.346608281135559 img loss 1.4940135478973389 img loss 1.2754368782043457 img loss 1.4244827032089233 img loss 1.484106183052063 img loss 1.3569672107696533 img loss 1.2297943830490112 img loss 1.3378713130950928 img loss 1.2642065286636353 img loss 1.3747092485427856 img loss 1.3318572044372559 img loss 1.240412950515747 img loss 1.351568579673767 img loss 1.3153356313705444 img loss 1.4594677686691284 img loss 1.3524432182312012 img loss 1.272400140762329 img loss 1.3297384977340698 img loss 1.3210033178329468 img loss 1.4078495502471924 img loss 1.4157663583755493 img loss 1.4793609380722046 img loss 1.4194916486740112 img loss 1.3340277671813965 img loss 1.3649327754974365 img loss 1.3447459936141968 img loss 1.3811085224151611 img loss 1.3887478113174438 img loss 1.3719483613967896 img loss 1.3257941007614136 img loss 1.4092410802841187 img loss 1.3194721937179565 img loss 1.2637017965316772 img loss 1.2895545959472656 img loss 1.3151487112045288 img loss 1.3272370100021362 img loss 1.3328793048858643 img loss 1.3659827709197998 img loss 1.4160683155059814 img loss 1.3648160696029663 img loss 1.141203761100769 img loss 1.3185272216796875 img loss 1.2773350477218628 img loss 1.3291161060333252 img loss 1.3097927570343018 img loss 1.317098617553711 img loss 1.3101199865341187 img loss 1.3829659223556519 img loss 1.309369683265686 img loss 1.3743622303009033 img loss 1.3241256475448608 img loss 1.3554767370224 img loss 1.2833830118179321 img loss 1.3600183725357056 img loss 1.272265911102295 img loss 1.3484028577804565 img loss 1.3176536560058594 img loss 1.335071086883545 img loss 1.3342455625534058 img loss 1.2929589748382568 img loss 1.2133301496505737 img loss 1.3349206447601318 {'loss': 1.3278, 'grad_norm': 0.2960742712020874, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.173570156097412 img loss 1.1276711225509644 img loss 1.2090263366699219 img loss 1.2409740686416626 img loss 1.2890366315841675 img loss 1.210618257522583 img loss 1.206282615661621 img loss 1.2942262887954712 img loss 1.172121286392212 img loss 1.1639021635055542 img loss 1.3452574014663696 img loss 1.2388790845870972 img loss 1.2480169534683228 img loss 1.2478680610656738 img loss 1.2637383937835693 img loss 1.2318085432052612 img loss 1.186899185180664 img loss 1.1994094848632812 img loss 1.23579740524292 img loss 1.2128854990005493 img loss 1.2099545001983643 img loss 1.1879618167877197 img loss 1.2094669342041016 img loss 1.1835263967514038 img loss 1.2081493139266968 img loss 1.1856930255889893 img loss 1.243326187133789 img loss 1.1327836513519287 img loss 1.2252774238586426 img loss 1.2887133359909058 img loss 1.163905382156372 img loss 1.2286720275878906 img loss 1.3518961668014526 img loss 1.2315804958343506 img loss 1.2196204662322998 img loss 1.2703285217285156 img loss 1.225123643875122 img loss 1.222572684288025 img loss 1.1653069257736206 img loss 1.187673568725586 img loss 1.1648143529891968 img loss 1.1741154193878174 img loss 1.2251944541931152 img loss 1.2090152502059937 img loss 1.2943687438964844 img loss 1.189997911453247 img loss 1.2882802486419678 img loss 1.2041329145431519 img loss 1.2306493520736694 img loss 1.276216983795166 img loss 1.1303532123565674 img loss 1.1024311780929565 img loss 1.191392183303833 img loss 1.2910562753677368 img loss 1.1376752853393555 img loss 1.1079416275024414 img loss 1.2873339653015137 img loss 1.2667473554611206 img loss 1.201027512550354 img loss 1.240644097328186 img loss 1.299645185470581 img loss 1.2665307521820068 img loss 1.2085635662078857 img loss 1.1761349439620972 img loss 1.2105214595794678 img loss 1.1622593402862549 img loss 1.1894205808639526 img loss 1.1514993906021118 img loss 1.2211726903915405 img loss 1.1822044849395752 img loss 1.236722707748413 img loss 1.1219801902770996 img loss 1.1800321340560913 img loss 1.1224054098129272 img loss 1.181658148765564 img loss 1.3058793544769287 img loss 1.226487159729004 img loss 1.23746657371521 img loss 1.2426562309265137 img loss 1.1982827186584473 img loss 1.202573299407959 img loss 1.2887769937515259 img loss 1.2135114669799805 img loss 1.2036341428756714 img loss 1.1804249286651611 img loss 1.1935068368911743 img loss 1.2369478940963745 img loss 1.1949745416641235 img loss 1.2360551357269287 img loss 1.1175053119659424 img loss 1.26279616355896 img loss 1.3197782039642334 img loss 1.255007266998291 img loss 1.1635890007019043 img loss 1.1953471899032593 img loss 1.2193355560302734 img loss 1.167393445968628 img loss 1.190471887588501 img loss 1.1747221946716309 img loss 1.2049282789230347 img loss 1.2144438028335571 img loss 1.178989291191101 img loss 1.2421520948410034 img loss 1.2945191860198975 img loss 1.1787211894989014 img loss 1.3215680122375488 img loss 1.2008576393127441 img loss 1.4027130603790283 img loss 1.2321804761886597 img loss 1.2455270290374756 img loss 1.2259718179702759 img loss 1.2599247694015503 img loss 1.2182292938232422 img loss 1.186279058456421 img loss 1.1876064538955688 img loss 1.1547222137451172 img loss 1.1747894287109375 img loss 1.3611489534378052 img loss 1.2669155597686768 img loss 1.124253749847412 img loss 1.210741400718689 img loss 1.2779960632324219 img loss 1.1662323474884033 img loss 1.2161372900009155 img loss 1.3287628889083862 img loss 1.1984690427780151 img loss 1.3000339269638062 img loss 1.3064520359039307 {'loss': 1.2193, 'grad_norm': 0.2083689272403717, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3023393154144287 img loss 1.4615336656570435 img loss 1.3814395666122437 img loss 1.5637812614440918 img loss 1.3967938423156738 img loss 1.5672698020935059 img loss 1.5292607545852661 img loss 1.4154999256134033 img loss 1.3240914344787598 img loss 1.419655442237854 img loss 1.3752667903900146 img loss 1.5667089223861694 img loss 1.4116510152816772 img loss 1.4681769609451294 img loss 1.3508564233779907 img loss 1.5261942148208618 img loss 1.5295994281768799 img loss 1.4122506380081177 img loss 1.4799168109893799 img loss 1.4261467456817627 img loss 1.3514128923416138 img loss 1.4175307750701904 img loss 1.4490002393722534 img loss 1.4207910299301147 img loss 1.5771396160125732 img loss 1.4950346946716309 img loss 1.496031403541565 img loss 1.4907339811325073 img loss 1.43772292137146 img loss 1.3202749490737915 img loss 1.4847511053085327 img loss 1.52738356590271 img loss 1.3950389623641968 img loss 1.4462565183639526 img loss 1.4481117725372314 img loss 1.4004677534103394 img loss 1.6493345499038696 img loss 1.3841019868850708 img loss 1.4099516868591309 img loss 1.474642038345337 img loss 1.5708186626434326 img loss 1.5714644193649292 img loss 1.3767752647399902 img loss 1.5137101411819458 img loss 1.4889758825302124 img loss 1.43718421459198 img loss 1.3825899362564087 img loss 1.3952174186706543 img loss 1.493367075920105 img loss 1.5130622386932373 img loss 1.5484557151794434 img loss 1.3435322046279907 img loss 1.5062367916107178 img loss 1.4347984790802002 img loss 1.430886149406433 img loss 1.4914422035217285 img loss 1.453986406326294 img loss 1.5165045261383057 img loss 1.4024523496627808 img loss 1.570562720298767 img loss 1.3316601514816284 img loss 1.4745488166809082 img loss 1.461026906967163 img loss 1.4647313356399536 img loss 1.5166938304901123 img loss 1.5458537340164185 img loss 1.4371041059494019 img loss 1.6210428476333618 img loss 1.463649034500122 img loss 1.5620968341827393 img loss 1.3531841039657593 img loss 1.4028650522232056 img loss 1.4637643098831177 img loss 1.3783848285675049 img loss 1.4063260555267334 img loss 1.4680306911468506 img loss 1.5157519578933716 img loss 1.4557496309280396 img loss 1.5150561332702637 img loss 1.567876935005188 img loss 1.4903910160064697 img loss 1.4630078077316284 img loss 1.43540358543396 img loss 1.4151350259780884 img loss 1.4004727602005005 img loss 1.4173866510391235 img loss 1.2801424264907837 img loss 1.4408093690872192 img loss 1.377082347869873 img loss 1.3390735387802124 img loss 1.4582680463790894 img loss 1.4084442853927612 img loss 1.3988369703292847 img loss 1.5769511461257935 img loss 1.392283320426941 img loss 1.5718941688537598 img loss 1.539814829826355 img loss 1.5143601894378662 img loss 1.429062008857727 img loss 1.4950791597366333 img loss 1.4120148420333862 img loss 1.477628469467163 img loss 1.5701624155044556 img loss 1.5235568284988403 img loss 1.446442723274231 img loss 1.3289680480957031 img loss 1.5257418155670166 img loss 1.4670299291610718 img loss 1.4053326845169067 img loss 1.6012699604034424 img loss 1.4021042585372925 img loss 1.357389211654663 img loss 1.3261851072311401 img loss 1.397453784942627 img loss 1.3811838626861572 img loss 1.4714900255203247 img loss 1.3311569690704346 img loss 1.4334129095077515 img loss 1.4394346475601196 img loss 1.3439124822616577 img loss 1.4934383630752563 img loss 1.4545619487762451 img loss 1.4897619485855103 img loss 1.365497350692749 img loss 1.421506643295288 img loss 1.4478439092636108 img loss 1.4349321126937866 img loss 1.5771600008010864 {'loss': 1.4531, 'grad_norm': 0.46980080008506775, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2015609741210938 img loss 1.270580768585205 img loss 1.4082962274551392 img loss 1.2103495597839355 img loss 1.2550987005233765 img loss 1.2581857442855835 img loss 1.2614991664886475 img loss 1.2812496423721313 img loss 1.3452528715133667 img loss 1.3493821620941162 img loss 1.2778805494308472 img loss 1.2556681632995605 img loss 1.2840627431869507 img loss 1.2947005033493042 img loss 1.2468315362930298 img loss 1.346203327178955 img loss 1.2734527587890625 img loss 1.3100483417510986 img loss 1.261132836341858 img loss 1.2775955200195312 img loss 1.2587883472442627 img loss 1.2872854471206665 img loss 1.2944605350494385 img loss 1.2381536960601807 img loss 1.2380889654159546 img loss 1.2581651210784912 img loss 1.3384023904800415 img loss 1.2382608652114868 img loss 1.2022027969360352 img loss 1.3525774478912354 img loss 1.3336198329925537 img loss 1.3119970560073853 img loss 1.2318683862686157 img loss 1.2784452438354492 img loss 1.3152990341186523 img loss 1.306731104850769 img loss 1.2366008758544922 img loss 1.323810338973999 img loss 1.2723381519317627 img loss 1.436327576637268 img loss 1.2470555305480957 img loss 1.355955958366394 img loss 1.2858600616455078 img loss 1.2614643573760986 img loss 1.2321372032165527 img loss 1.2470512390136719 img loss 1.278730034828186 img loss 1.3243005275726318 img loss 1.2777023315429688 img loss 1.2617502212524414 img loss 1.2673934698104858 img loss 1.3213577270507812 img loss 1.2523868083953857 img loss 1.307213544845581 img loss 1.254015564918518 img loss 1.363681674003601 img loss 1.267288088798523 img loss 1.2150039672851562 img loss 1.3573428392410278 img loss 1.3181923627853394 img loss 1.294463872909546 img loss 1.242639422416687 img loss 1.2471837997436523 img loss 1.2692744731903076 img loss 1.2521913051605225 img loss 1.2501150369644165 img loss 1.2292371988296509 img loss 1.206063985824585 img loss 1.238888144493103 img loss 1.2800753116607666 img loss 1.2882496118545532 img loss 1.2703239917755127 img loss 1.2619316577911377 img loss 1.2516860961914062 img loss 1.2987581491470337 img loss 1.2779041528701782 img loss 1.3160046339035034 img loss 1.305440902709961 img loss 1.253882884979248 img loss 1.2894502878189087 img loss 1.2620370388031006 img loss 1.3006559610366821 img loss 1.3892213106155396 img loss 1.368955135345459 img loss 1.2774990797042847 img loss 1.2553602457046509 img loss 1.292661190032959 img loss 1.2380750179290771 img loss 1.2984603643417358 img loss 1.246334433555603 img loss 1.2766026258468628 img loss 1.266343355178833 img loss 1.1946845054626465 img loss 1.2932367324829102 img loss 1.2189801931381226 img loss 1.2257752418518066 img loss 1.3522626161575317 img loss 1.2568261623382568 img loss 1.2784745693206787 img loss 1.262967824935913 img loss 1.2700601816177368 img loss 1.311490774154663 img loss 1.3193095922470093 img loss 1.3645657300949097 img loss 1.2839391231536865 img loss 1.3120046854019165 img loss 1.4044920206069946 img loss 1.2883331775665283 img loss 1.343097448348999 img loss 1.3334511518478394 img loss 1.2932052612304688 img loss 1.1881226301193237 img loss 1.2268434762954712 img loss 1.3683909177780151 img loss 1.3386365175247192 img loss 1.3146121501922607 img loss 1.3252156972885132 img loss 1.3146286010742188 img loss 1.2792143821716309 img loss 1.2584474086761475 img loss 1.209632396697998 img loss 1.2705199718475342 img loss 1.1990759372711182 img loss 1.2697572708129883 img loss 1.2185252904891968 img loss 1.324225902557373 img loss 1.2821080684661865 img loss 1.2793031930923462 {'loss': 1.2827, 'grad_norm': 0.2597281336784363, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.174588680267334 img loss 1.1958433389663696 img loss 1.2104952335357666 img loss 1.134734034538269 img loss 1.3081982135772705 img loss 1.2579258680343628 img loss 1.1920826435089111 img loss 1.1976544857025146 img loss 1.1982698440551758 img loss 1.2978311777114868 img loss 1.240199089050293 img loss 1.1853643655776978 img loss 1.2527744770050049 img loss 1.2272937297821045 img loss 1.210964560508728 img loss 1.2123082876205444 img loss 1.2084412574768066 img loss 1.2190515995025635 img loss 1.2050949335098267 img loss 1.2569000720977783 img loss 1.2454878091812134 img loss 1.2934634685516357 img loss 1.2152212858200073img loss 1.176101565361023 img loss 1.2547022104263306 img loss 1.2349764108657837 img loss 1.2821900844573975 img loss 1.1816643476486206 img loss 1.2647507190704346 img loss 1.2535711526870728 img loss 1.2095459699630737 img loss 1.1405439376831055 img loss 1.2584631443023682 img loss 1.1965839862823486 img loss 1.1453403234481812 img loss 1.2457083463668823 img loss 1.1094751358032227 img loss 1.2285592555999756 img loss 1.1861133575439453 img loss 1.2987468242645264 img loss 1.1990528106689453 img loss 1.3399356603622437 img loss 1.1687724590301514 img loss 1.1998461484909058 img loss 1.2420260906219482 img loss 1.1997743844985962 img loss 1.2442057132720947 img loss 1.2594001293182373 img loss 1.2292569875717163 img loss 1.1592540740966797 img loss 1.2590965032577515 img loss 1.2320829629898071 img loss 1.3579895496368408 img loss 1.239031434059143 img loss 1.1673545837402344 img loss 1.2213897705078125 img loss 1.2415690422058105 img loss 1.1792900562286377 img loss 1.263871431350708 img loss 1.2699296474456787 img loss 1.2470307350158691 img loss 1.2380681037902832 img loss 1.2163383960723877 img loss 1.1758304834365845 img loss 1.2220579385757446 img loss 1.2926080226898193 img loss 1.2978414297103882 img loss 1.2923393249511719 img loss 1.2027403116226196 img loss 1.2502784729003906 img loss 1.1442608833312988 img loss 1.165696144104004 img loss 1.1866317987442017 img loss 1.2098288536071777 img loss 1.1201320886611938 img loss 1.296230673789978 img loss 1.1783287525177002 img loss 1.289142370223999 img loss 1.2237141132354736 img loss 1.2224944829940796 img loss 1.1407052278518677 img loss 1.2208400964736938 img loss 1.2414900064468384 img loss 1.240761399269104 img loss 1.184781551361084 img loss 1.2480556964874268 img loss 1.2210750579833984 img loss 1.2065943479537964 img loss 1.1927850246429443 img loss 1.2122774124145508 img loss 1.2021929025650024 img loss 1.113327980041504 img loss 1.1214354038238525 img loss 1.21299409866333 img loss 1.2296738624572754 img loss 1.2446231842041016 img loss 1.1704984903335571 img loss 1.1852281093597412 img loss 1.2349669933319092 img loss 1.1844087839126587 img loss 1.211180329322815 img loss 1.1904997825622559 img loss 1.235284447669983 img loss 1.1815054416656494 img loss 1.2594612836837769 img loss 1.2502243518829346 img loss 1.2688446044921875 img loss 1.3084760904312134 img loss 1.2031669616699219 img loss 1.2382997274398804 img loss 1.1429245471954346 img loss 1.2016559839248657 img loss 1.2173136472702026 img loss 1.243670105934143 img loss 1.1866031885147095 img loss 1.2166938781738281 img loss 1.233280897140503 img loss 1.1955950260162354 img loss 1.1822943687438965 img loss 1.1729110479354858 img loss 1.230513334274292 img loss 1.2218589782714844 img loss 1.1956051588058472 img loss 1.1595089435577393 img loss 1.178532600402832 img loss 1.2238783836364746 img loss 1.2105345726013184 img loss 1.1905403137207031 {'loss': 1.2181, 'grad_norm': 0.3138403594493866, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1135588884353638 img loss 1.2279150485992432 img loss 1.2375695705413818 img loss 1.2070032358169556 img loss 1.2871192693710327 img loss 1.2609593868255615 img loss 1.4253257513046265 img loss 1.1563276052474976 img loss 1.2810982465744019 img loss 1.1645851135253906 img loss 1.2154301404953003 img loss 1.2711808681488037 img loss 1.2043063640594482 img loss 1.1904398202896118 img loss 1.2662346363067627 img loss 1.1914764642715454 img loss 1.268249273300171 img loss 1.1661622524261475 img loss 1.0854601860046387 img loss 1.2460858821868896 img loss 1.3608540296554565 img loss 1.204908847808838 img loss 1.200885534286499 img loss 1.1933141946792603 img loss 1.364605188369751 img loss 1.310188889503479 img loss 1.2160065174102783 img loss 1.1691540479660034 img loss 1.2358070611953735 img loss 1.1945884227752686 img loss 1.166704535484314 img loss 1.2400219440460205 img loss 1.3206760883331299 img loss 1.3922429084777832 img loss 1.235899567604065 img loss 1.2959972620010376 img loss 1.2624434232711792 img loss 1.1639184951782227 img loss 1.1938204765319824 img loss 1.242716670036316 img loss 1.2494481801986694 img loss 1.2310352325439453 img loss 1.2013472318649292 img loss 1.2891204357147217 img loss 1.3432996273040771 img loss 1.2315469980239868 img loss 1.1353521347045898 img loss 1.1994068622589111 img loss 1.1688542366027832 img loss 1.256142497062683 img loss 1.2581183910369873 img loss 1.2454073429107666 img loss 1.2091631889343262 img loss 1.1608047485351562 img loss 1.2900793552398682 img loss 1.2432969808578491 img loss 1.2517428398132324 img loss 1.2324893474578857 img loss 1.2939687967300415 img loss 1.1414117813110352 img loss 1.2703900337219238 img loss 1.1707737445831299 img loss 1.2202850580215454 img loss 1.230176568031311 img loss 1.1781988143920898 img loss 1.3491350412368774 img loss 1.2189241647720337 img loss 1.2528828382492065 img loss 1.2271242141723633 img loss 1.1963703632354736 img loss 1.3487544059753418 img loss 1.2948461771011353 img loss 1.1816614866256714 img loss 1.3042675256729126 img loss 1.170357346534729 img loss 1.1766456365585327 img loss 1.282091498374939 img loss 1.2331663370132446 img loss 1.28307044506073 img loss 1.1659035682678223 img loss 1.2320772409439087 img loss 1.1612672805786133 img loss 1.219469428062439 img loss 1.1845899820327759 img loss 1.4110077619552612 img loss 1.1938750743865967 img loss 1.2476774454116821 img loss 1.1930969953536987 img loss 1.1965525150299072 img loss 1.1587750911712646 img loss 1.1963086128234863 img loss 1.2476681470870972 img loss 1.2394969463348389 img loss 1.2691255807876587 img loss 1.2654664516448975 img loss 1.176975965499878 img loss 1.4670242071151733 img loss 1.2695670127868652 img loss 1.2411764860153198 img loss 1.3092236518859863 img loss 1.2505130767822266 img loss 1.2108067274093628 img loss 1.2675690650939941 img loss 1.117074728012085 img loss 1.2159061431884766 img loss 1.274114966392517 img loss 1.3004679679870605 img loss 1.1745831966400146 img loss 1.1294705867767334 img loss 1.2699110507965088 img loss 1.3097552061080933 img loss 1.1900482177734375 img loss 1.2354754209518433 img loss 1.2319211959838867 img loss 1.191110372543335 img loss 1.1980290412902832 img loss 1.2302669286727905 img loss 1.272825002670288 img loss 1.2777351140975952 img loss 1.225096344947815 img loss 1.231512427330017 img loss 1.2270865440368652 img loss 1.2040538787841797 img loss 1.2443006038665771 img loss 1.3207600116729736 img loss 1.259284496307373 img loss 1.2478100061416626 img loss 1.182515025138855 {'loss': 1.2358, 'grad_norm': 0.48223578929901123, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.483312726020813 img loss 1.554266333580017 img loss 1.4947075843811035 img loss 1.755005955696106 img loss 1.4803417921066284 img loss 1.434731125831604 img loss 1.5833289623260498 img loss 1.5273592472076416 img loss 1.5971070528030396 img loss 1.5547810792922974 img loss 1.6736758947372437 img loss 1.5779353380203247 img loss 1.6003044843673706 img loss 1.5872962474822998 img loss 1.6156853437423706 img loss 1.4843496084213257 img loss 1.541345477104187 img loss 1.5294687747955322 img loss 1.5914846658706665 img loss 1.3753352165222168 img loss 1.47787344455719 img loss 1.630836009979248 img loss 1.5309008359909058 img loss 1.496396780014038 img loss 1.6396243572235107 img loss 1.654869556427002 img loss 1.6359399557113647 img loss 1.6240426301956177 img loss 1.459092617034912 img loss 1.6039137840270996 img loss 1.6392778158187866 img loss 1.5227800607681274 img loss 1.5098869800567627 img loss 1.647400975227356 img loss 1.5304999351501465 img loss 1.5610270500183105 img loss 1.5203509330749512 img loss 1.5570672750473022 img loss 1.5251809358596802 img loss 1.524468183517456 img loss 1.7562452554702759 img loss 1.7504918575286865 img loss 1.4894077777862549 img loss 1.6277505159378052 img loss 1.5333036184310913 img loss 1.5681623220443726 img loss 1.6547034978866577 img loss 1.643268346786499 img loss 1.4786579608917236 img loss 1.4569332599639893 img loss 1.5678480863571167 img loss 1.5953118801116943 img loss 1.5888582468032837 img loss 1.5590769052505493 img loss 1.5289855003356934 img loss 1.5012249946594238 img loss 1.619338870048523 img loss 1.466982364654541 img loss 1.6576019525527954 img loss 1.652871012687683 img loss 1.4744375944137573 img loss 1.4506927728652954 img loss 1.64463210105896 img loss 1.582231879234314 img loss 1.60007905960083 img loss 1.4750641584396362 img loss 1.503373622894287 img loss 1.5294996500015259 img loss 1.6269804239273071 img loss 1.4602940082550049 img loss 1.6105724573135376 img loss 1.6504391431808472 img loss 1.6478825807571411 img loss 1.4518027305603027 img loss 1.5232402086257935 img loss 1.5867635011672974 img loss 1.4291096925735474 img loss 1.5625030994415283 img loss 1.477975606918335 img loss 1.6009045839309692 img loss 1.6489397287368774 img loss 1.6431381702423096 img loss 1.7166224718093872 img loss 1.4171802997589111 img loss 1.5157452821731567 img loss 1.5708461999893188 img loss 1.4565918445587158 img loss 1.6627181768417358 img loss 1.566079020500183 img loss 1.5121065378189087 img loss 1.6099903583526611 img loss 1.590417742729187 img loss 1.5007431507110596 img loss 1.690885305404663 img loss 1.7951688766479492 img loss 1.534806489944458 img loss 1.4849456548690796 img loss 1.630319356918335 img loss 1.553565502166748 img loss 1.5719395875930786 img loss 1.633575201034546 img loss 1.6155978441238403 img loss 1.5342642068862915 img loss 1.6272027492523193 img loss 1.6725958585739136 img loss 1.6845284700393677 img loss 1.674589991569519 img loss 1.765966534614563 img loss 1.6579937934875488 img loss 1.544692873954773 img loss 1.5703366994857788 img loss 1.4475600719451904 img loss 1.6381964683532715 img loss 1.4463201761245728 img loss 1.7915477752685547 img loss 1.5519858598709106 img loss 1.579261302947998 img loss 1.5088073015213013 img loss 1.525268316268921 img loss 1.5558593273162842 img loss 1.5866237878799438 img loss 1.5591720342636108 img loss 1.7087585926055908 img loss 1.5115877389907837 img loss 1.4470051527023315 img loss 1.6449793577194214 img loss 1.5521643161773682 img loss 1.5159701108932495 {'loss': 1.5714, 'grad_norm': 0.434675931930542, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1956619024276733 img loss 1.1931262016296387 img loss 1.2451637983322144 img loss 1.2511554956436157 img loss 1.237557053565979 img loss 1.2472598552703857 img loss 1.1930359601974487 img loss 1.2358354330062866 img loss 1.223974585533142 img loss 1.117586612701416 img loss 1.238365650177002 img loss 1.1803910732269287 img loss 1.270411729812622 img loss 1.2262074947357178 img loss 1.2076654434204102 img loss 1.1639306545257568 img loss 1.2786372900009155 img loss 1.2331466674804688 img loss 1.2120580673217773 img loss 1.2149523496627808 img loss 1.190272569656372 img loss 1.3076369762420654 img loss 1.2491110563278198 img loss 1.2725815773010254 img loss 1.2397902011871338 img loss 1.2114776372909546 img loss 1.2882683277130127 img loss 1.2547754049301147 img loss 1.1860761642456055 img loss 1.1866929531097412 img loss 1.2715967893600464 img loss 1.257162094116211 img loss 1.2186615467071533 img loss 1.2177011966705322 img loss 1.2528921365737915 img loss 1.2108615636825562 img loss 1.1613073348999023 img loss 1.1751827001571655 img loss 1.2761342525482178 img loss 1.209794521331787 img loss 1.1936061382293701 img loss 1.2804105281829834 img loss 1.2376865148544312 img loss 1.2312030792236328 img loss 1.2812598943710327 img loss 1.2001928091049194 img loss 1.202920913696289 img loss 1.2611117362976074 img loss 1.1547365188598633 img loss 1.2205853462219238 img loss 1.2117143869400024 img loss 1.2695460319519043 img loss 1.2337000370025635 img loss 1.199804663658142 img loss 1.2298729419708252 img loss 1.3039249181747437 img loss 1.2462401390075684 img loss 1.1940730810165405 img loss 1.235687017440796 img loss 1.2627675533294678 img loss 1.2478586435317993 img loss 1.258055567741394 img loss 1.2306747436523438 img loss 1.2198904752731323 img loss 1.2055082321166992 img loss 1.2264045476913452 img loss 1.2202415466308594 img loss 1.2235692739486694 img loss 1.2203572988510132 img loss 1.2131538391113281 img loss 1.3044172525405884 img loss 1.2049661874771118 img loss 1.2464995384216309 img loss 1.270540714263916 img loss 1.2243938446044922 img loss 1.1608366966247559 img loss 1.2615419626235962 img loss 1.160642385482788 img loss 1.3070987462997437 img loss 1.221029281616211 img loss 1.223589539527893 img loss 1.2482409477233887 img loss 1.3221286535263062 img loss 1.2406129837036133 img loss 1.2331492900848389 img loss 1.2647852897644043 img loss 1.2150923013687134 img loss 1.3328585624694824 img loss 1.2263400554656982 img loss 1.1892286539077759 img loss 1.2376543283462524 img loss 1.2185877561569214 img loss 1.1867923736572266 img loss 1.219541072845459 img loss 1.1824630498886108 img loss 1.1597298383712769 img loss 1.1676881313323975 img loss 1.2729332447052002 img loss 1.2827491760253906 img loss 1.2263895273208618 img loss 1.2797281742095947 img loss 1.2493079900741577 img loss 1.2084343433380127 img loss 1.2165920734405518 img loss 1.1431292295455933 img loss 1.176466703414917 img loss 1.1825684309005737 img loss 1.205560326576233 img loss 1.2206445932388306 img loss 1.2649027109146118 img loss 1.28929603099823 img loss 1.2391992807388306 img loss 1.2201143503189087 img loss 1.199918270111084 img loss 1.1768646240234375 img loss 1.2109441757202148 img loss 1.2157310247421265 img loss 1.2803138494491577 img loss 1.237544298171997 img loss 1.20127272605896 img loss 1.4229578971862793 img loss 1.2093942165374756 img loss 1.1997077465057373 img loss 1.2741146087646484 img loss 1.1829789876937866 img loss 1.2007167339324951 img loss 1.293730616569519 img loss 1.17954421043396 {'loss': 1.229, 'grad_norm': 0.409280925989151, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1323843002319336 img loss 1.1968069076538086 img loss 1.1931872367858887 img loss 1.237015962600708 img loss 1.2650922536849976 img loss 1.3219352960586548 img loss 1.2695481777191162 img loss 1.3375523090362549 img loss 1.2213014364242554 img loss 1.3423876762390137 img loss 1.219874620437622 img loss 1.231565237045288 img loss 1.1907132863998413 img loss 1.3042491674423218 img loss 1.2378814220428467 img loss 1.2358964681625366 img loss 1.248115062713623 img loss 1.2663822174072266 img loss 1.2113795280456543 img loss 1.209667682647705 img loss 1.175315499305725 img loss 1.2436864376068115 img loss 1.2304751873016357 img loss 1.2409595251083374 img loss 1.321926474571228 img loss 1.2495496273040771 img loss 1.2375867366790771 img loss 1.2074936628341675 img loss 1.3207223415374756 img loss 1.2542275190353394 img loss 1.2442362308502197 img loss 1.3377078771591187 img loss 1.2694824934005737 img loss 1.126266360282898 img loss 1.2144476175308228 img loss 1.2574958801269531 img loss 1.1842554807662964 img loss 1.3023602962493896 img loss 1.2697428464889526 img loss 1.2907910346984863 img loss 1.2297662496566772 img loss 1.2864813804626465 img loss 1.302249550819397 img loss 1.2278555631637573 img loss 1.286611557006836 img loss 1.3138622045516968 img loss 1.287388563156128 img loss 1.236147165298462 img loss 1.3248233795166016 img loss 1.1558462381362915 img loss 1.2624326944351196 img loss 1.2288928031921387 img loss 1.215917944908142 img loss 1.2893311977386475 img loss 1.3189878463745117 img loss 1.2158312797546387 img loss 1.1970504522323608 img loss 1.2274373769760132 img loss 1.249876856803894 img loss 1.201357126235962 img loss 1.2382919788360596 img loss 1.2270742654800415 img loss 1.2841299772262573 img loss 1.2816352844238281 img loss 1.195647954940796 img loss 1.250414252281189 img loss 1.2427955865859985 img loss 1.3019042015075684 img loss 1.2569770812988281 img loss 1.2247772216796875 img loss 1.295045256614685 img loss 1.2902271747589111 img loss 1.2232273817062378 img loss 1.204249620437622 img loss 1.2181098461151123 img loss 1.2968149185180664 img loss 1.2240031957626343 img loss 1.2736709117889404 img loss 1.2869412899017334 img loss 1.3573938608169556 img loss 1.2015118598937988 img loss 1.3125828504562378 img loss 1.2621631622314453 img loss 1.1991904973983765 img loss 1.2046951055526733 img loss 1.2408626079559326 img loss 1.2638566493988037 img loss 1.2247425317764282 img loss 1.1923284530639648 img loss 1.3294711112976074 img loss 1.2704282999038696 img loss 1.2012665271759033 img loss 1.316009759902954 img loss 1.2492201328277588 img loss 1.2623604536056519 img loss 1.2760024070739746 img loss 1.262880563735962 img loss 1.241919994354248 img loss 1.263453483581543 img loss 1.3196449279785156 img loss 1.2157533168792725 img loss 1.2871816158294678 img loss 1.2778500318527222 img loss 1.2644970417022705 img loss 1.2372592687606812 img loss 1.284640908241272 img loss 1.3253437280654907 img loss 1.2891628742218018 img loss 1.307318925857544 img loss 1.1965878009796143 img loss 1.2772729396820068 img loss 1.3359206914901733 img loss 1.358887791633606 img loss 1.2273917198181152 img loss 1.2159674167633057 img loss 1.2877577543258667 img loss 1.2247529029846191 img loss 1.3086047172546387 img loss 1.213213324546814 img loss 1.2873525619506836 img loss 1.2239750623703003 img loss 1.2401461601257324 img loss 1.2287577390670776 img loss 1.3882863521575928 img loss 1.2360562086105347 img loss 1.2443472146987915 img loss 1.2617237567901611 img loss 1.2362581491470337 {'loss': 1.2552, 'grad_norm': 0.3256765902042389, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.236759066581726 img loss 1.1479641199111938 img loss 1.2594555616378784 img loss 1.2598212957382202 img loss 1.2656965255737305 img loss 1.163332223892212 img loss 1.2544485330581665 img loss 1.2776459455490112 img loss 1.249171257019043 img loss 1.1993184089660645 img loss 1.1890430450439453 img loss 1.1745219230651855 img loss 1.2465846538543701 img loss 1.2060792446136475 img loss 1.2583403587341309 img loss 1.2696243524551392 img loss 1.2265431880950928 img loss 1.242124080657959 img loss 1.2140449285507202 img loss 1.200445532798767 img loss 1.2210272550582886 img loss 1.2528005838394165 img loss 1.2290611267089844 img loss 1.2635772228240967 img loss 1.142916202545166 img loss 1.2601218223571777 img loss 1.1986021995544434 img loss 1.187335729598999 img loss 1.2342753410339355 img loss 1.2507681846618652 img loss 1.240923285484314 img loss 1.1989667415618896 img loss 1.2273889780044556 img loss 1.1882762908935547 img loss 1.2213468551635742 img loss 1.213772177696228 img loss 1.1956756114959717 img loss 1.2745312452316284 img loss 1.1919288635253906 img loss 1.1740870475769043 img loss 1.2243702411651611 img loss 1.3272819519042969 img loss 1.209452509880066 img loss 1.1701509952545166 img loss 1.2041378021240234 img loss 1.1868079900741577 img loss 1.3135011196136475 img loss 1.288226842880249 img loss 1.253652572631836 img loss 1.315612554550171 img loss 1.2160351276397705 img loss 1.2528711557388306 img loss 1.2672220468521118 img loss 1.165810465812683 img loss 1.2086210250854492 img loss 1.1939921379089355img loss 1.1496844291687012 img loss 1.1424696445465088 img loss 1.2611722946166992 img loss 1.2197521924972534 img loss 1.1620012521743774 img loss 1.150620937347412 img loss 1.23736572265625 img loss 1.2295005321502686 img loss 1.2206218242645264 img loss 1.2128803730010986 img loss 1.2695674896240234 img loss 1.2036597728729248 img loss 1.2022985219955444 img loss 1.2786576747894287 img loss 1.21127450466156 img loss 1.173201322555542 img loss 1.1974433660507202 img loss 1.2233647108078003 img loss 1.1366175413131714 img loss 1.3429186344146729 img loss 1.2176849842071533 img loss 1.1898354291915894 img loss 1.2739778757095337 img loss 1.2736809253692627 img loss 1.249711513519287 img loss 1.1401190757751465 img loss 1.2209465503692627 img loss 1.1817030906677246 img loss 1.1999738216400146 img loss 1.290914535522461 img loss 1.1444942951202393 img loss 1.1993763446807861 img loss 1.1933296918869019 img loss 1.2169522047042847 img loss 1.1776912212371826 img loss 1.1740834712982178 img loss 1.289514183998108 img loss 1.2394709587097168 img loss 1.243577480316162 img loss 1.195928931236267 img loss 1.2533912658691406 img loss 1.2324371337890625 img loss 1.2167816162109375 img loss 1.268419861793518 img loss 1.2414634227752686 img loss 1.1852874755859375 img loss 1.2271339893341064 img loss 1.2263023853302002 img loss 1.317635178565979 img loss 1.212778091430664 img loss 1.2359094619750977 img loss 1.3074766397476196 img loss 1.20853853225708 img loss 1.1919885873794556 img loss 1.1799473762512207 img loss 1.2010587453842163 img loss 1.1790060997009277 img loss 1.3640629053115845 img loss 1.2325228452682495 img loss 1.2150768041610718 img loss 1.2077786922454834 img loss 1.2131441831588745 img loss 1.221422791481018 img loss 1.205880045890808 img loss 1.1852545738220215 img loss 1.2341874837875366 img loss 1.233354091644287 img loss 1.2182843685150146 img loss 1.1705694198608398 img loss 1.2114155292510986 img loss 1.2198351621627808 img loss 1.2760162353515625 {'loss': 1.223, 'grad_norm': 0.30866989493370056, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5177855491638184 img loss 1.5842816829681396 img loss 1.551175832748413 img loss 1.5296800136566162 img loss 1.4520171880722046 img loss 1.4697691202163696 img loss 1.4653822183609009 img loss 1.5183656215667725 img loss 1.5153448581695557 img loss 1.5313018560409546 img loss 1.5336291790008545 img loss 1.632353663444519 img loss 1.4796881675720215 img loss 1.5755629539489746 img loss 1.538509726524353 img loss 1.6083914041519165 img loss 1.564582109451294 img loss 1.4634239673614502 img loss 1.5731158256530762 img loss 1.5599220991134644 img loss 1.5230180025100708 img loss 1.6213525533676147 img loss 1.48008394241333 img loss 1.4481799602508545 img loss 1.4889994859695435 img loss 1.4860212802886963 img loss 1.554573655128479 img loss 1.5112614631652832 img loss 1.5430001020431519 img loss 1.5016905069351196 img loss 1.5624568462371826 img loss 1.474053978919983 img loss 1.4838911294937134 img loss 1.526807188987732 img loss 1.555761694908142 img loss 1.4701400995254517 img loss 1.4555106163024902 img loss 1.5860227346420288 img loss 1.6414536237716675 img loss 1.5395840406417847 img loss 1.6389024257659912 img loss 1.447629451751709 img loss 1.381118655204773 img loss 1.633848786354065 img loss 1.6058579683303833 img loss 1.509456753730774 img loss 1.5964642763137817 img loss 1.3555012941360474 img loss 1.5746201276779175 img loss 1.444238305091858 img loss 1.6182316541671753 img loss 1.437448263168335 img loss 1.5378555059432983 img loss 1.541458249092102 img loss 1.6166518926620483 img loss 1.5505480766296387 img loss 1.5312203168869019 img loss 1.7373414039611816 img loss 1.5880177021026611 img loss 1.539737343788147 img loss 1.573425054550171 img loss 1.6218888759613037 img loss 1.5179506540298462 img loss 1.5007554292678833 img loss 1.5760084390640259 img loss 1.5117638111114502 img loss 1.5243370532989502 img loss 1.5571627616882324 img loss 1.551987886428833 img loss 1.5048229694366455 img loss 1.5878841876983643 img loss 1.4242655038833618 img loss 1.540754795074463 img loss 1.5287786722183228 img loss 1.5183215141296387 img loss 1.5060852766036987 img loss 1.4783748388290405 img loss 1.5485281944274902 img loss 1.5632891654968262 img loss 1.4296414852142334 img loss 1.5604431629180908 img loss 1.5394988059997559 img loss 1.54976224899292 img loss 1.5275191068649292 img loss 1.511765956878662 img loss 1.6205499172210693 img loss 1.5130871534347534 img loss 1.553871989250183 img loss 1.4958840608596802 img loss 1.4162083864212036 img loss 1.6171001195907593 img loss 1.6327964067459106 img loss 1.540800929069519 img loss 1.4951773881912231 img loss 1.4706181287765503 img loss 1.5080115795135498 img loss 1.5911108255386353 img loss 1.5330678224563599 img loss 1.5263484716415405 img loss 1.5565094947814941 img loss 1.5697953701019287 img loss 1.5852168798446655 img loss 1.505052924156189 img loss 1.5007147789001465 img loss 1.5371865034103394 img loss 1.439939022064209 img loss 1.4716885089874268 img loss 1.574674129486084 img loss 1.540457010269165 img loss 1.6622092723846436 img loss 1.5048314332962036 img loss 1.5543949604034424 img loss 1.5873620510101318 img loss 1.5346115827560425 img loss 1.5417698621749878 img loss 1.4837567806243896 img loss 1.462904453277588 img loss 1.5922369956970215 img loss 1.5375950336456299 img loss 1.4783285856246948 img loss 1.625404953956604 img loss 1.5220452547073364 img loss 1.5446244478225708 img loss 1.5765820741653442 img loss 1.586066722869873 img loss 1.5876786708831787 img loss 1.5682696104049683 img loss 1.3598284721374512 {'loss': 1.5341, 'grad_norm': 0.5830255746841431, 'learning_rate': 0.0001, 'epoch': 0.26} [2025-02-19 21:08:30,185] [INFO] [logging.py:128:log_dist] [Rank 0] [Torch] Checkpoint global_step49000 is about to be saved! [2025-02-19 21:08:30,291] [INFO] [logging.py:128:log_dist] [Rank 0] Saving model checkpoint: /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/mp_rank_00_model_states.pt [2025-02-19 21:08:30,292] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/mp_rank_00_model_states.pt... [2025-02-19 21:09:21,287] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/mp_rank_00_model_states.pt. [2025-02-19 21:09:21,539] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt... [2025-02-19 21:09:21,539] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_48_mp_rank_00_optim_states.pt... [2025-02-19 21:09:21,539] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_64_mp_rank_00_optim_states.pt... [2025-02-19 21:09:21,539] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_104_mp_rank_00_optim_states.pt... [2025-02-19 21:09:21,539] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_32_mp_rank_00_optim_states.pt... [2025-02-19 21:09:21,540] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_24_mp_rank_00_optim_states.pt... [2025-02-19 21:09:21,540] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_56_mp_rank_00_optim_states.pt... [2025-02-19 21:09:21,540] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_16_mp_rank_00_optim_states.pt... [2025-02-19 21:09:21,540] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_40_mp_rank_00_optim_states.pt... [2025-02-19 21:09:21,540] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_96_mp_rank_00_optim_states.pt... [2025-02-19 21:09:21,540] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_112_mp_rank_00_optim_states.pt... [2025-02-19 21:09:21,540] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_88_mp_rank_00_optim_states.pt... [2025-02-19 21:09:21,542] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_120_mp_rank_00_optim_states.pt... [2025-02-19 21:09:21,542] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_72_mp_rank_00_optim_states.pt... [2025-02-19 21:09:21,551] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt... [2025-02-19 21:09:21,551] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_80_mp_rank_00_optim_states.pt... [2025-02-19 21:09:21,861] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_64_mp_rank_00_optim_states.pt. [2025-02-19 21:09:21,861] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_64_mp_rank_00_optim_states.pt [2025-02-19 21:09:21,861] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step49000 is ready now! [2025-02-19 21:09:21,865] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_112_mp_rank_00_optim_states.pt. [2025-02-19 21:09:21,865] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_112_mp_rank_00_optim_states.pt [2025-02-19 21:09:21,865] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step49000 is ready now! [2025-02-19 21:09:21,870] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_40_mp_rank_00_optim_states.pt. [2025-02-19 21:09:21,870] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_40_mp_rank_00_optim_states.pt [2025-02-19 21:09:21,870] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step49000 is ready now! [2025-02-19 21:09:21,874] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_96_mp_rank_00_optim_states.pt. [2025-02-19 21:09:21,874] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_96_mp_rank_00_optim_states.pt [2025-02-19 21:09:21,874] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step49000 is ready now! [2025-02-19 21:09:21,881] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt. [2025-02-19 21:09:21,892] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt [2025-02-19 21:09:21,892] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step49000 is ready now! [2025-02-19 21:09:21,900] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_32_mp_rank_00_optim_states.pt. [2025-02-19 21:09:21,901] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_32_mp_rank_00_optim_states.pt [2025-02-19 21:09:21,901] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step49000 is ready now! [2025-02-19 21:09:21,906] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_16_mp_rank_00_optim_states.pt. [2025-02-19 21:09:21,907] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_16_mp_rank_00_optim_states.pt [2025-02-19 21:09:21,907] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step49000 is ready now! [2025-02-19 21:09:21,910] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt. [2025-02-19 21:09:21,910] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt [2025-02-19 21:09:21,910] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step49000 is ready now! [2025-02-19 21:09:21,935] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_48_mp_rank_00_optim_states.pt. [2025-02-19 21:09:21,935] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_48_mp_rank_00_optim_states.pt [2025-02-19 21:09:21,935] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step49000 is ready now! [2025-02-19 21:09:21,943] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_80_mp_rank_00_optim_states.pt. [2025-02-19 21:09:21,943] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_80_mp_rank_00_optim_states.pt [2025-02-19 21:09:21,943] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step49000 is ready now! [2025-02-19 21:09:21,944] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_104_mp_rank_00_optim_states.pt. [2025-02-19 21:09:21,945] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_104_mp_rank_00_optim_states.pt [2025-02-19 21:09:21,945] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step49000 is ready now! [2025-02-19 21:09:21,952] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_72_mp_rank_00_optim_states.pt. [2025-02-19 21:09:21,952] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_72_mp_rank_00_optim_states.pt [2025-02-19 21:09:21,952] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step49000 is ready now! [2025-02-19 21:09:21,954] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_88_mp_rank_00_optim_states.pt. [2025-02-19 21:09:21,954] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_88_mp_rank_00_optim_states.pt [2025-02-19 21:09:21,955] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step49000 is ready now! [2025-02-19 21:09:21,965] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_56_mp_rank_00_optim_states.pt. [2025-02-19 21:09:21,965] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_56_mp_rank_00_optim_states.pt [2025-02-19 21:09:21,966] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step49000 is ready now! [2025-02-19 21:09:21,975] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_24_mp_rank_00_optim_states.pt. [2025-02-19 21:09:21,976] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_24_mp_rank_00_optim_states.pt [2025-02-19 21:09:21,976] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step49000 is ready now! [2025-02-19 21:09:22,015] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_120_mp_rank_00_optim_states.pt. [2025-02-19 21:09:22,016] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-49000/global_step49000/bf16_zero_pp_rank_120_mp_rank_00_optim_states.pt [2025-02-19 21:09:22,016] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step49000 is ready now! img loss 1.3229689598083496 img loss 1.2075432538986206 img loss 1.2213762998580933 img loss 1.2849749326705933 img loss 1.25775945186615 img loss 1.277223825454712 img loss 1.3288229703903198 img loss 1.2554553747177124 img loss 1.2746996879577637 img loss 1.230252742767334 img loss 1.3214346170425415 img loss 1.3226059675216675 img loss 1.2933193445205688 img loss 1.4611239433288574 img loss 1.3134039640426636 img loss 1.263464331626892 img loss 1.3142093420028687 img loss 1.3474770784378052 img loss 1.2642334699630737 img loss 1.2983824014663696 img loss 1.3325092792510986 img loss 1.2443548440933228 img loss 1.2516098022460938 img loss 1.3865649700164795 img loss 1.2628313302993774 img loss 1.2506507635116577 img loss 1.2824190855026245 img loss 1.2836308479309082 img loss 1.2511450052261353 img loss 1.3225551843643188 img loss 1.2302958965301514 img loss 1.419077754020691 img loss 1.2499815225601196 img loss 1.3368134498596191 img loss 1.2929292917251587 img loss 1.2774800062179565 img loss 1.2808443307876587 img loss 1.3139156103134155 img loss 1.262832522392273 img loss 1.4058362245559692 img loss 1.2481427192687988 img loss 1.3408735990524292 img loss 1.2448463439941406 img loss 1.360297679901123 img loss 1.4141179323196411 img loss 1.3223183155059814 img loss 1.2668529748916626 img loss 1.3795751333236694 img loss 1.300184965133667 img loss 1.2170956134796143 img loss 1.296384334564209 img loss 1.2784336805343628 img loss 1.356549620628357 img loss 1.295196294784546 img loss 1.2324962615966797 img loss 1.1936575174331665 img loss 1.2720458507537842 img loss 1.2510294914245605 img loss 1.2466496229171753 img loss 1.2326637506484985 img loss 1.2775628566741943 img loss 1.2137281894683838 img loss 1.2831045389175415 img loss 1.29280686378479 img loss 1.2468401193618774 img loss 1.3037084341049194 img loss 1.248796820640564 img loss 1.2983890771865845 img loss 1.3118101358413696 img loss 1.2184782028198242 img loss 1.1832687854766846 img loss 1.3147484064102173 img loss 1.3212298154830933 img loss 1.3674428462982178 img loss 1.314990758895874 img loss 1.2455071210861206 img loss 1.379642367362976 img loss 1.2892165184020996 img loss 1.2539676427841187 img loss 1.2710272073745728 img loss 1.3335634469985962 img loss 1.2604095935821533 img loss 1.4368804693222046 img loss 1.2769320011138916 img loss 1.2741416692733765 img loss 1.3017739057540894 img loss 1.35785973072052 img loss 1.3885533809661865img loss 1.298576831817627 img loss 1.2923115491867065 img loss 1.3260523080825806 img loss 1.2586305141448975 img loss 1.2501707077026367 img loss 1.3798911571502686 img loss 1.2425706386566162 img loss 1.2981066703796387 img loss 1.2366976737976074 img loss 1.3257904052734375 img loss 1.2551839351654053 img loss 1.3469879627227783 img loss 1.3992127180099487 img loss 1.2642704248428345 img loss 1.2162413597106934 img loss 1.3294662237167358img loss 1.2896106243133545 img loss 1.3182629346847534 img loss 1.2445510625839233 img loss 1.2977756261825562 img loss 1.203050971031189 img loss 1.2327229976654053 img loss 1.3619589805603027 img loss 1.2650078535079956 img loss 1.239809274673462 img loss 1.1828902959823608 img loss 1.2638776302337646 img loss 1.2523400783538818 img loss 1.229929804801941 img loss 1.2264505624771118 img loss 1.3031020164489746 img loss 1.255474328994751img loss 1.35326087474823img loss 1.2614188194274902 img loss 1.3530558347702026 img loss 1.2683906555175781 img loss 1.2915719747543335 img loss 1.2914214134216309 img loss 1.1581168174743652 Upload successful! img loss 1.3349827527999878 {'loss': 1.2892, 'grad_norm': 0.24454890191555023, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4494166374206543 img loss 1.488693356513977 img loss 1.425097942352295 img loss 1.3445627689361572 img loss 1.491848349571228 img loss 1.410139799118042 img loss 1.3951834440231323 img loss 1.6353052854537964 img loss 1.4017119407653809 img loss 1.5153108835220337 img loss 1.4953736066818237 img loss 1.4316632747650146 img loss 1.370643138885498 img loss 1.4673560857772827 img loss 1.418092966079712 img loss 1.3945367336273193 img loss 1.446728229522705 img loss 1.5231715440750122 img loss 1.3825838565826416 img loss 1.6337616443634033 img loss 1.460426688194275 img loss 1.4729610681533813 img loss 1.4812134504318237 img loss 1.5080188512802124 img loss 1.4510178565979004 img loss 1.4616849422454834 img loss 1.516711711883545 img loss 1.5345759391784668 img loss 1.441108226776123 img loss 1.482145071029663 img loss 1.3805850744247437 img loss 1.3277297019958496 img loss 1.5237237215042114 img loss 1.4242252111434937 img loss 1.3767212629318237 img loss 1.4656522274017334 img loss 1.5285775661468506 img loss 1.6480201482772827 img loss 1.4843536615371704 img loss 1.435950517654419 img loss 1.4958044290542603 img loss 1.4143179655075073 img loss 1.4336265325546265 img loss 1.3952462673187256 img loss 1.4890278577804565 img loss 1.567022442817688 img loss 1.5231057405471802 img loss 1.6053119897842407 img loss 1.6079039573669434 img loss 1.4597042798995972 img loss 1.4944483041763306 img loss 1.4107239246368408 img loss 1.460170865058899 img loss 1.5149577856063843 img loss 1.4943292140960693 img loss 1.3986985683441162 img loss 1.4595094919204712 img loss 1.5036084651947021 img loss 1.6080353260040283 img loss 1.360384464263916 img loss 1.32345712184906 img loss 1.4286353588104248 img loss 1.4024195671081543 img loss 1.5051969289779663 img loss 1.393754243850708 img loss 1.4324438571929932 img loss 1.38535737991333 img loss 1.3902980089187622 img loss 1.5165849924087524 img loss 1.4716795682907104 img loss 1.3430685997009277 img loss 1.32461416721344 img loss 1.3514188528060913 img loss 1.434167504310608 img loss 1.5531805753707886 img loss 1.4684985876083374 img loss 1.472289800643921img loss 1.5077725648880005 img loss 1.5154318809509277 img loss 1.4183422327041626 img loss 1.5042301416397095 img loss 1.5039862394332886 img loss 1.4049429893493652 img loss 1.4475308656692505 img loss 1.4704735279083252 img loss 1.45525062084198 img loss 1.3648816347122192 img loss 1.409717082977295 img loss 1.5010600090026855 img loss 1.3641802072525024 img loss 1.402108073234558 img loss 1.494450330734253 img loss 1.4165247678756714 img loss 1.4599477052688599 img loss 1.4183933734893799 img loss 1.4018067121505737 img loss 1.3725959062576294 img loss 1.5993868112564087 img loss 1.4609712362289429 img loss 1.5266335010528564 img loss 1.6282681226730347 img loss 1.4365655183792114 img loss 1.3358943462371826 img loss 1.728585958480835 img loss 1.3121576309204102 img loss 1.442909598350525 img loss 1.5539276599884033 img loss 1.5727654695510864 img loss 1.3953427076339722 img loss 1.6183537244796753 img loss 1.4977519512176514 img loss 1.4750195741653442 img loss 1.5645374059677124 img loss 1.474198579788208 img loss 1.5118956565856934 img loss 1.4304063320159912 img loss 1.3907619714736938 img loss 1.391324758529663 img loss 1.5529733896255493 img loss 1.466956377029419 img loss 1.563311219215393 img loss 1.5756738185882568 img loss 1.3302103281021118 img loss 1.4170801639556885 img loss 1.502111554145813 img loss 1.3953373432159424 img loss 1.4115055799484253 img loss 1.3465946912765503 {'loss': 1.4622, 'grad_norm': 0.35653454065322876, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4190222024917603 img loss 1.579627513885498 img loss 1.3507285118103027 img loss 1.3617607355117798 img loss 1.5045706033706665 img loss 1.546094298362732 img loss 1.5836788415908813 img loss 1.523525595664978 img loss 1.3871500492095947 img loss 1.4236977100372314 img loss 1.3710805177688599 img loss 1.4609841108322144 img loss 1.4049899578094482 img loss 1.3907711505889893 img loss 1.535640001296997 img loss 1.3200348615646362 img loss 1.5110886096954346 img loss 1.4503719806671143 img loss 1.3425356149673462 img loss 1.4614108800888062 img loss 1.4914957284927368 img loss 1.4645898342132568 img loss 1.4234530925750732 img loss 1.4153931140899658 img loss 1.4661118984222412 img loss 1.4408776760101318 img loss 1.5179953575134277 img loss 1.440008521080017 img loss 1.444549798965454 img loss 1.4229156970977783 img loss 1.4079852104187012 img loss 1.4150029420852661 img loss 1.4319995641708374 img loss 1.3661526441574097 img loss 1.4977532625198364 img loss 1.4858813285827637 img loss 1.4060767889022827 img loss 1.562648892402649 img loss 1.3461309671401978 img loss 1.4028010368347168 img loss 1.443926215171814 img loss 1.4181840419769287 img loss 1.4274982213974 img loss 1.4919196367263794 img loss 1.3703407049179077 img loss 1.4997988939285278 img loss 1.5232311487197876 img loss 1.4377351999282837 img loss 1.5003046989440918 img loss 1.393618106842041 img loss 1.5495985746383667 img loss 1.3877918720245361 img loss 1.396079421043396 img loss 1.3704097270965576 img loss 1.3804633617401123 img loss 1.5282490253448486 img loss 1.4884248971939087 img loss 1.3845610618591309 img loss 1.5213541984558105 img loss 1.5557684898376465 img loss 1.4584664106369019 img loss 1.520492434501648 img loss 1.44136381149292 img loss 1.4104009866714478 img loss 1.3528157472610474 img loss 1.4989956617355347 img loss 1.4999123811721802 img loss 1.4938966035842896 img loss 1.5024727582931519 img loss 1.424674391746521 img loss 1.5837618112564087 img loss 1.4061617851257324 img loss 1.4600683450698853 img loss 1.5212336778640747 img loss 1.4235073328018188 img loss 1.4096513986587524 img loss 1.3614861965179443 img loss 1.4058127403259277 img loss 1.4797440767288208 img loss 1.5036472082138062 img loss 1.465120553970337 img loss 1.3674474954605103 img loss 1.4199388027191162 img loss 1.4464223384857178img loss 1.4442850351333618 img loss 1.4676998853683472 img loss 1.4251081943511963 img loss 1.3822792768478394 img loss 1.421824336051941 img loss 1.4533833265304565 img loss 1.460752248764038 img loss 1.4318002462387085 img loss 1.4168096780776978 img loss 1.4581280946731567 img loss 1.4808517694473267 img loss 1.427008032798767 img loss 1.3497964143753052 img loss 1.416178584098816 img loss 1.5367062091827393 img loss 1.747477650642395 img loss 1.4152941703796387 img loss 1.5124865770339966 img loss 1.5178934335708618 img loss 1.3544535636901855 img loss 1.4557117223739624 img loss 1.4158786535263062 img loss 1.4573158025741577 img loss 1.4102832078933716 img loss 1.4717087745666504 img loss 1.4363924264907837 img loss 1.3648823499679565 img loss 1.415474772453308 img loss 1.413567304611206 img loss 1.4385954141616821 img loss 1.4368269443511963 img loss 1.3567842245101929 img loss 1.3963276147842407 img loss 1.4305717945098877 img loss 1.3255280256271362 img loss 1.4004359245300293 img loss 1.4773064851760864 img loss 1.4479587078094482 img loss 1.3284318447113037 img loss 1.444862723350525 img loss 1.4333997964859009 img loss 1.4075452089309692 img loss 1.4899929761886597 img loss 1.4031709432601929 {'loss': 1.4444, 'grad_norm': 0.2950783371925354, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2853374481201172 img loss 1.4470471143722534 img loss 1.448189377784729 img loss 1.4613898992538452 img loss 1.577397108078003 img loss 1.3880887031555176 img loss 1.4098416566848755 img loss 1.4138776063919067 img loss 1.2989553213119507 img loss 1.4160436391830444 img loss 1.4339920282363892 img loss 1.4225753545761108 img loss 1.466480016708374 img loss 1.3832706212997437 img loss 1.5565887689590454 img loss 1.4122494459152222 img loss 1.4319889545440674 img loss 1.3876893520355225 img loss 1.4118406772613525 img loss 1.4845836162567139 img loss 1.3424532413482666 img loss 1.3042980432510376 img loss 1.519777774810791 img loss 1.402817964553833 img loss 1.2900062799453735 img loss 1.4914628267288208 img loss 1.3962491750717163 img loss 1.3706634044647217 img loss 1.438029408454895 img loss 1.409106969833374 img loss 1.3665363788604736 img loss 1.4411957263946533 img loss 1.3244554996490479 img loss 1.339992642402649 img loss 1.336020588874817 img loss 1.375046968460083 img loss 1.4211781024932861 img loss 1.311310052871704 img loss 1.4447473287582397 img loss 1.4472416639328003 img loss 1.4338289499282837 img loss 1.5361530780792236 img loss 1.424139380455017 img loss 1.40168297290802 img loss 1.4331852197647095 img loss 1.440000295639038 img loss 1.4990818500518799 img loss 1.3634915351867676 img loss 1.4769545793533325 img loss 1.5441635847091675 img loss 1.384540319442749 img loss 1.3898361921310425 img loss 1.4852039813995361 img loss 1.3750187158584595 img loss 1.3908790349960327 img loss 1.5396552085876465 img loss 1.3208727836608887 img loss 1.4676344394683838 img loss 1.3039188385009766 img loss 1.4011282920837402 img loss 1.44246506690979 img loss 1.4299498796463013 img loss 1.3387376070022583 img loss 1.3980854749679565 img loss 1.4032446146011353 img loss 1.2976635694503784 img loss 1.4461513757705688 img loss 1.3711590766906738 img loss 1.5085313320159912 img loss 1.3753743171691895 img loss 1.4426919221878052 img loss 1.4283814430236816 img loss 1.3800128698349 img loss 1.3645241260528564 img loss 1.382463812828064 img loss 1.4077327251434326 img loss 1.4023926258087158 img loss 1.4071078300476074 img loss 1.3173578977584839 img loss 1.3896183967590332 img loss 1.5068615674972534 img loss 1.337836742401123img loss 1.311330795288086 img loss 1.3238797187805176 img loss 1.45995032787323 img loss 1.3364808559417725 img loss 1.504137396812439 img loss 1.3792418241500854 img loss 1.4661465883255005 img loss 1.4497349262237549 img loss 1.3522744178771973 img loss 1.319196105003357img loss 1.3970993757247925 img loss 1.430862545967102 img loss 1.4434103965759277 img loss 1.3030964136123657 img loss 1.412996530532837 img loss 1.4242714643478394 img loss 1.3555424213409424 img loss 1.495106816291809 img loss 1.316392421722412 img loss 1.4153783321380615 img loss 1.2993602752685547 img loss 1.4358395338058472 img loss 1.4332480430603027 img loss 1.3811155557632446 img loss 1.331967830657959 img loss 1.417571783065796 img loss 1.3495882749557495 img loss 1.4326289892196655 img loss 1.4175060987472534 img loss 1.3636091947555542 img loss 1.462156057357788 img loss 1.4029057025909424 img loss 1.5469696521759033 img loss 1.4125925302505493 img loss 1.4797192811965942 img loss 1.4373780488967896 img loss 1.535560965538025 img loss 1.402557134628296 img loss 1.4748384952545166 img loss 1.4371907711029053 img loss 1.4843344688415527 img loss 1.3720622062683105 img loss 1.4884083271026611 img loss 1.311745047569275 img loss 1.4082340002059937 img loss 1.4304145574569702 {'loss': 1.4105, 'grad_norm': 0.3532964289188385, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2185394763946533 img loss 1.2683045864105225 img loss 1.2484956979751587 img loss 1.1948487758636475 img loss 1.239565372467041 img loss 1.1967577934265137 img loss 1.2026880979537964 img loss 1.1977773904800415 img loss 1.2434227466583252 img loss 1.2210060358047485 img loss 1.2322490215301514 img loss 1.2592703104019165 img loss 1.209540605545044 img loss 1.20025634765625 img loss 1.1864314079284668 img loss 1.1998029947280884 img loss 1.1535037755966187 img loss 1.2380173206329346 img loss 1.1424052715301514 img loss 1.1764616966247559 img loss 1.190388560295105 img loss 1.2333519458770752 img loss 1.1964479684829712 img loss 1.2006033658981323img loss 1.2359970808029175 img loss 1.2711623907089233 img loss 1.1941465139389038 img loss 1.2238917350769043 img loss 1.2433353662490845 img loss 1.2335401773452759 img loss 1.2287927865982056 img loss 1.1932340860366821 img loss 1.2715036869049072 img loss 1.2497918605804443 img loss 1.209023356437683 img loss 1.2697582244873047 img loss 1.2174615859985352 img loss 1.2654002904891968 img loss 1.2693239450454712 img loss 1.2267407178878784 img loss 1.2393734455108643 img loss 1.2730672359466553 img loss 1.1905033588409424 img loss 1.1998480558395386 img loss 1.233665943145752 img loss 1.2725448608398438 img loss 1.1986321210861206 img loss 1.1824898719787598 img loss 1.2295583486557007 img loss 1.2125215530395508 img loss 1.2997820377349854 img loss 1.2012192010879517 img loss 1.2844616174697876 img loss 1.2150945663452148 img loss 1.1897252798080444 img loss 1.252968192100525 img loss 1.2362208366394043 img loss 1.1950572729110718 img loss 1.182004690170288 img loss 1.2323660850524902 img loss 1.1772358417510986 img loss 1.1750428676605225 img loss 1.2112067937850952 img loss 1.2032464742660522 img loss 1.2428932189941406 img loss 1.2102329730987549 img loss 1.203578233718872 img loss 1.1975724697113037 img loss 1.2020810842514038 img loss 1.224655032157898 img loss 1.2296597957611084 img loss 1.1990535259246826 img loss 1.1682401895523071 img loss 1.2370758056640625 img loss 1.220773458480835 img loss 1.2201446294784546 img loss 1.214284896850586 img loss 1.2171516418457031 img loss 1.2089561223983765 img loss 1.2155283689498901 img loss 1.2395167350769043 img loss 1.2040563821792603 img loss 1.1666483879089355 img loss 1.2134244441986084 img loss 1.196605920791626 img loss 1.2534852027893066 img loss 1.2415082454681396 img loss 1.1837987899780273 img loss 1.2624335289001465 img loss 1.228058099746704 img loss 1.1972198486328125 img loss 1.1848673820495605 img loss 1.2354520559310913 img loss 1.2288203239440918 img loss 1.2231911420822144 img loss 1.2152315378189087 img loss 1.2226837873458862 img loss 1.2664027214050293 img loss 1.1860871315002441 img loss 1.2704657316207886 img loss 1.1939219236373901 img loss 1.1694166660308838 img loss 1.2520694732666016 img loss 1.2390085458755493 img loss 1.177080512046814 img loss 1.2755775451660156 img loss 1.2313368320465088 img loss 1.1829588413238525 img loss 1.205634593963623 img loss 1.1325068473815918 img loss 1.2200355529785156 img loss 1.2277411222457886 img loss 1.2553284168243408 img loss 1.2538011074066162 img loss 1.1973278522491455 img loss 1.1954715251922607 img loss 1.2874053716659546 img loss 1.2145252227783203 img loss 1.2197327613830566 img loss 1.2051149606704712 img loss 1.2501752376556396 img loss 1.1658681631088257 img loss 1.2302391529083252 img loss 1.2586534023284912 img loss 1.226819634437561 img loss 1.304665207862854 img loss 1.2028512954711914 img loss 1.2376017570495605 {'loss': 1.2202, 'grad_norm': 0.2681170105934143, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4022257328033447 img loss 1.4116246700286865 img loss 1.3707222938537598 img loss 1.3884203433990479 img loss 1.3260879516601562 img loss 1.2882270812988281 img loss 1.3599779605865479 img loss 1.320831298828125 img loss 1.229907751083374 img loss 1.3750741481781006 img loss 1.397947907447815 img loss 1.2941137552261353 img loss 1.2719950675964355 img loss 1.3164011240005493 img loss 1.3730158805847168 img loss 1.3957188129425049 img loss 1.302014708518982 img loss 1.3010401725769043 img loss 1.3222607374191284 img loss 1.4563831090927124 img loss 1.4158207178115845 img loss 1.3448288440704346 img loss 1.4221031665802002 img loss 1.431801199913025 img loss 1.3773353099822998 img loss 1.3890820741653442 img loss 1.327826738357544 img loss 1.285277009010315 img loss 1.4939281940460205 img loss 1.5265337228775024 img loss 1.3587037324905396 img loss 1.4047696590423584 img loss 1.3700463771820068 img loss 1.333034873008728 img loss 1.2877086400985718 img loss 1.3580783605575562 img loss 1.3825615644454956 img loss 1.3578592538833618 img loss 1.395565152168274 img loss 1.3835539817810059 img loss 1.4170334339141846 img loss 1.359874963760376 img loss 1.3074480295181274 img loss 1.342769980430603 img loss 1.462605357170105 img loss 1.4545410871505737 img loss 1.3024604320526123 img loss 1.3553305864334106 img loss 1.2610477209091187 img loss 1.3355743885040283 img loss 1.3162649869918823 img loss 1.2993175983428955 img loss 1.4080402851104736 img loss 1.4411118030548096 img loss 1.3467376232147217 img loss 1.4578708410263062 img loss 1.3323774337768555 img loss 1.3335214853286743 img loss 1.4137784242630005 img loss 1.3698713779449463 img loss 1.3041185140609741 img loss 1.3377363681793213 img loss 1.341317892074585 img loss 1.3710627555847168 img loss 1.3233098983764648 img loss 1.3579022884368896 img loss 1.3983855247497559 img loss 1.2833961248397827 img loss 1.3461235761642456 img loss 1.3338929414749146 img loss 1.31748366355896img loss 1.3262561559677124 img loss 1.2833868265151978 img loss 1.487951397895813 img loss 1.3925026655197144 img loss 1.342513918876648 img loss 1.3666363954544067 img loss 1.3101933002471924 img loss 1.352725863456726 img loss 1.4227567911148071 img loss 1.327779769897461 img loss 1.2452141046524048 img loss 1.3163509368896484 img loss 1.3837209939956665 img loss 1.4043495655059814 img loss 1.3779301643371582 img loss 1.3542845249176025 img loss 1.3873387575149536 img loss 1.3919039964675903 img loss 1.3145058155059814 img loss 1.422902226448059 img loss 1.277439832687378 img loss 1.39651358127594 img loss 1.328918218612671 img loss 1.3204599618911743 img loss 1.2971844673156738 img loss 1.3109028339385986 img loss 1.414427638053894 img loss 1.2867916822433472 img loss 1.4577934741973877 img loss 1.363724946975708 img loss 1.2885957956314087 img loss 1.3258861303329468 img loss 1.3230102062225342 img loss 1.392739176750183 img loss 1.3219048976898193 img loss 1.4605506658554077 img loss 1.349534273147583 img loss 1.3266048431396484 img loss 1.357257604598999 img loss 1.2652244567871094 img loss 1.3917971849441528img loss 1.340399980545044 img loss 1.3189804553985596 img loss 1.3591344356536865 img loss 1.444292426109314 img loss 1.3467062711715698 img loss 1.4275859594345093 img loss 1.2949867248535156 img loss 1.3475773334503174 img loss 1.2835006713867188 img loss 1.3210519552230835 img loss 1.3092564344406128 img loss 1.2346524000167847 img loss 1.493652105331421 img loss 1.352818250656128 img loss 1.5041251182556152 img loss 1.3217368125915527 {'loss': 1.3574, 'grad_norm': 0.29705163836479187, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2074980735778809 img loss 1.1881136894226074 img loss 1.1949827671051025 img loss 1.3529380559921265 img loss 1.236790657043457 img loss 1.2478938102722168 img loss 1.243380069732666 img loss 1.2218412160873413 img loss 1.31358802318573 img loss 1.1688123941421509 img loss 1.2175319194793701 img loss 1.19039785861969 img loss 1.20502507686615 img loss 1.222528100013733 img loss 1.1625829935073853 img loss 1.2687400579452515 img loss 1.3470301628112793 img loss 1.1280293464660645 img loss 1.196340799331665 img loss 1.3182932138442993 img loss 1.1866908073425293 img loss 1.2423683404922485 img loss 1.23956298828125 img loss 1.22312331199646 img loss 1.2272875308990479 img loss 1.173830270767212 img loss 1.2477188110351562 img loss 1.2991406917572021 img loss 1.3195475339889526 img loss 1.2828538417816162 img loss 1.1625425815582275 img loss 1.246274471282959 img loss 1.1409242153167725 img loss 1.299539566040039 img loss 1.2216318845748901 img loss 1.2948299646377563 img loss 1.1699388027191162 img loss 1.2261756658554077 img loss 1.2314717769622803 img loss 1.1965506076812744 img loss 1.2486194372177124 img loss 1.1825532913208008 img loss 1.219143271446228 img loss 1.2208819389343262 img loss 1.2444504499435425 img loss 1.28032648563385 img loss 1.311652660369873 img loss 1.3289417028427124 img loss 1.1395260095596313 img loss 1.1841102838516235 img loss 1.193644404411316 img loss 1.1589531898498535 img loss 1.335769772529602 img loss 1.2249921560287476 img loss 1.2285321950912476 img loss 1.302536964416504 img loss 1.2386932373046875 img loss 1.1798385381698608 img loss 1.2572357654571533 img loss 1.245643973350525 img loss 1.172627329826355 img loss 1.18638014793396 img loss 1.2329933643341064 img loss 1.1629470586776733 img loss 1.257239818572998 img loss 1.2659953832626343 img loss 1.195618987083435 img loss 1.2244007587432861 img loss 1.2965977191925049 img loss 1.1859921216964722 img loss 1.1950035095214844 img loss 1.3044074773788452 img loss 1.1966478824615479 img loss 1.2464463710784912 img loss 1.2568944692611694 img loss 1.1749756336212158 img loss 1.2040600776672363 img loss 1.2171143293380737 img loss 1.234648585319519 img loss 1.1554421186447144 img loss 1.230033278465271 img loss 1.2583519220352173 img loss 1.2015185356140137 img loss 1.1910181045532227 img loss 1.147508144378662 img loss 1.2686305046081543 img loss 1.1583192348480225 img loss 1.3214261531829834 img loss 1.2403925657272339 img loss 1.324804663658142 img loss 1.2283934354782104 img loss 1.1944092512130737 img loss 1.2253559827804565 img loss 1.283653974533081 img loss 1.225848913192749 img loss 1.1732964515686035 img loss 1.3316997289657593 img loss 1.253203272819519 img loss 1.2170950174331665 img loss 1.1997714042663574 img loss 1.2529557943344116 img loss 1.2782268524169922 img loss 1.2017626762390137 img loss 1.1117777824401855 img loss 1.2929257154464722 img loss 1.2380633354187012 img loss 1.312882900238037 img loss 1.2300509214401245 img loss 1.31011164188385 img loss 1.2165107727050781 img loss 1.4136035442352295 img loss 1.3151787519454956 img loss 1.2288203239440918 img loss 1.3363841772079468 img loss 1.2063002586364746 img loss 1.1813735961914062 img loss 1.2560091018676758 img loss 1.2556713819503784 img loss 1.270429015159607 img loss 1.2335366010665894 img loss 1.2375208139419556 img loss 1.2712503671646118 img loss 1.313580870628357 img loss 1.2713828086853027 img loss 1.2027329206466675 img loss 1.2435435056686401 img loss 1.2489699125289917 img loss 1.258622646331787 {'loss': 1.2361, 'grad_norm': 0.5634165406227112, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6141278743743896 img loss 1.4712179899215698 img loss 1.614660620689392 img loss 1.4660487174987793 img loss 1.565689206123352 img loss 1.4781081676483154 img loss 1.542956829071045 img loss 1.619625210762024 img loss 1.5153400897979736 img loss 1.5571630001068115 img loss 1.54741632938385 img loss 1.73185133934021 img loss 1.530108094215393 img loss 1.4502911567687988 img loss 1.6131647825241089 img loss 1.4535099267959595 img loss 1.5174928903579712 img loss 1.4871690273284912 img loss 1.5938732624053955 img loss 1.4254242181777954 img loss 1.3937404155731201 img loss 1.5297247171401978 img loss 1.4716475009918213 img loss 1.466875433921814 img loss 1.6026618480682373 img loss 1.6826504468917847 img loss 1.7235939502716064 img loss 1.5069588422775269 img loss 1.4636313915252686 img loss 1.4849351644515991 img loss 1.425575852394104 img loss 1.489885926246643 img loss 1.4857181310653687 img loss 1.496734380722046 img loss 1.5059940814971924 img loss 1.4779282808303833 img loss 1.44893479347229 img loss 1.5971020460128784 img loss 1.511776328086853 img loss 1.5394963026046753 img loss 1.5433775186538696 img loss 1.4869625568389893 img loss 1.5674293041229248 img loss 1.5389618873596191 img loss 1.7603380680084229 img loss 1.4444369077682495 img loss 1.5515563488006592 img loss 1.5008376836776733 img loss 1.5064669847488403 img loss 1.5820918083190918 img loss 1.3776377439498901 img loss 1.5556610822677612 img loss 1.5536315441131592 img loss 1.4941232204437256 img loss 1.6093560457229614 img loss 1.7026859521865845 img loss 1.5566433668136597 img loss 1.5996124744415283 img loss 1.5824147462844849 img loss 1.4864665269851685 img loss 1.4987103939056396 img loss 1.448931336402893 img loss 1.4248178005218506 img loss 1.407468318939209 img loss 1.5272729396820068 img loss 1.6857026815414429 img loss 1.5653599500656128 img loss 1.555546522140503 img loss 1.365243673324585 img loss 1.507578730583191 img loss 1.5690512657165527 img loss 1.630936861038208 img loss 1.5054166316986084 img loss 1.5168546438217163 img loss 1.5573629140853882 img loss 1.638568639755249 img loss 1.5382020473480225 img loss 1.547217607498169 img loss 1.5880463123321533 img loss 1.4517163038253784 img loss 1.4465687274932861 img loss 1.5539393424987793 img loss 1.5703109502792358 img loss 1.5443631410598755 img loss 1.3210406303405762 img loss 1.495834469795227 img loss 1.6076685190200806 img loss 1.4903228282928467 img loss 1.5435079336166382 img loss 1.345733880996704 img loss 1.4788050651550293 img loss 1.5678316354751587 img loss 1.5036499500274658 img loss 1.4734036922454834 img loss 1.437146782875061 img loss 1.4608348608016968 img loss 1.4279744625091553 img loss 1.4456651210784912 img loss 1.4351779222488403 img loss 1.6340880393981934 img loss 1.5330491065979004 img loss 1.6476531028747559 img loss 1.4807019233703613 img loss 1.4492939710617065 img loss 1.505560040473938 img loss 1.6244475841522217 img loss 1.420432686805725 img loss 1.5857974290847778 img loss 1.6672511100769043 img loss 1.5996592044830322 img loss 1.5239492654800415 img loss 1.4556735754013062 img loss 1.6689543724060059 img loss 1.2426166534423828 img loss 1.531092882156372 img loss 1.4272873401641846 img loss 1.7122998237609863 img loss 1.4667942523956299 img loss 1.5583605766296387 img loss 1.4012242555618286 img loss 1.553733468055725 img loss 1.5704811811447144 img loss 1.5134613513946533 img loss 1.549497365951538 img loss 1.5846713781356812 img loss 1.5755888223648071 img loss 1.4468227624893188 img loss 1.4287793636322021 {'loss': 1.5245, 'grad_norm': 0.356451153755188, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2352443933486938 img loss 1.1947300434112549 img loss 1.2297894954681396 img loss 1.2579816579818726 img loss 1.2938728332519531 img loss 1.1845009326934814 img loss 1.1910196542739868 img loss 1.2718250751495361 img loss 1.2256056070327759 img loss 1.1936771869659424 img loss 1.3002796173095703 img loss 1.2301647663116455 img loss 1.2603596448898315 img loss 1.2282311916351318 img loss 1.2107212543487549 img loss 1.1949728727340698 img loss 1.2531507015228271 img loss 1.1778812408447266 img loss 1.2543543577194214 img loss 1.2253530025482178 img loss 1.2252206802368164 img loss 1.1910427808761597 img loss 1.1799570322036743 img loss 1.2547719478607178 img loss 1.3626729249954224 img loss 1.1953104734420776 img loss 1.237892508506775 img loss 1.2924840450286865 img loss 1.158608317375183 img loss 1.2026256322860718 img loss 1.28619384765625 img loss 1.1697546243667603 img loss 1.2571874856948853 img loss 1.234656572341919 img loss 1.2606052160263062 img loss 1.2636277675628662 img loss 1.3131831884384155 img loss 1.16801917552948 img loss 1.3103376626968384 img loss 1.2147712707519531 img loss 1.3048404455184937 img loss 1.2526450157165527 img loss 1.3123480081558228 img loss 1.2685396671295166 img loss 1.224938988685608 img loss 1.330101490020752 img loss 1.2410531044006348 img loss 1.234768271446228 img loss 1.2362442016601562 img loss 1.2453140020370483 img loss 1.2250263690948486 img loss 1.2482181787490845 img loss 1.246970534324646 img loss 1.190822958946228 img loss 1.2160890102386475 img loss 1.2054405212402344 img loss 1.246307373046875 img loss 1.1902261972427368 img loss 1.269765853881836 img loss 1.2253527641296387 img loss 1.2261950969696045 img loss 1.2420177459716797 img loss 1.1968328952789307 img loss 1.3036651611328125 img loss 1.1930937767028809 img loss 1.2329623699188232 img loss 1.177820086479187 img loss 1.254570484161377 img loss 1.234918236732483 img loss 1.260986089706421 img loss 1.2669819593429565 img loss 1.2463709115982056 img loss 1.19686758518219 img loss 1.2210935354232788 img loss 1.2032196521759033 img loss 1.2864124774932861 img loss 1.265419602394104 img loss 1.1671537160873413 img loss 1.1919643878936768 img loss 1.2384569644927979 img loss 1.1753214597702026 img loss 1.2223612070083618 img loss 1.2263121604919434 img loss 1.1670500040054321 img loss 1.206451416015625 img loss 1.2076553106307983 img loss 1.3071558475494385 img loss 1.235988974571228 img loss 1.3263756036758423 img loss 1.2078516483306885 img loss 1.205359935760498 img loss 1.2180161476135254 img loss 1.22732412815094 img loss 1.233345866203308 img loss 1.1757583618164062 img loss 1.3164749145507812 img loss 1.2431331872940063 img loss 1.2437504529953003 img loss 1.23262619972229 img loss 1.2524784803390503 img loss 1.2160682678222656 img loss 1.245466947555542 img loss 1.2775427103042603 img loss 1.1954870223999023 img loss 1.1937453746795654 img loss 1.2016329765319824 img loss 1.2275114059448242 img loss 1.273842215538025 img loss 1.2250486612319946 img loss 1.2221417427062988 img loss 1.1974514722824097 img loss 1.2966842651367188 img loss 1.273196816444397 img loss 1.237778663635254 img loss 1.238498568534851 img loss 1.1669543981552124 img loss 1.3263397216796875 img loss 1.3314967155456543 img loss 1.2488259077072144 img loss 1.2502129077911377 img loss 1.3199442625045776 img loss 1.2356128692626953 img loss 1.256042242050171 img loss 1.2414482831954956 img loss 1.21518075466156 img loss 1.1902222633361816 img loss 1.2503076791763306 img loss 1.2411924600601196 {'loss': 1.237, 'grad_norm': 0.4996365010738373, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1989226341247559 img loss 1.2401050329208374 img loss 1.202950119972229 img loss 1.2167387008666992 img loss 1.219821572303772 img loss 1.22490394115448 img loss 1.1852829456329346 img loss 1.2825716733932495 img loss 1.2242639064788818 img loss 1.26842200756073 img loss 1.259000301361084 img loss 1.3258416652679443 img loss 1.1868243217468262 img loss 1.250701665878296 img loss 1.192574381828308 img loss 1.1963872909545898 img loss 1.2125604152679443 img loss 1.2742408514022827 img loss 1.1312952041625977img loss 1.2488960027694702 img loss 1.1896238327026367 img loss 1.208377480506897 img loss 1.2876023054122925 img loss 1.2136616706848145 img loss 1.2258208990097046 img loss 1.26505446434021 img loss 1.2293264865875244 img loss 1.2606310844421387 img loss 1.2476757764816284 img loss 1.2025856971740723 img loss 1.260589599609375 img loss 1.1853936910629272 img loss 1.241971492767334 img loss 1.2253403663635254 img loss 1.2147047519683838 img loss 1.2574777603149414 img loss 1.2740967273712158 img loss 1.1750216484069824 img loss 1.2344815731048584 img loss 1.2441033124923706 img loss 1.1823711395263672 img loss 1.2339589595794678 img loss 1.3051508665084839 img loss 1.3273751735687256 img loss 1.250757098197937 img loss 1.2062621116638184 img loss 1.2684673070907593 img loss 1.1755611896514893 img loss 1.2378987073898315 img loss 1.2129440307617188 img loss 1.2388848066329956 img loss 1.2553844451904297 img loss 1.2269645929336548 img loss 1.2366344928741455 img loss 1.26094651222229 img loss 1.2111575603485107 img loss 1.2271841764450073 img loss 1.201738715171814 img loss 1.2486858367919922 img loss 1.1309313774108887 img loss 1.2235292196273804 img loss 1.2376168966293335 img loss 1.224109411239624 img loss 1.2109893560409546 img loss 1.2107949256896973 img loss 1.244228720664978 img loss 1.226453185081482 img loss 1.2402160167694092 img loss 1.2450670003890991 img loss 1.2259953022003174 img loss 1.1916353702545166 img loss 1.1846692562103271 img loss 1.2398937940597534 img loss 1.231513500213623 img loss 1.2012708187103271 img loss 1.1983078718185425 img loss 1.2709029912948608 img loss 1.2009071111679077 img loss 1.2676032781600952 img loss 1.2558305263519287 img loss 1.2038156986236572 img loss 1.1685104370117188 img loss 1.25312077999115 img loss 1.1941561698913574 img loss 1.2775778770446777 img loss 1.1859184503555298 img loss 1.2949843406677246 img loss 1.3419936895370483 img loss 1.1807373762130737 img loss 1.2305837869644165 img loss 1.229017734527588 img loss 1.2707260847091675 img loss 1.193320631980896 img loss 1.2297568321228027 img loss 1.1711785793304443 img loss 1.2516010999679565 img loss 1.22896409034729 img loss 1.1418347358703613 img loss 1.218968152999878 img loss 1.1824158430099487 img loss 1.2234511375427246 img loss 1.2297186851501465 img loss 1.2261228561401367 img loss 1.2198944091796875 img loss 1.1999324560165405 img loss 1.2244009971618652 img loss 1.210071325302124 img loss 1.1722383499145508 img loss 1.1886122226715088 img loss 1.178294062614441 img loss 1.190810203552246 img loss 1.2432491779327393 img loss 1.1787039041519165 img loss 1.2785484790802002 img loss 1.2078475952148438 img loss 1.1925945281982422 img loss 1.2405481338500977 img loss 1.245040774345398 img loss 1.148995041847229 img loss 1.2514846324920654 img loss 1.208700180053711 img loss 1.220071792602539 img loss 1.1930997371673584 img loss 1.1768851280212402 img loss 1.209456205368042 img loss 1.196001648902893 img loss 1.1732189655303955 img loss 1.1947059631347656 {'loss': 1.2237, 'grad_norm': 0.22437253594398499, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2695659399032593 img loss 1.3153549432754517 img loss 1.306816816329956 img loss 1.330329418182373 img loss 1.3643652200698853 img loss 1.302833080291748 img loss 1.214402675628662 img loss 1.27199125289917 img loss 1.3684011697769165 img loss 1.3422185182571411 img loss 1.3038986921310425 img loss 1.3301013708114624 img loss 1.2952101230621338 img loss 1.2983702421188354 img loss 1.2646756172180176 img loss 1.3429583311080933 img loss 1.2659000158309937 img loss 1.3477579355239868 img loss 1.3263643980026245 img loss 1.2574689388275146 img loss 1.3189692497253418 img loss 1.2820634841918945 img loss 1.3126139640808105 img loss 1.2725334167480469 img loss 1.283161997795105 img loss 1.3560402393341064 img loss 1.2843222618103027 img loss 1.293868064880371 img loss 1.3805187940597534 img loss 1.3382885456085205 img loss 1.2889530658721924 img loss 1.2684379816055298 img loss 1.3026031255722046 img loss 1.350562572479248 img loss 1.366909146308899 img loss 1.2959225177764893 img loss 1.3576009273529053 img loss 1.2851059436798096 img loss 1.3404775857925415 img loss 1.4154772758483887 img loss 1.2156352996826172 img loss 1.2989189624786377 img loss 1.3478624820709229 img loss 1.3324482440948486 img loss 1.3571375608444214 img loss 1.2328870296478271 img loss 1.2575623989105225 img loss 1.2911076545715332 img loss 1.3110692501068115 img loss 1.3269917964935303 img loss 1.229095458984375 img loss 1.275272250175476 img loss 1.3030270338058472 img loss 1.3534661531448364 img loss 1.3044164180755615 img loss 1.2895711660385132 img loss 1.4220061302185059 img loss 1.337267279624939 img loss 1.3534023761749268 img loss 1.3132466077804565 img loss 1.2741622924804688 img loss 1.3040771484375 img loss 1.2890859842300415 img loss 1.2994372844696045 img loss 1.2953499555587769 img loss 1.3984547853469849 img loss 1.4252203702926636 img loss 1.2653048038482666 img loss 1.3891583681106567 img loss 1.3363149166107178 img loss 1.3461871147155762 img loss 1.4262665510177612 img loss 1.4852322340011597 img loss 1.2645823955535889 img loss 1.3056938648223877 img loss 1.3303098678588867 img loss 1.3064168691635132 img loss 1.308046579360962 img loss 1.3501179218292236 img loss 1.319394826889038 img loss 1.270789623260498 img loss 1.2843906879425049 img loss 1.28132963180542 img loss 1.3487416505813599 img loss 1.2323224544525146 img loss 1.3387411832809448 img loss 1.3525652885437012 img loss 1.4630242586135864 img loss 1.2812353372573853 img loss 1.2514402866363525 img loss 1.2648193836212158 img loss 1.2940737009048462 img loss 1.3847651481628418 img loss 1.2706429958343506 img loss 1.2766252756118774 img loss 1.3551326990127563 img loss 1.3074840307235718 img loss 1.3750090599060059 img loss 1.3947292566299438 img loss 1.2761207818984985 img loss 1.3461803197860718 img loss 1.2994072437286377 img loss 1.2531105279922485 img loss 1.384231686592102 img loss 1.3347090482711792 img loss 1.314136028289795 img loss 1.343390941619873 img loss 1.3964406251907349 img loss 1.3085434436798096 img loss 1.1930795907974243 img loss 1.304620623588562 img loss 1.2295082807540894 img loss 1.4366697072982788 img loss 1.2541364431381226 img loss 1.2296644449234009 img loss 1.334224820137024 img loss 1.3544447422027588 img loss 1.387434720993042 img loss 1.3311831951141357 img loss 1.2915781736373901 img loss 1.3339945077896118 img loss 1.312387466430664 img loss 1.2870835065841675 img loss 1.2438464164733887 img loss 1.3131927251815796 img loss 1.249053716659546 img loss 1.3428441286087036 img loss 1.349871039390564 {'loss': 1.316, 'grad_norm': 0.25346553325653076, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1946525573730469 img loss 1.176877498626709 img loss 1.2246580123901367 img loss 1.1410006284713745 img loss 1.2045397758483887 img loss 1.2068771123886108 img loss 1.198843002319336 img loss 1.1469653844833374 img loss 1.1743271350860596 img loss 1.0903587341308594 img loss 1.190040946006775 img loss 1.1841024160385132 img loss 1.1969674825668335 img loss 1.1811442375183105 img loss 1.1881906986236572 img loss 1.1916542053222656 img loss 1.1318124532699585 img loss 1.1731232404708862 img loss 1.1652973890304565 img loss 1.1280466318130493 img loss 1.1869350671768188 img loss 1.1754941940307617 img loss 1.225063681602478 img loss 1.1955375671386719 img loss 1.2292611598968506 img loss 1.1977920532226562 img loss 1.251381278038025 img loss 1.169931411743164 img loss 1.1896003484725952 img loss 1.285143256187439 img loss 1.1282678842544556 img loss 1.146284580230713 img loss 1.2590925693511963 img loss 1.1916587352752686 img loss 1.1253788471221924 img loss 1.2376426458358765 img loss 1.199594497680664 img loss 1.1273187398910522 img loss 1.2065768241882324 img loss 1.1379536390304565 img loss 1.170652985572815 img loss 1.1514732837677002 img loss 1.2161593437194824 img loss 1.2364251613616943 img loss 1.223387360572815 img loss 1.192972183227539 img loss 1.1765058040618896img loss 1.1739766597747803 img loss 1.2123982906341553 img loss 1.174015998840332 img loss 1.1440117359161377 img loss 1.2378145456314087 img loss 1.192117691040039 img loss 1.2191060781478882 img loss 1.224100112915039 img loss 1.1764428615570068 img loss 1.2661399841308594 img loss 1.1990326642990112 img loss 1.1268678903579712 img loss 1.1733359098434448 img loss 1.2210978269577026img loss 1.2015060186386108 img loss 1.1981518268585205 img loss 1.2506808042526245 img loss 1.2286436557769775 img loss 1.2061619758605957 img loss 1.2320274114608765 img loss 1.2131141424179077 img loss 1.1587870121002197 img loss 1.114280104637146 img loss 1.1624767780303955 img loss 1.1375024318695068 img loss 1.2062898874282837 img loss 1.2587709426879883 img loss 1.1878629922866821 img loss 1.2002533674240112 img loss 1.1997953653335571 img loss 1.209480881690979 img loss 1.217130184173584 img loss 1.2007193565368652 img loss 1.1400468349456787 img loss 1.1676826477050781 img loss 1.254913330078125 img loss 1.188966155052185 img loss 1.1930968761444092 img loss 1.1950697898864746 img loss 1.236267328262329 img loss 1.188768982887268 img loss 1.199133276939392 img loss 1.2433534860610962 img loss 1.1810016632080078 img loss 1.1994283199310303 img loss 1.161446452140808 img loss 1.2003321647644043 img loss 1.1667840480804443 img loss 1.2226841449737549 img loss 1.1594021320343018 img loss 1.218848466873169 img loss 1.2432780265808105 img loss 1.1160385608673096 img loss 1.259910225868225 img loss 1.1600260734558105 img loss 1.139564871788025 img loss 1.1411340236663818 img loss 1.1571922302246094 img loss 1.2252380847930908 img loss 1.205076813697815 img loss 1.180121660232544 img loss 1.1561064720153809 img loss 1.1937682628631592 img loss 1.1722933053970337 img loss 1.2918944358825684 img loss 1.156208872795105 img loss 1.2243893146514893 img loss 1.228506326675415 img loss 1.1963684558868408 img loss 1.3202062845230103 img loss 1.1789354085922241 img loss 1.1981840133666992 img loss 1.2372486591339111 img loss 1.2784620523452759 img loss 1.2053040266036987 img loss 1.145756483078003 img loss 1.278565764427185 img loss 1.1725584268569946 img loss 1.1937280893325806 img loss 1.1607935428619385 img loss 1.1642194986343384 {'loss': 1.1933, 'grad_norm': 0.3480417728424072, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.229562520980835 img loss 1.2425774335861206 img loss 1.2084782123565674 img loss 1.2494531869888306 img loss 1.165130376815796 img loss 1.1852531433105469 img loss 1.217232584953308 img loss 1.1721091270446777 img loss 1.2054733037948608 img loss 1.2089512348175049 img loss 1.2785698175430298 img loss 1.182079553604126 img loss 1.2320630550384521 img loss 1.2652539014816284 img loss 1.181838035583496 img loss 1.1957601308822632 img loss 1.1577240228652954 img loss 1.2666313648223877 img loss 1.2373796701431274 img loss 1.2484411001205444 img loss 1.1832962036132812 img loss 1.2263511419296265 img loss 1.2408020496368408 img loss 1.1902967691421509 img loss 1.2263811826705933 img loss 1.2776211500167847 img loss 1.2007778882980347 img loss 1.2421894073486328 img loss 1.2083853483200073 img loss 1.2274821996688843 img loss 1.2403709888458252 img loss 1.2021903991699219 img loss 1.1827735900878906 img loss 1.2787961959838867 img loss 1.169705867767334 img loss 1.1928008794784546 img loss 1.2215893268585205 img loss 1.2337050437927246 img loss 1.2389925718307495 img loss 1.2063169479370117 img loss 1.1745259761810303 img loss 1.1881970167160034 img loss 1.2383276224136353 img loss 1.2485809326171875 img loss 1.1895092725753784 img loss 1.2384403944015503 img loss 1.2115724086761475 img loss 1.2174233198165894 img loss 1.2238726615905762img loss 1.2345272302627563 img loss 1.2124345302581787 img loss 1.2078585624694824 img loss 1.1896533966064453 img loss 1.1883635520935059 img loss 1.2020138502120972 img loss 1.1830743551254272 img loss 1.2416586875915527 img loss 1.2579456567764282 img loss 1.2189619541168213 img loss 1.201505422592163 img loss 1.2968776226043701 img loss 1.1749556064605713 img loss 1.1948471069335938 img loss 1.1524810791015625 img loss 1.1804368495941162 img loss 1.2773146629333496 img loss 1.2465959787368774 img loss 1.2297415733337402 img loss 1.2220581769943237 img loss 1.2009425163269043 img loss 1.183222770690918 img loss 1.2531201839447021 img loss 1.1995394229888916 img loss 1.1973446607589722 img loss 1.2362431287765503 img loss 1.2256882190704346 img loss 1.1996773481369019 img loss 1.2005640268325806 img loss 1.2364205121994019 img loss 1.1263086795806885 img loss 1.1910607814788818 img loss 1.208686113357544 img loss 1.1831645965576172 img loss 1.1928327083587646 img loss 1.1875228881835938 img loss 1.1653038263320923 img loss 1.1964218616485596 img loss 1.2071088552474976 img loss 1.2626190185546875 img loss 1.2194359302520752 img loss 1.1860440969467163 img loss 1.256773591041565 img loss 1.1458606719970703 img loss 1.18158757686615 img loss 1.2384943962097168 img loss 1.2239165306091309 img loss 1.2878918647766113 img loss 1.1648824214935303 img loss 1.1488263607025146 img loss 1.1979808807373047 img loss 1.1735141277313232 img loss 1.2080961465835571 img loss 1.2442927360534668 img loss 1.216120958328247 img loss 1.20473051071167 img loss 1.2203216552734375 img loss 1.218529462814331 img loss 1.2198246717453003 img loss 1.2228260040283203 img loss 1.1966066360473633 img loss 1.149707317352295 img loss 1.1890790462493896 img loss 1.1964349746704102 img loss 1.2582714557647705 img loss 1.202564001083374 img loss 1.2168163061141968 img loss 1.2850013971328735 img loss 1.1968402862548828 img loss 1.1827259063720703 img loss 1.1757150888442993 img loss 1.2927707433700562 img loss 1.2107138633728027 img loss 1.1797103881835938 img loss 1.2237592935562134 img loss 1.2390964031219482 img loss 1.2066773176193237 img loss 1.187255859375 img loss 1.1617335081100464 {'loss': 1.2121, 'grad_norm': 0.26587191224098206, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6329553127288818 img loss 1.6372792720794678 img loss 1.8505525588989258 img loss 1.654657006263733 img loss 1.6594451665878296 img loss 1.7541080713272095 img loss 1.639830470085144 img loss 1.6394026279449463 img loss 1.9203927516937256 img loss 1.631541132926941 img loss 1.6869522333145142 img loss 1.607491135597229 img loss 1.5830636024475098 img loss 1.8117897510528564 img loss 1.7133783102035522 img loss 1.706844449043274 img loss 1.6522066593170166 img loss 1.6838042736053467 img loss 1.634045124053955 img loss 1.6879152059555054 img loss 1.654917597770691 img loss 2.022571325302124 img loss 1.881887435913086 img loss 1.598172664642334 img loss 1.7018561363220215 img loss 1.6553452014923096 img loss 1.6689285039901733 img loss 1.745105266571045 img loss 1.6713745594024658 img loss 1.6909352540969849 img loss 1.6057851314544678 img loss 1.809356451034546 img loss 1.564265489578247 img loss 1.7135424613952637 img loss 1.6384961605072021 img loss 1.7456371784210205 img loss 1.7467851638793945 img loss 1.640092134475708 img loss 1.6831376552581787 img loss 1.9300693273544312 img loss 1.6148899793624878 img loss 1.7374693155288696 img loss 1.8949967622756958 img loss 1.6573078632354736 img loss 1.7894353866577148 img loss 1.674010157585144 img loss 1.687534213066101 img loss 1.6725809574127197 img loss 1.5506762266159058 img loss 1.6150143146514893 img loss 1.6378490924835205 img loss 1.7722111940383911 img loss 1.5647486448287964 img loss 1.7812522649765015 img loss 1.6232484579086304 img loss 1.7457021474838257 img loss 1.7072070837020874 img loss 1.7114742994308472 img loss 1.846907615661621 img loss 1.779703140258789 img loss 1.587182879447937 img loss 1.7465794086456299 img loss 1.814330816268921 img loss 1.6386357545852661 img loss 1.6370446681976318 img loss 1.5671616792678833 img loss 1.8217328786849976 img loss 1.6330533027648926 img loss 1.7011749744415283 img loss 1.5977308750152588 img loss 1.581457257270813 img loss 1.674893856048584 img loss 1.6317907571792603 img loss 1.9028421640396118 img loss 1.8340051174163818 img loss 1.7591248750686646 img loss 1.6719086170196533 img loss 1.5990554094314575 img loss 1.7108584642410278 img loss 1.7246259450912476 img loss 1.702663540840149 img loss 1.7244895696640015 img loss 1.8033066987991333 img loss 1.6253753900527954 img loss 1.716723084449768 img loss 1.6443253755569458 img loss 1.6207493543624878 img loss 1.6435558795928955 img loss 1.6202632188796997 img loss 1.5923969745635986 img loss 1.5913463830947876 img loss 1.6168363094329834 img loss 1.6041940450668335 img loss 1.691643238067627 img loss 1.7801154851913452 img loss 1.8061891794204712 img loss 1.6806693077087402 img loss 1.8291723728179932 img loss 1.866705060005188 img loss 1.7057684659957886 img loss 1.686504602432251 img loss 1.6711409091949463 img loss 1.5648788213729858 img loss 1.6159427165985107 img loss 1.6647217273712158 img loss 1.6797751188278198 img loss 1.5960898399353027 img loss 1.7704670429229736 img loss 1.599361538887024 img loss 1.6287357807159424 img loss 1.7041977643966675 img loss 1.7091799974441528 img loss 1.7713512182235718 img loss 1.5439555644989014 img loss 1.7405306100845337 img loss 1.7502329349517822 img loss 1.7418500185012817 img loss 1.5959007740020752 img loss 1.731215238571167 img loss 1.6696828603744507 img loss 1.6911485195159912 img loss 1.6044102907180786 img loss 1.7064378261566162 img loss 1.6241052150726318 img loss 1.691119909286499 img loss 1.7149978876113892 img loss 1.6079603433609009 img loss 1.5904568433761597 {'loss': 1.6921, 'grad_norm': 0.4007856845855713, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.235407829284668 img loss 1.2097599506378174 img loss 1.1987366676330566 img loss 1.1669762134552002 img loss 1.2315601110458374 img loss 1.184162974357605 img loss 1.1638010740280151 img loss 1.1885325908660889 img loss 1.2206764221191406 img loss 1.161454439163208 img loss 1.1903672218322754 img loss 1.2088727951049805 img loss 1.222183108329773 img loss 1.1639469861984253 img loss 1.1691163778305054 img loss 1.2794544696807861 img loss 1.2166507244110107 img loss 1.1701924800872803 img loss 1.2125003337860107 img loss 1.2038185596466064 img loss 1.226205825805664 img loss 1.2396999597549438 img loss 1.2085226774215698 img loss 1.1916042566299438 img loss 1.2560789585113525 img loss 1.1983182430267334 img loss 1.277658224105835 img loss 1.2458072900772095 img loss 1.190401315689087 img loss 1.2391079664230347 img loss 1.1486191749572754 img loss 1.2618471384048462 img loss 1.1855456829071045 img loss 1.1916203498840332 img loss 1.1804916858673096 img loss 1.2015938758850098 img loss 1.2155307531356812 img loss 1.1434764862060547 img loss 1.1969525814056396 img loss 1.251783013343811 img loss 1.190380573272705 img loss 1.2694594860076904 img loss 1.2223448753356934 img loss 1.2057157754898071 img loss 1.1828210353851318 img loss 1.1504452228546143 img loss 1.2901015281677246 img loss 1.169089674949646 img loss 1.2064223289489746 img loss 1.2186311483383179 img loss 1.191603660583496 img loss 1.1539920568466187 img loss 1.3071613311767578 img loss 1.2623562812805176 img loss 1.2409722805023193 img loss 1.1854766607284546 img loss 1.1547746658325195 img loss 1.240713119506836 img loss 1.2189052104949951 img loss 1.2010561227798462 img loss 1.16635000705719 img loss 1.2005188465118408 img loss 1.2263292074203491 img loss 1.2689828872680664 img loss 1.217315912246704 img loss 1.1578631401062012 img loss 1.1751359701156616 img loss 1.1997150182724 img loss 1.218801736831665 img loss 1.151979923248291 img loss 1.2002638578414917 img loss 1.226690649986267 img loss 1.2016855478286743 img loss 1.2268222570419312 img loss 1.1736979484558105img loss 1.1414302587509155 img loss 1.233271598815918 img loss 1.2677720785140991 img loss 1.1876294612884521 img loss 1.2875878810882568 img loss 1.3063589334487915 img loss 1.1617252826690674 img loss 1.2572659254074097 img loss 1.1637303829193115 img loss 1.2063617706298828 img loss 1.1678298711776733 img loss 1.2439777851104736 img loss 1.3131574392318726 img loss 1.1769115924835205 img loss 1.17665433883667 img loss 1.1959741115570068 img loss 1.2861995697021484 img loss 1.1615568399429321 img loss 1.1775977611541748 img loss 1.2630085945129395 img loss 1.3151203393936157 img loss 1.205553412437439 img loss 1.2188166379928589 img loss 1.271763801574707 img loss 1.222531795501709 img loss 1.1738028526306152 img loss 1.1789500713348389 img loss 1.1606006622314453 img loss 1.2200149297714233 img loss 1.1987546682357788 img loss 1.2100855112075806 img loss 1.215789794921875 img loss 1.1868189573287964 img loss 1.1876652240753174 img loss 1.1763794422149658 img loss 1.1774628162384033 img loss 1.2205673456192017 img loss 1.1896898746490479 img loss 1.1381876468658447 img loss 1.2399475574493408 img loss 1.2209593057632446 img loss 1.2076313495635986 img loss 1.2187585830688477 img loss 1.2171980142593384 img loss 1.1819409132003784 img loss 1.2312541007995605 img loss 1.2269318103790283 img loss 1.1400017738342285 img loss 1.3039387464523315 img loss 1.1779829263687134 img loss 1.1696507930755615 img loss 1.2819404602050781 img loss 1.2703231573104858 {'loss': 1.2098, 'grad_norm': 0.31963855028152466, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1940311193466187 img loss 1.2114450931549072 img loss 1.2219406366348267 img loss 1.3014668226242065 img loss 1.302864670753479 img loss 1.184231162071228 img loss 1.2471539974212646 img loss 1.2781333923339844 img loss 1.29170560836792 img loss 1.2974433898925781 img loss 1.3254261016845703 img loss 1.2094955444335938 img loss 1.3483154773712158 img loss 1.3241126537322998 img loss 1.2780978679656982 img loss 1.2726702690124512 img loss 1.2289198637008667 img loss 1.271653175354004 img loss 1.236999750137329 img loss 1.2200980186462402 img loss 1.2372878789901733 img loss 1.2426540851593018 img loss 1.2533907890319824 img loss 1.3391343355178833 img loss 1.3067423105239868 img loss 1.25384521484375 img loss 1.2612645626068115 img loss 1.2695486545562744 img loss 1.332690715789795 img loss 1.330924391746521 img loss 1.2742066383361816 img loss 1.2554354667663574 img loss 1.299026370048523 img loss 1.2951616048812866 img loss 1.2569520473480225 img loss 1.259600281715393 img loss 1.2613095045089722 img loss 1.283097267150879 img loss 1.2394052743911743 img loss 1.3329277038574219 img loss 1.20819091796875 img loss 1.3391951322555542 img loss 1.2323052883148193 img loss 1.2758344411849976 img loss 1.2536907196044922 img loss 1.2732189893722534 img loss 1.227966070175171 img loss 1.2834255695343018 img loss 1.303443431854248 img loss 1.2566604614257812 img loss 1.2262287139892578 img loss 1.2424712181091309 img loss 1.3091905117034912 img loss 1.2141748666763306 img loss 1.2605335712432861 img loss 1.213134527206421 img loss 1.2211376428604126 img loss 1.2884526252746582 img loss 1.2396214008331299 img loss 1.2633947134017944 img loss 1.2589043378829956 img loss 1.275460124015808 img loss 1.2490485906600952 img loss 1.3532164096832275 img loss 1.2766727209091187 img loss 1.2568248510360718 img loss 1.3475197553634644 img loss 1.2667232751846313 img loss 1.2574307918548584 img loss 1.2621387243270874 img loss 1.3288488388061523 img loss 1.2696119546890259 img loss 1.3359730243682861 img loss 1.269499659538269 img loss 1.1756393909454346 img loss 1.232454776763916 img loss 1.2513564825057983 img loss 1.2747735977172852 img loss 1.2579416036605835 img loss 1.2247116565704346 img loss 1.2286310195922852 img loss 1.2967489957809448 img loss 1.2877835035324097 img loss 1.170151948928833 img loss 1.349493145942688 img loss 1.2797138690948486 img loss 1.3925060033798218 img loss 1.3143837451934814 img loss 1.2648338079452515 img loss 1.3079839944839478 img loss 1.348832368850708 img loss 1.1726722717285156 img loss 1.234633207321167 img loss 1.2300052642822266 img loss 1.3315290212631226 img loss 1.3076562881469727 img loss 1.1892280578613281 img loss 1.2432200908660889 img loss 1.230730414390564 img loss 1.3153537511825562 img loss 1.2512574195861816 img loss 1.313814401626587 img loss 1.2482409477233887 img loss 1.195892095565796 img loss 1.3292975425720215 img loss 1.25569748878479 img loss 1.2984265089035034 img loss 1.3426672220230103 img loss 1.3509714603424072 img loss 1.3412840366363525 img loss 1.3260252475738525 img loss 1.2797882556915283 img loss 1.2381994724273682 img loss 1.2407013177871704 img loss 1.31809401512146 img loss 1.265249490737915 img loss 1.1850250959396362 img loss 1.3624837398529053 img loss 1.2184138298034668 img loss 1.2596402168273926 img loss 1.231764316558838 img loss 1.277944564819336 img loss 1.252289056777954 img loss 1.326677918434143 img loss 1.2429383993148804 img loss 1.345720887184143 img loss 1.273262619972229 img loss 1.3034968376159668 {'loss': 1.2716, 'grad_norm': 0.20714586973190308, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.357353925704956 img loss 1.3273580074310303 img loss 1.266653060913086 img loss 1.4055745601654053 img loss 1.2180942296981812 img loss 1.2995952367782593 img loss 1.2783855199813843 img loss 1.3160320520401 img loss 1.2783050537109375 img loss 1.3260986804962158 img loss 1.2213671207427979 img loss 1.3071078062057495 img loss 1.2294297218322754 img loss 1.2244786024093628 img loss 1.3042755126953125 img loss 1.3400633335113525 img loss 1.292972207069397 img loss 1.3017079830169678 img loss 1.2438510656356812 img loss 1.2141454219818115 img loss 1.2752976417541504 img loss 1.3221451044082642 img loss 1.1928621530532837 img loss 1.3299297094345093 img loss 1.4547468423843384 img loss 1.4342557191848755 img loss 1.2506014108657837 img loss 1.2062091827392578 img loss 1.235329270362854 img loss 1.2864761352539062 img loss 1.257284164428711 img loss 1.3021224737167358 img loss 1.2904624938964844 img loss 1.2489420175552368 img loss 1.2644062042236328 img loss 1.3169951438903809 img loss 1.328416347503662 img loss 1.2505661249160767 img loss 1.294897437095642 img loss 1.3015655279159546 img loss 1.3757134675979614 img loss 1.260431170463562 img loss 1.2366714477539062 img loss 1.3548492193222046 img loss 1.3022726774215698 img loss 1.345834493637085 img loss 1.3430802822113037 img loss 1.228907585144043 img loss 1.3160982131958008 img loss 1.3085085153579712 img loss 1.326123595237732 img loss 1.2834055423736572 img loss 1.2595973014831543 img loss 1.315215826034546 img loss 1.2626310586929321 img loss 1.2024974822998047 img loss 1.4151198863983154 img loss 1.3080673217773438 img loss 1.2909440994262695 img loss 1.3644649982452393 img loss 1.344195008277893 img loss 1.2497665882110596 img loss 1.249096393585205 img loss 1.2693688869476318 img loss 1.344783902168274 img loss 1.2530860900878906 img loss 1.2127045392990112 img loss 1.2048107385635376 img loss 1.2729666233062744 img loss 1.3731061220169067 img loss 1.339216709136963 img loss 1.2299275398254395 img loss 1.3199443817138672 img loss 1.2985358238220215 img loss 1.2703174352645874 img loss 1.351616382598877 img loss 1.3286999464035034 img loss 1.3357958793640137 img loss 1.2841694355010986 img loss 1.193912386894226 img loss 1.2699024677276611 img loss 1.2891767024993896 img loss 1.2671159505844116 img loss 1.3259294033050537 img loss 1.2536314725875854 img loss 1.3382896184921265 img loss 1.3799431324005127 img loss 1.3911617994308472 img loss 1.3115156888961792 img loss 1.2434043884277344 img loss 1.3087329864501953 img loss 1.2874538898468018 img loss 1.341063380241394 img loss 1.2262241840362549 img loss 1.345630168914795 img loss 1.2568933963775635 img loss 1.2807040214538574 img loss 1.2612556219100952 img loss 1.3712047338485718 img loss 1.2799594402313232 img loss 1.356916069984436 img loss 1.3092916011810303 img loss 1.2334293127059937 img loss 1.2861448526382446 img loss 1.3130096197128296 img loss 1.2568233013153076 img loss 1.2269617319107056 img loss 1.3421231508255005 img loss 1.2457916736602783 img loss 1.279212236404419 img loss 1.2327836751937866 img loss 1.328195571899414 img loss 1.3923561573028564 img loss 1.2765860557556152 img loss 1.3480077981948853 img loss 1.353023648262024 img loss 1.318929672241211 img loss 1.4049851894378662 img loss 1.248624324798584 img loss 1.3404266834259033 img loss 1.3162683248519897 img loss 1.3017536401748657 img loss 1.2701634168624878 img loss 1.238369345664978 img loss 1.2325290441513062 img loss 1.379113793373108 img loss 1.272913932800293 img loss 1.2805975675582886 {'loss': 1.2956, 'grad_norm': 0.5403846502304077, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2378785610198975 img loss 1.2425587177276611 img loss 1.3181934356689453 img loss 1.2846312522888184 img loss 1.2969071865081787 img loss 1.2608495950698853 img loss 1.2544817924499512 img loss 1.2718408107757568 img loss 1.275559663772583 img loss 1.253672480583191 img loss 1.2275625467300415 img loss 1.2781269550323486 img loss 1.2776710987091064 img loss 1.319084882736206 img loss 1.2757019996643066 img loss 1.3188567161560059 img loss 1.356319546699524 img loss 1.254516839981079 img loss 1.2412028312683105 img loss 1.2835711240768433 img loss 1.277597188949585 img loss 1.2250083684921265 img loss 1.2505545616149902 img loss 1.2745583057403564 img loss 1.2312599420547485 img loss 1.2717955112457275 img loss 1.308349847793579 img loss 1.2339553833007812 img loss 1.2693824768066406 img loss 1.2658443450927734 img loss 1.2131441831588745 img loss 1.2427959442138672 img loss 1.2696447372436523 img loss 1.244225263595581 img loss 1.2529182434082031 img loss 1.2995562553405762 img loss 1.241288185119629 img loss 1.2477575540542603 img loss 1.2823342084884644 img loss 1.263322353363037 img loss 1.2956331968307495 img loss 1.269110918045044 img loss 1.2043720483779907 img loss 1.2361464500427246 img loss 1.2731316089630127 img loss 1.2685858011245728 img loss 1.2486600875854492 img loss 1.248555064201355 img loss 1.2405515909194946 img loss 1.3311773538589478 img loss 1.2179505825042725 img loss 1.3104137182235718 img loss 1.3099969625473022 img loss 1.295569658279419 img loss 1.2385339736938477 img loss 1.2965426445007324 img loss 1.2538552284240723 img loss 1.336350679397583 img loss 1.2664694786071777 img loss 1.299171805381775 img loss 1.320989966392517 img loss 1.2615803480148315 img loss 1.251194953918457 img loss 1.2740745544433594 img loss 1.277343988418579 img loss 1.2434910535812378 img loss 1.2724547386169434 img loss 1.2608966827392578 img loss 1.346319556236267 img loss 1.3273597955703735 img loss 1.251334547996521 img loss 1.274696707725525 img loss 1.266592025756836 img loss 1.2574234008789062 img loss 1.231099009513855 img loss 1.2324151992797852 img loss 1.2355009317398071 img loss 1.2924336194992065 img loss 1.2853864431381226 img loss 1.23451566696167 img loss 1.2523983716964722 img loss 1.227596640586853 img loss 1.252658724784851 img loss 1.2532403469085693 img loss 1.2555038928985596 img loss 1.264392375946045 img loss 1.2418828010559082 img loss 1.2641454935073853 img loss 1.2327194213867188 img loss 1.3013889789581299 img loss 1.2575225830078125 img loss 1.259864091873169 img loss 1.2661460638046265 img loss 1.2706936597824097 img loss 1.2555575370788574 img loss 1.2742384672164917 img loss 1.2437567710876465 img loss 1.2494027614593506 img loss 1.3190910816192627 img loss 1.2595467567443848 img loss 1.2140092849731445 img loss 1.2687114477157593 img loss 1.2246489524841309 img loss 1.2314404249191284 img loss 1.2174088954925537 img loss 1.2196930646896362 img loss 1.267934799194336 img loss 1.2865924835205078 img loss 1.2504937648773193 img loss 1.260770559310913 img loss 1.222167730331421 img loss 1.2973592281341553 img loss 1.3076940774917603 img loss 1.316638469696045 img loss 1.3097929954528809 img loss 1.2315998077392578 img loss 1.243656873703003 img loss 1.2602680921554565 img loss 1.2087492942810059 img loss 1.2808985710144043 img loss 1.2041653394699097 img loss 1.2984226942062378 img loss 1.293910264968872 img loss 1.3011720180511475 img loss 1.264002799987793 img loss 1.3129143714904785 img loss 1.2495207786560059 img loss 1.244258165359497 {'loss': 1.2658, 'grad_norm': 0.19831401109695435, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2569855451583862 img loss 1.2495635747909546 img loss 1.2286895513534546 img loss 1.184896469116211 img loss 1.2246118783950806 img loss 1.21389639377594 img loss 1.2421460151672363 img loss 1.2029329538345337 img loss 1.2772225141525269 img loss 1.2356464862823486 img loss 1.2565735578536987 img loss 1.2600114345550537 img loss 1.2559458017349243 img loss 1.2130565643310547 img loss 1.1927597522735596 img loss 1.240422248840332 img loss 1.2192323207855225 img loss 1.221907138824463 img loss 1.2810568809509277 img loss 1.2533888816833496 img loss 1.2354915142059326 img loss 1.2680052518844604 img loss 1.3086227178573608 img loss 1.2224568128585815 img loss 1.2386554479599 img loss 1.2498118877410889 img loss 1.2153739929199219 img loss 1.2600370645523071 img loss 1.2362799644470215 img loss 1.252341866493225 img loss 1.194618821144104 img loss 1.205271601676941 img loss 1.2525439262390137 img loss 1.2296788692474365 img loss 1.3411184549331665 img loss 1.2237423658370972 img loss 1.2410248517990112 img loss 1.2389726638793945 img loss 1.2105906009674072 img loss 1.2418397665023804 img loss 1.2102138996124268 img loss 1.2301857471466064 img loss 1.252295732498169 img loss 1.2620253562927246 img loss 1.2342634201049805 img loss 1.3388527631759644 img loss 1.273241639137268 img loss 1.1636426448822021 img loss 1.178048014640808 img loss 1.2194830179214478 img loss 1.2502316236495972 img loss 1.1967424154281616 img loss 1.2026991844177246 img loss 1.230991005897522 img loss 1.2900618314743042 img loss 1.1986479759216309 img loss 1.2393280267715454 img loss 1.2438769340515137 img loss 1.2737972736358643 img loss 1.2757682800292969 img loss 1.2556607723236084 img loss 1.1896549463272095 img loss 1.253016710281372 img loss 1.1983275413513184 img loss 1.3132238388061523 img loss 1.2769579887390137 img loss 1.2895421981811523 img loss 1.1659634113311768 img loss 1.267115831375122 img loss 1.2702882289886475 img loss 1.2742805480957031 img loss 1.2304303646087646 img loss 1.2256958484649658 img loss 1.2822624444961548 img loss 1.293062448501587 img loss 1.2015812397003174 img loss 1.212314248085022 img loss 1.1880401372909546 img loss 1.2490286827087402 img loss 1.2257028818130493 img loss 1.1976335048675537 img loss 1.2732326984405518 img loss 1.216274619102478 img loss 1.2182774543762207 img loss 1.2255159616470337 img loss 1.2291786670684814 img loss 1.2114216089248657 img loss 1.2030080556869507 img loss 1.2608392238616943 img loss 1.252518653869629 img loss 1.2342017889022827 img loss 1.248249888420105 img loss 1.241487741470337 img loss 1.1659435033798218 img loss 1.2154443264007568 img loss 1.3205476999282837 img loss 1.1902029514312744 img loss 1.2767075300216675 img loss 1.2246580123901367 img loss 1.2340754270553589 img loss 1.2570406198501587 img loss 1.2430243492126465 img loss 1.204670786857605 img loss 1.2648166418075562 img loss 1.2959859371185303 img loss 1.2987498044967651 img loss 1.2249664068222046 img loss 1.26850163936615 img loss 1.2586201429367065 img loss 1.1559288501739502 img loss 1.2072956562042236 img loss 1.2819974422454834 img loss 1.20125412940979 img loss 1.2308588027954102 img loss 1.2039717435836792 img loss 1.2676074504852295 img loss 1.2115672826766968 img loss 1.2732346057891846 img loss 1.283039927482605 img loss 1.2233259677886963 img loss 1.2838327884674072 img loss 1.2169052362442017 img loss 1.2690569162368774 img loss 1.2500357627868652 img loss 1.2778575420379639 img loss 1.225467562675476 img loss 1.2949445247650146 img loss 1.2382646799087524 {'loss': 1.2403, 'grad_norm': 0.1994466483592987, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4054425954818726 img loss 1.3683302402496338 img loss 1.355973482131958 img loss 1.4245511293411255 img loss 1.4351142644882202 img loss 1.495470404624939 img loss 1.4652358293533325 img loss 1.3668221235275269 img loss 1.3266255855560303 img loss 1.4791170358657837 img loss 1.3480457067489624 img loss 1.3714165687561035 img loss 1.4084477424621582 img loss 1.2703659534454346 img loss 1.3002582788467407 img loss 1.3254493474960327 img loss 1.339127779006958 img loss 1.513942003250122 img loss 1.3625500202178955 img loss 1.351509928703308 img loss 1.4180161952972412 img loss 1.402940034866333 img loss 1.3792120218276978 img loss 1.5360914468765259 img loss 1.3730425834655762 img loss 1.3825289011001587 img loss 1.2943756580352783 img loss 1.4544779062271118 img loss 1.4241498708724976 img loss 1.4084718227386475 img loss 1.3320403099060059 img loss 1.544792890548706 img loss 1.4543697834014893 img loss 1.398472547531128 img loss 1.3309024572372437 img loss 1.4037320613861084 img loss 1.3442410230636597 img loss 1.384506344795227 img loss 1.2601304054260254 img loss 1.3214346170425415 img loss 1.3154847621917725 img loss 1.4838097095489502 img loss 1.4512373208999634 img loss 1.5310015678405762 img loss 1.4142380952835083 img loss 1.3491157293319702 img loss 1.3483083248138428 img loss 1.472145438194275 img loss 1.4254167079925537 img loss 1.395556926727295 img loss 1.3142837285995483 img loss 1.3163728713989258 img loss 1.4544340372085571 img loss 1.430064082145691 img loss 1.4244755506515503 img loss 1.4099684953689575 img loss 1.2825263738632202 img loss 1.4934653043746948 img loss 1.42597234249115 img loss 1.4227712154388428 img loss 1.4634881019592285 img loss 1.318723201751709 img loss 1.401390790939331 img loss 1.4614404439926147 img loss 1.5199196338653564 img loss 1.5020164251327515 img loss 1.3841792345046997 img loss 1.4348511695861816 img loss 1.4202479124069214 img loss 1.3426769971847534 img loss 1.4412442445755005 img loss 1.3724793195724487 img loss 1.4201701879501343img loss 1.3727409839630127 img loss 1.3350247144699097 img loss 1.4005159139633179 img loss 1.3142719268798828 img loss 1.5647213459014893 img loss 1.3643193244934082 img loss 1.369442343711853 img loss 1.4690935611724854 img loss 1.3608070611953735 img loss 1.331250786781311 img loss 1.412075161933899 img loss 1.4142929315567017 img loss 1.5426779985427856 img loss 1.5833691358566284 img loss 1.3741182088851929 img loss 1.4073903560638428 img loss 1.5065042972564697 img loss 1.4934914112091064 img loss 1.4760410785675049 img loss 1.3066896200180054 img loss 1.2394626140594482 img loss 1.5428812503814697 img loss 1.3589600324630737 img loss 1.416344165802002 img loss 1.456367015838623 img loss 1.4511618614196777 img loss 1.3542424440383911 img loss 1.3631752729415894 img loss 1.342566728591919 img loss 1.3735815286636353 img loss 1.4198862314224243 img loss 1.471261739730835 img loss 1.3166453838348389 img loss 1.4161022901535034 img loss 1.4182344675064087 img loss 1.2941612005233765 img loss 1.3939956426620483 img loss 1.4144670963287354 img loss 1.413112998008728 img loss 1.4391933679580688 img loss 1.3746575117111206 img loss 1.3696019649505615 img loss 1.4238308668136597 img loss 1.3856950998306274 img loss 1.206708312034607 img loss 1.3751614093780518 img loss 1.3775742053985596 img loss 1.3574894666671753 img loss 1.5394178628921509 img loss 1.2912235260009766 img loss 1.4092975854873657 img loss 1.4579609632492065 img loss 1.3921979665756226 img loss 1.320568323135376 img loss 1.4630175828933716 {'loss': 1.4003, 'grad_norm': 0.2527405619621277, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2821632623672485 img loss 1.4483424425125122 img loss 1.531398057937622 img loss 1.3850533962249756 img loss 1.3938690423965454 img loss 1.5266633033752441 img loss 1.4098789691925049 img loss 1.3480936288833618 img loss 1.704776644706726 img loss 1.4451957941055298 img loss 1.5010451078414917 img loss 1.5672563314437866 img loss 1.4266078472137451 img loss 1.4140560626983643 img loss 1.4055784940719604 img loss 1.41388738155365 img loss 1.4355238676071167 img loss 1.5566840171813965 img loss 1.5104619264602661 img loss 1.4564931392669678 img loss 1.3582500219345093 img loss 1.6067211627960205 img loss 1.320664644241333 img loss 1.5262552499771118 img loss 1.454190969467163 img loss 1.5454891920089722 img loss 1.5137587785720825 img loss 1.4081765413284302 img loss 1.5492652654647827 img loss 1.4822560548782349 img loss 1.6080788373947144 img loss 1.3912043571472168 img loss 1.4531075954437256 img loss 1.477654218673706 img loss 1.613326907157898 img loss 1.4475466012954712 img loss 1.5004509687423706 img loss 1.494328260421753 img loss 1.3296877145767212 img loss 1.3887391090393066 img loss 1.4880788326263428 img loss 1.4521793127059937 img loss 1.5220427513122559 img loss 1.487480640411377 img loss 1.2926251888275146 img loss 1.4743542671203613 img loss 1.3737924098968506 img loss 1.4050441980361938 img loss 1.5513066053390503 img loss 1.4047929048538208 img loss 1.4353537559509277 img loss 1.5606322288513184 img loss 1.5596600770950317 img loss 1.6218791007995605 img loss 1.3487107753753662 img loss 1.4381242990493774 img loss 1.6145682334899902 img loss 1.4467462301254272 img loss 1.5913617610931396 img loss 1.4381951093673706 img loss 1.374529480934143 img loss 1.4558762311935425 img loss 1.4826257228851318 img loss 1.4345935583114624 img loss 1.45676589012146 img loss 1.4049639701843262 img loss 1.5079501867294312 img loss 1.3944844007492065 img loss 1.639163851737976 img loss 1.7141996622085571 img loss 1.4995368719100952 img loss 1.4896925687789917 img loss 1.4119017124176025 img loss 1.640137791633606 img loss 1.5132912397384644 img loss 1.5415480136871338 img loss 1.5178321599960327 img loss 1.4355580806732178 img loss 1.5989124774932861 img loss 1.6765567064285278 img loss 1.4941030740737915 img loss 1.355221152305603 img loss 1.491091012954712 img loss 1.5268003940582275 img loss 1.4113061428070068 img loss 1.4588816165924072 img loss 1.5514737367630005 img loss 1.536607027053833 img loss 1.4391833543777466 img loss 1.5166751146316528 img loss 1.3472412824630737 img loss 1.3811945915222168 img loss 1.5084420442581177 img loss 1.487870454788208 img loss 1.5097689628601074 img loss 1.381125569343567 img loss 1.4376769065856934 img loss 1.423173189163208 img loss 1.5242291688919067 img loss 1.3371437788009644 img loss 1.4498564004898071 img loss 1.6441282033920288 img loss 1.405471920967102 img loss 1.4450123310089111 img loss 1.562589406967163 img loss 1.4138928651809692 img loss 1.5658735036849976 img loss 1.4815953969955444 img loss 1.4950066804885864 img loss 1.2978256940841675 img loss 1.5076098442077637 img loss 1.43404221534729 img loss 1.621260166168213 img loss 1.5324262380599976 img loss 1.53162682056427 img loss 1.4560080766677856 img loss 1.458400011062622 img loss 1.4107648134231567 img loss 1.5172923803329468 img loss 1.527781367301941 img loss 1.428219199180603 img loss 1.4136207103729248 img loss 1.4069007635116577 img loss 1.4743906259536743 img loss 1.404904842376709 img loss 1.5736429691314697 img loss 1.469399333000183 img loss 1.4850584268569946 {'loss': 1.4755, 'grad_norm': 0.5035285949707031, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.168811559677124 img loss 1.2116647958755493 img loss 1.250008225440979 img loss 1.232215166091919 img loss 1.2317776679992676 img loss 1.2531566619873047 img loss 1.2945655584335327 img loss 1.2716264724731445 img loss 1.2497457265853882 img loss 1.2878206968307495 img loss 1.1739838123321533 img loss 1.2333056926727295 img loss 1.1734867095947266 img loss 1.1648651361465454 img loss 1.257537841796875 img loss 1.2221506834030151 img loss 1.246387004852295 img loss 1.2253299951553345 img loss 1.2243216037750244 img loss 1.2435932159423828 img loss 1.2445290088653564 img loss 1.222338080406189 img loss 1.2750558853149414 img loss 1.2589600086212158 img loss 1.240506887435913 img loss 1.2643247842788696 img loss 1.260536551475525 img loss 1.251906156539917 img loss 1.2433801889419556 img loss 1.250710368156433 img loss 1.2676969766616821 img loss 1.24818754196167 img loss 1.2748756408691406 img loss 1.2757060527801514 img loss 1.2684259414672852 img loss 1.219326376914978 img loss 1.2720686197280884 img loss 1.2855983972549438 img loss 1.2737529277801514 img loss 1.2174193859100342 img loss 1.298457384109497 img loss 1.1961402893066406 img loss 1.2096762657165527 img loss 1.22947096824646 img loss 1.2681015729904175 img loss 1.2504104375839233 img loss 1.22324800491333 img loss 1.2505333423614502 img loss 1.20060396194458 img loss 1.2508801221847534 img loss 1.2261841297149658 img loss 1.2553974390029907 img loss 1.2273480892181396 img loss 1.225520372390747 img loss 1.256205439567566 img loss 1.235649824142456 img loss 1.2785289287567139 img loss 1.2500698566436768 img loss 1.2545932531356812 img loss 1.2667694091796875 img loss 1.230455994606018 img loss 1.2890772819519043 img loss 1.1993385553359985 img loss 1.2230257987976074 img loss 1.2191693782806396 img loss 1.2711446285247803 img loss 1.2183574438095093 img loss 1.2456848621368408 img loss 1.2734960317611694 img loss 1.2833266258239746 img loss 1.2799562215805054 img loss 1.2684874534606934 img loss 1.2316701412200928 img loss 1.1856399774551392 img loss 1.2536958456039429 img loss 1.2361083030700684 img loss 1.282713770866394 img loss 1.223252773284912 img loss 1.2275142669677734 img loss 1.2446403503417969 img loss 1.2537617683410645 img loss 1.254379153251648 img loss 1.281427025794983 img loss 1.2277393341064453 img loss 1.2262388467788696 img loss 1.237115740776062 img loss 1.2061691284179688 img loss 1.2031855583190918 img loss 1.2393548488616943 img loss 1.3063544034957886 img loss 1.262732982635498 img loss 1.2665647268295288 img loss 1.2353168725967407 img loss 1.2697089910507202 img loss 1.2433496713638306 img loss 1.262998104095459 img loss 1.249651312828064 img loss 1.2488659620285034 img loss 1.2135043144226074 img loss 1.2499052286148071 img loss 1.2024301290512085 img loss 1.2212227582931519 img loss 1.259677529335022 img loss 1.266890048980713 img loss 1.2593410015106201 img loss 1.230189561843872 img loss 1.2624667882919312 img loss 1.2202041149139404 img loss 1.24245023727417 img loss 1.2082362174987793 img loss 1.2362403869628906 img loss 1.2178839445114136 img loss 1.248956561088562 img loss 1.207876443862915 img loss 1.2915034294128418 img loss 1.2383320331573486 img loss 1.1871989965438843 img loss 1.2512824535369873 img loss 1.2349989414215088 img loss 1.2505452632904053 img loss 1.3155466318130493 img loss 1.2050594091415405 img loss 1.2534786462783813 img loss 1.289414405822754 img loss 1.2093052864074707 img loss 1.2252857685089111 img loss 1.2837761640548706 img loss 1.2333720922470093 {'loss': 1.2435, 'grad_norm': 0.27157124876976013, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3037891387939453 img loss 1.1434922218322754 img loss 1.1351428031921387 img loss 1.260473608970642 img loss 1.2228138446807861 img loss 1.192190170288086 img loss 1.1994503736495972 img loss 1.2680364847183228 img loss 1.2213854789733887 img loss 1.2674651145935059 img loss 1.1971065998077393 img loss 1.1697028875350952 img loss 1.2811603546142578 img loss 1.2918641567230225 img loss 1.229424238204956 img loss 1.2629497051239014 img loss 1.149970531463623 img loss 1.2818644046783447 img loss 1.2168539762496948 img loss 1.335874080657959 img loss 1.1594760417938232 img loss 1.1810022592544556 img loss 1.2662110328674316 img loss 1.3044774532318115 img loss 1.2741584777832031 img loss 1.2548677921295166 img loss 1.236761450767517 img loss 1.1991945505142212 img loss 1.2010562419891357 img loss 1.2499030828475952 img loss 1.1590285301208496 img loss 1.1309843063354492 img loss 1.1907577514648438 img loss 1.2076114416122437 img loss 1.2548493146896362 img loss 1.2680983543395996 img loss 1.22477388381958 img loss 1.238077163696289 img loss 1.273450255393982 img loss 1.262965202331543 img loss 1.22531259059906 img loss 1.2859952449798584 img loss 1.196528673171997 img loss 1.194191575050354 img loss 1.2566490173339844 img loss 1.266998291015625 img loss 1.1966240406036377 img loss 1.226161003112793 img loss 1.180577278137207 img loss 1.2944179773330688 img loss 1.1806960105895996 img loss 1.2348369359970093 img loss 1.214188814163208 img loss 1.2435476779937744 img loss 1.278206706047058 img loss 1.2497652769088745 img loss 1.2748428583145142 img loss 1.1574132442474365 img loss 1.2694905996322632 img loss 1.2072174549102783 img loss 1.300239086151123 img loss 1.2649692296981812 img loss 1.2709205150604248 img loss 1.1907364130020142 img loss 1.251280665397644 img loss 1.2748554944992065 img loss 1.2228810787200928 img loss 1.2362079620361328 img loss 1.2694697380065918 img loss 1.1848888397216797 img loss 1.1709941625595093 img loss 1.1203559637069702 img loss 1.2102408409118652 img loss 1.2636114358901978 img loss 1.262998104095459 img loss 1.2254350185394287 img loss 1.3354198932647705 img loss 1.2183678150177002 img loss 1.3104571104049683 img loss 1.217526912689209 img loss 1.3324775695800781 img loss 1.289149522781372 img loss 1.225932002067566 img loss 1.306776762008667 img loss 1.2447611093521118 img loss 1.1968743801116943 img loss 1.2543381452560425 img loss 1.2018311023712158 img loss 1.251712679862976 img loss 1.2133585214614868 img loss 1.2857592105865479 img loss 1.2008453607559204 img loss 1.1833488941192627 img loss 1.2455801963806152 img loss 1.2066190242767334 img loss 1.2582697868347168 img loss 1.287278175354004 img loss 1.2031595706939697 img loss 1.2126686573028564 img loss 1.2805309295654297 img loss 1.1880098581314087 img loss 1.1821110248565674 img loss 1.2173442840576172 img loss 1.2501451969146729 img loss 1.2264078855514526 img loss 1.2285960912704468 img loss 1.2754392623901367 img loss 1.2798144817352295 img loss 1.1831297874450684 img loss 1.2265987396240234 img loss 1.3419166803359985 img loss 1.283699631690979 img loss 1.3017852306365967 img loss 1.2046356201171875 img loss 1.254848837852478 img loss 1.1823275089263916 img loss 1.2425308227539062 img loss 1.1716333627700806 img loss 1.2249702215194702 img loss 1.211808204650879 img loss 1.320330023765564 img loss 1.2446504831314087 img loss 1.2246674299240112 img loss 1.2387213706970215 img loss 1.3353191614151 img loss 1.280867576599121 img loss 1.2227026224136353 img loss 1.2325884103775024 {'loss': 1.2364, 'grad_norm': 0.23695769906044006, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4958946704864502 img loss 1.6925300359725952 img loss 1.6426002979278564 img loss 1.686774492263794 img loss 1.744360089302063 img loss 1.5991631746292114 img loss 1.7534338235855103 img loss 1.520704984664917 img loss 1.6177006959915161 img loss 1.4913115501403809 img loss 1.5398646593093872 img loss 1.6010469198226929 img loss 1.6662604808807373 img loss 1.4889732599258423 img loss 1.6086009740829468 img loss 1.5710532665252686 img loss 1.7012864351272583 img loss 1.4960771799087524 img loss 1.5962728261947632 img loss 1.568134069442749 img loss 1.497955560684204 img loss 1.4990646839141846 img loss 1.6938879489898682 img loss 1.6638216972351074 img loss 1.4949311017990112 img loss 1.6774077415466309 img loss 1.5912432670593262 img loss 1.6017135381698608 img loss 1.7479346990585327 img loss 1.6834235191345215 img loss 1.6018894910812378 img loss 1.4565263986587524 img loss 1.5642399787902832 img loss 1.838903546333313 img loss 1.4999581575393677img loss 1.886207938194275 img loss 1.5983377695083618 img loss 1.808701992034912 img loss 1.7159252166748047 img loss 1.6198331117630005 img loss 1.5410993099212646 img loss 1.530086636543274 img loss 1.5993622541427612 img loss 1.5738214254379272 img loss 1.8629707098007202 img loss 1.650429606437683 img loss 1.8373920917510986 img loss 1.6509112119674683 img loss 1.6361110210418701 img loss 1.610948085784912 img loss 1.612871766090393 img loss 1.7463665008544922 img loss 1.616240382194519 img loss 1.6711357831954956 img loss 1.6515460014343262 img loss 1.6659377813339233 img loss 1.7468743324279785 img loss 1.7633886337280273 img loss 1.505635380744934 img loss 1.6226801872253418 img loss 1.6471989154815674 img loss 1.6525700092315674 img loss 1.7375816106796265 img loss 1.6944626569747925 img loss 1.6308995485305786 img loss 1.5928505659103394 img loss 1.6075061559677124 img loss 1.5097240209579468 img loss 1.642025113105774 img loss 1.5469821691513062 img loss 1.6303008794784546 img loss 1.7502208948135376 img loss 1.6096255779266357 img loss 1.5918190479278564 img loss 1.6281930208206177 img loss 1.627987265586853 img loss 1.5269290208816528 img loss 1.7755506038665771 img loss 1.7736763954162598 img loss 1.7388489246368408 img loss 1.6826012134552002 img loss 1.6167725324630737 img loss 1.655863642692566 img loss 1.7706321477890015 img loss 1.7220971584320068 img loss 1.61322820186615 img loss 1.6116299629211426 img loss 1.5078321695327759 img loss 1.6893881559371948 img loss 1.6506966352462769 img loss 1.7029229402542114 img loss 1.8157143592834473 img loss 1.6586252450942993 img loss 1.838660717010498 img loss 1.612870693206787 img loss 1.6454226970672607 img loss 1.6152560710906982 img loss 1.7336009740829468 img loss 1.6902066469192505 img loss 1.694202184677124 img loss 1.6170039176940918 img loss 1.40449857711792 img loss 1.621548056602478 img loss 1.6491243839263916 img loss 1.6811658143997192 img loss 1.5174715518951416 img loss 1.6555405855178833 img loss 1.6407781839370728 img loss 1.5706509351730347 img loss 1.6748393774032593 img loss 1.4826151132583618 img loss 1.6565797328948975 img loss 1.6747874021530151 img loss 1.6734646558761597 img loss 1.681355357170105 img loss 1.58000910282135 img loss 1.6140753030776978 img loss 1.6842483282089233 img loss 1.674755334854126 img loss 1.7246938943862915 img loss 1.5131551027297974 img loss 1.719010353088379 img loss 1.7210410833358765 img loss 1.5840173959732056 img loss 1.903056263923645 img loss 1.6494146585464478 img loss 1.4882320165634155 img loss 1.5669474601745605 {'loss': 1.6405, 'grad_norm': 0.38971012830734253, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3007287979125977 img loss 1.2344450950622559 img loss 1.19358491897583 img loss 1.302778720855713 img loss 1.2267099618911743 img loss 1.2768105268478394 img loss 1.2945473194122314 img loss 1.272714376449585 img loss 1.190056324005127 img loss 1.2291712760925293 img loss 1.342485785484314 img loss 1.358305811882019 img loss 1.2248053550720215 img loss 1.242985725402832 img loss 1.3141735792160034 img loss 1.2599217891693115 img loss 1.252031922340393 img loss 1.1258810758590698 img loss 1.3162554502487183 img loss 1.2213969230651855 img loss 1.1873458623886108 img loss 1.251161813735962 img loss 1.269192099571228 img loss 1.3772464990615845 img loss 1.3806931972503662 img loss 1.3451045751571655 img loss 1.2487444877624512 img loss 1.1917940378189087 img loss 1.2759243249893188 img loss 1.2991682291030884 img loss 1.408691167831421 img loss 1.2926357984542847 img loss 1.1914352178573608 img loss 1.204731822013855 img loss 1.1979820728302002 img loss 1.374897837638855 img loss 1.266539454460144 img loss 1.3073371648788452 img loss 1.2358028888702393 img loss 1.2978014945983887 img loss 1.1748396158218384 img loss 1.2383733987808228 img loss 1.2391715049743652 img loss 1.2830151319503784 img loss 1.2059051990509033 img loss 1.3107531070709229 img loss 1.3532824516296387 img loss 1.288102149963379 img loss 1.342422366142273 img loss 1.2714519500732422 img loss 1.1434762477874756 img loss 1.3002190589904785 img loss 1.2726446390151978 img loss 1.250558853149414 img loss 1.2722656726837158 img loss 1.2352252006530762 img loss 1.2450098991394043 img loss 1.262624740600586 img loss 1.2245696783065796 img loss 1.331835150718689 img loss 1.2575517892837524 img loss 1.193229079246521 img loss 1.2485185861587524 img loss 1.3549561500549316 img loss 1.287866473197937 img loss 1.237664818763733 img loss 1.2228853702545166 img loss 1.2830917835235596 img loss 1.217611312866211 img loss 1.2843413352966309 img loss 1.3249237537384033 img loss 1.2722433805465698 img loss 1.2959619760513306 img loss 1.2101234197616577 img loss 1.1857528686523438 img loss 1.2326021194458008 img loss 1.2501978874206543 img loss 1.1916348934173584 img loss 1.1730543375015259 img loss 1.3467665910720825 img loss 1.3178379535675049 img loss 1.3025147914886475 img loss 1.2326418161392212 img loss 1.2360565662384033 img loss 1.296976923942566 img loss 1.2464491128921509 img loss 1.2432819604873657 img loss 1.198886752128601 img loss 1.3124040365219116 img loss 1.3037128448486328 img loss 1.2481826543807983 img loss 1.2851982116699219 img loss 1.2093288898468018 img loss 1.266495704650879 img loss 1.2693232297897339 img loss 1.198254942893982 img loss 1.213971495628357 img loss 1.182000994682312 img loss 1.1623235940933228 img loss 1.185424566268921 img loss 1.2238930463790894 img loss 1.261452555656433 img loss 1.1852222681045532 img loss 1.267202377319336 img loss 1.2323012351989746 img loss 1.2285737991333008 img loss 1.2176748514175415 img loss 1.2523722648620605 img loss 1.1907429695129395 img loss 1.252999186515808 img loss 1.2007923126220703 img loss 1.270322561264038 img loss 1.3634858131408691 img loss 1.227475643157959 img loss 1.3384660482406616 img loss 1.2471681833267212 img loss 1.206990122795105 img loss 1.35364830493927 img loss 1.31199049949646 img loss 1.3054022789001465 img loss 1.2997735738754272 img loss 1.1860166788101196 img loss 1.1365597248077393 img loss 1.2041571140289307 img loss 1.2992768287658691 img loss 1.2525688409805298 img loss 1.2822214365005493 img loss 1.239628791809082 {'loss': 1.2582, 'grad_norm': 0.2650386095046997, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1901028156280518 img loss 1.104977011680603 img loss 1.27663254737854 img loss 1.1972951889038086 img loss 1.2338300943374634 img loss 1.2776764631271362 img loss 1.1844055652618408 img loss 1.2962782382965088 img loss 1.3078153133392334 img loss 1.1573541164398193 img loss 1.2992416620254517 img loss 1.2072484493255615 img loss 1.279733657836914 img loss 1.2532850503921509 img loss 1.1791877746582031 img loss 1.3298707008361816 img loss 1.2883822917938232 img loss 1.2552114725112915 img loss 1.0954798460006714 img loss 1.327340841293335 img loss 1.313791036605835 img loss 1.3371996879577637 img loss 1.23268723487854 img loss 1.128180980682373 img loss 1.250563621520996 img loss 1.176241159439087 img loss 1.210317611694336 img loss 1.1719173192977905 img loss 1.163724660873413 img loss 1.1663098335266113 img loss 1.14518141746521 img loss 1.4069561958312988 img loss 1.2124741077423096 img loss 1.17447829246521 img loss 1.3517402410507202 img loss 1.2229769229888916 img loss 1.183652400970459 img loss 1.1601479053497314 img loss 1.1923480033874512 img loss 1.3917607069015503 img loss 1.2384626865386963 img loss 1.2071443796157837 img loss 1.3298307657241821 img loss 1.2448583841323853 img loss 1.3072082996368408 img loss 1.2144253253936768 img loss 1.2215009927749634 img loss 1.2081178426742554 img loss 1.2119792699813843 img loss 1.2212131023406982 img loss 1.184888482093811 img loss 1.2267909049987793 img loss 1.2641751766204834 img loss 1.1918399333953857 img loss 1.221832513809204 img loss 1.2177908420562744 img loss 1.2533466815948486 img loss 1.1203148365020752 img loss 1.1999614238739014 img loss 1.1396455764770508 img loss 1.2799160480499268 img loss 1.2648036479949951 img loss 1.2924933433532715 img loss 1.280001163482666 img loss 1.3660330772399902 img loss 1.1595772504806519 img loss 1.1839687824249268 img loss 1.2866322994232178 img loss 1.2905268669128418 img loss 1.2306755781173706 img loss 1.2139809131622314 img loss 1.1326992511749268 img loss 1.127953052520752 img loss 1.2852600812911987 img loss 1.1397778987884521 img loss 1.2634090185165405 img loss 1.3025360107421875 img loss 1.1625524759292603 img loss 1.2096939086914062 img loss 1.2716883420944214 img loss 1.3117660284042358 img loss 1.2320761680603027 img loss 1.2322769165039062 img loss 1.28505539894104 img loss 1.262804627418518 img loss 1.218896508216858 img loss 1.206777572631836 img loss 1.2253837585449219 img loss 1.235695719718933 img loss 1.2600456476211548 img loss 1.2732770442962646 img loss 1.236806869506836 img loss 1.2646842002868652 img loss 1.2180819511413574 img loss 1.2635637521743774 img loss 1.1585127115249634 img loss 1.2473084926605225 img loss 1.2152397632598877 img loss 1.092727541923523 img loss 1.211829662322998 img loss 1.2657463550567627 img loss 1.1784480810165405 img loss 1.265738844871521 img loss 1.2167412042617798 img loss 1.244081974029541 img loss 1.2428815364837646 img loss 1.321351408958435 img loss 1.1891216039657593 img loss 1.2029472589492798 img loss 1.3387352228164673 img loss 1.267824411392212 img loss 1.1509865522384644 img loss 1.2166571617126465 img loss 1.3366942405700684 img loss 1.2536357641220093 img loss 1.151272177696228 img loss 1.210263729095459 img loss 1.2375472784042358 img loss 1.2228072881698608 img loss 1.2717994451522827 img loss 1.1224024295806885 img loss 1.1904042959213257 img loss 1.1912949085235596 img loss 1.186074137687683 img loss 1.2090919017791748 img loss 1.2499946355819702 img loss 1.3214337825775146 img loss 1.1766643524169922 {'loss': 1.2312, 'grad_norm': 0.5576856136322021, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2899097204208374 img loss 1.345173716545105 img loss 1.308975100517273 img loss 1.3605554103851318 img loss 1.245205283164978 img loss 1.2868965864181519 img loss 1.275409460067749 img loss 1.3351681232452393 img loss 1.2024649381637573 img loss 1.3226814270019531 img loss 1.3238821029663086 img loss 1.3103559017181396 img loss 1.2587798833847046 img loss 1.2756458520889282 img loss 1.376300573348999 img loss 1.3821130990982056 img loss 1.254440188407898 img loss 1.299072027206421 img loss 1.2715094089508057 img loss 1.343881368637085 img loss 1.3407092094421387 img loss 1.33099365234375 img loss 1.3008848428726196 img loss 1.3825182914733887 img loss 1.277840495109558 img loss 1.2481659650802612 img loss 1.201223373413086 img loss 1.2967032194137573 img loss 1.3644039630889893 img loss 1.2850761413574219 img loss 1.245562195777893 img loss 1.3702481985092163 img loss 1.2469145059585571 img loss 1.3101508617401123 img loss 1.408129096031189 img loss 1.3132461309432983 img loss 1.2576433420181274 img loss 1.2340507507324219 img loss 1.3747904300689697 img loss 1.3455939292907715 img loss 1.3211392164230347 img loss 1.2700529098510742 img loss 1.2943881750106812 img loss 1.2547283172607422 img loss 1.4246726036071777 img loss 1.2674719095230103 img loss 1.2790530920028687 img loss 1.3407069444656372 img loss 1.2688068151474 img loss 1.3118613958358765 img loss 1.296098232269287 img loss 1.3422683477401733 img loss 1.2931346893310547 img loss 1.4141892194747925 img loss 1.3434215784072876 img loss 1.253670573234558 img loss 1.3060868978500366 img loss 1.265273928642273 img loss 1.308118224143982 img loss 1.3266963958740234 img loss 1.2433125972747803 img loss 1.33793044090271 img loss 1.3295564651489258 img loss 1.2131725549697876 img loss 1.3051718473434448 img loss 1.3399574756622314 img loss 1.3131548166275024 img loss 1.1587576866149902 img loss 1.2901415824890137 img loss 1.2909516096115112 img loss 1.378546118736267 img loss 1.2988554239273071 img loss 1.299525260925293 img loss 1.3221209049224854 img loss 1.3082799911499023 img loss 1.30195951461792 img loss 1.256423830986023 img loss 1.3208980560302734 img loss 1.2568786144256592 img loss 1.2807339429855347 img loss 1.2434453964233398 img loss 1.3820220232009888 img loss 1.2762190103530884 img loss 1.26995050907135 img loss 1.2465094327926636 img loss 1.1802630424499512 img loss 1.2749073505401611 img loss 1.2531403303146362 img loss 1.2832717895507812 img loss 1.258467197418213 img loss 1.3705450296401978 img loss 1.3078200817108154 img loss 1.3076703548431396 img loss 1.243530035018921 img loss 1.197730541229248 img loss 1.3154540061950684 img loss 1.2713631391525269 img loss 1.4224181175231934 img loss 1.3439772129058838 img loss 1.3622019290924072 img loss 1.288065791130066 img loss 1.2894995212554932 img loss 1.268672227859497 img loss 1.3168904781341553 img loss 1.2113558053970337 img loss 1.298978567123413 img loss 1.3113491535186768 img loss 1.253186821937561 img loss 1.26596999168396 img loss 1.3353599309921265 img loss 1.1684764623641968 img loss 1.3080891370773315 img loss 1.2894700765609741 img loss 1.2852225303649902 img loss 1.2784487009048462 img loss 1.3694398403167725 img loss 1.2638014554977417 img loss 1.3251476287841797 img loss 1.3041619062423706img loss 1.279101848602295img loss 1.3492242097854614 img loss 1.2741907835006714 img loss 1.2876088619232178 img loss 1.336747646331787 img loss 1.2925617694854736 img loss 1.3251852989196777 img loss 1.2517414093017578 img loss 1.307965874671936 {'loss': 1.2983, 'grad_norm': 0.5666635632514954, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5483993291854858 img loss 1.3369468450546265 img loss 1.2709026336669922 img loss 1.3976958990097046 img loss 1.4983972311019897 img loss 1.4509403705596924 img loss 1.3609956502914429 img loss 1.3956176042556763 img loss 1.3909209966659546 img loss 1.3042809963226318 img loss 1.4423813819885254 img loss 1.276266098022461 img loss 1.468080759048462 img loss 1.3705551624298096 img loss 1.5109070539474487 img loss 1.4899933338165283 img loss 1.4025520086288452 img loss 1.4063830375671387 img loss 1.3865574598312378 img loss 1.2259254455566406 img loss 1.3136037588119507 img loss 1.381933569908142 img loss 1.4242796897888184 img loss 1.4617811441421509 img loss 1.3524301052093506 img loss 1.3755667209625244 img loss 1.3232849836349487 img loss 1.4575272798538208 img loss 1.435954213142395 img loss 1.3699666261672974 img loss 1.337682843208313 img loss 1.4034066200256348 img loss 1.526458501815796 img loss 1.4158662557601929 img loss 1.4461253881454468 img loss 1.3554011583328247 img loss 1.4633872509002686 img loss 1.3669297695159912 img loss 1.4542442560195923 img loss 1.3692612648010254 img loss 1.4001556634902954 img loss 1.4047949314117432 img loss 1.444586992263794 img loss 1.4229657649993896 img loss 1.3782641887664795 img loss 1.40261971950531 img loss 1.4006705284118652 img loss 1.5153073072433472 img loss 1.397316813468933 img loss 1.421812653541565 img loss 1.4053223133087158 img loss 1.3793696165084839 img loss 1.2759336233139038 img loss 1.445021390914917 img loss 1.4102860689163208 img loss 1.4392739534378052 img loss 1.3880282640457153 img loss 1.4426169395446777 img loss 1.3193730115890503 img loss 1.4040731191635132 img loss 1.3671257495880127 img loss 1.3726849555969238 img loss 1.5055772066116333 img loss 1.3988392353057861 img loss 1.4465655088424683 img loss 1.3341706991195679 img loss 1.3549031019210815 img loss 1.5353301763534546 img loss 1.3038733005523682 img loss 1.4262930154800415 img loss 1.2035629749298096 img loss 1.3456170558929443 img loss 1.3740237951278687 img loss 1.443772792816162 img loss 1.4249680042266846 img loss 1.341064214706421 img loss 1.3826518058776855 img loss 1.4609382152557373 img loss 1.353206753730774 img loss 1.2592568397521973 img loss 1.3976099491119385 img loss 1.3525224924087524 img loss 1.4423273801803589 img loss 1.3805867433547974 img loss 1.4755886793136597 img loss 1.3900837898254395 img loss 1.5343953371047974 img loss 1.332192063331604 img loss 1.4121756553649902 img loss 1.4771459102630615 img loss 1.3398659229278564 img loss 1.3968967199325562 img loss 1.2453078031539917 img loss 1.4191902875900269 img loss 1.574779748916626 img loss 1.4657536745071411 img loss 1.532812476158142 img loss 1.4215046167373657 img loss 1.4167158603668213 img loss 1.357490062713623 img loss 1.428483247756958 img loss 1.385772466659546 img loss 1.3742953538894653 img loss 1.4292463064193726 img loss 1.3740142583847046 img loss 1.445449709892273 img loss 1.4036144018173218 img loss 1.4543880224227905 img loss 1.4312107563018799 img loss 1.281174898147583 img loss 1.2756248712539673 img loss 1.3222243785858154 img loss 1.3248977661132812 img loss 1.4814890623092651 img loss 1.252161979675293 img loss 1.642035722732544 img loss 1.3672984838485718 img loss 1.3673930168151855 img loss 1.363798975944519 img loss 1.3386950492858887 img loss 1.369986653327942 img loss 1.432898759841919 img loss 1.3270419836044312 img loss 1.4316071271896362 img loss 1.3776085376739502 img loss 1.3221021890640259 img loss 1.4794963598251343 img loss 1.346322774887085 {'loss': 1.3976, 'grad_norm': 0.6647918820381165, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3187229633331299 img loss 1.25673246383667 img loss 1.2528703212738037 img loss 1.331701636314392 img loss 1.2760568857192993 img loss 1.2274187803268433 img loss 1.2275872230529785 img loss 1.3038232326507568 img loss 1.2837257385253906 img loss 1.3074663877487183 img loss 1.4171807765960693 img loss 1.3964577913284302 img loss 1.321760654449463 img loss 1.2587827444076538 img loss 1.2235418558120728 img loss 1.2633100748062134 img loss 1.2193565368652344 img loss 1.2724857330322266 img loss 1.3480116128921509 img loss 1.2434824705123901 img loss 1.3027902841567993 img loss 1.2338358163833618 img loss 1.3113306760787964 img loss 1.3053416013717651 img loss 1.3404819965362549 img loss 1.2229706048965454 img loss 1.261324167251587 img loss 1.296592116355896 img loss 1.2488923072814941 img loss 1.278839111328125 img loss 1.2691981792449951 img loss 1.1914827823638916 img loss 1.2567507028579712 img loss 1.3572105169296265 img loss 1.2984164953231812 img loss 1.2398144006729126 img loss 1.1901766061782837 img loss 1.1823676824569702 img loss 1.35942542552948 img loss 1.209428310394287 img loss 1.2482619285583496 img loss 1.3037363290786743 img loss 1.2592475414276123 img loss 1.2491222620010376 img loss 1.3177025318145752 img loss 1.3074272871017456 img loss 1.2778139114379883 img loss 1.2351791858673096 img loss 1.2896181344985962 img loss 1.2953431606292725 img loss 1.2867944240570068 img loss 1.3088306188583374 img loss 1.2268227338790894 img loss 1.2159309387207031 img loss 1.3058604001998901 img loss 1.2896041870117188 img loss 1.2223827838897705 img loss 1.2645574808120728 img loss 1.2060219049453735 img loss 1.2637394666671753 img loss 1.262575626373291 img loss 1.3464429378509521 img loss 1.208033561706543 img loss 1.2470155954360962 img loss 1.3090318441390991 img loss 1.3124889135360718 img loss 1.2695116996765137 img loss 1.2866014242172241 img loss 1.2074425220489502 img loss 1.2233422994613647 img loss 1.211501955986023 img loss 1.216591715812683 img loss 1.3325273990631104 img loss 1.2907520532608032 img loss 1.2363725900650024 img loss 1.2408177852630615 img loss 1.1666513681411743 img loss 1.2379202842712402 img loss 1.2607855796813965 img loss 1.2509877681732178 img loss 1.2899718284606934 img loss 1.27496337890625 img loss 1.313760757446289 img loss 1.2698434591293335 img loss 1.1959853172302246 img loss 1.3100727796554565 img loss 1.2533109188079834 img loss 1.292470932006836 img loss 1.2522472143173218 img loss 1.1781595945358276 img loss 1.2973917722702026 img loss 1.231245994567871 img loss 1.2453632354736328 img loss 1.3291891813278198 img loss 1.2829229831695557 img loss 1.2251503467559814 img loss 1.2288732528686523 img loss 1.3373337984085083 img loss 1.2510254383087158 img loss 1.2293099164962769 img loss 1.273592472076416 img loss 1.2205873727798462 img loss 1.241026759147644 img loss 1.365189790725708 img loss 1.2893784046173096 img loss 1.2880102396011353 img loss 1.2436326742172241 img loss 1.284340262413025 img loss 1.291312575340271 img loss 1.2332816123962402 img loss 1.280128836631775 img loss 1.2529977560043335 img loss 1.3149152994155884 img loss 1.274717092514038 img loss 1.447678804397583 img loss 1.3015289306640625 img loss 1.3137153387069702 img loss 1.223659873008728 img loss 1.29147469997406 img loss 1.256852626800537 img loss 1.236079454421997 img loss 1.2310118675231934 img loss 1.2214093208312988 img loss 1.2419869899749756 img loss 1.1793043613433838 img loss 1.2374171018600464 img loss 1.2660253047943115 img loss 1.2636563777923584 {'loss': 1.2692, 'grad_norm': 0.2183203101158142, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.251534342765808 img loss 1.2707985639572144 img loss 1.250014066696167 img loss 1.2559218406677246 img loss 1.3104095458984375 img loss 1.2629446983337402 img loss 1.2169678211212158 img loss 1.2783308029174805 img loss 1.235369324684143 img loss 1.2154622077941895 img loss 1.2447036504745483 img loss 1.245733618736267 img loss 1.2299840450286865 img loss 1.3396365642547607 img loss 1.2289235591888428 img loss 1.2474861145019531 img loss 1.2715896368026733 img loss 1.2288546562194824 img loss 1.1801567077636719 img loss 1.2299363613128662 img loss 1.2155303955078125 img loss 1.1934677362442017 img loss 1.227704405784607 img loss 1.228931188583374 img loss 1.2192203998565674 img loss 1.2276322841644287 img loss 1.2001934051513672 img loss 1.2019776105880737 img loss 1.2970004081726074 img loss 1.2993950843811035 img loss 1.2093127965927124 img loss 1.193515419960022 img loss 1.204017996788025 img loss 1.255513072013855 img loss 1.225510835647583 img loss 1.242982268333435 img loss 1.2759575843811035 img loss 1.2422113418579102 img loss 1.204533338546753 img loss 1.217879056930542 img loss 1.1386449337005615 img loss 1.2314412593841553 img loss 1.2402827739715576 img loss 1.1862273216247559 img loss 1.2022197246551514 img loss 1.2327533960342407 img loss 1.2431848049163818 img loss 1.2233251333236694 img loss 1.175362229347229 img loss 1.2314175367355347 img loss 1.214145302772522 img loss 1.2159438133239746 img loss 1.2003629207611084 img loss 1.247650384902954img loss 1.1885535717010498 img loss 1.2073650360107422 img loss 1.2372767925262451 img loss 1.2311922311782837 img loss 1.2217559814453125 img loss 1.2612804174423218 img loss 1.289961576461792 img loss 1.2335140705108643 img loss 1.2486284971237183 img loss 1.2055953741073608 img loss 1.1822090148925781 img loss 1.264872431755066 img loss 1.2385122776031494 img loss 1.2987680435180664 img loss 1.2490886449813843 img loss 1.244017243385315 img loss 1.2161645889282227 img loss 1.2723785638809204 img loss 1.245505690574646 img loss 1.274425983428955 img loss 1.2709875106811523 img loss 1.3467503786087036 img loss 1.222632884979248 img loss 1.2260938882827759 img loss 1.2865169048309326 img loss 1.2203269004821777 img loss 1.2640800476074219 img loss 1.2799594402313232 img loss 1.2153958082199097 img loss 1.2505661249160767 img loss 1.2391586303710938 img loss 1.2601232528686523 img loss 1.2592703104019165 img loss 1.1968936920166016 img loss 1.1958298683166504 img loss 1.2075002193450928 img loss 1.196511149406433 img loss 1.190354824066162 img loss 1.2197012901306152 img loss 1.2398059368133545 img loss 1.2285983562469482 img loss 1.2340877056121826 img loss 1.2416551113128662 img loss 1.2760666608810425 img loss 1.208914041519165 img loss 1.2481374740600586 img loss 1.2590439319610596 img loss 1.2799776792526245 img loss 1.2772659063339233 img loss 1.2711302042007446 img loss 1.2455766201019287 img loss 1.228228211402893 img loss 1.255439043045044 img loss 1.2438973188400269 img loss 1.2303519248962402 img loss 1.1883035898208618 img loss 1.2222964763641357 img loss 1.2340694665908813 img loss 1.2374398708343506 img loss 1.2327609062194824 img loss 1.256834864616394 img loss 1.1793076992034912 img loss 1.2981879711151123 img loss 1.2686411142349243 img loss 1.2236695289611816 img loss 1.2507370710372925 img loss 1.2569249868392944 img loss 1.318130373954773 img loss 1.2475228309631348 img loss 1.2371392250061035 img loss 1.2495994567871094 img loss 1.27268385887146 img loss 1.2439513206481934 img loss 1.3084226846694946 {'loss': 1.2392, 'grad_norm': 0.2653847932815552, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2145230770111084 img loss 1.2523905038833618 img loss 1.1914294958114624 img loss 1.2716213464736938 img loss 1.2303041219711304 img loss 1.2205179929733276 img loss 1.2568304538726807 img loss 1.2279595136642456 img loss 1.2399723529815674 img loss 1.1865954399108887 img loss 1.2496308088302612 img loss 1.2032564878463745 img loss 1.228894829750061 img loss 1.2634915113449097 img loss 1.2629536390304565 img loss 1.2235409021377563 img loss 1.2429695129394531 img loss 1.209810733795166 img loss 1.1738884449005127 img loss 1.1750094890594482 img loss 1.1951079368591309 img loss 1.2381538152694702 img loss 1.176499605178833 img loss 1.2299449443817139 img loss 1.1988111734390259 img loss 1.2138487100601196 img loss 1.2069320678710938 img loss 1.1816844940185547 img loss 1.1719439029693604 img loss 1.218319296836853 img loss 1.3180267810821533 img loss 1.1914478540420532 img loss 1.2151952981948853 img loss 1.2505534887313843 img loss 1.224646806716919 img loss 1.2034099102020264 img loss 1.2480168342590332 img loss 1.1826860904693604 img loss 1.1616687774658203 img loss 1.244809865951538 img loss 1.212553858757019 img loss 1.2511742115020752 img loss 1.2626904249191284 img loss 1.2695376873016357 img loss 1.2581522464752197 img loss 1.2109298706054688 img loss 1.2262691259384155 img loss 1.1912105083465576 img loss 1.213287353515625 img loss 1.2012938261032104 img loss 1.2329909801483154 img loss 1.1982643604278564 img loss 1.2101013660430908 img loss 1.1962511539459229 img loss 1.2463183403015137 img loss 1.201881766319275 img loss 1.2693198919296265 img loss 1.2408431768417358 img loss 1.2574719190597534 img loss 1.225838541984558 img loss 1.2316254377365112 img loss 1.1776272058486938 img loss 1.211466670036316 img loss 1.202677607536316 img loss 1.3181982040405273 img loss 1.2189735174179077 img loss 1.1881287097930908 img loss 1.2177143096923828 img loss 1.2455217838287354 img loss 1.2486263513565063 img loss 1.2148290872573853 img loss 1.238278865814209 img loss 1.2353541851043701 img loss 1.2744451761245728 img loss 1.1966629028320312 img loss 1.245308756828308 img loss 1.2694940567016602 img loss 1.197119116783142 img loss 1.2403883934020996 img loss 1.2564001083374023 img loss 1.2795121669769287 img loss 1.2099225521087646 img loss 1.2080862522125244 img loss 1.2637717723846436 img loss 1.2427194118499756 img loss 1.2153126001358032 img loss 1.2084909677505493 img loss 1.2245466709136963 img loss 1.2327908277511597 img loss 1.2772566080093384 img loss 1.232374668121338 img loss 1.250556230545044 img loss 1.2585667371749878 img loss 1.2806107997894287 img loss 1.1879372596740723 img loss 1.2480580806732178 img loss 1.2526428699493408 img loss 1.2621474266052246 img loss 1.2683236598968506 img loss 1.2268717288970947 img loss 1.2266600131988525 img loss 1.212900996208191 img loss 1.2186685800552368 img loss 1.2236716747283936 img loss 1.248674988746643 img loss 1.2782846689224243 img loss 1.318193793296814 img loss 1.2444223165512085 img loss 1.259281873703003 img loss 1.2346205711364746 img loss 1.254515290260315 img loss 1.2730891704559326 img loss 1.2171721458435059 img loss 1.2451303005218506 img loss 1.2200429439544678 img loss 1.2343158721923828 img loss 1.278998851776123 img loss 1.2616398334503174 img loss 1.223501443862915 img loss 1.21776282787323 img loss 1.246911644935608 img loss 1.2861626148223877 img loss 1.2719871997833252 img loss 1.22933828830719 img loss 1.2076549530029297 img loss 1.2780832052230835 img loss 1.2031141519546509 img loss 1.268528699874878 {'loss': 1.2322, 'grad_norm': 0.2902301847934723, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2228047847747803 img loss 1.272530436515808 img loss 1.2167751789093018 img loss 1.215610146522522 img loss 1.1715469360351562 img loss 1.1812056303024292 img loss 1.1886637210845947 img loss 1.2410087585449219 img loss 1.2801263332366943 img loss 1.2141132354736328 img loss 1.182605504989624 img loss 1.1963040828704834 img loss 1.209153652191162 img loss 1.3045904636383057 img loss 1.2206720113754272 img loss 1.2129446268081665 img loss 1.1442532539367676 img loss 1.2137675285339355 img loss 1.1917866468429565 img loss 1.1923929452896118 img loss 1.2543213367462158 img loss 1.2133159637451172 img loss 1.2026232481002808 img loss 1.2064337730407715 img loss 1.2009013891220093 img loss 1.2383155822753906 img loss 1.2527236938476562 img loss 1.1946392059326172 img loss 1.1642601490020752 img loss 1.1681970357894897 img loss 1.1465017795562744 img loss 1.184382677078247 img loss 1.1703213453292847 img loss 1.1664767265319824 img loss 1.1996911764144897 img loss 1.2276535034179688 img loss 1.2103214263916016 img loss 1.2193931341171265 img loss 1.1752314567565918 img loss 1.189559817314148 img loss 1.3043047189712524 img loss 1.2112846374511719 img loss 1.2333682775497437 img loss 1.2917206287384033 img loss 1.219817042350769 img loss 1.2642204761505127 img loss 1.192891001701355 img loss 1.1769566535949707 img loss 1.1946531534194946 img loss 1.2131843566894531 img loss 1.1973499059677124 img loss 1.2271925210952759 img loss 1.155363917350769 img loss 1.2104039192199707 img loss 1.2627724409103394 img loss 1.2108138799667358 img loss 1.1865684986114502 img loss 1.2018040418624878 img loss 1.204648733139038 img loss 1.2387635707855225 img loss 1.168418526649475 img loss 1.1754682064056396 img loss 1.2138413190841675 img loss 1.2852691411972046 img loss 1.1339893341064453 img loss 1.2728114128112793 img loss 1.2448049783706665 img loss 1.2509613037109375 img loss 1.1727309226989746 img loss 1.1489710807800293 img loss 1.2268424034118652 img loss 1.1952511072158813 img loss 1.194079041481018 img loss 1.251749038696289 img loss 1.1662025451660156 img loss 1.1755237579345703 img loss 1.2612041234970093 img loss 1.2231699228286743 img loss 1.2116193771362305 img loss 1.1814489364624023 img loss 1.232215404510498 img loss 1.2781273126602173 img loss 1.2106784582138062img loss 1.2123569250106812 img loss 1.234210729598999 img loss 1.236416220664978 img loss 1.2479822635650635 img loss 1.2408348321914673 img loss 1.243713140487671 img loss 1.2246954441070557 img loss 1.1928529739379883 img loss 1.1843006610870361 img loss 1.186825156211853 img loss 1.2170372009277344 img loss 1.1625001430511475 img loss 1.2017502784729004 img loss 1.2101342678070068 img loss 1.1615923643112183 img loss 1.3340089321136475 img loss 1.2199132442474365 img loss 1.2226301431655884 img loss 1.223055124282837 img loss 1.2538011074066162 img loss 1.2930779457092285 img loss 1.2278211116790771 img loss 1.196748971939087 img loss 1.1634100675582886 img loss 1.212615728378296 img loss 1.173551321029663 img loss 1.3163397312164307 img loss 1.131077527999878 img loss 1.2224968671798706 img loss 1.1912565231323242 img loss 1.1465659141540527 img loss 1.2617242336273193 img loss 1.240702509880066 img loss 1.1792954206466675 img loss 1.2503490447998047 img loss 1.209468126296997 img loss 1.1998611688613892 img loss 1.1856834888458252 img loss 1.2313897609710693 img loss 1.2132648229599 img loss 1.2160910367965698 img loss 1.1756089925765991 img loss 1.263934850692749 img loss 1.2727909088134766 img loss 1.2242978811264038 {'loss': 1.2136, 'grad_norm': 0.22262294590473175, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.34794020652771 img loss 1.2223700284957886 img loss 1.2579830884933472 img loss 1.2967846393585205 img loss 1.2311336994171143 img loss 1.3092902898788452 img loss 1.18983793258667 img loss 1.2549703121185303 img loss 1.306276798248291 img loss 1.2561166286468506 img loss 1.2765182256698608 img loss 1.280159592628479 img loss 1.3004690408706665 img loss 1.3135724067687988 img loss 1.1935360431671143 img loss 1.3346705436706543 img loss 1.2072422504425049 img loss 1.2185477018356323 img loss 1.2790491580963135 img loss 1.185167670249939 img loss 1.220458984375 img loss 1.2335755825042725 img loss 1.3299299478530884 img loss 1.3193862438201904 img loss 1.2327507734298706 img loss 1.208343505859375 img loss 1.260770320892334 img loss 1.2033449411392212 img loss 1.2287745475769043 img loss 1.2119731903076172 img loss 1.2754217386245728 img loss 1.3087122440338135 img loss 1.2696589231491089 img loss 1.3107889890670776 img loss 1.2346216440200806 img loss 1.2080439329147339 img loss 1.2912801504135132 img loss 1.2012003660202026 img loss 1.335095763206482 img loss 1.2730398178100586 img loss 1.321613073348999 img loss 1.2728363275527954 img loss 1.2653083801269531 img loss 1.204742431640625 img loss 1.209537148475647 img loss 1.2888247966766357 img loss 1.2069921493530273 img loss 1.2448558807373047 img loss 1.2548065185546875 img loss 1.2461704015731812 img loss 1.3218960762023926 img loss 1.2834351062774658 img loss 1.252265453338623 img loss 1.3147430419921875 img loss 1.2506356239318848 img loss 1.2540634870529175 img loss 1.2751553058624268 img loss 1.3183460235595703 img loss 1.2636317014694214 img loss 1.2915489673614502 img loss 1.262336015701294 img loss 1.174401044845581 img loss 1.271716833114624 img loss 1.3184044361114502 img loss 1.2814388275146484 img loss 1.3007946014404297 img loss 1.4232152700424194 img loss 1.2867748737335205 img loss 1.2623746395111084 img loss 1.2712963819503784 img loss 1.2287003993988037 img loss 1.2562496662139893 img loss 1.244642972946167 img loss 1.2379131317138672 img loss 1.3204044103622437 img loss 1.2532267570495605 img loss 1.314828634262085 img loss 1.235925555229187 img loss 1.3171581029891968 img loss 1.3378794193267822 img loss 1.2890527248382568 img loss 1.338476538658142 img loss 1.2190775871276855 img loss 1.2802437543869019 img loss 1.298980474472046 img loss 1.1977391242980957 img loss 1.3208823204040527 img loss 1.241910457611084 img loss 1.2681822776794434 img loss 1.3112461566925049 img loss 1.261387825012207 img loss 1.2289555072784424 img loss 1.3066927194595337 img loss 1.221390962600708 img loss 1.2626149654388428 img loss 1.2347115278244019 img loss 1.2507585287094116 img loss 1.2499598264694214 img loss 1.3186030387878418 img loss 1.287108063697815 img loss 1.255743384361267 img loss 1.2926491498947144 img loss 1.270767092704773 img loss 1.3179234266281128 img loss 1.2188441753387451 img loss 1.3070485591888428 img loss 1.2224775552749634 img loss 1.2643661499023438 img loss 1.298057198524475 img loss 1.31317937374115 img loss 1.3189082145690918 img loss 1.2784879207611084 img loss 1.288599967956543 img loss 1.297757625579834 img loss 1.319645881652832 img loss 1.2808383703231812 img loss 1.2643241882324219 img loss 1.247195839881897 img loss 1.2718632221221924 img loss 1.3318763971328735 img loss 1.2353929281234741 img loss 1.2628294229507446 img loss 1.1820300817489624 img loss 1.3119266033172607 img loss 1.2652699947357178 img loss 1.2081493139266968 img loss 1.2325292825698853 img loss 1.2394652366638184 {'loss': 1.2683, 'grad_norm': 0.226735457777977, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2605454921722412 img loss 1.261671543121338 img loss 1.2160398960113525 img loss 1.2776368856430054 img loss 1.3522522449493408 img loss 1.277296781539917 img loss 1.2528584003448486 img loss 1.2506437301635742 img loss 1.3031930923461914 img loss 1.2661837339401245 img loss 1.2484649419784546 img loss 1.2263736724853516 img loss 1.2380226850509644 img loss 1.2763980627059937 img loss 1.1968704462051392 img loss 1.236081600189209 img loss 1.262415885925293 img loss 1.2898855209350586 img loss 1.2401807308197021 img loss 1.3525513410568237 img loss 1.225364327430725 img loss 1.1858315467834473 img loss 1.3108294010162354 img loss 1.208247423171997 img loss 1.2563807964324951 img loss 1.2739694118499756 img loss 1.2171300649642944 img loss 1.243730902671814 img loss 1.2384958267211914 img loss 1.3048385381698608 img loss 1.2701853513717651 img loss 1.2028441429138184 img loss 1.2623364925384521 img loss 1.275633692741394 img loss 1.3070437908172607 img loss 1.2219464778900146 img loss 1.3045753240585327 img loss 1.2754443883895874 img loss 1.2592260837554932 img loss 1.3005905151367188 img loss 1.206483244895935 img loss 1.2342556715011597 img loss 1.2216219902038574 img loss 1.29496169090271 img loss 1.2670824527740479 img loss 1.2272090911865234 img loss 1.3172205686569214 img loss 1.2125675678253174 img loss 1.3235507011413574 img loss 1.2638190984725952 img loss 1.154383897781372 img loss 1.26992928981781 img loss 1.2684669494628906 img loss 1.2845062017440796 img loss 1.281480073928833 img loss 1.2297122478485107 img loss 1.3259731531143188 img loss 1.1802668571472168 img loss 1.2844970226287842 img loss 1.2510249614715576 img loss 1.257309913635254 img loss 1.3122804164886475 img loss 1.2627476453781128 img loss 1.2112728357315063 img loss 1.3114893436431885 img loss 1.2661798000335693 img loss 1.2361000776290894 img loss 1.2559947967529297 img loss 1.2726562023162842 img loss 1.248401403427124 img loss 1.2906923294067383 img loss 1.2936999797821045 img loss 1.2661163806915283 img loss 1.2167856693267822 img loss 1.2543646097183228 img loss 1.2397769689559937 img loss 1.3010400533676147 img loss 1.2860883474349976 img loss 1.2723432779312134 img loss 1.2843879461288452 img loss 1.3031702041625977 img loss 1.3145992755889893 img loss 1.277205467224121 img loss 1.301428198814392 img loss 1.282780408859253 img loss 1.3001465797424316 img loss 1.2010504007339478 img loss 1.1941522359848022 img loss 1.229532241821289 img loss 1.2729496955871582 img loss 1.3183330297470093 img loss 1.2522640228271484 img loss 1.2524802684783936 img loss 1.2443431615829468 img loss 1.2290757894515991 img loss 1.2587599754333496 img loss 1.2481837272644043 img loss 1.22279691696167 img loss 1.1897104978561401 img loss 1.2347767353057861 img loss 1.2088673114776611 img loss 1.243260383605957 img loss 1.3235644102096558 img loss 1.2863978147506714 img loss 1.2207008600234985 img loss 1.2106850147247314 img loss 1.2465722560882568 img loss 1.2337452173233032 img loss 1.2842960357666016 img loss 1.2026607990264893 img loss 1.2872636318206787 img loss 1.2332079410552979 img loss 1.2548305988311768 img loss 1.2330718040466309 img loss 1.35952627658844 img loss 1.2485883235931396 img loss 1.2106373310089111 img loss 1.2105315923690796 img loss 1.3190646171569824 img loss 1.431037425994873 img loss 1.1822643280029297 img loss 1.3155227899551392 img loss 1.2200815677642822 img loss 1.229567289352417 img loss 1.2088844776153564 img loss 1.2909295558929443 img loss 1.1757922172546387 img loss 1.2603874206542969 {'loss': 1.2588, 'grad_norm': 0.2240624725818634, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3429168462753296 img loss 1.3503187894821167 img loss 1.2293199300765991 img loss 1.272521734237671 img loss 1.2250633239746094 img loss 1.2913929224014282 img loss 1.3670010566711426 img loss 1.2687265872955322 img loss 1.1519696712493896 img loss 1.2151721715927124 img loss 1.3498826026916504 img loss 1.2400425672531128 img loss 1.3453967571258545 img loss 1.2865025997161865 img loss 1.355183482170105 img loss 1.3372571468353271 img loss 1.2989470958709717 img loss 1.2412232160568237 img loss 1.231758952140808 img loss 1.3463823795318604 img loss 1.315873146057129 img loss 1.2080806493759155 img loss 1.2885591983795166 img loss 1.3859210014343262 img loss 1.345986008644104 img loss 1.241707682609558 img loss 1.2839540243148804 img loss 1.3793283700942993 img loss 1.2332206964492798 img loss 1.4253913164138794 img loss 1.287034034729004 img loss 1.2189604043960571 img loss 1.3879302740097046 img loss 1.283209204673767 img loss 1.2413619756698608 img loss 1.2814662456512451 img loss 1.289031982421875 img loss 1.2944161891937256 img loss 1.3211058378219604 img loss 1.2796165943145752 img loss 1.3671419620513916 img loss 1.2777342796325684 img loss 1.360359787940979 img loss 1.3794993162155151 img loss 1.2319859266281128 img loss 1.2325481176376343 img loss 1.3253991603851318 img loss 1.3317219018936157 img loss 1.375487208366394 img loss 1.3460365533828735 img loss 1.2490475177764893 img loss 1.313917875289917 img loss 1.3493740558624268 img loss 1.3071117401123047 img loss 1.3665744066238403 img loss 1.3247616291046143 img loss 1.3076839447021484 img loss 1.4232584238052368 img loss 1.3275209665298462 img loss 1.276351809501648 img loss 1.25803804397583 img loss 1.2915875911712646 img loss 1.2040882110595703 img loss 1.3940653800964355 img loss 1.2741345167160034 img loss 1.3524597883224487 img loss 1.3568183183670044 img loss 1.3304519653320312 img loss 1.299774408340454 img loss 1.410336971282959 img loss 1.2408376932144165 img loss 1.2644290924072266 img loss 1.2915407419204712 img loss 1.2485214471817017 img loss 1.2566475868225098 img loss 1.312334418296814 img loss 1.2995589971542358 img loss 1.2543425559997559 img loss 1.3209705352783203 img loss 1.2706985473632812 img loss 1.2864680290222168 img loss 1.262983798980713 img loss 1.3281761407852173 img loss 1.3566330671310425 img loss 1.2858686447143555 img loss 1.2769005298614502 img loss 1.3250640630722046 img loss 1.3610622882843018 img loss 1.2912832498550415 img loss 1.3350250720977783 img loss 1.4128432273864746 img loss 1.3374207019805908 img loss 1.4014030694961548 img loss 1.2475152015686035 img loss 1.3593881130218506 img loss 1.2504606246948242 img loss 1.2979164123535156 img loss 1.3641303777694702 img loss 1.3548216819763184 img loss 1.2658205032348633 img loss 1.2341175079345703 img loss 1.4258707761764526 img loss 1.2219188213348389 img loss 1.3159109354019165 img loss 1.3513823747634888 img loss 1.3276400566101074 img loss 1.273660659790039 img loss 1.334594488143921 img loss 1.2834211587905884 img loss 1.3395514488220215 img loss 1.3220633268356323 img loss 1.275094985961914 img loss 1.2714985609054565 img loss 1.285527229309082 img loss 1.3095836639404297 img loss 1.2446990013122559 img loss 1.3745322227478027 img loss 1.3756276369094849 img loss 1.2313358783721924 img loss 1.299937129020691 img loss 1.2787832021713257img loss 1.2606130838394165 img loss 1.2826130390167236 img loss 1.3721411228179932 img loss 1.340897798538208 img loss 1.3374799489974976 img loss 1.2900409698486328 img loss 1.2943320274353027 {'loss': 1.3055, 'grad_norm': 0.25856369733810425, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1884148120880127 img loss 1.324178695678711 img loss 1.2181918621063232 img loss 1.2080124616622925 img loss 1.2542717456817627 img loss 1.2779878377914429 img loss 1.335684061050415 img loss 1.2712535858154297 img loss 1.2246994972229004 img loss 1.3386406898498535 img loss 1.204659104347229 img loss 1.1733325719833374 img loss 1.1858831644058228 img loss 1.307198166847229 img loss 1.2186390161514282 img loss 1.2435951232910156 img loss 1.1357519626617432 img loss 1.2577452659606934 img loss 1.1582132577896118 img loss 1.241307020187378 img loss 1.296669840812683 img loss 1.1582660675048828 img loss 1.141565203666687 img loss 1.1479697227478027 img loss 1.1856575012207031 img loss 1.2333359718322754 img loss 1.2740721702575684 img loss 1.2122219800949097 img loss 1.2153195142745972 img loss 1.2202942371368408 img loss 1.313002586364746 img loss 1.333206057548523 img loss 1.2946648597717285 img loss 1.2425320148468018 img loss 1.2604376077651978 img loss 1.2622555494308472 img loss 1.1627166271209717 img loss 1.2025126218795776 img loss 1.2389698028564453 img loss 1.3071783781051636 img loss 1.154489278793335 img loss 1.2144966125488281 img loss 1.18328857421875 img loss 1.29197359085083 img loss 1.2350739240646362 img loss 1.2167692184448242 img loss 1.2027122974395752 img loss 1.2632282972335815 img loss 1.18923819065094 img loss 1.2462611198425293 img loss 1.211106777191162 img loss 1.2637242078781128 img loss 1.1915218830108643 img loss 1.1852412223815918 img loss 1.2226543426513672 img loss 1.2159391641616821 img loss 1.253984808921814 img loss 1.1782153844833374 img loss 1.2890427112579346 img loss 1.2585504055023193 img loss 1.1611179113388062 img loss 1.2714763879776 img loss 1.3611817359924316 img loss 1.1452420949935913 img loss 1.1928246021270752 img loss 1.314024806022644 img loss 1.258553147315979 img loss 1.2718231678009033 img loss 1.2650163173675537 img loss 1.2237080335617065 img loss 1.2270622253417969 img loss 1.2204173803329468 img loss 1.2255674600601196 img loss 1.2033847570419312 img loss 1.24611234664917 img loss 1.2041053771972656 img loss 1.2609567642211914 img loss 1.192381739616394 img loss 1.2298552989959717 img loss 1.153408408164978 img loss 1.2360948324203491 img loss 1.2217988967895508 img loss 1.2088985443115234 img loss 1.2562966346740723 img loss 1.237365961074829 img loss 1.2482284307479858 img loss 1.201303243637085 img loss 1.148401141166687 img loss 1.157916784286499 img loss 1.230875015258789 img loss 1.219674825668335 img loss 1.2095896005630493 img loss 1.2386587858200073 img loss 1.242878794670105 img loss 1.2636070251464844 img loss 1.2411352396011353 img loss 1.216982126235962 img loss 1.2705378532409668 img loss 1.1609768867492676 img loss 1.209145426750183 img loss 1.2315266132354736 img loss 1.209468126296997 img loss 1.2466071844100952 img loss 1.3467732667922974 img loss 1.2000702619552612 img loss 1.18644118309021 img loss 1.2039198875427246 img loss 1.2098217010498047 img loss 1.2548775672912598 img loss 1.2408511638641357 img loss 1.2584842443466187 img loss 1.2594845294952393 img loss 1.316535472869873 img loss 1.2396281957626343 img loss 1.2410881519317627 img loss 1.2009245157241821 img loss 1.2002029418945312 img loss 1.2178034782409668 img loss 1.177133321762085 img loss 1.2186102867126465 img loss 1.0941507816314697 img loss 1.2133901119232178 img loss 1.262427568435669 img loss 1.1662919521331787 img loss 1.2184343338012695 img loss 1.1275269985198975 img loss 1.189021110534668 img loss 1.1775553226470947 {'loss': 1.2273, 'grad_norm': 0.1863955557346344, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.204995036125183 img loss 1.2718861103057861 img loss 1.2414569854736328 img loss 1.2889879941940308 img loss 1.2152724266052246 img loss 1.281421184539795 img loss 1.2577379941940308 img loss 1.3300490379333496 img loss 1.3693578243255615 img loss 1.2583065032958984 img loss 1.2413901090621948 img loss 1.1965315341949463 img loss 1.2667502164840698 img loss 1.2846729755401611 img loss 1.24674391746521 img loss 1.2478673458099365 img loss 1.2051550149917603 img loss 1.22577702999115 img loss 1.262505054473877img loss 1.1996378898620605 img loss 1.29861581325531 img loss 1.2760310173034668 img loss 1.2647018432617188 img loss 1.2548778057098389 img loss 1.1596707105636597 img loss 1.2061724662780762 img loss 1.3074005842208862 img loss 1.2385443449020386 img loss 1.2578258514404297 img loss 1.2800846099853516 img loss 1.3742109537124634 img loss 1.292928695678711 img loss 1.4704958200454712 img loss 1.195652961730957 img loss 1.276201605796814 img loss 1.3081096410751343 img loss 1.2372907400131226 img loss 1.200990080833435 img loss 1.1571993827819824 img loss 1.2132692337036133 img loss 1.2027643918991089 img loss 1.1563465595245361 img loss 1.3677994012832642 img loss 1.278125286102295 img loss 1.2952816486358643 img loss 1.2504469156265259 img loss 1.2573752403259277 img loss 1.245703935623169 img loss 1.1972585916519165 img loss 1.256461501121521 img loss 1.351036548614502 img loss 1.2630283832550049 img loss 1.3682578802108765 img loss 1.2671618461608887 img loss 1.2647279500961304 img loss 1.2315934896469116 img loss 1.3589646816253662 img loss 1.27985417842865 img loss 1.1403470039367676 img loss 1.189521312713623 img loss 1.323615550994873 img loss 1.1700636148452759 img loss 1.2187756299972534 img loss 1.2573095560073853 img loss 1.3564486503601074 img loss 1.3344389200210571 img loss 1.176479697227478 img loss 1.273772954940796 img loss 1.2507787942886353 img loss 1.2136058807373047 img loss 1.301086187362671 img loss 1.310911774635315 img loss 1.145789623260498 img loss 1.3118340969085693 img loss 1.3759419918060303 img loss 1.250767469406128 img loss 1.2671921253204346 img loss 1.2452462911605835 img loss 1.2837882041931152 img loss 1.2415668964385986 img loss 1.2502360343933105 img loss 1.3160730600357056 img loss 1.287536859512329 img loss 1.2200268507003784 img loss 1.2644972801208496 img loss 1.2361323833465576 img loss 1.2349777221679688 img loss 1.1492443084716797 img loss 1.16118323802948 img loss 1.2894723415374756 img loss 1.2242066860198975 img loss 1.213832139968872 img loss 1.2789230346679688 img loss 1.2082548141479492 img loss 1.3153352737426758 img loss 1.2783714532852173 img loss 1.3507963418960571 img loss 1.3205995559692383 img loss 1.295682668685913 img loss 1.2630990743637085 img loss 1.1362956762313843 img loss 1.2781264781951904 img loss 1.3458257913589478 img loss 1.241640567779541 img loss 1.1964987516403198 img loss 1.1704634428024292 img loss 1.316178560256958 img loss 1.2545772790908813 img loss 1.236987829208374 img loss 1.1745280027389526 img loss 1.2533471584320068 img loss 1.3225946426391602 img loss 1.2813897132873535 img loss 1.3124258518218994 img loss 1.2276597023010254 img loss 1.359102725982666 img loss 1.2045536041259766 img loss 1.3106545209884644 img loss 1.3262569904327393 img loss 1.1810940504074097img loss 1.139845848083496 img loss 1.265742540359497 img loss 1.3079582452774048 img loss 1.2666332721710205 img loss 1.2621005773544312 img loss 1.3120025396347046 img loss 1.1641205549240112 img loss 1.3278899192810059 {'loss': 1.2596, 'grad_norm': 0.2107466459274292, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5005062818527222 img loss 1.513537049293518 img loss 1.3568549156188965 img loss 1.3006186485290527 img loss 1.2994588613510132 img loss 1.47377347946167 img loss 1.5324047803878784 img loss 1.459962248802185 img loss 1.3881468772888184 img loss 1.4145859479904175 img loss 1.556311011314392 img loss 1.3959096670150757 img loss 1.474989652633667 img loss 1.5685179233551025 img loss 1.3813278675079346 img loss 1.3670494556427002 img loss 1.4565253257751465 img loss 1.3409849405288696 img loss 1.3991332054138184 img loss 1.4470174312591553 img loss 1.4753609895706177 img loss 1.359437346458435 img loss 1.34298574924469 img loss 1.3179945945739746 img loss 1.4299513101577759 img loss 1.363694667816162 img loss 1.5594440698623657 img loss 1.4324986934661865 img loss 1.4945567846298218 img loss 1.4155781269073486 img loss 1.2717831134796143 img loss 1.3130000829696655 img loss 1.5107256174087524 img loss 1.5942636728286743 img loss 1.3406916856765747 img loss 1.432185411453247 img loss 1.306678056716919 img loss 1.4985883235931396 img loss 1.3420149087905884 img loss 1.5998127460479736 img loss 1.5878396034240723 img loss 1.4933894872665405 img loss 1.3063844442367554 img loss 1.4591538906097412 img loss 1.511727213859558 img loss 1.4208954572677612 img loss 1.4624896049499512 img loss 1.4377400875091553 img loss 1.303073525428772img loss 1.485216498374939 img loss 1.3979188203811646 img loss 1.5158582925796509 img loss 1.2996736764907837 img loss 1.3788483142852783 img loss 1.4941736459732056 img loss 1.4714386463165283 img loss 1.5101841688156128 img loss 1.4679073095321655 img loss 1.4142991304397583 img loss 1.5106736421585083 img loss 1.4552937746047974 img loss 1.3597891330718994 img loss 1.4911084175109863 img loss 1.4094265699386597 img loss 1.4750926494598389 img loss 1.3414961099624634 img loss 1.3583637475967407 img loss 1.5950713157653809 img loss 1.425578236579895 img loss 1.4442180395126343 img loss 1.5021264553070068 img loss 1.4067021608352661 img loss 1.4478548765182495 img loss 1.4049794673919678 img loss 1.5119086503982544 img loss 1.55180823802948 img loss 1.324721336364746 img loss 1.4746520519256592 img loss 1.5872588157653809 img loss 1.482399344444275 img loss 1.5036927461624146 img loss 1.3316049575805664 img loss 1.4634413719177246 img loss 1.4414843320846558 img loss 1.4574220180511475 img loss 1.3399583101272583 img loss 1.279865026473999 img loss 1.3786050081253052 img loss 1.4331085681915283 img loss 1.4630141258239746 img loss 1.3358842134475708 img loss 1.4247742891311646 img loss 1.3811711072921753 img loss 1.2974393367767334 img loss 1.3693292140960693 img loss 1.4411815404891968 img loss 1.3376814126968384 img loss 1.4404200315475464 img loss 1.510199785232544 img loss 1.3774445056915283 img loss 1.4519954919815063 img loss 1.4627184867858887 img loss 1.4439215660095215 img loss 1.4102911949157715 img loss 1.399695634841919 img loss 1.5913498401641846 img loss 1.3909417390823364 img loss 1.4412856101989746 img loss 1.4118361473083496 img loss 1.3407196998596191 img loss 1.5161975622177124 img loss 1.5640949010849img loss 1.31732976436615 img loss 1.427803874015808 img loss 1.3561577796936035 img loss 1.3830090761184692 img loss 1.4875876903533936 img loss 1.374538779258728 img loss 1.3613885641098022 img loss 1.3459430932998657img loss 1.448646903038025 img loss 1.4901211261749268 img loss 1.4121185541152954 img loss 1.3316096067428589 img loss 1.3235809803009033 img loss 1.3564385175704956 img loss 1.6121832132339478 img loss 1.3870480060577393 {'loss': 1.4286, 'grad_norm': 0.2784130573272705, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1449713706970215 img loss 1.2586824893951416 img loss 1.1729110479354858 img loss 1.188848853111267 img loss 1.1634905338287354 img loss 1.1957727670669556 img loss 1.2455164194107056 img loss 1.1935453414916992img loss 1.1516427993774414 img loss 1.1758205890655518 img loss 1.146036982536316 img loss 1.175983190536499 img loss 1.1387748718261719 img loss 1.128603458404541 img loss 1.1954716444015503 img loss 1.1588432788848877 img loss 1.1655267477035522 img loss 1.2570018768310547 img loss 1.1815487146377563 img loss 1.2005964517593384 img loss 1.1934040784835815 img loss 1.1719224452972412 img loss 1.2335830926895142 img loss 1.1686452627182007 img loss 1.1993327140808105 img loss 1.1834235191345215 img loss 1.1811294555664062 img loss 1.149332046508789 img loss 1.1580119132995605 img loss 1.132080078125 img loss 1.1779712438583374 img loss 1.1471891403198242 img loss 1.171865701675415 img loss 1.201594591140747 img loss 1.2782700061798096 img loss 1.1334795951843262 img loss 1.1505686044692993 img loss 1.134865641593933 img loss 1.1490528583526611 img loss 1.1662864685058594 img loss 1.180356740951538 img loss 1.1875298023223877 img loss 1.2042841911315918 img loss 1.2163500785827637 img loss 1.2090132236480713 img loss 1.2101917266845703 img loss 1.175522804260254 img loss 1.2594380378723145 img loss 1.2298344373703003 img loss 1.1437809467315674 img loss 1.1518408060073853 img loss 1.1324433088302612 img loss 1.2427036762237549 img loss 1.2179056406021118 img loss 1.243688941001892 img loss 1.1871360540390015img loss 1.1407227516174316 img loss 1.1715725660324097img loss 1.1984649896621704 img loss 1.1808297634124756 img loss 1.1662695407867432 img loss 1.1301876306533813 img loss 1.154891014099121 img loss 1.1928272247314453 img loss 1.1478601694107056 img loss 1.1493909358978271 img loss 1.1978305578231812 img loss 1.1130915880203247 img loss 1.1536736488342285 img loss 1.2654850482940674 img loss 1.2389380931854248 img loss 1.1786081790924072 img loss 1.1849552392959595 img loss 1.1902579069137573 img loss 1.1141431331634521 img loss 1.2411922216415405 img loss 1.195115566253662 img loss 1.2179073095321655 img loss 1.1359888315200806 img loss 1.1539973020553589 img loss 1.1585220098495483 img loss 1.1787240505218506 img loss 1.1735608577728271 img loss 1.2039031982421875 img loss 1.1858413219451904 img loss 1.1319385766983032 img loss 1.2192004919052124 img loss 1.1778147220611572img loss 1.1923977136611938 img loss 1.1339834928512573 img loss 1.1632734537124634 img loss 1.1805577278137207 img loss 1.2389166355133057 img loss 1.2136284112930298 img loss 1.1637780666351318 img loss 1.2327533960342407 img loss 1.230272889137268 img loss 1.1904466152191162 img loss 1.1554768085479736 img loss 1.1461048126220703 img loss 1.2753963470458984 img loss 1.1673941612243652 img loss 1.1826728582382202 img loss 1.1310611963272095 img loss 1.1292107105255127 img loss 1.1967179775238037 img loss 1.2723983526229858 img loss 1.1580746173858643 img loss 1.160800576210022 img loss 1.207669973373413 img loss 1.1821424961090088 img loss 1.1247316598892212 img loss 1.2153205871582031 img loss 1.1370271444320679 img loss 1.2104581594467163 img loss 1.1396920680999756 img loss 1.2274818420410156 img loss 1.250133991241455 img loss 1.1244685649871826 img loss 1.2809178829193115 img loss 1.1749687194824219 img loss 1.1667189598083496 img loss 1.164145827293396 img loss 1.2076048851013184 img loss 1.1562827825546265 img loss 1.2252366542816162 img loss 1.152415156364441 img loss 1.1463730335235596 {'loss': 1.1826, 'grad_norm': 0.2275659590959549, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1870580911636353 img loss 1.2487529516220093 img loss 1.1579508781433105 img loss 1.169858455657959 img loss 1.1842564344406128 img loss 1.3552212715148926 img loss 1.2489770650863647 img loss 1.206583023071289 img loss 1.1702771186828613 img loss 1.2576144933700562 img loss 1.1911064386367798 img loss 1.2069828510284424 img loss 1.1891708374023438 img loss 1.1812419891357422 img loss 1.1974562406539917 img loss 1.2560077905654907 img loss 1.2051596641540527 img loss 1.2859442234039307 img loss 1.1954610347747803 img loss 1.1166448593139648 img loss 1.14658784866333 img loss 1.2778679132461548 img loss 1.1564515829086304 img loss 1.159255862236023 img loss 1.144610047340393 img loss 1.1655298471450806 img loss 1.1993683576583862 img loss 1.187616229057312 img loss 1.129666805267334 img loss 1.2403285503387451 img loss 1.0882189273834229 img loss 1.2166924476623535 img loss 1.202123999595642 img loss 1.2192362546920776 img loss 1.1885406970977783 img loss 1.1508888006210327 img loss 1.2439638376235962 img loss 1.2019373178482056 img loss 1.1711106300354004 img loss 1.1393026113510132 img loss 1.302272081375122 img loss 1.195582389831543 img loss 1.1926789283752441 img loss 1.2062981128692627 img loss 1.1456329822540283 img loss 1.209566354751587 img loss 1.1394591331481934 img loss 1.171737551689148 img loss 1.15090811252594 img loss 1.165103793144226 img loss 1.2562059164047241 img loss 1.2035062313079834 img loss 1.1746025085449219 img loss 1.1556682586669922 img loss 1.202054500579834 img loss 1.182745337486267 img loss 1.1922338008880615 img loss 1.2211246490478516 img loss 1.1839816570281982 img loss 1.1356799602508545 img loss 1.1373180150985718 img loss 1.2293543815612793 img loss 1.2359360456466675 img loss 1.296982765197754 img loss 1.2461808919906616 img loss 1.2678961753845215 img loss 1.1974607706069946 img loss 1.2303788661956787 img loss 1.274043321609497 img loss 1.1637190580368042 img loss 1.3519333600997925 img loss 1.186278223991394 img loss 1.2092061042785645 img loss 1.207930564880371 img loss 1.1938831806182861 img loss 1.243455410003662 img loss 1.2021417617797852 img loss 1.1372355222702026 img loss 1.2067182064056396 img loss 1.1208887100219727 img loss 1.2009245157241821 img loss 1.1577298641204834 img loss 1.1791762113571167 img loss 1.2137380838394165 img loss 1.166703701019287 img loss 1.21108877658844 img loss 1.1644957065582275 img loss 1.1480746269226074 img loss 1.1883951425552368 img loss 1.2115037441253662 img loss 1.163608193397522 img loss 1.1677167415618896 img loss 1.1935346126556396 img loss 1.2616708278656006 img loss 1.179758906364441 img loss 1.2142589092254639 img loss 1.1499067544937134 img loss 1.2292449474334717 img loss 1.1593154668807983 img loss 1.2285960912704468 img loss 1.2118279933929443 img loss 1.236794352531433 img loss 1.150895118713379 img loss 1.1509722471237183 img loss 1.1477620601654053 img loss 1.20956289768219 img loss 1.1866525411605835 img loss 1.1406145095825195 img loss 1.2434780597686768 img loss 1.1935287714004517 img loss 1.2143141031265259 img loss 1.1808708906173706 img loss 1.2467319965362549 img loss 1.129340410232544 img loss 1.2144360542297363 img loss 1.1252955198287964 img loss 1.3079123497009277 img loss 1.1505990028381348 img loss 1.1142351627349854 img loss 1.1187118291854858 img loss 1.2485607862472534 img loss 1.205854058265686 img loss 1.1906466484069824 img loss 1.222139835357666 img loss 1.2408909797668457 img loss 1.161315679550171 img loss 1.184983730316162 img loss 1.1742208003997803 {'loss': 1.1958, 'grad_norm': 0.3226296901702881, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.196744441986084 img loss 1.1890426874160767 img loss 1.2367658615112305 img loss 1.1991653442382812 img loss 1.1808733940124512 img loss 1.2060950994491577 img loss 1.2432596683502197 img loss 1.2008157968521118 img loss 1.301308274269104 img loss 1.2385632991790771 img loss 1.2401357889175415 img loss 1.2282061576843262 img loss 1.3269602060317993 img loss 1.1858429908752441 img loss 1.2089059352874756 img loss 1.1888059377670288 img loss 1.2385059595108032 img loss 1.250976800918579 img loss 1.238505244255066 img loss 1.2333576679229736 img loss 1.2619223594665527 img loss 1.1912951469421387 img loss 1.2099040746688843 img loss 1.2359426021575928 img loss 1.2061469554901123 img loss 1.2135436534881592img loss 1.226805567741394 img loss 1.2645509243011475 img loss 1.2021242380142212 img loss 1.2366646528244019 img loss 1.2222108840942383 img loss 1.208580732345581 img loss 1.2372004985809326 img loss 1.2279695272445679 img loss 1.1782222986221313 img loss 1.203478455543518 img loss 1.2231616973876953 img loss 1.2393245697021484 img loss 1.243791103363037 img loss 1.250101923942566 img loss 1.1546261310577393 img loss 1.2466732263565063 img loss 1.2095367908477783 img loss 1.2705445289611816 img loss 1.2481521368026733 img loss 1.2592484951019287 img loss 1.2072597742080688 img loss 1.2205650806427002 img loss 1.248452067375183 img loss 1.243556261062622 img loss 1.2404189109802246 img loss 1.2442816495895386img loss 1.2251412868499756 img loss 1.2193233966827393 img loss 1.2330679893493652 img loss 1.1785523891448975 img loss 1.2454677820205688 img loss 1.2567795515060425 img loss 1.2099003791809082 img loss 1.26063871383667 img loss 1.2325061559677124 img loss 1.233236312866211 img loss 1.2229552268981934 img loss 1.2675375938415527 img loss 1.2206692695617676 img loss 1.2179219722747803 img loss 1.1975829601287842 img loss 1.227995753288269 img loss 1.256406307220459 img loss 1.227320909500122 img loss 1.2192074060440063 img loss 1.239428997039795 img loss 1.285949468612671 img loss 1.2511507272720337 img loss 1.3015878200531006 img loss 1.2426972389221191 img loss 1.2109310626983643 img loss 1.2293905019760132 img loss 1.2141320705413818 img loss 1.2212623357772827 img loss 1.2753406763076782 img loss 1.217955231666565 img loss 1.2645853757858276 img loss 1.1973618268966675 img loss 1.1452223062515259 img loss 1.2050855159759521 img loss 1.2401669025421143 img loss 1.25093412399292 img loss 1.2476122379302979 img loss 1.2135863304138184 img loss 1.2135471105575562 img loss 1.2377948760986328 img loss 1.218321442604065 img loss 1.2136882543563843 img loss 1.2007454633712769 img loss 1.2125118970870972 img loss 1.3201570510864258 img loss 1.270565390586853 img loss 1.2053163051605225 img loss 1.218430995941162 img loss 1.2379839420318604 img loss 1.2402368783950806 img loss 1.2048200368881226 img loss 1.2083022594451904 img loss 1.2040538787841797 img loss 1.291293740272522 img loss 1.2272615432739258 img loss 1.2048206329345703 img loss 1.3099993467330933 img loss 1.2024548053741455 img loss 1.2726187705993652 img loss 1.302648901939392 img loss 1.2868975400924683 img loss 1.199979305267334 img loss 1.1981680393218994 img loss 1.2499182224273682 img loss 1.2087304592132568 img loss 1.1784521341323853 img loss 1.2409104108810425 img loss 1.2534985542297363 img loss 1.2294197082519531 img loss 1.2936792373657227 img loss 1.1907227039337158 img loss 1.2545092105865479 img loss 1.2275867462158203 img loss 1.2565425634384155 img loss 1.210753321647644 img loss 1.2191451787948608 {'loss': 1.2307, 'grad_norm': 0.26714465022087097, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.225833773612976 img loss 1.2152812480926514 img loss 1.2368969917297363 img loss 1.2609083652496338 img loss 1.2447658777236938 img loss 1.2091878652572632 img loss 1.1870617866516113 img loss 1.1946637630462646 img loss 1.201441764831543 img loss 1.234838843345642 img loss 1.2114228010177612 img loss 1.2115310430526733 img loss 1.1718038320541382 img loss 1.2101857662200928 img loss 1.2328293323516846 img loss 1.2338542938232422 img loss 1.2280105352401733 img loss 1.244678020477295 img loss 1.1942477226257324 img loss 1.2288776636123657 img loss 1.2138251066207886 img loss 1.2239842414855957 img loss 1.1841610670089722 img loss 1.2032217979431152 img loss 1.194803237915039 img loss 1.211767554283142 img loss 1.1986290216445923 img loss 1.233555793762207 img loss 1.2345894575119019 img loss 1.1948034763336182 img loss 1.1908518075942993 img loss 1.226779580116272 img loss 1.1997218132019043 img loss 1.1675227880477905 img loss 1.1848180294036865 img loss 1.2166097164154053 img loss 1.2076290845870972 img loss 1.2132400274276733 img loss 1.181217074394226img loss 1.215091586112976 img loss 1.2336745262145996 img loss 1.2332944869995117 img loss 1.2047152519226074 img loss 1.2275898456573486 img loss 1.216591238975525 img loss 1.2058725357055664 img loss 1.1889617443084717 img loss 1.1923147439956665 img loss 1.2354743480682373 img loss 1.187084674835205 img loss 1.2118653059005737 img loss 1.249103307723999 img loss 1.2376850843429565 img loss 1.1997199058532715 img loss 1.2595373392105103 img loss 1.2573860883712769 img loss 1.1964386701583862 img loss 1.24504554271698 img loss 1.177670955657959 img loss 1.206512212753296 img loss 1.2119697332382202 img loss 1.1758382320404053 img loss 1.2362390756607056 img loss 1.1787207126617432 img loss 1.2473020553588867 img loss 1.2269409894943237 img loss 1.176129698753357 img loss 1.227658748626709 img loss 1.2072261571884155 img loss 1.1575180292129517 img loss 1.2421411275863647 img loss 1.2348756790161133 img loss 1.2240933179855347 img loss 1.2366909980773926 img loss 1.27190363407135 img loss 1.214477777481079 img loss 1.237608551979065 img loss 1.2854877710342407 img loss 1.2161422967910767 img loss 1.178882360458374 img loss 1.227186918258667 img loss 1.2330044507980347 img loss 1.2415310144424438 img loss 1.2236342430114746 img loss 1.2127164602279663 img loss 1.2526403665542603 img loss 1.1924779415130615 img loss 1.1990101337432861 img loss 1.1707041263580322 img loss 1.1969985961914062 img loss 1.1826529502868652 img loss 1.2157729864120483 img loss 1.20979905128479 img loss 1.160367727279663 img loss 1.2155070304870605 img loss 1.236458659172058 img loss 1.2442591190338135 img loss 1.1891870498657227 img loss 1.2639241218566895 img loss 1.1843852996826172 img loss 1.2210593223571777 img loss 1.2290595769882202 img loss 1.248795986175537 img loss 1.2464288473129272 img loss 1.1861927509307861 img loss 1.1948871612548828 img loss 1.2153524160385132 img loss 1.2118892669677734 img loss 1.191694736480713 img loss 1.2102077007293701 img loss 1.2289385795593262 img loss 1.2067615985870361 img loss 1.192787766456604 img loss 1.249406099319458 img loss 1.2212740182876587 img loss 1.2128620147705078 img loss 1.2232307195663452 img loss 1.2739681005477905 img loss 1.1656414270401 img loss 1.2222976684570312 img loss 1.225095272064209 img loss 1.2067726850509644 img loss 1.2247788906097412 img loss 1.2583078145980835 img loss 1.2379324436187744 img loss 1.1862688064575195 img loss 1.2415046691894531 img loss 1.2528082132339478 {'loss': 1.2162, 'grad_norm': 0.260946661233902, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.198433518409729 img loss 1.302631139755249 img loss 1.2123384475708008 img loss 1.2296409606933594 img loss 1.2502278089523315 img loss 1.2734529972076416 img loss 1.2206581830978394 img loss 1.2119364738464355 img loss 1.2026790380477905 img loss 1.1965203285217285 img loss 1.2732893228530884 img loss 1.236265778541565 img loss 1.1779054403305054 img loss 1.275895595550537 img loss 1.3201608657836914 img loss 1.191853404045105 img loss 1.2499496936798096 img loss 1.2688829898834229 img loss 1.2320636510849 img loss 1.2669333219528198 img loss 1.2657817602157593 img loss 1.3448604345321655 img loss 1.2207915782928467 img loss 1.2782396078109741 img loss 1.2599327564239502 img loss 1.258723497390747 img loss 1.2352867126464844 img loss 1.2066690921783447 img loss 1.1764096021652222 img loss 1.1976943016052246 img loss 1.2734432220458984 img loss 1.2009856700897217 img loss 1.4732768535614014 img loss 1.178820252418518 img loss 1.230071783065796 img loss 1.2109496593475342 img loss 1.2118223905563354 img loss 1.2244268655776978 img loss 1.309753179550171 img loss 1.2747182846069336 img loss 1.221604585647583 img loss 1.232051134109497 img loss 1.2438042163848877 img loss 1.1248953342437744 img loss 1.199971079826355 img loss 1.2258800268173218 img loss 1.233382225036621 img loss 1.2562065124511719 img loss 1.2301428318023682 img loss 1.3089158535003662 img loss 1.228766918182373 img loss 1.2314106225967407 img loss 1.2453505992889404 img loss 1.2234286069869995 img loss 1.2382324934005737 img loss 1.233393907546997 img loss 1.2915266752243042 img loss 1.193335771560669 img loss 1.2959885597229004 img loss 1.2271207571029663 img loss 1.2215278148651123 img loss 1.2645702362060547 img loss 1.2108948230743408 img loss 1.2648638486862183 img loss 1.3180564641952515 img loss 1.2662112712860107 img loss 1.2399870157241821 img loss 1.2061408758163452 img loss 1.3066611289978027 img loss 1.3011220693588257 img loss 1.19402277469635 img loss 1.197380542755127 img loss 1.2753666639328003 img loss 1.245080590248108 img loss 1.1791731119155884 img loss 1.2406916618347168 img loss 1.233114242553711 img loss 1.2606515884399414 img loss 1.3605214357376099 img loss 1.2812166213989258 img loss 1.2705751657485962 img loss 1.232235312461853 img loss 1.188320517539978 img loss 1.1950043439865112 img loss 1.212594747543335 img loss 1.2261756658554077 img loss 1.2094910144805908 img loss 1.2847980260849 img loss 1.2169623374938965 img loss 1.2988221645355225 img loss 1.199910044670105 img loss 1.2250046730041504 img loss 1.3472726345062256 img loss 1.1763916015625 img loss 1.2288192510604858 img loss 1.2367031574249268 img loss 1.2650457620620728 img loss 1.2066452503204346 img loss 1.2316662073135376 img loss 1.177355170249939 img loss 1.244532585144043 img loss 1.215641736984253 img loss 1.2704544067382812 img loss 1.2711005210876465 img loss 1.208704948425293 img loss 1.279317855834961 img loss 1.1658979654312134 img loss 1.250413179397583 img loss 1.1617151498794556 img loss 1.2101500034332275 img loss 1.1778945922851562 img loss 1.1925913095474243 img loss 1.2127337455749512 img loss 1.312572717666626 img loss 1.227865219116211 img loss 1.2766822576522827 img loss 1.2626842260360718 img loss 1.2854331731796265 img loss 1.1715917587280273 img loss 1.2286722660064697 img loss 1.202649712562561 img loss 1.3026739358901978 img loss 1.2275835275650024 img loss 1.224066138267517 img loss 1.2670226097106934 img loss 1.2556198835372925 img loss 1.1237261295318604 img loss 1.3134572505950928 {'loss': 1.2402, 'grad_norm': 0.2205696851015091, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3593791723251343 img loss 1.3822585344314575 img loss 1.365940809249878 img loss 1.3735474348068237 img loss 1.3630925416946411 img loss 1.37740957736969 img loss 1.4063775539398193 img loss 1.3091480731964111 img loss 1.289625883102417 img loss 1.351473093032837 img loss 1.350574016571045 img loss 1.6042104959487915 img loss 1.3530211448669434 img loss 1.3499274253845215 img loss 1.4661900997161865 img loss 1.4174046516418457 img loss 1.4068560600280762 img loss 1.4516741037368774 img loss 1.4431407451629639 img loss 1.3973489999771118 img loss 1.3968714475631714 img loss 1.3160736560821533 img loss 1.3360716104507446 img loss 1.4128421545028687 img loss 1.4523708820343018 img loss 1.2998958826065063 img loss 1.4118467569351196 img loss 1.362242341041565 img loss 1.4776800870895386 img loss 1.29416024684906 img loss 1.401546835899353 img loss 1.4523987770080566 img loss 1.44619619846344 img loss 1.2888253927230835 img loss 1.4209847450256348 img loss 1.4112974405288696 img loss 1.4185444116592407 img loss 1.5253283977508545 img loss 1.4349169731140137 img loss 1.3061681985855103 img loss 1.36814284324646 img loss 1.3628519773483276 img loss 1.364040732383728 img loss 1.353644609451294 img loss 1.327890396118164 img loss 1.3314564228057861 img loss 1.3711085319519043 img loss 1.4237761497497559 img loss 1.3305983543395996 img loss 1.304776906967163 img loss 1.3866885900497437 img loss 1.339341402053833 img loss 1.3779942989349365 img loss 1.3690115213394165 img loss 1.483897089958191 img loss 1.3415791988372803 img loss 1.3175468444824219 img loss 1.3958429098129272 img loss 1.3388183116912842 img loss 1.4018645286560059 img loss 1.389575481414795 img loss 1.2793684005737305 img loss 1.3133552074432373 img loss 1.4271186590194702 img loss 1.365182638168335 img loss 1.2058637142181396 img loss 1.474965214729309 img loss 1.3930920362472534 img loss 1.358079195022583 img loss 1.2470892667770386 img loss 1.414052128791809 img loss 1.40886390209198 img loss 1.4078642129898071 img loss 1.3267590999603271 img loss 1.4099652767181396 img loss 1.2954601049423218img loss 1.373859167098999 img loss 1.4174840450286865 img loss 1.4124292135238647 img loss 1.3544894456863403 img loss 1.5163991451263428 img loss 1.3777257204055786 img loss 1.2737783193588257 img loss 1.3016788959503174 img loss 1.2937099933624268 img loss 1.3671910762786865 img loss 1.389849066734314 img loss 1.4006961584091187 img loss 1.4730924367904663 img loss 1.4052053689956665 img loss 1.3391108512878418 img loss 1.3140655755996704 img loss 1.353305697441101 img loss 1.3718992471694946 img loss 1.4615846872329712 img loss 1.3986506462097168 img loss 1.5006861686706543 img loss 1.4013417959213257 img loss 1.3520604372024536 img loss 1.3881070613861084 img loss 1.4189456701278687 img loss 1.3946774005889893 img loss 1.3271386623382568 img loss 1.3945506811141968 img loss 1.3505488634109497 img loss 1.343820333480835 img loss 1.3533591032028198 img loss 1.4203041791915894 img loss 1.4299511909484863 img loss 1.2988003492355347 img loss 1.4168553352355957 img loss 1.4222605228424072 img loss 1.414209008216858 img loss 1.332444429397583 img loss 1.3479231595993042 img loss 1.3204996585845947 img loss 1.3621689081192017 img loss 1.33729887008667 img loss 1.3928591012954712 img loss 1.3666943311691284 img loss 1.3856170177459717 img loss 1.4007275104522705 img loss 1.3673415184020996 img loss 1.4742350578308105 img loss 1.2903811931610107 img loss 1.3158495426177979 img loss 1.3975852727890015 img loss 1.3631459474563599 {'loss': 1.3779, 'grad_norm': 0.3354637026786804, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.238316535949707 img loss 1.1734684705734253 img loss 1.3287560939788818 img loss 1.3760159015655518 img loss 1.297929048538208 img loss 1.2746620178222656 img loss 1.2316052913665771 img loss 1.2164852619171143 img loss 1.4226940870285034 img loss 1.2432119846343994 img loss 1.3129351139068604 img loss 1.2797647714614868 img loss 1.3374383449554443 img loss 1.2617610692977905 img loss 1.2411826848983765 img loss 1.2995076179504395 img loss 1.312661051750183 img loss 1.2480300664901733 img loss 1.2577581405639648 img loss 1.2834374904632568 img loss 1.2856849431991577 img loss 1.2108891010284424 img loss 1.2333958148956299 img loss 1.226853370666504 img loss 1.3131062984466553 img loss 1.2380386590957642 img loss 1.3131725788116455 img loss 1.2285494804382324 img loss 1.311699628829956 img loss 1.217223048210144 img loss 1.3099403381347656 img loss 1.2747993469238281 img loss 1.3626137971878052 img loss 1.1656244993209839 img loss 1.33135986328125 img loss 1.3074873685836792 img loss 1.2791093587875366 img loss 1.3659112453460693 img loss 1.404875636100769 img loss 1.18490469455719 img loss 1.1922931671142578 img loss 1.2672057151794434 img loss 1.3009235858917236 img loss 1.4089192152023315 img loss 1.2225900888442993 img loss 1.3017690181732178 img loss 1.2527291774749756 img loss 1.2179220914840698 img loss 1.268288254737854 img loss 1.2396748065948486 img loss 1.241837739944458 img loss 1.4408596754074097 img loss 1.303998351097107 img loss 1.1959683895111084 img loss 1.2560583353042603 img loss 1.2907451391220093 img loss 1.2470731735229492 img loss 1.296517014503479 img loss 1.2126121520996094 img loss 1.3042752742767334 img loss 1.2195897102355957 img loss 1.261918306350708 img loss 1.2550525665283203 img loss 1.2414069175720215 img loss 1.2567574977874756 img loss 1.2204625606536865 img loss 1.2740073204040527 img loss 1.22538161277771 img loss 1.2122982740402222 img loss 1.2786500453948975 img loss 1.3046711683273315 img loss 1.2704700231552124 img loss 1.1796518564224243 img loss 1.3224501609802246 img loss 1.2686165571212769 img loss 1.1486157178878784 img loss 1.2892767190933228 img loss 1.2493326663970947 img loss 1.2842050790786743 img loss 1.2974780797958374 img loss 1.2162779569625854 img loss 1.1874089241027832 img loss 1.2874889373779297 img loss 1.266184687614441 img loss 1.2179697751998901 img loss 1.2272162437438965 img loss 1.2486515045166016 img loss 1.3170441389083862 img loss 1.2285350561141968 img loss 1.327680230140686 img loss 1.3443530797958374 img loss 1.2176721096038818 img loss 1.219803810119629 img loss 1.222807765007019 img loss 1.2538201808929443 img loss 1.1763620376586914 img loss 1.2603105306625366 img loss 1.2405017614364624 img loss 1.1995772123336792 img loss 1.2216155529022217 img loss 1.2937235832214355 img loss 1.234677791595459 img loss 1.1950037479400635 img loss 1.3122062683105469 img loss 1.175601840019226 img loss 1.2765319347381592 img loss 1.223907232284546 img loss 1.3039146661758423 img loss 1.297455072402954 img loss 1.2126346826553345 img loss 1.3062889575958252 img loss 1.203306794166565 img loss 1.269052267074585 img loss 1.2582740783691406 img loss 1.1896615028381348 img loss 1.2546617984771729 img loss 1.2718958854675293img loss 1.3474503755569458img loss 1.278451919555664 img loss 1.2705860137939453 img loss 1.2952327728271484 img loss 1.2213596105575562 img loss 1.1976826190948486 img loss 1.2234891653060913 img loss 1.2746855020523071 img loss 1.3163658380508423 img loss 1.2539823055267334 img loss 1.1953544616699219 {'loss': 1.2638, 'grad_norm': 0.31311216950416565, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2424263954162598 img loss 1.2248690128326416 img loss 1.2110620737075806 img loss 1.2461063861846924 img loss 1.2067909240722656 img loss 1.2092342376708984 img loss 1.2073668241500854 img loss 1.312457799911499 img loss 1.2041456699371338 img loss 1.2147616147994995 img loss 1.2283244132995605 img loss 1.2593811750411987 img loss 1.2648227214813232 img loss 1.2800054550170898 img loss 1.2460894584655762 img loss 1.2825320959091187 img loss 1.2102482318878174 img loss 1.1866425275802612 img loss 1.189119577407837 img loss 1.258579969406128 img loss 1.2381401062011719 img loss 1.169289469718933 img loss 1.2350311279296875 img loss 1.1365424394607544 img loss 1.2123982906341553 img loss 1.2543948888778687 img loss 1.1720397472381592 img loss 1.2247275114059448 img loss 1.2162071466445923 img loss 1.2444350719451904 img loss 1.2256306409835815 img loss 1.1792138814926147 img loss 1.184710144996643 img loss 1.3225419521331787 img loss 1.2643852233886719 img loss 1.2344911098480225 img loss 1.1942716836929321 img loss 1.2176172733306885 img loss 1.1718149185180664 img loss 1.2012944221496582 img loss 1.2187328338623047 img loss 1.2037464380264282 img loss 1.2897698879241943 img loss 1.2705830335617065 img loss 1.2135089635849 img loss 1.2513307332992554 img loss 1.2896146774291992 img loss 1.2587242126464844 img loss 1.2464088201522827 img loss 1.2601784467697144 img loss 1.1987230777740479 img loss 1.1877045631408691 img loss 1.280730128288269 img loss 1.172087550163269 img loss 1.2786052227020264 img loss 1.2646433115005493 img loss 1.2300159931182861 img loss 1.2611116170883179 img loss 1.2016876935958862 img loss 1.168569564819336 img loss 1.3151748180389404 img loss 1.2632920742034912 img loss 1.193764567375183 img loss 1.223200798034668 img loss 1.1887898445129395 img loss 1.2517608404159546 img loss 1.2631943225860596 img loss 1.2370671033859253 img loss 1.2206541299819946 img loss 1.241572618484497 img loss 1.2291066646575928 img loss 1.319960117340088 img loss 1.2364288568496704 img loss 1.2472891807556152 img loss 1.209572434425354 img loss 1.3288601636886597 img loss 1.240950345993042 img loss 1.261336088180542 img loss 1.267227053642273 img loss 1.2764911651611328 img loss 1.1892813444137573 img loss 1.2397973537445068 img loss 1.198006510734558 img loss 1.226019263267517 img loss 1.2250802516937256 img loss 1.2193809747695923 img loss 1.1503291130065918 img loss 1.2976559400558472 img loss 1.3500100374221802 img loss 1.1823766231536865 img loss 1.2732372283935547 img loss 1.2445493936538696 img loss 1.299753189086914 img loss 1.1989926099777222 img loss 1.2033441066741943 img loss 1.2595300674438477 img loss 1.26296865940094 img loss 1.2786320447921753 img loss 1.244311809539795 img loss 1.2445482015609741 img loss 1.2985317707061768 img loss 1.2375606298446655 img loss 1.1917107105255127 img loss 1.248138427734375 img loss 1.2978382110595703 img loss 1.2466455698013306 img loss 1.2637609243392944 img loss 1.2803200483322144 img loss 1.2265033721923828 img loss 1.1478983163833618 img loss 1.2171649932861328 img loss 1.2263238430023193 img loss 1.2131259441375732 img loss 1.169914960861206 img loss 1.2141965627670288 img loss 1.192218542098999 img loss 1.2980260848999023 img loss 1.2123167514801025 img loss 1.222704291343689 img loss 1.2472023963928223 img loss 1.2055567502975464 img loss 1.1803339719772339 img loss 1.1922295093536377 img loss 1.2290868759155273 img loss 1.204558253288269 img loss 1.2761342525482178 img loss 1.259305715560913 img loss 1.2309261560440063 {'loss': 1.2341, 'grad_norm': 0.18763430416584015, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4559491872787476 img loss 1.3058357238769531 img loss 1.4488537311553955 img loss 1.4041180610656738 img loss 1.5314372777938843 img loss 1.4270483255386353 img loss 1.408109426498413 img loss 1.5488126277923584 img loss 1.4570764303207397 img loss 1.5229192972183228 img loss 1.3583109378814697 img loss 1.4494305849075317 img loss 1.3721755743026733 img loss 1.4475923776626587 img loss 1.5835212469100952 img loss 1.4791960716247559 img loss 1.4353500604629517 img loss 1.3417962789535522 img loss 1.5085656642913818 img loss 1.3563530445098877 img loss 1.480762004852295 img loss 1.3856685161590576 img loss 1.4196056127548218 img loss 1.5389448404312134 img loss 1.5019052028656006 img loss 1.391668438911438 img loss 1.4711724519729614 img loss 1.4627591371536255 img loss 1.4243581295013428 img loss 1.4598934650421143 img loss 1.426591157913208 img loss 1.588375449180603 img loss 1.3387328386306763 img loss 1.4920202493667603 img loss 1.5698676109313965 img loss 1.3736357688903809 img loss 1.4568111896514893 img loss 1.4750666618347168 img loss 1.4975823163986206 img loss 1.442653775215149 img loss 1.3965020179748535 img loss 1.4877562522888184 img loss 1.5637319087982178 img loss 1.5690891742706299 img loss 1.4898488521575928img loss 1.5029605627059937 img loss 1.4830502271652222 img loss 1.3707125186920166 img loss 1.4208614826202393 img loss 1.5281336307525635 img loss 1.4202109575271606 img loss 1.5336846113204956 img loss 1.3829156160354614 img loss 1.4618381261825562 img loss 1.5107834339141846 img loss 1.490296721458435 img loss 1.2888014316558838 img loss 1.4740617275238037 img loss 1.4888125658035278 img loss 1.4936186075210571 img loss 1.6297717094421387 img loss 1.5396901369094849 img loss 1.530140995979309 img loss 1.61808180809021 img loss 1.569408893585205 img loss 1.5624436140060425 img loss 1.4551491737365723 img loss 1.438860535621643 img loss 1.4423121213912964 img loss 1.4188307523727417 img loss 1.5806220769882202 img loss 1.3984510898590088 img loss 1.560871958732605 img loss 1.4467381238937378 img loss 1.44895601272583 img loss 1.5638693571090698 img loss 1.5317696332931519 img loss 1.4657014608383179 img loss 1.5037285089492798 img loss 1.6053736209869385 img loss 1.4703943729400635 img loss 1.4771039485931396 img loss 1.345629334449768 img loss 1.4957131147384644 img loss 1.479600191116333 img loss 1.5691288709640503 img loss 1.436826229095459 img loss 1.4551975727081299 img loss 1.497454285621643 img loss 1.4168423414230347 img loss 1.47328519821167 img loss 1.321420431137085 img loss 1.5292422771453857 img loss 1.4822922945022583 img loss 1.5059950351715088 img loss 1.342272162437439 img loss 1.4725658893585205 img loss 1.4400845766067505 img loss 1.4460736513137817 img loss 1.5099997520446777 img loss 1.4503443241119385 img loss 1.6566087007522583 img loss 1.4236109256744385 img loss 1.5515971183776855 img loss 1.4322552680969238 img loss 1.491139531135559 img loss 1.4117971658706665 img loss 1.3874191045761108img loss 1.3421424627304077 img loss 1.4521212577819824 img loss 1.535092830657959 img loss 1.453539252281189 img loss 1.5872101783752441 img loss 1.4664138555526733 img loss 1.4621533155441284 img loss 1.3339173793792725 img loss 1.3614193201065063 img loss 1.4487329721450806 img loss 1.498839020729065 img loss 1.4823800325393677 img loss 1.542632818222046 img loss 1.4630696773529053 img loss 1.5986088514328003 img loss 1.477867841720581 img loss 1.4200685024261475 img loss 1.473435640335083 img loss 1.4764025211334229 img loss 1.5317933559417725 {'loss': 1.4694, 'grad_norm': 0.3310987055301666, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.410457968711853 img loss 1.3701547384262085 img loss 1.3342328071594238 img loss 1.236459732055664 img loss 1.2893928289413452 img loss 1.4007169008255005 img loss 1.3903354406356812 img loss 1.4195992946624756 img loss 1.4027435779571533 img loss 1.3295243978500366 img loss 1.3568283319473267 img loss 1.4164745807647705 img loss 1.3297443389892578 img loss 1.4043525457382202 img loss 1.3605234622955322 img loss 1.3459762334823608 img loss 1.4030348062515259 img loss 1.2882320880889893 img loss 1.3489949703216553 img loss 1.3538295030593872 img loss 1.4198696613311768 img loss 1.363817811012268 img loss 1.4404493570327759 img loss 1.3573483228683472 img loss 1.3435405492782593 img loss 1.3520351648330688 img loss 1.2963159084320068 img loss 1.3840651512145996 img loss 1.4102119207382202 img loss 1.3073867559432983 img loss 1.2658042907714844 img loss 1.3689683675765991 img loss 1.303969383239746 img loss 1.414343237876892 img loss 1.3616440296173096 img loss 1.2743996381759644 img loss 1.332575798034668 img loss 1.395628809928894 img loss 1.3694484233856201 img loss 1.4964931011199951 img loss 1.3682903051376343 img loss 1.3499505519866943 img loss 1.3853237628936768 img loss 1.3651961088180542 img loss 1.4421466588974 img loss 1.2780334949493408 img loss 1.384926676750183 img loss 1.4263050556182861 img loss 1.466443657875061 img loss 1.383499026298523 img loss 1.2839610576629639 img loss 1.4353259801864624 img loss 1.4943269491195679 img loss 1.2544971704483032 img loss 1.359464168548584 img loss 1.3776015043258667 img loss 1.442551851272583 img loss 1.2946641445159912 img loss 1.3848156929016113 img loss 1.4378961324691772 img loss 1.475422739982605 img loss 1.354773998260498 img loss 1.4764463901519775 img loss 1.3021535873413086 img loss 1.3090091943740845 img loss 1.4176801443099976 img loss 1.356427788734436 img loss 1.5518077611923218 img loss 1.3594032526016235 img loss 1.3071630001068115 img loss 1.2602710723876953 img loss 1.312152624130249 img loss 1.313062310218811 img loss 1.4080884456634521 img loss 1.3920217752456665 img loss 1.3340080976486206 img loss 1.318034052848816 img loss 1.4418158531188965 img loss 1.4141716957092285 img loss 1.3093321323394775 img loss 1.492164969444275 img loss 1.4375033378601074 img loss 1.3142995834350586 img loss 1.4105677604675293 img loss 1.2933554649353027 img loss 1.2781561613082886 img loss 1.3165700435638428 img loss 1.3310425281524658 img loss 1.446616291999817 img loss 1.4580566883087158 img loss 1.4427788257598877 img loss 1.283864974975586 img loss 1.2691402435302734 img loss 1.4362763166427612 img loss 1.4941145181655884 img loss 1.397148847579956 img loss 1.499459981918335 img loss 1.3464066982269287 img loss 1.306878685951233 img loss 1.2540576457977295 img loss 1.4241105318069458 img loss 1.2853195667266846 img loss 1.3117995262145996 img loss 1.3120598793029785 img loss 1.4497734308242798 img loss 1.4953340291976929 img loss 1.3161448240280151 img loss 1.3273062705993652 img loss 1.3596760034561157 img loss 1.2778418064117432 img loss 1.3693387508392334 img loss 1.3816559314727783 img loss 1.4348276853561401 img loss 1.3440760374069214 img loss 1.3825275897979736 img loss 1.3875412940979004 img loss 1.4067591428756714 img loss 1.4905884265899658 img loss 1.330818772315979 img loss 1.3154929876327515 img loss 1.418678879737854 img loss 1.2697511911392212 img loss 1.4221206903457642 img loss 1.3610777854919434 img loss 1.353564977645874 img loss 1.2899677753448486 img loss 1.311645269393921 img loss 1.3490290641784668 {'loss': 1.3685, 'grad_norm': 0.5462440848350525, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1934860944747925 img loss 1.2887651920318604 img loss 1.2982356548309326 img loss 1.3700889348983765 img loss 1.2123327255249023 img loss 1.3336952924728394 img loss 1.2489118576049805 img loss 1.0894170999526978 img loss 1.2183570861816406 img loss 1.3746883869171143 img loss 1.2414848804473877 img loss 1.2826530933380127 img loss 1.2583128213882446 img loss 1.2065693140029907 img loss 1.3103301525115967 img loss 1.240241527557373 img loss 1.3613669872283936 img loss 1.3324207067489624 img loss 1.2365775108337402 img loss 1.2726713418960571 img loss 1.3260170221328735 img loss 1.3356261253356934 img loss 1.2149689197540283 img loss 1.194760799407959 img loss 1.2739299535751343 img loss 1.289534091949463 img loss 1.238194227218628 img loss 1.369590401649475 img loss 1.2970895767211914 img loss 1.2501076459884644 img loss 1.3745454549789429 img loss 1.2834675312042236 img loss 1.1702280044555664 img loss 1.2515853643417358 img loss 1.3642085790634155 img loss 1.2859084606170654 img loss 1.316381812095642 img loss 1.2783010005950928 img loss 1.2699897289276123 img loss 1.349493384361267 img loss 1.2049344778060913 img loss 1.3099733591079712 img loss 1.2168781757354736 img loss 1.3312482833862305 img loss 1.3127601146697998 img loss 1.339374303817749 img loss 1.2454594373703003 img loss 1.167406439781189 img loss 1.1855372190475464 img loss 1.1870932579040527 img loss 1.2983756065368652 img loss 1.2571749687194824 img loss 1.2297443151474 img loss 1.2685743570327759 img loss 1.3470464944839478 img loss 1.3605320453643799 img loss 1.200404405593872 img loss 1.3223178386688232 img loss 1.2403233051300049 img loss 1.1853783130645752 img loss 1.3128798007965088 img loss 1.4236265420913696 img loss 1.249263048171997 img loss 1.30223548412323 img loss 1.34308660030365 img loss 1.329061508178711 img loss 1.2664200067520142 img loss 1.2595574855804443 img loss 1.3312710523605347 img loss 1.238157868385315 img loss 1.1920294761657715 img loss 1.31090247631073 img loss 1.3924068212509155 img loss 1.234426498413086 img loss 1.2224116325378418 img loss 1.3060764074325562 img loss 1.296059489250183 img loss 1.299506425857544 img loss 1.244063377380371 img loss 1.1996392011642456 img loss 1.2295148372650146 img loss 1.2167940139770508 img loss 1.3757539987564087 img loss 1.3564298152923584 img loss 1.3185858726501465 img loss 1.2654283046722412 img loss 1.3179645538330078 img loss 1.2928985357284546 img loss 1.1673659086227417 img loss 1.321840763092041 img loss 1.2767212390899658 img loss 1.2963899374008179 img loss 1.30797278881073 img loss 1.2345116138458252 img loss 1.1773102283477783 img loss 1.2868366241455078 img loss 1.2232584953308105 img loss 1.237107753753662 img loss 1.2067502737045288 img loss 1.2836109399795532 img loss 1.2640438079833984 img loss 1.1822454929351807 img loss 1.218430995941162 img loss 1.2690900564193726 img loss 1.3290531635284424 img loss 1.2241935729980469 img loss 1.2559905052185059 img loss 1.2694644927978516 img loss 1.2879915237426758 img loss 1.3123242855072021 img loss 1.2358009815216064 img loss 1.2664315700531006 img loss 1.2618820667266846 img loss 1.2723509073257446 img loss 1.2328145503997803 img loss 1.422251582145691 img loss 1.159242033958435 img loss 1.1681126356124878 img loss 1.2933714389801025 img loss 1.2687700986862183 img loss 1.2765811681747437 img loss 1.2426869869232178 img loss 1.321250319480896 img loss 1.4249688386917114 img loss 1.3103774785995483 img loss 1.231197714805603 img loss 1.2494598627090454 img loss 1.3288490772247314 {'loss': 1.2738, 'grad_norm': 0.2674781084060669, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4544594287872314 img loss 1.2923846244812012 img loss 1.325425386428833 img loss 1.2501214742660522 img loss 1.2125418186187744 img loss 1.2131133079528809 img loss 1.2717043161392212 img loss 1.3448522090911865 img loss 1.2933082580566406 img loss 1.2756567001342773 img loss 1.2137187719345093 img loss 1.1836485862731934 img loss 1.3530012369155884 img loss 1.324472188949585 img loss 1.3185497522354126 img loss 1.2730166912078857 img loss 1.1656715869903564 img loss 1.223752498626709 img loss 1.4425243139266968 img loss 1.273912787437439 img loss 1.371160864830017 img loss 1.2630237340927124 img loss 1.3874918222427368 img loss 1.269662857055664 img loss 1.299620270729065 img loss 1.3145860433578491 img loss 1.3850836753845215 img loss 1.3066965341567993 img loss 1.288935899734497 img loss 1.3108487129211426 img loss 1.270289421081543 img loss 1.4456757307052612 img loss 1.3386454582214355 img loss 1.3949179649353027 img loss 1.2804570198059082 img loss 1.1799519062042236 img loss 1.2908477783203125 img loss 1.268959403038025 img loss 1.3102600574493408 img loss 1.3941463232040405 img loss 1.3512623310089111 img loss 1.2684202194213867 img loss 1.2240874767303467 img loss 1.314969778060913 img loss 1.2569490671157837img loss 1.3072764873504639 img loss 1.288329839706421 img loss 1.2529194355010986 img loss 1.3735945224761963 img loss 1.20315420627594 img loss 1.3146851062774658 img loss 1.2916535139083862 img loss 1.2149746417999268 img loss 1.3109779357910156 img loss 1.325218677520752 img loss 1.239225149154663 img loss 1.3481265306472778 img loss 1.2752201557159424 img loss 1.2397587299346924 img loss 1.2618329524993896 img loss 1.3480888605117798 img loss 1.2983497381210327 img loss 1.2945141792297363 img loss 1.32217538356781 img loss 1.3573753833770752 img loss 1.279168963432312 img loss 1.4375771284103394 img loss 1.3608423471450806 img loss 1.2858386039733887 img loss 1.2740532159805298 img loss 1.3103560209274292 img loss 1.2504231929779053 img loss 1.3910375833511353 img loss 1.246091365814209 img loss 1.3505014181137085 img loss 1.3192662000656128 img loss 1.4108418226242065 img loss 1.2867311239242554 img loss 1.3503040075302124 img loss 1.217156171798706 img loss 1.2844914197921753 img loss 1.1576570272445679 img loss 1.2554413080215454 img loss 1.3633407354354858 img loss 1.292285680770874 img loss 1.3751012086868286 img loss 1.2408555746078491 img loss 1.2241028547286987 img loss 1.209201693534851 img loss 1.2826242446899414 img loss 1.4049830436706543 img loss 1.2830212116241455 img loss 1.2517623901367188 img loss 1.2140414714813232 img loss 1.3787636756896973 img loss 1.2392709255218506 img loss 1.3284040689468384 img loss 1.3031806945800781 img loss 1.2935171127319336 img loss 1.2607532739639282 img loss 1.3135554790496826 img loss 1.2771326303482056 img loss 1.311402678489685 img loss 1.2573240995407104 img loss 1.3069885969161987 img loss 1.3699628114700317 img loss 1.3195072412490845 img loss 1.333996295928955 img loss 1.224790334701538 img loss 1.258602499961853 img loss 1.2610440254211426 img loss 1.315001130104065 img loss 1.2609647512435913 img loss 1.2241638898849487 img loss 1.2194069623947144 img loss 1.279956579208374 img loss 1.3503752946853638 img loss 1.2973312139511108 img loss 1.3662554025650024 img loss 1.2581881284713745 img loss 1.357089638710022 img loss 1.3466461896896362 img loss 1.378834843635559 img loss 1.220787525177002 img loss 1.2518644332885742 img loss 1.2626440525054932 img loss 1.3229602575302124 img loss 1.3033643960952759 {'loss': 1.2971, 'grad_norm': 0.34824439883232117, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6538729667663574 img loss 1.5091376304626465 img loss 1.4049359560012817 img loss 1.6354022026062012 img loss 1.489237666130066 img loss 1.552696704864502 img loss 1.6903948783874512 img loss 1.505797028541565 img loss 1.576461911201477 img loss 1.6380351781845093 img loss 1.6374808549880981 img loss 1.6108192205429077 img loss 1.7671056985855103 img loss 1.4113574028015137 img loss 1.6723958253860474 img loss 1.5951231718063354 img loss 1.6168521642684937 img loss 1.4519469738006592 img loss 1.5328963994979858 img loss 1.458606481552124 img loss 1.45054030418396 img loss 1.532310962677002 img loss 1.5844075679779053 img loss 1.5321730375289917 img loss 1.396745204925537 img loss 1.6279606819152832 img loss 1.4458975791931152 img loss 1.7656234502792358 img loss 1.6434681415557861 img loss 1.6713908910751343 img loss 1.642461895942688 img loss 1.5381706953048706 img loss 1.4203600883483887 img loss 1.7392292022705078 img loss 1.5074756145477295 img loss 1.6305829286575317 img loss 1.6369308233261108 img loss 1.3948767185211182 img loss 1.669498085975647 img loss 1.410664677619934 img loss 1.5905969142913818 img loss 1.386851191520691 img loss 1.5970618724822998 img loss 1.588350772857666 img loss 1.5478551387786865 img loss 1.7168623208999634 img loss 1.508953332901001 img loss 1.8617234230041504 img loss 1.6350836753845215 img loss 1.6387150287628174 img loss 1.5641368627548218 img loss 1.4877632856369019 img loss 1.482061505317688 img loss 1.583889126777649 img loss 1.4695212841033936 img loss 1.607613205909729 img loss 1.4717118740081787 img loss 1.6831384897232056 img loss 1.592487096786499 img loss 1.4695963859558105 img loss 1.502131700515747 img loss 1.611250400543213 img loss 1.5531058311462402 img loss 1.6186192035675049 img loss 1.5360170602798462 img loss 1.5447070598602295 img loss 1.485690951347351 img loss 1.6754515171051025 img loss 1.5608657598495483 img loss 1.4442445039749146 img loss 1.5789997577667236 img loss 1.6153861284255981 img loss 1.612601637840271 img loss 1.5467479228973389 img loss 1.6060911417007446 img loss 1.5548471212387085 img loss 1.6813979148864746 img loss 1.6964439153671265 img loss 1.617863416671753 img loss 1.5144010782241821 img loss 1.5278267860412598 img loss 1.543211817741394 img loss 1.6509597301483154 img loss 1.5245954990386963 img loss 1.3948891162872314 img loss 1.5153850317001343 img loss 1.496382474899292 img loss 1.5507071018218994 img loss 1.5552393198013306 img loss 1.5307892560958862 img loss 1.4461489915847778 img loss 1.5141215324401855 img loss 1.4522061347961426 img loss 1.5040463209152222 img loss 1.4745336771011353 img loss 1.6112040281295776 img loss 1.6153146028518677 img loss 1.528485894203186 img loss 1.4966264963150024 img loss 1.4887974262237549 img loss 1.4924750328063965 img loss 1.56903874874115 img loss 1.6628305912017822 img loss 1.575639247894287 img loss 1.6739360094070435 img loss 1.6507937908172607 img loss 1.538183569908142 img loss 1.753027319908142 img loss 1.6621142625808716 img loss 1.5495295524597168 img loss 1.399911642074585 img loss 1.7023345232009888 img loss 1.6011968851089478 img loss 1.5140000581741333 img loss 1.5202125310897827 img loss 1.4461103677749634 img loss 1.6106184720993042 img loss 1.604400873184204 img loss 1.5845656394958496 img loss 1.6414134502410889 img loss 1.70210599899292 img loss 1.435173749923706 img loss 1.5039761066436768 img loss 1.4386131763458252 img loss 1.648139476776123 img loss 1.4601080417633057 img loss 1.4340826272964478 img loss 1.5513551235198975 {'loss': 1.5628, 'grad_norm': 0.6277831196784973, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2439358234405518 img loss 1.3661545515060425 img loss 1.2510645389556885 img loss 1.2090214490890503 img loss 1.3242580890655518 img loss 1.3586543798446655 img loss 1.310100793838501 img loss 1.2736366987228394 img loss 1.2024599313735962 img loss 1.2679389715194702 img loss 1.207102656364441 img loss 1.2400213479995728 img loss 1.2240034341812134 img loss 1.2123758792877197 img loss 1.3082478046417236 img loss 1.1498621702194214 img loss 1.2222801446914673 img loss 1.3481132984161377 img loss 1.294106125831604 img loss 1.3001093864440918 img loss 1.334143877029419 img loss 1.1769980192184448 img loss 1.1981422901153564 img loss 1.259264349937439 img loss 1.294033408164978 img loss 1.2625776529312134 img loss 1.2557120323181152 img loss 1.188368558883667 img loss 1.2893199920654297 img loss 1.283488154411316 img loss 1.2856287956237793 img loss 1.2536770105361938 img loss 1.268419623374939 img loss 1.2889039516448975 img loss 1.300474762916565 img loss 1.1520054340362549 img loss 1.2965091466903687 img loss 1.221108317375183 img loss 1.245282769203186 img loss 1.2246387004852295 img loss 1.184489130973816 img loss 1.17406165599823 img loss 1.2233890295028687 img loss 1.2464832067489624 img loss 1.199794054031372 img loss 1.4116568565368652 img loss 1.2021509408950806 img loss 1.2637585401535034 img loss 1.2428033351898193 img loss 1.2313778400421143 img loss 1.3005478382110596 img loss 1.2302401065826416 img loss 1.3101375102996826 img loss 1.298882007598877 img loss 1.3391982316970825 img loss 1.2561001777648926 img loss 1.3463327884674072 img loss 1.3635598421096802 img loss 1.29678213596344 img loss 1.2907949686050415 img loss 1.3445054292678833 img loss 1.1743863821029663 img loss 1.2885196208953857 img loss 1.2402632236480713 img loss 1.2400941848754883 img loss 1.2541265487670898 img loss 1.3418291807174683 img loss 1.2775852680206299 img loss 1.3053231239318848 img loss 1.196824550628662 img loss 1.370988368988037 img loss 1.1744788885116577 img loss 1.2933088541030884 img loss 1.2090702056884766 img loss 1.226694107055664 img loss 1.1191200017929077 img loss 1.2388139963150024 img loss 1.2287728786468506 img loss 1.28118896484375 img loss 1.3135579824447632 img loss 1.2215704917907715 img loss 1.2808539867401123 img loss 1.239784598350525 img loss 1.2526452541351318 img loss 1.223151445388794 img loss 1.2117795944213867 img loss 1.2218884229660034 img loss 1.2588452100753784 img loss 1.18048894405365 img loss 1.3103747367858887 img loss 1.2649810314178467 img loss 1.2105354070663452 img loss 1.1713483333587646 img loss 1.2564780712127686 img loss 1.358352780342102 img loss 1.2770507335662842 img loss 1.3077473640441895 img loss 1.2056950330734253 img loss 1.2392823696136475 img loss 1.2024372816085815 img loss 1.3300819396972656 img loss 1.2599871158599854 img loss 1.380250096321106 img loss 1.323455810546875 img loss 1.3108891248703003 img loss 1.3700463771820068 img loss 1.305004596710205 img loss 1.2602163553237915 img loss 1.2189598083496094 img loss 1.188791275024414 img loss 1.2491416931152344 img loss 1.2386837005615234 img loss 1.2891559600830078 img loss 1.2271814346313477 img loss 1.257114052772522 img loss 1.2647933959960938 img loss 1.2640454769134521 img loss 1.252156138420105 img loss 1.2451488971710205 img loss 1.1636244058609009 img loss 1.3227248191833496 img loss 1.3206825256347656 img loss 1.237836480140686 img loss 1.3422493934631348 img loss 1.294066071510315 img loss 1.2603718042373657 img loss 1.2677735090255737 img loss 1.3315664529800415 {'loss': 1.2625, 'grad_norm': 0.503872275352478, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1686911582946777 img loss 1.180417776107788 img loss 1.1911959648132324 img loss 1.1815052032470703 img loss 1.3094757795333862 img loss 1.2525646686553955 img loss 1.2316995859146118 img loss 1.1713664531707764 img loss 1.1598361730575562 img loss 1.186030626296997 img loss 1.167098045349121 img loss 1.2074836492538452 img loss 1.2519792318344116 img loss 1.21542227268219 img loss 1.1541122198104858 img loss 1.227702021598816 img loss 1.2260947227478027 img loss 1.121569037437439 img loss 1.2338917255401611 img loss 1.1467528343200684 img loss 1.1819761991500854 img loss 1.1896332502365112 img loss 1.2179856300354004 img loss 1.290486216545105 img loss 1.2310360670089722 img loss 1.1809933185577393 img loss 1.2473905086517334 img loss 1.1997723579406738 img loss 1.2671676874160767 img loss 1.1557717323303223 img loss 1.1873953342437744 img loss 1.2190277576446533 img loss 1.2436444759368896 img loss 1.180201530456543 img loss 1.1587151288986206 img loss 1.2029128074645996 img loss 1.2639858722686768 img loss 1.2127941846847534 img loss 1.1523008346557617 img loss 1.1855275630950928 img loss 1.239042043685913 img loss 1.1199569702148438 img loss 1.2301708459854126 img loss 1.225109577178955 img loss 1.1990408897399902 img loss 1.2268235683441162 img loss 1.2159279584884644 img loss 1.1953798532485962 img loss 1.2377164363861084 img loss 1.2082468271255493 img loss 1.2122255563735962 img loss 1.2221211194992065 img loss 1.1583322286605835 img loss 1.2168711423873901 img loss 1.1540825366973877 img loss 1.1332361698150635 img loss 1.2334740161895752 img loss 1.1888407468795776 img loss 1.1853466033935547 img loss 1.202873945236206 img loss 1.2752692699432373 img loss 1.273971438407898 img loss 1.175606608390808 img loss 1.2716214656829834 img loss 1.2754075527191162 img loss 1.2803534269332886 img loss 1.1610997915267944 img loss 1.1928648948669434 img loss 1.1375540494918823 img loss 1.2020113468170166 img loss 1.1605743169784546 img loss 1.1835335493087769 img loss 1.2319344282150269 img loss 1.2061822414398193 img loss 1.1973766088485718 img loss 1.1762409210205078 img loss 1.2276932001113892 img loss 1.1922537088394165 img loss 1.1701370477676392 img loss 1.1808136701583862 img loss 1.1882253885269165 img loss 1.2797009944915771 img loss 1.2689924240112305 img loss 1.1812940835952759 img loss 1.1998995542526245 img loss 1.2332674264907837 img loss 1.2049115896224976 img loss 1.239611029624939 img loss 1.1942532062530518 img loss 1.1885087490081787 img loss 1.261982798576355 img loss 1.2056808471679688 img loss 1.2811846733093262 img loss 1.222806453704834 img loss 1.1432691812515259 img loss 1.2221217155456543 img loss 1.2280277013778687 img loss 1.1846026182174683 img loss 1.2622315883636475 img loss 1.1958279609680176 img loss 1.2529489994049072 img loss 1.1662297248840332 img loss 1.173746109008789 img loss 1.1942555904388428 img loss 1.2032108306884766 img loss 1.1932716369628906 img loss 1.1870169639587402 img loss 1.2098724842071533 img loss 1.1882044076919556 img loss 1.205971121788025 img loss 1.311632752418518 img loss 1.2388889789581299 img loss 1.1744985580444336 img loss 1.1477851867675781 img loss 1.1490695476531982 img loss 1.1474941968917847 img loss 1.2254254817962646 img loss 1.2216309309005737 img loss 1.173437476158142 img loss 1.2406113147735596 img loss 1.1994577646255493 img loss 1.173061728477478 img loss 1.2187073230743408 img loss 1.218298316001892 img loss 1.2277147769927979 img loss 1.198668360710144 img loss 1.2599025964736938 img loss 1.1943814754486084 {'loss': 1.2063, 'grad_norm': 0.37689831852912903, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1695693731307983 img loss 1.1916385889053345 img loss 1.1772913932800293 img loss 1.3091892004013062 img loss 1.1458141803741455 img loss 1.2828164100646973 img loss 1.1719106435775757 img loss 1.1927449703216553 img loss 1.2738043069839478 img loss 1.1936897039413452 img loss 1.2018609046936035 img loss 1.0984296798706055 img loss 1.2022594213485718 img loss 1.2031474113464355 img loss 1.1882790327072144 img loss 1.2006901502609253 img loss 1.177899718284607 img loss 1.1810667514801025 img loss 1.1929949522018433 img loss 1.1780928373336792 img loss 1.2564133405685425 img loss 1.2586790323257446 img loss 1.1944732666015625 img loss 1.2082887887954712 img loss 1.2020162343978882 img loss 1.2117688655853271 img loss 1.215858817100525 img loss 1.2189080715179443 img loss 1.1807162761688232 img loss 1.1658461093902588 img loss 1.217089056968689 img loss 1.167462706565857 img loss 1.214066743850708 img loss 1.1955446004867554 img loss 1.2264827489852905 img loss 1.1586979627609253 img loss 1.159683108329773 img loss 1.260263204574585 img loss 1.18596351146698 img loss 1.1930404901504517 img loss 1.1570900678634644 img loss 1.2339204549789429 img loss 1.167622447013855 img loss 1.2290372848510742 img loss 1.2119338512420654 img loss 1.258715033531189 img loss 1.1397781372070312 img loss 1.215157151222229 img loss 1.172934889793396 img loss 1.1673105955123901 img loss 1.1459732055664062 img loss 1.2398160696029663 img loss 1.2716211080551147 img loss 1.254892110824585 img loss 1.197511076927185 img loss 1.1756194829940796 img loss 1.2935855388641357 img loss 1.247430443763733 img loss 1.1940637826919556 img loss 1.2653183937072754 img loss 1.1478891372680664 img loss 1.213905930519104 img loss 1.2528457641601562 img loss 1.2111667394638062 img loss 1.2099299430847168 img loss 1.178112506866455 img loss 1.3167860507965088 img loss 1.1978754997253418 img loss 1.1792420148849487 img loss 1.242445945739746 img loss 1.1690305471420288 img loss 1.1484533548355103 img loss 1.2749228477478027 img loss 1.2434276342391968 img loss 1.1630282402038574 img loss 1.1808366775512695 img loss 1.2103029489517212 img loss 1.1645969152450562 img loss 1.196929693222046 img loss 1.2005995512008667 img loss 1.2379213571548462 img loss 1.1777814626693726 img loss 1.1252034902572632 img loss 1.2119746208190918 img loss 1.268470048904419 img loss 1.212831735610962 img loss 1.1606823205947876 img loss 1.1743874549865723 img loss 1.231498122215271 img loss 1.2447867393493652 img loss 1.2087442874908447 img loss 1.126325011253357 img loss 1.1897039413452148 img loss 1.2059338092803955 img loss 1.2525430917739868 img loss 1.3255223035812378 img loss 1.2297290563583374 img loss 1.0949997901916504 img loss 1.213235855102539 img loss 1.1961005926132202 img loss 1.2119470834732056 img loss 1.2469017505645752 img loss 1.2154746055603027 img loss 1.1074371337890625 img loss 1.207262396812439 img loss 1.1281273365020752 img loss 1.2843083143234253 img loss 1.2866530418395996 img loss 1.2470614910125732 img loss 1.1667954921722412 img loss 1.2643574476242065 img loss 1.2232134342193604 img loss 1.2645626068115234 img loss 1.2235617637634277 img loss 1.2135474681854248 img loss 1.1393221616744995 img loss 1.1960715055465698 img loss 1.2056795358657837 img loss 1.2470159530639648 img loss 1.1569865942001343 img loss 1.2055456638336182 img loss 1.1895251274108887 img loss 1.1857836246490479 img loss 1.2459218502044678 img loss 1.2247178554534912 img loss 1.332876205444336 img loss 1.1635326147079468 img loss 1.1685898303985596 {'loss': 1.2063, 'grad_norm': 0.7251556515693665, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6654335260391235 img loss 1.6389720439910889 img loss 1.7144286632537842 img loss 1.5168534517288208 img loss 1.5897401571273804 img loss 1.5408858060836792 img loss 1.5952422618865967 img loss 1.539324164390564 img loss 1.5993467569351196 img loss 1.5655856132507324 img loss 1.4406945705413818 img loss 1.5218846797943115 img loss 1.8087941408157349 img loss 1.565548300743103 img loss 1.637733817100525 img loss 1.560308575630188 img loss 1.6907981634140015 img loss 1.6262763738632202 img loss 1.6459375619888306 img loss 1.6305691003799438 img loss 1.5167648792266846 img loss 1.5062581300735474 img loss 1.4326707124710083 img loss 1.4811064004898071 img loss 1.5479236841201782 img loss 1.6847889423370361 img loss 1.5814086198806763 img loss 1.5518211126327515 img loss 1.4263737201690674 img loss 1.5146714448928833 img loss 1.6812529563903809 img loss 1.6272858381271362 img loss 1.5484099388122559 img loss 1.6460648775100708 img loss 1.5960707664489746 img loss 1.687998652458191 img loss 1.6466697454452515 img loss 1.668117880821228 img loss 1.6437888145446777 img loss 1.633410096168518 img loss 1.64308762550354 img loss 1.4841006994247437 img loss 1.7971538305282593 img loss 1.5931671857833862 img loss 1.665399193763733 img loss 1.6753488779067993 img loss 1.6203631162643433 img loss 1.7064728736877441 img loss 1.5222722291946411 img loss 1.6940902471542358 img loss 1.4895694255828857 img loss 1.6966664791107178 img loss 1.689979910850525 img loss 1.701819658279419 img loss 1.5713557004928589 img loss 1.5968016386032104 img loss 1.4219067096710205 img loss 1.6159569025039673 img loss 1.5760937929153442 img loss 1.6370874643325806 img loss 1.5497385263442993 img loss 1.574706792831421 img loss 1.608344554901123 img loss 1.5071110725402832 img loss 1.6769007444381714 img loss 1.700193166732788 img loss 1.545482873916626 img loss 1.5873709917068481 img loss 1.6079496145248413 img loss 1.7418437004089355 img loss 1.5241130590438843 img loss 1.4828592538833618 img loss 1.6172693967819214 img loss 1.8531590700149536 img loss 1.729182481765747 img loss 1.5676366090774536 img loss 1.667782187461853 img loss 1.561224341392517 img loss 1.5038273334503174 img loss 1.6532286405563354 img loss 1.6030257940292358 img loss 1.628983974456787 img loss 1.6307260990142822img loss 1.5136114358901978 img loss 1.6636004447937012 img loss 1.5885971784591675 img loss 1.572745680809021 img loss 1.7466427087783813 img loss 1.5166800022125244 img loss 1.6054933071136475 img loss 1.6792083978652954 img loss 1.4811179637908936 img loss 1.436716914176941 img loss 1.373805284500122 img loss 1.5542492866516113 img loss 1.5659594535827637 img loss 1.60969877243042 img loss 1.8509724140167236 img loss 1.6040066480636597 img loss 1.60191011428833 img loss 1.62090265750885 img loss 1.6127985715866089 img loss 1.7665096521377563 img loss 1.5373451709747314 img loss 1.54088294506073 img loss 1.7100834846496582 img loss 1.5609782934188843 img loss 1.4587904214859009 img loss 1.6226155757904053 img loss 1.6551843881607056 img loss 1.5988757610321045 img loss 1.60695219039917 img loss 1.559852123260498 img loss 1.5376650094985962 img loss 1.6827646493911743 img loss 1.6791657209396362 img loss 1.5175023078918457 img loss 1.7059834003448486 img loss 1.5756757259368896 img loss 1.6596839427947998 img loss 1.4646241664886475 img loss 1.5410815477371216 img loss 1.6504921913146973 img loss 1.5610995292663574 img loss 1.5319105386734009 img loss 1.612327218055725 img loss 1.5689207315444946 img loss 1.7782185077667236 {'loss': 1.6025, 'grad_norm': 0.42800915241241455, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3747652769088745 img loss 1.2871259450912476 img loss 1.469814419746399 img loss 1.4488141536712646 img loss 1.4940952062606812 img loss 1.3506600856781006 img loss 1.4417275190353394 img loss 1.4694982767105103 img loss 1.3225475549697876 img loss 1.371638536453247 img loss 1.395820140838623 img loss 1.4170775413513184 img loss 1.3557630777359009 img loss 1.3812899589538574 img loss 1.528339147567749 img loss 1.3243159055709839 img loss 1.5261679887771606 img loss 1.4619561433792114 img loss 1.4285155534744263 img loss 1.3306583166122437 img loss 1.4282469749450684 img loss 1.3867144584655762 img loss 1.4931442737579346 img loss 1.5004955530166626 img loss 1.3217296600341797 img loss 1.286963701248169 img loss 1.3340857028961182 img loss 1.4574790000915527 img loss 1.2708451747894287 img loss 1.3499184846878052 img loss 1.2851308584213257 img loss 1.4034429788589478 img loss 1.5631250143051147 img loss 1.361161708831787 img loss 1.4708431959152222 img loss 1.4168702363967896 img loss 1.531063437461853 img loss 1.4405038356781006 img loss 1.4214423894882202 img loss 1.5534322261810303 img loss 1.4419348239898682 img loss 1.5193732976913452 img loss 1.4672061204910278 img loss 1.232659935951233 img loss 1.4410141706466675 img loss 1.3011289834976196 img loss 1.4746127128601074 img loss 1.4670871496200562 img loss 1.5106937885284424 img loss 1.4075617790222168 img loss 1.294482707977295 img loss 1.2959545850753784 img loss 1.4178745746612549 img loss 1.4962078332901 img loss 1.351853847503662 img loss 1.5255800485610962 img loss 1.1971721649169922 img loss 1.2673776149749756 img loss 1.5614674091339111 img loss 1.3479140996932983 img loss 1.394341230392456 img loss 1.3623203039169312 img loss 1.3209961652755737 img loss 1.3469769954681396 img loss 1.4409708976745605 img loss 1.4274204969406128 img loss 1.5220533609390259 img loss 1.4787408113479614 img loss 1.4634912014007568 img loss 1.31204092502594 img loss 1.4973453283309937 img loss 1.5405720472335815 img loss 1.5186924934387207 img loss 1.356677770614624 img loss 1.5300374031066895 img loss 1.4346363544464111 img loss 1.3187806606292725 img loss 1.4014012813568115 img loss 1.3784242868423462 img loss 1.404893159866333 img loss 1.4302750825881958 img loss 1.4131656885147095 img loss 1.4560338258743286 img loss 1.3218234777450562 img loss 1.3240255117416382 img loss 1.4398255348205566 img loss 1.5396329164505005 img loss 1.3435903787612915 img loss 1.3560099601745605 img loss 1.4920992851257324 img loss 1.4901469945907593 img loss 1.402881383895874 img loss 1.5086573362350464 img loss 1.257387399673462 img loss 1.4008214473724365 img loss 1.293975591659546 img loss 1.3658875226974487 img loss 1.4265846014022827 img loss 1.3368617296218872 img loss 1.276667833328247 img loss 1.470974326133728 img loss 1.4669145345687866 img loss 1.4867080450057983 img loss 1.3827669620513916 img loss 1.4407732486724854 img loss 1.4059816598892212 img loss 1.4480854272842407 img loss 1.346321702003479 img loss 1.4360753297805786 img loss 1.3721261024475098 img loss 1.438454031944275 img loss 1.445502519607544 img loss 1.434963583946228 img loss 1.2747206687927246 img loss 1.4213175773620605 img loss 1.692009687423706 img loss 1.3280463218688965 img loss 1.3839398622512817 img loss 1.4894872903823853 img loss 1.3404794931411743 img loss 1.4409613609313965 img loss 1.538885474205017 img loss 1.3985493183135986 img loss 1.4063986539840698 img loss 1.3591058254241943 img loss 1.368264079093933 img loss 1.3854032754898071 img loss 1.3287559747695923 {'loss': 1.4104, 'grad_norm': 0.2561112344264984, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4981915950775146 img loss 1.5004733800888062 img loss 1.4091540575027466 img loss 1.5616837739944458 img loss 1.5531255006790161 img loss 1.6290608644485474 img loss 1.4981398582458496 img loss 1.4871976375579834 img loss 1.5554540157318115 img loss 1.4736920595169067 img loss 1.5342892408370972 img loss 1.3795474767684937 img loss 1.404111623764038 img loss 1.7090166807174683 img loss 1.551741361618042 img loss 1.392859935760498 img loss 1.4401323795318604 img loss 1.524654507637024 img loss 1.4765986204147339 img loss 1.3530704975128174 img loss 1.4598201513290405 img loss 1.6298460960388184 img loss 1.4106777906417847 img loss 1.571173906326294 img loss 1.50096595287323 img loss 1.440215826034546 img loss 1.427869200706482 img loss 1.503733515739441 img loss 1.5135234594345093 img loss 1.2888450622558594 img loss 1.4842525720596313 img loss 1.6010271310806274 img loss 1.527571201324463 img loss 1.5049608945846558 img loss 1.508506417274475 img loss 1.5709749460220337 img loss 1.531490445137024 img loss 1.5223844051361084 img loss 1.471092939376831 img loss 1.617132544517517 img loss 1.436052918434143 img loss 1.5876591205596924 img loss 1.5329502820968628 img loss 1.438855767250061 img loss 1.5537537336349487 img loss 1.4433256387710571 img loss 1.4527021646499634 img loss 1.3808199167251587 img loss 1.4175974130630493 img loss 1.504764199256897 img loss 1.5441454648971558 img loss 1.5219675302505493 img loss 1.5593873262405396 img loss 1.5326497554779053 img loss 1.5078755617141724 img loss 1.5260694026947021 img loss 1.4599394798278809 img loss 1.394080400466919 img loss 1.4965624809265137 img loss 1.5100547075271606 img loss 1.4915884733200073 img loss 1.414628267288208 img loss 1.5702341794967651 img loss 1.4975513219833374 img loss 1.5058099031448364 img loss 1.5733904838562012 img loss 1.5756583213806152 img loss 1.6717751026153564 img loss 1.569423794746399 img loss 1.543843150138855 img loss 1.4627188444137573 img loss 1.474134087562561 img loss 1.5455878973007202 img loss 1.4364635944366455 img loss 1.5492287874221802 img loss 1.4056593179702759 img loss 1.5512312650680542 img loss 1.5369027853012085 img loss 1.6111067533493042 img loss 1.6384899616241455 img loss 1.463193416595459 img loss 1.5855475664138794 img loss 1.5081231594085693 img loss 1.366318941116333 img loss 1.5318644046783447 img loss 1.6284794807434082 img loss 1.4907033443450928 img loss 1.5368942022323608 img loss 1.5912235975265503 img loss 1.4843467473983765 img loss 1.5462381839752197 img loss 1.4910894632339478 img loss 1.387407660484314 img loss 1.4732366800308228 img loss 1.5215696096420288 img loss 1.6364372968673706 img loss 1.6612622737884521 img loss 1.5655152797698975 img loss 1.6191884279251099 img loss 1.444486379623413 img loss 1.5084450244903564 img loss 1.4435808658599854 img loss 1.4890110492706299 img loss 1.4385782480239868 img loss 1.5911391973495483 img loss 1.5814462900161743 img loss 1.4051604270935059 img loss 1.5723484754562378 img loss 1.5590183734893799 img loss 1.5203759670257568 img loss 1.4175363779067993 img loss 1.5970388650894165 img loss 1.463985800743103 img loss 1.5364161729812622 img loss 1.5420613288879395 img loss 1.4261380434036255 img loss 1.5742733478546143 img loss 1.511186957359314 img loss 1.4110325574874878 img loss 1.4891438484191895 img loss 1.4589793682098389 img loss 1.404619812965393 img loss 1.5396865606307983 img loss 1.5457452535629272 img loss 1.4519288539886475 img loss 1.478634238243103 img loss 1.567571759223938 img loss 1.4436805248260498 {'loss': 1.5074, 'grad_norm': 0.5247045755386353, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3030344247817993 img loss 1.2415058612823486 img loss 1.2866884469985962 img loss 1.2734980583190918 img loss 1.26009202003479 img loss 1.190760850906372 img loss 1.3510489463806152 img loss 1.2846734523773193 img loss 1.2923986911773682 img loss 1.303430438041687 img loss 1.302202820777893 img loss 1.2522529363632202 img loss 1.2956719398498535 img loss 1.2590954303741455 img loss 1.2817462682724 img loss 1.1856416463851929 img loss 1.283606767654419 img loss 1.210421085357666 img loss 1.2513893842697144 img loss 1.3262300491333008 img loss 1.2322983741760254 img loss 1.1877049207687378 img loss 1.2963374853134155 img loss 1.366431713104248 img loss 1.3413288593292236 img loss 1.2979577779769897 img loss 1.2042386531829834 img loss 1.3263229131698608 img loss 1.2350891828536987 img loss 1.2406946420669556 img loss 1.2465351819992065 img loss 1.262033224105835 img loss 1.3271656036376953 img loss 1.2300862073898315 img loss 1.18646240234375 img loss 1.3731173276901245 img loss 1.1881335973739624 img loss 1.2733474969863892 img loss 1.2298740148544312 img loss 1.2262684106826782 img loss 1.2182576656341553 img loss 1.2212074995040894 img loss 1.2260620594024658 img loss 1.3027458190917969 img loss 1.3033567667007446 img loss 1.2229589223861694 img loss 1.2774696350097656 img loss 1.2815911769866943 img loss 1.2851864099502563 img loss 1.2467821836471558 img loss 1.2725651264190674 img loss 1.2159372568130493 img loss 1.1781635284423828 img loss 1.311000108718872 img loss 1.225548505783081 img loss 1.2606840133666992 img loss 1.3596988916397095 img loss 1.2496975660324097 img loss 1.2375907897949219 img loss 1.2974181175231934 img loss 1.2342464923858643 img loss 1.374631404876709 img loss 1.3026357889175415 img loss 1.2826244831085205 img loss 1.2442665100097656 img loss 1.2400325536727905 img loss 1.1921098232269287 img loss 1.2412880659103394 img loss 1.2552928924560547 img loss 1.2493215799331665 img loss 1.2025465965270996 img loss 1.226671814918518 img loss 1.2372316122055054 img loss 1.2024123668670654 img loss 1.344936728477478 img loss 1.24560546875 img loss 1.2487963438034058 img loss 1.2979949712753296 img loss 1.2810219526290894 img loss 1.2129418849945068 img loss 1.3014477491378784 img loss 1.3109123706817627 img loss 1.271742582321167 img loss 1.292511224746704 img loss 1.279862880706787 img loss 1.231152892112732 img loss 1.2138067483901978 img loss 1.3317451477050781 img loss 1.3069838285446167img loss 1.2181007862091064 img loss 1.1608952283859253 img loss 1.2312047481536865 img loss 1.2721433639526367 img loss 1.307248592376709 img loss 1.1669114828109741 img loss 1.2952232360839844 img loss 1.2791675329208374 img loss 1.2682814598083496 img loss 1.2388534545898438 img loss 1.3382599353790283 img loss 1.2552266120910645 img loss 1.2560824155807495 img loss 1.2663072347640991 img loss 1.1679292917251587 img loss 1.2158501148223877 img loss 1.274356484413147 img loss 1.276371955871582 img loss 1.1915899515151978 img loss 1.3049691915512085 img loss 1.201159954071045 img loss 1.2804018259048462 img loss 1.23712158203125 img loss 1.2937219142913818 img loss 1.2708557844161987 img loss 1.4348820447921753 img loss 1.220666766166687 img loss 1.2737083435058594 img loss 1.2382055521011353 img loss 1.242139220237732 img loss 1.2276320457458496 img loss 1.2678371667861938 img loss 1.272897720336914 img loss 1.2789720296859741 img loss 1.2266006469726562 img loss 1.2553036212921143 img loss 1.2519311904907227 img loss 1.214355230331421 img loss 1.2679871320724487 {'loss': 1.2617, 'grad_norm': 0.6465392112731934, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3322062492370605 img loss 1.329135537147522 img loss 1.2238481044769287 img loss 1.272504448890686 img loss 1.2519207000732422 img loss 1.1951422691345215 img loss 1.3637282848358154 img loss 1.2098135948181152 img loss 1.1915138959884644 img loss 1.2594534158706665 img loss 1.2796363830566406 img loss 1.306760549545288 img loss 1.3002279996871948 img loss 1.2637245655059814 img loss 1.2487390041351318 img loss 1.2127273082733154 img loss 1.2041704654693604 img loss 1.3148465156555176 img loss 1.338650107383728 img loss 1.4137860536575317 img loss 1.2317523956298828 img loss 1.3771281242370605 img loss 1.2352783679962158 img loss 1.2272201776504517 img loss 1.313190221786499 img loss 1.2305047512054443img loss 1.2616357803344727 img loss 1.1704739332199097 img loss 1.316253423690796img loss 1.2908167839050293 img loss 1.2246437072753906 img loss 1.3165079355239868img loss 1.2434393167495728 img loss 1.2187925577163696 img loss 1.1977062225341797 img loss 1.2581157684326172 img loss 1.372449517250061 img loss 1.3019123077392578 img loss 1.2917537689208984 img loss 1.1777828931808472 img loss 1.2466243505477905 img loss 1.2212671041488647 img loss 1.2410869598388672 img loss 1.2777047157287598 img loss 1.304681420326233 img loss 1.2854418754577637 img loss 1.2793372869491577 img loss 1.2692866325378418 img loss 1.2453205585479736 img loss 1.3157026767730713 img loss 1.254823088645935 img loss 1.307284951210022 img loss 1.2784721851348877 img loss 1.2896846532821655 img loss 1.1629990339279175 img loss 1.2501945495605469 img loss 1.1686171293258667 img loss 1.2409546375274658 img loss 1.1886156797409058 img loss 1.2688617706298828 img loss 1.3250882625579834 img loss 1.2299267053604126 img loss 1.2349433898925781 img loss 1.2928996086120605 img loss 1.2759788036346436 img loss 1.1459009647369385 img loss 1.2746587991714478 img loss 1.1859126091003418 img loss 1.2839025259017944 img loss 1.2675729990005493 img loss 1.2392802238464355 img loss 1.109055757522583 img loss 1.2778759002685547 img loss 1.3325533866882324 img loss 1.2481157779693604 img loss 1.2472751140594482 img loss 1.238480806350708 img loss 1.198717474937439 img loss 1.2049977779388428 img loss 1.2723701000213623 img loss 1.3040837049484253 img loss 1.2890287637710571 img loss 1.1873747110366821 img loss 1.367501974105835 img loss 1.221738338470459 img loss 1.2707364559173584 img loss 1.2499043941497803 img loss 1.3247275352478027 img loss 1.1675920486450195 img loss 1.322311282157898 img loss 1.1871665716171265 img loss 1.2210310697555542 img loss 1.3774250745773315 img loss 1.2828700542449951 img loss 1.1914055347442627 img loss 1.3465616703033447 img loss 1.3262184858322144 img loss 1.1728979349136353 img loss 1.1799941062927246 img loss 1.301751971244812 img loss 1.3351356983184814 img loss 1.3067352771759033 img loss 1.2770874500274658 img loss 1.2389955520629883 img loss 1.2623703479766846 img loss 1.3388265371322632 img loss 1.2723307609558105 img loss 1.232478380203247 img loss 1.3860169649124146 img loss 1.2980384826660156 img loss 1.2435976266860962 img loss 1.3442620038986206 img loss 1.3471914529800415 img loss 1.2079284191131592 img loss 1.3173401355743408 img loss 1.2897822856903076 img loss 1.390215516090393 img loss 1.333113670349121 img loss 1.2537959814071655 img loss 1.3392986059188843 img loss 1.2108001708984375 img loss 1.2870543003082275 img loss 1.2949142456054688 img loss 1.3116384744644165 img loss 1.339951992034912 img loss 1.2160427570343018 img loss 1.184794306755066 img loss 1.2572760581970215 {'loss': 1.2669, 'grad_norm': 0.42155829071998596, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3495533466339111 img loss 1.3351967334747314 img loss 1.2114574909210205 img loss 1.2777528762817383 img loss 1.3061398267745972 img loss 1.3969142436981201 img loss 1.2745378017425537 img loss 1.4143301248550415 img loss 1.303932547569275 img loss 1.2795928716659546 img loss 1.2684353590011597 img loss 1.324306845664978 img loss 1.3323596715927124 img loss 1.2366249561309814 img loss 1.2985647916793823 img loss 1.4497445821762085 img loss 1.3233261108398438 img loss 1.2476062774658203 img loss 1.2703468799591064 img loss 1.2813031673431396 img loss 1.3585143089294434 img loss 1.245499849319458 img loss 1.3634389638900757 img loss 1.3590731620788574 img loss 1.3363844156265259 img loss 1.294134497642517 img loss 1.4039055109024048 img loss 1.3877795934677124 img loss 1.3109630346298218 img loss 1.3141130208969116 img loss 1.3346893787384033 img loss 1.3258004188537598 img loss 1.32438063621521 img loss 1.2884693145751953 img loss 1.3900357484817505 img loss 1.3218830823898315 img loss 1.3961759805679321 img loss 1.3428826332092285 img loss 1.3662123680114746 img loss 1.3568288087844849 img loss 1.2918418645858765 img loss 1.3034330606460571 img loss 1.2737188339233398 img loss 1.3963408470153809 img loss 1.2617628574371338 img loss 1.3676186800003052 img loss 1.3299400806427002 img loss 1.2922890186309814 img loss 1.339804768562317 img loss 1.316227912902832 img loss 1.3013046979904175 img loss 1.2562203407287598 img loss 1.24830961227417 img loss 1.360005497932434 img loss 1.3806408643722534 img loss 1.3549582958221436 img loss 1.4304643869400024 img loss 1.4292845726013184 img loss 1.3514529466629028 img loss 1.2842944860458374 img loss 1.2497087717056274 img loss 1.304948329925537 img loss 1.274572730064392 img loss 1.2922613620758057 img loss 1.3792413473129272 img loss 1.2975965738296509 img loss 1.2994657754898071 img loss 1.3215969800949097 img loss 1.4238415956497192 img loss 1.3024225234985352 img loss 1.2768901586532593 img loss 1.3142921924591064 img loss 1.2978671789169312 img loss 1.278989315032959 img loss 1.267173171043396 img loss 1.3057823181152344 img loss 1.290978193283081 img loss 1.2630316019058228 img loss 1.2892032861709595 img loss 1.3212553262710571 img loss 1.323974609375 img loss 1.239499807357788 img loss 1.3481090068817139 img loss 1.268602728843689 img loss 1.2919838428497314 img loss 1.371174693107605 img loss 1.2600435018539429 img loss 1.3383525609970093 img loss 1.400923490524292 img loss 1.289576768875122 img loss 1.3312667608261108 img loss 1.2450101375579834 img loss 1.2929835319519043 img loss 1.3282413482666016 img loss 1.2540820837020874 img loss 1.3528685569763184 img loss 1.277064561843872 img loss 1.3320527076721191 img loss 1.3178027868270874 img loss 1.307047724723816 img loss 1.2401078939437866 img loss 1.3103997707366943 img loss 1.292730689048767 img loss 1.3304957151412964 img loss 1.221502661705017 img loss 1.2907564640045166 img loss 1.3242851495742798 img loss 1.2825779914855957 img loss 1.3448355197906494 img loss 1.3434902429580688 img loss 1.2758960723876953 img loss 1.3257099390029907 img loss 1.3351609706878662 img loss 1.289488434791565 img loss 1.2544338703155518 img loss 1.2796262502670288 img loss 1.2845207452774048 img loss 1.3699101209640503 img loss 1.4281357526779175 img loss 1.332597017288208 img loss 1.3302172422409058 img loss 1.3920193910598755 img loss 1.2529747486114502 img loss 1.3596336841583252 img loss 1.3247849941253662 img loss 1.431747555732727 img loss 1.3544255495071411 img loss 1.3668131828308105 {'loss': 1.3185, 'grad_norm': 0.521981418132782, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2315630912780762 img loss 1.3311327695846558 img loss 1.295204758644104 img loss 1.2472891807556152 img loss 1.2893764972686768 img loss 1.2478818893432617 img loss 1.2554123401641846 img loss 1.2837531566619873 img loss 1.290472388267517 img loss 1.3654145002365112 img loss 1.381306767463684 img loss 1.3288494348526 img loss 1.390531301498413 img loss 1.3323841094970703 img loss 1.2825477123260498 img loss 1.3223618268966675 img loss 1.3095908164978027 img loss 1.2466676235198975 img loss 1.388163685798645 img loss 1.3751561641693115 img loss 1.3062713146209717 img loss 1.2387514114379883 img loss 1.3530499935150146 img loss 1.2180721759796143 img loss 1.3245670795440674 img loss 1.2410036325454712 img loss 1.2904847860336304 img loss 1.3223233222961426 img loss 1.2537248134613037 img loss 1.28315007686615 img loss 1.3084220886230469 img loss 1.2748799324035645 img loss 1.3042926788330078 img loss 1.3442121744155884 img loss 1.2577708959579468 img loss 1.2730536460876465 img loss 1.2512081861495972 img loss 1.202410101890564 img loss 1.445351004600525 img loss 1.2275041341781616 img loss 1.3028883934020996 img loss 1.261121392250061 img loss 1.3511605262756348 img loss 1.3315327167510986 img loss 1.3823368549346924 img loss 1.3135316371917725 img loss 1.3089970350265503 img loss 1.321474552154541 img loss 1.279177188873291 img loss 1.335221529006958 img loss 1.4492013454437256 img loss 1.3340576887130737 img loss 1.33134925365448 img loss 1.3145049810409546 img loss 1.3197927474975586 img loss 1.3480238914489746 img loss 1.3661121129989624 img loss 1.263196587562561 img loss 1.3060663938522339 img loss 1.331190824508667 img loss 1.3040395975112915 img loss 1.3339648246765137 img loss 1.2929108142852783 img loss 1.2778371572494507 img loss 1.240522861480713 img loss 1.2730095386505127 img loss 1.2813539505004883 img loss 1.300057291984558 img loss 1.2878572940826416 img loss 1.40166175365448 img loss 1.281795859336853 img loss 1.2532923221588135 img loss 1.229295253753662 img loss 1.2994921207427979 img loss 1.2671947479248047 img loss 1.3328615427017212 img loss 1.2621124982833862 img loss 1.2609585523605347 img loss 1.4763432741165161 img loss 1.3387337923049927 img loss 1.3210194110870361img loss 1.27118718624115 img loss 1.311272382736206 img loss 1.3302552700042725 img loss 1.3020837306976318 img loss 1.3248602151870728 img loss 1.2255243062973022 img loss 1.4260227680206299 img loss 1.318378210067749 img loss 1.2291350364685059 img loss 1.2616668939590454 img loss 1.4096026420593262 img loss 1.3392964601516724 img loss 1.30675208568573 img loss 1.3398276567459106 img loss 1.3409507274627686 img loss 1.2616214752197266 img loss 1.2525291442871094 img loss 1.2725684642791748 img loss 1.277571201324463 img loss 1.2978689670562744 img loss 1.2290472984313965 img loss 1.2493877410888672 img loss 1.2466177940368652 img loss 1.344699501991272 img loss 1.2097949981689453 img loss 1.2717102766036987 img loss 1.2718425989151 img loss 1.2529988288879395 img loss 1.4747506380081177 img loss 1.419592261314392 img loss 1.2965439558029175 img loss 1.2729730606079102 img loss 1.2368566989898682 img loss 1.250286340713501 img loss 1.277024745941162 img loss 1.1731061935424805 img loss 1.3210569620132446 img loss 1.358803391456604 img loss 1.2238423824310303 img loss 1.259662389755249 img loss 1.2954987287521362 img loss 1.3569058179855347 img loss 1.3414088487625122 img loss 1.258345365524292 img loss 1.2977919578552246 img loss 1.3249528408050537 img loss 1.2205677032470703 {'loss': 1.3017, 'grad_norm': 0.7344921231269836, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3402386903762817 img loss 1.1983436346054077 img loss 1.3276811838150024 img loss 1.2680721282958984 img loss 1.285581111907959 img loss 1.2076901197433472 img loss 1.4327312707901 img loss 1.2700775861740112 img loss 1.3367141485214233 img loss 1.2419475317001343 img loss 1.2723073959350586 img loss 1.2576019763946533 img loss 1.305026888847351 img loss 1.2377499341964722 img loss 1.2825257778167725 img loss 1.2168375253677368 img loss 1.2473188638687134 img loss 1.1990187168121338 img loss 1.228554606437683 img loss 1.2486711740493774 img loss 1.233914852142334 img loss 1.3129850625991821 img loss 1.2146782875061035 img loss 1.3137147426605225 img loss 1.271723985671997 img loss 1.22490394115448 img loss 1.3480639457702637 img loss 1.2623672485351562 img loss 1.2034368515014648 img loss 1.2603498697280884 img loss 1.4077397584915161 img loss 1.257057785987854 img loss 1.2274118661880493 img loss 1.201942801475525 img loss 1.2878594398498535 img loss 1.3524816036224365 img loss 1.2824848890304565 img loss 1.367679238319397 img loss 1.2530057430267334 img loss 1.2147315740585327 img loss 1.2531788349151611 img loss 1.440619707107544 img loss 1.2505909204483032 img loss 1.2494611740112305 img loss 1.2268023490905762 img loss 1.1996201276779175 img loss 1.2381491661071777 img loss 1.2644001245498657 img loss 1.2606931924819946 img loss 1.2177772521972656 img loss 1.2486603260040283 img loss 1.293503999710083 img loss 1.275429606437683 img loss 1.2559021711349487 img loss 1.3064355850219727 img loss 1.2519820928573608 img loss 1.2571295499801636 img loss 1.2830934524536133 img loss 1.3279283046722412 img loss 1.3633370399475098 img loss 1.219294786453247 img loss 1.259271502494812 img loss 1.2344812154769897 img loss 1.2976739406585693 img loss 1.2377780675888062 img loss 1.2928049564361572 img loss 1.220233678817749 img loss 1.2962347269058228 img loss 1.2112579345703125 img loss 1.2843157052993774 img loss 1.2693943977355957 img loss 1.2830979824066162 img loss 1.2266323566436768 img loss 1.2983611822128296 img loss 1.3262075185775757 img loss 1.2842538356781006 img loss 1.2794189453125 img loss 1.1971486806869507 img loss 1.299923300743103 img loss 1.1807140111923218 img loss 1.2801824808120728 img loss 1.3357422351837158 img loss 1.3391473293304443 img loss 1.3061981201171875 img loss 1.3504971265792847 img loss 1.2305004596710205 img loss 1.3783938884735107 img loss 1.293904185295105 img loss 1.243017554283142 img loss 1.250657558441162 img loss 1.2428228855133057 img loss 1.3087624311447144 img loss 1.244473934173584 img loss 1.2276846170425415 img loss 1.3136223554611206 img loss 1.2973835468292236 img loss 1.2977464199066162 img loss 1.320566177368164 img loss 1.2785375118255615 img loss 1.254044771194458 img loss 1.2760714292526245 img loss 1.2896074056625366 img loss 1.2483830451965332 img loss 1.2339330911636353 img loss 1.2469223737716675 img loss 1.2128769159317017 img loss 1.2285982370376587 img loss 1.281909465789795 img loss 1.3752576112747192 img loss 1.252469778060913 img loss 1.3276541233062744 img loss 1.348718523979187 img loss 1.2852420806884766 img loss 1.2397408485412598 img loss 1.3089300394058228 img loss 1.2529163360595703 img loss 1.1785591840744019 img loss 1.1911665201187134 img loss 1.2431786060333252 img loss 1.2887722253799438 img loss 1.2618328332901 img loss 1.2726855278015137 img loss 1.3271197080612183 img loss 1.2319438457489014 img loss 1.2397371530532837 img loss 1.2155927419662476 img loss 1.232980489730835 img loss 1.2284364700317383 {'loss': 1.2709, 'grad_norm': 0.29117751121520996, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3262144327163696 img loss 1.3366607427597046 img loss 1.2716070413589478 img loss 1.277565598487854 img loss 1.298299789428711 img loss 1.2184066772460938 img loss 1.22509765625 img loss 1.188830852508545 img loss 1.2416871786117554 img loss 1.2524585723876953 img loss 1.2856066226959229 img loss 1.2311885356903076 img loss 1.2236274480819702 img loss 1.2959175109863281 img loss 1.3026396036148071 img loss 1.413556456565857 img loss 1.2915929555892944 img loss 1.4617010354995728 img loss 1.263109564781189 img loss 1.3216761350631714 img loss 1.2665172815322876 img loss 1.2989422082901 img loss 1.3963912725448608 img loss 1.213448166847229 img loss 1.1910260915756226 img loss 1.3261688947677612 img loss 1.4111353158950806 img loss 1.2806246280670166 img loss 1.3021044731140137 img loss 1.3229365348815918 img loss 1.3402711153030396 img loss 1.2481262683868408 img loss 1.2011902332305908 img loss 1.3548232316970825 img loss 1.237526535987854 img loss 1.3686603307724 img loss 1.2385114431381226 img loss 1.3713091611862183 img loss 1.2717736959457397 img loss 1.2811064720153809 img loss 1.2973606586456299 img loss 1.2994638681411743 img loss 1.432532787322998 img loss 1.2820526361465454 img loss 1.2622641324996948 img loss 1.2703704833984375 img loss 1.2237895727157593 img loss 1.2459245920181274 img loss 1.3197559118270874 img loss 1.2756773233413696 img loss 1.3262662887573242 img loss 1.2433724403381348 img loss 1.2445802688598633 img loss 1.3544151782989502 img loss 1.3508411645889282 img loss 1.3252654075622559 img loss 1.4058233499526978 img loss 1.2137634754180908 img loss 1.3184274435043335 img loss 1.2610454559326172 img loss 1.2750930786132812 img loss 1.2847609519958496 img loss 1.3486716747283936 img loss 1.3040964603424072 img loss 1.2991091012954712 img loss 1.2175424098968506 img loss 1.305065631866455 img loss 1.3898460865020752 img loss 1.3183284997940063 img loss 1.202850103378296 img loss 1.3198468685150146 img loss 1.2597891092300415 img loss 1.3159332275390625 img loss 1.2789764404296875 img loss 1.2664905786514282 img loss 1.2776468992233276 img loss 1.3540575504302979 img loss 1.3191255331039429 img loss 1.2962925434112549 img loss 1.2788732051849365 img loss 1.240881323814392 img loss 1.2769445180892944 img loss 1.2936968803405762 img loss 1.310992956161499 img loss 1.2672200202941895 img loss 1.2515063285827637 img loss 1.2857987880706787 img loss 1.3039531707763672 img loss 1.2978371381759644 img loss 1.3830835819244385 img loss 1.3091741800308228 img loss 1.2591005563735962 img loss 1.281319260597229 img loss 1.228127121925354 img loss 1.2766300439834595 img loss 1.266139268875122 img loss 1.3015875816345215 img loss 1.268633484840393 img loss 1.2729394435882568 img loss 1.4790737628936768 img loss 1.2907301187515259 img loss 1.2650296688079834 img loss 1.3686565160751343 img loss 1.2136540412902832 img loss 1.312314510345459 img loss 1.2979748249053955 img loss 1.2502338886260986 img loss 1.3286224603652954 img loss 1.308956503868103 img loss 1.3409807682037354 img loss 1.3353602886199951 img loss 1.2721811532974243 img loss 1.3471674919128418 img loss 1.2100991010665894 img loss 1.3764694929122925 img loss 1.3881030082702637 img loss 1.2660375833511353 img loss 1.3026230335235596 img loss 1.2085182666778564 img loss 1.249205231666565 img loss 1.2326122522354126 img loss 1.4119170904159546 img loss 1.279706358909607 img loss 1.2915104627609253 img loss 1.4019452333450317 img loss 1.2830780744552612 img loss 1.3315054178237915 img loss 1.2558449506759644 {'loss': 1.2952, 'grad_norm': 0.38211795687675476, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4802372455596924 img loss 1.3977372646331787 img loss 1.4585539102554321 img loss 1.367064356803894 img loss 1.4232546091079712 img loss 1.4883513450622559 img loss 1.489255428314209 img loss 1.3372952938079834 img loss 1.4753321409225464 img loss 1.4693882465362549 img loss 1.497314691543579 img loss 1.4705283641815186 img loss 1.470262050628662 img loss 1.466201901435852 img loss 1.5100648403167725 img loss 1.2509773969650269 img loss 1.6629654169082642 img loss 1.4159659147262573 img loss 1.4960356950759888 img loss 1.3846880197525024 img loss 1.4294838905334473 img loss 1.370015025138855 img loss 1.4633392095565796 img loss 1.51523756980896 img loss 1.5986846685409546 img loss 1.6841837167739868 img loss 1.3641091585159302 img loss 1.4575705528259277 img loss 1.4980673789978027 img loss 1.5575687885284424 img loss 1.5167267322540283 img loss 1.4921661615371704 img loss 1.5056862831115723 img loss 1.4162099361419678 img loss 1.4251024723052979 img loss 1.4547144174575806 img loss 1.4213067293167114 img loss 1.3840367794036865 img loss 1.6224671602249146 img loss 1.3423856496810913 img loss 1.3868343830108643 img loss 1.3382279872894287 img loss 1.4961682558059692 img loss 1.2998628616333008 img loss 1.4466456174850464 img loss 1.566420316696167 img loss 1.3605568408966064 img loss 1.6260868310928345 img loss 1.3521380424499512 img loss 1.4880110025405884 img loss 1.3580682277679443 img loss 1.301464319229126 img loss 1.4845904111862183 img loss 1.5950671434402466 img loss 1.3558037281036377 img loss 1.4975650310516357 img loss 1.5398499965667725 img loss 1.4715590476989746 img loss 1.4891941547393799 img loss 1.3450530767440796 img loss 1.5180763006210327 img loss 1.573522686958313 img loss 1.3707374334335327 img loss 1.2945724725723267 img loss 1.3978266716003418 img loss 1.384639859199524 img loss 1.597805142402649 img loss 1.5326980352401733 img loss 1.471332311630249 img loss 1.541416049003601 img loss 1.3195066452026367 img loss 1.30143141746521 img loss 1.4141592979431152 img loss 1.5685786008834839 img loss 1.5021687746047974 img loss 1.4519890546798706 img loss 1.2906688451766968 img loss 1.4437366724014282 img loss 1.3323034048080444 img loss 1.4998821020126343 img loss 1.4126454591751099 img loss 1.3252094984054565 img loss 1.5427979230880737 img loss 1.4792481660842896 img loss 1.4804598093032837 img loss 1.3570736646652222 img loss 1.2538269758224487 img loss 1.476483941078186 img loss 1.4007103443145752 img loss 1.384681224822998 img loss 1.4841399192810059 img loss 1.578417181968689 img loss 1.4654136896133423 img loss 1.3797333240509033 img loss 1.5810641050338745 img loss 1.3086456060409546 img loss 1.5007412433624268 img loss 1.440793514251709 img loss 1.334624171257019 img loss 1.4374916553497314 img loss 1.4503177404403687 img loss 1.5342118740081787 img loss 1.417240858078003 img loss 1.481443166732788 img loss 1.476545810699463 img loss 1.6143946647644043 img loss 1.5726135969161987 img loss 1.4353607892990112 img loss 1.4298099279403687 img loss 1.4168280363082886 img loss 1.5100864171981812 img loss 1.4733750820159912 img loss 1.4863972663879395 img loss 1.3220760822296143 img loss 1.4943878650665283 img loss 1.4694294929504395 img loss 1.3396143913269043 img loss 1.3997043371200562 img loss 1.427743673324585 img loss 1.3049818277359009 img loss 1.4660203456878662 img loss 1.4966131448745728 img loss 1.7308194637298584 img loss 1.3805075883865356 img loss 1.5590327978134155 img loss 1.6116195917129517 img loss 1.5537093877792358 img loss 1.4776298999786377 {'loss': 1.4539, 'grad_norm': 0.6072912812232971, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3638653755187988 img loss 1.247676134109497 img loss 1.1629818677902222 img loss 1.2066164016723633 img loss 1.2503448724746704 img loss 1.2177104949951172 img loss 1.3179340362548828 img loss 1.3397396802902222 img loss 1.270758867263794 img loss 1.2892546653747559 img loss 1.2357784509658813 img loss 1.2930370569229126 img loss 1.2491101026535034 img loss 1.2143034934997559 img loss 1.2858707904815674 img loss 1.2548850774765015 img loss 1.260578989982605 img loss 1.317077398300171 img loss 1.2492058277130127 img loss 1.250458002090454 img loss 1.2071212530136108 img loss 1.3482277393341064 img loss 1.4183127880096436 img loss 1.2173361778259277 img loss 1.185469627380371 img loss 1.1563630104064941 img loss 1.225692629814148 img loss 1.292102336883545 img loss 1.2181583642959595 img loss 1.2400298118591309 img loss 1.3198354244232178 img loss 1.2651880979537964 img loss 1.2435976266860962 img loss 1.2656296491622925 img loss 1.2622413635253906 img loss 1.2501782178878784 img loss 1.2903051376342773 img loss 1.247902750968933 img loss 1.2189478874206543 img loss 1.243006944656372 img loss 1.3562490940093994 img loss 1.2765898704528809 img loss 1.2957026958465576 img loss 1.2740890979766846 img loss 1.2582653760910034 img loss 1.2501980066299438 img loss 1.2723976373672485 img loss 1.2885874509811401 img loss 1.2869625091552734 img loss 1.2497605085372925 img loss 1.2792391777038574 img loss 1.2084070444107056 img loss 1.3024163246154785 img loss 1.248809576034546 img loss 1.2391475439071655 img loss 1.2698348760604858 img loss 1.287321925163269 img loss 1.3599509000778198 img loss 1.2255291938781738 img loss 1.280119776725769 img loss 1.2743635177612305 img loss 1.2307889461517334 img loss 1.2668242454528809 img loss 1.2445011138916016 img loss 1.282596468925476 img loss 1.374092936515808 img loss 1.2702661752700806 img loss 1.1635940074920654 img loss 1.302032709121704 img loss 1.3438847064971924 img loss 1.2720540761947632 img loss 1.254920244216919 img loss 1.2552297115325928 img loss 1.3252792358398438 img loss 1.3240779638290405 img loss 1.2355778217315674 img loss 1.2716401815414429 img loss 1.2490752935409546 img loss 1.2532837390899658 img loss 1.2494497299194336 img loss 1.1796852350234985 img loss 1.3101943731307983 img loss 1.3145251274108887 img loss 1.2983548641204834 img loss 1.2895129919052124 img loss 1.1617149114608765 img loss 1.2788255214691162 img loss 1.2129716873168945 img loss 1.3280280828475952 img loss 1.4543403387069702 img loss 1.2841758728027344 img loss 1.2444908618927002 img loss 1.3867501020431519 img loss 1.284475326538086 img loss 1.2284824848175049 img loss 1.1940937042236328 img loss 1.29338538646698 img loss 1.3990750312805176 img loss 1.2268635034561157 img loss 1.2206922769546509 img loss 1.3106735944747925 img loss 1.1448873281478882 img loss 1.1384984254837036 img loss 1.305271029472351 img loss 1.2108221054077148 img loss 1.2497150897979736 img loss 1.3942418098449707 img loss 1.2350995540618896 img loss 1.3189918994903564 img loss 1.3195236921310425 img loss 1.2525947093963623 img loss 1.2857894897460938 img loss 1.301672339439392 img loss 1.3394910097122192 img loss 1.262550711631775 img loss 1.3214640617370605 img loss 1.2542412281036377 img loss 1.2480090856552124 img loss 1.2369821071624756 img loss 1.328922152519226 img loss 1.2814478874206543 img loss 1.2177674770355225 img loss 1.2627818584442139 img loss 1.2073032855987549 img loss 1.3068434000015259 img loss 1.3159654140472412 img loss 1.2456270456314087 img loss 1.2390583753585815 {'loss': 1.2693, 'grad_norm': 0.26082587242126465, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3428508043289185 img loss 1.4596209526062012 img loss 1.3242634534835815 img loss 1.505682110786438 img loss 1.4436241388320923 img loss 1.4018975496292114 img loss 1.4096513986587524 img loss 1.5615617036819458 img loss 1.4888246059417725 img loss 1.346707820892334 img loss 1.4339401721954346 img loss 1.4157363176345825 img loss 1.4041669368743896 img loss 1.4967364072799683 img loss 1.303367257118225 img loss 1.4724551439285278 img loss 1.3999162912368774 img loss 1.479788064956665 img loss 1.3616052865982056 img loss 1.522721529006958 img loss 1.5507254600524902 img loss 1.3544433116912842 img loss 1.3768185377120972 img loss 1.437375783920288 img loss 1.3909481763839722 img loss 1.4103114604949951 img loss 1.4772065877914429 img loss 1.3337881565093994 img loss 1.4114536046981812 img loss 1.6010977029800415 img loss 1.4488751888275146 img loss 1.4629734754562378 img loss 1.4129366874694824 img loss 1.34847891330719 img loss 1.4458214044570923 img loss 1.3328161239624023 img loss 1.3159005641937256 img loss 1.344244122505188 img loss 1.4573842287063599 img loss 1.4157451391220093 img loss 1.342992901802063 img loss 1.3996278047561646 img loss 1.298227310180664 img loss 1.522687554359436 img loss 1.2700555324554443 img loss 1.4539955854415894 img loss 1.443963646888733 img loss 1.3811918497085571 img loss 1.4052174091339111 img loss 1.3885191679000854 img loss 1.340140461921692 img loss 1.43639075756073 img loss 1.3464694023132324 img loss 1.4745628833770752 img loss 1.4019291400909424 img loss 1.4304856061935425 img loss 1.422040343284607 img loss 1.5050591230392456 img loss 1.37173330783844 img loss 1.2928192615509033 img loss 1.4566924571990967 img loss 1.469347596168518 img loss 1.4111720323562622 img loss 1.4405381679534912 img loss 1.4467660188674927 img loss 1.4399797916412354 img loss 1.4048035144805908 img loss 1.3594739437103271 img loss 1.4346578121185303 img loss 1.4477208852767944 img loss 1.4803944826126099 img loss 1.424466609954834 img loss 1.4578757286071777 img loss 1.407801866531372 img loss 1.4588427543640137 img loss 1.3665817975997925 img loss 1.3769272565841675 img loss 1.368308424949646 img loss 1.3959145545959473 img loss 1.3449355363845825 img loss 1.3526031970977783 img loss 1.467023491859436 img loss 1.415953516960144 img loss 1.4342759847640991 img loss 1.4066259860992432 img loss 1.3731160163879395 img loss 1.5532525777816772 img loss 1.3215675354003906 img loss 1.3595284223556519 img loss 1.403705358505249 img loss 1.350236415863037 img loss 1.3335617780685425 img loss 1.490601897239685 img loss 1.3646976947784424 img loss 1.379837155342102 img loss 1.3818813562393188 img loss 1.4569393396377563 img loss 1.4290944337844849 img loss 1.3860926628112793 img loss 1.5756356716156006 img loss 1.4056638479232788 img loss 1.539894938468933 img loss 1.4782692193984985 img loss 1.4881107807159424 img loss 1.5128934383392334 img loss 1.3729264736175537 img loss 1.4226044416427612 img loss 1.3910094499588013 img loss 1.4630646705627441 img loss 1.456902027130127 img loss 1.488421082496643 img loss 1.3903201818466187 img loss 1.2769334316253662 img loss 1.4033061265945435 img loss 1.2873083353042603 img loss 1.4273706674575806 img loss 1.4259766340255737 img loss 1.4177218675613403 img loss 1.3729859590530396 img loss 1.3869730234146118 img loss 1.4417530298233032 img loss 1.3764673471450806 img loss 1.4761029481887817 img loss 1.5753390789031982 img loss 1.3626148700714111 img loss 1.415239691734314 img loss 1.4627785682678223 img loss 1.535314917564392 {'loss': 1.4181, 'grad_norm': 0.32966285943984985, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3343331813812256 img loss 1.2560619115829468 img loss 1.2293026447296143 img loss 1.3695353269577026 img loss 1.233426809310913 img loss 1.2747936248779297 img loss 1.2621877193450928 img loss 1.3244825601577759 img loss 1.221238136291504 img loss 1.265053391456604 img loss 1.293127417564392 img loss 1.2728230953216553 img loss 1.2676200866699219 img loss 1.3017292022705078 img loss 1.2731939554214478 img loss 1.1716454029083252 img loss 1.2866371870040894 img loss 1.2849369049072266 img loss 1.3413604497909546 img loss 1.2872570753097534 img loss 1.2524964809417725 img loss 1.3130664825439453 img loss 1.193457007408142 img loss 1.3061599731445312 img loss 1.215128779411316 img loss 1.309900164604187 img loss 1.267366647720337 img loss 1.3251594305038452 img loss 1.2312803268432617 img loss 1.2535221576690674 img loss 1.2364944219589233 img loss 1.274845838546753 img loss 1.2888621091842651 img loss 1.2881487607955933 img loss 1.3620972633361816 img loss 1.2433780431747437 img loss 1.2868419885635376 img loss 1.207578182220459 img loss 1.187080979347229 img loss 1.282005786895752 img loss 1.2523044347763062 img loss 1.2904396057128906 img loss 1.276296615600586 img loss 1.2357447147369385 img loss 1.3191413879394531 img loss 1.292885661125183 img loss 1.2655272483825684 img loss 1.3335165977478027 img loss 1.2386400699615479 img loss 1.3433729410171509 img loss 1.3089288473129272 img loss 1.1813387870788574 img loss 1.220138430595398 img loss 1.33115816116333 img loss 1.2399170398712158 img loss 1.2398169040679932 img loss 1.260454535484314 img loss 1.3069530725479126 img loss 1.2693926095962524 img loss 1.2844856977462769 img loss 1.2661386728286743 img loss 1.24335515499115 img loss 1.229987621307373 img loss 1.2780102491378784 img loss 1.2472566366195679 img loss 1.2659032344818115 img loss 1.2061909437179565 img loss 1.2348312139511108 img loss 1.2834709882736206 img loss 1.2453281879425049 img loss 1.381954550743103 img loss 1.254321575164795 img loss 1.2141854763031006 img loss 1.2516744136810303 img loss 1.2677332162857056 img loss 1.2261685132980347 img loss 1.2172508239746094 img loss 1.247383952140808 img loss 1.2886223793029785 img loss 1.2594760656356812 img loss 1.2944836616516113 img loss 1.2231335639953613 img loss 1.2305119037628174 img loss 1.3204286098480225 img loss 1.3138948678970337 img loss 1.2553237676620483 img loss 1.2751353979110718 img loss 1.2830597162246704 img loss 1.1728332042694092 img loss 1.277777075767517 img loss 1.306578516960144 img loss 1.263108491897583 img loss 1.3701926469802856 img loss 1.276923418045044 img loss 1.3194032907485962 img loss 1.3353698253631592 img loss 1.191707968711853 img loss 1.3830291032791138 img loss 1.248802900314331 img loss 1.3213127851486206 img loss 1.2333433628082275 img loss 1.260475516319275 img loss 1.3002912998199463 img loss 1.2628264427185059 img loss 1.2574002742767334 img loss 1.268967866897583 img loss 1.2744898796081543 img loss 1.228726863861084 img loss 1.2901883125305176 img loss 1.293728232383728 img loss 1.2747656106948853 img loss 1.2143791913986206 img loss 1.3039426803588867 img loss 1.3043460845947266 img loss 1.2883974313735962 img loss 1.2615269422531128 img loss 1.2809914350509644 img loss 1.2395246028900146 img loss 1.259294033050537 img loss 1.2801165580749512 img loss 1.3357863426208496 img loss 1.323668360710144 img loss 1.3207192420959473 img loss 1.3099606037139893 img loss 1.2749160528182983 img loss 1.2904247045516968 img loss 1.2653422355651855 img loss 1.2772976160049438 {'loss': 1.2728, 'grad_norm': 0.6193947196006775, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4723860025405884 img loss 1.4448654651641846 img loss 1.426389455795288 img loss 1.3751397132873535 img loss 1.4533833265304565 img loss 1.4513108730316162 img loss 1.4411885738372803 img loss 1.3928288221359253 img loss 1.4574893712997437 img loss 1.6051075458526611 img loss 1.444952130317688 img loss 1.4379551410675049 img loss 1.4036084413528442 img loss 1.4052168130874634 img loss 1.3932244777679443 img loss 1.4344180822372437 img loss 1.4250239133834839 img loss 1.2665963172912598 img loss 1.413716197013855 img loss 1.4965275526046753 img loss 1.475805401802063 img loss 1.4306703805923462 img loss 1.342563271522522 img loss 1.4308596849441528 img loss 1.289526343345642 img loss 1.4969607591629028 img loss 1.3395531177520752 img loss 1.493491530418396 img loss 1.3931127786636353 img loss 1.4576090574264526 img loss 1.4367903470993042 img loss 1.4288153648376465 img loss 1.4800477027893066 img loss 1.3634084463119507 img loss 1.5031144618988037 img loss 1.4037061929702759img loss 1.454362392425537 img loss 1.4498944282531738 img loss 1.2887928485870361 img loss 1.506248950958252 img loss 1.4227211475372314 img loss 1.3696668148040771 img loss 1.4564956426620483 img loss 1.3883708715438843 img loss 1.3766809701919556 img loss 1.414596676826477 img loss 1.4906423091888428 img loss 1.3386129140853882 img loss 1.4555083513259888 img loss 1.5034043788909912 img loss 1.3228148221969604 img loss 1.4495550394058228 img loss 1.4337550401687622 img loss 1.4724293947219849 img loss 1.313704013824463 img loss 1.4670369625091553 img loss 1.3740812540054321 img loss 1.3295685052871704 img loss 1.3846895694732666 img loss 1.3418337106704712 img loss 1.4446035623550415 img loss 1.3770488500595093 img loss 1.5142236948013306 img loss 1.5464786291122437 img loss 1.461474895477295 img loss 1.4099230766296387 img loss 1.4206854104995728 img loss 1.4497942924499512 img loss 1.469254970550537 img loss 1.318982481956482 img loss 1.4398086071014404 img loss 1.331642985343933 img loss 1.523240566253662 img loss 1.3108049631118774 img loss 1.3854619264602661 img loss 1.4475065469741821 img loss 1.3787791728973389 img loss 1.4277046918869019 img loss 1.3624039888381958 img loss 1.4017761945724487 img loss 1.4894688129425049 img loss 1.4369380474090576 img loss 1.4742437601089478 img loss 1.4509397745132446 img loss 1.432167887687683 img loss 1.4149078130722046 img loss 1.454088568687439 img loss 1.3980790376663208 img loss 1.3289676904678345 img loss 1.4436718225479126 img loss 1.4440287351608276 img loss 1.4384630918502808 img loss 1.4244716167449951 img loss 1.4072591066360474 img loss 1.3498470783233643 img loss 1.334046483039856 img loss 1.4639989137649536 img loss 1.4035958051681519 img loss 1.3208057880401611 img loss 1.3476649522781372 img loss 1.5836948156356812 img loss 1.398384928703308 img loss 1.4004002809524536 img loss 1.3934236764907837 img loss 1.435888409614563 img loss 1.4238101243972778 img loss 1.374646544456482 img loss 1.432142972946167 img loss 1.3576675653457642 img loss 1.5269598960876465 img loss 1.374401330947876 img loss 1.5551962852478027 img loss 1.3860458135604858 img loss 1.4719269275665283 img loss 1.4323878288269043 img loss 1.3948924541473389 img loss 1.5191348791122437 img loss 1.3472669124603271 img loss 1.4294934272766113 img loss 1.4291508197784424 img loss 1.3611359596252441 img loss 1.363266110420227 img loss 1.3896676301956177 img loss 1.4321744441986084 img loss 1.3384839296340942 img loss 1.4884731769561768 img loss 1.312038779258728 img loss 1.4155925512313843 {'loss': 1.4192, 'grad_norm': 0.444509357213974, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.328620195388794 img loss 1.308684229850769 img loss 1.3155484199523926 img loss 1.266068696975708 img loss 1.340023398399353 img loss 1.2222145795822144 img loss 1.2119320631027222 img loss 1.184625267982483 img loss 1.3410580158233643 img loss 1.252476692199707 img loss 1.2087236642837524 img loss 1.2396795749664307 img loss 1.3146826028823853 img loss 1.1970834732055664 img loss 1.2091891765594482 img loss 1.3500162363052368 img loss 1.3179776668548584 img loss 1.272670030593872 img loss 1.336044430732727 img loss 1.28401517868042 img loss 1.3112181425094604 img loss 1.4062367677688599 img loss 1.2851879596710205 img loss 1.285347819328308 img loss 1.2957916259765625 img loss 1.321104884147644 img loss 1.2699217796325684 img loss 1.2779076099395752 img loss 1.214813232421875 img loss 1.2814900875091553 img loss 1.26119863986969 img loss 1.1958060264587402 img loss 1.3173468112945557 img loss 1.2585251331329346 img loss 1.2658153772354126 img loss 1.3200362920761108 img loss 1.270087718963623 img loss 1.2107913494110107 img loss 1.2549505233764648 img loss 1.3063887357711792 img loss 1.3127800226211548 img loss 1.2077171802520752 img loss 1.211565613746643 img loss 1.357519268989563 img loss 1.2642760276794434 img loss 1.4015964269638062 img loss 1.3489882946014404 img loss 1.299760103225708 img loss 1.2984235286712646 img loss 1.2708944082260132 img loss 1.3301849365234375 img loss 1.29402494430542 img loss 1.2468689680099487 img loss 1.3313184976577759 img loss 1.2658315896987915 img loss 1.2048076391220093 img loss 1.3202613592147827 img loss 1.2886806726455688 img loss 1.2402615547180176 img loss 1.327786922454834 img loss 1.324407935142517 img loss 1.2961028814315796 img loss 1.2927721738815308 img loss 1.2587566375732422 img loss 1.2369685173034668 img loss 1.2880573272705078 img loss 1.3504301309585571 img loss 1.2685457468032837 img loss 1.2391324043273926 img loss 1.3408637046813965 img loss 1.3030164241790771 img loss 1.2815072536468506 img loss 1.3996713161468506 img loss 1.2924745082855225 img loss 1.3221137523651123 img loss 1.2629867792129517 img loss 1.315502405166626 img loss 1.2946804761886597 img loss 1.2888062000274658 img loss 1.2789487838745117 img loss 1.4008023738861084 img loss 1.3867138624191284 img loss 1.304656982421875 img loss 1.3251389265060425 img loss 1.3151482343673706 img loss 1.2785457372665405 img loss 1.2410938739776611 img loss 1.3060306310653687 img loss 1.268823504447937 img loss 1.3596247434616089 img loss 1.2238662242889404 img loss 1.2066963911056519 img loss 1.1650562286376953 img loss 1.2348495721817017 img loss 1.3412625789642334 img loss 1.2012553215026855 img loss 1.33470618724823 img loss 1.2234647274017334 img loss 1.2318544387817383 img loss 1.3402705192565918 img loss 1.1970863342285156 img loss 1.2699410915374756 img loss 1.281370759010315 img loss 1.1703342199325562 img loss 1.2193548679351807 img loss 1.3049852848052979 img loss 1.193353533744812 img loss 1.30958890914917 img loss 1.339165210723877 img loss 1.2254424095153809 img loss 1.2517955303192139 img loss 1.210536241531372 img loss 1.260500431060791 img loss 1.2714118957519531 img loss 1.2607139348983765 img loss 1.2618331909179688 img loss 1.2815512418746948 img loss 1.3130559921264648 img loss 1.2788066864013672 img loss 1.246752142906189 img loss 1.2577236890792847 img loss 1.2672295570373535 img loss 1.2825872898101807 img loss 1.2944458723068237 img loss 1.2705717086791992 img loss 1.2088285684585571 img loss 1.238487720489502 img loss 1.242361068725586 {'loss': 1.2795, 'grad_norm': 0.2470165342092514, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2200047969818115 img loss 1.2741384506225586 img loss 1.2675999402999878 img loss 1.315865397453308 img loss 1.2184808254241943 img loss 1.223897933959961 img loss 1.2499427795410156 img loss 1.2147622108459473 img loss 1.2033305168151855 img loss 1.2439008951187134 img loss 1.2239625453948975 img loss 1.2379215955734253 img loss 1.2161680459976196 img loss 1.231588363647461 img loss 1.23675537109375 img loss 1.2536845207214355 img loss 1.2662855386734009 img loss 1.2017039060592651 img loss 1.2484629154205322 img loss 1.2097370624542236 img loss 1.2214876413345337 img loss 1.2275919914245605 img loss 1.2202399969100952 img loss 1.2138822078704834 img loss 1.246496558189392 img loss 1.2731049060821533 img loss 1.322334885597229 img loss 1.212471842765808 img loss 1.235695481300354 img loss 1.2333104610443115 img loss 1.391274094581604 img loss 1.2697465419769287 img loss 1.2964820861816406 img loss 1.302750825881958 img loss 1.273416519165039 img loss 1.2732012271881104 img loss 1.2822927236557007 img loss 1.2652091979980469 img loss 1.2859840393066406 img loss 1.2358617782592773 img loss 1.246432900428772 img loss 1.1935136318206787 img loss 1.2601947784423828 img loss 1.2341437339782715 img loss 1.2421579360961914 img loss 1.285313367843628 img loss 1.2283661365509033 img loss 1.2348551750183105 img loss 1.2246671915054321 img loss 1.1936485767364502 img loss 1.2569321393966675 img loss 1.2645708322525024 img loss 1.2537497282028198 img loss 1.2939517498016357 img loss 1.1725858449935913 img loss 1.2565948963165283 img loss 1.2142693996429443 img loss 1.2337487936019897 img loss 1.3090451955795288 img loss 1.2787041664123535 img loss 1.2019362449645996 img loss 1.2463191747665405 img loss 1.339181661605835 img loss 1.2250747680664062 img loss 1.1529152393341064 img loss 1.2890174388885498 img loss 1.2094323635101318 img loss 1.289798378944397 img loss 1.2429687976837158 img loss 1.2334483861923218 img loss 1.2899996042251587 img loss 1.2441082000732422 img loss 1.2106140851974487 img loss 1.245176911354065 img loss 1.2844882011413574 img loss 1.284427285194397 img loss 1.2417235374450684 img loss 1.2553951740264893 img loss 1.320504069328308 img loss 1.2315794229507446 img loss 1.285035490989685 img loss 1.2879173755645752 img loss 1.2137781381607056 img loss 1.2297981977462769 img loss 1.2443628311157227 img loss 1.2497131824493408 img loss 1.2421954870224 img loss 1.266710877418518 img loss 1.2265323400497437 img loss 1.2491073608398438 img loss 1.208128571510315 img loss 1.392622470855713 img loss 1.2447477579116821 img loss 1.2260674238204956 img loss 1.2859896421432495 img loss 1.2697054147720337 img loss 1.266066074371338 img loss 1.2130587100982666 img loss 1.2567795515060425 img loss 1.2558624744415283 img loss 1.263166069984436 img loss 1.2271698713302612 img loss 1.228624939918518 img loss 1.2810814380645752 img loss 1.2685675621032715 img loss 1.2764519453048706 img loss 1.3314783573150635 img loss 1.217751383781433 img loss 1.1885641813278198 img loss 1.2651523351669312 img loss 1.2205828428268433 img loss 1.3179880380630493 img loss 1.2600605487823486 img loss 1.1923444271087646 img loss 1.1883255243301392 img loss 1.204420804977417 img loss 1.2649599313735962 img loss 1.222188949584961 img loss 1.2597846984863281 img loss 1.2405604124069214 img loss 1.2608931064605713 img loss 1.2450685501098633 img loss 1.2499785423278809 img loss 1.3248668909072876 img loss 1.2553362846374512 img loss 1.2451187372207642 img loss 1.2313058376312256 img loss 1.2232320308685303 {'loss': 1.2502, 'grad_norm': 0.5073089003562927, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2338366508483887 img loss 1.2235363721847534 img loss 1.2308566570281982 img loss 1.2212227582931519 img loss 1.146936297416687 img loss 1.2314707040786743 img loss 1.224230170249939 img loss 1.1998704671859741 img loss 1.2484853267669678 img loss 1.2479264736175537 img loss 1.2369005680084229 img loss 1.1965117454528809 img loss 1.1633756160736084 img loss 1.2488000392913818 img loss 1.2692832946777344 img loss 1.2179279327392578 img loss 1.155963659286499 img loss 1.2146644592285156 img loss 1.1295607089996338 img loss 1.184954047203064 img loss 1.2661923170089722 img loss 1.2001738548278809 img loss 1.2397854328155518 img loss 1.206412672996521 img loss 1.2502135038375854 img loss 1.2897268533706665 img loss 1.2169016599655151 img loss 1.19122314453125 img loss 1.24201238155365 img loss 1.2135388851165771 img loss 1.2050167322158813 img loss 1.2282971143722534 img loss 1.1996303796768188 img loss 1.3065561056137085 img loss 1.2375096082687378 img loss 1.1387555599212646 img loss 1.2609485387802124 img loss 1.2133511304855347 img loss 1.2659004926681519 img loss 1.171746850013733 img loss 1.2368009090423584 img loss 1.183268427848816 img loss 1.2894322872161865 img loss 1.244285225868225 img loss 1.2488009929656982 img loss 1.2672011852264404 img loss 1.2615060806274414 img loss 1.1582443714141846 img loss 1.1701998710632324 img loss 1.154903769493103 img loss 1.172069787979126 img loss 1.228827953338623 img loss 1.1437534093856812 img loss 1.1788700819015503 img loss 1.281968593597412 img loss 1.320365309715271 img loss 1.1383250951766968 img loss 1.2155323028564453 img loss 1.2420238256454468 img loss 1.258203148841858 img loss 1.3184505701065063 img loss 1.2620434761047363 img loss 1.2210731506347656 img loss 1.262907862663269 img loss 1.2347913980484009 img loss 1.2645233869552612 img loss 1.2596166133880615 img loss 1.1266478300094604 img loss 1.1904370784759521 img loss 1.1875317096710205 img loss 1.1511045694351196 img loss 1.1143972873687744 img loss 1.2376430034637451 img loss 1.1956151723861694 img loss 1.2373498678207397 img loss 1.2619526386260986 img loss 1.2553356885910034 img loss 1.2705188989639282 img loss 1.1770861148834229 img loss 1.1882461309432983 img loss 1.1803698539733887 img loss 1.224247932434082 img loss 1.24969482421875 img loss 1.2419322729110718 img loss 1.2226529121398926 img loss 1.2729909420013428 img loss 1.2204511165618896 img loss 1.207241415977478 img loss 1.1900832653045654 img loss 1.2087490558624268 img loss 1.151342749595642 img loss 1.2058662176132202 img loss 1.2907596826553345 img loss 1.220455527305603 img loss 1.2529289722442627 img loss 1.2279527187347412 img loss 1.1961368322372437 img loss 1.1824431419372559 img loss 1.1758766174316406 img loss 1.1993166208267212 img loss 1.1904035806655884 img loss 1.244553804397583 img loss 1.2208476066589355 img loss 1.2092097997665405 img loss 1.2510133981704712 img loss 1.1774547100067139 img loss 1.3244621753692627 img loss 1.1517348289489746 img loss 1.2430998086929321 img loss 1.2305210828781128 img loss 1.2102067470550537 img loss 1.216054916381836 img loss 1.269377589225769 img loss 1.2116049528121948 img loss 1.2291368246078491 img loss 1.249640703201294 img loss 1.2775863409042358 img loss 1.1941298246383667 img loss 1.2913968563079834 img loss 1.2185213565826416 img loss 1.232419490814209 img loss 1.227854609489441 img loss 1.1527667045593262 img loss 1.3766883611679077 img loss 1.2325023412704468 img loss 1.1702120304107666 img loss 1.0881646871566772 img loss 1.2314373254776 {'loss': 1.2205, 'grad_norm': 0.44617050886154175, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3035788536071777 img loss 1.3585282564163208 img loss 1.2614456415176392 img loss 1.2440698146820068 img loss 1.3690475225448608 img loss 1.3662266731262207 img loss 1.2537646293640137 img loss 1.2707157135009766 img loss 1.2900390625 img loss 1.3339086771011353 img loss 1.2937341928482056 img loss 1.2541489601135254 img loss 1.2957637310028076 img loss 1.1956193447113037 img loss 1.2079217433929443 img loss 1.197009563446045 img loss 1.2598873376846313 img loss 1.2942882776260376 img loss 1.2104339599609375 img loss 1.2888457775115967 img loss 1.2342543601989746 img loss 1.2663383483886719 img loss 1.2421690225601196 img loss 1.4556763172149658 img loss 1.3588303327560425 img loss 1.2957265377044678 img loss 1.3665727376937866 img loss 1.2214980125427246 img loss 1.240526795387268 img loss 1.3447849750518799 img loss 1.2577519416809082 img loss 1.2811206579208374 img loss 1.4021114110946655 img loss 1.2559902667999268 img loss 1.2192752361297607 img loss 1.1744108200073242 img loss 1.266569972038269 img loss 1.2941702604293823 img loss 1.2670563459396362 img loss 1.3491004705429077 img loss 1.2919185161590576 img loss 1.2375707626342773 img loss 1.4268262386322021 img loss 1.2424559593200684 img loss 1.2005348205566406 img loss 1.2311718463897705 img loss 1.2846988439559937 img loss 1.340146780014038 img loss 1.2785841226577759 img loss 1.1801180839538574 img loss 1.2483232021331787 img loss 1.2236257791519165 img loss 1.299360990524292 img loss 1.3050425052642822 img loss 1.2878490686416626 img loss 1.2952107191085815 img loss 1.294063925743103img loss 1.3142297267913818 img loss 1.2299941778182983 img loss 1.2774386405944824 img loss 1.3485454320907593 img loss 1.2984681129455566 img loss 1.2631518840789795 img loss 1.1898449659347534 img loss 1.2982151508331299 img loss 1.194324016571045 img loss 1.2602035999298096 img loss 1.2784184217453003 img loss 1.3120218515396118 img loss 1.3062915802001953 img loss 1.3663314580917358 img loss 1.2770147323608398 img loss 1.2193217277526855 img loss 1.2838568687438965 img loss 1.363330602645874 img loss 1.2394672632217407 img loss 1.2885340452194214 img loss 1.320322871208191 img loss 1.2946147918701172 img loss 1.4563202857971191 img loss 1.2793492078781128 img loss 1.2933851480484009 img loss 1.2520185708999634 img loss 1.361528992652893 img loss 1.398830771446228 img loss 1.2743250131607056 img loss 1.2884705066680908 img loss 1.2792147397994995 img loss 1.2520865201950073 img loss 1.2854565382003784 img loss 1.1767263412475586 img loss 1.2614214420318604 img loss 1.2572482824325562 img loss 1.2854012250900269 img loss 1.1806902885437012 img loss 1.293050765991211 img loss 1.3597434759140015 img loss 1.2383778095245361 img loss 1.3087289333343506 img loss 1.3407374620437622 img loss 1.301497459411621 img loss 1.2852600812911987 img loss 1.3538705110549927 img loss 1.266182780265808 img loss 1.293912410736084 img loss 1.3125460147857666 img loss 1.2963502407073975 img loss 1.2191290855407715 img loss 1.3264201879501343 img loss 1.3496357202529907 img loss 1.304011583328247 img loss 1.2565487623214722 img loss 1.2719132900238037 img loss 1.305101990699768 img loss 1.21035635471344 img loss 1.1942849159240723 img loss 1.197094440460205 img loss 1.204404592514038 img loss 1.2250555753707886 img loss 1.1548948287963867 img loss 1.2303489446640015 img loss 1.3808296918869019 img loss 1.235391616821289 img loss 1.2666950225830078 img loss 1.2460134029388428 img loss 1.267271637916565 img loss 1.319511890411377 img loss 1.2705237865447998 {'loss': 1.2805, 'grad_norm': 0.29973477125167847, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.233024001121521 img loss 1.2476611137390137 img loss 1.2354201078414917 img loss 1.1395783424377441 img loss 1.2215259075164795 img loss 1.313828945159912 img loss 1.298454999923706 img loss 1.228365421295166 img loss 1.2739590406417847 img loss 1.2411930561065674 img loss 1.2132184505462646 img loss 1.2650139331817627 img loss 1.2614458799362183 img loss 1.2513784170150757 img loss 1.2783901691436768 img loss 1.2528440952301025 img loss 1.3016899824142456 img loss 1.244097352027893 img loss 1.1936663389205933 img loss 1.19133460521698 img loss 1.3131225109100342 img loss 1.2415053844451904 img loss 1.246042013168335 img loss 1.2500700950622559 img loss 1.269080638885498 img loss 1.1858679056167603 img loss 1.2949910163879395 img loss 1.213679313659668 img loss 1.3172858953475952 img loss 1.2247377634048462 img loss 1.1457531452178955 img loss 1.2181174755096436 img loss 1.275087833404541 img loss 1.2625782489776611 img loss 1.1676815748214722 img loss 1.2595539093017578 img loss 1.2140852212905884 img loss 1.2145737409591675 img loss 1.3086450099945068 img loss 1.3476415872573853 img loss 1.2075412273406982 img loss 1.3068021535873413 img loss 1.240133285522461 img loss 1.2456567287445068 img loss 1.3165358304977417 img loss 1.248837947845459 img loss 1.265723705291748 img loss 1.1741780042648315 img loss 1.182677984237671 img loss 1.3502628803253174 img loss 1.2944649457931519 img loss 1.2776539325714111 img loss 1.1280769109725952 img loss 1.142439842224121 img loss 1.1906752586364746 img loss 1.2133800983428955 img loss 1.235939860343933 img loss 1.2105560302734375 img loss 1.1852333545684814 img loss 1.2859331369400024 img loss 1.1721729040145874 img loss 1.203772783279419 img loss 1.3174152374267578 img loss 1.21281898021698 img loss 1.2705961465835571 img loss 1.1451090574264526 img loss 1.2650203704833984 img loss 1.2625318765640259 img loss 1.2072298526763916 img loss 1.1954373121261597 img loss 1.2768404483795166 img loss 1.3879247903823853 img loss 1.237146258354187 img loss 1.3270443677902222 img loss 1.320166826248169 img loss 1.2701878547668457 img loss 1.2514088153839111 img loss 1.299936056137085 img loss 1.3213564157485962 img loss 1.2664272785186768 img loss 1.2170013189315796 img loss 1.3053913116455078 img loss 1.2812639474868774 img loss 1.3267109394073486 img loss 1.3026387691497803 img loss 1.2524676322937012 img loss 1.1944961547851562 img loss 1.272071123123169 img loss 1.2574570178985596 img loss 1.335334062576294 img loss 1.2958815097808838 img loss 1.2394987344741821 img loss 1.3784825801849365 img loss 1.2535030841827393 img loss 1.190772533416748 img loss 1.2882983684539795 img loss 1.2148585319519043 img loss 1.192964792251587 img loss 1.2500003576278687 img loss 1.2123304605484009 img loss 1.258919596672058 img loss 1.1961791515350342 img loss 1.213148593902588 img loss 1.2806072235107422 img loss 1.206885814666748 img loss 1.284174919128418 img loss 1.2815887928009033 img loss 1.22737717628479 img loss 1.1400591135025024 img loss 1.2520925998687744 img loss 1.2319483757019043 img loss 1.2300941944122314 img loss 1.2845607995986938 img loss 1.2590248584747314 img loss 1.2149899005889893 img loss 1.254257082939148 img loss 1.1938626766204834 img loss 1.2390711307525635 img loss 1.2179925441741943 img loss 1.1860058307647705 img loss 1.2515733242034912 img loss 1.3176037073135376 img loss 1.3837940692901611 img loss 1.2308688163757324 img loss 1.3609360456466675 img loss 1.1989445686340332 img loss 1.1870501041412354 img loss 1.2769666910171509 {'loss': 1.2492, 'grad_norm': 0.45391711592674255, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3419119119644165 img loss 1.4975534677505493 img loss 1.2180368900299072 img loss 1.3625274896621704 img loss 1.4459145069122314 img loss 1.5296989679336548 img loss 1.4964455366134644 img loss 1.389866590499878 img loss 1.3134616613388062 img loss 1.39310622215271 img loss 1.5179753303527832 img loss 1.3604854345321655 img loss 1.367745280265808 img loss 1.5081919431686401 img loss 1.5417726039886475 img loss 1.6189110279083252 img loss 1.3926678895950317 img loss 1.2429465055465698 img loss 1.5103332996368408 img loss 1.3929051160812378 img loss 1.3813832998275757 img loss 1.428399682044983 img loss 1.266335129737854 img loss 1.4733083248138428 img loss 1.4915359020233154 img loss 1.4638279676437378 img loss 1.418737530708313 img loss 1.3986777067184448 img loss 1.4573959112167358 img loss 1.3783272504806519 img loss 1.2816842794418335 img loss 1.4322305917739868 img loss 1.36526620388031 img loss 1.3819661140441895 img loss 1.3860934972763062 img loss 1.4076241254806519 img loss 1.320482611656189 img loss 1.485776424407959 img loss 1.3960185050964355 img loss 1.3354252576828003 img loss 1.317899465560913 img loss 1.4235626459121704 img loss 1.401464581489563 img loss 1.3696166276931763 img loss 1.3380807638168335 img loss 1.3599495887756348 img loss 1.5385342836380005 img loss 1.5027639865875244 img loss 1.4546092748641968 img loss 1.3370182514190674 img loss 1.425150752067566 img loss 1.3775774240493774 img loss 1.3602944612503052 img loss 1.408293604850769 img loss 1.470487117767334 img loss 1.3991378545761108 img loss 1.426500916481018 img loss 1.4380818605422974 img loss 1.493965983390808 img loss 1.397214651107788 img loss 1.4976640939712524 img loss 1.4965894222259521 img loss 1.385577917098999 img loss 1.334099292755127 img loss 1.4112555980682373 img loss 1.2528332471847534 img loss 1.595711350440979 img loss 1.349229097366333 img loss 1.4968663454055786 img loss 1.4968982934951782 img loss 1.3438498973846436 img loss 1.349805474281311 img loss 1.4069775342941284 img loss 1.4197810888290405 img loss 1.3307541608810425 img loss 1.4167946577072144 img loss 1.4299801588058472 img loss 1.3944029808044434 img loss 1.2905956506729126 img loss 1.6792432069778442 img loss 1.4841914176940918 img loss 1.3853967189788818 img loss 1.3766734600067139 img loss 1.3466410636901855 img loss 1.3488929271697998 img loss 1.4341826438903809 img loss 1.3639819622039795 img loss 1.4752355813980103 img loss 1.4625366926193237 img loss 1.4236218929290771 img loss 1.4446507692337036 img loss 1.302650809288025 img loss 1.3589375019073486 img loss 1.4085289239883423 img loss 1.4866451025009155 img loss 1.4676111936569214 img loss 1.5165859460830688 img loss 1.5477843284606934 img loss 1.3070487976074219 img loss 1.385122537612915 img loss 1.4801040887832642 img loss 1.4519444704055786 img loss 1.4669537544250488 img loss 1.3463786840438843 img loss 1.4075199365615845 img loss 1.380857229232788 img loss 1.4527579545974731 img loss 1.2663655281066895 img loss 1.399604082107544 img loss 1.3978488445281982 img loss 1.4162663221359253 img loss 1.3278436660766602 img loss 1.447827696800232 img loss 1.3893507719039917 img loss 1.3831536769866943 img loss 1.3667830228805542 img loss 1.4043892621994019 img loss 1.4755998849868774 img loss 1.4345639944076538 img loss 1.4009395837783813 img loss 1.520415186882019 img loss 1.5129419565200806 img loss 1.4788137674331665 img loss 1.4217129945755005 img loss 1.5280731916427612 img loss 1.5971099138259888 img loss 1.3032619953155518 img loss 1.376340627670288 {'loss': 1.4154, 'grad_norm': 0.37057459354400635, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3174586296081543 img loss 1.4351352453231812 img loss 1.367255687713623 img loss 1.3566919565200806 img loss 1.3092896938323975 img loss 1.3868519067764282 img loss 1.397534966468811 img loss 1.3960833549499512 img loss 1.2409241199493408 img loss 1.4522844552993774 img loss 1.3771828413009644 img loss 1.3083515167236328 img loss 1.322927713394165 img loss 1.41484534740448 img loss 1.380377173423767 img loss 1.296250820159912 img loss 1.3732571601867676 img loss 1.3333028554916382 img loss 1.3909904956817627 img loss 1.3682091236114502 img loss 1.3209556341171265 img loss 1.43491530418396 img loss 1.314541220664978 img loss 1.4050110578536987 img loss 1.338334321975708 img loss 1.4031221866607666 img loss 1.3601359128952026 img loss 1.2650651931762695 img loss 1.3948487043380737 img loss 1.3877514600753784 img loss 1.4089672565460205 img loss 1.2888673543930054 img loss 1.3935112953186035 img loss 1.3126014471054077 img loss 1.386189579963684 img loss 1.4215563535690308 img loss 1.2425724267959595 img loss 1.2794461250305176 img loss 1.3160651922225952 img loss 1.3451915979385376 img loss 1.3823508024215698 img loss 1.2515394687652588 img loss 1.3235939741134644 img loss 1.3584368228912354 img loss 1.300042986869812 img loss 1.354212999343872 img loss 1.3531581163406372 img loss 1.3993604183197021 img loss 1.4452499151229858 img loss 1.368111491203308 img loss 1.4151118993759155 img loss 1.2958465814590454 img loss 1.4001765251159668 img loss 1.4321428537368774 img loss 1.371427297592163 img loss 1.3700376749038696 img loss 1.4621424674987793 img loss 1.3711994886398315 img loss 1.2827211618423462 img loss 1.337548017501831 img loss 1.4074585437774658 img loss 1.325547456741333 img loss 1.3009216785430908 img loss 1.3681260347366333 img loss 1.3980494737625122 img loss 1.3881131410598755 img loss 1.3803635835647583 img loss 1.336753249168396 img loss 1.369451880455017 img loss 1.28076171875 img loss 1.3684775829315186 img loss 1.375077486038208 img loss 1.4073764085769653 img loss 1.2753617763519287 img loss 1.2702507972717285 img loss 1.3220707178115845 img loss 1.3627456426620483 img loss 1.3355637788772583 img loss 1.3545576333999634 img loss 1.3427623510360718 img loss 1.2991178035736084 img loss 1.3073701858520508 img loss 1.4013105630874634 img loss 1.3662291765213013 img loss 1.3503021001815796 img loss 1.393479824066162 img loss 1.3293901681900024 img loss 1.377105951309204 img loss 1.2936851978302002 img loss 1.3462930917739868 img loss 1.3944326639175415 img loss 1.3426936864852905 img loss 1.3454233407974243 img loss 1.3123725652694702 img loss 1.3377525806427002 img loss 1.3693028688430786 img loss 1.3587895631790161 img loss 1.4019354581832886 img loss 1.2747653722763062 img loss 1.4362788200378418 img loss 1.2815358638763428 img loss 1.3596423864364624 img loss 1.3207390308380127 img loss 1.304198980331421 img loss 1.4254491329193115 img loss 1.3811575174331665 img loss 1.3888840675354004 img loss 1.3827393054962158 img loss 1.504888653755188 img loss 1.4144513607025146 img loss 1.4291493892669678 img loss 1.3878816366195679 img loss 1.4139043092727661 img loss 1.3500961065292358 img loss 1.5077738761901855 img loss 1.3539835214614868 img loss 1.2962641716003418 img loss 1.447547435760498 img loss 1.3537557125091553 img loss 1.3716378211975098 img loss 1.2519283294677734 img loss 1.326711654663086 img loss 1.3869582414627075 img loss 1.3949787616729736 img loss 1.3273738622665405 img loss 1.4039788246154785 img loss 1.3246307373046875 img loss 1.454107403755188 {'loss': 1.3599, 'grad_norm': 0.36326223611831665, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5170732736587524 img loss 1.6009342670440674 img loss 1.3161025047302246 img loss 1.4936378002166748 img loss 1.4296526908874512 img loss 1.4547574520111084 img loss 1.4885880947113037 img loss 1.4520381689071655 img loss 1.4850507974624634 img loss 1.423668384552002 img loss 1.4531289339065552 img loss 1.3530508279800415 img loss 1.6305147409439087 img loss 1.5733431577682495 img loss 1.3779622316360474 img loss 1.4535068273544312 img loss 1.3869850635528564 img loss 1.4443926811218262 img loss 1.607470154762268 img loss 1.4111748933792114 img loss 1.541498064994812 img loss 1.4772919416427612 img loss 1.4565240144729614 img loss 1.351070523262024 img loss 1.485374927520752 img loss 1.4789468050003052 img loss 1.3844472169876099 img loss 1.5909172296524048 img loss 1.5661834478378296 img loss 1.3749381303787231 img loss 1.4410589933395386 img loss 1.5447391271591187 img loss 1.4803990125656128 img loss 1.368987798690796 img loss 1.3643349409103394 img loss 1.4496948719024658 img loss 1.4363608360290527img loss 1.4800126552581787 img loss 1.5677911043167114 img loss 1.4187595844268799 img loss 1.4758944511413574 img loss 1.463904619216919 img loss 1.5113482475280762 img loss 1.4581100940704346 img loss 1.4500101804733276 img loss 1.5859428644180298 img loss 1.4122661352157593 img loss 1.5124218463897705 img loss 1.4585061073303223 img loss 1.5390222072601318 img loss 1.4698071479797363 img loss 1.5161261558532715 img loss 1.4547334909439087 img loss 1.477988600730896 img loss 1.503328561782837 img loss 1.3935800790786743 img loss 1.5755550861358643 img loss 1.3347541093826294 img loss 1.477848768234253 img loss 1.3835591077804565 img loss 1.533023715019226 img loss 1.5436930656433105 img loss 1.360363483428955 img loss 1.5146416425704956 img loss 1.5685327053070068 img loss 1.443205714225769 img loss 1.4700475931167603 img loss 1.520054578781128 img loss 1.4343804121017456 img loss 1.6719918251037598 img loss 1.4036425352096558 img loss 1.340239405632019 img loss 1.4866721630096436 img loss 1.532305359840393 img loss 1.4235987663269043 img loss 1.5040638446807861 img loss 1.458268404006958 img loss 1.4305063486099243 img loss 1.4861887693405151 img loss 1.4399741888046265 img loss 1.519069790840149 img loss 1.3692677021026611 img loss 1.4946675300598145 img loss 1.4300748109817505 img loss 1.4916554689407349 img loss 1.4671708345413208 img loss 1.4736775159835815 img loss 1.4453791379928589 img loss 1.4629276990890503 img loss 1.4037721157073975 img loss 1.390929102897644 img loss 1.575620174407959 img loss 1.4073454141616821 img loss 1.6098133325576782 img loss 1.4530874490737915 img loss 1.4108132123947144 img loss 1.5210040807724 img loss 1.4154222011566162 img loss 1.4146748781204224 img loss 1.4664580821990967 img loss 1.4425873756408691 img loss 1.358507752418518 img loss 1.5518336296081543 img loss 1.529567003250122 img loss 1.4720479249954224 img loss 1.4865647554397583 img loss 1.4938063621520996 img loss 1.474902629852295 img loss 1.4992367029190063 img loss 1.4030569791793823 img loss 1.4950060844421387 img loss 1.4037268161773682 img loss 1.4849172830581665 img loss 1.4037091732025146 img loss 1.5329906940460205 img loss 1.33523690700531 img loss 1.535672903060913 img loss 1.4809622764587402 img loss 1.449222445487976 img loss 1.4504730701446533 img loss 1.5301254987716675 img loss 1.4408891201019287 img loss 1.3650126457214355 img loss 1.4745709896087646 img loss 1.6082533597946167 img loss 1.5112653970718384 img loss 1.6019405126571655 img loss 1.595366358757019 {'loss': 1.4708, 'grad_norm': 0.3481363356113434, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2205297946929932 img loss 1.245032548904419 img loss 1.2393412590026855 img loss 1.2447052001953125 img loss 1.1711925268173218 img loss 1.2309355735778809 img loss 1.2303738594055176 img loss 1.274448037147522 img loss 1.177690029144287 img loss 1.2744797468185425 img loss 1.2132002115249634 img loss 1.1717278957366943 img loss 1.3063061237335205 img loss 1.2387163639068604 img loss 1.1838995218276978 img loss 1.230238676071167 img loss 1.1863106489181519 img loss 1.3561867475509644 img loss 1.1958651542663574 img loss 1.2709861993789673 img loss 1.2294062376022339 img loss 1.3020328283309937 img loss 1.2538692951202393 img loss 1.326990008354187 img loss 1.1886115074157715 img loss 1.3503930568695068 img loss 1.1238645315170288 img loss 1.3427720069885254 img loss 1.2545616626739502 img loss 1.2199310064315796 img loss 1.2022501230239868 img loss 1.286299467086792 img loss 1.251418948173523 img loss 1.2771227359771729 img loss 1.1836583614349365 img loss 1.3277539014816284 img loss 1.2218830585479736 img loss 1.2653130292892456 img loss 1.190132737159729 img loss 1.3128166198730469 img loss 1.331334114074707 img loss 1.1806570291519165 img loss 1.3056368827819824 img loss 1.3308463096618652 img loss 1.2579237222671509 img loss 1.2419047355651855 img loss 1.2369717359542847 img loss 1.2891652584075928 img loss 1.2970212697982788 img loss 1.2367055416107178 img loss 1.230088710784912 img loss 1.2809524536132812 img loss 1.2212917804718018 img loss 1.2714478969573975 img loss 1.334429144859314 img loss 1.2763046026229858 img loss 1.1803743839263916 img loss 1.2726749181747437 img loss 1.206163763999939 img loss 1.2431962490081787 img loss 1.148282766342163 img loss 1.2347939014434814 img loss 1.1816612482070923 img loss 1.2665547132492065 img loss 1.2537457942962646 img loss 1.291547179222107 img loss 1.1812223196029663 img loss 1.2256767749786377 img loss 1.2108497619628906 img loss 1.3491721153259277 img loss 1.2355232238769531 img loss 1.290964126586914 img loss 1.2453573942184448 img loss 1.251943588256836 img loss 1.236639380455017 img loss 1.2192184925079346 img loss 1.3235926628112793 img loss 1.2043402194976807 img loss 1.2212578058242798 img loss 1.1850544214248657 img loss 1.1567773818969727 img loss 1.2410739660263062 img loss 1.2391188144683838 img loss 1.2248038053512573 img loss 1.2047462463378906 img loss 1.2080367803573608 img loss 1.265549898147583 img loss 1.2410215139389038 img loss 1.2258065938949585 img loss 1.2683788537979126 img loss 1.2261264324188232 img loss 1.1717342138290405 img loss 1.4041866064071655 img loss 1.2671207189559937 img loss 1.2417824268341064 img loss 1.300065040588379 img loss 1.2721678018569946 img loss 1.2557289600372314 img loss 1.2175750732421875 img loss 1.2717885971069336 img loss 1.222856879234314 img loss 1.2984552383422852 img loss 1.141553521156311 img loss 1.1614396572113037 img loss 1.2867361307144165 img loss 1.2138594388961792 img loss 1.289868950843811 img loss 1.170924425125122 img loss 1.210409164428711 img loss 1.224863052368164 img loss 1.249006748199463 img loss 1.21627676486969 img loss 1.2463722229003906 img loss 1.286767601966858 img loss 1.2276618480682373 img loss 1.2529854774475098 img loss 1.2375236749649048 img loss 1.1944725513458252 img loss 1.2518587112426758 img loss 1.271526575088501 img loss 1.2914156913757324 img loss 1.21188223361969 img loss 1.2082972526550293 img loss 1.2557910680770874 img loss 1.174054503440857 img loss 1.1720921993255615 img loss 1.2533231973648071 img loss 1.24942946434021 {'loss': 1.2432, 'grad_norm': 0.3441976010799408, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.424345850944519 img loss 1.4716342687606812 img loss 1.3899403810501099 img loss 1.4665533304214478 img loss 1.5225797891616821 img loss 1.4424463510513306 img loss 1.5244160890579224 img loss 1.5162001848220825 img loss 1.5713565349578857 img loss 1.470752477645874 img loss 1.5651506185531616 img loss 1.425308108329773 img loss 1.5413264036178589 img loss 1.457331895828247 img loss 1.501502513885498 img loss 1.5492284297943115 img loss 1.558576226234436 img loss 1.503903865814209 img loss 1.6186105012893677 img loss 1.3442225456237793 img loss 1.5122736692428589 img loss 1.4743053913116455 img loss 1.5037544965744019 img loss 1.4273720979690552 img loss 1.4613412618637085 img loss 1.5569813251495361 img loss 1.4489437341690063 img loss 1.6565266847610474 img loss 1.558196783065796 img loss 1.5144964456558228 img loss 1.4619566202163696 img loss 1.4881421327590942 img loss 1.4786412715911865 img loss 1.632289171218872 img loss 1.5711044073104858 img loss 1.5284651517868042 img loss 1.5364042520523071 img loss 1.4695647954940796 img loss 1.5821049213409424 img loss 1.6475999355316162 img loss 1.5014493465423584 img loss 1.3777413368225098 img loss 1.4754925966262817 img loss 1.5994956493377686 img loss 1.5957871675491333 img loss 1.5197798013687134 img loss 1.4932799339294434 img loss 1.6007908582687378 img loss 1.5438185930252075 img loss 1.5328530073165894 img loss 1.472042202949524 img loss 1.538145899772644 img loss 1.5504761934280396 img loss 1.4692413806915283 img loss 1.6120140552520752 img loss 1.477207064628601 img loss 1.456088900566101 img loss 1.4918780326843262 img loss 1.5262725353240967 img loss 1.5674946308135986 img loss 1.642392873764038 img loss 1.5075417757034302 img loss 1.5336954593658447 img loss 1.4787876605987549 img loss 1.4326688051223755 img loss 1.407192349433899 img loss 1.4995455741882324 img loss 1.5575615167617798 img loss 1.4640699625015259 img loss 1.5721310377120972 img loss 1.4787498712539673 img loss 1.53983736038208 img loss 1.579687476158142 img loss 1.4375364780426025 img loss 1.3772642612457275 img loss 1.5694310665130615img loss 1.5527740716934204 img loss 1.5111868381500244 img loss 1.5085502862930298 img loss 1.4196375608444214 img loss 1.3584824800491333 img loss 1.5283420085906982 img loss 1.3979297876358032 img loss 1.618996262550354 img loss 1.4836045503616333 img loss 1.4285629987716675 img loss 1.611620545387268 img loss 1.621423363685608 img loss 1.4779988527297974 img loss 1.6279714107513428 img loss 1.604303240776062 img loss 1.6872714757919312 img loss 1.4679276943206787 img loss 1.5591078996658325 img loss 1.440970778465271 img loss 1.5293058156967163 img loss 1.4430845975875854 img loss 1.5680296421051025 img loss 1.4720431566238403 img loss 1.4333049058914185 img loss 1.4603585004806519 img loss 1.6162750720977783 img loss 1.355988621711731 img loss 1.59779691696167 img loss 1.3807686567306519 img loss 1.452512264251709 img loss 1.5915229320526123 img loss 1.4912316799163818 img loss 1.450401782989502 img loss 1.3616753816604614 img loss 1.350903868675232 img loss 1.4978749752044678 img loss 1.4913018941879272 img loss 1.4969422817230225 img loss 1.473626732826233 img loss 1.491716742515564 img loss 1.617462396621704 img loss 1.5178306102752686 img loss 1.4687637090682983 img loss 1.5833055973052979 img loss 1.4000152349472046 img loss 1.4570926427841187 img loss 1.476001501083374 img loss 1.6634846925735474 img loss 1.5509312152862549 img loss 1.4586797952651978 img loss 1.5340405702590942 img loss 1.596056580543518 {'loss': 1.5085, 'grad_norm': 0.30109816789627075, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2667393684387207 img loss 1.201006293296814 img loss 1.2433311939239502 img loss 1.242142677307129 img loss 1.2912371158599854 img loss 1.2078081369400024 img loss 1.1594747304916382 img loss 1.2846672534942627 img loss 1.2262566089630127 img loss 1.2990567684173584 img loss 1.2083576917648315 img loss 1.1892375946044922 img loss 1.229267954826355 img loss 1.3437141180038452 img loss 1.2549444437026978 img loss 1.2128113508224487 img loss 1.2235616445541382 img loss 1.3247820138931274 img loss 1.1776946783065796 img loss 1.2582333087921143 img loss 1.2894208431243896 img loss 1.2572212219238281 img loss 1.2701506614685059 img loss 1.1996005773544312 img loss 1.2809308767318726 img loss 1.2464094161987305 img loss 1.288612723350525 img loss 1.2205684185028076 img loss 1.31820547580719 img loss 1.1861226558685303 img loss 1.239916443824768 img loss 1.2464468479156494 img loss 1.2379919290542603 img loss 1.1921546459197998 img loss 1.198778748512268 img loss 1.1846178770065308 img loss 1.3006747961044312 img loss 1.2653650045394897 img loss 1.1833643913269043 img loss 1.289366602897644 img loss 1.2257704734802246 img loss 1.2376229763031006 img loss 1.1803393363952637 img loss 1.2442346811294556 img loss 1.189730167388916 img loss 1.183724284172058img loss 1.3401025533676147 img loss 1.2570679187774658 img loss 1.237133264541626 img loss 1.1470942497253418 img loss 1.2571645975112915 img loss 1.2147367000579834 img loss 1.2007954120635986 img loss 1.1633808612823486 img loss 1.2071729898452759 img loss 1.2851600646972656 img loss 1.2033538818359375 img loss 1.3110218048095703 img loss 1.2648417949676514 img loss 1.251196265220642 img loss 1.3157414197921753 img loss 1.3303502798080444 img loss 1.1800698041915894 img loss 1.3216869831085205 img loss 1.3050627708435059 img loss 1.2856334447860718 img loss 1.2044293880462646 img loss 1.2385764122009277 img loss 1.2311701774597168 img loss 1.246699571609497 img loss 1.4737334251403809 img loss 1.2197750806808472 img loss 1.181604027748108 img loss 1.2962726354599 img loss 1.1729151010513306 img loss 1.138205885887146 img loss 1.231240153312683 img loss 1.1833568811416626 img loss 1.2730698585510254 img loss 1.3083432912826538 img loss 1.2543303966522217 img loss 1.2871105670928955 img loss 1.1940034627914429 img loss 1.25336492061615 img loss 1.2548326253890991 img loss 1.27385413646698 img loss 1.2494210004806519 img loss 1.262160301208496 img loss 1.1753804683685303 img loss 1.1848392486572266 img loss 1.2477076053619385 img loss 1.2186698913574219 img loss 1.2459663152694702 img loss 1.3144426345825195 img loss 1.1418330669403076 img loss 1.2931543588638306 img loss 1.2073068618774414 img loss 1.2984188795089722 img loss 1.3205986022949219 img loss 1.0723265409469604 img loss 1.235968828201294 img loss 1.2643569707870483 img loss 1.2614202499389648 img loss 1.2223923206329346 img loss 1.2754712104797363 img loss 1.209421157836914 img loss 1.1933724880218506 img loss 1.1503839492797852 img loss 1.2183315753936768 img loss 1.2545231580734253 img loss 1.211573839187622 img loss 1.198075532913208 img loss 1.2142664194107056 img loss 1.2788652181625366 img loss 1.219299077987671 img loss 1.1856619119644165 img loss 1.242663025856018 img loss 1.277242660522461 img loss 1.172321081161499 img loss 1.193986415863037 img loss 1.3306634426116943 img loss 1.3413738012313843 img loss 1.2160900831222534 img loss 1.2309870719909668 img loss 1.1944206953048706 img loss 1.3456982374191284 img loss 1.2231192588806152 img loss 1.2590084075927734 {'loss': 1.241, 'grad_norm': 0.4377540647983551, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.157413125038147 img loss 1.2256505489349365 img loss 1.2792011499404907 img loss 1.2414158582687378 img loss 1.2403545379638672 img loss 1.1787467002868652 img loss 1.1851089000701904 img loss 1.2555643320083618 img loss 1.1737641096115112 img loss 1.1834150552749634 img loss 1.2338230609893799 img loss 1.2209552526474 img loss 1.2451612949371338 img loss 1.1821237802505493 img loss 1.204135537147522 img loss 1.157060146331787 img loss 1.2663371562957764 img loss 1.2998919486999512 img loss 1.2282061576843262 img loss 1.2795978784561157 img loss 1.2359262704849243 img loss 1.2797126770019531 img loss 1.1678069829940796 img loss 1.1760308742523193 img loss 1.2014061212539673 img loss 1.1562626361846924 img loss 1.2140840291976929 img loss 1.1837371587753296 img loss 1.227226972579956 img loss 1.2567505836486816 img loss 1.2358477115631104 img loss 1.2264952659606934 img loss 1.202694296836853 img loss 1.1989052295684814 img loss 1.2489107847213745 img loss 1.262568473815918 img loss 1.2721351385116577 img loss 1.2152918577194214 img loss 1.1960092782974243 img loss 1.2088298797607422 img loss 1.2055600881576538 img loss 1.185339331626892 img loss 1.2723525762557983 img loss 1.261466383934021 img loss 1.2117878198623657 img loss 1.212499976158142 img loss 1.2236988544464111 img loss 1.1803444623947144 img loss 1.237650752067566 img loss 1.2006070613861084 img loss 1.1929638385772705 img loss 1.2255979776382446 img loss 1.2430881261825562 img loss 1.193925142288208 img loss 1.2327831983566284 img loss 1.274240255355835 img loss 1.216101884841919 img loss 1.1883281469345093 img loss 1.259360909461975 img loss 1.2379326820373535 img loss 1.1790727376937866 img loss 1.1765257120132446 img loss 1.261104941368103 img loss 1.1889071464538574 img loss 1.348806619644165 img loss 1.2558534145355225 img loss 1.268924355506897 img loss 1.2153433561325073 img loss 1.2021818161010742 img loss 1.2790777683258057 img loss 1.1880830526351929 img loss 1.187355637550354 img loss 1.2870445251464844 img loss 1.2264513969421387 img loss 1.224365234375 img loss 1.2713794708251953 img loss 1.2271755933761597 img loss 1.1566756963729858 img loss 1.202734351158142 img loss 1.2611969709396362 img loss 1.3281141519546509 img loss 1.17678701877594 img loss 1.225870132446289 img loss 1.2648847103118896 img loss 1.2714594602584839 img loss 1.2094210386276245 img loss 1.2133607864379883 img loss 1.2227309942245483 img loss 1.230897307395935 img loss 1.1933019161224365 img loss 1.245904564857483 img loss 1.157945990562439 img loss 1.30482816696167 img loss 1.2559763193130493 img loss 1.2382771968841553 img loss 1.1425498723983765 img loss 1.264340877532959 img loss 1.2452788352966309 img loss 1.2271857261657715 img loss 1.1925324201583862 img loss 1.2402358055114746 img loss 1.156102180480957 img loss 1.2209477424621582 img loss 1.1704529523849487 img loss 1.2000986337661743 img loss 1.2008640766143799 img loss 1.1589494943618774 img loss 1.2291409969329834 img loss 1.2414970397949219 img loss 1.200657606124878 img loss 1.2542692422866821 img loss 1.2096867561340332 img loss 1.218778133392334 img loss 1.2203220129013062 img loss 1.293039083480835 img loss 1.193845510482788 img loss 1.2109432220458984 img loss 1.1545661687850952 img loss 1.24629807472229 img loss 1.2282404899597168 img loss 1.181749939918518 img loss 1.224191665649414 img loss 1.194183349609375 img loss 1.2048282623291016 img loss 1.1861753463745117 img loss 1.2145233154296875 img loss 1.2765517234802246 img loss 1.2146803140640259 {'loss': 1.2221, 'grad_norm': 0.5999011993408203, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4412953853607178 img loss 1.4461359977722168 img loss 1.5812362432479858 img loss 1.4829915761947632 img loss 1.4971016645431519 img loss 1.5122686624526978 img loss 1.5492265224456787 img loss 1.5882623195648193 img loss 1.5210826396942139 img loss 1.4939987659454346 img loss 1.4815876483917236 img loss 1.4232325553894043 img loss 1.4544192552566528 img loss 1.5027514696121216 img loss 1.5779688358306885 img loss 1.4898924827575684 img loss 1.5374810695648193 img loss 1.6519230604171753 img loss 1.356472134590149 img loss 1.3941694498062134 img loss 1.4922181367874146 img loss 1.4813897609710693 img loss 1.47838294506073 img loss 1.4213039875030518 img loss 1.4435389041900635 img loss 1.570567011833191 img loss 1.4350804090499878 img loss 1.5364872217178345 img loss 1.6293889284133911 img loss 1.4582964181900024 img loss 1.5286335945129395 img loss 1.4600380659103394 img loss 1.4900685548782349 img loss 1.4087555408477783 img loss 1.52298903465271 img loss 1.5531400442123413 img loss 1.5240132808685303 img loss 1.4861180782318115 img loss 1.4263180494308472 img loss 1.4493422508239746 img loss 1.4876576662063599 img loss 1.4561322927474976 img loss 1.4554675817489624 img loss 1.6347403526306152 img loss 1.5034090280532837 img loss 1.4897156953811646 img loss 1.4106916189193726 img loss 1.5477927923202515 img loss 1.3380128145217896 img loss 1.5539215803146362 img loss 1.5285841226577759 img loss 1.5777479410171509 img loss 1.4227614402770996 img loss 1.6121050119400024img loss 1.550199031829834 img loss 1.5045020580291748 img loss 1.4156838655471802 img loss 1.5187442302703857 img loss 1.4951287508010864 img loss 1.5580300092697144 img loss 1.471920132637024 img loss 1.6188156604766846 img loss 1.4428060054779053 img loss 1.5984078645706177 img loss 1.4990618228912354 img loss 1.4032257795333862 img loss 1.56514310836792 img loss 1.4854834079742432 img loss 1.4230409860610962 img loss 1.5359982252120972 img loss 1.4961695671081543 img loss 1.3713513612747192 img loss 1.4325600862503052 img loss 1.4431681632995605 img loss 1.505455732345581 img loss 1.591386318206787 img loss 1.5905721187591553 img loss 1.4911221265792847 img loss 1.5302996635437012 img loss 1.5546618700027466 img loss 1.3370829820632935 img loss 1.5096098184585571 img loss 1.459269404411316 img loss 1.5505300760269165 img loss 1.4988572597503662 img loss 1.4159308671951294 img loss 1.4586329460144043 img loss 1.4494503736495972 img loss 1.5006989240646362 img loss 1.3433765172958374 img loss 1.541824460029602 img loss 1.5692782402038574 img loss 1.6511884927749634 img loss 1.3979612588882446 img loss 1.514991283416748 img loss 1.5626238584518433 img loss 1.3411980867385864 img loss 1.4373013973236084 img loss 1.511230230331421 img loss 1.4743998050689697 img loss 1.4508990049362183 img loss 1.4384219646453857 img loss 1.4330466985702515 img loss 1.3917759656906128 img loss 1.5163627862930298 img loss 1.4164949655532837 img loss 1.3335576057434082 img loss 1.4671963453292847 img loss 1.527450680732727 img loss 1.332049012184143 img loss 1.4748514890670776 img loss 1.532366394996643 img loss 1.6421458721160889 img loss 1.4409798383712769 img loss 1.4170489311218262 img loss 1.636725664138794 img loss 1.382480263710022 img loss 1.35398268699646 img loss 1.490931749343872 img loss 1.383989930152893 img loss 1.4700590372085571 img loss 1.6192243099212646 img loss 1.5019997358322144 img loss 1.5247362852096558 img loss 1.5178539752960205 img loss 1.3961116075515747 img loss 1.520416498184204 img loss 1.5747597217559814 {'loss': 1.4891, 'grad_norm': 0.3434007167816162, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1629843711853027 img loss 1.1546473503112793 img loss 1.2431526184082031 img loss 1.1667308807373047 img loss 1.2161144018173218 img loss 1.147456407546997 img loss 1.1728384494781494 img loss 1.0989990234375 img loss 1.2065762281417847 img loss 1.1595678329467773 img loss 1.158970594406128 img loss 1.1564054489135742 img loss 1.157078504562378 img loss 1.2128887176513672 img loss 1.1550250053405762 img loss 1.146758794784546 img loss 1.1533122062683105 img loss 1.176802396774292 img loss 1.1106655597686768 img loss 1.1075689792633057 img loss 1.1845650672912598 img loss 1.1627590656280518 img loss 1.1770209074020386 img loss 1.1477752923965454 img loss 1.1829845905303955 img loss 1.1322730779647827 img loss 1.1777303218841553 img loss 1.1365286111831665 img loss 1.2059627771377563 img loss 1.192787766456604 img loss 1.150286078453064 img loss 1.1295924186706543 img loss 1.1889814138412476 img loss 1.140897274017334 img loss 1.1614248752593994 img loss 1.1564459800720215 img loss 1.1391408443450928 img loss 1.1776812076568604 img loss 1.1694892644882202 img loss 1.1674532890319824 img loss 1.1780890226364136 img loss 1.1767818927764893 img loss 1.144724726676941 img loss 1.1656956672668457 img loss 1.1445140838623047 img loss 1.1786925792694092 img loss 1.1724984645843506 img loss 1.1495532989501953 img loss 1.171660304069519 img loss 1.1922292709350586 img loss 1.1923340559005737 img loss 1.1565916538238525 img loss 1.170880675315857 img loss 1.156414270401001 img loss 1.155375361442566 img loss 1.133570909500122 img loss 1.2083873748779297 img loss 1.1688989400863647 img loss 1.1533931493759155 img loss 1.1359783411026 img loss 1.1823720932006836 img loss 1.1781156063079834 img loss 1.110713005065918 img loss 1.0997320413589478 img loss 1.0998681783676147 img loss 1.1740639209747314 img loss 1.112606406211853 img loss 1.1690502166748047 img loss 1.1500039100646973 img loss 1.2039798498153687 img loss 1.1844267845153809 img loss 1.158220648765564 img loss 1.1886053085327148 img loss 1.1245980262756348 img loss 1.1728992462158203 img loss 1.2156224250793457 img loss 1.1325033903121948 img loss 1.1938321590423584 img loss 1.1393415927886963 img loss 1.1673870086669922 img loss 1.171737551689148 img loss 1.2043768167495728 img loss 1.155954122543335 img loss 1.1840580701828003 img loss 1.1371283531188965 img loss 1.3289039134979248 img loss 1.163409948348999 img loss 1.1598116159439087 img loss 1.187819004058838 img loss 1.1970484256744385 img loss 1.1737439632415771 img loss 1.1663801670074463 img loss 1.1949352025985718 img loss 1.144457221031189 img loss 1.1870992183685303 img loss 1.1204404830932617 img loss 1.2116037607192993 img loss 1.1907304525375366 img loss 1.0957918167114258 img loss 1.186686396598816 img loss 1.2359870672225952 img loss 1.2102372646331787 img loss 1.2515568733215332 img loss 1.1775575876235962 img loss 1.1624889373779297 img loss 1.2304857969284058 img loss 1.1349140405654907 img loss 1.1302638053894043 img loss 1.1440681219100952img loss 1.1387279033660889 img loss 1.22635817527771 img loss 1.1277995109558105 img loss 1.1956661939620972 img loss 1.155616283416748 img loss 1.177451729774475 img loss 1.1497197151184082 img loss 1.1365925073623657 img loss 1.1838312149047852 img loss 1.1787060499191284 img loss 1.142904281616211 img loss 1.111509084701538 img loss 1.191023349761963 img loss 1.1284235715866089 img loss 1.137561559677124 img loss 1.1594631671905518 img loss 1.1824005842208862 img loss 1.1416152715682983 img loss 1.163110613822937 {'loss': 1.1662, 'grad_norm': 0.5625736117362976, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4067424535751343 img loss 1.3398849964141846 img loss 1.3412754535675049 img loss 1.3299825191497803 img loss 1.409408450126648 img loss 1.3809654712677002 img loss 1.4221365451812744 img loss 1.2619136571884155 img loss 1.3745425939559937 img loss 1.3106675148010254 img loss 1.4489177465438843 img loss 1.3996424674987793 img loss 1.348862886428833 img loss 1.4143407344818115 img loss 1.3228850364685059 img loss 1.411785364151001 img loss 1.3922299146652222 img loss 1.2781320810317993 img loss 1.3425652980804443 img loss 1.4261196851730347 img loss 1.3630833625793457 img loss 1.3807226419448853 img loss 1.3757870197296143 img loss 1.4033480882644653 img loss 1.3625375032424927 img loss 1.3415824174880981 img loss 1.440590500831604 img loss 1.417075753211975 img loss 1.3539420366287231 img loss 1.3385990858078003 img loss 1.3261923789978027 img loss 1.2703813314437866 img loss 1.3317598104476929 img loss 1.2874656915664673 img loss 1.3930792808532715 img loss 1.256914496421814 img loss 1.3855321407318115 img loss 1.5362192392349243 img loss 1.4088248014450073 img loss 1.3684204816818237 img loss 1.2688887119293213 img loss 1.350579857826233 img loss 1.2561330795288086 img loss 1.3061891794204712 img loss 1.341773509979248 img loss 1.2846548557281494 img loss 1.4616100788116455 img loss 1.4784928560256958 img loss 1.3771770000457764 img loss 1.2824562788009644 img loss 1.210033655166626img loss 1.436156988143921 img loss 1.4724048376083374 img loss 1.3074387311935425 img loss 1.3851059675216675 img loss 1.4252750873565674 img loss 1.3924294710159302 img loss 1.3627017736434937 img loss 1.386854887008667 img loss 1.290605068206787 img loss 1.3738895654678345 img loss 1.335132122039795 img loss 1.3302563428878784 img loss 1.3388409614562988 img loss 1.304931402206421 img loss 1.3616503477096558 img loss 1.4110671281814575 img loss 1.3662437200546265 img loss 1.3251577615737915 img loss 1.3714536428451538 img loss 1.3077105283737183 img loss 1.3694090843200684 img loss 1.3333172798156738 img loss 1.3922951221466064 img loss 1.254730224609375 img loss 1.3527971506118774 img loss 1.370724081993103 img loss 1.3880631923675537 img loss 1.5620638132095337 img loss 1.3703020811080933 img loss 1.3485487699508667 img loss 1.368628740310669 img loss 1.3991230726242065 img loss 1.2607392072677612 img loss 1.3197588920593262 img loss 1.215269684791565 img loss 1.376480221748352 img loss 1.3516175746917725 img loss 1.2928985357284546 img loss 1.351259708404541 img loss 1.3670240640640259 img loss 1.346912145614624 img loss 1.4112751483917236 img loss 1.3849934339523315 img loss 1.445261836051941 img loss 1.3437172174453735 img loss 1.445668339729309 img loss 1.3900362253189087 img loss 1.2757176160812378 img loss 1.407348394393921 img loss 1.295076847076416 img loss 1.4169509410858154 img loss 1.339667797088623 img loss 1.2986605167388916 img loss 1.3218109607696533 img loss 1.38454008102417 img loss 1.2743480205535889 img loss 1.3446071147918701 img loss 1.3989436626434326 img loss 1.3500769138336182 img loss 1.336246132850647 img loss 1.3602088689804077 img loss 1.3609750270843506 img loss 1.374160885810852 img loss 1.4115980863571167 img loss 1.337836503982544 img loss 1.339514136314392 img loss 1.3527964353561401 img loss 1.2885220050811768 img loss 1.248033881187439 img loss 1.3670575618743896 img loss 1.3097037076950073 img loss 1.2863454818725586 img loss 1.384484052658081 img loss 1.2907350063323975 img loss 1.4173470735549927 img loss 1.3647199869155884 img loss 1.3875479698181152 {'loss': 1.3574, 'grad_norm': 0.6886155605316162, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2083849906921387 img loss 1.1902741193771362 img loss 1.2058675289154053 img loss 1.3732260465621948img loss 1.246065378189087 img loss 1.2542606592178345 img loss 1.2048873901367188 img loss 1.2081916332244873 img loss 1.2787779569625854 img loss 1.2060413360595703 img loss 1.2881325483322144 img loss 1.1908950805664062 img loss 1.2112871408462524 img loss 1.247828722000122 img loss 1.377963900566101 img loss 1.2023823261260986 img loss 1.227718710899353 img loss 1.2199788093566895 img loss 1.1990116834640503 img loss 1.194793462753296 img loss 1.2185195684432983 img loss 1.2828731536865234 img loss 1.2982524633407593 img loss 1.266527533531189 img loss 1.2156568765640259 img loss 1.2612543106079102 img loss 1.3028805255889893 img loss 1.1957967281341553 img loss 1.271668791770935 img loss 1.325892448425293 img loss 1.2899703979492188 img loss 1.2010140419006348 img loss 1.2093100547790527 img loss 1.215338945388794 img loss 1.2459330558776855 img loss 1.2350786924362183 img loss 1.321692705154419 img loss 1.265816569328308 img loss 1.2217133045196533 img loss 1.1788361072540283 img loss 1.2561109066009521 img loss 1.308121919631958 img loss 1.2553625106811523 img loss 1.2303012609481812 img loss 1.3650662899017334 img loss 1.2090013027191162 img loss 1.16238272190094 img loss 1.1817535161972046 img loss 1.2355087995529175 img loss 1.2736469507217407 img loss 1.2438157796859741 img loss 1.3076438903808594 img loss 1.286180019378662 img loss 1.299268126487732 img loss 1.2423158884048462 img loss 1.3290400505065918 img loss 1.1959480047225952 img loss 1.272096872329712 img loss 1.2835898399353027 img loss 1.2215403318405151 img loss 1.1961472034454346 img loss 1.1350303888320923 img loss 1.2795295715332031 img loss 1.169371247291565 img loss 1.2478232383728027 img loss 1.2158491611480713img loss 1.194304347038269 img loss 1.1901178359985352 img loss 1.1724853515625 img loss 1.1909092664718628 img loss 1.1506116390228271 img loss 1.3302783966064453 img loss 1.3126466274261475 img loss 1.2586133480072021 img loss 1.1885290145874023 img loss 1.2254036664962769 img loss 1.218108892440796 img loss 1.177691102027893 img loss 1.2614408731460571 img loss 1.1586745977401733 img loss 1.1975291967391968 img loss 1.3046544790267944 img loss 1.2423235177993774 img loss 1.2234673500061035 img loss 1.2176220417022705 img loss 1.205188274383545 img loss 1.2753627300262451 img loss 1.3245849609375 img loss 1.1989095211029053 img loss 1.2010478973388672 img loss 1.1530075073242188 img loss 1.2338194847106934 img loss 1.2567975521087646 img loss 1.1494626998901367 img loss 1.1643962860107422 img loss 1.174808144569397 img loss 1.188868761062622 img loss 1.3590587377548218 img loss 1.2027606964111328 img loss 1.248420000076294 img loss 1.22456693649292 img loss 1.2167956829071045 img loss 1.2075552940368652 img loss 1.2531979084014893 img loss 1.321506381034851 img loss 1.213609218597412 img loss 1.2698577642440796 img loss 1.2971175909042358 img loss 1.2557646036148071 img loss 1.2866497039794922 img loss 1.2781070470809937 img loss 1.1660287380218506 img loss 1.2432650327682495 img loss 1.2738374471664429 img loss 1.2771605253219604 img loss 1.3727566003799438 img loss 1.1771787405014038 img loss 1.223676085472107 img loss 1.240456461906433 img loss 1.2695165872573853 img loss 1.1949526071548462 img loss 1.2618367671966553 img loss 1.2625869512557983 img loss 1.2186675071716309 img loss 1.2598594427108765 img loss 1.2493832111358643 img loss 1.1891542673110962 img loss 1.1928828954696655 {'loss': 1.2392, 'grad_norm': 0.33356285095214844, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5352829694747925 img loss 1.5930876731872559 img loss 1.522560477256775 img loss 1.5934338569641113 img loss 1.5710275173187256 img loss 1.71792733669281 img loss 1.5807509422302246 img loss 1.666848063468933 img loss 1.6139737367630005 img loss 1.5561318397521973 img loss 1.6270573139190674 img loss 1.7327079772949219 img loss 1.7295236587524414 img loss 1.536672830581665 img loss 1.8840842247009277 img loss 1.6692631244659424 img loss 1.593821406364441 img loss 1.5813552141189575 img loss 1.6725451946258545 img loss 1.7682956457138062 img loss 1.5110840797424316 img loss 1.6371581554412842 img loss 1.7551240921020508 img loss 1.5664628744125366 img loss 1.460627794265747 img loss 1.6457096338272095 img loss 1.573099970817566 img loss 1.5834286212921143 img loss 1.6139229536056519 img loss 1.518656611442566 img loss 1.5724589824676514 img loss 1.6551192998886108 img loss 1.7156939506530762 img loss 1.7468491792678833 img loss 1.5351426601409912 img loss 1.6069655418395996 img loss 1.6303452253341675 img loss 1.5682828426361084 img loss 1.8335672616958618 img loss 1.750231385231018 img loss 1.6871556043624878 img loss 1.742566704750061 img loss 1.7783641815185547 img loss 1.6998478174209595 img loss 1.6017755270004272 img loss 1.776144027709961 img loss 1.574011206626892 img loss 1.7166838645935059 img loss 1.7704662084579468 img loss 1.8348027467727661 img loss 1.5788547992706299 img loss 1.5850789546966553 img loss 1.602911114692688 img loss 1.7021015882492065 img loss 1.6084322929382324 img loss 1.7423573732376099 img loss 1.5562783479690552 img loss 1.7199757099151611 img loss 1.6135715246200562 img loss 1.677996039390564 img loss 1.6596238613128662 img loss 1.5378140211105347 img loss 1.682502031326294 img loss 1.7440087795257568 img loss 1.5548014640808105 img loss 1.850836157798767 img loss 1.6608718633651733 img loss 1.8036035299301147 img loss 1.8128657341003418 img loss 1.6170554161071777 img loss 1.6705677509307861 img loss 1.8171478509902954 img loss 1.691295862197876 img loss 1.6396735906600952 img loss 1.662105679512024 img loss 1.5670182704925537 img loss 1.6003557443618774 img loss 1.6625255346298218 img loss 1.6522839069366455 img loss 1.6455787420272827 img loss 1.5896748304367065 img loss 1.5771504640579224 img loss 1.7534310817718506 img loss 1.6010023355484009 img loss 1.6672269105911255 img loss 1.507198452949524 img loss 1.5223348140716553 img loss 1.54147469997406 img loss 1.5236538648605347 img loss 1.489015817642212 img loss 1.6450787782669067 img loss 1.683620572090149 img loss 1.821107268333435 img loss 1.8042247295379639 img loss 1.6617802381515503 img loss 1.8485913276672363 img loss 1.7513172626495361 img loss 1.784816861152649 img loss 1.646439790725708 img loss 1.5959376096725464 img loss 1.5245455503463745 img loss 1.5762420892715454 img loss 1.5526360273361206 img loss 1.7476180791854858 img loss 1.57719886302948 img loss 1.744092345237732 img loss 1.6732367277145386 img loss 1.5618454217910767 img loss 1.4696036577224731 img loss 1.634305715560913 img loss 1.6306710243225098 img loss 1.6529994010925293 img loss 1.7058662176132202 img loss 1.713691234588623 img loss 1.6839511394500732 img loss 1.5738866329193115 img loss 1.5058757066726685 img loss 1.6351948976516724 img loss 1.6580195426940918 img loss 1.7057526111602783 img loss 1.5538175106048584 img loss 1.6860302686691284 img loss 1.5178539752960205 img loss 1.6388064622879028 img loss 1.7276127338409424 img loss 1.6102192401885986 img loss 1.6012349128723145 img loss 1.62062406539917 {'loss': 1.6471, 'grad_norm': 0.9628902077674866, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.170030117034912 img loss 1.2066643238067627 img loss 1.2488466501235962 img loss 1.2457516193389893 img loss 1.2925982475280762 img loss 1.1720489263534546 img loss 1.235073447227478 img loss 1.3236271142959595 img loss 1.2587934732437134 img loss 1.1991708278656006 img loss 1.1782276630401611 img loss 1.2291427850723267 img loss 1.1697887182235718 img loss 1.338344931602478 img loss 1.143865942955017 img loss 1.2484219074249268 img loss 1.17680025100708 img loss 1.3286924362182617 img loss 1.246152400970459 img loss 1.2453945875167847 img loss 1.29008948802948 img loss 1.231778621673584 img loss 1.269957184791565 img loss 1.1889723539352417 img loss 1.3256235122680664 img loss 1.2915054559707642 img loss 1.2289892435073853 img loss 1.3212546110153198 img loss 1.1816349029541016 img loss 1.1477832794189453 img loss 1.189489722251892 img loss 1.2031916379928589 img loss 1.2076095342636108 img loss 1.236741304397583 img loss 1.2093582153320312 img loss 1.180153489112854 img loss 1.180722713470459 img loss 1.2257790565490723 img loss 1.152282953262329 img loss 1.2198206186294556 img loss 1.2754253149032593 img loss 1.184962511062622 img loss 1.1991615295410156 img loss 1.2374680042266846 img loss 1.2697170972824097 img loss 1.2270946502685547 img loss 1.1325945854187012 img loss 1.1965618133544922 img loss 1.208430528640747 img loss 1.1798943281173706 img loss 1.1905485391616821 img loss 1.2083795070648193 img loss 1.163824439048767 img loss 1.1570419073104858 img loss 1.2000871896743774 img loss 1.261481523513794 img loss 1.224545955657959 img loss 1.203489899635315 img loss 1.206899881362915 img loss 1.1341943740844727 img loss 1.2218925952911377 img loss 1.242518424987793 img loss 1.2488090991973877 img loss 1.1775188446044922 img loss 1.1800153255462646 img loss 1.3157938718795776 img loss 1.2233753204345703 img loss 1.2731235027313232 img loss 1.2233555316925049 img loss 1.2357492446899414 img loss 1.2092018127441406 img loss 1.2497621774673462 img loss 1.2010643482208252 img loss 1.1884464025497437 img loss 1.2050151824951172 img loss 1.2631521224975586 img loss 1.1982989311218262 img loss 1.207972764968872 img loss 1.1655067205429077 img loss 1.1463303565979004 img loss 1.2203514575958252 img loss 1.2690637111663818 img loss 1.2480171918869019 img loss 1.1786869764328003 img loss 1.210186243057251 img loss 1.2492167949676514 img loss 1.1483325958251953 img loss 1.2495077848434448 img loss 1.1694722175598145 img loss 1.2312448024749756 img loss 1.233320951461792 img loss 1.2359651327133179 img loss 1.2522263526916504 img loss 1.2584339380264282 img loss 1.1764159202575684 img loss 1.2292799949645996 img loss 1.2216143608093262 img loss 1.2439286708831787 img loss 1.2414566278457642 img loss 1.1986932754516602 img loss 1.2213106155395508 img loss 1.359243631362915 img loss 1.219652533531189 img loss 1.2155098915100098 img loss 1.2462724447250366 img loss 1.2176249027252197 img loss 1.298506498336792 img loss 1.2324520349502563 img loss 1.3876872062683105 img loss 1.1998417377471924 img loss 1.3036959171295166 img loss 1.1918340921401978 img loss 1.1633782386779785 img loss 1.1718249320983887 img loss 1.2092969417572021 img loss 1.227257490158081 img loss 1.2629730701446533 img loss 1.1941627264022827 img loss 1.15866219997406 img loss 1.208156943321228 img loss 1.2189186811447144 img loss 1.207315444946289 img loss 1.2918179035186768 img loss 1.2440992593765259 img loss 1.2098737955093384 img loss 1.1813373565673828 img loss 1.1881775856018066 img loss 1.280238389968872 {'loss': 1.2231, 'grad_norm': 0.4846436083316803, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.208673357963562 img loss 1.1084965467453003 img loss 1.167027473449707 img loss 1.1703376770019531 img loss 1.1894311904907227 img loss 1.2231707572937012 img loss 1.21290922164917 img loss 1.1661099195480347 img loss 1.1843270063400269 img loss 1.1235527992248535 img loss 1.1500400304794312 img loss 1.1636054515838623 img loss 1.0967639684677124 img loss 1.2360540628433228 img loss 1.1727813482284546 img loss 1.2821707725524902 img loss 1.2420510053634644 img loss 1.1793076992034912 img loss 1.2275748252868652 img loss 1.1503784656524658 img loss 1.2362511157989502 img loss 1.2187336683273315 img loss 1.1627775430679321 img loss 1.2024052143096924 img loss 1.166872262954712 img loss 1.1597603559494019 img loss 1.141929030418396 img loss 1.1915791034698486 img loss 1.221929907798767 img loss 1.2103477716445923 img loss 1.2527763843536377 img loss 1.1903796195983887 img loss 1.2601553201675415 img loss 1.1606714725494385 img loss 1.2015254497528076 img loss 1.160414218902588 img loss 1.2149841785430908 img loss 1.1228673458099365 img loss 1.219443678855896 img loss 1.2716320753097534 img loss 1.1670373678207397 img loss 1.12152898311615 img loss 1.1727771759033203 img loss 1.2297712564468384 img loss 1.2226159572601318 img loss 1.1859772205352783 img loss 1.1056153774261475 img loss 1.1440105438232422 img loss 1.2185392379760742 img loss 1.2180169820785522 img loss 1.1967436075210571 img loss 1.1638200283050537 img loss 1.1437269449234009 img loss 1.1191905736923218 img loss 1.2397440671920776 img loss 1.1239216327667236 img loss 1.1329858303070068 img loss 1.1838607788085938 img loss 1.1290209293365479 img loss 1.1865218877792358 img loss 1.1536509990692139 img loss 1.2871229648590088 img loss 1.1790668964385986 img loss 1.2399327754974365 img loss 1.1668192148208618 img loss 1.1432228088378906 img loss 1.1935532093048096 img loss 1.1431910991668701 img loss 1.1133129596710205 img loss 1.162911295890808 img loss 1.1542396545410156 img loss 1.1688774824142456 img loss 1.1922125816345215 img loss 1.226548433303833 img loss 1.105934500694275 img loss 1.1344131231307983 img loss 1.2314205169677734 img loss 1.2421550750732422 img loss 1.164630651473999 img loss 1.3253008127212524 img loss 1.1115680932998657 img loss 1.1597617864608765 img loss 1.19035005569458 img loss 1.210439920425415 img loss 1.1897815465927124 img loss 1.172313928604126 img loss 1.1633480787277222 img loss 1.2333855628967285 img loss 1.1255673170089722 img loss 1.2211636304855347 img loss 1.2177377939224243 img loss 1.1286579370498657 img loss 1.2424249649047852 img loss 1.146064281463623 img loss 1.2268974781036377 img loss 1.1383473873138428 img loss 1.2450439929962158 img loss 1.148101568222046 img loss 1.1208049058914185 img loss 1.2272905111312866 img loss 1.1474531888961792 img loss 1.207891821861267 img loss 1.1890339851379395 img loss 1.1961455345153809 img loss 1.1585320234298706 img loss 1.2243835926055908 img loss 1.1879148483276367 img loss 1.1314334869384766 img loss 1.2039822340011597 img loss 1.1628007888793945 img loss 1.169899821281433 img loss 1.1968536376953125 img loss 1.2006908655166626 img loss 1.1943774223327637 img loss 1.225389838218689 img loss 1.1618022918701172 img loss 1.1824997663497925 img loss 1.2325390577316284 img loss 1.2392501831054688 img loss 1.2875373363494873 img loss 1.2092300653457642 img loss 1.2009124755859375 img loss 1.1655347347259521 img loss 1.279710292816162 img loss 1.1692708730697632 img loss 1.2074800729751587 img loss 1.264245629310608 img loss 1.1994609832763672 {'loss': 1.1873, 'grad_norm': 0.2861309051513672, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2984760999679565 img loss 1.4538975954055786 img loss 1.3594834804534912 img loss 1.482540249824524 img loss 1.3293066024780273 img loss 1.3449021577835083 img loss 1.3491750955581665 img loss 1.3147209882736206 img loss 1.2502002716064453 img loss 1.4684816598892212 img loss 1.331173300743103 img loss 1.3266215324401855 img loss 1.417959451675415 img loss 1.3844106197357178 img loss 1.3302042484283447 img loss 1.4549434185028076 img loss 1.4029462337493896 img loss 1.3416475057601929 img loss 1.3867127895355225 img loss 1.2306197881698608 img loss 1.429569959640503 img loss 1.4823620319366455 img loss 1.3054054975509644 img loss 1.3428345918655396 img loss 1.2535158395767212 img loss 1.4330191612243652 img loss 1.4077402353286743 img loss 1.3056590557098389 img loss 1.247959017753601 img loss 1.406806468963623 img loss 1.3374992609024048 img loss 1.4783519506454468 img loss 1.3543448448181152 img loss 1.348386287689209 img loss 1.2398332357406616 img loss 1.2432494163513184 img loss 1.4207265377044678 img loss 1.355901837348938 img loss 1.3237208127975464 img loss 1.3932850360870361 img loss 1.4949687719345093 img loss 1.345816969871521 img loss 1.3106932640075684 img loss 1.3504241704940796 img loss 1.385550856590271 img loss 1.4329966306686401 img loss 1.3499228954315186 img loss 1.3159855604171753 img loss 1.3310600519180298 img loss 1.2070379257202148 img loss 1.426384449005127 img loss 1.4579864740371704 img loss 1.383851170539856 img loss 1.3346697092056274 img loss 1.299602746963501 img loss 1.4324085712432861 img loss 1.2970943450927734 img loss 1.3898338079452515 img loss 1.474258542060852 img loss 1.3892767429351807 img loss 1.3211166858673096 img loss 1.3081793785095215 img loss 1.3063445091247559 img loss 1.371785044670105 img loss 1.2928779125213623 img loss 1.3706763982772827 img loss 1.3023744821548462 img loss 1.4590920209884644 img loss 1.5111175775527954 img loss 1.3079159259796143 img loss 1.341174840927124 img loss 1.4122830629348755 img loss 1.4079244136810303 img loss 1.3870844841003418 img loss 1.2964274883270264 img loss 1.4525893926620483 img loss 1.3602222204208374 img loss 1.3256670236587524 img loss 1.3676087856292725 img loss 1.4191758632659912 img loss 1.4828293323516846 img loss 1.4938417673110962 img loss 1.4385384321212769 img loss 1.3090264797210693 img loss 1.3344876766204834 img loss 1.4926077127456665 img loss 1.4434078931808472 img loss 1.4071919918060303 img loss 1.5215556621551514 img loss 1.358052134513855img loss 1.3500735759735107 img loss 1.354803204536438 img loss 1.4003387689590454 img loss 1.3129825592041016 img loss 1.3328614234924316 img loss 1.4257045984268188 img loss 1.3201038837432861 img loss 1.376014232635498 img loss 1.3343180418014526 img loss 1.2924747467041016 img loss 1.340660810470581 img loss 1.3415000438690186 img loss 1.3548187017440796 img loss 1.26792573928833 img loss 1.3854354619979858 img loss 1.3724138736724854 img loss 1.3652737140655518 img loss 1.282662272453308 img loss 1.455998182296753 img loss 1.3932280540466309 img loss 1.3722302913665771 img loss 1.4656587839126587 img loss 1.2749818563461304 img loss 1.2866356372833252 img loss 1.2912276983261108 img loss 1.3467042446136475 img loss 1.3978393077850342 img loss 1.3385975360870361 img loss 1.3343092203140259 img loss 1.3359217643737793 img loss 1.2841849327087402 img loss 1.4184073209762573 img loss 1.3228319883346558 img loss 1.3053034543991089 img loss 1.3728982210159302 img loss 1.4606510400772095 img loss 1.333908200263977 img loss 1.4676461219787598 {'loss': 1.366, 'grad_norm': 0.4249042570590973, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1961430311203003 img loss 1.168341875076294 img loss 1.2158631086349487 img loss 1.1997140645980835 img loss 1.1548954248428345 img loss 1.2397352457046509 img loss 1.2534751892089844 img loss 1.224497675895691 img loss 1.1984360218048096 img loss 1.1775705814361572 img loss 1.2089906930923462 img loss 1.1385681629180908 img loss 1.1926038265228271 img loss 1.1445972919464111 img loss 1.219702124595642 img loss 1.191461205482483 img loss 1.1938412189483643 img loss 1.192321538925171 img loss 1.262866735458374 img loss 1.1467875242233276 img loss 1.1586027145385742 img loss 1.1510448455810547 img loss 1.203194499015808 img loss 1.164814829826355 img loss 1.1795982122421265 img loss 1.1357629299163818 img loss 1.132694125175476 img loss 1.2453029155731201 img loss 1.1832668781280518 img loss 1.1675413846969604 img loss 1.1869996786117554 img loss 1.1807887554168701 img loss 1.1858139038085938 img loss 1.1800073385238647 img loss 1.239998698234558 img loss 1.2299818992614746 img loss 1.1621679067611694 img loss 1.1630966663360596 img loss 1.229527473449707 img loss 1.221181869506836 img loss 1.2137339115142822 img loss 1.1783004999160767 img loss 1.2073516845703125 img loss 1.1964260339736938 img loss 1.1502195596694946 img loss 1.1592057943344116 img loss 1.2419172525405884 img loss 1.2641586065292358 img loss 1.165948510169983 img loss 1.1764929294586182 img loss 1.122239351272583 img loss 1.190409541130066 img loss 1.1656831502914429 img loss 1.1983293294906616 img loss 1.2083661556243896 img loss 1.1870044469833374 img loss 1.233892798423767 img loss 1.2020797729492188 img loss 1.1633329391479492 img loss 1.2373244762420654 img loss 1.244672179222107 img loss 1.1756519079208374 img loss 1.1643050909042358 img loss 1.2278364896774292 img loss 1.1900770664215088 img loss 1.1923153400421143 img loss 1.2917323112487793 img loss 1.2349525690078735 img loss 1.2409418821334839 img loss 1.1915414333343506 img loss 1.160841464996338 img loss 1.2200835943222046 img loss 1.1327892541885376 img loss 1.158503770828247 img loss 1.2625367641448975 img loss 1.127413034439087 img loss 1.185999870300293 img loss 1.1553349494934082 img loss 1.2280528545379639 img loss 1.177813172340393 img loss 1.213469386100769 img loss 1.1817145347595215 img loss 1.1724328994750977 img loss 1.1409372091293335 img loss 1.2050198316574097 img loss 1.2112486362457275 img loss 1.2507119178771973 img loss 1.1746158599853516 img loss 1.186570644378662 img loss 1.2225010395050049 img loss 1.2338529825210571 img loss 1.2937312126159668 img loss 1.264126181602478 img loss 1.2286304235458374 img loss 1.1308612823486328 img loss 1.188977599143982 img loss 1.216099500656128 img loss 1.1519386768341064 img loss 1.1910400390625 img loss 1.309637427330017 img loss 1.1933650970458984 img loss 1.208074927330017 img loss 1.230536699295044 img loss 1.1793161630630493 img loss 1.315211534500122 img loss 1.23172128200531 img loss 1.1579478979110718 img loss 1.174584984779358 img loss 1.271958589553833 img loss 1.2177824974060059 img loss 1.1894550323486328 img loss 1.1635372638702393 img loss 1.1656906604766846 img loss 1.1622123718261719 img loss 1.267442226409912 img loss 1.1863640546798706 img loss 1.2340797185897827 img loss 1.211181640625 img loss 1.1627881526947021 img loss 1.192554235458374 img loss 1.1521644592285156 img loss 1.1705480813980103 img loss 1.1052043437957764 img loss 1.2385339736938477 img loss 1.1790627241134644 img loss 1.1919606924057007 img loss 1.1322481632232666 img loss 1.177324652671814 {'loss': 1.1959, 'grad_norm': 0.41169503331184387, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.213711142539978 img loss 1.1750720739364624 img loss 1.2740811109542847 img loss 1.2044357061386108 img loss 1.2011469602584839 img loss 1.1945929527282715 img loss 1.1710758209228516 img loss 1.186540126800537 img loss 1.2778871059417725 img loss 1.2228058576583862 img loss 1.24782133102417 img loss 1.2625463008880615 img loss 1.2409045696258545 img loss 1.2161164283752441 img loss 1.2397116422653198 img loss 1.2084763050079346 img loss 1.0824031829833984 img loss 1.1832783222198486 img loss 1.244576334953308 img loss 1.307737112045288 img loss 1.204336404800415 img loss 1.247846245765686 img loss 1.2412543296813965 img loss 1.167681336402893 img loss 1.2861926555633545 img loss 1.2028303146362305 img loss 1.210754156112671 img loss 1.1626795530319214 img loss 1.1855340003967285 img loss 1.2169922590255737 img loss 1.2218334674835205 img loss 1.2600501775741577 img loss 1.2244789600372314 img loss 1.253212332725525 img loss 1.2995507717132568 img loss 1.1942379474639893 img loss 1.1972678899765015img loss 1.2149393558502197 img loss 1.2297638654708862 img loss 1.1494026184082031 img loss 1.153588056564331 img loss 1.2348779439926147 img loss 1.2059531211853027 img loss 1.2340164184570312 img loss 1.1475021839141846 img loss 1.2313097715377808 img loss 1.2406061887741089 img loss 1.2293685674667358 img loss 1.2365375757217407 img loss 1.2405462265014648 img loss 1.2545523643493652 img loss 1.2347257137298584 img loss 1.2055933475494385 img loss 1.2768751382827759 img loss 1.2126373052597046 img loss 1.238053560256958 img loss 1.1966670751571655 img loss 1.2388614416122437 img loss 1.1715220212936401 img loss 1.1749718189239502 img loss 1.2301018238067627 img loss 1.2786998748779297 img loss 1.2014464139938354 img loss 1.1995201110839844 img loss 1.1877777576446533 img loss 1.1248711347579956 img loss 1.2201273441314697 img loss 1.2019041776657104 img loss 1.170351505279541 img loss 1.2312901020050049 img loss 1.2270865440368652 img loss 1.1491773128509521 img loss 1.2162256240844727 img loss 1.2343796491622925 img loss 1.276349663734436 img loss 1.1603244543075562 img loss 1.2144889831542969 img loss 1.3145825862884521 img loss 1.2447868585586548 img loss 1.2457172870635986 img loss 1.2094697952270508 img loss 1.2547556161880493 img loss 1.2011163234710693 img loss 1.2062888145446777 img loss 1.2686858177185059 img loss 1.1868786811828613 img loss 1.2015132904052734 img loss 1.2044531106948853 img loss 1.1474945545196533 img loss 1.2491899728775024 img loss 1.2980456352233887 img loss 1.2578446865081787 img loss 1.20616614818573 img loss 1.1809412240982056 img loss 1.2831647396087646 img loss 1.2193456888198853 img loss 1.1769161224365234 img loss 1.2628182172775269 img loss 1.206032156944275 img loss 1.2381072044372559 img loss 1.1908345222473145 img loss 1.2579607963562012 img loss 1.248480200767517 img loss 1.2159640789031982 img loss 1.2142467498779297 img loss 1.2621359825134277 img loss 1.2397979497909546 img loss 1.1781723499298096 img loss 1.1799864768981934 img loss 1.1809303760528564 img loss 1.1084246635437012 img loss 1.1811628341674805 img loss 1.1776131391525269 img loss 1.1705173254013062 img loss 1.2731930017471313 img loss 1.2265961170196533 img loss 1.2180581092834473 img loss 1.1151434183120728 img loss 1.1626698970794678 img loss 1.195847749710083 img loss 1.1914809942245483 img loss 1.2077564001083374 img loss 1.195881724357605 img loss 1.236757755279541 img loss 1.1448246240615845 img loss 1.2153915166854858 img loss 1.2916364669799805 img loss 1.2948262691497803 {'loss': 1.216, 'grad_norm': 0.2106814831495285, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.457002878189087 img loss 1.470395565032959 img loss 1.4533463716506958 img loss 1.549092411994934 img loss 1.4820783138275146 img loss 1.423333764076233 img loss 1.5853317975997925 img loss 1.480607509613037 img loss 1.5950539112091064 img loss 1.4594258069992065 img loss 1.4780879020690918 img loss 1.4094288349151611 img loss 1.4516090154647827 img loss 1.5357410907745361 img loss 1.5387312173843384 img loss 1.5576684474945068 img loss 1.4519888162612915 img loss 1.4316980838775635 img loss 1.5816363096237183 img loss 1.4924975633621216 img loss 1.585028052330017 img loss 1.5350546836853027 img loss 1.5895230770111084 img loss 1.4571508169174194 img loss 1.4193336963653564 img loss 1.445443034172058 img loss 1.5710519552230835 img loss 1.3866522312164307 img loss 1.357507586479187 img loss 1.5677030086517334 img loss 1.4514142274856567 img loss 1.5174566507339478 img loss 1.4892619848251343 img loss 1.4819878339767456 img loss 1.4280145168304443 img loss 1.4352972507476807 img loss 1.5024046897888184 img loss 1.5074511766433716 img loss 1.7264268398284912 img loss 1.5077836513519287 img loss 1.3621573448181152 img loss 1.4528111219406128 img loss 1.4393365383148193 img loss 1.4467476606369019 img loss 1.584529161453247 img loss 1.5759228467941284 img loss 1.4108941555023193 img loss 1.4393962621688843 img loss 1.4689414501190186 img loss 1.4576936960220337 img loss 1.5657678842544556 img loss 1.4072949886322021 img loss 1.4047588109970093 img loss 1.5794236660003662 img loss 1.581310510635376 img loss 1.3648788928985596 img loss 1.537509799003601 img loss 1.5391852855682373 img loss 1.502810001373291 img loss 1.5198642015457153 img loss 1.392574667930603 img loss 1.5304707288742065 img loss 1.381595253944397 img loss 1.486203670501709 img loss 1.5470508337020874 img loss 1.3650364875793457 img loss 1.5748337507247925 img loss 1.615952730178833 img loss 1.3711066246032715 img loss 1.3378411531448364 img loss 1.5180813074111938 img loss 1.460082769393921 img loss 1.324967622756958 img loss 1.5251256227493286 img loss 1.5080534219741821 img loss 1.5692598819732666 img loss 1.531394362449646 img loss 1.4562733173370361 img loss 1.69539213180542 img loss 1.4464468955993652 img loss 1.4323121309280396 img loss 1.4385186433792114 img loss 1.3454058170318604 img loss 1.3210105895996094 img loss 1.3087446689605713 img loss 1.6082786321640015 img loss 1.4397709369659424 img loss 1.5280334949493408 img loss 1.5452454090118408 img loss 1.4591193199157715 img loss 1.5532540082931519 img loss 1.4703991413116455 img loss 1.4595667123794556 img loss 1.6060525178909302 img loss 1.5672191381454468 img loss 1.4487308263778687 img loss 1.5623782873153687 img loss 1.591998815536499 img loss 1.5267137289047241 img loss 1.3728795051574707 img loss 1.5116418600082397 img loss 1.4839932918548584 img loss 1.6590691804885864 img loss 1.5644139051437378 img loss 1.5879223346710205 img loss 1.6366674900054932 img loss 1.4298080205917358 img loss 1.5443933010101318 img loss 1.5726027488708496 img loss 1.4409470558166504 img loss 1.474424123764038 img loss 1.4847749471664429 img loss 1.517115831375122 img loss 1.4800536632537842 img loss 1.4357380867004395 img loss 1.5577142238616943 img loss 1.563796877861023 img loss 1.6586508750915527 img loss 1.585365653038025 img loss 1.4969792366027832 img loss 1.4156677722930908 img loss 1.460803508758545 img loss 1.4278286695480347 img loss 1.4594576358795166 img loss 1.4379671812057495 img loss 1.6270067691802979 img loss 1.438341498374939 img loss 1.4196797609329224 {'loss': 1.4928, 'grad_norm': 0.40462303161621094, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2250213623046875 img loss 1.2584365606307983 img loss 1.2038291692733765 img loss 1.2135257720947266 img loss 1.2241657972335815 img loss 1.231246829032898 img loss 1.2785757780075073 img loss 1.2408955097198486 img loss 1.1887977123260498 img loss 1.2029787302017212 img loss 1.2434682846069336 img loss 1.2357211112976074 img loss 1.2506831884384155 img loss 1.3200747966766357 img loss 1.2627918720245361 img loss 1.2653998136520386 img loss 1.2327675819396973 img loss 1.2365825176239014 img loss 1.2684720754623413 img loss 1.2982757091522217 img loss 1.2008016109466553 img loss 1.2125991582870483 img loss 1.2127217054367065 img loss 1.2612727880477905 img loss 1.2371567487716675 img loss 1.23846435546875 img loss 1.21002197265625 img loss 1.228305459022522 img loss 1.2592653036117554 img loss 1.191270112991333 img loss 1.2756201028823853 img loss 1.244943380355835 img loss 1.2057762145996094 img loss 1.2032692432403564 img loss 1.1979999542236328 img loss 1.240355372428894 img loss 1.2133806943893433 img loss 1.2029978036880493 img loss 1.174690842628479 img loss 1.2201694250106812 img loss 1.299517273902893 img loss 1.185075283050537 img loss 1.2434381246566772 img loss 1.231088638305664 img loss 1.21336829662323 img loss 1.275185227394104 img loss 1.252737045288086 img loss 1.2187230587005615 img loss 1.2350212335586548 img loss 1.178573489189148 img loss 1.2553364038467407 img loss 1.2684444189071655 img loss 1.2705934047698975 img loss 1.244741439819336 img loss 1.2679271697998047 img loss 1.2601124048233032 img loss 1.2685136795043945 img loss 1.255532145500183 img loss 1.218124270439148 img loss 1.191037654876709 img loss 1.3251214027404785 img loss 1.2370755672454834 img loss 1.2654564380645752 img loss 1.2147620916366577 img loss 1.2105927467346191 img loss 1.2755498886108398 img loss 1.2285430431365967 img loss 1.25934636592865 img loss 1.2063484191894531 img loss 1.2459027767181396 img loss 1.2401649951934814 img loss 1.2334219217300415 img loss 1.2183871269226074 img loss 1.2589701414108276 img loss 1.196601152420044 img loss 1.232699990272522 img loss 1.2255172729492188 img loss 1.2215675115585327 img loss 1.1719815731048584 img loss 1.2305606603622437 img loss 1.2322582006454468 img loss 1.2420777082443237 img loss 1.244024634361267 img loss 1.2349486351013184 img loss 1.2295866012573242 img loss 1.2303602695465088 img loss 1.217888593673706 img loss 1.2241337299346924 img loss 1.228697657585144 img loss 1.2466106414794922 img loss 1.2386105060577393 img loss 1.2214391231536865 img loss 1.2689306735992432 img loss 1.2028143405914307 img loss 1.220913290977478 img loss 1.1892945766448975img loss 1.2905285358428955 img loss 1.284803032875061 img loss 1.252664566040039 img loss 1.2357815504074097 img loss 1.2596534490585327 img loss 1.2622199058532715 img loss 1.2453714609146118 img loss 1.278654932975769 img loss 1.2667133808135986 img loss 1.232729196548462 img loss 1.1929014921188354 img loss 1.2248810529708862 img loss 1.223835825920105 img loss 1.2392094135284424 img loss 1.220750093460083 img loss 1.2071987390518188 img loss 1.188947081565857 img loss 1.3404558897018433 img loss 1.1718270778656006 img loss 1.2132034301757812 img loss 1.2955944538116455 img loss 1.2391624450683594 img loss 1.2419941425323486 img loss 1.2053781747817993 img loss 1.2296723127365112 img loss 1.1998839378356934 img loss 1.335486888885498 img loss 1.197191834449768 img loss 1.2184356451034546 img loss 1.2602760791778564 img loss 1.2878928184509277 img loss 1.201626181602478 {'loss': 1.2364, 'grad_norm': 0.2859988808631897, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4108225107192993 img loss 1.3682676553726196 img loss 1.3926475048065186 img loss 1.4554551839828491 img loss 1.4367420673370361 img loss 1.2210330963134766 img loss 1.418807864189148 img loss 1.2641627788543701 img loss 1.3182289600372314 img loss 1.2813538312911987 img loss 1.3982144594192505 img loss 1.4277297258377075 img loss 1.3972262144088745 img loss 1.2681068181991577 img loss 1.4705002307891846 img loss 1.3997608423233032 img loss 1.3787798881530762 img loss 1.3511534929275513 img loss 1.3489521741867065 img loss 1.4464201927185059 img loss 1.3443198204040527 img loss 1.383756160736084 img loss 1.291755199432373 img loss 1.3025059700012207 img loss 1.3717643022537231 img loss 1.484991431236267 img loss 1.2829797267913818 img loss 1.4252880811691284 img loss 1.388477087020874 img loss 1.4315589666366577 img loss 1.4174282550811768 img loss 1.2878669500350952 img loss 1.3815112113952637 img loss 1.3274989128112793 img loss 1.3633458614349365 img loss 1.2722327709197998 img loss 1.3748164176940918 img loss 1.2818169593811035 img loss 1.474698543548584 img loss 1.224219799041748 img loss 1.3908578157424927 img loss 1.4355404376983643 img loss 1.4635292291641235 img loss 1.5341910123825073img loss 1.3975852727890015 img loss 1.4232391119003296 img loss 1.3425740003585815 img loss 1.4950249195098877 img loss 1.4443647861480713 img loss 1.3307278156280518 img loss 1.369500994682312 img loss 1.490828275680542 img loss 1.3212578296661377 img loss 1.3774120807647705 img loss 1.3813272714614868 img loss 1.3952443599700928 img loss 1.297250747680664 img loss 1.3945090770721436 img loss 1.3398135900497437 img loss 1.4870938062667847 img loss 1.316917896270752 img loss 1.3215965032577515 img loss 1.4248429536819458 img loss 1.4857064485549927 img loss 1.4644924402236938 img loss 1.393001675605774 img loss 1.305283784866333 img loss 1.3131861686706543 img loss 1.3391621112823486 img loss 1.3952053785324097 img loss 1.4729069471359253 img loss 1.472355604171753 img loss 1.3850103616714478 img loss 1.4382450580596924 img loss 1.288097858428955 img loss 1.3480437994003296 img loss 1.4201759099960327 img loss 1.410335659980774 img loss 1.4861820936203003 img loss 1.3102073669433594 img loss 1.2614713907241821 img loss 1.4281442165374756 img loss 1.52040433883667 img loss 1.3824799060821533 img loss 1.3119816780090332 img loss 1.494157314300537 img loss 1.3515437841415405 img loss 1.3333203792572021 img loss 1.4451905488967896 img loss 1.4243528842926025 img loss 1.3279341459274292 img loss 1.299824595451355 img loss 1.375364065170288 img loss 1.4148685932159424 img loss 1.3102564811706543 img loss 1.3396562337875366 img loss 1.295574426651001 img loss 1.365792155265808 img loss 1.3087624311447144 img loss 1.476147174835205 img loss 1.2579141855239868 img loss 1.3660591840744019 img loss 1.316965103149414 img loss 1.3713632822036743 img loss 1.3622273206710815 img loss 1.3730939626693726 img loss 1.2774651050567627 img loss 1.4031187295913696img loss 1.3287166357040405 img loss 1.2565462589263916 img loss 1.422716736793518 img loss 1.269818663597107 img loss 1.3400261402130127 img loss 1.4695626497268677 img loss 1.4250129461288452 img loss 1.4243911504745483 img loss 1.3520764112472534 img loss 1.3833619356155396 img loss 1.4810082912445068 img loss 1.4371122121810913 img loss 1.3219637870788574 img loss 1.326446533203125 img loss 1.3965104818344116 img loss 1.503508448600769 img loss 1.3405705690383911 img loss 1.2996200323104858 img loss 1.2788023948669434 img loss 1.2849384546279907 {'loss': 1.3751, 'grad_norm': 0.29620495438575745, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.250789999961853 img loss 1.1901425123214722 img loss 1.3003660440444946 img loss 1.1669572591781616 img loss 1.2042763233184814 img loss 1.2328001260757446 img loss 1.21254301071167 img loss 1.26353919506073 img loss 1.1665287017822266 img loss 1.2509074211120605 img loss 1.2372206449508667 img loss 1.210052251815796 img loss 1.214573860168457 img loss 1.2061660289764404 img loss 1.1733145713806152 img loss 1.2506980895996094 img loss 1.1739333868026733 img loss 1.2260050773620605 img loss 1.1813905239105225 img loss 1.1913385391235352 img loss 1.2416484355926514 img loss 1.209310531616211 img loss 1.198453426361084 img loss 1.2031654119491577 img loss 1.1492830514907837 img loss 1.2856708765029907 img loss 1.2490218877792358 img loss 1.188014268875122 img loss 1.2895399332046509 img loss 1.206132411956787 img loss 1.167083501815796 img loss 1.2668030261993408 img loss 1.2382256984710693 img loss 1.2525781393051147 img loss 1.2097958326339722 img loss 1.2039053440093994 img loss 1.2115967273712158 img loss 1.1717602014541626 img loss 1.1632059812545776 img loss 1.1264246702194214 img loss 1.1966484785079956 img loss 1.2052444219589233 img loss 1.259458303451538 img loss 1.217918038368225 img loss 1.1594481468200684 img loss 1.2122516632080078 img loss 1.1811405420303345 img loss 1.1850459575653076 img loss 1.2516907453536987 img loss 1.2189013957977295 img loss 1.2542641162872314 img loss 1.2054533958435059 img loss 1.2121708393096924 img loss 1.2283776998519897 img loss 1.1926809549331665 img loss 1.1575218439102173 img loss 1.2263386249542236 img loss 1.2323756217956543 img loss 1.1685950756072998 img loss 1.1383403539657593 img loss 1.2863434553146362 img loss 1.291890025138855 img loss 1.1957260370254517 img loss 1.1497076749801636 img loss 1.2648042440414429 img loss 1.1642802953720093 img loss 1.253844141960144 img loss 1.176286220550537 img loss 1.221671462059021 img loss 1.1648129224777222 img loss 1.212247610092163 img loss 1.2132996320724487 img loss 1.243691086769104 img loss 1.2039122581481934 img loss 1.1003104448318481 img loss 1.2385200262069702 img loss 1.1924608945846558 img loss 1.2062269449234009 img loss 1.1213456392288208 img loss 1.2190754413604736 img loss 1.2807916402816772 img loss 1.1971774101257324 img loss 1.1926953792572021 img loss 1.20498526096344 img loss 1.1896483898162842 img loss 1.1441490650177002 img loss 1.1907981634140015 img loss 1.147817850112915 img loss 1.1740283966064453 img loss 1.2201439142227173 img loss 1.2143723964691162 img loss 1.1970272064208984 img loss 1.1775598526000977 img loss 1.2077146768569946 img loss 1.1578178405761719 img loss 1.2873741388320923 img loss 1.2197026014328003 img loss 1.2982268333435059 img loss 1.1499992609024048 img loss 1.2555389404296875 img loss 1.1514400243759155 img loss 1.204087495803833 img loss 1.1817030906677246 img loss 1.2651188373565674 img loss 1.197973608970642 img loss 1.2044730186462402 img loss 1.2028406858444214 img loss 1.20100736618042 img loss 1.1749387979507446 img loss 1.1561073064804077 img loss 1.2172514200210571 img loss 1.2381395101547241 img loss 1.18034827709198 img loss 1.23904287815094 img loss 1.2445602416992188 img loss 1.2011139392852783 img loss 1.1583106517791748 img loss 1.2725632190704346 img loss 1.239345908164978 img loss 1.2059292793273926 img loss 1.1595163345336914 img loss 1.1974798440933228 img loss 1.2582968473434448 img loss 1.2915195226669312 img loss 1.227182388305664 img loss 1.20528244972229 img loss 1.217231035232544 img loss 1.140511393547058 {'loss': 1.2086, 'grad_norm': 0.47499099373817444, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4151824712753296 img loss 1.280413269996643 img loss 1.4185551404953003 img loss 1.2594945430755615 img loss 1.3927489519119263 img loss 1.3452068567276 img loss 1.2719448804855347 img loss 1.3559105396270752 img loss 1.3956624269485474 img loss 1.3912838697433472 img loss 1.3684223890304565 img loss 1.3113739490509033 img loss 1.2584521770477295 img loss 1.3699969053268433 img loss 1.3346697092056274 img loss 1.348305344581604 img loss 1.4390839338302612 img loss 1.2487704753875732 img loss 1.2970705032348633 img loss 1.3729630708694458 img loss 1.3892651796340942 img loss 1.3273283243179321 img loss 1.3693081140518188 img loss 1.3005808591842651 img loss 1.4418915510177612 img loss 1.4102169275283813 img loss 1.3122676610946655 img loss 1.2534350156784058 img loss 1.4933278560638428 img loss 1.3383127450942993 img loss 1.2913652658462524 img loss 1.2698781490325928 img loss 1.359340786933899 img loss 1.3434375524520874 img loss 1.3879073858261108 img loss 1.2998453378677368 img loss 1.2890287637710571 img loss 1.3577802181243896 img loss 1.343543291091919 img loss 1.3658604621887207 img loss 1.4011969566345215 img loss 1.3961609601974487 img loss 1.4007092714309692 img loss 1.3233163356781006 img loss 1.3225483894348145 img loss 1.3510538339614868 img loss 1.4080334901809692 img loss 1.4113703966140747 img loss 1.365582823753357 img loss 1.2047474384307861 img loss 1.4507859945297241 img loss 1.4410568475723267 img loss 1.4204429388046265 img loss 1.332733392715454 img loss 1.3180313110351562 img loss 1.3677769899368286 img loss 1.450284719467163 img loss 1.3906983137130737 img loss 1.3884785175323486 img loss 1.31093430519104 img loss 1.3176950216293335 img loss 1.2169831991195679 img loss 1.3038136959075928 img loss 1.2681071758270264 img loss 1.14496648311615 img loss 1.4358601570129395 img loss 1.3782624006271362 img loss 1.27475905418396 img loss 1.3238362073898315 img loss 1.2464954853057861 img loss 1.2312614917755127 img loss 1.3267498016357422 img loss 1.2699191570281982 img loss 1.3517873287200928 img loss 1.3561371564865112 img loss 1.3659508228302002 img loss 1.2739322185516357 img loss 1.2521644830703735 img loss 1.4074598550796509 img loss 1.3598859310150146 img loss 1.4118287563323975 img loss 1.368270754814148 img loss 1.2907586097717285 img loss 1.400166392326355 img loss 1.3505511283874512 img loss 1.3137750625610352 img loss 1.3324716091156006 img loss 1.448264241218567 img loss 1.334784984588623 img loss 1.3670693635940552 img loss 1.3186109066009521 img loss 1.381264567375183 img loss 1.3286631107330322 img loss 1.331186056137085 img loss 1.415556788444519 img loss 1.2540253400802612 img loss 1.3254542350769043 img loss 1.3415318727493286 img loss 1.4195530414581299 img loss 1.400051236152649 img loss 1.5327481031417847 img loss 1.3457140922546387 img loss 1.328458309173584 img loss 1.2700294256210327 img loss 1.3492051362991333 img loss 1.3259832859039307 img loss 1.2604079246520996 img loss 1.2355644702911377 img loss 1.3097798824310303 img loss 1.3766629695892334 img loss 1.470609426498413 img loss 1.330327033996582 img loss 1.3301153182983398 img loss 1.2833847999572754 img loss 1.3547089099884033 img loss 1.3667393922805786 img loss 1.3333901166915894 img loss 1.289323091506958 img loss 1.3369187116622925 img loss 1.4306117296218872 img loss 1.3476077318191528 img loss 1.465615153312683 img loss 1.3150259256362915 img loss 1.3389970064163208 img loss 1.3447415828704834 img loss 1.4036858081817627 img loss 1.428006649017334 img loss 1.3109073638916016 {'loss': 1.3463, 'grad_norm': 0.3266048729419708, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4662388563156128 img loss 1.6544636487960815 img loss 1.6016337871551514 img loss 1.577495813369751 img loss 1.560667634010315 img loss 1.4555400609970093 img loss 1.5275384187698364 img loss 1.5831873416900635 img loss 1.4805551767349243 img loss 1.43308424949646 img loss 1.5884413719177246 img loss 1.5521700382232666 img loss 1.5675361156463623 img loss 1.5457189083099365 img loss 1.5183355808258057 img loss 1.5566447973251343 img loss 1.598022222518921 img loss 1.6702170372009277 img loss 1.5876544713974 img loss 1.5369235277175903 img loss 1.4103233814239502 img loss 1.572210669517517 img loss 1.5834695100784302 img loss 1.580856442451477 img loss 1.5495355129241943 img loss 1.6638808250427246 img loss 1.4477986097335815 img loss 1.573072075843811 img loss 1.5842101573944092 img loss 1.673686146736145 img loss 1.5558174848556519 img loss 1.6240178346633911 img loss 1.6220513582229614 img loss 1.6223273277282715 img loss 1.5016676187515259 img loss 1.4877151250839233 img loss 1.6208584308624268 img loss 1.6366535425186157 img loss 1.7454301118850708 img loss 1.5760986804962158 img loss 1.5198503732681274 img loss 1.5212517976760864 img loss 1.556701898574829 img loss 1.5547020435333252 img loss 1.6700358390808105 img loss 1.5596970319747925 img loss 1.626737117767334 img loss 1.5615977048873901 img loss 1.6247437000274658 img loss 1.4932000637054443 img loss 1.6682840585708618 img loss 1.6335482597351074 img loss 1.584204077720642 img loss 1.5486159324645996 img loss 1.597664475440979 img loss 1.5757981538772583 img loss 1.4788089990615845 img loss 1.5848174095153809 img loss 1.6405675411224365 img loss 1.4983925819396973 img loss 1.5496758222579956 img loss 1.516970157623291 img loss 1.5716313123703003 img loss 1.5714852809906006 img loss 1.5506737232208252 img loss 1.5898778438568115 img loss 1.5927326679229736 img loss 1.5870792865753174 img loss 1.6364887952804565 img loss 1.5452678203582764 img loss 1.5067697763442993 img loss 1.516210675239563 img loss 1.5446316003799438 img loss 1.6070884466171265 img loss 1.6396032571792603 img loss 1.4989663362503052 img loss 1.5544438362121582 img loss 1.550077199935913 img loss 1.5611904859542847 img loss 1.6541393995285034 img loss 1.5005079507827759 img loss 1.4866595268249512 img loss 1.5230244398117065 img loss 1.5909086465835571 img loss 1.57472562789917 img loss 1.5756337642669678 img loss 1.5103600025177002 img loss 1.5750917196273804 img loss 1.54778254032135 img loss 1.4785164594650269 img loss 1.5122675895690918 img loss 1.5761111974716187 img loss 1.5373226404190063 img loss 1.53718900680542 img loss 1.5454308986663818 img loss 1.6734601259231567 img loss 1.659788727760315 img loss 1.6040524244308472 img loss 1.5891973972320557 img loss 1.5253322124481201 img loss 1.5849063396453857 img loss 1.5705269575119019 img loss 1.4837567806243896 img loss 1.624225378036499 img loss 1.5446377992630005 img loss 1.5737128257751465 img loss 1.461224913597107 img loss 1.5169988870620728 img loss 1.6184102296829224 img loss 1.4977927207946777 img loss 1.5449563264846802 img loss 1.5369480848312378 img loss 1.723670244216919 img loss 1.5615172386169434 img loss 1.6282895803451538 img loss 1.6012762784957886 img loss 1.552561640739441 img loss 1.5018731355667114 img loss 1.6011601686477661 img loss 1.5717520713806152 img loss 1.647113561630249 img loss 1.5428669452667236 img loss 1.6634173393249512 img loss 1.5953255891799927 img loss 1.5818164348602295 img loss 1.5370484590530396 img loss 1.6732639074325562 img loss 1.6867568492889404 {'loss': 1.5694, 'grad_norm': 0.8895126581192017, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2116469144821167 img loss 1.2983014583587646 img loss 1.1908077001571655 img loss 1.2441118955612183 img loss 1.3564388751983643 img loss 1.29445219039917 img loss 1.2430968284606934 img loss 1.395697832107544 img loss 1.2641199827194214 img loss 1.3561701774597168 img loss 1.3112030029296875 img loss 1.378907561302185 img loss 1.4068440198898315 img loss 1.222939133644104 img loss 1.4407964944839478 img loss 1.3376621007919312 img loss 1.2281785011291504 img loss 1.2257095575332642 img loss 1.259415864944458 img loss 1.5223138332366943 img loss 1.3503085374832153 img loss 1.3512513637542725 img loss 1.2349928617477417 img loss 1.343664526939392 img loss 1.2923057079315186 img loss 1.4612547159194946 img loss 1.39140784740448 img loss 1.328723430633545 img loss 1.327971339225769 img loss 1.250906229019165 img loss 1.3960661888122559 img loss 1.3440698385238647 img loss 1.2522414922714233 img loss 1.2968567609786987 img loss 1.2882885932922363 img loss 1.3534783124923706 img loss 1.3665128946304321 img loss 1.2994420528411865 img loss 1.332815170288086 img loss 1.3189444541931152 img loss 1.3562480211257935 img loss 1.1641654968261719 img loss 1.368434190750122 img loss 1.3011195659637451 img loss 1.3266090154647827 img loss 1.4331556558609009 img loss 1.3783411979675293 img loss 1.3890444040298462 img loss 1.2505346536636353 img loss 1.4216129779815674 img loss 1.28239905834198 img loss 1.2579684257507324 img loss 1.3109397888183594 img loss 1.2371501922607422 img loss 1.301067590713501 img loss 1.2621724605560303 img loss 1.3867192268371582 img loss 1.3682595491409302 img loss 1.4523913860321045 img loss 1.385526418685913 img loss 1.319273829460144 img loss 1.2808825969696045 img loss 1.4704638719558716 img loss 1.2404297590255737 img loss 1.1903400421142578 img loss 1.2333005666732788 img loss 1.255987524986267 img loss 1.4009530544281006 img loss 1.3684147596359253 img loss 1.242841362953186 img loss 1.2481606006622314 img loss 1.275156855583191 img loss 1.329050064086914 img loss 1.276187777519226 img loss 1.312928557395935 img loss 1.3471401929855347 img loss 1.2666858434677124 img loss 1.3064777851104736 img loss 1.3759187459945679 img loss 1.3970863819122314 img loss 1.4162343740463257 img loss 1.3968626260757446 img loss 1.2751102447509766 img loss 1.1860449314117432 img loss 1.3989967107772827 img loss 1.327654480934143 img loss 1.3735564947128296 img loss 1.416862964630127 img loss 1.2025392055511475 img loss 1.199610948562622 img loss 1.452379822731018 img loss 1.3383803367614746 img loss 1.4032938480377197 img loss 1.3702253103256226 img loss 1.3903733491897583 img loss 1.3186508417129517 img loss 1.3586859703063965 img loss 1.268850326538086 img loss 1.3374247550964355 img loss 1.2934948205947876 img loss 1.3490418195724487 img loss 1.300250768661499 img loss 1.3599034547805786 img loss 1.2948193550109863 img loss 1.2034885883331299 img loss 1.326870322227478 img loss 1.3179407119750977 img loss 1.2631187438964844 img loss 1.3915228843688965 img loss 1.2969281673431396 img loss 1.2619237899780273 img loss 1.3867356777191162 img loss 1.2408033609390259 img loss 1.1660467386245728 img loss 1.3056926727294922img loss 1.3558480739593506 img loss 1.2412174940109253 img loss 1.2883296012878418 img loss 1.4691879749298096 img loss 1.305888056755066 img loss 1.3811566829681396 img loss 1.2413153648376465 img loss 1.248689889907837 img loss 1.2445387840270996 img loss 1.1891491413116455 img loss 1.259374976158142 img loss 1.3003348112106323 img loss 1.319385051727295 {'loss': 1.317, 'grad_norm': 0.3598320782184601, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3654865026474 img loss 1.3134915828704834 img loss 1.3501660823822021 img loss 1.369395136833191 img loss 1.2860474586486816 img loss 1.3707671165466309 img loss 1.3945392370224 img loss 1.304023265838623 img loss 1.2826449871063232 img loss 1.5106226205825806 img loss 1.4582819938659668 img loss 1.2791250944137573 img loss 1.5303800106048584 img loss 1.3159164190292358 img loss 1.2875999212265015 img loss 1.3449680805206299 img loss 1.3867076635360718 img loss 1.327803134918213 img loss 1.304124116897583 img loss 1.4232162237167358 img loss 1.3868610858917236 img loss 1.314213752746582 img loss 1.3778785467147827 img loss 1.4109108448028564 img loss 1.3889960050582886 img loss 1.3724919557571411 img loss 1.3851431608200073 img loss 1.289292573928833 img loss 1.4002203941345215 img loss 1.3831177949905396 img loss 1.4649956226348877 img loss 1.4067023992538452 img loss 1.4424172639846802 img loss 1.4267361164093018 img loss 1.4978801012039185 img loss 1.299170732498169 img loss 1.4203295707702637 img loss 1.3124655485153198 img loss 1.4113061428070068 img loss 1.4006277322769165 img loss 1.4325720071792603 img loss 1.3532074689865112 img loss 1.2706811428070068 img loss 1.3228161334991455 img loss 1.3433053493499756 img loss 1.4241483211517334 img loss 1.3948893547058105 img loss 1.3556761741638184 img loss 1.4172260761260986 img loss 1.4069160223007202 img loss 1.3217414617538452 img loss 1.2878258228302002 img loss 1.3307766914367676 img loss 1.3230170011520386 img loss 1.3667508363723755 img loss 1.2106107473373413 img loss 1.3802472352981567 img loss 1.3757482767105103 img loss 1.3899548053741455 img loss 1.3476194143295288 img loss 1.3351672887802124 img loss 1.3326005935668945 img loss 1.3377394676208496 img loss 1.338657259941101 img loss 1.3582947254180908 img loss 1.3712022304534912 img loss 1.3616347312927246 img loss 1.414028286933899 img loss 1.325276255607605 img loss 1.3588427305221558 img loss 1.3043514490127563 img loss 1.3605276346206665 img loss 1.3166921138763428 img loss 1.3819689750671387 img loss 1.3189696073532104 img loss 1.3001136779785156 img loss 1.3704272508621216 img loss 1.4764988422393799 img loss 1.3847492933273315 img loss 1.4212396144866943 img loss 1.2514885663986206 img loss 1.3595556020736694 img loss 1.2857588529586792 img loss 1.2539128065109253 img loss 1.314988613128662 img loss 1.3548855781555176 img loss 1.3025614023208618 img loss 1.3936562538146973 img loss 1.333975911140442 img loss 1.4026247262954712 img loss 1.3744604587554932 img loss 1.4263951778411865 img loss 1.2580430507659912 img loss 1.322645664215088 img loss 1.3833662271499634 img loss 1.3884050846099854 img loss 1.4256349802017212 img loss 1.2386988401412964 img loss 1.370026707649231 img loss 1.4590858221054077 img loss 1.3107123374938965 img loss 1.4541748762130737 img loss 1.3157978057861328 img loss 1.3363168239593506 img loss 1.341245174407959 img loss 1.4005721807479858 img loss 1.3317135572433472 img loss 1.3014171123504639 img loss 1.314349889755249 img loss 1.286112666130066 img loss 1.2949020862579346 img loss 1.3769984245300293 img loss 1.3316576480865479 img loss 1.2323859930038452 img loss 1.3477731943130493 img loss 1.3215659856796265 img loss 1.3989490270614624 img loss 1.4058071374893188 img loss 1.4247385263442993 img loss 1.3332171440124512 img loss 1.3685566186904907 img loss 1.4458407163619995 img loss 1.3698450326919556 img loss 1.333573579788208 img loss 1.385994553565979 img loss 1.35417640209198 img loss 1.421173334121704 img loss 1.2605974674224854 {'loss': 1.3588, 'grad_norm': 0.3921302556991577, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1743448972702026 img loss 1.2670097351074219 img loss 1.2155797481536865 img loss 1.1414003372192383 img loss 1.3125877380371094 img loss 1.179581880569458 img loss 1.1194987297058105 img loss 1.196536898612976 img loss 1.2210614681243896 img loss 1.172605276107788 img loss 1.1426255702972412 img loss 1.2163848876953125 img loss 1.212202548980713 img loss 1.2059357166290283 img loss 1.2447999715805054 img loss 1.1772116422653198 img loss 1.1756477355957031 img loss 1.1812654733657837 img loss 1.20412278175354 img loss 1.1817433834075928 img loss 1.2044590711593628 img loss 1.1998238563537598 img loss 1.2029860019683838 img loss 1.123412013053894 img loss 1.1731939315795898 img loss 1.1957359313964844 img loss 1.1648374795913696 img loss 1.2071404457092285 img loss 1.2678718566894531 img loss 1.2265278100967407 img loss 1.1493055820465088 img loss 1.1995490789413452 img loss 1.231675624847412 img loss 1.1578669548034668 img loss 1.241219162940979 img loss 1.2494319677352905 img loss 1.2340455055236816 img loss 1.1898542642593384 img loss 1.2081329822540283 img loss 1.1859482526779175 img loss 1.3273184299468994 img loss 1.2794901132583618 img loss 1.2153847217559814 img loss 1.1955512762069702 img loss 1.1656920909881592 img loss 1.1630550622940063 img loss 1.2238540649414062 img loss 1.2201802730560303 img loss 1.1669529676437378 img loss 1.172422170639038 img loss 1.185271143913269 img loss 1.2483431100845337 img loss 1.1886513233184814 img loss 1.1732574701309204 img loss 1.2076125144958496 img loss 1.2785868644714355 img loss 1.2047420740127563 img loss 1.2248865365982056 img loss 1.2856762409210205 img loss 1.2914843559265137 img loss 1.2866777181625366 img loss 1.1882987022399902 img loss 1.2001454830169678 img loss 1.2565922737121582 img loss 1.1828455924987793 img loss 1.1763912439346313 img loss 1.24972403049469 img loss 1.2545095682144165 img loss 1.2279036045074463 img loss 1.2136039733886719 img loss 1.2371177673339844 img loss 1.2439627647399902 img loss 1.2094043493270874 img loss 1.1672565937042236 img loss 1.293863296508789 img loss 1.2521417140960693 img loss 1.2752487659454346 img loss 1.181586503982544 img loss 1.2115662097930908 img loss 1.1921343803405762 img loss 1.2314186096191406 img loss 1.1267988681793213 img loss 1.2283153533935547 img loss 1.1925864219665527 img loss 1.2510775327682495 img loss 1.219355583190918 img loss 1.2270374298095703 img loss 1.1945195198059082 img loss 1.242975115776062 img loss 1.1521012783050537 img loss 1.1829689741134644 img loss 1.1612184047698975 img loss 1.1137044429779053 img loss 1.190040946006775 img loss 1.2191815376281738 img loss 1.2157764434814453 img loss 1.1768919229507446 img loss 1.1755411624908447 img loss 1.203356385231018 img loss 1.2663688659667969 img loss 1.1805225610733032 img loss 1.154834270477295 img loss 1.177821159362793 img loss 1.2330009937286377 img loss 1.2374796867370605 img loss 1.2579751014709473 img loss 1.2518854141235352 img loss 1.2326419353485107 img loss 1.1899725198745728 img loss 1.2011518478393555 img loss 1.20071280002594 img loss 1.2103904485702515 img loss 1.2099640369415283 img loss 1.2148704528808594 img loss 1.1706339120864868 img loss 1.1782183647155762 img loss 1.197818636894226 img loss 1.168318271636963 img loss 1.2171692848205566 img loss 1.1288561820983887 img loss 1.1898125410079956 img loss 1.2011005878448486 img loss 1.256988525390625 img loss 1.207411527633667 img loss 1.2078930139541626 img loss 1.1786818504333496 img loss 1.1895016431808472 img loss 1.1581921577453613 {'loss': 1.2066, 'grad_norm': 0.2546756863594055, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3315370082855225 img loss 1.3193784952163696 img loss 1.3439289331436157 img loss 1.3118199110031128 img loss 1.3506113290786743 img loss 1.32853364944458 img loss 1.3769900798797607 img loss 1.286821722984314 img loss 1.3393758535385132 img loss 1.272573709487915 img loss 1.3058267831802368 img loss 1.209254503250122 img loss 1.2754745483398438 img loss 1.2971199750900269 img loss 1.2043179273605347 img loss 1.3107649087905884 img loss 1.2675812244415283 img loss 1.360036015510559 img loss 1.3008348941802979 img loss 1.2990864515304565 img loss 1.2874294519424438 img loss 1.370471477508545 img loss 1.277953863143921 img loss 1.320151925086975 img loss 1.4880486726760864 img loss 1.3299545049667358 img loss 1.3312928676605225 img loss 1.3831318616867065 img loss 1.3795839548110962 img loss 1.2491607666015625 img loss 1.347033977508545 img loss 1.2386260032653809 img loss 1.3194392919540405 img loss 1.2674728631973267 img loss 1.3213638067245483 img loss 1.3969157934188843 img loss 1.3739755153656006 img loss 1.3971649408340454 img loss 1.335755467414856 img loss 1.3527897596359253 img loss 1.2892358303070068 img loss 1.2552485466003418 img loss 1.3356655836105347 img loss 1.2771272659301758 img loss 1.3053072690963745 img loss 1.3643616437911987 img loss 1.273573398590088 img loss 1.3437122106552124 img loss 1.2440026998519897 img loss 1.3512786626815796 img loss 1.380746603012085 img loss 1.3603352308273315 img loss 1.3493140935897827 img loss 1.4037915468215942 img loss 1.2928918600082397 img loss 1.3121479749679565 img loss 1.4363417625427246 img loss 1.2841458320617676 img loss 1.425326943397522img loss 1.3025462627410889 img loss 1.1759395599365234 img loss 1.2777915000915527 img loss 1.3305251598358154 img loss 1.3024299144744873 img loss 1.3376587629318237 img loss 1.3541216850280762 img loss 1.3078668117523193 img loss 1.3957628011703491 img loss 1.3757613897323608 img loss 1.3718377351760864 img loss 1.416198492050171 img loss 1.4188350439071655 img loss 1.2732988595962524 img loss 1.2977360486984253 img loss 1.3180334568023682 img loss 1.3750554323196411 img loss 1.3054437637329102 img loss 1.3827860355377197 img loss 1.3439897298812866 img loss 1.440618634223938 img loss 1.2910778522491455 img loss 1.325670599937439 img loss 1.2780985832214355 img loss 1.3794618844985962 img loss 1.2744426727294922 img loss 1.288915991783142 img loss 1.2581459283828735 img loss 1.3352872133255005 img loss 1.332930088043213 img loss 1.2765337228775024 img loss 1.3273619413375854 img loss 1.3329180479049683 img loss 1.3066954612731934 img loss 1.3248932361602783 img loss 1.3633954524993896 img loss 1.356038212776184 img loss 1.3093360662460327 img loss 1.2602810859680176 img loss 1.3096328973770142 img loss 1.3190219402313232 img loss 1.3226009607315063 img loss 1.3141769170761108 img loss 1.1990599632263184 img loss 1.3267561197280884 img loss 1.3480894565582275 img loss 1.2737054824829102 img loss 1.2861441373825073 img loss 1.4243749380111694 img loss 1.2828168869018555 img loss 1.3666932582855225 img loss 1.2808585166931152 img loss 1.2443583011627197 img loss 1.3095979690551758 img loss 1.3633458614349365 img loss 1.2955577373504639 img loss 1.4081761837005615 img loss 1.3234528303146362 img loss 1.313600778579712 img loss 1.3718273639678955 img loss 1.3456920385360718 img loss 1.3743959665298462 img loss 1.4177979230880737 img loss 1.3292473554611206 img loss 1.2747352123260498 img loss 1.257171869277954 img loss 1.2655171155929565 img loss 1.3510925769805908 img loss 1.3333888053894043 {'loss': 1.3242, 'grad_norm': 0.26170313358306885, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4283603429794312 img loss 1.5190318822860718 img loss 1.2097926139831543 img loss 1.3739663362503052 img loss 1.3432176113128662 img loss 1.4526402950286865 img loss 1.4647047519683838 img loss 1.5040210485458374 img loss 1.4270137548446655 img loss 1.3512539863586426 img loss 1.4011008739471436 img loss 1.3374546766281128 img loss 1.4459664821624756 img loss 1.4320091009140015 img loss 1.4046024084091187 img loss 1.3381226062774658 img loss 1.3707554340362549 img loss 1.4488528966903687 img loss 1.4915173053741455 img loss 1.4725406169891357 img loss 1.4649004936218262 img loss 1.2808729410171509 img loss 1.3759547472000122 img loss 1.395912766456604 img loss 1.4344924688339233 img loss 1.3619505167007446 img loss 1.327370524406433 img loss 1.4295897483825684 img loss 1.458016037940979 img loss 1.4962060451507568 img loss 1.461268663406372 img loss 1.333505392074585 img loss 1.442084789276123 img loss 1.3455439805984497 img loss 1.2902125120162964 img loss 1.3457130193710327 img loss 1.4233328104019165 img loss 1.4963933229446411 img loss 1.442333698272705 img loss 1.4657748937606812 img loss 1.334786295890808 img loss 1.4102917909622192 img loss 1.4115203619003296 img loss 1.4099247455596924 img loss 1.2708756923675537 img loss 1.506557583808899 img loss 1.4185951948165894 img loss 1.305572271347046 img loss 1.4120020866394043 img loss 1.3534528017044067 img loss 1.423681378364563 img loss 1.5592741966247559 img loss 1.33747136592865 img loss 1.3328408002853394 img loss 1.3701585531234741 img loss 1.3885372877120972 img loss 1.3863643407821655img loss 1.3249759674072266 img loss 1.3872544765472412 img loss 1.5128504037857056 img loss 1.4962055683135986 img loss 1.3884464502334595 img loss 1.4852837324142456 img loss 1.459675669670105 img loss 1.2811064720153809 img loss 1.4119967222213745 img loss 1.4334505796432495 img loss 1.4430640935897827 img loss 1.3585445880889893 img loss 1.4712804555892944 img loss 1.458595871925354 img loss 1.4603928327560425 img loss 1.4372775554656982 img loss 1.408674716949463 img loss 1.3336361646652222 img loss 1.4087258577346802 img loss 1.4512888193130493 img loss 1.3654425144195557 img loss 1.3425668478012085 img loss 1.4152696132659912 img loss 1.5133187770843506 img loss 1.426554560661316 img loss 1.4637424945831299 img loss 1.4177024364471436 img loss 1.487804889678955 img loss 1.4583032131195068 img loss 1.3944790363311768 img loss 1.3561326265335083 img loss 1.385717511177063 img loss 1.4306848049163818 img loss 1.508752465248108 img loss 1.5263363122940063 img loss 1.5314080715179443 img loss 1.5839498043060303 img loss 1.4078718423843384 img loss 1.3835698366165161 img loss 1.3687008619308472 img loss 1.4183872938156128 img loss 1.4900834560394287 img loss 1.3817633390426636 img loss 1.32704496383667 img loss 1.4109538793563843 img loss 1.4761871099472046 img loss 1.457105278968811 img loss 1.4821676015853882 img loss 1.3563392162322998 img loss 1.463999629020691 img loss 1.3535025119781494 img loss 1.3814733028411865 img loss 1.4419201612472534 img loss 1.4760884046554565 img loss 1.4531991481781006 img loss 1.4899394512176514 img loss 1.4221539497375488 img loss 1.3356822729110718 img loss 1.3237686157226562 img loss 1.4281154870986938img loss 1.46749746799469img loss 1.4904276132583618 img loss 1.5683443546295166 img loss 1.3732985258102417 img loss 1.5176091194152832 img loss 1.3374961614608765 img loss 1.477689504623413 img loss 1.4740406274795532 img loss 1.29164457321167 img loss 1.4763273000717163 img loss 1.3832513093948364 {'loss': 1.4166, 'grad_norm': 0.33555927872657776, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2310121059417725 img loss 1.213186264038086 img loss 1.1812987327575684 img loss 1.2761001586914062 img loss 1.1342248916625977 img loss 1.1950740814208984 img loss 1.2272841930389404 img loss 1.2464319467544556 img loss 1.1980637311935425 img loss 1.2220380306243896 img loss 1.3278884887695312 img loss 1.3011059761047363 img loss 1.2371336221694946 img loss 1.213526964187622 img loss 1.2286412715911865 img loss 1.2508692741394043 img loss 1.2575018405914307 img loss 1.27218759059906 img loss 1.2294546365737915 img loss 1.3082703351974487 img loss 1.1744083166122437 img loss 1.2154053449630737 img loss 1.253278374671936 img loss 1.2294118404388428 img loss 1.2809555530548096 img loss 1.2208194732666016 img loss 1.2076897621154785 img loss 1.2025091648101807 img loss 1.1723183393478394 img loss 1.1612334251403809 img loss 1.1883084774017334 img loss 1.2476164102554321 img loss 1.191017508506775 img loss 1.3085472583770752 img loss 1.211289882659912 img loss 1.3188860416412354 img loss 1.2730568647384644 img loss 1.290726661682129 img loss 1.2594822645187378 img loss 1.1927934885025024 img loss 1.175564169883728 img loss 1.2511382102966309 img loss 1.264365792274475 img loss 1.2515701055526733 img loss 1.238010048866272 img loss 1.1617097854614258 img loss 1.2357423305511475 img loss 1.2305502891540527 img loss 1.2207211256027222 img loss 1.1966707706451416 img loss 1.3944575786590576 img loss 1.2000038623809814 img loss 1.207545518875122 img loss 1.3119372129440308 img loss 1.1732288599014282 img loss 1.1762452125549316 img loss 1.195477843284607 img loss 1.2249950170516968 img loss 1.2481235265731812 img loss 1.2408941984176636 img loss 1.2902339696884155 img loss 1.1476116180419922 img loss 1.17192542552948 img loss 1.1847158670425415 img loss 1.2172765731811523 img loss 1.2451719045639038 img loss 1.3064476251602173 img loss 1.1865785121917725 img loss 1.2780473232269287 img loss 1.2214940786361694 img loss 1.275927186012268 img loss 1.1724457740783691 img loss 1.1887937784194946 img loss 1.207830786705017 img loss 1.2074642181396484 img loss 1.1923789978027344 img loss 1.2525238990783691 img loss 1.1639971733093262 img loss 1.2118419408798218 img loss 1.1600383520126343 img loss 1.1549208164215088 img loss 1.1860580444335938 img loss 1.1815581321716309 img loss 1.2276475429534912 img loss 1.3060753345489502 img loss 1.1629680395126343 img loss 1.2865469455718994 img loss 1.218778133392334 img loss 1.1265649795532227 img loss 1.193389654159546 img loss 1.25899076461792 img loss 1.1601319313049316 img loss 1.1589101552963257 img loss 1.2076820135116577 img loss 1.1906414031982422 img loss 1.2426475286483765 img loss 1.1370291709899902 img loss 1.1636786460876465 img loss 1.2050740718841553 img loss 1.2310527563095093 img loss 1.1804344654083252 img loss 1.354354977607727 img loss 1.3097139596939087 img loss 1.1628345251083374 img loss 1.1606091260910034 img loss 1.2415382862091064 img loss 1.2086601257324219 img loss 1.1321877241134644 img loss 1.2960684299468994 img loss 1.2098207473754883 img loss 1.1919485330581665 img loss 1.2613388299942017 img loss 1.174626111984253 img loss 1.1970261335372925 img loss 1.2276846170425415 img loss 1.2318979501724243 img loss 1.1621112823486328 img loss 1.2540435791015625 img loss 1.2070778608322144 img loss 1.201761245727539 img loss 1.2188923358917236 img loss 1.2528281211853027 img loss 1.2289328575134277 img loss 1.2017723321914673 img loss 1.208885908126831 img loss 1.2330858707427979 img loss 1.1936602592468262 img loss 1.148226022720337 {'loss': 1.221, 'grad_norm': 0.22213460505008698, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.237108826637268 img loss 1.2530250549316406 img loss 1.1526622772216797 img loss 1.2464818954467773 img loss 1.2427737712860107 img loss 1.2513023614883423 img loss 1.3627636432647705 img loss 1.2481135129928589 img loss 1.2401434183120728 img loss 1.3092081546783447 img loss 1.2405283451080322 img loss 1.2447681427001953 img loss 1.2547416687011719 img loss 1.1887820959091187 img loss 1.332549810409546 img loss 1.2056598663330078 img loss 1.2157111167907715 img loss 1.2208664417266846 img loss 1.2437514066696167 img loss 1.197101354598999 img loss 1.22550368309021 img loss 1.3125427961349487 img loss 1.3404420614242554 img loss 1.1875395774841309 img loss 1.2295432090759277 img loss 1.2697410583496094 img loss 1.2050594091415405 img loss 1.2100857496261597 img loss 1.2182133197784424 img loss 1.2758002281188965 img loss 1.2590773105621338 img loss 1.273411750793457 img loss 1.283223032951355 img loss 1.2916014194488525 img loss 1.2933342456817627 img loss 1.322235345840454 img loss 1.184263825416565 img loss 1.249132752418518 img loss 1.2596168518066406 img loss 1.1579415798187256 img loss 1.2141697406768799 img loss 1.228708028793335 img loss 1.2270805835723877 img loss 1.2144367694854736 img loss 1.298100471496582 img loss 1.2733960151672363 img loss 1.2322078943252563 img loss 1.24333655834198 img loss 1.2407562732696533 img loss 1.1630244255065918 img loss 1.129574179649353 img loss 1.2269426584243774 img loss 1.2662560939788818 img loss 1.1114202737808228 img loss 1.3208935260772705 img loss 1.2824004888534546 img loss 1.2463607788085938 img loss 1.2289097309112549 img loss 1.4075026512145996 img loss 1.202521562576294 img loss 1.2860273122787476 img loss 1.257386565208435 img loss 1.2855356931686401 img loss 1.3214911222457886 img loss 1.2304915189743042 img loss 1.2246224880218506 img loss 1.2585787773132324 img loss 1.2797596454620361 img loss 1.243138074874878 img loss 1.3082643747329712 img loss 1.2041319608688354 img loss 1.265078067779541 img loss 1.281473159790039 img loss 1.2303880453109741 img loss 1.249415397644043 img loss 1.2354730367660522 img loss 1.3006365299224854 img loss 1.2836308479309082 img loss 1.2266606092453003 img loss 1.2017449140548706 img loss 1.2744486331939697 img loss 1.2404377460479736 img loss 1.2876429557800293 img loss 1.1975961923599243 img loss 1.351999044418335 img loss 1.266791582107544 img loss 1.1678539514541626 img loss 1.2740691900253296 img loss 1.2807483673095703 img loss 1.2527799606323242 img loss 1.2256510257720947 img loss 1.2342636585235596 img loss 1.290723443031311 img loss 1.2381083965301514 img loss 1.2231011390686035 img loss 1.2029110193252563 img loss 1.3060569763183594 img loss 1.3742660284042358 img loss 1.2237266302108765 img loss 1.2442315816879272 img loss 1.3782955408096313 img loss 1.2609373331069946 img loss 1.2760241031646729 img loss 1.2673258781433105 img loss 1.2461799383163452 img loss 1.2664955854415894 img loss 1.2863892316818237 img loss 1.3370118141174316 img loss 1.2276808023452759 img loss 1.2853707075119019 img loss 1.2163876295089722 img loss 1.2150064706802368 img loss 1.248046636581421 img loss 1.3149679899215698 img loss 1.2129390239715576 img loss 1.259194254875183 img loss 1.2683124542236328 img loss 1.1950949430465698 img loss 1.332797884941101 img loss 1.223029375076294 img loss 1.2478984594345093 img loss 1.1850639581680298 img loss 1.3073718547821045 img loss 1.225317358970642 img loss 1.3327168226242065 img loss 1.228355884552002 img loss 1.2479053735733032 img loss 1.2136915922164917 {'loss': 1.2526, 'grad_norm': 0.36516422033309937, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1638259887695312 img loss 1.1441738605499268 img loss 1.2460864782333374 img loss 1.2111109495162964 img loss 1.2351691722869873 img loss 1.183428168296814 img loss 1.1464359760284424 img loss 1.1108649969100952 img loss 1.2148418426513672 img loss 1.1951196193695068 img loss 1.2583081722259521 img loss 1.171515703201294 img loss 1.1509125232696533 img loss 1.1545292139053345 img loss 1.1767075061798096 img loss 1.1594839096069336 img loss 1.1882904767990112 img loss 1.2385332584381104 img loss 1.1301188468933105 img loss 1.1271578073501587 img loss 1.2196305990219116 img loss 1.1499693393707275 img loss 1.095613718032837 img loss 1.1880168914794922 img loss 1.2013747692108154 img loss 1.2738609313964844 img loss 1.1462106704711914 img loss 1.1961406469345093 img loss 1.2391471862792969 img loss 1.1513217687606812 img loss 1.1932168006896973 img loss 1.1602524518966675 img loss 1.1330879926681519 img loss 1.2735527753829956 img loss 1.3711845874786377 img loss 1.2529373168945312 img loss 1.3106341361999512 img loss 1.2786966562271118 img loss 1.1601632833480835 img loss 1.179317831993103 img loss 1.1635702848434448 img loss 1.1488492488861084 img loss 1.1948553323745728 img loss 1.2683871984481812 img loss 1.1741949319839478 img loss 1.1426115036010742 img loss 1.1676456928253174 img loss 1.2445703744888306 img loss 1.1987664699554443 img loss 1.1481319665908813 img loss 1.142303466796875 img loss 1.2674641609191895 img loss 1.1993646621704102 img loss 1.2347996234893799 img loss 1.2119868993759155 img loss 1.2421501874923706 img loss 1.1230425834655762 img loss 1.2180631160736084 img loss 1.2088874578475952 img loss 1.2043673992156982 img loss 1.1243451833724976 img loss 1.2119481563568115 img loss 1.2519032955169678 img loss 1.1836271286010742 img loss 1.1892640590667725 img loss 1.2592395544052124 img loss 1.2128918170928955 img loss 1.154478669166565 img loss 1.2132885456085205 img loss 1.1867378950119019 img loss 1.1267294883728027 img loss 1.1791834831237793 img loss 1.2224315404891968 img loss 1.1711643934249878 img loss 1.2205528020858765 img loss 1.180517554283142 img loss 1.1753939390182495 img loss 1.180677056312561 img loss 1.249541997909546 img loss 1.0430189371109009 img loss 1.2304437160491943 img loss 1.2500250339508057 img loss 1.2008533477783203 img loss 1.1813349723815918 img loss 1.2379875183105469 img loss 1.1771950721740723 img loss 1.2681968212127686 img loss 1.162107229232788 img loss 1.2391362190246582 img loss 1.1572041511535645 img loss 1.1136455535888672 img loss 1.2399966716766357 img loss 1.2550649642944336 img loss 1.124135971069336 img loss 1.2069242000579834 img loss 1.1384081840515137 img loss 1.2170318365097046 img loss 1.2235196828842163 img loss 1.1598634719848633 img loss 1.0953621864318848 img loss 1.2261968851089478 img loss 1.1570967435836792 img loss 1.2221097946166992 img loss 1.1209434270858765 img loss 1.2423226833343506 img loss 1.2745699882507324 img loss 1.170792818069458 img loss 1.2149757146835327 img loss 1.1944469213485718 img loss 1.175864815711975 img loss 1.1290339231491089 img loss 1.2135295867919922 img loss 1.1983369588851929 img loss 1.1615204811096191 img loss 1.1597628593444824 img loss 1.2292238473892212 img loss 1.284572958946228 img loss 1.2481273412704468 img loss 1.1163785457611084 img loss 1.1387027502059937 img loss 1.158087968826294 img loss 1.1670283079147339 img loss 1.230723261833191 img loss 1.2816036939620972 img loss 1.1792057752609253 img loss 1.1759777069091797 img loss 1.2309635877609253 img loss 1.2345103025436401 {'loss': 1.194, 'grad_norm': 0.4123062789440155, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.285339593887329 img loss 1.1527475118637085 img loss 1.179734468460083 img loss 1.2507567405700684 img loss 1.2192331552505493 img loss 1.1708701848983765 img loss 1.218250036239624 img loss 1.2604823112487793 img loss 1.1869235038757324 img loss 1.2230029106140137 img loss 1.2706012725830078 img loss 1.2056297063827515 img loss 1.2174739837646484img loss 1.2524504661560059 img loss 1.2381572723388672 img loss 1.261929988861084 img loss 1.2554155588150024 img loss 1.2318572998046875 img loss 1.2148382663726807 img loss 1.3005728721618652 img loss 1.228335976600647 img loss 1.2191059589385986 img loss 1.2056176662445068 img loss 1.1887905597686768 img loss 1.2439954280853271 img loss 1.3197201490402222 img loss 1.1596922874450684 img loss 1.3317208290100098 img loss 1.2043743133544922 img loss 1.2660444974899292 img loss 1.2423338890075684 img loss 1.1910923719406128 img loss 1.2242400646209717 img loss 1.2126343250274658 img loss 1.2115812301635742 img loss 1.183069109916687 img loss 1.2665966749191284 img loss 1.2767775058746338 img loss 1.2735874652862549 img loss 1.2771847248077393 img loss 1.2335585355758667 img loss 1.1787972450256348 img loss 1.238516092300415 img loss 1.2411112785339355 img loss 1.2222851514816284 img loss 1.150164008140564 img loss 1.2198365926742554 img loss 1.2110135555267334 img loss 1.2372804880142212 img loss 1.1559536457061768 img loss 1.2540314197540283 img loss 1.2642676830291748 img loss 1.2083511352539062 img loss 1.1941447257995605 img loss 1.1687812805175781 img loss 1.2216697931289673 img loss 1.291211724281311 img loss 1.205909013748169 img loss 1.187665581703186 img loss 1.2394709587097168 img loss 1.2749686241149902 img loss 1.1358256340026855 img loss 1.2992262840270996 img loss 1.2804274559020996 img loss 1.2197675704956055 img loss 1.1796526908874512 img loss 1.1894630193710327 img loss 1.1465851068496704 img loss 1.2328145503997803 img loss 1.194854736328125 img loss 1.3552143573760986 img loss 1.2223325967788696 img loss 1.1940017938613892img loss 1.1930021047592163 img loss 1.2396847009658813 img loss 1.1890485286712646 img loss 1.2457218170166016 img loss 1.245470404624939 img loss 1.2609903812408447 img loss 1.246409296989441 img loss 1.185133457183838 img loss 1.2241692543029785 img loss 1.185743808746338 img loss 1.2148100137710571 img loss 1.2134547233581543 img loss 1.1573877334594727 img loss 1.2805792093276978 img loss 1.199453353881836 img loss 1.206675410270691 img loss 1.2528947591781616 img loss 1.2501294612884521 img loss 1.266252875328064 img loss 1.2176979780197144 img loss 1.2314409017562866 img loss 1.214938998222351 img loss 1.2319865226745605 img loss 1.2659832239151 img loss 1.2185553312301636 img loss 1.2537800073623657 img loss 1.1901984214782715 img loss 1.243559718132019 img loss 1.1940504312515259 img loss 1.2453306913375854 img loss 1.254839301109314 img loss 1.2164438962936401 img loss 1.249261736869812 img loss 1.2124992609024048 img loss 1.2058762311935425 img loss 1.3189382553100586 img loss 1.2144241333007812 img loss 1.2282791137695312 img loss 1.1669738292694092 img loss 1.2021726369857788 img loss 1.2469600439071655 img loss 1.2449219226837158 img loss 1.2158534526824951 img loss 1.1707695722579956img loss 1.1838431358337402img loss 1.2256014347076416 img loss 1.3062875270843506img loss 1.1667989492416382 img loss 1.2055774927139282 img loss 1.3453494310379028 img loss 1.3007596731185913 img loss 1.2298362255096436 img loss 1.2344396114349365 img loss 1.2100170850753784 img loss 1.1943095922470093 {'loss': 1.2272, 'grad_norm': 0.2861577868461609, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2591098546981812 img loss 1.2102181911468506 img loss 1.1975040435791016 img loss 1.1560871601104736 img loss 1.1664141416549683 img loss 1.1427658796310425 img loss 1.2007509469985962 img loss 1.3085534572601318 img loss 1.2238415479660034 img loss 1.1773409843444824 img loss 1.1175895929336548 img loss 1.233292579650879 img loss 1.3221157789230347 img loss 1.1771539449691772 img loss 1.2740657329559326 img loss 1.2769041061401367 img loss 1.3211277723312378 img loss 1.1873689889907837 img loss 1.1533247232437134 img loss 1.200247049331665 img loss 1.2039973735809326 img loss 1.1951302289962769 img loss 1.2213704586029053 img loss 1.1778744459152222 img loss 1.228327751159668 img loss 1.1854684352874756 img loss 1.175663948059082 img loss 1.168281078338623 img loss 1.0449104309082031 img loss 1.2892464399337769 img loss 1.1651549339294434 img loss 1.1684904098510742 img loss 1.1732401847839355 img loss 1.1390460729599 img loss 1.2168896198272705 img loss 1.1674137115478516 img loss 1.2148187160491943 img loss 1.2892155647277832 img loss 1.0927265882492065 img loss 1.2359815835952759 img loss 1.1309144496917725 img loss 1.167091727256775 img loss 1.3100640773773193 img loss 1.3580071926116943 img loss 1.2378485202789307 img loss 1.1913533210754395 img loss 1.3202968835830688 img loss 1.2336584329605103 img loss 1.2012544870376587 img loss 1.1745693683624268 img loss 1.1805638074874878 img loss 1.204434871673584 img loss 1.3074129819869995 img loss 1.26666259765625 img loss 1.2098042964935303 img loss 1.3780429363250732 img loss 1.2399002313613892 img loss 1.174251914024353 img loss 1.369214415550232 img loss 1.1706628799438477 img loss 1.1954790353775024 img loss 1.2672793865203857 img loss 1.181715488433838 img loss 1.3034188747406006 img loss 1.2730212211608887 img loss 1.283132553100586 img loss 1.1403441429138184 img loss 1.1616275310516357 img loss 1.2721837759017944 img loss 1.1598515510559082 img loss 1.2387899160385132 img loss 1.1418120861053467 img loss 1.142051339149475img loss 1.242509126663208 img loss 1.341062307357788 img loss 1.2312490940093994 img loss 1.1259424686431885 img loss 1.2805581092834473 img loss 1.0966496467590332 img loss 1.2344810962677002 img loss 1.2366487979888916 img loss 1.2269657850265503 img loss 1.2100075483322144 img loss 1.2455086708068848 img loss 1.2622754573822021 img loss 1.18746817111969 img loss 1.217559576034546 img loss 1.1845264434814453 img loss 1.2261698246002197 img loss 1.1745556592941284 img loss 1.1996171474456787 img loss 1.2526507377624512 img loss 1.266961693763733 img loss 1.1584020853042603 img loss 1.2709839344024658 img loss 1.2367347478866577 img loss 1.161694049835205 img loss 1.2425333261489868 img loss 1.2578449249267578 img loss 1.1952106952667236 img loss 1.271904468536377 img loss 1.1632020473480225 img loss 1.1480236053466797 img loss 1.1859792470932007 img loss 1.2371931076049805 img loss 1.1555525064468384 img loss 1.260385513305664 img loss 1.222770094871521 img loss 1.215217113494873 img loss 1.2067267894744873 img loss 1.208412766456604 img loss 1.2433784008026123 img loss 1.1947234869003296 img loss 1.2173182964324951 img loss 1.2848870754241943 img loss 1.169681429862976 img loss 1.2822339534759521 img loss 1.1708087921142578 img loss 1.2440237998962402 img loss 1.2754647731781006 img loss 1.2455908060073853 img loss 1.2394813299179077 img loss 1.1891940832138062 img loss 1.2288578748703003 img loss 1.2257750034332275 img loss 1.2503981590270996 img loss 1.2344169616699219 img loss 1.1225943565368652 {'loss': 1.2165, 'grad_norm': 0.388581782579422, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1693825721740723 img loss 1.156868577003479 img loss 1.13017737865448 img loss 1.2060679197311401 img loss 1.2456473112106323 img loss 1.2116409540176392 img loss 1.1942307949066162 img loss 1.261502981185913 img loss 1.2284917831420898 img loss 1.2273911237716675 img loss 1.2471914291381836 img loss 1.2040144205093384 img loss 1.1830406188964844 img loss 1.2373462915420532 img loss 1.255547285079956 img loss 1.2246017456054688 img loss 1.164839506149292 img loss 1.1610546112060547 img loss 1.232832431793213 img loss 1.237596035003662 img loss 1.2051105499267578 img loss 1.1320995092391968 img loss 1.2642004489898682 img loss 1.2043333053588867 img loss 1.3731507062911987 img loss 1.3281242847442627 img loss 1.1586681604385376 img loss 1.186602234840393 img loss 1.1643322706222534 img loss 1.188591718673706 img loss 1.2219369411468506 img loss 1.173738718032837 img loss 1.2410587072372437 img loss 1.211615800857544 img loss 1.1641151905059814 img loss 1.2516419887542725 img loss 1.21963369846344 img loss 1.2046427726745605 img loss 1.254453182220459 img loss 1.2352981567382812 img loss 1.2011349201202393 img loss 1.2020801305770874 img loss 1.2426055669784546 img loss 1.191657543182373 img loss 1.249376654624939 img loss 1.1950632333755493 img loss 1.2283942699432373 img loss 1.2848018407821655 img loss 1.186166524887085 img loss 1.19058096408844 img loss 1.2507113218307495 img loss 1.1950433254241943 img loss 1.1007366180419922 img loss 1.2304939031600952 img loss 1.254982829093933 img loss 1.1811023950576782 img loss 1.2016977071762085 img loss 1.2208832502365112 img loss 1.1547940969467163img loss 1.1655418872833252 img loss 1.1707353591918945 img loss 1.1508930921554565 img loss 1.1623854637145996 img loss 1.2003498077392578 img loss 1.1945732831954956 img loss 1.1784188747406006 img loss 1.1501502990722656 img loss 1.2784652709960938 img loss 1.1907234191894531 img loss 1.2401618957519531 img loss 1.1497793197631836 img loss 1.2649582624435425 img loss 1.2188459634780884 img loss 1.2331466674804688 img loss 1.182706356048584 img loss 1.2194398641586304 img loss 1.1502504348754883 img loss 1.15928053855896 img loss 1.1809793710708618 img loss 1.2213789224624634 img loss 1.268106460571289 img loss 1.2545256614685059 img loss 1.2114273309707642 img loss 1.2848557233810425 img loss 1.2854641675949097 img loss 1.2374235391616821 img loss 1.191862940788269 img loss 1.2555299997329712 img loss 1.1423553228378296 img loss 1.326014757156372 img loss 1.1884350776672363 img loss 1.1753343343734741 img loss 1.1936168670654297 img loss 1.2581689357757568 img loss 1.1465059518814087 img loss 1.2643914222717285 img loss 1.2223628759384155 img loss 1.1368354558944702 img loss 1.2234129905700684 img loss 1.2363296747207642 img loss 1.3029000759124756 img loss 1.1290944814682007 img loss 1.1824778318405151 img loss 1.1617592573165894 img loss 1.2264318466186523 img loss 1.2851871252059937 img loss 1.1931732892990112 img loss 1.157823085784912 img loss 1.2836682796478271 img loss 1.2508233785629272 img loss 1.2618043422698975 img loss 1.1682417392730713 img loss 1.232107162475586 img loss 1.2436832189559937 img loss 1.232743740081787 img loss 1.244585633277893 img loss 1.1623611450195312 img loss 1.1815128326416016 img loss 1.170768141746521 img loss 1.3207018375396729 img loss 1.2147843837738037 img loss 1.1506421566009521 img loss 1.238650918006897 img loss 1.2351804971694946 img loss 1.1600958108901978 img loss 1.18084716796875 img loss 1.1682652235031128 img loss 1.1988786458969116 {'loss': 1.2112, 'grad_norm': 0.3107190728187561, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4779759645462036 img loss 1.4126001596450806 img loss 1.3644957542419434 img loss 1.3406506776809692 img loss 1.3011627197265625 img loss 1.4134601354599 img loss 1.292589783668518 img loss 1.4555760622024536 img loss 1.4100396633148193 img loss 1.4676531553268433 img loss 1.4456679821014404 img loss 1.3701022863388062 img loss 1.3541396856307983 img loss 1.367990255355835 img loss 1.3856149911880493 img loss 1.331291675567627 img loss 1.4371649026870728 img loss 1.372503638267517 img loss 1.3571017980575562 img loss 1.379565715789795 img loss 1.288467288017273 img loss 1.376046061515808 img loss 1.5184152126312256 img loss 1.321474552154541 img loss 1.3823771476745605 img loss 1.3897067308425903 img loss 1.4006329774856567 img loss 1.4832879304885864 img loss 1.415725827217102 img loss 1.3410042524337769 img loss 1.2576875686645508 img loss 1.5061677694320679 img loss 1.4131876230239868 img loss 1.3794419765472412 img loss 1.3353755474090576 img loss 1.3625704050064087 img loss 1.4384779930114746 img loss 1.5634685754776 img loss 1.4494316577911377 img loss 1.3056261539459229 img loss 1.462735652923584 img loss 1.4359450340270996 img loss 1.336366891860962 img loss 1.4547590017318726 img loss 1.4897409677505493 img loss 1.4447613954544067 img loss 1.4119563102722168 img loss 1.515236258506775 img loss 1.361685037612915 img loss 1.3525556325912476 img loss 1.4069846868515015 img loss 1.3507252931594849 img loss 1.3817449808120728 img loss 1.4066072702407837 img loss 1.4088749885559082 img loss 1.497024655342102 img loss 1.38353431224823 img loss 1.3727993965148926 img loss 1.3581122159957886 img loss 1.3854261636734009 img loss 1.4131057262420654 img loss 1.3874439001083374 img loss 1.3934310674667358 img loss 1.4374204874038696 img loss 1.4265261888504028 img loss 1.367774248123169 img loss 1.4312368631362915 img loss 1.3367096185684204 img loss 1.3856251239776611 img loss 1.4528299570083618 img loss 1.4037548303604126 img loss 1.4726824760437012 img loss 1.4434250593185425 img loss 1.332916259765625 img loss 1.4195295572280884 img loss 1.3990026712417603 img loss 1.4291898012161255 img loss 1.3442620038986206 img loss 1.3209015130996704 img loss 1.4075084924697876 img loss 1.4927709102630615 img loss 1.3851161003112793 img loss 1.601061224937439 img loss 1.4233711957931519 img loss 1.4001072645187378 img loss 1.3439127206802368 img loss 1.313010811805725img loss 1.333703875541687 img loss 1.2521847486495972 img loss 1.370879054069519 img loss 1.3829972743988037 img loss 1.4353331327438354 img loss 1.3365967273712158 img loss 1.3805973529815674 img loss 1.333520770072937 img loss 1.372530221939087 img loss 1.3342190980911255 img loss 1.3740233182907104 img loss 1.2661535739898682 img loss 1.2172759771347046 img loss 1.3997806310653687 img loss 1.4882452487945557 img loss 1.3698831796646118 img loss 1.2933317422866821 img loss 1.3701924085617065 img loss 1.416764736175537 img loss 1.4010452032089233 img loss 1.4865391254425049 img loss 1.3833308219909668 img loss 1.3304954767227173 img loss 1.2731914520263672 img loss 1.3536757230758667 img loss 1.4154454469680786 img loss 1.3700851202011108 img loss 1.2549508810043335 img loss 1.3290774822235107 img loss 1.4354993104934692 img loss 1.306322455406189 img loss 1.337390661239624 img loss 1.454606533050537 img loss 1.2304434776306152 img loss 1.3334801197052002 img loss 1.3886929750442505 img loss 1.4118199348449707 img loss 1.3527735471725464 img loss 1.452928900718689 img loss 1.3767845630645752 img loss 1.4550156593322754 {'loss': 1.3884, 'grad_norm': 0.3796943724155426, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2359627485275269 img loss 1.261073350906372 img loss 1.2127735614776611 img loss 1.2223765850067139 img loss 1.237526297569275 img loss 1.2890571355819702 img loss 1.2484182119369507 img loss 1.2663311958312988 img loss 1.237553358078003 img loss 1.264764428138733 img loss 1.2477514743804932 img loss 1.2266836166381836 img loss 1.2540256977081299 img loss 1.243531584739685 img loss 1.2469894886016846 img loss 1.2138160467147827 img loss 1.284228801727295 img loss 1.224267601966858 img loss 1.2697776556015015 img loss 1.201930284500122 img loss 1.2300142049789429 img loss 1.2057929039001465 img loss 1.2066080570220947 img loss 1.193208932876587 img loss 1.2227051258087158 img loss 1.2877211570739746 img loss 1.254725456237793 img loss 1.175433874130249 img loss 1.2062643766403198 img loss 1.1848071813583374 img loss 1.1605656147003174 img loss 1.301260232925415 img loss 1.258838415145874 img loss 1.1614303588867188 img loss 1.217431902885437 img loss 1.2277857065200806 img loss 1.2128437757492065 img loss 1.196689486503601 img loss 1.2723901271820068 img loss 1.2361681461334229 img loss 1.2107170820236206 img loss 1.2389544248580933 img loss 1.28300940990448 img loss 1.2350883483886719 img loss 1.1865482330322266 img loss 1.2023109197616577 img loss 1.209755778312683 img loss 1.1907894611358643 img loss 1.1658903360366821 img loss 1.2282460927963257 img loss 1.2129833698272705 img loss 1.150123119354248 img loss 1.249427080154419 img loss 1.2263412475585938 img loss 1.162397027015686 img loss 1.2107988595962524 img loss 1.1948851346969604 img loss 1.1823704242706299 img loss 1.2447032928466797 img loss 1.2259910106658936 img loss 1.33804190158844 img loss 1.2300145626068115 img loss 1.1831176280975342 img loss 1.180903434753418 img loss 1.266920566558838 img loss 1.2662675380706787 img loss 1.2894115447998047 img loss 1.195309042930603 img loss 1.2038196325302124 img loss 1.1980905532836914 img loss 1.2343814373016357 img loss 1.1457356214523315 img loss 1.202705979347229 img loss 1.2488958835601807 img loss 1.2991883754730225 img loss 1.2604517936706543 img loss 1.2646598815917969 img loss 1.2700843811035156 img loss 1.2201709747314453 img loss 1.1911935806274414 img loss 1.2336193323135376 img loss 1.2104012966156006 img loss 1.1749355792999268 img loss 1.2269967794418335 img loss 1.2467831373214722 img loss 1.2689449787139893 img loss 1.2587199211120605 img loss 1.2784316539764404 img loss 1.2809680700302124 img loss 1.2499607801437378 img loss 1.1570451259613037 img loss 1.2118736505508423 img loss 1.1659598350524902 img loss 1.2029412984848022 img loss 1.2098333835601807 img loss 1.2236038446426392 img loss 1.1836436986923218 img loss 1.2396892309188843 img loss 1.2308183908462524 img loss 1.1963646411895752 img loss 1.289009928703308 img loss 1.1818609237670898 img loss 1.224351167678833 img loss 1.2408355474472046 img loss 1.2412731647491455 img loss 1.2665975093841553 img loss 1.2084228992462158 img loss 1.2128992080688477 img loss 1.1769726276397705 img loss 1.2085797786712646 img loss 1.2250773906707764 img loss 1.2087675333023071 img loss 1.2239997386932373 img loss 1.1430792808532715 img loss 1.2808674573898315 img loss 1.2585734128952026 img loss 1.1970922946929932 img loss 1.272325873374939 img loss 1.2689322233200073 img loss 1.2068111896514893 img loss 1.2037136554718018 img loss 1.194815993309021 img loss 1.210532546043396 img loss 1.2176015377044678 img loss 1.2083168029785156 img loss 1.2519276142120361 img loss 1.1902275085449219 img loss 1.3168362379074097 {'loss': 1.2264, 'grad_norm': 0.3354109823703766, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1921576261520386 img loss 1.2080310583114624 img loss 1.206104040145874 img loss 1.223285436630249 img loss 1.1926294565200806 img loss 1.2528414726257324 img loss 1.238483190536499 img loss 1.2288639545440674 img loss 1.206528663635254 img loss 1.202785849571228 img loss 1.1770223379135132 img loss 1.2373557090759277 img loss 1.1594233512878418 img loss 1.2043654918670654 img loss 1.2321922779083252 img loss 1.2088321447372437img loss 1.188153624534607 img loss 1.1502631902694702 img loss 1.1867918968200684 img loss 1.2113323211669922 img loss 1.2084850072860718 img loss 1.1843756437301636 img loss 1.2269216775894165 img loss 1.173775553703308 img loss 1.2053847312927246 img loss 1.2124364376068115 img loss 1.2186847925186157 img loss 1.1803247928619385 img loss 1.2230767011642456 img loss 1.1600254774093628 img loss 1.2605656385421753 img loss 1.1834726333618164 img loss 1.2272675037384033 img loss 1.1739614009857178 img loss 1.2516599893569946 img loss 1.2360336780548096 img loss 1.2031673192977905 img loss 1.1746158599853516 img loss 1.2210094928741455 img loss 1.207916259765625 img loss 1.165475845336914 img loss 1.1913883686065674 img loss 1.2864937782287598 img loss 1.2127041816711426 img loss 1.241274118423462 img loss 1.1849572658538818 img loss 1.194632887840271 img loss 1.2244489192962646 img loss 1.222527027130127 img loss 1.1832560300827026 img loss 1.219103455543518 img loss 1.1850183010101318 img loss 1.2076324224472046 img loss 1.164438009262085 img loss 1.2797329425811768 img loss 1.200711965560913 img loss 1.1291370391845703 img loss 1.2167023420333862 img loss 1.1951594352722168 img loss 1.18693208694458 img loss 1.2484287023544312 img loss 1.2241369485855103 img loss 1.198268175125122 img loss 1.2032465934753418 img loss 1.1539151668548584 img loss 1.1922264099121094 img loss 1.205758810043335 img loss 1.253659963607788 img loss 1.1719410419464111 img loss 1.188515305519104 img loss 1.1621140241622925 img loss 1.2013806104660034 img loss 1.2483850717544556 img loss 1.2131773233413696 img loss 1.2135437726974487 img loss 1.2255420684814453 img loss 1.219253420829773 img loss 1.255800724029541 img loss 1.1956013441085815 img loss 1.2174453735351562 img loss 1.2001864910125732 img loss 1.2552646398544312 img loss 1.2095259428024292 img loss 1.255946159362793 img loss 1.2069934606552124 img loss 1.2062430381774902 img loss 1.2355419397354126 img loss 1.1618314981460571 img loss 1.2204731702804565 img loss 1.2035719156265259 img loss 1.1625611782073975 img loss 1.1933265924453735 img loss 1.2335941791534424 img loss 1.2138664722442627 img loss 1.182008147239685 img loss 1.214232325553894 img loss 1.20304274559021 img loss 1.2367267608642578 img loss 1.2525736093521118 img loss 1.2056684494018555 img loss 1.1736561059951782 img loss 1.2529199123382568 img loss 1.1817184686660767 img loss 1.1978027820587158 img loss 1.1578108072280884 img loss 1.232252597808838 img loss 1.1706093549728394 img loss 1.1791046857833862 img loss 1.1641815900802612 img loss 1.148689866065979 img loss 1.1785693168640137 img loss 1.1657530069351196 img loss 1.2579542398452759 img loss 1.1820415258407593 img loss 1.1620508432388306 img loss 1.2486896514892578 img loss 1.1927753686904907 img loss 1.1837209463119507 img loss 1.2132422924041748 img loss 1.2276204824447632 img loss 1.2049853801727295 img loss 1.2824090719223022 img loss 1.15622878074646 img loss 1.2028369903564453 img loss 1.1663427352905273 img loss 1.2017309665679932 img loss 1.216133952140808 img loss 1.1537021398544312 {'loss': 1.2049, 'grad_norm': 0.25257980823516846, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5164506435394287 img loss 1.3453164100646973 img loss 1.3294702768325806 img loss 1.4057810306549072 img loss 1.4511548280715942 img loss 1.25486159324646 img loss 1.459002137184143 img loss 1.4006158113479614 img loss 1.365802526473999 img loss 1.4608266353607178 img loss 1.3452574014663696 img loss 1.3782241344451904 img loss 1.3891605138778687 img loss 1.4796764850616455 img loss 1.5083659887313843 img loss 1.4228532314300537 img loss 1.4393467903137207 img loss 1.3149818181991577 img loss 1.4516972303390503 img loss 1.3577570915222168 img loss 1.5663548707962036 img loss 1.4796522855758667 img loss 1.341224193572998 img loss 1.4275628328323364 img loss 1.4169131517410278 img loss 1.4633558988571167 img loss 1.507569432258606 img loss 1.4951483011245728 img loss 1.4731401205062866 img loss 1.3604578971862793 img loss 1.5195165872573853 img loss 1.348131537437439 img loss 1.3742728233337402 img loss 1.5110112428665161 img loss 1.552917718887329 img loss 1.3349659442901611 img loss 1.4264987707138062 img loss 1.4987342357635498 img loss 1.5401233434677124 img loss 1.522244930267334 img loss 1.3174517154693604 img loss 1.4872229099273682 img loss 1.4819903373718262 img loss 1.4576629400253296 img loss 1.4095669984817505 img loss 1.5080063343048096 img loss 1.3772711753845215 img loss 1.3966127634048462 img loss 1.454659104347229 img loss 1.480515956878662 img loss 1.3192392587661743 img loss 1.347226858139038 img loss 1.5627492666244507 img loss 1.3694838285446167 img loss 1.569415807723999 img loss 1.3413549661636353 img loss 1.3757121562957764 img loss 1.3972171545028687 img loss 1.3688093423843384 img loss 1.4253238439559937 img loss 1.4893730878829956 img loss 1.449686884880066 img loss 1.5415364503860474 img loss 1.463762879371643 img loss 1.3766249418258667 img loss 1.4078987836837769 img loss 1.3218964338302612 img loss 1.2481281757354736 img loss 1.3527506589889526 img loss 1.2598450183868408 img loss 1.456536054611206 img loss 1.4759809970855713 img loss 1.422338604927063 img loss 1.4369477033615112img loss 1.3840022087097168 img loss 1.4679551124572754 img loss 1.3797181844711304 img loss 1.4742043018341064 img loss 1.5152548551559448 img loss 1.606247067451477 img loss 1.4981135129928589 img loss 1.3856425285339355 img loss 1.3163564205169678 img loss 1.4240704774856567 img loss 1.4360765218734741 img loss 1.3881630897521973 img loss 1.374705195426941 img loss 1.3905655145645142 img loss 1.4937796592712402 img loss 1.4274917840957642 img loss 1.516141653060913 img loss 1.3967615365982056 img loss 1.446317434310913 img loss 1.375974416732788 img loss 1.492064118385315 img loss 1.4904358386993408 img loss 1.456429123878479 img loss 1.3985694646835327 img loss 1.4136595726013184 img loss 1.3412688970565796 img loss 1.4510791301727295 img loss 1.3469549417495728 img loss 1.4126173257827759 img loss 1.3636791706085205 img loss 1.5358612537384033 img loss 1.3153959512710571 img loss 1.3074499368667603 img loss 1.4283581972122192 img loss 1.4048677682876587 img loss 1.4780985116958618 img loss 1.4143952131271362 img loss 1.51176917552948 img loss 1.4478248357772827 img loss 1.380248785018921 img loss 1.5086537599563599 img loss 1.5185081958770752 img loss 1.3743517398834229 img loss 1.391446828842163 img loss 1.4568272829055786 img loss 1.4725167751312256 img loss 1.5509979724884033 img loss 1.546395182609558 img loss 1.3784699440002441 img loss 1.358005166053772 img loss 1.380098819732666 img loss 1.4288041591644287 img loss 1.3674134016036987 img loss 1.4445041418075562 {'loss': 1.427, 'grad_norm': 0.41114795207977295, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1784286499023438 img loss 1.274766206741333 img loss 1.2592881917953491 img loss 1.1553257703781128 img loss 1.1859997510910034 img loss 1.258453607559204 img loss 1.1544427871704102 img loss 1.2294719219207764 img loss 1.4096252918243408 img loss 1.2164252996444702 img loss 1.1604126691818237 img loss 1.2506319284439087 img loss 1.1899802684783936 img loss 1.183266520500183 img loss 1.2786142826080322 img loss 1.2740278244018555 img loss 1.2481839656829834 img loss 1.1958328485488892 img loss 1.1672887802124023 img loss 1.2328932285308838 img loss 1.207979440689087 img loss 1.2046504020690918 img loss 1.240035057067871 img loss 1.1857361793518066 img loss 1.2406833171844482 img loss 1.1882997751235962 img loss 1.2720081806182861 img loss 1.1777548789978027 img loss 1.1243847608566284 img loss 1.238050937652588 img loss 1.1754553318023682 img loss 1.1919087171554565 img loss 1.1801578998565674 img loss 1.2777107954025269 img loss 1.2034432888031006 img loss 1.172702670097351 img loss 1.1848008632659912 img loss 1.1309583187103271 img loss 1.1738651990890503 img loss 1.1266647577285767 img loss 1.2466118335723877 img loss 1.2770588397979736 img loss 1.209704041481018 img loss 1.2159004211425781 img loss 1.2190274000167847 img loss 1.2275400161743164 img loss 1.227381944656372 img loss 1.033738613128662 img loss 1.2986465692520142 img loss 1.1927845478057861 img loss 1.3195853233337402 img loss 1.2428139448165894 img loss 1.2312246561050415 img loss 1.364164113998413 img loss 1.2418532371520996 img loss 1.131528377532959 img loss 1.1925392150878906 img loss 1.1284782886505127 img loss 1.1945858001708984 img loss 1.1900118589401245 img loss 1.234615683555603 img loss 1.2537952661514282 img loss 1.1989264488220215 img loss 1.103743076324463 img loss 1.343239188194275 img loss 1.1532399654388428 img loss 1.1945445537567139 img loss 1.2767337560653687 img loss 1.2163994312286377 img loss 1.201778769493103 img loss 1.1940628290176392 img loss 1.2009357213974 img loss 1.2200015783309937 img loss 1.1609071493148804 img loss 1.3384296894073486 img loss 1.2269121408462524 img loss 1.2047348022460938 img loss 1.2341493368148804 img loss 1.2348542213439941 img loss 1.2649071216583252 img loss 1.271466851234436 img loss 1.2721279859542847 img loss 1.298261046409607 img loss 1.3183391094207764 img loss 1.2546519041061401 img loss 1.2532347440719604 img loss 1.2654074430465698 img loss 1.1595925092697144 img loss 1.1993681192398071 img loss 1.2970279455184937 img loss 1.2394845485687256 img loss 1.2077784538269043 img loss 1.211972713470459 img loss 1.2171282768249512 img loss 1.2641804218292236 img loss 1.2657749652862549 img loss 1.274774432182312 img loss 1.1971888542175293 img loss 1.1582895517349243 img loss 1.156005620956421 img loss 1.1699053049087524 img loss 1.2151844501495361 img loss 1.1818088293075562 img loss 1.2257782220840454 img loss 1.2025642395019531 img loss 1.3108125925064087 img loss 1.214820146560669 img loss 1.2111225128173828 img loss 1.2182916402816772 img loss 1.3182686567306519 img loss 1.1922450065612793 img loss 1.1713805198669434 img loss 1.1933273077011108 img loss 1.213043212890625 img loss 1.185662865638733 img loss 1.1600375175476074 img loss 1.1815929412841797 img loss 1.144062876701355 img loss 1.233467698097229 img loss 1.1886032819747925 img loss 1.2319186925888062 img loss 1.1989359855651855 img loss 1.1242047548294067 img loss 1.1746586561203003 img loss 1.1639423370361328 img loss 1.248716950416565 img loss 1.2084083557128906 img loss 1.2109400033950806 {'loss': 1.2166, 'grad_norm': 0.4854162633419037, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.233225703239441 img loss 1.3538479804992676 img loss 1.1633682250976562 img loss 1.131363868713379 img loss 1.195543885231018 img loss 1.2164380550384521 img loss 1.2790100574493408 img loss 1.2303091287612915 img loss 1.1525821685791016 img loss 1.1576406955718994 img loss 1.2142386436462402 img loss 1.270563006401062 img loss 1.219817876815796 img loss 1.2439666986465454 img loss 1.1707919836044312 img loss 1.1253008842468262 img loss 1.219905138015747 img loss 1.1453683376312256 img loss 1.2143933773040771 img loss 1.2061506509780884 img loss 1.249619483947754 img loss 1.2591607570648193 img loss 1.1835646629333496 img loss 1.267533540725708 img loss 1.2047357559204102 img loss 1.240761637687683 img loss 1.250195026397705 img loss 1.179978847503662 img loss 1.2746433019638062 img loss 1.1737306118011475 img loss 1.155519962310791 img loss 1.2495718002319336 img loss 1.1962926387786865 img loss 1.2111470699310303 img loss 1.217888355255127 img loss 1.2322953939437866 img loss 1.1729437112808228 img loss 1.2527296543121338 img loss 1.2394592761993408 img loss 1.3167661428451538 img loss 1.2710041999816895 img loss 1.2502943277359009 img loss 1.203936219215393 img loss 1.176500678062439 img loss 1.2141231298446655 img loss 1.1518421173095703 img loss 1.2074202299118042 img loss 1.260370135307312 img loss 1.1792484521865845 img loss 1.1524078845977783 img loss 1.3160450458526611 img loss 1.2082359790802002 img loss 1.1899060010910034 img loss 1.173083782196045 img loss 1.207213282585144 img loss 1.2181850671768188 img loss 1.2298409938812256 img loss 1.2170394659042358 img loss 1.145448923110962 img loss 1.1616451740264893 img loss 1.248044729232788 img loss 1.159913420677185 img loss 1.1794190406799316 img loss 1.1170120239257812 img loss 1.2349557876586914 img loss 1.1976656913757324 img loss 1.2495282888412476 img loss 1.1886574029922485 img loss 1.2384519577026367 img loss 1.2036138772964478 img loss 1.2350672483444214 img loss 1.243341088294983 img loss 1.16628897190094 img loss 1.3427797555923462 img loss 1.1938836574554443 img loss 1.2441589832305908 img loss 1.1977508068084717 img loss 1.2056010961532593 img loss 1.2262617349624634 img loss 1.1187902688980103 img loss 1.1603269577026367 img loss 1.1767160892486572 img loss 1.218709945678711 img loss 1.2696406841278076 img loss 1.2403665781021118 img loss 1.308088779449463 img loss 1.258617877960205 img loss 1.2221481800079346 img loss 1.1275831460952759 img loss 1.1968992948532104 img loss 1.1560704708099365 img loss 1.2816742658615112 img loss 1.1201319694519043 img loss 1.2517518997192383 img loss 1.2944495677947998 img loss 1.1964983940124512 img loss 1.1233587265014648 img loss 1.1852449178695679 img loss 1.2909815311431885 img loss 1.152358889579773 img loss 1.19443678855896 img loss 1.165346622467041 img loss 1.2298691272735596 img loss 1.2277377843856812 img loss 1.2398064136505127 img loss 1.1611933708190918 img loss 1.150093913078308 img loss 1.2448418140411377 img loss 1.185239553451538 img loss 1.274916648864746 img loss 1.1257197856903076 img loss 1.153296947479248 img loss 1.1658045053482056 img loss 1.1970888376235962 img loss 1.1764748096466064 img loss 1.147608995437622 img loss 1.2208099365234375 img loss 1.2727925777435303 img loss 1.2123944759368896 img loss 1.1888058185577393 img loss 1.2415425777435303 img loss 1.2503505945205688 img loss 1.2407804727554321 img loss 1.1700868606567383 img loss 1.1915276050567627 img loss 1.201366662979126 img loss 1.26535964012146 img loss 1.1506963968276978 {'loss': 1.21, 'grad_norm': 0.3153417110443115, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.7192065715789795 img loss 1.6976951360702515 img loss 1.7472565174102783 img loss 1.4716131687164307 img loss 1.7474466562271118 img loss 1.5995460748672485 img loss 1.7048723697662354 img loss 1.6157020330429077 img loss 1.7618833780288696 img loss 1.7265467643737793 img loss 1.6393619775772095 img loss 1.5882540941238403 img loss 1.6475237607955933 img loss 1.4803001880645752 img loss 1.580880045890808 img loss 1.6483067274093628 img loss 1.7594529390335083 img loss 1.6773205995559692 img loss 1.6108477115631104 img loss 1.434658169746399 img loss 1.5912212133407593 img loss 1.6105808019638062 img loss 1.6794041395187378 img loss 1.6798012256622314 img loss 1.626287817955017 img loss 1.5636770725250244 img loss 1.7767372131347656 img loss 1.819706916809082 img loss 1.6493394374847412 img loss 1.7203857898712158 img loss 1.6606794595718384 img loss 1.777375340461731 img loss 1.6567528247833252 img loss 1.543493390083313 img loss 1.6743724346160889 img loss 1.6597603559494019 img loss 1.559080719947815 img loss 1.473577618598938 img loss 1.7421494722366333 img loss 1.7988990545272827 img loss 1.6561540365219116 img loss 1.5817924737930298 img loss 1.6189621686935425 img loss 1.7311831712722778 img loss 1.4700658321380615 img loss 1.679876685142517 img loss 1.7867157459259033 img loss 1.6256262063980103 img loss 1.6988707780838013 img loss 1.6588771343231201 img loss 1.4582875967025757 img loss 1.563665747642517 img loss 1.553533911705017 img loss 1.5075663328170776 img loss 1.5834219455718994 img loss 1.5810027122497559 img loss 1.362787127494812 img loss 1.7149899005889893 img loss 1.6647428274154663 img loss 1.6763051748275757 img loss 1.7163549661636353 img loss 1.7392933368682861 img loss 1.5456414222717285 img loss 1.5890814065933228 img loss 1.7397693395614624 img loss 1.7044780254364014 img loss 1.6788822412490845 img loss 1.3928669691085815 img loss 1.6087863445281982 img loss 1.6832548379898071 img loss 1.600574016571045 img loss 1.796546459197998 img loss 1.5726532936096191 img loss 1.7401317358016968 img loss 1.8477474451065063 img loss 1.3645848035812378 img loss 1.6469365358352661 img loss 1.6658445596694946 img loss 1.68075430393219 img loss 1.7513294219970703 img loss 1.6237233877182007 img loss 1.4426770210266113 img loss 1.8054944276809692 img loss 1.6995259523391724 img loss 1.5524216890335083 img loss 1.5783029794692993 img loss 1.8509645462036133 img loss 1.619260549545288 img loss 1.5665109157562256img loss 1.7138513326644897 img loss 1.544848084449768 img loss 1.7886099815368652 img loss 1.4409304857254028 img loss 1.775040626525879 img loss 1.8294779062271118 img loss 1.6599915027618408 img loss 1.608432412147522 img loss 1.6140446662902832 img loss 1.6426489353179932 img loss 1.5092700719833374 img loss 1.6459797620773315 img loss 1.7091443538665771 img loss 1.5168365240097046 img loss 1.77535879611969 img loss 1.6291371583938599 img loss 1.6642720699310303 img loss 1.757075548171997 img loss 1.4608376026153564 img loss 1.5816296339035034 img loss 1.5816924571990967 img loss 1.5439850091934204 img loss 1.741391658782959 img loss 1.783042311668396 img loss 1.8413729667663574 img loss 1.687760829925537 img loss 1.7655107975006104 img loss 1.7008057832717896 img loss 1.7088507413864136 img loss 1.8205283880233765 img loss 1.7234052419662476 img loss 1.6316502094268799 img loss 1.7731165885925293 img loss 1.7012702226638794 img loss 1.518500804901123 img loss 1.6535784006118774 img loss 1.5658265352249146 img loss 1.7069014310836792 img loss 1.664081335067749 {'loss': 1.6491, 'grad_norm': 0.5188376307487488, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1362228393554688 img loss 1.1926350593566895 img loss 1.2020481824874878 img loss 1.1939613819122314 img loss 1.1578161716461182 img loss 1.1160672903060913 img loss 1.2383365631103516 img loss 1.2388889789581299 img loss 1.1519743204116821 img loss 1.1414802074432373 img loss 1.1271922588348389 img loss 1.2392213344573975 img loss 1.2325845956802368 img loss 1.289957046508789 img loss 1.195346474647522 img loss 1.260838270187378 img loss 1.2803475856781006 img loss 1.2415698766708374 img loss 1.188609004020691 img loss 1.2945829629898071 img loss 1.2396595478057861 img loss 1.2052466869354248 img loss 1.214245080947876 img loss 1.2236531972885132 img loss 1.2498825788497925 img loss 1.2204513549804688 img loss 1.1630523204803467 img loss 1.2573494911193848 img loss 1.2382431030273438 img loss 1.136326789855957 img loss 1.2220776081085205 img loss 1.2136324644088745 img loss 1.1862705945968628 img loss 1.1579334735870361 img loss 1.2878941297531128 img loss 1.1839885711669922 img loss 1.2674822807312012 img loss 1.2347720861434937 img loss 1.2571451663970947 img loss 1.2258967161178589 img loss 1.1535274982452393 img loss 1.276820182800293 img loss 1.2000070810317993 img loss 1.1893452405929565 img loss 1.1296919584274292 img loss 1.1864955425262451 img loss 1.240004301071167 img loss 1.161063551902771 img loss 1.1971051692962646 img loss 1.2422149181365967 img loss 1.2598398923873901 img loss 1.256142020225525 img loss 1.1287567615509033 img loss 1.226470708847046 img loss 1.21086585521698 img loss 1.253788709640503 img loss 1.2091107368469238 img loss 1.1754708290100098 img loss 1.212827205657959 img loss 1.170386791229248 img loss 1.1489334106445312 img loss 1.0997045040130615 img loss 1.224618911743164 img loss 1.10841965675354 img loss 1.176883339881897 img loss 1.1883443593978882 img loss 1.1960681676864624 img loss 1.2237863540649414 img loss 1.226946473121643 img loss 1.1617741584777832 img loss 1.254677653312683 img loss 1.15792977809906 img loss 1.2183306217193604 img loss 1.2381997108459473 img loss 1.1985052824020386 img loss 1.1678961515426636 img loss 1.25308096408844 img loss 1.270377516746521 img loss 1.207787275314331 img loss 1.1889631748199463 img loss 1.0973889827728271 img loss 1.3151447772979736 img loss 1.1893771886825562 img loss 1.2497096061706543 img loss 1.183800220489502 img loss 1.1821154356002808 img loss 1.1052149534225464 img loss 1.2011905908584595 img loss 1.224829912185669 img loss 1.3032993078231812 img loss 1.2221819162368774 img loss 1.199124813079834 img loss 1.1674846410751343 img loss 1.1900990009307861 img loss 1.2106512784957886 img loss 1.1667908430099487 img loss 1.2520842552185059 img loss 1.272922158241272 img loss 1.2684882879257202 img loss 1.2321174144744873 img loss 1.258385419845581 img loss 1.2591090202331543 img loss 1.1605488061904907 img loss 1.1645407676696777 img loss 1.1887682676315308 img loss 1.2158451080322266 img loss 1.282607913017273 img loss 1.2075706720352173 img loss 1.2237595319747925 img loss 1.3008344173431396 img loss 1.175059199333191 img loss 1.2159713506698608 img loss 1.2097638845443726 img loss 1.2156963348388672 img loss 1.2249974012374878 img loss 1.2128605842590332 img loss 1.1092214584350586 img loss 1.1934654712677002 img loss 1.1321057081222534 img loss 1.1192742586135864 img loss 1.3031013011932373 img loss 1.1982777118682861 img loss 1.3160218000411987 img loss 1.2923545837402344 img loss 1.165716528892517 img loss 1.2090153694152832 img loss 1.233762502670288 img loss 1.1802375316619873 {'loss': 1.2086, 'grad_norm': 0.3541688323020935, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6966801881790161 img loss 1.6553455591201782 img loss 1.5491832494735718 img loss 1.6389981508255005 img loss 1.6637333631515503 img loss 1.5919982194900513 img loss 1.5805041790008545 img loss 1.6647210121154785 img loss 1.4816190004348755 img loss 1.5056016445159912 img loss 1.6629140377044678 img loss 1.7120519876480103 img loss 1.6791402101516724 img loss 1.5505168437957764 img loss 1.592294454574585 img loss 1.5759435892105103 img loss 1.49001944065094 img loss 1.6657763719558716 img loss 1.7344876527786255 img loss 1.640788197517395 img loss 1.584227442741394 img loss 1.5196939706802368 img loss 1.49666166305542 img loss 1.7696975469589233 img loss 1.4821527004241943 img loss 1.735856294631958 img loss 1.5020142793655396 img loss 1.5450085401535034 img loss 1.6993958950042725 img loss 1.6895545721054077 img loss 1.7760564088821411 img loss 1.4761980772018433 img loss 1.5502015352249146 img loss 1.640705943107605 img loss 1.6173350811004639 img loss 1.78299880027771 img loss 1.737131118774414 img loss 1.7723207473754883 img loss 1.656948208808899 img loss 1.659928798675537 img loss 1.5485436916351318 img loss 1.7128033638000488 img loss 1.682314395904541 img loss 1.5245881080627441 img loss 1.666232705116272 img loss 1.5764424800872803 img loss 1.7304176092147827 img loss 1.6856932640075684 img loss 1.756609320640564 img loss 1.6293513774871826 img loss 1.6697603464126587 img loss 1.7688031196594238 img loss 1.7406445741653442 img loss 1.6322882175445557 img loss 1.5819718837738037 img loss 1.6638494729995728 img loss 1.6692103147506714 img loss 1.5801703929901123 img loss 1.5704346895217896 img loss 1.652910590171814 img loss 1.4808255434036255 img loss 1.728834629058838 img loss 1.7326974868774414 img loss 1.7931551933288574 img loss 1.5478907823562622 img loss 1.6098753213882446 img loss 1.6250321865081787 img loss 1.7515970468521118 img loss 1.8533282279968262 img loss 1.7923920154571533 img loss 1.7065355777740479 img loss 1.6917740106582642 img loss 1.5710654258728027 img loss 1.5393975973129272 img loss 1.6498550176620483 img loss 1.7195346355438232 img loss 1.5533748865127563 img loss 1.567949652671814 img loss 1.5695959329605103 img loss 1.6249984502792358 img loss 1.6423019170761108 img loss 1.6950100660324097 img loss 1.721435308456421 img loss 1.719770073890686 img loss 1.5338568687438965 img loss 1.5952495336532593 img loss 1.666444182395935 img loss 1.6432738304138184 img loss 1.645880937576294 img loss 1.5073052644729614 img loss 1.6688511371612549 img loss 1.548754096031189 img loss 1.7012807130813599 img loss 1.9021260738372803 img loss 1.7305355072021484 img loss 1.579026699066162 img loss 1.6245046854019165 img loss 1.6106497049331665 img loss 1.6427253484725952 img loss 1.703633189201355 img loss 1.7057746648788452 img loss 1.5143513679504395 img loss 1.7461907863616943 img loss 1.6076064109802246 img loss 1.761022925376892 img loss 1.7037997245788574 img loss 1.5262970924377441 img loss 1.6731270551681519 img loss 1.6701692342758179 img loss 1.872594952583313 img loss 1.6988565921783447 img loss 1.605777382850647 img loss 1.5256164073944092 img loss 1.6982877254486084 img loss 1.5699135065078735 img loss 1.7774144411087036 img loss 1.5477851629257202 img loss 1.7134168148040771 img loss 1.6668726205825806 img loss 1.772013783454895 img loss 1.671862006187439 img loss 1.5291684865951538 img loss 1.6491916179656982 img loss 1.5621838569641113 img loss 1.636551022529602 img loss 1.6859028339385986 img loss 1.5977146625518799 img loss 1.8070250749588013 {'loss': 1.6465, 'grad_norm': 0.3111268877983093, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2529215812683105 img loss 1.3190840482711792 img loss 1.2185375690460205 img loss 1.2898573875427246 img loss 1.2134122848510742 img loss 1.210808277130127 img loss 1.1709604263305664 img loss 1.2274645566940308 img loss 1.2166537046432495 img loss 1.2977641820907593 img loss 1.2166317701339722 img loss 1.298048496246338 img loss 1.2112871408462524 img loss 1.2364482879638672 img loss 1.3856583833694458 img loss 1.2077301740646362 img loss 1.293638825416565 img loss 1.261360764503479 img loss 1.3111205101013184 img loss 1.2531846761703491 img loss 1.178987741470337 img loss 1.204555869102478 img loss 1.249448299407959 img loss 1.227061152458191 img loss 1.2027744054794312 img loss 1.2908521890640259 img loss 1.2531225681304932 img loss 1.2635999917984009 img loss 1.2096960544586182 img loss 1.356158971786499 img loss 1.2849767208099365 img loss 1.2663929462432861 img loss 1.1956686973571777 img loss 1.2822412252426147 img loss 1.2823295593261719 img loss 1.2221715450286865 img loss 1.172961711883545 img loss 1.2324092388153076 img loss 1.3213852643966675 img loss 1.1429144144058228 img loss 1.2463306188583374 img loss 1.1893261671066284 img loss 1.2812445163726807 img loss 1.2531057596206665 img loss 1.299782395362854 img loss 1.3377296924591064 img loss 1.2447752952575684 img loss 1.1421172618865967 img loss 1.196274757385254 img loss 1.298766016960144 img loss 1.2245796918869019 img loss 1.3142549991607666 img loss 1.28815495967865 img loss 1.1585538387298584 img loss 1.2734142541885376 img loss 1.2160955667495728 img loss 1.1889187097549438 img loss 1.262017846107483 img loss 1.2269701957702637 img loss 1.256255030632019 img loss 1.1981652975082397 img loss 1.3024317026138306 img loss 1.1474034786224365 img loss 1.180864691734314 img loss 1.2740452289581299 img loss 1.1787233352661133 img loss 1.2756389379501343 img loss 1.2857656478881836 img loss 1.257096529006958 img loss 1.168540358543396 img loss 1.1846961975097656 img loss 1.2897251844406128 img loss 1.168589472770691 img loss 1.1829588413238525 img loss 1.2783870697021484 img loss 1.267544150352478 img loss 1.3433737754821777 img loss 1.2713924646377563 img loss 1.2245652675628662 img loss 1.4265360832214355 img loss 1.2005341053009033 img loss 1.312760591506958 img loss 1.2380777597427368 img loss 1.1666043996810913 img loss 1.2704871892929077 img loss 1.2757153511047363 img loss 1.2257795333862305 img loss 1.2981183528900146 img loss 1.2435576915740967 img loss 1.2527120113372803 img loss 1.2345099449157715 img loss 1.3356854915618896 img loss 1.1814943552017212 img loss 1.2389769554138184 img loss 1.1581611633300781 img loss 1.3404500484466553 img loss 1.2290046215057373 img loss 1.1598875522613525 img loss 1.1913267374038696 img loss 1.2774631977081299 img loss 1.2665897607803345 img loss 1.2717957496643066 img loss 1.2001140117645264 img loss 1.1751270294189453 img loss 1.23899245262146 img loss 1.2467097043991089 img loss 1.2290540933609009 img loss 1.3612996339797974 img loss 1.1626372337341309 img loss 1.2119605541229248 img loss 1.2391235828399658 img loss 1.2986284494400024 img loss 1.2431881427764893 img loss 1.2165504693984985 img loss 1.2359663248062134 img loss 1.2090187072753906 img loss 1.2586702108383179 img loss 1.1301023960113525 img loss 1.2271957397460938 img loss 1.2952914237976074 img loss 1.1593549251556396 img loss 1.3293817043304443 img loss 1.237335205078125 img loss 1.3076412677764893 img loss 1.1990450620651245 img loss 1.142075538635254 img loss 1.2158234119415283 img loss 1.3184027671813965 {'loss': 1.2437, 'grad_norm': 0.21869240701198578, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2339317798614502 img loss 1.2574018239974976 img loss 1.297289252281189 img loss 1.122494101524353 img loss 1.4289969205856323 img loss 1.2769594192504883 img loss 1.174464464187622 img loss 1.2533791065216064 img loss 1.170153021812439 img loss 1.3370479345321655 img loss 1.1901702880859375 img loss 1.18846595287323 img loss 1.2082545757293701 img loss 1.1133559942245483 img loss 1.2112066745758057 img loss 1.1747643947601318 img loss 1.1389577388763428 img loss 1.2774356603622437 img loss 1.2708282470703125 img loss 1.2256784439086914 img loss 1.2126630544662476 img loss 1.1949245929718018 img loss 1.2326221466064453 img loss 1.2365374565124512 img loss 1.3042652606964111 img loss 1.2330412864685059 img loss 1.2291768789291382 img loss 1.299457311630249 img loss 1.174928903579712 img loss 1.1875094175338745 img loss 1.2084743976593018 img loss 1.2080706357955933 img loss 1.1080695390701294 img loss 1.3356043100357056 img loss 1.1337006092071533 img loss 1.2106422185897827 img loss 1.1799362897872925 img loss 1.2002061605453491 img loss 1.2562278509140015 img loss 1.3617523908615112 img loss 1.263617992401123 img loss 1.203303337097168 img loss 1.1860452890396118 img loss 1.2669111490249634 img loss 1.107168436050415 img loss 1.2582403421401978 img loss 1.1247771978378296 img loss 1.2576940059661865 img loss 1.2493476867675781 img loss 1.1379555463790894 img loss 1.1749531030654907 img loss 1.2785942554473877 img loss 1.2478785514831543 img loss 1.284186840057373 img loss 1.136056900024414 img loss 1.2083525657653809 img loss 1.250588297843933 img loss 1.2073886394500732 img loss 1.1202256679534912 img loss 1.2847189903259277 img loss 1.1549813747406006 img loss 1.1785104274749756 img loss 1.2240699529647827 img loss 1.2383276224136353 img loss 1.2420357465744019 img loss 1.1234740018844604 img loss 1.28316068649292 img loss 1.1688010692596436 img loss 1.2392537593841553 img loss 1.173349380493164 img loss 1.2578130960464478 img loss 1.2494359016418457 img loss 1.1437033414840698 img loss 1.2034690380096436 img loss 1.253847599029541 img loss 1.1758068799972534 img loss 1.2797151803970337 img loss 1.0721381902694702 img loss 1.2118643522262573 img loss 1.1775635480880737 img loss 1.1948318481445312 img loss 1.2230242490768433 img loss 1.2272980213165283 img loss 1.2548388242721558 img loss 1.1693949699401855 img loss 1.300295114517212 img loss 1.2958390712738037 img loss 1.1406134366989136 img loss 1.2122949361801147 img loss 1.21328604221344 img loss 1.225095272064209 img loss 1.2183462381362915 img loss 1.1517186164855957 img loss 1.2327332496643066 img loss 1.2049367427825928 img loss 1.3424116373062134 img loss 1.2580947875976562 img loss 1.3317574262619019 img loss 1.3699164390563965 img loss 1.2906999588012695 img loss 1.155267357826233 img loss 1.2450897693634033 img loss 1.2546212673187256 img loss 1.262763500213623 img loss 1.2680649757385254 img loss 1.2643686532974243 img loss 1.2702677249908447 img loss 1.2122360467910767 img loss 1.2097364664077759 img loss 1.220799207687378 img loss 1.2271575927734375 img loss 1.172213077545166 img loss 1.160607933998108 img loss 1.2040445804595947 img loss 1.2168549299240112 img loss 1.2280476093292236 img loss 1.204209566116333 img loss 1.1107197999954224 img loss 1.177641749382019 img loss 1.2437857389450073 img loss 1.20650315284729 img loss 1.2764840126037598 img loss 1.2775371074676514 img loss 1.1543152332305908 img loss 1.218263030052185 img loss 1.2476024627685547 img loss 1.1943044662475586 img loss 1.3151668310165405 {'loss': 1.222, 'grad_norm': 0.5020503401756287, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2582240104675293 img loss 1.292050838470459 img loss 1.1843376159667969 img loss 1.1273934841156006 img loss 1.2077877521514893 img loss 1.1885697841644287 img loss 1.2131171226501465 img loss 1.207427978515625 img loss 1.1680370569229126 img loss 1.193475604057312 img loss 1.2651447057724 img loss 1.1258726119995117 img loss 1.198756217956543 img loss 1.2207683324813843 img loss 1.1843602657318115 img loss 1.1630680561065674 img loss 1.1684584617614746 img loss 1.1753311157226562 img loss 1.1669591665267944 img loss 1.1685093641281128 img loss 1.1973528861999512 img loss 1.2739423513412476 img loss 1.3200109004974365 img loss 1.2225422859191895 img loss 1.2526109218597412 img loss 1.2303683757781982 img loss 1.1785993576049805 img loss 1.1635891199111938 img loss 1.1714423894882202 img loss 1.1849117279052734 img loss 1.2274192571640015 img loss 1.237539291381836 img loss 1.2244199514389038 img loss 1.2364600896835327 img loss 1.2469985485076904 img loss 1.2712688446044922 img loss 1.2285130023956299 img loss 1.214729905128479 img loss 1.2195611000061035 img loss 1.2581398487091064 img loss 1.2009544372558594 img loss 1.2566571235656738 img loss 1.2067383527755737 img loss 1.1400140523910522 img loss 1.215587854385376 img loss 1.1751585006713867 img loss 1.223783254623413 img loss 1.18356454372406 img loss 1.2435072660446167 img loss 1.2282557487487793 img loss 1.222048282623291 img loss 1.1966967582702637 img loss 1.2368450164794922 img loss 1.2068157196044922 img loss 1.1477761268615723 img loss 1.2214734554290771 img loss 1.18673574924469 img loss 1.2639098167419434 img loss 1.2298206090927124 img loss 1.181748867034912 img loss 1.25404691696167 img loss 1.2706247568130493 img loss 1.2153164148330688 img loss 1.1900951862335205 img loss 1.18877112865448 img loss 1.183161973953247 img loss 1.2732574939727783 img loss 1.2159141302108765 img loss 1.1875736713409424 img loss 1.2285431623458862 img loss 1.189713478088379 img loss 1.2561734914779663 img loss 1.2115914821624756 img loss 1.1973806619644165 img loss 1.1858916282653809 img loss 1.161667823791504 img loss 1.2443361282348633 img loss 1.2610310316085815 img loss 1.2253884077072144 img loss 1.2653759717941284 img loss 1.2764590978622437 img loss 1.1621681451797485 img loss 1.1425397396087646 img loss 1.1440523862838745 img loss 1.2410143613815308 img loss 1.1999725103378296 img loss 1.1336681842803955 img loss 1.200994849205017 img loss 1.221351981163025 img loss 1.2145613431930542 img loss 1.1760003566741943 img loss 1.1677658557891846 img loss 1.1485068798065186 img loss 1.2888710498809814 img loss 1.2005116939544678 img loss 1.2145535945892334 img loss 1.2427266836166382 img loss 1.183129072189331 img loss 1.1916399002075195 img loss 1.1650667190551758 img loss 1.2041548490524292 img loss 1.1892292499542236 img loss 1.1825989484786987 img loss 1.2274794578552246 img loss 1.1410014629364014 img loss 1.2122843265533447 img loss 1.237080454826355 img loss 1.1889917850494385 img loss 1.2408055067062378 img loss 1.1644448041915894 img loss 1.1597245931625366 img loss 1.1819171905517578 img loss 1.2821673154830933 img loss 1.3030123710632324 img loss 1.1932406425476074 img loss 1.2458946704864502 img loss 1.2259873151779175 img loss 1.1972715854644775 img loss 1.2073438167572021 img loss 1.2114933729171753 img loss 1.24790358543396 img loss 1.2199673652648926 img loss 1.2272071838378906 img loss 1.2189700603485107 img loss 1.2113876342773438 img loss 1.1936218738555908 img loss 1.1787747144699097 img loss 1.202920913696289 {'loss': 1.2096, 'grad_norm': 0.24200241267681122, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5548222064971924 img loss 1.6303967237472534 img loss 1.6031568050384521 img loss 1.4578840732574463 img loss 1.4277284145355225 img loss 1.453360915184021 img loss 1.4354997873306274 img loss 1.4755216836929321 img loss 1.435548186302185 img loss 1.4697812795639038 img loss 1.4604547023773193 img loss 1.4080475568771362 img loss 1.446478247642517 img loss 1.5515133142471313 img loss 1.554343819618225 img loss 1.476455569267273 img loss 1.4598753452301025 img loss 1.3784635066986084 img loss 1.5183131694793701 img loss 1.6465157270431519 img loss 1.5148345232009888 img loss 1.3420729637145996 img loss 1.4941725730895996 img loss 1.4492663145065308 img loss 1.4202535152435303 img loss 1.4749258756637573 img loss 1.4973572492599487 img loss 1.5038572549819946 img loss 1.4894150495529175 img loss 1.6181401014328003 img loss 1.5172011852264404 img loss 1.3831284046173096 img loss 1.3848168849945068 img loss 1.3621113300323486 img loss 1.4577487707138062 img loss 1.410308599472046 img loss 1.425681233406067 img loss 1.50471830368042 img loss 1.5401781797409058 img loss 1.5199624300003052 img loss 1.373745083808899 img loss 1.5789982080459595 img loss 1.4604767560958862 img loss 1.5007214546203613 img loss 1.5030447244644165 img loss 1.6179624795913696 img loss 1.509609580039978 img loss 1.3754316568374634 img loss 1.4425076246261597 img loss 1.5016103982925415 img loss 1.5222468376159668 img loss 1.4726107120513916 img loss 1.6145856380462646 img loss 1.4556288719177246 img loss 1.4646135568618774 img loss 1.6268391609191895 img loss 1.4938368797302246 img loss 1.480708360671997 img loss 1.4397914409637451 img loss 1.4919289350509644 img loss 1.5808212757110596 img loss 1.5701918601989746 img loss 1.5373485088348389 img loss 1.4280821084976196 img loss 1.4063326120376587 img loss 1.3262324333190918 img loss 1.4418894052505493 img loss 1.4638184309005737 img loss 1.5748231410980225 img loss 1.426784873008728 img loss 1.3365179300308228 img loss 1.40395188331604 img loss 1.5224617719650269 img loss 1.4838837385177612 img loss 1.5195602178573608 img loss 1.6367226839065552 img loss 1.3689579963684082 img loss 1.4862500429153442 img loss 1.4619014263153076 img loss 1.6153723001480103 img loss 1.3531614542007446 img loss 1.3767660856246948 img loss 1.4867390394210815 img loss 1.4357589483261108 img loss 1.4528290033340454 img loss 1.5067201852798462 img loss 1.387202501296997 img loss 1.5352507829666138 img loss 1.5050281286239624 img loss 1.4125492572784424 img loss 1.4534108638763428 img loss 1.5966800451278687 img loss 1.384879231452942 img loss 1.5747313499450684 img loss 1.5443108081817627 img loss 1.3751842975616455 img loss 1.559240698814392 img loss 1.4960510730743408 img loss 1.4483176469802856 img loss 1.461940884590149 img loss 1.5234578847885132 img loss 1.503985047340393 img loss 1.5470908880233765 img loss 1.4026607275009155 img loss 1.2841346263885498 img loss 1.4965161085128784 img loss 1.6030747890472412 img loss 1.5000733137130737 img loss 1.5769374370574951 img loss 1.3865605592727661 img loss 1.435949683189392 img loss 1.507198691368103 img loss 1.4202170372009277 img loss 1.4254502058029175 img loss 1.5160523653030396 img loss 1.3851829767227173 img loss 1.4634225368499756 img loss 1.478824257850647 img loss 1.560880184173584 img loss 1.449142336845398 img loss 1.526434302330017 img loss 1.5610073804855347 img loss 1.5123754739761353 img loss 1.4267401695251465 img loss 1.4025299549102783 img loss 1.4552018642425537 img loss 1.5042771100997925 img loss 1.4363025426864624 {'loss': 1.479, 'grad_norm': 0.5869148969650269, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2826372385025024 img loss 1.3149927854537964 img loss 1.3173670768737793 img loss 1.1520594358444214 img loss 1.2381634712219238 img loss 1.4060642719268799 img loss 1.2851977348327637 img loss 1.3039861917495728 img loss 1.2013347148895264 img loss 1.3685139417648315 img loss 1.22948157787323 img loss 1.389288067817688 img loss 1.3388539552688599 img loss 1.2473706007003784 img loss 1.2351022958755493 img loss 1.2409820556640625 img loss 1.2712267637252808 img loss 1.296399474143982 img loss 1.3616212606430054 img loss 1.299423098564148 img loss 1.3119423389434814 img loss 1.3533976078033447 img loss 1.1485652923583984 img loss 1.2971389293670654 img loss 1.2390116453170776 img loss 1.2774708271026611 img loss 1.209082007408142 img loss 1.2999489307403564 img loss 1.3125962018966675 img loss 1.3404635190963745 img loss 1.354968786239624 img loss 1.3723126649856567 img loss 1.2548967599868774 img loss 1.278282880783081 img loss 1.2607324123382568 img loss 1.3902524709701538 img loss 1.30352783203125 img loss 1.3545963764190674 img loss 1.3725104331970215 img loss 1.3596676588058472 img loss 1.21841299533844 img loss 1.3894097805023193 img loss 1.3495800495147705 img loss 1.257185697555542 img loss 1.2168288230895996 img loss 1.3313732147216797 img loss 1.3612271547317505 img loss 1.3581156730651855 img loss 1.2610533237457275 img loss 1.3209223747253418 img loss 1.3033175468444824 img loss 1.4122494459152222 img loss 1.3375413417816162 img loss 1.3929466009140015 img loss 1.2908129692077637 img loss 1.3292564153671265 img loss 1.3442977666854858 img loss 1.2735363245010376 img loss 1.4619030952453613 img loss 1.1743097305297852 img loss 1.386646032333374 img loss 1.344274640083313 img loss 1.2327821254730225 img loss 1.3644617795944214 img loss 1.3580511808395386 img loss 1.2602884769439697 img loss 1.30953049659729 img loss 1.3506768941879272 img loss 1.3226574659347534 img loss 1.2672637701034546 img loss 1.2536695003509521 img loss 1.3358995914459229 img loss 1.2798585891723633 img loss 1.4100712537765503 img loss 1.3618614673614502 img loss 1.2176278829574585 img loss 1.3514906167984009 img loss 1.332587480545044 img loss 1.3550552129745483 img loss 1.3101190328598022 img loss 1.2522826194763184 img loss 1.290342926979065 img loss 1.2447370290756226 img loss 1.326899528503418 img loss 1.3759256601333618 img loss 1.2718899250030518 img loss 1.243140697479248 img loss 1.2401565313339233 img loss 1.3296408653259277 img loss 1.3406378030776978 img loss 1.3492674827575684 img loss 1.371254563331604 img loss 1.3028291463851929 img loss 1.2710723876953125 img loss 1.286146640777588 img loss 1.2240636348724365 img loss 1.3356198072433472 img loss 1.253635048866272 img loss 1.3313900232315063 img loss 1.323786973953247 img loss 1.339436411857605 img loss 1.3192291259765625 img loss 1.3097989559173584 img loss 1.206031322479248 img loss 1.321333885192871 img loss 1.3651129007339478 img loss 1.2907726764678955 img loss 1.4219399690628052 img loss 1.348631501197815 img loss 1.3322750329971313 img loss 1.2210662364959717 img loss 1.3464467525482178 img loss 1.2384796142578125 img loss 1.253906011581421 img loss 1.3518807888031006 img loss 1.4369040727615356 img loss 1.2005267143249512 img loss 1.2908954620361328 img loss 1.3006362915039062 img loss 1.3498536348342896 img loss 1.3753763437271118 img loss 1.4342795610427856 img loss 1.3371800184249878 img loss 1.2241970300674438 img loss 1.2798622846603394 img loss 1.3286337852478027 img loss 1.3010377883911133 img loss 1.379845142364502 {'loss': 1.3088, 'grad_norm': 0.3234107792377472, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5295121669769287 img loss 1.4320766925811768 img loss 1.3031085729599 img loss 1.4569271802902222 img loss 1.5045133829116821 img loss 1.6480422019958496 img loss 1.3986891508102417 img loss 1.552692174911499 img loss 1.4038070440292358 img loss 1.432347059249878 img loss 1.5884112119674683 img loss 1.5190926790237427 img loss 1.271986484527588 img loss 1.4195170402526855 img loss 1.4491463899612427 img loss 1.6554590463638306 img loss 1.396615743637085 img loss 1.4666463136672974 img loss 1.352718710899353 img loss 1.346331000328064 img loss 1.3927159309387207 img loss 1.5059856176376343 img loss 1.4204610586166382 img loss 1.430721402168274 img loss 1.4384477138519287 img loss 1.434517741203308 img loss 1.405899167060852 img loss 1.6111115217208862 img loss 1.4011914730072021 img loss 1.4362932443618774 img loss 1.5517241954803467 img loss 1.4410183429718018 img loss 1.4571754932403564 img loss 1.5286537408828735 img loss 1.4798115491867065 img loss 1.5320045948028564 img loss 1.3905619382858276 img loss 1.5399260520935059 img loss 1.5764869451522827 img loss 1.5876548290252686 img loss 1.3048112392425537 img loss 1.4488307237625122 img loss 1.2855688333511353 img loss 1.5196726322174072 img loss 1.5386483669281006 img loss 1.39423668384552 img loss 1.4927585124969482 img loss 1.3552278280258179 img loss 1.383436679840088 img loss 1.647315263748169 img loss 1.3482301235198975 img loss 1.5773036479949951 img loss 1.4285091161727905 img loss 1.3709176778793335 img loss 1.525755763053894 img loss 1.6240712404251099 img loss 1.5250080823898315 img loss 1.4083722829818726 img loss 1.3733373880386353 img loss 1.4775006771087646 img loss 1.4838205575942993 img loss 1.49455726146698 img loss 1.4677425622940063 img loss 1.4005696773529053 img loss 1.5396963357925415 img loss 1.5531079769134521 img loss 1.6124566793441772 img loss 1.378411889076233 img loss 1.3195329904556274 img loss 1.4939030408859253 img loss 1.4882820844650269 img loss 1.3739254474639893 img loss 1.437854290008545 img loss 1.540494680404663 img loss 1.4458954334259033 img loss 1.3126816749572754 img loss 1.3498255014419556 img loss 1.3580652475357056 img loss 1.4618964195251465 img loss 1.478239893913269 img loss 1.398041844367981 img loss 1.4787677526474 img loss 1.4271442890167236 img loss 1.4385735988616943 img loss 1.5409015417099 img loss 1.428271770477295 img loss 1.547926664352417 img loss 1.3218199014663696 img loss 1.3919918537139893 img loss 1.410499930381775 img loss 1.4595835208892822 img loss 1.481029987335205 img loss 1.4658033847808838 img loss 1.6528538465499878 img loss 1.4691376686096191 img loss 1.5374187231063843 img loss 1.4528889656066895 img loss 1.3975800275802612 img loss 1.5753713846206665 img loss 1.427039384841919 img loss 1.468011498451233 img loss 1.4870295524597168 img loss 1.3804343938827515 img loss 1.5376533269882202 img loss 1.445443034172058 img loss 1.5125420093536377 img loss 1.3379710912704468 img loss 1.4079865217208862 img loss 1.4177229404449463 img loss 1.4079521894454956 img loss 1.3803907632827759 img loss 1.4219868183135986 img loss 1.4244914054870605 img loss 1.431663155555725 img loss 1.3945313692092896 img loss 1.386675238609314 img loss 1.3943885564804077 img loss 1.5248130559921265 img loss 1.3871426582336426 img loss 1.358873724937439 img loss 1.4091109037399292 img loss 1.473406195640564 img loss 1.3600564002990723 img loss 1.3514083623886108 img loss 1.4031280279159546 img loss 1.4404151439666748 img loss 1.4157623052597046 img loss 1.3662219047546387 {'loss': 1.4511, 'grad_norm': 0.41348862648010254, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3314682245254517 img loss 1.5823582410812378 img loss 1.3864834308624268 img loss 1.4926083087921143 img loss 1.3578550815582275 img loss 1.43948495388031 img loss 1.3232650756835938 img loss 1.4644991159439087 img loss 1.393172025680542 img loss 1.3356077671051025 img loss 1.4317530393600464 img loss 1.328183650970459 img loss 1.375850796699524 img loss 1.4725908041000366 img loss 1.4003034830093384 img loss 1.4589524269104004 img loss 1.3573211431503296 img loss 1.4102040529251099 img loss 1.3308132886886597img loss 1.6132197380065918 img loss 1.3820388317108154 img loss 1.4692481756210327 img loss 1.4385470151901245 img loss 1.4443576335906982 img loss 1.4801487922668457 img loss 1.4899671077728271 img loss 1.275786280632019 img loss 1.3371098041534424 img loss 1.2853822708129883 img loss 1.3590642213821411 img loss 1.3975625038146973 img loss 1.3667970895767212 img loss 1.303708553314209 img loss 1.4670500755310059 img loss 1.4344172477722168 img loss 1.382148027420044 img loss 1.4894115924835205 img loss 1.5372391939163208 img loss 1.4825987815856934 img loss 1.3736025094985962 img loss 1.4148792028427124 img loss 1.3952574729919434 img loss 1.450075626373291 img loss 1.4919825792312622 img loss 1.3538241386413574 img loss 1.2828816175460815 img loss 1.510107159614563 img loss 1.3964720964431763 img loss 1.3704098463058472 img loss 1.52969229221344 img loss 1.3386152982711792 img loss 1.505428671836853 img loss 1.4178401231765747 img loss 1.4687548875808716 img loss 1.4881185293197632 img loss 1.3208938837051392 img loss 1.3091930150985718 img loss 1.4498971700668335 img loss 1.395119071006775 img loss 1.5439016819000244 img loss 1.4374518394470215 img loss 1.445829153060913 img loss 1.512930154800415 img loss 1.5105043649673462 img loss 1.4640614986419678 img loss 1.3591221570968628 img loss 1.36958646774292 img loss 1.3994110822677612 img loss 1.3390873670578003 img loss 1.4251363277435303 img loss 1.3707135915756226 img loss 1.3778433799743652 img loss 1.4506288766860962 img loss 1.4696109294891357 img loss 1.4610828161239624 img loss 1.465858817100525 img loss 1.5702365636825562 img loss 1.6140176057815552 img loss 1.3682303428649902 img loss 1.3867840766906738 img loss 1.4533445835113525 img loss 1.4825836420059204 img loss 1.504351258277893 img loss 1.3308987617492676 img loss 1.2812929153442383 img loss 1.3380719423294067 img loss 1.3706990480422974 img loss 1.4570523500442505 img loss 1.4177640676498413 img loss 1.4515308141708374 img loss 1.4147900342941284 img loss 1.4583512544631958 img loss 1.4600900411605835 img loss 1.4923322200775146 img loss 1.481675386428833 img loss 1.4736688137054443 img loss 1.4556164741516113 img loss 1.380755066871643 img loss 1.4270392656326294 img loss 1.372290849685669 img loss 1.468131422996521 img loss 1.4926564693450928 img loss 1.4824442863464355 img loss 1.4433869123458862 img loss 1.28701651096344 img loss 1.4003539085388184 img loss 1.3031129837036133 img loss 1.3329143524169922 img loss 1.4354711771011353 img loss 1.3981326818466187 img loss 1.3862073421478271 img loss 1.3103834390640259 img loss 1.338335394859314 img loss 1.398160696029663 img loss 1.4987889528274536 img loss 1.346168041229248 img loss 1.37180757522583 img loss 1.4340304136276245 img loss 1.3319371938705444 img loss 1.5025581121444702 img loss 1.427676796913147 img loss 1.392669439315796 img loss 1.3184112310409546 img loss 1.4874062538146973 img loss 1.2921802997589111 img loss 1.456825613975525 img loss 1.432194471359253 img loss 1.3036714792251587 {'loss': 1.4163, 'grad_norm': 0.5118191838264465, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.306542158126831 img loss 1.2845410108566284 img loss 1.2063589096069336 img loss 1.215477466583252 img loss 1.2367429733276367 img loss 1.2866789102554321 img loss 1.1997106075286865 img loss 1.221057415008545 img loss 1.2537649869918823 img loss 1.1774063110351562 img loss 1.2110726833343506 img loss 1.2114275693893433 img loss 1.167560338973999 img loss 1.2051969766616821 img loss 1.199556589126587 img loss 1.186271071434021 img loss 1.1969656944274902 img loss 1.1825690269470215 img loss 1.231605052947998 img loss 1.1987186670303345 img loss 1.1955114603042603 img loss 1.2633758783340454 img loss 1.246957778930664 img loss 1.227617621421814 img loss 1.1825488805770874 img loss 1.1761711835861206 img loss 1.2153323888778687 img loss 1.237670660018921 img loss 1.2395845651626587 img loss 1.2263044118881226 img loss 1.2659984827041626 img loss 1.2588856220245361 img loss 1.1749452352523804 img loss 1.2226974964141846 img loss 1.198285460472107 img loss 1.1875782012939453 img loss 1.2395427227020264 img loss 1.2108666896820068 img loss 1.2133079767227173 img loss 1.276253581047058 img loss 1.2062067985534668 img loss 1.297576665878296 img loss 1.2493128776550293 img loss 1.241951584815979 img loss 1.1113526821136475 img loss 1.1675615310668945 img loss 1.149871587753296 img loss 1.2169159650802612 img loss 1.1261147260665894 img loss 1.231825351715088 img loss 1.190326452255249 img loss 1.2581356763839722 img loss 1.1986987590789795 img loss 1.206295371055603 img loss 1.1927458047866821 img loss 1.2122881412506104 img loss 1.2178577184677124 img loss 1.151057481765747 img loss 1.2308576107025146 img loss 1.1580708026885986 img loss 1.1907602548599243 img loss 1.303161382675171 img loss 1.1899895668029785 img loss 1.2029380798339844 img loss 1.23294997215271 img loss 1.1847929954528809 img loss 1.1865885257720947 img loss 1.2255070209503174 img loss 1.2110671997070312 img loss 1.1627124547958374 img loss 1.2748078107833862 img loss 1.2506035566329956 img loss 1.200035572052002 img loss 1.2773628234863281 img loss 1.277747631072998 img loss 1.2907581329345703 img loss 1.2700294256210327 img loss 1.218087911605835 img loss 1.2212116718292236 img loss 1.1430363655090332 img loss 1.1840988397598267 img loss 1.1803944110870361 img loss 1.2183067798614502 img loss 1.1625727415084839 img loss 1.2511000633239746 img loss 1.2004566192626953 img loss 1.2169370651245117 img loss 1.1488040685653687 img loss 1.2376000881195068 img loss 1.215881109237671 img loss 1.1725643873214722 img loss 1.213046669960022 img loss 1.2166836261749268 img loss 1.205238699913025 img loss 1.2382023334503174 img loss 1.2848573923110962 img loss 1.1998188495635986 img loss 1.2416599988937378 img loss 1.2556809186935425 img loss 1.1589103937149048 img loss 1.242273211479187 img loss 1.222219705581665 img loss 1.1920188665390015 img loss 1.1851329803466797 img loss 1.1726315021514893 img loss 1.214623212814331 img loss 1.2160029411315918 img loss 1.2367786169052124 img loss 1.145342230796814 img loss 1.155139684677124 img loss 1.192919373512268 img loss 1.2201013565063477 img loss 1.2199411392211914 img loss 1.1984660625457764 img loss 1.1519348621368408 img loss 1.2460484504699707 img loss 1.1820237636566162 img loss 1.2620455026626587 img loss 1.2309281826019287 img loss 1.2023531198501587 img loss 1.1744728088378906 img loss 1.184861421585083 img loss 1.2021626234054565 img loss 1.1344025135040283 img loss 1.1996053457260132 img loss 1.204835295677185 img loss 1.2445493936538696 img loss 1.2060630321502686 {'loss': 1.2126, 'grad_norm': 0.440059095621109, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.246354579925537 img loss 1.2298340797424316 img loss 1.2452305555343628 img loss 1.204968810081482 img loss 1.1779942512512207 img loss 1.2515627145767212 img loss 1.2577838897705078 img loss 1.228044867515564 img loss 1.283660650253296 img loss 1.253267765045166 img loss 1.214869737625122 img loss 1.2201995849609375 img loss 1.2011317014694214 img loss 1.232840895652771 img loss 1.2721447944641113 img loss 1.2132352590560913 img loss 1.254045009613037 img loss 1.2303708791732788 img loss 1.3071956634521484 img loss 1.226527214050293 img loss 1.289099097251892 img loss 1.1666322946548462 img loss 1.2898461818695068 img loss 1.1982853412628174 img loss 1.268998622894287 img loss 1.2946298122406006 img loss 1.1943165063858032 img loss 1.2938439846038818 img loss 1.2335408926010132 img loss 1.2370525598526 img loss 1.2520616054534912 img loss 1.3124711513519287 img loss 1.2139885425567627 img loss 1.1857362985610962 img loss 1.3406604528427124 img loss 1.2387077808380127 img loss 1.2565069198608398 img loss 1.2367159128189087 img loss 1.1709322929382324 img loss 1.257663369178772 img loss 1.3216605186462402 img loss 1.2584046125411987 img loss 1.176059365272522 img loss 1.3229711055755615 img loss 1.2747783660888672 img loss 1.1908553838729858 img loss 1.3089368343353271 img loss 1.2469747066497803 img loss 1.28358793258667 img loss 1.245345950126648 img loss 1.260758399963379 img loss 1.2059553861618042 img loss 1.248063564300537 img loss 1.2695034742355347 img loss 1.2748554944992065 img loss 1.233940601348877 img loss 1.2491753101348877 img loss 1.3833880424499512 img loss 1.3391247987747192 img loss 1.2954192161560059 img loss 1.202359914779663 img loss 1.2118263244628906 img loss 1.2502654790878296 img loss 1.3342225551605225 img loss 1.1793553829193115 img loss 1.2142339944839478 img loss 1.230602502822876 img loss 1.196266531944275 img loss 1.2674702405929565 img loss 1.2773239612579346 img loss 1.1992886066436768 img loss 1.2081564664840698 img loss 1.2522027492523193 img loss 1.223192811012268 img loss 1.275189995765686 img loss 1.2218544483184814 img loss 1.233138084411621 img loss 1.301094889640808 img loss 1.2846705913543701 img loss 1.2694052457809448 img loss 1.22788667678833 img loss 1.2767969369888306 img loss 1.2473556995391846 img loss 1.278753638267517 img loss 1.3031306266784668 img loss 1.2739015817642212 img loss 1.224419116973877 img loss 1.2625398635864258 img loss 1.1885101795196533 img loss 1.2253470420837402 img loss 1.2133512496948242 img loss 1.2273919582366943 img loss 1.2613897323608398 img loss 1.281675100326538 img loss 1.2245920896530151 img loss 1.149393081665039 img loss 1.2526371479034424 img loss 1.218753695487976 img loss 1.2804791927337646 img loss 1.2058424949645996 img loss 1.3008760213851929 img loss 1.2452503442764282 img loss 1.215896487236023 img loss 1.2036577463150024 img loss 1.2617517709732056 img loss 1.1890840530395508 img loss 1.2578532695770264 img loss 1.299965262413025 img loss 1.2909595966339111 img loss 1.2327122688293457 img loss 1.2188316583633423 img loss 1.2305419445037842 img loss 1.1891875267028809 img loss 1.2365665435791016 img loss 1.2183520793914795 img loss 1.231688141822815 img loss 1.257290244102478 img loss 1.242915391921997 img loss 1.228076457977295 img loss 1.2227026224136353 img loss 1.1992509365081787 img loss 1.2736164331436157 img loss 1.1944499015808105 img loss 1.2335963249206543 img loss 1.1725153923034668 img loss 1.219590425491333 img loss 1.2573801279067993 img loss 1.1831902265548706 {'loss': 1.244, 'grad_norm': 0.2562195956707001, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2168526649475098 img loss 1.1765305995941162 img loss 1.2533140182495117 img loss 1.200384497642517 img loss 1.2140048742294312 img loss 1.2468163967132568 img loss 1.2236860990524292 img loss 1.2196015119552612 img loss 1.182577133178711 img loss 1.1813045740127563 img loss 1.2189178466796875 img loss 1.2258636951446533 img loss 1.2213947772979736 img loss 1.1401633024215698 img loss 1.2723747491836548 img loss 1.1484400033950806 img loss 1.1684616804122925 img loss 1.1619805097579956 img loss 1.307436466217041 img loss 1.1952632665634155 img loss 1.2429693937301636 img loss 1.173363447189331 img loss 1.2076663970947266 img loss 1.2081857919692993 img loss 1.21159827709198 img loss 1.2593302726745605 img loss 1.1932461261749268 img loss 1.2045196294784546 img loss 1.2251625061035156 img loss 1.2105786800384521 img loss 1.1635708808898926 img loss 1.213375449180603 img loss 1.1881861686706543 img loss 1.20188570022583 img loss 1.1645889282226562 img loss 1.1801793575286865 img loss 1.2387123107910156 img loss 1.298093557357788 img loss 1.278652548789978 img loss 1.2273343801498413 img loss 1.22536039352417 img loss 1.180477499961853 img loss 1.2223809957504272 img loss 1.2036479711532593 img loss 1.2557605504989624 img loss 1.2518032789230347 img loss 1.2381633520126343 img loss 1.2125815153121948 img loss 1.2323334217071533 img loss 1.216912031173706 img loss 1.2167437076568604 img loss 1.1724798679351807 img loss 1.1938233375549316 img loss 1.2527251243591309 img loss 1.27614164352417 img loss 1.3014864921569824 img loss 1.1680015325546265 img loss 1.243050456047058 img loss 1.216923713684082 img loss 1.112198829650879 img loss 1.1899893283843994 img loss 1.2138659954071045 img loss 1.1994397640228271 img loss 1.1822509765625 img loss 1.1972558498382568 img loss 1.1935398578643799 img loss 1.201250433921814 img loss 1.1678012609481812 img loss 1.2260156869888306 img loss 1.2145872116088867 img loss 1.2608511447906494 img loss 1.2284581661224365 img loss 1.185422420501709 img loss 1.2366323471069336 img loss 1.1799877882003784 img loss 1.199981927871704 img loss 1.1631702184677124 img loss 1.180195689201355 img loss 1.1637839078903198 img loss 1.187258243560791 img loss 1.2359118461608887 img loss 1.266601324081421img loss 1.1904194355010986 img loss 1.1860294342041016 img loss 1.2723815441131592 img loss 1.2089290618896484 img loss 1.185312271118164 img loss 1.2301347255706787 img loss 1.1815332174301147 img loss 1.279815435409546 img loss 1.3382809162139893 img loss 1.1639641523361206 img loss 1.1759893894195557 img loss 1.2162582874298096 img loss 1.2034269571304321 img loss 1.213022232055664 img loss 1.2480729818344116 img loss 1.1660466194152832 img loss 1.14486825466156 img loss 1.2032684087753296 img loss 1.1612036228179932 img loss 1.1978915929794312 img loss 1.1693592071533203 img loss 1.2787808179855347 img loss 1.2265020608901978 img loss 1.2871954441070557 img loss 1.199178695678711 img loss 1.2290467023849487 img loss 1.1849286556243896 img loss 1.2479232549667358 img loss 1.223695993423462 img loss 1.2367374897003174 img loss 1.2500044107437134 img loss 1.142780065536499 img loss 1.2408921718597412 img loss 1.1901673078536987 img loss 1.2223061323165894 img loss 1.2692961692810059 img loss 1.2482287883758545 img loss 1.159349799156189 img loss 1.1926313638687134 img loss 1.1813875436782837 img loss 1.1925036907196045 img loss 1.2367477416992188 img loss 1.2599648237228394 img loss 1.2505216598510742 img loss 1.2340819835662842 img loss 1.2403385639190674 {'loss': 1.2132, 'grad_norm': 0.2608909606933594, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2080353498458862 img loss 1.2792325019836426 img loss 1.1889326572418213 img loss 1.2336304187774658 img loss 1.1974362134933472 img loss 1.263945460319519 img loss 1.1749305725097656 img loss 1.223296880722046 img loss 1.2144930362701416 img loss 1.183992624282837 img loss 1.2441920042037964 img loss 1.1842963695526123 img loss 1.2603288888931274 img loss 1.278656005859375 img loss 1.1835466623306274 img loss 1.2025158405303955 img loss 1.25846266746521 img loss 1.1935604810714722 img loss 1.2327213287353516 img loss 1.274590015411377 img loss 1.1840492486953735 img loss 1.271889328956604 img loss 1.372829556465149 img loss 1.215705156326294 img loss 1.2032389640808105 img loss 1.1908276081085205 img loss 1.1268967390060425 img loss 1.2091381549835205 img loss 1.2269693613052368 img loss 1.2426660060882568 img loss 1.2859745025634766 img loss 1.2713146209716797 img loss 1.2155150175094604 img loss 1.2434028387069702 img loss 1.2138299942016602 img loss 1.2100727558135986 img loss 1.1946619749069214 img loss 1.2147382497787476 img loss 1.2628124952316284 img loss 1.3371713161468506 img loss 1.1931655406951904 img loss 1.2278432846069336 img loss 1.1868209838867188 img loss 1.2852036952972412 img loss 1.1838325262069702 img loss 1.303243637084961 img loss 1.2184861898422241 img loss 1.1221601963043213 img loss 1.1718547344207764 img loss 1.2196900844573975 img loss 1.1780370473861694 img loss 1.1566650867462158 img loss 1.2243727445602417 img loss 1.228266716003418 img loss 1.2312017679214478 img loss 1.2050145864486694 img loss 1.2191718816757202 img loss 1.2211424112319946 img loss 1.161399245262146 img loss 1.1511685848236084 img loss 1.2074201107025146 img loss 1.2412513494491577 img loss 1.1545305252075195 img loss 1.2536163330078125 img loss 1.1711047887802124 img loss 1.235978603363037 img loss 1.213709831237793 img loss 1.2341430187225342 img loss 1.1927969455718994 img loss 1.20698881149292 img loss 1.2023999691009521 img loss 1.177412509918213 img loss 1.3154098987579346 img loss 1.259158730506897 img loss 1.1891487836837769 img loss 1.233415961265564 img loss 1.1696833372116089 img loss 1.3320026397705078 img loss 1.1631252765655518 img loss 1.2939000129699707 img loss 1.1784136295318604 img loss 1.2382618188858032 img loss 1.0959222316741943 img loss 1.2668062448501587 img loss 1.2565962076187134 img loss 1.2235034704208374 img loss 1.303407073020935 img loss 1.2976443767547607 img loss 1.2382112741470337 img loss 1.2158782482147217 img loss 1.244136095046997 img loss 1.2316093444824219 img loss 1.188673973083496 img loss 1.1485059261322021 img loss 1.1963547468185425 img loss 1.2111691236495972 img loss 1.1350959539413452 img loss 1.2510946989059448 img loss 1.2104853391647339 img loss 1.2908073663711548 img loss 1.1707332134246826 img loss 1.3084038496017456 img loss 1.3459171056747437 img loss 1.173438310623169 img loss 1.2311300039291382 img loss 1.2590174674987793 img loss 1.2534064054489136 img loss 1.2425589561462402 img loss 1.2147718667984009 img loss 1.2088209390640259 img loss 1.180323839187622 img loss 1.1964659690856934 img loss 1.267460584640503 img loss 1.2438868284225464 img loss 1.2650460004806519 img loss 1.2472938299179077 img loss 1.2614269256591797 img loss 1.2965435981750488 img loss 1.212827444076538 img loss 1.282052755355835 img loss 1.1819294691085815 img loss 1.2189595699310303 img loss 1.2365940809249878 img loss 1.2327930927276611 img loss 1.2612956762313843 img loss 1.2426183223724365 img loss 1.2278484106063843 img loss 1.1826149225234985 {'loss': 1.2248, 'grad_norm': 0.2580578923225403, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3086620569229126 img loss 1.3224999904632568 img loss 1.2663094997406006 img loss 1.3100275993347168 img loss 1.365283727645874 img loss 1.2635972499847412 img loss 1.2107843160629272 img loss 1.4271775484085083 img loss 1.3548448085784912 img loss 1.2870830297470093 img loss 1.2157953977584839 img loss 1.2487356662750244 img loss 1.3574756383895874 img loss 1.1997370719909668 img loss 1.2783093452453613 img loss 1.3919886350631714 img loss 1.2353368997573853 img loss 1.2551428079605103 img loss 1.3560200929641724 img loss 1.2727928161621094 img loss 1.3155875205993652 img loss 1.1849960088729858 img loss 1.35747230052948 img loss 1.2756078243255615 img loss 1.1410443782806396 img loss 1.3197981119155884 img loss 1.2464630603790283 img loss 1.323115348815918 img loss 1.3726131916046143 img loss 1.2485625743865967 img loss 1.3072646856307983 img loss 1.2550948858261108 img loss 1.229997158050537 img loss 1.317301630973816 img loss 1.2475913763046265 img loss 1.3401923179626465 img loss 1.230102300643921 img loss 1.3330516815185547 img loss 1.2986186742782593 img loss 1.272239089012146 img loss 1.24783456325531 img loss 1.3282381296157837 img loss 1.272634744644165 img loss 1.3377737998962402 img loss 1.224265456199646 img loss 1.2996333837509155 img loss 1.3509029150009155img loss 1.305508017539978 img loss 1.2948596477508545 img loss 1.2372150421142578 img loss 1.2319964170455933 img loss 1.3382899761199951 img loss 1.3307077884674072 img loss 1.2769469022750854 img loss 1.2704577445983887 img loss 1.1634521484375 img loss 1.272424340248108 img loss 1.2625635862350464 img loss 1.3199763298034668 img loss 1.32925283908844 img loss 1.370197057723999 img loss 1.3788949251174927 img loss 1.2555773258209229 img loss 1.2617377042770386 img loss 1.3405321836471558 img loss 1.2645552158355713 img loss 1.3789026737213135 img loss 1.3421250581741333 img loss 1.2674195766448975 img loss 1.3076703548431396 img loss 1.3469318151474 img loss 1.335526943206787 img loss 1.2362456321716309 img loss 1.2687909603118896 img loss 1.3874964714050293 img loss 1.1827316284179688 img loss 1.2251002788543701 img loss 1.3438059091567993 img loss 1.3071184158325195 img loss 1.2106387615203857 img loss 1.2689415216445923 img loss 1.2982268333435059 img loss 1.2843530178070068 img loss 1.2736042737960815 img loss 1.3219513893127441 img loss 1.2962253093719482 img loss 1.3006283044815063 img loss 1.2736546993255615 img loss 1.3490169048309326 img loss 1.3572646379470825 img loss 1.3563780784606934 img loss 1.344347357749939 img loss 1.2815831899642944 img loss 1.2637004852294922 img loss 1.2757046222686768 img loss 1.2206001281738281 img loss 1.281076192855835 img loss 1.2986706495285034 img loss 1.3176932334899902 img loss 1.3517086505889893 img loss 1.2825520038604736 img loss 1.3306277990341187 img loss 1.2633358240127563 img loss 1.199266791343689 img loss 1.306950330734253 img loss 1.2729229927062988 img loss 1.2887167930603027 img loss 1.2921428680419922 img loss 1.299478530883789 img loss 1.3271068334579468 img loss 1.2974611520767212 img loss 1.2563798427581787 img loss 1.3057754039764404 img loss 1.4195348024368286 img loss 1.237739086151123 img loss 1.2918157577514648 img loss 1.305410385131836img loss 1.247502326965332 img loss 1.2456756830215454 img loss 1.2372807264328003 img loss 1.2762987613677979 img loss 1.263343095779419 img loss 1.2365063428878784 img loss 1.2647589445114136 img loss 1.2570018768310547 img loss 1.2821593284606934 img loss 1.2853869199752808 img loss 1.3106839656829834 {'loss': 1.2902, 'grad_norm': 0.4092691242694855, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2791632413864136 img loss 1.261146068572998 img loss 1.3623616695404053 img loss 1.231459617614746 img loss 1.3332281112670898 img loss 1.2722182273864746 img loss 1.2450588941574097 img loss 1.3212370872497559 img loss 1.20986008644104 img loss 1.3271849155426025 img loss 1.2672882080078125 img loss 1.242950439453125 img loss 1.253909707069397 img loss 1.350329041481018 img loss 1.2891864776611328 img loss 1.3187750577926636 img loss 1.1244232654571533 img loss 1.2567477226257324 img loss 1.3048251867294312 img loss 1.2733917236328125 img loss 1.2411315441131592 img loss 1.3015657663345337 img loss 1.1825096607208252 img loss 1.2732491493225098 img loss 1.1973155736923218 img loss 1.3724488019943237 img loss 1.3076930046081543 img loss 1.1970605850219727 img loss 1.2389769554138184 img loss 1.2980892658233643 img loss 1.343851923942566 img loss 1.2064251899719238 img loss 1.3163280487060547 img loss 1.2910857200622559 img loss 1.3384844064712524 img loss 1.2231136560440063 img loss 1.1662061214447021 img loss 1.1827619075775146 img loss 1.299229621887207 img loss 1.2743911743164062 img loss 1.2726552486419678 img loss 1.3101787567138672 img loss 1.2411202192306519 img loss 1.3582146167755127 img loss 1.3264776468276978 img loss 1.2677626609802246 img loss 1.485065221786499 img loss 1.2058768272399902 img loss 1.2738876342773438 img loss 1.3110625743865967 img loss 1.2348612546920776 img loss 1.2334487438201904 img loss 1.1932392120361328 img loss 1.263413906097412 img loss 1.2484676837921143 img loss 1.2776427268981934 img loss 1.2365567684173584 img loss 1.3790199756622314 img loss 1.2254785299301147 img loss 1.332366704940796 img loss 1.3436408042907715 img loss 1.2191683053970337 img loss 1.3944697380065918 img loss 1.320035457611084 img loss 1.2275012731552124 img loss 1.3412636518478394 img loss 1.3254733085632324 img loss 1.1643197536468506 img loss 1.2119747400283813 img loss 1.3045051097869873 img loss 1.2360461950302124 img loss 1.3046813011169434 img loss 1.24991774559021 img loss 1.2833439111709595 img loss 1.3226099014282227 img loss 1.2487390041351318 img loss 1.3049052953720093 img loss 1.287096381187439 img loss 1.299975037574768 img loss 1.285960078239441 img loss 1.304033637046814 img loss 1.2870502471923828 img loss 1.285339117050171 img loss 1.2207183837890625 img loss 1.2126026153564453 img loss 1.2306385040283203 img loss 1.3100967407226562 img loss 1.2982900142669678 img loss 1.192866563796997 img loss 1.1532080173492432 img loss 1.2578102350234985 img loss 1.2825349569320679 img loss 1.218841552734375 img loss 1.2241384983062744 img loss 1.2558778524398804 img loss 1.2651145458221436 img loss 1.2194766998291016 img loss 1.2097281217575073 img loss 1.2191089391708374 img loss 1.3371213674545288 img loss 1.27500319480896 img loss 1.2832226753234863 img loss 1.2923895120620728 img loss 1.2026525735855103 img loss 1.266405463218689 img loss 1.3062852621078491 img loss 1.324033498764038 img loss 1.300085425376892 img loss 1.263448715209961 img loss 1.1946264505386353 img loss 1.2690887451171875 img loss 1.312010407447815 img loss 1.2003085613250732 img loss 1.283141851425171 img loss 1.3766627311706543 img loss 1.2199770212173462 img loss 1.275758981704712 img loss 1.2553558349609375 img loss 1.2967922687530518 img loss 1.2677611112594604 img loss 1.2384811639785767 img loss 1.3251405954360962 img loss 1.259250283241272 img loss 1.250262975692749 img loss 1.2093029022216797 img loss 1.33671236038208 img loss 1.275834083557129 img loss 1.270696997642517 {'loss': 1.2714, 'grad_norm': 0.3130127191543579, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.472715973854065 img loss 1.4666666984558105 img loss 1.350868821144104 img loss 1.470239520072937 img loss 1.4390796422958374 img loss 1.5600367784500122 img loss 1.4213405847549438 img loss 1.492189645767212 img loss 1.4512509107589722 img loss 1.4712587594985962 img loss 1.4010294675827026 img loss 1.4677926301956177 img loss 1.538443922996521 img loss 1.5084261894226074 img loss 1.4459894895553589 img loss 1.5454390048980713 img loss 1.4356017112731934 img loss 1.5401227474212646 img loss 1.619754672050476 img loss 1.3738839626312256 img loss 1.5097546577453613 img loss 1.513041377067566 img loss 1.369858980178833 img loss 1.3579007387161255 img loss 1.5132511854171753 img loss 1.4812617301940918 img loss 1.529931664466858 img loss 1.4206336736679077 img loss 1.5255547761917114 img loss 1.4646143913269043 img loss 1.3894485235214233 img loss 1.6743165254592896 img loss 1.3808026313781738 img loss 1.3717468976974487 img loss 1.6023029088974 img loss 1.4510208368301392 img loss 1.4457331895828247 img loss 1.5443166494369507 img loss 1.4383692741394043 img loss 1.4409242868423462 img loss 1.4286723136901855 img loss 1.4018893241882324 img loss 1.4353768825531006 img loss 1.456112265586853 img loss 1.4467774629592896 img loss 1.315544605255127 img loss 1.4024827480316162 img loss 1.4343379735946655 img loss 1.4783309698104858 img loss 1.3204033374786377 img loss 1.428320288658142 img loss 1.4363411664962769 img loss 1.4347052574157715 img loss 1.5380265712738037 img loss 1.5077223777770996 img loss 1.4037187099456787 img loss 1.382712483406067 img loss 1.5370213985443115 img loss 1.4237114191055298 img loss 1.3100699186325073 img loss 1.448474645614624 img loss 1.5410797595977783 img loss 1.5663158893585205 img loss 1.4549449682235718 img loss 1.2949655055999756 img loss 1.396466612815857 img loss 1.3888208866119385 img loss 1.640122652053833 img loss 1.6311659812927246 img loss 1.532382607460022 img loss 1.4500133991241455 img loss 1.3303349018096924 img loss 1.4537022113800049 img loss 1.398051142692566 img loss 1.3983738422393799 img loss 1.6748415231704712 img loss 1.5202202796936035 img loss 1.476282000541687 img loss 1.4730972051620483 img loss 1.5165276527404785 img loss 1.3508431911468506 img loss 1.4171453714370728 img loss 1.4992022514343262 img loss 1.4417277574539185 img loss 1.4538384675979614 img loss 1.2859026193618774 img loss 1.4962477684020996 img loss 1.4684041738510132 img loss 1.4681370258331299 img loss 1.4411330223083496 img loss 1.419817328453064 img loss 1.6999269723892212 img loss 1.4684914350509644 img loss 1.4592416286468506 img loss 1.4732364416122437 img loss 1.5301549434661865 img loss 1.3793103694915771 img loss 1.4995142221450806 img loss 1.4148963689804077 img loss 1.5351622104644775 img loss 1.5257762670516968 img loss 1.3339895009994507 img loss 1.5230920314788818 img loss 1.3693798780441284 img loss 1.534051537513733 img loss 1.414791226387024 img loss 1.4277218580245972 img loss 1.5143091678619385 img loss 1.6354683637619019 img loss 1.528513789176941 img loss 1.4851194620132446 img loss 1.450989842414856 img loss 1.3737698793411255 img loss 1.377906322479248 img loss 1.412894606590271 img loss 1.334094762802124 img loss 1.452512264251709 img loss 1.392283320426941 img loss 1.3662129640579224 img loss 1.458959698677063 img loss 1.3742893934249878 img loss 1.3893698453903198 img loss 1.359784722328186 img loss 1.4677931070327759 img loss 1.5663944482803345 img loss 1.5236157178878784 img loss 1.3925997018814087 img loss 1.5159451961517334 {'loss': 1.4587, 'grad_norm': 0.3451879322528839, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2521437406539917 img loss 1.3636794090270996 img loss 1.2979862689971924 img loss 1.3074747323989868 img loss 1.2206515073776245 img loss 1.251577377319336 img loss 1.2777820825576782 img loss 1.2250083684921265 img loss 1.2646585702896118 img loss 1.2126054763793945 img loss 1.264146327972412 img loss 1.2024444341659546 img loss 1.3413827419281006 img loss 1.181077003479004 img loss 1.3183693885803223 img loss 1.2951961755752563 img loss 1.2601697444915771 img loss 1.2288603782653809 img loss 1.267712950706482 img loss 1.2965354919433594 img loss 1.35518217086792 img loss 1.197576880455017 img loss 1.3720213174819946 img loss 1.2608546018600464 img loss 1.2659871578216553 img loss 1.190426230430603 img loss 1.253588080406189 img loss 1.2734043598175049 img loss 1.357552409172058 img loss 1.2413275241851807 img loss 1.2972047328948975 img loss 1.2127940654754639 img loss 1.2775424718856812 img loss 1.25192129611969 img loss 1.299919605255127 img loss 1.3275762796401978 img loss 1.3461835384368896 img loss 1.2783607244491577 img loss 1.3037060499191284 img loss 1.228705644607544 img loss 1.3398492336273193 img loss 1.2593659162521362 img loss 1.3694349527359009 img loss 1.275125503540039 img loss 1.3171920776367188 img loss 1.2411619424819946 img loss 1.2789534330368042 img loss 1.303056240081787 img loss 1.177011251449585 img loss 1.29063081741333 img loss 1.2160837650299072 img loss 1.3124406337738037 img loss 1.2806055545806885 img loss 1.2148323059082031 img loss 1.2998063564300537 img loss 1.226128339767456 img loss 1.2595391273498535 img loss 1.2813364267349243 img loss 1.2558382749557495 img loss 1.306300401687622 img loss 1.2405308485031128 img loss 1.2088634967803955 img loss 1.2478283643722534 img loss 1.3211952447891235 img loss 1.4218108654022217 img loss 1.350690245628357 img loss 1.298875331878662 img loss 1.2337486743927002 img loss 1.2342981100082397 img loss 1.2841075658798218 img loss 1.270810842514038 img loss 1.220004916191101 img loss 1.2249939441680908 img loss 1.2930407524108887 img loss 1.2223953008651733 img loss 1.287105917930603 img loss 1.2805097103118896 img loss 1.2344000339508057 img loss 1.3367648124694824 img loss 1.255501389503479 img loss 1.2972301244735718 img loss 1.225655436515808 img loss 1.2884225845336914 img loss 1.3297585248947144 img loss 1.264685869216919 img loss 1.2553653717041016 img loss 1.2464346885681152 img loss 1.4494602680206299 img loss 1.205298662185669 img loss 1.389234185218811 img loss 1.234947681427002 img loss 1.2434498071670532 img loss 1.20659339427948 img loss 1.2940075397491455 img loss 1.2772057056427002 img loss 1.2152838706970215 img loss 1.2614357471466064 img loss 1.2688446044921875 img loss 1.2440294027328491 img loss 1.2815014123916626 img loss 1.2313836812973022img loss 1.2667080163955688 img loss 1.3248203992843628 img loss 1.381591558456421 img loss 1.297558307647705 img loss 1.2556428909301758 img loss 1.2417073249816895 img loss 1.2463881969451904 img loss 1.2503541707992554 img loss 1.2502326965332031 img loss 1.3337620496749878 img loss 1.1753456592559814 img loss 1.353267788887024 img loss 1.202927827835083 img loss 1.2957578897476196 img loss 1.245335340499878 img loss 1.3749101161956787 img loss 1.2590998411178589 img loss 1.3080921173095703 img loss 1.3103957176208496 img loss 1.2672781944274902 img loss 1.2687289714813232 img loss 1.2816171646118164 img loss 1.2215306758880615 img loss 1.2650713920593262 img loss 1.3525673151016235 img loss 1.351495385169983 img loss 1.2526289224624634 {'loss': 1.2753, 'grad_norm': 0.5222713947296143, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2152163982391357 img loss 1.2541615962982178 img loss 1.169451355934143 img loss 1.2558090686798096 img loss 1.2257022857666016 img loss 1.162564754486084 img loss 1.2210166454315186 img loss 1.1877981424331665 img loss 1.191497802734375 img loss 1.2239928245544434 img loss 1.2260620594024658 img loss 1.2750890254974365 img loss 1.2223093509674072 img loss 1.2596869468688965 img loss 1.186965823173523 img loss 1.1770941019058228 img loss 1.21272611618042 img loss 1.1954782009124756 img loss 1.2135710716247559 img loss 1.1754071712493896 img loss 1.2303142547607422 img loss 1.1394309997558594 img loss 1.2408215999603271 img loss 1.2312344312667847 img loss 1.186808466911316 img loss 1.1951087713241577 img loss 1.2220665216445923 img loss 1.198469877243042 img loss 1.2644932270050049 img loss 1.241790771484375 img loss 1.1830768585205078 img loss 1.3218330144882202 img loss 1.1701350212097168 img loss 1.2819535732269287 img loss 1.2057597637176514 img loss 1.189030647277832 img loss 1.1994655132293701 img loss 1.220283031463623 img loss 1.1505464315414429 img loss 1.1943957805633545 img loss 1.1556012630462646 img loss 1.2444242238998413 img loss 1.2190722227096558 img loss 1.2187955379486084 img loss 1.2022634744644165 img loss 1.1706150770187378 img loss 1.1842873096466064 img loss 1.2459276914596558 img loss 1.210756778717041 img loss 1.1947343349456787 img loss 1.1962130069732666 img loss 1.176866888999939 img loss 1.2771327495574951 img loss 1.2027616500854492 img loss 1.2435510158538818 img loss 1.1969146728515625 img loss 1.2001813650131226 img loss 1.1383564472198486 img loss 1.204170823097229 img loss 1.1929771900177002 img loss 1.1969438791275024 img loss 1.183008074760437 img loss 1.2658100128173828 img loss 1.2402377128601074 img loss 1.223244309425354 img loss 1.287535309791565 img loss 1.2406986951828003 img loss 1.1242084503173828 img loss 1.183816909790039 img loss 1.2287853956222534 img loss 1.2743546962738037 img loss 1.1973637342453003 img loss 1.253487229347229 img loss 1.1797722578048706 img loss 1.1819629669189453 img loss 1.2435606718063354 img loss 1.2834879159927368 img loss 1.1734673976898193 img loss 1.177321195602417 img loss 1.2190946340560913 img loss 1.1969574689865112 img loss 1.2397444248199463 img loss 1.2052215337753296 img loss 1.1916967630386353 img loss 1.256256103515625 img loss 1.3096071481704712 img loss 1.2383259534835815 img loss 1.2424426078796387 img loss 1.2326874732971191 img loss 1.143837571144104 img loss 1.1765145063400269 img loss 1.2070077657699585 img loss 1.1574645042419434 img loss 1.165565013885498 img loss 1.1964893341064453 img loss 1.2458943128585815 img loss 1.2429044246673584 img loss 1.2472213506698608 img loss 1.2047367095947266 img loss 1.2180784940719604 img loss 1.2215361595153809 img loss 1.204755425453186 img loss 1.2226860523223877 img loss 1.2123794555664062 img loss 1.2429296970367432 img loss 1.1512336730957031 img loss 1.1619278192520142 img loss 1.134720802307129 img loss 1.1735600233078003 img loss 1.2950693368911743 img loss 1.1989740133285522 img loss 1.2000404596328735 img loss 1.175350546836853 img loss 1.1395108699798584 img loss 1.1677366495132446 img loss 1.176756501197815 img loss 1.2123618125915527 img loss 1.187814474105835 img loss 1.2855879068374634 img loss 1.1788161993026733 img loss 1.1515473127365112 img loss 1.2586592435836792 img loss 1.1266311407089233 img loss 1.2275053262710571 img loss 1.2516210079193115 img loss 1.21703040599823 img loss 1.1851975917816162 img loss 1.2510651350021362 {'loss': 1.21, 'grad_norm': 0.23235024511814117, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.366727590560913 img loss 1.4012974500656128 img loss 1.4916521310806274 img loss 1.3146238327026367 img loss 1.3801614046096802 img loss 1.2504725456237793 img loss 1.318398118019104 img loss 1.2821820974349976 img loss 1.37398362159729 img loss 1.2817187309265137 img loss 1.451110601425171 img loss 1.3096981048583984 img loss 1.3678783178329468 img loss 1.3483364582061768 img loss 1.4453586339950562 img loss 1.3086965084075928 img loss 1.2882893085479736 img loss 1.3312609195709229 img loss 1.2139132022857666 img loss 1.337950587272644 img loss 1.3110779523849487 img loss 1.3103828430175781 img loss 1.385750412940979 img loss 1.349158763885498 img loss 1.287035584449768 img loss 1.4267609119415283 img loss 1.3144210577011108 img loss 1.342725157737732 img loss 1.3481849431991577 img loss 1.3475069999694824 img loss 1.370583415031433 img loss 1.282834768295288 img loss 1.3866311311721802 img loss 1.386663794517517 img loss 1.486413598060608 img loss 1.351062536239624img loss 1.2901897430419922 img loss 1.3363912105560303 img loss 1.5676087141036987 img loss 1.2492825984954834 img loss 1.302071213722229 img loss 1.382819652557373 img loss 1.3328914642333984 img loss 1.37159264087677 img loss 1.3559120893478394 img loss 1.3049769401550293 img loss 1.2827467918395996 img loss 1.3010858297348022 img loss 1.32115638256073 img loss 1.3228201866149902 img loss 1.4344900846481323 img loss 1.2805830240249634 img loss 1.2772642374038696 img loss 1.290706992149353 img loss 1.4103282690048218 img loss 1.367724895477295 img loss 1.3267145156860352 img loss 1.3330578804016113 img loss 1.3856396675109863 img loss 1.493283748626709 img loss 1.216975450515747 img loss 1.2810113430023193 img loss 1.3939964771270752 img loss 1.2652744054794312 img loss 1.3023626804351807 img loss 1.2613073587417603 img loss 1.3678306341171265 img loss 1.393372893333435 img loss 1.3246583938598633 img loss 1.4303734302520752 img loss 1.3348605632781982 img loss 1.3091968297958374 img loss 1.3801066875457764 img loss 1.2462338209152222 img loss 1.3594566583633423 img loss 1.3586382865905762 img loss 1.2402808666229248 img loss 1.4650094509124756 img loss 1.4152988195419312 img loss 1.3886510133743286 img loss 1.3029751777648926 img loss 1.3992327451705933 img loss 1.2858461141586304 img loss 1.301609754562378 img loss 1.272133708000183 img loss 1.4020559787750244 img loss 1.4448281526565552 img loss 1.32759690284729 img loss 1.4600074291229248 img loss 1.3031005859375 img loss 1.2726916074752808 img loss 1.2458903789520264 img loss 1.3009507656097412 img loss 1.3891596794128418 img loss 1.4716603755950928 img loss 1.3337054252624512 img loss 1.3466707468032837 img loss 1.3663865327835083 img loss 1.3270485401153564 img loss 1.3190360069274902 img loss 1.2700538635253906 img loss 1.2629847526550293 img loss 1.3164300918579102 img loss 1.3663523197174072 img loss 1.4169141054153442 img loss 1.362626552581787 img loss 1.3836719989776611 img loss 1.479569673538208 img loss 1.2861123085021973 img loss 1.3541624546051025 img loss 1.2290462255477905 img loss 1.3593086004257202 img loss 1.475117564201355 img loss 1.331882119178772 img loss 1.402665615081787 img loss 1.3091540336608887 img loss 1.3320318460464478 img loss 1.2577542066574097 img loss 1.5081394910812378 img loss 1.2820802927017212 img loss 1.3986436128616333 img loss 1.3594330549240112 img loss 1.2902734279632568img loss 1.3521844148635864 img loss 1.4582228660583496 img loss 1.3224389553070068 img loss 1.3088102340698242 img loss 1.451823115348816 {'loss': 1.3469, 'grad_norm': 0.4661960303783417, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2935417890548706 img loss 1.283424973487854 img loss 1.3200148344039917 img loss 1.2640435695648193 img loss 1.2689628601074219 img loss 1.2732642889022827 img loss 1.205364465713501 img loss 1.3242497444152832 img loss 1.2154897451400757 img loss 1.241127848625183 img loss 1.3370842933654785 img loss 1.3370182514190674 img loss 1.3142452239990234 img loss 1.2702927589416504 img loss 1.3239539861679077 img loss 1.3295726776123047 img loss 1.2754950523376465 img loss 1.2380027770996094 img loss 1.282238483428955 img loss 1.272526741027832 img loss 1.288347840309143 img loss 1.230830430984497 img loss 1.272336483001709 img loss 1.3140709400177002 img loss 1.2985341548919678 img loss 1.2973134517669678 img loss 1.2633779048919678 img loss 1.290448546409607 img loss 1.3985133171081543 img loss 1.3530857563018799 img loss 1.2829699516296387 img loss 1.3177387714385986 img loss 1.286420464515686 img loss 1.333122730255127 img loss 1.2988840341567993 img loss 1.2907516956329346 img loss 1.2450889348983765 img loss 1.309596300125122 img loss 1.3343007564544678 img loss 1.3588794469833374 img loss 1.3097422122955322 img loss 1.3302226066589355 img loss 1.312854290008545 img loss 1.3766210079193115 img loss 1.3280590772628784 img loss 1.3228429555892944 img loss 1.2258027791976929 img loss 1.2956619262695312 img loss 1.2580620050430298 img loss 1.2745060920715332 img loss 1.2684745788574219 img loss 1.2854907512664795 img loss 1.2652835845947266 img loss 1.3062198162078857 img loss 1.255941390991211 img loss 1.3026891946792603 img loss 1.2805523872375488 img loss 1.2536839246749878 img loss 1.3408535718917847 img loss 1.2711422443389893 img loss 1.2188069820404053 img loss 1.2798733711242676 img loss 1.283407211303711 img loss 1.3865416049957275 img loss 1.322275996208191 img loss 1.261277675628662 img loss 1.3534246683120728 img loss 1.3358381986618042 img loss 1.3094830513000488 img loss 1.35659658908844 img loss 1.3181967735290527 img loss 1.3320250511169434 img loss 1.2326042652130127 img loss 1.290374755859375 img loss 1.272294282913208 img loss 1.2728697061538696 img loss 1.2317522764205933 img loss 1.2406620979309082 img loss 1.2772881984710693 img loss 1.297929286956787 img loss 1.2417006492614746 img loss 1.2942006587982178 img loss 1.2752277851104736 img loss 1.2430553436279297 img loss 1.389931321144104 img loss 1.2935900688171387 img loss 1.2681671380996704 img loss 1.367610216140747 img loss 1.2538092136383057 img loss 1.3601590394973755 img loss 1.2634150981903076 img loss 1.2342486381530762 img loss 1.2183544635772705 img loss 1.364631175994873 img loss 1.249556541442871 img loss 1.349636435508728 img loss 1.285574197769165 img loss 1.276893138885498 img loss 1.2507909536361694 img loss 1.28355872631073 img loss 1.3073101043701172 img loss 1.2596831321716309 img loss 1.265241026878357 img loss 1.3288973569869995 img loss 1.3440966606140137 img loss 1.3100147247314453 img loss 1.2147541046142578 img loss 1.301400065422058 img loss 1.2975492477416992 img loss 1.327036738395691 img loss 1.2513692378997803 img loss 1.276018500328064 img loss 1.285491704940796 img loss 1.2738065719604492 img loss 1.2744051218032837 img loss 1.2522767782211304 img loss 1.320054292678833 img loss 1.304219126701355 img loss 1.2868783473968506 img loss 1.2530748844146729 img loss 1.3836973905563354 img loss 1.2584470510482788 img loss 1.3476769924163818 img loss 1.3426491022109985 img loss 1.3012508153915405 img loss 1.31667959690094 img loss 1.2388371229171753 img loss 1.3138670921325684 {'loss': 1.2928, 'grad_norm': 0.39288821816444397, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2268797159194946 img loss 1.249662160873413 img loss 1.2317759990692139 img loss 1.3059608936309814 img loss 1.2211884260177612 img loss 1.2969434261322021 img loss 1.2526384592056274 img loss 1.3107305765151978 img loss 1.180291771888733 img loss 1.2769924402236938 img loss 1.2101092338562012 img loss 1.2433346509933472 img loss 1.2204861640930176 img loss 1.2376314401626587 img loss 1.1321139335632324 img loss 1.248216152191162 img loss 1.2119661569595337 img loss 1.2475074529647827 img loss 1.269895315170288 img loss 1.182992935180664 img loss 1.2277151346206665 img loss 1.2342863082885742 img loss 1.3072096109390259 img loss 1.223512053489685 img loss 1.242998480796814 img loss 1.2761268615722656 img loss 1.2163957357406616 img loss 1.2307300567626953 img loss 1.2990717887878418 img loss 1.2700868844985962 img loss 1.3802447319030762 img loss 1.2489961385726929 img loss 1.1857192516326904 img loss 1.2544057369232178 img loss 1.173105239868164 img loss 1.2122949361801147 img loss 1.159562349319458 img loss 1.2299609184265137 img loss 1.2249821424484253 img loss 1.261245608329773 img loss 1.2018440961837769 img loss 1.2110716104507446 img loss 1.2154825925827026 img loss 1.1829230785369873 img loss 1.239328384399414 img loss 1.256403923034668 img loss 1.192760705947876 img loss 1.2985349893569946 img loss 1.1449931859970093 img loss 1.2859861850738525 img loss 1.2161064147949219 img loss 1.2098459005355835 img loss 1.2569564580917358 img loss 1.2747890949249268 img loss 1.2020286321640015 img loss 1.1568219661712646 img loss 1.24545156955719 img loss 1.2833467721939087 img loss 1.1643407344818115 img loss 1.2199128866195679 img loss 1.3271414041519165 img loss 1.273269534111023 img loss 1.2484439611434937 img loss 1.1895416975021362 img loss 1.2224650382995605 img loss 1.2087465524673462 img loss 1.309814214706421 img loss 1.2982666492462158 img loss 1.2478456497192383 img loss 1.2682297229766846 img loss 1.3064044713974 img loss 1.2883161306381226 img loss 1.1936488151550293 img loss 1.2175556421279907 img loss 1.2213579416275024 img loss 1.2328660488128662 img loss 1.304122805595398 img loss 1.2585877180099487 img loss 1.2598322629928589 img loss 1.2248475551605225 img loss 1.2759814262390137 img loss 1.1966032981872559 img loss 1.2429513931274414 img loss 1.3023498058319092 img loss 1.1713966131210327 img loss 1.1741127967834473 img loss 1.232679009437561 img loss 1.2700183391571045 img loss 1.2712724208831787 img loss 1.2002959251403809 img loss 1.2293227910995483 img loss 1.2093868255615234 img loss 1.2055160999298096 img loss 1.2139239311218262 img loss 1.2385848760604858 img loss 1.1876455545425415 img loss 1.2254644632339478 img loss 1.2041802406311035 img loss 1.2565449476242065 img loss 1.2715470790863037 img loss 1.1894505023956299 img loss 1.1871006488800049 img loss 1.2759838104248047 img loss 1.3053703308105469 img loss 1.2806568145751953 img loss 1.215553641319275 img loss 1.3058160543441772 img loss 1.2072044610977173 img loss 1.1095259189605713 img loss 1.214799404144287 img loss 1.3379255533218384 img loss 1.2698415517807007 img loss 1.2560242414474487 img loss 1.2581430673599243 img loss 1.233629822731018 img loss 1.2430520057678223 img loss 1.3110463619232178 img loss 1.2113549709320068 img loss 1.289611577987671 img loss 1.2160860300064087 img loss 1.1742985248565674 img loss 1.299949049949646 img loss 1.2647861242294312 img loss 1.2759125232696533 img loss 1.2001478672027588 img loss 1.2714589834213257 img loss 1.2452383041381836 img loss 1.1795450448989868 {'loss': 1.2389, 'grad_norm': 0.26267150044441223, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2085380554199219 img loss 1.2613571882247925 img loss 1.1742280721664429 img loss 1.262467861175537 img loss 1.2745552062988281 img loss 1.20025634765625 img loss 1.2116791009902954 img loss 1.2331491708755493 img loss 1.2472856044769287 img loss 1.2516565322875977 img loss 1.2863993644714355 img loss 1.2287395000457764 img loss 1.218716025352478 img loss 1.1763298511505127 img loss 1.2378978729248047 img loss 1.1438753604888916 img loss 1.245430588722229 img loss 1.2363859415054321 img loss 1.2511048316955566 img loss 1.2550714015960693 img loss 1.2294297218322754 img loss 1.2649836540222168 img loss 1.1978918313980103 img loss 1.2546253204345703 img loss 1.2601754665374756 img loss 1.2641407251358032 img loss 1.2653672695159912 img loss 1.2220180034637451 img loss 1.1934254169464111 img loss 1.2509974241256714 img loss 1.2738592624664307 img loss 1.2197799682617188 img loss 1.2116923332214355 img loss 1.268868088722229 img loss 1.2652466297149658 img loss 1.3564581871032715 img loss 1.27730131149292 img loss 1.2489519119262695 img loss 1.2614741325378418 img loss 1.190895915031433 img loss 1.3221486806869507 img loss 1.2200626134872437 img loss 1.243640661239624 img loss 1.2817929983139038 img loss 1.2104606628417969 img loss 1.2663545608520508 img loss 1.2342631816864014 img loss 1.2484039068222046 img loss 1.2344398498535156 img loss 1.2396914958953857 img loss 1.2257944345474243 img loss 1.2757257223129272 img loss 1.2614624500274658 img loss 1.3073768615722656 img loss 1.2912898063659668 img loss 1.2787511348724365 img loss 1.2771106958389282 img loss 1.2036787271499634 img loss 1.3179941177368164 img loss 1.3119609355926514 img loss 1.238220453262329 img loss 1.2624187469482422 img loss 1.2133928537368774 img loss 1.2555779218673706 img loss 1.2232364416122437 img loss 1.243973970413208 img loss 1.27520751953125 img loss 1.2289413213729858 img loss 1.1928787231445312 img loss 1.1992384195327759 img loss 1.2171391248703003 img loss 1.2858234643936157 img loss 1.2661678791046143 img loss 1.162062406539917 img loss 1.2275880575180054 img loss 1.2921137809753418 img loss 1.225589632987976 img loss 1.2376604080200195 img loss 1.2394728660583496 img loss 1.2147560119628906 img loss 1.2553210258483887 img loss 1.232871651649475 img loss 1.2494332790374756 img loss 1.250383973121643 img loss 1.2306952476501465 img loss 1.2709639072418213 img loss 1.1726086139678955 img loss 1.1926608085632324 img loss 1.2135664224624634 img loss 1.1438326835632324 img loss 1.2348562479019165 img loss 1.283109426498413 img loss 1.2708659172058105 img loss 1.1642980575561523 img loss 1.2057054042816162 img loss 1.2687956094741821 img loss 1.2283891439437866 img loss 1.2218908071517944 img loss 1.2008178234100342 img loss 1.2695350646972656 img loss 1.2270439863204956 img loss 1.2170614004135132 img loss 1.2563625574111938 img loss 1.1756281852722168 img loss 1.242430567741394 img loss 1.2458469867706299 img loss 1.1907293796539307 img loss 1.3063759803771973 img loss 1.2315328121185303 img loss 1.2356462478637695 img loss 1.244337558746338 img loss 1.2631746530532837 img loss 1.2201751470565796 img loss 1.2936559915542603 img loss 1.259779691696167 img loss 1.2462013959884644 img loss 1.2889642715454102 img loss 1.2094905376434326 img loss 1.2173904180526733 img loss 1.231164813041687 img loss 1.2215940952301025 img loss 1.2402873039245605 img loss 1.220902919769287 img loss 1.2568318843841553 img loss 1.2372421026229858 img loss 1.1937185525894165 img loss 1.2418937683105469 img loss 1.2087738513946533 {'loss': 1.24, 'grad_norm': 0.23694896697998047, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2815685272216797 img loss 1.3990952968597412 img loss 1.4289096593856812 img loss 1.3417675495147705 img loss 1.316493272781372 img loss 1.379777193069458 img loss 1.3542946577072144 img loss 1.1623473167419434 img loss 1.3259609937667847 img loss 1.3426271677017212 img loss 1.427669882774353 img loss 1.3454655408859253 img loss 1.4917082786560059 img loss 1.263800024986267 img loss 1.2224996089935303 img loss 1.371808648109436 img loss 1.2630575895309448 img loss 1.246265172958374 img loss 1.3776942491531372 img loss 1.456701397895813 img loss 1.25703763961792 img loss 1.2759020328521729 img loss 1.2721600532531738 img loss 1.336105465888977 img loss 1.2654656171798706 img loss 1.3951747417449951 img loss 1.3492833375930786 img loss 1.2835549116134644 img loss 1.2099032402038574 img loss 1.3279651403427124 img loss 1.2298837900161743 img loss 1.3878008127212524 img loss 1.3246920108795166img loss 1.3468445539474487 img loss 1.29679274559021 img loss 1.2945003509521484 img loss 1.323986291885376 img loss 1.283396601676941 img loss 1.302612543106079 img loss 1.2879467010498047 img loss 1.3182027339935303 img loss 1.3213348388671875 img loss 1.2616888284683228 img loss 1.300779938697815 img loss 1.242311954498291 img loss 1.2912027835845947 img loss 1.2898920774459839 img loss 1.234513759613037 img loss 1.1981873512268066 img loss 1.3186612129211426 img loss 1.2520191669464111 img loss 1.3332936763763428 img loss 1.2518583536148071 img loss 1.251371145248413 img loss 1.2397842407226562 img loss 1.382809042930603 img loss 1.4576305150985718 img loss 1.3774434328079224 img loss 1.3290671110153198 img loss 1.168641448020935 img loss 1.3417813777923584 img loss 1.3423895835876465 img loss 1.316955327987671 img loss 1.4150468111038208 img loss 1.3342278003692627 img loss 1.2593401670455933 img loss 1.3688145875930786 img loss 1.304237723350525 img loss 1.2450883388519287 img loss 1.2955983877182007 img loss 1.3048518896102905 img loss 1.3329797983169556 img loss 1.3825939893722534 img loss 1.2939728498458862 img loss 1.4126029014587402 img loss 1.3221757411956787 img loss 1.30887770652771 img loss 1.2493305206298828 img loss 1.2951996326446533 img loss 1.3764930963516235 img loss 1.3947759866714478 img loss 1.304924488067627 img loss 1.384642481803894 img loss 1.3102655410766602 img loss 1.3534098863601685 img loss 1.3309805393218994 img loss 1.3804000616073608 img loss 1.3211218118667603 img loss 1.3253201246261597 img loss 1.3365885019302368 img loss 1.2923558950424194 img loss 1.3036577701568604 img loss 1.344948172569275 img loss 1.291802167892456 img loss 1.3255443572998047 img loss 1.3755767345428467 img loss 1.343005895614624 img loss 1.3759852647781372 img loss 1.3051776885986328 img loss 1.3548849821090698 img loss 1.3223021030426025 img loss 1.324084997177124 img loss 1.2745479345321655 img loss 1.3723466396331787 img loss 1.2716511487960815 img loss 1.2910906076431274 img loss 1.2918412685394287 img loss 1.3048646450042725 img loss 1.3255290985107422 img loss 1.3451718091964722 img loss 1.4273754358291626 img loss 1.326911449432373 img loss 1.3471252918243408 img loss 1.2597817182540894 img loss 1.2934707403182983 img loss 1.242020606994629 img loss 1.3698140382766724 img loss 1.3792377710342407 img loss 1.3557277917861938 img loss 1.303344488143921 img loss 1.2505210638046265 img loss 1.3348286151885986 img loss 1.303789734840393 img loss 1.3651564121246338 img loss 1.2888579368591309 img loss 1.2809566259384155 img loss 1.347659945487976 img loss 1.3747297525405884 {'loss': 1.3196, 'grad_norm': 0.3979624807834625, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4020497798919678 img loss 1.4959819316864014 img loss 1.4424254894256592 img loss 1.3162962198257446 img loss 1.4105679988861084 img loss 1.3853646516799927 img loss 1.4791312217712402 img loss 1.3712457418441772 img loss 1.4692330360412598 img loss 1.4831520318984985 img loss 1.3349816799163818 img loss 1.3675462007522583 img loss 1.3881977796554565 img loss 1.4746216535568237 img loss 1.284839153289795 img loss 1.3689663410186768 img loss 1.4311169385910034 img loss 1.5622289180755615 img loss 1.36557137966156 img loss 1.5486592054367065 img loss 1.3608049154281616 img loss 1.3027063608169556 img loss 1.5035351514816284 img loss 1.55048406124115 img loss 1.3948378562927246 img loss 1.372541904449463 img loss 1.4594615697860718 img loss 1.3101519346237183 img loss 1.4944730997085571 img loss 1.5470378398895264 img loss 1.4377995729446411 img loss 1.3763643503189087 img loss 1.449935793876648 img loss 1.325101613998413 img loss 1.4850153923034668 img loss 1.5501048564910889 img loss 1.3330446481704712 img loss 1.4254838228225708 img loss 1.4279555082321167 img loss 1.5521492958068848 img loss 1.3457353115081787 img loss 1.3343254327774048 img loss 1.4592617750167847 img loss 1.2803672552108765 img loss 1.360925316810608 img loss 1.4378716945648193 img loss 1.4195953607559204 img loss 1.4581836462020874 img loss 1.4203333854675293 img loss 1.4772493839263916 img loss 1.4830282926559448 img loss 1.5400413274765015 img loss 1.2846176624298096 img loss 1.344214916229248 img loss 1.3469502925872803 img loss 1.6226093769073486 img loss 1.450388789176941 img loss 1.4165300130844116 img loss 1.491098165512085 img loss 1.304513692855835 img loss 1.5046918392181396 img loss 1.4356924295425415 img loss 1.4044229984283447 img loss 1.466020941734314 img loss 1.4425607919692993 img loss 1.4811078310012817 img loss 1.423856258392334 img loss 1.2963221073150635 img loss 1.4190837144851685 img loss 1.5409579277038574 img loss 1.3922760486602783 img loss 1.5759016275405884 img loss 1.357836127281189 img loss 1.411292552947998 img loss 1.4429795742034912 img loss 1.3764703273773193 img loss 1.4748018980026245 img loss 1.298899531364441 img loss 1.415015459060669 img loss 1.5348708629608154 img loss 1.4404321908950806 img loss 1.3479944467544556 img loss 1.5685771703720093 img loss 1.3751232624053955 img loss 1.363540768623352 img loss 1.383959174156189 img loss 1.4216092824935913 img loss 1.4594978094100952 img loss 1.3309428691864014 img loss 1.3605306148529053 img loss 1.537049651145935 img loss 1.557995319366455 img loss 1.3378149271011353 img loss 1.3386942148208618 img loss 1.454602837562561 img loss 1.3386045694351196 img loss 1.5105119943618774 img loss 1.535336971282959 img loss 1.3867461681365967 img loss 1.468281865119934 img loss 1.4519623517990112 img loss 1.4036805629730225 img loss 1.4771181344985962 img loss 1.356065273284912 img loss 1.5769810676574707 img loss 1.3121012449264526 img loss 1.294290542602539 img loss 1.4442874193191528 img loss 1.5015575885772705 img loss 1.4137693643569946 img loss 1.4193617105484009 img loss 1.3126423358917236 img loss 1.480202555656433 img loss 1.6091187000274658 img loss 1.3043246269226074 img loss 1.4193933010101318 img loss 1.3147541284561157 img loss 1.4977120161056519 img loss 1.4234116077423096 img loss 1.5030977725982666 img loss 1.3791840076446533 img loss 1.465063214302063 img loss 1.3105944395065308 img loss 1.4941598176956177 img loss 1.537605881690979 img loss 1.594875454902649 img loss 1.5100575685501099 img loss 1.3513988256454468 {'loss': 1.4273, 'grad_norm': 1.352664828300476, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3714410066604614 img loss 1.4625903367996216 img loss 1.4303611516952515 img loss 1.5122945308685303 img loss 1.4987797737121582 img loss 1.3619333505630493 img loss 1.298431158065796 img loss 1.447121262550354 img loss 1.3833956718444824 img loss 1.3643311262130737 img loss 1.4655405282974243 img loss 1.4236866235733032 img loss 1.398870587348938 img loss 1.397748351097107 img loss 1.3213621377944946 img loss 1.3600327968597412 img loss 1.3500807285308838 img loss 1.3917747735977173 img loss 1.4497359991073608 img loss 1.3882981538772583 img loss 1.3950378894805908 img loss 1.5681509971618652 img loss 1.388722538948059 img loss 1.3971264362335205 img loss 1.4104115962982178 img loss 1.457053780555725 img loss 1.4861042499542236 img loss 1.5402473211288452 img loss 1.4278099536895752 img loss 1.4407082796096802 img loss 1.3865481615066528 img loss 1.4656157493591309 img loss 1.3368324041366577 img loss 1.342162847518921 img loss 1.374818205833435 img loss 1.4140982627868652 img loss 1.4239088296890259 img loss 1.3806016445159912 img loss 1.5281773805618286 img loss 1.3677598237991333 img loss 1.4026843309402466 img loss 1.3974980115890503 img loss 1.3638370037078857 img loss 1.4250390529632568 img loss 1.4588154554367065 img loss 1.2911851406097412 img loss 1.3420672416687012 img loss 1.4201306104660034 img loss 1.5705764293670654 img loss 1.4082748889923096 img loss 1.2957998514175415 img loss 1.4306321144104004 img loss 1.6383916139602661 img loss 1.4271188974380493 img loss 1.295668125152588 img loss 1.5154874324798584 img loss 1.3862805366516113 img loss 1.3586398363113403 img loss 1.2727389335632324 img loss 1.4280585050582886 img loss 1.4455684423446655 img loss 1.5009472370147705 img loss 1.5722630023956299 img loss 1.4991037845611572 img loss 1.3729777336120605 img loss 1.3276474475860596 img loss 1.3621529340744019 img loss 1.5162252187728882 img loss 1.3897944688796997 img loss 1.4978092908859253 img loss 1.4264951944351196 img loss 1.2877624034881592 img loss 1.4220197200775146 img loss 1.4879192113876343 img loss 1.3927509784698486 img loss 1.4019814729690552 img loss 1.3295624256134033 img loss 1.3641541004180908 img loss 1.628822684288025 img loss 1.458443284034729 img loss 1.4236968755722046 img loss 1.4113935232162476 img loss 1.4283053874969482 img loss 1.3997458219528198 img loss 1.368294358253479 img loss 1.4333823919296265 img loss 1.3085726499557495 img loss 1.4204003810882568 img loss 1.555668592453003 img loss 1.3844921588897705 img loss 1.5179359912872314 img loss 1.5359619855880737 img loss 1.399400234222412 img loss 1.462472677230835 img loss 1.448706030845642 img loss 1.3698643445968628 img loss 1.4897102117538452 img loss 1.4134069681167603 img loss 1.3927866220474243 img loss 1.5189831256866455 img loss 1.4396092891693115 img loss 1.456489086151123 img loss 1.3213019371032715 img loss 1.3636142015457153 img loss 1.4413988590240479 img loss 1.4123072624206543 img loss 1.4658942222595215 img loss 1.4484087228775024 img loss 1.366027593612671 img loss 1.2905173301696777 img loss 1.4379295110702515 img loss 1.424072504043579 img loss 1.4177110195159912 img loss 1.4162508249282837 img loss 1.4913736581802368 img loss 1.4706767797470093 img loss 1.5476146936416626 img loss 1.3736733198165894 img loss 1.5189118385314941 img loss 1.4500346183776855 img loss 1.5308871269226074 img loss 1.4177743196487427 img loss 1.3398454189300537 img loss 1.3308969736099243 img loss 1.347699522972107 img loss 1.3076235055923462 img loss 1.4426491260528564 img loss 1.3173446655273438 {'loss': 1.4195, 'grad_norm': 0.3445878326892853, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2425546646118164 img loss 1.2946923971176147 img loss 1.2208086252212524 img loss 1.2341288328170776 img loss 1.2339445352554321 img loss 1.1441148519515991 img loss 1.2179301977157593 img loss 1.2611005306243896 img loss 1.2508695125579834 img loss 1.2043828964233398 img loss 1.211286187171936 img loss 1.2908693552017212 img loss 1.2238483428955078 img loss 1.3500295877456665 img loss 1.2721694707870483 img loss 1.2844566106796265 img loss 1.1410068273544312 img loss 1.1786664724349976 img loss 1.2348873615264893 img loss 1.2034904956817627 img loss 1.2308911085128784 img loss 1.1942381858825684 img loss 1.2570858001708984 img loss 1.2199842929840088 img loss 1.389271855354309 img loss 1.1723941564559937 img loss 1.3325164318084717 img loss 1.1678203344345093 img loss 1.2182161808013916img loss 1.1221764087677002 img loss 1.1722286939620972 img loss 1.1377198696136475 img loss 1.283792495727539 img loss 1.2411161661148071 img loss 1.294588327407837 img loss 1.3195419311523438 img loss 1.193178653717041 img loss 1.1757605075836182 img loss 1.1635321378707886 img loss 1.2616596221923828 img loss 1.2418562173843384 img loss 1.1971981525421143 img loss 1.2293241024017334 img loss 1.3344933986663818 img loss 1.1923640966415405 img loss 1.2546437978744507 img loss 1.2595161199569702 img loss 1.230709433555603 img loss 1.0951967239379883 img loss 1.1915602684020996 img loss 1.2827755212783813 img loss 1.1880136728286743 img loss 1.2300565242767334 img loss 1.2043207883834839 img loss 1.2302082777023315 img loss 1.2363954782485962 img loss 1.2806270122528076 img loss 1.223682165145874 img loss 1.2766337394714355 img loss 1.2988935708999634 img loss 1.170673131942749 img loss 1.1678434610366821 img loss 1.276018738746643 img loss 1.187496542930603 img loss 1.2368245124816895 img loss 1.3000723123550415 img loss 1.186041235923767 img loss 1.1690385341644287 img loss 1.287026047706604 img loss 1.3318084478378296 img loss 1.2655272483825684 img loss 1.2766941785812378 img loss 1.2060253620147705 img loss 1.2529411315917969 img loss 1.246522307395935 img loss 1.2389999628067017 img loss 1.2494245767593384 img loss 1.2033820152282715 img loss 1.2570222616195679 img loss 1.162635326385498 img loss 1.1667182445526123 img loss 1.1548330783843994 img loss 1.2175350189208984 img loss 1.2338004112243652 img loss 1.1761295795440674 img loss 1.2581532001495361 img loss 1.364192247390747 img loss 1.153355360031128 img loss 1.1772502660751343 img loss 1.163913607597351 img loss 1.261937141418457 img loss 1.1787515878677368 img loss 1.2569055557250977 img loss 1.2066835165023804 img loss 1.1989792585372925 img loss 1.1558996438980103 img loss 1.2382349967956543 img loss 1.1531410217285156 img loss 1.1281589269638062 img loss 1.2260808944702148 img loss 1.2316222190856934 img loss 1.2858834266662598 img loss 1.2955859899520874 img loss 1.2334216833114624 img loss 1.217901587486267 img loss 1.1581401824951172 img loss 1.1817983388900757 img loss 1.3092771768569946 img loss 1.2061437368392944 img loss 1.2035926580429077 img loss 1.2246148586273193 img loss 1.268073558807373img loss 1.1681036949157715 img loss 1.2289080619812012 img loss 1.2268133163452148img loss 1.1580299139022827img loss 1.2691388130187988 img loss 1.2671234607696533 img loss 1.2440462112426758 img loss 1.249808669090271 img loss 1.1819548606872559 img loss 1.1690524816513062 img loss 1.201241374015808 img loss 1.1910481452941895 img loss 1.266946792602539 img loss 1.2108598947525024 img loss 1.183969497680664 img loss 1.2031751871109009 {'loss': 1.2258, 'grad_norm': 0.2922591269016266, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2362216711044312 img loss 1.2664743661880493 img loss 1.2049707174301147 img loss 1.1854594945907593 img loss 1.175268530845642 img loss 1.2101073265075684 img loss 1.2376365661621094 img loss 1.1407973766326904 img loss 1.2429178953170776 img loss 1.16695237159729 img loss 1.2972335815429688 img loss 1.285166621208191 img loss 1.285948395729065 img loss 1.2173649072647095 img loss 1.170128583908081 img loss 1.250006914138794 img loss 1.1643091440200806 img loss 1.097306728363037 img loss 1.2088011503219604 img loss 1.2619997262954712 img loss 1.1618391275405884 img loss 1.2141221761703491 img loss 1.2020384073257446 img loss 1.2432403564453125 img loss 1.2591302394866943 img loss 1.297269344329834 img loss 1.1660003662109375 img loss 1.2513538599014282 img loss 1.2264255285263062 img loss 1.2094457149505615 img loss 1.2741501331329346 img loss 1.3095622062683105 img loss 1.2290486097335815 img loss 1.2605093717575073 img loss 1.2142596244812012 img loss 1.1843475103378296 img loss 1.2582706212997437 img loss 1.244891881942749 img loss 1.215707540512085 img loss 1.1545112133026123 img loss 1.2047226428985596 img loss 1.204233169555664 img loss 1.2089321613311768 img loss 1.2316557168960571 img loss 1.200232982635498 img loss 1.1923813819885254 img loss 1.3536159992218018 img loss 1.1849150657653809 img loss 1.1544930934906006 img loss 1.2936838865280151 img loss 1.1806964874267578 img loss 1.2529065608978271 img loss 1.175882339477539 img loss 1.2589035034179688 img loss 1.153380036354065 img loss 1.192679762840271 img loss 1.2002588510513306 img loss 1.2277697324752808 img loss 1.2681015729904175 img loss 1.2006251811981201 img loss 1.194026231765747 img loss 1.1965240240097046 img loss 1.2334022521972656 img loss 1.179969310760498 img loss 1.1809887886047363 img loss 1.1672149896621704 img loss 1.2148443460464478 img loss 1.1496906280517578 img loss 1.1950902938842773 img loss 1.212477445602417 img loss 1.1435117721557617 img loss 1.2754783630371094 img loss 1.2305828332901 img loss 1.2509866952896118 img loss 1.194383144378662 img loss 1.2165859937667847 img loss 1.2357652187347412 img loss 1.1796205043792725 img loss 1.264203429222107 img loss 1.2688053846359253 img loss 1.1534963846206665 img loss 1.1537322998046875 img loss 1.1804518699645996 img loss 1.2254612445831299 img loss 1.2636256217956543 img loss 1.231382966041565 img loss 1.2486447095870972 img loss 1.193655252456665 img loss 1.225480079650879 img loss 1.241805076599121 img loss 1.1873559951782227 img loss 1.266481876373291 img loss 1.2630070447921753 img loss 1.1760870218276978 img loss 1.1552529335021973 img loss 1.1906155347824097 img loss 1.1794079542160034 img loss 1.1844134330749512 img loss 1.2687572240829468 img loss 1.1893784999847412 img loss 1.2687346935272217 img loss 1.2971084117889404 img loss 1.184426188468933 img loss 1.188793420791626 img loss 1.333589792251587 img loss 1.1608085632324219 img loss 1.3583331108093262 img loss 1.2165031433105469 img loss 1.1659075021743774 img loss 1.1443507671356201 img loss 1.14326810836792 img loss 1.1718058586120605 img loss 1.181636095046997 img loss 1.1880359649658203 img loss 1.2674787044525146 img loss 1.273594856262207 img loss 1.2425339221954346 img loss 1.2248210906982422 img loss 1.187495470046997 img loss 1.1852779388427734 img loss 1.1561954021453857 img loss 1.16707181930542 img loss 1.1337082386016846 img loss 1.2710016965866089 img loss 1.2150503396987915 img loss 1.1665422916412354 img loss 1.1627212762832642 img loss 1.2433583736419678 {'loss': 1.2147, 'grad_norm': 0.37481051683425903, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2913167476654053 img loss 1.2025197744369507 img loss 1.2155797481536865 img loss 1.2367558479309082 img loss 1.1657021045684814 img loss 1.1521704196929932 img loss 1.1610764265060425 img loss 1.283829927444458 img loss 1.243017554283142 img loss 1.190833330154419 img loss 1.1857858896255493 img loss 1.2166554927825928 img loss 1.1997301578521729 img loss 1.2849763631820679 img loss 1.2730998992919922 img loss 1.1608293056488037 img loss 1.2358601093292236 img loss 1.2415179014205933 img loss 1.2757165431976318 img loss 1.1793336868286133 img loss 1.2461521625518799 img loss 1.3022840023040771 img loss 1.3302066326141357 img loss 1.251461386680603 img loss 1.1772066354751587 img loss 1.1695938110351562 img loss 1.2593789100646973 img loss 1.2555480003356934 img loss 1.232452154159546 img loss 1.251686930656433 img loss 1.221082091331482 img loss 1.2302162647247314 img loss 1.2207459211349487 img loss 1.210386872291565 img loss 1.19704270362854 img loss 1.1699364185333252 img loss 1.1824482679367065 img loss 1.1730831861495972 img loss 1.248457670211792 img loss 1.2261734008789062 img loss 1.2150616645812988 img loss 1.1986329555511475 img loss 1.1924899816513062 img loss 1.2011535167694092 img loss 1.1825450658798218 img loss 1.1312967538833618 img loss 1.1886934041976929 img loss 1.1841709613800049 img loss 1.1775131225585938 img loss 1.1395635604858398 img loss 1.2795605659484863 img loss 1.3053292036056519 img loss 1.2239794731140137 img loss 1.2084509134292603 img loss 1.2005993127822876 img loss 1.2147481441497803 img loss 1.1232656240463257 img loss 1.254523754119873 img loss 1.1442772150039673 img loss 1.2365806102752686 img loss 1.1790049076080322 img loss 1.243748426437378 img loss 1.2673523426055908 img loss 1.2339041233062744 img loss 1.170777678489685 img loss 1.1745914220809937 img loss 1.178351640701294 img loss 1.2027326822280884 img loss 1.3091907501220703 img loss 1.2452894449234009 img loss 1.2059587240219116 img loss 1.3026853799819946 img loss 1.1389670372009277 img loss 1.1265904903411865 img loss 1.2465019226074219 img loss 1.2179769277572632 img loss 1.2141062021255493 img loss 1.2139153480529785 img loss 1.2155226469039917 img loss 1.2911982536315918 img loss 1.25148344039917 img loss 1.2486152648925781 img loss 1.2673242092132568 img loss 1.1762465238571167 img loss 1.1703131198883057 img loss 1.2263611555099487 img loss 1.1467835903167725 img loss 1.2258203029632568 img loss 1.1646392345428467 img loss 1.167007327079773 img loss 1.2574888467788696 img loss 1.186615228652954 img loss 1.232643723487854 img loss 1.246005892753601 img loss 1.1691722869873047 img loss 1.1692936420440674 img loss 1.1815437078475952 img loss 1.2167088985443115 img loss 1.2043790817260742 img loss 1.1628614664077759 img loss 1.2074260711669922 img loss 1.1728626489639282 img loss 1.2017841339111328 img loss 1.1820571422576904 img loss 1.2300543785095215 img loss 1.1873047351837158 img loss 1.2279019355773926 img loss 1.183875322341919 img loss 1.2186174392700195 img loss 1.059855580329895 img loss 1.1733412742614746 img loss 1.283185362815857 img loss 1.3151788711547852 img loss 1.350630283355713 img loss 1.260913610458374 img loss 1.1663258075714111 img loss 1.2263615131378174 img loss 1.239195466041565 img loss 1.0923980474472046 img loss 1.1593694686889648 img loss 1.2687841653823853 img loss 1.1403141021728516 img loss 1.166404128074646 img loss 1.1759079694747925 img loss 1.2370223999023438 img loss 1.261535406112671 img loss 1.221217393875122 img loss 1.2147072553634644 {'loss': 1.2127, 'grad_norm': 0.2978699207305908, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.204424500465393 img loss 1.2478700876235962 img loss 1.2385057210922241 img loss 1.243492603302002 img loss 1.1773213148117065 img loss 1.2126984596252441 img loss 1.2349872589111328 img loss 1.221086025238037 img loss 1.2527718544006348 img loss 1.2002620697021484 img loss 1.2300697565078735 img loss 1.3047962188720703 img loss 1.2567814588546753 img loss 1.1780856847763062 img loss 1.2261862754821777 img loss 1.2280216217041016 img loss 1.1798083782196045 img loss 1.2577629089355469 img loss 1.2528070211410522 img loss 1.3142011165618896 img loss 1.3773581981658936 img loss 1.2283604145050049 img loss 1.2003147602081299 img loss 1.2188390493392944 img loss 1.1782277822494507 img loss 1.2125986814498901 img loss 1.1875331401824951 img loss 1.2437045574188232 img loss 1.1927752494812012 img loss 1.1752923727035522 img loss 1.224290132522583 img loss 1.3363920450210571 img loss 1.153317928314209 img loss 1.137211799621582 img loss 1.1645779609680176 img loss 1.1988366842269897 img loss 1.2543209791183472 img loss 1.206533432006836img loss 1.253893256187439 img loss 1.1890932321548462 img loss 1.1982783079147339 img loss 1.2472450733184814 img loss 1.14601469039917 img loss 1.18094801902771 img loss 1.212397813796997 img loss 1.1956114768981934 img loss 1.1875587701797485 img loss 1.2443145513534546 img loss 1.2105445861816406 img loss 1.2341241836547852 img loss 1.2107758522033691 img loss 1.1895912885665894 img loss 1.1734957695007324 img loss 1.1956844329833984 img loss 1.2058171033859253 img loss 1.2374374866485596 img loss 1.194378137588501 img loss 1.2219120264053345 img loss 1.2168511152267456 img loss 1.2225627899169922 img loss 1.185181975364685 img loss 1.2816425561904907 img loss 1.2327908277511597 img loss 1.3088774681091309 img loss 1.183342695236206 img loss 1.3108282089233398 img loss 1.2354058027267456 img loss 1.2593411207199097 img loss 1.210127830505371 img loss 1.193833351135254 img loss 1.2698264122009277 img loss 1.2241884469985962 img loss 1.199916124343872 img loss 1.2284189462661743 img loss 1.2203181982040405 img loss 1.1391706466674805 img loss 1.153643012046814 img loss 1.2052721977233887 img loss 1.3049646615982056 img loss 1.240791916847229 img loss 1.2241843938827515 img loss 1.3064632415771484 img loss 1.2079811096191406 img loss 1.2562967538833618 img loss 1.2773901224136353 img loss 1.2139334678649902 img loss 1.281022548675537 img loss 1.174800157546997 img loss 1.2126290798187256img loss 1.2438485622406006 img loss 1.3321236371994019 img loss 1.31992769241333 img loss 1.1770505905151367 img loss 1.2957531213760376 img loss 1.1959701776504517 img loss 1.2300227880477905 img loss 1.159765601158142 img loss 1.2227914333343506 img loss 1.1695829629898071 img loss 1.2656831741333008 img loss 1.159924864768982 img loss 1.285346269607544 img loss 1.1681972742080688 img loss 1.1597380638122559 img loss 1.2556664943695068 img loss 1.2135331630706787 img loss 1.2164827585220337 img loss 1.201096773147583 img loss 1.2179789543151855 img loss 1.215998649597168 img loss 1.3596012592315674 img loss 1.2002453804016113 img loss 1.204538345336914 img loss 1.2330358028411865 img loss 1.234009027481079 img loss 1.165555477142334 img loss 1.187983751296997 img loss 1.1816842555999756 img loss 1.267352819442749 img loss 1.1952052116394043 img loss 1.3203550577163696 img loss 1.16806960105896 img loss 1.2284616231918335 img loss 1.1902836561203003 img loss 1.2530649900436401 img loss 1.1952942609786987 img loss 1.24210524559021 img loss 1.2227210998535156 {'loss': 1.2236, 'grad_norm': 0.2699890434741974, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4489156007766724 img loss 1.5247184038162231 img loss 1.3868424892425537 img loss 1.5434978008270264 img loss 1.4376646280288696 img loss 1.3922215700149536 img loss 1.6025688648223877 img loss 1.4347094297409058 img loss 1.8596222400665283 img loss 1.3929351568222046 img loss 1.4957908391952515 img loss 1.417967677116394 img loss 1.78317129611969 img loss 1.4800595045089722 img loss 1.415697455406189 img loss 1.6204859018325806 img loss 1.3791872262954712 img loss 1.3719085454940796 img loss 1.7322514057159424 img loss 1.5102894306182861 img loss 1.4375554323196411 img loss 1.4250906705856323 img loss 1.560313105583191 img loss 1.3990321159362793 img loss 1.5022313594818115 img loss 1.5111563205718994 img loss 1.430941104888916 img loss 1.4074997901916504 img loss 1.3598682880401611 img loss 1.414585828781128 img loss 1.6850765943527222 img loss 1.365691900253296 img loss 1.3973180055618286 img loss 1.554908275604248 img loss 1.533047080039978 img loss 1.6245430707931519 img loss 1.481413722038269 img loss 1.4962875843048096 img loss 1.3907654285430908 img loss 1.4884206056594849 img loss 1.3406422138214111 img loss 1.577155590057373 img loss 1.5075358152389526 img loss 1.5000994205474854 img loss 1.451386570930481 img loss 1.5950143337249756 img loss 1.5183953046798706 img loss 1.4030678272247314 img loss 1.334652304649353 img loss 1.5282574892044067 img loss 1.4424432516098022 img loss 1.4743956327438354 img loss 1.468265414237976 img loss 1.4475347995758057 img loss 1.5142220258712769 img loss 1.4594357013702393 img loss 1.4643038511276245 img loss 1.5383669137954712 img loss 1.3498364686965942 img loss 1.538969874382019 img loss 1.3959745168685913 img loss 1.451799988746643 img loss 1.5180295705795288 img loss 1.4530967473983765 img loss 1.428252935409546 img loss 1.4256142377853394 img loss 1.5736347436904907 img loss 1.571593999862671 img loss 1.6013062000274658 img loss 1.4139012098312378 img loss 1.594088077545166 img loss 1.5893447399139404 img loss 1.4611231088638306 img loss 1.4708107709884644 img loss 1.5607210397720337 img loss 1.4572367668151855 img loss 1.4991352558135986 img loss 1.3760616779327393 img loss 1.6483891010284424 img loss 1.6568868160247803 img loss 1.5127129554748535 img loss 1.5315591096878052 img loss 1.5141886472702026 img loss 1.4832472801208496 img loss 1.4649713039398193 img loss 1.39982008934021 img loss 1.4250578880310059 img loss 1.46300208568573 img loss 1.5645973682403564 img loss 1.5116373300552368 img loss 1.5564004182815552 img loss 1.439965844154358 img loss 1.5006840229034424 img loss 1.4049819707870483 img loss 1.3870071172714233 img loss 1.413095235824585 img loss 1.550472617149353 img loss 1.4632866382598877 img loss 1.4624289274215698img loss 1.4025903940200806 img loss 1.496699571609497 img loss 1.4826081991195679 img loss 1.3612736463546753 img loss 1.4480177164077759 img loss 1.4552236795425415 img loss 1.4698481559753418 img loss 1.5898253917694092 img loss 1.505022406578064 img loss 1.6056309938430786 img loss 1.4024914503097534 img loss 1.3253716230392456 img loss 1.568549394607544 img loss 1.3991905450820923 img loss 1.3983826637268066img loss 1.4914186000823975img loss 1.4819952249526978 img loss 1.5728223323822021 img loss 1.5109652280807495 img loss 1.4249144792556763 img loss 1.4142311811447144 img loss 1.3813005685806274 img loss 1.5322116613388062 img loss 1.4301508665084839 img loss 1.599526047706604 img loss 1.466577410697937 img loss 1.4090359210968018 img loss 1.4673393964767456 img loss 1.468595266342163 {'loss': 1.4837, 'grad_norm': 0.2738986909389496, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2992069721221924 img loss 1.1698306798934937 img loss 1.2218366861343384 img loss 1.1984169483184814 img loss 1.2786177396774292 img loss 1.2205015420913696 img loss 1.2359726428985596 img loss 1.156443476676941 img loss 1.2289661169052124 img loss 1.2730869054794312 img loss 1.188354253768921 img loss 1.1912071704864502 img loss 1.2043466567993164 img loss 1.2671972513198853 img loss 1.2548903226852417 img loss 1.2185988426208496 img loss 1.2435760498046875 img loss 1.2252671718597412 img loss 1.2032427787780762 img loss 1.2395457029342651 img loss 1.193341612815857 img loss 1.1972975730895996 img loss 1.2540994882583618 img loss 1.2189196348190308 img loss 1.2590270042419434 img loss 1.233292818069458 img loss 1.2115328311920166 img loss 1.1538255214691162 img loss 1.149613618850708 img loss 1.1673901081085205 img loss 1.2377334833145142 img loss 1.2352187633514404 img loss 1.2221789360046387 img loss 1.2503572702407837 img loss 1.2369219064712524 img loss 1.2519210577011108 img loss 1.3028411865234375 img loss 1.2002332210540771 img loss 1.1879875659942627 img loss 1.2753405570983887 img loss 1.2360801696777344 img loss 1.2020729780197144 img loss 1.2012056112289429 img loss 1.2709673643112183 img loss 1.2009209394454956 img loss 1.1665432453155518 img loss 1.2257636785507202 img loss 1.228632926940918 img loss 1.2223113775253296 img loss 1.2067002058029175 img loss 1.245673656463623 img loss 1.2431837320327759 img loss 1.1973607540130615 img loss 1.220381736755371 img loss 1.2109744548797607 img loss 1.2575974464416504 img loss 1.2866342067718506 img loss 1.2453725337982178 img loss 1.2244793176651img loss 1.2517449855804443 img loss 1.1744418144226074 img loss 1.2648760080337524 img loss 1.1974174976348877 img loss 1.2233972549438477 img loss 1.2785606384277344 img loss 1.2467057704925537 img loss 1.155030608177185 img loss 1.1996021270751953 img loss 1.1851818561553955 img loss 1.2685563564300537 img loss 1.1995470523834229 img loss 1.1850353479385376 img loss 1.2488139867782593 img loss 1.2066936492919922 img loss 1.2094123363494873 img loss 1.2141087055206299 img loss 1.213470458984375 img loss 1.1727797985076904 img loss 1.2188947200775146 img loss 1.2871756553649902 img loss 1.259189486503601 img loss 1.2241261005401611 img loss 1.1947569847106934 img loss 1.1616238355636597 img loss 1.2239691019058228 img loss 1.2254869937896729 img loss 1.2770740985870361 img loss 1.229714274406433 img loss 1.2035784721374512 img loss 1.252172827720642 img loss 1.2548160552978516 img loss 1.2515980005264282 img loss 1.113558053970337 img loss 1.2029643058776855 img loss 1.2319862842559814 img loss 1.1357200145721436 img loss 1.2003456354141235 img loss 1.2184160947799683 img loss 1.241184115409851 img loss 1.194483995437622 img loss 1.262715220451355 img loss 1.2474689483642578 img loss 1.232920527458191 img loss 1.1814600229263306 img loss 1.1819360256195068 img loss 1.2271323204040527 img loss 1.2312901020050049 img loss 1.2572888135910034 img loss 1.2121236324310303 img loss 1.1829556226730347 img loss 1.149061679840088 img loss 1.3291172981262207 img loss 1.2473883628845215 img loss 1.2239443063735962 img loss 1.282619833946228 img loss 1.2166374921798706 img loss 1.246236801147461 img loss 1.2023403644561768 img loss 1.2319334745407104 img loss 1.1940046548843384 img loss 1.2464710474014282 img loss 1.3492566347122192 img loss 1.32173490524292 img loss 1.1959853172302246 img loss 1.2323219776153564 img loss 1.279396414756775 img loss 1.2006748914718628 img loss 1.2421295642852783 {'loss': 1.2247, 'grad_norm': 0.24196958541870117, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4627392292022705 img loss 1.3567652702331543 img loss 1.3298386335372925 img loss 1.3833537101745605 img loss 1.3657374382019043 img loss 1.4498368501663208 img loss 1.4791655540466309 img loss 1.286719560623169 img loss 1.3754457235336304 img loss 1.4575759172439575 img loss 1.4184819459915161 img loss 1.363341212272644 img loss 1.4654762744903564 img loss 1.491674542427063 img loss 1.4215534925460815 img loss 1.4027259349822998 img loss 1.3411816358566284 img loss 1.3929485082626343 img loss 1.3119844198226929 img loss 1.3835469484329224 img loss 1.341854453086853 img loss 1.3515743017196655 img loss 1.491491675376892 img loss 1.4802426099777222 img loss 1.3202662467956543 img loss 1.457456350326538 img loss 1.4197800159454346 img loss 1.4225305318832397 img loss 1.38443922996521 img loss 1.3642228841781616 img loss 1.3476852178573608 img loss 1.4095865488052368 img loss 1.241851806640625 img loss 1.4568661451339722 img loss 1.424201250076294 img loss 1.3694216012954712 img loss 1.4594148397445679 img loss 1.401700496673584 img loss 1.3101415634155273 img loss 1.3738300800323486 img loss 1.4682525396347046 img loss 1.3932349681854248 img loss 1.3523086309432983 img loss 1.5148308277130127 img loss 1.3597780466079712 img loss 1.3611663579940796 img loss 1.3256580829620361 img loss 1.4358772039413452 img loss 1.4335674047470093 img loss 1.3081576824188232 img loss 1.3761452436447144 img loss 1.4295388460159302 img loss 1.3953993320465088 img loss 1.4407185316085815 img loss 1.3523386716842651 img loss 1.430956244468689 img loss 1.292426586151123 img loss 1.5159013271331787 img loss 1.4008709192276 img loss 1.377711534500122 img loss 1.4228485822677612 img loss 1.4453917741775513 img loss 1.457334280014038 img loss 1.293012022972107 img loss 1.4059183597564697 img loss 1.3606677055358887 img loss 1.420529842376709 img loss 1.4396618604660034 img loss 1.3562947511672974 img loss 1.3902547359466553 img loss 1.3413586616516113 img loss 1.4733021259307861 img loss 1.445542573928833 img loss 1.4211137294769287 img loss 1.3594516515731812 img loss 1.2534267902374268 img loss 1.3518483638763428 img loss 1.4548341035842896 img loss 1.3352267742156982 img loss 1.4027026891708374 img loss 1.4589836597442627 img loss 1.4168980121612549 img loss 1.3912426233291626 img loss 1.414831280708313 img loss 1.4238388538360596 img loss 1.2489593029022217 img loss 1.337417721748352 img loss 1.419775366783142 img loss 1.3469725847244263 img loss 1.3932111263275146 img loss 1.4175821542739868 img loss 1.4382935762405396 img loss 1.4054672718048096 img loss 1.36305570602417 img loss 1.3025944232940674 img loss 1.323106050491333 img loss 1.2712397575378418 img loss 1.4914860725402832 img loss 1.4289151430130005 img loss 1.448100209236145 img loss 1.4966347217559814 img loss 1.287782907485962 img loss 1.4239341020584106 img loss 1.293416976928711 img loss 1.3592240810394287 img loss 1.3186769485473633 img loss 1.4947949647903442 img loss 1.377785325050354 img loss 1.3841757774353027 img loss 1.414591670036316 img loss 1.414352536201477 img loss 1.3226509094238281 img loss 1.3901419639587402 img loss 1.3473246097564697 img loss 1.4222804307937622 img loss 1.4466387033462524 img loss 1.3590604066848755 img loss 1.4701721668243408 img loss 1.2857204675674438 img loss 1.3366590738296509 img loss 1.3681387901306152 img loss 1.3409230709075928 img loss 1.4516472816467285 img loss 1.4105883836746216 img loss 1.3537095785140991 img loss 1.3832355737686157 img loss 1.3920323848724365 img loss 1.3570696115493774 {'loss': 1.3907, 'grad_norm': 0.2496020644903183, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4004032611846924 img loss 1.49001944065094 img loss 1.4473471641540527 img loss 1.3882784843444824 img loss 1.2941035032272339 img loss 1.447080373764038 img loss 1.443372130393982 img loss 1.345637559890747 img loss 1.3016984462738037 img loss 1.5003273487091064 img loss 1.6324992179870605 img loss 1.5160244703292847 img loss 1.4642157554626465 img loss 1.3724859952926636 img loss 1.5869866609573364 img loss 1.3052773475646973 img loss 1.433457851409912 img loss 1.3312246799468994 img loss 1.349039912223816 img loss 1.3974193334579468 img loss 1.367606282234192 img loss 1.4889557361602783 img loss 1.4918595552444458 img loss 1.4859246015548706 img loss 1.3548365831375122 img loss 1.4461333751678467 img loss 1.2167041301727295 img loss 1.469555139541626 img loss 1.485552430152893 img loss 1.465344786643982 img loss 1.4864472150802612 img loss 1.6422631740570068 img loss 1.4173082113265991 img loss 1.3898594379425049 img loss 1.3280503749847412 img loss 1.4414069652557373 img loss 1.3730549812316895 img loss 1.4189053773880005 img loss 1.4129881858825684 img loss 1.3761407136917114 img loss 1.500891089439392 img loss 1.4794524908065796 img loss 1.4306937456130981 img loss 1.512352705001831 img loss 1.352189540863037 img loss 1.4975450038909912 img loss 1.52107572555542 img loss 1.4266170263290405 img loss 1.4644802808761597 img loss 1.4825037717819214 img loss 1.344267725944519 img loss 1.40324068069458 img loss 1.4310604333877563 img loss 1.4172585010528564 img loss 1.3214229345321655 img loss 1.3467926979064941 img loss 1.4467004537582397 img loss 1.433082938194275 img loss 1.3559587001800537 img loss 1.3778836727142334 img loss 1.3320621252059937 img loss 1.4038923978805542 img loss 1.3923505544662476 img loss 1.3925317525863647 img loss 1.3763887882232666 img loss 1.4101122617721558 img loss 1.4145387411117554 img loss 1.3590333461761475 img loss 1.3483775854110718 img loss 1.416381597518921 img loss 1.3915776014328003 img loss 1.4924359321594238 img loss 1.4782793521881104 img loss 1.5243474245071411 img loss 1.426615595817566 img loss 1.4060189723968506 img loss 1.5610584020614624 img loss 1.4657105207443237 img loss 1.4116367101669312 img loss 1.3475260734558105 img loss 1.4820473194122314 img loss 1.285921335220337 img loss 1.4072595834732056 img loss 1.4240342378616333 img loss 1.4183090925216675 img loss 1.3659965991973877 img loss 1.3579109907150269 img loss 1.3552873134613037 img loss 1.5005829334259033 img loss 1.4637763500213623 img loss 1.398650884628296 img loss 1.360026478767395 img loss 1.4974087476730347 img loss 1.424781084060669 img loss 1.4472805261611938 img loss 1.4959614276885986 img loss 1.415982723236084 img loss 1.339750051498413 img loss 1.4794209003448486 img loss 1.4390355348587036 img loss 1.559045433998108 img loss 1.3800908327102661 img loss 1.4505163431167603 img loss 1.5184814929962158 img loss 1.336378812789917 img loss 1.5663899183273315 img loss 1.5417258739471436 img loss 1.4473071098327637 img loss 1.4571305513381958 img loss 1.5113152265548706 img loss 1.2695410251617432 img loss 1.3451286554336548 img loss 1.3283119201660156 img loss 1.6776986122131348 img loss 1.442825436592102img loss 1.3908864259719849 img loss 1.5217173099517822 img loss 1.517972707748413 img loss 1.558256983757019 img loss 1.4968583583831787 img loss 1.4855026006698608 img loss 1.4060238599777222 img loss 1.4781606197357178 img loss 1.4426734447479248 img loss 1.4578975439071655 img loss 1.3751171827316284 img loss 1.4969137907028198 img loss 1.4384284019470215 {'loss': 1.4309, 'grad_norm': 0.26851871609687805, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1707911491394043 img loss 1.2070406675338745 img loss 1.2261470556259155 img loss 1.199083924293518 img loss 1.2643247842788696 img loss 1.246903896331787 img loss 1.2354004383087158 img loss 1.3403743505477905 img loss 1.2811331748962402 img loss 1.2024677991867065 img loss 1.2094714641571045 img loss 1.191638708114624 img loss 1.2177472114562988 img loss 1.19145667552948 img loss 1.1967968940734863 img loss 1.2134615182876587 img loss 1.1723551750183105 img loss 1.1875832080841064 img loss 1.182078242301941 img loss 1.2500014305114746 img loss 1.279447078704834 img loss 1.2135894298553467 img loss 1.1910251379013062 img loss 1.1575994491577148 img loss 1.1867974996566772 img loss 1.334690809249878 img loss 1.2106969356536865 img loss 1.2374355792999268 img loss 1.1798502206802368 img loss 1.195552110671997 img loss 1.1888045072555542 img loss 1.1886200904846191 img loss 1.2407488822937012 img loss 1.2389888763427734 img loss 1.3758853673934937 img loss 1.1905860900878906 img loss 1.2342737913131714 img loss 1.2002671957015991 img loss 1.1294949054718018 img loss 1.2310421466827393 img loss 1.143676519393921 img loss 1.1635093688964844 img loss 1.2183805704116821 img loss 1.2240142822265625 img loss 1.198604941368103 img loss 1.2189891338348389 img loss 1.2646030187606812 img loss 1.2330273389816284 img loss 1.2525943517684937 img loss 1.1757686138153076 img loss 1.216165542602539 img loss 1.2334976196289062 img loss 1.2331146001815796 img loss 1.248711109161377 img loss 1.197299599647522 img loss 1.1915174722671509 img loss 1.2084969282150269 img loss 1.2243388891220093img loss 1.1912063360214233 img loss 1.236232042312622 img loss 1.1492468118667603 img loss 1.2068860530853271 img loss 1.2047343254089355 img loss 1.2282224893569946 img loss 1.2083686590194702 img loss 1.1872695684432983 img loss 1.238864779472351 img loss 1.1948051452636719 img loss 1.198422908782959 img loss 1.200488567352295 img loss 1.240181565284729 img loss 1.197182059288025 img loss 1.2736231088638306 img loss 1.2057266235351562 img loss 1.203107476234436 img loss 1.205026388168335 img loss 1.2433656454086304 img loss 1.168941855430603 img loss 1.235259771347046 img loss 1.164226770401001 img loss 1.22568678855896 img loss 1.2336848974227905 img loss 1.2224754095077515 img loss 1.1954190731048584 img loss 1.2524241209030151 img loss 1.2402976751327515 img loss 1.1748968362808228 img loss 1.1954951286315918 img loss 1.231656551361084 img loss 1.2461903095245361 img loss 1.144836187362671 img loss 1.2842392921447754 img loss 1.2401189804077148 img loss 1.2134374380111694 img loss 1.2176322937011719 img loss 1.2506506443023682 img loss 1.2164032459259033 img loss 1.2444807291030884 img loss 1.235361099243164 img loss 1.1631840467453003 img loss 1.255113124847412 img loss 1.2338813543319702 img loss 1.225950002670288 img loss 1.1736736297607422 img loss 1.1784565448760986 img loss 1.2083978652954102 img loss 1.2144792079925537 img loss 1.268538475036621 img loss 1.2359445095062256 img loss 1.2430387735366821 img loss 1.2240564823150635 img loss 1.1923573017120361 img loss 1.1935665607452393 img loss 1.2626614570617676 img loss 1.2718627452850342 img loss 1.2475831508636475 img loss 1.244405746459961 img loss 1.2278950214385986 img loss 1.2781413793563843 img loss 1.219757080078125 img loss 1.1945016384124756 img loss 1.2115954160690308 img loss 1.2007653713226318 img loss 1.1907345056533813 img loss 1.2746492624282837 img loss 1.171683669090271 img loss 1.2145628929138184 img loss 1.2004024982452393 {'loss': 1.218, 'grad_norm': 0.3043033182621002, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1731785535812378 img loss 1.197442889213562 img loss 1.2501866817474365 img loss 1.1430190801620483 img loss 1.2317523956298828 img loss 1.1895087957382202 img loss 1.167903184890747 img loss 1.2185659408569336 img loss 1.272242784500122 img loss 1.2299244403839111 img loss 1.2476805448532104img loss 1.209611177444458 img loss 1.1545339822769165 img loss 1.165973424911499 img loss 1.2097461223602295 img loss 1.2130321264266968 img loss 1.2215595245361328 img loss 1.2328380346298218 img loss 1.2185865640640259 img loss 1.2016704082489014 img loss 1.125760555267334 img loss 1.2026315927505493 img loss 1.2223345041275024 img loss 1.1342499256134033 img loss 1.242582082748413 img loss 1.1377012729644775 img loss 1.1955349445343018 img loss 1.2060580253601074 img loss 1.1683387756347656 img loss 1.2143933773040771 img loss 1.1368876695632935 img loss 1.1310397386550903 img loss 1.1840004920959473 img loss 1.1618983745574951 img loss 1.1875295639038086 img loss 1.2029356956481934 img loss 1.2721842527389526 img loss 1.1753853559494019 img loss 1.1969257593154907 img loss 1.1663167476654053 img loss 1.1310683488845825 img loss 1.1223686933517456 img loss 1.1730793714523315 img loss 1.206571102142334 img loss 1.3400229215621948 img loss 1.2098500728607178 img loss 1.1539329290390015 img loss 1.2351014614105225 img loss 1.2679277658462524 img loss 1.3432726860046387 img loss 1.1686115264892578 img loss 1.243802785873413 img loss 1.2597975730895996 img loss 1.1162109375 img loss 1.2065991163253784 img loss 1.2552117109298706 img loss 1.1865853071212769 img loss 1.1483051776885986 img loss 1.2100181579589844 img loss 1.210622787475586 img loss 1.1695151329040527 img loss 1.1279120445251465 img loss 1.1366283893585205 img loss 1.1754029989242554 img loss 1.1589736938476562 img loss 1.1571145057678223 img loss 1.2279843091964722 img loss 1.163799524307251 img loss 1.1847866773605347 img loss 1.224524736404419 img loss 1.1962056159973145 img loss 1.2232208251953125 img loss 1.1927263736724854 img loss 1.2172331809997559 img loss 1.1623125076293945 img loss 1.281245470046997 img loss 1.233121395111084 img loss 1.1552917957305908 img loss 1.2599436044692993 img loss 1.1366459131240845 img loss 1.1841124296188354 img loss 1.18821120262146 img loss 1.1796784400939941 img loss 1.1926466226577759 img loss 1.2380661964416504 img loss 1.1759519577026367 img loss 1.1602312326431274 img loss 1.1921412944793701 img loss 1.1826006174087524 img loss 1.1800570487976074 img loss 1.2116330862045288 img loss 1.2232983112335205 img loss 1.1056734323501587 img loss 1.1943492889404297 img loss 1.1313854455947876 img loss 1.2102594375610352 img loss 1.1951022148132324 img loss 1.2586243152618408 img loss 1.1693289279937744 img loss 1.235486626625061 img loss 1.2865148782730103 img loss 1.1762049198150635 img loss 1.245898962020874 img loss 1.214903712272644 img loss 1.17897367477417 img loss 1.1967835426330566 img loss 1.1364428997039795 img loss 1.183184266090393 img loss 1.2176350355148315 img loss 1.1977752447128296 img loss 1.1909167766571045 img loss 1.1977574825286865 img loss 1.2204536199569702 img loss 1.191179871559143 img loss 1.1793168783187866 img loss 1.1204921007156372 img loss 1.131284236907959 img loss 1.1340749263763428 img loss 1.2250584363937378 img loss 1.2182049751281738 img loss 1.2903575897216797 img loss 1.173909068107605 img loss 1.1974796056747437 img loss 1.0974371433258057 img loss 1.2597136497497559 img loss 1.1957640647888184 img loss 1.1644614934921265 img loss 1.1722514629364014 {'loss': 1.1952, 'grad_norm': 0.3894645869731903, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2601324319839478 img loss 1.194701910018921 img loss 1.252837896347046 img loss 1.2000319957733154 img loss 1.2159086465835571 img loss 1.1997716426849365 img loss 1.228330373764038 img loss 1.2347309589385986 img loss 1.2095626592636108 img loss 1.2090461254119873 img loss 1.2020972967147827 img loss 1.2241215705871582 img loss 1.2357832193374634 img loss 1.2543585300445557 img loss 1.2433403730392456 img loss 1.2604864835739136 img loss 1.2062788009643555 img loss 1.2293230295181274 img loss 1.2807021141052246 img loss 1.2455195188522339 img loss 1.2269175052642822 img loss 1.2237615585327148 img loss 1.2713358402252197 img loss 1.2683582305908203 img loss 1.2384254932403564 img loss 1.2311503887176514 img loss 1.2562732696533203 img loss 1.2012553215026855 img loss 1.249408483505249 img loss 1.2392452955245972 img loss 1.282511591911316 img loss 1.2588322162628174 img loss 1.2249540090560913 img loss 1.2529902458190918 img loss 1.2522425651550293 img loss 1.2267214059829712 img loss 1.2553414106369019 img loss 1.245931625366211 img loss 1.2208353281021118 img loss 1.2455791234970093 img loss 1.2228732109069824 img loss 1.2604395151138306 img loss 1.2326445579528809 img loss 1.2341148853302002 img loss 1.2605317831039429 img loss 1.199448823928833 img loss 1.1862483024597168 img loss 1.208605408668518 img loss 1.2703198194503784 img loss 1.2490195035934448 img loss 1.2697265148162842 img loss 1.259010672569275 img loss 1.2703965902328491 img loss 1.21372652053833 img loss 1.223564624786377 img loss 1.2393878698349 img loss 1.1836553812026978 img loss 1.2347053289413452 img loss 1.2023816108703613 img loss 1.2659653425216675 img loss 1.2284644842147827 img loss 1.2374690771102905 img loss 1.2186866998672485img loss 1.221311092376709 img loss 1.1989704370498657 img loss 1.1957594156265259 img loss 1.2480387687683105 img loss 1.2187919616699219 img loss 1.2255301475524902 img loss 1.2488460540771484 img loss 1.2946230173110962 img loss 1.2048333883285522 img loss 1.2514501810073853 img loss 1.1970093250274658 img loss 1.224433422088623 img loss 1.206804633140564 img loss 1.241361379623413 img loss 1.1905970573425293 img loss 1.227333664894104 img loss 1.231069803237915 img loss 1.2211512327194214 img loss 1.235283613204956 img loss 1.2754037380218506 img loss 1.2247322797775269 img loss 1.2293827533721924 img loss 1.275447130203247 img loss 1.2451438903808594 img loss 1.2349867820739746 img loss 1.2145391702651978 img loss 1.2067632675170898 img loss 1.294880747795105 img loss 1.2536362409591675 img loss 1.2215665578842163 img loss 1.305667757987976 img loss 1.2279682159423828 img loss 1.2044644355773926 img loss 1.1883397102355957 img loss 1.238165259361267 img loss 1.2506330013275146 img loss 1.220794916152954 img loss 1.2282588481903076 img loss 1.2204557657241821 img loss 1.244159460067749 img loss 1.256193995475769 img loss 1.2420135736465454 img loss 1.250983476638794 img loss 1.2174155712127686 img loss 1.1980317831039429 img loss 1.2412248849868774 img loss 1.2081999778747559 img loss 1.2565250396728516 img loss 1.2645564079284668 img loss 1.2317407131195068 img loss 1.2049238681793213 img loss 1.2297859191894531 img loss 1.2531524896621704 img loss 1.2263801097869873 img loss 1.1978321075439453 img loss 1.2480950355529785 img loss 1.2549474239349365 img loss 1.2186307907104492 img loss 1.1776061058044434 img loss 1.255013108253479 img loss 1.190359354019165 img loss 1.2167210578918457 img loss 1.238757848739624 img loss 1.2066715955734253 img loss 1.2315584421157837 {'loss': 1.2331, 'grad_norm': 0.25614985823631287, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3987761735916138 img loss 1.2427964210510254 img loss 1.359568476676941 img loss 1.4500610828399658 img loss 1.3526562452316284 img loss 1.3360702991485596 img loss 1.3542686700820923 img loss 1.2579628229141235 img loss 1.2463302612304688 img loss 1.33137845993042 img loss 1.317447304725647 img loss 1.279340147972107 img loss 1.3270084857940674 img loss 1.3286397457122803 img loss 1.3274227380752563 img loss 1.306779146194458 img loss 1.2312568426132202 img loss 1.3445650339126587 img loss 1.2997461557388306 img loss 1.3250784873962402 img loss 1.3277709484100342 img loss 1.3278074264526367 img loss 1.341103434562683 img loss 1.3691420555114746 img loss 1.4467670917510986 img loss 1.354465126991272 img loss 1.3433347940444946 img loss 1.3125189542770386 img loss 1.3342276811599731 img loss 1.233208179473877 img loss 1.3131426572799683 img loss 1.302778720855713 img loss 1.3252880573272705 img loss 1.2629733085632324 img loss 1.2967991828918457 img loss 1.32717764377594 img loss 1.335677981376648 img loss 1.3458408117294312 img loss 1.3371878862380981 img loss 1.286634922027588 img loss 1.3377236127853394 img loss 1.2688325643539429 img loss 1.2227455377578735 img loss 1.294007658958435 img loss 1.3621118068695068 img loss 1.2710912227630615 img loss 1.3406645059585571 img loss 1.4844965934753418 img loss 1.3624322414398193 img loss 1.342138648033142 img loss 1.2394464015960693 img loss 1.2422622442245483 img loss 1.266256332397461 img loss 1.300036907196045 img loss 1.3582004308700562 img loss 1.2341187000274658 img loss 1.3263745307922363 img loss 1.5052943229675293 img loss 1.2158887386322021 img loss 1.2788759469985962 img loss 1.2743051052093506 img loss 1.369330883026123 img loss 1.3707777261734009 img loss 1.3245418071746826 img loss 1.2967545986175537 img loss 1.3388046026229858 img loss 1.2549079656600952 img loss 1.3764861822128296 img loss 1.224430799484253 img loss 1.3433517217636108 img loss 1.3217846155166626 img loss 1.2898716926574707 img loss 1.3112455606460571 img loss 1.488784909248352 img loss 1.395647406578064 img loss 1.3388867378234863 img loss 1.2811836004257202 img loss 1.273170828819275 img loss 1.362648367881775 img loss 1.2919039726257324 img loss 1.301583170890808 img loss 1.3100767135620117 img loss 1.2995350360870361 img loss 1.3247570991516113 img loss 1.2870018482208252 img loss 1.3520830869674683 img loss 1.3236395120620728 img loss 1.3226773738861084 img loss 1.2664467096328735 img loss 1.4747048616409302 img loss 1.2665623426437378 img loss 1.316202998161316 img loss 1.3472126722335815 img loss 1.286444902420044 img loss 1.2323415279388428 img loss 1.3660197257995605 img loss 1.3457008600234985 img loss 1.3237169981002808 img loss 1.2949641942977905 img loss 1.4172437191009521 img loss 1.3514951467514038 img loss 1.3678172826766968 img loss 1.2911877632141113 img loss 1.2705936431884766 img loss 1.3503410816192627 img loss 1.3097485303878784 img loss 1.2414188385009766 img loss 1.3420987129211426 img loss 1.3908718824386597 img loss 1.3100316524505615 img loss 1.2330758571624756 img loss 1.2468690872192383 img loss 1.3390873670578003 img loss 1.3980985879898071 img loss 1.2676682472229004 img loss 1.3434678316116333 img loss 1.2637087106704712 img loss 1.376054048538208 img loss 1.2459180355072021img loss 1.399807095527649 img loss 1.3696281909942627 img loss 1.320812463760376 img loss 1.3244575262069702 img loss 1.2906334400177002 img loss 1.3345786333084106 img loss 1.2942819595336914 img loss 1.479744553565979 img loss 1.400844931602478 {'loss': 1.3229, 'grad_norm': 0.5341432690620422, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1517982482910156 img loss 1.238592505455017 img loss 1.135024070739746 img loss 1.1355546712875366 img loss 1.2620741128921509 img loss 1.1869442462921143 img loss 1.1390595436096191 img loss 1.220438003540039 img loss 1.2800778150558472 img loss 1.186937689781189 img loss 1.2039133310317993 img loss 1.2204222679138184 img loss 1.2247612476348877 img loss 1.219778060913086 img loss 1.1333601474761963 img loss 1.1631529331207275 img loss 1.2338993549346924 img loss 1.180427074432373 img loss 1.2816036939620972 img loss 1.1790910959243774 img loss 1.1791181564331055 img loss 1.2107452154159546 img loss 1.2220127582550049 img loss 1.232609748840332 img loss 1.1590849161148071 img loss 1.2358907461166382 img loss 1.14688241481781 img loss 1.2267224788665771 img loss 1.2080307006835938 img loss 1.1986734867095947 img loss 1.119031310081482 img loss 1.101953387260437 img loss 1.2306804656982422 img loss 1.1329989433288574 img loss 1.1712169647216797 img loss 1.1716314554214478 img loss 1.1830910444259644 img loss 1.1974117755889893 img loss 1.2044084072113037 img loss 1.267538070678711 img loss 1.20710027217865 img loss 1.3255223035812378 img loss 1.2048975229263306 img loss 1.2159132957458496 img loss 1.2282936573028564 img loss 1.1766538619995117 img loss 1.1537262201309204 img loss 1.233106255531311 img loss 1.1327085494995117 img loss 1.1727399826049805 img loss 1.2384071350097656 img loss 1.163743019104004 img loss 1.234748125076294 img loss 1.2639716863632202 img loss 1.1746536493301392 img loss 1.2009711265563965 img loss 1.1966997385025024 img loss 1.1740405559539795 img loss 1.2012182474136353 img loss 1.179828405380249 img loss 1.1834248304367065 img loss 1.1761215925216675 img loss 1.1590670347213745 img loss 1.2519917488098145 img loss 1.1880667209625244 img loss 1.1902759075164795 img loss 1.1891275644302368 img loss 1.1443427801132202 img loss 1.1578502655029297 img loss 1.2497637271881104 img loss 1.1379121541976929 img loss 1.1763529777526855 img loss 1.1221884489059448 img loss 1.1673047542572021 img loss 1.1611775159835815 img loss 1.2688366174697876 img loss 1.2233808040618896 img loss 1.328789234161377 img loss 1.2339264154434204 img loss 1.279832363128662 img loss 1.2403957843780518 img loss 1.2312698364257812 img loss 1.2692574262619019 img loss 1.2040913105010986 img loss 1.156967043876648 img loss 1.2002296447753906 img loss 1.2134612798690796 img loss 1.2119659185409546 img loss 1.2533586025238037 img loss 1.082629919052124 img loss 1.199692964553833 img loss 1.1871992349624634 img loss 1.2513450384140015 img loss 1.0984482765197754 img loss 1.2161530256271362 img loss 1.2153019905090332 img loss 1.2415077686309814 img loss 1.1983237266540527 img loss 1.1905972957611084 img loss 1.127847671508789 img loss 1.1502388715744019 img loss 1.2589337825775146 img loss 1.1996891498565674 img loss 1.3273061513900757 img loss 1.171478509902954 img loss 1.342490792274475 img loss 1.1824686527252197 img loss 1.1435941457748413 img loss 1.2105166912078857 img loss 1.2891871929168701 img loss 1.26638925075531 img loss 1.2780306339263916 img loss 1.1924434900283813 img loss 1.2341371774673462 img loss 1.2346986532211304 img loss 1.2684605121612549 img loss 1.3776801824569702 img loss 1.1628541946411133 img loss 1.2737293243408203 img loss 1.247751235961914 img loss 1.1688740253448486 img loss 1.2695204019546509 img loss 1.1790404319763184 img loss 1.2446892261505127 img loss 1.1702430248260498 img loss 1.3854687213897705 img loss 1.1548327207565308 img loss 1.2166821956634521 {'loss': 1.2065, 'grad_norm': 0.2598869204521179, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4332295656204224 img loss 1.5681569576263428 img loss 1.4590868949890137 img loss 1.4728658199310303 img loss 1.395412802696228 img loss 1.3706215620040894 img loss 1.4234389066696167 img loss 1.6947684288024902 img loss 1.5329400300979614 img loss 1.5007025003433228 img loss 1.567757487297058 img loss 1.6176106929779053 img loss 1.449055552482605 img loss 1.4732013940811157 img loss 1.605057954788208 img loss 1.476119875907898 img loss 1.573455572128296 img loss 1.474433183670044 img loss 1.4975559711456299 img loss 1.5571033954620361 img loss 1.4484513998031616 img loss 1.524433970451355 img loss 1.6492177248001099 img loss 1.4623503684997559 img loss 1.5061917304992676 img loss 1.3575847148895264 img loss 1.4766219854354858 img loss 1.2872838973999023 img loss 1.5853134393692017 img loss 1.4998270273208618 img loss 1.4397796392440796 img loss 1.3668047189712524 img loss 1.4013930559158325 img loss 1.4671045541763306 img loss 1.4043833017349243 img loss 1.5260570049285889 img loss 1.4039578437805176 img loss 1.5625014305114746 img loss 1.4981180429458618 img loss 1.4816635847091675 img loss 1.482235312461853 img loss 1.3902485370635986 img loss 1.4827473163604736 img loss 1.4740796089172363 img loss 1.516433596611023 img loss 1.5538133382797241 img loss 1.5436660051345825 img loss 1.5369623899459839 img loss 1.617103934288025 img loss 1.5146386623382568 img loss 1.553916096687317 img loss 1.5735126733779907 img loss 1.5641125440597534 img loss 1.4335243701934814 img loss 1.5089155435562134 img loss 1.4703633785247803 img loss 1.4435960054397583 img loss 1.5486156940460205 img loss 1.4128105640411377 img loss 1.3786894083023071 img loss 1.3753782510757446 img loss 1.5012853145599365 img loss 1.5169333219528198 img loss 1.6441218852996826img loss 1.5539311170578003 img loss 1.3036038875579834 img loss 1.6510193347930908 img loss 1.378383994102478 img loss 1.4064964056015015 img loss 1.3651158809661865 img loss 1.421170949935913 img loss 1.3294758796691895 img loss 1.5496810674667358 img loss 1.5074712038040161 img loss 1.527021884918213 img loss 1.405664324760437 img loss 1.5762057304382324 img loss 1.4177181720733643 img loss 1.6835837364196777 img loss 1.5763256549835205 img loss 1.50883948802948 img loss 1.3927814960479736 img loss 1.439836859703064 img loss 1.46952223777771 img loss 1.4102094173431396 img loss 1.476806402206421 img loss 1.4969924688339233 img loss 1.6914352178573608 img loss 1.3769956827163696 img loss 1.468645691871643 img loss 1.4755443334579468 img loss 1.4843993186950684 img loss 1.4662688970565796 img loss 1.4632885456085205 img loss 1.4669021368026733 img loss 1.4874156713485718 img loss 1.5315724611282349 img loss 1.5366883277893066 img loss 1.421842336654663 img loss 1.4024980068206787 img loss 1.569433569908142 img loss 1.3776496648788452 img loss 1.5100446939468384 img loss 1.5338276624679565 img loss 1.40321683883667 img loss 1.48344886302948 img loss 1.4904309511184692 img loss 1.5667986869812012 img loss 1.423852801322937 img loss 1.497556209564209 img loss 1.3998874425888062 img loss 1.509934902191162 img loss 1.6395306587219238 img loss 1.588305115699768 img loss 1.5763049125671387 img loss 1.5769487619400024 img loss 1.565670371055603 img loss 1.653756022453308 img loss 1.417338252067566 img loss 1.602278232574463 img loss 1.629453182220459 img loss 1.5051608085632324 img loss 1.418882966041565 img loss 1.4671703577041626 img loss 1.5835603475570679 img loss 1.635673999786377 img loss 1.4642950296401978 img loss 1.3840450048446655 {'loss': 1.4932, 'grad_norm': 0.9303011298179626, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4402966499328613 img loss 1.2694652080535889 img loss 1.3161842823028564 img loss 1.3313974142074585 img loss 1.3169643878936768 img loss 1.3526543378829956 img loss 1.338070034980774 img loss 1.3526813983917236 img loss 1.3682941198349 img loss 1.3752573728561401 img loss 1.3508628606796265 img loss 1.4219391345977783 img loss 1.2962970733642578 img loss 1.3734793663024902 img loss 1.4296306371688843 img loss 1.2522624731063843 img loss 1.4240601062774658 img loss 1.261349081993103 img loss 1.2602267265319824 img loss 1.520755410194397 img loss 1.3957583904266357 img loss 1.37132728099823 img loss 1.3000156879425049 img loss 1.3119354248046875 img loss 1.2338640689849854 img loss 1.2876121997833252 img loss 1.4955962896347046 img loss 1.4354097843170166 img loss 1.4756009578704834 img loss 1.5105692148208618 img loss 1.4800565242767334 img loss 1.4119503498077393 img loss 1.4248095750808716 img loss 1.329446792602539 img loss 1.3120992183685303 img loss 1.2825950384140015 img loss 1.3073701858520508 img loss 1.3516238927841187 img loss 1.440549612045288 img loss 1.417695164680481 img loss 1.2159090042114258 img loss 1.4602339267730713 img loss 1.46162748336792 img loss 1.3743380308151245 img loss 1.5253299474716187 img loss 1.4159377813339233 img loss 1.3043725490570068 img loss 1.339053750038147 img loss 1.4416009187698364 img loss 1.3862547874450684 img loss 1.3604494333267212 img loss 1.290454626083374 img loss 1.3196836709976196 img loss 1.2700309753417969 img loss 1.4321551322937012 img loss 1.3343453407287598 img loss 1.4452919960021973 img loss 1.328966736793518 img loss 1.4227749109268188 img loss 1.2265877723693848 img loss 1.3662892580032349 img loss 1.3821690082550049 img loss 1.3963204622268677 img loss 1.3083133697509766 img loss 1.40079927444458 img loss 1.2940521240234375 img loss 1.3667919635772705 img loss 1.5354312658309937 img loss 1.2834959030151367 img loss 1.250553011894226 img loss 1.227260947227478 img loss 1.1995577812194824 img loss 1.304126262664795 img loss 1.321937918663025 img loss 1.3931938409805298 img loss 1.2578368186950684 img loss 1.3180804252624512 img loss 1.4499051570892334 img loss 1.3204829692840576 img loss 1.4044617414474487 img loss 1.3263471126556396 img loss 1.313831090927124 img loss 1.3483010530471802 img loss 1.2354360818862915 img loss 1.371598720550537 img loss 1.2668373584747314img loss 1.330504059791565 img loss 1.4304015636444092 img loss 1.3002384901046753 img loss 1.2055680751800537 img loss 1.4424456357955933 img loss 1.3064810037612915 img loss 1.213396430015564 img loss 1.4735643863677979 img loss 1.211281180381775 img loss 1.3259732723236084 img loss 1.4294779300689697 img loss 1.3283203840255737 img loss 1.3914275169372559 img loss 1.2473747730255127 img loss 1.2745330333709717 img loss 1.3905631303787231 img loss 1.300154685974121 img loss 1.3388599157333374 img loss 1.4245140552520752 img loss 1.432015061378479 img loss 1.3845504522323608 img loss 1.3383694887161255 img loss 1.3316874504089355 img loss 1.2980632781982422 img loss 1.3593827486038208 img loss 1.3748714923858643 img loss 1.3387752771377563 img loss 1.3592554330825806 img loss 1.4573242664337158 img loss 1.3027037382125854 img loss 1.3068870306015015 img loss 1.3171247243881226 img loss 1.3895114660263062 img loss 1.3479770421981812 img loss 1.3549050092697144 img loss 1.2995017766952515 img loss 1.428586483001709 img loss 1.388670563697815 img loss 1.273607850074768 img loss 1.4861600399017334 img loss 1.3535540103912354 img loss 1.3579812049865723 {'loss': 1.3537, 'grad_norm': 0.3378185033798218, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4185291528701782 img loss 1.3412716388702393 img loss 1.3373631238937378 img loss 1.33895742893219 img loss 1.2154124975204468 img loss 1.297572135925293 img loss 1.3340609073638916 img loss 1.2939437627792358 img loss 1.3175687789916992 img loss 1.3910729885101318 img loss 1.3674677610397339 img loss 1.3050397634506226 img loss 1.3147597312927246 img loss 1.3228310346603394 img loss 1.2936911582946777 img loss 1.3916165828704834 img loss 1.2549071311950684 img loss 1.2959784269332886 img loss 1.3335860967636108 img loss 1.3256171941757202 img loss 1.3614897727966309 img loss 1.3485554456710815 img loss 1.2960655689239502 img loss 1.3520846366882324 img loss 1.2981261014938354 img loss 1.3313121795654297 img loss 1.267524242401123 img loss 1.3380398750305176 img loss 1.4054495096206665 img loss 1.3484500646591187 img loss 1.3147677183151245 img loss 1.3859937191009521 img loss 1.3453028202056885 img loss 1.3851304054260254 img loss 1.2321480512619019 img loss 1.243463158607483img loss 1.26534903049469 img loss 1.2922191619873047 img loss 1.3302332162857056 img loss 1.3243250846862793 img loss 1.2994390726089478 img loss 1.2619097232818604 img loss 1.3369238376617432 img loss 1.3808820247650146 img loss 1.3392412662506104 img loss 1.3113858699798584 img loss 1.4079034328460693 img loss 1.3783259391784668 img loss 1.3004505634307861 img loss 1.3103032112121582 img loss 1.398897409439087 img loss 1.3322672843933105 img loss 1.4449025392532349img loss 1.3444596529006958 img loss 1.3796870708465576 img loss 1.3420121669769287 img loss 1.2377780675888062 img loss 1.4341180324554443 img loss 1.3935741186141968 img loss 1.4090332984924316 img loss 1.2597987651824951 img loss 1.288844108581543 img loss 1.4024442434310913 img loss 1.3332382440567017 img loss 1.3365960121154785 img loss 1.3144073486328125 img loss 1.4097176790237427 img loss 1.3334721326828003 img loss 1.3667387962341309 img loss 1.3278337717056274 img loss 1.2917581796646118 img loss 1.3546890020370483 img loss 1.2267612218856812 img loss 1.4347751140594482 img loss 1.2612025737762451 img loss 1.3486140966415405 img loss 1.4061086177825928 img loss 1.3739057779312134 img loss 1.2576125860214233 img loss 1.4188740253448486 img loss 1.3522846698760986 img loss 1.2302216291427612 img loss 1.2898213863372803 img loss 1.351230263710022 img loss 1.3167743682861328 img loss 1.339073896408081 img loss 1.3777070045471191 img loss 1.235521674156189 img loss 1.3055400848388672 img loss 1.379482626914978 img loss 1.2775418758392334 img loss 1.3694499731063843 img loss 1.427787184715271 img loss 1.3537001609802246 img loss 1.272866129875183 img loss 1.3089783191680908 img loss 1.352036714553833 img loss 1.376944899559021 img loss 1.306287169456482 img loss 1.3333370685577393 img loss 1.2530183792114258 img loss 1.1994662284851074 img loss 1.2382227182388306 img loss 1.270485281944275 img loss 1.351867437362671 img loss 1.320338487625122 img loss 1.2878988981246948 img loss 1.3150526285171509 img loss 1.31891667842865 img loss 1.3477566242218018 img loss 1.2845453023910522 img loss 1.254057765007019 img loss 1.3749197721481323 img loss 1.3033522367477417 img loss 1.2874921560287476 img loss 1.212815761566162 img loss 1.248460054397583 img loss 1.3074235916137695 img loss 1.3189067840576172 img loss 1.3434258699417114 img loss 1.4235279560089111 img loss 1.3366492986679077 img loss 1.3245829343795776 img loss 1.3088884353637695 img loss 1.3126769065856934 img loss 1.2432254552841187 img loss 1.3068159818649292 img loss 1.3936198949813843 {'loss': 1.3265, 'grad_norm': 0.38021978735923767, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2144455909729004 img loss 1.223963975906372 img loss 1.1214827299118042 img loss 1.1558271646499634 img loss 1.216320514678955 img loss 1.2549251317977905 img loss 1.2509326934814453 img loss 1.2139487266540527 img loss 1.1243162155151367 img loss 1.2057536840438843 img loss 1.2707871198654175 img loss 1.1699928045272827 img loss 1.2001234292984009 img loss 1.290723204612732 img loss 1.226855754852295 img loss 1.2501237392425537 img loss 1.1829657554626465 img loss 1.2217628955841064 img loss 1.1698896884918213 img loss 1.2324917316436768 img loss 1.1548283100128174 img loss 1.2281074523925781 img loss 1.1719777584075928 img loss 1.192970871925354 img loss 1.204741358757019 img loss 1.1910959482192993 img loss 1.2558921575546265 img loss 1.2593666315078735 img loss 1.1287230253219604 img loss 1.2452629804611206 img loss 1.248191475868225 img loss 1.2231758832931519 img loss 1.2832905054092407 img loss 1.2667683362960815 img loss 1.2132145166397095 img loss 1.1635684967041016 img loss 1.1550495624542236 img loss 1.1424980163574219 img loss 1.1747848987579346 img loss 1.1807215213775635 img loss 1.1486217975616455 img loss 1.2533196210861206 img loss 1.1513748168945312 img loss 1.2320773601531982 img loss 1.2457890510559082 img loss 1.1796810626983643 img loss 1.098581075668335 img loss 1.1982277631759644 img loss 1.1104921102523804 img loss 1.1520171165466309 img loss 1.204572081565857img loss 1.2136086225509644 img loss 1.2080249786376953 img loss 1.2105140686035156 img loss 1.2270138263702393 img loss 1.1943973302841187 img loss 1.2480837106704712 img loss 1.2552456855773926 img loss 1.2567768096923828 img loss 1.147113561630249 img loss 1.2202129364013672 img loss 1.2005031108856201 img loss 1.1563786268234253 img loss 1.1785917282104492 img loss 1.3044588565826416 img loss 1.2852863073349 img loss 1.3219733238220215 img loss 1.2269151210784912 img loss 1.1351995468139648 img loss 1.1962604522705078 img loss 1.2332897186279297 img loss 1.2099895477294922 img loss 1.2040817737579346 img loss 1.1454880237579346 img loss 1.1659191846847534 img loss 1.2240551710128784 img loss 1.2984875440597534 img loss 1.2015841007232666 img loss 1.242649793624878 img loss 1.282606601715088 img loss 1.288145899772644 img loss 1.2076468467712402 img loss 1.174834966659546 img loss 1.2279701232910156 img loss 1.1339949369430542 img loss 1.242014765739441 img loss 1.2559541463851929 img loss 1.2220032215118408 img loss 1.2089111804962158 img loss 1.1836439371109009 img loss 1.2077728509902954 img loss 1.2190922498703003 img loss 1.2199437618255615 img loss 1.2803535461425781 img loss 1.1757538318634033 img loss 1.2141752243041992 img loss 1.3271368741989136 img loss 1.2508659362792969 img loss 1.2616257667541504 img loss 1.112939476966858 img loss 1.3194139003753662 img loss 1.307059645652771 img loss 1.2050983905792236 img loss 1.2475478649139404 img loss 1.2314119338989258 img loss 1.27976393699646 img loss 1.2993059158325195 img loss 1.2459297180175781 img loss 1.1907641887664795 img loss 1.2536768913269043 img loss 1.1264021396636963 img loss 1.2280290126800537 img loss 1.1844276189804077 img loss 1.152037501335144 img loss 1.1604217290878296 img loss 1.197839617729187 img loss 1.1865019798278809 img loss 1.2478842735290527 img loss 1.1654655933380127 img loss 1.2326622009277344 img loss 1.256731629371643 img loss 1.3573029041290283 img loss 1.241908073425293 img loss 1.1878206729888916 img loss 1.2561126947402954 img loss 1.1029706001281738 img loss 1.2419620752334595 img loss 1.1952435970306396 {'loss': 1.2138, 'grad_norm': 0.20321770012378693, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.7438908815383911 img loss 1.7992095947265625 img loss 1.7062307596206665 img loss 1.6764671802520752 img loss 1.6918537616729736 img loss 1.6793869733810425 img loss 1.6661823987960815 img loss 1.7102679014205933 img loss 1.5555812120437622 img loss 1.5967191457748413 img loss 1.7854942083358765 img loss 1.670465350151062 img loss 1.7185865640640259 img loss 1.649218201637268 img loss 1.7006027698516846 img loss 1.5613362789154053 img loss 1.6995736360549927 img loss 1.6299617290496826 img loss 1.5333397388458252 img loss 1.702443242073059 img loss 1.6426719427108765 img loss 1.8152720928192139 img loss 1.586639165878296 img loss 1.5242997407913208 img loss 1.8285126686096191 img loss 1.7383910417556763 img loss 1.483871340751648 img loss 1.665397047996521 img loss 1.7782304286956787 img loss 1.7067253589630127 img loss 1.7328314781188965 img loss 1.7479736804962158 img loss 1.5800508260726929 img loss 1.634487271308899 img loss 1.7172181606292725 img loss 1.619849443435669 img loss 1.7806828022003174 img loss 1.7479264736175537 img loss 1.6149076223373413 img loss 1.6857211589813232 img loss 1.517279028892517 img loss 1.6190346479415894 img loss 1.5918333530426025 img loss 1.8249760866165161 img loss 1.5935912132263184 img loss 1.5774357318878174 img loss 1.422385811805725 img loss 1.6920840740203857 img loss 1.7271369695663452 img loss 1.6683440208435059 img loss 1.5838795900344849 img loss 1.5621044635772705 img loss 1.7038586139678955 img loss 1.6499642133712769 img loss 1.6909219026565552 img loss 1.6931827068328857 img loss 1.7493349313735962 img loss 1.7077664136886597 img loss 1.5568578243255615 img loss 1.6434029340744019 img loss 1.67086660861969 img loss 1.629711389541626 img loss 1.7159065008163452 img loss 1.667456865310669 img loss 1.672310471534729 img loss 1.8358545303344727 img loss 1.6315948963165283 img loss 1.6949002742767334 img loss 1.7372238636016846 img loss 1.6798940896987915 img loss 1.622693419456482 img loss 1.5681837797164917 img loss 1.5968855619430542 img loss 1.6333167552947998 img loss 1.6953855752944946 img loss 1.5835607051849365 img loss 1.7797000408172607 img loss 1.6327155828475952 img loss 1.5316452980041504 img loss 1.5894116163253784 img loss 1.8638947010040283 img loss 1.7312091588974 img loss 1.602861762046814 img loss 1.5876564979553223 img loss 1.7476987838745117 img loss 1.6909610033035278 img loss 1.6081997156143188 img loss 1.7514861822128296 img loss 1.8639001846313477 img loss 1.6824990510940552 img loss 1.5870931148529053 img loss 1.6081140041351318 img loss 1.6735211610794067 img loss 1.6366828680038452 img loss 1.71707022190094 img loss 1.6391923427581787 img loss 1.826230764389038 img loss 1.6218599081039429 img loss 1.6391342878341675 img loss 1.7237110137939453 img loss 1.7388172149658203 img loss 1.7029668092727661 img loss 1.7412769794464111 img loss 1.7758731842041016 img loss 1.5454363822937012 img loss 1.6619857549667358 img loss 1.6535546779632568 img loss 1.7300969362258911 img loss 1.7580955028533936 img loss 1.7076367139816284 img loss 1.666641354560852 img loss 1.5680811405181885 img loss 1.6130393743515015 img loss 1.7655365467071533 img loss 1.610929012298584 img loss 1.543578028678894 img loss 1.6725486516952515 img loss 1.613783597946167 img loss 1.672208547592163 img loss 1.7165982723236084 img loss 1.6680127382278442 img loss 1.6020023822784424 img loss 1.8071295022964478 img loss 1.7594268321990967 img loss 1.7292110919952393 img loss 1.5931848287582397 img loss 1.519049882888794 img loss 1.5512254238128662 {'loss': 1.6683, 'grad_norm': 0.2685120701789856, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2364957332611084 img loss 1.267755389213562 img loss 1.1916946172714233 img loss 1.204808235168457 img loss 1.149439811706543 img loss 1.260454535484314 img loss 1.3178410530090332 img loss 1.2776515483856201 img loss 1.2684481143951416 img loss 1.278272032737732 img loss 1.1883125305175781 img loss 1.2535845041275024 img loss 1.208909511566162 img loss 1.3391155004501343 img loss 1.178574800491333 img loss 1.3053905963897705 img loss 1.2908565998077393 img loss 1.1817387342453003 img loss 1.2671680450439453 img loss 1.1748158931732178 img loss 1.1299166679382324 img loss 1.2816917896270752 img loss 1.1513054370880127 img loss 1.1633052825927734 img loss 1.1837494373321533 img loss 1.2866697311401367 img loss 1.2407433986663818 img loss 1.1886104345321655 img loss 1.2945088148117065 img loss 1.2437708377838135 img loss 1.1935471296310425 img loss 1.2044010162353516 img loss 1.270790457725525 img loss 1.2060877084732056 img loss 1.2026641368865967 img loss 1.284799337387085 img loss 1.316394329071045 img loss 1.192241907119751 img loss 1.1952800750732422 img loss 1.3103764057159424 img loss 1.2158230543136597 img loss 1.2124696969985962 img loss 1.205991506576538 img loss 1.1842573881149292 img loss 1.2532085180282593 img loss 1.319907784461975 img loss 1.1935315132141113 img loss 1.2536683082580566 img loss 1.316112995147705 img loss 1.250646948814392 img loss 1.1510252952575684 img loss 1.2622883319854736 img loss 1.2009923458099365 img loss 1.2447011470794678 img loss 1.2766474485397339 img loss 1.292715072631836 img loss 1.2886441946029663 img loss 1.3058055639266968 img loss 1.2986396551132202 img loss 1.2645081281661987 img loss 1.3212864398956299 img loss 1.221031665802002 img loss 1.176576852798462 img loss 1.3523640632629395 img loss 1.2174339294433594 img loss 1.1884596347808838 img loss 1.1762555837631226 img loss 1.302977442741394 img loss 1.2685179710388184 img loss 1.185585856437683 img loss 1.155252456665039 img loss 1.2482203245162964 img loss 1.15238356590271 img loss 1.2374320030212402 img loss 1.2608368396759033 img loss 1.326204538345337 img loss 1.3045505285263062 img loss 1.2833688259124756 img loss 1.337520956993103 img loss 1.1673065423965454 img loss 1.2170766592025757 img loss 1.3392165899276733 img loss 1.1637133359909058 img loss 1.238469123840332 img loss 1.2719258069992065 img loss 1.2130863666534424 img loss 1.2120739221572876 img loss 1.2804253101348877 img loss 1.3889011144638062 img loss 1.2459332942962646 img loss 1.1748164892196655 img loss 1.1345371007919312 img loss 1.2195794582366943 img loss 1.3881862163543701 img loss 1.2401652336120605 img loss 1.233154058456421 img loss 1.202501893043518 img loss 1.2258070707321167 img loss 1.202492594718933 img loss 1.2890262603759766 img loss 1.2544692754745483 img loss 1.2004622220993042 img loss 1.2583322525024414 img loss 1.1013520956039429 img loss 1.2055768966674805 img loss 1.1785919666290283 img loss 1.2039436101913452 img loss 1.2691859006881714 img loss 1.2534273862838745 img loss 1.198790192604065 img loss 1.2700653076171875 img loss 1.3335444927215576 img loss 1.2680373191833496 img loss 1.2960102558135986 img loss 1.3546911478042603 img loss 1.2907195091247559 img loss 1.3505855798721313 img loss 1.2526119947433472 img loss 1.1773905754089355 img loss 1.1932554244995117 img loss 1.2360548973083496 img loss 1.1918411254882812 img loss 1.2775598764419556 img loss 1.1896179914474487 img loss 1.2813643217086792 img loss 1.2023836374282837 img loss 1.2414600849151611 img loss 1.1351490020751953 {'loss': 1.2407, 'grad_norm': 0.2798524796962738, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.608760952949524 img loss 1.3477877378463745 img loss 1.5306118726730347 img loss 1.4667435884475708 img loss 1.4653974771499634 img loss 1.5504175424575806 img loss 1.4244682788848877 img loss 1.3271076679229736 img loss 1.4428000450134277 img loss 1.420862078666687 img loss 1.4925973415374756 img loss 1.522895336151123 img loss 1.469460129737854 img loss 1.473110318183899 img loss 1.6157729625701904 img loss 1.387583613395691 img loss 1.3491841554641724 img loss 1.4599483013153076 img loss 1.3659398555755615 img loss 1.4942611455917358 img loss 1.3847686052322388 img loss 1.3608146905899048 img loss 1.4476431608200073 img loss 1.5274091958999634 img loss 1.519494652748108 img loss 1.4724526405334473 img loss 1.461982250213623 img loss 1.5091475248336792 img loss 1.364153504371643 img loss 1.5150593519210815 img loss 1.641862392425537 img loss 1.4317681789398193 img loss 1.4735714197158813 img loss 1.4877263307571411 img loss 1.3919035196304321 img loss 1.645938754081726 img loss 1.3718708753585815 img loss 1.4570062160491943 img loss 1.4101662635803223 img loss 1.3787111043930054 img loss 1.5820362567901611 img loss 1.362028956413269 img loss 1.37385892868042 img loss 1.4436107873916626 img loss 1.383156180381775 img loss 1.424090027809143 img loss 1.3652559518814087 img loss 1.5304713249206543 img loss 1.3627287149429321 img loss 1.4542526006698608 img loss 1.5084575414657593 img loss 1.395517110824585 img loss 1.4185616970062256 img loss 1.4981818199157715 img loss 1.458485722541809 img loss 1.6102240085601807 img loss 1.4070961475372314 img loss 1.576819896697998 img loss 1.547796607017517 img loss 1.4621005058288574 img loss 1.3622978925704956 img loss 1.627627968788147 img loss 1.334527850151062 img loss 1.572109580039978 img loss 1.4742273092269897 img loss 1.4500733613967896 img loss 1.2491368055343628 img loss 1.4940727949142456 img loss 1.5131226778030396 img loss 1.4973227977752686 img loss 1.4431370496749878 img loss 1.4779330492019653 img loss 1.5347201824188232 img loss 1.4471079111099243 img loss 1.4506809711456299 img loss 1.57150137424469 img loss 1.4184798002243042 img loss 1.4142699241638184 img loss 1.4421387910842896 img loss 1.4401975870132446 img loss 1.3188433647155762 img loss 1.4494121074676514 img loss 1.4343069791793823 img loss 1.5260441303253174 img loss 1.4407932758331299 img loss 1.3660447597503662 img loss 1.61064875125885 img loss 1.4904407262802124 img loss 1.4865182638168335 img loss 1.5814749002456665 img loss 1.4075829982757568 img loss 1.4548150300979614 img loss 1.4764349460601807 img loss 1.511773705482483 img loss 1.4899579286575317 img loss 1.3857651948928833 img loss 1.297951102256775 img loss 1.5072133541107178 img loss 1.5008660554885864 img loss 1.5475198030471802 img loss 1.4663151502609253 img loss 1.330087423324585 img loss 1.5714004039764404 img loss 1.29441237449646 img loss 1.3767706155776978 img loss 1.3284186124801636 img loss 1.5468298196792603 img loss 1.4100263118743896 img loss 1.3997822999954224 img loss 1.5647903680801392 img loss 1.3976308107376099 img loss 1.4732403755187988 img loss 1.3416764736175537 img loss 1.4921387434005737 img loss 1.4195609092712402 img loss 1.4745948314666748 img loss 1.4377514123916626 img loss 1.3524152040481567 img loss 1.4484103918075562 img loss 1.4581488370895386 img loss 1.5538458824157715 img loss 1.3437321186065674 img loss 1.4874975681304932 img loss 1.4624139070510864 img loss 1.49955153465271 img loss 1.3483164310455322 img loss 1.5228694677352905 img loss 1.5864742994308472 {'loss': 1.4572, 'grad_norm': 0.26852089166641235, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.141970157623291 img loss 1.1688021421432495 img loss 1.2195261716842651 img loss 1.2358232736587524 img loss 1.2744863033294678 img loss 1.1829502582550049 img loss 1.244648814201355 img loss 1.2303968667984009 img loss 1.2970142364501953 img loss 1.2322620153427124 img loss 1.178449034690857 img loss 1.1557945013046265 img loss 1.2440078258514404 img loss 1.2386139631271362 img loss 1.2431646585464478 img loss 1.2800288200378418 img loss 1.283750295639038 img loss 1.207854986190796 img loss 1.2939934730529785 img loss 1.1772006750106812 img loss 1.2705283164978027 img loss 1.3554065227508545 img loss 1.1778720617294312 img loss 1.2102408409118652 img loss 1.1573278903961182 img loss 1.2144569158554077 img loss 1.2223211526870728 img loss 1.2063902616500854 img loss 1.271917700767517 img loss 1.1863150596618652 img loss 1.2715380191802979 img loss 1.18307363986969 img loss 1.2571817636489868 img loss 1.2143092155456543 img loss 1.286280870437622 img loss 1.245644211769104 img loss 1.1800282001495361 img loss 1.2013367414474487 img loss 1.206763505935669 img loss 1.2055754661560059 img loss 1.1751962900161743 img loss 1.175248384475708 img loss 1.1505018472671509 img loss 1.2277320623397827 img loss 1.1893188953399658 img loss 1.1588869094848633img loss 1.2394517660140991 img loss 1.158994197845459 img loss 1.2413711547851562 img loss 1.2526546716690063 img loss 1.2077631950378418 img loss 1.1510542631149292 img loss 1.166441559791565img loss 1.1760905981063843 img loss 1.2124897241592407 img loss 1.2191097736358643 img loss 1.2637338638305664 img loss 1.1728153228759766 img loss 1.1596132516860962 img loss 1.259849190711975 img loss 1.178321123123169 img loss 1.2562007904052734 img loss 1.2178887128829956 img loss 1.1602931022644043 img loss 1.19939386844635 img loss 1.232229471206665 img loss 1.2444791793823242 img loss 1.1938213109970093 img loss 1.2352479696273804 img loss 1.1775457859039307 img loss 1.285784125328064 img loss 1.2118431329727173 img loss 1.3496119976043701 img loss 1.2292026281356812 img loss 1.1630762815475464 img loss 1.2623744010925293 img loss 1.2157609462738037 img loss 1.2678073644638062 img loss 1.153362512588501 img loss 1.1710693836212158 img loss 1.212644100189209 img loss 1.1644783020019531 img loss 1.2688443660736084 img loss 1.2348896265029907 img loss 1.2126741409301758 img loss 1.1944024562835693 img loss 1.236531138420105 img loss 1.1747639179229736 img loss 1.2641937732696533 img loss 1.1988166570663452 img loss 1.2629826068878174 img loss 1.2209901809692383 img loss 1.220528244972229 img loss 1.2163405418395996 img loss 1.2494380474090576 img loss 1.2205586433410645 img loss 1.2891578674316406 img loss 1.1831464767456055 img loss 1.2065479755401611 img loss 1.2363836765289307 img loss 1.1933103799819946 img loss 1.218932867050171 img loss 1.2215393781661987 img loss 1.2435266971588135 img loss 1.2290499210357666 img loss 1.2061800956726074 img loss 1.2036412954330444 img loss 1.2066245079040527 img loss 1.201707363128662 img loss 1.209949016571045 img loss 1.2344449758529663 img loss 1.2179983854293823 img loss 1.1487369537353516 img loss 1.2813382148742676 img loss 1.2037681341171265 img loss 1.2377350330352783 img loss 1.1890913248062134 img loss 1.1989549398422241 img loss 1.2136653661727905 img loss 1.1993632316589355 img loss 1.1884727478027344 img loss 1.283191204071045 img loss 1.2513172626495361 img loss 1.1429619789123535 img loss 1.2447810173034668 img loss 1.1841570138931274 img loss 1.2701562643051147 img loss 1.2107110023498535 {'loss': 1.2181, 'grad_norm': 0.2430081069469452, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.152414321899414 img loss 1.2249908447265625 img loss 1.2981162071228027 img loss 1.2404801845550537 img loss 1.2483965158462524 img loss 1.2545750141143799 img loss 1.208087682723999 img loss 1.270862340927124 img loss 1.2682746648788452 img loss 1.249306082725525 img loss 1.3033833503723145 img loss 1.275646686553955 img loss 1.2406227588653564 img loss 1.2943789958953857 img loss 1.2292953729629517 img loss 1.2903965711593628 img loss 1.322040319442749 img loss 1.241502046585083 img loss 1.2496017217636108 img loss 1.3066985607147217 img loss 1.2882180213928223 img loss 1.2329201698303223 img loss 1.2769274711608887 img loss 1.2603724002838135 img loss 1.2190252542495728 img loss 1.1997005939483643 img loss 1.2699549198150635 img loss 1.261831283569336 img loss 1.261142373085022 img loss 1.2783724069595337 img loss 1.1726900339126587 img loss 1.1814415454864502 img loss 1.2132351398468018 img loss 1.2690730094909668 img loss 1.2804412841796875 img loss 1.237685203552246 img loss 1.2687574625015259 img loss 1.2083147764205933 img loss 1.2164443731307983 img loss 1.2859302759170532 img loss 1.2346254587173462 img loss 1.2785794734954834 img loss 1.185996651649475 img loss 1.2824897766113281 img loss 1.2562673091888428 img loss 1.3235481977462769 img loss 1.2542856931686401 img loss 1.1615303754806519 img loss 1.2734501361846924 img loss 1.2055189609527588 img loss 1.2493730783462524 img loss 1.3317549228668213 img loss 1.2922241687774658 img loss 1.3109636306762695 img loss 1.2322516441345215 img loss 1.285477638244629 img loss 1.2826836109161377 img loss 1.3773335218429565 img loss 1.224179744720459 img loss 1.191577434539795 img loss 1.2551090717315674 img loss 1.1972465515136719 img loss 1.265571117401123 img loss 1.2597081661224365 img loss 1.2730940580368042 img loss 1.2353218793869019 img loss 1.2756950855255127 img loss 1.2515497207641602 img loss 1.2625300884246826 img loss 1.2770473957061768 img loss 1.2553871870040894 img loss 1.191079020500183 img loss 1.2424564361572266 img loss 1.2680389881134033 img loss 1.2510021924972534 img loss 1.1844488382339478 img loss 1.3320364952087402 img loss 1.2585591077804565 img loss 1.2543258666992188 img loss 1.262231707572937 img loss 1.2461313009262085 img loss 1.2582175731658936 img loss 1.251778483390808 img loss 1.202605128288269 img loss 1.2319741249084473 img loss 1.2324116230010986 img loss 1.215280294418335 img loss 1.2441071271896362 img loss 1.243924617767334 img loss 1.264890432357788 img loss 1.2406325340270996 img loss 1.3037608861923218 img loss 1.28231942653656 img loss 1.2141361236572266 img loss 1.2777600288391113 img loss 1.2166461944580078 img loss 1.2334821224212646 img loss 1.2428061962127686 img loss 1.3147456645965576 img loss 1.167681336402893 img loss 1.2949168682098389 img loss 1.243337631225586 img loss 1.213172197341919 img loss 1.2345240116119385 img loss 1.2992457151412964 img loss 1.2359554767608643 img loss 1.2437244653701782 img loss 1.2393794059753418 img loss 1.1644026041030884 img loss 1.3099067211151123 img loss 1.2630208730697632 img loss 1.2415956258773804 img loss 1.262710452079773 img loss 1.287359595298767 img loss 1.2607523202896118 img loss 1.2365829944610596 img loss 1.2297894954681396 img loss 1.2858262062072754 img loss 1.2716057300567627 img loss 1.1805860996246338 img loss 1.2845556735992432 img loss 1.296912670135498 img loss 1.238961100578308 img loss 1.2262144088745117 img loss 1.2142797708511353 img loss 1.2550092935562134 img loss 1.1645658016204834 img loss 1.2333385944366455 {'loss': 1.2511, 'grad_norm': 0.20005793869495392, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4371479749679565 img loss 1.3460887670516968 img loss 1.5124260187149048 img loss 1.5157310962677002 img loss 1.4066492319107056 img loss 1.4196655750274658 img loss 1.3425222635269165 img loss 1.4365812540054321 img loss 1.4045464992523193 img loss 1.4140068292617798 img loss 1.3195037841796875 img loss 1.4274344444274902 img loss 1.3154771327972412 img loss 1.45853590965271 img loss 1.4711668491363525 img loss 1.4036883115768433 img loss 1.4231036901474 img loss 1.3566410541534424 img loss 1.3208332061767578 img loss 1.548279047012329 img loss 1.7227270603179932 img loss 1.4919041395187378 img loss 1.4791830778121948 img loss 1.509961724281311 img loss 1.467927098274231 img loss 1.3757245540618896 img loss 1.4710972309112549 img loss 1.3951618671417236 img loss 1.3873744010925293 img loss 1.4837273359298706 img loss 1.608888864517212 img loss 1.341025948524475 img loss 1.361986756324768 img loss 1.4119632244110107 img loss 1.4994730949401855 img loss 1.3995487689971924 img loss 1.39857816696167 img loss 1.4293009042739868 img loss 1.4165546894073486 img loss 1.4987989664077759 img loss 1.3663668632507324 img loss 1.4396913051605225 img loss 1.504412293434143 img loss 1.4133061170578003 img loss 1.2924085855484009 img loss 1.5319045782089233 img loss 1.4581760168075562 img loss 1.4377046823501587 img loss 1.5337555408477783 img loss 1.4117399454116821 img loss 1.4996211528778076 img loss 1.472963809967041 img loss 1.3687602281570435 img loss 1.289475679397583 img loss 1.3719292879104614 img loss 1.4210573434829712 img loss 1.478806972503662 img loss 1.3969312906265259 img loss 1.4060486555099487 img loss 1.580662488937378 img loss 1.45797598361969 img loss 1.3474533557891846 img loss 1.3480843305587769 img loss 1.5538698434829712 img loss 1.4753968715667725 img loss 1.4704395532608032 img loss 1.4952833652496338 img loss 1.301033616065979 img loss 1.3040730953216553 img loss 1.4063857793807983 img loss 1.360554814338684 img loss 1.491019606590271 img loss 1.4754433631896973 img loss 1.482370138168335 img loss 1.4786403179168701 img loss 1.553534984588623 img loss 1.5913358926773071 img loss 1.4558444023132324 img loss 1.5077484846115112 img loss 1.3559566736221313 img loss 1.4672695398330688 img loss 1.4069225788116455 img loss 1.3623976707458496 img loss 1.433937907218933 img loss 1.4200485944747925 img loss 1.4459824562072754 img loss 1.3732129335403442 img loss 1.5195938348770142 img loss 1.3526394367218018 img loss 1.521710753440857 img loss 1.3600066900253296 img loss 1.5116645097732544 img loss 1.3810683488845825 img loss 1.4474912881851196 img loss 1.3570553064346313 img loss 1.4103655815124512 img loss 1.3732093572616577 img loss 1.4738857746124268 img loss 1.4912292957305908 img loss 1.4807802438735962 img loss 1.486761450767517 img loss 1.4168909788131714 img loss 1.3982479572296143 img loss 1.3390192985534668 img loss 1.4021190404891968 img loss 1.448422908782959 img loss 1.3648573160171509 img loss 1.4761561155319214 img loss 1.4232240915298462 img loss 1.4141061305999756 img loss 1.4461233615875244 img loss 1.5259983539581299 img loss 1.445184350013733 img loss 1.5059727430343628 img loss 1.3736990690231323 img loss 1.5011521577835083img loss 1.3826321363449097 img loss 1.305112361907959 img loss 1.3341542482376099 img loss 1.392388939857483 img loss 1.4163622856140137 img loss 1.45380437374115 img loss 1.3533459901809692 img loss 1.3995517492294312 img loss 1.3969048261642456 img loss 1.3549630641937256 img loss 1.3338650465011597 img loss 1.4441646337509155 {'loss': 1.4308, 'grad_norm': 0.3541671335697174, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2342183589935303 img loss 1.2535253763198853 img loss 1.208981990814209 img loss 1.187336802482605 img loss 1.1621944904327393 img loss 1.1478900909423828 img loss 1.2262814044952393 img loss 1.1931896209716797 img loss 1.2506299018859863 img loss 1.1846312284469604 img loss 1.1197949647903442 img loss 1.170892596244812 img loss 1.139892339706421 img loss 1.2484028339385986 img loss 1.1915920972824097 img loss 1.1972649097442627 img loss 1.1545007228851318 img loss 1.18553626537323 img loss 1.220137119293213 img loss 1.2472892999649048 img loss 1.1688648462295532 img loss 1.2327951192855835 img loss 1.1441177129745483 img loss 1.1814649105072021 img loss 1.19778311252594 img loss 1.2036645412445068 img loss 1.2097002267837524 img loss 1.1276930570602417 img loss 1.2307372093200684 img loss 1.3275009393692017 img loss 1.2948747873306274 img loss 1.1519924402236938 img loss 1.3051295280456543 img loss 1.1862232685089111 img loss 1.2966912984848022 img loss 1.2731326818466187 img loss 1.2272226810455322 img loss 1.2251358032226562 img loss 1.2000174522399902 img loss 1.1859155893325806 img loss 1.1849572658538818 img loss 1.1489863395690918 img loss 1.262470006942749 img loss 1.1644601821899414 img loss 1.2599270343780518 img loss 1.1390718221664429 img loss 1.2542815208435059 img loss 1.195322871208191 img loss 1.375986933708191 img loss 1.2076221704483032 img loss 1.1821820735931396 img loss 1.2494114637374878 img loss 1.2167776823043823 img loss 1.170305609703064 img loss 1.2292232513427734 img loss 1.2107112407684326 img loss 1.121672511100769 img loss 1.3283576965332031 img loss 1.2989754676818848 img loss 1.1453378200531006 img loss 1.3619917631149292 img loss 1.2763423919677734 img loss 1.1945545673370361 img loss 1.2783358097076416 img loss 1.2860840559005737 img loss 1.16130530834198 img loss 1.1971251964569092 img loss 1.2072112560272217 img loss 1.146781325340271 img loss 1.1174869537353516 img loss 1.2025666236877441 img loss 1.2971527576446533 img loss 1.2832999229431152 img loss 1.2027430534362793 img loss 1.1884381771087646 img loss 1.3131680488586426 img loss 1.2075010538101196 img loss 1.2392324209213257img loss 1.233955979347229 img loss 1.2413983345031738 img loss 1.2595531940460205 img loss 1.2173713445663452 img loss 1.224465250968933 img loss 1.2020223140716553 img loss 1.2150710821151733 img loss 1.2530914545059204 img loss 1.1644586324691772 img loss 1.1924848556518555 img loss 1.16632878780365 img loss 1.1541398763656616 img loss 1.212985634803772 img loss 1.2531791925430298 img loss 1.2234066724777222 img loss 1.285308599472046 img loss 1.2592562437057495 img loss 1.137160301208496 img loss 1.205937385559082 img loss 1.176742434501648 img loss 1.1675728559494019 img loss 1.2543210983276367 img loss 1.207030177116394 img loss 1.2438733577728271 img loss 1.1907799243927002 img loss 1.1627647876739502 img loss 1.300412654876709 img loss 1.1144323348999023 img loss 1.211637020111084 img loss 1.186034917831421 img loss 1.3349807262420654 img loss 1.2422821521759033 img loss 1.176873803138733 img loss 1.19792640209198 img loss 1.2155767679214478 img loss 1.2915797233581543 img loss 1.2736878395080566 img loss 1.2595103979110718 img loss 1.2502626180648804 img loss 1.2717113494873047 img loss 1.2148981094360352 img loss 1.1471236944198608 img loss 1.1890324354171753 img loss 1.0611997842788696 img loss 1.2244257926940918 img loss 1.244902491569519 img loss 1.1894752979278564 img loss 1.2096065282821655 img loss 1.2481045722961426 img loss 1.1639221906661987 {'loss': 1.2151, 'grad_norm': 0.3160492479801178, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1769708395004272 img loss 1.2216800451278687 img loss 1.151585578918457 img loss 1.1671415567398071 img loss 1.17039954662323 img loss 1.1069484949111938 img loss 1.2917369604110718 img loss 1.1684470176696777 img loss 1.1893924474716187 img loss 1.1811548471450806 img loss 1.1759697198867798 img loss 1.156109094619751 img loss 1.146837830543518 img loss 1.2042052745819092 img loss 1.1736301183700562 img loss 1.222992181777954 img loss 1.270585060119629 img loss 1.1284143924713135 img loss 1.1150115728378296 img loss 1.2582975625991821 img loss 1.1756455898284912 img loss 1.1601606607437134 img loss 1.1607637405395508 img loss 1.1940157413482666 img loss 1.2091140747070312 img loss 1.2162413597106934 img loss 1.1724661588668823 img loss 1.2472050189971924 img loss 1.233992338180542 img loss 1.1955797672271729 img loss 1.127571702003479 img loss 1.2262413501739502 img loss 1.123747706413269 img loss 1.186848521232605 img loss 1.1504526138305664 img loss 1.174083948135376 img loss 1.1551134586334229 img loss 1.2301825284957886 img loss 1.105165719985962 img loss 1.1558711528778076 img loss 1.2154892683029175 img loss 1.2143572568893433 img loss 1.2857426404953003 img loss 1.1746232509613037 img loss 1.204608678817749 img loss 1.1817423105239868 img loss 1.2000768184661865 img loss 1.197548508644104 img loss 1.210524320602417 img loss 1.1939624547958374 img loss 1.1536787748336792 img loss 1.1678619384765625 img loss 1.1910948753356934 img loss 1.1400896310806274 img loss 1.267255187034607 img loss 1.127617359161377 img loss 1.2093448638916016 img loss 1.181696891784668 img loss 1.1438764333724976 img loss 1.165083885192871 img loss 1.2565962076187134 img loss 1.1794694662094116 img loss 1.1614480018615723 img loss 1.2040880918502808 img loss 1.1942417621612549 img loss 1.1321165561676025 img loss 1.1672873497009277 img loss 1.327239751815796 img loss 1.2544496059417725 img loss 1.225097417831421 img loss 1.2467864751815796 img loss 1.1706682443618774 img loss 1.286882758140564 img loss 1.2637953758239746 img loss 1.187294840812683 img loss 1.2346582412719727 img loss 1.2039231061935425 img loss 1.0964958667755127 img loss 1.2703790664672852 img loss 1.1817213296890259 img loss 1.1626077890396118 img loss 1.2052624225616455 img loss 1.15702223777771 img loss 1.147754192352295 img loss 1.1403731107711792 img loss 1.308254599571228 img loss 1.2212481498718262 img loss 1.1318132877349854 img loss 1.2115859985351562 img loss 1.154671549797058 img loss 1.28047776222229 img loss 1.126598834991455 img loss 1.1869093179702759 img loss 1.2396777868270874 img loss 1.1168615818023682 img loss 1.1874185800552368 img loss 1.252744197845459 img loss 1.237952470779419 img loss 1.1677148342132568 img loss 1.2802578210830688 img loss 1.237036943435669 img loss 1.128771185874939 img loss 1.2675154209136963 img loss 1.215583086013794 img loss 1.1926673650741577 img loss 1.1474106311798096 img loss 1.1674686670303345 img loss 1.1845260858535767 img loss 1.177406907081604 img loss 1.1672399044036865 img loss 1.1497796773910522 img loss 1.155561089515686 img loss 1.1862188577651978 img loss 1.2879948616027832 img loss 1.141144037246704 img loss 1.1968798637390137 img loss 1.2181307077407837 img loss 1.2277435064315796 img loss 1.3219856023788452 img loss 1.24262273311615 img loss 1.232790231704712 img loss 1.1244112253189087 img loss 1.245661973953247 img loss 1.1639347076416016 img loss 1.1881240606307983 img loss 1.1181979179382324 img loss 1.2710922956466675 img loss 1.1272220611572266 {'loss': 1.1934, 'grad_norm': 0.21449224650859833, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.502225637435913 img loss 1.5616133213043213 img loss 1.407995581626892 img loss 1.6030668020248413 img loss 1.46314537525177 img loss 1.3173975944519043 img loss 1.3793294429779053 img loss 1.3852216005325317 img loss 1.3779340982437134 img loss 1.475898027420044 img loss 1.5122770071029663 img loss 1.5905587673187256 img loss 1.5748534202575684 img loss 1.2753558158874512 img loss 1.4662121534347534 img loss 1.4103916883468628 img loss 1.392627239227295 img loss 1.5868769884109497 img loss 1.3265808820724487 img loss 1.3239474296569824 img loss 1.50728440284729 img loss 1.366912603378296 img loss 1.5261399745941162 img loss 1.3765290975570679 img loss 1.4881596565246582 img loss 1.498410940170288 img loss 1.5043798685073853 img loss 1.4432650804519653 img loss 1.4853497743606567 img loss 1.479138970375061 img loss 1.3367429971694946 img loss 1.517187237739563 img loss 1.432931661605835 img loss 1.5475069284439087 img loss 1.5777885913848877 img loss 1.4022828340530396 img loss 1.400887370109558 img loss 1.4988924264907837 img loss 1.4886448383331299img loss 1.4379355907440186 img loss 1.5463649034500122 img loss 1.489400029182434 img loss 1.4740358591079712 img loss 1.4453521966934204 img loss 1.5160000324249268 img loss 1.2239328622817993 img loss 1.4938513040542603 img loss 1.4569447040557861 img loss 1.3692848682403564 img loss 1.4754353761672974 img loss 1.412876844406128 img loss 1.380704402923584 img loss 1.3486984968185425 img loss 1.3861371278762817 img loss 1.380184531211853 img loss 1.5412205457687378 img loss 1.4321904182434082 img loss 1.38016676902771 img loss 1.451843023300171 img loss 1.3976272344589233 img loss 1.3849527835845947 img loss 1.7289825677871704 img loss 1.3322433233261108 img loss 1.5459873676300049 img loss 1.3581149578094482 img loss 1.4219406843185425 img loss 1.4371845722198486 img loss 1.268406867980957 img loss 1.5002760887145996 img loss 1.548927903175354 img loss 1.6489288806915283 img loss 1.430955410003662 img loss 1.515214443206787 img loss 1.636242389678955 img loss 1.3824416399002075 img loss 1.5138956308364868 img loss 1.5185401439666748 img loss 1.4245280027389526 img loss 1.4451817274093628 img loss 1.4458746910095215 img loss 1.5563461780548096 img loss 1.396055817604065 img loss 1.3451348543167114 img loss 1.505259394645691 img loss 1.4969284534454346 img loss 1.6002285480499268 img loss 1.3727424144744873 img loss 1.505654215812683 img loss 1.313241720199585 img loss 1.5047277212142944 img loss 1.4410407543182373 img loss 1.559606671333313 img loss 1.530232310295105 img loss 1.4007498025894165 img loss 1.4633592367172241 img loss 1.4618991613388062 img loss 1.4206135272979736 img loss 1.5099931955337524 img loss 1.4124157428741455 img loss 1.3577200174331665 img loss 1.4973927736282349 img loss 1.4289346933364868 img loss 1.3994708061218262 img loss 1.3837183713912964 img loss 1.4800258874893188 img loss 1.440252661705017 img loss 1.5671477317810059 img loss 1.4398609399795532 img loss 1.4759382009506226 img loss 1.5329591035842896 img loss 1.485560655593872 img loss 1.4513086080551147 img loss 1.4000946283340454 img loss 1.303726077079773 img loss 1.4428915977478027 img loss 1.3545118570327759 img loss 1.4614084959030151 img loss 1.509547472000122 img loss 1.4601572751998901 img loss 1.390236735343933 img loss 1.4899736642837524 img loss 1.407768964767456 img loss 1.5509470701217651 img loss 1.4307574033737183 img loss 1.551522135734558 img loss 1.457635521888733 img loss 1.4997222423553467 img loss 1.3637382984161377 {'loss': 1.4543, 'grad_norm': 0.4285332262516022, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.117185115814209 img loss 1.18306303024292 img loss 1.2275322675704956 img loss 1.1767491102218628 img loss 1.220718264579773 img loss 1.22673761844635 img loss 1.1167974472045898 img loss 1.2318309545516968 img loss 1.283257246017456 img loss 1.2249819040298462 img loss 1.1484127044677734 img loss 1.2320096492767334 img loss 1.1878743171691895 img loss 1.1550209522247314 img loss 1.160189151763916 img loss 1.292581558227539 img loss 1.1788902282714844 img loss 1.1983355283737183 img loss 1.1681689023971558 img loss 1.2300705909729004 img loss 1.1996370553970337 img loss 1.2382469177246094 img loss 1.2447518110275269 img loss 1.1452674865722656 img loss 1.1795661449432373 img loss 1.1873905658721924 img loss 1.2052764892578125 img loss 1.1664365530014038 img loss 1.1796998977661133 img loss 1.1635868549346924 img loss 1.2248916625976562 img loss 1.1421031951904297 img loss 1.1760363578796387 img loss 1.2599595785140991 img loss 1.1543664932250977 img loss 1.2116416692733765 img loss 1.1115339994430542 img loss 1.1919225454330444 img loss 1.1204593181610107 img loss 1.1883550882339478 img loss 1.1818970441818237 img loss 1.3266239166259766 img loss 1.1459500789642334 img loss 1.1984288692474365 img loss 1.2965691089630127 img loss 1.1961883306503296 img loss 1.221840500831604 img loss 1.1301498413085938 img loss 1.1858888864517212 img loss 1.184800386428833 img loss 1.1331814527511597 img loss 1.1904633045196533 img loss 1.1696923971176147 img loss 1.2413055896759033 img loss 1.2141780853271484 img loss 1.2092227935791016 img loss 1.2343829870224 img loss 1.197182059288025 img loss 1.119449496269226 img loss 1.1837177276611328 img loss 1.2684634923934937 img loss 1.2005888223648071 img loss 1.2251194715499878 img loss 1.1790080070495605 img loss 1.2569255828857422 img loss 1.252073049545288 img loss 1.2122008800506592 img loss 1.1819943189620972 img loss 1.201669692993164 img loss 1.2005897760391235 img loss 1.2049394845962524 img loss 1.1826581954956055 img loss 1.1683368682861328 img loss 1.1882622241973877 img loss 1.210378646850586 img loss 1.1568831205368042 img loss 1.2805770635604858 img loss 1.2261919975280762 img loss 1.1008646488189697 img loss 1.1091415882110596 img loss 1.2393845319747925 img loss 1.1991000175476074 img loss 1.1576461791992188 img loss 1.2268846035003662 img loss 1.1795589923858643 img loss 1.1770241260528564 img loss 1.1035969257354736 img loss 1.2178373336791992 img loss 1.1630833148956299 img loss 1.1744803190231323 img loss 1.2244701385498047 img loss 1.2069729566574097 img loss 1.183459758758545 img loss 1.2296013832092285 img loss 1.195749282836914 img loss 1.2014869451522827 img loss 1.245617151260376 img loss 1.22870671749115 img loss 1.119437575340271 img loss 1.1661564111709595 img loss 1.1761966943740845 img loss 1.2086948156356812 img loss 1.202876329421997 img loss 1.198973536491394 img loss 1.1672207117080688 img loss 1.232089877128601 img loss 1.2413440942764282 img loss 1.2111023664474487 img loss 1.1539268493652344 img loss 1.255122423171997 img loss 1.2672070264816284 img loss 1.2177895307540894 img loss 1.202360987663269 img loss 1.1533812284469604 img loss 1.185126543045044 img loss 1.1722952127456665 img loss 1.1711844205856323 img loss 1.1589304208755493 img loss 1.1912530660629272 img loss 1.2250416278839111 img loss 1.2359676361083984 img loss 1.2502025365829468 img loss 1.2293972969055176 img loss 1.1438130140304565 img loss 1.1852874755859375 img loss 1.1912838220596313 img loss 1.1563920974731445 img loss 1.2314302921295166 {'loss': 1.1959, 'grad_norm': 0.24681533873081207, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2345892190933228 img loss 1.1737476587295532 img loss 1.203530192375183 img loss 1.2011209726333618 img loss 1.206355333328247 img loss 1.1842231750488281 img loss 1.2555798292160034 img loss 1.174127221107483 img loss 1.2084710597991943 img loss 1.2062125205993652 img loss 1.212722659111023 img loss 1.185208797454834 img loss 1.2578219175338745 img loss 1.230242133140564 img loss 1.204386591911316 img loss 1.1940268278121948 img loss 1.277574062347412 img loss 1.243762731552124 img loss 1.2059016227722168 img loss 1.2406871318817139 img loss 1.1689928770065308 img loss 1.157904028892517 img loss 1.2378442287445068 img loss 1.2064279317855835 img loss 1.1716516017913818 img loss 1.1563900709152222 img loss 1.2186510562896729 img loss 1.207696795463562 img loss 1.247565507888794 img loss 1.1652581691741943 img loss 1.224433422088623 img loss 1.2316898107528687 img loss 1.2421495914459229 img loss 1.206214427947998 img loss 1.1637758016586304 img loss 1.2637698650360107 img loss 1.1985355615615845 img loss 1.1601502895355225 img loss 1.2236173152923584 img loss 1.3145041465759277 img loss 1.2534931898117065 img loss 1.1933472156524658 img loss 1.250113844871521 img loss 1.16360342502594 img loss 1.1761196851730347 img loss 1.2729644775390625 img loss 1.1801029443740845 img loss 1.2291464805603027 img loss 1.1081395149230957 img loss 1.1411644220352173 img loss 1.159488558769226 img loss 1.2038772106170654 img loss 1.2033421993255615 img loss 1.158561110496521 img loss 1.2204220294952393 img loss 1.242396593093872 img loss 1.2141224145889282 img loss 1.2373384237289429 img loss 1.2215819358825684 img loss 1.1603033542633057 img loss 1.2592220306396484 img loss 1.2039618492126465 img loss 1.1908965110778809 img loss 1.2294039726257324 img loss 1.2464816570281982 img loss 1.2000997066497803 img loss 1.2051104307174683 img loss 1.2092851400375366 img loss 1.2145565748214722 img loss 1.2168426513671875 img loss 1.2098932266235352 img loss 1.1979602575302124 img loss 1.1873630285263062 img loss 1.2444900274276733 img loss 1.2715966701507568 img loss 1.192014455795288 img loss 1.2159088850021362 img loss 1.1858508586883545 img loss 1.1475416421890259 img loss 1.2149012088775635 img loss 1.1960493326187134 img loss 1.2179241180419922 img loss 1.2259429693222046 img loss 1.1599334478378296 img loss 1.29143226146698 img loss 1.244084119796753 img loss 1.2235338687896729 img loss 1.2044743299484253 img loss 1.1975135803222656 img loss 1.1439918279647827 img loss 1.196602702140808 img loss 1.2318665981292725 img loss 1.200351595878601 img loss 1.1748675107955933 img loss 1.1926056146621704 img loss 1.1836856603622437 img loss 1.152881145477295 img loss 1.2161362171173096 img loss 1.2086752653121948 img loss 1.2330020666122437 img loss 1.2188680171966553 img loss 1.1794754266738892 img loss 1.2094471454620361 img loss 1.21331787109375 img loss 1.1833990812301636 img loss 1.1444118022918701 img loss 1.2084131240844727 img loss 1.1620959043502808 img loss 1.2002171277999878 img loss 1.1734273433685303 img loss 1.180100917816162 img loss 1.1693600416183472 img loss 1.2108373641967773 img loss 1.2402595281600952 img loss 1.1906936168670654 img loss 1.2899960279464722 img loss 1.27194344997406 img loss 1.1589618921279907 img loss 1.1762502193450928 img loss 1.2268822193145752 img loss 1.1995419263839722 img loss 1.1870334148406982 img loss 1.218237280845642 img loss 1.1950829029083252 img loss 1.2000442743301392 img loss 1.179600715637207 img loss 1.163460612297058 img loss 1.1880872249603271 {'loss': 1.2057, 'grad_norm': 0.30220356583595276, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.220984697341919 img loss 1.2091078758239746 img loss 1.1981109380722046 img loss 1.179531455039978 img loss 1.2152513265609741 img loss 1.162456750869751 img loss 1.2278225421905518 img loss 1.2219150066375732 img loss 1.1477230787277222 img loss 1.2590206861495972 img loss 1.1515082120895386 img loss 1.1983031034469604 img loss 1.1899007558822632 img loss 1.25417959690094 img loss 1.2788333892822266 img loss 1.168800711631775 img loss 1.2220662832260132 img loss 1.189828634262085 img loss 1.2191435098648071 img loss 1.1899762153625488 img loss 1.1791224479675293 img loss 1.1888331174850464 img loss 1.1871109008789062 img loss 1.1557681560516357 img loss 1.1922777891159058 img loss 1.2446928024291992 img loss 1.2083275318145752 img loss 1.1129602193832397 img loss 1.1961441040039062 img loss 1.2295459508895874 img loss 1.233069896697998 img loss 1.2082288265228271 img loss 1.1733548641204834 img loss 1.2398191690444946 img loss 1.126527190208435 img loss 1.22943115234375 img loss 1.2367254495620728 img loss 1.1915333271026611 img loss 1.2506332397460938 img loss 1.258269190788269 img loss 1.254526138305664 img loss 1.1513981819152832 img loss 1.207303524017334 img loss 1.2032501697540283 img loss 1.15935218334198 img loss 1.2776495218276978 img loss 1.2052841186523438 img loss 1.1645208597183228 img loss 1.1217224597930908 img loss 1.1715564727783203 img loss 1.150898814201355 img loss 1.1705436706542969 img loss 1.198488473892212 img loss 1.2262169122695923 img loss 1.2221407890319824 img loss 1.2169004678726196 img loss 1.2120938301086426 img loss 1.1831949949264526 img loss 1.1835572719573975 img loss 1.184112787246704 img loss 1.1744540929794312 img loss 1.2937188148498535 img loss 1.1908060312271118 img loss 1.1493157148361206 img loss 1.2070538997650146 img loss 1.1690196990966797 img loss 1.2110888957977295 img loss 1.2025381326675415 img loss 1.2199400663375854 img loss 1.16708242893219 img loss 1.1666091680526733 img loss 1.1810319423675537 img loss 1.1557623147964478 img loss 1.1508700847625732 img loss 1.2473806142807007 img loss 1.1990479230880737 img loss 1.243939995765686 img loss 1.2003955841064453 img loss 1.2317125797271729 img loss 1.2551138401031494 img loss 1.2140586376190186 img loss 1.1919338703155518 img loss 1.213800072669983 img loss 1.2126413583755493 img loss 1.1961889266967773img loss 1.2984319925308228 img loss 1.1494817733764648 img loss 1.187272071838379 img loss 1.1906570196151733 img loss 1.215403437614441 img loss 1.1620571613311768 img loss 1.1796296834945679 img loss 1.1964085102081299 img loss 1.184669017791748 img loss 1.1252086162567139 img loss 1.1547985076904297 img loss 1.2704204320907593 img loss 1.155151128768921 img loss 1.2833621501922607 img loss 1.245485544204712 img loss 1.2134078741073608 img loss 1.160925269126892 img loss 1.2346748113632202 img loss 1.1919559240341187 img loss 1.2747453451156616 img loss 1.2474945783615112 img loss 1.1794744729995728 img loss 1.196661353111267 img loss 1.2388683557510376 img loss 1.2026684284210205 img loss 1.2181299924850464 img loss 1.1705269813537598 img loss 1.2325794696807861 img loss 1.2134121656417847 img loss 1.2145915031433105 img loss 1.2005245685577393 img loss 1.1983237266540527 img loss 1.1775039434432983 img loss 1.2462975978851318 img loss 1.1772698163986206 img loss 1.207955241203308 img loss 1.1964805126190186 img loss 1.2574669122695923 img loss 1.2199852466583252 img loss 1.1966626644134521 img loss 1.1772956848144531 img loss 1.1833380460739136 img loss 1.2451492547988892 {'loss': 1.2026, 'grad_norm': 0.3012453317642212, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2590988874435425 img loss 1.158739447593689 img loss 1.3083100318908691 img loss 1.3526803255081177 img loss 1.2236391305923462 img loss 1.1534767150878906 img loss 1.1827709674835205 img loss 1.265194296836853 img loss 1.2307491302490234 img loss 1.2568378448486328 img loss 1.1891543865203857 img loss 1.2469614744186401 img loss 1.1655162572860718 img loss 1.17799711227417 img loss 1.1439214944839478 img loss 1.239059329032898 img loss 1.2023708820343018 img loss 1.2302696704864502 img loss 1.2515373229980469 img loss 1.1369044780731201 img loss 1.1813685894012451 img loss 1.1900911331176758 img loss 1.1937874555587769 img loss 1.1549806594848633 img loss 1.2425332069396973 img loss 1.2206075191497803 img loss 1.2333742380142212 img loss 1.1468524932861328 img loss 1.1118342876434326 img loss 1.2616674900054932 img loss 1.2608989477157593 img loss 1.19533109664917 img loss 1.2285727262496948 img loss 1.2123889923095703 img loss 1.1799548864364624 img loss 1.254626989364624 img loss 1.2412151098251343 img loss 1.2149184942245483 img loss 1.2492706775665283 img loss 1.1707905530929565 img loss 1.2467049360275269 img loss 1.1636364459991455 img loss 1.1617951393127441 img loss 1.3365435600280762 img loss 1.2700576782226562 img loss 1.2587010860443115 img loss 1.2082020044326782 img loss 1.2296608686447144 img loss 1.188097596168518 img loss 1.181006908416748 img loss 1.255035400390625 img loss 1.2920703887939453 img loss 1.1687641143798828 img loss 1.2006196975708008 img loss 1.3158005475997925 img loss 1.2491534948349 img loss 1.194040060043335 img loss 1.279637336730957 img loss 1.1695550680160522 img loss 1.2491264343261719 img loss 1.2598549127578735 img loss 1.2460802793502808 img loss 1.225584626197815 img loss 1.2000365257263184 img loss 1.173448920249939 img loss 1.1555476188659668 img loss 1.243166446685791 img loss 1.0971269607543945 img loss 1.2115223407745361 img loss 1.1549654006958008 img loss 1.1219522953033447 img loss 1.18485689163208 img loss 1.228920578956604 img loss 1.2477145195007324 img loss 1.277931571006775 img loss 1.2233169078826904 img loss 1.2629868984222412 img loss 1.2904274463653564 img loss 1.1108843088150024 img loss 1.2410414218902588 img loss 1.1910818815231323 img loss 1.25498366355896 img loss 1.2455627918243408 img loss 1.2211620807647705 img loss 1.2116199731826782 img loss 1.2044168710708618 img loss 1.2059259414672852 img loss 1.2693017721176147 img loss 1.170858383178711 img loss 1.2698997259140015 img loss 1.2092598676681519 img loss 1.1350078582763672 img loss 1.2128806114196777 img loss 1.2353200912475586 img loss 1.1169203519821167 img loss 1.1802647113800049 img loss 1.155249834060669 img loss 1.326601505279541 img loss 1.3084359169006348 img loss 1.1941810846328735 img loss 1.1078684329986572 img loss 1.1782318353652954 img loss 1.1650469303131104 img loss 1.2261656522750854 img loss 1.1859757900238037 img loss 1.1538820266723633 img loss 1.2228361368179321 img loss 1.1457985639572144 img loss 1.2321116924285889 img loss 1.214177131652832 img loss 1.2085773944854736 img loss 1.1516627073287964 img loss 1.2372558116912842 img loss 1.2314090728759766 img loss 1.2027299404144287 img loss 1.1968510150909424 img loss 1.1394953727722168 img loss 1.2263506650924683 img loss 1.2066905498504639 img loss 1.1784210205078125 img loss 1.1680306196212769 img loss 1.1052755117416382 img loss 1.1204462051391602 img loss 1.2320671081542969 img loss 1.2400755882263184 img loss 1.210587739944458 img loss 1.223395586013794 img loss 1.2034004926681519 {'loss': 1.2104, 'grad_norm': 0.20200656354427338, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.211378812789917 img loss 1.1490122079849243 img loss 1.2608503103256226 img loss 1.2198572158813477 img loss 1.1678131818771362 img loss 1.183134913444519 img loss 1.2682750225067139 img loss 1.2507283687591553 img loss 1.1235408782958984 img loss 1.1282821893692017 img loss 1.2009365558624268 img loss 1.1996551752090454 img loss 1.0970581769943237 img loss 1.1663074493408203 img loss 1.1933039426803589 img loss 1.2082009315490723 img loss 1.2130988836288452 img loss 1.1640323400497437 img loss 1.2475460767745972 img loss 1.143592119216919 img loss 1.2225843667984009 img loss 1.2164912223815918 img loss 1.134060263633728 img loss 1.17340087890625 img loss 1.3215389251708984 img loss 1.218838095664978 img loss 1.1361980438232422 img loss 1.1869131326675415 img loss 1.0988167524337769 img loss 1.1537315845489502img loss 1.1040887832641602 img loss 1.1520709991455078 img loss 1.1204805374145508 img loss 1.296556830406189 img loss 1.1629366874694824 img loss 1.2306890487670898 img loss 1.1538128852844238 img loss 1.1949763298034668 img loss 1.2061553001403809 img loss 1.121797800064087 img loss 1.2341220378875732 img loss 1.208300232887268 img loss 1.1506915092468262 img loss 1.158814787864685 img loss 1.2083052396774292 img loss 1.1158978939056396 img loss 1.140602469444275img loss 1.1416926383972168 img loss 1.1733810901641846 img loss 1.3010395765304565 img loss 1.1209726333618164 img loss 1.2536633014678955 img loss 1.156601905822754 img loss 1.189777135848999 img loss 1.2018030881881714 img loss 1.2150425910949707 img loss 1.132682204246521 img loss 1.1439294815063477 img loss 1.2807680368423462 img loss 1.164068579673767 img loss 1.1846461296081543 img loss 1.1544502973556519 img loss 1.2602355480194092 img loss 1.2372745275497437 img loss 1.1597015857696533 img loss 1.1811281442642212 img loss 1.1587308645248413 img loss 1.1860690116882324 img loss 1.1672199964523315 img loss 1.244295597076416 img loss 1.1416890621185303 img loss 1.1932436227798462 img loss 1.1530312299728394 img loss 1.129571795463562 img loss 1.2772552967071533 img loss 1.1143524646759033 img loss 1.221590518951416 img loss 1.185551643371582 img loss 1.2341759204864502 img loss 1.148762583732605 img loss 1.226833701133728 img loss 1.2675378322601318 img loss 1.1105711460113525 img loss 1.1483464241027832 img loss 1.2550323009490967 img loss 1.1214693784713745 img loss 1.19757878780365 img loss 1.1429228782653809 img loss 1.2109484672546387 img loss 1.2802598476409912 img loss 1.252090334892273 img loss 1.2327017784118652 img loss 1.1386858224868774 img loss 1.2207486629486084 img loss 1.1785213947296143 img loss 1.2299762964248657 img loss 1.172711968421936 img loss 1.1754019260406494 img loss 1.2677778005599976 img loss 1.1555161476135254 img loss 1.1826379299163818img loss 1.1670595407485962 img loss 1.1634020805358887 img loss 1.1094897985458374 img loss 1.2165879011154175 img loss 1.2727515697479248 img loss 1.181530237197876 img loss 1.214964747428894 img loss 1.203774094581604 img loss 1.1296873092651367 img loss 1.2258379459381104 img loss 1.2172162532806396 img loss 1.2258270978927612 img loss 1.2924667596817017 img loss 1.261521577835083 img loss 1.2168409824371338 img loss 1.1534326076507568 img loss 1.263895034790039 img loss 1.2432198524475098 img loss 1.1237032413482666 img loss 1.1188626289367676 img loss 1.1534762382507324 img loss 1.2345424890518188 img loss 1.176166296005249 img loss 1.2144787311553955 img loss 1.257928729057312 img loss 1.2083934545516968 img loss 1.2498748302459717 {'loss': 1.1914, 'grad_norm': 0.37714698910713196, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.276436448097229 img loss 1.2772505283355713 img loss 1.1996883153915405 img loss 1.2975071668624878 img loss 1.4198473691940308 img loss 1.3162376880645752 img loss 1.2395060062408447 img loss 1.2570990324020386 img loss 1.3325318098068237 img loss 1.3126715421676636 img loss 1.3554567098617554 img loss 1.2753183841705322 img loss 1.383926272392273 img loss 1.3584539890289307 img loss 1.440646767616272 img loss 1.2345752716064453 img loss 1.3071742057800293 img loss 1.2397323846817017 img loss 1.339261770248413 img loss 1.29779052734375 img loss 1.2251032590866089 img loss 1.34346342086792 img loss 1.36183762550354 img loss 1.3139655590057373 img loss 1.2734359502792358 img loss 1.2201427221298218 img loss 1.343866229057312 img loss 1.2258058786392212 img loss 1.3117091655731201 img loss 1.2638835906982422 img loss 1.2476831674575806 img loss 1.3919247388839722 img loss 1.354575514793396 img loss 1.2978676557540894 img loss 1.255049228668213 img loss 1.251543402671814 img loss 1.2398979663848877img loss 1.2561569213867188 img loss 1.254008173942566 img loss 1.2985475063323975 img loss 1.4498860836029053 img loss 1.417724370956421 img loss 1.2898991107940674 img loss 1.3654745817184448 img loss 1.3982150554656982 img loss 1.3369544744491577 img loss 1.3280550241470337 img loss 1.4020317792892456 img loss 1.2019340991973877 img loss 1.3036158084869385 img loss 1.3511489629745483 img loss 1.3258039951324463 img loss 1.2886803150177002 img loss 1.3156241178512573img loss 1.3625681400299072 img loss 1.2886309623718262 img loss 1.3387471437454224 img loss 1.24124276638031 img loss 1.3466731309890747 img loss 1.3422465324401855 img loss 1.4135388135910034 img loss 1.2770791053771973 img loss 1.295894980430603 img loss 1.2786319255828857 img loss 1.2840861082077026 img loss 1.2863225936889648 img loss 1.269129991531372 img loss 1.369849443435669 img loss 1.2752397060394287 img loss 1.361250400543213 img loss 1.3672834634780884 img loss 1.2906391620635986 img loss 1.3183114528656006 img loss 1.3351776599884033 img loss 1.3319028615951538 img loss 1.227880835533142 img loss 1.3004947900772095 img loss 1.3509142398834229 img loss 1.4058940410614014 img loss 1.2673866748809814 img loss 1.352001428604126 img loss 1.30768620967865 img loss 1.3783602714538574 img loss 1.2620255947113037 img loss 1.307580590248108 img loss 1.3904130458831787 img loss 1.3863158226013184 img loss 1.2959704399108887 img loss 1.3455023765563965 img loss 1.3663057088851929 img loss 1.351385474205017 img loss 1.3885483741760254 img loss 1.19923734664917 img loss 1.3465169668197632 img loss 1.2445704936981201 img loss 1.290271282196045 img loss 1.245308518409729 img loss 1.257685899734497 img loss 1.3153934478759766 img loss 1.2623506784439087 img loss 1.3560928106307983 img loss 1.442736268043518 img loss 1.328618049621582 img loss 1.2791403532028198 img loss 1.3336495161056519 img loss 1.2576528787612915 img loss 1.2886435985565186 img loss 1.2779338359832764 img loss 1.3957561254501343 img loss 1.2732610702514648 img loss 1.2908614873886108 img loss 1.2739428281784058 img loss 1.2814644575119019 img loss 1.2612535953521729 img loss 1.2939897775650024 img loss 1.296708106994629 img loss 1.3640466928482056 img loss 1.3454989194869995 img loss 1.3051486015319824 img loss 1.297621250152588 img loss 1.2475947141647339 img loss 1.3388174772262573 img loss 1.3069514036178589 img loss 1.2301051616668701 img loss 1.2650182247161865 img loss 1.3553014993667603 img loss 1.2955894470214844 img loss 1.3401219844818115 {'loss': 1.311, 'grad_norm': 0.29096314311027527, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3007233142852783 img loss 1.2551076412200928 img loss 1.2704328298568726 img loss 1.3124496936798096 img loss 1.3775032758712769 img loss 1.2035465240478516 img loss 1.241504192352295 img loss 1.3360997438430786 img loss 1.2511749267578125 img loss 1.3091516494750977 img loss 1.2570751905441284 img loss 1.3277348279953003 img loss 1.3123085498809814 img loss 1.2669055461883545 img loss 1.3709267377853394 img loss 1.2754685878753662 img loss 1.265930414199829 img loss 1.2816896438598633 img loss 1.2772969007492065 img loss 1.3262953758239746 img loss 1.2710329294204712 img loss 1.275012493133545 img loss 1.247329592704773 img loss 1.230332612991333 img loss 1.2933621406555176 img loss 1.2602670192718506 img loss 1.4002889394760132 img loss 1.3193962574005127 img loss 1.2043405771255493 img loss 1.3466908931732178 img loss 1.3271092176437378 img loss 1.4248629808425903 img loss 1.149488091468811 img loss 1.376777172088623 img loss 1.3443607091903687 img loss 1.2200541496276855 img loss 1.2930312156677246 img loss 1.2811737060546875 img loss 1.340980887413025 img loss 1.2576063871383667 img loss 1.3869026899337769 img loss 1.2951359748840332 img loss 1.2781195640563965 img loss 1.4325357675552368 img loss 1.262256383895874 img loss 1.3912495374679565 img loss 1.318149209022522 img loss 1.2704026699066162 img loss 1.2276182174682617 img loss 1.2687593698501587 img loss 1.3206125497817993 img loss 1.2336328029632568 img loss 1.3075649738311768 img loss 1.311408519744873 img loss 1.252237319946289 img loss 1.2853416204452515 img loss 1.3704503774642944 img loss 1.2871873378753662 img loss 1.409972071647644 img loss 1.2350585460662842 img loss 1.2410913705825806 img loss 1.330028772354126 img loss 1.2602362632751465 img loss 1.250149130821228 img loss 1.3536655902862549 img loss 1.2854162454605103 img loss 1.2529467344284058 img loss 1.2775754928588867 img loss 1.374592900276184 img loss 1.2976521253585815 img loss 1.3318809270858765 img loss 1.2114123106002808 img loss 1.2700176239013672 img loss 1.299605131149292 img loss 1.2395339012145996 img loss 1.301749587059021 img loss 1.2404663562774658 img loss 1.2463306188583374 img loss 1.3357661962509155 img loss 1.3523457050323486 img loss 1.2324012517929077 img loss 1.2843517065048218 img loss 1.365708827972412 img loss 1.2694599628448486 img loss 1.092862606048584 img loss 1.229710578918457 img loss 1.3798696994781494 img loss 1.31559419631958 img loss 1.376367449760437 img loss 1.2467148303985596 img loss 1.2698320150375366 img loss 1.299796462059021 img loss 1.3056385517120361 img loss 1.2826849222183228 img loss 1.1441196203231812 img loss 1.2574779987335205 img loss 1.2900127172470093 img loss 1.313382863998413 img loss 1.3102397918701172 img loss 1.2606146335601807 img loss 1.3432530164718628 img loss 1.3576195240020752 img loss 1.239614486694336 img loss 1.3447953462600708 img loss 1.2774674892425537 img loss 1.3245023488998413 img loss 1.4068037271499634 img loss 1.4118764400482178 img loss 1.2259167432785034 img loss 1.2121378183364868 img loss 1.2353928089141846 img loss 1.2880347967147827 img loss 1.3044325113296509 img loss 1.3427900075912476 img loss 1.3653324842453003 img loss 1.3387951850891113 img loss 1.393518090248108 img loss 1.342027187347412 img loss 1.297825574874878 img loss 1.2789297103881836 img loss 1.3143045902252197 img loss 1.253133773803711 img loss 1.2950506210327148 img loss 1.3077248334884644 img loss 1.2510889768600464 img loss 1.2290691137313843 img loss 1.2967323064804077 img loss 1.3082090616226196 {'loss': 1.2945, 'grad_norm': 0.2175629585981369, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2496716976165771 img loss 1.2769274711608887 img loss 1.231041431427002 img loss 1.2370470762252808 img loss 1.2366573810577393 img loss 1.234923005104065 img loss 1.2593382596969604 img loss 1.1982866525650024 img loss 1.201573371887207 img loss 1.2245073318481445 img loss 1.214497447013855 img loss 1.1760848760604858 img loss 1.246147632598877 img loss 1.2401293516159058 img loss 1.2732648849487305 img loss 1.2370431423187256 img loss 1.2454169988632202 img loss 1.2275173664093018 img loss 1.2245233058929443 img loss 1.181780457496643 img loss 1.2532086372375488 img loss 1.1653873920440674 img loss 1.2692612409591675 img loss 1.212744116783142 img loss 1.2644970417022705 img loss 1.1968406438827515 img loss 1.318091630935669 img loss 1.205160140991211 img loss 1.2416253089904785 img loss 1.2684310674667358 img loss 1.2317554950714111 img loss 1.2563871145248413 img loss 1.2290418148040771 img loss 1.2679765224456787 img loss 1.2217609882354736 img loss 1.2315510511398315 img loss 1.2325522899627686 img loss 1.2747071981430054 img loss 1.1793057918548584 img loss 1.2490767240524292 img loss 1.2983601093292236 img loss 1.1845461130142212 img loss 1.2253451347351074 img loss 1.2417898178100586 img loss 1.1980361938476562 img loss 1.1947476863861084 img loss 1.3042420148849487 img loss 1.228843331336975 img loss 1.2065961360931396 img loss 1.231387972831726 img loss 1.3307955265045166 img loss 1.2262954711914062 img loss 1.2354240417480469 img loss 1.3055667877197266 img loss 1.2520068883895874 img loss 1.2235552072525024 img loss 1.3063939809799194 img loss 1.1941783428192139 img loss 1.2916979789733887 img loss 1.2423251867294312 img loss 1.1951407194137573 img loss 1.2858386039733887 img loss 1.302683711051941 img loss 1.306578278541565 img loss 1.2367146015167236 img loss 1.2788187265396118 img loss 1.2233080863952637 img loss 1.2654138803482056 img loss 1.148662805557251 img loss 1.2674639225006104 img loss 1.2133982181549072 img loss 1.2183842658996582 img loss 1.2912318706512451 img loss 1.2565501928329468 img loss 1.1729973554611206 img loss 1.2036089897155762 img loss 1.3075311183929443 img loss 1.2062557935714722 img loss 1.281288981437683 img loss 1.2618918418884277 img loss 1.2676849365234375 img loss 1.1790002584457397 img loss 1.2489385604858398 img loss 1.171617031097412 img loss 1.2497246265411377 img loss 1.2567346096038818 img loss 1.2334990501403809 img loss 1.2684326171875 img loss 1.2788132429122925 img loss 1.2370195388793945 img loss 1.2685445547103882 img loss 1.2664514780044556 img loss 1.2219091653823853 img loss 1.2865879535675049 img loss 1.2978826761245728 img loss 1.1848591566085815 img loss 1.2026419639587402 img loss 1.2199804782867432 img loss 1.2865453958511353 img loss 1.2879682779312134 img loss 1.3708308935165405 img loss 1.2145298719406128 img loss 1.3001420497894287 img loss 1.3012070655822754 img loss 1.229002594947815 img loss 1.2196673154830933 img loss 1.2896842956542969 img loss 1.2581169605255127 img loss 1.2129524946212769 img loss 1.2425165176391602 img loss 1.284972906112671 img loss 1.2298548221588135 img loss 1.2715725898742676 img loss 1.2840745449066162 img loss 1.2846453189849854 img loss 1.2015299797058105 img loss 1.2229528427124023 img loss 1.3463326692581177 img loss 1.2603278160095215 img loss 1.2225239276885986 img loss 1.2814381122589111 img loss 1.222094178199768 img loss 1.3167556524276733 img loss 1.2355835437774658 img loss 1.3071231842041016 img loss 1.292623519897461 img loss 1.2682523727416992 img loss 1.2462458610534668 {'loss': 1.2466, 'grad_norm': 0.3100205361843109, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2967143058776855 img loss 1.2470248937606812 img loss 1.1855661869049072 img loss 1.2213596105575562 img loss 1.2211159467697144 img loss 1.2199773788452148 img loss 1.2242237329483032 img loss 1.2046427726745605 img loss 1.209959626197815 img loss 1.1706269979476929 img loss 1.2166268825531006 img loss 1.2761681079864502 img loss 1.1711009740829468img loss 1.2003400325775146 img loss 1.2464243173599243 img loss 1.1881484985351562 img loss 1.2118030786514282 img loss 1.2651853561401367 img loss 1.2726354598999023 img loss 1.2316222190856934 img loss 1.1926275491714478 img loss 1.247255563735962 img loss 1.1952040195465088 img loss 1.2117438316345215 img loss 1.1911836862564087 img loss 1.1546061038970947 img loss 1.248468041419983 img loss 1.1246545314788818 img loss 1.1986148357391357 img loss 1.208528995513916 img loss 1.1462674140930176 img loss 1.2276661396026611 img loss 1.2515686750411987 img loss 1.1905243396759033 img loss 1.1714472770690918 img loss 1.281450867652893 img loss 1.1810169219970703 img loss 1.2737634181976318 img loss 1.225650429725647 img loss 1.17755126953125 img loss 1.1956526041030884 img loss 1.2264180183410645 img loss 1.16935396194458 img loss 1.1668366193771362 img loss 1.3121404647827148 img loss 1.2138668298721313 img loss 1.1734377145767212 img loss 1.135179877281189 img loss 1.2227731943130493 img loss 1.1948314905166626 img loss 1.2812740802764893 img loss 1.2369264364242554 img loss 1.1915490627288818 img loss 1.1726956367492676 img loss 1.2162909507751465 img loss 1.2242085933685303 img loss 1.236327886581421 img loss 1.17543363571167 img loss 1.1893703937530518 img loss 1.2539522647857666 img loss 1.2395594120025635 img loss 1.2748454809188843 img loss 1.186987280845642 img loss 1.1491820812225342 img loss 1.2660744190216064 img loss 1.164015293121338 img loss 1.2283554077148438 img loss 1.259399175643921 img loss 1.1756956577301025 img loss 1.2213493585586548 img loss 1.2740581035614014 img loss 1.2174725532531738 img loss 1.1581653356552124 img loss 1.1758091449737549 img loss 1.223152995109558 img loss 1.3040075302124023 img loss 1.2816627025604248 img loss 1.1506372690200806 img loss 1.3162535429000854 img loss 1.1427974700927734 img loss 1.2315994501113892 img loss 1.2033212184906006 img loss 1.2097772359848022 img loss 1.1872947216033936 img loss 1.1808757781982422 img loss 1.2246580123901367 img loss 1.2010453939437866 img loss 1.1603940725326538 img loss 1.26631760597229 img loss 1.2646290063858032 img loss 1.1380841732025146 img loss 1.1841750144958496 img loss 1.2241290807724 img loss 1.1968035697937012 img loss 1.217980980873108 img loss 1.3433669805526733 img loss 1.179102897644043 img loss 1.2241344451904297 img loss 1.1867033243179321 img loss 1.2889878749847412 img loss 1.220805048942566 img loss 1.2621468305587769 img loss 1.2183107137680054 img loss 1.1988763809204102 img loss 1.2054725885391235 img loss 1.229923963546753 img loss 1.3023202419281006 img loss 1.1884980201721191 img loss 1.1612834930419922 img loss 1.162338137626648 img loss 1.216802954673767 img loss 1.262799859046936 img loss 1.2310189008712769 img loss 1.2328002452850342 img loss 1.2648266553878784 img loss 1.2064775228500366 img loss 1.1814239025115967 img loss 1.2282987833023071 img loss 1.1720366477966309 img loss 1.1729257106781006 img loss 1.1818921566009521 img loss 1.176611304283142 img loss 1.1911605596542358 img loss 1.2514655590057373 img loss 1.267606258392334 img loss 1.2586286067962646 img loss 1.2227569818496704 img loss 1.2286031246185303 {'loss': 1.2156, 'grad_norm': 0.4430878460407257, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3150218725204468 img loss 1.372267246246338 img loss 1.4857255220413208 img loss 1.3238732814788818 img loss 1.3916981220245361 img loss 1.2680017948150635 img loss 1.3844181299209595 img loss 1.2983200550079346 img loss 1.2879235744476318 img loss 1.2743139266967773 img loss 1.3996812105178833 img loss 1.4469536542892456 img loss 1.397797703742981 img loss 1.3633936643600464 img loss 1.2891972064971924 img loss 1.3871675729751587 img loss 1.4180623292922974 img loss 1.3463903665542603 img loss 1.315605640411377 img loss 1.3313376903533936 img loss 1.348136305809021 img loss 1.2870622873306274 img loss 1.4296237230300903 img loss 1.3529393672943115 img loss 1.3626246452331543 img loss 1.32723867893219 img loss 1.623300313949585 img loss 1.408348798751831 img loss 1.396909236907959 img loss 1.341493844985962 img loss 1.390602707862854 img loss 1.409909725189209 img loss 1.4072434902191162 img loss 1.4231164455413818 img loss 1.4578585624694824 img loss 1.4756773710250854 img loss 1.3125511407852173 img loss 1.3676406145095825 img loss 1.304492473602295 img loss 1.3996187448501587 img loss 1.4379655122756958 img loss 1.3412593603134155 img loss 1.4111746549606323 img loss 1.2596015930175781 img loss 1.3548626899719238 img loss 1.340624213218689 img loss 1.4764370918273926 img loss 1.4517502784729004 img loss 1.4051544666290283 img loss 1.314024567604065 img loss 1.3749825954437256 img loss 1.3184036016464233 img loss 1.361690640449524 img loss 1.4479299783706665 img loss 1.3816817998886108 img loss 1.3906863927841187 img loss 1.3624062538146973 img loss 1.3649039268493652 img loss 1.3267120122909546 img loss 1.37137770652771 img loss 1.351580023765564 img loss 1.4318434000015259 img loss 1.2532974481582642 img loss 1.345600962638855 img loss 1.4020187854766846 img loss 1.3573105335235596 img loss 1.3280220031738281 img loss 1.444036841392517 img loss 1.3793349266052246 img loss 1.3041789531707764 img loss 1.4779688119888306 img loss 1.4487888813018799 img loss 1.456662893295288 img loss 1.4785560369491577 img loss 1.3801655769348145 img loss 1.3984081745147705 img loss 1.4250105619430542 img loss 1.2827160358428955 img loss 1.4638580083847046 img loss 1.3360228538513184 img loss 1.4359360933303833 img loss 1.4005528688430786 img loss 1.287989854812622 img loss 1.4303311109542847 img loss 1.3560806512832642 img loss 1.3565573692321777 img loss 1.362938642501831 img loss 1.3949905633926392 img loss 1.320535659790039 img loss 1.3917896747589111 img loss 1.45673406124115 img loss 1.2869385480880737 img loss 1.4205394983291626 img loss 1.4772515296936035 img loss 1.4116960763931274 img loss 1.3978084325790405 img loss 1.3395012617111206 img loss 1.455051302909851 img loss 1.2815096378326416 img loss 1.3227074146270752 img loss 1.2685272693634033 img loss 1.3477418422698975 img loss 1.4148696660995483 img loss 1.5837482213974 img loss 1.4138710498809814 img loss 1.357303500175476 img loss 1.4311277866363525 img loss 1.3836919069290161 img loss 1.4739272594451904 img loss 1.3256072998046875 img loss 1.4699403047561646 img loss 1.3949705362319946 img loss 1.3521960973739624 img loss 1.3799554109573364 img loss 1.3019120693206787 img loss 1.4342843294143677 img loss 1.2744057178497314 img loss 1.4136353731155396 img loss 1.5750012397766113 img loss 1.4024213552474976 img loss 1.3790215253829956 img loss 1.3940463066101074 img loss 1.4810138940811157 img loss 1.2943037748336792 img loss 1.3944073915481567 img loss 1.3951665163040161 img loss 1.3103199005126953 img loss 1.2746574878692627 {'loss': 1.3803, 'grad_norm': 0.502944827079773, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2636566162109375 img loss 1.3298472166061401 img loss 1.3077281713485718 img loss 1.2565720081329346 img loss 1.2496179342269897 img loss 1.3121346235275269 img loss 1.3165638446807861 img loss 1.2974141836166382 img loss 1.3193081617355347 img loss 1.3012720346450806 img loss 1.2493598461151123 img loss 1.2866065502166748 img loss 1.3454214334487915 img loss 1.2603195905685425 img loss 1.2744014263153076 img loss 1.2871230840682983 img loss 1.2762477397918701 img loss 1.2766529321670532 img loss 1.2738338708877563 img loss 1.2912769317626953 img loss 1.2227566242218018 img loss 1.2357333898544312 img loss 1.3878008127212524 img loss 1.3194074630737305 img loss 1.3002734184265137 img loss 1.2965856790542603 img loss 1.2067197561264038 img loss 1.3514740467071533 img loss 1.2700809240341187 img loss 1.2979271411895752 img loss 1.2620046138763428 img loss 1.3603321313858032 img loss 1.322211503982544 img loss 1.3200111389160156 img loss 1.2741363048553467 img loss 1.3234930038452148 img loss 1.3051728010177612 img loss 1.2309595346450806 img loss 1.348484754562378 img loss 1.3004335165023804 img loss 1.27083420753479 img loss 1.2779043912887573 img loss 1.2423100471496582 img loss 1.2798203229904175 img loss 1.3154178857803345 img loss 1.2561339139938354 img loss 1.3555513620376587 img loss 1.2688031196594238 img loss 1.2491848468780518 img loss 1.2729110717773438 img loss 1.1969549655914307 img loss 1.2758632898330688 img loss 1.3142387866973877 img loss 1.2874892950057983 img loss 1.3936476707458496 img loss 1.2547452449798584 img loss 1.2833826541900635 img loss 1.2726000547409058 img loss 1.218658208847046 img loss 1.2526510953903198 img loss 1.3772799968719482 img loss 1.2465585470199585 img loss 1.290236234664917 img loss 1.1945340633392334 img loss 1.1031609773635864 img loss 1.3329739570617676 img loss 1.3112162351608276 img loss 1.3446238040924072 img loss 1.2502342462539673 img loss 1.2410390377044678 img loss 1.2073373794555664 img loss 1.2830833196640015 img loss 1.285482406616211 img loss 1.3010108470916748 img loss 1.2586781978607178 img loss 1.3484833240509033 img loss 1.2518523931503296 img loss 1.3909785747528076 img loss 1.257120966911316 img loss 1.2315025329589844 img loss 1.288193702697754 img loss 1.3418651819229126 img loss 1.327615737915039 img loss 1.247119426727295 img loss 1.3138707876205444 img loss 1.2195419073104858 img loss 1.2616722583770752 img loss 1.270888090133667 img loss 1.2657164335250854 img loss 1.2465264797210693 img loss 1.315815806388855 img loss 1.2558637857437134 img loss 1.2530386447906494 img loss 1.2486406564712524 img loss 1.2829184532165527 img loss 1.231396198272705 img loss 1.3010754585266113 img loss 1.2827973365783691 img loss 1.2430799007415771 img loss 1.2928451299667358 img loss 1.4311074018478394 img loss 1.2338932752609253 img loss 1.380312204360962 img loss 1.2946842908859253 img loss 1.2766380310058594 img loss 1.2355153560638428 img loss 1.2794275283813477 img loss 1.331594705581665 img loss 1.2342675924301147 img loss 1.3604241609573364 img loss 1.2671680450439453 img loss 1.283229112625122 img loss 1.294726848602295 img loss 1.3629223108291626 img loss 1.2929118871688843 img loss 1.2843596935272217 img loss 1.3266711235046387 img loss 1.2931721210479736 img loss 1.1839326620101929 img loss 1.2943315505981445 img loss 1.3250656127929688 img loss 1.3298966884613037 img loss 1.2710115909576416 img loss 1.2849148511886597 img loss 1.2629116773605347 img loss 1.285387635231018 img loss 1.2707610130310059 img loss 1.3135956525802612 {'loss': 1.2854, 'grad_norm': 0.5071808695793152, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3017692565917969 img loss 1.2445337772369385 img loss 1.1790194511413574 img loss 1.1981141567230225 img loss 1.1966339349746704 img loss 1.2381867170333862 img loss 1.1549975872039795 img loss 1.2001724243164062 img loss 1.2521204948425293 img loss 1.2738463878631592 img loss 1.2085132598876953 img loss 1.3722150325775146 img loss 1.161720633506775 img loss 1.187590479850769 img loss 1.2520121335983276 img loss 1.2672979831695557 img loss 1.2397897243499756 img loss 1.3009982109069824 img loss 1.2139437198638916 img loss 1.2383463382720947 img loss 1.2264902591705322 img loss 1.182844877243042 img loss 1.2158578634262085 img loss 1.2281968593597412 img loss 1.2095903158187866 img loss 1.2939026355743408 img loss 1.258960247039795 img loss 1.2102874517440796 img loss 1.181622862815857 img loss 1.235535979270935 img loss 1.3153955936431885 img loss 1.1991623640060425 img loss 1.1780540943145752 img loss 1.2392535209655762 img loss 1.2199045419692993 img loss 1.1967324018478394 img loss 1.3187633752822876 img loss 1.264000415802002 img loss 1.230753779411316 img loss 1.2398113012313843 img loss 1.259040355682373 img loss 1.190845012664795 img loss 1.239586591720581 img loss 1.2987583875656128 img loss 1.2653077840805054 img loss 1.1902730464935303 img loss 1.3025586605072021 img loss 1.1731699705123901 img loss 1.2703732252120972 img loss 1.1971237659454346 img loss 1.2641741037368774 img loss 1.2336597442626953 img loss 1.2571359872817993 img loss 1.1919792890548706 img loss 1.2478679418563843 img loss 1.2108348608016968 img loss 1.2346959114074707 img loss 1.325418472290039 img loss 1.170927882194519 img loss 1.2147576808929443 img loss 1.3148210048675537 img loss 1.3057941198349 img loss 1.2247127294540405 img loss 1.1546363830566406 img loss 1.2443199157714844 img loss 1.2706477642059326 img loss 1.3353040218353271 img loss 1.2776544094085693 img loss 1.1888067722320557 img loss 1.1975464820861816 img loss 1.2864530086517334 img loss 1.2081888914108276 img loss 1.200896978378296 img loss 1.3168649673461914 img loss 1.2521740198135376 img loss 1.2137209177017212 img loss 1.1651546955108643 img loss 1.1950033903121948 img loss 1.2780160903930664 img loss 1.2301639318466187 img loss 1.2611136436462402 img loss 1.3017058372497559 img loss 1.2182186841964722 img loss 1.3136523962020874 img loss 1.1933468580245972 img loss 1.2722327709197998 img loss 1.2311118841171265 img loss 1.2517547607421875 img loss 1.3527203798294067 img loss 1.2440588474273682 img loss 1.2611271142959595 img loss 1.2841981649398804 img loss 1.2188355922698975 img loss 1.241341471672058 img loss 1.306705355644226 img loss 1.245697259902954 img loss 1.223366141319275 img loss 1.1901605129241943 img loss 1.1811175346374512 img loss 1.2339231967926025 img loss 1.2356723546981812 img loss 1.230764389038086 img loss 1.32907235622406 img loss 1.2574994564056396 img loss 1.2496951818466187 img loss 1.2374634742736816 img loss 1.2642401456832886 img loss 1.4366323947906494 img loss 1.3080368041992188 img loss 1.1638245582580566 img loss 1.3135534524917603 img loss 1.210956335067749 img loss 1.3243064880371094 img loss 1.2612736225128174 img loss 1.2729592323303223 img loss 1.2788615226745605 img loss 1.354827642440796 img loss 1.215456247329712 img loss 1.2180507183074951 img loss 1.2791590690612793 img loss 1.2713119983673096 img loss 1.2625054121017456 img loss 1.1543124914169312 img loss 1.2072865962982178 img loss 1.1380847692489624 img loss 1.2273895740509033 img loss 1.1844861507415771 img loss 1.1815102100372314 {'loss': 1.2424, 'grad_norm': 0.4278775751590729, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.7533080577850342 img loss 1.5612283945083618 img loss 1.679386854171753 img loss 1.5822395086288452 img loss 1.487486481666565 img loss 1.5429127216339111 img loss 1.6270111799240112 img loss 1.598044753074646 img loss 1.6130644083023071 img loss 1.487231731414795 img loss 1.5227822065353394 img loss 1.4869712591171265 img loss 1.666928768157959 img loss 1.5277944803237915 img loss 1.570672631263733 img loss 1.543877124786377 img loss 1.5611704587936401 img loss 1.484992504119873 img loss 1.5084527730941772 img loss 1.5341993570327759 img loss 1.5981844663619995 img loss 1.5360857248306274 img loss 1.5003695487976074 img loss 1.612749695777893 img loss 1.5213714838027954 img loss 1.4380754232406616 img loss 1.5239237546920776 img loss 1.4895750284194946 img loss 1.5276191234588623 img loss 1.5112766027450562 img loss 1.7265899181365967 img loss 1.4679005146026611 img loss 1.572709321975708img loss 1.6390079259872437 img loss 1.448114037513733 img loss 1.4912477731704712 img loss 1.507892370223999 img loss 1.6097064018249512 img loss 1.5557034015655518 img loss 1.4762510061264038 img loss 1.4471536874771118 img loss 1.4867547750473022 img loss 1.5186647176742554 img loss 1.5920319557189941 img loss 1.5696488618850708 img loss 1.5987919569015503 img loss 1.4699938297271729 img loss 1.5999711751937866 img loss 1.453972339630127 img loss 1.5779662132263184 img loss 1.5384291410446167 img loss 1.5994467735290527 img loss 1.5565905570983887 img loss 1.7144891023635864 img loss 1.4902740716934204 img loss 1.485659122467041 img loss 1.5816558599472046 img loss 1.6616019010543823 img loss 1.484569787979126 img loss 1.3901013135910034 img loss 1.475673794746399 img loss 1.764562964439392 img loss 1.471260905265808 img loss 1.4895185232162476 img loss 1.6015543937683105 img loss 1.4164745807647705 img loss 1.6013785600662231 img loss 1.5263782739639282 img loss 1.5748893022537231 img loss 1.3906911611557007 img loss 1.7358533143997192 img loss 1.624212384223938 img loss 1.4948914051055908 img loss 1.446723222732544 img loss 1.483279824256897 img loss 1.5261300802230835 img loss 1.5380574464797974 img loss 1.6670902967453003 img loss 1.476366400718689 img loss 1.5797154903411865 img loss 1.4256447553634644 img loss 1.5452581644058228 img loss 1.628193736076355 img loss 1.5887982845306396 img loss 1.4467042684555054 img loss 1.6373188495635986 img loss 1.381285548210144 img loss 1.6122772693634033 img loss 1.8331999778747559 img loss 1.5332034826278687 img loss 1.5094788074493408 img loss 1.6063474416732788 img loss 1.4797371625900269 img loss 1.5899417400360107 img loss 1.4737670421600342 img loss 1.5642895698547363 img loss 1.5386598110198975 img loss 1.5358328819274902 img loss 1.4519962072372437 img loss 1.4557349681854248 img loss 1.5129274129867554 img loss 1.5601848363876343 img loss 1.5539745092391968 img loss 1.634425401687622 img loss 1.6203691959381104 img loss 1.452264428138733 img loss 1.5849772691726685 img loss 1.6963986158370972 img loss 1.4772027730941772 img loss 1.3733762502670288 img loss 1.4205858707427979 img loss 1.5986303091049194 img loss 1.373740553855896 img loss 1.4301859140396118 img loss 1.612345576286316 img loss 1.5307667255401611 img loss 1.475623607635498 img loss 1.4323893785476685 img loss 1.456279993057251 img loss 1.4605181217193604 img loss 1.582392930984497 img loss 1.501929521560669 img loss 1.649035930633545 img loss 1.5511624813079834 img loss 1.5853142738342285 img loss 1.5086719989776611 img loss 1.4038045406341553 img loss 1.6676145792007446 {'loss': 1.5417, 'grad_norm': 0.2666019797325134, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3405400514602661 img loss 1.30572509765625 img loss 1.2106173038482666 img loss 1.2446403503417969 img loss 1.3390934467315674 img loss 1.2805296182632446 img loss 1.2401891946792603 img loss 1.2668187618255615 img loss 1.1932117938995361 img loss 1.299821376800537 img loss 1.2346826791763306 img loss 1.2831764221191406 img loss 1.3207401037216187 img loss 1.2705438137054443 img loss 1.2136149406433105 img loss 1.2743144035339355 img loss 1.235237717628479 img loss 1.303706407546997 img loss 1.297219157218933 img loss 1.2369098663330078 img loss 1.2934720516204834 img loss 1.3124035596847534 img loss 1.3717516660690308 img loss 1.274791955947876 img loss 1.1954407691955566 img loss 1.3022589683532715 img loss 1.425776720046997 img loss 1.2719162702560425 img loss 1.3331893682479858 img loss 1.2138522863388062 img loss 1.2931907176971436 img loss 1.3088849782943726 img loss 1.2783387899398804 img loss 1.333186388015747 img loss 1.2594168186187744 img loss 1.250683069229126 img loss 1.2747840881347656 img loss 1.222502589225769 img loss 1.3433812856674194 img loss 1.1877613067626953 img loss 1.2936099767684937 img loss 1.2894282341003418 img loss 1.3367383480072021 img loss 1.1966357231140137 img loss 1.3311179876327515 img loss 1.1522659063339233 img loss 1.285893201828003 img loss 1.225657343864441 img loss 1.3359334468841553 img loss 1.27202570438385 img loss 1.2739272117614746 img loss 1.295844554901123 img loss 1.3105921745300293 img loss 1.2461433410644531 img loss 1.2816922664642334 img loss 1.2235252857208252 img loss 1.3016612529754639 img loss 1.1890233755111694 img loss 1.284070611000061 img loss 1.2910455465316772 img loss 1.3030529022216797 img loss 1.2707513570785522 img loss 1.3571683168411255 img loss 1.2678498029708862 img loss 1.147159457206726 img loss 1.3526488542556763 img loss 1.2762497663497925 img loss 1.3364567756652832 img loss 1.2949550151824951 img loss 1.2577080726623535 img loss 1.2820818424224854 img loss 1.28122878074646 img loss 1.2073085308074951 img loss 1.2506935596466064 img loss 1.259478211402893 img loss 1.22064208984375 img loss 1.314868688583374 img loss 1.275339961051941 img loss 1.3023813962936401 img loss 1.2101951837539673 img loss 1.3179858922958374 img loss 1.214495062828064 img loss 1.267930507659912 img loss 1.2860115766525269 img loss 1.2159441709518433 img loss 1.3535411357879639 img loss 1.2363039255142212 img loss 1.2247542142868042 img loss 1.4280390739440918 img loss 1.1791127920150757 img loss 1.21340811252594 img loss 1.3243168592453003 img loss 1.3183382749557495 img loss 1.4011024236679077 img loss 1.3648097515106201 img loss 1.217345118522644 img loss 1.2719703912734985 img loss 1.1951422691345215 img loss 1.25763738155365 img loss 1.205541968345642 img loss 1.2423092126846313 img loss 1.3165899515151978 img loss 1.303794264793396 img loss 1.321683645248413 img loss 1.2774031162261963 img loss 1.2873375415802002 img loss 1.3288402557373047 img loss 1.2660459280014038 img loss 1.2332682609558105 img loss 1.2435764074325562 img loss 1.2913141250610352 img loss 1.2476637363433838 img loss 1.343366026878357 img loss 1.2746728658676147 img loss 1.2600311040878296 img loss 1.3235200643539429 img loss 1.330163836479187 img loss 1.1947872638702393 img loss 1.3545018434524536 img loss 1.3662381172180176 img loss 1.1989026069641113 img loss 1.3093199729919434 img loss 1.2417833805084229 img loss 1.2401779890060425 img loss 1.313401460647583 img loss 1.2677839994430542 img loss 1.3549973964691162 img loss 1.2656006813049316 {'loss': 1.2775, 'grad_norm': 0.3080179989337921, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3102155923843384 img loss 1.4388518333435059 img loss 1.400999665260315 img loss 1.2674139738082886 img loss 1.3929400444030762 img loss 1.363979697227478 img loss 1.302783727645874 img loss 1.3648818731307983 img loss 1.4001538753509521 img loss 1.3086060285568237 img loss 1.3133940696716309 img loss 1.3899396657943726 img loss 1.3689030408859253 img loss 1.426169514656067 img loss 1.4225571155548096 img loss 1.323240876197815 img loss 1.241288423538208 img loss 1.4150224924087524 img loss 1.402990698814392 img loss 1.3711349964141846 img loss 1.2905336618423462 img loss 1.390672206878662 img loss 1.3388582468032837 img loss 1.3754589557647705 img loss 1.337743878364563 img loss 1.235076904296875 img loss 1.4538191556930542 img loss 1.3620202541351318 img loss 1.4323642253875732 img loss 1.379276990890503 img loss 1.4099360704421997 img loss 1.4573262929916382 img loss 1.3437970876693726 img loss 1.3009213209152222 img loss 1.4251946210861206 img loss 1.3042192459106445 img loss 1.3806793689727783 img loss 1.4319401979446411 img loss 1.2931982278823853 img loss 1.3592265844345093 img loss 1.375854730606079 img loss 1.4325512647628784 img loss 1.402035117149353 img loss 1.336972713470459 img loss 1.3429521322250366 img loss 1.3301467895507812 img loss 1.3971564769744873 img loss 1.4483540058135986 img loss 1.3296599388122559 img loss 1.3170316219329834 img loss 1.2373079061508179 img loss 1.3919645547866821 img loss 1.327876329421997 img loss 1.348141074180603 img loss 1.2823283672332764 img loss 1.4539074897766113 img loss 1.3237138986587524 img loss 1.3790992498397827 img loss 1.4210149049758911 img loss 1.3627382516860962 img loss 1.386254906654358 img loss 1.250349998474121 img loss 1.330820918083191 img loss 1.4362727403640747 img loss 1.4135020971298218 img loss 1.2965807914733887 img loss 1.4064514636993408 img loss 1.3319828510284424 img loss 1.4270962476730347 img loss 1.38748300075531 img loss 1.351204752922058 img loss 1.425415277481079 img loss 1.4039603471755981 img loss 1.4099278450012207 img loss 1.402522325515747 img loss 1.4445937871932983 img loss 1.3831793069839478 img loss 1.392452597618103 img loss 1.3247781991958618 img loss 1.346881628036499 img loss 1.3949745893478394 img loss 1.47951340675354 img loss 1.25968599319458 img loss 1.3053487539291382 img loss 1.3981757164001465 img loss 1.3537095785140991 img loss 1.4230087995529175 img loss 1.2659834623336792 img loss 1.2476528882980347 img loss 1.3495527505874634 img loss 1.2880827188491821 img loss 1.2553707361221313 img loss 1.2686115503311157 img loss 1.39048171043396 img loss 1.490495204925537 img loss 1.4607939720153809 img loss 1.2955440282821655 img loss 1.3710333108901978 img loss 1.2150448560714722 img loss 1.2946971654891968 img loss 1.4366570711135864 img loss 1.3359323740005493 img loss 1.3678582906723022 img loss 1.3538540601730347 img loss 1.3912405967712402 img loss 1.348826289176941 img loss 1.3818329572677612 img loss 1.3603485822677612 img loss 1.3644548654556274 img loss 1.3780579566955566 img loss 1.3489235639572144 img loss 1.3517996072769165 img loss 1.3910149335861206 img loss 1.3873578310012817 img loss 1.2974720001220703 img loss 1.3929381370544434 img loss 1.3199529647827148 img loss 1.3831180334091187 img loss 1.4393454790115356 img loss 1.321226716041565 img loss 1.316892147064209 img loss 1.397207498550415 img loss 1.3063158988952637 img loss 1.4082173109054565 img loss 1.3390074968338013 img loss 1.3893485069274902 img loss 1.3680006265640259 img loss 1.328826904296875 {'loss': 1.362, 'grad_norm': 0.6830112934112549, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.253380298614502 img loss 1.1855499744415283 img loss 1.116567850112915 img loss 1.1917442083358765 img loss 1.2443890571594238 img loss 1.1542134284973145 img loss 1.1183923482894897 img loss 1.2602112293243408 img loss 1.1709715127944946 img loss 1.1710634231567383 img loss 1.192002296447754 img loss 1.1804593801498413 img loss 1.1739871501922607 img loss 1.19148588180542 img loss 1.1887425184249878 img loss 1.1472623348236084 img loss 1.2186367511749268 img loss 1.1823774576187134 img loss 1.1591800451278687 img loss 1.2260701656341553 img loss 1.2127211093902588 img loss 1.1445305347442627 img loss 1.171741008758545 img loss 1.1389071941375732 img loss 1.2381205558776855 img loss 1.213547945022583 img loss 1.1710240840911865 img loss 1.1737785339355469 img loss 1.2064495086669922 img loss 1.1687045097351074 img loss 1.2616443634033203 img loss 1.1421929597854614 img loss 1.2456022500991821 img loss 1.2399896383285522img loss 1.1606018543243408 img loss 1.2035713195800781 img loss 1.1629855632781982 img loss 1.2015531063079834 img loss 1.177026391029358 img loss 1.3355591297149658 img loss 1.2247713804244995img loss 1.222520112991333 img loss 1.1749500036239624 img loss 1.132689118385315 img loss 1.1304564476013184 img loss 1.1327568292617798 img loss 1.2298305034637451 img loss 1.2166378498077393 img loss 1.1935513019561768 img loss 1.1807935237884521 img loss 1.1453876495361328 img loss 1.195011019706726 img loss 1.2559059858322144 img loss 1.2546157836914062 img loss 1.1894181966781616 img loss 1.1952921152114868img loss 1.1372971534729004 img loss 1.1952406167984009 img loss 1.1795389652252197 img loss 1.2620127201080322 img loss 1.1187103986740112 img loss 1.1812957525253296 img loss 1.1521059274673462 img loss 1.2088009119033813 img loss 1.188658356666565 img loss 1.251227855682373 img loss 1.1830641031265259 img loss 1.1410980224609375 img loss 1.1716008186340332 img loss 1.252832055091858 img loss 1.1903088092803955 img loss 1.2018773555755615 img loss 1.226861834526062 img loss 1.1544153690338135 img loss 1.213202714920044 img loss 1.1439714431762695 img loss 1.1498273611068726 img loss 1.1968603134155273 img loss 1.1858444213867188 img loss 1.1461454629898071 img loss 1.2037193775177002 img loss 1.179186463356018 img loss 1.1876428127288818 img loss 1.1957334280014038 img loss 1.138824701309204 img loss 1.1269307136535645 img loss 1.1610407829284668 img loss 1.195351243019104 img loss 1.1299278736114502 img loss 1.142427682876587 img loss 1.1906609535217285 img loss 1.1571860313415527 img loss 1.2007935047149658 img loss 1.188106894493103 img loss 1.1792134046554565 img loss 1.1863303184509277 img loss 1.1909624338150024 img loss 1.1687078475952148 img loss 1.2246754169464111 img loss 1.1121740341186523 img loss 1.1888550519943237 img loss 1.216911792755127 img loss 1.2443338632583618 img loss 1.1980538368225098 img loss 1.1568901538848877 img loss 1.1910991668701172 img loss 1.1662874221801758 img loss 1.2113977670669556 img loss 1.1431243419647217 img loss 1.094160795211792 img loss 1.175257921218872 img loss 1.1968239545822144 img loss 1.1966814994812012 img loss 1.2715914249420166 img loss 1.181060791015625 img loss 1.1893253326416016 img loss 1.2233909368515015 img loss 1.1433789730072021 img loss 1.177808403968811 img loss 1.1676502227783203 img loss 1.2014691829681396 img loss 1.1810883283615112 img loss 1.1488111019134521 img loss 1.1567515134811401 img loss 1.2010705471038818 img loss 1.13603937625885 img loss 1.2405916452407837 img loss 1.159142255783081 {'loss': 1.1861, 'grad_norm': 0.2305009812116623, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.210764765739441 img loss 1.1879918575286865 img loss 1.2648546695709229 img loss 1.2053104639053345 img loss 1.2041327953338623 img loss 1.2274584770202637 img loss 1.2354068756103516 img loss 1.2272827625274658 img loss 1.1647828817367554 img loss 1.229698657989502 img loss 1.1447594165802002 img loss 1.2287553548812866 img loss 1.1476529836654663 img loss 1.1936537027359009 img loss 1.2574113607406616 img loss 1.215598464012146 img loss 1.1996941566467285 img loss 1.2067276239395142 img loss 1.216540813446045 img loss 1.1478132009506226 img loss 1.2202850580215454 img loss 1.2000547647476196 img loss 1.1781765222549438 img loss 1.2194896936416626 img loss 1.2657291889190674 img loss 1.1705976724624634 img loss 1.1735203266143799 img loss 1.2654775381088257 img loss 1.2159359455108643 img loss 1.1896519660949707 img loss 1.2071528434753418 img loss 1.2466564178466797 img loss 1.1645903587341309 img loss 1.2378181219100952 img loss 1.248600721359253 img loss 1.1557080745697021 img loss 1.1921252012252808 img loss 1.210679531097412 img loss 1.2488278150558472 img loss 1.2217464447021484 img loss 1.1723941564559937 img loss 1.27672278881073 img loss 1.1483453512191772 img loss 1.256955623626709 img loss 1.191558837890625 img loss 1.3243961334228516 img loss 1.228050947189331 img loss 1.1915223598480225 img loss 1.255094051361084 img loss 1.2113208770751953 img loss 1.158260703086853 img loss 1.1997520923614502 img loss 1.185350775718689 img loss 1.1568949222564697 img loss 1.2807443141937256 img loss 1.1506218910217285 img loss 1.1873674392700195 img loss 1.231930136680603 img loss 1.2303078174591064 img loss 1.1728880405426025 img loss 1.1942193508148193 img loss 1.264892339706421 img loss 1.2021468877792358 img loss 1.2398216724395752 img loss 1.1872973442077637 img loss 1.1694835424423218 img loss 1.135730266571045 img loss 1.236401081085205 img loss 1.1437307596206665 img loss 1.2565829753875732 img loss 1.1713587045669556 img loss 1.176330327987671 img loss 1.2413069009780884 img loss 1.2751606702804565 img loss 1.1737183332443237 img loss 1.214677333831787 img loss 1.249114990234375 img loss 1.301293969154358 img loss 1.161412239074707 img loss 1.2339768409729004 img loss 1.268325686454773 img loss 1.20737624168396 img loss 1.1789073944091797 img loss 1.1715364456176758 img loss 1.2703160047531128 img loss 1.2404296398162842 img loss 1.1340782642364502 img loss 1.1987926959991455 img loss 1.1517674922943115 img loss 1.2558141946792603 img loss 1.201449990272522 img loss 1.2289352416992188 img loss 1.2339696884155273 img loss 1.2015794515609741 img loss 1.228689193725586 img loss 1.207629919052124 img loss 1.223022699356079 img loss 1.17221999168396 img loss 1.2107051610946655 img loss 1.2307734489440918 img loss 1.1804012060165405 img loss 1.1656262874603271 img loss 1.1766388416290283 img loss 1.1814937591552734 img loss 1.1465575695037842 img loss 1.199594497680664 img loss 1.227724552154541 img loss 1.1746246814727783 img loss 1.2565330266952515 img loss 1.1650463342666626 img loss 1.2425791025161743 img loss 1.1960700750350952 img loss 1.1497520208358765 img loss 1.1768015623092651 img loss 1.2419801950454712 img loss 1.1467077732086182 img loss 1.1782159805297852 img loss 1.2192620038986206 img loss 1.299934983253479 img loss 1.2072253227233887 img loss 1.2232718467712402 img loss 1.2757487297058105 img loss 1.1967620849609375 img loss 1.1734716892242432 img loss 1.1466214656829834 img loss 1.2694553136825562 img loss 1.2115528583526611 img loss 1.1432976722717285 {'loss': 1.2076, 'grad_norm': 0.3224910795688629, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3100807666778564 img loss 1.1619240045547485 img loss 1.208520531654358 img loss 1.177103877067566 img loss 1.202243447303772 img loss 1.2352466583251953 img loss 1.2450051307678223 img loss 1.3064173460006714 img loss 1.2435870170593262 img loss 1.2274894714355469 img loss 1.3514374494552612 img loss 1.2508604526519775 img loss 1.2217601537704468 img loss 1.246713638305664 img loss 1.2746269702911377 img loss 1.181452989578247 img loss 1.2668969631195068 img loss 1.2329572439193726 img loss 1.2477467060089111 img loss 1.2528469562530518 img loss 1.2580522298812866 img loss 1.2100825309753418 img loss 1.1926319599151611 img loss 1.2087070941925049 img loss 1.211129069328308 img loss 1.2475295066833496 img loss 1.255265474319458 img loss 1.2273470163345337 img loss 1.225249171257019 img loss 1.2722125053405762 img loss 1.2331347465515137 img loss 1.2844388484954834 img loss 1.2962530851364136 img loss 1.234928846359253 img loss 1.2358512878417969 img loss 1.242034673690796 img loss 1.2931772470474243 img loss 1.185018539428711 img loss 1.2378311157226562 img loss 1.2402721643447876 img loss 1.2740881443023682 img loss 1.218299388885498 img loss 1.2828223705291748 img loss 1.2289369106292725 img loss 1.1858800649642944 img loss 1.2930030822753906 img loss 1.233954668045044 img loss 1.320556640625 img loss 1.1690696477890015 img loss 1.2051209211349487 img loss 1.2452932596206665 img loss 1.2122132778167725 img loss 1.1802690029144287 img loss 1.2254493236541748 img loss 1.2592180967330933 img loss 1.23924720287323 img loss 1.2320162057876587 img loss 1.2258381843566895 img loss 1.1940913200378418 img loss 1.2833547592163086 img loss 1.2104671001434326 img loss 1.1915996074676514 img loss 1.1476967334747314 img loss 1.3165539503097534 img loss 1.2049894332885742 img loss 1.2813142538070679 img loss 1.2966079711914062 img loss 1.2400060892105103 img loss 1.1703553199768066 img loss 1.227876901626587 img loss 1.1978908777236938 img loss 1.1842281818389893 img loss 1.2497951984405518 img loss 1.2241514921188354 img loss 1.2440779209136963 img loss 1.253116250038147 img loss 1.1925098896026611 img loss 1.246732473373413 img loss 1.2664793729782104 img loss 1.2156047821044922 img loss 1.239479660987854 img loss 1.2860486507415771 img loss 1.1877983808517456 img loss 1.2727066278457642 img loss 1.1535248756408691 img loss 1.2889420986175537 img loss 1.2569899559020996 img loss 1.1919796466827393 img loss 1.132155418395996 img loss 1.218195915222168 img loss 1.212100863456726 img loss 1.2051090002059937 img loss 1.3111779689788818 img loss 1.222711205482483 img loss 1.2713383436203003 img loss 1.2545276880264282 img loss 1.1568195819854736 img loss 1.2017182111740112 img loss 1.1734850406646729 img loss 1.2692298889160156 img loss 1.27533757686615 img loss 1.2477003335952759 img loss 1.2676607370376587 img loss 1.2773163318634033 img loss 1.3185100555419922 img loss 1.2758736610412598 img loss 1.2514681816101074 img loss 1.2055059671401978 img loss 1.2307058572769165 img loss 1.1762371063232422 img loss 1.2453665733337402 img loss 1.190468192100525 img loss 1.2407515048980713 img loss 1.2498629093170166 img loss 1.2214486598968506 img loss 1.2269082069396973 img loss 1.302791953086853 img loss 1.1924667358398438 img loss 1.2184540033340454 img loss 1.2247223854064941 img loss 1.1904425621032715 img loss 1.2732495069503784 img loss 1.1999982595443726 img loss 1.278985857963562 img loss 1.229804277420044 img loss 1.2047193050384521 img loss 1.205810546875 img loss 1.260465383529663 {'loss': 1.2351, 'grad_norm': 0.6121482253074646, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2639615535736084 img loss 1.1978754997253418 img loss 1.3327033519744873 img loss 1.2639687061309814 img loss 1.2140530347824097 img loss 1.2237181663513184 img loss 1.2366116046905518 img loss 1.2695136070251465 img loss 1.1951360702514648 img loss 1.2768665552139282 img loss 1.248789668083191 img loss 1.2495161294937134 img loss 1.214633822441101 img loss 1.269987940788269 img loss 1.2870690822601318 img loss 1.267450213432312 img loss 1.25337815284729 img loss 1.2013523578643799 img loss 1.1976646184921265 img loss 1.1735572814941406 img loss 1.2428773641586304 img loss 1.2535251379013062 img loss 1.2646520137786865 img loss 1.2272766828536987 img loss 1.2030819654464722 img loss 1.2088888883590698 img loss 1.2354379892349243 img loss 1.2522653341293335 img loss 1.377092957496643 img loss 1.2421503067016602 img loss 1.222292184829712 img loss 1.1708118915557861 img loss 1.2150739431381226 img loss 1.253173828125 img loss 1.2483935356140137 img loss 1.2502880096435547 img loss 1.2600904703140259 img loss 1.2571263313293457 img loss 1.2229092121124268 img loss 1.2031686305999756 img loss 1.2623229026794434 img loss 1.2282977104187012 img loss 1.2186695337295532 img loss 1.2631291151046753 img loss 1.189082384109497 img loss 1.2641136646270752 img loss 1.1608061790466309 img loss 1.1955506801605225 img loss 1.2348030805587769 img loss 1.2317616939544678 img loss 1.2372997999191284 img loss 1.191356897354126 img loss 1.2627615928649902 img loss 1.2316474914550781 img loss 1.2094919681549072 img loss 1.2696895599365234 img loss 1.2576736211776733 img loss 1.2387418746948242 img loss 1.2028498649597168 img loss 1.3044437170028687 img loss 1.223294734954834 img loss 1.1951239109039307 img loss 1.203531265258789 img loss 1.1814779043197632 img loss 1.2026550769805908 img loss 1.2063254117965698 img loss 1.204537272453308 img loss 1.2334390878677368 img loss 1.2472307682037354 img loss 1.2191216945648193 img loss 1.2255139350891113 img loss 1.2360776662826538 img loss 1.2841846942901611 img loss 1.2013014554977417 img loss 1.1975218057632446 img loss 1.2371357679367065 img loss 1.243293046951294 img loss 1.2587608098983765 img loss 1.1705965995788574 img loss 1.3376080989837646 img loss 1.2549059391021729 img loss 1.2311104536056519 img loss 1.2476774454116821 img loss 1.2132515907287598 img loss 1.2540358304977417 img loss 1.2098615169525146 img loss 1.2185299396514893 img loss 1.2102384567260742 img loss 1.2103245258331299 img loss 1.2508615255355835 img loss 1.1710704565048218 img loss 1.2733814716339111 img loss 1.2277944087982178 img loss 1.1992748975753784 img loss 1.263549566268921 img loss 1.195888876914978 img loss 1.253563404083252 img loss 1.2150497436523438 img loss 1.1917529106140137 img loss 1.2731075286865234 img loss 1.2631778717041016 img loss 1.193264365196228 img loss 1.2743403911590576 img loss 1.193518877029419 img loss 1.2565048933029175 img loss 1.2442822456359863 img loss 1.2430118322372437 img loss 1.2303152084350586 img loss 1.4070874452590942 img loss 1.2900824546813965 img loss 1.235469102859497 img loss 1.2069463729858398 img loss 1.1731966733932495 img loss 1.2148102521896362 img loss 1.2768394947052002 img loss 1.2071443796157837 img loss 1.2135791778564453 img loss 1.2457889318466187 img loss 1.2733560800552368 img loss 1.2692912817001343 img loss 1.2702854871749878 img loss 1.1522239446640015 img loss 1.2022569179534912 img loss 1.2270835638046265 img loss 1.213916540145874 img loss 1.2584322690963745 img loss 1.1815199851989746 img loss 1.3638050556182861 {'loss': 1.2356, 'grad_norm': 0.23110073804855347, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.514800786972046 img loss 1.593174695968628 img loss 1.5510140657424927 img loss 1.4796913862228394 img loss 1.5468862056732178 img loss 1.6168843507766724 img loss 1.6220850944519043 img loss 1.465908408164978 img loss 1.5136730670928955 img loss 1.464746356010437 img loss 1.623561143875122 img loss 1.635602355003357 img loss 1.4585083723068237 img loss 1.6373199224472046 img loss 1.6188706159591675 img loss 1.734034538269043 img loss 1.5493619441986084 img loss 1.5716806650161743 img loss 1.6227093935012817 img loss 1.7284809350967407 img loss 1.52533757686615 img loss 1.5807318687438965 img loss 1.567497968673706 img loss 1.5783482789993286 img loss 1.4911280870437622 img loss 1.6111394166946411 img loss 1.6106857061386108 img loss 1.5285860300064087 img loss 1.634406328201294 img loss 1.6064295768737793 img loss 1.5361487865447998 img loss 1.6600464582443237 img loss 1.5455116033554077 img loss 1.643013596534729 img loss 1.6396830081939697 img loss 1.6331267356872559 img loss 1.629630208015442 img loss 1.6897989511489868 img loss 1.5333027839660645 img loss 1.619736909866333 img loss 1.608716607093811 img loss 1.3819090127944946 img loss 1.5968540906906128 img loss 1.5587159395217896 img loss 1.5789834260940552 img loss 1.582506775856018 img loss 1.5868775844573975 img loss 1.5684218406677246 img loss 1.6589356660842896 img loss 1.6077361106872559 img loss 1.4522820711135864 img loss 1.4979459047317505 img loss 1.670630693435669 img loss 1.5875035524368286 img loss 1.6634358167648315 img loss 1.7439371347427368 img loss 1.593700885772705 img loss 1.5167133808135986 img loss 1.5418972969055176 img loss 1.6158998012542725 img loss 1.5504158735275269 img loss 1.6699825525283813 img loss 1.6329265832901 img loss 1.6548420190811157 img loss 1.586696743965149 img loss 1.6642943620681763 img loss 1.564691424369812 img loss 1.5544604063034058 img loss 1.4746686220169067 img loss 1.6512541770935059 img loss 1.5777875185012817 img loss 1.5890952348709106 img loss 1.5359454154968262 img loss 1.6556001901626587 img loss 1.5217899084091187 img loss 1.693568468093872 img loss 1.471625566482544 img loss 1.6026159524917603 img loss 1.7671294212341309 img loss 1.6854641437530518 img loss 1.5490978956222534 img loss 1.6333811283111572 img loss 1.485693097114563 img loss 1.5288647413253784 img loss 1.6705677509307861 img loss 1.4521352052688599 img loss 1.6349732875823975 img loss 1.5107653141021729 img loss 1.7116177082061768 img loss 1.4987637996673584 img loss 1.7621327638626099 img loss 1.5844141244888306 img loss 1.6036187410354614 img loss 1.5965793132781982 img loss 1.6631805896759033 img loss 1.608254313468933 img loss 1.7617511749267578 img loss 1.570066213607788 img loss 1.5681766271591187 img loss 1.5560052394866943 img loss 1.574589490890503 img loss 1.5329546928405762 img loss 1.6333636045455933 img loss 1.6799522638320923 img loss 1.4905716180801392 img loss 1.6525018215179443 img loss 1.6511772871017456 img loss 1.5882784128189087 img loss 1.6096043586730957 img loss 1.6405152082443237 img loss 1.6428942680358887 img loss 1.6842314004898071 img loss 1.5622411966323853 img loss 1.6605802774429321 img loss 1.5109279155731201 img loss 1.6564629077911377 img loss 1.5807138681411743 img loss 1.6309943199157715 img loss 1.6285243034362793 img loss 1.5645880699157715 img loss 1.7439589500427246 img loss 1.5813794136047363 img loss 1.7706923484802246 img loss 1.5785443782806396 img loss 1.622655987739563 img loss 1.5776184797286987 img loss 1.6273103952407837 img loss 1.6243033409118652 {'loss': 1.5967, 'grad_norm': 1.1581367254257202, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2699339389801025 img loss 1.1849287748336792 img loss 1.1784101724624634 img loss 1.2823865413665771 img loss 1.1816706657409668 img loss 1.2099460363388062 img loss 1.1838059425354004 img loss 1.232715129852295 img loss 1.2707021236419678 img loss 1.2513786554336548 img loss 1.2276352643966675 img loss 1.3276127576828003 img loss 1.1955735683441162 img loss 1.277466058731079 img loss 1.1436400413513184 img loss 1.20257568359375 img loss 1.376927137374878 img loss 1.168609380722046 img loss 1.2366580963134766 img loss 1.113742709159851 img loss 1.2086899280548096 img loss 1.2496354579925537 img loss 1.1348274946212769 img loss 1.2580362558364868 img loss 1.146003007888794 img loss 1.2459924221038818 img loss 1.2071059942245483 img loss 1.2057603597640991 img loss 1.1912689208984375 img loss 1.2492035627365112 img loss 1.1444450616836548 img loss 1.1326286792755127 img loss 1.216312050819397 img loss 1.153455138206482 img loss 1.2433714866638184 img loss 1.1740379333496094 img loss 1.2094534635543823 img loss 1.1536169052124023 img loss 1.2539557218551636 img loss 1.1789867877960205 img loss 1.1811344623565674 img loss 1.1651113033294678 img loss 1.2023934125900269 img loss 1.2293628454208374 img loss 1.2177342176437378 img loss 1.2013239860534668 img loss 1.295889139175415 img loss 1.1812705993652344 img loss 1.2587711811065674 img loss 1.2477331161499023 img loss 1.2164554595947266 img loss 1.2320499420166016 img loss 1.2112517356872559 img loss 1.1513630151748657 img loss 1.196528673171997 img loss 1.2050081491470337 img loss 1.2345647811889648 img loss 1.2514091730117798 img loss 1.2627935409545898 img loss 1.244383454322815 img loss 1.2310351133346558 img loss 1.209864854812622 img loss 1.1681244373321533 img loss 1.2147105932235718 img loss 1.2514934539794922 img loss 1.207776427268982 img loss 1.312163233757019 img loss 1.2390837669372559 img loss 1.3303415775299072 img loss 1.1901490688323975 img loss 1.3333319425582886 img loss 1.2141470909118652 img loss 1.232640027999878 img loss 1.241231918334961 img loss 1.216207504272461 img loss 1.2779858112335205 img loss 1.2042139768600464 img loss 1.2052711248397827 img loss 1.2368310689926147 img loss 1.2293596267700195 img loss 1.2586588859558105 img loss 1.223034381866455 img loss 1.2243378162384033 img loss 1.2392804622650146 img loss 1.1503486633300781 img loss 1.248692512512207 img loss 1.2043596506118774 img loss 1.2040667533874512 img loss 1.2221895456314087 img loss 1.2364027500152588 img loss 1.274230718612671 img loss 1.2551968097686768 img loss 1.1784900426864624 img loss 1.225354552268982 img loss 1.2567253112792969 img loss 1.1952764987945557 img loss 1.1630758047103882 img loss 1.207871913909912 img loss 1.1966819763183594 img loss 1.2502076625823975 img loss 1.202474594116211 img loss 1.2483774423599243 img loss 1.2617368698120117 img loss 1.2204328775405884 img loss 1.182053565979004 img loss 1.2099411487579346 img loss 1.1521037817001343 img loss 1.194344162940979 img loss 1.2282359600067139 img loss 1.2718499898910522 img loss 1.237994909286499 img loss 1.1930290460586548 img loss 1.2089093923568726 img loss 1.1514277458190918 img loss 1.1984188556671143 img loss 1.231797456741333 img loss 1.2321019172668457 img loss 1.1860088109970093 img loss 1.2377322912216187 img loss 1.2733391523361206 img loss 1.2082544565200806 img loss 1.2619386911392212 img loss 1.1559470891952515 img loss 1.2429158687591553 img loss 1.1979888677597046 img loss 1.1850273609161377 img loss 1.208779215812683 img loss 1.1930433511734009 {'loss': 1.2187, 'grad_norm': 0.5688405632972717, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.226396083831787 img loss 1.195138692855835 img loss 1.3022342920303345 img loss 1.3613102436065674 img loss 1.1838080883026123 img loss 1.254096269607544 img loss 1.1630382537841797 img loss 1.2212371826171875 img loss 1.1414762735366821 img loss 1.1988900899887085 img loss 1.1881779432296753 img loss 1.2278565168380737 img loss 1.2062374353408813 img loss 1.3151729106903076 img loss 1.18187415599823 img loss 1.2654520273208618 img loss 1.1289156675338745 img loss 1.1119942665100098 img loss 1.095218300819397 img loss 1.1969428062438965 img loss 1.2884609699249268 img loss 1.2210544347763062 img loss 1.2413835525512695 img loss 1.173285722732544 img loss 1.1936028003692627 img loss 1.1865752935409546 img loss 1.2242457866668701 img loss 1.1055636405944824 img loss 1.2739307880401611 img loss 1.2122454643249512 img loss 1.2047412395477295 img loss 1.2850496768951416 img loss 1.2564547061920166 img loss 1.1354941129684448 img loss 1.1003445386886597 img loss 1.227047324180603 img loss 1.1773780584335327 img loss 1.2918446063995361 img loss 1.1111037731170654 img loss 1.1462124586105347 img loss 1.1736383438110352 img loss 1.2266590595245361 img loss 1.2888538837432861 img loss 1.2385591268539429 img loss 1.1944299936294556 img loss 1.1636924743652344 img loss 1.2712982892990112 img loss 1.2278579473495483 img loss 1.1820158958435059 img loss 1.1630252599716187 img loss 1.2176393270492554 img loss 1.210436463356018 img loss 1.1475460529327393 img loss 1.2303358316421509 img loss 1.1570074558258057 img loss 1.22722589969635 img loss 1.191035509109497 img loss 1.2969868183135986 img loss 1.1682701110839844 img loss 1.2300982475280762 img loss 1.1933542490005493 img loss 1.2153685092926025 img loss 1.2458747625350952 img loss 1.2291017770767212 img loss 1.2014338970184326 img loss 1.2238820791244507 img loss 1.1766605377197266 img loss 1.179714560508728 img loss 1.3209588527679443 img loss 1.1694287061691284 img loss 1.2330090999603271 img loss 1.2246252298355103 img loss 1.2257285118103027 img loss 1.2256115674972534 img loss 1.3054463863372803 img loss 1.2183138132095337 img loss 1.2091126441955566 img loss 1.2041325569152832 img loss 1.22560715675354 img loss 1.1662853956222534 img loss 1.2445167303085327 img loss 1.196702480316162 img loss 1.129797339439392 img loss 1.1628974676132202 img loss 1.1186590194702148 img loss 1.180981159210205 img loss 1.303739070892334 img loss 1.1965904235839844 img loss 1.2550190687179565 img loss 1.181395173072815 img loss 1.151914119720459 img loss 1.2466400861740112 img loss 1.1784359216690063 img loss 1.2470624446868896 img loss 1.2039954662322998 img loss 1.2046762704849243 img loss 1.3319085836410522 img loss 1.1956729888916016 img loss 1.2073261737823486 img loss 1.1231787204742432 img loss 1.1275724172592163 img loss 1.228488802909851 img loss 1.234473466873169 img loss 1.171982765197754 img loss 1.1977825164794922 img loss 1.2301480770111084 img loss 1.2068181037902832 img loss 1.1844589710235596 img loss 1.1929422616958618 img loss 1.2514183521270752 img loss 1.242617130279541 img loss 1.134885549545288 img loss 1.192692756652832 img loss 1.1099928617477417 img loss 1.2781778573989868 img loss 1.204299807548523 img loss 1.26109778881073 img loss 1.1700587272644043 img loss 1.1905344724655151 img loss 1.2520675659179688 img loss 1.2351698875427246 img loss 1.1996147632598877 img loss 1.2191393375396729 img loss 1.1455447673797607 img loss 1.2225229740142822 img loss 1.218186855316162 img loss 1.2608072757720947 img loss 1.1504631042480469 {'loss': 1.2078, 'grad_norm': 0.7312598824501038, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.701485276222229 img loss 1.6287754774093628 img loss 1.612230658531189 img loss 1.531799554824829 img loss 1.6588027477264404 img loss 1.7623071670532227 img loss 1.7068616151809692 img loss 1.6114962100982666 img loss 1.6142278909683228 img loss 1.5785435438156128 img loss 1.7085238695144653 img loss 1.7983064651489258 img loss 1.7324743270874023 img loss 1.762256383895874 img loss 1.6458712816238403 img loss 1.6854183673858643 img loss 1.7113386392593384 img loss 1.5768418312072754 img loss 1.6304041147232056 img loss 1.7462036609649658 img loss 1.7093449831008911 img loss 1.7103110551834106 img loss 1.6813126802444458 img loss 1.785170555114746 img loss 1.7332789897918701 img loss 1.8326162099838257 img loss 1.5736467838287354 img loss 1.6707230806350708 img loss 1.6240952014923096 img loss 1.761331558227539 img loss 1.721787691116333 img loss 1.706196904182434 img loss 1.7448049783706665 img loss 1.7087715864181519 img loss 1.5186820030212402 img loss 1.635162115097046 img loss 1.7510004043579102 img loss 1.6366890668869019 img loss 1.7324426174163818 img loss 1.589689016342163 img loss 1.6833819150924683 img loss 1.543615698814392 img loss 1.708231806755066 img loss 1.967596411705017 img loss 1.6870496273040771 img loss 1.6825673580169678 img loss 1.6983720064163208 img loss 1.7838473320007324 img loss 1.6337171792984009 img loss 1.6946932077407837 img loss 1.7097375392913818 img loss 1.7261097431182861 img loss 1.6688522100448608 img loss 1.7940599918365479 img loss 1.693418264389038 img loss 1.6052519083023071 img loss 1.788294792175293 img loss 1.7217258214950562 img loss 1.609728455543518 img loss 1.6401546001434326 img loss 1.5990241765975952 img loss 1.8882560729980469 img loss 1.5729362964630127 img loss 1.7278661727905273 img loss 1.8510987758636475 img loss 1.730442762374878 img loss 1.6068276166915894 img loss 1.7284605503082275 img loss 1.6392991542816162 img loss 1.6697132587432861 img loss 1.595720887184143 img loss 1.599454402923584 img loss 1.7986043691635132 img loss 1.6796461343765259 img loss 1.7618591785430908 img loss 1.6933461427688599 img loss 1.6527936458587646 img loss 1.7131718397140503 img loss 1.6732804775238037 img loss 1.5080552101135254 img loss 1.6643731594085693 img loss 1.5380083322525024 img loss 1.7865769863128662 img loss 1.6117500066757202 img loss 1.6644930839538574 img loss 1.757628083229065 img loss 1.6646329164505005 img loss 1.78016996383667 img loss 1.6894927024841309 img loss 1.6635420322418213 img loss 1.6686497926712036 img loss 1.9889808893203735 img loss 1.6840957403182983 img loss 1.7809196710586548 img loss 1.690748691558838 img loss 1.8450695276260376 img loss 1.7312989234924316 img loss 1.6125836372375488 img loss 1.6627705097198486 img loss 1.5941799879074097 img loss 1.707698106765747 img loss 1.6530330181121826 img loss 1.7187749147415161 img loss 1.5773425102233887 img loss 1.8898060321807861 img loss 1.7862472534179688 img loss 1.6059000492095947 img loss 1.7302991151809692 img loss 1.5946094989776611img loss 1.667436957359314 img loss 1.5155280828475952 img loss 1.643887996673584 img loss 1.5969386100769043 img loss 1.6507405042648315 img loss 1.5531524419784546 img loss 1.8233425617218018 img loss 1.7398568391799927 img loss 1.5668413639068604 img loss 1.5874463319778442 img loss 1.6308540105819702 img loss 1.638311505317688 img loss 1.728187084197998 img loss 1.6697450876235962 img loss 1.9150739908218384 img loss 1.677423357963562 img loss 1.7112702131271362 img loss 1.6181875467300415 img loss 1.6406275033950806 {'loss': 1.6866, 'grad_norm': 0.299605131149292, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1225426197052002 img loss 1.2078146934509277 img loss 1.2167280912399292 img loss 1.240606665611267 img loss 1.1757302284240723 img loss 1.2491819858551025 img loss 1.2206357717514038 img loss 1.221320390701294 img loss 1.2593456506729126 img loss 1.2072664499282837 img loss 1.2535914182662964 img loss 1.2709100246429443 img loss 1.2055433988571167 img loss 1.3013019561767578 img loss 1.2178713083267212 img loss 1.2028225660324097 img loss 1.2478870153427124 img loss 1.1414521932601929 img loss 1.2031474113464355 img loss 1.2515430450439453 img loss 1.1936407089233398 img loss 1.2897900342941284 img loss 1.258256435394287 img loss 1.2355098724365234 img loss 1.2147263288497925 img loss 1.178957223892212 img loss 1.2006984949111938 img loss 1.2226886749267578 img loss 1.2675745487213135 img loss 1.234174132347107 img loss 1.2378442287445068 img loss 1.2529799938201904 img loss 1.3807090520858765 img loss 1.2591569423675537 img loss 1.2725423574447632 img loss 1.3376076221466064 img loss 1.298490285873413 img loss 1.233966588973999img loss 1.2331411838531494 img loss 1.2410885095596313 img loss 1.3012980222702026 img loss 1.2195059061050415 img loss 1.1674652099609375 img loss 1.3006855249404907 img loss 1.2301353216171265 img loss 1.2125029563903809 img loss 1.1594185829162598 img loss 1.2123520374298096 img loss 1.2422080039978027 img loss 1.240326166152954 img loss 1.177283763885498 img loss 1.3176524639129639 img loss 1.2233788967132568 img loss 1.2268383502960205 img loss 1.2752679586410522 img loss 1.3301295042037964 img loss 1.2325165271759033 img loss 1.2357679605484009 img loss 1.1380150318145752 img loss 1.1811243295669556 img loss 1.2311302423477173 img loss 1.3069987297058105 img loss 1.1744211912155151 img loss 1.1930269002914429 img loss 1.3806153535842896 img loss 1.3320339918136597 img loss 1.2582859992980957 img loss 1.2791486978530884 img loss 1.1113475561141968 img loss 1.138818383216858 img loss 1.197712779045105 img loss 1.210742712020874 img loss 1.2614264488220215 img loss 1.2020277976989746 img loss 1.2294020652770996 img loss 1.1654956340789795 img loss 1.2984156608581543 img loss 1.2311935424804688 img loss 1.2611119747161865 img loss 1.1929831504821777 img loss 1.2495570182800293 img loss 1.215700626373291 img loss 1.207174301147461 img loss 1.3509835004806519 img loss 1.2553250789642334 img loss 1.2197328805923462 img loss 1.1113394498825073 img loss 1.248013973236084 img loss 1.145081877708435 img loss 1.1781773567199707 img loss 1.166815996170044 img loss 1.1763663291931152 img loss 1.2552330493927002 img loss 1.1325664520263672 img loss 1.2543710470199585 img loss 1.3068853616714478 img loss 1.3805524110794067 img loss 1.2213674783706665 img loss 1.1996450424194336 img loss 1.317915678024292 img loss 1.2952187061309814 img loss 1.2794960737228394 img loss 1.2149653434753418 img loss 1.2200560569763184 img loss 1.210953712463379 img loss 1.2281432151794434 img loss 1.2870595455169678 img loss 1.2161195278167725 img loss 1.223021149635315 img loss 1.2017065286636353 img loss 1.1224730014801025 img loss 1.166308045387268img loss 1.2649611234664917 img loss 1.1780098676681519 img loss 1.1785093545913696 img loss 1.3060582876205444 img loss 1.2888977527618408 img loss 1.213026762008667 img loss 1.2584095001220703 img loss 1.2597719430923462 img loss 1.206986665725708 img loss 1.227526307106018 img loss 1.258980393409729 img loss 1.3831841945648193 img loss 1.321542739868164 img loss 1.2519187927246094 img loss 1.1558687686920166 img loss 1.2317328453063965 {'loss': 1.2343, 'grad_norm': 0.7886631488800049, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.603993535041809 img loss 1.4126505851745605 img loss 1.3555134534835815 img loss 1.4471749067306519 img loss 1.4668501615524292 img loss 1.396004319190979 img loss 1.451812505722046 img loss 1.4491040706634521 img loss 1.486310362815857 img loss 1.4542349576950073 img loss 1.5418530702590942 img loss 1.355057954788208 img loss 1.4612555503845215 img loss 1.5220144987106323 img loss 1.4313969612121582 img loss 1.4641728401184082 img loss 1.4855750799179077 img loss 1.6129391193389893 img loss 1.466921091079712 img loss 1.4102617502212524 img loss 1.3104432821273804 img loss 1.5003085136413574 img loss 1.4674233198165894 img loss 1.4403626918792725 img loss 1.4397740364074707 img loss 1.4336060285568237 img loss 1.3917580842971802 img loss 1.4827431440353394 img loss 1.3908485174179077 img loss 1.5090696811676025 img loss 1.3956493139266968 img loss 1.5938576459884644 img loss 1.3428528308868408 img loss 1.3398778438568115 img loss 1.4634673595428467 img loss 1.4148207902908325 img loss 1.4915066957473755 img loss 1.3782365322113037 img loss 1.384234070777893 img loss 1.459994912147522 img loss 1.4758027791976929 img loss 1.6347242593765259 img loss 1.5298200845718384 img loss 1.4759680032730103 img loss 1.5090405941009521 img loss 1.4208534955978394 img loss 1.39110267162323 img loss 1.4165300130844116 img loss 1.453153371810913 img loss 1.4963490962982178 img loss 1.377121090888977 img loss 1.5176503658294678 img loss 1.5146774053573608 img loss 1.3922572135925293 img loss 1.395335078239441 img loss 1.3820594549179077 img loss 1.5121535062789917 img loss 1.5851092338562012 img loss 1.6450287103652954 img loss 1.5470631122589111 img loss 1.4337397813796997 img loss 1.4623255729675293 img loss 1.3819340467453003 img loss 1.6394150257110596 img loss 1.5126372575759888 img loss 1.5793888568878174 img loss 1.5203293561935425 img loss 1.393764853477478 img loss 1.5062657594680786 img loss 1.3114935159683228 img loss 1.460915446281433 img loss 1.3785300254821777 img loss 1.3349274396896362 img loss 1.3884060382843018 img loss 1.3277618885040283 img loss 1.4530608654022217 img loss 1.4405076503753662 img loss 1.4522689580917358 img loss 1.4313294887542725 img loss 1.5005202293395996 img loss 1.484924077987671 img loss 1.4142125844955444 img loss 1.3126497268676758 img loss 1.4907022714614868 img loss 1.4328731298446655 img loss 1.3391553163528442 img loss 1.3933910131454468 img loss 1.3214672803878784 img loss 1.494252324104309 img loss 1.6085981130599976 img loss 1.4865919351577759 img loss 1.4154285192489624 img loss 1.4935734272003174 img loss 1.53081214427948 img loss 1.3656002283096313 img loss 1.4472824335098267 img loss 1.2174828052520752 img loss 1.4742581844329834 img loss 1.6267635822296143 img loss 1.3675333261489868 img loss 1.4207161664962769 img loss 1.389663815498352 img loss 1.3033970594406128 img loss 1.531772255897522 img loss 1.4621684551239014 img loss 1.3710839748382568 img loss 1.4216773509979248 img loss 1.597817063331604 img loss 1.5523641109466553 img loss 1.358013391494751 img loss 1.4150513410568237 img loss 1.5032830238342285 img loss 1.3028123378753662 img loss 1.3435543775558472 img loss 1.42324960231781 img loss 1.552409052848816 img loss 1.3269819021224976 img loss 1.5320419073104858 img loss 1.4243006706237793 img loss 1.452289342880249 img loss 1.4565021991729736 img loss 1.4202096462249756 img loss 1.382468581199646 img loss 1.4108952283859253 img loss 1.3721867799758911 img loss 1.3727096319198608 img loss 1.5015095472335815 img loss 1.4267771244049072 {'loss': 1.4471, 'grad_norm': 0.5786204934120178, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2699514627456665 img loss 1.255203127861023 img loss 1.243449091911316 img loss 1.317992091178894 img loss 1.3372927904129028 img loss 1.2111097574234009 img loss 1.2837034463882446 img loss 1.3134105205535889 img loss 1.2589757442474365 img loss 1.2920186519622803 img loss 1.3371518850326538 img loss 1.2304577827453613 img loss 1.2561569213867188 img loss 1.2356822490692139 img loss 1.182227373123169 img loss 1.2979891300201416 img loss 1.2398046255111694 img loss 1.2920639514923096 img loss 1.265758991241455 img loss 1.2773882150650024 img loss 1.2779220342636108 img loss 1.285428762435913 img loss 1.2498606443405151 img loss 1.3476948738098145 img loss 1.3609930276870728 img loss 1.2897417545318604 img loss 1.2392528057098389 img loss 1.2491534948349 img loss 1.1583982706069946 img loss 1.3354103565216064 img loss 1.2427195310592651 img loss 1.176068902015686 img loss 1.2154663801193237 img loss 1.2888630628585815 img loss 1.259203553199768 img loss 1.2973312139511108 img loss 1.21041738986969 img loss 1.3613617420196533 img loss 1.2598834037780762 img loss 1.2271018028259277 img loss 1.277919054031372 img loss 1.3244060277938843 img loss 1.3489538431167603 img loss 1.242616057395935 img loss 1.1266307830810547 img loss 1.3142904043197632 img loss 1.2702503204345703 img loss 1.3245476484298706 img loss 1.2437082529067993 img loss 1.245450735092163 img loss 1.38246488571167 img loss 1.213181972503662 img loss 1.3105167150497437 img loss 1.3431357145309448 img loss 1.3188583850860596 img loss 1.2165350914001465 img loss 1.3124059438705444 img loss 1.3025633096694946 img loss 1.303566336631775 img loss 1.2538061141967773 img loss 1.2673548460006714 img loss 1.3029154539108276 img loss 1.3001608848571777 img loss 1.2581924200057983 img loss 1.262880563735962 img loss 1.2738018035888672 img loss 1.3380179405212402 img loss 1.2922533750534058 img loss 1.1585135459899902 img loss 1.2705248594284058 img loss 1.2071024179458618 img loss 1.2101688385009766 img loss 1.3294181823730469 img loss 1.3187731504440308 img loss 1.3400861024856567 img loss 1.2314926385879517 img loss 1.1698951721191406 img loss 1.272252082824707 img loss 1.2738193273544312 img loss 1.2635204792022705 img loss 1.3658913373947144 img loss 1.312187671661377 img loss 1.268784761428833 img loss 1.2561286687850952 img loss 1.3510782718658447 img loss 1.1550549268722534 img loss 1.2024803161621094 img loss 1.2804816961288452 img loss 1.3430031538009644 img loss 1.1950405836105347 img loss 1.1823586225509644 img loss 1.2544636726379395 img loss 1.2744688987731934 img loss 1.4075748920440674 img loss 1.2170127630233765 img loss 1.3272761106491089 img loss 1.2096308469772339 img loss 1.155037522315979 img loss 1.2518839836120605 img loss 1.2783335447311401 img loss 1.3272618055343628 img loss 1.3325865268707275 img loss 1.2984836101531982 img loss 1.2696776390075684 img loss 1.2320704460144043 img loss 1.29544997215271 img loss 1.2814735174179077 img loss 1.291882038116455 img loss 1.1666179895401 img loss 1.280364990234375 img loss 1.2400269508361816 img loss 1.2721855640411377 img loss 1.287893295288086 img loss 1.1756112575531006 img loss 1.1408827304840088 img loss 1.271959662437439 img loss 1.2713472843170166 img loss 1.2501801252365112 img loss 1.3312695026397705 img loss 1.3345061540603638 img loss 1.2981830835342407 img loss 1.2133280038833618 img loss 1.3923100233078003 img loss 1.3418015241622925 img loss 1.1404622793197632 img loss 1.3046444654464722 img loss 1.2480978965759277 img loss 1.3854213953018188 {'loss': 1.2712, 'grad_norm': 0.27290454506874084, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2744383811950684 img loss 1.2979846000671387 img loss 1.4000331163406372 img loss 1.2418878078460693 img loss 1.272754430770874 img loss 1.3613598346710205 img loss 1.2515407800674438 img loss 1.3452823162078857 img loss 1.3457473516464233 img loss 1.2694982290267944 img loss 1.256374716758728 img loss 1.363726258277893 img loss 1.3443735837936401 img loss 1.316507339477539 img loss 1.3095252513885498 img loss 1.3124784231185913 img loss 1.3516509532928467 img loss 1.3035277128219604 img loss 1.2264963388442993 img loss 1.3998247385025024 img loss 1.3534988164901733 img loss 1.344469666481018 img loss 1.3911689519882202 img loss 1.3936188220977783 img loss 1.3257473707199097 img loss 1.337914228439331 img loss 1.284148097038269 img loss 1.3263176679611206 img loss 1.3486688137054443 img loss 1.4279019832611084 img loss 1.366461992263794 img loss 1.3329473733901978img loss 1.448660969734192 img loss 1.3090616464614868 img loss 1.3437035083770752 img loss 1.2275694608688354 img loss 1.3488881587982178 img loss 1.30177640914917 img loss 1.3037810325622559 img loss 1.4295388460159302 img loss 1.2941068410873413 img loss 1.3441113233566284 img loss 1.298977255821228 img loss 1.3329695463180542 img loss 1.3154196739196777 img loss 1.3041067123413086 img loss 1.3333991765975952 img loss 1.3852638006210327 img loss 1.408983826637268 img loss 1.3910447359085083 img loss 1.3821368217468262 img loss 1.199293851852417 img loss 1.267237663269043 img loss 1.3833070993423462 img loss 1.3233773708343506 img loss 1.346553921699524 img loss 1.2715444564819336 img loss 1.2772314548492432 img loss 1.360053300857544 img loss 1.3496830463409424 img loss 1.2551876306533813 img loss 1.2838680744171143 img loss 1.3394627571105957 img loss 1.3219741582870483 img loss 1.2928252220153809 img loss 1.3127256631851196 img loss 1.2984426021575928 img loss 1.4088377952575684 img loss 1.2660040855407715 img loss 1.2881824970245361 img loss 1.3809630870819092 img loss 1.3889176845550537 img loss 1.3578979969024658 img loss 1.277321696281433 img loss 1.294604778289795 img loss 1.2805578708648682 img loss 1.30094313621521 img loss 1.2878464460372925 img loss 1.308817744255066 img loss 1.326984167098999 img loss 1.231604814529419 img loss 1.47001051902771 img loss 1.4446232318878174 img loss 1.2837709188461304 img loss 1.319009780883789 img loss 1.3385069370269775 img loss 1.2980873584747314 img loss 1.2940832376480103 img loss 1.3833469152450562 img loss 1.3016637563705444 img loss 1.2310959100723267 img loss 1.4849282503128052 img loss 1.2760635614395142 img loss 1.2062879800796509 img loss 1.307700753211975 img loss 1.2813128232955933 img loss 1.3408185243606567 img loss 1.2457091808319092 img loss 1.3872689008712769 img loss 1.2604717016220093 img loss 1.1693881750106812 img loss 1.3230950832366943 img loss 1.3892143964767456 img loss 1.2491577863693237 img loss 1.3252151012420654 img loss 1.3500810861587524 img loss 1.316801905632019 img loss 1.4073272943496704 img loss 1.354205846786499 img loss 1.2047762870788574 img loss 1.3479564189910889 img loss 1.2990745306015015 img loss 1.2644771337509155 img loss 1.2634217739105225 img loss 1.305558443069458 img loss 1.4769093990325928 img loss 1.3804547786712646 img loss 1.3232296705245972 img loss 1.2849063873291016 img loss 1.2546013593673706 img loss 1.2171096801757812 img loss 1.3679322004318237 img loss 1.3400675058364868 img loss 1.4408174753189087 img loss 1.3774025440216064 img loss 1.2908931970596313 img loss 1.2638168334960938 img loss 1.279245138168335 {'loss': 1.3225, 'grad_norm': 0.5429567098617554, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3044401407241821 img loss 1.206880807876587 img loss 1.2033735513687134 img loss 1.22565495967865 img loss 1.1921430826187134 img loss 1.2121763229370117 img loss 1.2513794898986816 img loss 1.204088568687439 img loss 1.2225178480148315 img loss 1.2365176677703857 img loss 1.2097774744033813 img loss 1.2210744619369507 img loss 1.2432615756988525 img loss 1.2228953838348389 img loss 1.2561540603637695 img loss 1.2184587717056274 img loss 1.1867376565933228 img loss 1.2676160335540771 img loss 1.2645082473754883 img loss 1.1769123077392578 img loss 1.2390769720077515 img loss 1.2251055240631104 img loss 1.213006854057312 img loss 1.2246296405792236 img loss 1.262133002281189 img loss 1.2078651189804077 img loss 1.2158710956573486 img loss 1.2430362701416016 img loss 1.1824883222579956 img loss 1.2431987524032593 img loss 1.1957769393920898 img loss 1.1984487771987915 img loss 1.264676809310913 img loss 1.1780712604522705 img loss 1.2187232971191406 img loss 1.2614591121673584 img loss 1.2542768716812134 img loss 1.2174404859542847 img loss 1.1889187097549438 img loss 1.2684341669082642 img loss 1.2547014951705933 img loss 1.2399508953094482 img loss 1.2083429098129272 img loss 1.2348461151123047 img loss 1.2252548933029175 img loss 1.2889723777770996 img loss 1.2006909847259521 img loss 1.2400327920913696 img loss 1.2461069822311401 img loss 1.263927698135376 img loss 1.1925023794174194 img loss 1.196506381034851 img loss 1.2614586353302002 img loss 1.2588613033294678 img loss 1.2717176675796509 img loss 1.164868712425232 img loss 1.1957498788833618 img loss 1.2215101718902588 img loss 1.196643590927124 img loss 1.2478824853897095 img loss 1.2421174049377441 img loss 1.1814457178115845 img loss 1.2500698566436768 img loss 1.2429604530334473 img loss 1.2275069952011108 img loss 1.2648509740829468 img loss 1.2294869422912598 img loss 1.2229803800582886 img loss 1.2295328378677368 img loss 1.2642052173614502 img loss 1.2434673309326172 img loss 1.2084455490112305 img loss 1.215624451637268 img loss 1.1997512578964233 img loss 1.2692623138427734 img loss 1.2635574340820312 img loss 1.2520577907562256 img loss 1.2782034873962402 img loss 1.1990180015563965 img loss 1.2508960962295532 img loss 1.2759318351745605 img loss 1.1898186206817627 img loss 1.2115684747695923 img loss 1.233866572380066 img loss 1.237341284751892 img loss 1.2047955989837646 img loss 1.2096397876739502 img loss 1.2639803886413574 img loss 1.35402512550354 img loss 1.2352012395858765 img loss 1.239427089691162 img loss 1.1918926239013672 img loss 1.2291100025177002 img loss 1.248958945274353 img loss 1.2410659790039062 img loss 1.2545146942138672 img loss 1.228899598121643 img loss 1.1921422481536865 img loss 1.2406861782073975 img loss 1.2800673246383667 img loss 1.2774088382720947 img loss 1.3027610778808594 img loss 1.2576984167099 img loss 1.228214979171753 img loss 1.2527198791503906 img loss 1.2487397193908691 img loss 1.2621266841888428 img loss 1.2469274997711182 img loss 1.2252081632614136 img loss 1.2494457960128784 img loss 1.2126296758651733 img loss 1.2381137609481812 img loss 1.2036995887756348 img loss 1.2548383474349976 img loss 1.269038438796997 img loss 1.1972891092300415 img loss 1.1786073446273804 img loss 1.295417070388794 img loss 1.2848320007324219 img loss 1.2081468105316162 img loss 1.270261287689209 img loss 1.263903260231018 img loss 1.2360055446624756 img loss 1.2094509601593018 img loss 1.239087700843811 img loss 1.2303403615951538 img loss 1.1851238012313843 img loss 1.2751086950302124 {'loss': 1.2339, 'grad_norm': 0.5827118158340454, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1871106624603271 img loss 1.1842111349105835 img loss 1.2238479852676392 img loss 1.229924201965332 img loss 1.2817859649658203 img loss 1.1544914245605469 img loss 1.1041264533996582 img loss 1.1880306005477905 img loss 1.2082124948501587 img loss 1.2591074705123901 img loss 1.2219667434692383 img loss 1.2497305870056152 img loss 1.2172906398773193 img loss 1.0726078748703003 img loss 1.2301031351089478 img loss 1.191935420036316 img loss 1.248915672302246 img loss 1.208153247833252 img loss 1.1749485731124878 img loss 1.2152611017227173 img loss 1.2476270198822021 img loss 1.211595058441162 img loss 1.204140305519104 img loss 1.1641819477081299 img loss 1.2284293174743652 img loss 1.173210859298706 img loss 1.1465353965759277 img loss 1.1932792663574219 img loss 1.1491154432296753 img loss 1.2583215236663818 img loss 1.3288302421569824 img loss 1.2953672409057617 img loss 1.1349676847457886 img loss 1.2486704587936401 img loss 1.3676695823669434 img loss 1.2535332441329956 img loss 1.1980502605438232 img loss 1.309683084487915 img loss 1.191884994506836 img loss 1.1894882917404175 img loss 1.127864956855774 img loss 1.171738624572754 img loss 1.2108089923858643 img loss 1.0998330116271973 img loss 1.2525856494903564 img loss 1.2484815120697021 img loss 1.1538289785385132 img loss 1.220253586769104 img loss 1.2825669050216675 img loss 1.265895128250122 img loss 1.1583921909332275 img loss 1.247314214706421 img loss 1.2241837978363037 img loss 1.2275230884552002 img loss 1.309022307395935 img loss 1.274991512298584 img loss 1.191067099571228 img loss 1.2016003131866455 img loss 1.1840150356292725 img loss 1.207903265953064 img loss 1.133231520652771 img loss 1.1203434467315674 img loss 1.1290754079818726 img loss 1.1612606048583984 img loss 1.189298391342163 img loss 1.1995556354522705 img loss 1.1898044347763062 img loss 1.2990729808807373 img loss 1.2267241477966309 img loss 1.1959959268569946 img loss 1.2202744483947754 img loss 1.182950735092163 img loss 1.0728296041488647 img loss 1.1641982793807983 img loss 1.219591736793518 img loss 1.2551063299179077 img loss 1.4354780912399292 img loss 1.206764817237854 img loss 1.2381540536880493 img loss 1.2697700262069702 img loss 1.2105293273925781 img loss 1.1575918197631836 img loss 1.184141993522644 img loss 1.3005354404449463 img loss 1.2482409477233887 img loss 1.1250537633895874 img loss 1.195819616317749 img loss 1.1936864852905273 img loss 1.3184925317764282 img loss 1.2848286628723145 img loss 1.2464253902435303 img loss 1.1977324485778809 img loss 1.2132086753845215 img loss 1.2406134605407715 img loss 1.1656465530395508 img loss 1.3693283796310425 img loss 1.2489475011825562 img loss 1.1727243661880493 img loss 1.3752131462097168 img loss 1.211501955986023 img loss 1.1404298543930054 img loss 1.1490509510040283 img loss 1.2103965282440186 img loss 1.163604974746704 img loss 1.2323096990585327 img loss 1.2169675827026367 img loss 1.133906364440918 img loss 1.108696699142456img loss 1.2224769592285156 img loss 1.2710646390914917 img loss 1.1191426515579224 img loss 1.1438394784927368 img loss 1.2067188024520874 img loss 1.2430036067962646 img loss 1.1632213592529297 img loss 1.2955783605575562 img loss 1.164984107017517 img loss 1.1801345348358154 img loss 1.18999183177948 img loss 1.2088991403579712 img loss 1.1839803457260132 img loss 1.1205320358276367 img loss 1.2005945444107056 img loss 1.2341374158859253 img loss 1.1789684295654297 img loss 1.1436173915863037 img loss 1.105332612991333 img loss 1.2641738653182983 {'loss': 1.2092, 'grad_norm': 0.249749556183815, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5016998052597046 img loss 1.5139836072921753 img loss 1.4756280183792114 img loss 1.4161416292190552 img loss 1.4279402494430542 img loss 1.551810383796692 img loss 1.5064842700958252 img loss 1.4580167531967163 img loss 1.5780675411224365 img loss 1.5223125219345093 img loss 1.48164701461792 img loss 1.5663574934005737 img loss 1.463042140007019 img loss 1.5599621534347534 img loss 1.5939133167266846 img loss 1.6205343008041382 img loss 1.520346999168396 img loss 1.5438774824142456 img loss 1.535195231437683 img loss 1.5360039472579956 img loss 1.4791797399520874 img loss 1.4313968420028687 img loss 1.4380518198013306 img loss 1.6173137426376343 img loss 1.4844931364059448 img loss 1.4152835607528687 img loss 1.3452506065368652 img loss 1.335832118988037 img loss 1.3919546604156494 img loss 1.4629127979278564 img loss 1.4116708040237427 img loss 1.607621431350708 img loss 1.5414493083953857 img loss 1.4143627882003784 img loss 1.4948886632919312 img loss 1.5191800594329834 img loss 1.5798985958099365 img loss 1.5249775648117065 img loss 1.5525071620941162 img loss 1.4668974876403809 img loss 1.5563938617706299 img loss 1.6002862453460693 img loss 1.4106249809265137 img loss 1.4948346614837646 img loss 1.574278712272644 img loss 1.5309240818023682 img loss 1.4667545557022095 img loss 1.4636329412460327 img loss 1.5636842250823975 img loss 1.5454870462417603 img loss 1.5958009958267212 img loss 1.6597588062286377 img loss 1.5620644092559814 img loss 1.537510633468628 img loss 1.3532723188400269 img loss 1.5077804327011108 img loss 1.434995412826538 img loss 1.584689974784851 img loss 1.4847639799118042 img loss 1.4121195077896118 img loss 1.4434791803359985 img loss 1.4311903715133667 img loss 1.5132040977478027 img loss 1.422247052192688 img loss 1.4968818426132202 img loss 1.4961217641830444 img loss 1.394078016281128 img loss 1.5886176824569702 img loss 1.3290992975234985 img loss 1.46565842628479 img loss 1.5645452737808228 img loss 1.4768105745315552 img loss 1.3390154838562012 img loss 1.5474015474319458 img loss 1.657411813735962 img loss 1.3854843378067017 img loss 1.5567079782485962 img loss 1.5053945779800415 img loss 1.3230847120285034 img loss 1.5523974895477295 img loss 1.4328229427337646 img loss 1.3743976354599 img loss 1.4105881452560425 img loss 1.583330750465393 img loss 1.6278327703475952 img loss 1.5249629020690918 img loss 1.4641855955123901 img loss 1.5537121295928955 img loss 1.6045345067977905 img loss 1.4215128421783447 img loss 1.525782823562622 img loss 1.498449444770813 img loss 1.5063750743865967 img loss 1.4023252725601196 img loss 1.5336934328079224 img loss 1.3527100086212158 img loss 1.6377882957458496 img loss 1.3766616582870483 img loss 1.3935860395431519 img loss 1.5427998304367065 img loss 1.5116616487503052 img loss 1.5119324922561646 img loss 1.5191541910171509 img loss 1.5462404489517212 img loss 1.4153189659118652 img loss 1.5863016843795776 img loss 1.4658793210983276 img loss 1.5174908638000488 img loss 1.4926234483718872 img loss 1.4625400304794312 img loss 1.4895612001419067 img loss 1.4559757709503174 img loss 1.49954354763031 img loss 1.3874844312667847 img loss 1.4685399532318115 img loss 1.6165449619293213 img loss 1.4894845485687256 img loss 1.5023046731948853 img loss 1.4276196956634521 img loss 1.5533949136734009 img loss 1.4820513725280762 img loss 1.4536681175231934 img loss 1.518847942352295 img loss 1.470336675643921 img loss 1.4196317195892334 img loss 1.5097291469573975 img loss 1.3975393772125244 img loss 1.4675358533859253 {'loss': 1.4932, 'grad_norm': 0.5487291812896729, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2295491695404053 img loss 1.218851923942566 img loss 1.2022454738616943 img loss 1.1697280406951904 img loss 1.2837579250335693 img loss 1.177406907081604 img loss 1.1775054931640625 img loss 1.27578604221344 img loss 1.2257883548736572 img loss 1.2057373523712158 img loss 1.2515255212783813 img loss 1.1880524158477783 img loss 1.1060175895690918 img loss 1.2976442575454712 img loss 1.2351807355880737 img loss 1.1453537940979004 img loss 1.291420578956604 img loss 1.1920082569122314 img loss 1.242409586906433 img loss 1.2762179374694824 img loss 1.2078697681427002 img loss 1.3531286716461182 img loss 1.2904431819915771 img loss 1.2476460933685303 img loss 1.2291330099105835 img loss 1.2498829364776611 img loss 1.2376785278320312 img loss 1.1946685314178467 img loss 1.1948444843292236 img loss 1.267107605934143 img loss 1.1590454578399658 img loss 1.2374266386032104 img loss 1.217913031578064 img loss 1.2108263969421387 img loss 1.2159538269042969 img loss 1.2551454305648804 img loss 1.2853310108184814 img loss 1.2043492794036865 img loss 1.1685665845870972 img loss 1.1949188709259033 img loss 1.2845209836959839 img loss 1.2653511762619019 img loss 1.246914267539978 img loss 1.2436821460723877 img loss 1.2197771072387695 img loss 1.1964727640151978 img loss 1.3003853559494019 img loss 1.2838867902755737 img loss 1.2545628547668457 img loss 1.19370436668396 img loss 1.1980812549591064 img loss 1.1988883018493652 img loss 1.1595467329025269 img loss 1.1930204629898071 img loss 1.2746608257293701 img loss 1.2591133117675781 img loss 1.2204872369766235 img loss 1.180200457572937 img loss 1.1983288526535034 img loss 1.2955803871154785 img loss 1.2882574796676636 img loss 1.2122917175292969 img loss 1.2587354183197021 img loss 1.201533317565918 img loss 1.2185966968536377 img loss 1.1888244152069092 img loss 1.3505257368087769 img loss 1.232992172241211 img loss 1.2396183013916016 img loss 1.1505773067474365 img loss 1.260371446609497 img loss 1.1966018676757812 img loss 1.2800445556640625 img loss 1.2331030368804932 img loss 1.1568703651428223 img loss 1.2760056257247925 img loss 1.2355190515518188 img loss 1.227771520614624 img loss 1.2294998168945312 img loss 1.251036286354065 img loss 1.2403292655944824 img loss 1.2167781591415405 img loss 1.2626217603683472 img loss 1.2265808582305908 img loss 1.23167884349823 img loss 1.2176605463027954 img loss 1.1842589378356934 img loss 1.1502519845962524 img loss 1.2381362915039062 img loss 1.2137913703918457 img loss 1.1857045888900757 img loss 1.2867426872253418 img loss 1.14696204662323 img loss 1.2415833473205566 img loss 1.2581738233566284 img loss 1.148477554321289 img loss 1.3215426206588745 img loss 1.1913820505142212 img loss 1.187707543373108 img loss 1.1771053075790405 img loss 1.2893880605697632 img loss 1.1688132286071777 img loss 1.2742646932601929 img loss 1.258692979812622 img loss 1.2675707340240479 img loss 1.241278052330017 img loss 1.224839687347412 img loss 1.3259629011154175 img loss 1.186418890953064 img loss 1.3254499435424805 img loss 1.2284377813339233 img loss 1.2282873392105103 img loss 1.2022103071212769 img loss 1.1974836587905884 img loss 1.2316546440124512 img loss 1.2120380401611328 img loss 1.2354611158370972 img loss 1.1584495306015015 img loss 1.238938331604004 img loss 1.2150200605392456 img loss 1.1563754081726074 img loss 1.2256447076797485 img loss 1.2907681465148926 img loss 1.1759161949157715 img loss 1.2397401332855225 img loss 1.2244606018066406 img loss 1.1992712020874023 img loss 1.260526418685913 {'loss': 1.228, 'grad_norm': 0.4148426651954651, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4455888271331787 img loss 1.3632794618606567 img loss 1.5847067832946777 img loss 1.4423954486846924 img loss 1.3574663400650024 img loss 1.407128095626831 img loss 1.3793050050735474 img loss 1.4627267122268677 img loss 1.3645004034042358 img loss 1.4786261320114136 img loss 1.4728827476501465 img loss 1.4960715770721436 img loss 1.509002447128296 img loss 1.4581830501556396 img loss 1.3449374437332153 img loss 1.5416111946105957 img loss 1.4487248659133911 img loss 1.4450880289077759 img loss 1.522510290145874 img loss 1.3705286979675293 img loss 1.4688913822174072 img loss 1.4344556331634521 img loss 1.2884581089019775 img loss 1.5029078722000122 img loss 1.4576112031936646 img loss 1.4839873313903809 img loss 1.3650243282318115 img loss 1.5659584999084473 img loss 1.5709654092788696 img loss 1.394591212272644 img loss 1.4838671684265137 img loss 1.4489738941192627 img loss 1.2517324686050415 img loss 1.4748016595840454 img loss 1.5037318468093872 img loss 1.6833369731903076 img loss 1.3838735818862915 img loss 1.4643703699111938 img loss 1.542209267616272 img loss 1.4678452014923096 img loss 1.4121947288513184 img loss 1.3006782531738281 img loss 1.3567074537277222 img loss 1.4873310327529907 img loss 1.3876338005065918 img loss 1.4627705812454224 img loss 1.506467580795288 img loss 1.474229335784912 img loss 1.4445672035217285 img loss 1.351015567779541 img loss 1.5824542045593262 img loss 1.462887167930603 img loss 1.524847388267517 img loss 1.3824886083602905 img loss 1.4428261518478394 img loss 1.4777655601501465 img loss 1.5489174127578735 img loss 1.41579270362854 img loss 1.3864558935165405 img loss 1.3346699476242065 img loss 1.412760615348816 img loss 1.3137801885604858 img loss 1.4865177869796753 img loss 1.3899816274642944 img loss 1.342027187347412 img loss 1.4507509469985962 img loss 1.554632544517517 img loss 1.443726658821106 img loss 1.476913571357727 img loss 1.5487257242202759 img loss 1.3966584205627441 img loss 1.3679556846618652 img loss 1.3475069999694824 img loss 1.4123064279556274 img loss 1.4580289125442505 img loss 1.4724843502044678 img loss 1.4276869297027588 img loss 1.4348608255386353 img loss 1.4289268255233765 img loss 1.3284151554107666 img loss 1.4034966230392456 img loss 1.4211159944534302 img loss 1.4234938621520996 img loss 1.3883204460144043 img loss 1.6069499254226685 img loss 1.3449406623840332 img loss 1.5003907680511475 img loss 1.2559053897857666 img loss 1.4895468950271606 img loss 1.3801474571228027 img loss 1.497191071510315 img loss 1.6822649240493774 img loss 1.477371096611023 img loss 1.4920856952667236 img loss 1.4444855451583862 img loss 1.3376859426498413 img loss 1.4509855508804321 img loss 1.2983336448669434 img loss 1.4366259574890137 img loss 1.3102363348007202 img loss 1.4420090913772583 img loss 1.4887452125549316 img loss 1.4330006837844849 img loss 1.3368569612503052 img loss 1.607595682144165 img loss 1.4768167734146118 img loss 1.370652675628662 img loss 1.529997706413269 img loss 1.3340989351272583 img loss 1.4741508960723877 img loss 1.536718726158142 img loss 1.4692171812057495 img loss 1.3863095045089722 img loss 1.4244886636734009 img loss 1.4456877708435059 img loss 1.3383288383483887 img loss 1.3408119678497314 img loss 1.4397722482681274 img loss 1.594075083732605 img loss 1.3386555910110474 img loss 1.5056442022323608 img loss 1.3474141359329224 img loss 1.3868343830108643 img loss 1.467971682548523 img loss 1.3662225008010864 img loss 1.536177158355713 img loss 1.4577945470809937 img loss 1.4446953535079956 {'loss': 1.4401, 'grad_norm': 0.2993752956390381, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1601064205169678 img loss 1.1885896921157837 img loss 1.2148525714874268 img loss 1.1412137746810913 img loss 1.210986852645874 img loss 1.1555255651474 img loss 1.1363052129745483 img loss 1.1965264081954956 img loss 1.1646438837051392 img loss 1.207079529762268 img loss 1.0944287776947021 img loss 1.2190494537353516 img loss 1.2192178964614868 img loss 1.214383840560913 img loss 1.106029748916626 img loss 1.1348698139190674 img loss 1.1563491821289062 img loss 1.1536566019058228 img loss 1.119033932685852 img loss 1.2776312828063965 img loss 1.2481682300567627 img loss 1.2254133224487305 img loss 1.1552613973617554 img loss 1.162442922592163 img loss 1.157094955444336 img loss 1.1659129858016968 img loss 1.1962268352508545 img loss 1.2856895923614502 img loss 1.2209129333496094 img loss 1.2766441106796265 img loss 1.329506516456604 img loss 1.1929614543914795 img loss 1.2972711324691772 img loss 1.1487454175949097 img loss 1.2872774600982666 img loss 1.3026758432388306 img loss 1.242126703262329 img loss 1.2667157649993896 img loss 1.1957297325134277 img loss 1.1537880897521973 img loss 1.2578550577163696 img loss 1.2483010292053223 img loss 1.2114752531051636 img loss 1.2236210107803345 img loss 1.247842788696289 img loss 1.1814311742782593 img loss 1.1715854406356812 img loss 1.2188466787338257 img loss 1.250152349472046 img loss 1.1850690841674805 img loss 1.1608179807662964 img loss 1.2080529928207397 img loss 1.2586631774902344 img loss 1.2514948844909668 img loss 1.21634840965271 img loss 1.1836861371994019 img loss 1.212449312210083 img loss 1.168120265007019 img loss 1.2540557384490967 img loss 1.1781725883483887 img loss 1.2170794010162354 img loss 1.246355652809143 img loss 1.1969220638275146 img loss 1.1925976276397705 img loss 1.1223769187927246 img loss 1.2482924461364746 img loss 1.2180745601654053 img loss 1.2704849243164062 img loss 1.2060011625289917 img loss 1.1923907995224 img loss 1.1703113317489624 img loss 1.2892851829528809 img loss 1.2788282632827759 img loss 1.2261614799499512 img loss 1.282041072845459 img loss 1.2149685621261597 img loss 1.262399673461914 img loss 1.2093719244003296 img loss 1.1385128498077393 img loss 1.1641764640808105 img loss 1.305538535118103 img loss 1.1487541198730469 img loss 1.1494194269180298 img loss 1.2297923564910889 img loss 1.2737244367599487 img loss 1.2170437574386597 img loss 1.1537315845489502 img loss 1.2319453954696655 img loss 1.2236745357513428 img loss 1.3010650873184204 img loss 1.2460001707077026 img loss 1.2504286766052246 img loss 1.1219851970672607 img loss 1.1710262298583984 img loss 1.2440788745880127 img loss 1.27736496925354 img loss 1.2200275659561157 img loss 1.191942811012268 img loss 1.1840553283691406 img loss 1.2150874137878418 img loss 1.2619651556015015 img loss 1.2014297246932983 img loss 1.2832053899765015 img loss 1.1757926940917969 img loss 1.151177167892456 img loss 1.1845089197158813 img loss 1.145658254623413 img loss 1.231041431427002 img loss 1.2080655097961426 img loss 1.2179845571517944 img loss 1.2232816219329834 img loss 1.300602674484253 img loss 1.1777973175048828 img loss 1.3505475521087646 img loss 1.1533222198486328 img loss 1.2254812717437744 img loss 1.1821154356002808 img loss 1.2526140213012695 img loss 1.1887280941009521 img loss 1.226345419883728 img loss 1.2134132385253906 img loss 1.1844725608825684 img loss 1.1234029531478882 img loss 1.173835039138794 img loss 1.177234411239624 img loss 1.1892828941345215 img loss 1.2375829219818115 img loss 1.2696523666381836 {'loss': 1.21, 'grad_norm': 0.3959489166736603, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.373738169670105 img loss 1.3898167610168457 img loss 1.63921320438385 img loss 1.3095992803573608 img loss 1.4006578922271729 img loss 1.3848755359649658 img loss 1.378792405128479 img loss 1.4115254878997803 img loss 1.426920771598816 img loss 1.3936705589294434 img loss 1.2372663021087646 img loss 1.4378050565719604 img loss 1.2712219953536987 img loss 1.4411578178405762 img loss 1.4183214902877808 img loss 1.3657630681991577 img loss 1.3617957830429077 img loss 1.331937551498413 img loss 1.3169090747833252 img loss 1.4314677715301514 img loss 1.4215033054351807 img loss 1.401161789894104 img loss 1.3375743627548218 img loss 1.3586891889572144img loss 1.4307693243026733 img loss 1.346919298171997 img loss 1.4688421487808228 img loss 1.435699224472046 img loss 1.3176031112670898 img loss 1.3848375082015991 img loss 1.3948737382888794 img loss 1.4593472480773926 img loss 1.3579851388931274 img loss 1.3370002508163452 img loss 1.4864833354949951 img loss 1.4096754789352417 img loss 1.3442273139953613 img loss 1.3772903680801392 img loss 1.3902708292007446 img loss 1.4998632669448853 img loss 1.4093228578567505 img loss 1.3871365785598755 img loss 1.3192603588104248 img loss 1.4375234842300415 img loss 1.4454405307769775 img loss 1.3698543310165405 img loss 1.3469737768173218 img loss 1.3572955131530762 img loss 1.366595983505249 img loss 1.5464693307876587 img loss 1.4540209770202637 img loss 1.4938870668411255 img loss 1.40292489528656 img loss 1.4310567378997803 img loss 1.5073316097259521 img loss 1.3519800901412964 img loss 1.4999123811721802 img loss 1.2825579643249512 img loss 1.4927810430526733 img loss 1.366542100906372 img loss 1.415803074836731 img loss 1.4145070314407349 img loss 1.4260790348052979 img loss 1.4663032293319702 img loss 1.4257704019546509 img loss 1.351941466331482 img loss 1.4886809587478638 img loss 1.4503610134124756 img loss 1.2464958429336548 img loss 1.5421364307403564 img loss 1.3558677434921265 img loss 1.348511815071106 img loss 1.418526530265808 img loss 1.4634032249450684 img loss 1.4170876741409302 img loss 1.5293642282485962 img loss 1.4624406099319458 img loss 1.4375604391098022 img loss 1.330627202987671 img loss 1.3562513589859009 img loss 1.4677492380142212 img loss 1.3653168678283691 img loss 1.4183090925216675 img loss 1.3627289533615112 img loss 1.5473328828811646 img loss 1.4997270107269287 img loss 1.4271845817565918 img loss 1.5228124856948853 img loss 1.4080389738082886 img loss 1.396868348121643 img loss 1.4733868837356567 img loss 1.4590156078338623 img loss 1.3780361413955688 img loss 1.5594407320022583 img loss 1.3381119966506958 img loss 1.4871083498001099 img loss 1.45636785030365 img loss 1.3182977437973022 img loss 1.4125467538833618 img loss 1.4914175271987915 img loss 1.3927117586135864 img loss 1.3678494691848755 img loss 1.3885453939437866 img loss 1.4675123691558838 img loss 1.4063550233840942 img loss 1.414482831954956 img loss 1.5596442222595215 img loss 1.3464338779449463 img loss 1.4312281608581543 img loss 1.397944688796997 img loss 1.4080480337142944 img loss 1.3760638236999512 img loss 1.3703839778900146 img loss 1.4134628772735596 img loss 1.5024993419647217 img loss 1.4599487781524658 img loss 1.4285742044448853 img loss 1.3695470094680786 img loss 1.358044981956482 img loss 1.470863938331604 img loss 1.4449223279953003 img loss 1.3819111585617065 img loss 1.3747665882110596 img loss 1.356951117515564 img loss 1.5107485055923462 img loss 1.3149477243423462 img loss 1.3320863246917725 img loss 1.4037890434265137 {'loss': 1.4105, 'grad_norm': 0.5467708110809326, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2294620275497437 img loss 1.3155441284179688 img loss 1.3197101354599 img loss 1.2167824506759644 img loss 1.3247054815292358 img loss 1.332342505455017 img loss 1.2588038444519043 img loss 1.2948474884033203 img loss 1.233325481414795 img loss 1.178524374961853 img loss 1.176416039466858 img loss 1.3101859092712402 img loss 1.2267186641693115 img loss 1.2623211145401 img loss 1.2413980960845947 img loss 1.268330454826355 img loss 1.3264013528823853 img loss 1.2174553871154785 img loss 1.2704015970230103 img loss 1.2609825134277344 img loss 1.234527587890625 img loss 1.2630175352096558 img loss 1.226296305656433 img loss 1.2442270517349243 img loss 1.2772263288497925 img loss 1.2778156995773315 img loss 1.2535929679870605 img loss 1.2809723615646362 img loss 1.302872896194458 img loss 1.2328681945800781 img loss 1.2646400928497314 img loss 1.2541711330413818 img loss 1.3181166648864746 img loss 1.2338247299194336 img loss 1.290850281715393 img loss 1.2855136394500732 img loss 1.286590576171875 img loss 1.2737140655517578 img loss 1.2817072868347168 img loss 1.2634716033935547 img loss 1.2344913482666016 img loss 1.2222737073898315 img loss 1.2220163345336914 img loss 1.26561439037323 img loss 1.2654743194580078 img loss 1.2466371059417725 img loss 1.276296615600586 img loss 1.2798277139663696 img loss 1.2276369333267212 img loss 1.2688210010528564 img loss 1.2644438743591309 img loss 1.2787468433380127 img loss 1.3116390705108643 img loss 1.2555068731307983 img loss 1.2991269826889038 img loss 1.206608772277832 img loss 1.2101166248321533 img loss 1.285062313079834 img loss 1.2890467643737793 img loss 1.2796038389205933 img loss 1.3249729871749878 img loss 1.2839096784591675 img loss 1.2693051099777222 img loss 1.3178322315216064 img loss 1.4053000211715698 img loss 1.2318962812423706 img loss 1.2868276834487915 img loss 1.2601900100708008 img loss 1.3530303239822388 img loss 1.266058325767517 img loss 1.3008430004119873 img loss 1.2031197547912598 img loss 1.2859209775924683 img loss 1.2878854274749756 img loss 1.2867889404296875 img loss 1.2296175956726074 img loss 1.240370512008667 img loss 1.3515959978103638 img loss 1.1963889598846436 img loss 1.284214973449707 img loss 1.2114067077636719 img loss 1.2463762760162354 img loss 1.2538706064224243 img loss 1.3142598867416382 img loss 1.284593105316162 img loss 1.2549461126327515 img loss 1.2644485235214233 img loss 1.2778552770614624 img loss 1.2747825384140015 img loss 1.2803950309753418 img loss 1.221900463104248 img loss 1.2556495666503906 img loss 1.2619012594223022 img loss 1.2926839590072632 img loss 1.221877098083496 img loss 1.308053731918335 img loss 1.20957350730896 img loss 1.2879034280776978 img loss 1.2519431114196777 img loss 1.236471176147461 img loss 1.2845368385314941 img loss 1.2349350452423096 img loss 1.2660295963287354 img loss 1.3759424686431885 img loss 1.269085168838501 img loss 1.2786986827850342 img loss 1.2321001291275024 img loss 1.274300456047058 img loss 1.1814055442810059 img loss 1.2747020721435547 img loss 1.253914713859558 img loss 1.2555302381515503 img loss 1.213001012802124 img loss 1.3129194974899292 img loss 1.2641923427581787 img loss 1.2605433464050293 img loss 1.2052677869796753 img loss 1.2636836767196655 img loss 1.1867259740829468 img loss 1.290991187095642 img loss 1.2409723997116089 img loss 1.2631767988204956 img loss 1.2071443796157837 img loss 1.3028457164764404 img loss 1.2688179016113281 img loss 1.329534888267517 img loss 1.252414345741272 img loss 1.2574703693389893 {'loss': 1.2654, 'grad_norm': 0.2860183119773865, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2263237237930298 img loss 1.2821201086044312 img loss 1.2244277000427246 img loss 1.2097201347351074 img loss 1.1550029516220093 img loss 1.2329403162002563 img loss 1.2895519733428955 img loss 1.2097080945968628 img loss 1.2483789920806885 img loss 1.2203140258789062 img loss 1.192766785621643 img loss 1.2094604969024658 img loss 1.1972241401672363 img loss 1.2091315984725952 img loss 1.269943118095398 img loss 1.1897109746932983 img loss 1.1106046438217163 img loss 1.2323880195617676 img loss 1.2175886631011963 img loss 1.2095420360565186 img loss 1.1321276426315308 img loss 1.3129242658615112 img loss 1.4576756954193115 img loss 1.2391648292541504 img loss 1.1715631484985352 img loss 1.1771572828292847 img loss 1.2823528051376343 img loss 1.2225358486175537 img loss 1.1418012380599976 img loss 1.202419638633728 img loss 1.241308569908142 img loss 1.2616562843322754 img loss 1.208950400352478 img loss 1.137470006942749 img loss 1.1636148691177368 img loss 1.1987770795822144 img loss 1.2033016681671143 img loss 1.3397341966629028 img loss 1.2017757892608643 img loss 1.2151044607162476 img loss 1.2885288000106812 img loss 1.2546852827072144 img loss 1.2681879997253418 img loss 1.240395188331604 img loss 1.203698754310608 img loss 1.1620842218399048 img loss 1.2103277444839478 img loss 1.2063615322113037 img loss 1.3225395679473877 img loss 1.2835419178009033 img loss 1.2349448204040527 img loss 1.2227673530578613 img loss 1.2041138410568237 img loss 1.1714894771575928 img loss 1.1174139976501465 img loss 1.2511717081069946 img loss 1.194382905960083 img loss 1.2081305980682373 img loss 1.2384626865386963 img loss 1.2313998937606812 img loss 1.1838383674621582 img loss 1.2284635305404663 img loss 1.2290151119232178 img loss 1.2904584407806396 img loss 1.1537281274795532 img loss 1.3076603412628174 img loss 1.2096343040466309 img loss 1.2729623317718506 img loss 1.2325663566589355 img loss 1.2305835485458374 img loss 1.226489782333374 img loss 1.2343543767929077 img loss 1.1879584789276123 img loss 1.1696562767028809 img loss 1.2279115915298462 img loss 1.2546565532684326 img loss 1.292116641998291 img loss 1.1764580011367798 img loss 1.22265625 img loss 1.2732727527618408 img loss 1.1958553791046143 img loss 1.1973131895065308 img loss 1.1639328002929688 img loss 1.3034698963165283 img loss 1.1954436302185059 img loss 1.207413673400879 img loss 1.209206223487854 img loss 1.1861724853515625 img loss 1.1768373250961304 img loss 1.2350527048110962 img loss 1.211861252784729 img loss 1.2412970066070557 img loss 1.204479694366455 img loss 1.2550444602966309 img loss 1.3108551502227783 img loss 1.202211618423462 img loss 1.2223162651062012 img loss 1.2267556190490723 img loss 1.26683509349823 img loss 1.2141904830932617 img loss 1.2297500371932983 img loss 1.1978257894515991 img loss 1.1794755458831787 img loss 1.2987723350524902 img loss 1.2106369733810425 img loss 1.2802504301071167 img loss 1.248085856437683img loss 1.2494276762008667 img loss 1.20369291305542 img loss 1.1420879364013672 img loss 1.2043743133544922 img loss 1.1428158283233643 img loss 1.1996084451675415 img loss 1.2083109617233276 img loss 1.1688878536224365 img loss 1.2735413312911987 img loss 1.238024353981018 img loss 1.2422674894332886 img loss 1.1828144788742065 img loss 1.2011562585830688 img loss 1.2685626745224 img loss 1.2381846904754639 img loss 1.249326229095459 img loss 1.2078291177749634 img loss 1.1886005401611328 img loss 1.2936530113220215 img loss 1.2385845184326172 img loss 1.2428439855575562 {'loss': 1.2236, 'grad_norm': 0.3561363220214844, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3087068796157837 img loss 1.2111996412277222 img loss 1.18692946434021 img loss 1.29559326171875 img loss 1.2270863056182861 img loss 1.2880709171295166 img loss 1.3320846557617188 img loss 1.2176796197891235 img loss 1.257219672203064 img loss 1.2428158521652222 img loss 1.3975025415420532 img loss 1.2521218061447144 img loss 1.2646795511245728 img loss 1.291556715965271 img loss 1.2756160497665405 img loss 1.2149444818496704 img loss 1.3320099115371704 img loss 1.2247103452682495 img loss 1.2894480228424072 img loss 1.2571766376495361 img loss 1.2637839317321777 img loss 1.241027593612671 img loss 1.2491344213485718 img loss 1.1943092346191406 img loss 1.360828161239624 img loss 1.2780232429504395 img loss 1.2074791193008423 img loss 1.357240915298462 img loss 1.267687201499939 img loss 1.300206184387207 img loss 1.2605576515197754 img loss 1.3156801462173462 img loss 1.2643985748291016 img loss 1.3410292863845825 img loss 1.3742029666900635 img loss 1.2931407690048218 img loss 1.3985251188278198 img loss 1.2327191829681396 img loss 1.3301161527633667 img loss 1.213052749633789 img loss 1.2772711515426636 img loss 1.246752381324768 img loss 1.3160643577575684 img loss 1.245736837387085 img loss 1.2455917596817017 img loss 1.2257963418960571 img loss 1.173666000366211 img loss 1.2366701364517212 img loss 1.2093768119812012 img loss 1.24312162399292 img loss 1.3513962030410767 img loss 1.1884195804595947 img loss 1.2792198657989502 img loss 1.23142671585083 img loss 1.2713301181793213 img loss 1.374579668045044 img loss 1.2824203968048096 img loss 1.3182111978530884 img loss 1.2883485555648804 img loss 1.2752954959869385 img loss 1.2553094625473022 img loss 1.3496105670928955 img loss 1.270608901977539 img loss 1.1660468578338623 img loss 1.314866542816162 img loss 1.2234928607940674 img loss 1.284630298614502 img loss 1.3031842708587646 img loss 1.2697861194610596 img loss 1.3164901733398438 img loss 1.240536093711853 img loss 1.3415162563323975 img loss 1.2707868814468384 img loss 1.2500548362731934 img loss 1.2545139789581299 img loss 1.3858659267425537 img loss 1.281139850616455 img loss 1.2645536661148071 img loss 1.2453802824020386 img loss 1.3178678750991821 img loss 1.2237507104873657 img loss 1.2408885955810547 img loss 1.2538689374923706 img loss 1.3038630485534668 img loss 1.2340725660324097 img loss 1.236266851425171 img loss 1.307734489440918 img loss 1.2486262321472168 img loss 1.272948980331421 img loss 1.3269096612930298 img loss 1.2248280048370361 img loss 1.3027775287628174 img loss 1.2497427463531494 img loss 1.2377020120620728 img loss 1.3763598203659058 img loss 1.1828479766845703 img loss 1.2258367538452148 img loss 1.2889890670776367 img loss 1.2951322793960571 img loss 1.275086760520935 img loss 1.3251007795333862 img loss 1.321435570716858 img loss 1.2208924293518066 img loss 1.2019288539886475 img loss 1.2454051971435547 img loss 1.2768917083740234 img loss 1.2077319622039795 img loss 1.1788525581359863 img loss 1.2539124488830566 img loss 1.3068861961364746 img loss 1.3133434057235718 img loss 1.2654716968536377 img loss 1.307626724243164 img loss 1.1894811391830444 img loss 1.2707650661468506 img loss 1.1597299575805664 img loss 1.34726881980896 img loss 1.1973997354507446 img loss 1.3633763790130615 img loss 1.2943711280822754 img loss 1.2285950183868408 img loss 1.277536153793335 img loss 1.2430930137634277 img loss 1.2510918378829956 img loss 1.2487396001815796 img loss 1.2666051387786865 img loss 1.2953753471374512 img loss 1.1641974449157715 {'loss': 1.2698, 'grad_norm': 0.3224222660064697, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.21046781539917 img loss 1.1855957508087158 img loss 1.2107434272766113 img loss 1.2352529764175415 img loss 1.2263246774673462 img loss 1.285582423210144 img loss 1.2033791542053223 img loss 1.1902287006378174 img loss 1.1835917234420776 img loss 1.144782304763794 img loss 1.1844699382781982 img loss 1.2475184202194214 img loss 1.237402319908142 img loss 1.169985294342041 img loss 1.388335943222046 img loss 1.1412506103515625 img loss 1.285612940788269 img loss 1.2932920455932617 img loss 1.1588538885116577 img loss 1.2121511697769165 img loss 1.217660665512085 img loss 1.2427066564559937 img loss 1.2642818689346313 img loss 1.2185156345367432 img loss 1.1977152824401855 img loss 1.2109612226486206 img loss 1.2203116416931152 img loss 1.2543684244155884 img loss 1.2588332891464233 img loss 1.1870559453964233 img loss 1.2708163261413574 img loss 1.1940540075302124 img loss 1.1304998397827148 img loss 1.2028093338012695 img loss 1.2252353429794312 img loss 1.1887180805206299 img loss 1.199951410293579 img loss 1.1479672193527222 img loss 1.2386442422866821 img loss 1.2187360525131226 img loss 1.165408968925476 img loss 1.2141735553741455 img loss 1.3153471946716309 img loss 1.228354811668396 img loss 1.2322224378585815 img loss 1.1929566860198975 img loss 1.2499771118164062 img loss 1.202831506729126 img loss 1.2038313150405884 img loss 1.1898012161254883 img loss 1.2267992496490479 img loss 1.1970713138580322 img loss 1.2331873178482056 img loss 1.315206527709961 img loss 1.1900880336761475 img loss 1.200667142868042 img loss 1.2410356998443604 img loss 1.3063747882843018 img loss 1.254746913909912 img loss 1.2522467374801636 img loss 1.252962350845337 img loss 1.2494961023330688 img loss 1.179787039756775 img loss 1.2490135431289673 img loss 1.2008769512176514 img loss 1.2993606328964233 img loss 1.258373737335205 img loss 1.2517791986465454 img loss 1.2336106300354004 img loss 1.21597421169281 img loss 1.242181658744812 img loss 1.1776821613311768 img loss 1.2195799350738525 img loss 1.199049472808838 img loss 1.327270269393921 img loss 1.3309961557388306 img loss 1.2949655055999756 img loss 1.2464603185653687 img loss 1.2700735330581665 img loss 1.2531105279922485 img loss 1.2092140913009644 img loss 1.2538659572601318 img loss 1.2494128942489624 img loss 1.3173948526382446 img loss 1.2366684675216675 img loss 1.2121237516403198 img loss 1.2429958581924438 img loss 1.1924318075180054 img loss 1.2887645959854126 img loss 1.2089542150497437 img loss 1.2097768783569336 img loss 1.2141165733337402 img loss 1.1457569599151611 img loss 1.2357192039489746 img loss 1.2297576665878296 img loss 1.2216682434082031 img loss 1.2724634408950806 img loss 1.2269096374511719 img loss 1.2614245414733887img loss 1.2488969564437866 img loss 1.1644742488861084 img loss 1.1812111139297485 img loss 1.2879949808120728 img loss 1.1845948696136475 img loss 1.2278746366500854 img loss 1.2016018629074097 img loss 1.15386164188385 img loss 1.1946210861206055 img loss 1.2332923412322998 img loss 1.2420268058776855 img loss 1.226866364479065 img loss 1.2117513418197632 img loss 1.1902717351913452 img loss 1.2034199237823486 img loss 1.1858172416687012 img loss 1.2472466230392456 img loss 1.287132978439331 img loss 1.2614161968231201 img loss 1.24160897731781 img loss 1.204007625579834 img loss 1.211395502090454 img loss 1.1864970922470093 img loss 1.142869472503662 img loss 1.2283614873886108 img loss 1.22393798828125 img loss 1.177014708518982 img loss 1.1484798192977905 img loss 1.1941466331481934 {'loss': 1.2248, 'grad_norm': 0.33795639872550964, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2967143058776855 img loss 1.2481141090393066 img loss 1.2185229063034058 img loss 1.2350637912750244 img loss 1.335633635520935 img loss 1.2978858947753906 img loss 1.3344314098358154 img loss 1.2799469232559204 img loss 1.2328919172286987 img loss 1.1942487955093384 img loss 1.2899367809295654 img loss 1.1913259029388428 img loss 1.196563720703125 img loss 1.2442423105239868 img loss 1.2886161804199219img loss 1.2273348569869995 img loss 1.3567936420440674 img loss 1.200283408164978 img loss 1.2373074293136597 img loss 1.2873846292495728 img loss 1.342160701751709 img loss 1.161170244216919 img loss 1.2293243408203125 img loss 1.2680453062057495 img loss 1.3393863439559937 img loss 1.2807140350341797 img loss 1.1899378299713135 img loss 1.2312827110290527 img loss 1.1723172664642334 img loss 1.195358157157898 img loss 1.2900657653808594 img loss 1.309592843055725 img loss 1.3446707725524902 img loss 1.2375282049179077 img loss 1.266130805015564 img loss 1.166736364364624 img loss 1.3058570623397827 img loss 1.3116803169250488 img loss 1.278205156326294 img loss 1.314642310142517 img loss 1.246969223022461 img loss 1.2325705289840698 img loss 1.2084095478057861 img loss 1.2704228162765503 img loss 1.244261384010315 img loss 1.2457274198532104 img loss 1.2454960346221924 img loss 1.3102648258209229 img loss 1.2767397165298462 img loss 1.3198201656341553 img loss 1.232194423675537 img loss 1.2939192056655884 img loss 1.1408560276031494 img loss 1.2700523138046265 img loss 1.1583871841430664 img loss 1.3680404424667358 img loss 1.2233185768127441 img loss 1.2631946802139282 img loss 1.2685635089874268 img loss 1.2533812522888184 img loss 1.242529273033142 img loss 1.2170026302337646 img loss 1.202218770980835 img loss 1.2939895391464233 img loss 1.3078742027282715 img loss 1.2639539241790771 img loss 1.3563332557678223 img loss 1.4006098508834839 img loss 1.2081141471862793 img loss 1.2991770505905151 img loss 1.3421108722686768 img loss 1.2779483795166016 img loss 1.2944982051849365 img loss 1.248705506324768 img loss 1.2486941814422607 img loss 1.2910373210906982 img loss 1.3079107999801636 img loss 1.2465275526046753 img loss 1.2523258924484253 img loss 1.279531717300415 img loss 1.269519567489624 img loss 1.219705581665039 img loss 1.3030200004577637 img loss 1.3328173160552979 img loss 1.4622037410736084 img loss 1.1671984195709229 img loss 1.286126971244812 img loss 1.271281123161316 img loss 1.2703198194503784 img loss 1.2692410945892334 img loss 1.1390820741653442 img loss 1.2607887983322144 img loss 1.2581307888031006 img loss 1.367327094078064 img loss 1.1905592679977417 img loss 1.2237827777862549 img loss 1.3264033794403076 img loss 1.2938191890716553 img loss 1.3456348180770874 img loss 1.2279794216156006 img loss 1.0926883220672607 img loss 1.254860520362854 img loss 1.2419353723526 img loss 1.2432351112365723 img loss 1.2377861738204956 img loss 1.3114651441574097 img loss 1.1868577003479004 img loss 1.3654214143753052 img loss 1.2543532848358154 img loss 1.1682467460632324 img loss 1.3002448081970215 img loss 1.2457183599472046 img loss 1.1808277368545532 img loss 1.2455151081085205 img loss 1.258970022201538 img loss 1.2526085376739502 img loss 1.2441866397857666 img loss 1.2953401803970337 img loss 1.226789951324463 img loss 1.360550045967102 img loss 1.2219558954238892 img loss 1.305144190788269 img loss 1.2512376308441162 img loss 1.1850602626800537 img loss 1.2691383361816406 img loss 1.2460342645645142 img loss 1.2730625867843628 img loss 1.1394156217575073 {'loss': 1.2611, 'grad_norm': 0.34080371260643005, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.254654884338379 img loss 1.3747869729995728 img loss 1.4296543598175049 img loss 1.1873550415039062 img loss 1.3998243808746338 img loss 1.3440004587173462 img loss 1.3532516956329346 img loss 1.4360367059707642 img loss 1.2768774032592773 img loss 1.3728169202804565 img loss 1.3562153577804565 img loss 1.378426194190979 img loss 1.3334413766860962 img loss 1.3315613269805908 img loss 1.4670509099960327 img loss 1.2979034185409546 img loss 1.272195816040039 img loss 1.407348871231079 img loss 1.3057568073272705 img loss 1.3736516237258911 img loss 1.3904844522476196 img loss 1.295243501663208 img loss 1.305936574935913 img loss 1.3009562492370605 img loss 1.3908140659332275 img loss 1.3191804885864258 img loss 1.3936951160430908 img loss 1.5025259256362915 img loss 1.398943305015564 img loss 1.4101464748382568 img loss 1.2475489377975464 img loss 1.3417094945907593 img loss 1.3560786247253418 img loss 1.333827257156372 img loss 1.32756769657135 img loss 1.4492782354354858 img loss 1.2382150888442993 img loss 1.3931710720062256 img loss 1.3835253715515137 img loss 1.2891002893447876 img loss 1.3659546375274658 img loss 1.269750952720642 img loss 1.4356310367584229 img loss 1.2815049886703491 img loss 1.4669344425201416 img loss 1.364447832107544 img loss 1.3601281642913818 img loss 1.4644862413406372 img loss 1.4447447061538696 img loss 1.3578799962997437 img loss 1.1972136497497559 img loss 1.4340635538101196 img loss 1.3408992290496826 img loss 1.3687633275985718 img loss 1.4123618602752686 img loss 1.4031068086624146 img loss 1.334873914718628 img loss 1.397994875907898 img loss 1.4055577516555786 img loss 1.3500903844833374 img loss 1.4660146236419678 img loss 1.3161550760269165 img loss 1.2834659814834595 img loss 1.4256728887557983 img loss 1.4409669637680054 img loss 1.4076355695724487 img loss 1.3247743844985962 img loss 1.3970086574554443 img loss 1.341755986213684 img loss 1.367579698562622 img loss 1.2834148406982422 img loss 1.4224404096603394 img loss 1.3152204751968384 img loss 1.3945711851119995 img loss 1.4057430028915405 img loss 1.4064332246780396 img loss 1.360027551651001 img loss 1.4449948072433472 img loss 1.4919496774673462 img loss 1.5037797689437866 img loss 1.3370059728622437 img loss 1.3929792642593384 img loss 1.3983139991760254 img loss 1.3616955280303955 img loss 1.3600342273712158 img loss 1.410428524017334 img loss 1.2653053998947144 img loss 1.394033670425415 img loss 1.5021023750305176 img loss 1.3705439567565918 img loss 1.4083141088485718 img loss 1.4178396463394165 img loss 1.3841978311538696 img loss 1.321695327758789 img loss 1.2177711725234985 img loss 1.4216347932815552 img loss 1.4170546531677246 img loss 1.35018789768219 img loss 1.3189127445220947 img loss 1.4150911569595337 img loss 1.3459423780441284 img loss 1.376322627067566 img loss 1.374315857887268 img loss 1.3743398189544678 img loss 1.4929521083831787 img loss 1.2873766422271729 img loss 1.3246997594833374 img loss 1.2822787761688232 img loss 1.5516427755355835 img loss 1.3370484113693237 img loss 1.418143630027771 img loss 1.359251618385315 img loss 1.5306249856948853 img loss 1.333605170249939 img loss 1.4866257905960083 img loss 1.3896249532699585 img loss 1.409881830215454 img loss 1.4007059335708618 img loss 1.5049147605895996 img loss 1.3879605531692505 img loss 1.385040044784546 img loss 1.3331493139266968 img loss 1.4375158548355103 img loss 1.275543212890625 img loss 1.3683693408966064 img loss 1.3790141344070435 img loss 1.268113374710083 img loss 1.2808654308319092 {'loss': 1.3706, 'grad_norm': 0.22442974150180817, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5549489259719849 img loss 1.5559622049331665 img loss 1.432990550994873 img loss 1.4314614534378052 img loss 1.4187463521957397 img loss 1.6005619764328003 img loss 1.3993866443634033 img loss 1.4482414722442627 img loss 1.5711033344268799 img loss 1.5283206701278687 img loss 1.4132221937179565 img loss 1.5293323993682861 img loss 1.583248257637024 img loss 1.4748152494430542 img loss 1.4954216480255127 img loss 1.5476192235946655 img loss 1.4767898321151733 img loss 1.4647828340530396 img loss 1.3712564706802368 img loss 1.4998772144317627 img loss 1.4018102884292603 img loss 1.4413458108901978 img loss 1.3541619777679443 img loss 1.5222665071487427 img loss 1.3931046724319458 img loss 1.4090189933776855 img loss 1.4660027027130127 img loss 1.3726516962051392 img loss 1.4266183376312256 img loss 1.410235047340393 img loss 1.565147876739502 img loss 1.5034383535385132 img loss 1.4101855754852295 img loss 1.3844821453094482 img loss 1.455338954925537 img loss 1.5005441904067993 img loss 1.3962875604629517 img loss 1.456620693206787 img loss 1.4684834480285645 img loss 1.5362027883529663 img loss 1.562658429145813 img loss 1.6643112897872925 img loss 1.4876347780227661 img loss 1.4678080081939697 img loss 1.5293604135513306 img loss 1.4321973323822021 img loss 1.4154661893844604 img loss 1.5852073431015015 img loss 1.481194257736206 img loss 1.5933263301849365 img loss 1.5592228174209595 img loss 1.4156028032302856 img loss 1.4682385921478271 img loss 1.4276758432388306 img loss 1.5556684732437134 img loss 1.3614667654037476 img loss 1.4240080118179321 img loss 1.4834178686141968 img loss 1.3793278932571411 img loss 1.3087564706802368 img loss 1.427838683128357 img loss 1.3406306505203247 img loss 1.3598753213882446 img loss 1.3286316394805908 img loss 1.5847458839416504 img loss 1.4193233251571655 img loss 1.383069634437561 img loss 1.4447367191314697 img loss 1.507127285003662 img loss 1.2910047769546509 img loss 1.4384071826934814 img loss 1.5732548236846924 img loss 1.4616421461105347 img loss 1.4436697959899902 img loss 1.3509573936462402 img loss 1.4633069038391113 img loss 1.4800723791122437 img loss 1.3909965753555298 img loss 1.4314454793930054 img loss 1.3729779720306396 img loss 1.3948884010314941 img loss 1.6214419603347778 img loss 1.4596503973007202 img loss 1.3600026369094849 img loss 1.2897796630859375img loss 1.4305660724639893 img loss 1.3842147588729858 img loss 1.5231331586837769 img loss 1.4987657070159912 img loss 1.3267412185668945 img loss 1.5166043043136597 img loss 1.4138535261154175 img loss 1.4811015129089355 img loss 1.4942430257797241 img loss 1.4468072652816772 img loss 1.3526484966278076 img loss 1.4385994672775269 img loss 1.3899258375167847 img loss 1.3450819253921509 img loss 1.5351015329360962 img loss 1.3929601907730103 img loss 1.5120514631271362 img loss 1.5013660192489624 img loss 1.4479725360870361 img loss 1.431022047996521 img loss 1.4549466371536255 img loss 1.5402653217315674 img loss 1.4257347583770752 img loss 1.4201096296310425 img loss 1.4442113637924194 img loss 1.7587003707885742 img loss 1.3630242347717285 img loss 1.4976849555969238 img loss 1.5630654096603394 img loss 1.5348984003067017 img loss 1.4560868740081787 img loss 1.52897310256958 img loss 1.384079098701477 img loss 1.361242651939392 img loss 1.4027493000030518 img loss 1.4483147859573364 img loss 1.4253456592559814 img loss 1.4490629434585571 img loss 1.4747434854507446 img loss 1.4614442586898804 img loss 1.4381657838821411 img loss 1.4716664552688599 img loss 1.5077232122421265 {'loss': 1.4576, 'grad_norm': 0.4576204717159271, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2384275197982788 img loss 1.2177188396453857 img loss 1.2854814529418945 img loss 1.2309799194335938 img loss 1.216502070426941img loss 1.2856476306915283 img loss 1.2838274240493774 img loss 1.2393642663955688 img loss 1.296596884727478 img loss 1.1880977153778076 img loss 1.2947485446929932 img loss 1.2670601606369019 img loss 1.2815176248550415 img loss 1.1923900842666626 img loss 1.3318489789962769 img loss 1.2342524528503418 img loss 1.2317314147949219 img loss 1.174661636352539 img loss 1.0968976020812988 img loss 1.2605793476104736 img loss 1.2733397483825684 img loss 1.230234146118164 img loss 1.2746304273605347 img loss 1.2802844047546387 img loss 1.2714309692382812 img loss 1.229612946510315 img loss 1.2432981729507446 img loss 1.2750301361083984 img loss 1.2464852333068848 img loss 1.2731151580810547 img loss 1.1994507312774658 img loss 1.336719274520874 img loss 1.31255042552948 img loss 1.3115193843841553 img loss 1.2585692405700684 img loss 1.2967698574066162 img loss 1.2463706731796265 img loss 1.30605947971344 img loss 1.2853519916534424 img loss 1.2168021202087402 img loss 1.2963504791259766 img loss 1.1946152448654175 img loss 1.2642685174942017 img loss 1.2483471632003784 img loss 1.2384032011032104 img loss 1.2266002893447876 img loss 1.2834947109222412 img loss 1.2337464094161987 img loss 1.2313278913497925 img loss 1.2273821830749512 img loss 1.2195830345153809 img loss 1.314390778541565 img loss 1.1962218284606934 img loss 1.2627997398376465 img loss 1.2088243961334229 img loss 1.245491862297058 img loss 1.3694145679473877 img loss 1.1993656158447266 img loss 1.2713569402694702 img loss 1.2553106546401978 img loss 1.2359991073608398 img loss 1.2914695739746094 img loss 1.2452542781829834 img loss 1.2299816608428955 img loss 1.26680588722229 img loss 1.2136138677597046 img loss 1.1611045598983765 img loss 1.2117016315460205 img loss 1.345200777053833 img loss 1.3279160261154175 img loss 1.2874906063079834 img loss 1.312598466873169 img loss 1.2670494318008423 img loss 1.2793573141098022 img loss 1.2224209308624268 img loss 1.260595679283142 img loss 1.3085250854492188 img loss 1.28408682346344 img loss 1.2358412742614746 img loss 1.2386810779571533 img loss 1.3218389749526978 img loss 1.2563133239746094 img loss 1.2366689443588257 img loss 1.2898120880126953 img loss 1.3110651969909668 img loss 1.2086570262908936 img loss 1.256730318069458 img loss 1.226699709892273 img loss 1.238912582397461 img loss 1.327463150024414 img loss 1.266823649406433 img loss 1.2384953498840332 img loss 1.1515915393829346 img loss 1.2615888118743896 img loss 1.3063445091247559 img loss 1.2774078845977783 img loss 1.3685837984085083 img loss 1.2829887866973877 img loss 1.2570079565048218 img loss 1.2329469919204712 img loss 1.1995527744293213 img loss 1.264305830001831 img loss 1.3417307138442993 img loss 1.2862097024917603 img loss 1.2471548318862915 img loss 1.2678296566009521 img loss 1.1386322975158691 img loss 1.2473628520965576 img loss 1.2789511680603027 img loss 1.2277519702911377 img loss 1.2728545665740967 img loss 1.2510019540786743 img loss 1.2701953649520874 img loss 1.1861553192138672 img loss 1.30256986618042 img loss 1.2812578678131104 img loss 1.1982688903808594 img loss 1.215515375137329 img loss 1.26753568649292 img loss 1.3342403173446655 img loss 1.2578257322311401 img loss 1.3528996706008911 img loss 1.3310678005218506 img loss 1.2520374059677124 img loss 1.2574776411056519 img loss 1.3045755624771118 img loss 1.2625110149383545 img loss 1.1835495233535767 {'loss': 1.258, 'grad_norm': 0.42542821168899536, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2072347402572632 img loss 1.1560941934585571 img loss 1.1724227666854858 img loss 1.2334074974060059 img loss 1.2576841115951538 img loss 1.1995697021484375 img loss 1.2079977989196777 img loss 1.2628837823867798 img loss 1.2508130073547363 img loss 1.2483729124069214 img loss 1.2572424411773682 img loss 1.1768498420715332 img loss 1.1692501306533813 img loss 1.2525008916854858 img loss 1.2303656339645386 img loss 1.251253604888916 img loss 1.262237787246704 img loss 1.2673094272613525 img loss 1.2508400678634644 img loss 1.2072128057479858 img loss 1.3058885335922241 img loss 1.158409833908081 img loss 1.2442063093185425 img loss 1.1570203304290771 img loss 1.2173326015472412 img loss 1.173079490661621 img loss 1.1193881034851074 img loss 1.1640657186508179 img loss 1.2430120706558228 img loss 1.2490992546081543 img loss 1.4370734691619873 img loss 1.2208080291748047 img loss 1.2786786556243896 img loss 1.2192776203155518 img loss 1.2213369607925415 img loss 1.1648781299591064 img loss 1.2157633304595947 img loss 1.2117704153060913 img loss 1.4121156930923462 img loss 1.3102821111679077 img loss 1.2250418663024902 img loss 1.1939418315887451 img loss 1.1840438842773438 img loss 1.264841914176941 img loss 1.180198073387146 img loss 1.2249377965927124 img loss 1.3842902183532715 img loss 1.2415790557861328 img loss 1.2723889350891113 img loss 1.220414161682129 img loss 1.2221628427505493 img loss 1.2207139730453491 img loss 1.2839939594268799 img loss 1.2776798009872437 img loss 1.2975456714630127 img loss 1.204348087310791 img loss 1.2570425271987915 img loss 1.1362134218215942 img loss 1.2378734350204468 img loss 1.1733734607696533 img loss 1.2000515460968018 img loss 1.1028850078582764 img loss 1.2925488948822021 img loss 1.22869074344635 img loss 1.2295129299163818 img loss 1.2234982252120972img loss 1.208086371421814 img loss 1.198085069656372 img loss 1.162285327911377 img loss 1.2023953199386597 img loss 1.266416072845459 img loss 1.174426794052124 img loss 1.3264716863632202 img loss 1.2045331001281738 img loss 1.2373981475830078 img loss 1.2539544105529785 img loss 1.1895866394042969 img loss 1.0775035619735718 img loss 1.2358802556991577 img loss 1.205732822418213 img loss 1.3170417547225952 img loss 1.1775298118591309 img loss 1.2210088968276978 img loss 1.2604929208755493 img loss 1.2025516033172607 img loss 1.213783621788025 img loss 1.2707792520523071 img loss 1.3127931356430054 img loss 1.2069710493087769 img loss 1.192980170249939 img loss 1.3037155866622925 img loss 1.1882597208023071 img loss 1.2738665342330933 img loss 1.1753015518188477 img loss 1.2338730096817017 img loss 1.2301664352416992 img loss 1.1580537557601929 img loss 1.2330445051193237 img loss 1.244505524635315 img loss 1.2761996984481812 img loss 1.262581706047058 img loss 1.140115737915039 img loss 1.2254667282104492 img loss 1.1370718479156494 img loss 1.2431106567382812 img loss 1.2202860116958618 img loss 1.2388801574707031 img loss 1.223445177078247 img loss 1.2421764135360718 img loss 1.1977237462997437 img loss 1.1788392066955566 img loss 1.2520275115966797 img loss 1.2698822021484375 img loss 1.3114508390426636 img loss 1.1832472085952759 img loss 1.1282448768615723 img loss 1.249469518661499 img loss 1.2161669731140137 img loss 1.293880820274353 img loss 1.1783623695373535 img loss 1.179819941520691 img loss 1.2126703262329102 img loss 1.1922903060913086 img loss 1.2395234107971191 img loss 1.2755855321884155 img loss 1.2287018299102783 img loss 1.3085191249847412 img loss 1.3525404930114746 {'loss': 1.2285, 'grad_norm': 0.5195789933204651, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.227557897567749 img loss 1.2860846519470215 img loss 1.2809422016143799 img loss 1.225219964981079 img loss 1.339579463005066 img loss 1.220595121383667 img loss 1.3314787149429321 img loss 1.3366615772247314 img loss 1.2607332468032837 img loss 1.2395262718200684 img loss 1.2540385723114014 img loss 1.3252673149108887 img loss 1.2452791929244995 img loss 1.245970606803894 img loss 1.2741626501083374 img loss 1.321003794670105 img loss 1.2338072061538696 img loss 1.2097868919372559 img loss 1.2329295873641968 img loss 1.2459614276885986 img loss 1.2228870391845703 img loss 1.2894706726074219 img loss 1.2847944498062134 img loss 1.2725187540054321 img loss 1.335814118385315 img loss 1.2684276103973389 img loss 1.3124884366989136 img loss 1.3552838563919067 img loss 1.2686792612075806 img loss 1.2780777215957642 img loss 1.282524824142456 img loss 1.2640575170516968 img loss 1.2772326469421387 img loss 1.276854157447815 img loss 1.256207823753357 img loss 1.2245525121688843 img loss 1.2682994604110718 img loss 1.233057975769043 img loss 1.2281413078308105 img loss 1.2625138759613037 img loss 1.256299376487732 img loss 1.2465498447418213 img loss 1.232715129852295 img loss 1.195897102355957 img loss 1.3374848365783691 img loss 1.3365405797958374 img loss 1.2533706426620483 img loss 1.2991201877593994 img loss 1.297747254371643 img loss 1.2495580911636353 img loss 1.1485369205474854 img loss 1.2370039224624634 img loss 1.2864534854888916 img loss 1.2848060131072998 img loss 1.2601957321166992 img loss 1.2549965381622314 img loss 1.2303626537322998 img loss 1.2773064374923706 img loss 1.2387185096740723 img loss 1.2802006006240845 img loss 1.265876054763794 img loss 1.2316927909851074 img loss 1.2559869289398193 img loss 1.2317421436309814 img loss 1.250289797782898 img loss 1.3179670572280884 img loss 1.1994805335998535 img loss 1.2581707239151 img loss 1.2528759241104126 img loss 1.2993645668029785 img loss 1.210783839225769 img loss 1.317206859588623 img loss 1.2460947036743164 img loss 1.2222015857696533 img loss 1.210412859916687 img loss 1.2717652320861816 img loss 1.3410553932189941 img loss 1.29680597782135 img loss 1.2639881372451782 img loss 1.3304102420806885 img loss 1.2840116024017334 img loss 1.2509065866470337 img loss 1.2642021179199219 img loss 1.26025390625 img loss 1.2181086540222168 img loss 1.2272309064865112 img loss 1.3403146266937256 img loss 1.3229351043701172 img loss 1.3550736904144287 img loss 1.3287667036056519 img loss 1.3043367862701416 img loss 1.3106297254562378 img loss 1.305892825126648 img loss 1.295058012008667 img loss 1.2789018154144287 img loss 1.3146971464157104 img loss 1.3954919576644897 img loss 1.2380554676055908 img loss 1.2107298374176025 img loss 1.2751520872116089 img loss 1.2104060649871826 img loss 1.3081861734390259 img loss 1.3141963481903076 img loss 1.3020358085632324 img loss 1.258116602897644 img loss 1.2022207975387573 img loss 1.294633150100708 img loss 1.282157301902771 img loss 1.2215912342071533 img loss 1.1973016262054443 img loss 1.2118499279022217 img loss 1.2742536067962646 img loss 1.2463021278381348 img loss 1.3282535076141357 img loss 1.2402691841125488 img loss 1.2170326709747314 img loss 1.2404628992080688 img loss 1.2703713178634644 img loss 1.2748275995254517 img loss 1.2656397819519043 img loss 1.365686058998108 img loss 1.2637895345687866 img loss 1.3402267694473267 img loss 1.289244294166565 img loss 1.2249271869659424 img loss 1.3201003074645996 img loss 1.1850180625915527 img loss 1.2787741422653198 {'loss': 1.2694, 'grad_norm': 0.3534231185913086, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2668613195419312 img loss 1.1980972290039062 img loss 1.2500333786010742 img loss 1.1844452619552612 img loss 1.2397470474243164 img loss 1.2561376094818115 img loss 1.2598130702972412 img loss 1.2560899257659912 img loss 1.2102210521697998 img loss 1.2099920511245728 img loss 1.3201370239257812 img loss 1.18212890625 img loss 1.2492023706436157 img loss 1.25443696975708 img loss 1.272104024887085 img loss 1.2208397388458252 img loss 1.1676273345947266 img loss 1.2361431121826172 img loss 1.2080427408218384 img loss 1.2562997341156006 img loss 1.16959547996521 img loss 1.2408584356307983 img loss 1.1696373224258423 img loss 1.2611545324325562 img loss 1.2122671604156494 img loss 1.2848858833312988 img loss 1.1695350408554077 img loss 1.2042789459228516 img loss 1.332824468612671 img loss 1.227241039276123 img loss 1.1965782642364502 img loss 1.2422542572021484 img loss 1.2266018390655518 img loss 1.2679336071014404 img loss 1.2371091842651367 img loss 1.3356072902679443 img loss 1.2386099100112915 img loss 1.2412002086639404 img loss 1.2168323993682861 img loss 1.2147808074951172 img loss 1.3384318351745605 img loss 1.2339664697647095 img loss 1.2319142818450928 img loss 1.2406431436538696 img loss 1.2013416290283203 img loss 1.2472875118255615 img loss 1.1940088272094727 img loss 1.323835849761963 img loss 1.1746870279312134 img loss 1.2994461059570312 img loss 1.279341220855713 img loss 1.2293262481689453 img loss 1.1734155416488647 img loss 1.2842307090759277 img loss 1.2494553327560425 img loss 1.310317873954773 img loss 1.3314533233642578 img loss 1.2089612483978271 img loss 1.225489854812622 img loss 1.2217282056808472 img loss 1.2224409580230713 img loss 1.268112063407898 img loss 1.2308290004730225 img loss 1.26658296585083 img loss 1.2713661193847656 img loss 1.2465842962265015 img loss 1.2259609699249268 img loss 1.2295489311218262 img loss 1.3151092529296875 img loss 1.1276026964187622 img loss 1.1727347373962402 img loss 1.2779759168624878 img loss 1.1702407598495483 img loss 1.207450270652771 img loss 1.1851856708526611 img loss 1.2316950559616089 img loss 1.1054983139038086 img loss 1.2228227853775024 img loss 1.1980055570602417 img loss 1.1929811239242554 img loss 1.259319543838501 img loss 1.218311071395874 img loss 1.2597644329071045 img loss 1.2462600469589233 img loss 1.2655506134033203 img loss 1.2879679203033447 img loss 1.2446544170379639 img loss 1.30113685131073 img loss 1.1846030950546265 img loss 1.254828691482544 img loss 1.1990294456481934 img loss 1.2490129470825195 img loss 1.2068763971328735 img loss 1.1972202062606812 img loss 1.1877851486206055 img loss 1.2344564199447632 img loss 1.282477855682373 img loss 1.2691020965576172 img loss 1.2392222881317139 img loss 1.2335630655288696 img loss 1.3404878377914429 img loss 1.2213549613952637 img loss 1.2283600568771362 img loss 1.2754912376403809 img loss 1.3234440088272095 img loss 1.2730474472045898 img loss 1.2905552387237549 img loss 1.2358248233795166 img loss 1.2253217697143555 img loss 1.3335187435150146 img loss 1.231444239616394 img loss 1.2244837284088135 img loss 1.2320750951766968 img loss 1.2362369298934937 img loss 1.2450239658355713 img loss 1.1864984035491943 img loss 1.1850175857543945 img loss 1.3326936960220337 img loss 1.199633002281189 img loss 1.2373898029327393 img loss 1.2237592935562134 img loss 1.2619158029556274 img loss 1.1911087036132812 img loss 1.2397907972335815 img loss 1.2344143390655518 img loss 1.2213058471679688 img loss 1.2833057641983032 img loss 1.2493150234222412 {'loss': 1.2386, 'grad_norm': 0.4491550624370575, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3993912935256958 img loss 1.3351199626922607 img loss 1.440674066543579 img loss 1.2936642169952393 img loss 1.2785120010375977 img loss 1.3204760551452637 img loss 1.4821360111236572 img loss 1.5250303745269775 img loss 1.3789983987808228 img loss 1.411358118057251 img loss 1.3891091346740723 img loss 1.2893846035003662 img loss 1.2925890684127808 img loss 1.3213787078857422 img loss 1.360166072845459img loss 1.2738672494888306 img loss 1.3255414962768555 img loss 1.2837252616882324 img loss 1.2876529693603516 img loss 1.2954620122909546 img loss 1.3282263278961182 img loss 1.2869110107421875 img loss 1.4287898540496826 img loss 1.3035345077514648 img loss 1.286807894706726 img loss 1.2377651929855347 img loss 1.350754976272583 img loss 1.3440396785736084 img loss 1.4330772161483765 img loss 1.3907759189605713 img loss 1.4010835886001587 img loss 1.3655575513839722 img loss 1.274585247039795 img loss 1.4750994443893433 img loss 1.4126107692718506 img loss 1.3217779397964478 img loss 1.277606725692749 img loss 1.3722141981124878img loss 1.288409948348999 img loss 1.389351725578308 img loss 1.4268420934677124 img loss 1.262184977531433 img loss 1.3639674186706543 img loss 1.3458844423294067 img loss 1.3417760133743286 img loss 1.4156254529953003 img loss 1.341937780380249 img loss 1.4220203161239624 img loss 1.3215888738632202 img loss 1.2325414419174194 img loss 1.2666983604431152 img loss 1.2895454168319702 img loss 1.2964153289794922 img loss 1.3984242677688599 img loss 1.4639581441879272 img loss 1.415117621421814 img loss 1.452039122581482 img loss 1.3911998271942139 img loss 1.2791153192520142 img loss 1.2891632318496704img loss 1.3963571786880493 img loss 1.3033052682876587 img loss 1.3874632120132446 img loss 1.387579083442688 img loss 1.3489137887954712 img loss 1.3222540616989136 img loss 1.3151355981826782 img loss 1.3932700157165527 img loss 1.4119480848312378 img loss 1.3723790645599365 img loss 1.2979265451431274 img loss 1.3345342874526978 img loss 1.3948179483413696 img loss 1.2481765747070312 img loss 1.2616779804229736 img loss 1.3431187868118286 img loss 1.3326667547225952 img loss 1.386160969734192 img loss 1.377925992012024 img loss 1.282949447631836 img loss 1.310707926750183 img loss 1.3625588417053223 img loss 1.3871092796325684 img loss 1.281804084777832 img loss 1.4181102514266968 img loss 1.3295035362243652 img loss 1.3545666933059692 img loss 1.320016622543335 img loss 1.377781629562378 img loss 1.3439215421676636 img loss 1.248839259147644 img loss 1.3442386388778687 img loss 1.3605748414993286 img loss 1.2814735174179077 img loss 1.3489114046096802 img loss 1.3474427461624146 img loss 1.41658616065979 img loss 1.5281208753585815 img loss 1.3437751531600952 img loss 1.3269953727722168 img loss 1.4547475576400757 img loss 1.2732911109924316 img loss 1.3208799362182617 img loss 1.2725856304168701 img loss 1.3301244974136353 img loss 1.3109455108642578 img loss 1.385814905166626 img loss 1.3638278245925903 img loss 1.2452911138534546 img loss 1.4389777183532715 img loss 1.3653109073638916 img loss 1.3808324337005615 img loss 1.4488942623138428 img loss 1.3912125825881958 img loss 1.3691929578781128 img loss 1.3103841543197632 img loss 1.29227614402771 img loss 1.3960450887680054 img loss 1.3661566972732544 img loss 1.4552735090255737 img loss 1.2805097103118896 img loss 1.4843391180038452 img loss 1.3740108013153076 img loss 1.3523274660110474 img loss 1.2748150825500488 img loss 1.2609517574310303 img loss 1.32636296749115 img loss 1.2969563007354736 {'loss': 1.3494, 'grad_norm': 0.5956394076347351, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2053712606430054 img loss 1.331024169921875 img loss 1.2045423984527588 img loss 1.164522647857666 img loss 1.093440294265747 img loss 1.2105116844177246 img loss 1.1320537328720093 img loss 1.1949515342712402 img loss 1.246071457862854 img loss 1.3046526908874512 img loss 1.1206001043319702 img loss 1.2034013271331787 img loss 1.2148187160491943 img loss 1.2102457284927368 img loss 1.1481393575668335 img loss 1.200984001159668 img loss 1.1312994956970215 img loss 1.2322338819503784 img loss 1.1973661184310913 img loss 1.2244824171066284 img loss 1.1693357229232788 img loss 1.1911251544952393 img loss 1.259081482887268 img loss 1.1466596126556396 img loss 1.239570140838623 img loss 1.15635347366333 img loss 1.2471435070037842 img loss 1.232622504234314 img loss 1.2535101175308228 img loss 1.2626054286956787 img loss 1.183883547782898 img loss 1.1840237379074097 img loss 1.1731852293014526 img loss 1.259365439414978 img loss 1.1815004348754883 img loss 1.1794341802597046 img loss 1.1848487854003906 img loss 1.2185659408569336 img loss 1.2333998680114746 img loss 1.2035481929779053 img loss 1.190352439880371 img loss 1.2626004219055176 img loss 1.215524673461914 img loss 1.1581299304962158 img loss 1.2218093872070312 img loss 1.2326072454452515 img loss 1.1680233478546143 img loss 1.2524763345718384 img loss 1.228877305984497 img loss 1.1569912433624268 img loss 1.2282679080963135 img loss 1.1713899374008179 img loss 1.1655374765396118 img loss 1.23421049118042 img loss 1.17837655544281 img loss 1.213450312614441 img loss 1.1701973676681519 img loss 1.2122573852539062 img loss 1.2912559509277344 img loss 1.2016531229019165 img loss 1.1872109174728394 img loss 1.1113581657409668 img loss 1.159727931022644 img loss 1.2496240139007568 img loss 1.1814979314804077 img loss 1.220761775970459 img loss 1.1970627307891846 img loss 1.28038489818573 img loss 1.1826229095458984 img loss 1.0975412130355835 img loss 1.1894899606704712 img loss 1.177345633506775 img loss 1.2346034049987793 img loss 1.1850707530975342 img loss 1.2784819602966309 img loss 1.1884511709213257 img loss 1.1659971475601196 img loss 1.1944185495376587 img loss 1.1835081577301025 img loss 1.2238922119140625 img loss 1.2376174926757812 img loss 1.2520183324813843 img loss 1.3264784812927246 img loss 1.2248151302337646 img loss 1.1740003824234009 img loss 1.2187551259994507 img loss 1.1806938648223877 img loss 1.219948410987854 img loss 1.1879090070724487 img loss 1.2337290048599243 img loss 1.2221689224243164 img loss 1.1348192691802979 img loss 1.2983156442642212 img loss 1.246324062347412 img loss 1.17161226272583 img loss 1.2602510452270508 img loss 1.2300914525985718 img loss 1.2121185064315796 img loss 1.1607263088226318 img loss 1.2319713830947876 img loss 1.2079492807388306 img loss 1.2343559265136719 img loss 1.2911876440048218 img loss 1.255575180053711 img loss 1.1597537994384766 img loss 1.19209623336792 img loss 1.1398394107818604 img loss 1.2707582712173462 img loss 1.2557264566421509 img loss 1.2404892444610596 img loss 1.1717805862426758 img loss 1.181396722793579 img loss 1.1920816898345947 img loss 1.1491045951843262 img loss 1.257703185081482 img loss 1.126483678817749 img loss 1.1570961475372314 img loss 1.1889288425445557 img loss 1.2671895027160645 img loss 1.218188762664795 img loss 1.2893661260604858 img loss 1.1456869840621948 img loss 1.227120041847229 img loss 1.2471122741699219 img loss 1.2521352767944336 img loss 1.2262094020843506 img loss 1.2448982000350952 img loss 1.3029903173446655 {'loss': 1.2085, 'grad_norm': 0.3453971743583679, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5487717390060425 img loss 1.649272084236145 img loss 1.544324278831482 img loss 1.6121450662612915 img loss 1.5512758493423462 img loss 1.613988995552063 img loss 1.5134457349777222 img loss 1.6044129133224487 img loss 1.6784818172454834 img loss 1.6200145483016968 img loss 1.7193753719329834 img loss 1.6110197305679321 img loss 1.561429500579834 img loss 1.5900263786315918 img loss 1.6666618585586548 img loss 1.5535563230514526 img loss 1.6378411054611206 img loss 1.6035780906677246 img loss 1.6408449411392212 img loss 1.479154348373413 img loss 1.7489104270935059 img loss 1.5667401552200317 img loss 1.6618249416351318 img loss 1.5698002576828003 img loss 1.5392578840255737 img loss 1.7230849266052246 img loss 1.5614079236984253 img loss 1.5407968759536743 img loss 1.5971263647079468 img loss 1.6797438859939575 img loss 1.5492702722549438 img loss 1.6021924018859863 img loss 1.6203722953796387 img loss 1.6551783084869385 img loss 1.6549336910247803 img loss 1.6329131126403809 img loss 1.4685158729553223 img loss 1.5603859424591064 img loss 1.4318327903747559 img loss 1.6373862028121948 img loss 1.5513110160827637 img loss 1.7705661058425903 img loss 1.6135783195495605 img loss 1.5701740980148315 img loss 1.5282607078552246 img loss 1.4990617036819458 img loss 1.5321942567825317 img loss 1.5054314136505127 img loss 1.6215347051620483 img loss 1.5698891878128052 img loss 1.477000117301941 img loss 1.6495636701583862 img loss 1.532174825668335 img loss 1.6030105352401733 img loss 1.5399563312530518 img loss 1.6139944791793823 img loss 1.5332151651382446 img loss 1.599153995513916 img loss 1.6430782079696655 img loss 1.6343861818313599 img loss 1.5680711269378662 img loss 1.4825981855392456 img loss 1.5295668840408325 img loss 1.7557951211929321 img loss 1.6808058023452759 img loss 1.671770453453064 img loss 1.5012654066085815 img loss 1.713400959968567 img loss 1.6583210229873657 img loss 1.641616702079773 img loss 1.8391519784927368 img loss 1.6949779987335205 img loss 1.5953906774520874 img loss 1.7027580738067627 img loss 1.5238109827041626 img loss 1.5993211269378662 img loss 1.670102834701538 img loss 1.6743168830871582 img loss 1.548957347869873 img loss 1.6347159147262573 img loss 1.6163198947906494 img loss 1.6879562139511108 img loss 1.5908458232879639 img loss 1.6342880725860596 img loss 1.5500701665878296 img loss 1.5962507724761963 img loss 1.7908293008804321 img loss 1.4600884914398193 img loss 1.5731302499771118 img loss 1.56582510471344 img loss 1.545242428779602img loss 1.5572723150253296 img loss 1.714119553565979 img loss 1.631689190864563 img loss 1.589831829071045 img loss 1.6298177242279053 img loss 1.7296764850616455 img loss 1.5217922925949097 img loss 1.6570802927017212 img loss 1.5838139057159424 img loss 1.7119656801223755 img loss 1.5417271852493286 img loss 1.548462152481079 img loss 1.5793166160583496 img loss 1.387377142906189 img loss 1.6224980354309082 img loss 1.812697410583496 img loss 1.6240583658218384 img loss 1.6136215925216675 img loss 1.5115019083023071 img loss 1.6286240816116333 img loss 1.4942433834075928 img loss 1.4873906373977661 img loss 1.5486007928848267 img loss 1.8028936386108398 img loss 1.5065395832061768 img loss 1.7265454530715942 img loss 1.6891177892684937 img loss 1.8373942375183105 img loss 1.4218791723251343 img loss 1.548041820526123 img loss 1.6183305978775024 img loss 1.5560413599014282 img loss 1.6336554288864136 img loss 1.4958363771438599 img loss 1.6488749980926514 img loss 1.6601125001907349 img loss 1.5923389196395874 {'loss': 1.6043, 'grad_norm': 0.5686179995536804, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.27070951461792 img loss 1.2515883445739746 img loss 1.381783127784729 img loss 1.385720133781433 img loss 1.3294978141784668 img loss 1.2013729810714722 img loss 1.2845726013183594 img loss 1.2853683233261108 img loss 1.2479491233825684 img loss 1.2432571649551392 img loss 1.3338090181350708 img loss 1.2542498111724854 img loss 1.2126425504684448 img loss 1.2966820001602173 img loss 1.410640835762024 img loss 1.2276018857955933 img loss 1.3877313137054443 img loss 1.2633894681930542 img loss 1.2193655967712402 img loss 1.34209144115448 img loss 1.3205499649047852 img loss 1.269482135772705 img loss 1.339983582496643 img loss 1.284279465675354 img loss 1.3059486150741577 img loss 1.2740134000778198 img loss 1.3079755306243896 img loss 1.3224997520446777 img loss 1.2472540140151978 img loss 1.4437023401260376 img loss 1.3271909952163696 img loss 1.299756646156311 img loss 1.2368820905685425 img loss 1.3673142194747925 img loss 1.2978636026382446 img loss 1.2901673316955566 img loss 1.2296603918075562 img loss 1.266471266746521 img loss 1.3229115009307861 img loss 1.2804219722747803 img loss 1.3694707155227661 img loss 1.3778080940246582 img loss 1.2767757177352905 img loss 1.276650309562683 img loss 1.3074774742126465 img loss 1.210127592086792 img loss 1.3351647853851318 img loss 1.3888877630233765 img loss 1.3184242248535156 img loss 1.276499629020691 img loss 1.2951562404632568 img loss 1.2545711994171143 img loss 1.3564822673797607 img loss 1.2373155355453491 img loss 1.2691550254821777 img loss 1.2540390491485596 img loss 1.4003742933273315 img loss 1.2390965223312378 img loss 1.2105385065078735 img loss 1.2199620008468628 img loss 1.3516422510147095 img loss 1.2709568738937378 img loss 1.2902238368988037 img loss 1.2579542398452759 img loss 1.3434302806854248 img loss 1.3284575939178467 img loss 1.3948386907577515 img loss 1.3519260883331299 img loss 1.299350380897522 img loss 1.1972522735595703 img loss 1.267451524734497 img loss 1.2886263132095337 img loss 1.265022873878479 img loss 1.296290636062622 img loss 1.2819247245788574 img loss 1.363972544670105 img loss 1.2900422811508179 img loss 1.2576090097427368 img loss 1.273018717765808 img loss 1.385547399520874 img loss 1.2341915369033813 img loss 1.4166617393493652 img loss 1.1995420455932617 img loss 1.3009763956069946 img loss 1.2609572410583496 img loss 1.3134979009628296 img loss 1.2993927001953125 img loss 1.3140075206756592 img loss 1.320751428604126 img loss 1.2441715002059937 img loss 1.3412795066833496 img loss 1.301462173461914 img loss 1.2912620306015015 img loss 1.4358093738555908 img loss 1.2545502185821533 img loss 1.3317400217056274 img loss 1.3095682859420776 img loss 1.2902064323425293 img loss 1.2970843315124512 img loss 1.320353388786316 img loss 1.327441930770874 img loss 1.3596723079681396 img loss 1.3072509765625 img loss 1.3008339405059814 img loss 1.2530838251113892 img loss 1.2989805936813354 img loss 1.2617915868759155 img loss 1.3483920097351074 img loss 1.3883326053619385 img loss 1.2908705472946167 img loss 1.264791488647461 img loss 1.2635138034820557 img loss 1.277554988861084 img loss 1.3023366928100586 img loss 1.2377467155456543 img loss 1.2354927062988281 img loss 1.2806247472763062 img loss 1.2778661251068115 img loss 1.2265145778656006 img loss 1.2960283756256104 img loss 1.2796329259872437 img loss 1.3392844200134277 img loss 1.3559857606887817 img loss 1.2795037031173706 img loss 1.3570189476013184 img loss 1.2533583641052246 img loss 1.2930333614349365 img loss 1.2779979705810547 {'loss': 1.2977, 'grad_norm': 0.47517648339271545, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6025824546813965 img loss 1.5091561079025269 img loss 1.5389612913131714 img loss 1.5564812421798706 img loss 1.5857876539230347 img loss 1.4980548620224 img loss 1.4272949695587158 img loss 1.4718214273452759 img loss 1.662643551826477 img loss 1.508080005645752 img loss 1.528806447982788 img loss 1.524362325668335 img loss 1.5055128335952759 img loss 1.5048115253448486 img loss 1.614292860031128 img loss 1.4406553506851196 img loss 1.6980937719345093 img loss 1.5306435823440552 img loss 1.5536057949066162 img loss 1.4819104671478271 img loss 1.5432041883468628 img loss 1.519882321357727 img loss 1.6096023321151733 img loss 1.575556993484497 img loss 1.4734930992126465 img loss 1.5885913372039795 img loss 1.486295461654663 img loss 1.5347390174865723 img loss 1.4013656377792358 img loss 1.5283958911895752 img loss 1.614701509475708 img loss 1.480546236038208 img loss 1.469457983970642 img loss 1.539812684059143 img loss 1.5430749654769897 img loss 1.4895555973052979 img loss 1.555890440940857 img loss 1.6065009832382202 img loss 1.5916298627853394 img loss 1.558254599571228 img loss 1.599897861480713 img loss 1.4851216077804565 img loss 1.5465885400772095 img loss 1.4525387287139893 img loss 1.485681414604187 img loss 1.6592230796813965 img loss 1.488834023475647 img loss 1.6376569271087646 img loss 1.5334211587905884 img loss 1.6021478176116943 img loss 1.4791749715805054 img loss 1.5406712293624878 img loss 1.5012398958206177 img loss 1.6544690132141113 img loss 1.4761697053909302 img loss 1.459216833114624 img loss 1.53038489818573 img loss 1.4792872667312622 img loss 1.6157058477401733 img loss 1.5993220806121826 img loss 1.3075672388076782 img loss 1.4523828029632568 img loss 1.4267829656600952 img loss 1.769222378730774 img loss 1.5532532930374146 img loss 1.5825660228729248 img loss 1.4109374284744263 img loss 1.449899435043335 img loss 1.5407795906066895 img loss 1.3926904201507568 img loss 1.6498667001724243 img loss 1.5796817541122437 img loss 1.5714117288589478 img loss 1.5572216510772705 img loss 1.5478578805923462 img loss 1.5386213064193726 img loss 1.4456448554992676 img loss 1.557700753211975 img loss 1.4540318250656128 img loss 1.497403621673584 img loss 1.5546365976333618 img loss 1.3531235456466675 img loss 1.4727421998977661 img loss 1.538033366203308 img loss 1.4230743646621704 img loss 1.496543288230896 img loss 1.590653896331787 img loss 1.4761707782745361 img loss 1.5014182329177856 img loss 1.4928033351898193 img loss 1.651237964630127 img loss 1.5229250192642212 img loss 1.5142589807510376 img loss 1.4758363962173462 img loss 1.5612549781799316 img loss 1.5993552207946777 img loss 1.4787237644195557 img loss 1.6213343143463135 img loss 1.5810967683792114 img loss 1.456417441368103 img loss 1.5862056016921997 img loss 1.4374396800994873 img loss 1.5364152193069458 img loss 1.515296220779419 img loss 1.3839305639266968 img loss 1.5389606952667236 img loss 1.4293118715286255 img loss 1.5580841302871704 img loss 1.725185513496399 img loss 1.441576600074768 img loss 1.5431898832321167 img loss 1.5134233236312866 img loss 1.5436710119247437 img loss 1.406096339225769 img loss 1.551063895225525 img loss 1.5234287977218628 img loss 1.501036286354065 img loss 1.5471045970916748 img loss 1.4963746070861816 img loss 1.6157233715057373 img loss 1.4993046522140503 img loss 1.5015753507614136 img loss 1.5075761079788208 img loss 1.6404658555984497 img loss 1.6203535795211792 img loss 1.5210258960723877 img loss 1.5175460577011108 img loss 1.6513067483901978 {'loss': 1.5295, 'grad_norm': 0.32717031240463257, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2396697998046875 img loss 1.2909185886383057 img loss 1.2634999752044678 img loss 1.2478818893432617 img loss 1.236569881439209 img loss 1.2556777000427246 img loss 1.2745414972305298 img loss 1.36692214012146 img loss 1.1625173091888428 img loss 1.3459903001785278 img loss 1.2153748273849487 img loss 1.302284836769104 img loss 1.345377802848816 img loss 1.219102382659912 img loss 1.2288099527359009 img loss 1.3213852643966675 img loss 1.2810789346694946 img loss 1.2800178527832031 img loss 1.2458549737930298 img loss 1.2065004110336304 img loss 1.245906114578247 img loss 1.195634365081787 img loss 1.308211088180542 img loss 1.242827296257019 img loss 1.2112922668457031 img loss 1.3323160409927368 img loss 1.2603938579559326 img loss 1.2642143964767456 img loss 1.3523383140563965 img loss 1.2351245880126953 img loss 1.2673759460449219 img loss 1.3038616180419922 img loss 1.3326423168182373 img loss 1.2571722269058228 img loss 1.279761552810669 img loss 1.2921041250228882 img loss 1.2739282846450806 img loss 1.32387113571167 img loss 1.2990821599960327 img loss 1.2877023220062256 img loss 1.2514889240264893 img loss 1.25662100315094 img loss 1.3398630619049072 img loss 1.2452938556671143 img loss 1.2831664085388184 img loss 1.2085307836532593 img loss 1.2278170585632324 img loss 1.232371211051941 img loss 1.3427969217300415 img loss 1.2333791255950928 img loss 1.2319865226745605 img loss 1.3520500659942627 img loss 1.1618843078613281 img loss 1.2518973350524902 img loss 1.2078583240509033 img loss 1.254981279373169 img loss 1.1898093223571777 img loss 1.2600057125091553 img loss 1.2027488946914673 img loss 1.194633960723877 img loss 1.3018925189971924 img loss 1.2895065546035767 img loss 1.227111577987671 img loss 1.3353277444839478 img loss 1.2600681781768799 img loss 1.3128273487091064 img loss 1.295071005821228 img loss 1.2470612525939941 img loss 1.2361886501312256 img loss 1.2994831800460815 img loss 1.2319382429122925 img loss 1.2369308471679688 img loss 1.2536327838897705 img loss 1.335141658782959 img loss 1.3422306776046753 img loss 1.276926040649414 img loss 1.2567297220230103 img loss 1.322265386581421 img loss 1.2740529775619507 img loss 1.2593779563903809 img loss 1.2425142526626587 img loss 1.3426024913787842 img loss 1.2510076761245728 img loss 1.2720329761505127 img loss 1.3720850944519043 img loss 1.2864983081817627 img loss 1.3197803497314453 img loss 1.1799150705337524 img loss 1.3302198648452759 img loss 1.2657297849655151 img loss 1.2438807487487793 img loss 1.2369450330734253 img loss 1.305910587310791 img loss 1.2782725095748901 img loss 1.2590351104736328 img loss 1.3083832263946533 img loss 1.214129090309143 img loss 1.281864881515503 img loss 1.1862542629241943 img loss 1.2897157669067383 img loss 1.2752405405044556 img loss 1.2706823348999023 img loss 1.2763532400131226 img loss 1.2936586141586304 img loss 1.2552343606948853 img loss 1.275876522064209 img loss 1.2870993614196777 img loss 1.2806367874145508 img loss 1.278712511062622 img loss 1.2945966720581055 img loss 1.2512601613998413 img loss 1.2928568124771118 img loss 1.2744308710098267 img loss 1.2723582983016968 img loss 1.2201151847839355 img loss 1.2198059558868408 img loss 1.1951212882995605 img loss 1.260858416557312 img loss 1.2451817989349365 img loss 1.2265493869781494 img loss 1.339963436126709 img loss 1.2212289571762085 img loss 1.2292063236236572 img loss 1.3244082927703857 img loss 1.226061224937439 img loss 1.2533708810806274 img loss 1.2955644130706787 img loss 1.3130412101745605 {'loss': 1.2682, 'grad_norm': 0.29082509875297546, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2437880039215088 img loss 1.2725523710250854 img loss 1.3113943338394165 img loss 1.273687720298767 img loss 1.2330747842788696 img loss 1.2897013425827026 img loss 1.3220115900039673 img loss 1.155516266822815 img loss 1.3955323696136475 img loss 1.3793056011199951 img loss 1.2481228113174438 img loss 1.316240668296814 img loss 1.3938183784484863 img loss 1.1807888746261597 img loss 1.139220118522644 img loss 1.2756705284118652 img loss 1.2506310939788818 img loss 1.2447569370269775 img loss 1.3636161088943481 img loss 1.2380690574645996 img loss 1.283372163772583 img loss 1.2456015348434448 img loss 1.2404178380966187 img loss 1.1881122589111328 img loss 1.2839593887329102 img loss 1.2819669246673584 img loss 1.2533948421478271 img loss 1.2167236804962158 img loss 1.2755457162857056 img loss 1.2330200672149658 img loss 1.2240549325942993 img loss 1.2852873802185059 img loss 1.3449350595474243 img loss 1.1541109085083008 img loss 1.1630339622497559 img loss 1.3562203645706177 img loss 1.2925983667373657 img loss 1.3148303031921387 img loss 1.1935904026031494 img loss 1.2840607166290283 img loss 1.2022039890289307 img loss 1.268644094467163 img loss 1.3006528615951538 img loss 1.123695731163025 img loss 1.2752293348312378 img loss 1.29542875289917 img loss 1.1883389949798584 img loss 1.315782904624939 img loss 1.3178329467773438 img loss 1.2390809059143066 img loss 1.2328071594238281 img loss 1.2991178035736084 img loss 1.205544352531433 img loss 1.192737102508545 img loss 1.2478498220443726 img loss 1.3109278678894043 img loss 1.2322291135787964 img loss 1.4168734550476074 img loss 1.2353332042694092 img loss 1.2987045049667358 img loss 1.2653131484985352 img loss 1.2248456478118896 img loss 1.2056963443756104 img loss 1.3023813962936401 img loss 1.2349668741226196 img loss 1.2527544498443604 img loss 1.2156386375427246 img loss 1.3137030601501465 img loss 1.24077570438385 img loss 1.3570284843444824 img loss 1.2156625986099243 img loss 1.202324628829956 img loss 1.1586010456085205 img loss 1.147909164428711 img loss 1.3246580362319946 img loss 1.2708396911621094 img loss 1.2453068494796753 img loss 1.3597996234893799 img loss 1.1519138813018799 img loss 1.2152245044708252 img loss 1.3317210674285889 img loss 1.297005534172058 img loss 1.2225093841552734 img loss 1.3389627933502197 img loss 1.464019536972046 img loss 1.243385910987854 img loss 1.3063715696334839 img loss 1.27091383934021 img loss 1.275176763534546 img loss 1.282094955444336 img loss 1.3094624280929565 img loss 1.3161752223968506 img loss 1.1875041723251343 img loss 1.1726716756820679 img loss 1.3865702152252197 img loss 1.253350853919983 img loss 1.311795711517334 img loss 1.2458248138427734 img loss 1.3161561489105225 img loss 1.2854621410369873 img loss 1.2663017511367798 img loss 1.3506054878234863 img loss 1.240424394607544 img loss 1.2113741636276245 img loss 1.2871394157409668 img loss 1.2562305927276611 img loss 1.2410773038864136 img loss 1.362912654876709 img loss 1.290928840637207 img loss 1.273817777633667 img loss 1.2105544805526733 img loss 1.184422492980957 img loss 1.2252671718597412 img loss 1.2410624027252197 img loss 1.3594748973846436 img loss 1.234039306640625 img loss 1.241800308227539 img loss 1.2608822584152222 img loss 1.2335243225097656 img loss 1.2610119581222534 img loss 1.3502733707427979 img loss 1.3132604360580444 img loss 1.3259342908859253 img loss 1.2070108652114868 img loss 1.1906260251998901 img loss 1.367274522781372 img loss 1.2235260009765625 img loss 1.3529478311538696 {'loss': 1.2666, 'grad_norm': 0.2514604330062866, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1907647848129272 img loss 1.139353632926941 img loss 1.2047022581100464 img loss 1.1295464038848877 img loss 1.099916696548462 img loss 1.2451658248901367 img loss 1.202299952507019 img loss 1.1892247200012207 img loss 1.1575618982315063 img loss 1.1873277425765991 img loss 1.2262969017028809 img loss 1.214913249015808 img loss 1.2561757564544678 img loss 1.2137950658798218 img loss 1.1116275787353516 img loss 1.2307525873184204 img loss 1.211869716644287 img loss 1.2014912366867065 img loss 1.1463972330093384 img loss 1.206315517425537 img loss 1.1772394180297852 img loss 1.1689565181732178 img loss 1.1495672464370728 img loss 1.1549105644226074 img loss 1.1561810970306396 img loss 1.1607412099838257 img loss 1.191199541091919 img loss 1.1556317806243896 img loss 1.2748348712921143 img loss 1.2136677503585815 img loss 1.1810756921768188 img loss 1.1800943613052368 img loss 1.1362937688827515 img loss 1.1342703104019165 img loss 1.1490418910980225 img loss 1.1767746210098267 img loss 1.119220495223999 img loss 1.1304365396499634 img loss 1.2103594541549683 img loss 1.1394331455230713 img loss 1.213334083557129 img loss 1.210586428642273 img loss 1.2040116786956787 img loss 1.0581932067871094 img loss 1.200701117515564 img loss 1.224334955215454 img loss 1.1341537237167358 img loss 1.2321107387542725 img loss 1.1595909595489502 img loss 1.231318473815918 img loss 1.142652988433838 img loss 1.1990569829940796 img loss 1.1181836128234863 img loss 1.1735050678253174 img loss 1.2134766578674316 img loss 1.1942147016525269 img loss 1.1493167877197266 img loss 1.186075210571289 img loss 1.1349670886993408 img loss 1.1676377058029175 img loss 1.1143096685409546 img loss 1.1737526655197144 img loss 1.227318286895752 img loss 1.1815154552459717 img loss 1.1897728443145752 img loss 1.2521982192993164 img loss 1.2053825855255127 img loss 1.1948456764221191 img loss 1.1647231578826904 img loss 1.1753185987472534 img loss 1.2250444889068604 img loss 1.1906802654266357 img loss 1.108130693435669 img loss 1.160949945449829 img loss 1.1723666191101074 img loss 1.2652218341827393 img loss 1.2299778461456299 img loss 1.1713228225708008 img loss 1.1865123510360718 img loss 1.285949945449829 img loss 1.236121416091919 img loss 1.227609634399414 img loss 1.1607424020767212 img loss 1.1079779863357544 img loss 1.1387020349502563 img loss 1.1969051361083984 img loss 1.1623481512069702 img loss 1.1848968267440796 img loss 1.1661831140518188 img loss 1.219481110572815 img loss 1.1036871671676636 img loss 1.158261775970459 img loss 1.1903327703475952 img loss 1.1664022207260132 img loss 1.2432146072387695 img loss 1.1609702110290527 img loss 1.1898622512817383 img loss 1.1493548154830933 img loss 1.2349318265914917 img loss 1.1755927801132202 img loss 1.1744956970214844 img loss 1.3283233642578125 img loss 1.154792308807373 img loss 1.1875591278076172img loss 1.1833548545837402 img loss 1.2136749029159546 img loss 1.1987253427505493 img loss 1.2774416208267212 img loss 1.1507290601730347 img loss 1.2329946756362915 img loss 1.1493803262710571 img loss 1.117641806602478 img loss 1.119447946548462 img loss 1.2343521118164062 img loss 1.2939385175704956 img loss 1.1908612251281738 img loss 1.236175537109375 img loss 1.1514983177185059 img loss 1.2102470397949219 img loss 1.2284626960754395 img loss 1.1823638677597046 img loss 1.2152361869812012 img loss 1.1899158954620361 img loss 1.1464699506759644 img loss 1.2469768524169922 img loss 1.169182538986206 img loss 1.163017749786377 img loss 1.2047100067138672 {'loss': 1.185, 'grad_norm': 0.3747134804725647, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2685941457748413 img loss 1.1288070678710938 img loss 1.173486351966858 img loss 1.184783935546875 img loss 1.2056127786636353 img loss 1.1483122110366821 img loss 1.1839110851287842 img loss 1.1331572532653809 img loss 1.194887399673462 img loss 1.1651010513305664 img loss 1.2315348386764526 img loss 1.1698919534683228 img loss 1.1148648262023926 img loss 1.2031019926071167 img loss 1.1615591049194336 img loss 1.1783294677734375 img loss 1.2486560344696045 img loss 1.1994894742965698 img loss 1.1197818517684937 img loss 1.1317334175109863 img loss 1.1969635486602783 img loss 1.146014928817749 img loss 1.1838879585266113 img loss 1.155527114868164 img loss 1.1561896800994873 img loss 1.1782459020614624 img loss 1.1803945302963257 img loss 1.165202021598816 img loss 1.2138246297836304 img loss 1.1968646049499512 img loss 1.182645320892334 img loss 1.173227071762085 img loss 1.1511181592941284 img loss 1.1622703075408936 img loss 1.1753097772598267 img loss 1.1781786680221558 img loss 1.1871452331542969 img loss 1.1277809143066406 img loss 1.2159397602081299 img loss 1.2233929634094238 img loss 1.2073194980621338 img loss 1.1992509365081787 img loss 1.1992127895355225 img loss 1.1569966077804565 img loss 1.149971842765808 img loss 1.1226218938827515 img loss 1.2680612802505493 img loss 1.1826962232589722 img loss 1.1483877897262573 img loss 1.1715868711471558 img loss 1.1651772260665894 img loss 1.2471973896026611 img loss 1.1549408435821533 img loss 1.1868101358413696 img loss 1.2083104848861694 img loss 1.1756552457809448 img loss 1.188295841217041 img loss 1.1420538425445557 img loss 1.1748665571212769 img loss 1.1570093631744385 img loss 1.1597144603729248 img loss 1.213589072227478 img loss 1.245719313621521 img loss 1.1914876699447632 img loss 1.302668809890747 img loss 1.226030945777893 img loss 1.1973836421966553 img loss 1.2703443765640259 img loss 1.1603435277938843 img loss 1.1624221801757812 img loss 1.1766446828842163 img loss 1.1324642896652222 img loss 1.1860395669937134 img loss 1.1816920042037964 img loss 1.2001898288726807 img loss 1.2130038738250732 img loss 1.2170727252960205 img loss 1.162585973739624 img loss 1.1889594793319702 img loss 1.1818842887878418 img loss 1.187679648399353 img loss 1.0899217128753662 img loss 1.249589204788208 img loss 1.142602562904358 img loss 1.186330795288086 img loss 1.1300560235977173 img loss 1.1694008111953735 img loss 1.2177724838256836 img loss 1.153442144393921 img loss 1.2394694089889526 img loss 1.206669569015503 img loss 1.202499270439148 img loss 1.1525909900665283 img loss 1.1779627799987793 img loss 1.145111083984375 img loss 1.2032530307769775 img loss 1.2426731586456299 img loss 1.2197871208190918 img loss 1.1454594135284424 img loss 1.1509582996368408 img loss 1.1419267654418945 img loss 1.2076725959777832 img loss 1.1404175758361816 img loss 1.1365255117416382 img loss 1.124871015548706 img loss 1.2164188623428345 img loss 1.25446355342865 img loss 1.1859147548675537 img loss 1.226151466369629 img loss 1.2482373714447021 img loss 1.1627404689788818 img loss 1.145382285118103 img loss 1.188994288444519 img loss 1.183526873588562 img loss 1.2254024744033813 img loss 1.1965395212173462 img loss 1.179425597190857 img loss 1.1594390869140625 img loss 1.1553583145141602 img loss 1.1699306964874268 img loss 1.1600233316421509 img loss 1.192694902420044 img loss 1.1475818157196045 img loss 1.190313696861267 img loss 1.1925901174545288 img loss 1.2112276554107666 img loss 1.1870880126953125 img loss 1.225125789642334 {'loss': 1.1831, 'grad_norm': 0.28588712215423584, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4056974649429321 img loss 1.617017388343811 img loss 1.5083388090133667 img loss 1.5653764009475708 img loss 1.6611634492874146 img loss 1.5941815376281738 img loss 1.5929306745529175 img loss 1.5314451456069946 img loss 1.5115562677383423 img loss 1.5984843969345093 img loss 1.5130337476730347 img loss 1.6459676027297974 img loss 1.6983155012130737 img loss 1.6397897005081177 img loss 1.4890745878219604 img loss 1.4900352954864502 img loss 1.5485637187957764 img loss 1.5581142902374268 img loss 1.5928221940994263 img loss 1.4710423946380615 img loss 1.6733349561691284 img loss 1.721381425857544 img loss 1.564475655555725 img loss 1.631587266921997 img loss 1.5102555751800537 img loss 1.4444302320480347 img loss 1.4979254007339478 img loss 1.7282531261444092 img loss 1.5372334718704224 img loss 1.6411595344543457 img loss 1.4584864377975464 img loss 1.5644211769104004 img loss 1.4646241664886475 img loss 1.4359685182571411 img loss 1.614872694015503 img loss 1.5406185388565063 img loss 1.567877173423767 img loss 1.5178911685943604 img loss 1.5611807107925415 img loss 1.5202664136886597 img loss 1.5035585165023804 img loss 1.5134774446487427 img loss 1.6858346462249756 img loss 1.5406968593597412 img loss 1.3518617153167725 img loss 1.530321717262268 img loss 1.647490382194519 img loss 1.6120493412017822 img loss 1.6161426305770874 img loss 1.411934733390808 img loss 1.6752049922943115 img loss 1.411189317703247 img loss 1.559415340423584 img loss 1.577752709388733 img loss 1.5622210502624512 img loss 1.389463186264038 img loss 1.56479811668396 img loss 1.5366097688674927 img loss 1.5899641513824463 img loss 1.528913974761963 img loss 1.6159656047821045 img loss 1.5750702619552612 img loss 1.6729873418807983 img loss 1.464354395866394 img loss 1.6269437074661255 img loss 1.529459834098816 img loss 1.5585163831710815 img loss 1.5032085180282593 img loss 1.7076303958892822 img loss 1.6046301126480103 img loss 1.6152609586715698 img loss 1.6600677967071533 img loss 1.5957986116409302 img loss 1.6027370691299438 img loss 1.5068230628967285 img loss 1.3733736276626587 img loss 1.4822888374328613 img loss 1.7045122385025024 img loss 1.5635548830032349 img loss 1.4937785863876343 img loss 1.4695669412612915 img loss 1.4897960424423218 img loss 1.5946776866912842 img loss 1.639031171798706 img loss 1.415266513824463 img loss 1.6373584270477295 img loss 1.511144757270813 img loss 1.418542742729187 img loss 1.7137629985809326 img loss 1.5383085012435913 img loss 1.5685216188430786 img loss 1.5896326303482056 img loss 1.5405118465423584 img loss 1.7716786861419678 img loss 1.5694050788879395 img loss 1.6836618185043335 img loss 1.5035227537155151 img loss 1.6238373517990112 img loss 1.5563417673110962 img loss 1.447757363319397 img loss 1.5574376583099365 img loss 1.5917607545852661 img loss 1.569836139678955 img loss 1.5967150926589966 img loss 1.5758585929870605 img loss 1.3862864971160889 img loss 1.5347124338150024 img loss 1.4855817556381226 img loss 1.7168288230895996 img loss 1.5361653566360474 img loss 1.575289011001587 img loss 1.478750467300415 img loss 1.6576119661331177 img loss 1.5697743892669678 img loss 1.4757031202316284 img loss 1.4443024396896362 img loss 1.5606319904327393 img loss 1.4485195875167847 img loss 1.416887640953064 img loss 1.5189316272735596 img loss 1.5163815021514893 img loss 1.5779414176940918 img loss 1.6105965375900269 img loss 1.5509344339370728 img loss 1.5562134981155396 img loss 1.5260722637176514 img loss 1.6980358362197876 img loss 1.4344240427017212 {'loss': 1.5558, 'grad_norm': 0.48784154653549194, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1448312997817993 img loss 1.184993028640747 img loss 1.2787680625915527 img loss 1.169071912765503 img loss 1.1634039878845215 img loss 1.3070743083953857 img loss 1.3250312805175781 img loss 1.271369457244873 img loss 1.2921111583709717 img loss 1.237012505531311 img loss 1.2501932382583618 img loss 1.3607547283172607 img loss 1.2498468160629272 img loss 1.2320221662521362 img loss 1.258950114250183 img loss 1.3933042287826538 img loss 1.3705412149429321 img loss 1.1504695415496826 img loss 1.2370322942733765 img loss 1.242334246635437 img loss 1.2745577096939087 img loss 1.235488772392273 img loss 1.2438721656799316 img loss 1.2774940729141235 img loss 1.2943077087402344 img loss 1.340071201324463 img loss 1.3145735263824463 img loss 1.240947961807251 img loss 1.2666511535644531 img loss 1.3192394971847534 img loss 1.2524734735488892 img loss 1.1748807430267334 img loss 1.2838773727416992 img loss 1.2696411609649658 img loss 1.3336713314056396 img loss 1.2474342584609985 img loss 1.2582347393035889 img loss 1.2938499450683594 img loss 1.1856364011764526 img loss 1.1894611120224 img loss 1.2468693256378174 img loss 1.103837251663208 img loss 1.2536556720733643 img loss 1.2904820442199707 img loss 1.345162034034729 img loss 1.2323402166366577 img loss 1.3247696161270142 img loss 1.194543719291687 img loss 1.2179793119430542 img loss 1.2074429988861084 img loss 1.221916913986206 img loss 1.2415653467178345 img loss 1.2716012001037598 img loss 1.2164578437805176 img loss 1.151694655418396 img loss 1.2207952737808228 img loss 1.3502777814865112 img loss 1.281362533569336 img loss 1.1844367980957031 img loss 1.2190024852752686 img loss 1.1661581993103027 img loss 1.2221565246582031 img loss 1.247087836265564 img loss 1.1944756507873535 img loss 1.1418483257293701 img loss 1.1623903512954712 img loss 1.1600340604782104 img loss 1.1951558589935303 img loss 1.2309898138046265 img loss 1.189827561378479 img loss 1.2962912321090698 img loss 1.2180694341659546 img loss 1.2991514205932617 img loss 1.2066819667816162 img loss 1.3141725063323975 img loss 1.2102489471435547 img loss 1.2551876306533813 img loss 1.2533528804779053 img loss 1.3555361032485962 img loss 1.3182423114776611 img loss 1.2657915353775024 img loss 1.2828037738800049 img loss 1.2623580694198608 img loss 1.2107867002487183 img loss 1.1895426511764526 img loss 1.1636799573898315 img loss 1.2029454708099365 img loss 1.2624937295913696 img loss 1.2565104961395264 img loss 1.1701322793960571 img loss 1.2989413738250732 img loss 1.226057767868042 img loss 1.3029063940048218 img loss 1.1750500202178955 img loss 1.2615066766738892 img loss 1.2432457208633423 img loss 1.218703031539917 img loss 1.4204976558685303 img loss 1.2325714826583862 img loss 1.289913535118103 img loss 1.219897985458374 img loss 1.1288813352584839 img loss 1.260778784751892 img loss 1.2183831930160522 img loss 1.2150076627731323 img loss 1.2986011505126953 img loss 1.2504243850708008 img loss 1.216746211051941 img loss 1.2944011688232422 img loss 1.3490321636199951 img loss 1.2714588642120361 img loss 1.28512442111969 img loss 1.2775529623031616 img loss 1.2310703992843628 img loss 1.2421722412109375 img loss 1.2113903760910034 img loss 1.3681652545928955 img loss 1.2507743835449219 img loss 1.24782133102417 img loss 1.279136300086975 img loss 1.216808557510376 img loss 1.2127017974853516 img loss 1.2274830341339111 img loss 1.1847643852233887 img loss 1.2221788167953491 img loss 1.2846488952636719 img loss 1.2703708410263062 img loss 1.1250290870666504 {'loss': 1.2471, 'grad_norm': 0.23825763165950775, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.172503113746643 img loss 1.2010314464569092 img loss 1.2310322523117065 img loss 1.2618604898452759 img loss 1.210533618927002 img loss 1.2192950248718262 img loss 1.2329872846603394 img loss 1.2804325819015503 img loss 1.2692453861236572 img loss 1.1893742084503174 img loss 1.2224831581115723 img loss 1.220578670501709 img loss 1.1626020669937134 img loss 1.2000513076782227 img loss 1.1882312297821045 img loss 1.2390649318695068 img loss 1.101623773574829 img loss 1.1948845386505127 img loss 1.2353692054748535 img loss 1.2191903591156006 img loss 1.313638687133789 img loss 1.2032594680786133 img loss 1.1849310398101807 img loss 1.2498117685317993 img loss 1.2099043130874634 img loss 1.215929627418518 img loss 1.279771089553833 img loss 1.2084492444992065 img loss 1.2215983867645264 img loss 1.2082571983337402 img loss 1.158413290977478 img loss 1.1910514831542969 img loss 1.281686782836914 img loss 1.1840060949325562 img loss 1.2882276773452759 img loss 1.2368667125701904 img loss 1.1923637390136719 img loss 1.2347567081451416 img loss 1.201413869857788 img loss 1.2139549255371094 img loss 1.2114806175231934 img loss 1.2721524238586426 img loss 1.212999939918518 img loss 1.1823246479034424 img loss 1.1034235954284668 img loss 1.1896262168884277 img loss 1.2182998657226562 img loss 1.2235090732574463 img loss 1.2096728086471558 img loss 1.189430594444275 img loss 1.220465898513794 img loss 1.2307676076889038 img loss 1.2331151962280273 img loss 1.2199604511260986 img loss 1.2013078927993774 img loss 1.1854069232940674 img loss 1.179898977279663 img loss 1.2510149478912354 img loss 1.1819238662719727 img loss 1.232446551322937 img loss 1.2242422103881836 img loss 1.2041072845458984 img loss 1.278045892715454 img loss 1.2014702558517456 img loss 1.324591875076294 img loss 1.1981444358825684 img loss 1.1466835737228394 img loss 1.1776275634765625 img loss 1.2502914667129517 img loss 1.179250955581665 img loss 1.2030811309814453 img loss 1.2176475524902344 img loss 1.1731884479522705 img loss 1.2056163549423218 img loss 1.1602214574813843 img loss 1.2020299434661865 img loss 1.1709802150726318 img loss 1.2538938522338867 img loss 1.3108196258544922 img loss 1.2065714597702026 img loss 1.2028725147247314 img loss 1.2416667938232422 img loss 1.2120699882507324 img loss 1.2513937950134277 img loss 1.2632278203964233 img loss 1.275856375694275 img loss 1.1660526990890503 img loss 1.198733925819397 img loss 1.165924072265625 img loss 1.151517629623413 img loss 1.2240345478057861 img loss 1.2431049346923828 img loss 1.2143454551696777 img loss 1.2175277471542358 img loss 1.2943804264068604 img loss 1.2547965049743652 img loss 1.1635674238204956 img loss 1.246027946472168 img loss 1.2294715642929077 img loss 1.1815036535263062 img loss 1.199971079826355 img loss 1.2106329202651978 img loss 1.173807978630066 img loss 1.2562834024429321 img loss 1.145821213722229 img loss 1.1709434986114502 img loss 1.2602030038833618 img loss 1.237099528312683 img loss 1.2059859037399292 img loss 1.1666786670684814 img loss 1.1615447998046875 img loss 1.1562179327011108 img loss 1.1982382535934448 img loss 1.1384708881378174 img loss 1.1401538848876953 img loss 1.2296475172042847 img loss 1.174370527267456 img loss 1.2877413034439087 img loss 1.2058931589126587 img loss 1.1999046802520752 img loss 1.1876411437988281 img loss 1.1988186836242676 img loss 1.1970003843307495 img loss 1.161719560623169 img loss 1.1950432062149048 img loss 1.1600441932678223 img loss 1.1738146543502808 img loss 1.2428336143493652 {'loss': 1.211, 'grad_norm': 0.23564504086971283, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4380589723587036 img loss 1.4003337621688843 img loss 1.409896731376648 img loss 1.5472023487091064 img loss 1.31100332736969 img loss 1.5522927045822144 img loss 1.4588786363601685 img loss 1.500475287437439 img loss 1.3616585731506348 img loss 1.3851581811904907 img loss 1.4664156436920166 img loss 1.3954670429229736 img loss 1.4446556568145752 img loss 1.3656140565872192 img loss 1.3247871398925781 img loss 1.3640245199203491 img loss 1.3944920301437378 img loss 1.3586865663528442 img loss 1.4447014331817627 img loss 1.4379550218582153 img loss 1.390358567237854 img loss 1.5716874599456787 img loss 1.444434404373169 img loss 1.3437296152114868 img loss 1.5354350805282593 img loss 1.340093970298767 img loss 1.4706379175186157 img loss 1.4834896326065063 img loss 1.4105726480484009 img loss 1.4348998069763184 img loss 1.4977401494979858 img loss 1.4197062253952026 img loss 1.409120798110962 img loss 1.399389624595642 img loss 1.3847068548202515 img loss 1.353532075881958 img loss 1.4390047788619995 img loss 1.518364429473877 img loss 1.322016954421997 img loss 1.4694187641143799 img loss 1.4004846811294556 img loss 1.3560353517532349 img loss 1.4226635694503784 img loss 1.4841192960739136 img loss 1.419549822807312 img loss 1.454606294631958 img loss 1.3985165357589722 img loss 1.3571244478225708 img loss 1.4617286920547485 img loss 1.5212410688400269 img loss 1.5177956819534302 img loss 1.384014368057251 img loss 1.2806901931762695 img loss 1.459229826927185 img loss 1.485297441482544 img loss 1.4506211280822754 img loss 1.4190067052841187 img loss 1.3159754276275635 img loss 1.4451934099197388 img loss 1.275479793548584 img loss 1.3466432094573975 img loss 1.2814158201217651 img loss 1.4491790533065796 img loss 1.416317105293274 img loss 1.4088274240493774 img loss 1.5798949003219604 img loss 1.4536782503128052 img loss 1.6594767570495605 img loss 1.4279837608337402 img loss 1.4596067667007446 img loss 1.4358649253845215 img loss 1.481813669204712 img loss 1.5306165218353271 img loss 1.3880231380462646 img loss 1.4437581300735474 img loss 1.3591325283050537 img loss 1.3982740640640259 img loss 1.4477412700653076 img loss 1.401735782623291 img loss 1.3828645944595337 img loss 1.4036295413970947 img loss 1.4454867839813232 img loss 1.368040919303894 img loss 1.3867623805999756 img loss 1.470211386680603 img loss 1.5729526281356812 img loss 1.465872049331665 img loss 1.3187130689620972 img loss 1.4978891611099243 img loss 1.4019062519073486 img loss 1.3902546167373657 img loss 1.4387601613998413 img loss 1.4963492155075073 img loss 1.4662522077560425 img loss 1.3475724458694458 img loss 1.3976157903671265 img loss 1.5295302867889404 img loss 1.5144439935684204 img loss 1.4293912649154663 img loss 1.4399161338806152 img loss 1.5099291801452637 img loss 1.449169635772705 img loss 1.5659070014953613 img loss 1.3514111042022705 img loss 1.4499523639678955 img loss 1.3979218006134033 img loss 1.5456576347351074 img loss 1.5417884588241577 img loss 1.3860918283462524 img loss 1.4646480083465576 img loss 1.3572660684585571 img loss 1.3966487646102905 img loss 1.417324185371399 img loss 1.4716283082962036 img loss 1.4721921682357788 img loss 1.3651621341705322 img loss 1.4162018299102783 img loss 1.324632167816162 img loss 1.598895788192749 img loss 1.440133810043335 img loss 1.4074995517730713 img loss 1.5219781398773193 img loss 1.4931418895721436 img loss 1.31734037399292 img loss 1.5222495794296265 img loss 1.4627797603607178 img loss 1.4244920015335083 img loss 1.5064488649368286 {'loss': 1.433, 'grad_norm': 0.28697434067726135, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2054516077041626 img loss 1.2465921640396118 img loss 1.3180594444274902 img loss 1.2708163261413574 img loss 1.3093011379241943 img loss 1.3152912855148315 img loss 1.2688337564468384 img loss 1.1673550605773926 img loss 1.2660365104675293 img loss 1.265616774559021 img loss 1.3155779838562012 img loss 1.3176288604736328 img loss 1.278969168663025 img loss 1.219298005104065 img loss 1.1879271268844604 img loss 1.2151685953140259 img loss 1.2567343711853027 img loss 1.2864559888839722 img loss 1.2489017248153687 img loss 1.2581651210784912 img loss 1.2902226448059082 img loss 1.2289742231369019 img loss 1.2594046592712402 img loss 1.3311798572540283 img loss 1.1663696765899658 img loss 1.2947567701339722 img loss 1.2627900838851929 img loss 1.276879906654358 img loss 1.2241557836532593 img loss 1.2967777252197266 img loss 1.218505620956421 img loss 1.275169849395752 img loss 1.2971551418304443 img loss 1.2306897640228271 img loss 1.2738091945648193 img loss 1.2969582080841064 img loss 1.216788649559021 img loss 1.2384006977081299 img loss 1.242825984954834 img loss 1.2685229778289795 img loss 1.2275776863098145 img loss 1.2478632926940918 img loss 1.3186041116714478 img loss 1.315697431564331 img loss 1.2346309423446655 img loss 1.303661584854126 img loss 1.2173130512237549 img loss 1.2262227535247803 img loss 1.2852721214294434 img loss 1.2808185815811157img loss 1.2856156826019287 img loss 1.2806246280670166 img loss 1.2719258069992065 img loss 1.189805269241333 img loss 1.2910981178283691 img loss 1.210985541343689 img loss 1.2661890983581543 img loss 1.310585379600525 img loss 1.2688530683517456 img loss 1.281604290008545 img loss 1.2147855758666992 img loss 1.2105484008789062 img loss 1.2629350423812866 img loss 1.2907311916351318 img loss 1.3686314821243286 img loss 1.256274700164795 img loss 1.1922451257705688 img loss 1.2129102945327759 img loss 1.2433545589447021 img loss 1.2399920225143433 img loss 1.2710177898406982 img loss 1.3764870166778564 img loss 1.3429898023605347 img loss 1.2126977443695068 img loss 1.2879807949066162 img loss 1.2112541198730469 img loss 1.2237052917480469 img loss 1.3804906606674194 img loss 1.2722147703170776 img loss 1.3163970708847046 img loss 1.2460565567016602 img loss 1.261065125465393 img loss 1.2070173025131226 img loss 1.25555419921875 img loss 1.2797893285751343 img loss 1.2374635934829712 img loss 1.2822471857070923 img loss 1.1948728561401367 img loss 1.2502820491790771 img loss 1.311765432357788 img loss 1.3077303171157837 img loss 1.2270792722702026 img loss 1.2400745153427124 img loss 1.2501897811889648 img loss 1.19533371925354 img loss 1.2800917625427246 img loss 1.2963101863861084 img loss 1.2943476438522339 img loss 1.2130305767059326 img loss 1.216456651687622 img loss 1.276262640953064 img loss 1.2140015363693237 img loss 1.2275434732437134 img loss 1.2349551916122437 img loss 1.2828792333602905 img loss 1.3254451751708984 img loss 1.2239474058151245 img loss 1.2726078033447266 img loss 1.3297823667526245 img loss 1.2460010051727295 img loss 1.3238887786865234 img loss 1.2964142560958862 img loss 1.2379316091537476 img loss 1.2830097675323486 img loss 1.3086938858032227 img loss 1.3094847202301025 img loss 1.303309679031372 img loss 1.243026614189148 img loss 1.2224810123443604 img loss 1.221388816833496 img loss 1.235304832458496 img loss 1.2722080945968628 img loss 1.2601245641708374 img loss 1.2611478567123413 img loss 1.2267426252365112 img loss 1.2834852933883667 img loss 1.1956924200057983 img loss 1.2355302572250366 {'loss': 1.2618, 'grad_norm': 0.30225950479507446, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5380775928497314 img loss 1.489937663078308 img loss 1.3551452159881592 img loss 1.5102850198745728 img loss 1.518841028213501 img loss 1.3948827981948853 img loss 1.4569748640060425 img loss 1.3141855001449585 img loss 1.3857923746109009 img loss 1.5085777044296265 img loss 1.3993022441864014 img loss 1.587328314781189 img loss 1.4617406129837036 img loss 1.551012396812439 img loss 1.5043330192565918 img loss 1.4821799993515015 img loss 1.5512648820877075 img loss 1.583930492401123 img loss 1.4571915864944458 img loss 1.4353886842727661 img loss 1.556991696357727 img loss 1.3256067037582397 img loss 1.4802972078323364 img loss 1.35841703414917 img loss 1.5975381135940552 img loss 1.4492051601409912 img loss 1.4415152072906494 img loss 1.4334932565689087 img loss 1.5075455904006958 img loss 1.4495116472244263 img loss 1.3958059549331665 img loss 1.4067248106002808 img loss 1.3682665824890137 img loss 1.441887617111206 img loss 1.3966296911239624 img loss 1.4476288557052612 img loss 1.591368556022644 img loss 1.4121719598770142 img loss 1.6446057558059692 img loss 1.3471859693527222 img loss 1.4303845167160034 img loss 1.3396035432815552 img loss 1.397564172744751 img loss 1.494076132774353 img loss 1.5572134256362915 img loss 1.6249202489852905 img loss 1.396928310394287 img loss 1.4773350954055786 img loss 1.4647549390792847 img loss 1.5171993970870972 img loss 1.51710045337677 img loss 1.369462490081787 img loss 1.3076905012130737 img loss 1.5441855192184448 img loss 1.5421260595321655 img loss 1.396653652191162 img loss 1.456002116203308 img loss 1.341691255569458 img loss 1.415043592453003 img loss 1.363206148147583 img loss 1.4172898530960083 img loss 1.3217523097991943 img loss 1.4860787391662598 img loss 1.3964728116989136 img loss 1.3636815547943115 img loss 1.4077938795089722 img loss 1.3081363439559937img loss 1.522862195968628 img loss 1.4130915403366089 img loss 1.4843028783798218 img loss 1.4769939184188843 img loss 1.4391319751739502 img loss 1.2912720441818237 img loss 1.4489816427230835 img loss 1.3722325563430786 img loss 1.4650170803070068 img loss 1.463050365447998 img loss 1.4391629695892334 img loss 1.64352285861969 img loss 1.4927712678909302 img loss 1.5394314527511597 img loss 1.529884696006775 img loss 1.4319218397140503 img loss 1.4866654872894287 img loss 1.5123392343521118 img loss 1.4052523374557495 img loss 1.4647631645202637 img loss 1.554991602897644 img loss 1.5317575931549072 img loss 1.694678544998169 img loss 1.3555572032928467 img loss 1.5580946207046509 img loss 1.4352376461029053 img loss 1.4254802465438843 img loss 1.3498587608337402 img loss 1.4073723554611206 img loss 1.4027358293533325 img loss 1.5630444288253784 img loss 1.40614652633667 img loss 1.3493691682815552 img loss 1.4403084516525269 img loss 1.5520509481430054 img loss 1.434065580368042 img loss 1.4902652502059937 img loss 1.4133692979812622 img loss 1.5635406970977783 img loss 1.490119457244873 img loss 1.3653873205184937 img loss 1.428572416305542 img loss 1.3859665393829346 img loss 1.3952267169952393 img loss 1.4518482685089111 img loss 1.3741120100021362 img loss 1.4004045724868774 img loss 1.417517900466919 img loss 1.4617178440093994 img loss 1.4842029809951782 img loss 1.4673930406570435 img loss 1.5831363201141357 img loss 1.4211472272872925 img loss 1.482353687286377 img loss 1.4167550802230835 img loss 1.4236550331115723 img loss 1.524348497390747 img loss 1.3600364923477173 img loss 1.532072901725769 img loss 1.3971027135849 img loss 1.4468268156051636 {'loss': 1.4543, 'grad_norm': 0.2618710994720459, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2084177732467651 img loss 1.2311723232269287 img loss 1.2234224081039429 img loss 1.2162222862243652 img loss 1.199776530265808 img loss 1.2559220790863037 img loss 1.2297977209091187 img loss 1.170297384262085 img loss 1.1674787998199463 img loss 1.2408452033996582 img loss 1.2313562631607056 img loss 1.201670527458191 img loss 1.2099826335906982 img loss 1.2234866619110107 img loss 1.2829502820968628 img loss 1.1883301734924316 img loss 1.2018771171569824 img loss 1.2214363813400269 img loss 1.184821605682373 img loss 1.2056260108947754 img loss 1.1914665699005127 img loss 1.2181894779205322 img loss 1.2284846305847168 img loss 1.1696929931640625 img loss 1.1589107513427734 img loss 1.247974157333374 img loss 1.2728087902069092 img loss 1.2068684101104736 img loss 1.2624320983886719 img loss 1.2525371313095093 img loss 1.2253671884536743 img loss 1.265775203704834 img loss 1.1897073984146118 img loss 1.2166061401367188 img loss 1.1919348239898682 img loss 1.1611779928207397 img loss 1.1880300045013428 img loss 1.1637084484100342 img loss 1.2593926191329956 img loss 1.2549117803573608 img loss 1.2034279108047485 img loss 1.1940501928329468 img loss 1.199026107788086 img loss 1.172040581703186 img loss 1.2096099853515625 img loss 1.1904741525650024 img loss 1.1951894760131836 img loss 1.246478796005249 img loss 1.1723212003707886 img loss 1.192165732383728 img loss 1.1613415479660034 img loss 1.2694084644317627 img loss 1.1320241689682007 img loss 1.2136104106903076 img loss 1.2518529891967773 img loss 1.142871379852295 img loss 1.2151914834976196 img loss 1.108368158340454 img loss 1.227933645248413 img loss 1.2013907432556152 img loss 1.2198715209960938 img loss 1.3070387840270996 img loss 1.2693557739257812 img loss 1.2418302297592163 img loss 1.2109322547912598 img loss 1.2186819314956665 img loss 1.1294978857040405 img loss 1.2173086404800415 img loss 1.2681224346160889 img loss 1.2353897094726562 img loss 1.239707350730896 img loss 1.254115104675293 img loss 1.2974671125411987 img loss 1.201229453086853 img loss 1.1581897735595703 img loss 1.2258148193359375 img loss 1.1033670902252197 img loss 1.2550381422042847 img loss 1.1801267862319946 img loss 1.1388280391693115 img loss 1.1945092678070068 img loss 1.2738040685653687 img loss 1.2338968515396118 img loss 1.255845546722412 img loss 1.1896088123321533 img loss 1.1665958166122437 img loss 1.1699165105819702 img loss 1.1966508626937866 img loss 1.2127690315246582 img loss 1.2737348079681396 img loss 1.1993637084960938 img loss 1.2207399606704712 img loss 1.2252079248428345 img loss 1.2038195133209229 img loss 1.1416410207748413 img loss 1.187336802482605 img loss 1.3387473821640015 img loss 1.1878254413604736 img loss 1.2336795330047607 img loss 1.2622267007827759 img loss 1.2948683500289917 img loss 1.1946048736572266 img loss 1.247868299484253 img loss 1.254563808441162 img loss 1.1832226514816284 img loss 1.207218050956726 img loss 1.1640713214874268 img loss 1.293504238128662 img loss 1.2339919805526733 img loss 1.2148605585098267 img loss 1.172330617904663 img loss 1.2622239589691162 img loss 1.1858834028244019 img loss 1.2354905605316162 img loss 1.2145748138427734 img loss 1.1803579330444336 img loss 1.2231144905090332 img loss 1.2564963102340698 img loss 1.1787362098693848 img loss 1.1534522771835327 img loss 1.1993964910507202 img loss 1.241339921951294 img loss 1.2224860191345215 img loss 1.1677290201187134 img loss 1.1572129726409912 img loss 1.199588656425476 img loss 1.1686475276947021 img loss 1.1437915563583374 {'loss': 1.2118, 'grad_norm': 0.32099053263664246, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3724472522735596 img loss 1.445067286491394 img loss 1.4259494543075562 img loss 1.376131296157837 img loss 1.2604130506515503 img loss 1.470710277557373 img loss 1.3557674884796143 img loss 1.3775334358215332 img loss 1.3853198289871216 img loss 1.3718444108963013 img loss 1.425289273262024img loss 1.3455488681793213 img loss 1.341060757637024img loss 1.3711283206939697 img loss 1.365403652191162 img loss 1.436590552330017 img loss 1.2973787784576416 img loss 1.4068162441253662 img loss 1.2976605892181396 img loss 1.2975095510482788 img loss 1.3777486085891724 img loss 1.322752594947815 img loss 1.4447234869003296 img loss 1.3100990056991577 img loss 1.397123098373413 img loss 1.4101283550262451 img loss 1.3909047842025757 img loss 1.238502860069275 img loss 1.365383267402649 img loss 1.3747159242630005 img loss 1.362411618232727 img loss 1.415941596031189 img loss 1.344413161277771 img loss 1.2900538444519043 img loss 1.2413948774337769 img loss 1.3548723459243774 img loss 1.4803440570831299 img loss 1.3243770599365234img loss 1.3830312490463257 img loss 1.3616364002227783 img loss 1.416111707687378 img loss 1.3459407091140747 img loss 1.4307504892349243 img loss 1.320764422416687 img loss 1.396786093711853 img loss 1.4036822319030762 img loss 1.4607490301132202 img loss 1.359198808670044 img loss 1.3284000158309937 img loss 1.5272256135940552 img loss 1.3492275476455688 img loss 1.3736401796340942 img loss 1.5480973720550537 img loss 1.481930136680603 img loss 1.3810193538665771 img loss 1.3884923458099365 img loss 1.4676687717437744 img loss 1.3953907489776611 img loss 1.3684555292129517 img loss 1.4855282306671143 img loss 1.2538013458251953 img loss 1.3352519273757935 img loss 1.2993830442428589 img loss 1.411047339439392 img loss 1.299551010131836 img loss 1.3189213275909424 img loss 1.4151437282562256 img loss 1.4358770847320557 img loss 1.3572566509246826 img loss 1.4740906953811646 img loss 1.4098963737487793 img loss 1.3855654001235962 img loss 1.1974248886108398 img loss 1.3231804370880127 img loss 1.2321449518203735 img loss 1.3738877773284912 img loss 1.2793216705322266 img loss 1.4593679904937744 img loss 1.407981038093567 img loss 1.4637075662612915 img loss 1.3584767580032349 img loss 1.345219373703003 img loss 1.4143389463424683 img loss 1.3237160444259644 img loss 1.323758602142334 img loss 1.388203501701355 img loss 1.3789753913879395 img loss 1.4275224208831787 img loss 1.4516431093215942 img loss 1.3527873754501343 img loss 1.3975176811218262 img loss 1.265702486038208 img loss 1.3119428157806396 img loss 1.314829707145691 img loss 1.4128726720809937 img loss 1.4659889936447144 img loss 1.2937781810760498 img loss 1.4288057088851929 img loss 1.244535207748413 img loss 1.4024651050567627 img loss 1.273335337638855 img loss 1.3344820737838745 img loss 1.3280366659164429 img loss 1.3310861587524414 img loss 1.3206634521484375 img loss 1.3334709405899048 img loss 1.3990617990493774 img loss 1.307849407196045 img loss 1.2266273498535156 img loss 1.4074128866195679 img loss 1.3800126314163208 img loss 1.3073590993881226 img loss 1.312698245048523 img loss 1.4299461841583252 img loss 1.3708208799362183 img loss 1.3364616632461548 img loss 1.2572970390319824 img loss 1.4830143451690674 img loss 1.3294658660888672 img loss 1.370032548904419 img loss 1.2634512186050415 img loss 1.327296495437622 img loss 1.410561203956604 img loss 1.4118132591247559 img loss 1.3694926500320435 img loss 1.389719843864441 img loss 1.3368223905563354 img loss 1.2860381603240967 {'loss': 1.3665, 'grad_norm': 0.2742082476615906, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4634519815444946 img loss 1.4524953365325928 img loss 1.470670461654663 img loss 1.4293044805526733 img loss 1.3692004680633545 img loss 1.2972583770751953 img loss 1.3861874341964722 img loss 1.3279539346694946 img loss 1.3278826475143433 img loss 1.472322702407837 img loss 1.343838095664978 img loss 1.4006751775741577 img loss 1.3528478145599365 img loss 1.503029704093933 img loss 1.4026151895523071 img loss 1.4379509687423706 img loss 1.552411675453186 img loss 1.450239658355713 img loss 1.3943263292312622 img loss 1.3887101411819458 img loss 1.49501371383667 img loss 1.5121062994003296 img loss 1.562216877937317 img loss 1.4558922052383423 img loss 1.5724183320999146 img loss 1.4343630075454712 img loss 1.2875394821166992 img loss 1.3300491571426392 img loss 1.4686806201934814 img loss 1.4403293132781982 img loss 1.4262710809707642 img loss 1.5143396854400635 img loss 1.3883745670318604 img loss 1.363247036933899 img loss 1.3115500211715698 img loss 1.4692085981369019 img loss 1.4551085233688354 img loss 1.3567173480987549 img loss 1.5220879316329956 img loss 1.3678840398788452 img loss 1.3736439943313599 img loss 1.3764458894729614 img loss 1.5785523653030396 img loss 1.260846734046936 img loss 1.3457099199295044 img loss 1.3835934400558472 img loss 1.5176938772201538 img loss 1.6087812185287476 img loss 1.4999516010284424 img loss 1.5174371004104614 img loss 1.6942098140716553 img loss 1.387410044670105 img loss 1.4834678173065186 img loss 1.3709118366241455 img loss 1.4966152906417847 img loss 1.4750993251800537 img loss 1.473049283027649 img loss 1.2994155883789062 img loss 1.4990941286087036 img loss 1.487209677696228 img loss 1.4603075981140137 img loss 1.469094157218933 img loss 1.4587576389312744 img loss 1.3929208517074585 img loss 1.3929497003555298 img loss 1.3447506427764893 img loss 1.4642223119735718 img loss 1.5496512651443481 img loss 1.3578706979751587 img loss 1.3382266759872437 img loss 1.5330709218978882 img loss 1.4491201639175415 img loss 1.3671914339065552 img loss 1.465403437614441 img loss 1.48002028465271 img loss 1.5843168497085571 img loss 1.4116950035095215 img loss 1.4239128828048706 img loss 1.3672868013381958 img loss 1.4677445888519287 img loss 1.7084523439407349 img loss 1.4660252332687378 img loss 1.2661670446395874 img loss 1.417009949684143 img loss 1.4793435335159302 img loss 1.4195927381515503 img loss 1.6801151037216187 img loss 1.4283230304718018 img loss 1.3114286661148071 img loss 1.3492333889007568 img loss 1.4137871265411377 img loss 1.423350214958191 img loss 1.339514970779419 img loss 1.3749264478683472 img loss 1.5302917957305908 img loss 1.4499809741973877 img loss 1.3667083978652954 img loss 1.4931328296661377 img loss 1.407691240310669 img loss 1.398771047592163 img loss 1.459084153175354 img loss 1.5495296716690063 img loss 1.521437168121338 img loss 1.3126472234725952 img loss 1.421673059463501 img loss 1.4071084260940552 img loss 1.4975240230560303 img loss 1.4394766092300415 img loss 1.583800196647644 img loss 1.4678857326507568 img loss 1.5462431907653809 img loss 1.4614094495773315 img loss 1.415934443473816 img loss 1.4643086194992065 img loss 1.5411032438278198 img loss 1.5550004243850708 img loss 1.423559308052063 img loss 1.6548054218292236 img loss 1.4146430492401123 img loss 1.262874960899353 img loss 1.441867709159851 img loss 1.5410693883895874 img loss 1.6161949634552002 img loss 1.4480550289154053 img loss 1.4319149255752563 img loss 1.3858821392059326 img loss 1.3400291204452515 img loss 1.3971246480941772 {'loss': 1.4421, 'grad_norm': 0.760709285736084, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.279793620109558 img loss 1.346771001815796 img loss 1.291306734085083 img loss 1.413435697555542 img loss 1.2749706506729126 img loss 1.310524582862854 img loss 1.3311145305633545 img loss 1.3911103010177612 img loss 1.2431106567382812 img loss 1.2235268354415894 img loss 1.2717398405075073 img loss 1.4357210397720337 img loss 1.3005245923995972 img loss 1.2860225439071655 img loss 1.3676975965499878 img loss 1.332241415977478 img loss 1.2296478748321533 img loss 1.2427910566329956 img loss 1.272683024406433 img loss 1.30581796169281 img loss 1.2034488916397095 img loss 1.1749294996261597 img loss 1.3229482173919678 img loss 1.2787073850631714 img loss 1.3864128589630127 img loss 1.3088282346725464 img loss 1.3099894523620605 img loss 1.283972978591919 img loss 1.2018942832946777 img loss 1.2091845273971558 img loss 1.3960777521133423 img loss 1.2784260511398315 img loss 1.3113493919372559 img loss 1.3227019309997559 img loss 1.252207636833191 img loss 1.3205820322036743 img loss 1.2162693738937378 img loss 1.2507703304290771 img loss 1.336829662322998 img loss 1.3766372203826904 img loss 1.3814202547073364 img loss 1.3371201753616333 img loss 1.248613715171814 img loss 1.347170114517212 img loss 1.2668774127960205 img loss 1.3241223096847534 img loss 1.2459381818771362 img loss 1.2140979766845703 img loss 1.2667865753173828 img loss 1.30569326877594 img loss 1.305387020111084 img loss 1.1874990463256836 img loss 1.2625826597213745 img loss 1.2590954303741455 img loss 1.2863843441009521 img loss 1.2928822040557861 img loss 1.2301687002182007 img loss 1.2798985242843628 img loss 1.3430931568145752 img loss 1.2931467294692993 img loss 1.1648728847503662 img loss 1.2736443281173706 img loss 1.1818561553955078 img loss 1.1869378089904785 img loss 1.2883198261260986 img loss 1.320772647857666 img loss 1.290614366531372 img loss 1.261002779006958 img loss 1.372800588607788 img loss 1.3193283081054688 img loss 1.2637993097305298 img loss 1.3079220056533813 img loss 1.2931914329528809 img loss 1.308054804801941 img loss 1.2527401447296143 img loss 1.1904934644699097 img loss 1.2478740215301514 img loss 1.2990872859954834 img loss 1.3153696060180664 img loss 1.307746410369873 img loss 1.3472139835357666 img loss 1.410408616065979 img loss 1.2995573282241821 img loss 1.3146709203720093 img loss 1.241830825805664 img loss 1.3005050420761108 img loss 1.2079498767852783 img loss 1.2414467334747314 img loss 1.3723032474517822 img loss 1.3841614723205566 img loss 1.2437628507614136 img loss 1.2219996452331543 img loss 1.2319306135177612 img loss 1.2908687591552734 img loss 1.3298240900039673 img loss 1.4046814441680908 img loss 1.2992922067642212 img loss 1.3097188472747803 img loss 1.2695749998092651 img loss 1.216440200805664 img loss 1.1988272666931152 img loss 1.223570704460144 img loss 1.2981723546981812 img loss 1.2765549421310425 img loss 1.3800346851348877 img loss 1.263788104057312 img loss 1.2848094701766968 img loss 1.250989556312561 img loss 1.186028242111206 img loss 1.3962153196334839 img loss 1.2217909097671509 img loss 1.3732857704162598 img loss 1.3023631572723389 img loss 1.3046760559082031 img loss 1.3390504121780396 img loss 1.3399827480316162 img loss 1.3504072427749634 img loss 1.2821838855743408 img loss 1.2615193128585815 img loss 1.3097214698791504img loss 1.273132085800171 img loss 1.3349367380142212 img loss 1.2903671264648438 img loss 1.2203288078308105 img loss 1.411346673965454 img loss 1.3196804523468018 img loss 1.3015022277832031 img loss 1.250109314918518 {'loss': 1.2906, 'grad_norm': 0.2538131773471832, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6750463247299194 img loss 1.665554165840149 img loss 1.6424990892410278 img loss 1.5693541765213013 img loss 1.5700182914733887 img loss 1.6603854894638062 img loss 1.6666797399520874 img loss 1.6086390018463135 img loss 1.6535965204238892 img loss 1.6259863376617432 img loss 1.557532787322998 img loss 1.5944043397903442 img loss 1.6702759265899658 img loss 1.8097165822982788 img loss 1.7744866609573364 img loss 1.5511060953140259 img loss 1.6208558082580566 img loss 1.6134541034698486 img loss 1.7272276878356934 img loss 1.656535029411316 img loss 1.6755987405776978 img loss 1.5865447521209717 img loss 1.589009165763855 img loss 1.6982182264328003 img loss 1.6974455118179321 img loss 1.7301751375198364 img loss 1.6604083776474 img loss 1.6537715196609497 img loss 1.621044635772705 img loss 1.5676113367080688 img loss 1.5874913930892944 img loss 1.6060919761657715 img loss 1.5960050821304321 img loss 1.6090598106384277 img loss 1.519203782081604 img loss 1.6759289503097534 img loss 1.6176120042800903 img loss 1.7184953689575195 img loss 1.7315587997436523 img loss 1.5586439371109009 img loss 1.6305559873580933 img loss 1.6548571586608887 img loss 1.60047447681427 img loss 1.7023651599884033 img loss 1.6390019655227661 img loss 1.571112036705017 img loss 1.6227036714553833 img loss 1.7168523073196411 img loss 1.5919395685195923 img loss 1.7297658920288086 img loss 1.6822447776794434 img loss 1.6825757026672363 img loss 1.6971803903579712 img loss 1.6350758075714111 img loss 1.6329447031021118 img loss 1.802130937576294 img loss 1.6522510051727295 img loss 1.651557207107544 img loss 1.7043644189834595 img loss 1.5735085010528564 img loss 1.584206461906433 img loss 1.7086880207061768 img loss 1.762487530708313 img loss 1.6689846515655518 img loss 1.6261076927185059 img loss 1.6663380861282349 img loss 1.6669644117355347 img loss 1.6816643476486206 img loss 1.620307207107544 img loss 1.5894173383712769 img loss 1.6453909873962402 img loss 1.7560936212539673 img loss 1.643337368965149 img loss 1.5568747520446777 img loss 1.6211276054382324 img loss 1.6761940717697144 img loss 1.6490070819854736 img loss 1.6409242153167725 img loss 1.5728899240493774 img loss 1.6840437650680542 img loss 1.5602971315383911 img loss 1.5803711414337158 img loss 1.628528356552124 img loss 1.57929265499115 img loss 1.649890661239624 img loss 1.7006945610046387 img loss 1.6007152795791626 img loss 1.6131856441497803 img loss 1.7243379354476929 img loss 1.6241363286972046 img loss 1.5015817880630493 img loss 1.72292959690094 img loss 1.8047266006469727 img loss 1.6790764331817627 img loss 1.639487624168396 img loss 1.7174745798110962 img loss 1.6788268089294434 img loss 1.6925500631332397 img loss 1.6486985683441162 img loss 1.5321470499038696 img loss 1.693355917930603 img loss 1.6526321172714233 img loss 1.6108908653259277 img loss 1.6734293699264526 img loss 1.6628674268722534 img loss 1.7052819728851318 img loss 1.6215063333511353 img loss 1.7029350996017456 img loss 1.5646933317184448 img loss 1.5971986055374146 img loss 1.7007790803909302 img loss 1.6480509042739868 img loss 1.5680493116378784 img loss 1.604211688041687 img loss 1.589707612991333 img loss 1.5471971035003662 img loss 1.6546149253845215 img loss 1.561591625213623 img loss 1.6576544046401978 img loss 1.651953101158142 img loss 1.695136308670044 img loss 1.6503628492355347 img loss 1.562863826751709 img loss 1.65311598777771 img loss 1.7533044815063477 img loss 1.6807115077972412 img loss 1.63038969039917 img loss 1.673815131187439 {'loss': 1.6457, 'grad_norm': 0.23952367901802063, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1655219793319702 img loss 1.2220418453216553 img loss 1.1901105642318726 img loss 1.1456692218780518 img loss 1.2349865436553955 img loss 1.1882874965667725 img loss 1.1995304822921753 img loss 1.1717857122421265 img loss 1.2999358177185059 img loss 1.2212227582931519 img loss 1.2161391973495483 img loss 1.2076735496520996 img loss 1.2210099697113037 img loss 1.1602072715759277 img loss 1.1977618932724 img loss 1.2547520399093628 img loss 1.230884075164795 img loss 1.2283445596694946 img loss 1.2229924201965332 img loss 1.1544541120529175 img loss 1.1669979095458984 img loss 1.138462781906128 img loss 1.1721042394638062 img loss 1.1476967334747314 img loss 1.2613261938095093 img loss 1.2405527830123901 img loss 1.2401807308197021 img loss 1.2875553369522095 img loss 1.2095143795013428 img loss 1.1680521965026855 img loss 1.1754982471466064 img loss 1.2274688482284546 img loss 1.207275390625 img loss 1.2045446634292603 img loss 1.2578619718551636 img loss 1.1515998840332031 img loss 1.2464507818222046 img loss 1.218727946281433 img loss 1.2338513135910034 img loss 1.25872004032135 img loss 1.1763660907745361 img loss 1.1885020732879639 img loss 1.1992520093917847 img loss 1.165968418121338 img loss 1.1782692670822144 img loss 1.2020612955093384 img loss 1.2067124843597412 img loss 1.2413251399993896 img loss 1.1773560047149658 img loss 1.1780036687850952 img loss 1.2411617040634155 img loss 1.155168890953064 img loss 1.2068920135498047 img loss 1.2259702682495117 img loss 1.222771406173706 img loss 1.192345142364502 img loss 1.26898193359375 img loss 1.2736386060714722 img loss 1.163735032081604 img loss 1.186518669128418 img loss 1.2152326107025146 img loss 1.139555811882019 img loss 1.2075237035751343 img loss 1.2571874856948853 img loss 1.1772446632385254 img loss 1.2221530675888062 img loss 1.1581814289093018 img loss 1.2491501569747925 img loss 1.1684386730194092 img loss 1.1968653202056885 img loss 1.231237769126892 img loss 1.1866792440414429 img loss 1.2468366622924805 img loss 1.1877801418304443 img loss 1.19473397731781 img loss 1.1854369640350342 img loss 1.1771348714828491 img loss 1.2289369106292725 img loss 1.2121055126190186 img loss 1.1961826086044312 img loss 1.2410199642181396 img loss 1.2340210676193237 img loss 1.1975171566009521 img loss 1.226262092590332 img loss 1.174363613128662 img loss 1.1900509595870972 img loss 1.1162984371185303 img loss 1.1622936725616455 img loss 1.3366342782974243 img loss 1.1972851753234863 img loss 1.2256819009780884 img loss 1.2282904386520386 img loss 1.1905896663665771 img loss 1.2309589385986328 img loss 1.2680983543395996 img loss 1.2489185333251953 img loss 1.1989333629608154 img loss 1.1601989269256592 img loss 1.2144968509674072 img loss 1.2748740911483765 img loss 1.2329819202423096 img loss 1.1832787990570068 img loss 1.2229266166687012 img loss 1.2069743871688843 img loss 1.2219159603118896 img loss 1.1527392864227295img loss 1.2423101663589478 img loss 1.196950912475586 img loss 1.2101086378097534 img loss 1.2011394500732422 img loss 1.1890285015106201 img loss 1.2243170738220215 img loss 1.1572678089141846 img loss 1.1980270147323608 img loss 1.210228443145752 img loss 1.1539397239685059 img loss 1.1410672664642334 img loss 1.2844526767730713 img loss 1.2390168905258179 img loss 1.2702674865722656 img loss 1.2312726974487305 img loss 1.197620153427124 img loss 1.2825355529785156 img loss 1.2388293743133545 img loss 1.1676901578903198 img loss 1.2222907543182373 img loss 1.2362093925476074 img loss 1.211787462234497 {'loss': 1.2084, 'grad_norm': 0.2288515418767929, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.190485954284668 img loss 1.148811936378479 img loss 1.187079668045044 img loss 1.3164405822753906 img loss 1.2643158435821533 img loss 1.3320375680923462 img loss 1.3004060983657837 img loss 1.2365766763687134 img loss 1.259305477142334 img loss 1.283148169517517 img loss 1.2326611280441284 img loss 1.2054814100265503 img loss 1.2181065082550049 img loss 1.226032018661499 img loss 1.1842880249023438 img loss 1.2929375171661377 img loss 1.2714353799819946 img loss 1.4199162721633911 img loss 1.1797466278076172 img loss 1.2619590759277344 img loss 1.2380098104476929 img loss 1.2131967544555664 img loss 1.2875158786773682 img loss 1.282676339149475 img loss 1.2630947828292847 img loss 1.2709225416183472 img loss 1.21599280834198 img loss 1.2781580686569214 img loss 1.2253661155700684 img loss 1.2141039371490479 img loss 1.153003454208374 img loss 1.3231406211853027 img loss 1.2324395179748535 img loss 1.2554783821105957 img loss 1.2797867059707642 img loss 1.1642135381698608 img loss 1.258509874343872 img loss 1.2113606929779053 img loss 1.3396764993667603 img loss 1.2675952911376953 img loss 1.223453402519226 img loss 1.2417763471603394 img loss 1.3282763957977295 img loss 1.2974891662597656 img loss 1.2952914237976074 img loss 1.2862552404403687 img loss 1.1199404001235962 img loss 1.3240993022918701 img loss 1.2635321617126465 img loss 1.3378312587738037 img loss 1.1370400190353394 img loss 1.3430683612823486 img loss 1.1525609493255615 img loss 1.209312915802002 img loss 1.2080330848693848 img loss 1.2304428815841675 img loss 1.141616702079773 img loss 1.3115577697753906 img loss 1.3100506067276 img loss 1.2637161016464233 img loss 1.17332124710083 img loss 1.1939176321029663 img loss 1.3039915561676025 img loss 1.3474767208099365 img loss 1.2614476680755615 img loss 1.3616772890090942 img loss 1.281090259552002 img loss 1.2392168045043945 img loss 1.2417510747909546 img loss 1.2312335968017578 img loss 1.1874265670776367 img loss 1.3235492706298828 img loss 1.284075379371643img loss 1.2471989393234253 img loss 1.2817027568817139 img loss 1.2949843406677246 img loss 1.3204610347747803 img loss 1.265447974205017 img loss 1.2120269536972046 img loss 1.2955697774887085 img loss 1.3532360792160034 img loss 1.2904069423675537 img loss 1.3249256610870361img loss 1.2780473232269287 img loss 1.1904938220977783 img loss 1.218015193939209 img loss 1.238420009613037 img loss 1.3096040487289429 img loss 1.259741187095642 img loss 1.2906192541122437 img loss 1.2389211654663086 img loss 1.269750952720642 img loss 1.2207672595977783 img loss 1.2496403455734253 img loss 1.2454650402069092 img loss 1.2270641326904297 img loss 1.3758946657180786 img loss 1.2733426094055176 img loss 1.2359665632247925 img loss 1.2285659313201904 img loss 1.2544217109680176 img loss 1.235900640487671 img loss 1.3663477897644043 img loss 1.22837233543396 img loss 1.2460445165634155 img loss 1.2184388637542725 img loss 1.2367171049118042 img loss 1.2847826480865479 img loss 1.2285560369491577 img loss 1.368457555770874 img loss 1.2429211139678955 img loss 1.201960563659668 img loss 1.2700591087341309 img loss 1.2336753606796265 img loss 1.2320964336395264 img loss 1.2448467016220093 img loss 1.2094528675079346 img loss 1.266160249710083 img loss 1.2920372486114502 img loss 1.171807050704956 img loss 1.2381267547607422 img loss 1.3018425703048706 img loss 1.333431363105774 img loss 1.2286096811294556 img loss 1.2587636709213257 img loss 1.2361159324645996 img loss 1.230311632156372 img loss 1.168373703956604 {'loss': 1.2555, 'grad_norm': 0.28974148631095886, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2582958936691284 img loss 1.2266268730163574 img loss 1.4839720726013184 img loss 1.3867065906524658 img loss 1.330039620399475 img loss 1.2683666944503784 img loss 1.4034916162490845 img loss 1.2877345085144043 img loss 1.270628571510315 img loss 1.2883460521697998 img loss 1.283458948135376 img loss 1.3399583101272583 img loss 1.308652639389038 img loss 1.3113033771514893 img loss 1.2153751850128174 img loss 1.326380968093872 img loss 1.3248528242111206 img loss 1.149340271949768 img loss 1.2649145126342773 img loss 1.287448525428772 img loss 1.36287260055542 img loss 1.2931137084960938 img loss 1.3021459579467773 img loss 1.267763376235962 img loss 1.39816415309906 img loss 1.2780119180679321 img loss 1.2555643320083618 img loss 1.300615668296814 img loss 1.2666819095611572 img loss 1.2955639362335205 img loss 1.286692500114441 img loss 1.365782618522644 img loss 1.4470493793487549 img loss 1.1965759992599487 img loss 1.3404492139816284img loss 1.2553132772445679 img loss 1.2553390264511108 img loss 1.297461986541748 img loss 1.3020720481872559 img loss 1.3807957172393799 img loss 1.2443311214447021 img loss 1.2914789915084839 img loss 1.2798068523406982 img loss 1.3526990413665771 img loss 1.2706323862075806 img loss 1.310269832611084 img loss 1.3042504787445068 img loss 1.2688021659851074 img loss 1.2663522958755493 img loss 1.3039395809173584 img loss 1.2109431028366089 img loss 1.3938242197036743 img loss 1.302607774734497 img loss 1.3102420568466187 img loss 1.3144774436950684 img loss 1.2823920249938965 img loss 1.4160224199295044 img loss 1.217287540435791 img loss 1.3406685590744019 img loss 1.388546347618103 img loss 1.25834321975708 img loss 1.2781864404678345 img loss 1.3673183917999268 img loss 1.221093773841858 img loss 1.3432190418243408 img loss 1.3379517793655396 img loss 1.36601722240448 img loss 1.2438886165618896 img loss 1.2911410331726074 img loss 1.3371151685714722img loss 1.4111974239349365 img loss 1.2636531591415405 img loss 1.290279746055603 img loss 1.2517366409301758 img loss 1.3290220499038696 img loss 1.313668131828308 img loss 1.3234195709228516 img loss 1.26263427734375 img loss 1.2956578731536865 img loss 1.3281357288360596 img loss 1.236840009689331 img loss 1.3231384754180908 img loss 1.243175983428955 img loss 1.2971537113189697 img loss 1.316646933555603img loss 1.3365634679794312 img loss 1.3431214094161987 img loss 1.2922277450561523 img loss 1.276381015777588 img loss 1.3144673109054565 img loss 1.3891857862472534 img loss 1.2856535911560059 img loss 1.2803492546081543 img loss 1.279285192489624 img loss 1.3076393604278564 img loss 1.3418165445327759 img loss 1.28714919090271 img loss 1.3524448871612549 img loss 1.264951229095459 img loss 1.3093065023422241 img loss 1.1931120157241821 img loss 1.2399559020996094 img loss 1.3695067167282104 img loss 1.2823132276535034 img loss 1.2789416313171387 img loss 1.288684606552124 img loss 1.228067398071289 img loss 1.2248661518096924 img loss 1.315290927886963 img loss 1.2860748767852783 img loss 1.3109147548675537 img loss 1.3498358726501465 img loss 1.2819942235946655 img loss 1.2813332080841064 img loss 1.309356927871704 img loss 1.1944068670272827 img loss 1.3379051685333252 img loss 1.29079270362854 img loss 1.2216851711273193img loss 1.2964239120483398img loss 1.3286080360412598 img loss 1.215299367904663 img loss 1.271626353263855 img loss 1.3642528057098389 img loss 1.3810536861419678 img loss 1.2275981903076172 img loss 1.2707383632659912 img loss 1.2419856786727905 {'loss': 1.2993, 'grad_norm': 0.3449515402317047, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6189086437225342 img loss 1.5570112466812134 img loss 1.5172570943832397 img loss 1.5023760795593262 img loss 1.63528311252594 img loss 1.6986290216445923 img loss 1.5172933340072632 img loss 1.458082675933838 img loss 1.4267728328704834 img loss 1.661609411239624 img loss 1.5783559083938599 img loss 1.5961042642593384 img loss 1.5381642580032349 img loss 1.5762940645217896 img loss 1.5303969383239746 img loss 1.4756873846054077 img loss 1.6592704057693481 img loss 1.5413082838058472 img loss 1.500962495803833 img loss 1.47140371799469 img loss 1.5477612018585205 img loss 1.5288339853286743 img loss 1.4924159049987793 img loss 1.4537999629974365 img loss 1.5303375720977783 img loss 1.483978033065796 img loss 1.5711283683776855 img loss 1.4693735837936401 img loss 1.4801135063171387 img loss 1.5540459156036377 img loss 1.447559118270874 img loss 1.5484387874603271 img loss 1.5630673170089722 img loss 1.6544326543807983 img loss 1.539342999458313 img loss 1.6023471355438232 img loss 1.3382753133773804 img loss 1.5766141414642334 img loss 1.5352808237075806 img loss 1.6265116930007935 img loss 1.4831703901290894 img loss 1.4757310152053833 img loss 1.7616193294525146 img loss 1.6765092611312866 img loss 1.5955442190170288 img loss 1.6142774820327759 img loss 1.5698037147521973 img loss 1.474424123764038 img loss 1.4747906923294067 img loss 1.542297124862671 img loss 1.3365267515182495 img loss 1.4639906883239746 img loss 1.501524806022644 img loss 1.3943051099777222 img loss 1.6280235052108765 img loss 1.4767472743988037 img loss 1.5512292385101318 img loss 1.4692003726959229 img loss 1.5634914636611938 img loss 1.5610096454620361 img loss 1.3930058479309082 img loss 1.758673071861267 img loss 1.5454041957855225 img loss 1.4693427085876465 img loss 1.7415766716003418 img loss 1.8463318347930908 img loss 1.5439919233322144 img loss 1.565397024154663 img loss 1.563614010810852 img loss 1.5295106172561646 img loss 1.518936276435852 img loss 1.4443217515945435 img loss 1.5997809171676636 img loss 1.426542043685913 img loss 1.5012638568878174 img loss 1.4728734493255615 img loss 1.4798310995101929 img loss 1.5839821100234985 img loss 1.6907776594161987 img loss 1.5786060094833374 img loss 1.6834896802902222 img loss 1.5327500104904175 img loss 1.5138152837753296 img loss 1.7238476276397705 img loss 1.6331619024276733 img loss 1.6264554262161255 img loss 1.469133734703064 img loss 1.4494585990905762 img loss 1.6271977424621582 img loss 1.5044493675231934 img loss 1.4899812936782837 img loss 1.5862928628921509 img loss 1.580108880996704 img loss 1.5525200366973877 img loss 1.53738272190094 img loss 1.4113914966583252 img loss 1.579295039176941 img loss 1.454426646232605 img loss 1.535253643989563 img loss 1.4863969087600708 img loss 1.4431912899017334 img loss 1.4975453615188599 img loss 1.4737600088119507 img loss 1.5649874210357666 img loss 1.5958678722381592 img loss 1.5974366664886475 img loss 1.6443097591400146 img loss 1.7161076068878174 img loss 1.67952561378479 img loss 1.514585256576538 img loss 1.5012081861495972 img loss 1.554399847984314 img loss 1.5089727640151978 img loss 1.7760378122329712 img loss 1.3784714937210083 img loss 1.5257766246795654 img loss 1.4694980382919312 img loss 1.441525936126709 img loss 1.5452700853347778 img loss 1.5371114015579224 img loss 1.4378135204315186 img loss 1.486802577972412 img loss 1.691611886024475 img loss 1.5310052633285522 img loss 1.4398950338363647 img loss 1.5509943962097168 img loss 1.4686709642410278 img loss 1.4666475057601929 {'loss': 1.5429, 'grad_norm': 0.33410897850990295, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.7017987966537476 img loss 1.872265338897705 img loss 1.6667571067810059 img loss 1.611838936805725 img loss 1.6984597444534302 img loss 1.7412675619125366 img loss 1.520251989364624 img loss 1.7780413627624512 img loss 1.594728708267212 img loss 1.6611884832382202 img loss 1.5775214433670044 img loss 1.6966232061386108 img loss 1.6900935173034668 img loss 1.5836292505264282 img loss 1.4924110174179077 img loss 1.7017791271209717 img loss 1.8178062438964844 img loss 1.9625135660171509 img loss 1.6572614908218384 img loss 1.7865383625030518 img loss 1.6999727487564087 img loss 1.533809781074524 img loss 1.7428696155548096 img loss 1.6920851469039917 img loss 1.5325171947479248 img loss 1.6096280813217163 img loss 1.6348446607589722 img loss 1.6264806985855103 img loss 1.7002366781234741 img loss 1.595530390739441 img loss 1.9041627645492554 img loss 1.7447693347930908 img loss 1.8865540027618408 img loss 1.5707908868789673 img loss 1.646315336227417 img loss 1.6703780889511108 img loss 1.6403517723083496 img loss 1.6377273797988892 img loss 1.8219311237335205 img loss 1.4126429557800293 img loss 1.699410319328308 img loss 1.7616379261016846 img loss 1.5628854036331177 img loss 1.9775816202163696 img loss 1.7535871267318726 img loss 1.4824594259262085 img loss 1.7783868312835693 img loss 1.7943557500839233 img loss 1.7250359058380127 img loss 1.5486301183700562 img loss 1.8023210763931274 img loss 1.675767183303833 img loss 1.6501193046569824 img loss 1.7353601455688477 img loss 1.5267107486724854 img loss 1.6639111042022705 img loss 1.6787543296813965 img loss 1.9708105325698853 img loss 1.6323672533035278 img loss 1.736102819442749 img loss 1.6865779161453247 img loss 1.7037168741226196 img loss 1.6126935482025146 img loss 1.8499059677124023 img loss 1.6059972047805786 img loss 1.8752679824829102 img loss 1.7443794012069702 img loss 1.7066186666488647 img loss 1.7585785388946533 img loss 1.6380350589752197 img loss 1.7854993343353271 img loss 1.5246418714523315 img loss 1.6177242994308472 img loss 1.7647727727890015 img loss 1.65654456615448 img loss 1.5113972425460815 img loss 1.6259987354278564 img loss 1.5433833599090576 img loss 1.7012757062911987 img loss 1.6812894344329834 img loss 1.6423794031143188 img loss 1.631760835647583 img loss 1.6721947193145752 img loss 1.567012906074524 img loss 1.6752687692642212 img loss 1.6955193281173706 img loss 1.6828442811965942 img loss 1.7624757289886475 img loss 1.6673022508621216 img loss 1.7687489986419678 img loss 1.7262767553329468 img loss 1.5386337041854858 img loss 1.826196312904358 img loss 1.7216612100601196 img loss 1.6395316123962402 img loss 1.6929421424865723 img loss 1.5996737480163574 img loss 1.6678892374038696 img loss 1.7621256113052368 img loss 1.6720596551895142 img loss 1.5749361515045166 img loss 1.7022544145584106 img loss 1.528030514717102 img loss 1.8200268745422363 img loss 1.5245299339294434 img loss 1.6794496774673462 img loss 1.7737634181976318 img loss 1.7797771692276 img loss 1.5857269763946533 img loss 1.7890011072158813 img loss 1.6451340913772583 img loss 1.6235171556472778 img loss 1.6869889497756958 img loss 1.5486007928848267 img loss 1.8336286544799805 img loss 1.5813103914260864 img loss 1.7416279315948486 img loss 1.5839802026748657 img loss 1.4708971977233887 img loss 1.8391939401626587 img loss 1.6985138654708862 img loss 1.7177835702896118 img loss 1.8379594087600708 img loss 1.7756942510604858 img loss 1.7876567840576172 img loss 1.705725073814392 img loss 1.5295153856277466 img loss 1.808053970336914 {'loss': 1.6848, 'grad_norm': 0.28023576736450195, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3680473566055298 img loss 1.4158674478530884 img loss 1.2930183410644531 img loss 1.4225598573684692 img loss 1.3793870210647583 img loss 1.42113196849823 img loss 1.3941289186477661 img loss 1.3845887184143066 img loss 1.43317449092865 img loss 1.3944947719573975 img loss 1.382404088973999 img loss 1.3812768459320068 img loss 1.3689501285552979 img loss 1.3590015172958374 img loss 1.454931616783142 img loss 1.4114891290664673 img loss 1.4217339754104614 img loss 1.5042147636413574 img loss 1.3641196489334106 img loss 1.4651490449905396 img loss 1.3819180727005005 img loss 1.4883745908737183 img loss 1.4681082963943481 img loss 1.474677562713623 img loss 1.4786709547042847 img loss 1.4060803651809692 img loss 1.5545545816421509 img loss 1.3974578380584717 img loss 1.3891842365264893 img loss 1.3214147090911865 img loss 1.5376296043395996 img loss 1.4693773984909058 img loss 1.4315367937088013 img loss 1.5416430234909058 img loss 1.4659866094589233 img loss 1.4420078992843628 img loss 1.3304680585861206 img loss 1.4398659467697144 img loss 1.3826953172683716 img loss 1.34841787815094 img loss 1.4723836183547974 img loss 1.3453905582427979 img loss 1.4046026468276978 img loss 1.573615550994873 img loss 1.4205487966537476 img loss 1.4589478969573975 img loss 1.3589603900909424 img loss 1.3901439905166626 img loss 1.4793728590011597 img loss 1.3535282611846924 img loss 1.40537691116333 img loss 1.4126436710357666 img loss 1.3833926916122437 img loss 1.4230494499206543 img loss 1.3889929056167603 img loss 1.4211336374282837 img loss 1.4365447759628296 img loss 1.383522391319275 img loss 1.3855785131454468 img loss 1.321610927581787 img loss 1.4089767932891846 img loss 1.4478352069854736 img loss 1.363688349723816 img loss 1.3836067914962769 img loss 1.4023643732070923 img loss 1.4843281507492065 img loss 1.5036884546279907 img loss 1.3977986574172974 img loss 1.4239246845245361 img loss 1.380682110786438 img loss 1.3241472244262695 img loss 1.3767071962356567 img loss 1.5979458093643188 img loss 1.4624463319778442 img loss 1.4577358961105347 img loss 1.4373613595962524 img loss 1.271704077720642 img loss 1.3074043989181519 img loss 1.402186632156372 img loss 1.3581255674362183 img loss 1.4564499855041504 img loss 1.4778892993927002 img loss 1.4475659132003784 img loss 1.4505044221878052 img loss 1.408671498298645 img loss 1.3468844890594482 img loss 1.4008727073669434 img loss 1.3616560697555542 img loss 1.3754090070724487 img loss 1.3789345026016235 img loss 1.4020708799362183 img loss 1.3754006624221802 img loss 1.5167893171310425 img loss 1.5035758018493652 img loss 1.3728086948394775 img loss 1.3346726894378662 img loss 1.4349771738052368 img loss 1.3510042428970337 img loss 1.4613391160964966 img loss 1.4553323984146118 img loss 1.4188045263290405 img loss 1.3995087146759033 img loss 1.577965497970581 img loss 1.532028317451477 img loss 1.3382970094680786 img loss 1.5610402822494507 img loss 1.3712278604507446 img loss 1.461179256439209 img loss 1.3120548725128174 img loss 1.4897230863571167 img loss 1.488900065422058 img loss 1.4284976720809937 img loss 1.4021408557891846 img loss 1.457485318183899 img loss 1.393454670906067 img loss 1.3838895559310913 img loss 1.4048361778259277 img loss 1.3866733312606812 img loss 1.4312092065811157 img loss 1.4943726062774658 img loss 1.456964135169983 img loss 1.5549248456954956 img loss 1.4677191972732544 img loss 1.4079080820083618 img loss 1.4391014575958252 img loss 1.450498342514038 img loss 1.5407010316848755 img loss 1.3551048040390015 {'loss': 1.4211, 'grad_norm': 0.36720964312553406, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.243025541305542 img loss 1.271767497062683 img loss 1.3134739398956299 img loss 1.2352566719055176 img loss 1.1945902109146118 img loss 1.1967248916625977 img loss 1.197568655014038 img loss 1.2472161054611206 img loss 1.194597840309143 img loss 1.2066891193389893 img loss 1.2453601360321045 img loss 1.2031701803207397 img loss 1.2475227117538452 img loss 1.1638367176055908 img loss 1.2259900569915771 img loss 1.1761987209320068 img loss 1.2202434539794922 img loss 1.2228771448135376 img loss 1.2219305038452148 img loss 1.2983028888702393 img loss 1.1992526054382324 img loss 1.2446503639221191 img loss 1.266428828239441 img loss 1.2560384273529053 img loss 1.265918493270874 img loss 1.2528431415557861 img loss 1.2000749111175537 img loss 1.2483247518539429 img loss 1.3719249963760376 img loss 1.2336050271987915 img loss 1.2589128017425537 img loss 1.2491319179534912 img loss 1.2571196556091309 img loss 1.2552671432495117 img loss 1.2373030185699463 img loss 1.1923567056655884 img loss 1.216059684753418 img loss 1.180855631828308 img loss 1.2505098581314087 img loss 1.24626624584198 img loss 1.230385184288025 img loss 1.2446308135986328 img loss 1.3196539878845215 img loss 1.1739468574523926 img loss 1.285923957824707 img loss 1.3191795349121094 img loss 1.2272305488586426 img loss 1.1536756753921509 img loss 1.2340388298034668 img loss 1.203102469444275 img loss 1.1741750240325928 img loss 1.2641425132751465 img loss 1.2776068449020386 img loss 1.2442622184753418 img loss 1.382404088973999 img loss 1.1950528621673584 img loss 1.2314579486846924 img loss 1.248779535293579 img loss 1.25166654586792 img loss 1.2910962104797363 img loss 1.23003089427948img loss 1.2291992902755737 img loss 1.267472743988037 img loss 1.1714417934417725 img loss 1.250805139541626 img loss 1.2703328132629395 img loss 1.1714165210723877 img loss 1.26664137840271 img loss 1.231934905052185 img loss 1.1528265476226807 img loss 1.239698886871338 img loss 1.189622163772583 img loss 1.2650980949401855 img loss 1.2520720958709717 img loss 1.156389594078064 img loss 1.187044382095337 img loss 1.2724319696426392 img loss 1.2647089958190918 img loss 1.2505489587783813 img loss 1.165873408317566 img loss 1.2001469135284424 img loss 1.149232268333435 img loss 1.1151206493377686 img loss 1.2240679264068604 img loss 1.3185505867004395 img loss 1.2690997123718262 img loss 1.2350471019744873 img loss 1.2176395654678345 img loss 1.23715341091156 img loss 1.2554214000701904 img loss 1.3605152368545532 img loss 1.3275774717330933 img loss 1.2227685451507568 img loss 1.3132030963897705 img loss 1.2543315887451172 img loss 1.184151530265808 img loss 1.1914924383163452 img loss 1.1758078336715698 img loss 1.152896761894226 img loss 1.2263998985290527 img loss 1.2331223487854004 img loss 1.1630338430404663 img loss 1.2118366956710815 img loss 1.0993890762329102 img loss 1.2361189126968384 img loss 1.2099387645721436 img loss 1.2860475778579712 img loss 1.2778853178024292 img loss 1.2159175872802734 img loss 1.2126444578170776 img loss 1.1912245750427246 img loss 1.2347882986068726 img loss 1.22002112865448 img loss 1.2845723628997803 img loss 1.1971385478973389 img loss 1.2018094062805176 img loss 1.2137962579727173 img loss 1.2211300134658813 img loss 1.2436894178390503 img loss 1.2464298009872437 img loss 1.2757961750030518 img loss 1.2826380729675293 img loss 1.2701168060302734 img loss 1.1784615516662598 img loss 1.2821927070617676 img loss 1.1705375909805298 img loss 1.2258477210998535 img loss 1.1938831806182861 {'loss': 1.2325, 'grad_norm': 0.4456291198730469, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.316627025604248 img loss 1.177167296409607 img loss 1.184877872467041 img loss 1.291669487953186 img loss 1.2744680643081665 img loss 1.1985199451446533 img loss 1.2522562742233276 img loss 1.2522480487823486 img loss 1.3048596382141113 img loss 1.3062480688095093 img loss 1.1679527759552002 img loss 1.2434122562408447 img loss 1.250008225440979 img loss 1.1850894689559937 img loss 1.1584622859954834 img loss 1.1890414953231812 img loss 1.217780590057373 img loss 1.2803189754486084 img loss 1.245120882987976 img loss 1.2195308208465576 img loss 1.1073880195617676 img loss 1.2800707817077637 img loss 1.202470064163208 img loss 1.2678589820861816 img loss 1.1859476566314697 img loss 1.1895643472671509 img loss 1.315151572227478 img loss 1.2208284139633179 img loss 1.1918410062789917 img loss 1.2646782398223877 img loss 1.2268002033233643 img loss 1.316198706626892 img loss 1.2104395627975464 img loss 1.3083943128585815 img loss 1.2163200378417969 img loss 1.2339750528335571 img loss 1.1945717334747314 img loss 1.2008743286132812 img loss 1.3370354175567627 img loss 1.2007204294204712 img loss 1.2480162382125854 img loss 1.1461113691329956 img loss 1.18894624710083 img loss 1.2703826427459717 img loss 1.2410600185394287 img loss 1.327959418296814 img loss 1.3036750555038452 img loss 1.1926345825195312 img loss 1.2238495349884033 img loss 1.196031928062439 img loss 1.2045007944107056 img loss 1.2714769840240479 img loss 1.2363693714141846 img loss 1.2497973442077637 img loss 1.1593167781829834 img loss 1.2058734893798828 img loss 1.215745449066162 img loss 1.2822778224945068 img loss 1.1623413562774658 img loss 1.230478286743164 img loss 1.2016479969024658 img loss 1.23827064037323 img loss 1.231645107269287 img loss 1.2748119831085205 img loss 1.278268575668335 img loss 1.310227870941162 img loss 1.1946299076080322 img loss 1.2404524087905884 img loss 1.193232774734497 img loss 1.2101631164550781 img loss 1.1968735456466675 img loss 1.208930253982544 img loss 1.2060104608535767 img loss 1.2481656074523926 img loss 1.3148971796035767 img loss 1.2777470350265503 img loss 1.2707040309906006 img loss 1.243631362915039 img loss 1.26338791847229 img loss 1.206014633178711 img loss 1.1801366806030273 img loss 1.2174491882324219 img loss 1.1953686475753784 img loss 1.1789470911026 img loss 1.1982046365737915 img loss 1.1791613101959229 img loss 1.2920993566513062 img loss 1.2117021083831787 img loss 1.2741236686706543 img loss 1.282233715057373 img loss 1.1335142850875854 img loss 1.2258832454681396 img loss 1.2705669403076172 img loss 1.1899677515029907 img loss 1.270108938217163 img loss 1.2705304622650146 img loss 1.2203072309494019 img loss 1.2927978038787842 img loss 1.24922513961792 img loss 1.1370697021484375 img loss 1.2260421514511108 img loss 1.3199352025985718 img loss 1.2784346342086792 img loss 1.174460768699646 img loss 1.2112088203430176 img loss 1.2267565727233887 img loss 1.183274269104004 img loss 1.2767884731292725 img loss 1.256415605545044 img loss 1.2746368646621704 img loss 1.240517497062683 img loss 1.291808843612671 img loss 1.2231864929199219 img loss 1.3159654140472412 img loss 1.240950107574463 img loss 1.2268892526626587 img loss 1.2008217573165894 img loss 1.2459163665771484 img loss 1.3028771877288818 img loss 1.2760388851165771 img loss 1.1723363399505615 img loss 1.2299973964691162 img loss 1.2021284103393555 img loss 1.277712106704712 img loss 1.1696240901947021 img loss 1.2750438451766968 img loss 1.1341055631637573 img loss 1.3539167642593384 {'loss': 1.2346, 'grad_norm': 0.2623310089111328, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2500288486480713 img loss 1.2772787809371948 img loss 1.2987552881240845 img loss 1.3474421501159668 img loss 1.2285189628601074 img loss 1.2780885696411133 img loss 1.4804052114486694 img loss 1.2877095937728882 img loss 1.2432372570037842 img loss 1.3561904430389404 img loss 1.3849948644638062 img loss 1.2198151350021362 img loss 1.3045687675476074 img loss 1.2483123540878296 img loss 1.4146167039871216 img loss 1.3104594945907593 img loss 1.3318290710449219 img loss 1.2343820333480835 img loss 1.2529895305633545 img loss 1.2822089195251465 img loss 1.232306718826294 img loss 1.3119226694107056 img loss 1.324745535850525 img loss 1.1777150630950928 img loss 1.2409428358078003 img loss 1.3437819480895996 img loss 1.2991673946380615 img loss 1.3913437128067017 img loss 1.3059725761413574 img loss 1.2728811502456665 img loss 1.3047336339950562 img loss 1.3277863264083862 img loss 1.3163846731185913 img loss 1.2693672180175781 img loss 1.2357829809188843 img loss 1.3630766868591309 img loss 1.2708231210708618 img loss 1.2580466270446777 img loss 1.3099732398986816 img loss 1.305946946144104 img loss 1.332560420036316 img loss 1.2761768102645874 img loss 1.2324336767196655 img loss 1.2952638864517212 img loss 1.335052251815796 img loss 1.3247703313827515 img loss 1.396159052848816 img loss 1.219942569732666 img loss 1.3747878074645996 img loss 1.3034254312515259 img loss 1.25687575340271 img loss 1.3106961250305176 img loss 1.3245261907577515 img loss 1.305591106414795 img loss 1.3032279014587402 img loss 1.2367442846298218 img loss 1.3165072202682495 img loss 1.3112430572509766 img loss 1.2888067960739136 img loss 1.2496767044067383 img loss 1.252805233001709 img loss 1.309293270111084 img loss 1.2143781185150146 img loss 1.28519868850708 img loss 1.318131685256958 img loss 1.2590134143829346 img loss 1.3289108276367188 img loss 1.1804537773132324 img loss 1.289573073387146 img loss 1.3405520915985107 img loss 1.3385361433029175 img loss 1.4151564836502075 img loss 1.4072264432907104 img loss 1.2843302488327026 img loss 1.3477929830551147 img loss 1.3116087913513184 img loss 1.290964961051941 img loss 1.2251334190368652 img loss 1.2150639295578003 img loss 1.2792689800262451 img loss 1.2869467735290527 img loss 1.3373013734817505 img loss 1.3077826499938965 img loss 1.3069695234298706 img loss 1.365936040878296 img loss 1.2784135341644287 img loss 1.3590667247772217 img loss 1.2599767446517944 img loss 1.2916600704193115 img loss 1.3317668437957764 img loss 1.2993457317352295 img loss 1.291544795036316 img loss 1.3046600818634033 img loss 1.268134593963623 img loss 1.3088921308517456 img loss 1.2930192947387695 img loss 1.250282883644104 img loss 1.2942461967468262 img loss 1.2736351490020752 img loss 1.3155186176300049 img loss 1.2734102010726929 img loss 1.2492815256118774 img loss 1.297745704650879 img loss 1.2343958616256714 img loss 1.3305177688598633 img loss 1.2514357566833496 img loss 1.2937520742416382 img loss 1.270283579826355 img loss 1.235473871231079 img loss 1.2432711124420166 img loss 1.3011221885681152 img loss 1.4014660120010376 img loss 1.2235873937606812 img loss 1.2676753997802734 img loss 1.2933366298675537 img loss 1.2763113975524902 img loss 1.257931113243103 img loss 1.2521501779556274 img loss 1.444291353225708 img loss 1.2224788665771484 img loss 1.3124843835830688 img loss 1.3618301153182983 img loss 1.2095904350280762 img loss 1.241356372833252 img loss 1.3352274894714355 img loss 1.3736741542816162 img loss 1.2655043601989746 img loss 1.3203308582305908 {'loss': 1.2957, 'grad_norm': 0.2414880394935608, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2755316495895386 img loss 1.2259470224380493 img loss 1.3698551654815674 img loss 1.3415558338165283 img loss 1.2996742725372314 img loss 1.2998466491699219 img loss 1.327723503112793 img loss 1.3393174409866333 img loss 1.2523775100708008 img loss 1.3124803304672241 img loss 1.2952522039413452 img loss 1.27524733543396 img loss 1.344754934310913 img loss 1.2889461517333984 img loss 1.315693736076355 img loss 1.3396657705307007 img loss 1.288848638534546 img loss 1.3289870023727417 img loss 1.2920045852661133 img loss 1.2949802875518799 img loss 1.3466746807098389 img loss 1.3613191843032837 img loss 1.304105520248413 img loss 1.3153953552246094 img loss 1.2711175680160522 img loss 1.2959059476852417 img loss 1.2913646697998047 img loss 1.3093922138214111 img loss 1.2334927320480347 img loss 1.308611512184143 img loss 1.3716272115707397 img loss 1.2756630182266235 img loss 1.3169357776641846 img loss 1.2739368677139282 img loss 1.4085583686828613 img loss 1.2566595077514648 img loss 1.251505732536316 img loss 1.2786204814910889 img loss 1.2255197763442993 img loss 1.2962281703948975 img loss 1.2845357656478882 img loss 1.4048651456832886 img loss 1.2473400831222534 img loss 1.3125293254852295 img loss 1.3137333393096924 img loss 1.2995150089263916 img loss 1.259413480758667 img loss 1.2895311117172241 img loss 1.2769184112548828 img loss 1.3508015871047974 img loss 1.3466123342514038 img loss 1.2473036050796509 img loss 1.2757803201675415 img loss 1.2871379852294922 img loss 1.2798709869384766 img loss 1.3209396600723267 img loss 1.258734107017517 img loss 1.3589767217636108 img loss 1.2783416509628296 img loss 1.4339678287506104 img loss 1.3446877002716064 img loss 1.25588858127594 img loss 1.369675874710083 img loss 1.3017984628677368 img loss 1.3537681102752686 img loss 1.3235127925872803 img loss 1.3242477178573608 img loss 1.2958097457885742 img loss 1.298335313796997 img loss 1.2677879333496094 img loss 1.318764567375183 img loss 1.3890414237976074 img loss 1.3245868682861328 img loss 1.2308346033096313 img loss 1.314286470413208 img loss 1.3420931100845337 img loss 1.3697216510772705 img loss 1.3091951608657837 img loss 1.3235225677490234 img loss 1.2633174657821655 img loss 1.270365595817566 img loss 1.3334269523620605 img loss 1.317490577697754 img loss 1.279270052909851 img loss 1.2594928741455078 img loss 1.315894603729248 img loss 1.3353251218795776 img loss 1.2666738033294678 img loss 1.2935552597045898 img loss 1.2986780405044556 img loss 1.2709273099899292 img loss 1.3740897178649902 img loss 1.4275137186050415 img loss 1.2413638830184937 img loss 1.3470990657806396 img loss 1.3159211874008179 img loss 1.3083044290542603 img loss 1.3020070791244507 img loss 1.2536410093307495 img loss 1.3215341567993164 img loss 1.3057994842529297 img loss 1.2498935461044312 img loss 1.397111415863037 img loss 1.2860710620880127 img loss 1.3179115056991577 img loss 1.2434935569763184 img loss 1.2932051420211792 img loss 1.2825703620910645 img loss 1.276465892791748 img loss 1.3802845478057861 img loss 1.3359013795852661 img loss 1.243435263633728 img loss 1.341499924659729 img loss 1.3518764972686768 img loss 1.319201111793518 img loss 1.3349699974060059 img loss 1.2036577463150024 img loss 1.3387988805770874 img loss 1.2706208229064941 img loss 1.241292953491211 img loss 1.4073017835617065 img loss 1.235939621925354 img loss 1.3381450176239014 img loss 1.3890787363052368 img loss 1.4314639568328857 img loss 1.3211768865585327 img loss 1.2678736448287964 img loss 1.251715898513794 {'loss': 1.3073, 'grad_norm': 0.2559981346130371, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2375271320343018 img loss 1.3633439540863037 img loss 1.2770028114318848 img loss 1.2220934629440308 img loss 1.2959932088851929 img loss 1.2599903345108032 img loss 1.2898733615875244 img loss 1.4002000093460083 img loss 1.3284032344818115 img loss 1.2726552486419678 img loss 1.300499677658081 img loss 1.3189022541046143 img loss 1.2182321548461914 img loss 1.335832118988037 img loss 1.327368140220642 img loss 1.3033770322799683 img loss 1.3514963388442993 img loss 1.3554012775421143 img loss 1.3402621746063232 img loss 1.3204272985458374 img loss 1.3162994384765625 img loss 1.3226324319839478 img loss 1.1982601881027222 img loss 1.3035475015640259 img loss 1.2900164127349854 img loss 1.3342702388763428 img loss 1.3121697902679443 img loss 1.2686668634414673 img loss 1.2906513214111328 img loss 1.3895899057388306 img loss 1.2870886325836182 img loss 1.3085561990737915 img loss 1.3439491987228394 img loss 1.413293719291687 img loss 1.3067519664764404 img loss 1.2824246883392334 img loss 1.256622076034546 img loss 1.2615927457809448 img loss 1.3100066184997559 img loss 1.3326342105865479 img loss 1.2316608428955078 img loss 1.248652696609497 img loss 1.2356128692626953 img loss 1.2937630414962769 img loss 1.3186156749725342 img loss 1.3019156455993652 img loss 1.2522410154342651 img loss 1.2396562099456787 img loss 1.3215221166610718 img loss 1.2919490337371826 img loss 1.3569296598434448 img loss 1.2411549091339111 img loss 1.2542915344238281 img loss 1.2579326629638672 img loss 1.3054301738739014 img loss 1.2762596607208252 img loss 1.2928584814071655img loss 1.3975803852081299 img loss 1.3672211170196533 img loss 1.2276670932769775 img loss 1.3213231563568115 img loss 1.3719680309295654 img loss 1.279667854309082 img loss 1.2760310173034668 img loss 1.2437361478805542 img loss 1.2366641759872437 img loss 1.2398048639297485 img loss 1.3023834228515625 img loss 1.3119781017303467 img loss 1.3018778562545776 img loss 1.2791932821273804 img loss 1.2146694660186768 img loss 1.3136879205703735 img loss 1.2560970783233643 img loss 1.2900291681289673 img loss 1.3300964832305908 img loss 1.269669532775879 img loss 1.3603966236114502 img loss 1.3093658685684204 img loss 1.2989238500595093 img loss 1.3997015953063965 img loss 1.355518102645874 img loss 1.3144396543502808 img loss 1.2825734615325928 img loss 1.3102881908416748 img loss 1.2880661487579346 img loss 1.3555468320846558 img loss 1.318498134613037 img loss 1.339828610420227 img loss 1.269200086593628 img loss 1.1843163967132568 img loss 1.3321070671081543 img loss 1.2717843055725098 img loss 1.3043437004089355 img loss 1.3328189849853516 img loss 1.3012584447860718 img loss 1.3314520120620728 img loss 1.336367130279541 img loss 1.2660850286483765 img loss 1.2691837549209595 img loss 1.3230316638946533 img loss 1.3270809650421143 img loss 1.374918818473816 img loss 1.3654608726501465 img loss 1.2666078805923462 img loss 1.2751048803329468 img loss 1.4094682931900024 img loss 1.247781753540039 img loss 1.2212960720062256 img loss 1.3268743753433228 img loss 1.3036117553710938 img loss 1.29508376121521 img loss 1.264219880104065 img loss 1.2618423700332642 img loss 1.3308002948760986 img loss 1.3922330141067505 img loss 1.319904088973999 img loss 1.306292176246643 img loss 1.2422387599945068 img loss 1.3027565479278564 img loss 1.339678168296814 img loss 1.3159445524215698 img loss 1.3521196842193604 img loss 1.2987936735153198 img loss 1.2954047918319702 img loss 1.254435420036316 img loss 1.289884328842163 img loss 1.264585018157959 {'loss': 1.3008, 'grad_norm': 0.480936199426651, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1587263345718384 img loss 1.1419719457626343 img loss 1.0793185234069824 img loss 1.1482977867126465 img loss 1.18711256980896 img loss 1.2019498348236084 img loss 1.136309266090393 img loss 1.214028239250183 img loss 1.144884467124939 img loss 1.094581127166748 img loss 1.1266896724700928 img loss 1.1834309101104736 img loss 1.1748394966125488 img loss 1.141118049621582 img loss 1.1298593282699585 img loss 1.1904356479644775 img loss 1.1689852476119995 img loss 1.1217336654663086 img loss 1.1504367589950562 img loss 1.0797755718231201 img loss 1.3193180561065674 img loss 1.2281200885772705 img loss 1.184767484664917 img loss 1.152869701385498 img loss 1.20586097240448 img loss 1.1503514051437378 img loss 1.1881097555160522 img loss 1.1833280324935913 img loss 1.1933122873306274 img loss 1.126562237739563 img loss 1.1249606609344482 img loss 1.1482179164886475 img loss 1.180155634880066 img loss 1.157946228981018 img loss 1.1709879636764526 img loss 1.164230227470398 img loss 1.1851352453231812 img loss 1.1992573738098145 img loss 1.2341761589050293 img loss 1.1122721433639526 img loss 1.1714543104171753 img loss 1.1046777963638306 img loss 1.1259820461273193 img loss 1.153038740158081 img loss 1.1489958763122559 img loss 1.0827014446258545 img loss 1.176436424255371 img loss 1.1919267177581787 img loss 1.247240662574768 img loss 1.1197772026062012 img loss 1.226902723312378 img loss 1.2182800769805908 img loss 1.150745153427124 img loss 1.140725016593933 img loss 1.1923598051071167 img loss 1.173028588294983 img loss 1.1734440326690674 img loss 1.2099971771240234 img loss 1.150872826576233 img loss 1.15375554561615 img loss 1.1961982250213623 img loss 1.1583582162857056 img loss 1.1906884908676147 img loss 1.1660308837890625 img loss 1.148231029510498 img loss 1.1568530797958374 img loss 1.266378402709961 img loss 1.1792758703231812 img loss 1.156951665878296 img loss 1.1226476430892944 img loss 1.1825746297836304 img loss 1.1383169889450073 img loss 1.229918122291565 img loss 1.1207460165023804 img loss 1.2015167474746704 img loss 1.1576441526412964 img loss 1.1856039762496948 img loss 1.145206093788147 img loss 1.1287548542022705 img loss 1.070709228515625 img loss 1.2528938055038452 img loss 1.1049575805664062 img loss 1.122875690460205 img loss 1.1959128379821777 img loss 1.1613941192626953 img loss 1.179319977760315 img loss 1.1817295551300049 img loss 1.13030207157135 img loss 1.1825251579284668 img loss 1.112667441368103 img loss 1.2543185949325562 img loss 1.114217758178711 img loss 1.1524890661239624 img loss 1.1682156324386597 img loss 1.175372838973999 img loss 1.2049498558044434 img loss 1.2060383558273315 img loss 1.185049295425415 img loss 1.1564595699310303 img loss 1.2345728874206543 img loss 1.1507492065429688 img loss 1.1746739149093628 img loss 1.1404227018356323 img loss 1.149255633354187 img loss 1.1504074335098267 img loss 1.1770719289779663 img loss 1.2465744018554688 img loss 1.2200716733932495 img loss 1.1570320129394531 img loss 1.221032977104187 img loss 1.1505041122436523 img loss 1.1595016717910767 img loss 1.1377400159835815 img loss 1.111269235610962 img loss 1.1239680051803589 img loss 1.2513558864593506 img loss 1.160538673400879 img loss 1.1930440664291382 img loss 1.1659506559371948 img loss 1.0877686738967896 img loss 1.167585849761963 img loss 1.1907973289489746 img loss 1.176987886428833 img loss 1.1506404876708984 img loss 1.1272709369659424 img loss 1.2121444940567017 img loss 1.298815369606018 img loss 1.2375446557998657 {'loss': 1.1685, 'grad_norm': 0.252000629901886, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1912122964859009 img loss 1.1712499856948853 img loss 1.1643249988555908 img loss 1.2821584939956665 img loss 1.2708014249801636 img loss 1.238462209701538 img loss 1.2040934562683105 img loss 1.2380456924438477 img loss 1.2394535541534424 img loss 1.1923344135284424 img loss 1.205188512802124 img loss 1.2157673835754395 img loss 1.2461678981781006 img loss 1.3181418180465698 img loss 1.2537516355514526 img loss 1.2180531024932861 img loss 1.2295974493026733 img loss 1.2731214761734009 img loss 1.2782208919525146 img loss 1.3163855075836182 img loss 1.2445805072784424 img loss 1.2285569906234741 img loss 1.278759479522705 img loss 1.1366662979125977 img loss 1.2491106986999512 img loss 1.294411540031433 img loss 1.2592893838882446 img loss 1.1975293159484863 img loss 1.2900853157043457 img loss 1.2058008909225464 img loss 1.2233778238296509 img loss 1.2577027082443237 img loss 1.2491134405136108 img loss 1.2211283445358276 img loss 1.2756394147872925 img loss 1.2707010507583618 img loss 1.2327553033828735 img loss 1.2362250089645386 img loss 1.222609281539917 img loss 1.1699652671813965 img loss 1.274343490600586 img loss 1.2681869268417358 img loss 1.2913233041763306 img loss 1.2532637119293213 img loss 1.207364797592163 img loss 1.2668771743774414 img loss 1.1592750549316406 img loss 1.1750010251998901 img loss 1.252293586730957 img loss 1.1782524585723877 img loss 1.2479122877120972 img loss 1.3085945844650269 img loss 1.236101746559143 img loss 1.1841894388198853 img loss 1.2509702444076538 img loss 1.1434731483459473 img loss 1.2574766874313354 img loss 1.1590021848678589 img loss 1.2531906366348267 img loss 1.2345985174179077 img loss 1.2457616329193115 img loss 1.230031967163086 img loss 1.215083360671997 img loss 1.2746732234954834 img loss 1.217436671257019 img loss 1.2423886060714722 img loss 1.2072539329528809 img loss 1.2860952615737915 img loss 1.1764652729034424 img loss 1.2854779958724976 img loss 1.3022106885910034 img loss 1.2147817611694336 img loss 1.350221872329712 img loss 1.2636468410491943 img loss 1.1940867900848389 img loss 1.2687008380889893 img loss 1.2941713333129883 img loss 1.185149073600769 img loss 1.2164894342422485 img loss 1.2209484577178955 img loss 1.2866990566253662 img loss 1.2718548774719238 img loss 1.2082912921905518 img loss 1.2456603050231934 img loss 1.2017828226089478 img loss 1.2457594871520996 img loss 1.2058894634246826 img loss 1.1671178340911865 img loss 1.2616757154464722 img loss 1.2629034519195557 img loss 1.1791404485702515 img loss 1.1868098974227905 img loss 1.4086089134216309 img loss 1.2449688911437988 img loss 1.231244683265686 img loss 1.1816983222961426 img loss 1.2780529260635376 img loss 1.225955605506897img loss 1.2348860502243042 img loss 1.254229187965393 img loss 1.285170555114746 img loss 1.1862196922302246 img loss 1.1790331602096558 img loss 1.2585117816925049 img loss 1.3032020330429077 img loss 1.2831064462661743 img loss 1.259650707244873 img loss 1.2213327884674072 img loss 1.1966100931167603 img loss 1.2387900352478027 img loss 1.1843929290771484 img loss 1.1586740016937256 img loss 1.2709333896636963 img loss 1.2038475275039673 img loss 1.1800674200057983 img loss 1.2673139572143555 img loss 1.3427311182022095 img loss 1.2769105434417725 img loss 1.2299530506134033 img loss 1.2428257465362549 img loss 1.2212871313095093 img loss 1.2732247114181519 img loss 1.2564538717269897 img loss 1.2243518829345703 img loss 1.2067474126815796 img loss 1.2773933410644531 img loss 1.230832815170288 img loss 1.2065143585205078 {'loss': 1.2378, 'grad_norm': 0.2511388957500458, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.277884840965271 img loss 1.267488718032837 img loss 1.2332559823989868 img loss 1.183075189590454 img loss 1.2222802639007568 img loss 1.1827192306518555 img loss 1.1730027198791504 img loss 1.3071072101593018 img loss 1.2175428867340088 img loss 1.1996277570724487 img loss 1.2982310056686401 img loss 1.2744816541671753 img loss 1.2865568399429321 img loss 1.2519177198410034 img loss 1.2373838424682617 img loss 1.2197951078414917 img loss 1.2688682079315186 img loss 1.2155182361602783 img loss 1.2407944202423096 img loss 1.217537522315979 img loss 1.293421983718872 img loss 1.2560088634490967 img loss 1.1704429388046265 img loss 1.1996915340423584 img loss 1.202646017074585 img loss 1.1827576160430908 img loss 1.1669814586639404 img loss 1.265790581703186 img loss 1.1944246292114258 img loss 1.1656192541122437 img loss 1.2170101404190063 img loss 1.2260987758636475 img loss 1.1550495624542236 img loss 1.2271794080734253 img loss 1.270445466041565 img loss 1.3501349687576294 img loss 1.2146408557891846 img loss 1.2247718572616577 img loss 1.1888926029205322 img loss 1.1958963871002197 img loss 1.2415107488632202 img loss 1.2332576513290405 img loss 1.201567530632019 img loss 1.1575838327407837 img loss 1.2469112873077393 img loss 1.2820440530776978 img loss 1.2861865758895874 img loss 1.2680363655090332 img loss 1.2209258079528809 img loss 1.3250982761383057 img loss 1.2755106687545776 img loss 1.1652783155441284 img loss 1.2185732126235962 img loss 1.2757095098495483 img loss 1.2153972387313843 img loss 1.2373605966567993 img loss 1.192753553390503 img loss 1.317217469215393 img loss 1.230710506439209 img loss 1.2488561868667603 img loss 1.2089354991912842 img loss 1.376446008682251 img loss 1.182029366493225 img loss 1.22872793674469 img loss 1.2927601337432861 img loss 1.2157427072525024 img loss 1.238228678703308 img loss 1.2302110195159912 img loss 1.2285715341567993 img loss 1.195165991783142 img loss 1.2394752502441406 img loss 1.2056069374084473 img loss 1.281411051750183 img loss 1.2111461162567139 img loss 1.3066439628601074 img loss 1.2323036193847656 img loss 1.255245566368103 img loss 1.206689476966858 img loss 1.3147921562194824 img loss 1.2499158382415771 img loss 1.2445180416107178 img loss 1.2219429016113281 img loss 1.2863292694091797 img loss 1.279402732849121 img loss 1.2849552631378174 img loss 1.2020890712738037 img loss 1.2851985692977905 img loss 1.2891342639923096 img loss 1.2703626155853271 img loss 1.2115510702133179 img loss 1.2567356824874878 img loss 1.2907841205596924 img loss 1.1895672082901 img loss 1.2514550685882568 img loss 1.2440012693405151 img loss 1.3434383869171143 img loss 1.2867683172225952 img loss 1.2549923658370972 img loss 1.2817081212997437 img loss 1.2148178815841675 img loss 1.2423940896987915 img loss 1.2000690698623657 img loss 1.3069140911102295 img loss 1.2614340782165527 img loss 1.3023276329040527 img loss 1.2197176218032837 img loss 1.2836787700653076 img loss 1.242409110069275 img loss 1.158064603805542 img loss 1.2960290908813477 img loss 1.2547415494918823 img loss 1.2735060453414917 img loss 1.227565050125122 img loss 1.302295207977295 img loss 1.2843365669250488 img loss 1.2425345182418823 img loss 1.243742823600769 img loss 1.1390531063079834 img loss 1.2709014415740967 img loss 1.248948574066162 img loss 1.1850790977478027 img loss 1.3011692762374878 img loss 1.2267309427261353 img loss 1.1915918588638306 img loss 1.2597861289978027 img loss 1.3177604675292969 img loss 1.3101917505264282 img loss 1.3108978271484375 {'loss': 1.2436, 'grad_norm': 0.4152209758758545, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.454369306564331 img loss 1.4154003858566284 img loss 1.3988518714904785 img loss 1.3571951389312744 img loss 1.3622758388519287 img loss 1.459135890007019 img loss 1.4885412454605103 img loss 1.4641423225402832 img loss 1.3787391185760498 img loss 1.3962923288345337 img loss 1.5076874494552612 img loss 1.5451396703720093 img loss 1.4190903902053833 img loss 1.3911494016647339 img loss 1.4747259616851807 img loss 1.5294162034988403 img loss 1.4800512790679932 img loss 1.5593684911727905 img loss 1.5706065893173218 img loss 1.5135395526885986 img loss 1.423611044883728 img loss 1.3663132190704346 img loss 1.3335522413253784 img loss 1.301634430885315 img loss 1.352537989616394 img loss 1.3633235692977905 img loss 1.3777318000793457 img loss 1.4934192895889282 img loss 1.5120774507522583 img loss 1.3908885717391968 img loss 1.4351850748062134 img loss 1.4338573217391968 img loss 1.416436791419983 img loss 1.4208827018737793 img loss 1.3077197074890137 img loss 1.4533703327178955 img loss 1.4131200313568115 img loss 1.334303379058838 img loss 1.4251755475997925 img loss 1.4685075283050537 img loss 1.472037672996521img loss 1.3582135438919067 img loss 1.4678999185562134 img loss 1.3931128978729248 img loss 1.3821768760681152 img loss 1.473998785018921 img loss 1.3153836727142334 img loss 1.4123519659042358 img loss 1.3605377674102783 img loss 1.3764050006866455 img loss 1.4503599405288696 img loss 1.4818835258483887 img loss 1.4721786975860596 img loss 1.4325681924819946 img loss 1.4711862802505493 img loss 1.3336163759231567 img loss 1.4020015001296997 img loss 1.5197778940200806 img loss 1.3967655897140503 img loss 1.371687650680542 img loss 1.444517731666565 img loss 1.466780185699463 img loss 1.3761982917785645 img loss 1.4926682710647583 img loss 1.4626070261001587 img loss 1.3841204643249512 img loss 1.51891028881073 img loss 1.4569907188415527 img loss 1.5243748426437378 img loss 1.3807536363601685 img loss 1.2746946811676025 img loss 1.505307912826538 img loss 1.5596450567245483 img loss 1.3823126554489136 img loss 1.4726471900939941 img loss 1.3997094631195068 img loss 1.3588560819625854 img loss 1.46912682056427 img loss 1.5286446809768677 img loss 1.5047627687454224 img loss 1.4557956457138062 img loss 1.5742594003677368 img loss 1.418211817741394 img loss 1.4603608846664429 img loss 1.41493558883667 img loss 1.415515422821045 img loss 1.484094262123108 img loss 1.417814016342163 img loss 1.491860270500183 img loss 1.5689597129821777 img loss 1.3817282915115356 img loss 1.5820544958114624 img loss 1.3694566488265991 img loss 1.4059408903121948 img loss 1.369216799736023 img loss 1.4763394594192505 img loss 1.3766416311264038 img loss 1.6005727052688599 img loss 1.4861423969268799 img loss 1.3860970735549927 img loss 1.39468252658844 img loss 1.4407509565353394 img loss 1.4638210535049438 img loss 1.5648525953292847 img loss 1.3678418397903442img loss 1.4319233894348145 img loss 1.4154638051986694 img loss 1.4062001705169678 img loss 1.4891693592071533 img loss 1.4468395709991455 img loss 1.359445333480835 img loss 1.4953583478927612 img loss 1.3884857892990112 img loss 1.5058560371398926 img loss 1.5662063360214233 img loss 1.3811463117599487 img loss 1.4185277223587036 img loss 1.5747414827346802 img loss 1.3744080066680908 img loss 1.4404122829437256 img loss 1.4675240516662598img loss 1.3968092203140259 img loss 1.4790815114974976 img loss 1.4770716428756714 img loss 1.5493683815002441 img loss 1.4406054019927979 img loss 1.4744937419891357 img loss 1.4110543727874756 {'loss': 1.4395, 'grad_norm': 0.4913824200630188, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2405853271484375 img loss 1.287426233291626 img loss 1.2981181144714355 img loss 1.268349051475525 img loss 1.201080560684204 img loss 1.289665699005127 img loss 1.2673791646957397 img loss 1.304807424545288 img loss 1.289884328842163 img loss 1.2657601833343506 img loss 1.3078811168670654 img loss 1.2236762046813965 img loss 1.223367691040039 img loss 1.2231221199035645 img loss 1.3077454566955566 img loss 1.244149088859558 img loss 1.250272512435913 img loss 1.197401762008667 img loss 1.267490267753601 img loss 1.2964503765106201 img loss 1.3393263816833496 img loss 1.2574713230133057 img loss 1.2666515111923218 img loss 1.2775999307632446 img loss 1.287996768951416 img loss 1.33274245262146 img loss 1.3272796869277954 img loss 1.2155296802520752 img loss 1.2171074151992798 img loss 1.3227331638336182 img loss 1.253968596458435 img loss 1.1953978538513184 img loss 1.2244586944580078 img loss 1.1836583614349365 img loss 1.3372637033462524 img loss 1.2045199871063232 img loss 1.3247311115264893 img loss 1.2179770469665527 img loss 1.261970043182373 img loss 1.1645216941833496 img loss 1.30758798122406 img loss 1.2954607009887695 img loss 1.3525340557098389 img loss 1.2848666906356812 img loss 1.2169127464294434 img loss 1.254206895828247 img loss 1.3082154989242554 img loss 1.2561372518539429 img loss 1.318291187286377 img loss 1.324064016342163 img loss 1.263972520828247 img loss 1.2139383554458618 img loss 1.2063219547271729 img loss 1.335202932357788 img loss 1.2513139247894287 img loss 1.2981306314468384 img loss 1.2414829730987549 img loss 1.2677459716796875 img loss 1.2040801048278809 img loss 1.3042505979537964 img loss 1.3258215188980103 img loss 1.285520076751709 img loss 1.2021589279174805 img loss 1.2893610000610352 img loss 1.2436902523040771 img loss 1.2707880735397339 img loss 1.2600796222686768 img loss 1.2605016231536865 img loss 1.2941246032714844 img loss 1.2682949304580688 img loss 1.2539706230163574 img loss 1.2332104444503784 img loss 1.2406761646270752 img loss 1.2821266651153564 img loss 1.2093368768692017 img loss 1.3410454988479614 img loss 1.2472550868988037 img loss 1.2324548959732056 img loss 1.2578175067901611 img loss 1.2959036827087402 img loss 1.246752142906189 img loss 1.3206934928894043 img loss 1.3372242450714111 img loss 1.3147943019866943 img loss 1.2478300333023071 img loss 1.436890959739685 img loss 1.3282121419906616 img loss 1.2806620597839355 img loss 1.1832189559936523 img loss 1.241748332977295 img loss 1.299504280090332 img loss 1.3451577425003052 img loss 1.2445049285888672 img loss 1.2676256895065308 img loss 1.241270899772644 img loss 1.3777521848678589 img loss 1.3618066310882568 img loss 1.247347116470337 img loss 1.2437183856964111 img loss 1.35493004322052 img loss 1.2693841457366943 img loss 1.3398610353469849 img loss 1.2403717041015625 img loss 1.358324408531189 img loss 1.251488208770752 img loss 1.2238696813583374 img loss 1.218756079673767 img loss 1.2654175758361816 img loss 1.2609554529190063 img loss 1.253739595413208 img loss 1.182860016822815 img loss 1.2321895360946655 img loss 1.2673945426940918 img loss 1.3528770208358765 img loss 1.2851282358169556 img loss 1.201313853263855 img loss 1.273284673690796 img loss 1.231170892715454 img loss 1.2511249780654907 img loss 1.3014919757843018 img loss 1.3585096597671509 img loss 1.3286020755767822 img loss 1.2959816455841064 img loss 1.2815841436386108 img loss 1.28307044506073 img loss 1.3033158779144287 img loss 1.197434425354004 img loss 1.3181774616241455 {'loss': 1.272, 'grad_norm': 0.3520650863647461, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2680141925811768 img loss 1.1945217847824097 img loss 1.2478445768356323 img loss 1.171152114868164 img loss 1.2007238864898682 img loss 1.2228004932403564 img loss 1.2263094186782837 img loss 1.200430154800415 img loss 1.1651675701141357 img loss 1.2601925134658813 img loss 1.1518442630767822 img loss 1.2362511157989502 img loss 1.2526991367340088 img loss 1.2023670673370361 img loss 1.182401180267334 img loss 1.2810882329940796 img loss 1.3143528699874878 img loss 1.2096713781356812 img loss 1.1667976379394531 img loss 1.1705843210220337 img loss 1.204468011856079 img loss 1.2151942253112793 img loss 1.1868534088134766 img loss 1.236139178276062 img loss 1.1797417402267456 img loss 1.1849956512451172 img loss 1.150362491607666 img loss 1.236509084701538 img loss 1.2680286169052124 img loss 1.2469055652618408 img loss 1.139837622642517 img loss 1.2066271305084229 img loss 1.1965079307556152 img loss 1.2762389183044434 img loss 1.2217320203781128 img loss 1.2733200788497925 img loss 1.2246307134628296 img loss 1.1725517511367798 img loss 1.2379286289215088 img loss 1.2013441324234009 img loss 1.20375394821167 img loss 1.1969627141952515 img loss 1.1717288494110107 img loss 1.1875457763671875 img loss 1.1911274194717407 img loss 1.2433876991271973 img loss 1.1505154371261597 img loss 1.2296137809753418 img loss 1.1937189102172852 img loss 1.21101713180542 img loss 1.2291646003723145 img loss 1.2070728540420532 img loss 1.1952542066574097 img loss 1.1238974332809448 img loss 1.2115802764892578 img loss 1.234050989151001 img loss 1.1573089361190796 img loss 1.1625752449035645 img loss 1.2463929653167725 img loss 1.2240805625915527 img loss 1.1561435461044312 img loss 1.2047884464263916 img loss 1.257779836654663 img loss 1.2083042860031128 img loss 1.2094123363494873 img loss 1.2237659692764282 img loss 1.2519280910491943 img loss 1.1624654531478882 img loss 1.1773884296417236 img loss 1.1318868398666382 img loss 1.1641476154327393 img loss 1.2988128662109375 img loss 1.1703145503997803 img loss 1.160068392753601 img loss 1.238938808441162 img loss 1.1833771467208862 img loss 1.1994675397872925 img loss 1.1790192127227783 img loss 1.1925902366638184 img loss 1.1770988702774048 img loss 1.24382483959198 img loss 1.2421118021011353 img loss 1.2219139337539673 img loss 1.2324528694152832 img loss 1.239620566368103 img loss 1.1564034223556519 img loss 1.2300180196762085 img loss 1.1703636646270752 img loss 1.245701551437378 img loss 1.1621453762054443 img loss 1.2426867485046387 img loss 1.1769145727157593 img loss 1.2501455545425415 img loss 1.1726168394088745 img loss 1.1504685878753662 img loss 1.303709864616394 img loss 1.1452795267105103 img loss 1.143291711807251 img loss 1.1899590492248535 img loss 1.2309815883636475 img loss 1.1862375736236572 img loss 1.3065500259399414 img loss 1.1247272491455078 img loss 1.17641019821167 img loss 1.2779128551483154 img loss 1.2050631046295166 img loss 1.2887189388275146 img loss 1.2095484733581543 img loss 1.2065991163253784 img loss 1.177159309387207 img loss 1.2196614742279053 img loss 1.2416667938232422 img loss 1.2764605283737183 img loss 1.2128913402557373 img loss 1.2864835262298584 img loss 1.2274258136749268 img loss 1.3089218139648438 img loss 1.1990768909454346 img loss 1.2051266431808472 img loss 1.229079008102417 img loss 1.2262548208236694 img loss 1.247239589691162 img loss 1.2159677743911743 img loss 1.2208808660507202 img loss 1.2007536888122559 img loss 1.2236816883087158 img loss 1.2357085943222046 img loss 1.238665223121643 {'loss': 1.2112, 'grad_norm': 0.2759694755077362, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.7362399101257324 img loss 1.4771078824996948 img loss 1.5587513446807861 img loss 1.3802343606948853 img loss 1.4170584678649902 img loss 1.5469906330108643 img loss 1.645523190498352 img loss 1.5199016332626343 img loss 1.563717007637024 img loss 1.429540991783142 img loss 1.5235017538070679 img loss 1.5112215280532837 img loss 1.574989914894104 img loss 1.62595534324646 img loss 1.508180022239685 img loss 1.489660620689392 img loss 1.5177770853042603 img loss 1.5409165620803833 img loss 1.4637950658798218 img loss 1.4471083879470825 img loss 1.49419105052948 img loss 1.5651895999908447 img loss 1.6802918910980225 img loss 1.4008705615997314 img loss 1.5773155689239502 img loss 1.5562549829483032 img loss 1.5934059619903564 img loss 1.5395772457122803 img loss 1.5226088762283325 img loss 1.6047941446304321 img loss 1.6197232007980347 img loss 1.5372405052185059 img loss 1.5976535081863403 img loss 1.4854604005813599 img loss 1.555788516998291 img loss 1.5333569049835205 img loss 1.4994622468948364 img loss 1.4542460441589355 img loss 1.6088135242462158 img loss 1.5278897285461426 img loss 1.4798578023910522 img loss 1.5388263463974 img loss 1.6066514253616333 img loss 1.4625980854034424 img loss 1.5090609788894653 img loss 1.4856001138687134 img loss 1.6271421909332275 img loss 1.5200051069259644 img loss 1.4693634510040283 img loss 1.5312492847442627 img loss 1.5640467405319214 img loss 1.6690441370010376 img loss 1.401499629020691 img loss 1.585334062576294 img loss 1.7216029167175293 img loss 1.5025439262390137 img loss 1.4317853450775146 img loss 1.5080020427703857 img loss 1.6436296701431274 img loss 1.548978567123413 img loss 1.640299677848816 img loss 1.6340242624282837 img loss 1.5498006343841553 img loss 1.6447697877883911 img loss 1.383550763130188 img loss 1.5121580362319946 img loss 1.5234301090240479 img loss 1.7964318990707397 img loss 1.4675027132034302 img loss 1.380094289779663 img loss 1.4526302814483643 img loss 1.624508023262024 img loss 1.5350277423858643 img loss 1.6042405366897583 img loss 1.3901807069778442 img loss 1.7759020328521729 img loss 1.5407084226608276 img loss 1.5191590785980225 img loss 1.6593661308288574 img loss 1.6713742017745972 img loss 1.5596795082092285 img loss 1.4906493425369263 img loss 1.4781354665756226 img loss 1.3723379373550415 img loss 1.6199935674667358 img loss 1.4978210926055908 img loss 1.6590789556503296 img loss 1.595864176750183 img loss 1.5452560186386108 img loss 1.568609595298767 img loss 1.4390252828598022 img loss 1.494106650352478 img loss 1.5910691022872925 img loss 1.4508681297302246 img loss 1.4514472484588623 img loss 1.5435185432434082 img loss 1.5232340097427368 img loss 1.5430206060409546 img loss 1.580888271331787 img loss 1.6257035732269287 img loss 1.5036978721618652 img loss 1.511344313621521 img loss 1.4470256567001343 img loss 1.5183300971984863 img loss 1.5195858478546143 img loss 1.423427939414978 img loss 1.6473276615142822 img loss 1.491077184677124 img loss 1.6735517978668213 img loss 1.6156164407730103 img loss 1.5542213916778564 img loss 1.6058017015457153 img loss 1.5239378213882446 img loss 1.3986767530441284 img loss 1.6439435482025146 img loss 1.5131841897964478 img loss 1.6169085502624512 img loss 1.4538007974624634 img loss 1.590948224067688 img loss 1.6248505115509033 img loss 1.5488694906234741 img loss 1.6372722387313843 img loss 1.5102745294570923 img loss 1.6562116146087646 img loss 1.6541552543640137 img loss 1.5830414295196533 img loss 1.3826502561569214 img loss 1.5281394720077515 {'loss': 1.5434, 'grad_norm': 0.34393617510795593, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3990410566329956 img loss 1.3925517797470093 img loss 1.3990427255630493 img loss 1.362026333808899 img loss 1.307342529296875 img loss 1.3271392583847046 img loss 1.487801194190979 img loss 1.532804012298584 img loss 1.3918579816818237 img loss 1.2389720678329468 img loss 1.2955331802368164 img loss 1.3224842548370361 img loss 1.4770668745040894 img loss 1.3548568487167358 img loss 1.2317472696304321 img loss 1.4316766262054443 img loss 1.4509775638580322 img loss 1.2981867790222168 img loss 1.4535943269729614 img loss 1.5396939516067505 img loss 1.3561676740646362 img loss 1.532779335975647 img loss 1.3710051774978638 img loss 1.3504650592803955 img loss 1.4235626459121704 img loss 1.2791448831558228 img loss 1.3945649862289429 img loss 1.3750776052474976 img loss 1.3623934984207153 img loss 1.373382329940796 img loss 1.3690797090530396 img loss 1.2422726154327393 img loss 1.5400567054748535 img loss 1.2622010707855225 img loss 1.2862966060638428 img loss 1.4645034074783325 img loss 1.2986599206924438 img loss 1.4454749822616577 img loss 1.2990219593048096 img loss 1.3970738649368286 img loss 1.334168791770935 img loss 1.4900400638580322 img loss 1.2915807962417603 img loss 1.3623806238174438 img loss 1.421932578086853 img loss 1.3454413414001465 img loss 1.3531650304794312 img loss 1.4667465686798096 img loss 1.4062764644622803 img loss 1.4427154064178467 img loss 1.4133458137512207 img loss 1.320346713066101 img loss 1.3948694467544556 img loss 1.4575603008270264 img loss 1.3476557731628418 img loss 1.4690064191818237 img loss 1.4544646739959717 img loss 1.4324278831481934 img loss 1.434113621711731 img loss 1.4046534299850464 img loss 1.3189501762390137 img loss 1.3891183137893677 img loss 1.3227792978286743 img loss 1.4811848402023315 img loss 1.3496845960617065 img loss 1.398220419883728 img loss 1.3466521501541138 img loss 1.571294903755188 img loss 1.447145938873291 img loss 1.4858644008636475 img loss 1.4417072534561157 img loss 1.3423724174499512 img loss 1.3358874320983887 img loss 1.4928536415100098 img loss 1.4203373193740845 img loss 1.3678086996078491 img loss 1.5809130668640137 img loss 1.3496229648590088img loss 1.49966561794281 img loss 1.4166862964630127 img loss 1.3522173166275024 img loss 1.3183538913726807 img loss 1.29720139503479 img loss 1.4852927923202515 img loss 1.5234509706497192 img loss 1.2851603031158447 img loss 1.3205668926239014 img loss 1.3843828439712524 img loss 1.2575716972351074 img loss 1.3069673776626587 img loss 1.299526572227478 img loss 1.350756049156189 img loss 1.3063510656356812 img loss 1.3052759170532227 img loss 1.4346970319747925 img loss 1.2613264322280884 img loss 1.4244037866592407 img loss 1.3856016397476196 img loss 1.4748481512069702 img loss 1.3066326379776 img loss 1.260008454322815 img loss 1.4262890815734863 img loss 1.3033523559570312 img loss 1.3691009283065796 img loss 1.3867202997207642 img loss 1.3694205284118652 img loss 1.3918564319610596 img loss 1.3115251064300537 img loss 1.3745858669281006 img loss 1.3158973455429077 img loss 1.3280305862426758 img loss 1.3478718996047974 img loss 1.3551990985870361 img loss 1.4112952947616577 img loss 1.4695206880569458 img loss 1.2340257167816162 img loss 1.4442641735076904 img loss 1.3642871379852295 img loss 1.331286072731018 img loss 1.514929175376892 img loss 1.4028794765472412img loss 1.2752234935760498img loss 1.3945902585983276 img loss 1.45946204662323 img loss 1.4548970460891724 img loss 1.325515627861023 img loss 1.2763627767562866 img loss 1.2336012125015259 {'loss': 1.3807, 'grad_norm': 0.27623847126960754, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3722710609436035 img loss 1.4517648220062256 img loss 1.2889587879180908 img loss 1.2643516063690186 img loss 1.295404076576233 img loss 1.3399025201797485 img loss 1.2597081661224365 img loss 1.3010799884796143 img loss 1.3133563995361328 img loss 1.4112741947174072 img loss 1.2271469831466675 img loss 1.2261494398117065 img loss 1.2688846588134766 img loss 1.3110843896865845 img loss 1.2946584224700928 img loss 1.401140570640564 img loss 1.2673686742782593 img loss 1.3798149824142456 img loss 1.4097756147384644 img loss 1.4121419191360474 img loss 1.3502410650253296 img loss 1.3739619255065918 img loss 1.283111333847046 img loss 1.1890825033187866 img loss 1.257175326347351 img loss 1.4879571199417114 img loss 1.3432244062423706 img loss 1.4018481969833374 img loss 1.2858760356903076 img loss 1.2391152381896973 img loss 1.326040506362915 img loss 1.3667534589767456 img loss 1.3399555683135986 img loss 1.1723257303237915 img loss 1.3033651113510132 img loss 1.3690723180770874 img loss 1.330226182937622 img loss 1.268083095550537 img loss 1.3796570301055908 img loss 1.269957423210144 img loss 1.439367413520813 img loss 1.4899952411651611 img loss 1.4233946800231934 img loss 1.347988486289978 img loss 1.2471446990966797 img loss 1.2378290891647339 img loss 1.513917088508606 img loss 1.3333752155303955 img loss 1.2981133460998535 img loss 1.3944792747497559 img loss 1.4452403783798218 img loss 1.4377684593200684 img loss 1.3393263816833496 img loss 1.4303208589553833 img loss 1.3043802976608276 img loss 1.3792033195495605 img loss 1.2019277811050415 img loss 1.3571584224700928 img loss 1.403195858001709 img loss 1.2278517484664917 img loss 1.296251654624939 img loss 1.3777958154678345 img loss 1.4297019243240356 img loss 1.4237421751022339 img loss 1.3528681993484497 img loss 1.4497640132904053 img loss 1.3941800594329834 img loss 1.3816136121749878 img loss 1.39626944065094 img loss 1.2889240980148315 img loss 1.2728962898254395 img loss 1.3089215755462646 img loss 1.3246662616729736 img loss 1.4324039220809937 img loss 1.2974361181259155 img loss 1.5884768962860107 img loss 1.2300246953964233 img loss 1.3213660717010498 img loss 1.3528193235397339 img loss 1.3417073488235474 img loss 1.3825863599777222 img loss 1.334041953086853 img loss 1.322116732597351 img loss 1.3444058895111084 img loss 1.3891280889511108 img loss 1.356350064277649 img loss 1.3506885766983032 img loss 1.2371177673339844 img loss 1.2445188760757446 img loss 1.3309519290924072 img loss 1.4269355535507202 img loss 1.2714365720748901 img loss 1.3275150060653687 img loss 1.363885521888733 img loss 1.4238191843032837 img loss 1.4020798206329346 img loss 1.329697847366333 img loss 1.3691562414169312 img loss 1.4149826765060425 img loss 1.2893602848052979 img loss 1.344266653060913 img loss 1.3012093305587769 img loss 1.3284084796905518 img loss 1.3186177015304565 img loss 1.368560552597046 img loss 1.3192039728164673 img loss 1.3175252676010132 img loss 1.2055773735046387 img loss 1.2899843454360962 img loss 1.3500906229019165 img loss 1.2163833379745483 img loss 1.2699679136276245 img loss 1.3718676567077637 img loss 1.4214884042739868 img loss 1.3385004997253418 img loss 1.3422954082489014 img loss 1.2015998363494873 img loss 1.6420607566833496 img loss 1.3617607355117798 img loss 1.3846572637557983 img loss 1.2986557483673096 img loss 1.5542243719100952 img loss 1.4268113374710083 img loss 1.4367650747299194 img loss 1.4490959644317627 img loss 1.3929657936096191 img loss 1.2316211462020874 img loss 1.315440058708191 {'loss': 1.3442, 'grad_norm': 0.36695897579193115, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5575634241104126 img loss 1.488446593284607 img loss 1.4686524868011475 img loss 1.717639446258545 img loss 1.5326329469680786 img loss 1.5575690269470215 img loss 1.6252409219741821 img loss 1.4820481538772583 img loss 1.5173122882843018 img loss 1.3375672101974487 img loss 1.5411473512649536 img loss 1.539873719215393 img loss 1.5478243827819824 img loss 1.5630284547805786 img loss 1.4451335668563843 img loss 1.371660828590393 img loss 1.609923243522644 img loss 1.6410759687423706 img loss 1.5323947668075562 img loss 1.6198354959487915 img loss 1.7136200666427612 img loss 1.5089097023010254 img loss 1.4688423871994019 img loss 1.4789938926696777 img loss 1.4653924703598022 img loss 1.5557589530944824 img loss 1.389186143875122 img loss 1.5052235126495361 img loss 1.557864785194397 img loss 1.4401432275772095 img loss 1.5469611883163452 img loss 1.5290879011154175 img loss 1.6427353620529175 img loss 1.581566572189331 img loss 1.5340560674667358 img loss 1.5164016485214233 img loss 1.4266397953033447 img loss 1.6489678621292114 img loss 1.582801342010498 img loss 1.4192239046096802 img loss 1.4356344938278198 img loss 1.5525606870651245 img loss 1.4770903587341309 img loss 1.6031644344329834 img loss 1.5776032209396362 img loss 1.5955814123153687 img loss 1.5430208444595337 img loss 1.55154550075531 img loss 1.4957143068313599 img loss 1.5216081142425537 img loss 1.6347943544387817 img loss 1.5772689580917358 img loss 1.6300232410430908 img loss 1.5216543674468994 img loss 1.6239606142044067 img loss 1.4682719707489014 img loss 1.524226427078247 img loss 1.5617516040802002 img loss 1.5289334058761597 img loss 1.4683353900909424 img loss 1.4320114850997925 img loss 1.6556439399719238 img loss 1.4659425020217896 img loss 1.5939735174179077 img loss 1.6138365268707275 img loss 1.4489859342575073 img loss 1.563689112663269 img loss 1.4956743717193604 img loss 1.4316041469573975 img loss 1.492307424545288 img loss 1.5380381345748901 img loss 1.595566987991333 img loss 1.589440107345581 img loss 1.6400768756866455 img loss 1.573506236076355 img loss 1.597653865814209 img loss 1.7293789386749268 img loss 1.656988501548767 img loss 1.5060648918151855 img loss 1.5281548500061035 img loss 1.4674798250198364 img loss 1.4249894618988037 img loss 1.5048116445541382 img loss 1.4233086109161377 img loss 1.4035807847976685 img loss 1.5950931310653687 img loss 1.5931302309036255 img loss 1.510048747062683 img loss 1.5061399936676025 img loss 1.6712881326675415 img loss 1.5439361333847046 img loss 1.5381742715835571 img loss 1.6941978931427002 img loss 1.4490793943405151 img loss 1.4220246076583862img loss 1.4672276973724365 img loss 1.4555450677871704 img loss 1.483237624168396 img loss 1.6669650077819824 img loss 1.530916690826416 img loss 1.5028977394104004 img loss 1.5449061393737793 img loss 1.6704270839691162 img loss 1.6197340488433838 img loss 1.5503605604171753 img loss 1.4354137182235718 img loss 1.5402867794036865 img loss 1.5490707159042358 img loss 1.6188160181045532 img loss 1.492045283317566 img loss 1.44156813621521 img loss 1.439927577972412 img loss 1.5736969709396362 img loss 1.45695161819458 img loss 1.536719799041748 img loss 1.6166304349899292 img loss 1.5926839113235474 img loss 1.4529427289962769 img loss 1.5903302431106567 img loss 1.655985713005066 img loss 1.6722043752670288 img loss 1.6344741582870483 img loss 1.5813418626785278 img loss 1.4625957012176514 img loss 1.5771234035491943 img loss 1.5164276361465454 img loss 1.6398590803146362 img loss 1.5544039011001587 {'loss': 1.54, 'grad_norm': 0.3848983943462372, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1554161310195923 img loss 1.154374361038208 img loss 1.1914958953857422 img loss 1.2005850076675415 img loss 1.0996346473693848 img loss 1.21591317653656 img loss 1.1298952102661133 img loss 1.1787819862365723 img loss 1.1402877569198608 img loss 1.1715319156646729 img loss 1.1147586107254028 img loss 1.2334976196289062 img loss 1.1398215293884277 img loss 1.2109465599060059 img loss 1.1979780197143555 img loss 1.1077178716659546 img loss 1.1180800199508667 img loss 1.1445286273956299 img loss 1.1147663593292236 img loss 1.1749186515808105 img loss 1.1840894222259521 img loss 1.110963225364685 img loss 1.258802890777588 img loss 1.160895824432373 img loss 1.1538136005401611 img loss 1.1785236597061157 img loss 1.1711657047271729 img loss 1.1612508296966553 img loss 1.1556869745254517 img loss 1.1415640115737915 img loss 1.1662124395370483 img loss 1.180227279663086 img loss 1.1826618909835815 img loss 1.123363733291626 img loss 1.1885002851486206 img loss 1.2225158214569092 img loss 1.1505184173583984 img loss 1.2081892490386963 img loss 1.09352445602417 img loss 1.1526813507080078 img loss 1.1854571104049683 img loss 1.1513688564300537 img loss 1.1791179180145264 img loss 1.20542311668396 img loss 1.148626685142517 img loss 1.2316627502441406 img loss 1.2224148511886597 img loss 1.19215726852417 img loss 1.1221011877059937 img loss 1.1213469505310059 img loss 1.2210944890975952 img loss 1.2005572319030762 img loss 1.0896908044815063 img loss 1.1752878427505493 img loss 1.1505980491638184 img loss 1.152204155921936 img loss 1.078417420387268 img loss 1.1706222295761108 img loss 1.1351008415222168 img loss 1.1563262939453125 img loss 1.0731074810028076 img loss 1.1593176126480103 img loss 1.1280357837677002 img loss 1.2518246173858643 img loss 1.0965133905410767 img loss 1.1870689392089844 img loss 1.1799358129501343 img loss 1.2289173603057861 img loss 1.1612801551818848 img loss 1.147491216659546 img loss 1.193310260772705 img loss 1.141991138458252 img loss 1.16143798828125 img loss 1.159929633140564 img loss 1.122464656829834 img loss 1.1168421506881714 img loss 1.1863594055175781 img loss 1.182560682296753 img loss 1.2063026428222656 img loss 1.2115312814712524 img loss 1.2220920324325562 img loss 1.1971118450164795 img loss 1.1876903772354126 img loss 1.1435356140136719 img loss 1.1712586879730225 img loss 1.2037498950958252 img loss 1.1219582557678223 img loss 1.2319393157958984 img loss 1.1428073644638062 img loss 1.1492860317230225 img loss 1.1504020690917969 img loss 1.1748759746551514 img loss 1.1905101537704468 img loss 1.1116514205932617 img loss 1.2685648202896118 img loss 1.1898391246795654 img loss 1.1696960926055908 img loss 1.1955304145812988 img loss 1.089074969291687 img loss 1.191391944885254 img loss 1.1312726736068726 img loss 1.161673903465271 img loss 1.1705949306488037 img loss 1.1917275190353394 img loss 1.0938829183578491 img loss 1.1620172262191772 img loss 1.1561192274093628 img loss 1.1901177167892456 img loss 1.1929692029953003 img loss 1.1640567779541016 img loss 1.1584961414337158 img loss 1.186522126197815 img loss 1.2217388153076172 img loss 1.1504688262939453 img loss 1.1815719604492188 img loss 1.1373281478881836 img loss 1.0758390426635742 img loss 1.1983107328414917 img loss 1.174262285232544 img loss 1.1570243835449219 img loss 1.1577953100204468 img loss 1.1282745599746704 img loss 1.1255160570144653 img loss 1.1451332569122314 img loss 1.1010605096817017 img loss 1.1459214687347412 img loss 1.083383321762085 img loss 1.1495672464370728 {'loss': 1.1634, 'grad_norm': 0.4480062425136566, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2742958068847656 img loss 1.2892099618911743 img loss 1.1525486707687378 img loss 1.2758450508117676 img loss 1.2961094379425049 img loss 1.3697551488876343 img loss 1.402250051498413 img loss 1.2672669887542725 img loss 1.4471690654754639 img loss 1.3292367458343506 img loss 1.3641537427902222 img loss 1.3769831657409668 img loss 1.2568782567977905 img loss 1.2428340911865234 img loss 1.2640777826309204 img loss 1.3716570138931274 img loss 1.330540657043457 img loss 1.32371985912323 img loss 1.309044361114502 img loss 1.31573486328125 img loss 1.365660548210144 img loss 1.261691689491272 img loss 1.406011939048767 img loss 1.3432377576828003 img loss 1.340893030166626 img loss 1.3077715635299683 img loss 1.2736015319824219 img loss 1.2941946983337402 img loss 1.3124042749404907 img loss 1.3530220985412598 img loss 1.284303069114685 img loss 1.2729101181030273 img loss 1.343418836593628 img loss 1.3620470762252808 img loss 1.421312928199768 img loss 1.3448615074157715 img loss 1.3199520111083984 img loss 1.2801339626312256 img loss 1.3401587009429932 img loss 1.3615047931671143 img loss 1.3139736652374268 img loss 1.2833192348480225 img loss 1.328477382659912 img loss 1.3574937582015991 img loss 1.123972773551941 img loss 1.323763370513916 img loss 1.3215842247009277 img loss 1.2846144437789917 img loss 1.3650509119033813 img loss 1.3325237035751343 img loss 1.2994807958602905 img loss 1.416002869606018 img loss 1.353602647781372 img loss 1.2096829414367676 img loss 1.2082469463348389 img loss 1.375120759010315 img loss 1.1962132453918457 img loss 1.1889692544937134 img loss 1.3105770349502563img loss 1.3204463720321655 img loss 1.3322477340698242 img loss 1.3093141317367554 img loss 1.3089447021484375 img loss 1.293062448501587 img loss 1.4662333726882935 img loss 1.2800493240356445 img loss 1.3818055391311646 img loss 1.3000547885894775 img loss 1.2586941719055176img loss 1.4236903190612793 img loss 1.2367454767227173 img loss 1.4724266529083252 img loss 1.4109835624694824 img loss 1.2602403163909912 img loss 1.3446288108825684 img loss 1.3821519613265991 img loss 1.389911413192749 img loss 1.277809500694275 img loss 1.3207275867462158 img loss 1.3676058053970337 img loss 1.278961420059204 img loss 1.3233275413513184 img loss 1.330432415008545 img loss 1.3383132219314575 img loss 1.3498696088790894 img loss 1.2591149806976318 img loss 1.2893608808517456 img loss 1.4308695793151855 img loss 1.343192219734192 img loss 1.2994030714035034 img loss 1.421860933303833 img loss 1.2291786670684814 img loss 1.380336046218872 img loss 1.286231279373169 img loss 1.247066855430603 img loss 1.2749484777450562 img loss 1.2759244441986084 img loss 1.310261607170105 img loss 1.2987823486328125 img loss 1.2002170085906982 img loss 1.3386571407318115 img loss 1.273573875427246 img loss 1.3517986536026 img loss 1.2660636901855469 img loss 1.312957525253296 img loss 1.2741315364837646 img loss 1.2709605693817139 img loss 1.2472256422042847 img loss 1.2713000774383545 img loss 1.4038536548614502 img loss 1.2653812170028687 img loss 1.3233267068862915 img loss 1.4077271223068237 img loss 1.379685878753662 img loss 1.2014530897140503 img loss 1.2624585628509521 img loss 1.368849515914917 img loss 1.2945268154144287 img loss 1.3315997123718262 img loss 1.3542683124542236 img loss 1.388381838798523 img loss 1.3472908735275269 img loss 1.3970332145690918 img loss 1.2991360425949097 img loss 1.309537649154663 img loss 1.2617096900939941 img loss 1.2861690521240234 img loss 1.3319292068481445 {'loss': 1.3169, 'grad_norm': 0.3340577781200409, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1446168422698975 img loss 1.208286166191101 img loss 1.227882981300354 img loss 1.2075917720794678 img loss 1.3266940116882324 img loss 1.21673583984375 img loss 1.1964000463485718 img loss 1.1953833103179932 img loss 1.3140075206756592 img loss 1.3366496562957764 img loss 1.1787326335906982 img loss 1.251339316368103 img loss 1.286119818687439 img loss 1.192594289779663 img loss 1.2513412237167358 img loss 1.187723994255066 img loss 1.2161587476730347 img loss 1.2137573957443237 img loss 1.2064671516418457 img loss 1.1936028003692627 img loss 1.2772552967071533 img loss 1.1350138187408447 img loss 1.150040864944458 img loss 1.1897610425949097 img loss 1.2444406747817993 img loss 1.1386356353759766 img loss 1.2680201530456543 img loss 1.1826294660568237 img loss 1.2256948947906494 img loss 1.1998698711395264 img loss 1.1965643167495728 img loss 1.1845349073410034 img loss 1.1192495822906494 img loss 1.2003412246704102 img loss 1.24823796749115 img loss 1.205620288848877 img loss 1.1937942504882812 img loss 1.299281358718872 img loss 1.283812403678894 img loss 1.1740859746932983 img loss 1.1800556182861328 img loss 1.2860828638076782 img loss 1.216761827468872 img loss 1.2425975799560547 img loss 1.1528478860855103 img loss 1.2573206424713135 img loss 1.2688889503479004 img loss 1.2228929996490479 img loss 1.1921180486679077 img loss 1.1747530698776245 img loss 1.1550508737564087 img loss 1.1633739471435547 img loss 1.2707618474960327 img loss 1.193857192993164 img loss 1.2961204051971436 img loss 1.2686489820480347 img loss 1.2044975757598877 img loss 1.2802165746688843 img loss 1.29007887840271 img loss 1.2114272117614746 img loss 1.23566472530365 img loss 1.183070421218872 img loss 1.2080789804458618 img loss 1.1766360998153687 img loss 1.180544376373291 img loss 1.1466691493988037 img loss 1.168717622756958 img loss 1.1555126905441284 img loss 1.200890064239502 img loss 1.2725969552993774 img loss 1.205706000328064 img loss 1.313653826713562 img loss 1.1970819234848022 img loss 1.2597414255142212 img loss 1.2171999216079712 img loss 1.1501306295394897 img loss 1.215240240097046 img loss 1.2212456464767456 img loss 1.1398661136627197 img loss 1.2336177825927734 img loss 1.1798479557037354 img loss 1.1544709205627441 img loss 1.2625309228897095 img loss 1.2707185745239258 img loss 1.1573405265808105 img loss 1.1685093641281128 img loss 1.153318166732788 img loss 1.2448127269744873 img loss 1.1831140518188477 img loss 1.3825733661651611 img loss 1.2346340417861938 img loss 1.2224762439727783 img loss 1.2285362482070923 img loss 1.226693034172058 img loss 1.2100226879119873 img loss 1.2534539699554443 img loss 1.192310094833374 img loss 1.2629950046539307 img loss 1.222004771232605 img loss 1.2023979425430298img loss 1.2039597034454346 img loss 1.2000975608825684 img loss 1.1520707607269287 img loss 1.3043270111083984 img loss 1.338506817817688 img loss 1.2382903099060059 img loss 1.1705818176269531 img loss 1.2509288787841797 img loss 1.2486709356307983 img loss 1.2572603225708008 img loss 1.2283353805541992 img loss 1.1263924837112427 img loss 1.1799920797348022 img loss 1.2953431606292725 img loss 1.2043187618255615 img loss 1.2729027271270752 img loss 1.2104108333587646 img loss 1.1501061916351318 img loss 1.2194753885269165 img loss 1.1515061855316162 img loss 1.1942781209945679 img loss 1.1817142963409424 img loss 1.2163017988204956 img loss 1.1696195602416992 img loss 1.2314088344573975 img loss 1.1735676527023315 img loss 1.133985161781311 img loss 1.1097655296325684 {'loss': 1.2149, 'grad_norm': 0.2892893850803375, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2823165655136108 img loss 1.1611802577972412 img loss 1.1901248693466187 img loss 1.162978172302246 img loss 1.2127456665039062 img loss 1.1949443817138672 img loss 1.237723708152771 img loss 1.2812397480010986 img loss 1.1606688499450684 img loss 1.304961919784546 img loss 1.1950584650039673 img loss 1.283039927482605 img loss 1.1662871837615967 img loss 1.2536897659301758 img loss 1.1857913732528687 img loss 1.1852880716323853 img loss 1.129947304725647 img loss 1.2122063636779785 img loss 1.228468418121338 img loss 1.217445969581604 img loss 1.2244713306427002 img loss 1.2786352634429932 img loss 1.1899371147155762 img loss 1.1984491348266602 img loss 1.260786533355713 img loss 1.2182633876800537 img loss 1.2415165901184082 img loss 1.148515224456787 img loss 1.3008952140808105 img loss 1.2230408191680908 img loss 1.2914540767669678 img loss 1.1792254447937012 img loss 1.2352042198181152 img loss 1.330464243888855 img loss 1.18490731716156 img loss 1.2467800378799438 img loss 1.3415108919143677 img loss 1.2116870880126953 img loss 1.3329285383224487 img loss 1.1764252185821533 img loss 1.2193418741226196 img loss 1.1936804056167603 img loss 1.2090704441070557 img loss 1.1555250883102417 img loss 1.1525360345840454 img loss 1.241081953048706 img loss 1.3277828693389893 img loss 1.2851320505142212 img loss 1.2878315448760986 img loss 1.2132210731506348 img loss 1.2772639989852905 img loss 1.2315123081207275 img loss 1.2090702056884766 img loss 1.169409990310669 img loss 1.228370189666748 img loss 1.181151270866394 img loss 1.1963856220245361 img loss 1.173855185508728 img loss 1.2137653827667236 img loss 1.2112443447113037 img loss 1.2535370588302612 img loss 1.170588493347168 img loss 1.2716856002807617 img loss 1.3016432523727417 img loss 1.2090119123458862 img loss 1.1700581312179565 img loss 1.2885041236877441 img loss 1.3253923654556274 img loss 1.184112310409546 img loss 1.1428642272949219 img loss 1.2713724374771118 img loss 1.1657171249389648 img loss 1.1861064434051514 img loss 1.269818902015686 img loss 1.2644505500793457 img loss 1.2842273712158203 img loss 1.2327810525894165 img loss 1.335782766342163 img loss 1.2764661312103271 img loss 1.2513891458511353 img loss 1.2690731287002563 img loss 1.173509120941162 img loss 1.1832722425460815 img loss 1.2950390577316284 img loss 1.2669718265533447 img loss 1.14765202999115 img loss 1.2139967679977417 img loss 1.1546673774719238 img loss 1.1491743326187134 img loss 1.2019305229187012 img loss 1.2034505605697632 img loss 1.2563562393188477 img loss 1.2692917585372925 img loss 1.2189254760742188 img loss 1.2340437173843384 img loss 1.294148325920105 img loss 1.211283564567566 img loss 1.1798938512802124 img loss 1.2889115810394287 img loss 1.1859283447265625 img loss 1.201729655265808 img loss 1.1948269605636597 img loss 1.2507368326187134 img loss 1.1759910583496094 img loss 1.2692492008209229 img loss 1.1910593509674072 img loss 1.2916333675384521 img loss 1.2466919422149658 img loss 1.2646490335464478 img loss 1.2407251596450806 img loss 1.1614574193954468 img loss 1.0773961544036865 img loss 1.265968918800354 img loss 1.2254478931427002 img loss 1.1824063062667847 img loss 1.2949421405792236 img loss 1.187701940536499 img loss 1.1625477075576782 img loss 1.1624034643173218 img loss 1.2519912719726562 img loss 1.2453407049179077 img loss 1.1687331199645996 img loss 1.200403094291687 img loss 1.251426339149475 img loss 1.2039374113082886 img loss 1.1381399631500244 img loss 1.378838062286377 img loss 1.201704978942871 {'loss': 1.2248, 'grad_norm': 0.49891355633735657, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.305803894996643 img loss 1.2148869037628174 img loss 1.2325053215026855 img loss 1.2024167776107788 img loss 1.2100791931152344 img loss 1.201860785484314 img loss 1.2164945602416992 img loss 1.163228988647461 img loss 1.2723922729492188 img loss 1.2300488948822021 img loss 1.2302156686782837 img loss 1.200571060180664 img loss 1.2103488445281982 img loss 1.2364890575408936 img loss 1.2210098505020142 img loss 1.2839257717132568 img loss 1.2354891300201416 img loss 1.2488744258880615 img loss 1.241982102394104 img loss 1.2236217260360718 img loss 1.2159128189086914 img loss 1.2065809965133667 img loss 1.210526704788208 img loss 1.235429286956787 img loss 1.223077654838562 img loss 1.2147846221923828 img loss 1.2195465564727783 img loss 1.2147520780563354 img loss 1.2148452997207642 img loss 1.1758267879486084 img loss 1.2363723516464233 img loss 1.20658540725708 img loss 1.2811723947525024 img loss 1.249211072921753 img loss 1.327775478363037 img loss 1.1757198572158813 img loss 1.2849034070968628 img loss 1.2572424411773682 img loss 1.1785787343978882 img loss 1.2420237064361572 img loss 1.2514526844024658 img loss 1.2858872413635254 img loss 1.3021742105484009 img loss 1.2579402923583984 img loss 1.1872084140777588 img loss 1.227220058441162 img loss 1.2898719310760498 img loss 1.2406946420669556 img loss 1.246760606765747 img loss 1.250441551208496 img loss 1.27247953414917 img loss 1.208745002746582 img loss 1.2206419706344604 img loss 1.1571323871612549 img loss 1.2756112813949585 img loss 1.2568132877349854 img loss 1.2368462085723877 img loss 1.1794908046722412 img loss 1.2293916940689087 img loss 1.2926709651947021 img loss 1.224494457244873 img loss 1.2850944995880127 img loss 1.2044105529785156 img loss 1.2388641834259033 img loss 1.1928094625473022 img loss 1.2231512069702148 img loss 1.161885142326355 img loss 1.2033566236495972 img loss 1.19938063621521 img loss 1.2074105739593506 img loss 1.2728099822998047 img loss 1.2364892959594727 img loss 1.182537317276001 img loss 1.2672560214996338 img loss 1.1951401233673096 img loss 1.2481133937835693 img loss 1.2019476890563965 img loss 1.2483466863632202 img loss 1.2899470329284668 img loss 1.2626780271530151 img loss 1.21100652217865 img loss 1.2198693752288818 img loss 1.253179907798767 img loss 1.1820913553237915 img loss 1.2606149911880493 img loss 1.1989847421646118 img loss 1.2730919122695923 img loss 1.2162435054779053 img loss 1.2658748626708984 img loss 1.2666114568710327 img loss 1.247557520866394 img loss 1.2089252471923828 img loss 1.2229466438293457 img loss 1.1884586811065674 img loss 1.273083209991455 img loss 1.2062230110168457 img loss 1.269465684890747 img loss 1.2698826789855957 img loss 1.201964259147644 img loss 1.3102469444274902 img loss 1.2760329246520996 img loss 1.2169328927993774 img loss 1.282351016998291 img loss 1.2514605522155762 img loss 1.2017353773117065 img loss 1.1794397830963135 img loss 1.284132719039917 img loss 1.2892674207687378 img loss 1.2234692573547363 img loss 1.243826150894165 img loss 1.283932089805603 img loss 1.2063289880752563 img loss 1.2289328575134277 img loss 1.22458815574646img loss 1.2391014099121094 img loss 1.2052627801895142 img loss 1.3942500352859497 img loss 1.1806074380874634 img loss 1.2900723218917847 img loss 1.2468385696411133 img loss 1.273903250694275 img loss 1.2048784494400024 img loss 1.2787214517593384 img loss 1.263675332069397 img loss 1.2721388339996338 img loss 1.184238076210022 img loss 1.3075984716415405 img loss 1.2982866764068604 {'loss': 1.2371, 'grad_norm': 0.22048607468605042, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3086376190185547 img loss 1.2189031839370728 img loss 1.2537142038345337 img loss 1.2018874883651733 img loss 1.1799182891845703 img loss 1.2397676706314087 img loss 1.227250337600708 img loss 1.285906195640564 img loss 1.2449606657028198 img loss 1.3637086153030396 img loss 1.209177017211914 img loss 1.3033775091171265 img loss 1.3254485130310059 img loss 1.2669998407363892 img loss 1.1959972381591797 img loss 1.2416329383850098 img loss 1.294127345085144 img loss 1.3112213611602783 img loss 1.2718591690063477 img loss 1.2636160850524902 img loss 1.2238539457321167img loss 1.2009390592575073 img loss 1.2077373266220093 img loss 1.200063705444336 img loss 1.2307593822479248 img loss 1.301068663597107 img loss 1.2096664905548096 img loss 1.15221107006073 img loss 1.2639185190200806 img loss 1.2451770305633545 img loss 1.3142298460006714 img loss 1.31169855594635 img loss 1.1633106470108032 img loss 1.1779000759124756 img loss 1.2512785196304321 img loss 1.2201945781707764 img loss 1.1410192251205444 img loss 1.290834665298462 img loss 1.3156113624572754 img loss 1.182509183883667 img loss 1.2637929916381836 img loss 1.2111434936523438 img loss 1.1653192043304443 img loss 1.172912836074829 img loss 1.1947637796401978 img loss 1.2234429121017456 img loss 1.2364424467086792 img loss 1.1982338428497314 img loss 1.1881359815597534 img loss 1.2471569776535034 img loss 1.2539794445037842 img loss 1.2699817419052124 img loss 1.2809343338012695 img loss 1.250110149383545 img loss 1.197422981262207 img loss 1.2799869775772095 img loss 1.204991340637207 img loss 1.3236515522003174 img loss 1.1883448362350464 img loss 1.195737361907959 img loss 1.268800139427185 img loss 1.1326490640640259 img loss 1.2265535593032837 img loss 1.2684427499771118 img loss 1.2633605003356934 img loss 1.2177871465682983 img loss 1.296057939529419 img loss 1.2071536779403687 img loss 1.365541696548462 img loss 1.1376363039016724 img loss 1.2061960697174072 img loss 1.2766189575195312 img loss 1.2194565534591675 img loss 1.2344598770141602 img loss 1.2557638883590698 img loss 1.1792314052581787 img loss 1.2551796436309814 img loss 1.193967580795288 img loss 1.280332088470459 img loss 1.2188067436218262 img loss 1.183532476425171 img loss 1.215003252029419 img loss 1.1977852582931519 img loss 1.2448537349700928 img loss 1.2136077880859375 img loss 1.2770980596542358 img loss 1.2121151685714722 img loss 1.2184470891952515 img loss 1.2622506618499756 img loss 1.2371690273284912 img loss 1.2960156202316284 img loss 1.2636839151382446 img loss 1.265485405921936 img loss 1.2891260385513306 img loss 1.16737699508667 img loss 1.3237965106964111 img loss 1.1969447135925293 img loss 1.1992032527923584 img loss 1.1877951622009277 img loss 1.2555060386657715 img loss 1.1511752605438232 img loss 1.1849263906478882 img loss 1.1217665672302246 img loss 1.3191460371017456 img loss 1.2675350904464722 img loss 1.1558517217636108 img loss 1.3048213720321655 img loss 1.3188793659210205img loss 1.2989919185638428 img loss 1.260805606842041 img loss 1.222408652305603 img loss 1.2955559492111206 img loss 1.2992873191833496 img loss 1.3238928318023682 img loss 1.1877886056900024 img loss 1.3907228708267212 img loss 1.2969921827316284 img loss 1.2114042043685913 img loss 1.2400604486465454 img loss 1.3680015802383423 img loss 1.18221914768219 img loss 1.2016122341156006 img loss 1.2708405256271362 img loss 1.2232496738433838 img loss 1.23024320602417 img loss 1.238951563835144 img loss 1.2182754278182983 img loss 1.2356042861938477 {'loss': 1.2405, 'grad_norm': 0.2537083625793457, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3200874328613281 img loss 1.4944546222686768 img loss 1.3228583335876465 img loss 1.4219472408294678 img loss 1.3828999996185303 img loss 1.288826584815979 img loss 1.3543429374694824 img loss 1.3699870109558105 img loss 1.4853488206863403 img loss 1.4183639287948608 img loss 1.44459867477417 img loss 1.3255754709243774 img loss 1.4937374591827393 img loss 1.5072855949401855 img loss 1.5277658700942993 img loss 1.282170295715332 img loss 1.530982255935669 img loss 1.453082799911499 img loss 1.451093316078186 img loss 1.3286646604537964 img loss 1.3192929029464722 img loss 1.4694486856460571 img loss 1.356160044670105 img loss 1.4696404933929443 img loss 1.5158495903015137 img loss 1.3156840801239014 img loss 1.3662647008895874 img loss 1.3723194599151611 img loss 1.399931788444519 img loss 1.4046359062194824 img loss 1.4498716592788696 img loss 1.3987714052200317 img loss 1.4034653902053833 img loss 1.3950726985931396 img loss 1.3284047842025757 img loss 1.4361293315887451 img loss 1.3404572010040283 img loss 1.4424654245376587 img loss 1.560542345046997 img loss 1.4713956117630005 img loss 1.4146530628204346 img loss 1.2379486560821533 img loss 1.4145323038101196 img loss 1.3465784788131714 img loss 1.3083522319793701 img loss 1.3335318565368652 img loss 1.3938616514205933 img loss 1.3346766233444214 img loss 1.4658713340759277 img loss 1.4011563062667847 img loss 1.4648109674453735 img loss 1.4099212884902954 img loss 1.39951753616333 img loss 1.442663550376892 img loss 1.4164576530456543 img loss 1.4469186067581177 img loss 1.4048110246658325 img loss 1.398223638534546 img loss 1.4095484018325806 img loss 1.490418791770935 img loss 1.335435390472412 img loss 1.5892225503921509 img loss 1.4425122737884521 img loss 1.35433030128479 img loss 1.4989210367202759 img loss 1.4905952215194702 img loss 1.464965581893921 img loss 1.2739521265029907 img loss 1.449482798576355 img loss 1.3982795476913452 img loss 1.4479390382766724 img loss 1.3756232261657715 img loss 1.4102199077606201 img loss 1.5112882852554321 img loss 1.41062593460083 img loss 1.394620418548584 img loss 1.464767336845398 img loss 1.3057693243026733 img loss 1.326319932937622 img loss 1.443437933921814 img loss 1.4448210000991821 img loss 1.4582430124282837 img loss 1.538156270980835 img loss 1.4532043933868408 img loss 1.3288092613220215 img loss 1.4561187028884888 img loss 1.538849115371704 img loss 1.4874186515808105 img loss 1.396080493927002 img loss 1.4492110013961792 img loss 1.4148008823394775 img loss 1.4887635707855225 img loss 1.4904558658599854 img loss 1.4363905191421509 img loss 1.300362467765808 img loss 1.4865953922271729 img loss 1.4661465883255005 img loss 1.373744249343872 img loss 1.3801312446594238 img loss 1.42015540599823 img loss 1.4989012479782104 img loss 1.5020986795425415 img loss 1.4449182748794556 img loss 1.410936951637268 img loss 1.365992784500122 img loss 1.4337010383605957 img loss 1.3472987413406372 img loss 1.411644458770752 img loss 1.4833998680114746 img loss 1.31654691696167 img loss 1.3288211822509766 img loss 1.4383796453475952 img loss 1.3956876993179321 img loss 1.350929617881775 img loss 1.4033206701278687 img loss 1.4442439079284668 img loss 1.4833077192306519 img loss 1.4351370334625244 img loss 1.50876784324646 img loss 1.3111414909362793 img loss 1.3997710943222046 img loss 1.439003586769104 img loss 1.3781416416168213 img loss 1.5165399312973022 img loss 1.446543574333191 img loss 1.308223009109497 img loss 1.3790253400802612 img loss 1.3478108644485474 {'loss': 1.4147, 'grad_norm': 0.34936845302581787, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.146064281463623 img loss 1.2332701683044434 img loss 1.1406959295272827 img loss 1.1382982730865479 img loss 1.1748682260513306 img loss 1.1160955429077148 img loss 1.2539020776748657 img loss 1.1661840677261353 img loss 1.2167332172393799 img loss 1.1828678846359253 img loss 1.200508952140808 img loss 1.2069447040557861 img loss 1.1984888315200806 img loss 1.1729934215545654 img loss 1.1902174949645996 img loss 1.1479250192642212 img loss 1.199654459953308 img loss 1.1845940351486206 img loss 1.2165722846984863 img loss 1.2318737506866455 img loss 1.2963775396347046 img loss 1.1796011924743652 img loss 1.1256147623062134 img loss 1.2242109775543213 img loss 1.2232000827789307 img loss 1.1462702751159668 img loss 1.2052431106567383 img loss 1.2542204856872559 img loss 1.1603176593780518 img loss 1.198117733001709 img loss 1.2554755210876465 img loss 1.2027971744537354 img loss 1.1122452020645142 img loss 1.175707221031189 img loss 1.1599562168121338 img loss 1.1993694305419922 img loss 1.1389497518539429 img loss 1.1181172132492065 img loss 1.2098506689071655 img loss 1.1996517181396484 img loss 1.211211085319519 img loss 1.3191654682159424 img loss 1.1882390975952148 img loss 1.2608665227890015 img loss 1.1753475666046143 img loss 1.1870321035385132 img loss 1.190983533859253 img loss 1.2222164869308472 img loss 1.2259886264801025 img loss 1.2663582563400269 img loss 1.280045747756958 img loss 1.2081307172775269 img loss 1.3077303171157837 img loss 1.1659934520721436 img loss 1.3247694969177246 img loss 1.2362098693847656 img loss 1.2445253133773804 img loss 1.1526508331298828 img loss 1.191852331161499 img loss 1.1530814170837402 img loss 1.1660330295562744 img loss 1.226294994354248 img loss 1.1559851169586182 img loss 1.3282800912857056 img loss 1.1605126857757568 img loss 1.2100844383239746 img loss 1.3525179624557495 img loss 1.156167984008789 img loss 1.2219551801681519 img loss 1.151423692703247 img loss 1.225360631942749 img loss 1.2074648141860962 img loss 1.256311058998108 img loss 1.256443977355957 img loss 1.252679467201233 img loss 1.2587978839874268 img loss 1.2823909521102905 img loss 1.2584280967712402 img loss 1.110816478729248 img loss 1.2473063468933105 img loss 1.3097695112228394 img loss 1.2311218976974487 img loss 1.2429931163787842 img loss 1.1403019428253174 img loss 1.2344290018081665 img loss 1.113059639930725 img loss 1.2396160364151 img loss 1.223364233970642 img loss 1.1476160287857056 img loss 1.2353382110595703 img loss 1.2254215478897095 img loss 1.3370951414108276 img loss 1.2026395797729492 img loss 1.320136308670044 img loss 1.1260170936584473 img loss 1.2491062879562378 img loss 1.1233398914337158 img loss 1.1486022472381592 img loss 1.1500372886657715 img loss 1.1363247632980347 img loss 1.2194414138793945 img loss 1.1777069568634033 img loss 1.283944010734558 img loss 1.2659106254577637 img loss 1.158057451248169 img loss 1.2826839685440063 img loss 1.2417902946472168 img loss 1.3116668462753296 img loss 1.2956891059875488 img loss 1.205910325050354 img loss 1.2878358364105225 img loss 1.2377395629882812 img loss 1.1483807563781738 img loss 1.1794688701629639 img loss 1.2180800437927246 img loss 1.1354526281356812 img loss 1.2109426259994507 img loss 1.2519903182983398 img loss 1.254902720451355 img loss 1.101791501045227 img loss 1.2338513135910034 img loss 1.2301886081695557 img loss 1.285136103630066 img loss 1.202385425567627 img loss 1.1494718790054321 img loss 1.1598403453826904 img loss 1.2249644994735718 img loss 1.188132643699646 {'loss': 1.2092, 'grad_norm': 0.21470977365970612, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1714589595794678 img loss 1.181823492050171 img loss 1.2262699604034424 img loss 1.1458438634872437 img loss 1.1769555807113647 img loss 1.2124462127685547 img loss 1.2001855373382568 img loss 1.2041172981262207 img loss 1.214086890220642 img loss 1.1390719413757324 img loss 1.1816883087158203 img loss 1.1755493879318237 img loss 1.196580171585083 img loss 1.171529769897461 img loss 1.1679222583770752 img loss 1.2925355434417725 img loss 1.2794357538223267 img loss 1.1845635175704956 img loss 1.2050050497055054 img loss 1.1809030771255493 img loss 1.1495113372802734 img loss 1.1733349561691284 img loss 1.2427266836166382 img loss 1.2124007940292358 img loss 1.2320655584335327 img loss 1.3081482648849487 img loss 1.1982463598251343 img loss 1.0650196075439453 img loss 1.1505405902862549 img loss 1.3063347339630127 img loss 1.177475929260254 img loss 1.1563819646835327 img loss 1.211987018585205 img loss 1.2863479852676392 img loss 1.1862502098083496 img loss 1.2666391134262085 img loss 1.1974605321884155 img loss 1.2878426313400269 img loss 1.1562633514404297 img loss 1.2579748630523682 img loss 1.1135797500610352 img loss 1.262324333190918 img loss 1.2317657470703125 img loss 1.1372008323669434 img loss 1.227799654006958 img loss 1.154245138168335 img loss 1.2110090255737305 img loss 1.145944595336914 img loss 1.289607048034668 img loss 1.1723952293395996 img loss 1.1639617681503296 img loss 1.2439014911651611 img loss 1.1636327505111694 img loss 1.2058054208755493 img loss 1.2051727771759033 img loss 1.1582095623016357 img loss 1.215712308883667 img loss 1.2611048221588135 img loss 1.2323392629623413 img loss 1.208179235458374 img loss 1.2277028560638428 img loss 1.259477138519287 img loss 1.2434697151184082 img loss 1.204140543937683 img loss 1.290136694908142 img loss 1.1409521102905273 img loss 1.1468791961669922 img loss 1.242226243019104 img loss 1.2030446529388428 img loss 1.2024705410003662 img loss 1.1883224248886108 img loss 1.1605594158172607 img loss 1.1985483169555664 img loss 1.2165411710739136 img loss 1.2458250522613525 img loss 1.2040517330169678 img loss 1.1477680206298828 img loss 1.1675900220870972 img loss 1.22817862033844 img loss 1.1602582931518555 img loss 1.243664264678955 img loss 1.23263418674469 img loss 1.2285592555999756 img loss 1.2034536600112915 img loss 1.2164210081100464 img loss 1.1748933792114258 img loss 1.2195823192596436 img loss 1.2076557874679565 img loss 1.1512283086776733 img loss 1.1623473167419434 img loss 1.329533576965332 img loss 1.2161979675292969 img loss 1.1917297840118408 img loss 1.2291653156280518 img loss 1.1682382822036743 img loss 1.1816120147705078 img loss 1.2230134010314941 img loss 1.1549574136734009 img loss 1.2329440116882324 img loss 1.2262952327728271 img loss 1.191941499710083 img loss 1.1522032022476196 img loss 1.2360998392105103 img loss 1.1994470357894897 img loss 1.2761433124542236 img loss 1.2018697261810303 img loss 1.1699855327606201 img loss 1.1625523567199707 img loss 1.1603835821151733 img loss 1.1699154376983643 img loss 1.199686050415039 img loss 1.1449893712997437 img loss 1.2040762901306152 img loss 1.1780271530151367 img loss 1.2593450546264648 img loss 1.1290485858917236 img loss 1.2227528095245361 img loss 1.2115617990493774 img loss 1.175714135169983 img loss 1.1694605350494385 img loss 1.1885814666748047 img loss 1.199174404144287 img loss 1.1843817234039307 img loss 1.1975724697113037 img loss 1.22678542137146 img loss 1.1993461847305298 img loss 1.1447117328643799 img loss 1.2788017988204956 {'loss': 1.2019, 'grad_norm': 0.2131507843732834, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2913200855255127 img loss 1.3422187566757202 img loss 1.1934000253677368 img loss 1.1814368963241577 img loss 1.2425429821014404 img loss 1.3081210851669312 img loss 1.246364951133728 img loss 1.2161664962768555 img loss 1.2400336265563965 img loss 1.1224725246429443 img loss 1.2753064632415771 img loss 1.193296194076538 img loss 1.2471115589141846 img loss 1.1629709005355835 img loss 1.2139570713043213 img loss 1.1750011444091797 img loss 1.2523460388183594 img loss 1.138017177581787 img loss 1.1623070240020752 img loss 1.161995768547058 img loss 1.288015365600586 img loss 1.1524922847747803 img loss 1.204401969909668 img loss 1.221453309059143 img loss 1.2413805723190308 img loss 1.2177149057388306 img loss 1.1542538404464722 img loss 1.195892333984375 img loss 1.2039251327514648 img loss 1.1981722116470337 img loss 1.2295202016830444 img loss 1.1849780082702637 img loss 1.1464200019836426 img loss 1.2180213928222656 img loss 1.2574188709259033 img loss 1.1919350624084473 img loss 1.2395739555358887 img loss 1.1898084878921509 img loss 1.2241299152374268 img loss 1.2088350057601929 img loss 1.1829843521118164 img loss 1.1957014799118042 img loss 1.137698769569397 img loss 1.1341633796691895 img loss 1.2596144676208496 img loss 1.2338058948516846 img loss 1.23162841796875 img loss 1.2268791198730469 img loss 1.1617190837860107 img loss 1.2739574909210205 img loss 1.205491304397583 img loss 1.2517468929290771 img loss 1.212674617767334 img loss 1.3198188543319702 img loss 1.2107212543487549 img loss 1.1346213817596436 img loss 1.3147614002227783 img loss 1.1742537021636963 img loss 1.2175483703613281 img loss 1.1764333248138428 img loss 1.197525978088379 img loss 1.1611331701278687 img loss 1.2921069860458374 img loss 1.1629217863082886 img loss 1.1673208475112915 img loss 1.1557469367980957 img loss 1.2072629928588867 img loss 1.278206467628479 img loss 1.2155498266220093 img loss 1.1821215152740479 img loss 1.2279571294784546 img loss 1.2321628332138062 img loss 1.19277822971344 img loss 1.1117229461669922 img loss 1.2073822021484375 img loss 1.2219167947769165 img loss 1.1732972860336304 img loss 1.3558789491653442 img loss 1.1345350742340088 img loss 1.1954169273376465 img loss 1.2232835292816162 img loss 1.3040522336959839 img loss 1.259194254875183 img loss 1.1986936330795288 img loss 1.19942045211792 img loss 1.1312031745910645 img loss 1.3101880550384521 img loss 1.1725887060165405 img loss 1.2141728401184082 img loss 1.295636773109436 img loss 1.1959724426269531 img loss 1.161028265953064 img loss 1.2601749897003174 img loss 1.1798725128173828 img loss 1.1933482885360718 img loss 1.274118185043335 img loss 1.2815454006195068 img loss 1.1601688861846924 img loss 1.236936092376709 img loss 1.1227039098739624 img loss 1.165404200553894 img loss 1.2472254037857056 img loss 1.1985363960266113 img loss 1.1775931119918823 img loss 1.1367504596710205 img loss 1.2248210906982422 img loss 1.1675649881362915 img loss 1.2263020277023315 img loss 1.1610249280929565 img loss 1.2695508003234863 img loss 1.2973175048828125 img loss 1.1972007751464844 img loss 1.178619384765625 img loss 1.3062920570373535 img loss 1.1778990030288696 img loss 1.2219023704528809 img loss 1.1755450963974 img loss 1.313971757888794 img loss 1.203803300857544 img loss 1.1408227682113647 img loss 1.1420758962631226 img loss 1.2906622886657715 img loss 1.1561694145202637 img loss 1.180988073348999 img loss 1.3067384958267212 img loss 1.2352321147918701 img loss 1.178586721420288 img loss 1.1547932624816895 {'loss': 1.2115, 'grad_norm': 0.2652148902416229, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.214897632598877 img loss 1.166158676147461 img loss 1.184804916381836 img loss 1.263635277748108 img loss 1.1680049896240234 img loss 1.1801913976669312 img loss 1.1535453796386719 img loss 1.116787075996399 img loss 1.1664457321166992 img loss 1.1964348554611206 img loss 1.239011287689209 img loss 1.245571494102478 img loss 1.1903905868530273 img loss 1.170147180557251 img loss 1.2603744268417358 img loss 1.1644243001937866 img loss 1.2902876138687134 img loss 1.2859394550323486 img loss 1.2040884494781494 img loss 1.261240839958191 img loss 1.1810810565948486 img loss 1.1447404623031616 img loss 1.2021877765655518 img loss 1.1702821254730225 img loss 1.314845323562622 img loss 1.1287052631378174 img loss 1.170424222946167 img loss 1.151362419128418 img loss 1.1634209156036377 img loss 1.1556048393249512 img loss 1.1754467487335205 img loss 1.2104514837265015 img loss 1.1754406690597534 img loss 1.1809449195861816 img loss 1.2172459363937378 img loss 1.180139422416687 img loss 1.237181305885315 img loss 1.1457552909851074 img loss 1.1359976530075073 img loss 1.2083261013031006 img loss 1.1667630672454834 img loss 1.1976999044418335 img loss 1.370413899421692 img loss 1.1590750217437744 img loss 1.238368034362793 img loss 1.188205599784851 img loss 1.296783447265625 img loss 1.2285979986190796 img loss 1.1831886768341064 img loss 1.1505756378173828 img loss 1.1762069463729858 img loss 1.1753716468811035 img loss 1.1514209508895874 img loss 1.2375417947769165 img loss 1.2130787372589111 img loss 1.1666239500045776 img loss 1.1489920616149902 img loss 1.3237261772155762 img loss 1.2618530988693237 img loss 1.105243444442749 img loss 1.2359156608581543 img loss 1.1141279935836792 img loss 1.1697404384613037 img loss 1.2040642499923706 img loss 1.2318115234375 img loss 1.2519245147705078 img loss 1.2235040664672852 img loss 1.1934399604797363 img loss 1.2475041151046753 img loss 1.235687255859375 img loss 1.124779224395752 img loss 1.1764894723892212 img loss 1.1526694297790527 img loss 1.1977812051773071 img loss 1.1799888610839844 img loss 1.196305274963379 img loss 1.2089250087738037 img loss 1.2103898525238037 img loss 1.2606528997421265 img loss 1.2199814319610596 img loss 1.239182710647583 img loss 1.1348598003387451 img loss 1.169748067855835 img loss 1.1645407676696777 img loss 1.226731777191162 img loss 1.2393897771835327 img loss 1.2536686658859253 img loss 1.242258906364441 img loss 1.2277181148529053 img loss 1.232715368270874 img loss 1.179581642150879 img loss 1.29575514793396 img loss 1.1514122486114502 img loss 1.1682498455047607 img loss 1.1603939533233643 img loss 1.1751707792282104 img loss 1.151964783668518 img loss 1.2507654428482056 img loss 1.212543249130249 img loss 1.2137802839279175 img loss 1.223086953163147 img loss 1.2639883756637573 img loss 1.2714591026306152 img loss 1.1616920232772827 img loss 1.1622427701950073 img loss 1.26025390625 img loss 1.1696499586105347 img loss 1.213544487953186 img loss 1.2170615196228027 img loss 1.254132628440857 img loss 1.24021315574646 img loss 1.2495033740997314 img loss 1.167331337928772 img loss 1.2352551221847534 img loss 1.1978657245635986 img loss 1.2609460353851318 img loss 1.1361502408981323 img loss 1.234107255935669 img loss 1.1628851890563965 img loss 1.2141929864883423 img loss 1.2309764623641968 img loss 1.1887668371200562 img loss 1.2078443765640259 img loss 1.1388227939605713 img loss 1.2093162536621094 img loss 1.2143707275390625 img loss 1.217073917388916 img loss 1.2706222534179688 {'loss': 1.2032, 'grad_norm': 0.38319867849349976, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2119309902191162 img loss 1.1965274810791016 img loss 1.2880405187606812 img loss 1.1845450401306152 img loss 1.2271620035171509 img loss 1.1921207904815674 img loss 1.206482172012329 img loss 1.2501566410064697 img loss 1.1942639350891113 img loss 1.3119009733200073 img loss 1.1911752223968506 img loss 1.1510460376739502 img loss 1.2463853359222412 img loss 1.2147623300552368 img loss 1.164919137954712 img loss 1.2530654668807983 img loss 1.2330585718154907 img loss 1.285010576248169 img loss 1.273476243019104 img loss 1.188969373703003 img loss 1.2001988887786865 img loss 1.1776442527770996 img loss 1.184203028678894 img loss 1.2446460723876953 img loss 1.2466849088668823 img loss 1.1979855298995972 img loss 1.2360481023788452 img loss 1.2863898277282715 img loss 1.2240540981292725 img loss 1.3133232593536377 img loss 1.256920576095581 img loss 1.2261422872543335 img loss 1.1875203847885132 img loss 1.2633901834487915 img loss 1.2921838760375977 img loss 1.2385624647140503 img loss 1.2696361541748047 img loss 1.2913944721221924 img loss 1.1932904720306396 img loss 1.236000418663025 img loss 1.37702214717865 img loss 1.2402390241622925 img loss 1.1743063926696777 img loss 1.2164363861083984 img loss 1.2239255905151367 img loss 1.1959469318389893 img loss 1.2499549388885498 img loss 1.2250527143478394 img loss 1.1997886896133423 img loss 1.2757335901260376 img loss 1.2816156148910522 img loss 1.2354389429092407 img loss 1.2727628946304321 img loss 1.296756625175476 img loss 1.3261909484863281 img loss 1.252779245376587 img loss 1.2901991605758667 img loss 1.261705994606018img loss 1.2148094177246094 img loss 1.31595778465271 img loss 1.1968265771865845 img loss 1.2892200946807861 img loss 1.2788472175598145 img loss 1.228901743888855 img loss 1.220981478691101 img loss 1.2239336967468262 img loss 1.2341666221618652 img loss 1.2594010829925537 img loss 1.1879487037658691 img loss 1.3821569681167603 img loss 1.2142552137374878 img loss 1.241188406944275 img loss 1.2141733169555664 img loss 1.2793614864349365 img loss 1.304409384727478 img loss 1.2365598678588867 img loss 1.301906943321228 img loss 1.2672122716903687 img loss 1.1644123792648315 img loss 1.395385503768921 img loss 1.2455414533615112 img loss 1.2179925441741943 img loss 1.2959332466125488 img loss 1.2331234216690063 img loss 1.2644325494766235 img loss 1.224284052848816 img loss 1.2874456644058228 img loss 1.2148401737213135 img loss 1.2799718379974365 img loss 1.2240415811538696 img loss 1.2576795816421509 img loss 1.327040433883667 img loss 1.2815022468566895 img loss 1.2287367582321167 img loss 1.2359806299209595 img loss 1.1909823417663574 img loss 1.242960810661316 img loss 1.2727303504943848 img loss 1.2333571910858154 img loss 1.2990825176239014 img loss 1.2254021167755127 img loss 1.1998603343963623 img loss 1.2600810527801514 img loss 1.213249683380127 img loss 1.2555556297302246 img loss 1.2523287534713745 img loss 1.3134567737579346 img loss 1.232330083847046 img loss 1.3125064373016357 img loss 1.172317385673523 img loss 1.186780333518982 img loss 1.2674087285995483 img loss 1.2572455406188965 img loss 1.2198662757873535 img loss 1.1774959564208984 img loss 1.3919192552566528 img loss 1.3115463256835938 img loss 1.2700670957565308 img loss 1.1851862668991089 img loss 1.282120943069458 img loss 1.2287774085998535 img loss 1.2739578485488892 img loss 1.2989472150802612 img loss 1.1915653944015503 img loss 1.2206553220748901 img loss 1.2901859283447266 img loss 1.249246597290039 img loss 1.242821216583252 {'loss': 1.2462, 'grad_norm': 0.30067023634910583, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2081350088119507 img loss 1.2131296396255493 img loss 1.257345199584961 img loss 1.185511827468872 img loss 1.2224558591842651 img loss 1.1811728477478027 img loss 1.2765471935272217 img loss 1.160650610923767 img loss 1.253415584564209 img loss 1.2475032806396484 img loss 1.2177730798721313 img loss 1.2901062965393066 img loss 1.238167405128479 img loss 1.2067909240722656 img loss 1.2161314487457275 img loss 1.1825021505355835 img loss 1.2886794805526733 img loss 1.1948765516281128 img loss 1.2348642349243164 img loss 1.1857792139053345 img loss 1.2294420003890991 img loss 1.20824134349823 img loss 1.1967179775238037 img loss 1.1648573875427246 img loss 1.2175471782684326 img loss 1.2435044050216675 img loss 1.2740579843521118 img loss 1.1940854787826538 img loss 1.2167110443115234 img loss 1.2340316772460938 img loss 1.2474818229675293 img loss 1.1697748899459839 img loss 1.2206933498382568 img loss 1.2433668375015259 img loss 1.252515196800232 img loss 1.2676994800567627 img loss 1.2257461547851562 img loss 1.1859883069992065 img loss 1.194690465927124 img loss 1.2976901531219482 img loss 1.1766408681869507 img loss 1.1620571613311768 img loss 1.1824030876159668 img loss 1.1788402795791626 img loss 1.2052913904190063 img loss 1.2108492851257324 img loss 1.1735944747924805 img loss 1.2632912397384644 img loss 1.2597661018371582 img loss 1.1971334218978882 img loss 1.2015211582183838 img loss 1.1779526472091675 img loss 1.1765351295471191 img loss 1.2411727905273438 img loss 1.3639047145843506 img loss 1.1806809902191162 img loss 1.2385878562927246 img loss 1.2113056182861328 img loss 1.1673227548599243 img loss 1.255252718925476 img loss 1.1459362506866455 img loss 1.2101914882659912 img loss 1.2095305919647217 img loss 1.2745493650436401 img loss 1.3169679641723633 img loss 1.1820383071899414 img loss 1.1763617992401123 img loss 1.2271848917007446 img loss 1.2165054082870483 img loss 1.2325303554534912 img loss 1.259606122970581 img loss 1.2041367292404175 img loss 1.267039179801941 img loss 1.1899333000183105 img loss 1.220853567123413 img loss 1.2278028726577759 img loss 1.1656073331832886 img loss 1.1815643310546875 img loss 1.2184358835220337 img loss 1.149760127067566 img loss 1.2891688346862793 img loss 1.2980905771255493 img loss 1.195757508277893 img loss 1.2246685028076172 img loss 1.2328161001205444 img loss 1.219368815422058 img loss 1.2249141931533813img loss 1.2244386672973633 img loss 1.2392889261245728 img loss 1.2032883167266846img loss 1.1583383083343506 img loss 1.2482210397720337 img loss 1.199958086013794 img loss 1.2897487878799438 img loss 1.2328107357025146 img loss 1.2984641790390015 img loss 1.2763230800628662 img loss 1.2924778461456299 img loss 1.1534919738769531 img loss 1.3223052024841309 img loss 1.2740848064422607 img loss 1.1445467472076416 img loss 1.236784815788269 img loss 1.2146022319793701 img loss 1.230688452720642 img loss 1.236114740371704 img loss 1.2835214138031006 img loss 1.3019641637802124 img loss 1.2211148738861084 img loss 1.2050901651382446 img loss 1.1832300424575806 img loss 1.1974823474884033 img loss 1.2888000011444092 img loss 1.2173032760620117 img loss 1.257922887802124 img loss 1.1826190948486328 img loss 1.2548511028289795 img loss 1.1987535953521729 img loss 1.2329869270324707 img loss 1.199751615524292 img loss 1.2489651441574097 img loss 1.272815227508545 img loss 1.2435153722763062 img loss 1.186387300491333 img loss 1.1900945901870728 img loss 1.1687778234481812 img loss 1.203058123588562 img loss 1.17424738407135 {'loss': 1.2228, 'grad_norm': 0.2971726059913635, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3747986555099487 img loss 1.2356047630310059 img loss 1.3627285957336426 img loss 1.2761608362197876 img loss 1.2691361904144287 img loss 1.372424840927124 img loss 1.3917810916900635 img loss 1.3425278663635254 img loss 1.3761335611343384 img loss 1.3292986154556274 img loss 1.2609354257583618 img loss 1.4025704860687256 img loss 1.3011540174484253 img loss 1.3275116682052612 img loss 1.341472864151001 img loss 1.3197015523910522 img loss 1.3758968114852905 img loss 1.3834234476089478 img loss 1.360045313835144 img loss 1.4257760047912598 img loss 1.2938283681869507 img loss 1.3071508407592773 img loss 1.3795181512832642 img loss 1.4001392126083374 img loss 1.4944584369659424 img loss 1.327803611755371 img loss 1.4249869585037231 img loss 1.3387082815170288 img loss 1.3544167280197144 img loss 1.3169631958007812 img loss 1.3396780490875244 img loss 1.3206955194473267 img loss 1.3416593074798584 img loss 1.2990572452545166 img loss 1.3268418312072754 img loss 1.312569499015808 img loss 1.4157661199569702 img loss 1.3278661966323853 img loss 1.3571419715881348 img loss 1.4695898294448853 img loss 1.3601313829421997 img loss 1.2526934146881104 img loss 1.454901933670044 img loss 1.269283652305603 img loss 1.285156011581421 img loss 1.3269108533859253 img loss 1.3214826583862305 img loss 1.2628439664840698 img loss 1.348711371421814 img loss 1.3712522983551025 img loss 1.3700578212738037img loss 1.225632667541504 img loss 1.3136301040649414 img loss 1.3619552850723267 img loss 1.3625541925430298 img loss 1.4653840065002441 img loss 1.4203628301620483 img loss 1.3812708854675293 img loss 1.366073727607727 img loss 1.2927865982055664 img loss 1.36391282081604 img loss 1.2925560474395752 img loss 1.3136080503463745 img loss 1.3172835111618042 img loss 1.3020683526992798 img loss 1.2476916313171387 img loss 1.3551876544952393 img loss 1.3698904514312744 img loss 1.3732578754425049 img loss 1.3351571559906006 img loss 1.2731988430023193 img loss 1.2688645124435425 img loss 1.2370872497558594 img loss 1.3655802011489868 img loss 1.2761484384536743 img loss 1.360175609588623 img loss 1.2798926830291748 img loss 1.3505858182907104 img loss 1.3544551134109497 img loss 1.3564776182174683 img loss 1.3500701189041138 img loss 1.2668312788009644 img loss 1.3863838911056519 img loss 1.3663136959075928 img loss 1.3359620571136475 img loss 1.3408533334732056 img loss 1.34927237033844 img loss 1.223721981048584 img loss 1.3576301336288452 img loss 1.2625232934951782 img loss 1.4149229526519775 img loss 1.3542579412460327 img loss 1.3585153818130493 img loss 1.3005146980285645 img loss 1.296720266342163 img loss 1.3871302604675293 img loss 1.426959753036499 img loss 1.3634068965911865 img loss 1.390907645225525 img loss 1.2885078191757202 img loss 1.342943787574768 img loss 1.4142752885818481 img loss 1.4457813501358032 img loss 1.4559152126312256 img loss 1.4940882921218872 img loss 1.3292458057403564 img loss 1.38442063331604 img loss 1.3065837621688843 img loss 1.5008480548858643 img loss 1.3026255369186401 img loss 1.2752153873443604 img loss 1.373801350593567 img loss 1.3362261056900024 img loss 1.4520694017410278 img loss 1.3234714269638062 img loss 1.3670786619186401 img loss 1.3396799564361572 img loss 1.3563636541366577 img loss 1.2692456245422363 img loss 1.428275227546692 img loss 1.5404475927352905 img loss 1.4664007425308228 img loss 1.328582525253296 img loss 1.2352358102798462 img loss 1.265744924545288 img loss 1.3319698572158813 img loss 1.22478187084198 img loss 1.3088775873184204 {'loss': 1.3454, 'grad_norm': 0.22673830389976501, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.228229284286499 img loss 1.2766311168670654 img loss 1.2203130722045898 img loss 1.1477792263031006 img loss 1.1728520393371582 img loss 1.1306251287460327 img loss 1.180029273033142 img loss 1.1224726438522339 img loss 1.1579416990280151 img loss 1.1669275760650635 img loss 1.2349579334259033 img loss 1.098785161972046 img loss 1.2243530750274658 img loss 1.255900263786316 img loss 1.2231080532073975 img loss 1.202185034751892 img loss 1.261181116104126 img loss 1.3407950401306152 img loss 1.2552489042282104 img loss 1.2705786228179932 img loss 1.3643394708633423 img loss 1.1788973808288574 img loss 1.2888885736465454 img loss 1.1983606815338135 img loss 1.1538140773773193 img loss 1.1908537149429321 img loss 1.1936157941818237 img loss 1.209173560142517 img loss 1.2267273664474487 img loss 1.2417423725128174 img loss 1.2743595838546753 img loss 1.1717586517333984 img loss 1.2736411094665527 img loss 1.2124840021133423 img loss 1.0675313472747803 img loss 1.1961854696273804 img loss 1.1472339630126953 img loss 1.1737040281295776 img loss 1.243893027305603 img loss 1.2061760425567627 img loss 1.209526777267456 img loss 1.1373531818389893 img loss 1.246046543121338 img loss 1.1564443111419678 img loss 1.2234162092208862 img loss 1.1657642126083374 img loss 1.2232091426849365 img loss 1.2194414138793945 img loss 1.2212958335876465 img loss 1.1951904296875 img loss 1.1885623931884766 img loss 1.2305965423583984 img loss 1.2089126110076904 img loss 1.26094651222229 img loss 1.1929924488067627 img loss 1.1854320764541626 img loss 1.1993598937988281 img loss 1.2303733825683594 img loss 1.224151611328125 img loss 1.3364923000335693 img loss 1.1937940120697021 img loss 1.2203357219696045 img loss 1.1678818464279175 img loss 1.2550432682037354 img loss 1.2469887733459473 img loss 1.2046213150024414 img loss 1.1831880807876587 img loss 1.242224097251892 img loss 1.1635551452636719 img loss 1.2041116952896118 img loss 1.2813133001327515 img loss 1.1668362617492676 img loss 1.2401117086410522 img loss 1.1777160167694092 img loss 1.183640956878662 img loss 1.333033800125122 img loss 1.2283437252044678 img loss 1.25071382522583 img loss 1.1967782974243164 img loss 1.1921684741973877 img loss 1.1640005111694336 img loss 1.1380932331085205 img loss 1.2946887016296387 img loss 1.3146766424179077 img loss 1.2121704816818237 img loss 1.1663892269134521 img loss 1.206930160522461 img loss 1.0916944742202759 img loss 1.2426629066467285 img loss 1.2134443521499634 img loss 1.250872254371643 img loss 1.3110986948013306 img loss 1.288955569267273 img loss 1.162707805633545 img loss 1.2173101902008057 img loss 1.2210510969161987 img loss 1.2014292478561401 img loss 1.1829278469085693 img loss 1.258991003036499 img loss 1.2394945621490479 img loss 1.157874584197998 img loss 1.2241363525390625 img loss 1.2119019031524658 img loss 1.2309764623641968 img loss 1.250356674194336 img loss 1.208192229270935 img loss 1.2296102046966553 img loss 1.2488027811050415 img loss 1.2159907817840576 img loss 1.1905711889266968 img loss 1.22041654586792 img loss 1.170661211013794 img loss 1.1767815351486206 img loss 1.1981912851333618 img loss 1.2174042463302612 img loss 1.1978613138198853 img loss 1.1962344646453857 img loss 1.3288028240203857 img loss 1.2729612588882446 img loss 1.138964056968689 img loss 1.1549606323242188 img loss 1.182971715927124 img loss 1.1555159091949463 img loss 1.2107223272323608 img loss 1.2539771795272827 img loss 1.2302489280700684 img loss 1.1314826011657715 img loss 1.251534342765808 {'loss': 1.2126, 'grad_norm': 0.34477365016937256, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.180201530456543 img loss 1.1963509321212769 img loss 1.2417099475860596 img loss 1.166266679763794 img loss 1.2134360074996948 img loss 1.2421910762786865 img loss 1.2498180866241455 img loss 1.2954845428466797 img loss 1.183640956878662 img loss 1.2206590175628662 img loss 1.166590690612793 img loss 1.3174347877502441 img loss 1.225792407989502 img loss 1.215529441833496 img loss 1.1896891593933105 img loss 1.2155272960662842 img loss 1.2075785398483276 img loss 1.1770260334014893 img loss 1.2288872003555298 img loss 1.1878315210342407 img loss 1.2843197584152222 img loss 1.137275218963623 img loss 1.2904285192489624 img loss 1.2507758140563965 img loss 1.1591181755065918 img loss 1.2570708990097046 img loss 1.2659931182861328 img loss 1.2502272129058838 img loss 1.2434896230697632 img loss 1.2827422618865967 img loss 1.2339082956314087 img loss 1.3013938665390015 img loss 1.2439815998077393 img loss 1.174957036972046 img loss 1.2333297729492188 img loss 1.2184422016143799 img loss 1.2531883716583252 img loss 1.2190731763839722 img loss 1.2224791049957275 img loss 1.2102341651916504 img loss 1.1762430667877197 img loss 1.2168529033660889 img loss 1.2565021514892578 img loss 1.2773512601852417 img loss 1.2470251321792603 img loss 1.1940964460372925 img loss 1.2543466091156006 img loss 1.265379786491394 img loss 1.2635548114776611 img loss 1.2535234689712524 img loss 1.2361935377120972 img loss 1.1067287921905518 img loss 1.2126871347427368 img loss 1.2074016332626343 img loss 1.3095260858535767 img loss 1.3165098428726196 img loss 1.2608113288879395 img loss 1.1761784553527832 img loss 1.2979458570480347 img loss 1.2552727460861206 img loss 1.2356382608413696 img loss 1.2319731712341309 img loss 1.2154537439346313 img loss 1.2392860651016235 img loss 1.1582834720611572 img loss 1.158900499343872 img loss 1.2576701641082764 img loss 1.1932448148727417 img loss 1.2695716619491577 img loss 1.2432329654693604 img loss 1.3443604707717896 img loss 1.29349946975708 img loss 1.1177740097045898 img loss 1.1815685033798218 img loss 1.1900392770767212 img loss 1.2557321786880493 img loss 1.2214546203613281 img loss 1.1468336582183838 img loss 1.212005615234375 img loss 1.2079424858093262 img loss 1.2092971801757812 img loss 1.244067907333374 img loss 1.2680308818817139 img loss 1.2005096673965454 img loss 1.210427165031433 img loss 1.346157431602478img loss 1.1583905220031738 img loss 1.2053141593933105 img loss 1.217756748199463 img loss 1.2128326892852783 img loss 1.1962791681289673 img loss 1.1657531261444092 img loss 1.220133662223816 img loss 1.2938735485076904 img loss 1.1965395212173462 img loss 1.2068580389022827 img loss 1.2537705898284912 img loss 1.207574725151062 img loss 1.1795872449874878 img loss 1.2649948596954346 img loss 1.1777918338775635 img loss 1.301683783531189 img loss 1.300497055053711 img loss 1.2163479328155518 img loss 1.1983623504638672 img loss 1.2221367359161377 img loss 1.2005983591079712 img loss 1.2310882806777954 img loss 1.3020092248916626 img loss 1.1566318273544312 img loss 1.1700248718261719 img loss 1.1944153308868408 img loss 1.2497164011001587 img loss 1.13787043094635 img loss 1.2452434301376343 img loss 1.175238847732544 img loss 1.212312936782837 img loss 1.2909094095230103 img loss 1.2249988317489624 img loss 1.2369123697280884 img loss 1.2576725482940674 img loss 1.1381635665893555 img loss 1.356002926826477 img loss 1.1607977151870728 img loss 1.2415943145751953 img loss 1.1711345911026 img loss 1.2058050632476807 img loss 1.1259284019470215 {'loss': 1.2248, 'grad_norm': 0.2374153733253479, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2500190734863281 img loss 1.2177307605743408 img loss 1.278913140296936 img loss 1.2885082960128784 img loss 1.2230720520019531 img loss 1.2366052865982056 img loss 1.177760124206543 img loss 1.1752880811691284 img loss 1.2017333507537842 img loss 1.1863712072372437 img loss 1.1737968921661377 img loss 1.2582405805587769 img loss 1.2558982372283936 img loss 1.1245191097259521 img loss 1.1773303747177124 img loss 1.1344919204711914 img loss 1.2221497297286987 img loss 1.226543664932251 img loss 1.3543578386306763 img loss 1.1888396739959717 img loss 1.1649627685546875 img loss 1.2343685626983643 img loss 1.1970574855804443 img loss 1.2249670028686523 img loss 1.163327693939209 img loss 1.1845461130142212 img loss 1.2359203100204468 img loss 1.218727469444275 img loss 1.1752506494522095 img loss 1.2119832038879395 img loss 1.132544994354248 img loss 1.2843494415283203 img loss 1.2565914392471313 img loss 1.223004937171936 img loss 1.1192941665649414 img loss 1.196759581565857 img loss 1.206258773803711 img loss 1.2006683349609375 img loss 1.1551413536071777 img loss 1.220829963684082 img loss 1.1343106031417847 img loss 1.149909496307373 img loss 1.1433053016662598 img loss 1.159393310546875 img loss 1.1827900409698486 img loss 1.1933592557907104 img loss 1.1883180141448975 img loss 1.0987656116485596 img loss 1.2007712125778198 img loss 1.30433988571167 img loss 1.2052868604660034 img loss 1.1797617673873901 img loss 1.2698968648910522 img loss 1.1902472972869873 img loss 1.2117688655853271 img loss 1.1574063301086426 img loss 1.18455171585083 img loss 1.2049096822738647 img loss 1.2215957641601562 img loss 1.1592622995376587 img loss 1.2522900104522705 img loss 1.2151563167572021 img loss 1.2135952711105347 img loss 1.2510402202606201 img loss 1.1291202306747437 img loss 1.2179183959960938 img loss 1.1480445861816406 img loss 1.1950842142105103 img loss 1.1790164709091187 img loss 1.1587079763412476 img loss 1.1872316598892212 img loss 1.149071455001831 img loss 1.1641603708267212 img loss 1.163835048675537 img loss 1.1514902114868164 img loss 1.229993462562561 img loss 1.169258952140808 img loss 1.1977242231369019 img loss 1.1854701042175293 img loss 1.2039332389831543 img loss 1.1615608930587769 img loss 1.232340693473816 img loss 1.219164490699768 img loss 1.1483787298202515 img loss 1.2456166744232178 img loss 1.1901988983154297 img loss 1.1595920324325562 img loss 1.2465667724609375 img loss 1.1358919143676758 img loss 1.1329553127288818 img loss 1.210184097290039 img loss 1.1791362762451172 img loss 1.146501898765564 img loss 1.179172396659851 img loss 1.2118580341339111 img loss 1.3045766353607178 img loss 1.1587674617767334 img loss 1.2173373699188232 img loss 1.2524724006652832 img loss 1.230677604675293 img loss 1.1539114713668823 img loss 1.1136753559112549 img loss 1.2404412031173706 img loss 1.1406396627426147 img loss 1.2102582454681396 img loss 1.201972246170044 img loss 1.1285446882247925 img loss 1.167419195175171 img loss 1.164732813835144 img loss 1.2187683582305908 img loss 1.1506743431091309 img loss 1.1611638069152832 img loss 1.2115696668624878 img loss 1.2167909145355225 img loss 1.223246455192566 img loss 1.1837866306304932 img loss 1.1867645978927612 img loss 1.2632324695587158 img loss 1.1709545850753784 img loss 1.1744439601898193 img loss 1.1596200466156006 img loss 1.164015531539917 img loss 1.1778758764266968 img loss 1.1863045692443848 img loss 1.1907743215560913 img loss 1.163519263267517 img loss 1.1808831691741943 img loss 1.2003065347671509 {'loss': 1.1948, 'grad_norm': 0.23256461322307587, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2835922241210938 img loss 1.2528369426727295 img loss 1.2269604206085205 img loss 1.168021559715271 img loss 1.2269971370697021 img loss 1.2319025993347168 img loss 1.201446771621704 img loss 1.259464979171753 img loss 1.2619283199310303 img loss 1.2127851247787476 img loss 1.1643116474151611 img loss 1.212854027748108 img loss 1.1930961608886719 img loss 1.2257248163223267 img loss 1.217485785484314 img loss 1.2544361352920532 img loss 1.2345235347747803 img loss 1.3698409795761108 img loss 1.2000229358673096 img loss 1.209254503250122 img loss 1.259680986404419 img loss 1.2927448749542236 img loss 1.2677818536758423 img loss 1.2638506889343262 img loss 1.242278814315796 img loss 1.140589714050293 img loss 1.2851160764694214 img loss 1.372424840927124 img loss 1.2169620990753174 img loss 1.1850616931915283 img loss 1.2314908504486084 img loss 1.2451682090759277 img loss 1.2197517156600952 img loss 1.2631566524505615 img loss 1.1811025142669678 img loss 1.2779377698898315 img loss 1.1944321393966675 img loss 1.183630347251892 img loss 1.227405309677124 img loss 1.2791675329208374 img loss 1.1759123802185059 img loss 1.253432035446167 img loss 1.2114112377166748 img loss 1.2309072017669678 img loss 1.2884577512741089 img loss 1.219009280204773 img loss 1.1845067739486694 img loss 1.2529093027114868 img loss 1.2539646625518799 img loss 1.2622536420822144 img loss 1.2816755771636963 img loss 1.1619949340820312 img loss 1.2525068521499634 img loss 1.2145495414733887 img loss 1.1558163166046143 img loss 1.36540949344635 img loss 1.2733783721923828 img loss 1.2032116651535034 img loss 1.2547714710235596 img loss 1.2333040237426758 img loss 1.2888407707214355 img loss 1.201517939567566 img loss 1.222693681716919 img loss 1.2112611532211304 img loss 1.2549937963485718 img loss 1.2598482370376587 img loss 1.1426496505737305 img loss 1.3319528102874756 img loss 1.2878977060317993 img loss 1.1299093961715698 img loss 1.2019723653793335 img loss 1.280888319015503 img loss 1.1598230600357056 img loss 1.2400749921798706 img loss 1.2540686130523682 img loss 1.171567440032959 img loss 1.2752765417099 img loss 1.2918004989624023 img loss 1.3209307193756104 img loss 1.2331348657608032 img loss 1.2828667163848877 img loss 1.1011691093444824 img loss 1.2631847858428955 img loss 1.1769498586654663 img loss 1.2003225088119507 img loss 1.2291821241378784 img loss 1.1773585081100464 img loss 1.2749457359313965 img loss 1.2558045387268066 img loss 1.2519115209579468 img loss 1.2510660886764526 img loss 1.2090437412261963 img loss 1.256560206413269 img loss 1.1888574361801147 img loss 1.24260413646698 img loss 1.201230764389038 img loss 1.2652485370635986 img loss 1.171213150024414 img loss 1.2640652656555176 img loss 1.2579832077026367 img loss 1.2024132013320923 img loss 1.2252342700958252 img loss 1.1905629634857178 img loss 1.2213242053985596 img loss 1.1804215908050537 img loss 1.2117726802825928 img loss 1.2176674604415894 img loss 1.2583812475204468 img loss 1.2348847389221191 img loss 1.240936040878296 img loss 1.2319856882095337 img loss 1.30319082736969 img loss 1.2184282541275024 img loss 1.2137527465820312 img loss 1.2389558553695679 img loss 1.2875709533691406 img loss 1.274186372756958 img loss 1.187055230140686 img loss 1.2094618082046509 img loss 1.1782660484313965 img loss 1.2649579048156738 img loss 1.2653464078903198 img loss 1.2421598434448242 img loss 1.2050589323043823 img loss 1.329343557357788 img loss 1.2025877237319946 img loss 1.3336306810379028 img loss 1.2273330688476562 {'loss': 1.2347, 'grad_norm': 0.2194172888994217, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6182172298431396 img loss 1.6147667169570923 img loss 1.6363322734832764 img loss 1.5050019025802612 img loss 1.570207118988037 img loss 1.5694314241409302 img loss 1.592138409614563 img loss 1.5932424068450928 img loss 1.5597662925720215 img loss 1.5636454820632935 img loss 1.4759211540222168 img loss 1.5468851327896118 img loss 1.6316182613372803 img loss 1.5173335075378418 img loss 1.6067315340042114 img loss 1.5205696821212769 img loss 1.531091332435608 img loss 1.7045727968215942 img loss 1.540513515472412 img loss 1.435773253440857 img loss 1.4978241920471191 img loss 1.5353459119796753 img loss 1.584623098373413 img loss 1.5358960628509521 img loss 1.5622422695159912 img loss 1.41884446144104 img loss 1.6386264562606812 img loss 1.4942829608917236 img loss 1.477880835533142 img loss 1.5461698770523071 img loss 1.5138121843338013 img loss 1.6238744258880615 img loss 1.5132933855056763 img loss 1.4501723051071167 img loss 1.6138883829116821 img loss 1.6182267665863037 img loss 1.457241415977478 img loss 1.4925323724746704 img loss 1.5329525470733643 img loss 1.5379973649978638 img loss 1.50325608253479 img loss 1.5206882953643799 img loss 1.686155915260315 img loss 1.5128720998764038 img loss 1.4892562627792358 img loss 1.4801753759384155 img loss 1.5402333736419678 img loss 1.5336048603057861 img loss 1.5866084098815918 img loss 1.6041052341461182img loss 1.6092979907989502 img loss 1.7466998100280762 img loss 1.50777268409729 img loss 1.565076231956482 img loss 1.5760103464126587 img loss 1.5184181928634644 img loss 1.4645798206329346 img loss 1.5858536958694458 img loss 1.597914457321167 img loss 1.6106253862380981 img loss 1.4592710733413696 img loss 1.496320366859436 img loss 1.5562859773635864 img loss 1.5337135791778564 img loss 1.5802446603775024 img loss 1.624834418296814 img loss 1.587952971458435 img loss 1.5090250968933105 img loss 1.509042501449585 img loss 1.5483107566833496 img loss 1.5323631763458252 img loss 1.6373610496520996 img loss 1.57180655002594 img loss 1.7194645404815674 img loss 1.7529646158218384 img loss 1.4503929615020752img loss 1.4884097576141357 img loss 1.4682385921478271 img loss 1.601906180381775 img loss 1.473950743675232 img loss 1.5721267461776733 img loss 1.3791557550430298 img loss 1.6314467191696167 img loss 1.4696236848831177 img loss 1.5507594347000122 img loss 1.5418617725372314 img loss 1.5398751497268677 img loss 1.5005015134811401 img loss 1.6775630712509155 img loss 1.522715449333191 img loss 1.5914238691329956 img loss 1.5976132154464722 img loss 1.5689491033554077 img loss 1.4856619834899902 img loss 1.5192316770553589 img loss 1.6153981685638428 img loss 1.5321987867355347 img loss 1.6051366329193115 img loss 1.4730862379074097 img loss 1.507657766342163 img loss 1.5705535411834717 img loss 1.707942247390747 img loss 1.5295021533966064 img loss 1.6215871572494507 img loss 1.629287838935852 img loss 1.4541090726852417 img loss 1.575415849685669 img loss 1.5361279249191284 img loss 1.5857069492340088 img loss 1.5449278354644775 img loss 1.5955902338027954 img loss 1.5466474294662476 img loss 1.6559131145477295 img loss 1.484932541847229 img loss 1.4533179998397827 img loss 1.6157599687576294 img loss 1.540250301361084 img loss 1.4838297367095947 img loss 1.4767892360687256 img loss 1.6490238904953003 img loss 1.6116591691970825 img loss 1.4558844566345215 img loss 1.5264381170272827 img loss 1.4545904397964478 img loss 1.5713188648223877 img loss 1.6308844089508057 img loss 1.685248613357544 img loss 1.519612193107605 {'loss': 1.554, 'grad_norm': 0.23248860239982605, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.411803126335144 img loss 1.4401352405548096 img loss 1.4878543615341187 img loss 1.4824358224868774 img loss 1.6295278072357178 img loss 1.4964584112167358 img loss 1.5283077955245972 img loss 1.4534865617752075 img loss 1.5754754543304443 img loss 1.6097266674041748 img loss 1.4766086339950562 img loss 1.5636794567108154 img loss 1.4902242422103882 img loss 1.4737528562545776 img loss 1.5008594989776611 img loss 1.53661048412323 img loss 1.5243269205093384 img loss 1.3911007642745972 img loss 1.4699671268463135 img loss 1.624942421913147 img loss 1.5647900104522705 img loss 1.4515312910079956 img loss 1.5332804918289185 img loss 1.4158730506896973 img loss 1.4794871807098389 img loss 1.3829166889190674 img loss 1.466747760772705 img loss 1.4911962747573853 img loss 1.5509642362594604 img loss 1.608729600906372 img loss 1.3996692895889282 img loss 1.3661330938339233 img loss 1.4955490827560425 img loss 1.4567376375198364 img loss 1.5789798498153687 img loss 1.547086238861084 img loss 1.4054454565048218 img loss 1.5129145383834839 img loss 1.6507341861724854 img loss 1.5903871059417725 img loss 1.4932252168655396 img loss 1.549373745918274 img loss 1.4663602113723755 img loss 1.420668363571167 img loss 1.5406535863876343 img loss 1.573997974395752 img loss 1.3872148990631104 img loss 1.4493505954742432 img loss 1.5667346715927124 img loss 1.4083763360977173 img loss 1.5260189771652222 img loss 1.5022488832473755 img loss 1.4669032096862793 img loss 1.5369645357131958 img loss 1.5102139711380005 img loss 1.5946298837661743 img loss 1.4457411766052246 img loss 1.5003880262374878 img loss 1.4973033666610718 img loss 1.5483170747756958 img loss 1.462493658065796 img loss 1.4450098276138306 img loss 1.4509447813034058 img loss 1.3456642627716064 img loss 1.4745770692825317 img loss 1.467424988746643 img loss 1.4807296991348267 img loss 1.5022789239883423 img loss 1.4372823238372803 img loss 1.4466183185577393 img loss 1.5731133222579956 img loss 1.4260634183883667 img loss 1.487059235572815 img loss 1.6186937093734741 img loss 1.4496101140975952 img loss 1.4819167852401733img loss 1.5011637210845947 img loss 1.5443642139434814 img loss 1.4773930311203003 img loss 1.451134443283081 img loss 1.487382411956787 img loss 1.4575203657150269 img loss 1.5758947134017944 img loss 1.526556372642517 img loss 1.348275065422058 img loss 1.5426970720291138 img loss 1.4611217975616455 img loss 1.566794753074646 img loss 1.5879119634628296 img loss 1.436116099357605 img loss 1.577703833580017 img loss 1.5409772396087646 img loss 1.564144492149353 img loss 1.3399832248687744 img loss 1.7320846319198608 img loss 1.7726937532424927 img loss 1.3741134405136108 img loss 1.3909863233566284 img loss 1.5541611909866333 img loss 1.5317081212997437 img loss 1.496143102645874 img loss 1.6147243976593018 img loss 1.422799825668335 img loss 1.4940330982208252 img loss 1.4803287982940674 img loss 1.3829894065856934 img loss 1.5779331922531128 img loss 1.5104161500930786 img loss 1.3543145656585693 img loss 1.4511029720306396 img loss 1.5353420972824097 img loss 1.6153188943862915 img loss 1.6532397270202637 img loss 1.597772479057312 img loss 1.46631920337677 img loss 1.6492094993591309 img loss 1.5544263124465942 img loss 1.4098190069198608 img loss 1.4126132726669312 img loss 1.5408345460891724 img loss 1.5353543758392334 img loss 1.5697073936462402 img loss 1.5854538679122925 img loss 1.6496350765228271 img loss 1.5182369947433472 img loss 1.538216471672058 img loss 1.3525497913360596 img loss 1.4347275495529175 {'loss': 1.5031, 'grad_norm': 0.5030619502067566, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3593205213546753 img loss 1.2460148334503174 img loss 1.2633702754974365 img loss 1.2760229110717773 img loss 1.2281509637832642 img loss 1.3661576509475708 img loss 1.315245509147644 img loss 1.2716416120529175 img loss 1.3459607362747192 img loss 1.2717945575714111 img loss 1.2644274234771729 img loss 1.277757167816162 img loss 1.3424614667892456 img loss 1.2512547969818115 img loss 1.3818984031677246 img loss 1.3523308038711548 img loss 1.380491852760315 img loss 1.2673841714859009 img loss 1.2747503519058228 img loss 1.241463303565979 img loss 1.3259910345077515 img loss 1.189501404762268 img loss 1.2439894676208496 img loss 1.292907476425171 img loss 1.2354243993759155 img loss 1.2266430854797363 img loss 1.2833162546157837 img loss 1.317086100578308 img loss 1.3118623495101929 img loss 1.1835240125656128 img loss 1.3992440700531006 img loss 1.1977208852767944 img loss 1.3237340450286865 img loss 1.4632433652877808 img loss 1.2574604749679565 img loss 1.299822449684143 img loss 1.357983946800232 img loss 1.2811884880065918 img loss 1.246978998184204 img loss 1.2894963026046753 img loss 1.3793472051620483 img loss 1.2358510494232178 img loss 1.3039186000823975 img loss 1.1980600357055664 img loss 1.3323094844818115 img loss 1.3675481081008911 img loss 1.2702879905700684 img loss 1.2721383571624756 img loss 1.2435263395309448 img loss 1.3571857213974 img loss 1.2853200435638428 img loss 1.2157063484191895 img loss 1.3545247316360474 img loss 1.333811640739441 img loss 1.308555245399475 img loss 1.2940261363983154 img loss 1.3956611156463623 img loss 1.2345885038375854 img loss 1.3821617364883423 img loss 1.2464475631713867 img loss 1.3294904232025146 img loss 1.3368040323257446 img loss 1.299742341041565 img loss 1.4274715185165405 img loss 1.3334946632385254 img loss 1.3636181354522705 img loss 1.4364902973175049 img loss 1.3138799667358398 img loss 1.336223840713501 img loss 1.4020209312438965 img loss 1.300317645072937 img loss 1.2819149494171143 img loss 1.3265407085418701 img loss 1.479608178138733 img loss 1.45418119430542 img loss 1.1854442358016968 img loss 1.2878179550170898 img loss 1.3317649364471436 img loss 1.2875072956085205 img loss 1.350705862045288 img loss 1.3570367097854614 img loss 1.2994225025177002 img loss 1.2289848327636719 img loss 1.313959002494812 img loss 1.3478895425796509 img loss 1.3133814334869385 img loss 1.2236897945404053 img loss 1.3078837394714355 img loss 1.3198678493499756 img loss 1.3741508722305298 img loss 1.373270869255066 img loss 1.2611507177352905 img loss 1.382709264755249 img loss 1.2635942697525024 img loss 1.3581671714782715 img loss 1.3036818504333496 img loss 1.2839329242706299 img loss 1.208289623260498 img loss 1.3022708892822266 img loss 1.2787541151046753 img loss 1.2627032995224 img loss 1.311378002166748 img loss 1.2521741390228271 img loss 1.2593104839324951 img loss 1.3347116708755493 img loss 1.2831156253814697 img loss 1.2487821578979492 img loss 1.2652482986450195 img loss 1.2558332681655884 img loss 1.2513126134872437 img loss 1.2257757186889648 img loss 1.379120945930481 img loss 1.3213059902191162 img loss 1.2592484951019287 img loss 1.2720320224761963 img loss 1.3106741905212402 img loss 1.2934832572937012 img loss 1.3189209699630737 img loss 1.316139578819275 img loss 1.2960995435714722 img loss 1.2618869543075562 img loss 1.4205505847930908 img loss 1.3089485168457031 img loss 1.3383740186691284 img loss 1.3086233139038086 img loss 1.3414151668548584 img loss 1.2141759395599365 img loss 1.398337483406067 {'loss': 1.3046, 'grad_norm': 0.36951467394828796, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.461883783340454 img loss 1.4841668605804443 img loss 1.462767481803894 img loss 1.484621286392212 img loss 1.5849432945251465 img loss 1.6703335046768188 img loss 1.565910816192627 img loss 1.4941613674163818 img loss 1.5089787244796753 img loss 1.5378143787384033 img loss 1.5679105520248413 img loss 1.6210979223251343 img loss 1.5245949029922485 img loss 1.442740559577942 img loss 1.467936396598816 img loss 1.4009757041931152 img loss 1.5023256540298462 img loss 1.351314902305603 img loss 1.4622375965118408 img loss 1.5850876569747925 img loss 1.624619722366333 img loss 1.5472949743270874 img loss 1.5041766166687012 img loss 1.2838972806930542 img loss 1.349211573600769 img loss 1.568565011024475 img loss 1.5486396551132202 img loss 1.538859248161316 img loss 1.5347429513931274 img loss 1.545662522315979 img loss 1.4793702363967896 img loss 1.5090774297714233 img loss 1.4668478965759277 img loss 1.5401192903518677 img loss 1.5527878999710083 img loss 1.3766076564788818 img loss 1.5645006895065308 img loss 1.389431118965149 img loss 1.3258994817733765 img loss 1.5106194019317627 img loss 1.5767182111740112 img loss 1.4855788946151733 img loss 1.4588288068771362 img loss 1.539306879043579 img loss 1.5685021877288818 img loss 1.4517815113067627 img loss 1.381831407546997 img loss 1.5601500272750854 img loss 1.554317831993103 img loss 1.379991054534912 img loss 1.5145193338394165 img loss 1.314894437789917 img loss 1.5186983346939087 img loss 1.579687237739563 img loss 1.4534361362457275 img loss 1.5566668510437012 img loss 1.5160471200942993 img loss 1.536462426185608 img loss 1.5181729793548584 img loss 1.5054153203964233 img loss 1.447099208831787 img loss 1.5328009128570557 img loss 1.541580319404602 img loss 1.5817667245864868 img loss 1.5891797542572021 img loss 1.4624444246292114 img loss 1.5868029594421387 img loss 1.532639980316162 img loss 1.5694034099578857 img loss 1.5583407878875732 img loss 1.3828970193862915 img loss 1.5979485511779785 img loss 1.4270373582839966 img loss 1.576526403427124 img loss 1.4579628705978394 img loss 1.4627119302749634 img loss 1.554101824760437 img loss 1.5641041994094849 img loss 1.4838753938674927 img loss 1.5685943365097046 img loss 1.4529062509536743 img loss 1.3734349012374878 img loss 1.479347825050354 img loss 1.5395616292953491 img loss 1.4642411470413208 img loss 1.3650240898132324 img loss 1.502170205116272 img loss 1.4856517314910889 img loss 1.5198837518692017 img loss 1.4167317152023315 img loss 1.5464314222335815 img loss 1.4132721424102783 img loss 1.4428023099899292 img loss 1.4882134199142456 img loss 1.5884727239608765 img loss 1.4909456968307495 img loss 1.4230488538742065 img loss 1.5661565065383911 img loss 1.5948779582977295 img loss 1.4259374141693115 img loss 1.531727910041809 img loss 1.5340627431869507 img loss 1.4096800088882446 img loss 1.442937970161438 img loss 1.4131511449813843 img loss 1.5478875637054443 img loss 1.6096104383468628 img loss 1.5157161951065063 img loss 1.5342429876327515 img loss 1.5201963186264038 img loss 1.3880869150161743 img loss 1.5356762409210205 img loss 1.55112624168396 img loss 1.5620805025100708 img loss 1.5652087926864624 img loss 1.5504661798477173 img loss 1.4085557460784912 img loss 1.4057544469833374 img loss 1.353859305381775 img loss 1.5523403882980347 img loss 1.3927258253097534 img loss 1.53248131275177 img loss 1.5288112163543701 img loss 1.5213812589645386 img loss 1.5347908735275269 img loss 1.5976718664169312 img loss 1.4395281076431274 img loss 1.3333643674850464 {'loss': 1.4983, 'grad_norm': 0.3708561062812805, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1998707056045532 img loss 1.3123154640197754 img loss 1.1588242053985596 img loss 1.1969866752624512 img loss 1.260890007019043 img loss 1.2764413356781006 img loss 1.2330862283706665 img loss 1.1800553798675537 img loss 1.340105414390564 img loss 1.2274631261825562 img loss 1.2172412872314453 img loss 1.2737430334091187 img loss 1.207775592803955 img loss 1.1899868249893188 img loss 1.1110128164291382 img loss 1.2382309436798096 img loss 1.1483181715011597 img loss 1.1555633544921875 img loss 1.1622213125228882 img loss 1.138847827911377 img loss 1.2711601257324219 img loss 1.0882148742675781 img loss 1.1581685543060303 img loss 1.2371582984924316 img loss 1.1961249113082886 img loss 1.2577359676361084 img loss 1.1643438339233398 img loss 1.226757287979126 img loss 1.2850793600082397 img loss 1.2572414875030518 img loss 1.2236354351043701 img loss 1.1951775550842285 img loss 1.2385109663009644 img loss 1.2123165130615234 img loss 1.2308814525604248 img loss 1.220765471458435 img loss 1.212677240371704 img loss 1.1741970777511597 img loss 1.1188298463821411 img loss 1.2398982048034668 img loss 1.1176927089691162 img loss 1.2057414054870605 img loss 1.2657182216644287 img loss 1.2218002080917358 img loss 1.1945312023162842 img loss 1.2415977716445923 img loss 1.2555663585662842 img loss 1.202152967453003 img loss 1.2800767421722412 img loss 1.2384717464447021 img loss 1.2664037942886353 img loss 1.197237491607666 img loss 1.0903390645980835 img loss 1.199450969696045 img loss 1.303687334060669 img loss 1.2202656269073486 img loss 1.3724310398101807 img loss 1.326267123222351 img loss 1.2794342041015625 img loss 1.16885244846344 img loss 1.1927683353424072 img loss 1.249956727027893 img loss 1.1506035327911377 img loss 1.1597822904586792 img loss 1.2130653858184814 img loss 1.19759202003479 img loss 1.259446382522583 img loss 1.24729585647583 img loss 1.247130036354065 img loss 1.1099706888198853 img loss 1.210919737815857 img loss 1.194103479385376 img loss 1.123671054840088 img loss 1.2527207136154175 img loss 1.2659727334976196 img loss 1.1376290321350098 img loss 1.2383129596710205 img loss 1.2357925176620483 img loss 1.216972827911377 img loss 1.2302852869033813 img loss 1.2654348611831665 img loss 1.2108076810836792 img loss 1.2367305755615234 img loss 1.2719476222991943 img loss 1.1251964569091797 img loss 1.1563266515731812 img loss 1.2278258800506592 img loss 1.250680685043335 img loss 1.1249544620513916 img loss 1.1069507598876953 img loss 1.2019174098968506 img loss 1.2222799062728882 img loss 1.1893587112426758 img loss 1.2194198369979858 img loss 1.204013705253601 img loss 1.2300481796264648 img loss 1.1794074773788452 img loss 1.1544382572174072 img loss 1.195054531097412 img loss 1.1400384902954102 img loss 1.1888790130615234 img loss 1.1638193130493164 img loss 1.232648491859436 img loss 1.2142788171768188 img loss 1.2441126108169556 img loss 1.2320377826690674 img loss 1.1541080474853516 img loss 1.157618522644043 img loss 1.2456597089767456 img loss 1.1651595830917358 img loss 1.259676456451416 img loss 1.1012600660324097 img loss 1.1630195379257202 img loss 1.1726173162460327 img loss 1.1714521646499634 img loss 1.2522379159927368 img loss 1.231278896331787 img loss 1.2167541980743408 img loss 1.1687811613082886 img loss 1.304762363433838 img loss 1.2268497943878174 img loss 1.1251996755599976 img loss 1.2263182401657104 img loss 1.2073150873184204 img loss 1.1526819467544556 img loss 1.2577828168869019 img loss 1.1414960622787476 img loss 1.215000033378601 {'loss': 1.2088, 'grad_norm': 0.28543367981910706, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4878222942352295 img loss 1.5145070552825928 img loss 1.5959389209747314 img loss 1.461185097694397 img loss 1.4623972177505493 img loss 1.4026272296905518 img loss 1.5109608173370361 img loss 1.5733578205108643 img loss 1.5472350120544434 img loss 1.5758233070373535 img loss 1.3532017469406128 img loss 1.4781805276870728 img loss 1.466189980506897 img loss 1.626878261566162 img loss 1.4489281177520752 img loss 1.4976853132247925 img loss 1.3576924800872803 img loss 1.5448311567306519 img loss 1.5753945112228394 img loss 1.4373561143875122 img loss 1.5378886461257935 img loss 1.5828710794448853 img loss 1.5211374759674072 img loss 1.439135193824768 img loss 1.5505039691925049 img loss 1.3976857662200928 img loss 1.5220332145690918 img loss 1.6079014539718628 img loss 1.539196252822876 img loss 1.581472635269165 img loss 1.4105266332626343 img loss 1.489120602607727 img loss 1.4072154760360718 img loss 1.583486795425415 img loss 1.4963467121124268 img loss 1.5391780138015747 img loss 1.4663532972335815 img loss 1.506384253501892 img loss 1.478432059288025 img loss 1.4253469705581665 img loss 1.4269832372665405 img loss 1.4093657732009888 img loss 1.494231104850769 img loss 1.4734102487564087 img loss 1.4759732484817505 img loss 1.4370930194854736 img loss 1.4235512018203735 img loss 1.705085277557373 img loss 1.5098198652267456 img loss 1.4746278524398804 img loss 1.4886852502822876 img loss 1.5012882947921753 img loss 1.5675551891326904 img loss 1.5194817781448364 img loss 1.5385628938674927 img loss 1.4515408277511597 img loss 1.4875222444534302 img loss 1.4409211874008179 img loss 1.5669026374816895 img loss 1.415717363357544 img loss 1.644248604774475 img loss 1.5284696817398071 img loss 1.4422290325164795 img loss 1.5980745553970337 img loss 1.4399044513702393 img loss 1.5426995754241943 img loss 1.6879254579544067 img loss 1.650717854499817 img loss 1.4022356271743774 img loss 1.535477876663208 img loss 1.4732928276062012 img loss 1.3772224187850952 img loss 1.543709397315979 img loss 1.5277295112609863 img loss 1.5179904699325562 img loss 1.5411573648452759 img loss 1.6152606010437012 img loss 1.4931188821792603 img loss 1.4761016368865967 img loss 1.3261370658874512 img loss 1.4955905675888062 img loss 1.6359165906906128 img loss 1.5098164081573486 img loss 1.5155001878738403 img loss 1.4794522523880005 img loss 1.5399949550628662 img loss 1.6249877214431763 img loss 1.5963340997695923 img loss 1.5444912910461426 img loss 1.4958544969558716 img loss 1.6064156293869019 img loss 1.5187321901321411 img loss 1.5786263942718506 img loss 1.5432751178741455 img loss 1.528865933418274 img loss 1.4506500959396362 img loss 1.5852456092834473 img loss 1.4075301885604858 img loss 1.5435611009597778 img loss 1.502592921257019 img loss 1.5525444746017456 img loss 1.5487544536590576 img loss 1.4850404262542725 img loss 1.5563627481460571 img loss 1.4729037284851074 img loss 1.537688970565796 img loss 1.4994930028915405 img loss 1.5627167224884033 img loss 1.5996187925338745 img loss 1.5433610677719116 img loss 1.3886616230010986 img loss 1.5411899089813232 img loss 1.4927036762237549 img loss 1.5407521724700928 img loss 1.5568773746490479 img loss 1.6103442907333374 img loss 1.582374930381775 img loss 1.5117887258529663 img loss 1.5582234859466553 img loss 1.5077564716339111 img loss 1.4526218175888062 img loss 1.3788307905197144 img loss 1.503180742263794 img loss 1.3967490196228027 img loss 1.4855667352676392 img loss 1.5203148126602173 img loss 1.4370944499969482 img loss 1.4214972257614136 {'loss': 1.5088, 'grad_norm': 0.29781630635261536, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.319556474685669 img loss 1.4257681369781494 img loss 1.363505244255066 img loss 1.3591328859329224 img loss 1.3968604803085327 img loss 1.3905962705612183 img loss 1.4366403818130493 img loss 1.3696285486221313 img loss 1.320340633392334 img loss 1.3656675815582275 img loss 1.4356523752212524 img loss 1.2332855463027954 img loss 1.394469141960144 img loss 1.3227189779281616 img loss 1.373655915260315 img loss 1.2400908470153809 img loss 1.4750958681106567 img loss 1.471428394317627 img loss 1.3501015901565552 img loss 1.26158607006073 img loss 1.347429871559143 img loss 1.3663601875305176 img loss 1.3652714490890503 img loss 1.2845805883407593 img loss 1.4762396812438965 img loss 1.3925172090530396 img loss 1.254056692123413 img loss 1.5542919635772705 img loss 1.4436924457550049 img loss 1.4177056550979614 img loss 1.4624569416046143 img loss 1.4024838209152222 img loss 1.3781498670578003 img loss 1.4961044788360596 img loss 1.2826437950134277 img loss 1.3667219877243042 img loss 1.356951117515564 img loss 1.3135709762573242 img loss 1.4074736833572388 img loss 1.5348440408706665 img loss 1.364097237586975 img loss 1.5317738056182861 img loss 1.3054029941558838 img loss 1.2394208908081055 img loss 1.4450544118881226 img loss 1.3352164030075073 img loss 1.2409019470214844 img loss 1.321702241897583 img loss 1.4505418539047241 img loss 1.362939715385437 img loss 1.3974837064743042 img loss 1.362277865409851 img loss 1.2757765054702759 img loss 1.3463600873947144 img loss 1.3384438753128052 img loss 1.323461890220642 img loss 1.4118200540542603 img loss 1.4196600914001465 img loss 1.3758264780044556 img loss 1.4056633710861206 img loss 1.3244746923446655 img loss 1.3079254627227783 img loss 1.2940120697021484 img loss 1.4190770387649536 img loss 1.3814266920089722 img loss 1.4340862035751343 img loss 1.3170201778411865 img loss 1.3080956935882568 img loss 1.3182406425476074 img loss 1.331655502319336 img loss 1.3717378377914429 img loss 1.2759368419647217 img loss 1.4086021184921265 img loss 1.312206506729126 img loss 1.4543439149856567 img loss 1.2613399028778076 img loss 1.3346352577209473 img loss 1.4814209938049316 img loss 1.4082058668136597 img loss 1.3314387798309326 img loss 1.3606096506118774 img loss 1.5314158201217651 img loss 1.3772836923599243 img loss 1.4630601406097412 img loss 1.2421938180923462 img loss 1.432401418685913 img loss 1.3444592952728271 img loss 1.3676625490188599 img loss 1.3008235692977905img loss 1.2478502988815308 img loss 1.3278372287750244 img loss 1.3894888162612915 img loss 1.3685914278030396 img loss 1.3264884948730469 img loss 1.2481380701065063 img loss 1.3097206354141235 img loss 1.3972254991531372 img loss 1.2946135997772217 img loss 1.5333809852600098 img loss 1.272971510887146 img loss 1.2925609350204468 img loss 1.351012110710144 img loss 1.3204160928726196 img loss 1.3229930400848389 img loss 1.3537583351135254 img loss 1.3482182025909424 img loss 1.2920098304748535 img loss 1.3669856786727905 img loss 1.3675364255905151 img loss 1.32045578956604 img loss 1.3891242742538452 img loss 1.3557096719741821 img loss 1.3957058191299438 img loss 1.3313384056091309 img loss 1.3998115062713623 img loss 1.5631916522979736 img loss 1.3343685865402222 img loss 1.4056473970413208 img loss 1.2809923887252808 img loss 1.4636386632919312 img loss 1.2814290523529053 img loss 1.3959599733352661 img loss 1.3121654987335205 img loss 1.314023733139038 img loss 1.4294294118881226 img loss 1.4538817405700684 img loss 1.4012863636016846 img loss 1.3932386636734009 {'loss': 1.3665, 'grad_norm': 0.32762807607650757, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3909634351730347 img loss 1.1331541538238525 img loss 1.2134679555892944 img loss 1.2500416040420532 img loss 1.2734341621398926 img loss 1.1628553867340088 img loss 1.2434022426605225 img loss 1.1637446880340576 img loss 1.2679370641708374 img loss 1.2216132879257202 img loss 1.2623844146728516 img loss 1.1872575283050537 img loss 1.2013399600982666 img loss 1.2587153911590576 img loss 1.3917561769485474 img loss 1.2480396032333374 img loss 1.2909034490585327 img loss 1.2231658697128296 img loss 1.0743712186813354 img loss 1.1521947383880615 img loss 1.183843970298767 img loss 1.1274800300598145 img loss 1.2294739484786987 img loss 1.1933273077011108 img loss 1.292337417602539 img loss 1.205437183380127 img loss 1.1774080991744995 img loss 1.1816920042037964 img loss 1.191593885421753 img loss 1.2299524545669556 img loss 1.2419551610946655 img loss 1.2382042407989502 img loss 1.211130142211914 img loss 1.2068290710449219 img loss 1.3217798471450806 img loss 1.2501332759857178 img loss 1.2091344594955444 img loss 1.2662715911865234 img loss 1.212671160697937 img loss 1.178755760192871 img loss 1.1683478355407715 img loss 1.1762452125549316 img loss 1.2096889019012451 img loss 1.314941167831421 img loss 1.2445013523101807 img loss 1.3146445751190186 img loss 1.132968544960022 img loss 1.2516943216323853 img loss 1.1692276000976562 img loss 1.2260757684707642 img loss 1.290251612663269 img loss 1.1766526699066162 img loss 1.169224739074707 img loss 1.2148334980010986 img loss 1.1689071655273438 img loss 1.2229809761047363 img loss 1.175107717514038 img loss 1.3080967664718628 img loss 1.249197244644165 img loss 1.192138910293579 img loss 1.2298754453659058 img loss 1.282896637916565 img loss 1.211033582687378 img loss 1.2335137128829956 img loss 1.2423375844955444 img loss 1.2998454570770264 img loss 1.2289272546768188 img loss 1.2207098007202148 img loss 1.2695640325546265 img loss 1.1949350833892822 img loss 1.2507498264312744 img loss 1.2736966609954834 img loss 1.2417339086532593 img loss 1.3290890455245972 img loss 1.3017165660858154 img loss 1.2125530242919922 img loss 1.2196636199951172 img loss 1.197313666343689 img loss 1.2892930507659912 img loss 1.1725605726242065 img loss 1.3279026746749878 img loss 1.1453628540039062 img loss 1.17844557762146 img loss 1.3137348890304565 img loss 1.2594406604766846 img loss 1.223610520362854 img loss 1.3374160528182983 img loss 1.3539098501205444 img loss 1.252558946609497 img loss 1.2548885345458984 img loss 1.1781905889511108 img loss 1.2095587253570557 img loss 1.192034125328064 img loss 1.1984474658966064 img loss 1.2919034957885742 img loss 1.3112616539001465 img loss 1.241006851196289 img loss 1.3089730739593506 img loss 1.143113136291504 img loss 1.2316974401474 img loss 1.1689220666885376 img loss 1.177193284034729 img loss 1.2566840648651123 img loss 1.1799452304840088 img loss 1.2972838878631592 img loss 1.2149734497070312 img loss 1.2317252159118652 img loss 1.2895309925079346 img loss 1.1297141313552856 img loss 1.229511022567749 img loss 1.2584501504898071 img loss 1.257188320159912 img loss 1.2548035383224487 img loss 1.2258946895599365 img loss 1.2525689601898193 img loss 1.2626663446426392 img loss 1.2279564142227173 img loss 1.2340465784072876 img loss 1.227445125579834 img loss 1.2799148559570312 img loss 1.1433537006378174 img loss 1.2777869701385498 img loss 1.3051338195800781 img loss 1.1827809810638428 img loss 1.2452455759048462 img loss 1.1723953485488892 img loss 1.2239437103271484 img loss 1.1724417209625244 {'loss': 1.231, 'grad_norm': 0.24298341572284698, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.809619665145874 img loss 1.5911682844161987 img loss 1.7554420232772827 img loss 1.7880165576934814 img loss 1.7743699550628662 img loss 1.6843311786651611 img loss 1.615552544593811 img loss 1.6827954053878784 img loss 1.6335409879684448 img loss 1.7785056829452515 img loss 1.8700683116912842 img loss 1.655261754989624 img loss 1.6134827136993408 img loss 1.7554373741149902 img loss 1.664670705795288 img loss 1.7605406045913696 img loss 1.6725996732711792 img loss 1.8288272619247437 img loss 1.7780691385269165 img loss 1.7808566093444824 img loss 1.8521829843521118 img loss 1.6625176668167114 img loss 1.675517201423645 img loss 1.6792066097259521 img loss 1.7577507495880127 img loss 1.6523116827011108 img loss 1.685462236404419 img loss 1.6854870319366455 img loss 1.7577887773513794 img loss 1.6062541007995605 img loss 1.7275781631469727 img loss 1.5932414531707764 img loss 1.7106691598892212 img loss 1.6803182363510132 img loss 1.7475093603134155 img loss 1.7358267307281494 img loss 1.8116165399551392 img loss 1.6779115200042725 img loss 1.614439606666565 img loss 1.555598497390747 img loss 1.6345198154449463 img loss 1.7319616079330444 img loss 1.8948365449905396 img loss 1.700721263885498 img loss 1.6633440256118774 img loss 1.9141128063201904 img loss 1.679145097732544 img loss 1.6081464290618896 img loss 1.6263538599014282 img loss 1.6816020011901855 img loss 1.8108911514282227 img loss 1.5982306003570557 img loss 1.7856769561767578 img loss 1.6882115602493286 img loss 1.7688099145889282 img loss 1.7730506658554077 img loss 1.7644622325897217 img loss 1.7350984811782837 img loss 1.527456521987915 img loss 1.628780722618103 img loss 1.6880117654800415 img loss 1.6700249910354614 img loss 1.6511200666427612 img loss 1.7027122974395752 img loss 1.7257884740829468 img loss 1.7933428287506104 img loss 1.8055028915405273 img loss 1.6258785724639893 img loss 1.6883801221847534 img loss 1.7847723960876465 img loss 1.7491755485534668 img loss 1.6592953205108643 img loss 1.6215802431106567 img loss 1.8124324083328247 img loss 1.7340044975280762 img loss 1.733313798904419 img loss 1.6766704320907593 img loss 1.6996079683303833 img loss 1.5332797765731812 img loss 1.5770498514175415 img loss 1.6137193441390991 img loss 1.6566154956817627 img loss 1.6250251531600952 img loss 1.708146333694458 img loss 1.5096609592437744 img loss 1.8118987083435059 img loss 1.766755223274231 img loss 1.628203272819519 img loss 1.5910612344741821 img loss 1.7284469604492188 img loss 1.8725762367248535 img loss 1.6840262413024902 img loss 1.8079954385757446 img loss 1.8165284395217896 img loss 1.538386583328247 img loss 1.6012027263641357 img loss 1.7196722030639648 img loss 1.553667664527893 img loss 1.769610047340393 img loss 1.6162946224212646 img loss 1.559995174407959 img loss 1.7389720678329468 img loss 1.6594903469085693 img loss 1.7947736978530884 img loss 1.7818715572357178 img loss 1.5862215757369995 img loss 1.7850966453552246 img loss 1.6902567148208618 img loss 1.6672441959381104 img loss 1.6528937816619873 img loss 1.6853423118591309 img loss 1.6968594789505005 img loss 1.8561955690383911 img loss 1.6609070301055908 img loss 1.6720603704452515 img loss 1.7935431003570557 img loss 1.7989343404769897 img loss 1.6719648838043213 img loss 1.781076192855835 img loss 1.778321623802185 img loss 1.7330224514007568 img loss 1.7903740406036377 img loss 1.7233657836914062 img loss 1.6315152645111084 img loss 1.7305974960327148 img loss 1.684898018836975 img loss 1.7081834077835083 img loss 1.677704930305481 {'loss': 1.7041, 'grad_norm': 0.6537559032440186, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2393804788589478 img loss 1.2149471044540405 img loss 1.20297110080719 img loss 1.2333706617355347 img loss 1.3004502058029175 img loss 1.2151771783828735 img loss 1.1928386688232422 img loss 1.244991660118103 img loss 1.2349385023117065 img loss 1.3005423545837402 img loss 1.231467843055725 img loss 1.2697269916534424 img loss 1.1890474557876587 img loss 1.1669100522994995 img loss 1.1790586709976196 img loss 1.1097718477249146 img loss 1.1151026487350464 img loss 1.2714534997940063 img loss 1.188470482826233 img loss 1.2055165767669678 img loss 1.248958945274353 img loss 1.2495886087417603 img loss 1.1894174814224243 img loss 1.241891622543335 img loss 1.2271764278411865 img loss 1.2881569862365723 img loss 1.259793996810913 img loss 1.222775936126709 img loss 1.2099777460098267 img loss 1.23441743850708 img loss 1.1435980796813965 img loss 1.2656095027923584 img loss 1.2456059455871582 img loss 1.1916488409042358 img loss 1.1879700422286987 img loss 1.255147933959961 img loss 1.2867857217788696 img loss 1.2062238454818726 img loss 1.1993579864501953 img loss 1.2760100364685059 img loss 1.277992844581604 img loss 1.3005493879318237 img loss 1.1525778770446777 img loss 1.1764858961105347 img loss 1.2351282835006714 img loss 1.1939480304718018 img loss 1.1914501190185547 img loss 1.313005805015564 img loss 1.2418510913848877 img loss 1.2314327955245972 img loss 1.2864344120025635 img loss 1.2176443338394165 img loss 1.2542275190353394 img loss 1.2629246711730957 img loss 1.2424545288085938 img loss 1.2464072704315186 img loss 1.2122734785079956 img loss 1.2307000160217285 img loss 1.2461286783218384 img loss 1.2622345685958862 img loss 1.2380224466323853 img loss 1.2053018808364868 img loss 1.2446562051773071 img loss 1.2235527038574219 img loss 1.1764864921569824 img loss 1.224738359451294 img loss 1.2429622411727905 img loss 1.2917006015777588 img loss 1.226090908050537 img loss 1.215390920639038 img loss 1.1999282836914062 img loss 1.2028532028198242 img loss 1.2480988502502441 img loss 1.191536784172058 img loss 1.2821458578109741 img loss 1.283687949180603 img loss 1.2031522989273071 img loss 1.2108967304229736 img loss 1.2425593137741089 img loss 1.2453038692474365 img loss 1.2533714771270752 img loss 1.201961874961853 img loss 1.1797528266906738 img loss 1.2274235486984253 img loss 1.198087453842163 img loss 1.2011784315109253 img loss 1.2447599172592163 img loss 1.297037124633789 img loss 1.194392442703247 img loss 1.1714591979980469 img loss 1.2203452587127686 img loss 1.2668198347091675 img loss 1.319291353225708 img loss 1.1889265775680542 img loss 1.2320747375488281 img loss 1.3154090642929077 img loss 1.237986445426941 img loss 1.199893832206726 img loss 1.2631027698516846 img loss 1.1718685626983643 img loss 1.176831841468811 img loss 1.1750227212905884 img loss 1.1139376163482666 img loss 1.3181829452514648 img loss 1.2084530591964722 img loss 1.2111172676086426 img loss 1.2743266820907593 img loss 1.1637585163116455 img loss 1.2172720432281494 img loss 1.2010626792907715 img loss 1.2704836130142212 img loss 1.2129719257354736 img loss 1.3274997472763062 img loss 1.194445252418518 img loss 1.206087589263916 img loss 1.267237901687622 img loss 1.2385014295578003 img loss 1.2285380363464355 img loss 1.2798150777816772 img loss 1.1810556650161743 img loss 1.2559925317764282 img loss 1.2689738273620605 img loss 1.1787222623825073 img loss 1.212186336517334 img loss 1.3705151081085205 img loss 1.2259116172790527 img loss 1.1884886026382446 img loss 1.2337148189544678 {'loss': 1.2289, 'grad_norm': 0.3382275104522705, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1505845785140991 img loss 1.15069580078125 img loss 1.1890482902526855 img loss 1.2054955959320068 img loss 1.2793159484863281 img loss 1.2016061544418335 img loss 1.3190546035766602 img loss 1.3400946855545044 img loss 1.2919124364852905 img loss 1.2362148761749268 img loss 1.2158310413360596 img loss 1.2021316289901733 img loss 1.2464083433151245 img loss 1.2137216329574585 img loss 1.1286860704421997 img loss 1.1783671379089355 img loss 1.2139456272125244 img loss 1.240356683731079 img loss 1.2043747901916504 img loss 1.1343369483947754 img loss 1.2197356224060059 img loss 1.2311385869979858 img loss 1.1965560913085938 img loss 1.1889142990112305 img loss 1.24650239944458 img loss 1.2306840419769287 img loss 1.1747938394546509 img loss 1.2186087369918823 img loss 1.116152286529541 img loss 1.2155297994613647 img loss 1.24727463722229 img loss 1.1807937622070312 img loss 1.1532467603683472 img loss 1.1799253225326538 img loss 1.221239686012268 img loss 1.2577462196350098 img loss 1.2071664333343506 img loss 1.2349828481674194 img loss 1.2920010089874268 img loss 1.1230566501617432 img loss 1.1944186687469482 img loss 1.2252616882324219 img loss 1.2861897945404053 img loss 1.2290289402008057 img loss 1.131624460220337 img loss 1.1388523578643799 img loss 1.2396628856658936 img loss 1.226402997970581 img loss 1.213915467262268 img loss 1.3476213216781616 img loss 1.2205013036727905 img loss 1.1895016431808472 img loss 1.2883297204971313 img loss 1.2898590564727783 img loss 1.2332236766815186 img loss 1.1327053308486938 img loss 1.240882396697998 img loss 1.202903389930725 img loss 1.2874516248703003 img loss 1.2233221530914307 img loss 1.0984439849853516 img loss 1.1541101932525635 img loss 1.1671465635299683 img loss 1.1997038125991821 img loss 1.2890630960464478 img loss 1.2069133520126343 img loss 1.1904590129852295 img loss 1.1574528217315674 img loss 1.2226653099060059 img loss 1.236187219619751 img loss 1.2844539880752563 img loss 1.2453793287277222 img loss 1.1278618574142456 img loss 1.2357558012008667 img loss 1.2045296430587769 img loss 1.2404968738555908 img loss 1.1470838785171509 img loss 1.197572112083435 img loss 1.1345140933990479 img loss 1.192135214805603 img loss 1.1953060626983643 img loss 1.1760399341583252 img loss 1.1781634092330933 img loss 1.2337396144866943 img loss 1.1893792152404785 img loss 1.1827468872070312 img loss 1.3434869050979614 img loss 1.2263705730438232 img loss 1.2244963645935059 img loss 1.1852785348892212 img loss 1.2279613018035889 img loss 1.1980221271514893 img loss 1.2493785619735718 img loss 1.2029060125350952 img loss 1.1689751148223877 img loss 1.3486497402191162 img loss 1.1885321140289307 img loss 1.1679562330245972 img loss 1.226768970489502 img loss 1.2140498161315918 img loss 1.1585707664489746 img loss 1.207964301109314 img loss 1.2697117328643799 img loss 1.2031418085098267 img loss 1.1711663007736206 img loss 1.1678236722946167 img loss 1.1808785200119019 img loss 1.1933653354644775 img loss 1.2414671182632446 img loss 1.183661937713623 img loss 1.2524460554122925 img loss 1.2141094207763672 img loss 1.2204835414886475 img loss 1.1713180541992188 img loss 1.3207013607025146 img loss 1.1601026058197021 img loss 1.2758911848068237 img loss 1.206580638885498 img loss 1.2336472272872925 img loss 1.2991970777511597 img loss 1.1943861246109009 img loss 1.2435623407363892 img loss 1.1974881887435913 img loss 1.3345539569854736 img loss 1.1728763580322266 img loss 1.251757264137268 img loss 1.1344045400619507 img loss 1.1890640258789062 {'loss': 1.2135, 'grad_norm': 0.38131341338157654, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2608129978179932 img loss 1.3038454055786133 img loss 1.3163862228393555 img loss 1.3115959167480469 img loss 1.2123857736587524 img loss 1.3054625988006592 img loss 1.2602452039718628 img loss 1.1978600025177002 img loss 1.1948645114898682 img loss 1.2776374816894531 img loss 1.2295271158218384 img loss 1.2403504848480225 img loss 1.2654242515563965 img loss 1.3380974531173706 img loss 1.2363452911376953 img loss 1.2992253303527832 img loss 1.1877282857894897 img loss 1.2067114114761353 img loss 1.2460358142852783 img loss 1.1801022291183472 img loss 1.288076400756836 img loss 1.2191423177719116 img loss 1.155027151107788 img loss 1.2407660484313965 img loss 1.2872587442398071 img loss 1.2472091913223267img loss 1.2183836698532104 img loss 1.2608318328857422 img loss 1.252953290939331 img loss 1.3029030561447144img loss 1.1857479810714722 img loss 1.2214702367782593 img loss 1.524983286857605 img loss 1.1923431158065796 img loss 1.2905277013778687 img loss 1.2867753505706787 img loss 1.233180284500122 img loss 1.2989938259124756 img loss 1.2606709003448486 img loss 1.3364394903182983 img loss 1.2689085006713867 img loss 1.3032175302505493 img loss 1.1926188468933105 img loss 1.2823504209518433 img loss 1.2495237588882446 img loss 1.3119657039642334 img loss 1.280351161956787 img loss 1.3025941848754883 img loss 1.228410005569458 img loss 1.2681777477264404 img loss 1.2634179592132568 img loss 1.3018028736114502 img loss 1.2148624658584595 img loss 1.288150668144226 img loss 1.2415131330490112 img loss 1.2551124095916748 img loss 1.20931875705719 img loss 1.2963063716888428 img loss 1.2340307235717773 img loss 1.2757225036621094 img loss 1.3296841382980347 img loss 1.2473411560058594 img loss 1.2351068258285522 img loss 1.3281512260437012 img loss 1.2931679487228394 img loss 1.2521946430206299 img loss 1.1929057836532593 img loss 1.3246486186981201 img loss 1.4265942573547363 img loss 1.182895302772522 img loss 1.3172978162765503 img loss 1.3401408195495605 img loss 1.3106497526168823 img loss 1.2746824026107788 img loss 1.311237096786499 img loss 1.2378921508789062 img loss 1.222899079322815 img loss 1.16512131690979 img loss 1.3027892112731934 img loss 1.2555100917816162 img loss 1.2058601379394531 img loss 1.229736328125 img loss 1.2964690923690796 img loss 1.3610889911651611 img loss 1.229609727859497 img loss 1.2107574939727783 img loss 1.2633870840072632 img loss 1.3325012922286987 img loss 1.2269153594970703 img loss 1.234445333480835 img loss 1.2718009948730469 img loss 1.2552517652511597 img loss 1.2746329307556152 img loss 1.2524640560150146 img loss 1.2359206676483154 img loss 1.2363594770431519 img loss 1.2885478734970093 img loss 1.354987621307373 img loss 1.2682204246520996 img loss 1.2076126337051392 img loss 1.2501468658447266 img loss 1.3038561344146729 img loss 1.2489545345306396 img loss 1.262723445892334 img loss 1.2863662242889404 img loss 1.2888610363006592 img loss 1.2736088037490845 img loss 1.3161506652832031 img loss 1.2758740186691284 img loss 1.2826554775238037 img loss 1.2762056589126587 img loss 1.2460896968841553 img loss 1.3232717514038086 img loss 1.3039469718933105 img loss 1.2111997604370117 img loss 1.26248037815094 img loss 1.3230218887329102 img loss 1.2029956579208374 img loss 1.2873127460479736 img loss 1.183246374130249 img loss 1.173242211341858 img loss 1.2779995203018188 img loss 1.2711941003799438 img loss 1.4358603954315186 img loss 1.2622085809707642 img loss 1.291788101196289 img loss 1.26492440700531 img loss 1.2634520530700684 {'loss': 1.2662, 'grad_norm': 0.45741018652915955, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2469079494476318 img loss 1.2141588926315308 img loss 1.2148936986923218 img loss 1.3037726879119873 img loss 1.2371304035186768 img loss 1.1885722875595093 img loss 1.241946816444397 img loss 1.2179956436157227 img loss 1.167846441268921 img loss 1.3358063697814941 img loss 1.2789342403411865 img loss 1.2541025876998901 img loss 1.249005675315857 img loss 1.1664607524871826 img loss 1.2408450841903687 img loss 1.2656751871109009 img loss 1.2488936185836792 img loss 1.2203720808029175 img loss 1.185067057609558 img loss 1.3102668523788452 img loss 1.248725414276123 img loss 1.1312596797943115 img loss 1.2568143606185913 img loss 1.337737798690796 img loss 1.2230737209320068 img loss 1.1758923530578613 img loss 1.2532638311386108 img loss 1.1622729301452637 img loss 1.2541004419326782 img loss 1.1924278736114502 img loss 1.2180241346359253 img loss 1.162412405014038 img loss 1.166727900505066 img loss 1.1396812200546265 img loss 1.1820415258407593 img loss 1.2277895212173462 img loss 1.2888731956481934 img loss 1.1676006317138672 img loss 1.3457707166671753 img loss 1.2583084106445312 img loss 1.3039335012435913 img loss 1.1530842781066895 img loss 1.2812418937683105 img loss 1.1828378438949585 img loss 1.3025367259979248 img loss 1.2721168994903564 img loss 1.1819976568222046 img loss 1.1917190551757812 img loss 1.2195978164672852 img loss 1.2307342290878296 img loss 1.2277710437774658 img loss 1.3162789344787598 img loss 1.2211081981658936 img loss 1.2429357767105103 img loss 1.2165215015411377 img loss 1.298225998878479 img loss 1.1976368427276611 img loss 1.2255048751831055 img loss 1.1778144836425781 img loss 1.3294895887374878 img loss 1.1658695936203003 img loss 1.1714656352996826 img loss 1.3101706504821777 img loss 1.3139251470565796 img loss 1.272487998008728 img loss 1.2393317222595215 img loss 1.2223548889160156 img loss 1.239691138267517 img loss 1.2213963270187378 img loss 1.207273244857788 img loss 1.2018154859542847 img loss 1.3374817371368408 img loss 1.3325332403182983 img loss 1.2578420639038086 img loss 1.1785829067230225 img loss 1.2272305488586426 img loss 1.252292275428772 img loss 1.1648529767990112 img loss 1.250464677810669 img loss 1.222137451171875 img loss 1.3122453689575195 img loss 1.2551190853118896 img loss 1.2514256238937378 img loss 1.2213585376739502 img loss 1.201154112815857 img loss 1.202651858329773 img loss 1.2121212482452393 img loss 1.1884220838546753 img loss 1.2357311248779297 img loss 1.3145473003387451 img loss 1.209338665008545 img loss 1.2306478023529053 img loss 1.1489499807357788 img loss 1.2273921966552734 img loss 1.2452701330184937 img loss 1.2123162746429443 img loss 1.321480631828308 img loss 1.237789511680603 img loss 1.2104241847991943 img loss 1.200974702835083 img loss 1.1361658573150635 img loss 1.2562106847763062 img loss 1.29974365234375 img loss 1.3282067775726318 img loss 1.170562505722046 img loss 1.2579858303070068 img loss 1.2411941289901733 img loss 1.1969921588897705 img loss 1.169938325881958 img loss 1.2661106586456299 img loss 1.172107458114624 img loss 1.3066097497940063 img loss 1.2488536834716797 img loss 1.2700828313827515 img loss 1.2060598134994507 img loss 1.2244622707366943 img loss 1.2001981735229492 img loss 1.2954113483428955 img loss 1.2101980447769165 img loss 1.1922318935394287 img loss 1.1887187957763672 img loss 1.2430953979492188 img loss 1.3130829334259033 img loss 1.2481497526168823 img loss 1.172945499420166 img loss 1.191912055015564 img loss 1.2499260902404785 img loss 1.1945526599884033 {'loss': 1.2331, 'grad_norm': 0.34668970108032227, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2809622287750244 img loss 1.392880916595459 img loss 1.3203980922698975 img loss 1.3183605670928955 img loss 1.384063959121704 img loss 1.3422316312789917 img loss 1.2916896343231201 img loss 1.423357605934143 img loss 1.383227825164795 img loss 1.307967185974121 img loss 1.3051567077636719 img loss 1.3586249351501465 img loss 1.2622795104980469 img loss 1.31486177444458 img loss 1.3313639163970947 img loss 1.4100061655044556 img loss 1.2695696353912354 img loss 1.3207581043243408 img loss 1.3132556676864624 img loss 1.3570767641067505 img loss 1.29641592502594 img loss 1.3496196269989014 img loss 1.4270977973937988 img loss 1.411557674407959 img loss 1.3378126621246338 img loss 1.3339667320251465 img loss 1.3014891147613525 img loss 1.4115192890167236 img loss 1.5019991397857666 img loss 1.3624545335769653 img loss 1.3629511594772339 img loss 1.33175528049469 img loss 1.3642216920852661 img loss 1.3189324140548706 img loss 1.382260799407959 img loss 1.325748324394226 img loss 1.3549963235855103 img loss 1.2996536493301392 img loss 1.451767086982727 img loss 1.4355918169021606 img loss 1.3856861591339111 img loss 1.2894065380096436 img loss 1.3918882608413696 img loss 1.216843843460083 img loss 1.4232020378112793 img loss 1.2748157978057861 img loss 1.3956352472305298 img loss 1.2932027578353882 img loss 1.4489867687225342 img loss 1.2219494581222534 img loss 1.4190256595611572 img loss 1.4406688213348389 img loss 1.4767922163009644 img loss 1.4331374168395996 img loss 1.3954778909683228 img loss 1.2699774503707886 img loss 1.3379942178726196 img loss 1.3966567516326904 img loss 1.376714825630188 img loss 1.305694341659546 img loss 1.3624922037124634 img loss 1.2624759674072266 img loss 1.346115231513977 img loss 1.3777576684951782 img loss 1.303227186203003 img loss 1.3342804908752441 img loss 1.3636363744735718 img loss 1.4299743175506592 img loss 1.4318842887878418 img loss 1.4551291465759277 img loss 1.366653323173523 img loss 1.359269618988037 img loss 1.453433632850647 img loss 1.3369947671890259 img loss 1.3466356992721558 img loss 1.4670895338058472 img loss 1.3206757307052612 img loss 1.2830698490142822 img loss 1.2741901874542236 img loss 1.3937093019485474 img loss 1.3099219799041748 img loss 1.5181269645690918 img loss 1.3374590873718262 img loss 1.3496192693710327 img loss 1.3793132305145264 img loss 1.2848048210144043 img loss 1.5059384107589722 img loss 1.333478331565857 img loss 1.3928313255310059 img loss 1.3856080770492554 img loss 1.263142466545105 img loss 1.511353611946106 img loss 1.3901203870773315 img loss 1.202906608581543 img loss 1.4883382320404053 img loss 1.4336777925491333 img loss 1.3355683088302612 img loss 1.3727507591247559 img loss 1.3078514337539673 img loss 1.2626442909240723 img loss 1.314391851425171 img loss 1.5279288291931152 img loss 1.347915768623352 img loss 1.390775203704834 img loss 1.3465430736541748 img loss 1.4074605703353882 img loss 1.3561184406280518 img loss 1.3891204595565796 img loss 1.3724905252456665 img loss 1.3770145177841187 img loss 1.370766520500183 img loss 1.4106345176696777 img loss 1.3619768619537354 img loss 1.4333268404006958 img loss 1.295687198638916 img loss 1.3226218223571777 img loss 1.2231252193450928 img loss 1.3647047281265259 img loss 1.289355754852295 img loss 1.4312235116958618 img loss 1.4809235334396362 img loss 1.3877556324005127 img loss 1.3703466653823853 img loss 1.3987438678741455 img loss 1.2702873945236206 img loss 1.4052199125289917 img loss 1.3638216257095337 img loss 1.2599103450775146 {'loss': 1.3605, 'grad_norm': 0.6370705366134644, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1798436641693115 img loss 1.2013945579528809 img loss 1.2705236673355103 img loss 1.2154254913330078 img loss 1.1983610391616821 img loss 1.2221062183380127 img loss 1.3039029836654663 img loss 1.1742092370986938 img loss 1.24348783493042 img loss 1.2149598598480225 img loss 1.2894470691680908 img loss 1.2333142757415771 img loss 1.2008469104766846 img loss 1.185948133468628 img loss 1.2233121395111084 img loss 1.215433120727539 img loss 1.2698806524276733 img loss 1.2267004251480103 img loss 1.1549221277236938 img loss 1.0519227981567383 img loss 1.2640831470489502 img loss 1.1805719137191772 img loss 1.1650099754333496 img loss 1.217504858970642 img loss 1.209918737411499 img loss 1.2203223705291748 img loss 1.1768572330474854 img loss 1.2333409786224365 img loss 1.26011061668396 img loss 1.1826276779174805 img loss 1.2098945379257202 img loss 1.2340434789657593 img loss 1.200216293334961 img loss 1.307859182357788 img loss 1.20767080783844 img loss 1.2951313257217407 img loss 1.2427003383636475 img loss 1.1923017501831055 img loss 1.2069653272628784 img loss 1.2489112615585327 img loss 1.2046008110046387 img loss 1.2937922477722168 img loss 1.3327045440673828 img loss 1.2382793426513672 img loss 1.2793915271759033 img loss 1.2332977056503296 img loss 1.2249712944030762 img loss 1.2406609058380127 img loss 1.16255521774292 img loss 1.1877753734588623 img loss 1.2288192510604858 img loss 1.2531280517578125 img loss 1.2279047966003418 img loss 1.2458568811416626 img loss 1.2009117603302002 img loss 1.15904700756073 img loss 1.285520315170288 img loss 1.2031844854354858 img loss 1.2707351446151733 img loss 1.1496795415878296 img loss 1.1993125677108765 img loss 1.1987545490264893 img loss 1.221583366394043 img loss 1.2465444803237915 img loss 1.1809191703796387 img loss 1.1593250036239624 img loss 1.1741769313812256 img loss 1.17400062084198 img loss 1.3003654479980469 img loss 1.3559300899505615 img loss 1.219848394393921 img loss 1.221219539642334 img loss 1.2340888977050781 img loss 1.1494882106781006 img loss 1.172217607498169 img loss 1.1393483877182007 img loss 1.1889705657958984 img loss 1.2544243335723877 img loss 1.0841747522354126 img loss 1.331204891204834 img loss 1.2153688669204712 img loss 1.2885410785675049 img loss 1.2033095359802246 img loss 1.1834938526153564 img loss 1.1832945346832275 img loss 1.1788419485092163 img loss 1.1184604167938232 img loss 1.2655479907989502 img loss 1.2371025085449219 img loss 1.3666058778762817 img loss 1.2923859357833862 img loss 1.1814988851547241 img loss 1.1784167289733887 img loss 1.2031168937683105 img loss 1.262768030166626 img loss 1.2625826597213745 img loss 1.228472113609314 img loss 1.16965651512146 img loss 1.2783764600753784 img loss 1.2103455066680908 img loss 1.2042629718780518 img loss 1.2092069387435913 img loss 1.2626179456710815 img loss 1.1925461292266846 img loss 1.2023608684539795 img loss 1.17865788936615 img loss 1.1553045511245728 img loss 1.1360586881637573 img loss 1.2162402868270874 img loss 1.2251858711242676 img loss 1.2273527383804321 img loss 1.122361421585083 img loss 1.2158427238464355 img loss 1.2236474752426147 img loss 1.2530649900436401 img loss 1.2788904905319214 img loss 1.210968017578125 img loss 1.2335572242736816 img loss 1.2389533519744873 img loss 1.2462248802185059 img loss 1.257373571395874 img loss 1.1873881816864014 img loss 1.2645457983016968 img loss 1.219133734703064 img loss 1.2014660835266113 img loss 1.224489450454712 img loss 1.2187546491622925 img loss 1.2420469522476196 {'loss': 1.2197, 'grad_norm': 0.30810925364494324, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.390539288520813 img loss 1.3023810386657715 img loss 1.2021725177764893 img loss 1.2993102073669434 img loss 1.2772865295410156 img loss 1.2425906658172607 img loss 1.3266677856445312 img loss 1.221940517425537 img loss 1.3414939641952515 img loss 1.3327566385269165 img loss 1.3960288763046265 img loss 1.2699320316314697 img loss 1.2672821283340454 img loss 1.2560229301452637 img loss 1.2915287017822266 img loss 1.3728947639465332 img loss 1.2567474842071533 img loss 1.2408275604248047 img loss 1.2869720458984375 img loss 1.3063304424285889 img loss 1.3332794904708862 img loss 1.2479718923568726 img loss 1.232316493988037 img loss 1.2499363422393799 img loss 1.4751256704330444 img loss 1.2346932888031006 img loss 1.2198203802108765 img loss 1.3269227743148804 img loss 1.3229100704193115 img loss 1.298744797706604 img loss 1.3120983839035034 img loss 1.2538706064224243 img loss 1.2331033945083618 img loss 1.2590700387954712 img loss 1.1992214918136597 img loss 1.236672043800354 img loss 1.3251312971115112 img loss 1.3860048055648804 img loss 1.2884773015975952 img loss 1.1741749048233032 img loss 1.2831388711929321 img loss 1.386225938796997 img loss 1.228433609008789 img loss 1.2793426513671875 img loss 1.245103359222412 img loss 1.313786268234253 img loss 1.2781732082366943 img loss 1.249205231666565 img loss 1.3291748762130737 img loss 1.2955859899520874 img loss 1.1917054653167725 img loss 1.3347383737564087 img loss 1.293740153312683 img loss 1.2328211069107056 img loss 1.2832101583480835 img loss 1.2390475273132324 img loss 1.3063033819198608 img loss 1.2536085844039917 img loss 1.3623048067092896 img loss 1.2553737163543701 img loss 1.261804223060608 img loss 1.2542123794555664 img loss 1.2884228229522705 img loss 1.3618885278701782 img loss 1.2200980186462402 img loss 1.3485018014907837 img loss 1.3512197732925415 img loss 1.127832055091858 img loss 1.2782267332077026 img loss 1.2289009094238281 img loss 1.3270649909973145 img loss 1.2313770055770874 img loss 1.2744207382202148 img loss 1.2200658321380615 img loss 1.3556568622589111 img loss 1.2483842372894287 img loss 1.2797472476959229 img loss 1.3309881687164307 img loss 1.2201170921325684 img loss 1.2542462348937988 img loss 1.2241123914718628 img loss 1.1858667135238647 img loss 1.314287543296814 img loss 1.3601902723312378 img loss 1.2606425285339355 img loss 1.213927984237671 img loss 1.2863949537277222 img loss 1.246722936630249 img loss 1.2545123100280762 img loss 1.176344633102417 img loss 1.2285431623458862 img loss 1.2053885459899902 img loss 1.2171566486358643 img loss 1.4080427885055542 img loss 1.3756567239761353 img loss 1.277113914489746 img loss 1.2159144878387451 img loss 1.2787014245986938 img loss 1.2956323623657227 img loss 1.2685046195983887 img loss 1.3054226636886597 img loss 1.2440717220306396 img loss 1.264509916305542 img loss 1.3437069654464722 img loss 1.277512550354004 img loss 1.321885585784912 img loss 1.21689772605896 img loss 1.2778857946395874img loss 1.1908406019210815 img loss 1.2928943634033203 img loss 1.2748956680297852 img loss 1.1179524660110474 img loss 1.3192318677902222 img loss 1.2830328941345215 img loss 1.2324388027191162 img loss 1.2242565155029297 img loss 1.2944414615631104 img loss 1.2794852256774902 img loss 1.244744062423706 img loss 1.2901619672775269 img loss 1.3040611743927002 img loss 1.4761555194854736 img loss 1.2807270288467407 img loss 1.2326207160949707 img loss 1.2262458801269531 img loss 1.2233495712280273 img loss 1.3268868923187256 img loss 1.3754513263702393 {'loss': 1.2784, 'grad_norm': 0.43525180220603943, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4032713174819946 img loss 1.4756966829299927 img loss 1.4796503782272339 img loss 1.4346420764923096 img loss 1.4059115648269653 img loss 1.4918454885482788 img loss 1.3907970190048218 img loss 1.4836684465408325 img loss 1.4373929500579834 img loss 1.4708698987960815 img loss 1.4572961330413818 img loss 1.4643341302871704 img loss 1.4525734186172485 img loss 1.4359114170074463 img loss 1.6038010120391846 img loss 1.4984285831451416 img loss 1.4057224988937378 img loss 1.4200832843780518 img loss 1.4770715236663818 img loss 1.4489020109176636 img loss 1.498361349105835 img loss 1.4951449632644653 img loss 1.4187685251235962 img loss 1.507203221321106 img loss 1.5632060766220093 img loss 1.433437466621399 img loss 1.592069149017334 img loss 1.5590389966964722 img loss 1.651009202003479 img loss 1.4347673654556274 img loss 1.4478108882904053 img loss 1.4744293689727783 img loss 1.5723730325698853 img loss 1.4792450666427612 img loss 1.338026523590088 img loss 1.433044672012329 img loss 1.4702457189559937 img loss 1.483059287071228 img loss 1.5799593925476074 img loss 1.6449116468429565 img loss 1.4587763547897339 img loss 1.442908525466919 img loss 1.511492371559143 img loss 1.556740403175354 img loss 1.5163092613220215 img loss 1.6505264043807983 img loss 1.460207223892212 img loss 1.3894532918930054 img loss 1.5530117750167847 img loss 1.6701990365982056 img loss 1.585720181465149 img loss 1.4507886171340942 img loss 1.3453470468521118 img loss 1.3163254261016846 img loss 1.5449683666229248 img loss 1.4239791631698608 img loss 1.4126601219177246 img loss 1.5956679582595825 img loss 1.5007498264312744 img loss 1.6224561929702759 img loss 1.3686431646347046 img loss 1.3848077058792114 img loss 1.525105595588684 img loss 1.4040768146514893 img loss 1.5089269876480103 img loss 1.4481817483901978 img loss 1.4905750751495361 img loss 1.552314281463623 img loss 1.338327169418335 img loss 1.4458720684051514 img loss 1.4775820970535278 img loss 1.306212306022644 img loss 1.5022385120391846 img loss 1.526098370552063 img loss 1.5850907564163208 img loss 1.5001510381698608 img loss 1.6193690299987793 img loss 1.5878291130065918 img loss 1.545965313911438 img loss 1.4636170864105225 img loss 1.439836859703064 img loss 1.5256239175796509 img loss 1.5284744501113892 img loss 1.4322216510772705 img loss 1.3626409769058228 img loss 1.5643479824066162 img loss 1.5107858180999756 img loss 1.6438238620758057 img loss 1.5460832118988037 img loss 1.4163459539413452 img loss 1.4885671138763428 img loss 1.452255129814148 img loss 1.4919087886810303 img loss 1.363945722579956 img loss 1.4697535037994385 img loss 1.5858525037765503 img loss 1.5626065731048584 img loss 1.4918949604034424 img loss 1.495659589767456 img loss 1.4843195676803589 img loss 1.4835726022720337 img loss 1.4447792768478394 img loss 1.470892310142517 img loss 1.6954939365386963 img loss 1.4022877216339111 img loss 1.5453935861587524 img loss 1.5639545917510986 img loss 1.4731179475784302 img loss 1.6417244672775269 img loss 1.4982458353042603 img loss 1.4497474431991577 img loss 1.4183489084243774 img loss 1.4525867700576782 img loss 1.366707444190979 img loss 1.5253976583480835 img loss 1.3889107704162598 img loss 1.4797290563583374 img loss 1.4763588905334473 img loss 1.5001189708709717 img loss 1.504858374595642 img loss 1.394929051399231 img loss 1.5963636636734009 img loss 1.4463070631027222 img loss 1.3880661725997925 img loss 1.4056209325790405 img loss 1.4887698888778687 img loss 1.4262268543243408 img loss 1.5257179737091064 {'loss': 1.4853, 'grad_norm': 0.26147791743278503, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3549189567565918 img loss 1.4946485757827759 img loss 1.3831316232681274 img loss 1.3733322620391846 img loss 1.4229233264923096 img loss 1.4172139167785645 img loss 1.391465663909912 img loss 1.3459652662277222 img loss 1.4748603105545044 img loss 1.3704791069030762 img loss 1.375700831413269 img loss 1.4694994688034058 img loss 1.3683044910430908 img loss 1.4941608905792236 img loss 1.463348150253296 img loss 1.4614430665969849 img loss 1.352222204208374 img loss 1.4294501543045044 img loss 1.4282594919204712 img loss 1.2949377298355103 img loss 1.4094549417495728 img loss 1.2778476476669312 img loss 1.3712608814239502 img loss 1.373786211013794 img loss 1.455585241317749 img loss 1.5211721658706665 img loss 1.437674880027771 img loss 1.3288304805755615 img loss 1.3645470142364502 img loss 1.5028749704360962 img loss 1.3696873188018799 img loss 1.556240439414978 img loss 1.410516619682312 img loss 1.4326726198196411 img loss 1.4157078266143799 img loss 1.422847867012024 img loss 1.3965188264846802 img loss 1.4383794069290161 img loss 1.429277777671814 img loss 1.429500699043274 img loss 1.6126445531845093 img loss 1.3652746677398682 img loss 1.3995391130447388 img loss 1.3986668586730957 img loss 1.304806113243103 img loss 1.410448431968689 img loss 1.3736542463302612 img loss 1.5154433250427246 img loss 1.4070004224777222 img loss 1.3709636926651 img loss 1.4326684474945068 img loss 1.3134210109710693 img loss 1.4339114427566528 img loss 1.3619657754898071 img loss 1.4658910036087036 img loss 1.3323557376861572 img loss 1.3864874839782715 img loss 1.444840669631958 img loss 1.4767638444900513 img loss 1.35460364818573 img loss 1.3746411800384521 img loss 1.4422109127044678 img loss 1.4475829601287842 img loss 1.3511593341827393 img loss 1.5106861591339111 img loss 1.4890621900558472 img loss 1.4129061698913574 img loss 1.364033818244934 img loss 1.3166965246200562 img loss 1.4388957023620605 img loss 1.3339790105819702 img loss 1.3664401769638062 img loss 1.3753443956375122 img loss 1.3400577306747437 img loss 1.4083571434020996 img loss 1.3870837688446045 img loss 1.5526467561721802 img loss 1.5140386819839478 img loss 1.4797426462173462 img loss 1.2950471639633179 img loss 1.4888876676559448 img loss 1.4294766187667847 img loss 1.3923712968826294 img loss 1.3862340450286865 img loss 1.3631689548492432 img loss 1.4177972078323364 img loss 1.4558775424957275 img loss 1.456073522567749 img loss 1.353187918663025 img loss 1.3454002141952515 img loss 1.3183915615081787 img loss 1.3002039194107056 img loss 1.323912501335144 img loss 1.497791051864624 img loss 1.3658063411712646 img loss 1.386216402053833 img loss 1.3754829168319702 img loss 1.4327489137649536 img loss 1.2917044162750244 img loss 1.2871872186660767 img loss 1.3286062479019165 img loss 1.3211286067962646 img loss 1.4623475074768066 img loss 1.3535298109054565 img loss 1.4461705684661865 img loss 1.5171513557434082 img loss 1.357092022895813 img loss 1.3719274997711182 img loss 1.3547536134719849 img loss 1.4829306602478027 img loss 1.3659584522247314 img loss 1.3637211322784424 img loss 1.5036158561706543 img loss 1.5472456216812134 img loss 1.410455346107483 img loss 1.4099595546722412 img loss 1.4084097146987915 img loss 1.495644450187683 img loss 1.3763855695724487 img loss 1.349382996559143 img loss 1.402518630027771 img loss 1.4252212047576904 img loss 1.362924337387085 img loss 1.3910053968429565 img loss 1.3703465461730957 img loss 1.4347172975540161 img loss 1.400490403175354 img loss 1.3853795528411865 {'loss': 1.4058, 'grad_norm': 0.32638314366340637, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.550209403038025 img loss 1.402015209197998 img loss 1.3546208143234253 img loss 1.547126054763794 img loss 1.33945894241333 img loss 1.506934404373169 img loss 1.3989430665969849 img loss 1.394051432609558 img loss 1.3989320993423462 img loss 1.4465774297714233 img loss 1.4617921113967896 img loss 1.437334418296814 img loss 1.3792519569396973 img loss 1.367704153060913 img loss 1.3254648447036743 img loss 1.5875366926193237 img loss 1.3987833261489868 img loss 1.358140468597412 img loss 1.38608717918396 img loss 1.4534779787063599 img loss 1.5741077661514282 img loss 1.3290389776229858 img loss 1.45119309425354 img loss 1.4176113605499268 img loss 1.484054684638977 img loss 1.4350613355636597 img loss 1.4052280187606812 img loss 1.5022385120391846 img loss 1.3237215280532837 img loss 1.4109011888504028 img loss 1.414458155632019 img loss 1.4228745698928833 img loss 1.4397807121276855 img loss 1.3166873455047607 img loss 1.5005031824111938 img loss 1.430151343345642 img loss 1.3804384469985962 img loss 1.4315544366836548 img loss 1.3836932182312012 img loss 1.5462266206741333 img loss 1.34672212600708 img loss 1.4649312496185303 img loss 1.5011006593704224 img loss 1.52131986618042 img loss 1.5786041021347046 img loss 1.4403510093688965 img loss 1.531072974205017 img loss 1.4979603290557861 img loss 1.5113476514816284 img loss 1.487850546836853 img loss 1.3501904010772705 img loss 1.2972757816314697 img loss 1.4966365098953247 img loss 1.4137426614761353 img loss 1.5061761140823364 img loss 1.3848292827606201 img loss 1.4043116569519043 img loss 1.4487245082855225 img loss 1.429241418838501 img loss 1.4271528720855713 img loss 1.4515607357025146 img loss 1.4747358560562134 img loss 1.4044034481048584 img loss 1.549153208732605 img loss 1.5011085271835327 img loss 1.4138749837875366 img loss 1.4500473737716675 img loss 1.3782131671905518 img loss 1.360357642173767 img loss 1.4045757055282593 img loss 1.3453080654144287 img loss 1.4471275806427002 img loss 1.4391111135482788 img loss 1.5117558240890503 img loss 1.4521487951278687 img loss 1.4111469984054565 img loss 1.3270249366760254 img loss 1.458863615989685 img loss 1.37655770778656 img loss 1.378893256187439 img loss 1.490943431854248 img loss 1.4686105251312256 img loss 1.445250391960144 img loss 1.4799144268035889 img loss 1.5128579139709473 img loss 1.329938530921936 img loss 1.391000509262085 img loss 1.3695052862167358 img loss 1.469576120376587 img loss 1.4642903804779053 img loss 1.3438972234725952 img loss 1.5213559865951538 img loss 1.3293272256851196 img loss 1.5384312868118286 img loss 1.6493468284606934 img loss 1.3566219806671143 img loss 1.4560179710388184 img loss 1.3376033306121826 img loss 1.3764640092849731 img loss 1.4815739393234253 img loss 1.4399396181106567 img loss 1.4553563594818115 img loss 1.541368007659912 img loss 1.4937583208084106 img loss 1.436898112297058 img loss 1.4361828565597534 img loss 1.4780586957931519 img loss 1.5245307683944702 img loss 1.5631424188613892 img loss 1.4088128805160522 img loss 1.4871604442596436 img loss 1.3162378072738647 img loss 1.3632880449295044 img loss 1.4902909994125366 img loss 1.4182690382003784 img loss 1.469792127609253 img loss 1.3011432886123657 img loss 1.486136794090271 img loss 1.4053778648376465 img loss 1.3624440431594849 img loss 1.473683476448059 img loss 1.3367712497711182 img loss 1.326788306236267 img loss 1.4300343990325928 img loss 1.4212114810943604 img loss 1.4242854118347168 img loss 1.4426363706588745 img loss 1.5084452629089355 {'loss': 1.4353, 'grad_norm': 0.3896956443786621, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2085137367248535 img loss 1.142856240272522 img loss 1.240195870399475 img loss 1.2281889915466309 img loss 1.1371338367462158 img loss 1.2328462600708008 img loss 1.2838026285171509 img loss 1.2396188974380493 img loss 1.1953332424163818 img loss 1.1939363479614258 img loss 1.165535807609558 img loss 1.4244072437286377 img loss 1.224028468132019 img loss 1.259791374206543 img loss 1.1603244543075562 img loss 1.1866261959075928 img loss 1.2074402570724487 img loss 1.1809957027435303 img loss 1.2571474313735962 img loss 1.1922657489776611 img loss 1.2697968482971191 img loss 1.2392791509628296 img loss 1.240048885345459 img loss 1.2392301559448242 img loss 1.1711317300796509 img loss 1.1616764068603516 img loss 1.2556684017181396 img loss 1.3148784637451172 img loss 1.2094128131866455 img loss 1.1411373615264893 img loss 1.241984248161316 img loss 1.1753641366958618 img loss 1.2588379383087158 img loss 1.2985740900039673 img loss 1.1635916233062744 img loss 1.2388887405395508 img loss 1.231438398361206 img loss 1.2176240682601929 img loss 1.1925991773605347 img loss 1.2179276943206787 img loss 1.233886957168579 img loss 1.2035719156265259 img loss 1.2097904682159424 img loss 1.1487038135528564 img loss 1.2592054605484009 img loss 1.25631844997406 img loss 1.2018094062805176 img loss 1.24282968044281 img loss 1.3022732734680176 img loss 1.197579264640808 img loss 1.2474455833435059 img loss 1.290143370628357 img loss 1.1911052465438843 img loss 1.219237208366394 img loss 1.2428401708602905 img loss 1.1792049407958984 img loss 1.2414346933364868 img loss 1.2454311847686768 img loss 1.221402883529663 img loss 1.272483229637146 img loss 1.2612680196762085 img loss 1.237980604171753 img loss 1.3372482061386108 img loss 1.2082655429840088 img loss 1.278978943824768 img loss 1.2902681827545166 img loss 1.235546588897705 img loss 1.2111365795135498 img loss 1.2438815832138062 img loss 1.2972908020019531 img loss 1.256324291229248 img loss 1.2323205471038818 img loss 1.2567561864852905 img loss 1.209410548210144 img loss 1.31951105594635 img loss 1.2548929452896118 img loss 1.3382076025009155 img loss 1.1815475225448608 img loss 1.3242193460464478 img loss 1.288346767425537 img loss 1.2399702072143555 img loss 1.2761404514312744 img loss 1.259296178817749 img loss 1.2342314720153809 img loss 1.1441586017608643 img loss 1.2564185857772827 img loss 1.1980043649673462 img loss 1.214243769645691 img loss 1.2038673162460327 img loss 1.284054160118103 img loss 1.1654810905456543 img loss 1.2908111810684204 img loss 1.197156310081482 img loss 1.1605647802352905 img loss 1.2950199842453003 img loss 1.2096962928771973 img loss 1.2445510625839233 img loss 1.2807892560958862 img loss 1.2702338695526123 img loss 1.2953823804855347 img loss 1.1959903240203857 img loss 1.2701069116592407 img loss 1.2232637405395508 img loss 1.1373348236083984 img loss 1.2218773365020752 img loss 1.1710143089294434 img loss 1.2601274251937866 img loss 1.2301561832427979 img loss 1.3055815696716309 img loss 1.2796766757965088 img loss 1.2309788465499878 img loss 1.2447179555892944 img loss 1.201282024383545 img loss 1.274714708328247 img loss 1.185849666595459 img loss 1.2207378149032593 img loss 1.2423771619796753 img loss 1.3771624565124512 img loss 1.1489372253417969 img loss 1.1515557765960693 img loss 1.2235554456710815 img loss 1.221564531326294 img loss 1.293500304222107 img loss 1.2747560739517212 img loss 1.2544617652893066 img loss 1.2543197870254517 img loss 1.217242956161499 img loss 1.2682301998138428 {'loss': 1.2345, 'grad_norm': 0.32587817311286926, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1913330554962158 img loss 1.3264509439468384 img loss 1.4069981575012207 img loss 1.3065974712371826 img loss 1.3267563581466675 img loss 1.4127094745635986 img loss 1.409338116645813 img loss 1.1793935298919678 img loss 1.1686325073242188 img loss 1.3466898202896118 img loss 1.3215827941894531 img loss 1.373077154159546 img loss 1.3140277862548828 img loss 1.3828734159469604 img loss 1.235845923423767 img loss 1.2984331846237183 img loss 1.2847979068756104 img loss 1.2934587001800537 img loss 1.2170571088790894 img loss 1.2237814664840698 img loss 1.2623164653778076 img loss 1.3027403354644775 img loss 1.2663544416427612 img loss 1.226137399673462 img loss 1.2991117238998413 img loss 1.231885552406311 img loss 1.3801015615463257 img loss 1.3616694211959839 img loss 1.2507777214050293 img loss 1.1551445722579956 img loss 1.3264007568359375 img loss 1.2686885595321655 img loss 1.3478615283966064 img loss 1.2486180067062378 img loss 1.280027985572815 img loss 1.2875031232833862 img loss 1.2107632160186768 img loss 1.3444136381149292 img loss 1.2700443267822266 img loss 1.2182250022888184 img loss 1.376076102256775 img loss 1.231431484222412 img loss 1.2045578956604004 img loss 1.2624645233154297 img loss 1.2861900329589844 img loss 1.2854944467544556 img loss 1.1937607526779175 img loss 1.2271031141281128 img loss 1.3392412662506104 img loss 1.3262075185775757 img loss 1.206034541130066 img loss 1.2467068433761597 img loss 1.3036723136901855 img loss 1.1292846202850342 img loss 1.2048256397247314 img loss 1.259913682937622 img loss 1.3601880073547363 img loss 1.3372570276260376 img loss 1.2688204050064087 img loss 1.3127037286758423 img loss 1.252746820449829 img loss 1.3241989612579346 img loss 1.2321172952651978 img loss 1.4029285907745361 img loss 1.3675984144210815 img loss 1.2738590240478516 img loss 1.187305212020874 img loss 1.2546370029449463 img loss 1.270451307296753 img loss 1.3352566957473755 img loss 1.3326748609542847 img loss 1.245085597038269 img loss 1.2817590236663818 img loss 1.2372534275054932 img loss 1.2964756488800049 img loss 1.2955691814422607 img loss 1.1966694593429565 img loss 1.3110466003417969 img loss 1.3542189598083496 img loss 1.2620196342468262 img loss 1.2460041046142578 img loss 1.3355534076690674 img loss 1.2478243112564087 img loss 1.3150087594985962 img loss 1.2963783740997314 img loss 1.2269699573516846 img loss 1.306822419166565 img loss 1.2505689859390259 img loss 1.3301931619644165 img loss 1.2463058233261108 img loss 1.289284110069275 img loss 1.270841360092163 img loss 1.260329246520996 img loss 1.3232223987579346 img loss 1.3178231716156006 img loss 1.2529945373535156 img loss 1.326862096786499 img loss 1.2564997673034668 img loss 1.2452207803726196 img loss 1.2808483839035034 img loss 1.1698980331420898 img loss 1.31303870677948 img loss 1.2335070371627808 img loss 1.2220808267593384 img loss 1.2266957759857178 img loss 1.259600043296814 img loss 1.275797724723816 img loss 1.3435829877853394 img loss 1.230304479598999 img loss 1.297295331954956 img loss 1.2409099340438843 img loss 1.2294896841049194 img loss 1.2812867164611816 img loss 1.271154761314392 img loss 1.2931450605392456 img loss 1.3464198112487793 img loss 1.2690073251724243 img loss 1.3736932277679443 img loss 1.2603572607040405 img loss 1.1566801071166992 img loss 1.27445650100708 img loss 1.4014477729797363 img loss 1.2360835075378418 img loss 1.3095028400421143 img loss 1.3102188110351562 img loss 1.2677462100982666 img loss 1.2120741605758667 img loss 1.249693751335144 {'loss': 1.2798, 'grad_norm': 0.23158806562423706, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2329682111740112 img loss 1.2712013721466064 img loss 1.237953543663025 img loss 1.197945237159729 img loss 1.3950207233428955 img loss 1.270795464515686 img loss 1.2231342792510986 img loss 1.2998031377792358 img loss 1.284881830215454 img loss 1.2659324407577515 img loss 1.2087048292160034 img loss 1.2458453178405762 img loss 1.2415177822113037 img loss 1.2749016284942627 img loss 1.2635655403137207 img loss 1.1993852853775024 img loss 1.2166249752044678 img loss 1.2669692039489746 img loss 1.3023251295089722 img loss 1.3240914344787598 img loss 1.2847824096679688 img loss 1.2918128967285156 img loss 1.2304508686065674 img loss 1.1788638830184937 img loss 1.222886323928833 img loss 1.1897293329238892 img loss 1.176025390625 img loss 1.268006682395935 img loss 1.2905452251434326 img loss 1.2402485609054565 img loss 1.242824912071228 img loss 1.2070029973983765 img loss 1.2415838241577148 img loss 1.2765344381332397 img loss 1.1977615356445312 img loss 1.2845733165740967 img loss 1.2682605981826782 img loss 1.2296489477157593 img loss 1.2171636819839478 img loss 1.243334174156189 img loss 1.228507399559021img loss 1.2296886444091797 img loss 1.2943248748779297 img loss 1.2377746105194092 img loss 1.2455594539642334 img loss 1.2315342426300049 img loss 1.2021796703338623 img loss 1.2470920085906982 img loss 1.2160582542419434 img loss 1.2306740283966064 img loss 1.2751833200454712 img loss 1.317869782447815 img loss 1.2982031106948853 img loss 1.180361270904541 img loss 1.2061703205108643 img loss 1.2263238430023193 img loss 1.2622532844543457 img loss 1.2650647163391113 img loss 1.3370364904403687 img loss 1.2271809577941895 img loss 1.2035090923309326 img loss 1.3297487497329712 img loss 1.20946204662323 img loss 1.2382850646972656 img loss 1.2348231077194214 img loss 1.2321850061416626 img loss 1.211220145225525 img loss 1.258215308189392 img loss 1.2941802740097046 img loss 1.2193255424499512 img loss 1.2784631252288818 img loss 1.279814600944519 img loss 1.2063287496566772 img loss 1.2980352640151978 img loss 1.1769472360610962 img loss 1.2152382135391235 img loss 1.2196881771087646 img loss 1.212685227394104 img loss 1.2434126138687134 img loss 1.2499616146087646 img loss 1.2439825534820557 img loss 1.2002959251403809 img loss 1.2671440839767456 img loss 1.2070119380950928 img loss 1.269855260848999 img loss 1.2517040967941284 img loss 1.2948777675628662 img loss 1.2307647466659546 img loss 1.1927127838134766 img loss 1.2685731649398804 img loss 1.2796748876571655 img loss 1.2671871185302734 img loss 1.287149429321289 img loss 1.1766380071640015 img loss 1.2570154666900635 img loss 1.2451014518737793 img loss 1.241807222366333 img loss 1.283555269241333 img loss 1.2405469417572021 img loss 1.2276405096054077 img loss 1.2668598890304565 img loss 1.2473286390304565 img loss 1.279994249343872 img loss 1.2465989589691162 img loss 1.2350385189056396 img loss 1.2070262432098389 img loss 1.2561839818954468 img loss 1.2813832759857178 img loss 1.1948457956314087 img loss 1.2339527606964111 img loss 1.2337785959243774 img loss 1.2418737411499023 img loss 1.2549494504928589 img loss 1.1981581449508667 img loss 1.3158867359161377 img loss 1.2621493339538574 img loss 1.2626969814300537 img loss 1.3130849599838257 img loss 1.2422168254852295 img loss 1.2116583585739136 img loss 1.3313871622085571 img loss 1.2180402278900146 img loss 1.2101404666900635 img loss 1.2422016859054565 img loss 1.3020520210266113 img loss 1.223254680633545 img loss 1.2662981748580933 img loss 1.2714122533798218 {'loss': 1.2481, 'grad_norm': 0.43118050694465637, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1822121143341064 img loss 1.2333552837371826 img loss 1.2613506317138672 img loss 1.3506277799606323 img loss 1.3868157863616943 img loss 1.2635014057159424 img loss 1.165153980255127 img loss 1.2483164072036743 img loss 1.211592674255371 img loss 1.2413231134414673 img loss 1.2376213073730469 img loss 1.2656081914901733 img loss 1.246572494506836 img loss 1.248487114906311 img loss 1.2149004936218262 img loss 1.3195300102233887 img loss 1.2471975088119507 img loss 1.281471610069275 img loss 1.2421927452087402 img loss 1.2548002004623413 img loss 1.29803466796875 img loss 1.2279317378997803 img loss 1.3006994724273682 img loss 1.196297287940979 img loss 1.2429986000061035 img loss 1.3618824481964111 img loss 1.2514934539794922 img loss 1.2976138591766357 img loss 1.2756370306015015 img loss 1.211755633354187 img loss 1.2226120233535767 img loss 1.307539463043213 img loss 1.280369520187378 img loss 1.232377529144287 img loss 1.3004586696624756 img loss 1.2510895729064941 img loss 1.1830229759216309 img loss 1.3337236642837524 img loss 1.3319025039672852 img loss 1.2462921142578125 img loss 1.2457044124603271 img loss 1.259783387184143 img loss 1.3151624202728271 img loss 1.2227306365966797 img loss 1.2626004219055176 img loss 1.2950284481048584 img loss 1.2639520168304443 img loss 1.2386300563812256 img loss 1.31975519657135 img loss 1.2369823455810547 img loss 1.221196174621582 img loss 1.2302287817001343 img loss 1.1514639854431152 img loss 1.3081918954849243 img loss 1.2642446756362915 img loss 1.2565150260925293 img loss 1.1713093519210815 img loss 1.2099884748458862 img loss 1.1922863721847534 img loss 1.2110031843185425 img loss 1.2808496952056885 img loss 1.204577088356018 img loss 1.2946045398712158 img loss 1.2665822505950928 img loss 1.2113056182861328 img loss 1.2154202461242676 img loss 1.2802990674972534 img loss 1.211600661277771 img loss 1.3135104179382324 img loss 1.2320202589035034 img loss 1.2253414392471313 img loss 1.2509297132492065 img loss 1.2931032180786133 img loss 1.2597744464874268 img loss 1.2665544748306274 img loss 1.2416126728057861 img loss 1.2064192295074463 img loss 1.2574676275253296 img loss 1.27447509765625 img loss 1.2021732330322266 img loss 1.313584566116333 img loss 1.2240729331970215 img loss 1.2175594568252563 img loss 1.241429090499878 img loss 1.2069305181503296 img loss 1.1710656881332397 img loss 1.3289029598236084 img loss 1.1943597793579102 img loss 1.3135349750518799 img loss 1.2231802940368652 img loss 1.1787325143814087 img loss 1.2672860622406006 img loss 1.2659378051757812 img loss 1.2523019313812256 img loss 1.287027359008789 img loss 1.2758307456970215 img loss 1.2608312368392944 img loss 1.2894763946533203 img loss 1.1932153701782227 img loss 1.1634256839752197 img loss 1.2073949575424194 img loss 1.3151664733886719 img loss 1.2549209594726562 img loss 1.2741177082061768 img loss 1.2459766864776611 img loss 1.1896791458129883 img loss 1.2351016998291016 img loss 1.2529747486114502 img loss 1.2336658239364624 img loss 1.2410978078842163 img loss 1.3023316860198975 img loss 1.21748948097229 img loss 1.2543864250183105 img loss 1.281365156173706 img loss 1.2640503644943237 img loss 1.2554006576538086 img loss 1.1877847909927368 img loss 1.254088282585144 img loss 1.1999844312667847 img loss 1.227189540863037 img loss 1.2031577825546265 img loss 1.2182916402816772 img loss 1.2428948879241943 img loss 1.2358849048614502 img loss 1.2670615911483765 img loss 1.239709734916687 img loss 1.2704569101333618 img loss 1.2458302974700928 {'loss': 1.2501, 'grad_norm': 0.3401902914047241, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2413495779037476 img loss 1.241833209991455 img loss 1.197252869606018 img loss 1.1651424169540405 img loss 1.279601812362671 img loss 1.1918538808822632 img loss 1.2034238576889038 img loss 1.2337052822113037 img loss 1.2028822898864746 img loss 1.2395578622817993 img loss 1.1912624835968018 img loss 1.2539801597595215 img loss 1.2584662437438965 img loss 1.1700313091278076 img loss 1.2207260131835938 img loss 1.1936177015304565 img loss 1.3268098831176758 img loss 1.3017151355743408 img loss 1.1605640649795532 img loss 1.2599142789840698 img loss 1.278916597366333 img loss 1.1399492025375366 img loss 1.2037588357925415 img loss 1.2111473083496094 img loss 1.251222848892212 img loss 1.2134536504745483 img loss 1.2445499897003174 img loss 1.1796717643737793 img loss 1.2646706104278564 img loss 1.2832322120666504 img loss 1.319496750831604 img loss 1.3115488290786743 img loss 1.2154394388198853 img loss 1.3242334127426147 img loss 1.2264105081558228 img loss 1.169346809387207 img loss 1.2053802013397217 img loss 1.27069890499115 img loss 1.2331329584121704 img loss 1.3291561603546143 img loss 1.192216396331787 img loss 1.1772189140319824 img loss 1.245063066482544 img loss 1.2144267559051514 img loss 1.3100996017456055 img loss 1.3480010032653809 img loss 1.2612626552581787 img loss 1.1871079206466675 img loss 1.2131073474884033 img loss 1.3134962320327759 img loss 1.2227753400802612 img loss 1.2067890167236328 img loss 1.1609290838241577 img loss 1.1354514360427856 img loss 1.2386682033538818 img loss 1.156817078590393 img loss 1.2761213779449463 img loss 1.2505850791931152 img loss 1.2547537088394165 img loss 1.2046180963516235 img loss 1.289844036102295 img loss 1.2902107238769531 img loss 1.2111812829971313 img loss 1.2197751998901367 img loss 1.2319810390472412 img loss 1.2266974449157715 img loss 1.2328057289123535 img loss 1.2083358764648438 img loss 1.2584264278411865 img loss 1.2403770685195923 img loss 1.3090269565582275 img loss 1.182624340057373 img loss 1.1984409093856812 img loss 1.1965351104736328 img loss 1.2498245239257812 img loss 1.2496455907821655 img loss 1.1812610626220703 img loss 1.2363094091415405 img loss 1.1732510328292847 img loss 1.2394949197769165 img loss 1.2468703985214233 img loss 1.1787292957305908 img loss 1.2380417585372925 img loss 1.2482516765594482 img loss 1.214831829071045 img loss 1.2426133155822754 img loss 1.1992472410202026 img loss 1.2407993078231812 img loss 1.1923153400421143 img loss 1.2178490161895752 img loss 1.1903446912765503 img loss 1.2531852722167969 img loss 1.2535324096679688 img loss 1.2016187906265259 img loss 1.1888092756271362 img loss 1.1962171792984009 img loss 1.2257962226867676 img loss 1.1703336238861084 img loss 1.2330459356307983 img loss 1.2917734384536743 img loss 1.2631020545959473 img loss 1.2370007038116455 img loss 1.1331226825714111 img loss 1.2503513097763062 img loss 1.3041781187057495 img loss 1.2273156642913818 img loss 1.1471713781356812 img loss 1.1945443153381348 img loss 1.2368638515472412 img loss 1.225511074066162 img loss 1.1516242027282715 img loss 1.1378782987594604 img loss 1.2731014490127563 img loss 1.2369269132614136 img loss 1.2825781106948853 img loss 1.1511722803115845 img loss 1.2473583221435547 img loss 1.2682950496673584 img loss 1.2038860321044922 img loss 1.1588702201843262 img loss 1.1981760263442993 img loss 1.3233051300048828 img loss 1.2256271839141846 img loss 1.2240843772888184 img loss 1.2621415853500366 img loss 1.21242356300354 img loss 1.2201696634292603 img loss 1.1833070516586304 {'loss': 1.2282, 'grad_norm': 0.2204282432794571, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1969807147979736 img loss 1.3015011548995972 img loss 1.1130822896957397 img loss 1.2877521514892578 img loss 1.1862539052963257 img loss 1.193563461303711 img loss 1.1947746276855469 img loss 1.1777153015136719 img loss 1.1847351789474487 img loss 1.1578376293182373 img loss 1.136973261833191 img loss 1.2212895154953003 img loss 1.2836008071899414 img loss 1.1821179389953613 img loss 1.1831645965576172 img loss 1.1500813961029053 img loss 1.1656311750411987 img loss 1.2438547611236572 img loss 1.2090635299682617 img loss 1.2116495370864868 img loss 1.1368051767349243 img loss 1.2143925428390503 img loss 1.0794901847839355 img loss 1.1148614883422852 img loss 1.2124191522598267 img loss 1.203595519065857 img loss 1.2311532497406006 img loss 1.1592813730239868 img loss 1.2172516584396362 img loss 1.131117820739746 img loss 1.2014471292495728 img loss 1.1799110174179077 img loss 1.2124574184417725 img loss 1.166924238204956 img loss 1.1965833902359009 img loss 1.225269079208374 img loss 1.2076441049575806 img loss 1.1405808925628662 img loss 1.2273154258728027 img loss 1.1795408725738525 img loss 1.0910825729370117 img loss 1.3159373998641968 img loss 1.208380103111267 img loss 1.1602516174316406 img loss 1.1502084732055664 img loss 1.285763144493103 img loss 1.2222161293029785 img loss 1.2958358526229858 img loss 1.126802682876587 img loss 1.2018404006958008 img loss 1.166471242904663 img loss 1.1858494281768799 img loss 1.2231048345565796 img loss 1.1619232892990112 img loss 1.1746366024017334 img loss 1.1597957611083984 img loss 1.0628832578659058 img loss 1.1964738368988037 img loss 1.189850091934204 img loss 1.2000305652618408 img loss 1.2378547191619873 img loss 1.2306077480316162 img loss 1.0975351333618164 img loss 1.2738523483276367 img loss 1.171417474746704 img loss 1.1365997791290283 img loss 1.247191071510315 img loss 1.183408498764038 img loss 1.216251015663147 img loss 1.2283837795257568 img loss 1.2992727756500244 img loss 1.141535997390747 img loss 1.19392728805542 img loss 1.3626137971878052 img loss 1.2575242519378662 img loss 1.1868891716003418 img loss 1.2782557010650635 img loss 1.183956503868103 img loss 1.216270089149475 img loss 1.1606662273406982 img loss 1.2018544673919678 img loss 1.2216743230819702 img loss 1.1881662607192993 img loss 1.186326265335083 img loss 1.1862181425094604 img loss 1.1788443326950073 img loss 1.2981936931610107 img loss 1.2309200763702393 img loss 1.2334785461425781 img loss 1.1739282608032227 img loss 1.1944674253463745 img loss 1.2554142475128174 img loss 1.132983684539795 img loss 1.2266663312911987 img loss 1.2094719409942627 img loss 1.2000973224639893 img loss 1.1702542304992676 img loss 1.2205501794815063 img loss 1.1894505023956299 img loss 1.1938347816467285 img loss 1.2551230192184448 img loss 1.2734737396240234 img loss 1.1544721126556396img loss 1.1725527048110962 img loss 1.2784258127212524 img loss 1.253974437713623 img loss 1.2276661396026611 img loss 1.1955022811889648 img loss 1.1510143280029297 img loss 1.1267952919006348 img loss 1.2304924726486206 img loss 1.185894250869751 img loss 1.2355296611785889 img loss 1.1992123126983643 img loss 1.2196331024169922 img loss 1.2466979026794434 img loss 1.1627558469772339 img loss 1.1635630130767822 img loss 1.2322291135787964 img loss 1.1731151342391968 img loss 1.2233524322509766 img loss 1.208037257194519 img loss 1.2327543497085571 img loss 1.164458155632019 img loss 1.207029938697815 img loss 1.158719539642334 img loss 1.2355446815490723 img loss 1.1892191171646118 {'loss': 1.1996, 'grad_norm': 0.340049147605896, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.271836757659912 img loss 1.2356488704681396 img loss 1.2332763671875 img loss 1.1160523891448975 img loss 1.1898434162139893 img loss 1.203441858291626 img loss 1.2093404531478882 img loss 1.1608519554138184 img loss 1.213172435760498 img loss 1.1299751996994019 img loss 1.2500349283218384 img loss 1.2303234338760376 img loss 1.1365079879760742 img loss 1.188525676727295 img loss 1.1551614999771118 img loss 1.213915228843689 img loss 1.1297497749328613 img loss 1.2405210733413696 img loss 1.1883935928344727 img loss 1.221422791481018 img loss 1.1962928771972656 img loss 1.1891523599624634 img loss 1.258336067199707 img loss 1.1498134136199951 img loss 1.166569471359253 img loss 1.1795660257339478 img loss 1.2175164222717285 img loss 1.2029379606246948 img loss 1.1888386011123657 img loss 1.252653956413269 img loss 1.1755599975585938 img loss 1.1555229425430298 img loss 1.1568527221679688 img loss 1.2136647701263428 img loss 1.139312744140625 img loss 1.213944673538208 img loss 1.114134669303894 img loss 1.0940148830413818 img loss 1.2544816732406616 img loss 1.2123126983642578 img loss 1.227419376373291 img loss 1.2180668115615845 img loss 1.2352310419082642 img loss 1.2427982091903687 img loss 1.1953643560409546 img loss 1.1899216175079346 img loss 1.1796016693115234 img loss 1.2438217401504517 img loss 1.179499626159668 img loss 1.2312862873077393 img loss 1.1258097887039185 img loss 1.1661036014556885 img loss 1.178130030632019 img loss 1.2127997875213623 img loss 1.1541928052902222 img loss 1.2410598993301392 img loss 1.19797945022583 img loss 1.152748465538025 img loss 1.1682533025741577 img loss 1.1338846683502197 img loss 1.236244559288025 img loss 1.1578434705734253 img loss 1.17449951171875 img loss 1.2050971984863281 img loss 1.1814777851104736 img loss 1.1719379425048828 img loss 1.2106536626815796 img loss 1.1940542459487915 img loss 1.15842866897583 img loss 1.1901583671569824 img loss 1.2246267795562744 img loss 1.1562650203704834 img loss 1.188879370689392 img loss 1.1518821716308594 img loss 1.1930186748504639 img loss 1.242548942565918 img loss 1.137392520904541 img loss 1.1452654600143433 img loss 1.1970694065093994 img loss 1.2851890325546265 img loss 1.1204397678375244 img loss 1.262418270111084 img loss 1.2103525400161743 img loss 1.1908659934997559 img loss 1.3088067770004272 img loss 1.2456060647964478 img loss 1.234744906425476 img loss 1.1954593658447266 img loss 1.1933300495147705 img loss 1.2195097208023071 img loss 1.22849440574646 img loss 1.1268633604049683 img loss 1.2262012958526611 img loss 1.1470955610275269 img loss 1.1741416454315186 img loss 1.2176240682601929 img loss 1.2852331399917603 img loss 1.1910324096679688 img loss 1.1413743495941162 img loss 1.1414039134979248 img loss 1.1994333267211914 img loss 1.2430795431137085 img loss 1.1382033824920654 img loss 1.160581350326538 img loss 1.2393096685409546 img loss 1.1820093393325806 img loss 1.2128164768218994 img loss 1.1781306266784668 img loss 1.253366470336914 img loss 1.1562860012054443 img loss 1.1886897087097168 img loss 1.1230769157409668 img loss 1.20553457736969 img loss 1.2935867309570312 img loss 1.1469483375549316 img loss 1.2459216117858887 img loss 1.2561979293823242 img loss 1.195422649383545 img loss 1.218587875366211 img loss 1.1525883674621582 img loss 1.2493999004364014 img loss 1.1958569288253784 img loss 1.2702487707138062 img loss 1.1796650886535645 img loss 1.1761960983276367 img loss 1.2143818140029907 img loss 1.184410810470581 img loss 1.1975435018539429 {'loss': 1.1957, 'grad_norm': 0.23281659185886383, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2301338911056519 img loss 1.1585311889648438 img loss 1.2229552268981934 img loss 1.2815016508102417 img loss 1.2221095561981201 img loss 1.2463375329971313 img loss 1.2015596628189087 img loss 1.229095220565796 img loss 1.2360682487487793 img loss 1.241495132446289 img loss 1.17083740234375 img loss 1.230349063873291 img loss 1.2224860191345215 img loss 1.2032957077026367 img loss 1.2609604597091675 img loss 1.2153342962265015 img loss 1.2082754373550415 img loss 1.21435546875 img loss 1.228916049003601 img loss 1.2256405353546143 img loss 1.2193037271499634 img loss 1.2613434791564941 img loss 1.1455724239349365 img loss 1.1881855726242065 img loss 1.2336578369140625 img loss 1.2397496700286865 img loss 1.1695458889007568 img loss 1.285123348236084 img loss 1.185219645500183 img loss 1.2217336893081665 img loss 1.2271583080291748 img loss 1.1950979232788086 img loss 1.2519185543060303 img loss 1.2243573665618896 img loss 1.2556861639022827 img loss 1.211742639541626 img loss 1.2259200811386108 img loss 1.2569652795791626 img loss 1.195988416671753 img loss 1.2023255825042725 img loss 1.2335906028747559 img loss 1.2244200706481934 img loss 1.2571160793304443 img loss 1.2462093830108643 img loss 1.2047029733657837 img loss 1.231353759765625 img loss 1.1661783456802368 img loss 1.193419098854065 img loss 1.2648816108703613 img loss 1.2338268756866455 img loss 1.213355302810669 img loss 1.2472501993179321 img loss 1.2345269918441772 img loss 1.224542260169983 img loss 1.1836270093917847 img loss 1.2728254795074463 img loss 1.2677713632583618 img loss 1.197774887084961 img loss 1.2498644590377808 img loss 1.2903200387954712 img loss 1.2380282878875732 img loss 1.2442916631698608 img loss 1.231365442276001 img loss 1.2426680326461792 img loss 1.267022728919983 img loss 1.1775317192077637 img loss 1.2691370248794556 img loss 1.2246580123901367 img loss 1.2279930114746094 img loss 1.195086121559143 img loss 1.2750784158706665 img loss 1.2721279859542847 img loss 1.1892811059951782 img loss 1.2417521476745605 img loss 1.1700358390808105 img loss 1.2607090473175049 img loss 1.2580879926681519 img loss 1.2139012813568115 img loss 1.2489938735961914 img loss 1.1943994760513306 img loss 1.2208354473114014 img loss 1.1812527179718018 img loss 1.3302710056304932 img loss 1.3212885856628418 img loss 1.224414348602295 img loss 1.20880126953125 img loss 1.2519344091415405 img loss 1.2081620693206787 img loss 1.2013746500015259 img loss 1.2530875205993652 img loss 1.2283744812011719 img loss 1.2660020589828491 img loss 1.1782805919647217 img loss 1.248049259185791 img loss 1.2016959190368652 img loss 1.1842098236083984 img loss 1.3036980628967285 img loss 1.1675872802734375 img loss 1.2285982370376587 img loss 1.1985013484954834 img loss 1.2273616790771484 img loss 1.245684266090393 img loss 1.2600340843200684 img loss 1.2114956378936768 img loss 1.2291980981826782 img loss 1.223435401916504 img loss 1.2143783569335938 img loss 1.228050708770752 img loss 1.2390400171279907 img loss 1.2735031843185425 img loss 1.247812271118164 img loss 1.232277512550354 img loss 1.2256711721420288 img loss 1.2444580793380737 img loss 1.2447055578231812 img loss 1.1921682357788086 img loss 1.2726399898529053 img loss 1.2384202480316162 img loss 1.2666462659835815 img loss 1.217898964881897 img loss 1.2477000951766968 img loss 1.225157618522644 img loss 1.2457691431045532 img loss 1.3398171663284302 img loss 1.209778070449829 img loss 1.2001419067382812 img loss 1.247623324394226 img loss 1.2124462127685547 {'loss': 1.2297, 'grad_norm': 0.22496333718299866, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2014144659042358 img loss 1.187652349472046 img loss 1.173991084098816 img loss 1.2325127124786377 img loss 1.1963659524917603 img loss 1.1497999429702759 img loss 1.184293270111084 img loss 1.2465243339538574 img loss 1.2326525449752808 img loss 1.2273834943771362 img loss 1.2212183475494385 img loss 1.1612380743026733 img loss 1.2844313383102417 img loss 1.2886180877685547 img loss 1.2606408596038818 img loss 1.2231508493423462 img loss 1.2462409734725952 img loss 1.201964259147644 img loss 1.2274748086929321 img loss 1.21561598777771 img loss 1.1679580211639404 img loss 1.2375850677490234 img loss 1.2023732662200928 img loss 1.1493841409683228 img loss 1.298043966293335 img loss 1.181536078453064 img loss 1.1821949481964111 img loss 1.2121399641036987 img loss 1.2210320234298706 img loss 1.2392454147338867 img loss 1.196002721786499 img loss 1.2993274927139282 img loss 1.2176059484481812 img loss 1.2294353246688843 img loss 1.2097009420394897 img loss 1.1858234405517578 img loss 1.223595142364502 img loss 1.1787489652633667 img loss 1.1930691003799438 img loss 1.2085710763931274 img loss 1.2158203125 img loss 1.224144458770752 img loss 1.2447543144226074 img loss 1.2563836574554443 img loss 1.2141716480255127 img loss 1.1910345554351807 img loss 1.2341465950012207 img loss 1.1993181705474854 img loss 1.242664098739624 img loss 1.2176353931427002 img loss 1.2371755838394165 img loss 1.160420298576355 img loss 1.2320411205291748 img loss 1.2024658918380737 img loss 1.2072710990905762 img loss 1.1840769052505493 img loss 1.2706654071807861 img loss 1.2087805271148682 img loss 1.2510861158370972 img loss 1.1939197778701782 img loss 1.2028108835220337 img loss 1.1771702766418457 img loss 1.2154648303985596 img loss 1.1714175939559937 img loss 1.1418901681900024 img loss 1.1819133758544922 img loss 1.2450523376464844 img loss 1.2407835721969604 img loss 1.2195277214050293 img loss 1.1809834241867065 img loss 1.2162033319473267 img loss 1.1888996362686157 img loss 1.2590408325195312 img loss 1.204277753829956 img loss 1.202161192893982 img loss 1.2791337966918945 img loss 1.2309707403182983 img loss 1.2694536447525024 img loss 1.2344461679458618 img loss 1.2093961238861084 img loss 1.1888166666030884 img loss 1.2401834726333618 img loss 1.2443901300430298 img loss 1.2019197940826416 img loss 1.235948920249939 img loss 1.1939318180084229 img loss 1.2189953327178955 img loss 1.2345824241638184 img loss 1.2239328622817993 img loss 1.250567078590393 img loss 1.1898753643035889 img loss 1.2524217367172241 img loss 1.2582411766052246 img loss 1.1865700483322144 img loss 1.2053501605987549 img loss 1.235650658607483 img loss 1.2579052448272705 img loss 1.3225491046905518 img loss 1.2437734603881836 img loss 1.2325035333633423 img loss 1.3169360160827637 img loss 1.2389864921569824 img loss 1.1803306341171265 img loss 1.22715425491333 img loss 1.2890124320983887 img loss 1.2224674224853516 img loss 1.2805988788604736 img loss 1.1890788078308105 img loss 1.2150843143463135 img loss 1.2077760696411133 img loss 1.1554343700408936 img loss 1.2910192012786865 img loss 1.170905351638794 img loss 1.2327759265899658 img loss 1.2840889692306519 img loss 1.2649962902069092 img loss 1.2249292135238647 img loss 1.2803304195404053 img loss 1.2148585319519043 img loss 1.2028441429138184 img loss 1.2512154579162598 img loss 1.2167000770568848 img loss 1.158469796180725 img loss 1.2298409938812256 img loss 1.2042816877365112 img loss 1.1609468460083008 img loss 1.203823447227478 img loss 1.2789571285247803 {'loss': 1.2208, 'grad_norm': 0.32427075505256653, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2809691429138184 img loss 1.1922731399536133 img loss 1.2791804075241089 img loss 1.2975413799285889 img loss 1.1962890625 img loss 1.2987117767333984 img loss 1.3296736478805542 img loss 1.307239055633545 img loss 1.2119718790054321 img loss 1.222301721572876 img loss 1.2516117095947266 img loss 1.2539877891540527 img loss 1.2485685348510742 img loss 1.4131778478622437 img loss 1.3041789531707764 img loss 1.289321780204773 img loss 1.2927649021148682 img loss 1.2605780363082886 img loss 1.30729079246521 img loss 1.189106822013855 img loss 1.247786045074463 img loss 1.271863579750061 img loss 1.1919705867767334 img loss 1.2536953687667847 img loss 1.2278192043304443 img loss 1.26548171043396 img loss 1.2592662572860718 img loss 1.390968918800354 img loss 1.2505937814712524 img loss 1.2602531909942627 img loss 1.3282362222671509 img loss 1.3236240148544312 img loss 1.227851152420044 img loss 1.229853868484497 img loss 1.4214955568313599 img loss 1.2584164142608643 img loss 1.205432415008545 img loss 1.1869875192642212 img loss 1.285260796546936 img loss 1.2124500274658203 img loss 1.2312464714050293 img loss 1.2509783506393433 img loss 1.242681860923767 img loss 1.3036141395568848 img loss 1.280678153038025 img loss 1.3826240301132202 img loss 1.2518051862716675 img loss 1.1808979511260986 img loss 1.193375825881958 img loss 1.2749687433242798 img loss 1.22585928440094 img loss 1.286094307899475 img loss 1.3353008031845093 img loss 1.2476762533187866 img loss 1.2543514966964722 img loss 1.2094192504882812 img loss 1.2048925161361694 img loss 1.2771514654159546 img loss 1.2485530376434326 img loss 1.217936396598816 img loss 1.22011137008667 img loss 1.2748608589172363 img loss 1.2288000583648682 img loss 1.215753197669983 img loss 1.2846206426620483 img loss 1.3257808685302734 img loss 1.2424499988555908 img loss 1.2318060398101807 img loss 1.2365001440048218 img loss 1.2892098426818848 img loss 1.3164880275726318img loss 1.292937994003296 img loss 1.2653961181640625 img loss 1.259230613708496 img loss 1.2954466342926025 img loss 1.2250375747680664 img loss 1.2115191221237183 img loss 1.18996262550354 img loss 1.295154333114624 img loss 1.3802639245986938 img loss 1.289449691772461 img loss 1.2797315120697021img loss 1.3877923488616943 img loss 1.2532771825790405img loss 1.3923983573913574 img loss 1.282122254371643 img loss 1.2931287288665771 img loss 1.2648366689682007 img loss 1.2456916570663452 img loss 1.2785320281982422 img loss 1.3605515956878662 img loss 1.3483998775482178 img loss 1.3189586400985718 img loss 1.3017592430114746 img loss 1.2635163068771362 img loss 1.2351009845733643 img loss 1.1390595436096191 img loss 1.2975929975509644 img loss 1.1963839530944824 img loss 1.3071962594985962 img loss 1.2550806999206543 img loss 1.1983298063278198 img loss 1.312548279762268 img loss 1.2515186071395874 img loss 1.2760841846466064 img loss 1.299180507659912 img loss 1.2393925189971924 img loss 1.3142985105514526 img loss 1.2521533966064453 img loss 1.2822270393371582 img loss 1.262468934059143 img loss 1.2669997215270996 img loss 1.1877386569976807 img loss 1.205942153930664 img loss 1.2598521709442139 img loss 1.1707673072814941 img loss 1.299089789390564 img loss 1.2912511825561523 img loss 1.316380262374878 img loss 1.2042471170425415 img loss 1.2351235151290894 img loss 1.2681498527526855 img loss 1.2887017726898193 img loss 1.1895374059677124 img loss 1.1549183130264282 img loss 1.2720645666122437 img loss 1.2646758556365967 img loss 1.2840495109558105 {'loss': 1.2652, 'grad_norm': 0.21968719363212585, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2475754022598267 img loss 1.364984393119812 img loss 1.3165251016616821 img loss 1.2796844244003296 img loss 1.3613132238388062 img loss 1.3593528270721436 img loss 1.3678295612335205 img loss 1.2913296222686768 img loss 1.360609769821167 img loss 1.3296626806259155 img loss 1.276350498199463 img loss 1.2539047002792358 img loss 1.278857707977295 img loss 1.3235574960708618 img loss 1.2586332559585571 img loss 1.3282661437988281 img loss 1.3062031269073486 img loss 1.2797393798828125 img loss 1.3013207912445068 img loss 1.3264204263687134 img loss 1.2744598388671875 img loss 1.260429859161377 img loss 1.2717540264129639 img loss 1.2988804578781128 img loss 1.311104416847229 img loss 1.3068416118621826 img loss 1.313296914100647 img loss 1.392842173576355 img loss 1.3212817907333374 img loss 1.3027982711791992 img loss 1.428398847579956 img loss 1.33723783493042 img loss 1.2212482690811157 img loss 1.3153927326202393 img loss 1.3158128261566162 img loss 1.3573952913284302 img loss 1.3518214225769043 img loss 1.2521194219589233 img loss 1.3609009981155396 img loss 1.3667633533477783 img loss 1.346023678779602 img loss 1.3157509565353394 img loss 1.4074053764343262 img loss 1.2627673149108887 img loss 1.2945008277893066 img loss 1.3234670162200928 img loss 1.2281403541564941 img loss 1.3091282844543457 img loss 1.2792267799377441 img loss 1.361520528793335 img loss 1.306090235710144 img loss 1.2971153259277344 img loss 1.329730749130249 img loss 1.3464844226837158 img loss 1.2308157682418823 img loss 1.29972505569458 img loss 1.3170222043991089 img loss 1.2987163066864014 img loss 1.3271682262420654 img loss 1.2254739999771118 img loss 1.3199074268341064 img loss 1.3050320148468018 img loss 1.2842916250228882 img loss 1.312426209449768 img loss 1.2851437330245972 img loss 1.2895678281784058 img loss 1.386370301246643 img loss 1.316900610923767 img loss 1.378162145614624 img loss 1.2839759588241577 img loss 1.2983194589614868 img loss 1.2419085502624512 img loss 1.311314344406128 img loss 1.4718350172042847 img loss 1.2914985418319702 img loss 1.3831509351730347 img loss 1.3654948472976685 img loss 1.3197779655456543 img loss 1.3531978130340576 img loss 1.3207520246505737 img loss 1.3664730787277222 img loss 1.3092883825302124 img loss 1.3496508598327637 img loss 1.334804654121399 img loss 1.2783658504486084 img loss 1.3512214422225952 img loss 1.1853166818618774 img loss 1.2960128784179688 img loss 1.3486247062683105 img loss 1.3268084526062012 img loss 1.352091908454895 img loss 1.3270220756530762 img loss 1.2939766645431519 img loss 1.295366883277893 img loss 1.301155686378479 img loss 1.2707805633544922 img loss 1.3560885190963745 img loss 1.3164787292480469 img loss 1.325774073600769 img loss 1.3112989664077759 img loss 1.344966173171997 img loss 1.3234474658966064 img loss 1.3554502725601196 img loss 1.2841137647628784 img loss 1.2279982566833496 img loss 1.341673731803894 img loss 1.3113038539886475 img loss 1.3029316663742065 img loss 1.3771535158157349 img loss 1.2435804605484009 img loss 1.3481299877166748 img loss 1.3398147821426392 img loss 1.2189263105392456 img loss 1.339304804801941 img loss 1.3032145500183105 img loss 1.3638923168182373 img loss 1.2870018482208252 img loss 1.2975859642028809 img loss 1.3530620336532593 img loss 1.3193689584732056 img loss 1.3325618505477905 img loss 1.2757478952407837 img loss 1.2972204685211182 img loss 1.2033460140228271 img loss 1.281246542930603 img loss 1.3230869770050049 img loss 1.3337314128875732 img loss 1.2956455945968628 {'loss': 1.3134, 'grad_norm': 0.2708061635494232, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3708497285842896 img loss 1.4184329509735107 img loss 1.4463392496109009 img loss 1.362828016281128 img loss 1.4997740983963013 img loss 1.4379827976226807 img loss 1.3642686605453491 img loss 1.3854073286056519 img loss 1.485754370689392 img loss 1.3345738649368286 img loss 1.4300898313522339 img loss 1.4335943460464478 img loss 1.3573235273361206 img loss 1.4419875144958496 img loss 1.4844132661819458 img loss 1.3252315521240234 img loss 1.4604860544204712 img loss 1.3664696216583252 img loss 1.5024724006652832 img loss 1.3970249891281128 img loss 1.2625668048858643 img loss 1.3966115713119507 img loss 1.4472858905792236 img loss 1.5402252674102783 img loss 1.459678292274475 img loss 1.393877387046814 img loss 1.4129341840744019 img loss 1.2859386205673218 img loss 1.5235381126403809 img loss 1.523914098739624 img loss 1.4859116077423096 img loss 1.3922592401504517 img loss 1.2508213520050049 img loss 1.4280742406845093 img loss 1.296137809753418 img loss 1.3759428262710571 img loss 1.4650073051452637 img loss 1.4409575462341309 img loss 1.2858896255493164 img loss 1.3820669651031494 img loss 1.4248851537704468 img loss 1.382779836654663 img loss 1.3026129007339478 img loss 1.5312573909759521 img loss 1.4419162273406982 img loss 1.3281986713409424 img loss 1.4225643873214722 img loss 1.3933340311050415 img loss 1.4204232692718506 img loss 1.3735480308532715 img loss 1.4311097860336304 img loss 1.4212948083877563 img loss 1.3370195627212524 img loss 1.3462504148483276 img loss 1.4481408596038818 img loss 1.5545861721038818 img loss 1.4234135150909424 img loss 1.3290033340454102 img loss 1.4387601613998413 img loss 1.3886040449142456 img loss 1.4003586769104004 img loss 1.3798432350158691 img loss 1.3729379177093506 img loss 1.3995882272720337 img loss 1.370408535003662 img loss 1.3684180974960327 img loss 1.3861204385757446 img loss 1.3586331605911255 img loss 1.3633172512054443 img loss 1.36880624294281 img loss 1.2903965711593628 img loss 1.3495303392410278 img loss 1.493831753730774 img loss 1.4564032554626465 img loss 1.389953374862671 img loss 1.2820476293563843 img loss 1.4497926235198975 img loss 1.3985984325408936 img loss 1.4607466459274292 img loss 1.3879220485687256 img loss 1.3854113817214966 img loss 1.333861231803894 img loss 1.3489211797714233 img loss 1.4056512117385864 img loss 1.3156089782714844 img loss 1.3512846231460571 img loss 1.427679181098938 img loss 1.4918171167373657 img loss 1.4933502674102783 img loss 1.4681888818740845 img loss 1.3850035667419434 img loss 1.3628004789352417 img loss 1.4866760969161987 img loss 1.5135376453399658 img loss 1.399253487586975 img loss 1.40914785861969 img loss 1.5272142887115479 img loss 1.4606860876083374 img loss 1.4577224254608154 img loss 1.5100008249282837 img loss 1.429714560508728 img loss 1.432770848274231 img loss 1.4042904376983643 img loss 1.4729743003845215 img loss 1.4071263074874878 img loss 1.400957703590393 img loss 1.4675241708755493 img loss 1.5130425691604614 img loss 1.3688160181045532 img loss 1.3764559030532837 img loss 1.3822790384292603 img loss 1.6153502464294434 img loss 1.44943106174469 img loss 1.463572382926941 img loss 1.3761810064315796 img loss 1.3772703409194946 img loss 1.3999593257904053 img loss 1.3793227672576904 img loss 1.4475934505462646 img loss 1.5289479494094849 img loss 1.3751513957977295 img loss 1.453650951385498 img loss 1.4770795106887817 img loss 1.526436448097229 img loss 1.3790584802627563 img loss 1.3640698194503784 img loss 1.3335767984390259 img loss 1.4215047359466553 {'loss': 1.4123, 'grad_norm': 0.2779064476490021, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2259297370910645 img loss 1.1252700090408325 img loss 1.238587737083435 img loss 1.174079418182373 img loss 1.1867462396621704 img loss 1.1900910139083862 img loss 1.2389229536056519 img loss 1.1978005170822144 img loss 1.2509011030197144 img loss 1.2470066547393799 img loss 1.2139859199523926 img loss 1.2093502283096313 img loss 1.1575639247894287 img loss 1.2246527671813965 img loss 1.2186611890792847 img loss 1.1673415899276733 img loss 1.1405413150787354 img loss 1.2102959156036377 img loss 1.1508325338363647 img loss 1.1537914276123047 img loss 1.187565803527832 img loss 1.098031997680664 img loss 1.3185534477233887 img loss 1.2123019695281982 img loss 1.2010796070098877 img loss 1.179869294166565 img loss 1.2046171426773071 img loss 1.2223135232925415 img loss 1.2832788228988647 img loss 1.2609648704528809 img loss 1.191633701324463 img loss 1.2654863595962524 img loss 1.1969523429870605 img loss 1.1870529651641846 img loss 1.2110824584960938 img loss 1.2043275833129883 img loss 1.167852759361267 img loss 1.1961650848388672 img loss 1.3404558897018433 img loss 1.2457910776138306 img loss 1.2235524654388428 img loss 1.2214233875274658 img loss 1.3781487941741943 img loss 1.1776913404464722 img loss 1.1924464702606201 img loss 1.2359751462936401 img loss 1.1935148239135742 img loss 1.2052631378173828 img loss 1.264460563659668 img loss 1.215540885925293 img loss 1.2444730997085571 img loss 1.1660012006759644 img loss 1.138310194015503 img loss 1.2201734781265259 img loss 1.1161038875579834 img loss 1.205797553062439 img loss 1.1850621700286865 img loss 1.2145919799804688 img loss 1.173518419265747 img loss 1.2192872762680054 img loss 1.2172257900238037 img loss 1.2881064414978027 img loss 1.279615879058838 img loss 1.147464394569397 img loss 1.25986647605896 img loss 1.1515350341796875 img loss 1.1957221031188965 img loss 1.182649850845337 img loss 1.157814860343933 img loss 1.2594484090805054 img loss 1.2849977016448975 img loss 1.270435094833374 img loss 1.2518799304962158 img loss 1.1882809400558472 img loss 1.1722311973571777 img loss 1.1604527235031128 img loss 1.2267967462539673 img loss 1.2745729684829712 img loss 1.2245677709579468 img loss 1.245349407196045 img loss 1.2885149717330933 img loss 1.240060806274414 img loss 1.181200623512268 img loss 1.205245018005371 img loss 1.2347759008407593 img loss 1.2329120635986328 img loss 1.1443229913711548 img loss 1.2852519750595093 img loss 1.1609481573104858 img loss 1.2981544733047485 img loss 1.2127737998962402 img loss 1.2095272541046143 img loss 1.1781456470489502 img loss 1.1526310443878174 img loss 1.2692136764526367 img loss 1.1706194877624512 img loss 1.2656607627868652 img loss 1.2628093957901 img loss 1.220611572265625 img loss 1.2883148193359375 img loss 1.139901876449585 img loss 1.1728816032409668 img loss 1.2577106952667236 img loss 1.18625009059906 img loss 1.1655527353286743 img loss 1.1871600151062012 img loss 1.1653780937194824 img loss 1.1536051034927368 img loss 1.211761474609375 img loss 1.2420082092285156 img loss 1.276240348815918 img loss 1.2537782192230225 img loss 1.2571537494659424 img loss 1.2032865285873413 img loss 1.277604341506958 img loss 1.206254243850708 img loss 1.1341403722763062 img loss 1.1867471933364868 img loss 1.1834774017333984 img loss 1.201943278312683 img loss 1.1686006784439087 img loss 1.2481129169464111 img loss 1.2121156454086304 img loss 1.1401170492172241 img loss 1.272314429283142 img loss 1.2237783670425415 img loss 1.2347954511642456 img loss 1.2926747798919678 {'loss': 1.2132, 'grad_norm': 0.2372198849916458, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2297961711883545 img loss 1.2726719379425049 img loss 1.2598590850830078 img loss 1.232658863067627 img loss 1.3225386142730713 img loss 1.2489153146743774 img loss 1.2272469997406006 img loss 1.2937637567520142 img loss 1.3066425323486328 img loss 1.2323682308197021 img loss 1.2457588911056519 img loss 1.3045049905776978 img loss 1.1789638996124268 img loss 1.2294501066207886 img loss 1.1936144828796387 img loss 1.2606972455978394 img loss 1.1117074489593506 img loss 1.298187017440796 img loss 1.2236456871032715 img loss 1.288315773010254 img loss 1.2133674621582031 img loss 1.2296799421310425 img loss 1.2600387334823608 img loss 1.2031643390655518 img loss 1.2002568244934082 img loss 1.271899700164795 img loss 1.2265877723693848 img loss 1.2651413679122925 img loss 1.2492105960845947 img loss 1.236446738243103 img loss 1.2244980335235596 img loss 1.2497081756591797 img loss 1.2017234563827515 img loss 1.2701983451843262 img loss 1.258401870727539 img loss 1.2306638956069946 img loss 1.226020097732544 img loss 1.2627731561660767 img loss 1.1908748149871826 img loss 1.2592417001724243 img loss 1.3334863185882568 img loss 1.2802263498306274 img loss 1.2348676919937134 img loss 1.2512062788009644 img loss 1.2458142042160034 img loss 1.348549485206604 img loss 1.169034481048584 img loss 1.205920696258545 img loss 1.2449899911880493img loss 1.2274062633514404 img loss 1.3048200607299805 img loss 1.2735233306884766 img loss 1.2483019828796387 img loss 1.1754417419433594 img loss 1.2479346990585327 img loss 1.1702895164489746 img loss 1.3258250951766968 img loss 1.2468575239181519 img loss 1.2168220281600952 img loss 1.2567594051361084 img loss 1.283978819847107 img loss 1.1373226642608643 img loss 1.2807804346084595 img loss 1.2693926095962524 img loss 1.3297970294952393 img loss 1.2797603607177734 img loss 1.195015549659729 img loss 1.1910574436187744 img loss 1.2767466306686401 img loss 1.3162530660629272 img loss 1.239652156829834 img loss 1.2522588968276978 img loss 1.28928542137146 img loss 1.2004146575927734 img loss 1.2610076665878296 img loss 1.2376410961151123 img loss 1.2092822790145874 img loss 1.227394700050354 img loss 1.3209915161132812 img loss 1.2975887060165405 img loss 1.219757318496704 img loss 1.2957510948181152 img loss 1.2290136814117432 img loss 1.2139002084732056 img loss 1.239155650138855 img loss 1.2708908319473267 img loss 1.3213047981262207 img loss 1.2809284925460815 img loss 1.1945171356201172 img loss 1.2661341428756714 img loss 1.1784576177597046 img loss 1.2138874530792236 img loss 1.2280590534210205 img loss 1.2780470848083496 img loss 1.2948824167251587 img loss 1.238401174545288 img loss 1.2652561664581299 img loss 1.2966655492782593 img loss 1.2737659215927124 img loss 1.222206950187683 img loss 1.2018855810165405 img loss 1.2933824062347412 img loss 1.205528736114502 img loss 1.2996879816055298 img loss 1.281205415725708img loss 1.2058677673339844 img loss 1.1630797386169434 img loss 1.2514963150024414 img loss 1.2459625005722046 img loss 1.205152988433838 img loss 1.2631800174713135img loss 1.2323389053344727 img loss 1.2879371643066406 img loss 1.1908314228057861 img loss 1.2033270597457886 img loss 1.2185091972351074 img loss 1.2432963848114014 img loss 1.2088351249694824 img loss 1.2650991678237915 img loss 1.2625880241394043 img loss 1.182861328125 img loss 1.2343571186065674 img loss 1.253984808921814 img loss 1.2707926034927368 img loss 1.203550100326538 img loss 1.2500635385513306 img loss 1.2340426445007324 img loss 1.2913748025894165 {'loss': 1.2458, 'grad_norm': 0.32655611634254456, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2103290557861328 img loss 1.43721342086792 img loss 1.4170628786087036 img loss 1.3889180421829224 img loss 1.360033631324768 img loss 1.2356600761413574 img loss 1.277590036392212 img loss 1.3660553693771362 img loss 1.2558526992797852 img loss 1.3884190320968628 img loss 1.2020210027694702 img loss 1.2827061414718628 img loss 1.3618165254592896 img loss 1.3728324174880981 img loss 1.2989115715026855 img loss 1.3570611476898193 img loss 1.3592075109481812 img loss 1.26004958152771 img loss 1.2658679485321045 img loss 1.4258233308792114 img loss 1.3276185989379883 img loss 1.4133379459381104 img loss 1.3252010345458984 img loss 1.297890305519104 img loss 1.4194246530532837 img loss 1.3098602294921875 img loss 1.391987681388855 img loss 1.3026155233383179 img loss 1.1888954639434814 img loss 1.2650659084320068 img loss 1.3501365184783936 img loss 1.4856995344161987 img loss 1.3629119396209717 img loss 1.3617421388626099 img loss 1.3703533411026 img loss 1.2800116539001465 img loss 1.3216090202331543 img loss 1.3593876361846924 img loss 1.2451136112213135 img loss 1.1988816261291504 img loss 1.337615728378296 img loss 1.2823405265808105 img loss 1.2637146711349487 img loss 1.3960274457931519 img loss 1.3776755332946777 img loss 1.3243052959442139 img loss 1.2753018140792847 img loss 1.441049337387085 img loss 1.3283947706222534 img loss 1.357817530632019 img loss 1.3588404655456543 img loss 1.3340182304382324 img loss 1.2610208988189697 img loss 1.3802536725997925 img loss 1.461829423904419 img loss 1.306160807609558img loss 1.315961480140686 img loss 1.2281033992767334 img loss 1.4292148351669312 img loss 1.3425097465515137 img loss 1.3429467678070068img loss 1.3221242427825928 img loss 1.2636871337890625 img loss 1.329343318939209 img loss 1.3258020877838135 img loss 1.4722285270690918 img loss 1.3968967199325562 img loss 1.3706605434417725 img loss 1.3806965351104736 img loss 1.3568241596221924 img loss 1.322251796722412 img loss 1.3003088235855103 img loss 1.2570137977600098 img loss 1.3801302909851074 img loss 1.2014760971069336 img loss 1.4934881925582886 img loss 1.5154770612716675 img loss 1.3637784719467163 img loss 1.2474114894866943 img loss 1.2824100255966187 img loss 1.3096174001693726 img loss 1.2966303825378418 img loss 1.291630506515503 img loss 1.3038215637207031 img loss 1.3627554178237915 img loss 1.30264151096344 img loss 1.3671995401382446 img loss 1.2774276733398438 img loss 1.4849053621292114 img loss 1.3136889934539795 img loss 1.2784056663513184 img loss 1.3394496440887451 img loss 1.25742506980896 img loss 1.45301353931427 img loss 1.294416069984436 img loss 1.2170016765594482 img loss 1.3415367603302002 img loss 1.3497698307037354 img loss 1.46615731716156 img loss 1.361163854598999 img loss 1.2331788539886475 img loss 1.3146247863769531 img loss 1.3479599952697754 img loss 1.3294143676757812 img loss 1.376549243927002 img loss 1.4072343111038208 img loss 1.2578455209732056 img loss 1.3229814767837524 img loss 1.279111385345459 img loss 1.2930285930633545 img loss 1.3202722072601318 img loss 1.413767695426941 img loss 1.3521140813827515 img loss 1.255126714706421 img loss 1.3960176706314087 img loss 1.3667025566101074 img loss 1.3347722291946411 img loss 1.1910948753356934 img loss 1.4415048360824585 img loss 1.253403902053833 img loss 1.347751259803772 img loss 1.322275996208191 img loss 1.2900583744049072 img loss 1.362261176109314 img loss 1.3784977197647095 img loss 1.3134809732437134 img loss 1.3881133794784546 img loss 1.4976927042007446 {'loss': 1.335, 'grad_norm': 0.6538076400756836, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3383127450942993 img loss 1.3039759397506714 img loss 1.2782657146453857 img loss 1.3619977235794067 img loss 1.1791502237319946 img loss 1.271601915359497 img loss 1.3787652254104614 img loss 1.2642459869384766 img loss 1.2867799997329712 img loss 1.3281152248382568 img loss 1.3053346872329712 img loss 1.3361526727676392 img loss 1.318735122680664 img loss 1.2426223754882812 img loss 1.2195849418640137 img loss 1.266732096672058 img loss 1.2702672481536865 img loss 1.2215259075164795 img loss 1.1907172203063965 img loss 1.2182972431182861 img loss 1.341213583946228 img loss 1.2149196863174438 img loss 1.3213574886322021 img loss 1.2971022129058838 img loss 1.3046278953552246 img loss 1.4016773700714111 img loss 1.3141082525253296 img loss 1.20554518699646 img loss 1.2527825832366943 img loss 1.3188433647155762 img loss 1.2831521034240723 img loss 1.2741408348083496 img loss 1.2155721187591553 img loss 1.265916109085083 img loss 1.3447407484054565 img loss 1.2518680095672607 img loss 1.2745236158370972 img loss 1.3708676099777222 img loss 1.262479305267334 img loss 1.2753657102584839 img loss 1.3230255842208862 img loss 1.2149217128753662 img loss 1.2159380912780762 img loss 1.2450281381607056 img loss 1.2616456747055054 img loss 1.2327287197113037 img loss 1.2718394994735718 img loss 1.3084137439727783 img loss 1.255099892616272 img loss 1.382271647453308 img loss 1.371983289718628 img loss 1.2730549573898315 img loss 1.2474277019500732 img loss 1.4287363290786743 img loss 1.3108255863189697 img loss 1.2585285902023315 img loss 1.2107884883880615 img loss 1.2374889850616455 img loss 1.2341560125350952 img loss 1.3024400472640991 img loss 1.2882285118103027 img loss 1.2885931730270386 img loss 1.2633119821548462 img loss 1.3666131496429443 img loss 1.2373592853546143 img loss 1.2212157249450684 img loss 1.33713698387146 img loss 1.306241750717163 img loss 1.2997652292251587 img loss 1.295775055885315 img loss 1.3175989389419556 img loss 1.2748173475265503 img loss 1.205118179321289 img loss 1.2467018365859985 img loss 1.3405386209487915 img loss 1.31700599193573 img loss 1.248045802116394 img loss 1.310067892074585 img loss 1.2355091571807861 img loss 1.2882575988769531 img loss 1.3331103324890137 img loss 1.1632293462753296 img loss 1.252844214439392 img loss 1.3125791549682617 img loss 1.2841204404830933 img loss 1.3169193267822266 img loss 1.2725253105163574 img loss 1.2720234394073486 img loss 1.2896584272384644 img loss 1.2483561038970947 img loss 1.2726401090621948 img loss 1.228406548500061 img loss 1.2464431524276733 img loss 1.3205714225769043 img loss 1.2674716711044312 img loss 1.230337142944336 img loss 1.1949188709259033 img loss 1.3693842887878418 img loss 1.3547279834747314 img loss 1.2746471166610718 img loss 1.2714933156967163 img loss 1.1988967657089233 img loss 1.2139142751693726 img loss 1.229042410850525 img loss 1.2976833581924438 img loss 1.2268959283828735 img loss 1.2117650508880615 img loss 1.234417200088501 img loss 1.2025504112243652 img loss 1.2322263717651367 img loss 1.2696402072906494 img loss 1.2715307474136353 img loss 1.2606964111328125 img loss 1.2784560918807983 img loss 1.3428007364273071 img loss 1.261124849319458 img loss 1.2969416379928589 img loss 1.4172900915145874 img loss 1.3205589056015015 img loss 1.2204537391662598 img loss 1.311313271522522 img loss 1.1814335584640503 img loss 1.2305692434310913 img loss 1.3219760656356812 img loss 1.252933382987976 img loss 1.2388856410980225 img loss 1.3371922969818115 img loss 1.288198471069336 {'loss': 1.2779, 'grad_norm': 0.24538381397724152, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1925175189971924 img loss 1.2588657140731812 img loss 1.2942813634872437 img loss 1.3488736152648926 img loss 1.2022910118103027 img loss 1.2134160995483398 img loss 1.2239181995391846 img loss 1.2520140409469604 img loss 1.2939494848251343 img loss 1.2463632822036743 img loss 1.2368496656417847 img loss 1.2577717304229736 img loss 1.1978116035461426 img loss 1.2808681726455688 img loss 1.1951977014541626 img loss 1.2279090881347656 img loss 1.2167696952819824 img loss 1.2428274154663086 img loss 1.2770355939865112 img loss 1.1449849605560303 img loss 1.286376714706421 img loss 1.228349208831787 img loss 1.2056100368499756 img loss 1.1832528114318848 img loss 1.256842851638794 img loss 1.2205919027328491 img loss 1.288443922996521 img loss 1.2455897331237793 img loss 1.1700642108917236 img loss 1.2310880422592163 img loss 1.252511739730835 img loss 1.2076958417892456 img loss 1.2851037979125977 img loss 1.2512906789779663 img loss 1.1924446821212769 img loss 1.3018709421157837 img loss 1.2029844522476196 img loss 1.2573490142822266 img loss 1.2470329999923706 img loss 1.2446153163909912 img loss 1.2074596881866455 img loss 1.1976765394210815 img loss 1.198148488998413 img loss 1.2687114477157593 img loss 1.2581605911254883 img loss 1.2853020429611206 img loss 1.3815948963165283 img loss 1.2148277759552002 img loss 1.2057136297225952 img loss 1.3336195945739746 img loss 1.219287395477295 img loss 1.2118234634399414 img loss 1.3040084838867188 img loss 1.2681758403778076 img loss 1.2530004978179932 img loss 1.3217272758483887 img loss 1.2244724035263062 img loss 1.3120818138122559 img loss 1.293570876121521 img loss 1.1707066297531128 img loss 1.2364296913146973 img loss 1.243202805519104 img loss 1.2390940189361572 img loss 1.3267005681991577 img loss 1.183260440826416 img loss 1.2078704833984375 img loss 1.2956414222717285 img loss 1.2476028203964233 img loss 1.185552954673767 img loss 1.2968361377716064 img loss 1.2504135370254517 img loss 1.2178711891174316 img loss 1.2383396625518799 img loss 1.2773663997650146 img loss 1.2463984489440918 img loss 1.200427532196045 img loss 1.1942801475524902 img loss 1.2824547290802002 img loss 1.2971638441085815 img loss 1.2677972316741943 img loss 1.2760885953903198 img loss 1.2669473886489868 img loss 1.2149666547775269 img loss 1.2091922760009766 img loss 1.2520153522491455 img loss 1.2504242658615112 img loss 1.2110004425048828 img loss 1.251535177230835 img loss 1.2374695539474487 img loss 1.3034038543701172 img loss 1.092160940170288 img loss 1.2538535594940186 img loss 1.3081581592559814 img loss 1.2079081535339355 img loss 1.2905476093292236 img loss 1.2402112483978271 img loss 1.2247720956802368 img loss 1.2328580617904663 img loss 1.2812187671661377 img loss 1.2329415082931519 img loss 1.3026080131530762 img loss 1.1741608381271362 img loss 1.2475212812423706 img loss 1.2466866970062256 img loss 1.2013691663742065 img loss 1.2561872005462646 img loss 1.2394883632659912 img loss 1.2614048719406128 img loss 1.3100029230117798 img loss 1.3345974683761597 img loss 1.2669517993927002 img loss 1.2945464849472046 img loss 1.2301111221313477 img loss 1.1808903217315674 img loss 1.160008430480957 img loss 1.2346552610397339 img loss 1.2245595455169678 img loss 1.2756874561309814 img loss 1.2019751071929932 img loss 1.2722679376602173 img loss 1.1320677995681763 img loss 1.2228249311447144 img loss 1.2186882495880127 img loss 1.2035144567489624 img loss 1.2642478942871094 img loss 1.2484467029571533 img loss 1.287753701210022 img loss 1.244753360748291 {'loss': 1.2438, 'grad_norm': 0.399813711643219, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.412717580795288 img loss 1.3964115381240845 img loss 1.560775876045227 img loss 1.3750115633010864 img loss 1.5190662145614624 img loss 1.508703351020813 img loss 1.3882416486740112 img loss 1.4137219190597534 img loss 1.4459363222122192 img loss 1.4195973873138428 img loss 1.3891397714614868 img loss 1.4263943433761597 img loss 1.2530211210250854 img loss 1.3558812141418457 img loss 1.4326637983322144 img loss 1.4858072996139526 img loss 1.4332090616226196 img loss 1.5184266567230225 img loss 1.4616209268569946 img loss 1.4718669652938843 img loss 1.3055981397628784 img loss 1.5135538578033447 img loss 1.3316664695739746 img loss 1.6027859449386597 img loss 1.5820411443710327 img loss 1.4703184366226196 img loss 1.430153250694275 img loss 1.5653032064437866 img loss 1.5794028043746948 img loss 1.5841820240020752 img loss 1.5618211030960083 img loss 1.512450933456421 img loss 1.4027116298675537 img loss 1.4551604986190796 img loss 1.6166222095489502 img loss 1.4953709840774536 img loss 1.402829885482788 img loss 1.4378210306167603 img loss 1.4993560314178467 img loss 1.5739330053329468 img loss 1.5018295049667358 img loss 1.462584137916565 img loss 1.4331713914871216 img loss 1.5546215772628784 img loss 1.4791337251663208 img loss 1.4083266258239746 img loss 1.4661942720413208 img loss 1.5117590427398682 img loss 1.5231870412826538 img loss 1.4684492349624634 img loss 1.3577862977981567 img loss 1.4032288789749146 img loss 1.431104063987732 img loss 1.472928762435913 img loss 1.377855896949768 img loss 1.4598544836044312 img loss 1.493639349937439 img loss 1.383918046951294 img loss 1.5035885572433472 img loss 1.4498722553253174 img loss 1.5436482429504395 img loss 1.4952510595321655 img loss 1.476977825164795 img loss 1.5103695392608643 img loss 1.4196194410324097 img loss 1.5175127983093262 img loss 1.2993800640106201 img loss 1.4409373998641968 img loss 1.545479416847229 img loss 1.3928416967391968 img loss 1.4482160806655884 img loss 1.5963852405548096 img loss 1.461066484451294 img loss 1.4132674932479858 img loss 1.498924970626831 img loss 1.511258602142334 img loss 1.5448763370513916 img loss 1.4709607362747192 img loss 1.4650378227233887 img loss 1.4145890474319458 img loss 1.6158255338668823 img loss 1.4241222143173218 img loss 1.5787270069122314 img loss 1.5085779428482056 img loss 1.4634491205215454 img loss 1.487080454826355 img loss 1.5234293937683105 img loss 1.5094200372695923 img loss 1.480053186416626 img loss 1.4077397584915161 img loss 1.3224083185195923 img loss 1.5121861696243286 img loss 1.4702318906784058 img loss 1.4474085569381714 img loss 1.507414698600769 img loss 1.4928443431854248 img loss 1.5569698810577393 img loss 1.4772427082061768 img loss 1.3853784799575806 img loss 1.4987523555755615 img loss 1.549989938735962 img loss 1.549320101737976 img loss 1.3535666465759277 img loss 1.4995595216751099 img loss 1.497192621231079 img loss 1.4176480770111084 img loss 1.4352507591247559 img loss 1.5153547525405884 img loss 1.4847990274429321 img loss 1.306495189666748 img loss 1.4420371055603027 img loss 1.4991191625595093 img loss 1.4176499843597412 img loss 1.3711062669754028 img loss 1.5536760091781616 img loss 1.4024752378463745 img loss 1.5615524053573608 img loss 1.4629989862442017 img loss 1.382750153541565 img loss 1.3977291584014893 img loss 1.5532450675964355 img loss 1.520006775856018 img loss 1.5723989009857178 img loss 1.547845721244812 img loss 1.4464596509933472 img loss 1.4458482265472412 img loss 1.416591763496399 img loss 1.490405797958374 {'loss': 1.4685, 'grad_norm': 0.5960490703582764, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2495712041854858 img loss 1.1663463115692139 img loss 1.1924082040786743 img loss 1.1764205694198608 img loss 1.2281938791275024 img loss 1.2259680032730103 img loss 1.2773443460464478 img loss 1.2724398374557495 img loss 1.1450347900390625 img loss 1.1661064624786377 img loss 1.1827055215835571 img loss 1.171126365661621 img loss 1.174566626548767 img loss 1.2562079429626465 img loss 1.1970131397247314 img loss 1.1981468200683594 img loss 1.2617324590682983 img loss 1.1856307983398438 img loss 1.1804778575897217 img loss 1.2107415199279785 img loss 1.2512191534042358 img loss 1.2214401960372925 img loss 1.2593607902526855 img loss 1.1571977138519287 img loss 1.271544337272644 img loss 1.2985813617706299 img loss 1.2158249616622925 img loss 1.2385902404785156 img loss 1.2198399305343628 img loss 1.1792834997177124 img loss 1.2350056171417236 img loss 1.2194856405258179 img loss 1.2776753902435303 img loss 1.3045097589492798 img loss 1.249730110168457 img loss 1.1976373195648193 img loss 1.2796461582183838 img loss 1.079080581665039 img loss 1.1963577270507812 img loss 1.162931203842163 img loss 1.1820836067199707 img loss 1.1218723058700562 img loss 1.1597373485565186 img loss 1.2176406383514404 img loss 1.1240671873092651 img loss 1.223571538925171 img loss 1.2679235935211182 img loss 1.180518627166748 img loss 1.2133138179779053 img loss 1.1880755424499512 img loss 1.2410812377929688 img loss 1.2239503860473633 img loss 1.2562005519866943 img loss 1.1701008081436157 img loss 1.1615835428237915 img loss 1.1517558097839355 img loss 1.152377963066101 img loss 1.1756139993667603 img loss 1.2386630773544312 img loss 1.194661021232605 img loss 1.2229740619659424 img loss 1.2852649688720703 img loss 1.1685227155685425 img loss 1.1774870157241821 img loss 1.3253190517425537 img loss 1.1986182928085327 img loss 1.1829142570495605 img loss 1.1195058822631836 img loss 1.2079753875732422 img loss 1.1370818614959717img loss 1.2193734645843506 img loss 1.1648387908935547 img loss 1.2538187503814697 img loss 1.2061161994934082 img loss 1.2979017496109009 img loss 1.2158622741699219 img loss 1.2426509857177734 img loss 1.2510662078857422 img loss 1.1304378509521484 img loss 1.184154987335205img loss 1.1264781951904297 img loss 1.200121521949768 img loss 1.2684626579284668 img loss 1.2340214252471924 img loss 1.314851999282837 img loss 1.1887776851654053 img loss 1.2643330097198486 img loss 1.193414330482483 img loss 1.1612932682037354 img loss 1.2244923114776611 img loss 1.2020689249038696 img loss 1.138344645500183 img loss 1.188746452331543 img loss 1.1898627281188965 img loss 1.1900736093521118 img loss 1.1542987823486328 img loss 1.1613523960113525 img loss 1.27872896194458 img loss 1.258966326713562 img loss 1.3105038404464722 img loss 1.1891956329345703 img loss 1.2088983058929443 img loss 1.17374587059021 img loss 1.2657661437988281 img loss 1.2438137531280518 img loss 1.174537181854248 img loss 1.178058385848999 img loss 1.2076077461242676 img loss 1.2149460315704346 img loss 1.1573576927185059 img loss 1.2398382425308228 img loss 1.1538530588150024 img loss 1.1238391399383545 img loss 1.2572087049484253 img loss 1.2389076948165894 img loss 1.2615187168121338 img loss 1.2249035835266113 img loss 1.1453766822814941 img loss 1.1737943887710571 img loss 1.3143703937530518 img loss 1.2237942218780518 img loss 1.2698103189468384 img loss 1.1772830486297607 img loss 1.1745446920394897 img loss 1.1441152095794678 img loss 1.1244529485702515 img loss 1.1382725238800049 img loss 1.2098424434661865 {'loss': 1.2073, 'grad_norm': 0.4554141163825989, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.372207522392273 img loss 1.2085719108581543 img loss 1.220577597618103 img loss 1.2538034915924072 img loss 1.3039177656173706 img loss 1.330111026763916 img loss 1.2437156438827515 img loss 1.2903966903686523 img loss 1.262602686882019 img loss 1.252267599105835 img loss 1.305948257446289 img loss 1.246559500694275 img loss 1.258448600769043 img loss 1.2550052404403687 img loss 1.281561255455017 img loss 1.2458972930908203 img loss 1.2714258432388306 img loss 1.3255724906921387 img loss 1.2712846994400024 img loss 1.3078542947769165 img loss 1.252327799797058 img loss 1.3048598766326904 img loss 1.3126188516616821 img loss 1.176255226135254 img loss 1.3237272500991821 img loss 1.3021905422210693 img loss 1.2344448566436768 img loss 1.2575629949569702 img loss 1.27285635471344 img loss 1.2116416692733765 img loss 1.1831711530685425 img loss 1.3101376295089722 img loss 1.1889690160751343 img loss 1.178365707397461 img loss 1.2428698539733887 img loss 1.3048841953277588 img loss 1.23867666721344 img loss 1.2019124031066895 img loss 1.2672744989395142 img loss 1.222898244857788 img loss 1.1931425333023071 img loss 1.2223409414291382 img loss 1.2319940328598022 img loss 1.257765531539917 img loss 1.2265126705169678 img loss 1.2999037504196167 img loss 1.3213746547698975 img loss 1.2273650169372559 img loss 1.4425476789474487 img loss 1.3449982404708862 img loss 1.2249478101730347 img loss 1.2344334125518799 img loss 1.244665503501892 img loss 1.229325294494629 img loss 1.2359672784805298 img loss 1.3103090524673462 img loss 1.3142563104629517 img loss 1.188218355178833 img loss 1.2437998056411743 img loss 1.2405586242675781 img loss 1.3478690385818481 img loss 1.1983113288879395 img loss 1.279376745223999 img loss 1.27032470703125 img loss 1.2985279560089111 img loss 1.2055631875991821 img loss 1.2665889263153076 img loss 1.2743721008300781 img loss 1.2478365898132324 img loss 1.3412154912948608 img loss 1.2639195919036865 img loss 1.3020044565200806 img loss 1.2770764827728271 img loss 1.3405133485794067 img loss 1.2751286029815674 img loss 1.2646775245666504 img loss 1.2579580545425415 img loss 1.229448676109314 img loss 1.2808631658554077 img loss 1.2143230438232422 img loss 1.2658684253692627 img loss 1.2078568935394287 img loss 1.2796592712402344 img loss 1.291334629058838 img loss 1.3666796684265137 img loss 1.2528482675552368 img loss 1.3001415729522705 img loss 1.2058171033859253 img loss 1.246374487876892 img loss 1.232181191444397 img loss 1.180985689163208 img loss 1.2053775787353516 img loss 1.3067810535430908 img loss 1.315590739250183 img loss 1.3200719356536865 img loss 1.2904762029647827 img loss 1.1754188537597656 img loss 1.282211184501648 img loss 1.23809814453125 img loss 1.245840311050415 img loss 1.2863069772720337 img loss 1.2540165185928345 img loss 1.179060459136963 img loss 1.2663538455963135 img loss 1.2376766204833984 img loss 1.2678730487823486 img loss 1.3215984106063843 img loss 1.217561960220337 img loss 1.2866588830947876 img loss 1.2548006772994995 img loss 1.236142635345459 img loss 1.2660043239593506 img loss 1.305876612663269 img loss 1.1979188919067383 img loss 1.2690980434417725 img loss 1.2229470014572144 img loss 1.2485030889511108 img loss 1.2366069555282593 img loss 1.2778065204620361 img loss 1.2770239114761353 img loss 1.2448164224624634 img loss 1.261807918548584 img loss 1.3305895328521729 img loss 1.2607862949371338 img loss 1.2821056842803955 img loss 1.2278633117675781 img loss 1.2461142539978027 img loss 1.2762789726257324 {'loss': 1.2626, 'grad_norm': 0.5710875391960144, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2395656108856201 img loss 1.1787066459655762 img loss 1.1765398979187012 img loss 1.1560275554656982 img loss 1.256884217262268 img loss 1.196047306060791 img loss 1.2379459142684937 img loss 1.2556970119476318 img loss 1.2580177783966064 img loss 1.1922601461410522 img loss 1.230271816253662 img loss 1.2156375646591187 img loss 1.2248328924179077 img loss 1.1749646663665771 img loss 1.2400548458099365 img loss 1.2193775177001953 img loss 1.2885652780532837 img loss 1.1884037256240845 img loss 1.2418569326400757 img loss 1.2562406063079834 img loss 1.1572322845458984 img loss 1.1994855403900146 img loss 1.2193100452423096 img loss 1.195070505142212 img loss 1.1465660333633423 img loss 1.208175539970398 img loss 1.273514747619629 img loss 1.2167247533798218 img loss 1.2744911909103394 img loss 1.223082423210144 img loss 1.2382256984710693 img loss 1.2340914011001587 img loss 1.221997618675232 img loss 1.2033580541610718 img loss 1.2414190769195557 img loss 1.1838194131851196 img loss 1.2292439937591553 img loss 1.2047224044799805 img loss 1.257258653640747 img loss 1.2657904624938965 img loss 1.2427895069122314 img loss 1.178932785987854 img loss 1.1762020587921143 img loss 1.1894410848617554 img loss 1.1897754669189453 img loss 1.2021260261535645 img loss 1.265082836151123 img loss 1.2283036708831787 img loss 1.267950415611267 img loss 1.2298130989074707 img loss 1.2241318225860596 img loss 1.188233733177185 img loss 1.2082737684249878 img loss 1.2209452390670776 img loss 1.2507425546646118 img loss 1.1581162214279175 img loss 1.4101595878601074 img loss 1.1985042095184326 img loss 1.182653784751892 img loss 1.193575143814087 img loss 1.1526206731796265 img loss 1.2342941761016846 img loss 1.2137640714645386 img loss 1.1304525136947632 img loss 1.2471568584442139 img loss 1.3525255918502808 img loss 1.2363698482513428 img loss 1.184305191040039 img loss 1.2092242240905762 img loss 1.16624116897583 img loss 1.263574481010437 img loss 1.1480928659439087 img loss 1.2897186279296875 img loss 1.2586487531661987 img loss 1.2119245529174805 img loss 1.237862467765808 img loss 1.2521189451217651 img loss 1.1591252088546753 img loss 1.2455663681030273 img loss 1.2375553846359253 img loss 1.260406732559204 img loss 1.1693981885910034 img loss 1.2742016315460205 img loss 1.162104845046997 img loss 1.1821444034576416 img loss 1.2127612829208374 img loss 1.2832930088043213 img loss 1.2163584232330322 img loss 1.1970783472061157 img loss 1.2206299304962158 img loss 1.280077338218689 img loss 1.1991028785705566 img loss 1.2261197566986084 img loss 1.169823408126831 img loss 1.1984881162643433 img loss 1.186235785484314 img loss 1.2423473596572876 img loss 1.177141547203064 img loss 1.269019603729248 img loss 1.2301087379455566 img loss 1.2245960235595703 img loss 1.2040766477584839 img loss 1.1100140810012817 img loss 1.1344050168991089 img loss 1.2190121412277222 img loss 1.1746466159820557 img loss 1.2623703479766846 img loss 1.285774827003479 img loss 1.137457251548767 img loss 1.3125510215759277 img loss 1.223471999168396 img loss 1.2623956203460693 img loss 1.1952937841415405 img loss 1.2620995044708252 img loss 1.2782220840454102 img loss 1.276918888092041 img loss 1.2861241102218628 img loss 1.1905386447906494 img loss 1.1164522171020508 img loss 1.1706146001815796 img loss 1.2212743759155273 img loss 1.2514755725860596 img loss 1.2229936122894287 img loss 1.2330325841903687 img loss 1.197009563446045 img loss 1.26384699344635 img loss 1.1976317167282104 img loss 1.2806487083435059 {'loss': 1.2204, 'grad_norm': 0.46908918023109436, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2027138471603394 img loss 1.1674741506576538 img loss 1.2628345489501953 img loss 1.20183265209198 img loss 1.2594904899597168 img loss 1.2736523151397705 img loss 1.1485207080841064 img loss 1.3106368780136108 img loss 1.1373300552368164 img loss 1.2785290479660034 img loss 1.2116069793701172 img loss 1.2424969673156738 img loss 1.1465479135513306 img loss 1.249456763267517 img loss 1.2699202299118042 img loss 1.275917887687683 img loss 1.1511753797531128 img loss 1.1454296112060547 img loss 1.237796425819397 img loss 1.0848710536956787 img loss 1.1438543796539307 img loss 1.1617313623428345 img loss 1.1940826177597046 img loss 1.2916334867477417 img loss 1.17516028881073 img loss 1.2880518436431885 img loss 1.189797282218933 img loss 1.1451215744018555 img loss 1.1107655763626099 img loss 1.1601271629333496 img loss 1.1972874402999878 img loss 1.2447260618209839 img loss 1.1123690605163574 img loss 1.133899211883545 img loss 1.1860378980636597 img loss 1.300238847732544 img loss 1.23077392578125 img loss 1.2757225036621094 img loss 1.2981374263763428 img loss 1.2042185068130493 img loss 1.104318618774414 img loss 1.1600184440612793 img loss 1.2382256984710693 img loss 1.2621879577636719 img loss 1.167142629623413 img loss 1.1264420747756958 img loss 1.257473349571228 img loss 1.1309425830841064 img loss 1.2818516492843628 img loss 1.2566218376159668 img loss 1.1665496826171875 img loss 1.2347826957702637 img loss 1.24968421459198 img loss 1.1882500648498535 img loss 1.1766570806503296 img loss 1.1877716779708862 img loss 1.2057230472564697 img loss 1.1709609031677246 img loss 1.2277393341064453 img loss 1.2261642217636108 img loss 1.2272510528564453 img loss 1.2338703870773315 img loss 1.2605092525482178 img loss 1.1356563568115234 img loss 1.1415144205093384 img loss 1.1923671960830688 img loss 1.14396071434021 img loss 1.1272966861724854 img loss 1.2091625928878784 img loss 1.2798395156860352 img loss 1.1097644567489624 img loss 1.1750233173370361 img loss 1.217070460319519 img loss 1.1538397073745728 img loss 1.1364576816558838 img loss 1.172905445098877 img loss 1.2444626092910767 img loss 1.1046043634414673 img loss 1.231606364250183 img loss 1.1116564273834229 img loss 1.178733468055725 img loss 1.1542118787765503 img loss 1.258555293083191 img loss 1.1497513055801392 img loss 1.2243075370788574 img loss 1.2414661645889282 img loss 1.2386842966079712 img loss 1.172032117843628 img loss 1.2700611352920532 img loss 1.3190133571624756 img loss 1.176795244216919 img loss 1.2077172994613647 img loss 1.191161036491394 img loss 1.2809271812438965 img loss 1.209267020225525 img loss 1.3380529880523682 img loss 1.2650480270385742 img loss 1.1645352840423584 img loss 1.192122220993042 img loss 1.1416723728179932 img loss 1.131615161895752 img loss 1.2260642051696777 img loss 1.2869590520858765 img loss 1.143944501876831 img loss 1.39005708694458 img loss 1.14818274974823 img loss 1.2346320152282715 img loss 1.1812283992767334 img loss 1.193207025527954 img loss 1.227493166923523 img loss 1.144667148590088 img loss 1.2070693969726562 img loss 1.1992030143737793 img loss 1.178778886795044 img loss 1.1826298236846924 img loss 1.1309610605239868 img loss 1.2148125171661377 img loss 1.1260509490966797 img loss 1.2601464986801147 img loss 1.1412826776504517 img loss 1.242579698562622 img loss 1.1297273635864258 img loss 1.2467600107192993 img loss 1.2558112144470215 img loss 1.1707512140274048 img loss 1.2521556615829468 img loss 1.3056774139404297 img loss 1.1490588188171387 {'loss': 1.2032, 'grad_norm': 0.1848282665014267, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3166531324386597 img loss 1.2461974620819092 img loss 1.1409530639648438 img loss 1.239037275314331 img loss 1.2377384901046753 img loss 1.366775631904602 img loss 1.2130959033966064 img loss 1.2528117895126343 img loss 1.2907966375350952 img loss 1.2371233701705933 img loss 1.2319073677062988 img loss 1.1819555759429932 img loss 1.1753994226455688 img loss 1.2314478158950806 img loss 1.3001047372817993 img loss 1.2813997268676758 img loss 1.199725866317749 img loss 1.2097561359405518 img loss 1.2864553928375244 img loss 1.21018385887146 img loss 1.3343266248703003 img loss 1.17759370803833 img loss 1.2581967115402222 img loss 1.208276391029358 img loss 1.1740357875823975 img loss 1.28505277633667 img loss 1.2588523626327515 img loss 1.1946090459823608 img loss 1.3017244338989258 img loss 1.3816484212875366 img loss 1.3299055099487305 img loss 1.202879548072815 img loss 1.1727747917175293 img loss 1.2094807624816895 img loss 1.3291621208190918 img loss 1.3086503744125366 img loss 1.3285130262374878 img loss 1.2143449783325195 img loss 1.2940547466278076 img loss 1.276899814605713 img loss 1.304145336151123 img loss 1.2982568740844727 img loss 1.2957967519760132 img loss 1.286681056022644 img loss 1.3301467895507812 img loss 1.2911916971206665 img loss 1.3124107122421265 img loss 1.3178993463516235 img loss 1.2767703533172607 img loss 1.3574601411819458 img loss 1.229264259338379 img loss 1.2224363088607788 img loss 1.3052103519439697 img loss 1.2064933776855469 img loss 1.3763682842254639 img loss 1.2948696613311768 img loss 1.3170238733291626 img loss 1.0727012157440186 img loss 1.2303175926208496 img loss 1.2284965515136719 img loss 1.2402985095977783 img loss 1.1778318881988525 img loss 1.2077882289886475 img loss 1.3285562992095947 img loss 1.2575054168701172 img loss 1.201098918914795 img loss 1.5005978345870972 img loss 1.184204339981079 img loss 1.2805254459381104 img loss 1.1827324628829956 img loss 1.3374546766281128 img loss 1.3599857091903687 img loss 1.2816816568374634 img loss 1.1899685859680176 img loss 1.21804678440094 img loss 1.2084746360778809 img loss 1.2697479724884033 img loss 1.2624047994613647 img loss 1.2523934841156006 img loss 1.2567400932312012 img loss 1.235102653503418 img loss 1.2782810926437378 img loss 1.1014808416366577 img loss 1.2961773872375488 img loss 1.404096245765686 img loss 1.1966731548309326 img loss 1.2778152227401733 img loss 1.2766780853271484 img loss 1.2323068380355835 img loss 1.2179006338119507 img loss 1.2506134510040283 img loss 1.2245486974716187 img loss 1.230564832687378 img loss 1.2428172826766968 img loss 1.2717615365982056 img loss 1.3481718301773071 img loss 1.166077971458435 img loss 1.2964576482772827 img loss 1.2897672653198242 img loss 1.213266372680664 img loss 1.2598106861114502 img loss 1.1860535144805908 img loss 1.290880799293518 img loss 1.3164833784103394 img loss 1.2922797203063965 img loss 1.360345482826233 img loss 1.1788992881774902 img loss 1.1545041799545288 img loss 1.2216500043869019 img loss 1.236783742904663 img loss 1.2507343292236328 img loss 1.338396668434143 img loss 1.2822225093841553 img loss 1.2799546718597412 img loss 1.270175814628601 img loss 1.2412242889404297 img loss 1.2803882360458374 img loss 1.257575273513794 img loss 1.2621675729751587 img loss 1.2363381385803223 img loss 1.2556602954864502 img loss 1.1615655422210693 img loss 1.2351100444793701 img loss 1.1962212324142456 img loss 1.256144404411316 img loss 1.2831249237060547 img loss 1.275787115097046 img loss 1.2709088325500488 {'loss': 1.258, 'grad_norm': 0.43189817667007446, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1923989057540894 img loss 1.1280720233917236 img loss 1.1523492336273193 img loss 1.1951682567596436 img loss 1.1965057849884033 img loss 1.248530387878418 img loss 1.1319955587387085 img loss 1.1749122142791748 img loss 1.2156139612197876 img loss 1.2151979207992554 img loss 1.1520593166351318 img loss 1.203336477279663 img loss 1.1459648609161377 img loss 1.3497427701950073 img loss 1.281675934791565 img loss 1.10521399974823 img loss 1.1572322845458984 img loss 1.2025408744812012 img loss 1.212737798690796 img loss 1.206775426864624 img loss 1.2436577081680298 img loss 1.0798395872116089 img loss 1.1122465133666992 img loss 1.1507457494735718 img loss 1.2222018241882324 img loss 1.1548798084259033 img loss 1.2008733749389648 img loss 1.1777353286743164 img loss 1.1615402698516846 img loss 1.0889301300048828 img loss 1.1233711242675781 img loss 1.2515385150909424 img loss 1.1934601068496704 img loss 1.1665513515472412 img loss 1.1918277740478516 img loss 1.2078100442886353 img loss 1.17305326461792 img loss 1.1411064863204956 img loss 1.2410564422607422 img loss 1.2265475988388062 img loss 1.2315062284469604 img loss 1.253151297569275 img loss 1.2254712581634521 img loss 1.1344759464263916 img loss 1.0544804334640503 img loss 1.1389049291610718 img loss 1.2030537128448486 img loss 1.1872191429138184 img loss 1.120288610458374 img loss 1.1476973295211792 img loss 1.1634881496429443 img loss 1.1661083698272705 img loss 1.2877177000045776 img loss 1.1920127868652344 img loss 1.130531907081604 img loss 1.1634938716888428 img loss 1.1647361516952515 img loss 1.200758457183838 img loss 1.2421287298202515 img loss 1.2488982677459717 img loss 1.19035804271698 img loss 1.2242066860198975 img loss 1.1596277952194214 img loss 1.3259016275405884 img loss 1.2032970190048218 img loss 1.1813077926635742 img loss 1.3665060997009277 img loss 1.261178731918335 img loss 1.05772864818573 img loss 1.0591402053833008 img loss 1.1311976909637451 img loss 1.1284458637237549 img loss 1.2192620038986206 img loss 1.165225625038147 img loss 1.198828101158142 img loss 1.1966205835342407 img loss 1.1204674243927002 img loss 1.1740150451660156 img loss 1.1716868877410889 img loss 1.1974589824676514 img loss 1.204070806503296 img loss 1.27289617061615 img loss 1.1039412021636963 img loss 1.2183568477630615 img loss 1.2401788234710693 img loss 1.1638520956039429 img loss 1.2985771894454956 img loss 1.1494572162628174 img loss 1.0692883729934692 img loss 1.1660457849502563 img loss 1.1664787530899048 img loss 1.2121391296386719 img loss 1.254970908164978 img loss 1.1675916910171509 img loss 1.1271981000900269 img loss 1.2532844543457031 img loss 1.132197380065918 img loss 1.1516236066818237 img loss 1.2367463111877441 img loss 1.2686389684677124 img loss 1.0934103727340698 img loss 1.2173190116882324 img loss 1.1861486434936523 img loss 1.2161457538604736 img loss 1.19819974899292 img loss 1.2351021766662598 img loss 1.2125657796859741 img loss 1.2184356451034546 img loss 1.140281081199646 img loss 1.194769263267517 img loss 1.1366324424743652 img loss 1.1776357889175415 img loss 1.0978554487228394 img loss 1.14377760887146 img loss 1.1985290050506592 img loss 1.179107904434204 img loss 1.1696232557296753 img loss 1.2050817012786865 img loss 1.2820465564727783 img loss 1.2112479209899902 img loss 1.1740844249725342 img loss 1.1746643781661987 img loss 1.1203835010528564 img loss 1.1985689401626587 img loss 1.1109063625335693 img loss 1.2777345180511475 img loss 1.1263477802276611 img loss 1.1577259302139282 {'loss': 1.185, 'grad_norm': 0.2457561045885086, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.191156029701233 img loss 1.2036329507827759 img loss 1.2316200733184814 img loss 1.218612551689148 img loss 1.1944561004638672 img loss 1.1850906610488892 img loss 1.1445969343185425 img loss 1.2196964025497437 img loss 1.216886043548584 img loss 1.193163275718689 img loss 1.2652708292007446 img loss 1.1920477151870728 img loss 1.247484803199768 img loss 1.2618820667266846 img loss 1.1959861516952515 img loss 1.0965334177017212 img loss 1.1924902200698853 img loss 1.277221918106079 img loss 1.1954010725021362 img loss 1.2375807762145996 img loss 1.2147568464279175 img loss 1.226144552230835 img loss 1.19924795627594 img loss 1.2422245740890503 img loss 1.2258245944976807 img loss 1.2891955375671387 img loss 1.2296072244644165 img loss 1.2459200620651245 img loss 1.1576756238937378 img loss 1.2216041088104248 img loss 1.2046945095062256 img loss 1.2023319005966187 img loss 1.2013005018234253 img loss 1.3088805675506592 img loss 1.1653450727462769 img loss 1.3227261304855347 img loss 1.2546138763427734 img loss 1.3181300163269043 img loss 1.1936278343200684 img loss 1.194610357284546 img loss 1.234189748764038 img loss 1.1469852924346924 img loss 1.3482677936553955 img loss 1.202513337135315 img loss 1.2743356227874756 img loss 1.2087019681930542 img loss 1.2069652080535889 img loss 1.264875054359436 img loss 1.2434051036834717 img loss 1.1639389991760254 img loss 1.1752784252166748 img loss 1.2747244834899902 img loss 1.1793049573898315 img loss 1.278995156288147 img loss 1.2752176523208618 img loss 1.2768199443817139 img loss 1.1489484310150146 img loss 1.214951753616333 img loss 1.1597301959991455 img loss 1.1744006872177124 img loss 1.2118202447891235 img loss 1.12863028049469 img loss 1.2244164943695068 img loss 1.1716372966766357 img loss 1.2691529989242554 img loss 1.1855518817901611 img loss 1.2402074337005615 img loss 1.2239564657211304 img loss 1.3276537656784058 img loss 1.171223521232605 img loss 1.124934434890747 img loss 1.1980929374694824 img loss 1.2125591039657593 img loss 1.2890994548797607 img loss 1.2453349828720093 img loss 1.211997628211975 img loss 1.1851211786270142 img loss 1.2377933263778687 img loss 1.1950880289077759 img loss 1.2562564611434937 img loss 1.207415223121643 img loss 1.2303133010864258 img loss 1.1996231079101562 img loss 1.2639460563659668 img loss 1.2559776306152344 img loss 1.2098220586776733 img loss 1.2487093210220337 img loss 1.2362632751464844 img loss 1.235119104385376 img loss 1.2133259773254395 img loss 1.1952531337738037 img loss 1.2637546062469482 img loss 1.1381337642669678 img loss 1.2019526958465576 img loss 1.2890719175338745 img loss 1.1945877075195312 img loss 1.192205786705017 img loss 1.1536164283752441 img loss 1.2153189182281494 img loss 1.1745941638946533 img loss 1.2135051488876343 img loss 1.29977285861969 img loss 1.194871187210083 img loss 1.203768014907837 img loss 1.2317891120910645 img loss 1.2839096784591675 img loss 1.1679672002792358 img loss 1.1788520812988281 img loss 1.251190423965454 img loss 1.2251344919204712 img loss 1.1460140943527222 img loss 1.1984132528305054 img loss 1.260748267173767 img loss 1.164221167564392 img loss 1.2094759941101074 img loss 1.2123680114746094 img loss 1.2822195291519165 img loss 1.3094812631607056 img loss 1.2200727462768555 img loss 1.2077159881591797 img loss 1.2075115442276 img loss 1.1633436679840088 img loss 1.177040457725525 img loss 1.1610918045043945 img loss 1.1818042993545532 img loss 1.2687394618988037 img loss 1.2163208723068237 img loss 1.2344012260437012 {'loss': 1.2182, 'grad_norm': 0.25705158710479736, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2089627981185913 img loss 1.166086196899414 img loss 1.1795475482940674 img loss 1.1282292604446411 img loss 1.1419275999069214 img loss 1.1441168785095215 img loss 1.1706602573394775 img loss 1.190609335899353 img loss 1.123308777809143 img loss 1.1455516815185547 img loss 1.1600325107574463 img loss 1.0877436399459839 img loss 1.15334153175354 img loss 1.116450309753418 img loss 1.1392830610275269 img loss 1.2167911529541016 img loss 1.1158709526062012 img loss 1.127744197845459 img loss 1.1889054775238037 img loss 1.204280138015747 img loss 1.2060377597808838 img loss 1.1521644592285156 img loss 1.143340826034546 img loss 1.168243169784546 img loss 1.1606369018554688 img loss 1.1622669696807861 img loss 1.2259851694107056 img loss 1.1234521865844727 img loss 1.2156133651733398 img loss 1.194422721862793 img loss 1.2212177515029907 img loss 1.2136930227279663 img loss 1.1999831199645996 img loss 1.1736830472946167 img loss 1.1781418323516846 img loss 1.1119893789291382 img loss 1.1042768955230713 img loss 1.213384985923767 img loss 1.1179852485656738 img loss 1.2072490453720093 img loss 1.1909644603729248 img loss 1.2725911140441895 img loss 1.1317654848098755 img loss 1.1973044872283936 img loss 1.1685551404953003 img loss 1.119846224784851 img loss 1.1703964471817017 img loss 1.2201008796691895 img loss 1.180863857269287 img loss 1.1344894170761108 img loss 1.16049063205719 img loss 1.1381186246871948 img loss 1.2272456884384155 img loss 1.192218542098999 img loss 1.16464102268219 img loss 1.1788344383239746 img loss 1.2248083353042603 img loss 1.1507762670516968 img loss 1.168871283531189 img loss 1.1223835945129395 img loss 1.1554675102233887 img loss 1.1362690925598145 img loss 1.2033729553222656 img loss 1.1422609090805054 img loss 1.192809820175171 img loss 1.2126710414886475 img loss 1.1371592283248901 img loss 1.1740164756774902 img loss 1.1847498416900635 img loss 1.1398197412490845 img loss 1.1398627758026123 img loss 1.1815640926361084 img loss 1.1030796766281128 img loss 1.1736468076705933 img loss 1.2123026847839355 img loss 1.1966975927352905img loss 1.1637279987335205 img loss 1.1889448165893555 img loss 1.1592984199523926 img loss 1.125096321105957 img loss 1.088780403137207 img loss 1.1238330602645874 img loss 1.1928128004074097 img loss 1.1284817457199097 img loss 1.1390089988708496 img loss 1.1611112356185913 img loss 1.183915138244629 img loss 1.2075961828231812 img loss 1.1832733154296875 img loss 1.2167173624038696 img loss 1.3131483793258667 img loss 1.2022498846054077 img loss 1.12614905834198 img loss 1.165949821472168 img loss 1.1968803405761719 img loss 1.2379353046417236 img loss 1.1985867023468018 img loss 1.183489441871643 img loss 1.197945475578308 img loss 1.1483436822891235 img loss 1.1788204908370972 img loss 1.1748402118682861 img loss 1.1074190139770508 img loss 1.1765499114990234 img loss 1.1754815578460693 img loss 1.200040340423584 img loss 1.1472997665405273 img loss 1.1289215087890625 img loss 1.1759439706802368 img loss 1.1706117391586304 img loss 1.1595759391784668 img loss 1.168980360031128 img loss 1.1467366218566895 img loss 1.148169755935669 img loss 1.1282498836517334 img loss 1.1019619703292847 img loss 1.1434898376464844 img loss 1.1554514169692993 img loss 1.1239385604858398 img loss 1.109294056892395 img loss 1.144559621810913 img loss 1.1837725639343262 img loss 1.2038085460662842 img loss 1.172555685043335 img loss 1.1739810705184937 img loss 1.189539909362793 img loss 1.1307406425476074 img loss 1.1606696844100952 {'loss': 1.1673, 'grad_norm': 0.32382848858833313, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3059898614883423 img loss 1.3966180086135864 img loss 1.3979814052581787 img loss 1.433616280555725 img loss 1.3585318326950073 img loss 1.27985417842865 img loss 1.2627147436141968 img loss 1.4206340312957764 img loss 1.3285340070724487 img loss 1.3634568452835083 img loss 1.4089751243591309 img loss 1.343859076499939 img loss 1.2782721519470215 img loss 1.45009446144104 img loss 1.3382459878921509 img loss 1.3264639377593994 img loss 1.2927337884902954 img loss 1.3538868427276611 img loss 1.4977095127105713 img loss 1.4118181467056274 img loss 1.388641595840454 img loss 1.3086471557617188 img loss 1.3189932107925415 img loss 1.2653522491455078 img loss 1.341518521308899 img loss 1.360245943069458 img loss 1.2613468170166016 img loss 1.3425180912017822 img loss 1.4752552509307861 img loss 1.393857717514038 img loss 1.286025047302246 img loss 1.366439938545227 img loss 1.4355424642562866 img loss 1.4448455572128296 img loss 1.4201562404632568 img loss 1.1815108060836792 img loss 1.5052682161331177 img loss 1.2876863479614258 img loss 1.455289363861084 img loss 1.2865238189697266 img loss 1.4357496500015259 img loss 1.3376319408416748 img loss 1.331084966659546 img loss 1.4320499897003174 img loss 1.4559597969055176 img loss 1.4003132581710815 img loss 1.2201002836227417 img loss 1.387876272201538 img loss 1.3648388385772705 img loss 1.391831874847412 img loss 1.3932448625564575 img loss 1.2634880542755127 img loss 1.2556732892990112 img loss 1.3081082105636597 img loss 1.4514479637145996 img loss 1.3002986907958984 img loss 1.3771417140960693 img loss 1.4303253889083862 img loss 1.2951229810714722 img loss 1.4211910963058472 img loss 1.3962056636810303 img loss 1.4700816869735718 img loss 1.346129298210144 img loss 1.3914755582809448 img loss 1.301370620727539 img loss 1.3917447328567505 img loss 1.3724921941757202 img loss 1.3624961376190186 img loss 1.4018146991729736 img loss 1.390897274017334 img loss 1.266038179397583 img loss 1.4316363334655762 img loss 1.3868275880813599img loss 1.30636465549469 img loss 1.3151766061782837 img loss 1.3754464387893677 img loss 1.3721745014190674 img loss 1.3172931671142578 img loss 1.4662364721298218 img loss 1.3073488473892212 img loss 1.3895490169525146 img loss 1.321519136428833 img loss 1.3237899541854858 img loss 1.2449641227722168 img loss 1.2696514129638672 img loss 1.5649659633636475 img loss 1.377454400062561 img loss 1.330782413482666 img loss 1.4053205251693726 img loss 1.541858434677124 img loss 1.3536897897720337 img loss 1.4054923057556152 img loss 1.3531434535980225 img loss 1.3155587911605835 img loss 1.3200021982192993 img loss 1.277158260345459 img loss 1.4984281063079834 img loss 1.3508543968200684 img loss 1.4347389936447144 img loss 1.403823971748352 img loss 1.3551080226898193 img loss 1.3948073387145996 img loss 1.4125031232833862 img loss 1.3050811290740967 img loss 1.354755163192749 img loss 1.3361222743988037 img loss 1.309330940246582 img loss 1.3708640336990356 img loss 1.402991533279419 img loss 1.3773798942565918 img loss 1.3343005180358887 img loss 1.3393646478652954 img loss 1.348291039466858 img loss 1.3947430849075317 img loss 1.3011292219161987 img loss 1.3444582223892212 img loss 1.3189053535461426 img loss 1.4357705116271973 img loss 1.409557580947876 img loss 1.3890016078948975 img loss 1.3357793092727661 img loss 1.2706949710845947 img loss 1.3406575918197632 img loss 1.283725619316101 img loss 1.4476414918899536 img loss 1.4056999683380127 img loss 1.3045965433120728 img loss 1.1811177730560303 {'loss': 1.3616, 'grad_norm': 0.7381349205970764, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.500009298324585 img loss 1.3217662572860718 img loss 1.514158844947815 img loss 1.5275768041610718 img loss 1.5285437107086182 img loss 1.2872021198272705 img loss 1.4695830345153809 img loss 1.4286779165267944 img loss 1.4561927318572998 img loss 1.4172412157058716 img loss 1.3567538261413574 img loss 1.4661678075790405 img loss 1.431209683418274 img loss 1.3360896110534668 img loss 1.3202043771743774 img loss 1.3573709726333618 img loss 1.584598422050476 img loss 1.481060266494751 img loss 1.3658055067062378 img loss 1.2990764379501343 img loss 1.3718810081481934 img loss 1.3343589305877686 img loss 1.4675301313400269 img loss 1.3345190286636353 img loss 1.3429840803146362 img loss 1.4411321878433228 img loss 1.519142985343933 img loss 1.3966267108917236 img loss 1.5710453987121582 img loss 1.3272440433502197 img loss 1.4923771619796753 img loss 1.4317249059677124 img loss 1.4741910696029663 img loss 1.4215521812438965 img loss 1.3726611137390137 img loss 1.4211039543151855 img loss 1.5121124982833862 img loss 1.5051876306533813 img loss 1.3590404987335205 img loss 1.3103395700454712 img loss 1.4544575214385986 img loss 1.5665533542633057 img loss 1.3817857503890991 img loss 1.5035836696624756 img loss 1.2970213890075684 img loss 1.4618679285049438 img loss 1.3834103345870972 img loss 1.3502211570739746 img loss 1.3857814073562622 img loss 1.459685206413269 img loss 1.499202013015747 img loss 1.4207990169525146 img loss 1.4327061176300049 img loss 1.4452102184295654 img loss 1.353503942489624 img loss 1.4462440013885498 img loss 1.3456369638442993 img loss 1.3872361183166504 img loss 1.4742070436477661 img loss 1.4043697118759155 img loss 1.4429134130477905 img loss 1.3096414804458618 img loss 1.4828276634216309 img loss 1.41727614402771 img loss 1.534827709197998 img loss 1.4009722471237183 img loss 1.6119202375411987 img loss 1.4519575834274292 img loss 1.4260389804840088 img loss 1.4620157480239868 img loss 1.4247132539749146 img loss 1.5205711126327515 img loss 1.4012807607650757 img loss 1.378618836402893 img loss 1.3993468284606934 img loss 1.3581925630569458 img loss 1.4764550924301147 img loss 1.4295172691345215 img loss 1.4989193677902222 img loss 1.286872386932373 img loss 1.6339327096939087 img loss 1.380156397819519 img loss 1.5141499042510986 img loss 1.4393330812454224 img loss 1.3815038204193115 img loss 1.3877551555633545 img loss 1.4260075092315674 img loss 1.4069966077804565 img loss 1.3587740659713745 img loss 1.468543529510498 img loss 1.4229328632354736 img loss 1.3059449195861816 img loss 1.498573899269104 img loss 1.3631006479263306 img loss 1.4019795656204224 img loss 1.4038097858428955 img loss 1.3812873363494873 img loss 1.4761443138122559 img loss 1.3571432828903198 img loss 1.5137604475021362 img loss 1.3735142946243286 img loss 1.4858200550079346 img loss 1.3878512382507324 img loss 1.4312268495559692 img loss 1.3602906465530396 img loss 1.474004864692688 img loss 1.409735918045044 img loss 1.4997646808624268 img loss 1.4687680006027222 img loss 1.4390541315078735 img loss 1.4272276163101196 img loss 1.4804426431655884 img loss 1.393752932548523 img loss 1.4120609760284424 img loss 1.355781078338623 img loss 1.375901699066162 img loss 1.4592169523239136 img loss 1.2458884716033936 img loss 1.5490213632583618 img loss 1.4856207370758057 img loss 1.4479529857635498 img loss 1.4357693195343018 img loss 1.4583228826522827 img loss 1.3281362056732178 img loss 1.350115418434143 img loss 1.3693252801895142 img loss 1.499545693397522 img loss 1.4077935218811035 {'loss': 1.4247, 'grad_norm': 0.2892873287200928, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1928335428237915 img loss 1.1511677503585815 img loss 1.1583620309829712 img loss 1.1475887298583984 img loss 1.1354378461837769 img loss 1.2145737409591675 img loss 1.3037121295928955 img loss 1.1746658086776733 img loss 1.202305555343628 img loss 1.174172043800354 img loss 1.095432996749878 img loss 1.179928183555603 img loss 1.239044189453125 img loss 1.1196715831756592 img loss 1.1687015295028687 img loss 1.1574485301971436 img loss 1.2136046886444092 img loss 1.1465600728988647 img loss 1.205848217010498 img loss 1.19144606590271 img loss 1.2140673398971558 img loss 1.190677523612976 img loss 1.1761099100112915 img loss 1.1169601678848267 img loss 1.1792857646942139 img loss 1.2381088733673096 img loss 1.1595104932785034 img loss 1.1724462509155273 img loss 1.1570796966552734 img loss 1.1744104623794556 img loss 1.2002251148223877 img loss 1.2493456602096558 img loss 1.1792190074920654 img loss 1.206214427947998 img loss 1.169252634048462 img loss 1.1197946071624756 img loss 1.1762006282806396 img loss 1.1528717279434204 img loss 1.1895427703857422 img loss 1.1450027227401733 img loss 1.130281925201416 img loss 1.2320189476013184 img loss 1.199450969696045 img loss 1.1219124794006348 img loss 1.1675161123275757 img loss 1.123084545135498 img loss 1.1344846487045288 img loss 1.1737327575683594 img loss 1.254556655883789 img loss 1.2103002071380615 img loss 1.1518447399139404 img loss 1.2070162296295166 img loss 1.1567323207855225 img loss 1.1743178367614746 img loss 1.206869125366211 img loss 1.1594985723495483 img loss 1.1161729097366333 img loss 1.15562105178833 img loss 1.1562402248382568 img loss 1.203542709350586 img loss 1.1779351234436035 img loss 1.2413147687911987 img loss 1.2391905784606934 img loss 1.2070320844650269 img loss 1.2083048820495605 img loss 1.2333885431289673 img loss 1.1968798637390137 img loss 1.2366366386413574 img loss 1.209505319595337 img loss 1.2178187370300293 img loss 1.1858298778533936 img loss 1.1854910850524902 img loss 1.1668637990951538 img loss 1.1473041772842407 img loss 1.1957967281341553 img loss 1.1945022344589233 img loss 1.157957673072815 img loss 1.2119364738464355 img loss 1.068658471107483 img loss 1.2008404731750488 img loss 1.2175345420837402 img loss 1.1613775491714478 img loss 1.1757118701934814 img loss 1.159994125366211 img loss 1.1301920413970947 img loss 1.223626732826233 img loss 1.2994873523712158 img loss 1.1750857830047607 img loss 1.2040557861328125 img loss 1.235826015472412 img loss 1.276301622390747 img loss 1.100502371788025 img loss 1.1444675922393799 img loss 1.2303690910339355 img loss 1.069878101348877 img loss 1.1475465297698975 img loss 1.1368122100830078 img loss 1.2736676931381226 img loss 1.2726919651031494 img loss 1.174994707107544 img loss 1.2508728504180908 img loss 1.2045637369155884 img loss 1.1874443292617798 img loss 1.156472086906433 img loss 1.2459360361099243 img loss 1.1476229429244995 img loss 1.1392579078674316 img loss 1.159334659576416 img loss 1.209686279296875 img loss 1.2384119033813477 img loss 1.1854569911956787 img loss 1.204355239868164 img loss 1.1803792715072632 img loss 1.2037065029144287 img loss 1.1443861722946167 img loss 1.1644926071166992 img loss 1.1595100164413452 img loss 1.1566479206085205 img loss 1.1581064462661743 img loss 1.1727194786071777 img loss 1.1266510486602783 img loss 1.2280399799346924 img loss 1.2057117223739624 img loss 1.136483073234558 img loss 1.178660273551941 img loss 1.187090277671814 img loss 1.176806092262268 img loss 1.2411277294158936 {'loss': 1.1829, 'grad_norm': 0.6881791949272156, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.204689621925354 img loss 1.2131130695343018 img loss 1.168649435043335 img loss 1.2559477090835571 img loss 1.3918975591659546 img loss 1.1967670917510986 img loss 1.192563772201538 img loss 1.1921154260635376 img loss 1.2200603485107422 img loss 1.1910181045532227 img loss 1.1789319515228271 img loss 1.2015060186386108 img loss 1.2171802520751953 img loss 1.1728477478027344 img loss 1.192457675933838 img loss 1.1708619594573975 img loss 1.1872453689575195 img loss 1.1411046981811523 img loss 1.2297837734222412 img loss 1.203913927078247 img loss 1.2534583806991577 img loss 1.205060362815857 img loss 1.3295161724090576 img loss 1.2070204019546509 img loss 1.176217794418335 img loss 1.2323755025863647 img loss 1.1558666229248047 img loss 1.208993673324585 img loss 1.1829514503479004 img loss 1.1802537441253662 img loss 1.1368129253387451 img loss 1.218144416809082 img loss 1.1796834468841553 img loss 1.1838936805725098 img loss 1.2118333578109741 img loss 1.134778618812561 img loss 1.1528410911560059 img loss 1.1203851699829102 img loss 1.251852035522461 img loss 1.1138150691986084 img loss 1.192543387413025 img loss 1.1578861474990845 img loss 1.3249558210372925 img loss 1.2709680795669556 img loss 1.2287883758544922 img loss 1.2145353555679321 img loss 1.4103715419769287 img loss 1.316420316696167 img loss 1.2691810131072998 img loss 1.2552326917648315 img loss 1.190073013305664 img loss 1.263471245765686 img loss 1.2688874006271362 img loss 1.1917861700057983 img loss 1.2341337203979492 img loss 1.2021212577819824 img loss 1.2443153858184814 img loss 1.196162223815918 img loss 1.1611089706420898 img loss 1.1445280313491821 img loss 1.1766248941421509 img loss 1.1903343200683594 img loss 1.2429404258728027 img loss 1.213517189025879 img loss 1.178093433380127 img loss 1.1582173109054565 img loss 1.1468079090118408 img loss 1.1218016147613525 img loss 1.2414629459381104 img loss 1.2389858961105347 img loss 1.205806016921997 img loss 1.1821914911270142 img loss 1.2182241678237915 img loss 1.2359989881515503 img loss 1.251760482788086 img loss 1.300559401512146 img loss 1.137256145477295 img loss 1.3092936277389526 img loss 1.2323392629623413 img loss 1.3425061702728271 img loss 1.2324271202087402 img loss 1.2401981353759766 img loss 1.1923768520355225 img loss 1.264482021331787 img loss 1.2383943796157837 img loss 1.218505859375 img loss 1.3211677074432373 img loss 1.2106382846832275 img loss 1.1769167184829712 img loss 1.2266006469726562 img loss 1.1517589092254639 img loss 1.1376032829284668 img loss 1.2378219366073608 img loss 1.1917853355407715 img loss 1.2749228477478027 img loss 1.2300535440444946 img loss 1.2083295583724976 img loss 1.1380412578582764 img loss 1.2113854885101318 img loss 1.235766053199768 img loss 1.3231258392333984 img loss 1.2900214195251465 img loss 1.178907871246338 img loss 1.160578966140747 img loss 1.2358096837997437 img loss 1.2528140544891357 img loss 1.22645902633667 img loss 1.262470006942749 img loss 1.2297645807266235 img loss 1.2918834686279297 img loss 1.2189794778823853 img loss 1.2036988735198975 img loss 1.2581274509429932 img loss 1.2276036739349365 img loss 1.2216250896453857 img loss 1.2501475811004639 img loss 1.2416805028915405 img loss 1.2265727519989014 img loss 1.174795150756836 img loss 1.1733230352401733 img loss 1.2195210456848145 img loss 1.2101141214370728 img loss 1.2536609172821045 img loss 1.2121915817260742 img loss 1.134901523590088 img loss 1.0885393619537354 img loss 1.212552547454834 img loss 1.3379130363464355 {'loss': 1.2162, 'grad_norm': 0.46968555450439453, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5316071510314941 img loss 1.5294495820999146 img loss 1.3616288900375366 img loss 1.51911199092865 img loss 1.3997431993484497 img loss 1.4232896566390991 img loss 1.3891350030899048 img loss 1.4906820058822632 img loss 1.5099986791610718 img loss 1.4190424680709839 img loss 1.4434335231781006 img loss 1.4312169551849365 img loss 1.4617637395858765 img loss 1.4660340547561646 img loss 1.4315263032913208 img loss 1.4609934091567993 img loss 1.5608445405960083 img loss 1.5916097164154053 img loss 1.4553416967391968 img loss 1.4681010246276855 img loss 1.5961369276046753 img loss 1.41011381149292 img loss 1.5266858339309692 img loss 1.4474480152130127 img loss 1.5415881872177124 img loss 1.5177648067474365 img loss 1.3615185022354126 img loss 1.6083528995513916 img loss 1.4342093467712402 img loss 1.4434561729431152 img loss 1.4158135652542114 img loss 1.4194284677505493 img loss 1.3572208881378174 img loss 1.4854826927185059 img loss 1.4138578176498413 img loss 1.4734429121017456 img loss 1.5084930658340454 img loss 1.4399727582931519 img loss 1.582256555557251 img loss 1.3686940670013428 img loss 1.4572514295578003 img loss 1.472390055656433 img loss 1.4850411415100098 img loss 1.5432896614074707 img loss 1.5989601612091064 img loss 1.3994821310043335 img loss 1.5475211143493652 img loss 1.4813812971115112 img loss 1.3562052249908447 img loss 1.4331244230270386 img loss 1.3392937183380127 img loss 1.3941357135772705 img loss 1.467663049697876 img loss 1.3673968315124512 img loss 1.4430530071258545 img loss 1.4398905038833618 img loss 1.407092809677124 img loss 1.5511504411697388 img loss 1.520728588104248 img loss 1.4521082639694214 img loss 1.484093427658081 img loss 1.573078989982605 img loss 1.4788486957550049 img loss 1.4610552787780762 img loss 1.4143661260604858 img loss 1.4927681684494019 img loss 1.509551763534546 img loss 1.4826034307479858 img loss 1.4082295894622803 img loss 1.4511200189590454 img loss 1.5101953744888306 img loss 1.4151842594146729 img loss 1.5674796104431152 img loss 1.666812539100647 img loss 1.300150752067566 img loss 1.5178977251052856 img loss 1.4797710180282593 img loss 1.5067800283432007 img loss 1.4180408716201782 img loss 1.4276864528656006 img loss 1.4005274772644043 img loss 1.4440926313400269 img loss 1.438110113143921 img loss 1.3317056894302368img loss 1.48496675491333 img loss 1.446839451789856 img loss 1.429492473602295 img loss 1.4982818365097046 img loss 1.3877824544906616 img loss 1.4873071908950806 img loss 1.4767118692398071 img loss 1.3940306901931763 img loss 1.5447150468826294 img loss 1.3509485721588135 img loss 1.4122473001480103 img loss 1.4855091571807861 img loss 1.4043591022491455 img loss 1.3019434213638306 img loss 1.4800137281417847 img loss 1.4139622449874878 img loss 1.5636872053146362 img loss 1.5921391248703003 img loss 1.4838050603866577 img loss 1.4474951028823853 img loss 1.542775273323059 img loss 1.517787218093872 img loss 1.4882210493087769 img loss 1.552039384841919 img loss 1.49347984790802 img loss 1.4193642139434814 img loss 1.352829098701477 img loss 1.4681004285812378img loss 1.5035725831985474 img loss 1.445517659187317 img loss 1.4480702877044678 img loss 1.453649640083313 img loss 1.4883660078048706 img loss 1.3744080066680908 img loss 1.503810167312622 img loss 1.4225908517837524 img loss 1.4972023963928223 img loss 1.4543594121932983 img loss 1.459447979927063 img loss 1.451616883277893 img loss 1.5336755514144897 img loss 1.4460028409957886 img loss 1.4581586122512817 img loss 1.5259976387023926 {'loss': 1.4642, 'grad_norm': 0.6134853363037109, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1942720413208008 img loss 1.247435212135315 img loss 1.159644603729248 img loss 1.2395780086517334 img loss 1.2878522872924805 img loss 1.1995729207992554 img loss 1.2534703016281128 img loss 1.2203094959259033 img loss 1.274576187133789 img loss 1.2747315168380737 img loss 1.1955535411834717 img loss 1.2409553527832031 img loss 1.2374892234802246 img loss 1.2297630310058594 img loss 1.1988862752914429 img loss 1.2254892587661743 img loss 1.2252957820892334 img loss 1.1762243509292603 img loss 1.2839076519012451 img loss 1.1931133270263672 img loss 1.1583340167999268 img loss 1.2250218391418457 img loss 1.2171331644058228 img loss 1.2583950757980347 img loss 1.2975189685821533 img loss 1.2493442296981812 img loss 1.2018688917160034 img loss 1.2666147947311401 img loss 1.3005084991455078 img loss 1.2091196775436401 img loss 1.2169032096862793 img loss 1.1798168420791626 img loss 1.2532002925872803 img loss 1.2057253122329712 img loss 1.1929901838302612 img loss 1.312166452407837 img loss 1.207834243774414 img loss 1.1667075157165527 img loss 1.2992366552352905 img loss 1.2665290832519531 img loss 1.2269139289855957 img loss 1.178728699684143 img loss 1.1820740699768066 img loss 1.288637638092041 img loss 1.2527064085006714 img loss 1.2639573812484741 img loss 1.2174097299575806 img loss 1.2311378717422485 img loss 1.2456477880477905 img loss 1.2411352396011353 img loss 1.2435110807418823 img loss 1.2392584085464478 img loss 1.2744789123535156 img loss 1.2571474313735962 img loss 1.2224775552749634 img loss 1.1653163433074951 img loss 1.2833571434020996 img loss 1.249122977256775 img loss 1.221952199935913 img loss 1.1727197170257568 img loss 1.2869725227355957 img loss 1.2359203100204468 img loss 1.2427477836608887 img loss 1.1835963726043701 img loss 1.2455737590789795img loss 1.2420649528503418 img loss 1.2371726036071777 img loss 1.2216391563415527 img loss 1.1305947303771973 img loss 1.2692718505859375 img loss 1.229975938796997 img loss 1.2205142974853516 img loss 1.2199513912200928 img loss 1.3144100904464722 img loss 1.1958931684494019 img loss 1.2566852569580078 img loss 1.139392375946045 img loss 1.2276551723480225 img loss 1.174710988998413 img loss 1.2053556442260742 img loss 1.2104138135910034 img loss 1.2131683826446533 img loss 1.208441972732544 img loss 1.332000970840454 img loss 1.1802829504013062 img loss 1.2101480960845947 img loss 1.299226999282837 img loss 1.2665830850601196 img loss 1.3729280233383179 img loss 1.2159479856491089 img loss 1.1848872900009155 img loss 1.205985426902771 img loss 1.14177405834198 img loss 1.1902241706848145 img loss 1.1810221672058105 img loss 1.233919620513916 img loss 1.2043828964233398 img loss 1.2040305137634277 img loss 1.2435226440429688 img loss 1.2673206329345703 img loss 1.2281349897384644 img loss 1.183375358581543 img loss 1.270585060119629 img loss 1.365341067314148 img loss 1.23031747341156 img loss 1.2620147466659546 img loss 1.226041316986084 img loss 1.223976969718933 img loss 1.2227210998535156 img loss 1.2289841175079346 img loss 1.2470768690109253 img loss 1.3124501705169678 img loss 1.2284759283065796 img loss 1.2927955389022827 img loss 1.2574634552001953 img loss 1.2275865077972412 img loss 1.21893310546875 img loss 1.1985886096954346 img loss 1.232379674911499 img loss 1.2219765186309814 img loss 1.2516885995864868 img loss 1.2542908191680908 img loss 1.2889840602874756 img loss 1.2861783504486084 img loss 1.1883330345153809 img loss 1.2292073965072632 img loss 1.1665980815887451 img loss 1.2271000146865845 {'loss': 1.2322, 'grad_norm': 0.6854076981544495, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3759644031524658 img loss 1.408852458000183 img loss 1.476326584815979 img loss 1.4003479480743408 img loss 1.334290862083435 img loss 1.6018974781036377 img loss 1.4308350086212158 img loss 1.546105980873108 img loss 1.624258279800415 img loss 1.6056030988693237 img loss 1.3575102090835571 img loss 1.4423174858093262 img loss 1.3307530879974365 img loss 1.451407790184021 img loss 1.448168396949768 img loss 1.3691030740737915 img loss 1.4516154527664185img loss 1.448283076286316 img loss 1.3759185075759888 img loss 1.4092977046966553 img loss 1.4714113473892212 img loss 1.4995588064193726 img loss 1.4054481983184814 img loss 1.4782824516296387 img loss 1.491159200668335 img loss 1.4056459665298462 img loss 1.3604434728622437 img loss 1.3715107440948486 img loss 1.3521407842636108 img loss 1.4071396589279175 img loss 1.4651820659637451 img loss 1.4116435050964355 img loss 1.457531452178955 img loss 1.4652255773544312 img loss 1.3735207319259644 img loss 1.3326284885406494 img loss 1.4902406930923462 img loss 1.4554790258407593 img loss 1.5368361473083496 img loss 1.4548981189727783 img loss 1.447363257408142 img loss 1.4382268190383911 img loss 1.3778502941131592 img loss 1.425964593887329 img loss 1.3977649211883545 img loss 1.344204068183899 img loss 1.5637551546096802 img loss 1.3947304487228394 img loss 1.4735075235366821 img loss 1.6046360731124878 img loss 1.369179368019104 img loss 1.5182172060012817 img loss 1.486539363861084 img loss 1.41403067111969 img loss 1.3529289960861206 img loss 1.4565565586090088 img loss 1.484250545501709 img loss 1.5246528387069702 img loss 1.574151873588562 img loss 1.4244714975357056 img loss 1.5019387006759644 img loss 1.4961974620819092 img loss 1.5247722864151 img loss 1.4586127996444702 img loss 1.354356288909912 img loss 1.4253677129745483 img loss 1.5653387308120728 img loss 1.5108433961868286 img loss 1.4529637098312378 img loss 1.506041407585144 img loss 1.453827142715454 img loss 1.5156710147857666 img loss 1.5382153987884521 img loss 1.4215911626815796 img loss 1.4036076068878174 img loss 1.5258809328079224 img loss 1.3526629209518433 img loss 1.5057518482208252 img loss 1.4082261323928833 img loss 1.414611577987671 img loss 1.4649174213409424 img loss 1.4288780689239502 img loss 1.4164804220199585 img loss 1.3907630443572998 img loss 1.443454623222351 img loss 1.4329638481140137 img loss 1.4008057117462158 img loss 1.4258677959442139 img loss 1.3545373678207397 img loss 1.5328021049499512 img loss 1.477911353111267 img loss 1.3679338693618774 img loss 1.5386279821395874 img loss 1.3425222635269165 img loss 1.5926710367202759 img loss 1.4417229890823364 img loss 1.3788059949874878 img loss 1.4718594551086426 img loss 1.3538631200790405 img loss 1.5518920421600342 img loss 1.4898617267608643 img loss 1.5859431028366089 img loss 1.4727708101272583 img loss 1.4757235050201416 img loss 1.500943660736084 img loss 1.4515893459320068 img loss 1.477871060371399 img loss 1.48537015914917 img loss 1.3558908700942993 img loss 1.4575269222259521 img loss 1.4117287397384644 img loss 1.4032623767852783 img loss 1.5208790302276611 img loss 1.6473681926727295 img loss 1.4508429765701294 img loss 1.421945333480835 img loss 1.5272024869918823 img loss 1.3654557466506958 img loss 1.437309741973877 img loss 1.5273579359054565 img loss 1.4345108270645142 img loss 1.451767086982727 img loss 1.4527474641799927 img loss 1.5258653163909912 img loss 1.3222013711929321 img loss 1.395464301109314 img loss 1.4385627508163452 img loss 1.488989233970642 {'loss': 1.4513, 'grad_norm': 0.5766868591308594, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2057135105133057 img loss 1.1952675580978394 img loss 1.249205231666565 img loss 1.1654961109161377 img loss 1.2793593406677246 img loss 1.155441164970398 img loss 1.1484721899032593 img loss 1.2166438102722168 img loss 1.1117321252822876 img loss 1.154168725013733 img loss 1.2147760391235352 img loss 1.142460584640503 img loss 1.1497972011566162 img loss 1.1808325052261353 img loss 1.1645549535751343 img loss 1.14155912399292 img loss 1.1940809488296509 img loss 1.1275091171264648 img loss 1.1639528274536133 img loss 1.1694765090942383 img loss 1.1280241012573242 img loss 1.2358226776123047 img loss 1.3039511442184448 img loss 1.1502163410186768 img loss 1.1681698560714722 img loss 1.2621468305587769 img loss 1.2510727643966675 img loss 1.1547446250915527 img loss 1.1904995441436768 img loss 1.1100744009017944 img loss 1.1799581050872803 img loss 1.1510992050170898 img loss 1.1141122579574585 img loss 1.13265061378479 img loss 1.1093538999557495 img loss 1.1730085611343384 img loss 1.1427971124649048 img loss 1.1515597105026245 img loss 1.1486907005310059 img loss 1.1279858350753784 img loss 1.2122405767440796 img loss 1.1779197454452515 img loss 1.183268427848816 img loss 1.1806119680404663 img loss 1.1643750667572021 img loss 1.1805323362350464 img loss 1.1945770978927612 img loss 1.2332775592803955 img loss 1.2111860513687134 img loss 1.2230762243270874 img loss 1.2433010339736938 img loss 1.1925139427185059 img loss 1.203466773033142 img loss 1.1782970428466797 img loss 1.1831079721450806 img loss 1.164043664932251 img loss 1.2012803554534912 img loss 1.2397459745407104 img loss 1.198259949684143 img loss 1.2620550394058228 img loss 1.2177904844284058 img loss 1.193938136100769 img loss 1.2419495582580566 img loss 1.2660694122314453 img loss 1.1825793981552124 img loss 1.2839546203613281 img loss 1.2224165201187134 img loss 1.1014913320541382 img loss 1.227710247039795 img loss 1.1265742778778076 img loss 1.1874510049819946 img loss 1.1804736852645874 img loss 1.1979917287826538 img loss 1.1850199699401855 img loss 1.2312672138214111 img loss 1.2022663354873657 img loss 1.1908420324325562 img loss 1.1855380535125732 img loss 1.165511965751648 img loss 1.1538901329040527 img loss 1.1270967721939087 img loss 1.2124124765396118 img loss 1.1771457195281982 img loss 1.1683940887451172 img loss 1.2348047494888306 img loss 1.2055165767669678 img loss 1.2103538513183594 img loss 1.153825044631958 img loss 1.2048389911651611 img loss 1.1939550638198853 img loss 1.184387445449829 img loss 1.2037467956542969 img loss 1.1858490705490112 img loss 1.254907488822937 img loss 1.142256736755371 img loss 1.1527669429779053 img loss 1.174846887588501 img loss 1.1882842779159546 img loss 1.2606323957443237 img loss 1.1917014122009277 img loss 1.1673856973648071 img loss 1.1987789869308472 img loss 1.2057361602783203 img loss 1.2359269857406616 img loss 1.1084123849868774 img loss 1.1808456182479858 img loss 1.180640697479248 img loss 1.121984839439392 img loss 1.1906299591064453 img loss 1.1536200046539307 img loss 1.1856380701065063 img loss 1.186248779296875 img loss 1.2412736415863037 img loss 1.1724374294281006 img loss 1.169582724571228 img loss 1.274545431137085 img loss 1.178924560546875 img loss 1.2201470136642456 img loss 1.2691882848739624 img loss 1.136772871017456 img loss 1.2695674896240234 img loss 1.1573244333267212 img loss 1.2431983947753906 img loss 1.2333714962005615 img loss 1.2551989555358887 img loss 1.1765022277832031 img loss 1.259002447128296 img loss 1.1842049360275269 {'loss': 1.1896, 'grad_norm': 0.38195109367370605, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1794155836105347 img loss 1.2354395389556885 img loss 1.3207935094833374 img loss 1.299398422241211 img loss 1.2357850074768066 img loss 1.2756870985031128 img loss 1.1554688215255737 img loss 1.370152235031128 img loss 1.309926986694336 img loss 1.3109499216079712 img loss 1.1625187397003174 img loss 1.3191282749176025 img loss 1.240522027015686 img loss 1.2749239206314087 img loss 1.3637081384658813 img loss 1.3809998035430908 img loss 1.3225722312927246 img loss 1.2793362140655518 img loss 1.2548240423202515 img loss 1.386785626411438 img loss 1.2870287895202637 img loss 1.2968230247497559 img loss 1.3146079778671265 img loss 1.2530229091644287 img loss 1.1990759372711182 img loss 1.2469513416290283 img loss 1.2113205194473267 img loss 1.269266128540039 img loss 1.2757673263549805 img loss 1.1918880939483643 img loss 1.2923005819320679 img loss 1.3327975273132324 img loss 1.2672278881072998 img loss 1.2457817792892456 img loss 1.2539048194885254 img loss 1.2515305280685425 img loss 1.227163314819336 img loss 1.2478768825531006 img loss 1.2385772466659546 img loss 1.3109873533248901 img loss 1.1929482221603394 img loss 1.2113999128341675 img loss 1.3713624477386475 img loss 1.2836130857467651 img loss 1.1722410917282104 img loss 1.2034276723861694 img loss 1.167553424835205 img loss 1.252707839012146 img loss 1.372930645942688 img loss 1.269568920135498 img loss 1.2782413959503174 img loss 1.1928215026855469 img loss 1.2323824167251587 img loss 1.2189630270004272 img loss 1.189622402191162 img loss 1.3295711278915405 img loss 1.1725990772247314 img loss 1.3340553045272827 img loss 1.2708592414855957 img loss 1.330971360206604 img loss 1.1891546249389648 img loss 1.2637008428573608 img loss 1.2429325580596924 img loss 1.3142563104629517 img loss 1.2492233514785767 img loss 1.2126796245574951 img loss 1.3732815980911255 img loss 1.320931315422058 img loss 1.4119988679885864 img loss 1.3310391902923584 img loss 1.207985758781433 img loss 1.2828543186187744 img loss 1.1824859380722046 img loss 1.1637455224990845 img loss 1.2720868587493896 img loss 1.293351173400879 img loss 1.294581651687622 img loss 1.1855862140655518 img loss 1.2512834072113037 img loss 1.3796128034591675 img loss 1.2294974327087402 img loss 1.2334136962890625 img loss 1.2855947017669678 img loss 1.3241783380508423 img loss 1.2823481559753418 img loss 1.1625031232833862 img loss 1.2578845024108887 img loss 1.2226290702819824 img loss 1.2777433395385742 img loss 1.1248668432235718 img loss 1.3035938739776611 img loss 1.1797794103622437 img loss 1.2821296453475952 img loss 1.2276886701583862 img loss 1.285668134689331 img loss 1.2347749471664429 img loss 1.258344292640686 img loss 1.2518725395202637 img loss 1.2829360961914062 img loss 1.3119957447052002 img loss 1.2628425359725952 img loss 1.2447947263717651 img loss 1.3224730491638184 img loss 1.2675485610961914 img loss 1.3317769765853882 img loss 1.2221660614013672 img loss 1.3497945070266724 img loss 1.279914140701294 img loss 1.2466444969177246 img loss 1.242565393447876 img loss 1.2622419595718384 img loss 1.2209348678588867 img loss 1.1385124921798706 img loss 1.250509262084961 img loss 1.2435588836669922 img loss 1.23075270652771 img loss 1.2239893674850464 img loss 1.4403598308563232 img loss 1.2121083736419678 img loss 1.2408058643341064 img loss 1.2201502323150635 img loss 1.2626405954360962 img loss 1.2429194450378418 img loss 1.2489385604858398 img loss 1.3487656116485596 img loss 1.253586769104004 img loss 1.2902851104736328 img loss 1.3512351512908936 {'loss': 1.2643, 'grad_norm': 0.28143593668937683, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2462975978851318 img loss 1.2366232872009277 img loss 1.328052043914795 img loss 1.212432622909546 img loss 1.287036418914795 img loss 1.3207234144210815 img loss 1.2693421840667725 img loss 1.2318629026412964 img loss 1.2379930019378662 img loss 1.3333420753479004 img loss 1.3167755603790283 img loss 1.31640625 img loss 1.3715249300003052 img loss 1.2601985931396484 img loss 1.2558224201202393 img loss 1.3217518329620361 img loss 1.3279438018798828 img loss 1.3935989141464233 img loss 1.2632367610931396 img loss 1.3163822889328003 img loss 1.3125035762786865 img loss 1.3451775312423706 img loss 1.2802037000656128 img loss 1.2588287591934204 img loss 1.3017287254333496 img loss 1.3449628353118896 img loss 1.2478188276290894 img loss 1.264848232269287 img loss 1.3507386445999146 img loss 1.2727391719818115 img loss 1.3105037212371826 img loss 1.2118828296661377 img loss 1.2968695163726807 img loss 1.2805317640304565 img loss 1.2433266639709473 img loss 1.2307003736495972 img loss 1.311612844467163 img loss 1.340533971786499 img loss 1.321730375289917 img loss 1.3716168403625488 img loss 1.2659744024276733 img loss 1.4177212715148926 img loss 1.2644977569580078 img loss 1.258805513381958 img loss 1.3130619525909424 img loss 1.2972381114959717 img loss 1.3642140626907349 img loss 1.3089903593063354 img loss 1.2812398672103882 img loss 1.277239203453064 img loss 1.3380473852157593 img loss 1.3936394453048706 img loss 1.316413402557373 img loss 1.3152662515640259 img loss 1.421932339668274 img loss 1.2804133892059326 img loss 1.3491424322128296 img loss 1.2909889221191406 img loss 1.2574642896652222 img loss 1.23947274684906 img loss 1.2105162143707275 img loss 1.2277711629867554 img loss 1.2877777814865112 img loss 1.3012365102767944 img loss 1.2854636907577515 img loss 1.2462716102600098 img loss 1.2828145027160645 img loss 1.2608959674835205 img loss 1.2889740467071533 img loss 1.2546956539154053 img loss 1.3005609512329102 img loss 1.2469929456710815 img loss 1.2800076007843018 img loss 1.2834506034851074 img loss 1.265609622001648 img loss 1.3072772026062012 img loss 1.2580606937408447 img loss 1.341152310371399 img loss 1.2010494470596313 img loss 1.2632675170898438 img loss 1.2325565814971924 img loss 1.3151793479919434 img loss 1.3458954095840454 img loss 1.1974188089370728 img loss 1.2284533977508545 img loss 1.3291652202606201 img loss 1.3916890621185303 img loss 1.2645747661590576 img loss 1.2826893329620361 img loss 1.3758418560028076 img loss 1.316881775856018 img loss 1.356123685836792 img loss 1.209875464439392 img loss 1.2338051795959473 img loss 1.2763416767120361 img loss 1.3300607204437256 img loss 1.281463623046875 img loss 1.3983749151229858 img loss 1.339641809463501 img loss 1.2628223896026611 img loss 1.3121191263198853 img loss 1.3042713403701782 img loss 1.2920804023742676 img loss 1.2650389671325684 img loss 1.3155466318130493 img loss 1.2585350275039673 img loss 1.2399059534072876 img loss 1.2774747610092163 img loss 1.2073476314544678 img loss 1.2434014081954956 img loss 1.2105259895324707 img loss 1.268811821937561 img loss 1.302575945854187 img loss 1.2325563430786133 img loss 1.2661962509155273 img loss 1.3257287740707397 img loss 1.371627926826477 img loss 1.308540940284729 img loss 1.2648903131484985 img loss 1.1788239479064941 img loss 1.2781275510787964 img loss 1.2187209129333496 img loss 1.265026330947876 img loss 1.3190311193466187 img loss 1.3731454610824585 img loss 1.3570879697799683 img loss 1.356202244758606 img loss 1.3485907316207886 {'loss': 1.2916, 'grad_norm': 0.44399625062942505, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1631122827529907 img loss 1.3116804361343384 img loss 1.3262097835540771 img loss 1.3118140697479248 img loss 1.3680025339126587 img loss 1.2290098667144775 img loss 1.2755603790283203 img loss 1.3950637578964233 img loss 1.268496036529541 img loss 1.2310876846313477 img loss 1.2457220554351807 img loss 1.2849725484848022 img loss 1.2923200130462646 img loss 1.2033993005752563 img loss 1.3132171630859375 img loss 1.2719783782958984 img loss 1.2822327613830566 img loss 1.241613745689392 img loss 1.3197168111801147 img loss 1.311113953590393 img loss 1.2419993877410889 img loss 1.3260080814361572 img loss 1.2229783535003662 img loss 1.4083571434020996 img loss 1.3398106098175049 img loss 1.3759047985076904 img loss 1.3497081995010376 img loss 1.2435797452926636 img loss 1.3225376605987549 img loss 1.224312663078308 img loss 1.3650096654891968 img loss 1.3841496706008911 img loss 1.2417782545089722 img loss 1.2754645347595215 img loss 1.2420649528503418 img loss 1.3507039546966553 img loss 1.1269714832305908 img loss 1.3429083824157715 img loss 1.3466500043869019 img loss 1.2822741270065308 img loss 1.3384443521499634 img loss 1.2729803323745728 img loss 1.3256853818893433 img loss 1.2959074974060059 img loss 1.3680455684661865 img loss 1.2591694593429565 img loss 1.2619472742080688 img loss 1.2977033853530884 img loss 1.238258957862854 img loss 1.22661292552948 img loss 1.2793337106704712 img loss 1.275222659111023 img loss 1.3425430059432983 img loss 1.2570087909698486 img loss 1.2092360258102417 img loss 1.1754919290542603 img loss 1.218688726425171 img loss 1.3894773721694946 img loss 1.1896787881851196 img loss 1.3983826637268066 img loss 1.2244153022766113 img loss 1.3415656089782715 img loss 1.2267602682113647 img loss 1.3923496007919312 img loss 1.2719700336456299 img loss 1.3712553977966309 img loss 1.4220398664474487 img loss 1.2492460012435913 img loss 1.2851088047027588 img loss 1.2693678140640259 img loss 1.3007330894470215 img loss 1.2436611652374268 img loss 1.2498177289962769 img loss 1.3646928071975708 img loss 1.3411495685577393 img loss 1.2510004043579102 img loss 1.302244782447815 img loss 1.2558754682540894 img loss 1.1973321437835693 img loss 1.2864043712615967 img loss 1.2814301252365112 img loss 1.2300795316696167 img loss 1.2542228698730469 img loss 1.2503807544708252 img loss 1.3441942930221558 img loss 1.2864305973052979 img loss 1.326332688331604 img loss 1.2231595516204834 img loss 1.2652502059936523 img loss 1.2529836893081665 img loss 1.2328259944915771 img loss 1.3808735609054565 img loss 1.2724215984344482 img loss 1.2431224584579468 img loss 1.3936107158660889 img loss 1.355604648590088 img loss 1.1960556507110596 img loss 1.2392441034317017 img loss 1.2988500595092773 img loss 1.2690651416778564 img loss 1.275752305984497 img loss 1.2898505926132202 img loss 1.3281872272491455 img loss 1.2383474111557007 img loss 1.253772258758545 img loss 1.2735116481781006 img loss 1.2987984418869019 img loss 1.4123131036758423 img loss 1.2285828590393066 img loss 1.1670372486114502 img loss 1.3266886472702026 img loss 1.3884724378585815 img loss 1.225005030632019 img loss 1.3088940382003784 img loss 1.347103476524353 img loss 1.3700348138809204 img loss 1.363310694694519 img loss 1.3693817853927612 img loss 1.4681894779205322 img loss 1.2519235610961914 img loss 1.3668831586837769 img loss 1.2706801891326904 img loss 1.2410163879394531 img loss 1.3140381574630737 img loss 1.2797377109527588 img loss 1.3369290828704834 img loss 1.2882137298583984 img loss 1.2132606506347656 {'loss': 1.2908, 'grad_norm': 0.30149149894714355, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2052032947540283 img loss 1.2891888618469238 img loss 1.231215238571167 img loss 1.1900181770324707 img loss 1.2658649682998657 img loss 1.3742423057556152 img loss 1.4403711557388306 img loss 1.2315725088119507 img loss 1.2002861499786377 img loss 1.1552670001983643 img loss 1.236037254333496 img loss 1.2207826375961304 img loss 1.1306196451187134 img loss 1.2648741006851196 img loss 1.2099456787109375 img loss 1.1941171884536743 img loss 1.2742823362350464 img loss 1.2627900838851929 img loss 1.2393015623092651 img loss 1.2813448905944824 img loss 1.1834341287612915 img loss 1.3358441591262817 img loss 1.3082064390182495 img loss 1.2364164590835571 img loss 1.2579561471939087 img loss 1.2293970584869385 img loss 1.3294566869735718 img loss 1.2479661703109741 img loss 1.2614929676055908 img loss 1.2051260471343994 img loss 1.2412229776382446 img loss 1.2387027740478516 img loss 1.2317261695861816 img loss 1.2030185461044312 img loss 1.1422960758209229 img loss 1.253320574760437 img loss 1.229875087738037 img loss 1.1793036460876465 img loss 1.2707546949386597 img loss 1.1929359436035156 img loss 1.3528062105178833 img loss 1.3001946210861206 img loss 1.2238142490386963 img loss 1.3892334699630737 img loss 1.2535264492034912 img loss 1.2289701700210571 img loss 1.2451132535934448 img loss 1.0998891592025757 img loss 1.2061171531677246 img loss 1.1247888803482056 img loss 1.196440577507019 img loss 1.1471565961837769 img loss 1.2810781002044678 img loss 1.30314040184021 img loss 1.2719182968139648 img loss 1.2920811176300049 img loss 1.328284502029419 img loss 1.2073677778244019 img loss 1.3122894763946533 img loss 1.2450134754180908 img loss 1.2730387449264526 img loss 1.3197147846221924 img loss 1.159466028213501 img loss 1.2214311361312866 img loss 1.1887493133544922 img loss 1.2325981855392456 img loss 1.2745689153671265 img loss 1.240661382675171 img loss 1.311915636062622 img loss 1.2353571653366089 img loss 1.260663628578186 img loss 1.256084680557251 img loss 1.1693670749664307 img loss 1.2748879194259644 img loss 1.1752198934555054 img loss 1.1333328485488892 img loss 1.213607668876648 img loss 1.3431117534637451 img loss 1.3354994058609009 img loss 1.218970775604248 img loss 1.2734222412109375 img loss 1.1987595558166504 img loss 1.2588074207305908 img loss 1.1823126077651978 img loss 1.2368522882461548 img loss 1.164285659790039 img loss 1.1566399335861206 img loss 1.2151516675949097 img loss 1.335564136505127 img loss 1.2023639678955078 img loss 1.2701948881149292 img loss 1.3285574913024902 img loss 1.2697874307632446 img loss 1.2615762948989868 img loss 1.2138862609863281 img loss 1.3004804849624634 img loss 1.2251814603805542 img loss 1.298081398010254 img loss 1.2232320308685303 img loss 1.2771029472351074 img loss 1.1833240985870361 img loss 1.2666929960250854 img loss 1.2301937341690063 img loss 1.3194659948349 img loss 1.2499088048934937 img loss 1.1836388111114502 img loss 1.2160392999649048 img loss 1.3283076286315918 img loss 1.1436052322387695 img loss 1.2295089960098267 img loss 1.227065086364746 img loss 1.2639191150665283 img loss 1.2214393615722656 img loss 1.164669394493103 img loss 1.3183478116989136 img loss 1.1594047546386719 img loss 1.2338873147964478 img loss 1.1889946460723877 img loss 1.2730484008789062 img loss 1.2938050031661987 img loss 1.2385584115982056 img loss 1.3043911457061768 img loss 1.2819143533706665 img loss 1.2300033569335938 img loss 1.2593400478363037 img loss 1.315198540687561 img loss 1.197730302810669 img loss 1.2092053890228271 {'loss': 1.2433, 'grad_norm': 0.39144501090049744, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.375821590423584 img loss 1.2543026208877563 img loss 1.2671411037445068 img loss 1.1544326543807983 img loss 1.2699785232543945 img loss 1.312078833580017 img loss 1.3177803754806519 img loss 1.267664909362793 img loss 1.216741919517517 img loss 1.3471477031707764 img loss 1.2883256673812866 img loss 1.2148008346557617 img loss 1.2400975227355957 img loss 1.30679190158844 img loss 1.1819943189620972 img loss 1.1873308420181274 img loss 1.2547776699066162 img loss 1.2526401281356812 img loss 1.1343607902526855 img loss 1.2366204261779785 img loss 1.2527031898498535 img loss 1.2263219356536865 img loss 1.2367892265319824 img loss 1.1550813913345337 img loss 1.2495224475860596 img loss 1.265960454940796 img loss 1.210485816001892 img loss 1.2654727697372437 img loss 1.311408281326294 img loss 1.234028697013855 img loss 1.1689153909683228 img loss 1.2340458631515503 img loss 1.2148852348327637 img loss 1.226335883140564 img loss 1.2411011457443237 img loss 1.2188345193862915 img loss 1.2424485683441162 img loss 1.251402735710144 img loss 1.3606696128845215 img loss 1.2581703662872314 img loss 1.2256020307540894 img loss 1.2909053564071655 img loss 1.421802043914795 img loss 1.2449413537979126 img loss 1.1479148864746094 img loss 1.194380283355713img loss 1.240944266319275img loss 1.249276876449585 img loss 1.2531185150146484 img loss 1.2775665521621704 img loss 1.2333498001098633 img loss 1.269144058227539 img loss 1.3022793531417847 img loss 1.3170331716537476 img loss 1.2231457233428955 img loss 1.3628404140472412 img loss 1.1899821758270264 img loss 1.2661280632019043 img loss 1.331754207611084 img loss 1.2662849426269531 img loss 1.2484283447265625 img loss 1.2509765625 img loss 1.2762420177459717 img loss 1.2819753885269165 img loss 1.367978811264038 img loss 1.2506970167160034 img loss 1.2197765111923218 img loss 1.3189544677734375 img loss 1.2444701194763184 img loss 1.3234362602233887 img loss 1.2500616312026978 img loss 1.262472152709961 img loss 1.340766429901123 img loss 1.374580979347229 img loss 1.2980642318725586 img loss 1.1815003156661987 img loss 1.3318607807159424 img loss 1.2699038982391357 img loss 1.3108395338058472 img loss 1.2354687452316284 img loss 1.240864634513855 img loss 1.2249770164489746 img loss 1.2538931369781494img loss 1.195800542831421img loss 1.2500919103622437 img loss 1.3341890573501587 img loss 1.2808315753936768 img loss 1.290799856185913 img loss 1.2023416757583618 img loss 1.1231436729431152 img loss 1.2034618854522705 img loss 1.2247508764266968 img loss 1.252163290977478 img loss 1.2059768438339233 img loss 1.2114967107772827 img loss 1.217481255531311 img loss 1.3324673175811768 img loss 1.2151727676391602 img loss 1.289162278175354 img loss 1.2587928771972656 img loss 1.2683830261230469 img loss 1.1595401763916016 img loss 1.2268950939178467 img loss 1.2742135524749756 img loss 1.2655283212661743 img loss 1.324501395225525 img loss 1.2435050010681152 img loss 1.1151328086853027 img loss 1.2051775455474854 img loss 1.156779170036316 img loss 1.2174233198165894 img loss 1.2920864820480347 img loss 1.2442824840545654 img loss 1.267770528793335 img loss 1.1747134923934937 img loss 1.2085918188095093 img loss 1.305445671081543 img loss 1.2147846221923828 img loss 1.2743438482284546 img loss 1.2299244403839111 img loss 1.2335647344589233 img loss 1.2386397123336792 img loss 1.3189579248428345 img loss 1.2883819341659546 img loss 1.2798011302947998 img loss 1.3352082967758179 img loss 1.2506935596466064 img loss 1.2315634489059448 {'loss': 1.254, 'grad_norm': 0.4164639711380005, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2413040399551392 img loss 1.239549994468689 img loss 1.28132963180542 img loss 1.2508225440979004 img loss 1.2130342721939087 img loss 1.2187381982803345 img loss 1.278533697128296 img loss 1.2873533964157104 img loss 1.2376734018325806 img loss 1.228402853012085 img loss 1.206321358680725 img loss 1.2284725904464722 img loss 1.2592353820800781 img loss 1.2706283330917358 img loss 1.257817268371582 img loss 1.1948031187057495 img loss 1.2493139505386353 img loss 1.1874268054962158 img loss 1.228868842124939 img loss 1.1785640716552734 img loss 1.2240691184997559 img loss 1.2378672361373901 img loss 1.246910572052002 img loss 1.34613835811615 img loss 1.2654590606689453 img loss 1.250556468963623 img loss 1.1656737327575684 img loss 1.2513036727905273 img loss 1.2317910194396973 img loss 1.3399059772491455 img loss 1.248716950416565 img loss 1.253238558769226 img loss 1.2312273979187012 img loss 1.2418867349624634 img loss 1.234950304031372 img loss 1.2506917715072632 img loss 1.2292627096176147 img loss 1.2333173751831055 img loss 1.1994298696517944 img loss 1.2697689533233643 img loss 1.2322628498077393 img loss 1.2269649505615234 img loss 1.3061054944992065 img loss 1.2713656425476074 img loss 1.2263152599334717 img loss 1.2981030941009521 img loss 1.2513779401779175 img loss 1.2151620388031006 img loss 1.3005988597869873 img loss 1.2554184198379517 img loss 1.2501426935195923 img loss 1.243070363998413 img loss 1.2524051666259766 img loss 1.2580980062484741 img loss 1.2593344449996948 img loss 1.2174620628356934 img loss 1.2308838367462158 img loss 1.2502025365829468 img loss 1.2722320556640625 img loss 1.2482147216796875 img loss 1.228729248046875 img loss 1.262843370437622 img loss 1.2848124504089355 img loss 1.2503361701965332 img loss 1.243285894393921 img loss 1.2348344326019287 img loss 1.2244466543197632 img loss 1.2746495008468628 img loss 1.2480816841125488 img loss 1.2723255157470703 img loss 1.3379714488983154 img loss 1.1978555917739868 img loss 1.2839946746826172 img loss 1.2638002634048462 img loss 1.2072981595993042 img loss 1.2549190521240234 img loss 1.2183912992477417 img loss 1.2511337995529175 img loss 1.2314720153808594 img loss 1.208182692527771 img loss 1.2310709953308105 img loss 1.212146520614624 img loss 1.2896984815597534 img loss 1.2443668842315674 img loss 1.2620933055877686 img loss 1.3165000677108765 img loss 1.2331856489181519 img loss 1.2451756000518799 img loss 1.2117515802383423 img loss 1.2387115955352783 img loss 1.2458395957946777 img loss 1.286592721939087 img loss 1.2283458709716797 img loss 1.2412794828414917 img loss 1.2153809070587158 img loss 1.2387183904647827 img loss 1.237657070159912 img loss 1.2658418416976929 img loss 1.1765950918197632 img loss 1.21098792552948 img loss 1.2261358499526978 img loss 1.2289597988128662 img loss 1.2566497325897217 img loss 1.261421799659729 img loss 1.2666492462158203 img loss 1.2587273120880127 img loss 1.246607780456543 img loss 1.2916734218597412 img loss 1.2417635917663574 img loss 1.2630279064178467 img loss 1.2239158153533936 img loss 1.28774893283844 img loss 1.2336453199386597 img loss 1.3185065984725952 img loss 1.212717056274414 img loss 1.267074465751648 img loss 1.2399853467941284 img loss 1.2631725072860718 img loss 1.269939661026001 img loss 1.2307698726654053 img loss 1.207365870475769 img loss 1.277308702468872 img loss 1.2435777187347412 img loss 1.2956184148788452 img loss 1.211780309677124 img loss 1.214568853378296 img loss 1.1911826133728027 img loss 1.2512935400009155 {'loss': 1.2465, 'grad_norm': 0.300190806388855, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2036762237548828 img loss 1.277279257774353 img loss 1.1772962808609009 img loss 1.199755072593689 img loss 1.1507811546325684 img loss 1.1842504739761353 img loss 1.197611689567566 img loss 1.2697973251342773 img loss 1.3054349422454834 img loss 1.145910620689392 img loss 1.2167713642120361 img loss 1.2165374755859375 img loss 1.1421267986297607 img loss 1.2386023998260498 img loss 1.2318662405014038 img loss 1.2230198383331299 img loss 1.07991361618042 img loss 1.16903555393219 img loss 1.2141222953796387 img loss 1.2280527353286743 img loss 1.2703213691711426 img loss 1.1759709119796753 img loss 1.250158667564392 img loss 1.1328561305999756 img loss 1.2241742610931396 img loss 1.1768622398376465 img loss 1.1749069690704346 img loss 1.2595055103302002 img loss 1.2667536735534668 img loss 1.1600879430770874 img loss 1.235023856163025 img loss 1.2110612392425537 img loss 1.2918145656585693 img loss 1.1828724145889282 img loss 1.1712510585784912 img loss 1.177159070968628 img loss 1.244993805885315 img loss 1.1802992820739746 img loss 1.2852089405059814 img loss 1.1236484050750732 img loss 1.2480815649032593 img loss 1.137345790863037 img loss 1.1352170705795288 img loss 1.1884692907333374 img loss 1.2431626319885254 img loss 1.2201770544052124 img loss 1.1767323017120361 img loss 1.2157515287399292 img loss 1.1304585933685303 img loss 1.2633475065231323 img loss 1.266890048980713 img loss 1.2011667490005493 img loss 1.2555058002471924 img loss 1.1713898181915283 img loss 1.2200846672058105 img loss 1.2407104969024658 img loss 1.2124465703964233 img loss 1.1606413125991821 img loss 1.141771912574768 img loss 1.1650813817977905 img loss 1.1856743097305298 img loss 1.1602060794830322 img loss 1.2525148391723633 img loss 1.214867115020752 img loss 1.1781423091888428 img loss 1.2433058023452759 img loss 1.1829973459243774 img loss 1.1887511014938354 img loss 1.1299585103988647 img loss 1.2036092281341553 img loss 1.0546693801879883 img loss 1.2088003158569336 img loss 1.3094303607940674 img loss 1.1497745513916016 img loss 1.2688360214233398 img loss 1.2352497577667236 img loss 1.150070071220398 img loss 1.2572715282440186 img loss 1.2239378690719604 img loss 1.2034987211227417 img loss 1.198746919631958 img loss 1.2484354972839355 img loss 1.1650230884552002 img loss 1.2263696193695068 img loss 1.182828426361084 img loss 1.1609864234924316 img loss 1.2282578945159912 img loss 1.2635772228240967 img loss 1.2102982997894287 img loss 1.2477620840072632 img loss 1.200416088104248 img loss 1.1615386009216309 img loss 1.1464648246765137 img loss 1.1705741882324219 img loss 1.182115077972412 img loss 1.1991665363311768 img loss 1.2479933500289917 img loss 1.172857642173767 img loss 1.229327917098999 img loss 1.0753525495529175 img loss 1.2827332019805908 img loss 1.2574652433395386 img loss 1.219797968864441 img loss 1.228728175163269 img loss 1.1625502109527588 img loss 1.2122421264648438 img loss 1.1560611724853516 img loss 1.2021673917770386 img loss 1.1170908212661743 img loss 1.2602561712265015 img loss 1.2154808044433594 img loss 1.1944975852966309 img loss 1.1959948539733887 img loss 1.1803594827651978 img loss 1.1452200412750244 img loss 1.2251431941986084 img loss 1.1922218799591064 img loss 1.2052867412567139 img loss 1.1755754947662354 img loss 1.191625952720642 img loss 1.2084918022155762 img loss 1.2060446739196777 img loss 1.2662309408187866 img loss 1.298662781715393 img loss 1.2090482711791992 img loss 1.2383875846862793 img loss 1.2181347608566284 img loss 1.2543449401855469 {'loss': 1.2039, 'grad_norm': 0.21075527369976044, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4274381399154663 img loss 1.3598068952560425 img loss 1.4181249141693115 img loss 1.4831594228744507 img loss 1.5031068325042725 img loss 1.455532193183899 img loss 1.2872053384780884 img loss 1.3822101354599 img loss 1.3669041395187378 img loss 1.3777493238449097 img loss 1.5735681056976318 img loss 1.4083811044692993 img loss 1.2346067428588867 img loss 1.4347237348556519 img loss 1.2756390571594238 img loss 1.431636929512024 img loss 1.5001524686813354 img loss 1.4133620262145996 img loss 1.5050437450408936 img loss 1.3977137804031372 img loss 1.474118709564209 img loss 1.458231806755066 img loss 1.3636962175369263 img loss 1.3855669498443604 img loss 1.479215383529663 img loss 1.3573940992355347 img loss 1.4641096591949463 img loss 1.430740237236023 img loss 1.5112766027450562 img loss 1.3245468139648438 img loss 1.3683785200119019 img loss 1.3975106477737427 img loss 1.4759726524353027 img loss 1.4407132863998413 img loss 1.4029942750930786 img loss 1.4192415475845337 img loss 1.361570119857788 img loss 1.4870563745498657 img loss 1.359865665435791 img loss 1.3001477718353271 img loss 1.3623652458190918 img loss 1.3415073156356812 img loss 1.3762894868850708 img loss 1.3737924098968506 img loss 1.3600298166275024 img loss 1.4232505559921265 img loss 1.3958542346954346 img loss 1.433427095413208 img loss 1.4426567554473877 img loss 1.4385687112808228 img loss 1.2228052616119385 img loss 1.4929403066635132 img loss 1.4311825037002563 img loss 1.485678791999817 img loss 1.2960433959960938 img loss 1.4685208797454834 img loss 1.4205018281936646 img loss 1.4322092533111572 img loss 1.3633596897125244 img loss 1.2585468292236328 img loss 1.4681122303009033 img loss 1.4052246809005737 img loss 1.4486080408096313 img loss 1.2255924940109253 img loss 1.4224687814712524 img loss 1.5219491720199585 img loss 1.3153114318847656 img loss 1.4421038627624512 img loss 1.3774086236953735 img loss 1.455441951751709 img loss 1.4152659177780151 img loss 1.386212706565857 img loss 1.3270092010498047 img loss 1.379402756690979 img loss 1.426155686378479 img loss 1.3203738927841187 img loss 1.477896809577942 img loss 1.3121455907821655 img loss 1.421608567237854 img loss 1.4035990238189697 img loss 1.4755998849868774 img loss 1.5020335912704468 img loss 1.3311773538589478 img loss 1.4157421588897705 img loss 1.411800742149353 img loss 1.4958573579788208 img loss 1.3069279193878174 img loss 1.5208766460418701 img loss 1.4595539569854736 img loss 1.4628297090530396 img loss 1.3896682262420654 img loss 1.3200958967208862 img loss 1.477262258529663 img loss 1.5120561122894287 img loss 1.4361532926559448 img loss 1.3775686025619507 img loss 1.5665009021759033 img loss 1.3708988428115845 img loss 1.4143754243850708 img loss 1.4363839626312256 img loss 1.5226328372955322 img loss 1.4864541292190552 img loss 1.3326395750045776 img loss 1.475511074066162 img loss 1.3594138622283936 img loss 1.5214087963104248 img loss 1.301566481590271 img loss 1.3067848682403564 img loss 1.3567098379135132 img loss 1.440429449081421 img loss 1.5447205305099487 img loss 1.3575679063796997 img loss 1.2838817834854126 img loss 1.3955129384994507 img loss 1.3316497802734375 img loss 1.3899942636489868 img loss 1.421808123588562 img loss 1.3861539363861084 img loss 1.4398361444473267 img loss 1.516906499862671 img loss 1.3553987741470337 img loss 1.358884334564209 img loss 1.4009506702423096 img loss 1.3342251777648926 img loss 1.4003608226776123 img loss 1.400714635848999 img loss 1.4438908100128174 img loss 1.2774443626403809 {'loss': 1.407, 'grad_norm': 0.3107703626155853, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2202619314193726 img loss 1.2754424810409546 img loss 1.2146275043487549 img loss 1.179895043373108 img loss 1.311694622039795 img loss 1.2516076564788818 img loss 1.2506719827651978 img loss 1.2696269750595093 img loss 1.1985580921173096 img loss 1.3822697401046753 img loss 1.269324541091919 img loss 1.2869267463684082 img loss 1.3093383312225342 img loss 1.1903349161148071 img loss 1.2166763544082642 img loss 1.2431442737579346 img loss 1.2444374561309814 img loss 1.1513851881027222 img loss 1.2257590293884277 img loss 1.2010915279388428 img loss 1.227353572845459 img loss 1.2093267440795898 img loss 1.182623267173767 img loss 1.316364049911499 img loss 1.1843018531799316 img loss 1.2946065664291382 img loss 1.214958906173706 img loss 1.1853904724121094 img loss 1.1772278547286987 img loss 1.245194911956787 img loss 1.230328917503357 img loss 1.255835771560669 img loss 1.2904753684997559 img loss 1.1699522733688354 img loss 1.33013916015625 img loss 1.2226418256759644 img loss 1.3149079084396362 img loss 1.4118189811706543 img loss 1.284592628479004 img loss 1.2123863697052002 img loss 1.3052958250045776 img loss 1.2536876201629639 img loss 1.3272652626037598 img loss 1.2550084590911865 img loss 1.2288858890533447 img loss 1.2256897687911987 img loss 1.2869091033935547 img loss 1.23604416847229 img loss 1.3173508644104004 img loss 1.2256157398223877 img loss 1.2545537948608398 img loss 1.2230943441390991 img loss 1.3384358882904053 img loss 1.2585747241973877 img loss 1.2942798137664795 img loss 1.125450849533081 img loss 1.2641808986663818 img loss 1.2752082347869873 img loss 1.2467626333236694 img loss 1.2168948650360107 img loss 1.1688507795333862 img loss 1.1797319650650024 img loss 1.1828632354736328 img loss 1.2517725229263306 img loss 1.249398946762085 img loss 1.1880520582199097 img loss 1.2711787223815918 img loss 1.2985671758651733 img loss 1.2341971397399902 img loss 1.2578696012496948 img loss 1.216997504234314 img loss 1.2236876487731934 img loss 1.228524088859558 img loss 1.2092325687408447 img loss 1.1468887329101562 img loss 1.2410578727722168 img loss 1.2652740478515625 img loss 1.2511169910430908 img loss 1.3191779851913452 img loss 1.2076364755630493 img loss 1.22416353225708 img loss 1.1643892526626587 img loss 1.2446703910827637 img loss 1.3121647834777832 img loss 1.1830204725265503 img loss 1.2490460872650146 img loss 1.1681787967681885 img loss 1.2344179153442383 img loss 1.2107013463974 img loss 1.1388885974884033 img loss 1.188840389251709 img loss 1.2709746360778809 img loss 1.1732959747314453 img loss 1.3045060634613037 img loss 1.3079404830932617 img loss 1.232012152671814 img loss 1.1711838245391846 img loss 1.2398428916931152 img loss 1.2407082319259644 img loss 1.2657588720321655 img loss 1.199926733970642 img loss 1.25496506690979 img loss 1.1835036277770996 img loss 1.2349141836166382 img loss 1.26680326461792 img loss 1.217799425125122 img loss 1.2988535165786743 img loss 1.1961684226989746 img loss 1.3390018939971924 img loss 1.261246919631958 img loss 1.2284225225448608 img loss 1.263577938079834 img loss 1.2038397789001465 img loss 1.28106689453125 img loss 1.173360824584961 img loss 1.269395112991333 img loss 1.287327766418457 img loss 1.2402698993682861 img loss 1.173425555229187 img loss 1.1990370750427246 img loss 1.368435263633728 img loss 1.2556207180023193 img loss 1.3238756656646729 img loss 1.2612431049346924 img loss 1.2813800573349 img loss 1.1080551147460938 img loss 1.197797179222107 img loss 1.3008121252059937 {'loss': 1.2422, 'grad_norm': 0.2308945655822754, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.467922329902649 img loss 1.3620998859405518 img loss 1.3827474117279053 img loss 1.3822274208068848 img loss 1.347838282585144 img loss 1.2694844007492065 img loss 1.3205811977386475 img loss 1.3862640857696533 img loss 1.3822013139724731 img loss 1.2619274854660034 img loss 1.3885055780410767 img loss 1.3024230003356934 img loss 1.3833953142166138 img loss 1.3337986469268799 img loss 1.4735091924667358 img loss 1.3979344367980957 img loss 1.4462419748306274 img loss 1.339126706123352 img loss 1.3471977710723877 img loss 1.374406099319458 img loss 1.4351868629455566 img loss 1.3617171049118042 img loss 1.4346297979354858 img loss 1.432795763015747 img loss 1.217307686805725 img loss 1.3458997011184692 img loss 1.3330459594726562 img loss 1.2447327375411987 img loss 1.3452579975128174 img loss 1.3718801736831665 img loss 1.3273811340332031 img loss 1.325035810470581 img loss 1.3644088506698608 img loss 1.3777562379837036 img loss 1.3949763774871826 img loss 1.4525504112243652 img loss 1.3164085149765015 img loss 1.293429970741272 img loss 1.4597370624542236 img loss 1.4036545753479004 img loss 1.3474031686782837 img loss 1.3632844686508179 img loss 1.3780587911605835 img loss 1.4550328254699707 img loss 1.4154837131500244 img loss 1.4713746309280396 img loss 1.3006962537765503 img loss 1.3721948862075806 img loss 1.3916982412338257 img loss 1.3389570713043213 img loss 1.475002646446228 img loss 1.3760831356048584 img loss 1.5000344514846802 img loss 1.3357188701629639 img loss 1.3539538383483887 img loss 1.3009926080703735 img loss 1.3953375816345215 img loss 1.576324701309204 img loss 1.2743773460388184 img loss 1.3161238431930542 img loss 1.3673895597457886 img loss 1.3826959133148193 img loss 1.376584768295288 img loss 1.376900315284729 img loss 1.388071894645691 img loss 1.4098016023635864 img loss 1.4313374757766724 img loss 1.4280695915222168 img loss 1.4049227237701416 img loss 1.3310637474060059 img loss 1.3204360008239746 img loss 1.3528425693511963 img loss 1.3772114515304565 img loss 1.5109055042266846 img loss 1.380003571510315 img loss 1.3616394996643066 img loss 1.324054479598999 img loss 1.3811618089675903 img loss 1.3545705080032349 img loss 1.3028564453125 img loss 1.437709927558899 img loss 1.3512688875198364 img loss 1.459062933921814 img loss 1.4524645805358887 img loss 1.317694902420044 img loss 1.4546805620193481 img loss 1.4570375680923462 img loss 1.3365525007247925 img loss 1.447709560394287 img loss 1.4820573329925537 img loss 1.245756983757019 img loss 1.371297001838684 img loss 1.3413126468658447 img loss 1.3732273578643799 img loss 1.3546451330184937 img loss 1.4242663383483887 img loss 1.4097450971603394 img loss 1.2659556865692139 img loss 1.3791366815567017 img loss 1.3647176027297974 img loss 1.3660725355148315 img loss 1.3928626775741577 img loss 1.304196834564209 img loss 1.273498773574829 img loss 1.3332972526550293 img loss 1.3906643390655518 img loss 1.3407797813415527 img loss 1.3907662630081177 img loss 1.2649348974227905 img loss 1.4010926485061646 img loss 1.3640862703323364 img loss 1.3839994668960571 img loss 1.3850152492523193 img loss 1.3559130430221558 img loss 1.383982539176941 img loss 1.3935465812683105 img loss 1.4781267642974854 img loss 1.313188076019287 img loss 1.3901344537734985 img loss 1.3703447580337524 img loss 1.3210716247558594 img loss 1.3147895336151123 img loss 1.3736032247543335 img loss 1.3390495777130127 img loss 1.3410508632659912 img loss 1.3623186349868774 img loss 1.37562096118927 img loss 1.296401023864746 {'loss': 1.372, 'grad_norm': 0.3347010612487793, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3429160118103027 img loss 1.244391918182373 img loss 1.2202067375183105 img loss 1.2003440856933594 img loss 1.1449168920516968 img loss 1.2332649230957031 img loss 1.1814504861831665 img loss 1.2939690351486206 img loss 1.1329933404922485 img loss 1.2371571063995361 img loss 1.1972531080245972 img loss 1.1614456176757812 img loss 1.176263451576233 img loss 1.1713690757751465 img loss 1.2426297664642334 img loss 1.1632118225097656 img loss 1.3123177289962769 img loss 1.2105841636657715 img loss 1.2598950862884521 img loss 1.212268590927124 img loss 1.1644057035446167 img loss 1.223597764968872 img loss 1.2511920928955078 img loss 1.2272523641586304 img loss 1.2014014720916748 img loss 1.1970109939575195 img loss 1.2612111568450928 img loss 1.1607890129089355 img loss 1.2298372983932495 img loss 1.228573203086853 img loss 1.187828540802002 img loss 1.2503124475479126 img loss 1.2357003688812256 img loss 1.129164695739746 img loss 1.2695329189300537 img loss 1.1717681884765625 img loss 1.2245889902114868 img loss 1.200202465057373 img loss 1.2558444738388062 img loss 1.2130136489868164 img loss 1.2304167747497559 img loss 1.2109031677246094 img loss 1.2344852685928345 img loss 1.226568579673767 img loss 1.1628506183624268 img loss 1.2819486856460571 img loss 1.1927776336669922 img loss 1.191148042678833 img loss 1.2164418697357178 img loss 1.2502977848052979 img loss 1.1636065244674683 img loss 1.268100619316101 img loss 1.1580673456192017 img loss 1.1843698024749756 img loss 1.1710728406906128 img loss 1.23651921749115 img loss 1.2350983619689941 img loss 1.1695971488952637 img loss 1.2048250436782837 img loss 1.197466254234314 img loss 1.1860988140106201 img loss 1.2167729139328003 img loss 1.1806719303131104 img loss 1.3134368658065796 img loss 1.2537615299224854 img loss 1.1637964248657227 img loss 1.2273004055023193 img loss 1.2422395944595337 img loss 1.2065987586975098 img loss 1.2832238674163818 img loss 1.2934598922729492 img loss 1.2284876108169556 img loss 1.182432770729065 img loss 1.218322515487671 img loss 1.2582893371582031 img loss 1.1505939960479736 img loss 1.246071219444275 img loss 1.181222677230835 img loss 1.1954106092453003 img loss 1.16975736618042 img loss 1.1558685302734375 img loss 1.2522060871124268 img loss 1.2301928997039795 img loss 1.2953134775161743 img loss 1.1798290014266968 img loss 1.1813210248947144 img loss 1.3232979774475098 img loss 1.278319239616394 img loss 1.2948400974273682 img loss 1.2331886291503906 img loss 1.235685110092163 img loss 1.1988275051116943 img loss 1.1628832817077637 img loss 1.2336065769195557 img loss 1.1017177104949951 img loss 1.2549948692321777 img loss 1.2037086486816406 img loss 1.213840365409851 img loss 1.2238507270812988 img loss 1.2704023122787476 img loss 1.3323817253112793 img loss 1.2959816455841064 img loss 1.2963597774505615 img loss 1.202329158782959 img loss 1.1753166913986206 img loss 1.2028446197509766 img loss 1.1946454048156738 img loss 1.244485855102539 img loss 1.1665139198303223 img loss 1.342523217201233 img loss 1.1884121894836426 img loss 1.2123161554336548 img loss 1.3365482091903687 img loss 1.2022829055786133 img loss 1.1653051376342773 img loss 1.1610397100448608 img loss 1.2456023693084717 img loss 1.1591243743896484 img loss 1.29718017578125 img loss 1.1725366115570068 img loss 1.1916016340255737 img loss 1.2838388681411743 img loss 1.1735777854919434 img loss 1.218493103981018 img loss 1.227892279624939 img loss 1.1848033666610718 img loss 1.2558339834213257 img loss 1.2297356128692627 {'loss': 1.2195, 'grad_norm': 0.33413711190223694, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2318634986877441 img loss 1.2557114362716675 img loss 1.2644027471542358 img loss 1.2821044921875 img loss 1.2419641017913818 img loss 1.2311460971832275 img loss 1.232664704322815 img loss 1.1379202604293823 img loss 1.2324179410934448 img loss 1.440198540687561 img loss 1.270328164100647 img loss 1.2449172735214233 img loss 1.2966091632843018 img loss 1.4379746913909912 img loss 1.2146342992782593 img loss 1.3394192457199097 img loss 1.2797802686691284 img loss 1.2608330249786377 img loss 1.2327712774276733 img loss 1.3829106092453003 img loss 1.212761402130127 img loss 1.2920129299163818 img loss 1.2083154916763306 img loss 1.2980064153671265 img loss 1.1564840078353882 img loss 1.2263755798339844 img loss 1.3160645961761475 img loss 1.2270846366882324 img loss 1.3002992868423462 img loss 1.2823424339294434 img loss 1.1900995969772339 img loss 1.2560038566589355 img loss 1.3195501565933228 img loss 1.3239336013793945 img loss 1.2056413888931274 img loss 1.1462457180023193 img loss 1.2791869640350342 img loss 1.1575465202331543 img loss 1.2767274379730225 img loss 1.3779959678649902 img loss 1.2631605863571167 img loss 1.3015356063842773 img loss 1.260024905204773 img loss 1.2029354572296143 img loss 1.2408592700958252 img loss 1.3021001815795898 img loss 1.3173048496246338 img loss 1.2377643585205078 img loss 1.2901966571807861 img loss 1.25908625125885 img loss 1.4755494594573975 img loss 1.336760401725769 img loss 1.1726200580596924 img loss 1.4176393747329712 img loss 1.19327712059021 img loss 1.3478094339370728 img loss 1.2941100597381592 img loss 1.1345134973526 img loss 1.2181957960128784 img loss 1.17787504196167 img loss 1.201207160949707 img loss 1.3614712953567505 img loss 1.320534110069275 img loss 1.1901626586914062 img loss 1.1786001920700073 img loss 1.2604520320892334 img loss 1.343384027481079 img loss 1.1814312934875488 img loss 1.2900536060333252 img loss 1.3209518194198608 img loss 1.1245566606521606 img loss 1.2025387287139893 img loss 1.2017990350723267 img loss 1.2436063289642334img loss 1.4406068325042725 img loss 1.3810187578201294 img loss 1.2886780500411987 img loss 1.256111741065979 img loss 1.231838583946228 img loss 1.2204307317733765 img loss 1.3073246479034424 img loss 1.2233271598815918 img loss 1.2602065801620483 img loss 1.2599120140075684 img loss 1.3216009140014648 img loss 1.1942499876022339 img loss 1.255492925643921 img loss 1.3132996559143066 img loss 1.2208936214447021 img loss 1.2927664518356323 img loss 1.2525205612182617 img loss 1.2147607803344727 img loss 1.3954215049743652 img loss 1.2389380931854248 img loss 1.259690523147583 img loss 1.2015087604522705 img loss 1.2356723546981812 img loss 1.2629656791687012 img loss 1.2403693199157715 img loss 1.398215413093567 img loss 1.2457460165023804 img loss 1.286462664604187 img loss 1.2985880374908447 img loss 1.244491457939148 img loss 1.2281577587127686 img loss 1.2595125436782837 img loss 1.2077354192733765 img loss 1.1828612089157104 img loss 1.182440161705017 img loss 1.1671899557113647 img loss 1.3015611171722412 img loss 1.2584362030029297 img loss 1.2256982326507568 img loss 1.194039225578308 img loss 1.2565364837646484 img loss 1.1778744459152222 img loss 1.2042003870010376 img loss 1.2471377849578857 img loss 1.2311928272247314 img loss 1.3095028400421143 img loss 1.2861865758895874 img loss 1.2313340902328491 img loss 1.200707197189331 img loss 1.212756633758545 img loss 1.248944640159607 img loss 1.246173620223999 img loss 1.2299541234970093 img loss 1.2425447702407837 {'loss': 1.2594, 'grad_norm': 0.2386273741722107, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2162755727767944 img loss 1.2384655475616455 img loss 1.261818528175354 img loss 1.2837895154953003 img loss 1.2728031873703003 img loss 1.294236660003662 img loss 1.2396703958511353 img loss 1.3454631567001343 img loss 1.1668200492858887 img loss 1.2040449380874634img loss 1.3061871528625488 img loss 1.2068289518356323 img loss 1.204301357269287 img loss 1.2508264780044556 img loss 1.2129472494125366 img loss 1.1807602643966675 img loss 1.1998498439788818 img loss 1.2042267322540283 img loss 1.2107301950454712 img loss 1.2276428937911987 img loss 1.2419341802597046 img loss 1.2140064239501953 img loss 1.2599303722381592 img loss 1.139416217803955 img loss 1.244897723197937 img loss 1.1612911224365234 img loss 1.173348307609558 img loss 1.3357230424880981 img loss 1.2509158849716187 img loss 1.2167072296142578 img loss 1.224191427230835 img loss 1.2088496685028076 img loss 1.2367238998413086 img loss 1.2238584756851196 img loss 1.2679771184921265 img loss 1.2107462882995605 img loss 1.2768882513046265 img loss 1.377593755722046 img loss 1.3258079290390015 img loss 1.222652792930603 img loss 1.2464643716812134 img loss 1.20687735080719 img loss 1.1769335269927979 img loss 1.1877284049987793 img loss 1.2846072912216187 img loss 1.319628357887268 img loss 1.2426307201385498 img loss 1.2014366388320923 img loss 1.2763642072677612 img loss 1.2937315702438354 img loss 1.2204642295837402 img loss 1.261213779449463 img loss 1.2554043531417847 img loss 1.3684266805648804 img loss 1.1888518333435059 img loss 1.297161340713501 img loss 1.2805651426315308 img loss 1.2194271087646484 img loss 1.2190519571304321 img loss 1.2462005615234375 img loss 1.1729633808135986 img loss 1.2460105419158936 img loss 1.3272632360458374 img loss 1.2109171152114868 img loss 1.2706928253173828 img loss 1.2489550113677979 img loss 1.3171535730361938 img loss 1.28006911277771 img loss 1.221144676208496 img loss 1.1917173862457275 img loss 1.2825292348861694 img loss 1.2772349119186401 img loss 1.2558449506759644 img loss 1.2643705606460571 img loss 1.1944518089294434 img loss 1.2015899419784546 img loss 1.1494125127792358 img loss 1.3038041591644287 img loss 1.1407135725021362 img loss 1.1604013442993164 img loss 1.2253608703613281 img loss 1.3569903373718262 img loss 1.2855584621429443 img loss 1.222735047340393 img loss 1.2688136100769043 img loss 1.1797958612442017 img loss 1.2052429914474487 img loss 1.235967993736267 img loss 1.4342516660690308 img loss 1.2141907215118408 img loss 1.1632318496704102 img loss 1.2260078191757202 img loss 1.2089216709136963 img loss 1.1249358654022217 img loss 1.4030717611312866 img loss 1.2540518045425415 img loss 1.3150455951690674 img loss 1.173796534538269 img loss 1.442191243171692 img loss 1.2207894325256348 img loss 1.3264484405517578 img loss 1.2542221546173096 img loss 1.2657108306884766 img loss 1.182754397392273 img loss 1.2788138389587402 img loss 1.3054447174072266 img loss 1.2259830236434937 img loss 1.24910306930542 img loss 1.1781482696533203 img loss 1.243822693824768 img loss 1.164001226425171 img loss 1.2348212003707886 img loss 1.2002239227294922 img loss 1.2199666500091553 img loss 1.1729297637939453 img loss 1.1458828449249268 img loss 1.1285457611083984 img loss 1.322566270828247 img loss 1.2457951307296753 img loss 1.2239900827407837 img loss 1.1736267805099487 img loss 1.2939047813415527 img loss 1.2065321207046509 img loss 1.181679129600525 img loss 1.211676001548767 img loss 1.2750838994979858 img loss 1.1780579090118408 img loss 1.1800707578659058 {'loss': 1.2397, 'grad_norm': 0.24352821707725525, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2715182304382324 img loss 1.2932124137878418 img loss 1.2093706130981445 img loss 1.1602680683135986 img loss 1.2751015424728394 img loss 1.1749763488769531 img loss 1.1893128156661987 img loss 1.2482532262802124 img loss 1.1632537841796875 img loss 1.2179090976715088 img loss 1.2505158185958862 img loss 1.1901289224624634 img loss 1.2007672786712646 img loss 1.2249212265014648 img loss 1.2630631923675537 img loss 1.1470266580581665 img loss 1.2398922443389893 img loss 1.1835905313491821 img loss 1.164110779762268 img loss 1.2610269784927368 img loss 1.155420184135437 img loss 1.1624590158462524 img loss 1.1390262842178345 img loss 1.1406912803649902 img loss 1.3450522422790527 img loss 1.248859167098999 img loss 1.1553924083709717 img loss 1.1832826137542725 img loss 1.1841421127319336 img loss 1.2659250497817993 img loss 1.2130008935928345 img loss 1.305548071861267 img loss 1.1846847534179688 img loss 1.2651784420013428 img loss 1.2351512908935547 img loss 1.1900304555892944 img loss 1.1381973028182983 img loss 1.2388559579849243 img loss 1.2105369567871094 img loss 1.2574700117111206 img loss 1.194547414779663 img loss 1.2478690147399902 img loss 1.1961867809295654 img loss 1.3021780252456665 img loss 1.2113014459609985 img loss 1.104642391204834 img loss 1.1375811100006104 img loss 1.2041586637496948 img loss 1.2003719806671143 img loss 1.2321326732635498 img loss 1.3055025339126587 img loss 1.2757562398910522 img loss 1.252920150756836 img loss 1.2060542106628418 img loss 1.2219221591949463 img loss 1.2277483940124512 img loss 1.2282326221466064 img loss 1.2482953071594238 img loss 1.1436964273452759 img loss 1.2106112241744995 img loss 1.2942718267440796 img loss 1.1742534637451172 img loss 1.165572166442871 img loss 1.2243249416351318 img loss 1.2136428356170654 img loss 1.3472601175308228 img loss 1.316496729850769 img loss 1.1396816968917847 img loss 1.236721396446228 img loss 1.200854778289795 img loss 1.2744368314743042 img loss 1.3082623481750488 img loss 1.2811580896377563 img loss 1.1467112302780151 img loss 1.209296464920044 img loss 1.211245059967041 img loss 1.239248275756836 img loss 1.1279315948486328 img loss 1.2399225234985352 img loss 1.244336724281311 img loss 1.13169264793396 img loss 1.1748628616333008 img loss 1.1504648923873901 img loss 1.1762529611587524 img loss 1.2052385807037354 img loss 1.2044453620910645 img loss 1.2258151769638062 img loss 1.2001501321792603 img loss 1.1838964223861694 img loss 1.2324316501617432 img loss 1.215867519378662 img loss 1.248491883277893 img loss 1.1292065382003784 img loss 1.2595010995864868 img loss 1.2800661325454712 img loss 1.1933822631835938 img loss 1.2457261085510254 img loss 1.2781494855880737 img loss 1.1905536651611328 img loss 1.1761101484298706 img loss 1.1395896673202515 img loss 1.2468394041061401 img loss 1.2520866394042969 img loss 1.1674535274505615 img loss 1.2475385665893555 img loss 1.1921499967575073 img loss 1.2240960597991943 img loss 1.2740347385406494 img loss 1.2004144191741943 img loss 1.268545389175415 img loss 1.1937339305877686 img loss 1.104285478591919 img loss 1.2339696884155273 img loss 1.188842535018921 img loss 1.1910765171051025 img loss 1.2094173431396484 img loss 1.2951713800430298 img loss 1.1696257591247559 img loss 1.2514030933380127 img loss 1.1729214191436768 img loss 1.2392491102218628 img loss 1.2418458461761475 img loss 1.2740840911865234 img loss 1.1967636346817017 img loss 1.2451282739639282 img loss 1.3073363304138184 img loss 1.1699349880218506 img loss 1.2340693473815918 {'loss': 1.2166, 'grad_norm': 0.3438510000705719, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.452158808708191 img loss 1.3669524192810059 img loss 1.4210232496261597 img loss 1.3100099563598633 img loss 1.4025040864944458 img loss 1.3456377983093262 img loss 1.2869105339050293 img loss 1.323332667350769 img loss 1.3416513204574585 img loss 1.3981279134750366 img loss 1.38817298412323 img loss 1.3662112951278687 img loss 1.271291732788086 img loss 1.4341319799423218 img loss 1.356873631477356 img loss 1.5007970333099365 img loss 1.4289442300796509 img loss 1.3929752111434937 img loss 1.3213400840759277 img loss 1.4072153568267822 img loss 1.369695782661438 img loss 1.3950846195220947 img loss 1.2964668273925781 img loss 1.3792723417282104 img loss 1.4127020835876465 img loss 1.460403323173523 img loss 1.4711805582046509 img loss 1.388921856880188 img loss 1.3451792001724243 img loss 1.3631396293640137 img loss 1.4947534799575806 img loss 1.4009383916854858 img loss 1.365312099456787 img loss 1.358805537223816 img loss 1.439835786819458 img loss 1.2764289379119873 img loss 1.4895665645599365 img loss 1.3966352939605713 img loss 1.3778012990951538 img loss 1.4470810890197754 img loss 1.3657020330429077 img loss 1.3714419603347778 img loss 1.4312491416931152 img loss 1.3792507648468018 img loss 1.3383184671401978 img loss 1.3089462518692017 img loss 1.4519349336624146 img loss 1.4947649240493774 img loss 1.4609090089797974 img loss 1.3989509344100952 img loss 1.4292223453521729 img loss 1.4250481128692627 img loss 1.4717122316360474 img loss 1.3979947566986084 img loss 1.4323790073394775 img loss 1.3964496850967407 img loss 1.5108596086502075 img loss 1.3582980632781982 img loss 1.3479514122009277 img loss 1.493388056755066 img loss 1.3686474561691284 img loss 1.3420079946517944 img loss 1.3614299297332764 img loss 1.360962986946106 img loss 1.3800482749938965 img loss 1.3734363317489624 img loss 1.3655134439468384 img loss 1.3284788131713867 img loss 1.4623725414276123 img loss 1.4056284427642822 img loss 1.431864619255066img loss 1.3737834692001343 img loss 1.389512538909912 img loss 1.3486367464065552 img loss 1.4540622234344482 img loss 1.3457342386245728 img loss 1.4503268003463745 img loss 1.2871074676513672 img loss 1.3497201204299927 img loss 1.4512354135513306 img loss 1.451068639755249 img loss 1.4513700008392334 img loss 1.3271138668060303 img loss 1.344785213470459 img loss 1.3235678672790527 img loss 1.3260525465011597 img loss 1.438361644744873 img loss 1.3819388151168823 img loss 1.4260834455490112 img loss 1.4886072874069214 img loss 1.5038224458694458 img loss 1.3251873254776 img loss 1.3646597862243652 img loss 1.5292528867721558 img loss 1.2659571170806885 img loss 1.331846833229065 img loss 1.3847594261169434 img loss 1.3630726337432861 img loss 1.3053020238876343 img loss 1.3900929689407349 img loss 1.3446167707443237 img loss 1.4925111532211304 img loss 1.337849497795105 img loss 1.4083836078643799 img loss 1.2679436206817627 img loss 1.3727494478225708 img loss 1.43000066280365 img loss 1.326279878616333 img loss 1.3981032371520996 img loss 1.5694124698638916 img loss 1.32895028591156 img loss 1.345587968826294 img loss 1.3837769031524658 img loss 1.379614233970642 img loss 1.4034411907196045 img loss 1.4143165349960327 img loss 1.3551353216171265 img loss 1.3584840297698975 img loss 1.4530853033065796 img loss 1.3563870191574097 img loss 1.407786250114441 img loss 1.404784083366394 img loss 1.4008945226669312 img loss 1.3819308280944824 img loss 1.406030535697937 img loss 1.3752036094665527 img loss 1.3884912729263306 img loss 1.3146499395370483 {'loss': 1.3896, 'grad_norm': 0.3893486559391022, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2138817310333252 img loss 1.2090058326721191 img loss 1.2228107452392578 img loss 1.1068949699401855 img loss 1.284483551979065 img loss 1.2096741199493408 img loss 1.1856775283813477 img loss 1.2442691326141357 img loss 1.2139126062393188 img loss 1.1985114812850952 img loss 1.1920322179794312 img loss 1.1918025016784668 img loss 1.1482607126235962 img loss 1.0743553638458252 img loss 1.3711563348770142 img loss 1.2534732818603516 img loss 1.1915839910507202 img loss 1.2458425760269165 img loss 1.206973910331726 img loss 1.2090126276016235 img loss 1.2641639709472656 img loss 1.2614446878433228 img loss 1.253334403038025 img loss 1.1895880699157715 img loss 1.1634235382080078 img loss 1.2358700037002563 img loss 1.213315725326538 img loss 1.1990125179290771 img loss 1.1896584033966064 img loss 1.277618169784546 img loss 1.1743170022964478 img loss 1.1888313293457031 img loss 1.2486580610275269 img loss 1.1388177871704102 img loss 1.175922155380249 img loss 1.2938202619552612 img loss 1.3186945915222168 img loss 1.2754076719284058 img loss 1.189629077911377 img loss 1.2125622034072876 img loss 1.2354533672332764 img loss 1.2392581701278687 img loss 1.262372374534607 img loss 1.2342742681503296 img loss 1.2362685203552246 img loss 1.2313050031661987 img loss 1.2634261846542358 img loss 1.2243191003799438 img loss 1.2529797554016113 img loss 1.1769545078277588 img loss 1.2274919748306274 img loss 1.2647656202316284 img loss 1.1659377813339233 img loss 1.1831425428390503 img loss 1.1430869102478027 img loss 1.2001690864562988 img loss 1.1972365379333496 img loss 1.267259120941162 img loss 1.2384308576583862 img loss 1.2604520320892334 img loss 1.1655584573745728 img loss 1.2217451333999634 img loss 1.3436206579208374 img loss 1.1503852605819702 img loss 1.2726967334747314 img loss 1.2191447019577026 img loss 1.17279052734375 img loss 1.2280820608139038 img loss 1.1759971380233765 img loss 1.2186601161956787 img loss 1.2250875234603882 img loss 1.2491109371185303 img loss 1.2273499965667725 img loss 1.227303147315979 img loss 1.2374628782272339 img loss 1.160082221031189 img loss 1.2287750244140625 img loss 1.263841986656189 img loss 1.2111220359802246 img loss 1.1399564743041992 img loss 1.157548189163208 img loss 1.1725447177886963 img loss 1.1446290016174316 img loss 1.2817456722259521 img loss 1.281396746635437 img loss 1.3157583475112915 img loss 1.220262885093689 img loss 1.1902939081192017 img loss 1.2706372737884521img loss 1.2415145635604858 img loss 1.2959593534469604 img loss 1.1777905225753784 img loss 1.164317011833191 img loss 1.2064132690429688 img loss 1.2483062744140625 img loss 1.2401539087295532 img loss 1.1778035163879395 img loss 1.152034044265747 img loss 1.2541698217391968 img loss 1.363572359085083 img loss 1.2141071557998657 img loss 1.143765926361084 img loss 1.230071783065796 img loss 1.3371062278747559 img loss 1.301155924797058 img loss 1.21832275390625 img loss 1.209458589553833 img loss 1.1008093357086182 img loss 1.3387356996536255 img loss 1.170609474182129 img loss 1.1833782196044922 img loss 1.2447514533996582 img loss 1.231881022453308 img loss 1.1343669891357422 img loss 1.2373969554901123 img loss 1.2158589363098145 img loss 1.2673604488372803 img loss 1.1946476697921753 img loss 1.172219157218933 img loss 1.2192903757095337 img loss 1.2718708515167236 img loss 1.2036247253417969 img loss 1.2220624685287476 img loss 1.2625298500061035 img loss 1.2537750005722046 img loss 1.2187919616699219 img loss 1.2003381252288818 img loss 1.2899547815322876 {'loss': 1.2213, 'grad_norm': 0.638522207736969, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.478395700454712 img loss 1.4376816749572754 img loss 1.463324785232544 img loss 1.3235247135162354 img loss 1.3531941175460815 img loss 1.3594247102737427 img loss 1.286009430885315 img loss 1.3375645875930786 img loss 1.3374240398406982 img loss 1.3846286535263062 img loss 1.406026005744934 img loss 1.323974847793579 img loss 1.3861695528030396 img loss 1.3559993505477905 img loss 1.4479130506515503 img loss 1.4586927890777588 img loss 1.4238231182098389 img loss 1.3589301109313965 img loss 1.3849316835403442 img loss 1.417330026626587 img loss 1.434606909751892 img loss 1.5458565950393677 img loss 1.3939915895462036 img loss 1.3349007368087769 img loss 1.4589604139328003 img loss 1.557069182395935 img loss 1.4662821292877197 img loss 1.476582407951355 img loss 1.3660798072814941 img loss 1.443353533744812 img loss 1.5377438068389893 img loss 1.4592608213424683 img loss 1.5285885334014893 img loss 1.464328646659851 img loss 1.3083148002624512 img loss 1.3462659120559692 img loss 1.4708236455917358 img loss 1.3276180028915405 img loss 1.3275091648101807 img loss 1.4781947135925293 img loss 1.429847240447998 img loss 1.3495146036148071 img loss 1.3706488609313965 img loss 1.4002220630645752 img loss 1.4991554021835327 img loss 1.3723833560943604 img loss 1.496874213218689 img loss 1.4062198400497437 img loss 1.4698604345321655 img loss 1.5099674463272095 img loss 1.462988018989563 img loss 1.5540492534637451 img loss 1.4281421899795532 img loss 1.4377888441085815 img loss 1.3180439472198486 img loss 1.6183559894561768 img loss 1.3255290985107422 img loss 1.330216646194458 img loss 1.3852049112319946 img loss 1.3836290836334229 img loss 1.3690704107284546 img loss 1.3105684518814087 img loss 1.311673879623413 img loss 1.5893359184265137 img loss 1.3994640111923218 img loss 1.5002672672271729 img loss 1.3909112215042114 img loss 1.4035221338272095 img loss 1.3920818567276 img loss 1.3915601968765259 img loss 1.4663926362991333 img loss 1.5122004747390747 img loss 1.4732075929641724 img loss 1.4188435077667236 img loss 1.407835602760315 img loss 1.601540207862854 img loss 1.4991415739059448 img loss 1.3661383390426636 img loss 1.3413727283477783 img loss 1.4427143335342407 img loss 1.3768126964569092 img loss 1.419581651687622 img loss 1.4712128639221191 img loss 1.4123467206954956 img loss 1.3096355199813843 img loss 1.4744946956634521 img loss 1.4159449338912964 img loss 1.3930104970932007 img loss 1.397225260734558 img loss 1.5115803480148315 img loss 1.403947114944458 img loss 1.2819418907165527 img loss 1.2552458047866821 img loss 1.4471615552902222 img loss 1.3950284719467163 img loss 1.4649702310562134 img loss 1.3863365650177002 img loss 1.4568431377410889 img loss 1.5113593339920044 img loss 1.4670623540878296 img loss 1.3623024225234985 img loss 1.4933924674987793 img loss 1.4942020177841187 img loss 1.352510929107666 img loss 1.3396830558776855 img loss 1.318992257118225 img loss 1.4766415357589722 img loss 1.4859102964401245 img loss 1.4963185787200928 img loss 1.4899753332138062 img loss 1.4370256662368774 img loss 1.3764140605926514 img loss 1.4489233493804932 img loss 1.5027081966400146 img loss 1.3668649196624756 img loss 1.5006688833236694 img loss 1.3685715198516846 img loss 1.5050963163375854 img loss 1.5619323253631592 img loss 1.5725778341293335 img loss 1.3891026973724365 img loss 1.3799387216567993 img loss 1.5492485761642456 img loss 1.38173246383667 img loss 1.4245009422302246 img loss 1.4199814796447754 img loss 1.4382233619689941 img loss 1.3705360889434814 {'loss': 1.423, 'grad_norm': 0.4571343958377838, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2452608346939087 img loss 1.1409052610397339 img loss 1.2615991830825806 img loss 1.252073049545288 img loss 1.2275043725967407 img loss 1.2034461498260498 img loss 1.1410212516784668 img loss 1.149195909500122 img loss 1.13754403591156 img loss 1.2164901494979858 img loss 1.2188061475753784 img loss 1.2473459243774414 img loss 1.132084846496582 img loss 1.205352783203125 img loss 1.2388947010040283 img loss 1.1928000450134277 img loss 1.2099157571792603 img loss 1.1717472076416016 img loss 1.2928035259246826 img loss 1.1532949209213257 img loss 1.1313954591751099 img loss 1.1757224798202515 img loss 1.2000303268432617 img loss 1.0932466983795166 img loss 1.220518946647644 img loss 1.2569420337677002 img loss 1.1451160907745361 img loss 1.1174982786178589 img loss 1.2364685535430908 img loss 1.2439918518066406 img loss 1.2513900995254517 img loss 1.2012275457382202 img loss 1.2549240589141846 img loss 1.2289068698883057 img loss 1.1907621622085571 img loss 1.209114670753479 img loss 1.1315315961837769 img loss 1.3497967720031738 img loss 1.1624138355255127 img loss 1.2039364576339722 img loss 1.3357855081558228 img loss 1.131648302078247 img loss 1.2420161962509155 img loss 1.1931111812591553 img loss 1.1147832870483398 img loss 1.2144988775253296 img loss 1.1978439092636108 img loss 1.2282739877700806 img loss 1.1317018270492554 img loss 1.2344579696655273 img loss 1.2071083784103394 img loss 1.248335838317871 img loss 1.3057434558868408 img loss 1.1465023756027222 img loss 1.1077935695648193 img loss 1.0917829275131226 img loss 1.183509349822998 img loss 1.2227282524108887 img loss 1.1901967525482178 img loss 1.2149152755737305 img loss 1.1981701850891113 img loss 1.2210816144943237 img loss 1.2694389820098877 img loss 1.1412279605865479 img loss 1.298439621925354 img loss 1.181196928024292 img loss 1.137451171875 img loss 1.2297577857971191 img loss 1.1801164150238037 img loss 1.245523452758789 img loss 1.240827202796936 img loss 1.27229642868042 img loss 1.2012345790863037 img loss 1.1943929195404053 img loss 1.2393296957015991 img loss 1.2974666357040405 img loss 1.1747995615005493 img loss 1.1637909412384033 img loss 1.2006828784942627 img loss 1.1998144388198853 img loss 1.1415354013442993 img loss 1.2103221416473389 img loss 1.1930086612701416 img loss 1.2385380268096924 img loss 1.2097586393356323 img loss 1.0882591009140015 img loss 1.1590478420257568 img loss 1.2098382711410522 img loss 1.241874098777771 img loss 1.2680248022079468 img loss 1.1386750936508179 img loss 1.1938660144805908 img loss 1.1811926364898682 img loss 1.1604307889938354 img loss 1.20348060131073 img loss 1.2304962873458862 img loss 1.1471611261367798 img loss 1.1585067510604858 img loss 1.3559651374816895 img loss 1.1634185314178467 img loss 1.248116374015808 img loss 1.2229952812194824 img loss 1.1902809143066406 img loss 1.278382658958435 img loss 1.2168500423431396 img loss 1.164392352104187 img loss 1.1324162483215332 img loss 1.1925300359725952 img loss 1.2295345067977905 img loss 1.2263367176055908 img loss 1.1250336170196533 img loss 1.1878658533096313 img loss 1.1441314220428467 img loss 1.2225658893585205 img loss 1.135825276374817 img loss 1.1772031784057617 img loss 1.2134824991226196 img loss 1.16837477684021 img loss 1.2562402486801147 img loss 1.1674431562423706 img loss 1.225803256034851 img loss 1.1428393125534058 img loss 1.0996336936950684 img loss 1.1714226007461548 img loss 1.1800425052642822 img loss 1.2373404502868652 img loss 1.2886072397232056 img loss 1.158018946647644 {'loss': 1.1998, 'grad_norm': 0.24390675127506256, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2368534803390503 img loss 1.1853103637695312 img loss 1.2260403633117676 img loss 1.1321744918823242 img loss 1.162730097770691 img loss 1.159939169883728 img loss 1.1815475225448608 img loss 1.2367863655090332 img loss 1.1623629331588745 img loss 1.1401722431182861 img loss 1.256255865097046 img loss 1.1872286796569824 img loss 1.1513664722442627 img loss 1.2522680759429932 img loss 1.1905800104141235 img loss 1.163907527923584 img loss 1.1990742683410645 img loss 1.1611382961273193 img loss 1.210945725440979 img loss 1.1907154321670532 img loss 1.2269197702407837 img loss 1.1883550882339478 img loss 1.1537030935287476 img loss 1.1970055103302002 img loss 1.1814496517181396 img loss 1.2090098857879639 img loss 1.2338855266571045 img loss 1.2426702976226807 img loss 1.2736480236053467 img loss 1.2153290510177612 img loss 1.1871778964996338 img loss 1.2191641330718994 img loss 1.2187342643737793 img loss 1.2067171335220337 img loss 1.2112023830413818 img loss 1.1623344421386719 img loss 1.247027039527893 img loss 1.1878907680511475 img loss 1.232930064201355 img loss 1.1543960571289062 img loss 1.2026073932647705 img loss 1.161841630935669 img loss 1.135031819343567 img loss 1.2480223178863525 img loss 1.1684187650680542 img loss 1.1922087669372559 img loss 1.2101715803146362 img loss 1.1940885782241821 img loss 1.1934477090835571 img loss 1.156412959098816 img loss 1.1828536987304688 img loss 1.1542682647705078 img loss 1.257117509841919 img loss 1.221463918685913 img loss 1.1774564981460571 img loss 1.1923730373382568 img loss 1.3260637521743774 img loss 1.189645528793335 img loss 1.1777565479278564 img loss 1.208728551864624 img loss 1.2192503213882446 img loss 1.1975364685058594 img loss 1.2117947340011597 img loss 1.142728567123413 img loss 1.2759193181991577 img loss 1.2047804594039917 img loss 1.1969001293182373 img loss 1.1624870300292969 img loss 1.2497819662094116 img loss 1.1994526386260986 img loss 1.216535210609436 img loss 1.2307723760604858 img loss 1.2017885446548462 img loss 1.1517080068588257 img loss 1.2039345502853394 img loss 1.1175187826156616 img loss 1.1602628231048584 img loss 1.2439486980438232 img loss 1.2383856773376465 img loss 1.2238876819610596 img loss 1.193915843963623 img loss 1.1649646759033203 img loss 1.2317794561386108 img loss 1.2548089027404785 img loss 1.1951746940612793 img loss 1.2324349880218506 img loss 1.3239660263061523 img loss 1.2146029472351074 img loss 1.1915619373321533 img loss 1.1792411804199219 img loss 1.2531373500823975 img loss 1.1901367902755737 img loss 1.2006146907806396 img loss 1.1811249256134033 img loss 1.2243976593017578 img loss 1.1605461835861206 img loss 1.1328474283218384 img loss 1.1566332578659058 img loss 1.2133558988571167 img loss 1.1937302350997925 img loss 1.186806082725525 img loss 1.1656254529953003 img loss 1.1674789190292358 img loss 1.1778619289398193 img loss 1.2064958810806274 img loss 1.1615750789642334 img loss 1.2367284297943115 img loss 1.2172369956970215 img loss 1.2429847717285156 img loss 1.1794006824493408 img loss 1.1647487878799438 img loss 1.2053292989730835 img loss 1.1757965087890625 img loss 1.1458920240402222 img loss 1.2515372037887573 img loss 1.2011983394622803 img loss 1.249647855758667 img loss 1.1840968132019043 img loss 1.1598271131515503 img loss 1.222280502319336 img loss 1.2095160484313965 img loss 1.2162359952926636 img loss 1.1761099100112915 img loss 1.2539373636245728 img loss 1.155595302581787 img loss 1.1549451351165771 img loss 1.2031506299972534 img loss 1.2021288871765137 {'loss': 1.1992, 'grad_norm': 0.26367810368537903, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4989632368087769 img loss 1.416061520576477 img loss 1.3758379220962524 img loss 1.5260939598083496 img loss 1.3155924081802368 img loss 1.4752532243728638 img loss 1.4005669355392456 img loss 1.430654764175415 img loss 1.282857894897461 img loss 1.3506157398223877 img loss 1.3296631574630737 img loss 1.406038522720337 img loss 1.3498085737228394 img loss 1.3828208446502686 img loss 1.517204761505127 img loss 1.3503239154815674 img loss 1.3673291206359863 img loss 1.4612858295440674 img loss 1.3879398107528687 img loss 1.4638043642044067 img loss 1.3841842412948608 img loss 1.2498559951782227 img loss 1.2571659088134766 img loss 1.4977586269378662 img loss 1.50565767288208 img loss 1.438727855682373 img loss 1.291797161102295 img loss 1.4235129356384277 img loss 1.4732826948165894 img loss 1.2811558246612549 img loss 1.3657056093215942 img loss 1.3528345823287964 img loss 1.438842535018921 img loss 1.3916926383972168 img loss 1.3750592470169067 img loss 1.1932166814804077 img loss 1.4757847785949707 img loss 1.4506890773773193 img loss 1.4304167032241821img loss 1.2693051099777222 img loss 1.4699252843856812 img loss 1.3857085704803467 img loss 1.3464170694351196 img loss 1.3649680614471436 img loss 1.417259931564331 img loss 1.3811558485031128 img loss 1.378851294517517 img loss 1.3484786748886108 img loss 1.3953653573989868 img loss 1.4124902486801147 img loss 1.3584691286087036 img loss 1.4398643970489502 img loss 1.2744596004486084 img loss 1.4820486307144165 img loss 1.3091011047363281 img loss 1.3903944492340088 img loss 1.5143381357192993 img loss 1.3976542949676514 img loss 1.4036492109298706 img loss 1.2422882318496704 img loss 1.3793035745620728 img loss 1.3910460472106934 img loss 1.3811488151550293 img loss 1.4014462232589722 img loss 1.377633810043335 img loss 1.478158712387085 img loss 1.5440385341644287 img loss 1.469605803489685 img loss 1.4404996633529663 img loss 1.398444414138794 img loss 1.4397109746932983 img loss 1.2550138235092163 img loss 1.4342612028121948 img loss 1.3467544317245483 img loss 1.3263797760009766 img loss 1.302772045135498 img loss 1.475522756576538 img loss 1.3464181423187256 img loss 1.5060441493988037 img loss 1.3846670389175415 img loss 1.340331792831421 img loss 1.3946865797042847 img loss 1.3447808027267456 img loss 1.4166756868362427 img loss 1.3603307008743286 img loss 1.449792504310608 img loss 1.4716559648513794 img loss 1.4220525026321411 img loss 1.3787648677825928 img loss 1.4335182905197144 img loss 1.3790215253829956 img loss 1.42194664478302 img loss 1.3960111141204834 img loss 1.412577509880066 img loss 1.437000036239624 img loss 1.4536734819412231 img loss 1.4268382787704468 img loss 1.4526005983352661 img loss 1.3166840076446533 img loss 1.4284875392913818 img loss 1.3642178773880005 img loss 1.502265453338623 img loss 1.5126248598098755 img loss 1.2933261394500732 img loss 1.2960987091064453 img loss 1.2828459739685059 img loss 1.3338745832443237 img loss 1.4640191793441772 img loss 1.3578535318374634 img loss 1.4607142210006714 img loss 1.3796141147613525 img loss 1.3455653190612793 img loss 1.4761258363723755 img loss 1.4033725261688232 img loss 1.523708701133728 img loss 1.4193745851516724 img loss 1.4332196712493896 img loss 1.4125713109970093 img loss 1.3150477409362793 img loss 1.383296251296997 img loss 1.324826717376709 img loss 1.3882473707199097 img loss 1.4361473321914673 img loss 1.3789407014846802 img loss 1.4474128484725952 img loss 1.3354926109313965 img loss 1.3887242078781128 img loss 1.4209500551223755 {'loss': 1.3957, 'grad_norm': 0.7291867733001709, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2826051712036133 img loss 1.2424156665802002 img loss 1.227590799331665 img loss 1.2254137992858887 img loss 1.264389991760254 img loss 1.249865174293518 img loss 1.2526929378509521 img loss 1.252237319946289 img loss 1.3362219333648682 img loss 1.232500672340393 img loss 1.272251009941101 img loss 1.2189149856567383 img loss 1.3088289499282837 img loss 1.2673355340957642 img loss 1.24033522605896 img loss 1.2219542264938354 img loss 1.2695286273956299 img loss 1.216949224472046 img loss 1.2146977186203003 img loss 1.2304720878601074 img loss 1.2732585668563843 img loss 1.3091570138931274 img loss 1.286753535270691 img loss 1.253821611404419 img loss 1.2716400623321533 img loss 1.270367980003357 img loss 1.278180718421936 img loss 1.2362747192382812 img loss 1.2193219661712646 img loss 1.221357822418213 img loss 1.2665280103683472 img loss 1.2089076042175293 img loss 1.2791900634765625 img loss 1.2770726680755615 img loss 1.2374873161315918 img loss 1.2440729141235352 img loss 1.225511074066162 img loss 1.2167305946350098 img loss 1.1919044256210327 img loss 1.2313804626464844 img loss 1.2468070983886719 img loss 1.2855628728866577 img loss 1.2539968490600586 img loss 1.2277559041976929 img loss 1.2549476623535156 img loss 1.2399154901504517 img loss 1.241654634475708 img loss 1.2021888494491577 img loss 1.2589662075042725 img loss 1.2184854745864868 img loss 1.2344136238098145 img loss 1.2266850471496582 img loss 1.2522424459457397 img loss 1.2553009986877441 img loss 1.1978492736816406 img loss 1.1788349151611328 img loss 1.239153265953064 img loss 1.221697211265564 img loss 1.2728437185287476 img loss 1.264327883720398 img loss 1.251559853553772 img loss 1.2679743766784668 img loss 1.2122647762298584 img loss 1.2521380186080933 img loss 1.2435959577560425 img loss 1.2202154397964478 img loss 1.2604535818099976 img loss 1.26878023147583 img loss 1.2231296300888062 img loss 1.2422949075698853 img loss 1.2368887662887573 img loss 1.3073875904083252 img loss 1.2539284229278564 img loss 1.2569605112075806 img loss 1.2075395584106445 img loss 1.275443434715271 img loss 1.2373390197753906 img loss 1.2599565982818604 img loss 1.2294113636016846 img loss 1.2685730457305908 img loss 1.2406338453292847 img loss 1.2168043851852417 img loss 1.2755825519561768 img loss 1.2340867519378662 img loss 1.2193220853805542 img loss 1.2659716606140137 img loss 1.2237213850021362 img loss 1.2421350479125977 img loss 1.2200813293457031 img loss 1.2963593006134033 img loss 1.2384028434753418 img loss 1.2335456609725952 img loss 1.2609353065490723 img loss 1.253153681755066 img loss 1.2215204238891602 img loss 1.2445093393325806 img loss 1.2824348211288452 img loss 1.2104028463363647 img loss 1.2639312744140625 img loss 1.2600505352020264 img loss 1.2445865869522095 img loss 1.2922977209091187 img loss 1.2569087743759155 img loss 1.2532165050506592 img loss 1.2687983512878418 img loss 1.2691200971603394 img loss 1.2623153924942017 img loss 1.2970740795135498 img loss 1.2173422574996948 img loss 1.304998755455017 img loss 1.2538610696792603 img loss 1.2336469888687134 img loss 1.2578052282333374 img loss 1.2405818700790405 img loss 1.2224130630493164 img loss 1.2585009336471558 img loss 1.2019317150115967 img loss 1.2223514318466187 img loss 1.2204630374908447 img loss 1.1980586051940918 img loss 1.251314401626587 img loss 1.194598913192749 img loss 1.2527782917022705 img loss 1.2779258489608765 img loss 1.2399554252624512 img loss 1.1911354064941406 img loss 1.244319200515747 img loss 1.26132071018219 {'loss': 1.2466, 'grad_norm': 0.23188892006874084, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.161606788635254 img loss 1.3587085008621216 img loss 1.2231063842773438 img loss 1.1881603002548218 img loss 1.2583158016204834 img loss 1.1021883487701416 img loss 1.1722131967544556 img loss 1.2599599361419678 img loss 1.1737480163574219 img loss 1.1893738508224487 img loss 1.2209357023239136 img loss 1.2045261859893799 img loss 1.164667010307312 img loss 1.2596973180770874 img loss 1.1429357528686523 img loss 1.1721714735031128 img loss 1.237539291381836 img loss 1.182953119277954 img loss 1.230254888534546 img loss 1.1419682502746582 img loss 1.2408123016357422 img loss 1.263811707496643 img loss 1.2392463684082031 img loss 1.194976806640625 img loss 1.228885531425476 img loss 1.2177557945251465 img loss 1.2630811929702759 img loss 1.2458834648132324 img loss 1.1708521842956543 img loss 1.2602354288101196 img loss 1.2376995086669922 img loss 1.1825230121612549 img loss 1.1493576765060425 img loss 1.2171683311462402 img loss 1.1796878576278687 img loss 1.1866028308868408 img loss 1.2784614562988281 img loss 1.3026586771011353 img loss 1.2454729080200195 img loss 1.1813690662384033 img loss 1.285715937614441 img loss 1.2250478267669678 img loss 1.148345708847046 img loss 1.17002272605896 img loss 1.2767871618270874 img loss 1.2566026449203491 img loss 1.1930081844329834 img loss 1.292438268661499 img loss 1.202852725982666 img loss 1.2003167867660522 img loss 1.168879747390747 img loss 1.237572193145752 img loss 1.1641111373901367 img loss 1.220760703086853 img loss 1.2294690608978271 img loss 1.2272357940673828 img loss 1.1940677165985107 img loss 1.1767538785934448 img loss 1.1745970249176025 img loss 1.3372539281845093 img loss 1.133448600769043 img loss 1.1722863912582397 img loss 1.1427278518676758 img loss 1.1500585079193115 img loss 1.2176064252853394 img loss 1.1601345539093018 img loss 1.2066028118133545 img loss 1.2227197885513306 img loss 1.2257484197616577 img loss 1.2069692611694336 img loss 1.235403060913086 img loss 1.2348954677581787 img loss 1.2839676141738892 img loss 1.2420400381088257 img loss 1.1774134635925293 img loss 1.1763532161712646 img loss 1.2472695112228394 img loss 1.1984596252441406 img loss 1.2445805072784424 img loss 1.2528376579284668 img loss 1.1175916194915771 img loss 1.1290411949157715 img loss 1.2451813220977783 img loss 1.2226064205169678 img loss 1.183677315711975 img loss 1.2213925123214722 img loss 1.167151689529419 img loss 1.1834181547164917 img loss 1.2567678689956665 img loss 1.2150064706802368 img loss 1.2049493789672852 img loss 1.262062430381775 img loss 1.3131262063980103 img loss 1.2662442922592163 img loss 1.2392605543136597 img loss 1.1423463821411133 img loss 1.234762191772461 img loss 1.178087592124939 img loss 1.2770086526870728 img loss 1.195950984954834 img loss 1.2410532236099243 img loss 1.1742920875549316 img loss 1.1991825103759766 img loss 1.1407501697540283 img loss 1.147713541984558 img loss 1.2568368911743164 img loss 1.1987926959991455 img loss 1.1278141736984253 img loss 1.0800751447677612 img loss 1.2103334665298462 img loss 1.224941611289978 img loss 1.2511965036392212 img loss 1.2190959453582764 img loss 1.1904113292694092 img loss 1.2053475379943848 img loss 1.1185096502304077 img loss 1.2071231603622437 img loss 1.179973840713501 img loss 1.1447803974151611 img loss 1.1969828605651855 img loss 1.1675935983657837 img loss 1.1382734775543213 img loss 1.1880357265472412 img loss 1.2187747955322266 img loss 1.2197692394256592 img loss 1.2264320850372314 img loss 1.1695724725723267 img loss 1.3151546716690063 {'loss': 1.2083, 'grad_norm': 0.22735656797885895, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.216335654258728 img loss 1.2742033004760742 img loss 1.2646071910858154 img loss 1.2768115997314453 img loss 1.2519009113311768 img loss 1.2803821563720703 img loss 1.1650270223617554 img loss 1.2956595420837402 img loss 1.2700999975204468 img loss 1.240555763244629 img loss 1.2054972648620605 img loss 1.2561997175216675 img loss 1.1906553506851196 img loss 1.2616068124771118 img loss 1.1950205564498901 img loss 1.26569402217865 img loss 1.2453254461288452 img loss 1.2442995309829712 img loss 1.169706106185913 img loss 1.2392971515655518 img loss 1.339157223701477 img loss 1.2723019123077393 img loss 1.252573847770691 img loss 1.2335172891616821 img loss 1.1996370553970337 img loss 1.1905769109725952 img loss 1.2531707286834717 img loss 1.214174509048462 img loss 1.1779359579086304 img loss 1.2185343503952026 img loss 1.2180187702178955img loss 1.1795194149017334 img loss 1.172860026359558 img loss 1.2408826351165771 img loss 1.1908668279647827 img loss 1.188546895980835 img loss 1.211943507194519 img loss 1.1900198459625244 img loss 1.1903049945831299 img loss 1.2512736320495605 img loss 1.2490592002868652 img loss 1.1879154443740845 img loss 1.1873058080673218 img loss 1.224015474319458 img loss 1.2313308715820312 img loss 1.2326170206069946 img loss 1.3311753273010254 img loss 1.22934091091156 img loss 1.283321738243103 img loss 1.2215323448181152 img loss 1.2340208292007446 img loss 1.1900736093521118 img loss 1.234384536743164 img loss 1.2191225290298462 img loss 1.1786056756973267 img loss 1.1785064935684204 img loss 1.2813808917999268 img loss 1.2321230173110962 img loss 1.154213309288025 img loss 1.197320818901062 img loss 1.2591512203216553 img loss 1.247926115989685 img loss 1.1941791772842407 img loss 1.1786322593688965 img loss 1.226576566696167 img loss 1.1981632709503174 img loss 1.2073100805282593 img loss 1.1881707906723022 img loss 1.18891179561615 img loss 1.1893510818481445 img loss 1.2498810291290283 img loss 1.2151944637298584 img loss 1.3520554304122925 img loss 1.2138065099716187 img loss 1.2482022047042847 img loss 1.1502153873443604 img loss 1.2495994567871094 img loss 1.2088954448699951 img loss 1.3058418035507202 img loss 1.2827963829040527 img loss 1.2864909172058105 img loss 1.3186382055282593 img loss 1.1752369403839111 img loss 1.2137402296066284 img loss 1.264195203781128 img loss 1.3102668523788452 img loss 1.0897471904754639 img loss 1.2571768760681152 img loss 1.2779829502105713 img loss 1.1609162092208862 img loss 1.2341456413269043 img loss 1.2253347635269165 img loss 1.2201862335205078 img loss 1.2016782760620117 img loss 1.257807970046997 img loss 1.2218661308288574 img loss 1.1191051006317139 img loss 1.159256935119629 img loss 1.2064471244812012 img loss 1.1223819255828857 img loss 1.2729190587997437 img loss 1.1882286071777344 img loss 1.2293556928634644 img loss 1.2676962614059448 img loss 1.2328574657440186 img loss 1.326943278312683 img loss 1.2765388488769531 img loss 1.2201581001281738 img loss 1.3340952396392822 img loss 1.1548469066619873 img loss 1.3100807666778564 img loss 1.3514552116394043 img loss 1.2424461841583252 img loss 1.246570348739624 img loss 1.176007866859436 img loss 1.2494940757751465 img loss 1.3220592737197876 img loss 1.1895852088928223 img loss 1.1735281944274902 img loss 1.202769160270691 img loss 1.2406666278839111 img loss 1.1667625904083252 img loss 1.3110594749450684 img loss 1.2210553884506226 img loss 1.2559945583343506 img loss 1.1376737356185913 img loss 1.3374296426773071 img loss 1.1595357656478882 {'loss': 1.2293, 'grad_norm': 0.36756443977355957, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3807204961776733 img loss 1.4581602811813354 img loss 1.368775486946106 img loss 1.4920012950897217 img loss 1.3819435834884644 img loss 1.276252031326294 img loss 1.4231560230255127 img loss 1.430935025215149 img loss 1.3336743116378784 img loss 1.4148794412612915 img loss 1.336862325668335 img loss 1.4269554615020752 img loss 1.431699275970459 img loss 1.3399032354354858 img loss 1.4217716455459595 img loss 1.5302188396453857 img loss 1.553361177444458 img loss 1.3886183500289917 img loss 1.4356621503829956 img loss 1.3779932260513306 img loss 1.3925039768218994 img loss 1.4593762159347534 img loss 1.5091111660003662 img loss 1.3710449934005737 img loss 1.5178605318069458 img loss 1.3603402376174927 img loss 1.423565149307251 img loss 1.4222525358200073 img loss 1.394885778427124 img loss 1.3972927331924438 img loss 1.5366860628128052 img loss 1.386461615562439 img loss 1.395067572593689 img loss 1.4093824625015259 img loss 1.413164496421814 img loss 1.3551862239837646 img loss 1.448768973350525 img loss 1.4436017274856567 img loss 1.359932780265808 img loss 1.4918878078460693 img loss 1.4329994916915894 img loss 1.5446454286575317 img loss 1.3822404146194458 img loss 1.4105321168899536 img loss 1.3506429195404053 img loss 1.3355748653411865 img loss 1.3881182670593262 img loss 1.3489432334899902 img loss 1.4611960649490356 img loss 1.3938877582550049 img loss 1.3362205028533936 img loss 1.4128785133361816 img loss 1.408638834953308 img loss 1.4427902698516846 img loss 1.3956247568130493 img loss 1.3356388807296753 img loss 1.4545464515686035 img loss 1.4308998584747314 img loss 1.4118489027023315 img loss 1.4090332984924316 img loss 1.4523634910583496 img loss 1.48306143283844 img loss 1.4191251993179321 img loss 1.4744008779525757 img loss 1.5012147426605225 img loss 1.4736154079437256 img loss 1.375922441482544 img loss 1.460871934890747 img loss 1.3602536916732788 img loss 1.451156497001648 img loss 1.4815165996551514 img loss 1.4172598123550415 img loss 1.3477035760879517 img loss 1.4257491827011108 img loss 1.4116089344024658 img loss 1.3328393697738647 img loss 1.4198552370071411 img loss 1.4845908880233765 img loss 1.3616347312927246 img loss 1.388904333114624 img loss 1.4392856359481812 img loss 1.503190279006958 img loss 1.412108063697815 img loss 1.4117611646652222 img loss 1.4065419435501099 img loss 1.3355686664581299 img loss 1.386656403541565 img loss 1.454820156097412 img loss 1.4300633668899536 img loss 1.3717507123947144 img loss 1.361352562904358 img loss 1.588173270225525 img loss 1.4215962886810303 img loss 1.3810466527938843 img loss 1.4811794757843018 img loss 1.3993521928787231 img loss 1.3802834749221802 img loss 1.4108644723892212 img loss 1.489578366279602 img loss 1.4515482187271118 img loss 1.363512635231018 img loss 1.4763931035995483 img loss 1.4021111726760864 img loss 1.3654353618621826 img loss 1.462727665901184 img loss 1.454271674156189 img loss 1.3824336528778076 img loss 1.4195905923843384 img loss 1.519726037979126 img loss 1.5299707651138306 img loss 1.3928353786468506 img loss 1.3061606884002686 img loss 1.4440902471542358 img loss 1.3626723289489746 img loss 1.3886815309524536 img loss 1.412494421005249 img loss 1.3925617933273315 img loss 1.4125105142593384 img loss 1.3649529218673706 img loss 1.3876150846481323 img loss 1.4306713342666626img loss 1.3764359951019287img loss 1.3958135843276978 img loss 1.403070092201233 img loss 1.550373911857605 img loss 1.5514671802520752 img loss 1.382873296737671 img loss 1.480888843536377 {'loss': 1.419, 'grad_norm': 0.2941886782646179, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1925796270370483 img loss 1.1766070127487183 img loss 1.1673426628112793 img loss 1.1507269144058228 img loss 1.158117651939392 img loss 1.2349998950958252 img loss 1.1452865600585938 img loss 1.1449589729309082 img loss 1.1785502433776855 img loss 1.1478862762451172 img loss 1.1593481302261353 img loss 1.1694576740264893 img loss 1.178351640701294 img loss 1.1834954023361206 img loss 1.2242265939712524 img loss 1.257393479347229 img loss 1.163479208946228 img loss 1.2318015098571777 img loss 1.164599061012268 img loss 1.212437629699707 img loss 1.1334033012390137 img loss 1.2983076572418213 img loss 1.2154321670532227 img loss 1.157743215560913 img loss 1.2036375999450684 img loss 1.2169653177261353 img loss 1.1683249473571777 img loss 1.1851003170013428 img loss 1.2250255346298218 img loss 1.1833627223968506 img loss 1.218159556388855 img loss 1.2461028099060059 img loss 1.1814098358154297 img loss 1.2481493949890137 img loss 1.1489523649215698 img loss 1.1182407140731812 img loss 1.1099762916564941 img loss 1.0476243495941162 img loss 1.2293585538864136 img loss 1.15758216381073 img loss 1.2001415491104126 img loss 1.2557449340820312 img loss 1.114645004272461 img loss 1.1047147512435913 img loss 1.2700655460357666 img loss 1.1338412761688232 img loss 1.2239723205566406 img loss 1.2165474891662598 img loss 1.2716307640075684 img loss 1.1479593515396118 img loss 1.1900650262832642 img loss 1.2743545770645142 img loss 1.2495629787445068 img loss 1.2055492401123047 img loss 1.1607985496520996 img loss 1.17447030544281 img loss 1.1701961755752563 img loss 1.2137380838394165 img loss 1.215462565422058 img loss 1.2316099405288696 img loss 1.2578580379486084 img loss 1.1352752447128296 img loss 1.1086516380310059 img loss 1.215898036956787 img loss 1.2121556997299194 img loss 1.1808693408966064 img loss 1.1187254190444946 img loss 1.2496470212936401 img loss 1.2376238107681274 img loss 1.2098870277404785 img loss 1.1558597087860107 img loss 1.1981524229049683 img loss 1.1125127077102661 img loss 1.2189147472381592 img loss 1.1660593748092651 img loss 1.1883543729782104 img loss 1.1663317680358887 img loss 1.1387059688568115 img loss 1.1757959127426147 img loss 1.2116832733154297 img loss 1.293002963066101 img loss 1.1998993158340454 img loss 1.155239462852478 img loss 1.2158164978027344 img loss 1.3215278387069702 img loss 1.1414333581924438 img loss 1.2095670700073242 img loss 1.1884748935699463 img loss 1.231069564819336 img loss 1.1683826446533203 img loss 1.2336221933364868 img loss 1.2026981115341187 img loss 1.1197770833969116 img loss 1.153395414352417 img loss 1.2721811532974243 img loss 1.2073973417282104 img loss 1.2645719051361084 img loss 1.2494983673095703 img loss 1.3159153461456299 img loss 1.1384848356246948 img loss 1.1749614477157593 img loss 1.099749207496643 img loss 1.193183183670044 img loss 1.152346134185791 img loss 1.2771446704864502 img loss 1.2038094997406006 img loss 1.1711173057556152 img loss 1.1455631256103516 img loss 1.1796505451202393 img loss 1.2093887329101562 img loss 1.200613021850586 img loss 1.0751985311508179 img loss 1.171079397201538 img loss 1.2452236413955688 img loss 1.1669840812683105 img loss 1.146235704421997 img loss 1.1118334531784058 img loss 1.1179592609405518 img loss 1.1460256576538086 img loss 1.152199387550354 img loss 1.1633327007293701 img loss 1.2185977697372437 img loss 1.1118674278259277 img loss 1.1472432613372803 img loss 1.1049679517745972 img loss 1.2047115564346313 img loss 1.1743783950805664 img loss 1.1709141731262207 {'loss': 1.187, 'grad_norm': 0.20153209567070007, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5989775657653809 img loss 1.4346299171447754 img loss 1.3550269603729248 img loss 1.5544384717941284 img loss 1.51468825340271 img loss 1.414783239364624 img loss 1.577663779258728 img loss 1.532025694847107 img loss 1.4817012548446655 img loss 1.5813212394714355 img loss 1.4075357913970947 img loss 1.4747933149337769 img loss 1.4567874670028687 img loss 1.4731993675231934 img loss 1.592638611793518 img loss 1.5083876848220825 img loss 1.4533828496932983 img loss 1.4759271144866943 img loss 1.4119843244552612 img loss 1.4251707792282104 img loss 1.487228512763977 img loss 1.43281888961792 img loss 1.4689338207244873 img loss 1.4828848838806152 img loss 1.4791146516799927 img loss 1.5976006984710693 img loss 1.4911894798278809 img loss 1.4223361015319824 img loss 1.637908697128296 img loss 1.4954367876052856 img loss 1.5517022609710693 img loss 1.5960495471954346 img loss 1.5104092359542847 img loss 1.5836730003356934 img loss 1.5743944644927979 img loss 1.4033849239349365 img loss 1.3856757879257202 img loss 1.3082164525985718 img loss 1.3315386772155762 img loss 1.519761562347412 img loss 1.4442085027694702 img loss 1.5552079677581787 img loss 1.4847825765609741 img loss 1.4057576656341553 img loss 1.460675597190857 img loss 1.6366674900054932 img loss 1.4208003282546997 img loss 1.4666184186935425 img loss 1.4589186906814575 img loss 1.6145873069763184 img loss 1.344307541847229 img loss 1.5138323307037354 img loss 1.4545396566390991 img loss 1.3856240510940552 img loss 1.4176656007766724 img loss 1.455003261566162 img loss 1.5741738080978394 img loss 1.3524529933929443 img loss 1.6051145792007446 img loss 1.467517614364624 img loss 1.5054208040237427 img loss 1.4446684122085571 img loss 1.5204212665557861 img loss 1.4081374406814575 img loss 1.4517275094985962 img loss 1.4568730592727661 img loss 1.4783909320831299 img loss 1.3778237104415894 img loss 1.4731804132461548 img loss 1.3050225973129272 img loss 1.5202927589416504 img loss 1.4736971855163574 img loss 1.4593329429626465 img loss 1.43911612033844 img loss 1.4508326053619385 img loss 1.5345174074172974 img loss 1.5581276416778564 img loss 1.434990406036377 img loss 1.4144587516784668 img loss 1.4297006130218506 img loss 1.6015876531600952 img loss 1.4550795555114746 img loss 1.661490559577942 img loss 1.5511401891708374 img loss 1.6393258571624756 img loss 1.4171563386917114 img loss 1.469419002532959 img loss 1.6680768728256226 img loss 1.4820908308029175 img loss 1.3701598644256592 img loss 1.5875431299209595 img loss 1.4483667612075806 img loss 1.3003137111663818 img loss 1.3546345233917236 img loss 1.4339444637298584 img loss 1.472542405128479 img loss 1.4704517126083374 img loss 1.3899449110031128 img loss 1.4497250318527222 img loss 1.5296015739440918 img loss 1.4874504804611206 img loss 1.440721035003662 img loss 1.397972822189331 img loss 1.4516654014587402 img loss 1.5571647882461548 img loss 1.6254613399505615 img loss 1.447333812713623 img loss 1.5723673105239868 img loss 1.5568474531173706 img loss 1.5352338552474976 img loss 1.620679497718811 img loss 1.5454514026641846 img loss 1.4027668237686157 img loss 1.5959361791610718 img loss 1.4052318334579468 img loss 1.4413530826568604 img loss 1.422879695892334 img loss 1.5247530937194824 img loss 1.5476405620574951 img loss 1.5757797956466675 img loss 1.3037413358688354 img loss 1.6101795434951782 img loss 1.4196231365203857 img loss 1.4164655208587646 img loss 1.490185260772705 img loss 1.5158153772354126 img loss 1.3968746662139893 img loss 1.6751320362091064 {'loss': 1.4834, 'grad_norm': 0.23964503407478333, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2551703453063965 img loss 1.1582202911376953 img loss 1.267431616783142 img loss 1.2700737714767456 img loss 1.1553863286972046 img loss 1.1436771154403687 img loss 1.2108197212219238 img loss 1.24910306930542 img loss 1.2926197052001953 img loss 1.2001787424087524 img loss 1.2449135780334473 img loss 1.224177598953247 img loss 1.2388194799423218 img loss 1.20767343044281 img loss 1.3143441677093506 img loss 1.1227612495422363 img loss 1.2316349744796753 img loss 1.3162853717803955 img loss 1.209675669670105 img loss 1.3113625049591064 img loss 1.2874865531921387 img loss 1.2082571983337402 img loss 1.182442307472229 img loss 1.22867751121521 img loss 1.2868740558624268 img loss 1.2660421133041382 img loss 1.4190486669540405 img loss 1.2125552892684937 img loss 1.301561951637268 img loss 1.2159020900726318 img loss 1.2661004066467285 img loss 1.2101200819015503 img loss 1.2726753950119019 img loss 1.1784614324569702 img loss 1.1940202713012695 img loss 1.1879913806915283 img loss 1.2540850639343262 img loss 1.1830519437789917 img loss 1.193580150604248 img loss 1.241014003753662 img loss 1.1625092029571533 img loss 1.215329885482788 img loss 1.2251259088516235 img loss 1.1952674388885498 img loss 1.2930450439453125 img loss 1.22386634349823 img loss 1.1949154138565063 img loss 1.205115795135498 img loss 1.210505485534668 img loss 1.1834285259246826 img loss 1.2513684034347534 img loss 1.1808799505233765 img loss 1.2141201496124268 img loss 1.1824471950531006 img loss 1.1891781091690063 img loss 1.2022805213928223 img loss 1.2105060815811157 img loss 1.2140849828720093 img loss 1.1964111328125 img loss 1.1362159252166748 img loss 1.192402720451355 img loss 1.2149124145507812 img loss 1.2766069173812866 img loss 1.1708848476409912 img loss 1.1523988246917725 img loss 1.190300464630127 img loss 1.1763184070587158 img loss 1.1916701793670654 img loss 1.2727546691894531 img loss 1.239174723625183 img loss 1.2128615379333496 img loss 1.1948716640472412 img loss 1.201804757118225 img loss 1.2188857793807983 img loss 1.23638916015625 img loss 1.2098548412322998 img loss 1.2800507545471191 img loss 1.2020103931427002 img loss 1.2005815505981445 img loss 1.2449601888656616 img loss 1.2378772497177124 img loss 1.271742820739746 img loss 1.347102403640747 img loss 1.229220986366272 img loss 1.1778916120529175 img loss 1.295355200767517 img loss 1.2803696393966675 img loss 1.259584665298462 img loss 1.1944942474365234 img loss 1.3142212629318237 img loss 1.198363184928894 img loss 1.271474838256836 img loss 1.1856021881103516 img loss 1.1475253105163574 img loss 1.2153353691101074 img loss 1.2369608879089355 img loss 1.210635781288147 img loss 1.1942973136901855 img loss 1.1683077812194824 img loss 1.1858246326446533 img loss 1.1887900829315186 img loss 1.1365118026733398 img loss 1.2674999237060547 img loss 1.19632887840271 img loss 1.2096306085586548 img loss 1.2272632122039795 img loss 1.2190529108047485 img loss 1.1940618753433228 img loss 1.217769980430603 img loss 1.251826524734497 img loss 1.2937698364257812 img loss 1.2299673557281494 img loss 1.1464561223983765 img loss 1.241655945777893 img loss 1.218811273574829 img loss 1.2247200012207031 img loss 1.2151001691818237 img loss 1.2863659858703613 img loss 1.2282218933105469 img loss 1.2536826133728027 img loss 1.094103217124939 img loss 1.2849596738815308 img loss 1.1891872882843018 img loss 1.2484406232833862 img loss 1.271021842956543 img loss 1.2899260520935059 img loss 1.1244847774505615 img loss 1.1916499137878418 {'loss': 1.223, 'grad_norm': 0.1831233948469162, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4711582660675049 img loss 1.5058419704437256 img loss 1.4601062536239624 img loss 1.4532428979873657 img loss 1.4659459590911865 img loss 1.490539312362671 img loss 1.2942306995391846 img loss 1.4484254121780396 img loss 1.4248480796813965 img loss 1.3947376012802124 img loss 1.4659322500228882 img loss 1.342222809791565 img loss 1.3605519533157349 img loss 1.5856602191925049 img loss 1.484155535697937 img loss 1.294034481048584 img loss 1.3926540613174438 img loss 1.4375962018966675 img loss 1.3690153360366821 img loss 1.4332093000411987 img loss 1.565345287322998 img loss 1.4236979484558105 img loss 1.5650297403335571 img loss 1.2905327081680298 img loss 1.5317903757095337 img loss 1.509845495223999 img loss 1.5891520977020264 img loss 1.4605517387390137 img loss 1.3728548288345337 img loss 1.4078274965286255 img loss 1.4224799871444702 img loss 1.4437534809112549 img loss 1.428900122642517 img loss 1.5942360162734985 img loss 1.4284541606903076 img loss 1.4603188037872314 img loss 1.422851324081421 img loss 1.3349757194519043 img loss 1.4684491157531738 img loss 1.480221152305603 img loss 1.5297242403030396 img loss 1.6241592168807983 img loss 1.5202125310897827 img loss 1.5865275859832764 img loss 1.4301899671554565 img loss 1.5247257947921753 img loss 1.618074655532837 img loss 1.6170223951339722 img loss 1.4677382707595825 img loss 1.451738953590393 img loss 1.4907368421554565 img loss 1.426397681236267 img loss 1.443154215812683 img loss 1.343114972114563 img loss 1.4909929037094116 img loss 1.506394863128662 img loss 1.4549165964126587 img loss 1.5973154306411743 img loss 1.4281927347183228 img loss 1.4431947469711304 img loss 1.4694570302963257 img loss 1.3942162990570068 img loss 1.5072932243347168 img loss 1.5284055471420288 img loss 1.5554367303848267 img loss 1.4302620887756348 img loss 1.3382858037948608 img loss 1.471037745475769 img loss 1.4462847709655762 img loss 1.5511564016342163 img loss 1.5620468854904175 img loss 1.4534302949905396 img loss 1.3609099388122559 img loss 1.4696805477142334 img loss 1.528760552406311 img loss 1.4101697206497192 img loss 1.45350980758667 img loss 1.5545467138290405 img loss 1.467437505722046 img loss 1.4302699565887451 img loss 1.6032601594924927 img loss 1.448330044746399 img loss 1.5751742124557495 img loss 1.5697137117385864 img loss 1.4303804636001587 img loss 1.4727203845977783 img loss 1.3889870643615723 img loss 1.392567753791809 img loss 1.318631649017334 img loss 1.5421831607818604 img loss 1.3600399494171143 img loss 1.5472723245620728 img loss 1.4584141969680786 img loss 1.3688496351242065 img loss 1.3945896625518799 img loss 1.4091715812683105 img loss 1.4450806379318237 img loss 1.4943126440048218 img loss 1.4850083589553833 img loss 1.4783884286880493 img loss 1.463628888130188 img loss 1.3651801347732544 img loss 1.4693974256515503 img loss 1.4873050451278687 img loss 1.5121651887893677 img loss 1.4131808280944824 img loss 1.4105266332626343 img loss 1.4347885847091675 img loss 1.420819878578186 img loss 1.5359081029891968 img loss 1.4894126653671265 img loss 1.4028542041778564 img loss 1.478880763053894 img loss 1.4380357265472412 img loss 1.5337576866149902 img loss 1.5725090503692627 img loss 1.427172064781189 img loss 1.3822904825210571 img loss 1.5073472261428833 img loss 1.4591261148452759 img loss 1.387489914894104 img loss 1.4502081871032715 img loss 1.4574768543243408 img loss 1.3278759717941284 img loss 1.4815772771835327 img loss 1.442962408065796 img loss 1.4763559103012085 img loss 1.4636040925979614 {'loss': 1.4612, 'grad_norm': 0.2004835307598114, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2571845054626465 img loss 1.2254406213760376 img loss 1.182470679283142 img loss 1.2118139266967773 img loss 1.2975120544433594 img loss 1.270907998085022 img loss 1.2703784704208374 img loss 1.2290585041046143 img loss 1.2232246398925781 img loss 1.2814900875091553 img loss 1.2616525888442993 img loss 1.251098394393921 img loss 1.2973829507827759 img loss 1.2625735998153687 img loss 1.2659847736358643 img loss 1.2311854362487793 img loss 1.2098875045776367 img loss 1.2608330249786377 img loss 1.2106566429138184 img loss 1.2552381753921509 img loss 1.230912208557129 img loss 1.2358858585357666 img loss 1.2464717626571655 img loss 1.2522810697555542 img loss 1.1605838537216187 img loss 1.2668726444244385 img loss 1.2275160551071167 img loss 1.290808081626892 img loss 1.2296669483184814 img loss 1.2454750537872314 img loss 1.3345589637756348 img loss 1.2704412937164307 img loss 1.1726765632629395 img loss 1.3367772102355957 img loss 1.2997543811798096 img loss 1.3121976852416992 img loss 1.2399967908859253 img loss 1.2501133680343628 img loss 1.232534408569336 img loss 1.351061463356018 img loss 1.2750098705291748 img loss 1.3103703260421753 img loss 1.2236895561218262 img loss 1.2819898128509521 img loss 1.2586472034454346 img loss 1.2526452541351318 img loss 1.2913004159927368 img loss 1.2547050714492798 img loss 1.288572907447815 img loss 1.2239203453063965 img loss 1.3031902313232422 img loss 1.2950093746185303 img loss 1.288015365600586 img loss 1.3828455209732056 img loss 1.2914453744888306 img loss 1.323586344718933 img loss 1.2892910242080688 img loss 1.2332050800323486 img loss 1.2437539100646973 img loss 1.229514718055725 img loss 1.31137216091156 img loss 1.2201571464538574 img loss 1.295519232749939 img loss 1.1783981323242188 img loss 1.272486925125122 img loss 1.3008556365966797 img loss 1.211549162864685 img loss 1.322413444519043 img loss 1.2910423278808594 img loss 1.2345608472824097 img loss 1.3246023654937744 img loss 1.2638338804244995 img loss 1.37454354763031 img loss 1.2457256317138672 img loss 1.2442371845245361 img loss 1.3194547891616821 img loss 1.214586615562439 img loss 1.2085450887680054 img loss 1.2402523756027222 img loss 1.206476092338562 img loss 1.278136968612671 img loss 1.2437771558761597 img loss 1.25648832321167 img loss 1.339972972869873 img loss 1.245201587677002 img loss 1.2859609127044678 img loss 1.2522423267364502 img loss 1.25584077835083 img loss 1.2944152355194092 img loss 1.2571905851364136 img loss 1.2046412229537964 img loss 1.2536810636520386 img loss 1.2149780988693237 img loss 1.3163248300552368 img loss 1.3835679292678833 img loss 1.2456374168395996 img loss 1.1953270435333252 img loss 1.3526599407196045 img loss 1.268850564956665 img loss 1.2533315420150757 img loss 1.3094885349273682 img loss 1.32399582862854 img loss 1.3052301406860352 img loss 1.2482935190200806 img loss 1.2257797718048096img loss 1.2598069906234741 img loss 1.3191962242126465 img loss 1.3064115047454834 img loss 1.2637999057769775 img loss 1.1488407850265503 img loss 1.300437569618225 img loss 1.265134572982788 img loss 1.304598093032837 img loss 1.2100160121917725 img loss 1.1974267959594727 img loss 1.381483554840088 img loss 1.387524962425232 img loss 1.228513479232788 img loss 1.2209863662719727 img loss 1.2671784162521362 img loss 1.2123281955718994 img loss 1.3390451669692993 img loss 1.1735236644744873 img loss 1.24481201171875 img loss 1.2235187292099 img loss 1.2065708637237549 img loss 1.217071294784546 img loss 1.279428482055664 {'loss': 1.2635, 'grad_norm': 0.28153184056282043, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.8245316743850708 img loss 1.869847297668457 img loss 1.8348891735076904 img loss 1.704232096672058 img loss 1.5865684747695923 img loss 1.7252402305603027 img loss 1.779877781867981 img loss 1.8536686897277832 img loss 2.059952735900879 img loss 1.7472118139266968 img loss 1.7938724756240845 img loss 1.7782474756240845 img loss 1.7268048524856567 img loss 1.7789632081985474 img loss 1.7918388843536377 img loss 1.831479549407959 img loss 1.8324189186096191 img loss 1.7144811153411865 img loss 1.9791245460510254 img loss 1.7802194356918335 img loss 1.7972829341888428 img loss 2.0271618366241455 img loss 1.8347808122634888 img loss 1.6646846532821655 img loss 1.8491013050079346 img loss 1.795358419418335 img loss 1.7759637832641602 img loss 1.8543484210968018 img loss 1.724143385887146 img loss 1.8196442127227783 img loss 1.885959267616272 img loss 1.958350419998169 img loss 1.7676845788955688 img loss 1.8723196983337402 img loss 1.8830939531326294 img loss 1.8077036142349243 img loss 1.973449468612671 img loss 1.7115321159362793 img loss 2.0297060012817383 img loss 1.8541991710662842 img loss 1.7453393936157227 img loss 1.7660123109817505 img loss 1.8103986978530884 img loss 1.8991628885269165 img loss 1.828269600868225 img loss 1.8434054851531982img loss 1.7954353094100952 img loss 1.9919449090957642 img loss 1.700425624847412 img loss 1.7774977684020996 img loss 1.8458293676376343 img loss 1.6870681047439575 img loss 1.719536304473877 img loss 1.9007800817489624 img loss 1.8966360092163086 img loss 2.02751088142395 img loss 1.908063530921936 img loss 1.8598949909210205 img loss 1.7150585651397705 img loss 1.9410829544067383 img loss 1.6882755756378174 img loss 1.7244263887405396 img loss 1.834655523300171 img loss 1.7369693517684937 img loss 2.0080437660217285 img loss 1.8781675100326538 img loss 1.7166516780853271 img loss 1.834023118019104 img loss 1.704710841178894 img loss 1.8980580568313599 img loss 1.8421698808670044 img loss 1.7925435304641724 img loss 1.7506394386291504 img loss 1.6045571565628052 img loss 1.7762985229492188 img loss 1.8135199546813965 img loss 1.7504087686538696 img loss 1.8168871402740479 img loss 1.9761438369750977 img loss 1.9320032596588135 img loss 1.819161057472229 img loss 1.8077664375305176 img loss 1.9123642444610596 img loss 1.7334778308868408 img loss 1.710083246231079 img loss 1.712293267250061 img loss 1.7604373693466187 img loss 1.7859506607055664 img loss 1.8273186683654785 img loss 1.7860898971557617 img loss 1.8215185403823853 img loss 1.9985990524291992 img loss 1.6966471672058105 img loss 1.6338684558868408 img loss 1.767418622970581 img loss 1.8249826431274414 img loss 1.7079952955245972 img loss 1.9272539615631104 img loss 1.7860184907913208 img loss 1.8335943222045898 img loss 1.8681565523147583 img loss 1.8203376531600952 img loss 1.757110834121704 img loss 1.7213857173919678 img loss 1.7940572500228882 img loss 1.7941482067108154 img loss 1.8100676536560059 img loss 1.802203893661499 img loss 1.8495569229125977 img loss 1.8200770616531372 img loss 1.8213412761688232 img loss 1.8222192525863647 img loss 1.5999683141708374 img loss 1.6366361379623413 img loss 1.6998471021652222 img loss 1.773950219154358 img loss 1.870713710784912 img loss 1.8950215578079224 img loss 1.8142895698547363 img loss 1.788879156112671 img loss 1.8120718002319336 img loss 1.594221591949463 img loss 1.8664815425872803 img loss 1.8279558420181274 img loss 1.8927637338638306 img loss 1.8784252405166626 img loss 1.8670388460159302 img loss 1.8155133724212646 {'loss': 1.8108, 'grad_norm': 0.6035699844360352, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1444792747497559 img loss 1.290456771850586 img loss 1.239816665649414 img loss 1.1314327716827393 img loss 1.2181553840637207 img loss 1.2192020416259766 img loss 1.2686290740966797 img loss 1.2496449947357178 img loss 1.2509111166000366 img loss 1.2502809762954712 img loss 1.1308666467666626 img loss 1.230799674987793 img loss 1.2184711694717407 img loss 1.1574519872665405 img loss 1.3212952613830566 img loss 1.2130836248397827 img loss 1.2182576656341553 img loss 1.12998366355896 img loss 1.2525399923324585 img loss 1.1744563579559326 img loss 1.235107183456421 img loss 1.0776276588439941 img loss 1.1811811923980713 img loss 1.2302730083465576 img loss 1.2637394666671753 img loss 1.1796458959579468 img loss 1.2385555505752563 img loss 1.1768546104431152 img loss 1.2944401502609253 img loss 1.2492550611495972 img loss 1.2541518211364746 img loss 1.0859308242797852 img loss 1.27836275100708 img loss 1.1688660383224487 img loss 1.1198228597640991 img loss 1.1414705514907837 img loss 1.2530896663665771 img loss 1.1484726667404175 img loss 1.189371109008789 img loss 1.1751155853271484 img loss 1.1168856620788574 img loss 1.1791168451309204 img loss 1.1624835729599 img loss 1.2833589315414429 img loss 1.2612848281860352 img loss 1.2308733463287354 img loss 1.2497577667236328 img loss 1.2237322330474854 img loss 1.2102593183517456 img loss 1.1776951551437378 img loss 1.201316475868225 img loss 1.3229546546936035 img loss 1.2832353115081787 img loss 1.132365107536316 img loss 1.220706820487976 img loss 1.1695058345794678 img loss 1.2283377647399902 img loss 1.204439640045166 img loss 1.21712064743042 img loss 1.2096055746078491 img loss 1.2129480838775635 img loss 1.287682294845581 img loss 1.1394706964492798 img loss 1.2208019495010376 img loss 1.1796982288360596 img loss 1.20021653175354 img loss 1.1868432760238647 img loss 1.2573306560516357 img loss 1.1962924003601074 img loss 1.1737905740737915 img loss 1.2329260110855103 img loss 1.1681686639785767 img loss 1.2077066898345947 img loss 1.1962487697601318 img loss 1.253400444984436 img loss 1.2832081317901611 img loss 1.2081668376922607 img loss 1.2361732721328735 img loss 1.2536563873291016 img loss 1.2757298946380615 img loss 1.2392081022262573 img loss 1.3703597784042358 img loss 1.2748762369155884 img loss 1.2783104181289673 img loss 1.2001802921295166 img loss 1.1951100826263428 img loss 1.239786982536316 img loss 1.1896981000900269 img loss 1.2926480770111084 img loss 1.164437174797058 img loss 1.31742262840271 img loss 1.2507448196411133 img loss 1.1839141845703125 img loss 1.1433244943618774 img loss 1.2628264427185059 img loss 1.315069556236267 img loss 1.16325843334198 img loss 1.2150537967681885 img loss 1.1785809993743896 img loss 1.208144187927246 img loss 1.1666028499603271 img loss 1.1376585960388184 img loss 1.220266342163086 img loss 1.2119805812835693 img loss 1.2006590366363525 img loss 1.245527982711792 img loss 1.1669116020202637 img loss 1.1739829778671265 img loss 1.1970947980880737 img loss 1.2279974222183228 img loss 1.1440893411636353 img loss 1.2044645547866821 img loss 1.2729538679122925 img loss 1.2008970975875854 img loss 1.164110779762268 img loss 1.158461093902588 img loss 1.2807451486587524 img loss 1.1901804208755493 img loss 1.188755989074707 img loss 1.2019224166870117 img loss 1.1988275051116943 img loss 1.203439712524414 img loss 1.1492741107940674 img loss 1.1862910985946655 img loss 1.177600622177124 img loss 1.1292484998703003 img loss 1.2189760208129883 img loss 1.09910249710083 {'loss': 1.2102, 'grad_norm': 0.22796891629695892, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3144872188568115 img loss 1.1575887203216553 img loss 1.2911783456802368 img loss 1.202635407447815 img loss 1.2385647296905518 img loss 1.2746771574020386 img loss 1.2791885137557983 img loss 1.2662819623947144 img loss 1.2036861181259155 img loss 1.2821705341339111 img loss 1.2087730169296265 img loss 1.2390226125717163 img loss 1.2620134353637695 img loss 1.208249568939209 img loss 1.3422037363052368 img loss 1.3236610889434814 img loss 1.218315601348877 img loss 1.2800524234771729 img loss 1.261059284210205 img loss 1.2811559438705444 img loss 1.2043321132659912 img loss 1.322378158569336 img loss 1.2938344478607178 img loss 1.2016165256500244 img loss 1.2904045581817627 img loss 1.3583260774612427 img loss 1.2098710536956787 img loss 1.2768388986587524 img loss 1.2523292303085327 img loss 1.3288466930389404 img loss 1.1564853191375732 img loss 1.2927570343017578 img loss 1.2157812118530273 img loss 1.4185494184494019 img loss 1.2156167030334473 img loss 1.2173678874969482 img loss 1.3259490728378296 img loss 1.2217587232589722 img loss 1.2462129592895508 img loss 1.2422739267349243 img loss 1.3362218141555786 img loss 1.2994922399520874 img loss 1.2382066249847412 img loss 1.1985969543457031 img loss 1.1743652820587158 img loss 1.193002700805664 img loss 1.2249778509140015 img loss 1.2675278186798096 img loss 1.1718101501464844 img loss 1.3486549854278564 img loss 1.3566861152648926 img loss 1.313215732574463 img loss 1.1804146766662598 img loss 1.2906413078308105 img loss 1.2486493587493896 img loss 1.15839421749115 img loss 1.3032300472259521 img loss 1.430160641670227 img loss 1.3479083776474 img loss 1.2716927528381348 img loss 1.2256706953048706 img loss 1.4410289525985718 img loss 1.246781826019287 img loss 1.21390700340271 img loss 1.1668888330459595 img loss 1.1631131172180176 img loss 1.1718769073486328 img loss 1.2153478860855103 img loss 1.0904972553253174 img loss 1.2416777610778809 img loss 1.2884107828140259 img loss 1.3321783542633057 img loss 1.1995363235473633 img loss 1.2273634672164917 img loss 1.2559998035430908 img loss 1.2892998456954956 img loss 1.243700385093689 img loss 1.1708110570907593 img loss 1.2239965200424194 img loss 1.2784194946289062 img loss 1.3051477670669556 img loss 1.297487497329712 img loss 1.2439510822296143 img loss 1.2122305631637573 img loss 1.258716106414795 img loss 1.2038798332214355 img loss 1.2356919050216675 img loss 1.341927170753479 img loss 1.170114517211914 img loss 1.2082006931304932 img loss 1.1944907903671265 img loss 1.2115075588226318 img loss 1.3358725309371948 img loss 1.2741317749023438 img loss 1.3961735963821411 img loss 1.2269290685653687 img loss 1.2971744537353516 img loss 1.2300151586532593 img loss 1.2122588157653809 img loss 1.2791918516159058 img loss 1.3332079648971558 img loss 1.239986777305603 img loss 1.253731608390808 img loss 1.3122990131378174 img loss 1.3857142925262451 img loss 1.317753553390503 img loss 1.2243801355361938 img loss 1.2294633388519287 img loss 1.2206039428710938 img loss 1.2133233547210693 img loss 1.29348623752594 img loss 1.201032042503357 img loss 1.2432286739349365 img loss 1.3309215307235718 img loss 1.3466269969940186 img loss 1.3146053552627563 img loss 1.22874915599823 img loss 1.2682300806045532 img loss 1.2404431104660034 img loss 1.2498024702072144 img loss 1.3733099699020386 img loss 1.224492073059082 img loss 1.1745972633361816 img loss 1.3548156023025513 img loss 1.3502657413482666 img loss 1.2640957832336426 img loss 1.1560734510421753 img loss 1.2301498651504517 {'loss': 1.2592, 'grad_norm': 0.2695017158985138, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3023298978805542 img loss 1.253130316734314 img loss 1.3259493112564087 img loss 1.2876036167144775 img loss 1.2615669965744019 img loss 1.4119470119476318 img loss 1.368620753288269 img loss 1.2366816997528076 img loss 1.2517398595809937 img loss 1.2625172138214111 img loss 1.2482613325119019 img loss 1.3222196102142334 img loss 1.2859963178634644 img loss 1.1833248138427734 img loss 1.4058257341384888 img loss 1.2537916898727417 img loss 1.2883586883544922 img loss 1.2278095483779907 img loss 1.259663462638855 img loss 1.300336480140686 img loss 1.254170298576355 img loss 1.2113786935806274 img loss 1.2486400604248047 img loss 1.1785701513290405 img loss 1.3022124767303467 img loss 1.2477715015411377 img loss 1.2678731679916382 img loss 1.438382625579834 img loss 1.3206818103790283 img loss 1.2919038534164429 img loss 1.2632694244384766 img loss 1.2750555276870728 img loss 1.2636997699737549 img loss 1.3043924570083618 img loss 1.3170267343521118 img loss 1.3062570095062256 img loss 1.2308909893035889 img loss 1.2423818111419678 img loss 1.3539930582046509 img loss 1.3939529657363892 img loss 1.2427635192871094 img loss 1.3129074573516846 img loss 1.4105530977249146 img loss 1.1915203332901 img loss 1.3195585012435913 img loss 1.3004605770111084 img loss 1.1957290172576904 img loss 1.34749174118042 img loss 1.2404670715332031 img loss 1.3911759853363037 img loss 1.297031283378601 img loss 1.2976908683776855 img loss 1.3600314855575562 img loss 1.290421962738037 img loss 1.2800931930541992 img loss 1.327293038368225 img loss 1.267709732055664 img loss 1.2593621015548706 img loss 1.1649682521820068 img loss 1.2304446697235107 img loss 1.1769583225250244 img loss 1.265136480331421 img loss 1.2305742502212524 img loss 1.2883007526397705 img loss 1.2054898738861084 img loss 1.2359846830368042 img loss 1.2862125635147095 img loss 1.233241319656372 img loss 1.278075933456421 img loss 1.2429765462875366 img loss 1.3850998878479004 img loss 1.1880202293395996 img loss 1.2382854223251343 img loss 1.3209984302520752 img loss 1.2233834266662598 img loss 1.1906803846359253 img loss 1.288979172706604 img loss 1.2378020286560059 img loss 1.2350401878356934 img loss 1.3470555543899536 img loss 1.2152798175811768 img loss 1.2689733505249023 img loss 1.3056045770645142 img loss 1.2759981155395508 img loss 1.3517597913742065 img loss 1.305609107017517 img loss 1.3436273336410522 img loss 1.4036856889724731 img loss 1.2604827880859375 img loss 1.3126120567321777 img loss 1.3456988334655762 img loss 1.2398228645324707 img loss 1.2990338802337646 img loss 1.3089792728424072 img loss 1.3115806579589844 img loss 1.238685965538025 img loss 1.3325574398040771 img loss 1.346262812614441 img loss 1.2865835428237915 img loss 1.3427506685256958 img loss 1.252572774887085 img loss 1.2620980739593506 img loss 1.2106540203094482 img loss 1.3017772436141968 img loss 1.3308959007263184 img loss 1.2458404302597046 img loss 1.343106746673584 img loss 1.257373571395874 img loss 1.2546687126159668 img loss 1.294066071510315 img loss 1.2280120849609375 img loss 1.367583155632019 img loss 1.2519547939300537 img loss 1.2006866931915283 img loss 1.3575552701950073 img loss 1.4009480476379395 img loss 1.250680685043335 img loss 1.2854355573654175 img loss 1.327706217765808 img loss 1.323972463607788 img loss 1.2915167808532715 img loss 1.3222956657409668 img loss 1.2894384860992432 img loss 1.2637615203857422 img loss 1.3602722883224487 img loss 1.3775218725204468 img loss 1.3099644184112549 img loss 1.309604525566101 {'loss': 1.2863, 'grad_norm': 0.3155769109725952, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3020145893096924 img loss 1.2993292808532715 img loss 1.329862117767334 img loss 1.2614638805389404 img loss 1.2218985557556152 img loss 1.3169074058532715 img loss 1.3385850191116333 img loss 1.4222532510757446 img loss 1.3039817810058594 img loss 1.2967156171798706 img loss 1.291959285736084 img loss 1.3275235891342163 img loss 1.3636304140090942 img loss 1.229535460472107 img loss 1.2544310092926025 img loss 1.2682222127914429 img loss 1.3317315578460693 img loss 1.3097785711288452 img loss 1.3493577241897583 img loss 1.3200534582138062 img loss 1.3267265558242798 img loss 1.2682160139083862 img loss 1.3072532415390015 img loss 1.3774811029434204 img loss 1.3177942037582397 img loss 1.4109350442886353 img loss 1.3116563558578491 img loss 1.3204872608184814 img loss 1.3645879030227661 img loss 1.358557105064392 img loss 1.3141593933105469 img loss 1.345791220664978 img loss 1.3201172351837158 img loss 1.297236442565918 img loss 1.2811816930770874 img loss 1.2851223945617676 img loss 1.3340084552764893 img loss 1.285682201385498 img loss 1.2586582899093628 img loss 1.3629764318466187 img loss 1.3551888465881348 img loss 1.3492491245269775 img loss 1.2361109256744385 img loss 1.3732630014419556 img loss 1.2909034490585327 img loss 1.3485745191574097 img loss 1.4382885694503784 img loss 1.3629883527755737 img loss 1.2168970108032227 img loss 1.2801942825317383 img loss 1.397021770477295 img loss 1.4127074480056763 img loss 1.371537685394287 img loss 1.4165767431259155 img loss 1.2585482597351074 img loss 1.2889679670333862 img loss 1.213040828704834 img loss 1.3741371631622314 img loss 1.4311975240707397 img loss 1.2001750469207764 img loss 1.3820449113845825 img loss 1.379169225692749 img loss 1.2627009153366089 img loss 1.297070860862732 img loss 1.263936996459961 img loss 1.3248307704925537 img loss 1.306884527206421 img loss 1.228859782218933 img loss 1.3017034530639648 img loss 1.3693253993988037 img loss 1.367485761642456 img loss 1.2588284015655518 img loss 1.2803236246109009 img loss 1.2327477931976318 img loss 1.3764879703521729 img loss 1.1945698261260986 img loss 1.3236163854599 img loss 1.2405240535736084 img loss 1.2945420742034912 img loss 1.3115594387054443 img loss 1.318153977394104 img loss 1.2413164377212524 img loss 1.2729548215866089 img loss 1.3424890041351318 img loss 1.3574153184890747 img loss 1.3419479131698608 img loss 1.339020013809204 img loss 1.2825912237167358 img loss 1.3544976711273193 img loss 1.3092983961105347 img loss 1.327856421470642 img loss 1.4459755420684814 img loss 1.3450075387954712 img loss 1.3424413204193115 img loss 1.2803761959075928 img loss 1.3975378274917603 img loss 1.3307234048843384 img loss 1.3686585426330566 img loss 1.2989050149917603 img loss 1.2836525440216064 img loss 1.2578163146972656 img loss 1.2737966775894165 img loss 1.2553284168243408 img loss 1.3837485313415527 img loss 1.4038231372833252 img loss 1.342248797416687 img loss 1.404704213142395 img loss 1.2953870296478271 img loss 1.3392413854599 img loss 1.2831413745880127 img loss 1.3290774822235107 img loss 1.454830527305603 img loss 1.3032703399658203 img loss 1.4220274686813354 img loss 1.2811782360076904 img loss 1.291668176651001 img loss 1.332664132118225 img loss 1.3780964612960815 img loss 1.2992291450500488 img loss 1.35261869430542 img loss 1.260772466659546 img loss 1.34122633934021 img loss 1.2538294792175293 img loss 1.3103461265563965 img loss 1.1843050718307495 img loss 1.4230847358703613 img loss 1.2722691297531128 img loss 1.2403610944747925 {'loss': 1.3184, 'grad_norm': 0.23622587323188782, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1810177564620972 img loss 1.171412706375122 img loss 1.1929148435592651 img loss 1.2365553379058838 img loss 1.2084782123565674 img loss 1.1951335668563843 img loss 1.3047847747802734 img loss 1.2498172521591187 img loss 1.2405916452407837 img loss 1.2325562238693237 img loss 1.1823766231536865 img loss 1.2642371654510498 img loss 1.2950077056884766 img loss 1.2497212886810303 img loss 1.27632474899292 img loss 1.2361170053482056 img loss 1.2848248481750488 img loss 1.1786677837371826 img loss 1.2651684284210205 img loss 1.2418526411056519 img loss 1.2816798686981201 img loss 1.2126579284667969 img loss 1.1672754287719727 img loss 1.14095938205719 img loss 1.179755449295044 img loss 1.244737982749939 img loss 1.2486968040466309 img loss 1.2603501081466675 img loss 1.1870172023773193 img loss 1.2571589946746826 img loss 1.2403563261032104 img loss 1.2566245794296265 img loss 1.3001155853271484 img loss 1.2533682584762573 img loss 1.2335529327392578 img loss 1.1854751110076904 img loss 1.232337236404419 img loss 1.2446494102478027 img loss 1.2553765773773193 img loss 1.2079887390136719 img loss 1.1912834644317627 img loss 1.2583012580871582 img loss 1.236018419265747 img loss 1.2938722372055054 img loss 1.2597326040267944 img loss 1.1932106018066406 img loss 1.2576370239257812 img loss 1.2187552452087402 img loss 1.2046533823013306 img loss 1.2103557586669922 img loss 1.2005679607391357 img loss 1.224649429321289 img loss 1.2642465829849243 img loss 1.25780189037323 img loss 1.1902251243591309 img loss 1.2320818901062012 img loss 1.2030218839645386 img loss 1.292218565940857 img loss 1.193388819694519 img loss 1.265845775604248 img loss 1.2144944667816162 img loss 1.1848734617233276 img loss 1.2767269611358643 img loss 1.1691890954971313 img loss 1.173202395439148 img loss 1.1718719005584717 img loss 1.2142152786254883 img loss 1.1636356115341187 img loss 1.19797682762146 img loss 1.2672293186187744 img loss 1.2322336435317993 img loss 1.2458932399749756 img loss 1.2772579193115234 img loss 1.2778873443603516 img loss 1.2182888984680176 img loss 1.2357609272003174 img loss 1.219926357269287 img loss 1.252918004989624 img loss 1.3121594190597534 img loss 1.3284144401550293 img loss 1.1732487678527832 img loss 1.1959102153778076 img loss 1.2504498958587646 img loss 1.1776529550552368 img loss 1.2063060998916626 img loss 1.1792742013931274 img loss 1.3060754537582397 img loss 1.1377967596054077 img loss 1.2203693389892578 img loss 1.2110881805419922 img loss 1.1722248792648315 img loss 1.2460908889770508 img loss 1.233128547668457 img loss 1.2774399518966675 img loss 1.2193363904953003 img loss 1.234266996383667 img loss 1.2034281492233276 img loss 1.2939518690109253 img loss 1.2591166496276855 img loss 1.2000744342803955 img loss 1.2253987789154053 img loss 1.2470935583114624 img loss 1.2134519815444946 img loss 1.2556718587875366 img loss 1.2791489362716675 img loss 1.1864213943481445 img loss 1.249963641166687 img loss 1.3591055870056152 img loss 1.2645012140274048 img loss 1.242264986038208 img loss 1.2064841985702515 img loss 1.2913862466812134 img loss 1.3216197490692139 img loss 1.2224172353744507 img loss 1.2333714962005615 img loss 1.1907356977462769 img loss 1.1310979127883911 img loss 1.202758550643921 img loss 1.2796224355697632 img loss 1.2522915601730347 img loss 1.1672817468643188 img loss 1.2135084867477417 img loss 1.1898856163024902 img loss 1.2257603406906128 img loss 1.2266687154769897 img loss 1.2164323329925537 img loss 1.285205602645874 img loss 1.2032498121261597 {'loss': 1.2308, 'grad_norm': 0.21699388325214386, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1459044218063354 img loss 1.2828316688537598 img loss 1.2170124053955078 img loss 1.2719395160675049 img loss 1.236032485961914 img loss 1.2038919925689697 img loss 1.2229328155517578 img loss 1.2492263317108154 img loss 1.1303229331970215 img loss 1.3265857696533203 img loss 1.2118117809295654 img loss 1.2216156721115112 img loss 1.19586980342865 img loss 1.2150907516479492 img loss 1.2671427726745605 img loss 1.2193412780761719 img loss 1.2322720289230347 img loss 1.217308521270752 img loss 1.1823257207870483 img loss 1.1837173700332642 img loss 1.1238032579421997 img loss 1.1574140787124634 img loss 1.2229084968566895 img loss 1.2175636291503906 img loss 1.2321922779083252 img loss 1.2736228704452515 img loss 1.2307367324829102 img loss 1.1812101602554321 img loss 1.1782257556915283 img loss 1.1851003170013428 img loss 1.179518222808838 img loss 1.2308992147445679 img loss 1.14146888256073 img loss 1.1755256652832031 img loss 1.287656545639038 img loss 1.324654221534729 img loss 1.2236926555633545 img loss 1.166150450706482 img loss 1.1911637783050537 img loss 1.1230617761611938 img loss 1.2619885206222534 img loss 1.271623134613037 img loss 1.1972156763076782 img loss 1.2012916803359985 img loss 1.2843916416168213 img loss 1.184934139251709 img loss 1.2875202894210815 img loss 1.2170612812042236 img loss 1.229382872581482 img loss 1.1976983547210693 img loss 1.2329230308532715 img loss 1.1321306228637695 img loss 1.1774572134017944 img loss 1.1788551807403564 img loss 1.18784499168396 img loss 1.206071138381958 img loss 1.2873926162719727 img loss 1.1588687896728516 img loss 1.2287189960479736 img loss 1.2971854209899902 img loss 1.2192399501800537 img loss 1.3048988580703735 img loss 1.2075105905532837 img loss 1.2467097043991089 img loss 1.1726099252700806 img loss 1.1913400888442993 img loss 1.1714881658554077 img loss 1.2279527187347412 img loss 1.2406859397888184 img loss 1.2181928157806396 img loss 1.2148809432983398 img loss 1.2355759143829346 img loss 1.1836193799972534 img loss 1.1312583684921265 img loss 1.1911327838897705 img loss 1.2815945148468018 img loss 1.2075194120407104 img loss 1.2326807975769043 img loss 1.164899230003357 img loss 1.1175323724746704 img loss 1.1934648752212524 img loss 1.1905790567398071 img loss 1.2242982387542725 img loss 1.2529256343841553 img loss 1.1874005794525146 img loss 1.34857976436615 img loss 1.291735053062439 img loss 1.1171174049377441 img loss 1.1986488103866577 img loss 1.1507086753845215 img loss 1.2616370916366577 img loss 1.1744383573532104 img loss 1.1773284673690796 img loss 1.2138264179229736 img loss 1.2195723056793213 img loss 1.1727180480957031 img loss 1.15730619430542 img loss 1.190119743347168 img loss 1.309076189994812 img loss 1.2288761138916016 img loss 1.1664139032363892 img loss 1.2244399785995483 img loss 1.1928354501724243 img loss 1.253344178199768 img loss 1.1901459693908691 img loss 1.218818187713623 img loss 1.1495331525802612 img loss 1.2668815851211548 img loss 1.3009141683578491 img loss 1.244301676750183 img loss 1.268371343612671 img loss 1.2528613805770874 img loss 1.168271541595459 img loss 1.209632158279419 img loss 1.2126288414001465 img loss 1.210569143295288 img loss 1.2229276895523071 img loss 1.2021139860153198 img loss 1.1883491277694702 img loss 1.2161833047866821 img loss 1.1941330432891846 img loss 1.2326310873031616 img loss 1.2354406118392944 img loss 1.199945092201233 img loss 1.2252027988433838 img loss 1.183846354484558 img loss 1.1911035776138306 img loss 1.2393219470977783 {'loss': 1.2139, 'grad_norm': 0.17845989763736725, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4627048969268799 img loss 1.2887543439865112 img loss 1.3970096111297607 img loss 1.2804465293884277 img loss 1.4897059202194214 img loss 1.354384183883667 img loss 1.2646989822387695 img loss 1.3274692296981812 img loss 1.3607544898986816 img loss 1.3190712928771973 img loss 1.2831252813339233 img loss 1.3252700567245483 img loss 1.3411457538604736 img loss 1.3656885623931885 img loss 1.3937160968780518 img loss 1.344516634941101 img loss 1.2557834386825562 img loss 1.3456778526306152 img loss 1.4586795568466187 img loss 1.34503972530365 img loss 1.2640047073364258 img loss 1.676910161972046 img loss 1.3503085374832153 img loss 1.3074913024902344 img loss 1.3321893215179443 img loss 1.3085882663726807 img loss 1.356166958808899 img loss 1.4000470638275146 img loss 1.3527568578720093 img loss 1.300816535949707 img loss 1.2357573509216309 img loss 1.385698914527893 img loss 1.3923267126083374 img loss 1.3230302333831787 img loss 1.4115195274353027 img loss 1.3059860467910767 img loss 1.3036627769470215 img loss 1.4021786451339722 img loss 1.3255360126495361 img loss 1.3324726819992065 img loss 1.3962043523788452 img loss 1.397650122642517 img loss 1.367802381515503 img loss 1.3835676908493042 img loss 1.4115804433822632 img loss 1.3586453199386597 img loss 1.296614170074463 img loss 1.3354618549346924 img loss 1.4045188426971436 img loss 1.4122568368911743 img loss 1.3592369556427002 img loss 1.3274668455123901 img loss 1.3610409498214722 img loss 1.32098388671875 img loss 1.460773229598999 img loss 1.3807810544967651 img loss 1.406949520111084 img loss 1.3031061887741089 img loss 1.2707016468048096 img loss 1.4231795072555542 img loss 1.3296676874160767 img loss 1.3887994289398193 img loss 1.3699510097503662 img loss 1.3928921222686768 img loss 1.358761191368103 img loss 1.3769689798355103 img loss 1.3240315914154053 img loss 1.322087287902832 img loss 1.4192086458206177 img loss 1.4058607816696167 img loss 1.3566995859146118 img loss 1.3167635202407837 img loss 1.2776334285736084 img loss 1.3316154479980469 img loss 1.289180040359497 img loss 1.4093186855316162 img loss 1.2991752624511719 img loss 1.3266448974609375 img loss 1.456765055656433 img loss 1.336362600326538 img loss 1.3179272413253784 img loss 1.2798012495040894 img loss 1.3352782726287842 img loss 1.3691567182540894 img loss 1.3671823740005493 img loss 1.451818585395813 img loss 1.4432902336120605 img loss 1.3578269481658936 img loss 1.2853771448135376 img loss 1.3650033473968506 img loss 1.2944462299346924 img loss 1.2631404399871826 img loss 1.3482048511505127 img loss 1.3541655540466309 img loss 1.3434456586837769 img loss 1.3403924703598022 img loss 1.3599449396133423 img loss 1.3576314449310303 img loss 1.38249671459198 img loss 1.336283564567566 img loss 1.3787868022918701 img loss 1.4199135303497314 img loss 1.3520179986953735 img loss 1.3545701503753662 img loss 1.3507026433944702 img loss 1.340866208076477 img loss 1.3637349605560303 img loss 1.2992134094238281 img loss 1.3019936084747314 img loss 1.257996916770935 img loss 1.3368269205093384 img loss 1.3172292709350586 img loss 1.5145084857940674 img loss 1.276153326034546 img loss 1.4660552740097046 img loss 1.3482533693313599 img loss 1.4225432872772217 img loss 1.227981448173523 img loss 1.3474972248077393 img loss 1.3914989233016968 img loss 1.4059921503067017 img loss 1.4222856760025024 img loss 1.4256333112716675 img loss 1.3180553913116455 img loss 1.3562438488006592 img loss 1.220945954322815 img loss 1.37391996383667 img loss 1.3420416116714478 {'loss': 1.3549, 'grad_norm': 0.2918694019317627, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2403602600097656 img loss 1.21929931640625 img loss 1.2674994468688965 img loss 1.1999844312667847 img loss 1.2459907531738281 img loss 1.2726879119873047 img loss 1.2441600561141968 img loss 1.2110991477966309 img loss 1.2220162153244019 img loss 1.2481142282485962 img loss 1.2712650299072266 img loss 1.2241935729980469 img loss 1.2323321104049683 img loss 1.2196533679962158 img loss 1.2254093885421753 img loss 1.3073151111602783 img loss 1.2304606437683105 img loss 1.2529923915863037 img loss 1.222447156906128 img loss 1.2979347705841064 img loss 1.2512747049331665 img loss 1.3021620512008667 img loss 1.2333687543869019 img loss 1.235154390335083 img loss 1.2457698583602905 img loss 1.2851356267929077 img loss 1.188679575920105 img loss 1.245925784111023 img loss 1.3123058080673218 img loss 1.19015371799469 img loss 1.2426459789276123 img loss 1.2405600547790527 img loss 1.301751971244812 img loss 1.3204981088638306 img loss 1.2371482849121094 img loss 1.1820271015167236 img loss 1.2604769468307495 img loss 1.197161316871643 img loss 1.2810218334197998 img loss 1.3420871496200562 img loss 1.2193665504455566 img loss 1.2259719371795654 img loss 1.3539975881576538 img loss 1.2358534336090088 img loss 1.2789485454559326 img loss 1.2697609663009644 img loss 1.2464045286178589 img loss 1.2409076690673828 img loss 1.1839455366134644 img loss 1.2587915658950806 img loss 1.2859255075454712 img loss 1.2088561058044434 img loss 1.1759870052337646 img loss 1.245482087135315 img loss 1.2321624755859375 img loss 1.2098267078399658 img loss 1.3009217977523804 img loss 1.288476586341858 img loss 1.2699307203292847 img loss 1.2623499631881714 img loss 1.2477728128433228 img loss 1.2129721641540527 img loss 1.2951157093048096 img loss 1.206450343132019 img loss 1.2295082807540894 img loss 1.1964954137802124 img loss 1.1619404554367065 img loss 1.3079192638397217 img loss 1.1890455484390259 img loss 1.3558461666107178 img loss 1.2169100046157837 img loss 1.1882940530776978 img loss 1.2063207626342773 img loss 1.1650301218032837 img loss 1.203150749206543 img loss 1.2313706874847412 img loss 1.2493940591812134 img loss 1.2651100158691406 img loss 1.2254891395568848 img loss 1.190117597579956 img loss 1.1821449995040894 img loss 1.2774797677993774 img loss 1.1755088567733765 img loss 1.1906075477600098 img loss 1.2319248914718628 img loss 1.2168329954147339 img loss 1.2207672595977783 img loss 1.2920023202896118 img loss 1.223745346069336 img loss 1.2316970825195312 img loss 1.2053388357162476 img loss 1.2408913373947144 img loss 1.256638765335083 img loss 1.1696698665618896 img loss 1.3129148483276367 img loss 1.193524956703186 img loss 1.242635726928711 img loss 1.2699520587921143 img loss 1.2664488554000854 img loss 1.3108066320419312 img loss 1.2667747735977173 img loss 1.2384042739868164 img loss 1.199194312095642 img loss 1.2391575574874878 img loss 1.204963207244873 img loss 1.2563049793243408 img loss 1.2165406942367554 img loss 1.251613974571228 img loss 1.2304749488830566 img loss 1.1904114484786987 img loss 1.246191382408142 img loss 1.2365193367004395 img loss 1.2789934873580933 img loss 1.25042724609375 img loss 1.2331719398498535 img loss 1.20393705368042 img loss 1.188790202140808 img loss 1.2473334074020386 img loss 1.2409167289733887 img loss 1.1885932683944702 img loss 1.231043815612793 img loss 1.2462815046310425 img loss 1.2619117498397827 img loss 1.2361195087432861 img loss 1.208858847618103 img loss 1.2555770874023438 img loss 1.2196097373962402 img loss 1.260498046875 {'loss': 1.2401, 'grad_norm': 0.23426812887191772, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4054362773895264 img loss 1.408187747001648 img loss 1.4272202253341675 img loss 1.4303652048110962 img loss 1.3555004596710205 img loss 1.310619592666626 img loss 1.3672009706497192 img loss 1.5182279348373413 img loss 1.3550537824630737 img loss 1.3282474279403687 img loss 1.523698329925537 img loss 1.5490325689315796 img loss 1.4321149587631226 img loss 1.3974040746688843 img loss 1.4082835912704468 img loss 1.4041332006454468 img loss 1.3378212451934814 img loss 1.3657194375991821 img loss 1.4106440544128418 img loss 1.3233845233917236 img loss 1.3741867542266846 img loss 1.3164328336715698 img loss 1.5016076564788818 img loss 1.3885639905929565 img loss 1.2908821105957031 img loss 1.4020532369613647 img loss 1.3874390125274658 img loss 1.5400530099868774 img loss 1.3450287580490112 img loss 1.468492031097412 img loss 1.3929258584976196 img loss 1.4055789709091187 img loss 1.4259015321731567 img loss 1.4264549016952515 img loss 1.4370286464691162 img loss 1.5261048078536987 img loss 1.5353337526321411 img loss 1.4063996076583862 img loss 1.4006154537200928 img loss 1.2458387613296509 img loss 1.4593454599380493 img loss 1.4061893224716187 img loss 1.37094247341156 img loss 1.4013689756393433 img loss 1.4588819742202759 img loss 1.30642569065094 img loss 1.4271584749221802 img loss 1.3061766624450684 img loss 1.3830312490463257 img loss 1.4244495630264282 img loss 1.5365289449691772 img loss 1.3983122110366821 img loss 1.344001293182373 img loss 1.503053069114685 img loss 1.5331377983093262 img loss 1.4629127979278564 img loss 1.421036958694458 img loss 1.472337007522583 img loss 1.3255629539489746 img loss 1.329630732536316 img loss 1.473089337348938 img loss 1.4652092456817627 img loss 1.4229369163513184 img loss 1.3064014911651611 img loss 1.395771861076355 img loss 1.4303257465362549 img loss 1.3486653566360474 img loss 1.4609650373458862 img loss 1.211423397064209 img loss 1.3971363306045532 img loss 1.2700870037078857 img loss 1.470273733139038 img loss 1.4452520608901978 img loss 1.4285153150558472 img loss 1.395474910736084 img loss 1.395410418510437 img loss 1.4242287874221802 img loss 1.302372694015503 img loss 1.3817439079284668 img loss 1.4832990169525146 img loss 1.4194532632827759 img loss 1.3448654413223267 img loss 1.459684133529663 img loss 1.4796587228775024 img loss 1.4185372591018677 img loss 1.5079033374786377 img loss 1.4458907842636108 img loss 1.4958893060684204 img loss 1.5400501489639282 img loss 1.4395097494125366 img loss 1.4538493156433105 img loss 1.3323206901550293 img loss 1.3139817714691162 img loss 1.4388840198516846 img loss 1.3559508323669434 img loss 1.400819182395935 img loss 1.4009182453155518 img loss 1.4019770622253418 img loss 1.6575943231582642 img loss 1.4170273542404175 img loss 1.3027925491333008 img loss 1.4299076795578003 img loss 1.4547703266143799 img loss 1.3938566446304321 img loss 1.437853455543518 img loss 1.496605634689331 img loss 1.4621533155441284 img loss 1.4881408214569092 img loss 1.4495160579681396 img loss 1.4282103776931763 img loss 1.47529935836792 img loss 1.3867498636245728 img loss 1.4772173166275024 img loss 1.512274980545044 img loss 1.4787306785583496 img loss 1.3742191791534424 img loss 1.4990769624710083 img loss 1.399780511856079 img loss 1.4954733848571777 img loss 1.4844197034835815 img loss 1.3151565790176392 img loss 1.3356138467788696 img loss 1.497831106185913 img loss 1.4596253633499146 img loss 1.3692021369934082 img loss 1.4788565635681152 img loss 1.5090928077697754 img loss 1.451647400856018 {'loss': 1.4181, 'grad_norm': 0.26577723026275635, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3832800388336182 img loss 1.3058668375015259 img loss 1.3843387365341187 img loss 1.3511403799057007 img loss 1.3052889108657837 img loss 1.3956869840621948 img loss 1.286121129989624 img loss 1.332647681236267 img loss 1.3518507480621338 img loss 1.2960957288742065 img loss 1.3485562801361084 img loss 1.4134879112243652 img loss 1.2397211790084839 img loss 1.337431788444519 img loss 1.260661005973816 img loss 1.3559222221374512 img loss 1.311880111694336 img loss 1.2729905843734741 img loss 1.285869836807251 img loss 1.2695149183273315 img loss 1.2958753108978271 img loss 1.26211416721344 img loss 1.3103370666503906 img loss 1.2366154193878174 img loss 1.2712953090667725 img loss 1.3797886371612549 img loss 1.3638367652893066 img loss 1.3110620975494385 img loss 1.3256933689117432 img loss 1.3490643501281738 img loss 1.263953685760498 img loss 1.2805298566818237 img loss 1.2314972877502441 img loss 1.243599534034729 img loss 1.3530679941177368 img loss 1.2225691080093384 img loss 1.3278101682662964 img loss 1.2136080265045166 img loss 1.3121592998504639 img loss 1.2222121953964233img loss 1.2997766733169556 img loss 1.356830358505249 img loss 1.2889173030853271 img loss 1.2685081958770752 img loss 1.195971965789795img loss 1.287821650505066 img loss 1.1847832202911377 img loss 1.288766860961914 img loss 1.2524120807647705 img loss 1.304888367652893 img loss 1.3552736043930054 img loss 1.2559953927993774 img loss 1.163063883781433 img loss 1.3049196004867554 img loss 1.2433973550796509 img loss 1.360109806060791 img loss 1.182287573814392 img loss 1.2826404571533203 img loss 1.4439135789871216 img loss 1.3371837139129639 img loss 1.3127143383026123 img loss 1.2328202724456787 img loss 1.3087735176086426 img loss 1.3234957456588745 img loss 1.3650661706924438 img loss 1.36784029006958 img loss 1.2663544416427612 img loss 1.3050799369812012 img loss 1.3328685760498047 img loss 1.3905683755874634 img loss 1.3218233585357666 img loss 1.2904402017593384 img loss 1.2964036464691162 img loss 1.315118432044983 img loss 1.2209053039550781 img loss 1.3074314594268799 img loss 1.2564136981964111 img loss 1.288090705871582 img loss 1.4488545656204224 img loss 1.2439243793487549 img loss 1.3508232831954956 img loss 1.3136138916015625 img loss 1.265714406967163 img loss 1.3084509372711182 img loss 1.2955044507980347 img loss 1.2825615406036377 img loss 1.3236111402511597 img loss 1.2903079986572266 img loss 1.221584677696228 img loss 1.311844825744629 img loss 1.247636318206787 img loss 1.3397629261016846 img loss 1.1406155824661255 img loss 1.24064040184021 img loss 1.2358472347259521 img loss 1.355958104133606 img loss 1.2955302000045776 img loss 1.3006508350372314 img loss 1.2511820793151855 img loss 1.4365804195404053 img loss 1.2654850482940674 img loss 1.384746789932251 img loss 1.3227248191833496img loss 1.4044028520584106 img loss 1.3308601379394531 img loss 1.2520407438278198 img loss 1.3579914569854736 img loss 1.3265421390533447 img loss 1.303378939628601 img loss 1.2822948694229126 img loss 1.3118157386779785 img loss 1.348615288734436 img loss 1.3100545406341553 img loss 1.2459152936935425 img loss 1.379024863243103 img loss 1.3507713079452515 img loss 1.2384593486785889 img loss 1.3581902980804443 img loss 1.3940520286560059 img loss 1.2691268920898438 img loss 1.2038192749023438 img loss 1.3571301698684692 img loss 1.271573543548584 img loss 1.2590948343276978 img loss 1.3292393684387207 img loss 1.3102960586547852 img loss 1.2041873931884766 img loss 1.3544484376907349 {'loss': 1.302, 'grad_norm': 0.24463923275470734, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4892199039459229 img loss 1.4089664220809937 img loss 1.5815311670303345 img loss 1.6832435131072998 img loss 1.438544511795044 img loss 1.6533472537994385 img loss 1.6231030225753784 img loss 1.5656306743621826 img loss 1.4385451078414917 img loss 1.5053467750549316 img loss 1.5957871675491333 img loss 1.338011622428894 img loss 1.6208544969558716 img loss 1.6812158823013306 img loss 1.5188734531402588 img loss 1.5816482305526733 img loss 1.5618988275527954 img loss 1.583664059638977 img loss 1.5821021795272827 img loss 1.6086668968200684 img loss 1.5149272680282593 img loss 1.4625211954116821 img loss 1.6282345056533813 img loss 1.5975810289382935 img loss 1.4910006523132324 img loss 1.4593111276626587 img loss 1.6312305927276611 img loss 1.6295193433761597 img loss 1.617490291595459 img loss 1.4483542442321777 img loss 1.5746937990188599 img loss 1.506989598274231 img loss 1.494354486465454 img loss 1.5688586235046387 img loss 1.7492518424987793 img loss 1.464091181755066 img loss 1.6276761293411255 img loss 1.5399243831634521 img loss 1.5191614627838135 img loss 1.5489270687103271 img loss 1.4116500616073608 img loss 1.4704430103302002 img loss 1.7197356224060059 img loss 1.4612253904342651 img loss 1.55866277217865 img loss 1.497170090675354 img loss 1.5307742357254028 img loss 1.4482702016830444 img loss 1.542601227760315 img loss 1.676182508468628 img loss 1.6256242990493774 img loss 1.6299850940704346 img loss 1.5886895656585693 img loss 1.5794585943222046 img loss 1.565685749053955 img loss 1.5746561288833618 img loss 1.480376124382019 img loss 1.5490044355392456 img loss 1.5736223459243774 img loss 1.4876054525375366 img loss 1.6188489198684692 img loss 1.6243103742599487 img loss 1.4552239179611206 img loss 1.5190130472183228 img loss 1.5754389762878418 img loss 1.459215760231018 img loss 1.602136254310608 img loss 1.5016319751739502 img loss 1.525763988494873 img loss 1.5290437936782837 img loss 1.5924478769302368 img loss 1.4907268285751343 img loss 1.6532081365585327 img loss 1.6168687343597412 img loss 1.447519063949585 img loss 1.6109392642974854 img loss 1.5651164054870605 img loss 1.487290859222412 img loss 1.5493570566177368 img loss 1.538612723350525 img loss 1.5076320171356201 img loss 1.6304112672805786 img loss 1.5320440530776978 img loss 1.5739330053329468 img loss 1.4477417469024658 img loss 1.5307258367538452 img loss 1.5845730304718018 img loss 1.496290683746338 img loss 1.6992722749710083 img loss 1.5648739337921143 img loss 1.585910677909851 img loss 1.625821590423584 img loss 1.5514682531356812 img loss 1.4215058088302612 img loss 1.6133493185043335 img loss 1.6390166282653809 img loss 1.627538800239563 img loss 1.537990689277649 img loss 1.577208399772644 img loss 1.5010079145431519 img loss 1.4941428899765015 img loss 1.4993928670883179 img loss 1.4997047185897827 img loss 1.462878704071045 img loss 1.4754445552825928 img loss 1.5404857397079468 img loss 1.528530240058899 img loss 1.5563565492630005 img loss 1.5466867685317993 img loss 1.6591699123382568 img loss 1.6722350120544434 img loss 1.655348539352417 img loss 1.5126147270202637 img loss 1.623677134513855 img loss 1.5704340934753418 img loss 1.4517014026641846 img loss 1.5416862964630127 img loss 1.5053032636642456 img loss 1.6924840211868286 img loss 1.5414835214614868 img loss 1.4795860052108765 img loss 1.5160095691680908 img loss 1.529237985610962 img loss 1.5065972805023193 img loss 1.4909369945526123 img loss 1.5140656232833862 img loss 1.6406419277191162 img loss 1.5161722898483276 {'loss': 1.5511, 'grad_norm': 0.3873092532157898, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5274231433868408 img loss 2.0455663204193115 img loss 1.7263998985290527 img loss 1.7720355987548828 img loss 1.7185529470443726 img loss 1.7939987182617188 img loss 1.9008525609970093 img loss 1.6950160264968872 img loss 1.5991851091384888 img loss 1.7340798377990723 img loss 1.794604778289795 img loss 1.8933967351913452 img loss 1.7065404653549194 img loss 1.9683501720428467 img loss 1.642579197883606 img loss 1.7138988971710205 img loss 1.7530484199523926 img loss 1.7985327243804932 img loss 1.7299203872680664 img loss 1.5677876472473145 img loss 1.7423559427261353 img loss 1.8362923860549927 img loss 1.7636340856552124 img loss 1.790565848350525 img loss 1.798620581626892 img loss 1.853516936302185 img loss 1.9165836572647095 img loss 1.6269862651824951 img loss 1.8129867315292358 img loss 1.757952332496643 img loss 1.8241759538650513img loss 1.7654905319213867 img loss 1.9277584552764893 img loss 1.8174077272415161 img loss 1.6987335681915283 img loss 1.6752921342849731 img loss 1.9374433755874634 img loss 1.857157826423645 img loss 1.686212182044983 img loss 1.601235032081604 img loss 1.8367716073989868 img loss 1.7034515142440796 img loss 1.7012836933135986 img loss 1.7851898670196533 img loss 1.6678235530853271 img loss 1.7212049961090088 img loss 1.8167279958724976 img loss 1.679136037826538 img loss 1.691422939300537 img loss 1.7119468450546265 img loss 1.6745836734771729 img loss 1.7901864051818848 img loss 1.7319941520690918 img loss 1.8662328720092773 img loss 1.650573492050171 img loss 1.8467895984649658 img loss 1.7039856910705566 img loss 1.7882413864135742 img loss 1.7835017442703247 img loss 1.5870909690856934 img loss 1.7662341594696045 img loss 2.1155171394348145 img loss 1.7704370021820068 img loss 1.7626632452011108 img loss 1.7713274955749512 img loss 1.8281618356704712 img loss 1.9503283500671387 img loss 1.8596588373184204 img loss 1.7342183589935303 img loss 1.8405394554138184 img loss 1.8255687952041626 img loss 1.861132025718689 img loss 1.8514846563339233 img loss 1.8214207887649536 img loss 2.0133509635925293 img loss 1.847123384475708 img loss 1.819589376449585 img loss 1.837602972984314 img loss 1.6882586479187012 img loss 1.9219768047332764 img loss 1.8184635639190674 img loss 1.6904914379119873 img loss 1.849403738975525 img loss 1.6874089241027832 img loss 1.8191990852355957 img loss 1.6852424144744873 img loss 1.909963607788086 img loss 1.878282070159912img loss 1.6561110019683838 img loss 1.7761108875274658 img loss 1.5830429792404175 img loss 1.796923279762268 img loss 1.7552257776260376 img loss 1.778814673423767 img loss 2.0345051288604736 img loss 1.8966233730316162 img loss 1.8133288621902466 img loss 1.6268794536590576 img loss 1.731339693069458 img loss 1.6724015474319458 img loss 1.7871952056884766 img loss 1.9320027828216553 img loss 1.6311852931976318 img loss 1.810270071029663 img loss 1.7507766485214233 img loss 1.695481777191162 img loss 1.753587007522583 img loss 1.6331545114517212 img loss 1.8500871658325195 img loss 1.653290033340454 img loss 1.6165755987167358 img loss 1.8454838991165161 img loss 1.8403263092041016 img loss 1.8027719259262085 img loss 1.7160001993179321 img loss 1.7918058633804321 img loss 1.8788644075393677 img loss 1.710023045539856 img loss 1.61741042137146 img loss 1.716705083847046 img loss 1.9441030025482178 img loss 1.7905545234680176 img loss 1.9577032327651978 img loss 1.7306053638458252 img loss 1.8023513555526733 img loss 1.7686656713485718 img loss 1.4905558824539185 img loss 1.6718685626983643 {'loss': 1.7738, 'grad_norm': 0.42397817969322205, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1521490812301636 img loss 1.2114596366882324 img loss 1.2291940450668335 img loss 1.1981645822525024 img loss 1.2129653692245483 img loss 1.293081283569336 img loss 1.2165424823760986 img loss 1.0979044437408447 img loss 1.1818386316299438 img loss 1.1697518825531006 img loss 1.2242487668991089 img loss 1.0804533958435059 img loss 1.1436996459960938 img loss 1.2249075174331665 img loss 1.2241483926773071 img loss 1.221677541732788 img loss 1.1546502113342285 img loss 1.267026662826538 img loss 1.1938790082931519 img loss 1.1571946144104004 img loss 1.1559447050094604 img loss 1.2428110837936401 img loss 1.1930874586105347 img loss 1.087594747543335 img loss 1.1484612226486206 img loss 1.1417114734649658 img loss 1.181384801864624 img loss 1.145032286643982 img loss 1.1442612409591675 img loss 1.2659616470336914 img loss 1.182335615158081 img loss 1.1884968280792236 img loss 1.2078053951263428 img loss 1.228501319885254 img loss 1.2147291898727417 img loss 1.159327745437622 img loss 1.1617343425750732 img loss 1.2130953073501587 img loss 1.1364949941635132 img loss 1.1998164653778076 img loss 1.1803539991378784 img loss 1.1376783847808838 img loss 1.1617705821990967 img loss 1.2015306949615479 img loss 1.2189915180206299 img loss 1.2347582578659058 img loss 1.1820143461227417 img loss 1.1803390979766846 img loss 1.1037399768829346 img loss 1.1616380214691162 img loss 1.1627821922302246 img loss 1.2161014080047607 img loss 1.185253620147705 img loss 1.2212814092636108 img loss 1.0929744243621826 img loss 1.1997730731964111 img loss 1.1983749866485596 img loss 1.1537775993347168 img loss 1.1893117427825928 img loss 1.2173980474472046 img loss 1.18777334690094 img loss 1.1669411659240723 img loss 1.1334412097930908 img loss 1.2562992572784424 img loss 1.1428897380828857 img loss 1.1451233625411987 img loss 1.2571214437484741 img loss 1.115466833114624 img loss 1.2346889972686768 img loss 1.2067241668701172 img loss 1.218146800994873 img loss 1.172651767730713 img loss 1.205626130104065 img loss 1.1999496221542358 img loss 1.2133785486221313 img loss 1.1939140558242798 img loss 1.1773210763931274 img loss 1.1923795938491821 img loss 1.3002861738204956 img loss 1.162575364112854 img loss 1.1004995107650757 img loss 1.1908338069915771 img loss 1.1682169437408447 img loss 1.0990173816680908 img loss 1.209437608718872 img loss 1.1988846063613892 img loss 1.1349211931228638 img loss 1.1112016439437866 img loss 1.2641693353652954 img loss 1.2320736646652222 img loss 1.1180548667907715 img loss 1.1756103038787842 img loss 1.1652367115020752 img loss 1.1474732160568237 img loss 1.1761956214904785 img loss 1.1467360258102417 img loss 1.2023515701293945 img loss 1.190436601638794 img loss 1.2407258749008179 img loss 1.1876604557037354 img loss 1.252378225326538 img loss 1.2161954641342163 img loss 1.1700727939605713 img loss 1.1307764053344727 img loss 1.1629102230072021 img loss 1.1242640018463135 img loss 1.2222181558609009 img loss 1.1354725360870361 img loss 1.158097743988037 img loss 1.1693334579467773 img loss 1.1664108037948608 img loss 1.1463654041290283 img loss 1.1780515909194946 img loss 1.2059677839279175 img loss 1.1126291751861572 img loss 1.2295502424240112 img loss 1.136526107788086 img loss 1.1541279554367065 img loss 1.1759287118911743 img loss 1.204606294631958 img loss 1.1469337940216064 img loss 1.1952370405197144 img loss 1.1813992261886597 img loss 1.126922369003296 img loss 1.112863302230835 img loss 1.161526083946228 img loss 1.2113417387008667 img loss 1.146282434463501 {'loss': 1.1807, 'grad_norm': 0.29219871759414673, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2242687940597534 img loss 1.233478307723999 img loss 1.2163066864013672 img loss 1.27043616771698 img loss 1.2113397121429443 img loss 1.1644999980926514 img loss 1.2056405544281006 img loss 1.2523046731948853 img loss 1.2110575437545776 img loss 1.2173993587493896 img loss 1.2018524408340454 img loss 1.2966254949569702 img loss 1.215901255607605 img loss 1.2659953832626343 img loss 1.2118977308273315 img loss 1.3001422882080078 img loss 1.1683145761489868 img loss 1.141158103942871 img loss 1.1929811239242554 img loss 1.1610314846038818 img loss 1.170945167541504 img loss 1.2459025382995605 img loss 1.2220178842544556 img loss 1.180317759513855 img loss 1.2125771045684814 img loss 1.226880669593811 img loss 1.1785190105438232 img loss 1.176854133605957 img loss 1.234524130821228 img loss 1.2041888236999512 img loss 1.1895443201065063 img loss 1.2945187091827393 img loss 1.2103534936904907 img loss 1.1866066455841064 img loss 1.2990938425064087 img loss 1.308868408203125 img loss 1.1628464460372925 img loss 1.298546314239502 img loss 1.1781604290008545 img loss 1.2303375005722046 img loss 1.2423629760742188 img loss 1.1801602840423584 img loss 1.2385021448135376 img loss 1.2679228782653809 img loss 1.159527063369751 img loss 1.1772563457489014 img loss 1.2307449579238892 img loss 1.1891274452209473 img loss 1.1595842838287354img loss 1.240537166595459 img loss 1.146907091140747 img loss 1.2307685613632202 img loss 1.2865161895751953 img loss 1.1608167886734009 img loss 1.292879343032837img loss 1.2426197528839111 img loss 1.1849178075790405 img loss 1.239189863204956 img loss 1.1929891109466553 img loss 1.2222435474395752 img loss 1.2498372793197632 img loss 1.271397590637207 img loss 1.2716500759124756 img loss 1.1857712268829346 img loss 1.2119777202606201 img loss 1.1682636737823486 img loss 1.1969141960144043 img loss 1.192156434059143 img loss 1.271451473236084 img loss 1.2394187450408936 img loss 1.205580234527588 img loss 1.2064454555511475 img loss 1.1871111392974854 img loss 1.221670150756836 img loss 1.1915888786315918 img loss 1.2130279541015625 img loss 1.254286766052246 img loss 1.3017635345458984 img loss 1.2361513376235962 img loss 1.2422586679458618 img loss 1.189077377319336 img loss 1.2958827018737793 img loss 1.2448850870132446 img loss 1.2590535879135132 img loss 1.231989860534668 img loss 1.2027748823165894 img loss 1.3244876861572266 img loss 1.236565113067627 img loss 1.2204002141952515 img loss 1.2394802570343018 img loss 1.243835210800171 img loss 1.2270238399505615 img loss 1.195107102394104 img loss 1.21443510055542 img loss 1.2252426147460938 img loss 1.2762688398361206 img loss 1.1551135778427124 img loss 1.0970662832260132 img loss 1.1749018430709839 img loss 1.1747987270355225 img loss 1.219820261001587 img loss 1.2592732906341553 img loss 1.2360066175460815 img loss 1.282732605934143 img loss 1.299034595489502 img loss 1.2745933532714844 img loss 1.146812081336975 img loss 1.252604365348816 img loss 1.2412058115005493 img loss 1.2370554208755493 img loss 1.2774136066436768 img loss 1.237547755241394 img loss 1.1055821180343628 img loss 1.2032878398895264 img loss 1.2466131448745728 img loss 1.193968415260315 img loss 1.2556650638580322 img loss 1.28609037399292 img loss 1.2048536539077759 img loss 1.2077420949935913 img loss 1.218622088432312 img loss 1.2308807373046875 img loss 1.3078278303146362 img loss 1.2817367315292358 img loss 1.2214796543121338 img loss 1.1775047779083252 img loss 1.1985278129577637 img loss 1.2194265127182007 {'loss': 1.2229, 'grad_norm': 0.19851082563400269, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2811949253082275 img loss 1.2166311740875244 img loss 1.1894683837890625 img loss 1.1944500207901 img loss 1.197349190711975 img loss 1.2235153913497925 img loss 1.2444305419921875 img loss 1.2579177618026733 img loss 1.2729194164276123 img loss 1.2345383167266846 img loss 1.2756333351135254 img loss 1.226361870765686 img loss 1.255436897277832 img loss 1.2113345861434937 img loss 1.217239260673523 img loss 1.1718124151229858 img loss 1.2604877948760986 img loss 1.2013086080551147 img loss 1.2195335626602173 img loss 1.2224699258804321 img loss 1.240187644958496 img loss 1.214911699295044 img loss 1.2501170635223389 img loss 1.1991956233978271 img loss 1.212378978729248 img loss 1.2390931844711304 img loss 1.2317745685577393 img loss 1.2417032718658447 img loss 1.2438597679138184 img loss 1.1998894214630127 img loss 1.1847375631332397 img loss 1.1931486129760742 img loss 1.2040199041366577 img loss 1.2409255504608154 img loss 1.2256596088409424 img loss 1.2413049936294556 img loss 1.1857624053955078 img loss 1.2431023120880127 img loss 1.2001873254776 img loss 1.200704574584961 img loss 1.2201508283615112 img loss 1.2162952423095703 img loss 1.278998613357544 img loss 1.1546963453292847 img loss 1.1836354732513428 img loss 1.2308419942855835 img loss 1.235991358757019 img loss 1.176721453666687 img loss 1.21506667137146 img loss 1.2560220956802368 img loss 1.196046233177185 img loss 1.230905532836914 img loss 1.2503204345703125 img loss 1.2457828521728516 img loss 1.2110419273376465 img loss 1.2284963130950928 img loss 1.2226508855819702 img loss 1.1743844747543335 img loss 1.2381771802902222 img loss 1.2078672647476196 img loss 1.1833654642105103 img loss 1.2865943908691406 img loss 1.2152944803237915 img loss 1.2100861072540283 img loss 1.2053226232528687 img loss 1.2018855810165405 img loss 1.2067590951919556 img loss 1.2570596933364868 img loss 1.2671632766723633 img loss 1.2054297924041748 img loss 1.2471065521240234 img loss 1.1993844509124756img loss 1.2098582983016968 img loss 1.218580722808838 img loss 1.2260801792144775 img loss 1.2711398601531982 img loss 1.1889331340789795 img loss 1.1883585453033447 img loss 1.2841929197311401 img loss 1.2799999713897705 img loss 1.2581008672714233 img loss 1.3119701147079468 img loss 1.2403427362442017 img loss 1.2438572645187378 img loss 1.2259292602539062 img loss 1.2264032363891602 img loss 1.214627742767334 img loss 1.240691900253296 img loss 1.211639404296875 img loss 1.1941120624542236 img loss 1.1659361124038696 img loss 1.1986452341079712 img loss 1.2331371307373047 img loss 1.2947014570236206 img loss 1.2126702070236206 img loss 1.1737935543060303 img loss 1.158882737159729 img loss 1.1777664422988892 img loss 1.144640564918518 img loss 1.1741313934326172 img loss 1.2354731559753418 img loss 1.1723551750183105 img loss 1.2225432395935059 img loss 1.1983822584152222 img loss 1.197719931602478 img loss 1.169664740562439 img loss 1.1827082633972168 img loss 1.2225137948989868 img loss 1.1696051359176636 img loss 1.233835220336914 img loss 1.2409266233444214 img loss 1.2474349737167358 img loss 1.2210795879364014 img loss 1.1711500883102417 img loss 1.1868040561676025 img loss 1.1926600933074951 img loss 1.2392164468765259 img loss 1.237595558166504 img loss 1.1992381811141968 img loss 1.1904258728027344 img loss 1.2643345594406128 img loss 1.2104252576828003 img loss 1.1902706623077393 img loss 1.2290997505187988 img loss 1.218733310699463 img loss 1.2671656608581543 img loss 1.1964975595474243 img loss 1.2214820384979248 {'loss': 1.2197, 'grad_norm': 0.2629932165145874, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.156676173210144 img loss 1.2337309122085571 img loss 1.2556289434432983 img loss 1.199534296989441 img loss 1.29898202419281 img loss 1.1960757970809937 img loss 1.1895567178726196 img loss 1.2389066219329834 img loss 1.2343584299087524 img loss 1.2588251829147339 img loss 1.2141774892807007 img loss 1.2685272693634033 img loss 1.1779608726501465 img loss 1.252558946609497 img loss 1.2372417449951172 img loss 1.2310340404510498 img loss 1.1992809772491455 img loss 1.1973320245742798 img loss 1.2598037719726562 img loss 1.2148538827896118 img loss 1.260098934173584 img loss 1.2673611640930176 img loss 1.2313168048858643 img loss 1.2455018758773804 img loss 1.188788652420044 img loss 1.2008670568466187 img loss 1.2143590450286865 img loss 1.25923752784729 img loss 1.2005321979522705 img loss 1.243914008140564img loss 1.2159677743911743 img loss 1.2628183364868164 img loss 1.1708528995513916 img loss 1.1997666358947754 img loss 1.2176361083984375 img loss 1.2396926879882812 img loss 1.242546558380127 img loss 1.207330584526062 img loss 1.2582175731658936 img loss 1.19014310836792 img loss 1.22777259349823 img loss 1.1728914976119995 img loss 1.2501602172851562 img loss 1.218879222869873 img loss 1.268809199333191 img loss 1.2054544687271118 img loss 1.219071865081787 img loss 1.170234203338623 img loss 1.2186529636383057 img loss 1.2287126779556274 img loss 1.2436754703521729 img loss 1.2707085609436035 img loss 1.2179142236709595 img loss 1.278755784034729 img loss 1.2080379724502563 img loss 1.2265161275863647 img loss 1.1377298831939697 img loss 1.2428630590438843 img loss 1.181989073753357 img loss 1.2260875701904297 img loss 1.2282516956329346 img loss 1.1910053491592407 img loss 1.1844061613082886 img loss 1.2843291759490967 img loss 1.2094457149505615 img loss 1.2674789428710938 img loss 1.2351243495941162 img loss 1.1971975564956665 img loss 1.2517904043197632 img loss 1.2733640670776367 img loss 1.2356951236724854 img loss 1.253798484802246 img loss 1.3031017780303955 img loss 1.22453773021698 img loss 1.1917436122894287 img loss 1.213744044303894 img loss 1.2580697536468506 img loss 1.1451988220214844 img loss 1.122495174407959 img loss 1.286299705505371 img loss 1.2962373495101929 img loss 1.284661054611206 img loss 1.3036377429962158 img loss 1.1720587015151978 img loss 1.2433134317398071 img loss 1.221580147743225 img loss 1.2521107196807861 img loss 1.1873077154159546 img loss 1.2101373672485352 img loss 1.2034671306610107 img loss 1.1705583333969116 img loss 1.2008395195007324 img loss 1.257218837738037 img loss 1.3237760066986084 img loss 1.1742949485778809 img loss 1.1794508695602417 img loss 1.1674163341522217 img loss 1.1987113952636719 img loss 1.2437777519226074 img loss 1.2264474630355835 img loss 1.1778913736343384 img loss 1.1683460474014282 img loss 1.2416274547576904 img loss 1.1996183395385742 img loss 1.3016350269317627 img loss 1.1386650800704956 img loss 1.2445316314697266 img loss 1.2189583778381348 img loss 1.235574722290039 img loss 1.222867488861084 img loss 1.2325427532196045 img loss 1.1871716976165771 img loss 1.2423752546310425 img loss 1.2348841428756714 img loss 1.2265781164169312 img loss 1.264290690422058 img loss 1.2032485008239746 img loss 1.2595618963241577 img loss 1.218005657196045 img loss 1.138181209564209 img loss 1.26340651512146 img loss 1.2217110395431519 img loss 1.2183634042739868 img loss 1.170135498046875 img loss 1.2232463359832764 img loss 1.2029390335083008 img loss 1.2968635559082031 img loss 1.2366565465927124 {'loss': 1.2243, 'grad_norm': 0.23774975538253784, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3678219318389893 img loss 1.334757685661316 img loss 1.3268675804138184 img loss 1.3067823648452759 img loss 1.3415085077285767 img loss 1.2251982688903809 img loss 1.3518491983413696 img loss 1.2467056512832642 img loss 1.2486248016357422 img loss 1.2987467050552368 img loss 1.2054095268249512 img loss 1.257840871810913 img loss 1.228892207145691 img loss 1.2330137491226196 img loss 1.2871968746185303 img loss 1.1935127973556519 img loss 1.2209771871566772 img loss 1.2871389389038086 img loss 1.232528567314148 img loss 1.2394942045211792 img loss 1.3276448249816895 img loss 1.1989188194274902 img loss 1.2397793531417847 img loss 1.2970693111419678 img loss 1.225665807723999 img loss 1.2706518173217773 img loss 1.2313225269317627 img loss 1.1602290868759155 img loss 1.2517305612564087 img loss 1.200364589691162 img loss 1.2570332288742065 img loss 1.287927269935608 img loss 1.1790997982025146 img loss 1.248121976852417 img loss 1.2681474685668945 img loss 1.2153583765029907 img loss 1.236685037612915 img loss 1.3069736957550049 img loss 1.2431105375289917 img loss 1.2386088371276855 img loss 1.2263786792755127 img loss 1.2622921466827393 img loss 1.2917817831039429 img loss 1.2870981693267822 img loss 1.29744553565979 img loss 1.2977138757705688 img loss 1.2416139841079712 img loss 1.3037545680999756 img loss 1.2721452713012695 img loss 1.2573065757751465 img loss 1.255149483680725 img loss 1.2599891424179077 img loss 1.2856632471084595 img loss 1.1951770782470703 img loss 1.193960189819336 img loss 1.2198232412338257 img loss 1.2543408870697021 img loss 1.2003719806671143 img loss 1.2788405418395996 img loss 1.2914156913757324 img loss 1.194862961769104 img loss 1.3399271965026855 img loss 1.3134006261825562 img loss 1.2537981271743774 img loss 1.2483315467834473 img loss 1.2318553924560547 img loss 1.3081403970718384 img loss 1.3347688913345337 img loss 1.3540912866592407 img loss 1.2476742267608643 img loss 1.223645806312561 img loss 1.3062891960144043 img loss 1.2982902526855469 img loss 1.2543580532073975 img loss 1.2930704355239868 img loss 1.2481980323791504 img loss 1.3221129179000854 img loss 1.3513104915618896 img loss 1.2264978885650635 img loss 1.251900315284729 img loss 1.27644944190979 img loss 1.2769982814788818 img loss 1.3218225240707397 img loss 1.1930484771728516 img loss 1.2713024616241455 img loss 1.2008659839630127 img loss 1.2657932043075562 img loss 1.271447777748108 img loss 1.3534979820251465 img loss 1.223528265953064 img loss 1.3869668245315552 img loss 1.2713922262191772 img loss 1.311993956565857 img loss 1.3055275678634644 img loss 1.2970190048217773 img loss 1.2707027196884155 img loss 1.3085236549377441 img loss 1.2607395648956299 img loss 1.2380082607269287 img loss 1.2124296426773071 img loss 1.2332515716552734 img loss 1.2897344827651978 img loss 1.2832202911376953 img loss 1.3446651697158813 img loss 1.3288393020629883 img loss 1.3211987018585205 img loss 1.2535920143127441 img loss 1.3717052936553955 img loss 1.2708415985107422 img loss 1.2274006605148315 img loss 1.2577520608901978 img loss 1.2040354013442993 img loss 1.2614846229553223 img loss 1.353756070137024 img loss 1.231972336769104 img loss 1.2883803844451904 img loss 1.2757152318954468 img loss 1.3861638307571411 img loss 1.3375401496887207 img loss 1.3625881671905518 img loss 1.2029764652252197 img loss 1.2196937799453735 img loss 1.2854607105255127 img loss 1.3488026857376099 img loss 1.2622894048690796 img loss 1.275542140007019 img loss 1.3082855939865112 img loss 1.2618082761764526 {'loss': 1.2708, 'grad_norm': 0.2137649953365326, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2091803550720215 img loss 1.1279467344284058 img loss 1.2424099445343018 img loss 1.2432764768600464 img loss 1.1882400512695312 img loss 1.2264626026153564 img loss 1.2657978534698486 img loss 1.2159993648529053 img loss 1.2438113689422607 img loss 1.2238796949386597 img loss 1.1798336505889893 img loss 1.2128105163574219 img loss 1.2666494846343994 img loss 1.2065327167510986 img loss 1.1613328456878662 img loss 1.1648457050323486 img loss 1.2712681293487549 img loss 1.1983013153076172 img loss 1.2023391723632812 img loss 1.1702911853790283 img loss 1.213537573814392 img loss 1.3302667140960693 img loss 1.2077566385269165 img loss 1.2068936824798584 img loss 1.2411714792251587 img loss 1.2230805158615112 img loss 1.2179697751998901 img loss 1.2056927680969238 img loss 1.1889371871948242 img loss 1.2738844156265259 img loss 1.2269428968429565 img loss 1.2108101844787598 img loss 1.3101977109909058 img loss 1.2579749822616577 img loss 1.208194375038147 img loss 1.1655442714691162 img loss 1.1922051906585693 img loss 1.2746162414550781 img loss 1.1694793701171875 img loss 1.1834157705307007 img loss 1.2796486616134644 img loss 1.177334189414978 img loss 1.170899748802185 img loss 1.1660411357879639 img loss 1.2142142057418823 img loss 1.1799328327178955 img loss 1.1967430114746094 img loss 1.201080322265625 img loss 1.2612593173980713 img loss 1.1944860219955444 img loss 1.277838110923767 img loss 1.2221416234970093 img loss 1.1494394540786743 img loss 1.2269892692565918 img loss 1.2095000743865967 img loss 1.2195783853530884 img loss 1.1611884832382202 img loss 1.2523903846740723 img loss 1.2190626859664917 img loss 1.2232284545898438 img loss 1.2319532632827759 img loss 1.2110521793365479 img loss 1.1783068180084229 img loss 1.18291437625885 img loss 1.156293511390686 img loss 1.2743996381759644 img loss 1.1838661432266235 img loss 1.168980598449707 img loss 1.247031807899475 img loss 1.211047649383545 img loss 1.1965227127075195 img loss 1.1820043325424194 img loss 1.2006574869155884 img loss 1.2243393659591675 img loss 1.1894996166229248 img loss 1.1931242942810059 img loss 1.2957388162612915 img loss 1.2251567840576172 img loss 1.2313793897628784 img loss 1.3249744176864624 img loss 1.2397003173828125 img loss 1.1975027322769165 img loss 1.1710284948349 img loss 1.203209400177002 img loss 1.2435555458068848 img loss 1.1874537467956543 img loss 1.2415647506713867 img loss 1.213286280632019 img loss 1.2233810424804688 img loss 1.2180126905441284 img loss 1.2774876356124878 img loss 1.1781059503555298 img loss 1.2533496618270874 img loss 1.2161682844161987 img loss 1.2154207229614258 img loss 1.2148061990737915 img loss 1.214598536491394 img loss 1.2219492197036743 img loss 1.2463431358337402 img loss 1.2321701049804688 img loss 1.2399057149887085 img loss 1.2194244861602783 img loss 1.1870487928390503 img loss 1.1914262771606445 img loss 1.2264007329940796 img loss 1.208840250968933 img loss 1.21738600730896 img loss 1.202208399772644 img loss 1.1771963834762573 img loss 1.2122467756271362 img loss 1.2025737762451172 img loss 1.2282034158706665 img loss 1.2167811393737793 img loss 1.2258663177490234img loss 1.1842474937438965 img loss 1.1746525764465332 img loss 1.2338604927062988 img loss 1.2309516668319702 img loss 1.2031923532485962 img loss 1.1808058023452759 img loss 1.2647106647491455 img loss 1.19566011428833 img loss 1.2511552572250366 img loss 1.1846284866333008 img loss 1.1906404495239258 img loss 1.2092424631118774 img loss 1.1989972591400146 img loss 1.183287501335144 {'loss': 1.2148, 'grad_norm': 0.25967106223106384, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1665254831314087 img loss 1.1894769668579102 img loss 1.2009234428405762 img loss 1.2772470712661743 img loss 1.2244541645050049 img loss 1.1796376705169678 img loss 1.281140685081482 img loss 1.155465006828308 img loss 1.2296347618103027 img loss 1.13128662109375 img loss 1.213766098022461 img loss 1.1585350036621094 img loss 1.2213815450668335 img loss 1.1826282739639282 img loss 1.2409776449203491 img loss 1.1926921606063843 img loss 1.184008240699768 img loss 1.276828646659851 img loss 1.1913807392120361 img loss 1.2868598699569702 img loss 1.2331957817077637 img loss 1.1639484167099 img loss 1.2193048000335693 img loss 1.196175456047058 img loss 1.1603047847747803 img loss 1.149819016456604 img loss 1.1678255796432495 img loss 1.170561671257019 img loss 1.1921736001968384 img loss 1.2639449834823608 img loss 1.205322504043579 img loss 1.2159041166305542 img loss 1.2359813451766968 img loss 1.2280340194702148 img loss 1.103459358215332 img loss 1.1912047863006592 img loss 1.1948490142822266 img loss 1.1523500680923462 img loss 1.2079615592956543 img loss 1.2235779762268066 img loss 1.1978737115859985 img loss 1.1749385595321655 img loss 1.1608718633651733 img loss 1.2567625045776367 img loss 1.2347898483276367 img loss 1.202379822731018 img loss 1.192132592201233 img loss 1.1505974531173706 img loss 1.2117607593536377 img loss 1.2881094217300415 img loss 1.1961743831634521 img loss 1.233432412147522 img loss 1.1681897640228271 img loss 1.186023235321045 img loss 1.2634029388427734 img loss 1.2096612453460693 img loss 1.2068718671798706 img loss 1.2006356716156006 img loss 1.235614538192749 img loss 1.2663724422454834 img loss 1.2047123908996582 img loss 1.2257111072540283 img loss 1.2259578704833984 img loss 1.1745452880859375 img loss 1.1642614603042603 img loss 1.2507187128067017 img loss 1.1758893728256226 img loss 1.1645011901855469 img loss 1.2076408863067627 img loss 1.1964225769042969 img loss 1.215279459953308 img loss 1.1396245956420898 img loss 1.170103907585144 img loss 1.195866584777832 img loss 1.2084391117095947 img loss 1.174257516860962 img loss 1.152064323425293 img loss 1.1611204147338867 img loss 1.1941193342208862 img loss 1.2423187494277954 img loss 1.1912286281585693 img loss 1.1977696418762207 img loss 1.2432159185409546 img loss 1.1302950382232666 img loss 1.1769474744796753 img loss 1.1198277473449707 img loss 1.2303273677825928 img loss 1.2085484266281128 img loss 1.1596996784210205 img loss 1.2234418392181396 img loss 1.2044914960861206 img loss 1.1871337890625 img loss 1.175269365310669 img loss 1.2776800394058228 img loss 1.2056795358657837 img loss 1.2952477931976318 img loss 1.218553066253662 img loss 1.2029414176940918 img loss 1.20415461063385 img loss 1.2041411399841309 img loss 1.294032096862793 img loss 1.207955241203308 img loss 1.1437948942184448 img loss 1.1727900505065918 img loss 1.2248598337173462 img loss 1.143338680267334 img loss 1.263092279434204 img loss 1.1986547708511353 img loss 1.192957878112793 img loss 1.2006667852401733 img loss 1.2526592016220093 img loss 1.2418591976165771 img loss 1.150305151939392 img loss 1.3093571662902832 img loss 1.1811554431915283 img loss 1.1426620483398438 img loss 1.2848564386367798 img loss 1.2090771198272705 img loss 1.1691020727157593 img loss 1.3381428718566895 img loss 1.186082124710083 img loss 1.1698423624038696 img loss 1.2091624736785889 img loss 1.1700682640075684 img loss 1.231168508529663 img loss 1.2917753458023071 img loss 1.2610564231872559 img loss 1.2285330295562744 {'loss': 1.2052, 'grad_norm': 0.24761030077934265, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.263559103012085 img loss 1.3166322708129883 img loss 1.2659192085266113 img loss 1.166390061378479 img loss 1.1970288753509521 img loss 1.1501203775405884 img loss 1.2693604230880737 img loss 1.232886791229248 img loss 1.191698670387268 img loss 1.1421089172363281 img loss 1.1752315759658813 img loss 1.301310420036316 img loss 1.2070635557174683 img loss 1.168700098991394 img loss 1.2196009159088135 img loss 1.204801082611084 img loss 1.220649242401123 img loss 1.22940993309021 img loss 1.1823627948760986 img loss 1.1600011587142944 img loss 1.157975435256958 img loss 1.2385401725769043 img loss 1.2446430921554565 img loss 1.263777494430542 img loss 1.1559044122695923 img loss 1.2465566396713257 img loss 1.154893398284912 img loss 1.1872692108154297 img loss 1.257920503616333 img loss 1.139135479927063 img loss 1.191544771194458 img loss 1.1874048709869385 img loss 1.172447681427002 img loss 1.2004289627075195 img loss 1.2380951642990112 img loss 1.1376917362213135 img loss 1.1764531135559082 img loss 1.1963990926742554 img loss 1.2189950942993164 img loss 1.2020337581634521 img loss 1.1919530630111694 img loss 1.227099061012268 img loss 1.2432161569595337 img loss 1.2316679954528809 img loss 1.1951465606689453 img loss 1.1674621105194092 img loss 1.2797950506210327 img loss 1.180570125579834 img loss 1.2227628231048584 img loss 1.2003097534179688 img loss 1.2144392728805542 img loss 1.3035647869110107 img loss 1.2828129529953003 img loss 1.147936224937439 img loss 1.2097710371017456 img loss 1.1874374151229858 img loss 1.2007983922958374 img loss 1.206225872039795 img loss 1.2232770919799805 img loss 1.1805403232574463 img loss 1.1886755228042603 img loss 1.207324743270874 img loss 1.2920640707015991 img loss 1.2682994604110718 img loss 1.1899371147155762 img loss 1.2234230041503906 img loss 1.2341067790985107 img loss 1.1772115230560303 img loss 1.1852574348449707 img loss 1.1270136833190918 img loss 1.2865127325057983 img loss 1.324562668800354 img loss 1.2121083736419678 img loss 1.161095142364502 img loss 1.2098290920257568 img loss 1.1346346139907837 img loss 1.1640762090682983 img loss 1.1623997688293457 img loss 1.2123842239379883 img loss 1.1770405769348145 img loss 1.1695117950439453 img loss 1.1115537881851196 img loss 1.32685124874115 img loss 1.1739978790283203 img loss 1.1253128051757812 img loss 1.1767804622650146 img loss 1.2515509128570557 img loss 1.1963801383972168 img loss 1.2547591924667358 img loss 1.2870033979415894 img loss 1.2260836362838745 img loss 1.1785589456558228 img loss 1.205879807472229 img loss 1.1666933298110962 img loss 1.1945886611938477 img loss 1.1836708784103394 img loss 1.2255897521972656 img loss 1.2033251523971558 img loss 1.1854368448257446 img loss 1.1665409803390503 img loss 1.326590895652771 img loss 1.1644139289855957 img loss 1.2076892852783203 img loss 1.180948257446289 img loss 1.214699387550354 img loss 1.1877917051315308 img loss 1.1562421321868896 img loss 1.2088472843170166 img loss 1.2549548149108887 img loss 1.1679470539093018 img loss 1.23088538646698 img loss 1.2569465637207031 img loss 1.209390640258789 img loss 1.328490972518921 img loss 1.2121835947036743 img loss 1.223990797996521 img loss 1.2339982986450195 img loss 1.2489811182022095 img loss 1.219749093055725 img loss 1.310268759727478 img loss 1.301990270614624 img loss 1.2180925607681274 img loss 1.2057442665100098 img loss 1.1274739503860474 img loss 1.1738617420196533 img loss 1.275071144104004 img loss 1.1670058965682983 img loss 1.2983707189559937 {'loss': 1.2109, 'grad_norm': 0.23072507977485657, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.287442684173584 img loss 1.3835572004318237 img loss 1.466487169265747 img loss 1.4111443758010864 img loss 1.3941893577575684 img loss 1.3174375295639038 img loss 1.304105520248413 img loss 1.2610993385314941 img loss 1.4208862781524658 img loss 1.441912293434143 img loss 1.3655226230621338 img loss 1.4170032739639282 img loss 1.3035202026367188 img loss 1.4423191547393799 img loss 1.371917963027954 img loss 1.2587840557098389 img loss 1.3705475330352783 img loss 1.3518574237823486 img loss 1.4216407537460327 img loss 1.3378666639328003 img loss 1.2755590677261353 img loss 1.355139970779419 img loss 1.3819336891174316 img loss 1.275706171989441 img loss 1.3401700258255005 img loss 1.2925715446472168 img loss 1.2984061241149902 img loss 1.4376417398452759 img loss 1.413440465927124 img loss 1.3562535047531128 img loss 1.2665413618087769 img loss 1.324693202972412 img loss 1.3382527828216553 img loss 1.2758712768554688 img loss 1.3251224756240845 img loss 1.3047938346862793 img loss 1.3164852857589722 img loss 1.3756792545318604 img loss 1.3548394441604614 img loss 1.3885691165924072 img loss 1.3400853872299194 img loss 1.3055684566497803 img loss 1.3280504941940308 img loss 1.350578784942627 img loss 1.3617345094680786 img loss 1.332594871520996 img loss 1.3650615215301514 img loss 1.4305366277694702 img loss 1.2301955223083496 img loss 1.3672698736190796 img loss 1.3288437128067017 img loss 1.3629285097122192 img loss 1.4197908639907837 img loss 1.3764692544937134 img loss 1.2934023141860962 img loss 1.3693066835403442 img loss 1.4071898460388184 img loss 1.2753806114196777 img loss 1.4199503660202026 img loss 1.3598138093948364 img loss 1.2653013467788696 img loss 1.3609745502471924 img loss 1.3132236003875732 img loss 1.3873733282089233 img loss 1.3487621545791626 img loss 1.410575032234192 img loss 1.2402251958847046 img loss 1.4023770093917847 img loss 1.4008715152740479 img loss 1.2790627479553223 img loss 1.3185420036315918 img loss 1.347724199295044 img loss 1.2762898206710815 img loss 1.3694384098052979 img loss 1.2578284740447998 img loss 1.3830240964889526 img loss 1.32944655418396 img loss 1.3302544355392456 img loss 1.326805591583252 img loss 1.2875603437423706 img loss 1.4622677564620972 img loss 1.3804813623428345 img loss 1.3928700685501099 img loss 1.3290042877197266 img loss 1.3893722295761108 img loss 1.3332594633102417 img loss 1.3554441928863525 img loss 1.3481180667877197 img loss 1.2856457233428955 img loss 1.3681758642196655 img loss 1.3634799718856812 img loss 1.3167736530303955 img loss 1.3603875637054443 img loss 1.3628178834915161 img loss 1.370721459388733 img loss 1.4088902473449707 img loss 1.3619962930679321 img loss 1.3549551963806152 img loss 1.295198678970337 img loss 1.3516751527786255 img loss 1.263956904411316 img loss 1.3349659442901611 img loss 1.318071961402893 img loss 1.362248182296753 img loss 1.2764815092086792 img loss 1.3600460290908813 img loss 1.3953536748886108 img loss 1.303369164466858 img loss 1.2959598302841187 img loss 1.2862777709960938 img loss 1.3417288064956665 img loss 1.3703420162200928 img loss 1.3759057521820068 img loss 1.4361340999603271 img loss 1.350460171699524 img loss 1.3613170385360718 img loss 1.2653331756591797 img loss 1.3733090162277222 img loss 1.3510662317276 img loss 1.3320400714874268 img loss 1.271674633026123 img loss 1.3604317903518677 img loss 1.3159804344177246 img loss 1.323729395866394 img loss 1.4881025552749634 img loss 1.2855161428451538 img loss 1.4032772779464722 img loss 1.359464406967163 {'loss': 1.3472, 'grad_norm': 0.4227900207042694, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.546169400215149 img loss 1.4423152208328247 img loss 1.3807505369186401 img loss 1.38496732711792 img loss 1.4435795545578003 img loss 1.4674290418624878 img loss 1.512012004852295 img loss 1.4246121644973755 img loss 1.5384272336959839 img loss 1.3452045917510986 img loss 1.4115138053894043 img loss 1.5020747184753418 img loss 1.355485200881958 img loss 1.4345227479934692 img loss 1.3737584352493286 img loss 1.4706541299819946 img loss 1.388892412185669 img loss 1.3190765380859375 img loss 1.3798034191131592 img loss 1.413347840309143 img loss 1.52366042137146 img loss 1.5124691724777222 img loss 1.472040057182312 img loss 1.3362866640090942 img loss 1.3098278045654297 img loss 1.3338018655776978 img loss 1.357955813407898 img loss 1.444118618965149 img loss 1.4551945924758911 img loss 1.4058116674423218 img loss 1.3958404064178467 img loss 1.3823355436325073 img loss 1.4224919080734253 img loss 1.3659663200378418 img loss 1.4227783679962158 img loss 1.5502687692642212 img loss 1.480337381362915 img loss 1.4822437763214111 img loss 1.4303094148635864 img loss 1.4295450448989868 img loss 1.409796118736267 img loss 1.3619312047958374 img loss 1.4560130834579468 img loss 1.3614709377288818 img loss 1.5465384721755981 img loss 1.3776602745056152 img loss 1.5733851194381714 img loss 1.3450665473937988 img loss 1.3725732564926147 img loss 1.4732593297958374 img loss 1.4485218524932861 img loss 1.3168095350265503 img loss 1.352241039276123 img loss 1.3816782236099243 img loss 1.489338994026184 img loss 1.2986388206481934 img loss 1.4854437112808228 img loss 1.6141302585601807 img loss 1.318998098373413 img loss 1.4507038593292236 img loss 1.480167031288147 img loss 1.3998898267745972 img loss 1.4186524152755737 img loss 1.4120880365371704 img loss 1.4477972984313965 img loss 1.507490634918213 img loss 1.4270752668380737 img loss 1.5812041759490967 img loss 1.3481972217559814 img loss 1.4914600849151611 img loss 1.43346107006073 img loss 1.4067314863204956 img loss 1.558083176612854 img loss 1.4270412921905518 img loss 1.322164535522461 img loss 1.4669090509414673 img loss 1.496238350868225 img loss 1.3060564994812012 img loss 1.4621011018753052 img loss 1.5760741233825684 img loss 1.370335340499878 img loss 1.4940038919448853 img loss 1.35667085647583 img loss 1.4820592403411865 img loss 1.3885213136672974 img loss 1.5459696054458618 img loss 1.3603568077087402 img loss 1.2919034957885742 img loss 1.485634684562683 img loss 1.660427212715149 img loss 1.4824434518814087 img loss 1.512670636177063 img loss 1.4264813661575317 img loss 1.3784375190734863 img loss 1.3416637182235718 img loss 1.4322941303253174 img loss 1.5054384469985962 img loss 1.4690176248550415 img loss 1.5022234916687012 img loss 1.4115746021270752 img loss 1.5756787061691284 img loss 1.4902812242507935 img loss 1.4566391706466675 img loss 1.4974026679992676 img loss 1.5604205131530762 img loss 1.432235836982727 img loss 1.5029833316802979 img loss 1.3206415176391602 img loss 1.418405294418335 img loss 1.3922597169876099 img loss 1.5008763074874878 img loss 1.4299075603485107 img loss 1.5630698204040527 img loss 1.4273549318313599 img loss 1.3816667795181274 img loss 1.5404061079025269 img loss 1.3624287843704224 img loss 1.4008113145828247 img loss 1.3906899690628052 img loss 1.3026260137557983 img loss 1.5595667362213135 img loss 1.463316559791565 img loss 1.49680495262146 img loss 1.2973381280899048 img loss 1.3755515813827515 img loss 1.418989896774292 img loss 1.4139001369476318 img loss 1.5867416858673096 {'loss': 1.4368, 'grad_norm': 0.357707142829895, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.289625644683838 img loss 1.3241181373596191 img loss 1.3065721988677979 img loss 1.1968400478363037 img loss 1.1915836334228516 img loss 1.258371114730835 img loss 1.1383676528930664 img loss 1.23257315158844 img loss 1.2640002965927124 img loss 1.202114462852478 img loss 1.2472118139266968 img loss 1.2245949506759644 img loss 1.2215297222137451 img loss 1.246229887008667 img loss 1.34414803981781 img loss 1.2457407712936401 img loss 1.3605793714523315 img loss 1.2436118125915527 img loss 1.302241563796997 img loss 1.2433314323425293 img loss 1.2930647134780884 img loss 1.278818130493164 img loss 1.2922512292861938 img loss 1.2816922664642334 img loss 1.2487266063690186 img loss 1.2359431982040405 img loss 1.2396810054779053 img loss 1.2493534088134766 img loss 1.2565364837646484 img loss 1.2451181411743164 img loss 1.249077320098877 img loss 1.3625725507736206 img loss 1.2534213066101074 img loss 1.4075839519500732 img loss 1.3228321075439453 img loss 1.3818995952606201 img loss 1.2814120054244995 img loss 1.2846760749816895 img loss 1.3045330047607422 img loss 1.28448486328125 img loss 1.275045394897461 img loss 1.3103103637695312 img loss 1.2301830053329468 img loss 1.31923508644104 img loss 1.3516818284988403 img loss 1.2457785606384277 img loss 1.45296049118042 img loss 1.2241780757904053 img loss 1.2232799530029297 img loss 1.2944129705429077 img loss 1.203489065170288 img loss 1.2455958127975464 img loss 1.2030274868011475 img loss 1.2446273565292358 img loss 1.2676582336425781 img loss 1.3095239400863647 img loss 1.2608599662780762 img loss 1.3107964992523193 img loss 1.132253885269165 img loss 1.192781925201416 img loss 1.2571176290512085 img loss 1.1811788082122803 img loss 1.3306798934936523 img loss 1.3565129041671753 img loss 1.1986372470855713 img loss 1.323106288909912 img loss 1.3179881572723389 img loss 1.3001827001571655 img loss 1.211745023727417 img loss 1.224423885345459 img loss 1.2021163702011108 img loss 1.2082141637802124 img loss 1.313654899597168 img loss 1.37932288646698 img loss 1.3328012228012085 img loss 1.3012182712554932 img loss 1.3074616193771362 img loss 1.3118338584899902 img loss 1.297635555267334 img loss 1.2581983804702759 img loss 1.3327832221984863 img loss 1.2489086389541626 img loss 1.3607794046401978 img loss 1.2538166046142578 img loss 1.3354742527008057 img loss 1.1954798698425293 img loss 1.3342612981796265 img loss 1.362430453300476 img loss 1.2763563394546509 img loss 1.3515499830245972 img loss 1.2636669874191284 img loss 1.2478138208389282 img loss 1.3309931755065918 img loss 1.3249008655548096 img loss 1.2623603343963623 img loss 1.2570652961730957 img loss 1.2943023443222046 img loss 1.3214693069458008 img loss 1.269252061843872 img loss 1.3173027038574219 img loss 1.253532886505127 img loss 1.1776139736175537 img loss 1.184923529624939 img loss 1.2885576486587524 img loss 1.3556647300720215 img loss 1.2965096235275269 img loss 1.3463140726089478 img loss 1.2584480047225952 img loss 1.306739091873169 img loss 1.3992692232131958 img loss 1.3001407384872437 img loss 1.2813720703125 img loss 1.2812492847442627 img loss 1.1989835500717163 img loss 1.2091152667999268 img loss 1.2379188537597656 img loss 1.2286498546600342 img loss 1.176898717880249 img loss 1.2682628631591797 img loss 1.252848505973816 img loss 1.314563512802124 img loss 1.2757725715637207 img loss 1.2401633262634277 img loss 1.3047055006027222 img loss 1.3001368045806885 img loss 1.2332804203033447 img loss 1.372380018234253 img loss 1.3423608541488647 {'loss': 1.2764, 'grad_norm': 0.3179851174354553, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2422550916671753 img loss 1.2754255533218384 img loss 1.3900067806243896 img loss 1.2565972805023193 img loss 1.3232038021087646 img loss 1.338146448135376img loss 1.3081896305084229 img loss 1.266365647315979 img loss 1.3318160772323608 img loss 1.231671929359436 img loss 1.2490276098251343 img loss 1.3327248096466064 img loss 1.2058409452438354 img loss 1.3070447444915771 img loss 1.2950108051300049 img loss 1.2144606113433838 img loss 1.230960488319397 img loss 1.1986353397369385 img loss 1.2163528203964233 img loss 1.2789511680603027 img loss 1.2816778421401978 img loss 1.348569393157959 img loss 1.2514759302139282 img loss 1.2127532958984375 img loss 1.3203632831573486 img loss 1.2939105033874512 img loss 1.2814710140228271 img loss 1.3022167682647705 img loss 1.2578613758087158 img loss 1.3191035985946655 img loss 1.3702187538146973 img loss 1.2962480783462524 img loss 1.3877171277999878 img loss 1.3981457948684692 img loss 1.3315825462341309 img loss 1.1833499670028687 img loss 1.354458212852478 img loss 1.2456178665161133 img loss 1.262834906578064 img loss 1.2724860906600952 img loss 1.286131739616394 img loss 1.2885500192642212 img loss 1.2017595767974854 img loss 1.290057897567749 img loss 1.3221458196640015 img loss 1.3726356029510498 img loss 1.299261450767517 img loss 1.3889650106430054 img loss 1.1833423376083374 img loss 1.3433830738067627 img loss 1.3120123147964478 img loss 1.300705909729004 img loss 1.2713687419891357 img loss 1.343443512916565 img loss 1.149341106414795 img loss 1.3624457120895386 img loss 1.2569403648376465 img loss 1.228940486907959 img loss 1.3342887163162231 img loss 1.2620185613632202 img loss 1.2130094766616821 img loss 1.2619959115982056 img loss 1.2220211029052734 img loss 1.201776146888733 img loss 1.2521553039550781 img loss 1.2419103384017944 img loss 1.2129710912704468 img loss 1.2894500494003296 img loss 1.1811264753341675 img loss 1.2266221046447754 img loss 1.1606682538986206 img loss 1.2123106718063354 img loss 1.3294694423675537 img loss 1.297445297241211 img loss 1.3007954359054565 img loss 1.3977768421173096 img loss 1.3453681468963623 img loss 1.3532465696334839 img loss 1.325403094291687 img loss 1.335986852645874 img loss 1.2440037727355957 img loss 1.2682873010635376 img loss 1.209248423576355 img loss 1.2181735038757324 img loss 1.2361114025115967 img loss 1.2295767068862915 img loss 1.2336238622665405 img loss 1.2656084299087524 img loss 1.3095998764038086 img loss 1.3129358291625977 img loss 1.2701793909072876 img loss 1.2514753341674805 img loss 1.1738409996032715 img loss 1.2305850982666016 img loss 1.3376615047454834 img loss 1.2002098560333252 img loss 1.236857295036316 img loss 1.2493406534194946 img loss 1.226693034172058 img loss 1.260753870010376 img loss 1.2647547721862793 img loss 1.3412916660308838 img loss 1.3172205686569214 img loss 1.2370880842208862 img loss 1.2114737033843994 img loss 1.2415423393249512 img loss 1.2788941860198975 img loss 1.2420490980148315 img loss 1.327204704284668 img loss 1.2617534399032593 img loss 1.2387173175811768 img loss 1.2890183925628662 img loss 1.3575018644332886 img loss 1.264575481414795 img loss 1.2829097509384155 img loss 1.2625939846038818 img loss 1.364744782447815 img loss 1.2771790027618408 img loss 1.2198636531829834 img loss 1.2959613800048828 img loss 1.2311748266220093 img loss 1.3396364450454712 img loss 1.2531975507736206 img loss 1.2841428518295288 img loss 1.2855592966079712 img loss 1.325812578201294 img loss 1.3093409538269043 img loss 1.24519944190979 {'loss': 1.2769, 'grad_norm': 0.4493911862373352, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1678770780563354 img loss 1.2418676614761353 img loss 1.2882851362228394 img loss 1.2181862592697144 img loss 1.2265608310699463 img loss 1.1472572088241577 img loss 1.2595857381820679 img loss 1.1982223987579346 img loss 1.1820038557052612 img loss 1.2474403381347656 img loss 1.2756872177124023 img loss 1.188542127609253 img loss 1.1800763607025146 img loss 1.201129674911499 img loss 1.1339401006698608 img loss 1.2083323001861572 img loss 1.1913419961929321 img loss 1.2370190620422363 img loss 1.2950257062911987 img loss 1.2190951108932495 img loss 1.2761785984039307 img loss 1.2956128120422363 img loss 1.246533989906311 img loss 1.2780191898345947 img loss 1.1488679647445679 img loss 1.1995455026626587 img loss 1.2184957265853882 img loss 1.2405164241790771 img loss 1.1559727191925049 img loss 1.2652883529663086 img loss 1.1533855199813843 img loss 1.264242172241211 img loss 1.2188233137130737 img loss 1.230069875717163 img loss 1.2040256261825562 img loss 1.2320492267608643 img loss 1.222165584564209 img loss 1.2213484048843384 img loss 1.3031262159347534 img loss 1.1981699466705322 img loss 1.269243597984314 img loss 1.2267959117889404 img loss 1.1858606338500977 img loss 1.2191529273986816 img loss 1.309335470199585 img loss 1.179198145866394 img loss 1.2128262519836426 img loss 1.2131011486053467 img loss 1.1858800649642944 img loss 1.2576282024383545 img loss 1.2014940977096558 img loss 1.1615502834320068 img loss 1.2652307748794556 img loss 1.22263503074646 img loss 1.292715072631836 img loss 1.289114236831665 img loss 1.2880041599273682 img loss 1.2944329977035522 img loss 1.2474942207336426 img loss 1.200661301612854 img loss 1.1093113422393799 img loss 1.2338106632232666 img loss 1.1425399780273438 img loss 1.30705726146698 img loss 1.2948896884918213 img loss 1.1750797033309937 img loss 1.2842596769332886 img loss 1.245078682899475 img loss 1.2011051177978516 img loss 1.1499296426773071 img loss 1.3748869895935059 img loss 1.2829594612121582 img loss 1.1742572784423828 img loss 1.2130149602890015 img loss 1.2568432092666626 img loss 1.1766304969787598 img loss 1.305625557899475 img loss 1.190988302230835 img loss 1.1069706678390503 img loss 1.2187389135360718 img loss 1.2441505193710327 img loss 1.2506297826766968 img loss 1.143796443939209 img loss 1.2196896076202393 img loss 1.1985100507736206 img loss 1.1725335121154785 img loss 1.192026138305664 img loss 1.2046394348144531 img loss 1.2505801916122437 img loss 1.2691789865493774 img loss 1.2176337242126465 img loss 1.2107524871826172 img loss 1.1732460260391235 img loss 1.1734751462936401 img loss 1.2320537567138672 img loss 1.1756134033203125 img loss 1.171629548072815 img loss 1.2454159259796143 img loss 1.25385320186615 img loss 1.2248121500015259 img loss 1.284242033958435 img loss 1.2636032104492188 img loss 1.2397836446762085 img loss 1.1861906051635742 img loss 1.2705076932907104 img loss 1.2465908527374268 img loss 1.24576735496521 img loss 1.228705644607544 img loss 1.3034206628799438 img loss 1.2093071937561035 img loss 1.232399582862854 img loss 1.1795520782470703img loss 1.2579091787338257 img loss 1.2051327228546143 img loss 1.1908607482910156 img loss 1.314329743385315 img loss 1.1437740325927734 img loss 1.2013030052185059img loss 1.2447627782821655img loss 1.1609065532684326 img loss 1.2047334909439087 img loss 1.1191318035125732 img loss 1.2089793682098389 img loss 1.3523156642913818 img loss 1.222919225692749 img loss 1.2165732383728027 img loss 1.155423879623413 img loss 1.244212031364441 {'loss': 1.2235, 'grad_norm': 0.19576328992843628, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2112129926681519 img loss 1.3108761310577393 img loss 1.1898962259292603 img loss 1.2713693380355835 img loss 1.2255337238311768 img loss 1.219918966293335 img loss 1.2160274982452393 img loss 1.156177282333374 img loss 1.141502857208252 img loss 1.2750859260559082 img loss 1.2085700035095215 img loss 1.2369678020477295 img loss 1.1693072319030762 img loss 1.1915520429611206 img loss 1.2295496463775635 img loss 1.192798137664795 img loss 1.2250797748565674 img loss 1.2195059061050415 img loss 1.2787184715270996 img loss 1.1567566394805908 img loss 1.1489661931991577 img loss 1.1626548767089844 img loss 1.169283390045166 img loss 1.1831777095794678 img loss 1.230616807937622 img loss 1.209680199623108 img loss 1.242621898651123 img loss 1.2379069328308105 img loss 1.1911438703536987 img loss 1.2281970977783203 img loss 1.2567288875579834 img loss 1.1997756958007812 img loss 1.1593517065048218 img loss 1.1053556203842163 img loss 1.1571331024169922 img loss 1.1495412588119507 img loss 1.1341122388839722 img loss 1.1843763589859009 img loss 1.1818726062774658 img loss 1.196948528289795 img loss 1.189847469329834 img loss 1.2221282720565796 img loss 1.1815061569213867 img loss 1.294759750366211 img loss 1.2271702289581299 img loss 1.2567975521087646 img loss 1.2471901178359985 img loss 1.167426586151123 img loss 1.1185894012451172 img loss 1.1911152601242065 img loss 1.1976054906845093 img loss 1.2366081476211548 img loss 1.2096896171569824 img loss 1.147476077079773 img loss 1.2270359992980957 img loss 1.231824517250061 img loss 1.1312119960784912 img loss 1.2505276203155518 img loss 1.2220778465270996 img loss 1.2300550937652588 img loss 1.1334093809127808 img loss 1.2155640125274658 img loss 1.1736047267913818 img loss 1.2234489917755127 img loss 1.2231358289718628 img loss 1.1639404296875 img loss 1.156533122062683 img loss 1.216703176498413 img loss 1.189798355102539 img loss 1.2188557386398315 img loss 1.2349236011505127 img loss 1.2186365127563477 img loss 1.2439922094345093 img loss 1.1890289783477783 img loss 1.099425196647644 img loss 1.2143635749816895 img loss 1.1920756101608276 img loss 1.1384650468826294 img loss 1.1423413753509521 img loss 1.233968734741211 img loss 1.1984169483184814 img loss 1.2051029205322266 img loss 1.1831985712051392 img loss 1.1687827110290527 img loss 1.1426573991775513 img loss 1.143702745437622 img loss 1.1327009201049805 img loss 1.209148645401001 img loss 1.2242991924285889 img loss 1.1787229776382446 img loss 1.2014652490615845 img loss 1.1684179306030273 img loss 1.184829592704773 img loss 1.2685072422027588 img loss 1.208477258682251 img loss 1.1917864084243774 img loss 1.2212536334991455 img loss 1.2041587829589844 img loss 1.1864230632781982 img loss 1.1912122964859009 img loss 1.2063310146331787 img loss 1.1949458122253418 img loss 1.2108051776885986 img loss 1.2217472791671753 img loss 1.1540435552597046 img loss 1.177093267440796 img loss 1.2369663715362549 img loss 1.1416027545928955 img loss 1.1957240104675293 img loss 1.1211603879928589 img loss 1.229379653930664 img loss 1.1805341243743896 img loss 1.1758484840393066 img loss 1.172961711883545 img loss 1.1961090564727783 img loss 1.1227080821990967 img loss 1.2241214513778687 img loss 1.1748511791229248 img loss 1.2178562879562378 img loss 1.15756094455719 img loss 1.1820882558822632 img loss 1.2687650918960571 img loss 1.2446811199188232 img loss 1.1748958826065063 img loss 1.2048087120056152 img loss 1.138831615447998 img loss 1.20047128200531 img loss 1.152138352394104 {'loss': 1.1965, 'grad_norm': 0.2883172333240509, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.149782657623291 img loss 1.2225888967514038 img loss 1.1922049522399902 img loss 1.163504958152771 img loss 1.2103943824768066 img loss 1.3005660772323608 img loss 1.1808242797851562 img loss 1.179717779159546 img loss 1.1420621871948242 img loss 1.1206611394882202 img loss 1.195159673690796 img loss 1.164771556854248 img loss 1.2295429706573486 img loss 1.3324133157730103 img loss 1.2810839414596558 img loss 1.2155731916427612 img loss 1.2062134742736816 img loss 1.2363569736480713 img loss 1.134230613708496 img loss 1.1647961139678955 img loss 1.2114787101745605 img loss 1.2213225364685059 img loss 1.197516679763794 img loss 1.221488356590271 img loss 1.2184547185897827 img loss 1.2228360176086426 img loss 1.2012114524841309 img loss 1.2261052131652832 img loss 1.168418288230896 img loss 1.116530418395996 img loss 1.1725833415985107 img loss 1.1706488132476807 img loss 1.1767246723175049 img loss 1.158759355545044 img loss 1.1844606399536133 img loss 1.201412558555603 img loss 1.1738859415054321 img loss 1.1945313215255737 img loss 1.1841540336608887 img loss 1.1650593280792236 img loss 1.208789348602295 img loss 1.1975650787353516 img loss 1.2135244607925415 img loss 1.1914114952087402 img loss 1.2516483068466187 img loss 1.1700071096420288 img loss 1.2899974584579468 img loss 1.171227216720581 img loss 1.3292629718780518 img loss 1.130836844444275 img loss 1.1649197340011597 img loss 1.2503575086593628 img loss 1.213029146194458 img loss 1.1790815591812134 img loss 1.129154086112976 img loss 1.2179622650146484 img loss 1.15376877784729 img loss 1.1943550109863281 img loss 1.2012431621551514 img loss 1.2313352823257446 img loss 1.272966742515564 img loss 1.24712073802948 img loss 1.2226313352584839 img loss 1.184043288230896 img loss 1.2870734930038452 img loss 1.2350349426269531 img loss 1.2049741744995117 img loss 1.1951189041137695 img loss 1.214627742767334 img loss 1.2331328392028809 img loss 1.2691984176635742 img loss 1.2156531810760498 img loss 1.186917781829834 img loss 1.2377341985702515 img loss 1.295233964920044 img loss 1.1919173002243042 img loss 1.2008405923843384 img loss 1.1855313777923584 img loss 1.1904785633087158 img loss 1.2854493856430054 img loss 1.1863210201263428 img loss 1.2272565364837646 img loss 1.2209404706954956 img loss 1.193187952041626 img loss 1.2602306604385376 img loss 1.2339928150177002 img loss 1.1572654247283936 img loss 1.1817717552185059 img loss 1.240838646888733 img loss 1.189095377922058 img loss 1.1619230508804321 img loss 1.2284730672836304 img loss 1.2627533674240112 img loss 1.2529933452606201 img loss 1.1827720403671265 img loss 1.3429524898529053 img loss 1.249469518661499 img loss 1.2432403564453125 img loss 1.1740978956222534 img loss 1.1401180028915405 img loss 1.1968435049057007 img loss 1.18038809299469 img loss 1.2742443084716797 img loss 1.2249109745025635 img loss 1.313793420791626 img loss 1.1611703634262085 img loss 1.19557523727417 img loss 1.2745606899261475 img loss 1.1824719905853271 img loss 1.189143419265747 img loss 1.189249873161316 img loss 1.2281901836395264 img loss 1.2296435832977295 img loss 1.092413067817688 img loss 1.215942621231079 img loss 1.2179380655288696 img loss 1.2468630075454712 img loss 1.3086655139923096 img loss 1.2840704917907715 img loss 1.175241470336914 img loss 1.297379493713379 img loss 1.2429503202438354 img loss 1.2240917682647705 img loss 1.212700366973877 img loss 1.3793429136276245 img loss 1.2213495969772339 img loss 1.099241018295288 img loss 1.1855850219726562 {'loss': 1.2112, 'grad_norm': 0.27571383118629456, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2408913373947144 img loss 1.285203218460083 img loss 1.2242746353149414 img loss 1.1927275657653809 img loss 1.1953015327453613 img loss 1.277403712272644 img loss 1.1600061655044556 img loss 1.2284694910049438 img loss 1.2369464635849 img loss 1.2230247259140015 img loss 1.2025182247161865img loss 1.212369441986084 img loss 1.2209970951080322 img loss 1.2533057928085327 img loss 1.2631597518920898 img loss 1.24625563621521 img loss 1.2388157844543457 img loss 1.2464077472686768 img loss 1.2164185047149658 img loss 1.1855828762054443 img loss 1.28338623046875 img loss 1.190995454788208 img loss 1.2619476318359375 img loss 1.3007744550704956 img loss 1.208571195602417 img loss 1.2271236181259155 img loss 1.2994765043258667 img loss 1.207984447479248 img loss 1.2182053327560425 img loss 1.2087328433990479 img loss 1.2189315557479858 img loss 1.2790266275405884 img loss 1.1737561225891113 img loss 1.220274567604065 img loss 1.2348642349243164 img loss 1.1665410995483398 img loss 1.246500015258789 img loss 1.2307575941085815 img loss 1.2081599235534668 img loss 1.2383499145507812 img loss 1.240515112876892 img loss 1.215303897857666 img loss 1.2202554941177368 img loss 1.1798518896102905 img loss 1.1965337991714478 img loss 1.1797338724136353 img loss 1.2272813320159912 img loss 1.1879382133483887 img loss 1.2066274881362915 img loss 1.2327793836593628 img loss 1.2230106592178345 img loss 1.2018990516662598 img loss 1.2290958166122437 img loss 1.2505261898040771 img loss 1.1898889541625977 img loss 1.2331364154815674 img loss 1.2971519231796265 img loss 1.2472294569015503 img loss 1.311176061630249 img loss 1.2127742767333984 img loss 1.2442673444747925 img loss 1.2504323720932007 img loss 1.22441828250885 img loss 1.2206130027770996 img loss 1.2551921606063843 img loss 1.2306060791015625 img loss 1.1842966079711914 img loss 1.2015951871871948 img loss 1.2836148738861084 img loss 1.2144955396652222 img loss 1.277381181716919 img loss 1.2165367603302002 img loss 1.2572624683380127 img loss 1.2190837860107422 img loss 1.2493284940719604 img loss 1.2189793586730957 img loss 1.2236469984054565 img loss 1.229803442955017 img loss 1.2972428798675537 img loss 1.2785489559173584 img loss 1.244502305984497 img loss 1.2478361129760742 img loss 1.265910029411316 img loss 1.2318912744522095 img loss 1.2288366556167603 img loss 1.2568343877792358 img loss 1.2744836807250977 img loss 1.226365089416504 img loss 1.1890721321105957 img loss 1.2413196563720703 img loss 1.1960117816925049 img loss 1.245389461517334 img loss 1.2321370840072632 img loss 1.2102359533309937 img loss 1.2405496835708618 img loss 1.2631680965423584 img loss 1.217641830444336 img loss 1.2912298440933228 img loss 1.2120946645736694 img loss 1.2337415218353271 img loss 1.195182204246521 img loss 1.1916956901550293 img loss 1.232253074645996 img loss 1.2606871128082275 img loss 1.2215543985366821 img loss 1.2103445529937744 img loss 1.2440967559814453 img loss 1.210568904876709 img loss 1.1861928701400757 img loss 1.2044624090194702 img loss 1.1922733783721924 img loss 1.189889907836914 img loss 1.2418124675750732 img loss 1.2766903638839722 img loss 1.223929762840271 img loss 1.2520054578781128 img loss 1.228165626525879 img loss 1.2304753065109253 img loss 1.1741551160812378 img loss 1.2253669500350952 img loss 1.2344582080841064 img loss 1.224433183670044 img loss 1.211388349533081 img loss 1.162537932395935 img loss 1.1790504455566406 img loss 1.2437957525253296 img loss 1.193550705909729 img loss 1.258553385734558 {'loss': 1.2288, 'grad_norm': 0.27093085646629333, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5759860277175903 img loss 1.4601225852966309 img loss 1.3679436445236206 img loss 1.5310304164886475 img loss 1.343258261680603 img loss 1.4633678197860718 img loss 1.436203122138977 img loss 1.328040361404419 img loss 1.3721652030944824 img loss 1.4273135662078857 img loss 1.4612900018692017 img loss 1.4839190244674683 img loss 1.3470691442489624 img loss 1.58169686794281 img loss 1.5067155361175537 img loss 1.4066288471221924 img loss 1.4192882776260376 img loss 1.4112321138381958 img loss 1.4130901098251343 img loss 1.464525580406189 img loss 1.432104468345642 img loss 1.3762117624282837 img loss 1.4467493295669556 img loss 1.4680205583572388 img loss 1.4246095418930054 img loss 1.4902998208999634 img loss 1.3695110082626343 img loss 1.5686582326889038 img loss 1.3528209924697876 img loss 1.508070707321167 img loss 1.5612285137176514 img loss 1.4363607168197632 img loss 1.4829524755477905 img loss 1.3755635023117065 img loss 1.4429354667663574 img loss 1.3906883001327515 img loss 1.3840749263763428 img loss 1.3552826642990112 img loss 1.4069321155548096 img loss 1.5080863237380981 img loss 1.453244686126709 img loss 1.4571337699890137 img loss 1.4558384418487549 img loss 1.587603211402893 img loss 1.3836750984191895 img loss 1.3330409526824951 img loss 1.3490175008773804 img loss 1.5256192684173584 img loss 1.4056098461151123 img loss 1.4241797924041748 img loss 1.343367338180542 img loss 1.2996258735656738 img loss 1.3610328435897827 img loss 1.5482639074325562 img loss 1.3764538764953613 img loss 1.4166569709777832 img loss 1.441748023033142 img loss 1.325765609741211 img loss 1.3692281246185303 img loss 1.487005352973938 img loss 1.3130884170532227 img loss 1.3709074258804321 img loss 1.3767011165618896 img loss 1.402458667755127 img loss 1.3576502799987793 img loss 1.3993228673934937 img loss 1.5149003267288208 img loss 1.38267982006073 img loss 1.5404884815216064 img loss 1.3839457035064697 img loss 1.3570433855056763 img loss 1.4027522802352905 img loss 1.4075486660003662 img loss 1.3971036672592163 img loss 1.474914312362671 img loss 1.369412899017334 img loss 1.4378737211227417 img loss 1.4068617820739746 img loss 1.5160267353057861 img loss 1.4736053943634033 img loss 1.4514191150665283 img loss 1.3380252122879028 img loss 1.4206253290176392 img loss 1.3674248456954956 img loss 1.4600588083267212 img loss 1.3987126350402832 img loss 1.413422703742981 img loss 1.4274532794952393 img loss 1.3564633131027222 img loss 1.3357588052749634 img loss 1.3716968297958374 img loss 1.408445119857788 img loss 1.725193977355957 img loss 1.3235143423080444 img loss 1.468643307685852 img loss 1.4441841840744019 img loss 1.4766628742218018 img loss 1.5558277368545532 img loss 1.3960864543914795 img loss 1.582571268081665 img loss 1.3313210010528564 img loss 1.3953683376312256 img loss 1.3913233280181885 img loss 1.3421263694763184 img loss 1.2643425464630127 img loss 1.2954535484313965 img loss 1.4170688390731812 img loss 1.5620766878128052 img loss 1.368820071220398 img loss 1.4206688404083252 img loss 1.4287340641021729 img loss 1.3373771905899048 img loss 1.3466097116470337 img loss 1.4599069356918335 img loss 1.439439296722412 img loss 1.3308296203613281 img loss 1.38139808177948 img loss 1.5142844915390015 img loss 1.418548822402954 img loss 1.3294670581817627 img loss 1.3475233316421509 img loss 1.5122997760772705 img loss 1.3965795040130615 img loss 1.4716016054153442 img loss 1.5078825950622559 img loss 1.341428518295288 img loss 1.3638339042663574 img loss 1.425673007965088 {'loss': 1.4225, 'grad_norm': 0.291422963142395, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.421043872833252 img loss 1.3851021528244019 img loss 1.34848952293396 img loss 1.331865906715393 img loss 1.2864521741867065 img loss 1.2913135290145874 img loss 1.3185163736343384 img loss 1.3506600856781006 img loss 1.284432291984558 img loss 1.4145557880401611 img loss 1.3797905445098877 img loss 1.3719379901885986 img loss 1.3700371980667114 img loss 1.2811548709869385 img loss 1.3354766368865967 img loss 1.2734817266464233 img loss 1.3398833274841309 img loss 1.4756585359573364 img loss 1.3489724397659302 img loss 1.4023841619491577 img loss 1.3236823081970215 img loss 1.3307533264160156 img loss 1.2529869079589844 img loss 1.3326138257980347 img loss 1.4491816759109497 img loss 1.3302973508834839 img loss 1.304101824760437 img loss 1.3117948770523071 img loss 1.3751558065414429 img loss 1.2661447525024414 img loss 1.2408043146133423 img loss 1.3394287824630737 img loss 1.252295970916748 img loss 1.4054980278015137img loss 1.3198189735412598 img loss 1.3259334564208984 img loss 1.4451295137405396 img loss 1.3648391962051392 img loss 1.3137861490249634 img loss 1.3129030466079712 img loss 1.2963671684265137 img loss 1.4151147603988647 img loss 1.3781399726867676 img loss 1.346130132675171 img loss 1.3850125074386597 img loss 1.3197921514511108 img loss 1.3141628503799438 img loss 1.3705289363861084 img loss 1.4101072549819946 img loss 1.4248926639556885 img loss 1.3226667642593384 img loss 1.3104135990142822 img loss 1.2307891845703125 img loss 1.2822515964508057 img loss 1.35854172706604 img loss 1.4388880729675293 img loss 1.3059015274047852 img loss 1.4205262660980225 img loss 1.318661093711853 img loss 1.4272911548614502 img loss 1.4154669046401978 img loss 1.4201360940933228 img loss 1.3276135921478271 img loss 1.3361316919326782 img loss 1.3636599779129028 img loss 1.3386784791946411 img loss 1.292304515838623 img loss 1.321912407875061 img loss 1.3886921405792236 img loss 1.3362003564834595 img loss 1.3610167503356934 img loss 1.3836712837219238 img loss 1.3279157876968384 img loss 1.2702502012252808 img loss 1.3515456914901733 img loss 1.3795377016067505 img loss 1.3354767560958862 img loss 1.3924726247787476 img loss 1.4611142873764038 img loss 1.3206231594085693 img loss 1.313206434249878 img loss 1.339145302772522 img loss 1.3423454761505127 img loss 1.426071286201477 img loss 1.3213046789169312 img loss 1.2494335174560547 img loss 1.273748755455017 img loss 1.3407191038131714 img loss 1.2778046131134033 img loss 1.353807806968689 img loss 1.2652212381362915 img loss 1.3568695783615112 img loss 1.4910908937454224 img loss 1.3899884223937988 img loss 1.425167202949524 img loss 1.3925784826278687 img loss 1.3021093606948853 img loss 1.362967848777771 img loss 1.473957896232605 img loss 1.2692773342132568 img loss 1.475857138633728 img loss 1.3044428825378418 img loss 1.2584885358810425 img loss 1.3932231664657593 img loss 1.2689321041107178 img loss 1.3582710027694702 img loss 1.4295216798782349 img loss 1.4302746057510376 img loss 1.3280340433120728 img loss 1.2967934608459473 img loss 1.4082748889923096 img loss 1.3512426614761353 img loss 1.5057095289230347 img loss 1.3897579908370972 img loss 1.3625808954238892 img loss 1.3872936964035034 img loss 1.3269684314727783 img loss 1.3490040302276611 img loss 1.1862252950668335 img loss 1.3947888612747192 img loss 1.2449591159820557 img loss 1.3183239698410034 img loss 1.366829752922058 img loss 1.4175914525985718 img loss 1.3706954717636108 img loss 1.3841402530670166 img loss 1.3359988927841187 img loss 1.323254108428955 {'loss': 1.3496, 'grad_norm': 0.40980347990989685, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1853041648864746 img loss 1.1336326599121094 img loss 1.2130882740020752 img loss 1.194192886352539 img loss 1.1975969076156616 img loss 1.2939469814300537 img loss 1.2336938381195068 img loss 1.2422014474868774 img loss 1.2354341745376587 img loss 1.2558034658432007 img loss 1.250029444694519 img loss 1.287535548210144 img loss 1.2024800777435303 img loss 1.2013195753097534 img loss 1.19745671749115 img loss 1.1687164306640625 img loss 1.236053705215454 img loss 1.2276611328125 img loss 1.2063902616500854 img loss 1.230333685874939 img loss 1.2654613256454468 img loss 1.1901922225952148 img loss 1.1579256057739258 img loss 1.2967414855957031 img loss 1.357822060585022 img loss 1.2662874460220337 img loss 1.2779502868652344 img loss 1.265092134475708 img loss 1.2417534589767456 img loss 1.230576992034912 img loss 1.1199312210083008 img loss 1.3236408233642578 img loss 1.3387316465377808 img loss 1.3393391370773315 img loss 1.2267968654632568 img loss 1.2017730474472046 img loss 1.2080531120300293 img loss 1.2218517065048218 img loss 1.343065857887268 img loss 1.2027887105941772 img loss 1.2387986183166504 img loss 1.289000153541565 img loss 1.2217566967010498 img loss 1.2565397024154663 img loss 1.2335829734802246 img loss 1.2686318159103394 img loss 1.2278594970703125 img loss 1.260108470916748 img loss 1.2277486324310303 img loss 1.360195517539978 img loss 1.2546536922454834 img loss 1.2871087789535522 img loss 1.1853786706924438 img loss 1.2517074346542358 img loss 1.2955975532531738 img loss 1.309874176979065 img loss 1.2329251766204834 img loss 1.1977125406265259 img loss 1.251231074333191 img loss 1.2798073291778564 img loss 1.2361860275268555 img loss 1.1960643529891968 img loss 1.2396055459976196 img loss 1.1724796295166016 img loss 1.2750816345214844 img loss 1.1898695230484009 img loss 1.2107340097427368 img loss 1.22246253490448 img loss 1.1638047695159912 img loss 1.2237186431884766 img loss 1.1990593671798706 img loss 1.2667707204818726 img loss 1.2735028266906738 img loss 1.2095146179199219 img loss 1.1810003519058228 img loss 1.219991683959961 img loss 1.3132271766662598 img loss 1.2724663019180298 img loss 1.1687531471252441 img loss 1.1967194080352783 img loss 1.2567681074142456 img loss 1.2700155973434448 img loss 1.300615668296814 img loss 1.2147469520568848 img loss 1.239760160446167 img loss 1.19978666305542 img loss 1.2775719165802002 img loss 1.2656329870224 img loss 1.2432823181152344 img loss 1.135509729385376 img loss 1.210673213005066 img loss 1.2202129364013672 img loss 1.1788452863693237 img loss 1.1636996269226074 img loss 1.2107694149017334 img loss 1.233774185180664 img loss 1.2314096689224243 img loss 1.2652267217636108 img loss 1.1995868682861328 img loss 1.1992100477218628 img loss 1.3852887153625488 img loss 1.1980202198028564 img loss 1.1723034381866455 img loss 1.1853020191192627 img loss 1.1926188468933105 img loss 1.2291743755340576 img loss 1.1888145208358765 img loss 1.2736705541610718 img loss 1.3292081356048584 img loss 1.1845054626464844 img loss 1.3401669263839722 img loss 1.2262251377105713 img loss 1.2743228673934937 img loss 1.2125800848007202 img loss 1.2759685516357422 img loss 1.2255973815917969 img loss 1.2724522352218628 img loss 1.1486173868179321 img loss 1.2074387073516846 img loss 1.275158405303955 img loss 1.1954635381698608 img loss 1.2020244598388672 img loss 1.2614883184432983 img loss 1.1282925605773926 img loss 1.2243928909301758 img loss 1.1729557514190674 img loss 1.2920048236846924 img loss 1.275926947593689 {'loss': 1.2351, 'grad_norm': 0.17907845973968506, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4134005308151245 img loss 1.5635875463485718 img loss 1.640020728111267 img loss 1.4798494577407837 img loss 1.6722791194915771 img loss 1.4310771226882935 img loss 1.5722330808639526 img loss 1.4866563081741333 img loss 1.409829020500183 img loss 1.4712414741516113 img loss 1.4481158256530762 img loss 1.5411111116409302 img loss 1.448148250579834 img loss 1.4376046657562256 img loss 1.4926499128341675 img loss 1.6616759300231934 img loss 1.5459074974060059 img loss 1.60165274143219 img loss 1.5589573383331299 img loss 1.3561862707138062 img loss 1.3649420738220215 img loss 1.4206980466842651 img loss 1.4087002277374268 img loss 1.5105798244476318 img loss 1.52082097530365 img loss 1.4246140718460083 img loss 1.4492672681808472 img loss 1.465747356414795 img loss 1.6029492616653442 img loss 1.5677777528762817 img loss 1.5663506984710693 img loss 1.5027717351913452 img loss 1.4590550661087036 img loss 1.505656123161316 img loss 1.5015490055084229 img loss 1.5476317405700684 img loss 1.6097729206085205 img loss 1.5390963554382324 img loss 1.6282031536102295 img loss 1.4883015155792236 img loss 1.5507996082305908 img loss 1.4384486675262451 img loss 1.641051173210144 img loss 1.6774170398712158 img loss 1.5417511463165283 img loss 1.6078578233718872 img loss 1.5073254108428955 img loss 1.61044442653656 img loss 1.466549038887024 img loss 1.4284600019454956 img loss 1.379921317100525 img loss 1.5522617101669312 img loss 1.5382285118103027 img loss 1.3427116870880127 img loss 1.3323291540145874 img loss 1.6645514965057373 img loss 1.5103298425674438 img loss 1.6245454549789429 img loss 1.4983716011047363 img loss 1.50723135471344 img loss 1.3908733129501343 img loss 1.5691990852355957 img loss 1.6069234609603882 img loss 1.6255488395690918 img loss 1.6492940187454224 img loss 1.5132817029953003 img loss 1.5804790258407593 img loss 1.6337469816207886 img loss 1.4185739755630493 img loss 1.6000654697418213 img loss 1.4879124164581299 img loss 1.5864344835281372 img loss 1.5710842609405518 img loss 1.5888224840164185 img loss 1.5823613405227661 img loss 1.4651647806167603 img loss 1.6579784154891968 img loss 1.3995718955993652 img loss 1.3982692956924438 img loss 1.3378301858901978 img loss 1.497840166091919 img loss 1.5747311115264893 img loss 1.5638232231140137 img loss 1.5037205219268799 img loss 1.5824445486068726 img loss 1.5359140634536743 img loss 1.4074081182479858 img loss 1.535348653793335 img loss 1.6269394159317017 img loss 1.4909237623214722 img loss 1.4211446046829224 img loss 1.439489483833313 img loss 1.6021111011505127 img loss 1.5649930238723755 img loss 1.516478180885315 img loss 1.555181860923767 img loss 1.4725801944732666 img loss 1.5301672220230103 img loss 1.6013003587722778 img loss 1.3698537349700928 img loss 1.3947898149490356 img loss 1.4607508182525635 img loss 1.3554459810256958 img loss 1.521299958229065 img loss 1.493746280670166 img loss 1.4095882177352905 img loss 1.4751336574554443 img loss 1.440998911857605 img loss 1.4849793910980225 img loss 1.442525029182434 img loss 1.5644841194152832 img loss 1.5208172798156738 img loss 1.5911258459091187 img loss 1.4088225364685059 img loss 1.4370312690734863 img loss 1.4281431436538696 img loss 1.6268460750579834 img loss 1.4733561277389526 img loss 1.3495956659317017 img loss 1.5680087804794312 img loss 1.453701138496399 img loss 1.3733681440353394 img loss 1.442063570022583 img loss 1.4059828519821167 img loss 1.3908203840255737 img loss 1.4860999584197998 img loss 1.5582172870635986 img loss 1.5359479188919067 {'loss': 1.5069, 'grad_norm': 0.8803004026412964, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2325865030288696 img loss 1.2451660633087158 img loss 1.2401841878890991 img loss 1.1985723972320557 img loss 1.2184721231460571 img loss 1.2179638147354126 img loss 1.2221323251724243 img loss 1.1824060678482056 img loss 1.283178687095642 img loss 1.2225195169448853 img loss 1.2921125888824463 img loss 1.1467169523239136 img loss 1.2561674118041992 img loss 1.2025420665740967 img loss 1.2201042175292969 img loss 1.2316302061080933 img loss 1.2369234561920166 img loss 1.1757513284683228 img loss 1.2498611211776733 img loss 1.190839171409607 img loss 1.1406614780426025 img loss 1.2373722791671753 img loss 1.2243340015411377 img loss 1.164854645729065 img loss 1.2146574258804321 img loss 1.202462077140808 img loss 1.2209335565567017 img loss 1.1392515897750854 img loss 1.199481725692749 img loss 1.2340034246444702 img loss 1.2398252487182617 img loss 1.1814301013946533 img loss 1.1554181575775146 img loss 1.2395095825195312 img loss 1.2109386920928955 img loss 1.2190040349960327 img loss 1.296377420425415 img loss 1.183471441268921 img loss 1.2216253280639648 img loss 1.2633692026138306 img loss 1.1541430950164795 img loss 1.2630456686019897 img loss 1.1772308349609375 img loss 1.1989045143127441 img loss 1.2291152477264404 img loss 1.26945161819458 img loss 1.2082475423812866 img loss 1.2184313535690308 img loss 1.2126845121383667 img loss 1.1931864023208618 img loss 1.1612436771392822 img loss 1.230320692062378 img loss 1.2588989734649658 img loss 1.2438008785247803 img loss 1.2026822566986084 img loss 1.2422717809677124 img loss 1.2424709796905518 img loss 1.1929707527160645 img loss 1.2046947479248047 img loss 1.2587158679962158 img loss 1.2076425552368164 img loss 1.2258036136627197 img loss 1.2443552017211914 img loss 1.210783839225769 img loss 1.2415661811828613 img loss 1.1705641746520996 img loss 1.1531208753585815 img loss 1.1709246635437012 img loss 1.271552562713623 img loss 1.1986106634140015 img loss 1.1512304544448853 img loss 1.1894289255142212 img loss 1.170768141746521 img loss 1.2296292781829834 img loss 1.150597333908081 img loss 1.2722499370574951 img loss 1.2058390378952026 img loss 1.174939513206482 img loss 1.1873079538345337 img loss 1.2158361673355103 img loss 1.2253159284591675 img loss 1.2141159772872925 img loss 1.1959600448608398 img loss 1.1613149642944336 img loss 1.2379772663116455 img loss 1.1915814876556396 img loss 1.2859200239181519 img loss 1.2393503189086914 img loss 1.2379978895187378 img loss 1.2435897588729858 img loss 1.2369983196258545 img loss 1.2038028240203857 img loss 1.2439731359481812 img loss 1.1939910650253296 img loss 1.1300230026245117 img loss 1.2245113849639893 img loss 1.2792587280273438 img loss 1.2793426513671875 img loss 1.190697431564331 img loss 1.2248008251190186 img loss 1.1969012022018433 img loss 1.1755766868591309 img loss 1.198677659034729 img loss 1.2342573404312134 img loss 1.2953202724456787 img loss 1.1913578510284424 img loss 1.1817660331726074 img loss 1.2244247198104858 img loss 1.2724822759628296 img loss 1.232145071029663 img loss 1.2052512168884277 img loss 1.1983102560043335 img loss 1.175726294517517 img loss 1.1777749061584473 img loss 1.2060768604278564 img loss 1.1879866123199463 img loss 1.1487386226654053 img loss 1.2229429483413696 img loss 1.1624770164489746 img loss 1.1515116691589355 img loss 1.1672136783599854 img loss 1.250792384147644 img loss 1.2057985067367554 img loss 1.1553664207458496 img loss 1.1742571592330933 img loss 1.179269552230835 img loss 1.2103828191757202 img loss 1.2722660303115845 {'loss': 1.2122, 'grad_norm': 0.3786901533603668, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.246264934539795 img loss 1.2859222888946533 img loss 1.2561829090118408 img loss 1.3729385137557983 img loss 1.332449197769165 img loss 1.3589088916778564 img loss 1.3220186233520508 img loss 1.2685353755950928 img loss 1.2950122356414795 img loss 1.188953161239624 img loss 1.3067502975463867 img loss 1.2755059003829956 img loss 1.2058151960372925 img loss 1.2543938159942627 img loss 1.2167043685913086 img loss 1.2593539953231812 img loss 1.334654450416565 img loss 1.2539119720458984 img loss 1.3119944334030151 img loss 1.2973297834396362 img loss 1.3838467597961426 img loss 1.2345939874649048 img loss 1.319839358329773 img loss 1.2072937488555908 img loss 1.3197046518325806 img loss 1.2147836685180664 img loss 1.3033720254898071 img loss 1.243591547012329 img loss 1.3379193544387817 img loss 1.2312644720077515 img loss 1.2015727758407593 img loss 1.3504585027694702 img loss 1.198862910270691 img loss 1.3033828735351562 img loss 1.2682037353515625 img loss 1.3348326683044434 img loss 1.18942129611969 img loss 1.2278257608413696 img loss 1.1882679462432861 img loss 1.3071264028549194 img loss 1.3508334159851074 img loss 1.2669250965118408 img loss 1.3446985483169556 img loss 1.227321982383728 img loss 1.3849488496780396 img loss 1.202715277671814 img loss 1.1956866979599 img loss 1.2972873449325562 img loss 1.3149104118347168 img loss 1.3245010375976562 img loss 1.321542501449585 img loss 1.3188177347183228 img loss 1.2867217063903809 img loss 1.2862478494644165 img loss 1.2128355503082275 img loss 1.3212568759918213 img loss 1.3156416416168213 img loss 1.3274812698364258 img loss 1.2644355297088623 img loss 1.3206011056900024 img loss 1.3287577629089355 img loss 1.2135647535324097 img loss 1.3774731159210205 img loss 1.3100305795669556 img loss 1.2964361906051636 img loss 1.3378186225891113 img loss 1.3043638467788696 img loss 1.2277700901031494 img loss 1.3207021951675415 img loss 1.3619000911712646 img loss 1.3191903829574585 img loss 1.3800785541534424 img loss 1.2184162139892578 img loss 1.3011635541915894 img loss 1.2794681787490845 img loss 1.272085189819336 img loss 1.2569242715835571 img loss 1.442014217376709 img loss 1.3075145483016968 img loss 1.2633672952651978 img loss 1.2542355060577393 img loss 1.375508189201355 img loss 1.3017802238464355 img loss 1.2199783325195312 img loss 1.2510322332382202 img loss 1.248730182647705 img loss 1.2831203937530518 img loss 1.2890232801437378 img loss 1.2542872428894043 img loss 1.3595728874206543 img loss 1.1553034782409668 img loss 1.3064188957214355 img loss 1.2746822834014893 img loss 1.238046646118164 img loss 1.3362019062042236 img loss 1.309516191482544 img loss 1.2891380786895752 img loss 1.2443783283233643 img loss 1.3474888801574707 img loss 1.2827260494232178 img loss 1.2803767919540405 img loss 1.220847487449646 img loss 1.2652218341827393 img loss 1.2813491821289062 img loss 1.26030433177948 img loss 1.226488709449768 img loss 1.2271755933761597 img loss 1.2666659355163574 img loss 1.24223792552948 img loss 1.3525655269622803 img loss 1.206846833229065 img loss 1.2946685552597046 img loss 1.2620024681091309 img loss 1.3040165901184082 img loss 1.2713747024536133 img loss 1.3527899980545044 img loss 1.3977620601654053 img loss 1.194728136062622 img loss 1.2941968441009521 img loss 1.2759954929351807 img loss 1.2661985158920288 img loss 1.1997766494750977 img loss 1.2731002569198608 img loss 1.3397763967514038 img loss 1.2494285106658936 img loss 1.3440746068954468 img loss 1.2541474103927612 img loss 1.288068413734436 {'loss': 1.2838, 'grad_norm': 0.4410623610019684, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.286289930343628 img loss 1.279895305633545 img loss 1.3100509643554688 img loss 1.2188892364501953 img loss 1.3163496255874634 img loss 1.345017910003662 img loss 1.2593450546264648 img loss 1.331999659538269 img loss 1.3584916591644287 img loss 1.3304795026779175 img loss 1.2842508554458618 img loss 1.2973612546920776 img loss 1.2179782390594482 img loss 1.3569649457931519 img loss 1.3840359449386597 img loss 1.249708652496338 img loss 1.4367550611495972 img loss 1.39297354221344 img loss 1.3232570886611938 img loss 1.3494898080825806 img loss 1.3750340938568115 img loss 1.4714637994766235 img loss 1.376798152923584 img loss 1.2886903285980225 img loss 1.3287149667739868 img loss 1.2078933715820312 img loss 1.2057656049728394 img loss 1.3337424993515015 img loss 1.2501425743103027 img loss 1.3760007619857788 img loss 1.181679129600525 img loss 1.3221714496612549 img loss 1.2864100933074951 img loss 1.3364665508270264 img loss 1.4161406755447388 img loss 1.4465855360031128 img loss 1.3578842878341675 img loss 1.2327797412872314 img loss 1.4213459491729736 img loss 1.3447397947311401 img loss 1.1980187892913818 img loss 1.3474204540252686 img loss 1.2894915342330933 img loss 1.2386032342910767 img loss 1.3254404067993164 img loss 1.2388406991958618 img loss 1.2683885097503662 img loss 1.3122719526290894 img loss 1.2730134725570679 img loss 1.3442654609680176 img loss 1.3028488159179688 img loss 1.247222661972046 img loss 1.404474139213562 img loss 1.3050243854522705 img loss 1.2532544136047363 img loss 1.2201948165893555 img loss 1.2797391414642334 img loss 1.3505301475524902 img loss 1.2917730808258057 img loss 1.3616282939910889 img loss 1.25807523727417 img loss 1.1854842901229858 img loss 1.3039480447769165 img loss 1.3812710046768188 img loss 1.2531801462173462 img loss 1.2924728393554688 img loss 1.310005784034729 img loss 1.3036741018295288 img loss 1.2392109632492065 img loss 1.3254120349884033 img loss 1.2980258464813232 img loss 1.2842909097671509 img loss 1.3591961860656738 img loss 1.3036609888076782 img loss 1.3153963088989258 img loss 1.2810540199279785 img loss 1.2891864776611328 img loss 1.2881016731262207 img loss 1.3299134969711304 img loss 1.3443520069122314 img loss 1.3024842739105225 img loss 1.2861069440841675 img loss 1.307227611541748 img loss 1.2433583736419678 img loss 1.2807159423828125 img loss 1.1447386741638184 img loss 1.2241129875183105 img loss 1.3467704057693481 img loss 1.4064075946807861 img loss 1.3497015237808228 img loss 1.2222858667373657 img loss 1.2744377851486206 img loss 1.3369687795639038 img loss 1.306039571762085 img loss 1.2379095554351807 img loss 1.2739399671554565 img loss 1.3402220010757446 img loss 1.3340626955032349 img loss 1.3363956212997437 img loss 1.2573819160461426 img loss 1.370539903640747 img loss 1.3112750053405762 img loss 1.2710481882095337 img loss 1.347209095954895 img loss 1.288254976272583 img loss 1.3052972555160522 img loss 1.2976316213607788 img loss 1.2963262796401978 img loss 1.2450929880142212 img loss 1.2552063465118408 img loss 1.3148345947265625 img loss 1.28677499294281 img loss 1.2520737648010254 img loss 1.3049665689468384 img loss 1.2288880348205566 img loss 1.3338183164596558 img loss 1.222482681274414 img loss 1.2838420867919922 img loss 1.4213117361068726 img loss 1.2604081630706787 img loss 1.2597681283950806 img loss 1.3648039102554321 img loss 1.3723891973495483 img loss 1.2476704120635986 img loss 1.3534821271896362 img loss 1.350847601890564 img loss 1.3671456575393677 img loss 1.365439772605896 {'loss': 1.3053, 'grad_norm': 0.22875601053237915, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3625954389572144 img loss 1.4617782831192017 img loss 1.3640164136886597 img loss 1.3182721138000488 img loss 1.2903388738632202 img loss 1.4218796491622925 img loss 1.2918241024017334 img loss 1.3640916347503662 img loss 1.3825125694274902 img loss 1.3093785047531128 img loss 1.3646588325500488 img loss 1.2511837482452393 img loss 1.4072833061218262 img loss 1.2751067876815796 img loss 1.2906105518341064 img loss 1.3635185956954956 img loss 1.3570854663848877 img loss 1.2633979320526123 img loss 1.2973774671554565 img loss 1.4905240535736084 img loss 1.3383536338806152 img loss 1.3419926166534424 img loss 1.415873408317566 img loss 1.387434482574463 img loss 1.4143813848495483 img loss 1.2742626667022705 img loss 1.4109827280044556 img loss 1.2352900505065918 img loss 1.3225555419921875 img loss 1.269918441772461 img loss 1.3669551610946655 img loss 1.4673689603805542 img loss 1.3069100379943848 img loss 1.4206095933914185 img loss 1.331089735031128 img loss 1.4782754182815552 img loss 1.4321292638778687 img loss 1.2565898895263672 img loss 1.3373535871505737 img loss 1.3196043968200684 img loss 1.298742651939392 img loss 1.3703786134719849 img loss 1.3393205404281616 img loss 1.2676668167114258 img loss 1.3895725011825562 img loss 1.3497203588485718 img loss 1.2906535863876343 img loss 1.4119665622711182 img loss 1.3545421361923218 img loss 1.348435640335083 img loss 1.3081632852554321 img loss 1.4996917247772217 img loss 1.3994487524032593 img loss 1.33261239528656 img loss 1.2786757946014404 img loss 1.3826884031295776 img loss 1.3065471649169922 img loss 1.3191345930099487 img loss 1.2881426811218262 img loss 1.4191266298294067 img loss 1.4414523839950562 img loss 1.5635411739349365 img loss 1.4156941175460815 img loss 1.4100282192230225 img loss 1.4175331592559814 img loss 1.3118690252304077 img loss 1.3370277881622314 img loss 1.4897695779800415 img loss 1.392360806465149 img loss 1.364946722984314 img loss 1.38923978805542 img loss 1.3983708620071411 img loss 1.2976903915405273 img loss 1.3594584465026855 img loss 1.4119328260421753 img loss 1.3595130443572998 img loss 1.2880091667175293 img loss 1.282680869102478 img loss 1.3164981603622437 img loss 1.366878628730774 img loss 1.3285653591156006 img loss 1.341094732284546 img loss 1.2314532995224 img loss 1.2733901739120483 img loss 1.3718645572662354 img loss 1.4085453748703003 img loss 1.3238557577133179 img loss 1.4048666954040527 img loss 1.423900842666626 img loss 1.3556691408157349 img loss 1.310197353363037 img loss 1.4833290576934814 img loss 1.2713953256607056 img loss 1.2898203134536743 img loss 1.4297999143600464 img loss 1.3047809600830078 img loss 1.3830078840255737 img loss 1.3613778352737427 img loss 1.4433530569076538 img loss 1.390609622001648 img loss 1.3683438301086426 img loss 1.2006362676620483 img loss 1.2645964622497559 img loss 1.3361114263534546 img loss 1.4150034189224243 img loss 1.2397096157073975 img loss 1.3083385229110718 img loss 1.3303855657577515 img loss 1.3718606233596802 img loss 1.47782564163208 img loss 1.2870357036590576 img loss 1.277404546737671 img loss 1.2741031646728516 img loss 1.3038069009780884 img loss 1.2916638851165771 img loss 1.2775791883468628 img loss 1.3966983556747437 img loss 1.316782832145691 img loss 1.2884517908096313 img loss 1.3875616788864136 img loss 1.3030774593353271 img loss 1.3425146341323853 img loss 1.363900065422058 img loss 1.2315897941589355 img loss 1.3454502820968628 img loss 1.376442551612854 img loss 1.3602182865142822 img loss 1.345519781112671 {'loss': 1.3503, 'grad_norm': 0.2787540853023529, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2076692581176758 img loss 1.323911428451538 img loss 1.264657735824585 img loss 1.2614704370498657 img loss 1.3126537799835205 img loss 1.312711238861084 img loss 1.2416852712631226 img loss 1.2645193338394165 img loss 1.2550182342529297 img loss 1.22346830368042 img loss 1.29417085647583 img loss 1.292961835861206 img loss 1.2976834774017334 img loss 1.2857776880264282 img loss 1.3946880102157593 img loss 1.3078840970993042 img loss 1.34732186794281 img loss 1.2535905838012695 img loss 1.236454963684082 img loss 1.3215488195419312 img loss 1.3034918308258057 img loss 1.3452311754226685 img loss 1.3193950653076172 img loss 1.3343656063079834 img loss 1.2823714017868042 img loss 1.3015724420547485 img loss 1.2662022113800049img loss 1.2373470067977905 img loss 1.3391053676605225 img loss 1.3282266855239868 img loss 1.21706223487854 img loss 1.3186945915222168 img loss 1.2303303480148315 img loss 1.216956377029419 img loss 1.2305080890655518 img loss 1.3215007781982422 img loss 1.322460651397705 img loss 1.4412060976028442 img loss 1.1916583776474 img loss 1.2366118431091309 img loss 1.26887845993042 img loss 1.3321385383605957 img loss 1.3374277353286743 img loss 1.3294470310211182 img loss 1.3461062908172607 img loss 1.2531927824020386 img loss 1.251097321510315 img loss 1.3223165273666382 img loss 1.2464147806167603 img loss 1.3474191427230835 img loss 1.2528102397918701 img loss 1.3958561420440674 img loss 1.274310827255249 img loss 1.2459826469421387 img loss 1.2848098278045654 img loss 1.2962315082550049 img loss 1.2438548803329468 img loss 1.2338316440582275 img loss 1.2119985818862915 img loss 1.2117915153503418 img loss 1.297903060913086 img loss 1.3075758218765259 img loss 1.3324086666107178 img loss 1.262589931488037 img loss 1.2875813245773315 img loss 1.3353703022003174 img loss 1.347298264503479 img loss 1.1534483432769775 img loss 1.2659533023834229 img loss 1.24471914768219 img loss 1.1866556406021118 img loss 1.1950397491455078 img loss 1.3190816640853882 img loss 1.3144278526306152 img loss 1.3452279567718506 img loss 1.3344147205352783 img loss 1.3158117532730103 img loss 1.231405258178711 img loss 1.2465527057647705 img loss 1.19194495677948 img loss 1.2933238744735718 img loss 1.268496036529541 img loss 1.3049306869506836 img loss 1.2087217569351196 img loss 1.143416404724121 img loss 1.424892783164978 img loss 1.2818706035614014 img loss 1.3133834600448608 img loss 1.209872841835022 img loss 1.3700746297836304 img loss 1.16655433177948 img loss 1.34165358543396 img loss 1.2383549213409424 img loss 1.1929981708526611 img loss 1.2277488708496094 img loss 1.2244868278503418 img loss 1.2255700826644897 img loss 1.3288383483886719 img loss 1.2041767835617065 img loss 1.295169472694397 img loss 1.2334516048431396 img loss 1.2859044075012207 img loss 1.2855682373046875 img loss 1.2597362995147705 img loss 1.2349886894226074 img loss 1.1843788623809814 img loss 1.2122573852539062 img loss 1.2078098058700562 img loss 1.2683415412902832 img loss 1.3010927438735962 img loss 1.2624878883361816 img loss 1.23427414894104 img loss 1.3133972883224487 img loss 1.291629433631897 img loss 1.3039956092834473 img loss 1.1850439310073853 img loss 1.2662506103515625 img loss 1.2715802192687988 img loss 1.2408967018127441 img loss 1.2526997327804565 img loss 1.2151503562927246 img loss 1.3073869943618774 img loss 1.2587381601333618 img loss 1.174723505973816 img loss 1.2471250295639038 img loss 1.2867130041122437 img loss 1.2636340856552124 img loss 1.2860559225082397 {'loss': 1.2741, 'grad_norm': 0.28464755415916443, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4999710321426392 img loss 1.5997750759124756 img loss 1.662530779838562 img loss 1.5723744630813599 img loss 1.5102258920669556 img loss 1.5509164333343506 img loss 1.5984255075454712 img loss 1.5501619577407837 img loss 1.5559924840927124 img loss 1.422973394393921 img loss 1.5146390199661255 img loss 1.7883765697479248 img loss 1.417305588722229 img loss 1.6932767629623413 img loss 1.4973033666610718 img loss 1.5496326684951782 img loss 1.5855318307876587 img loss 1.461157202720642 img loss 1.6923102140426636 img loss 1.629658818244934 img loss 1.6086281538009644 img loss 1.6379272937774658 img loss 1.5157349109649658 img loss 1.63540518283844 img loss 1.5437942743301392 img loss 1.4872781038284302 img loss 1.5197948217391968 img loss 1.4308403730392456 img loss 1.3993802070617676 img loss 1.6121201515197754 img loss 1.5208182334899902 img loss 1.5931745767593384 img loss 1.4790985584259033 img loss 1.510749340057373 img loss 1.5016001462936401 img loss 1.486514687538147 img loss 1.6629893779754639 img loss 1.7085119485855103 img loss 1.4154609441757202 img loss 1.6523057222366333 img loss 1.542555570602417 img loss 1.5207874774932861 img loss 1.6763216257095337 img loss 1.6521443128585815 img loss 1.4234938621520996 img loss 1.6590675115585327 img loss 1.66294264793396 img loss 1.5483460426330566 img loss 1.5363805294036865 img loss 1.6669641733169556 img loss 1.383114218711853 img loss 1.4759516716003418 img loss 1.5653313398361206 img loss 1.4676789045333862 img loss 1.6029080152511597 img loss 1.4279320240020752 img loss 1.4794528484344482 img loss 1.6627748012542725 img loss 1.5566834211349487 img loss 1.6498894691467285 img loss 1.607471227645874 img loss 1.3545374870300293 img loss 1.4582703113555908 img loss 1.6291049718856812 img loss 1.379117727279663 img loss 1.5906840562820435 img loss 1.6184918880462646 img loss 1.5079160928726196 img loss 1.6793004274368286 img loss 1.725064754486084 img loss 1.5919506549835205 img loss 1.6588432788848877 img loss 1.608349323272705 img loss 1.685909390449524 img loss 1.6188398599624634 img loss 1.5872279405593872 img loss 1.5931342840194702 img loss 1.5624579191207886 img loss 1.6168949604034424 img loss 1.6313960552215576 img loss 1.5361231565475464 img loss 1.6095068454742432 img loss 1.5551611185073853 img loss 1.7447549104690552img loss 1.6165498495101929 img loss 1.5078999996185303 img loss 1.6142611503601074 img loss 1.58761727809906 img loss 1.4744179248809814 img loss 1.5545772314071655 img loss 1.6618320941925049 img loss 1.5803333520889282 img loss 1.4675871133804321 img loss 1.5289613008499146 img loss 1.695996642112732 img loss 1.560863733291626 img loss 1.4981695413589478 img loss 1.6368893384933472img loss 1.6053688526153564 img loss 1.6167551279067993 img loss 1.5494483709335327 img loss 1.510596752166748 img loss 1.8736211061477661 img loss 1.5574527978897095 img loss 1.5879569053649902 img loss 1.588002324104309 img loss 1.5889006853103638 img loss 1.5854562520980835 img loss 1.5572856664657593 img loss 1.484750509262085 img loss 1.5388752222061157 img loss 1.627733826637268 img loss 1.70686674118042 img loss 1.5812891721725464 img loss 1.5612493753433228 img loss 1.556413173675537 img loss 1.5531742572784424 img loss 1.5414789915084839 img loss 1.6756408214569092 img loss 1.5199849605560303 img loss 1.6254032850265503 img loss 1.73872971534729 img loss 1.6479694843292236 img loss 1.7163358926773071 img loss 1.6400741338729858 img loss 1.5140963792800903 img loss 1.5946667194366455 img loss 1.5035957098007202 {'loss': 1.5744, 'grad_norm': 0.31761112809181213, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3850542306900024 img loss 1.3891128301620483 img loss 1.2267241477966309 img loss 1.2174824476242065 img loss 1.2435901165008545 img loss 1.3189600706100464 img loss 1.3288402557373047 img loss 1.3207978010177612 img loss 1.2844231128692627 img loss 1.2851533889770508 img loss 1.3085758686065674 img loss 1.2801556587219238 img loss 1.3870776891708374 img loss 1.3233040571212769 img loss 1.3539996147155762 img loss 1.2643274068832397 img loss 1.207163691520691 img loss 1.3619123697280884 img loss 1.290336012840271 img loss 1.3628085851669312 img loss 1.3096160888671875 img loss 1.327589988708496 img loss 1.2950958013534546 img loss 1.3635624647140503 img loss 1.2514033317565918 img loss 1.3288625478744507 img loss 1.3321988582611084 img loss 1.2856616973876953 img loss 1.2464232444763184 img loss 1.274655818939209 img loss 1.3603510856628418 img loss 1.210386037826538 img loss 1.3394103050231934 img loss 1.2486242055892944 img loss 1.2190736532211304 img loss 1.325759768486023 img loss 1.2831566333770752 img loss 1.2648893594741821 img loss 1.2423748970031738 img loss 1.310838222503662 img loss 1.2505106925964355 img loss 1.3060054779052734 img loss 1.2690194845199585 img loss 1.3695905208587646 img loss 1.3478049039840698 img loss 1.3071850538253784 img loss 1.2501620054244995 img loss 1.2879565954208374 img loss 1.329380750656128 img loss 1.4594252109527588 img loss 1.2773808240890503 img loss 1.2969551086425781 img loss 1.206758737564087img loss 1.304746389389038 img loss 1.219011664390564 img loss 1.403348684310913 img loss 1.2197670936584473 img loss 1.2682288885116577 img loss 1.2700958251953125 img loss 1.4826864004135132 img loss 1.3272758722305298 img loss 1.2914005517959595 img loss 1.2770687341690063 img loss 1.2097718715667725 img loss 1.2721173763275146 img loss 1.2780641317367554 img loss 1.2790601253509521 img loss 1.2494710683822632 img loss 1.3040730953216553 img loss 1.3201453685760498 img loss 1.233154296875 img loss 1.2961658239364624 img loss 1.2852685451507568 img loss 1.326707363128662 img loss 1.2755274772644043 img loss 1.3024325370788574 img loss 1.3234814405441284 img loss 1.4308403730392456 img loss 1.2945799827575684 img loss 1.375540018081665 img loss 1.260292649269104 img loss 1.3671324253082275 img loss 1.4934548139572144 img loss 1.2685266733169556 img loss 1.2472472190856934 img loss 1.335120439529419 img loss 1.2605657577514648 img loss 1.3296736478805542 img loss 1.2917135953903198 img loss 1.3258204460144043 img loss 1.273586630821228 img loss 1.3526298999786377 img loss 1.2848834991455078 img loss 1.3395400047302246 img loss 1.262001872062683 img loss 1.2880748510360718 img loss 1.4707854986190796 img loss 1.3376286029815674 img loss 1.2676725387573242 img loss 1.30322265625 img loss 1.2661176919937134 img loss 1.2493339776992798 img loss 1.3271397352218628 img loss 1.2804391384124756 img loss 1.286370038986206 img loss 1.2495906352996826 img loss 1.2399793863296509 img loss 1.3518884181976318 img loss 1.260134220123291 img loss 1.2516462802886963 img loss 1.31535005569458 img loss 1.2560232877731323 img loss 1.2504485845565796 img loss 1.361335277557373 img loss 1.232388973236084 img loss 1.2910146713256836 img loss 1.3429831266403198 img loss 1.2945306301116943 img loss 1.2698793411254883 img loss 1.274846076965332 img loss 1.3161858320236206 img loss 1.247046709060669 img loss 1.4027756452560425 img loss 1.2720988988876343 img loss 1.3025318384170532 img loss 1.3177021741867065 img loss 1.29184889793396 img loss 1.35532808303833 {'loss': 1.3012, 'grad_norm': 0.28547847270965576, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1413829326629639 img loss 1.1863676309585571 img loss 1.2747879028320312 img loss 1.2868914604187012 img loss 1.1876137256622314 img loss 1.147286295890808 img loss 1.3259648084640503 img loss 1.1904997825622559 img loss 1.1842639446258545 img loss 1.2491708993911743 img loss 1.2060518264770508 img loss 1.1843979358673096 img loss 1.2036131620407104 img loss 1.2682139873504639 img loss 1.187448263168335 img loss 1.2179011106491089 img loss 1.2052563428878784 img loss 1.2321535348892212 img loss 1.2443151473999023 img loss 1.2019898891448975 img loss 1.2309441566467285 img loss 1.179368019104004 img loss 1.2503114938735962 img loss 1.2274898290634155 img loss 1.234170913696289 img loss 1.17287278175354 img loss 1.2583885192871094 img loss 1.243173599243164 img loss 1.2719370126724243 img loss 1.2232173681259155 img loss 1.254808783531189 img loss 1.2296422719955444 img loss 1.2014623880386353 img loss 1.2466707229614258 img loss 1.163079857826233 img loss 1.1900299787521362 img loss 1.2450588941574097 img loss 1.2344106435775757 img loss 1.226850152015686 img loss 1.2499723434448242 img loss 1.2472825050354004 img loss 1.2348735332489014 img loss 1.1956392526626587 img loss 1.1731432676315308 img loss 1.2261532545089722 img loss 1.221657156944275 img loss 1.1836942434310913 img loss 1.228031039237976 img loss 1.2128503322601318 img loss 1.2023653984069824 img loss 1.1867927312850952 img loss 1.2225264310836792 img loss 1.2264708280563354 img loss 1.2783284187316895 img loss 1.2166551351547241 img loss 1.2101491689682007 img loss 1.197325587272644 img loss 1.1489307880401611 img loss 1.183704137802124 img loss 1.2259478569030762 img loss 1.138292908668518 img loss 1.2047752141952515 img loss 1.2322049140930176 img loss 1.176239252090454 img loss 1.165526032447815 img loss 1.1628315448760986 img loss 1.1702003479003906 img loss 1.269575595855713 img loss 1.2684333324432373 img loss 1.1685751676559448 img loss 1.3254879713058472 img loss 1.1866081953048706 img loss 1.2746187448501587 img loss 1.2429468631744385 img loss 1.2240530252456665 img loss 1.1734108924865723 img loss 1.1999661922454834 img loss 1.2158520221710205 img loss 1.2175636291503906 img loss 1.181105136871338 img loss 1.1501705646514893 img loss 1.1880649328231812 img loss 1.2515664100646973 img loss 1.2396008968353271 img loss 1.239087462425232 img loss 1.272637963294983 img loss 1.2841796875 img loss 1.214903473854065 img loss 1.294082522392273 img loss 1.1877400875091553 img loss 1.1731430292129517 img loss 1.1553452014923096 img loss 1.2215135097503662 img loss 1.1149858236312866 img loss 1.202140212059021 img loss 1.2726023197174072 img loss 1.2557333707809448 img loss 1.2709808349609375 img loss 1.2577300071716309 img loss 1.2088055610656738 img loss 1.2214114665985107 img loss 1.2501091957092285 img loss 1.2249516248703003 img loss 1.2036510705947876 img loss 1.2561277151107788 img loss 1.1971724033355713 img loss 1.263335108757019 img loss 1.228128433227539 img loss 1.219354510307312 img loss 1.1809194087982178 img loss 1.179216742515564 img loss 1.2249999046325684 img loss 1.2617592811584473 img loss 1.1920247077941895 img loss 1.111375093460083 img loss 1.2375950813293457 img loss 1.1842697858810425 img loss 1.31537663936615 img loss 1.2108454704284668 img loss 1.2312301397323608 img loss 1.156929850578308 img loss 1.2091097831726074 img loss 1.1895122528076172 img loss 1.2291477918624878 img loss 1.2493042945861816 img loss 1.3037559986114502 img loss 1.2211626768112183 img loss 1.2295881509780884 {'loss': 1.2181, 'grad_norm': 0.32812634110450745, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1426103115081787 img loss 1.1859967708587646 img loss 1.2112311124801636 img loss 1.2128015756607056 img loss 1.1849675178527832 img loss 1.21434485912323 img loss 1.1906136274337769 img loss 1.195865511894226 img loss 1.1646435260772705 img loss 1.2113451957702637 img loss 1.1380176544189453 img loss 1.1832777261734009 img loss 1.152390480041504 img loss 1.1651036739349365 img loss 1.184428095817566 img loss 1.206435203552246 img loss 1.1842588186264038 img loss 1.1386759281158447 img loss 1.1523903608322144 img loss 1.2900279760360718 img loss 1.148871898651123 img loss 1.1436876058578491 img loss 1.1554031372070312 img loss 1.1542620658874512 img loss 1.1739953756332397 img loss 1.2331819534301758 img loss 1.1095484495162964 img loss 1.178515076637268 img loss 1.2049744129180908 img loss 1.1700390577316284 img loss 1.2649683952331543 img loss 1.1726036071777344 img loss 1.134300708770752 img loss 1.1505730152130127 img loss 1.1424446105957031 img loss 1.2014296054840088 img loss 1.182486891746521 img loss 1.2284057140350342 img loss 1.1811273097991943 img loss 1.112870693206787 img loss 1.2178394794464111 img loss 1.2541316747665405 img loss 1.1776559352874756 img loss 1.1621967554092407 img loss 1.141348123550415 img loss 1.1793056726455688 img loss 1.1443570852279663 img loss 1.1632925271987915 img loss 1.3136767148971558 img loss 1.249722957611084 img loss 1.1189831495285034 img loss 1.155598521232605 img loss 1.2261875867843628 img loss 1.1398327350616455 img loss 1.2458972930908203 img loss 1.2882106304168701 img loss 1.2060184478759766 img loss 1.2213042974472046 img loss 1.109830379486084 img loss 1.1641966104507446 img loss 1.211874008178711 img loss 1.1236131191253662 img loss 1.2178820371627808 img loss 1.1537106037139893 img loss 1.2845054864883423 img loss 1.1217923164367676 img loss 1.2221436500549316 img loss 1.1251968145370483 img loss 1.1573255062103271 img loss 1.1607608795166016 img loss 1.0981425046920776 img loss 1.0897501707077026 img loss 1.1552529335021973 img loss 1.155131220817566 img loss 1.1615463495254517 img loss 1.1590497493743896 img loss 1.1690114736557007 img loss 1.0968198776245117 img loss 1.1355751752853394 img loss 1.1433405876159668 img loss 1.2537684440612793 img loss 1.1938166618347168 img loss 1.145617127418518 img loss 1.180603265762329 img loss 1.1796846389770508 img loss 1.153984785079956 img loss 1.2635389566421509 img loss 1.1934359073638916 img loss 1.2122795581817627 img loss 1.0858635902404785 img loss 1.1979665756225586 img loss 1.2942007780075073 img loss 1.2536009550094604 img loss 1.130557894706726 img loss 1.144038438796997 img loss 1.1401982307434082 img loss 1.1970982551574707 img loss 1.1255630254745483 img loss 1.2466789484024048 img loss 1.0811865329742432 img loss 1.114011287689209 img loss 1.0914320945739746 img loss 1.1774297952651978 img loss 1.167673110961914 img loss 1.1339662075042725 img loss 1.2104135751724243 img loss 1.1522367000579834 img loss 1.1441593170166016 img loss 1.1452347040176392 img loss 1.184005618095398 img loss 1.0725542306900024 img loss 1.130967378616333 img loss 1.1664564609527588 img loss 1.0957517623901367 img loss 1.2594810724258423 img loss 1.2659223079681396 img loss 1.2183640003204346 img loss 1.186324954032898 img loss 1.1371501684188843 img loss 1.1645044088363647 img loss 1.1986948251724243 img loss 1.2551326751708984 img loss 1.1637663841247559 img loss 1.2510417699813843 img loss 1.1507771015167236 img loss 1.1187435388565063 img loss 1.1608060598373413 img loss 1.173886775970459 {'loss': 1.1761, 'grad_norm': 0.37404534220695496, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6771689653396606 img loss 1.5928598642349243 img loss 1.5895612239837646 img loss 1.5692273378372192 img loss 1.4820295572280884 img loss 1.5619536638259888 img loss 1.56758713722229 img loss 1.6738020181655884 img loss 1.5336850881576538 img loss 1.5498148202896118 img loss 1.6356090307235718 img loss 1.7937326431274414 img loss 1.4429007768630981 img loss 1.5576616525650024 img loss 1.777936577796936 img loss 1.497253656387329 img loss 1.530563473701477 img loss 1.5134060382843018 img loss 1.5406824350357056 img loss 1.721930980682373 img loss 1.623863697052002 img loss 1.5428262948989868 img loss 1.5260952711105347 img loss 1.3986800909042358 img loss 1.4822642803192139 img loss 1.5982340574264526 img loss 1.6086504459381104 img loss 1.5001938343048096 img loss 1.5277560949325562 img loss 1.6340267658233643 img loss 1.534845232963562 img loss 1.6748298406600952 img loss 1.6778531074523926 img loss 1.555110216140747 img loss 1.4529274702072144 img loss 1.5016850233078003 img loss 1.7102259397506714 img loss 1.6155093908309937 img loss 1.4064234495162964 img loss 1.5324084758758545 img loss 1.722704291343689 img loss 1.869206190109253 img loss 1.6023030281066895 img loss 1.5967050790786743 img loss 1.5676347017288208 img loss 1.5780394077301025 img loss 1.668006420135498 img loss 1.5270370244979858 img loss 1.5933984518051147 img loss 1.5822473764419556 img loss 1.6764510869979858 img loss 1.600369930267334 img loss 1.577090859413147 img loss 1.4984785318374634 img loss 1.5816444158554077 img loss 1.577573537826538 img loss 1.5461602210998535 img loss 1.49433171749115 img loss 1.635901689529419 img loss 1.4385570287704468 img loss 1.5528666973114014 img loss 1.4729360342025757 img loss 1.5685709714889526 img loss 1.5871468782424927 img loss 1.5653547048568726 img loss 1.688927173614502 img loss 1.5441001653671265 img loss 1.65049147605896 img loss 1.6220695972442627 img loss 1.5776517391204834 img loss 1.6130985021591187 img loss 1.8565614223480225 img loss 1.623461365699768 img loss 1.6118932962417603 img loss 1.704210877418518 img loss 1.671414852142334 img loss 1.6353986263275146 img loss 1.6394740343093872 img loss 1.6819654703140259 img loss 1.495369553565979 img loss 1.500656247138977 img loss 1.6133341789245605 img loss 1.5782101154327393 img loss 1.5769054889678955 img loss 1.6521705389022827 img loss 1.4358223676681519 img loss 1.69059157371521 img loss 1.5772076845169067 img loss 1.5852586030960083 img loss 1.7310258150100708 img loss 1.551888346672058 img loss 1.6005452871322632 img loss 1.6056320667266846 img loss 1.6183810234069824 img loss 1.5042556524276733 img loss 1.6193630695343018 img loss 1.5813190937042236 img loss 1.469906210899353 img loss 1.5372579097747803 img loss 1.4474629163742065 img loss 1.6363948583602905 img loss 1.4745453596115112 img loss 1.4825879335403442 img loss 1.5229734182357788 img loss 1.628844976425171 img loss 1.6598142385482788 img loss 1.6408926248550415 img loss 1.5678786039352417 img loss 1.3858097791671753 img loss 1.4240440130233765 img loss 1.5020902156829834 img loss 1.6335327625274658 img loss 1.6205096244812012 img loss 1.5838325023651123 img loss 1.499337077140808 img loss 1.4991981983184814 img loss 1.501466989517212 img loss 1.6672873497009277 img loss 1.5641950368881226 img loss 1.5595232248306274 img loss 1.6290496587753296 img loss 1.6488909721374512 img loss 1.5547473430633545 img loss 1.700679898262024 img loss 1.6287685632705688 img loss 1.4925264120101929 img loss 1.6257213354110718 img loss 1.6274092197418213 {'loss': 1.5832, 'grad_norm': 0.3727061450481415, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.30691659450531 img loss 1.3020960092544556 img loss 1.2814226150512695 img loss 1.2229375839233398 img loss 1.3636919260025024 img loss 1.2811838388442993 img loss 1.3497083187103271 img loss 1.3255828619003296 img loss 1.4033318758010864 img loss 1.2613071203231812 img loss 1.5459564924240112 img loss 1.32012939453125 img loss 1.3758951425552368 img loss 1.29594886302948 img loss 1.238067626953125 img loss 1.2919323444366455 img loss 1.3615387678146362 img loss 1.3948184251785278 img loss 1.487493634223938 img loss 1.3685200214385986 img loss 1.3624186515808105 img loss 1.2890925407409668 img loss 1.3114722967147827 img loss 1.4323655366897583 img loss 1.3025367259979248 img loss 1.3881772756576538 img loss 1.4365684986114502 img loss 1.3648600578308105 img loss 1.2721837759017944 img loss 1.3199084997177124 img loss 1.3710442781448364 img loss 1.415345549583435 img loss 1.4822219610214233 img loss 1.3714404106140137 img loss 1.3038877248764038 img loss 1.2899625301361084 img loss 1.3860735893249512 img loss 1.3754112720489502 img loss 1.32485032081604 img loss 1.268630862236023 img loss 1.2533679008483887 img loss 1.2631053924560547 img loss 1.4682356119155884 img loss 1.2901568412780762 img loss 1.3679958581924438 img loss 1.312734603881836 img loss 1.3161553144454956 img loss 1.3459563255310059 img loss 1.3609824180603027 img loss 1.3923569917678833 img loss 1.3588287830352783 img loss 1.3028535842895508 img loss 1.2938886880874634 img loss 1.4205687046051025 img loss 1.3679900169372559 img loss 1.3844341039657593 img loss 1.2900993824005127 img loss 1.2787871360778809 img loss 1.2828283309936523 img loss 1.3315597772598267 img loss 1.3562935590744019 img loss 1.3456155061721802 img loss 1.3364522457122803 img loss 1.2989976406097412 img loss 1.4478545188903809 img loss 1.3645230531692505 img loss 1.3259201049804688 img loss 1.4231696128845215 img loss 1.247078776359558 img loss 1.3271982669830322 img loss 1.4414962530136108 img loss 1.3347138166427612 img loss 1.282321810722351 img loss 1.2799841165542603 img loss 1.394677996635437 img loss 1.3219141960144043 img loss 1.326944351196289 img loss 1.3509271144866943 img loss 1.3261830806732178 img loss 1.3984099626541138 img loss 1.3449585437774658 img loss 1.3008019924163818 img loss 1.2763562202453613 img loss 1.4643645286560059 img loss 1.3562260866165161 img loss 1.3745821714401245 img loss 1.3713887929916382 img loss 1.3366485834121704 img loss 1.3527390956878662 img loss 1.4318524599075317 img loss 1.3281238079071045 img loss 1.2719402313232422 img loss 1.307413935661316 img loss 1.3497148752212524 img loss 1.3247125148773193 img loss 1.38601815700531 img loss 1.2884585857391357 img loss 1.333233118057251 img loss 1.454280972480774 img loss 1.3464691638946533 img loss 1.3435120582580566 img loss 1.3209075927734375 img loss 1.3851150274276733 img loss 1.2581486701965332 img loss 1.307382583618164 img loss 1.240729570388794 img loss 1.2290565967559814 img loss 1.4099148511886597 img loss 1.2415894269943237 img loss 1.3582979440689087 img loss 1.365271806716919 img loss 1.3942162990570068 img loss 1.324785590171814 img loss 1.4361727237701416 img loss 1.2899456024169922 img loss 1.2838990688323975 img loss 1.2222102880477905 img loss 1.2597349882125854 img loss 1.4506046772003174 img loss 1.3618674278259277 img loss 1.335153341293335 img loss 1.3592793941497803 img loss 1.42207932472229 img loss 1.309325933456421 img loss 1.2379964590072632 img loss 1.2977856397628784 img loss 1.2777906656265259 img loss 1.3675223588943481 {'loss': 1.3402, 'grad_norm': 0.323849081993103, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2996524572372437 img loss 1.2084499597549438 img loss 1.1497944593429565 img loss 1.2345058917999268 img loss 1.2612950801849365 img loss 1.1983848810195923 img loss 1.2010958194732666 img loss 1.1181284189224243 img loss 1.1625621318817139 img loss 1.2810274362564087 img loss 1.144422173500061 img loss 1.2258437871932983 img loss 1.258038878440857 img loss 1.1855945587158203 img loss 1.2759816646575928 img loss 1.2916529178619385 img loss 1.2156636714935303 img loss 1.2848427295684814 img loss 1.178417444229126 img loss 1.2229241132736206 img loss 1.2227392196655273 img loss 1.1722933053970337 img loss 1.1629797220230103 img loss 1.219428300857544 img loss 1.2436069250106812 img loss 1.2604632377624512 img loss 1.20111083984375 img loss 1.1613738536834717 img loss 1.1576836109161377 img loss 1.1938556432724 img loss 1.1635394096374512 img loss 1.254345178604126 img loss 1.18993079662323 img loss 1.1810314655303955 img loss 1.2231667041778564 img loss 1.2656457424163818 img loss 1.1665266752243042 img loss 1.221588373184204 img loss 1.2777092456817627 img loss 1.1995245218276978 img loss 1.2368195056915283 img loss 1.2759093046188354 img loss 1.2115554809570312 img loss 1.2251383066177368 img loss 1.2338430881500244 img loss 1.2481787204742432 img loss 1.3515316247940063 img loss 1.2566111087799072 img loss 1.2477525472640991 img loss 1.2186260223388672 img loss 1.2426801919937134 img loss 1.2504658699035645 img loss 1.2251737117767334 img loss 1.2631157636642456 img loss 1.1378190517425537 img loss 1.1470773220062256 img loss 1.2209357023239136 img loss 1.1669663190841675 img loss 1.223609209060669img loss 1.2145203351974487 img loss 1.166765809059143 img loss 1.3078181743621826 img loss 1.2039397954940796 img loss 1.18009614944458 img loss 1.2165508270263672 img loss 1.1411221027374268 img loss 1.1905300617218018 img loss 1.194320559501648 img loss 1.1536471843719482 img loss 1.1787153482437134 img loss 1.272769808769226 img loss 1.1719942092895508 img loss 1.2163293361663818 img loss 1.2499523162841797 img loss 1.2268341779708862 img loss 1.22416353225708 img loss 1.1447126865386963 img loss 1.242466688156128 img loss 1.2356374263763428 img loss 1.187382459640503 img loss 1.2707509994506836 img loss 1.2822489738464355 img loss 1.2548320293426514 img loss 1.2325410842895508 img loss 1.2144532203674316 img loss 1.1642119884490967 img loss 1.2379770278930664 img loss 1.2486271858215332 img loss 1.2006343603134155 img loss 1.2837483882904053 img loss 1.188693881034851 img loss 1.1643413305282593 img loss 1.1710200309753418 img loss 1.3010194301605225 img loss 1.205834150314331 img loss 1.2529242038726807 img loss 1.218787670135498 img loss 1.1913994550704956 img loss 1.2335948944091797 img loss 1.2383371591567993 img loss 1.2458003759384155 img loss 1.2205755710601807 img loss 1.2961382865905762 img loss 1.2408652305603027 img loss 1.2564444541931152 img loss 1.1809190511703491 img loss 1.213425874710083 img loss 1.219021201133728 img loss 1.2407203912734985 img loss 1.2070527076721191 img loss 1.1827874183654785 img loss 1.2272266149520874 img loss 1.2882360219955444 img loss 1.1853941679000854 img loss 1.1596596240997314 img loss 1.2311304807662964 img loss 1.1133449077606201 img loss 1.2636070251464844 img loss 1.2791069746017456 img loss 1.2988919019699097 img loss 1.2249486446380615 img loss 1.135459303855896 img loss 1.1830644607543945 img loss 1.1307228803634644 img loss 1.2472633123397827 img loss 1.1922518014907837 img loss 1.1825531721115112 img loss 1.2477768659591675 {'loss': 1.2179, 'grad_norm': 0.2878032624721527, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1406989097595215 img loss 1.207382082939148 img loss 1.0907056331634521 img loss 1.346545934677124 img loss 1.253965973854065 img loss 1.1954981088638306 img loss 1.276384949684143 img loss 1.1522506475448608 img loss 1.2019009590148926 img loss 1.1882826089859009 img loss 1.1840085983276367 img loss 1.3330283164978027 img loss 1.1484277248382568 img loss 1.308979868888855 img loss 1.2589123249053955 img loss 1.184624195098877 img loss 1.2943115234375 img loss 1.233386754989624 img loss 1.2490108013153076 img loss 1.199930191040039 img loss 1.2488701343536377 img loss 1.2042014598846436 img loss 1.201186180114746 img loss 1.2556371688842773 img loss 1.2199159860610962 img loss 1.2657134532928467 img loss 1.1947239637374878 img loss 1.1230405569076538 img loss 1.2074402570724487 img loss 1.1253207921981812 img loss 1.229244589805603 img loss 1.1901218891143799 img loss 1.1962991952896118 img loss 1.1700063943862915 img loss 1.1740347146987915 img loss 1.3352962732315063 img loss 1.189935326576233 img loss 1.1723387241363525 img loss 1.3102201223373413 img loss 1.1860935688018799 img loss 1.2666534185409546 img loss 1.286827564239502 img loss 1.1574140787124634 img loss 1.2113040685653687 img loss 1.2381010055541992 img loss 1.2972500324249268 img loss 1.2444499731063843 img loss 1.1957039833068848 img loss 1.1975359916687012 img loss 1.1895112991333008 img loss 1.1479679346084595 img loss 1.1393564939498901 img loss 1.21629798412323 img loss 1.2375390529632568 img loss 1.264983057975769 img loss 1.2420285940170288 img loss 1.2178903818130493 img loss 1.1949212551116943 img loss 1.32109797000885 img loss 1.1734260320663452 img loss 1.2450538873672485 img loss 1.2744642496109009 img loss 1.2221848964691162 img loss 1.1894989013671875 img loss 1.2291312217712402 img loss 1.2059173583984375 img loss 1.2072560787200928 img loss 1.2033658027648926 img loss 1.1299059391021729 img loss 1.1417264938354492 img loss 1.1741650104522705 img loss 1.3647385835647583 img loss 1.2138019800186157 img loss 1.2020708322525024 img loss 1.1132550239562988 img loss 1.2497233152389526 img loss 1.1966995000839233 img loss 1.3219064474105835 img loss 1.2126375436782837 img loss 1.2636903524398804 img loss 1.2678279876708984 img loss 1.2167418003082275 img loss 1.2154725790023804 img loss 1.2299431562423706 img loss 1.3060023784637451 img loss 1.2957122325897217 img loss 1.1492466926574707 img loss 1.2633540630340576 img loss 1.2434977293014526 img loss 1.2401446104049683 img loss 1.28020179271698 img loss 1.3081629276275635 img loss 1.278876781463623 img loss 1.2419300079345703 img loss 1.2216800451278687 img loss 1.2166578769683838 img loss 1.2256088256835938 img loss 1.2340290546417236 img loss 1.2933330535888672 img loss 1.114627480506897 img loss 1.1813961267471313 img loss 1.2189849615097046 img loss 1.1867139339447021 img loss 1.2378562688827515 img loss 1.2442665100097656 img loss 1.2390438318252563 img loss 1.2436155080795288 img loss 1.2200052738189697 img loss 1.1451663970947266 img loss 1.1741492748260498 img loss 1.2433831691741943 img loss 1.2052425146102905 img loss 1.1666505336761475 img loss 1.134742259979248 img loss 1.2248282432556152 img loss 1.2298818826675415 img loss 1.298966407775879 img loss 1.2322959899902344 img loss 1.2560417652130127 img loss 1.3192923069000244 img loss 1.218125343322754 img loss 1.1887986660003662 img loss 1.1796659231185913 img loss 1.2399742603302002 img loss 1.2440866231918335 img loss 1.1783266067504883 img loss 1.142754316329956 img loss 1.2332038879394531 {'loss': 1.2212, 'grad_norm': 0.229594886302948, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2624733448028564 img loss 1.2705512046813965 img loss 1.2201917171478271 img loss 1.2884044647216797 img loss 1.226427435874939 img loss 1.222347617149353 img loss 1.2553722858428955 img loss 1.2244772911071777 img loss 1.1946115493774414 img loss 1.2606581449508667 img loss 1.2601312398910522 img loss 1.226650595664978 img loss 1.2545506954193115 img loss 1.2381023168563843 img loss 1.2526081800460815 img loss 1.1925855875015259 img loss 1.3089942932128906 img loss 1.2182707786560059 img loss 1.2327711582183838 img loss 1.2010554075241089 img loss 1.248893141746521 img loss 1.1778786182403564 img loss 1.2971343994140625 img loss 1.230039358139038 img loss 1.245504379272461 img loss 1.207529902458191 img loss 1.2704225778579712 img loss 1.2446683645248413 img loss 1.1789979934692383 img loss 1.2315491437911987 img loss 1.2431998252868652 img loss 1.2600464820861816 img loss 1.2624787092208862 img loss 1.2488384246826172 img loss 1.2413249015808105 img loss 1.2751330137252808 img loss 1.2109870910644531 img loss 1.2434395551681519 img loss 1.259554147720337 img loss 1.2117592096328735 img loss 1.174854040145874 img loss 1.274980068206787 img loss 1.2426055669784546 img loss 1.2357994318008423 img loss 1.2301247119903564 img loss 1.2402673959732056 img loss 1.2325763702392578 img loss 1.23104727268219 img loss 1.202455997467041 img loss 1.2065439224243164 img loss 1.1904999017715454 img loss 1.2502301931381226 img loss 1.308110237121582 img loss 1.2830982208251953 img loss 1.2087229490280151 img loss 1.2026087045669556 img loss 1.1675212383270264 img loss 1.2097488641738892 img loss 1.3524260520935059 img loss 1.1802117824554443 img loss 1.2527374029159546 img loss 1.2150782346725464 img loss 1.2682138681411743 img loss 1.2839839458465576 img loss 1.1922378540039062 img loss 1.2339295148849487 img loss 1.3095698356628418 img loss 1.203481912612915 img loss 1.2848907709121704 img loss 1.2853301763534546 img loss 1.229892373085022 img loss 1.2887282371520996 img loss 1.2606819868087769 img loss 1.2616336345672607 img loss 1.2269845008850098 img loss 1.2259647846221924 img loss 1.2298080921173096 img loss 1.1726772785186768 img loss 1.2377369403839111 img loss 1.1982446908950806 img loss 1.2208077907562256 img loss 1.1744359731674194 img loss 1.30037260055542 img loss 1.227078914642334 img loss 1.2098610401153564 img loss 1.2173027992248535 img loss 1.2192292213439941 img loss 1.2206162214279175 img loss 1.2071433067321777 img loss 1.2165664434432983 img loss 1.1750277280807495 img loss 1.2128721475601196 img loss 1.3124103546142578 img loss 1.2210876941680908 img loss 1.2688288688659668 img loss 1.2385249137878418 img loss 1.2511708736419678 img loss 1.2619596719741821 img loss 1.2463319301605225 img loss 1.1955718994140625 img loss 1.3134865760803223 img loss 1.2097129821777344 img loss 1.198431372642517 img loss 1.2578003406524658 img loss 1.2504479885101318 img loss 1.1923717260360718 img loss 1.219419240951538 img loss 1.2321687936782837 img loss 1.224491000175476 img loss 1.1982043981552124 img loss 1.2388347387313843 img loss 1.2370069026947021 img loss 1.348305106163025 img loss 1.2354363203048706 img loss 1.2190852165222168 img loss 1.2348289489746094 img loss 1.2605818510055542 img loss 1.333685278892517 img loss 1.2428005933761597 img loss 1.2544796466827393 img loss 1.2607176303863525 img loss 1.2166740894317627 img loss 1.2107435464859009 img loss 1.206735372543335 img loss 1.2639474868774414 img loss 1.2553046941757202 img loss 1.230298638343811 img loss 1.2246941328048706 {'loss': 1.2379, 'grad_norm': 0.3967958688735962, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2362651824951172 img loss 1.1977531909942627 img loss 1.212394118309021 img loss 1.2343209981918335 img loss 1.2448681592941284 img loss 1.2513909339904785 img loss 1.2492215633392334 img loss 1.305741786956787 img loss 1.2351551055908203 img loss 1.238268494606018 img loss 1.3239848613739014 img loss 1.2565163373947144 img loss 1.32978093624115 img loss 1.240769863128662 img loss 1.313706874847412 img loss 1.2218527793884277 img loss 1.3122280836105347 img loss 1.3049153089523315 img loss 1.2620186805725098 img loss 1.2939229011535645 img loss 1.2695890665054321 img loss 1.2327306270599365 img loss 1.2235397100448608 img loss 1.2353980541229248 img loss 1.2585618495941162 img loss 1.2321140766143799 img loss 1.2047295570373535 img loss 1.2135846614837646 img loss 1.1845738887786865 img loss 1.2609074115753174 img loss 1.1786552667617798 img loss 1.238264560699463 img loss 1.2800610065460205 img loss 1.2720153331756592 img loss 1.2665480375289917 img loss 1.1816375255584717 img loss 1.2163212299346924 img loss 1.2937935590744019 img loss 1.2067631483078003 img loss 1.2338323593139648 img loss 1.2428333759307861 img loss 1.2146806716918945 img loss 1.2301791906356812 img loss 1.2270963191986084 img loss 1.2504643201828003 img loss 1.2251203060150146 img loss 1.1930872201919556 img loss 1.297787070274353 img loss 1.2602996826171875 img loss 1.224718689918518 img loss 1.1873798370361328 img loss 1.3026999235153198 img loss 1.2558093070983887 img loss 1.2261905670166016 img loss 1.198171615600586 img loss 1.2454605102539062 img loss 1.3030344247817993 img loss 1.2052580118179321 img loss 1.248559832572937 img loss 1.1815810203552246 img loss 1.2617273330688477 img loss 1.3089268207550049 img loss 1.2082716226577759 img loss 1.269312858581543 img loss 1.2108266353607178 img loss 1.219907522201538 img loss 1.2424142360687256 img loss 1.2011172771453857 img loss 1.239945650100708 img loss 1.2352042198181152 img loss 1.2014288902282715img loss 1.2489848136901855 img loss 1.203619360923767 img loss 1.2326805591583252 img loss 1.2923471927642822 img loss 1.1769559383392334 img loss 1.1981937885284424 img loss 1.2118072509765625 img loss 1.2272777557373047 img loss 1.2348754405975342 img loss 1.1818368434906006 img loss 1.2221622467041016 img loss 1.2205746173858643 img loss 1.1606554985046387 img loss 1.3124330043792725 img loss 1.2138094902038574 img loss 1.1848225593566895 img loss 1.2515190839767456 img loss 1.1900542974472046 img loss 1.1754627227783203 img loss 1.2158323526382446 img loss 1.2215609550476074 img loss 1.2353761196136475 img loss 1.1960372924804688 img loss 1.1546435356140137 img loss 1.2870234251022339 img loss 1.2059402465820312 img loss 1.2545719146728516 img loss 1.240705132484436 img loss 1.2603553533554077 img loss 1.1694366931915283 img loss 1.1363013982772827 img loss 1.1741063594818115 img loss 1.3154678344726562 img loss 1.2213854789733887 img loss 1.1866092681884766 img loss 1.2545384168624878 img loss 1.2279545068740845 img loss 1.2123069763183594 img loss 1.226202368736267 img loss 1.244260311126709 img loss 1.2135746479034424 img loss 1.3133504390716553 img loss 1.1972484588623047 img loss 1.2148010730743408 img loss 1.2159228324890137 img loss 1.2234747409820557 img loss 1.2306530475616455 img loss 1.1808295249938965 img loss 1.19609534740448 img loss 1.1899309158325195 img loss 1.2477717399597168 img loss 1.2609424591064453 img loss 1.246041178703308 img loss 1.163185715675354 img loss 1.2341785430908203 img loss 1.223738193511963 img loss 1.167459487915039 {'loss': 1.2326, 'grad_norm': 0.3215629458427429, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.312415361404419 img loss 1.2764511108398438 img loss 1.3081859350204468 img loss 1.2528787851333618 img loss 1.2410902976989746 img loss 1.2141928672790527 img loss 1.2690895795822144 img loss 1.305277705192566 img loss 1.2340348958969116 img loss 1.3691047430038452 img loss 1.2706326246261597 img loss 1.22963547706604 img loss 1.3579280376434326 img loss 1.3662161827087402 img loss 1.2518688440322876 img loss 1.3368321657180786 img loss 1.2852699756622314 img loss 1.1765987873077393 img loss 1.2987592220306396 img loss 1.3461161851882935 img loss 1.2421233654022217 img loss 1.2534269094467163 img loss 1.1637054681777954 img loss 1.2670516967773438 img loss 1.2152451276779175 img loss 1.3282428979873657 img loss 1.284175157546997 img loss 1.2653045654296875 img loss 1.3102970123291016 img loss 1.1755318641662598 img loss 1.2397348880767822 img loss 1.3324813842773438 img loss 1.2758034467697144 img loss 1.2276456356048584 img loss 1.2640427350997925 img loss 1.3064501285552979 img loss 1.400468349456787 img loss 1.3610514402389526 img loss 1.2929996252059937 img loss 1.2203177213668823 img loss 1.2922415733337402 img loss 1.324676275253296 img loss 1.3671451807022095 img loss 1.301104187965393 img loss 1.3218618631362915 img loss 1.253550410270691 img loss 1.2552735805511475 img loss 1.2458559274673462 img loss 1.2273528575897217 img loss 1.3541674613952637 img loss 1.2870872020721436 img loss 1.2913007736206055 img loss 1.2032406330108643 img loss 1.3221969604492188 img loss 1.3514467477798462 img loss 1.275176763534546 img loss 1.2447028160095215 img loss 1.1972635984420776 img loss 1.3191475868225098 img loss 1.3063888549804688 img loss 1.3193515539169312 img loss 1.3173049688339233 img loss 1.301735520362854 img loss 1.3586732149124146 img loss 1.2804409265518188 img loss 1.3235833644866943 img loss 1.3452149629592896 img loss 1.4819804430007935 img loss 1.2972115278244019 img loss 1.2313841581344604 img loss 1.2633692026138306 img loss 1.3677648305892944 img loss 1.3802504539489746 img loss 1.3153858184814453 img loss 1.2384188175201416 img loss 1.3166526556015015 img loss 1.315225601196289 img loss 1.2752583026885986 img loss 1.4078476428985596 img loss 1.3259286880493164 img loss 1.2143694162368774 img loss 1.2530169486999512 img loss 1.2782611846923828 img loss 1.239267110824585 img loss 1.3945109844207764 img loss 1.3753478527069092 img loss 1.3153938055038452 img loss 1.316659688949585 img loss 1.2178009748458862 img loss 1.3299320936203003 img loss 1.2731579542160034 img loss 1.2986783981323242 img loss 1.272794246673584 img loss 1.3843003511428833 img loss 1.3421448469161987 img loss 1.4654443264007568 img loss 1.3349725008010864 img loss 1.2278144359588623 img loss 1.2420005798339844 img loss 1.3459017276763916 img loss 1.5111371278762817 img loss 1.2818412780761719 img loss 1.2535512447357178 img loss 1.320900559425354 img loss 1.3072659969329834 img loss 1.2403302192687988 img loss 1.2774938344955444 img loss 1.290424108505249 img loss 1.2943332195281982 img loss 1.4392975568771362 img loss 1.2639350891113281 img loss 1.357602596282959 img loss 1.3216972351074219 img loss 1.1690629720687866 img loss 1.248369574546814 img loss 1.2937450408935547 img loss 1.245719313621521 img loss 1.236591100692749 img loss 1.2863625288009644 img loss 1.2776031494140625 img loss 1.2934608459472656 img loss 1.3022804260253906 img loss 1.247974157333374 img loss 1.3070709705352783 img loss 1.2891287803649902 img loss 1.3661538362503052 img loss 1.271850824356079 img loss 1.4040522575378418 {'loss': 1.2957, 'grad_norm': 0.2479076385498047, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2010234594345093 img loss 1.2726541757583618 img loss 1.191284418106079 img loss 1.2278355360031128 img loss 1.223534345626831 img loss 1.182330846786499 img loss 1.1773227453231812 img loss 1.1825261116027832 img loss 1.2103688716888428 img loss 1.195981740951538 img loss 1.2126014232635498 img loss 1.2175116539001465 img loss 1.2633072137832642 img loss 1.1986662149429321 img loss 1.2293214797973633 img loss 1.1916790008544922 img loss 1.187041997909546 img loss 1.2008072137832642 img loss 1.2214698791503906 img loss 1.1766279935836792 img loss 1.200469970703125 img loss 1.2491164207458496 img loss 1.1906346082687378 img loss 1.2226322889328003 img loss 1.1906954050064087 img loss 1.202510118484497 img loss 1.2028461694717407 img loss 1.2765560150146484 img loss 1.160347580909729 img loss 1.212099313735962 img loss 1.1752897500991821 img loss 1.1273823976516724 img loss 1.2018258571624756 img loss 1.2616099119186401 img loss 1.2354209423065186 img loss 1.1863784790039062 img loss 1.1767338514328003 img loss 1.2244346141815186 img loss 1.2984154224395752 img loss 1.2217737436294556 img loss 1.1599500179290771 img loss 1.186450481414795 img loss 1.1655939817428589 img loss 1.2391859292984009 img loss 1.2426508665084839 img loss 1.201287865638733 img loss 1.157405138015747 img loss 1.165757417678833 img loss 1.1935055255889893 img loss 1.2005877494812012 img loss 1.1768134832382202 img loss 1.2294409275054932 img loss 1.220131278038025 img loss 1.271238923072815 img loss 1.2050042152404785 img loss 1.2036861181259155 img loss 1.1748080253601074 img loss 1.1500012874603271 img loss 1.1763477325439453 img loss 1.1866728067398071 img loss 1.239989161491394 img loss 1.2469476461410522 img loss 1.2633041143417358 img loss 1.194661021232605 img loss 1.2175593376159668 img loss 1.1358318328857422 img loss 1.2326343059539795 img loss 1.233292818069458 img loss 1.1913856267929077 img loss 1.225696086883545 img loss 1.1716423034667969 img loss 1.1755510568618774 img loss 1.2033514976501465 img loss 1.2036573886871338 img loss 1.1727008819580078 img loss 1.229514479637146 img loss 1.1994861364364624 img loss 1.1921831369400024 img loss 1.2037490606307983 img loss 1.1830161809921265 img loss 1.1665562391281128 img loss 1.2147070169448853 img loss 1.2073293924331665 img loss 1.220926284790039 img loss 1.2281277179718018 img loss 1.18096923828125 img loss 1.2067008018493652 img loss 1.2513374090194702 img loss 1.1326375007629395 img loss 1.2403522729873657 img loss 1.2013328075408936 img loss 1.1885401010513306 img loss 1.214129090309143 img loss 1.1688265800476074 img loss 1.2737396955490112 img loss 1.2188098430633545 img loss 1.2176146507263184 img loss 1.1994435787200928 img loss 1.1915924549102783 img loss 1.228385329246521 img loss 1.228755235671997 img loss 1.1857296228408813 img loss 1.1666008234024048 img loss 1.2014527320861816 img loss 1.147742509841919 img loss 1.2289292812347412 img loss 1.240814208984375 img loss 1.1880724430084229 img loss 1.2401608228683472 img loss 1.1868245601654053 img loss 1.1774399280548096 img loss 1.1647857427597046 img loss 1.2177739143371582 img loss 1.215146780014038 img loss 1.2270574569702148 img loss 1.240256905555725 img loss 1.2299330234527588 img loss 1.1738104820251465 img loss 1.144256353378296 img loss 1.1380436420440674 img loss 1.1116150617599487 img loss 1.1696857213974 img loss 1.1459108591079712 img loss 1.1878938674926758 img loss 1.1991199254989624 img loss 1.1451454162597656 img loss 1.2423186302185059 img loss 1.2257736921310425 {'loss': 1.2026, 'grad_norm': 0.2650226056575775, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5276225805282593 img loss 1.4392447471618652 img loss 1.3509914875030518 img loss 1.3816531896591187 img loss 1.4041982889175415 img loss 1.4666751623153687 img loss 1.4628422260284424 img loss 1.312889814376831 img loss 1.5167078971862793 img loss 1.4754127264022827 img loss 1.4206173419952393 img loss 1.5758448839187622 img loss 1.3532909154891968 img loss 1.264988899230957 img loss 1.4629607200622559 img loss 1.3637605905532837 img loss 1.3482604026794434 img loss 1.5405118465423584 img loss 1.438591480255127 img loss 1.4270758628845215 img loss 1.3817131519317627 img loss 1.3771251440048218 img loss 1.367887020111084 img loss 1.5300129652023315 img loss 1.3776555061340332 img loss 1.4446016550064087 img loss 1.400113582611084 img loss 1.513495922088623 img loss 1.5441135168075562 img loss 1.350742220878601 img loss 1.5045828819274902 img loss 1.5577820539474487 img loss 1.4276548624038696 img loss 1.4387158155441284 img loss 1.422532558441162 img loss 1.4048012495040894 img loss 1.3797343969345093 img loss 1.3487545251846313 img loss 1.4383690357208252 img loss 1.5090333223342896 img loss 1.3387547731399536 img loss 1.627799391746521 img loss 1.4365417957305908 img loss 1.470023274421692 img loss 1.515011191368103 img loss 1.4600728750228882 img loss 1.4571293592453003 img loss 1.4296883344650269 img loss 1.5408161878585815 img loss 1.46268892288208 img loss 1.5359578132629395 img loss 1.5249863862991333 img loss 1.402250051498413 img loss 1.4914501905441284 img loss 1.4662775993347168 img loss 1.4188889265060425 img loss 1.4684522151947021 img loss 1.5366930961608887 img loss 1.69950270652771 img loss 1.2905902862548828 img loss 1.4172704219818115 img loss 1.395516276359558 img loss 1.4050008058547974 img loss 1.432315468788147 img loss 1.4642035961151123 img loss 1.4815952777862549 img loss 1.4637963771820068 img loss 1.3346081972122192 img loss 1.3684312105178833 img loss 1.3953700065612793 img loss 1.3588091135025024 img loss 1.4077576398849487 img loss 1.4725253582000732 img loss 1.3919103145599365 img loss 1.5429766178131104 img loss 1.483340859413147 img loss 1.4627236127853394 img loss 1.411133050918579 img loss 1.3858896493911743 img loss 1.381715178489685 img loss 1.4328614473342896 img loss 1.366214394569397 img loss 1.5502889156341553 img loss 1.503081202507019 img loss 1.5108505487442017 img loss 1.502512812614441 img loss 1.4316904544830322 img loss 1.4357621669769287 img loss 1.4524403810501099 img loss 1.4805331230163574 img loss 1.5263402462005615 img loss 1.4964932203292847 img loss 1.384604811668396 img loss 1.5336343050003052 img loss 1.417063593864441 img loss 1.4286859035491943 img loss 1.3092131614685059 img loss 1.4266161918640137 img loss 1.4710402488708496 img loss 1.4963784217834473 img loss 1.4218915700912476 img loss 1.3931517601013184 img loss 1.6145485639572144 img loss 1.3585350513458252 img loss 1.2881393432617188 img loss 1.4273924827575684 img loss 1.4463107585906982 img loss 1.6247202157974243 img loss 1.3801229000091553 img loss 1.4113420248031616 img loss 1.527911901473999 img loss 1.4169334173202515img loss 1.4254783391952515 img loss 1.4671227931976318 img loss 1.458064317703247 img loss 1.5572577714920044 img loss 1.5642460584640503 img loss 1.3207381963729858 img loss 1.619086742401123 img loss 1.5259746313095093 img loss 1.4542653560638428 img loss 1.519679307937622 img loss 1.3706352710723877 img loss 1.4164336919784546 img loss 1.5185705423355103 img loss 1.4563384056091309 img loss 1.4215279817581177 img loss 1.361681342124939 {'loss': 1.4469, 'grad_norm': 0.3110009431838989, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3071794509887695 img loss 1.3467289209365845 img loss 1.3500018119812012 img loss 1.331081748008728 img loss 1.3454803228378296 img loss 1.3899251222610474 img loss 1.3911898136138916 img loss 1.3177807331085205 img loss 1.2867424488067627 img loss 1.4295657873153687 img loss 1.3690911531448364 img loss 1.3477836847305298 img loss 1.425870656967163 img loss 1.4980088472366333 img loss 1.2904324531555176 img loss 1.2685105800628662 img loss 1.3528094291687012 img loss 1.3147519826889038 img loss 1.3005980253219604 img loss 1.398850917816162 img loss 1.3287591934204102 img loss 1.3789156675338745 img loss 1.3350292444229126 img loss 1.3674463033676147 img loss 1.2978824377059937 img loss 1.2706947326660156 img loss 1.341647744178772 img loss 1.3959993124008179 img loss 1.3289599418640137 img loss 1.2846143245697021 img loss 1.3203208446502686 img loss 1.3759735822677612 img loss 1.3709717988967896 img loss 1.4370540380477905 img loss 1.4111007452011108 img loss 1.2877615690231323 img loss 1.321258306503296 img loss 1.3348430395126343 img loss 1.3099086284637451 img loss 1.3677061796188354 img loss 1.3665070533752441 img loss 1.2901127338409424 img loss 1.41960608959198 img loss 1.3220382928848267 img loss 1.312748908996582 img loss 1.314581274986267 img loss 1.3473020792007446 img loss 1.3899978399276733 img loss 1.3895480632781982 img loss 1.3097457885742188 img loss 1.3304613828659058 img loss 1.2945654392242432 img loss 1.265435814857483 img loss 1.2888914346694946 img loss 1.2686951160430908 img loss 1.4053462743759155 img loss 1.4744821786880493 img loss 1.3551779985427856 img loss 1.3894139528274536 img loss 1.3659558296203613 img loss 1.3229470252990723 img loss 1.3255431652069092 img loss 1.3725765943527222 img loss 1.3715752363204956 img loss 1.3509093523025513 img loss 1.340844988822937 img loss 1.3449070453643799 img loss 1.4178544282913208 img loss 1.3202158212661743 img loss 1.298766851425171 img loss 1.374263882637024 img loss 1.3300859928131104 img loss 1.3094472885131836 img loss 1.4486548900604248 img loss 1.3442713022232056 img loss 1.4117885828018188 img loss 1.3356562852859497 img loss 1.3413320779800415 img loss 1.2916615009307861 img loss 1.2548763751983643 img loss 1.3744072914123535 img loss 1.3887253999710083 img loss 1.3009802103042603 img loss 1.3504716157913208 img loss 1.2583054304122925 img loss 1.3460532426834106 img loss 1.3729251623153687 img loss 1.4160096645355225 img loss 1.293033480644226 img loss 1.4519569873809814 img loss 1.3548249006271362 img loss 1.2914824485778809 img loss 1.3704251050949097 img loss 1.3963181972503662 img loss 1.3091888427734375 img loss 1.4455288648605347 img loss 1.4293477535247803 img loss 1.3646674156188965 img loss 1.2488999366760254 img loss 1.4457799196243286 img loss 1.365017056465149 img loss 1.3445953130722046 img loss 1.314307689666748 img loss 1.324495553970337 img loss 1.413655161857605 img loss 1.2443678379058838 img loss 1.224039912223816 img loss 1.3421727418899536 img loss 1.3690845966339111 img loss 1.254807710647583 img loss 1.2337404489517212 img loss 1.3228367567062378 img loss 1.2505617141723633 img loss 1.3102787733078003 img loss 1.3035186529159546 img loss 1.2251280546188354 img loss 1.3624749183654785 img loss 1.4250527620315552 img loss 1.4432529211044312 img loss 1.2147153615951538 img loss 1.4507873058319092 img loss 1.2989581823349 img loss 1.358775019645691 img loss 1.2621910572052002 img loss 1.3845967054367065 img loss 1.3119466304779053 img loss 1.3671857118606567 img loss 1.3150640726089478 {'loss': 1.3436, 'grad_norm': 0.4609273076057434, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2448837757110596 img loss 1.2666139602661133 img loss 1.2649765014648438 img loss 1.2199844121932983 img loss 1.2629450559616089 img loss 1.1772165298461914 img loss 1.2586760520935059 img loss 1.1593559980392456 img loss 1.2221672534942627 img loss 1.2217187881469727 img loss 1.1672077178955078 img loss 1.188413381576538 img loss 1.227123737335205 img loss 1.2336939573287964 img loss 1.2679023742675781 img loss 1.2484248876571655 img loss 1.1809983253479004 img loss 1.2327216863632202 img loss 1.2130157947540283 img loss 1.2029690742492676 img loss 1.2098928689956665 img loss 1.2505425214767456 img loss 1.2297495603561401 img loss 1.2766560316085815 img loss 1.2014468908309937 img loss 1.250099539756775 img loss 1.1932635307312012 img loss 1.2435894012451172 img loss 1.1645418405532837 img loss 1.2884464263916016 img loss 1.2371933460235596 img loss 1.2850964069366455 img loss 1.2183090448379517 img loss 1.242169737815857 img loss 1.1999419927597046 img loss 1.2033289670944214 img loss 1.2353246212005615 img loss 1.2020297050476074 img loss 1.2663722038269043 img loss 1.1297752857208252 img loss 1.2404183149337769 img loss 1.3050994873046875 img loss 1.2427597045898438 img loss 1.2354280948638916 img loss 1.1914829015731812 img loss 1.252758502960205 img loss 1.1731525659561157 img loss 1.2902593612670898 img loss 1.2541776895523071 img loss 1.2319831848144531 img loss 1.2631337642669678 img loss 1.2202143669128418 img loss 1.2438503503799438 img loss 1.195979118347168 img loss 1.2416387796401978 img loss 1.2242287397384644img loss 1.3021925687789917 img loss 1.2345939874649048 img loss 1.1967747211456299 img loss 1.2536187171936035 img loss 1.2791831493377686 img loss 1.203092336654663 img loss 1.2115614414215088 img loss 1.253002405166626 img loss 1.2094669342041016 img loss 1.2612824440002441 img loss 1.1975269317626953 img loss 1.2487373352050781 img loss 1.2253429889678955 img loss 1.186288833618164 img loss 1.2272478342056274 img loss 1.1955006122589111 img loss 1.21976637840271 img loss 1.2632116079330444 img loss 1.2028852701187134 img loss 1.2287635803222656 img loss 1.2578399181365967 img loss 1.2057139873504639 img loss 1.2915138006210327 img loss 1.2812860012054443 img loss 1.257155179977417 img loss 1.183812141418457 img loss 1.162118673324585 img loss 1.2201130390167236 img loss 1.231326937675476 img loss 1.1801996231079102 img loss 1.2495733499526978 img loss 1.2764875888824463 img loss 1.2049939632415771 img loss 1.193448543548584 img loss 1.2613661289215088 img loss 1.2240790128707886 img loss 1.2410510778427124 img loss 1.1621665954589844 img loss 1.2149256467819214 img loss 1.2132591009140015 img loss 1.2385834455490112 img loss 1.2571426630020142 img loss 1.241403579711914 img loss 1.2066820859909058 img loss 1.2003424167633057 img loss 1.238033652305603 img loss 1.1235630512237549 img loss 1.2603344917297363 img loss 1.2120729684829712 img loss 1.1992496252059937 img loss 1.2171552181243896 img loss 1.1980259418487549 img loss 1.189582347869873 img loss 1.1971355676651 img loss 1.2794761657714844 img loss 1.1977248191833496 img loss 1.17831552028656 img loss 1.1907352209091187 img loss 1.1755719184875488 img loss 1.2645947933197021 img loss 1.2544565200805664 img loss 1.2014954090118408 img loss 1.2832664251327515 img loss 1.2330015897750854 img loss 1.3148112297058105 img loss 1.232231616973877 img loss 1.245107650756836 img loss 1.18988835811615 img loss 1.1465669870376587 img loss 1.2393041849136353 img loss 1.2352805137634277 img loss 1.251194953918457 {'loss': 1.2266, 'grad_norm': 0.4151710867881775, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.231179118156433 img loss 1.2789220809936523 img loss 1.2407939434051514 img loss 1.268048644065857 img loss 1.2935718297958374 img loss 1.1966761350631714 img loss 1.337247610092163 img loss 1.2926881313323975 img loss 1.2288519144058228 img loss 1.289364218711853 img loss 1.2592182159423828 img loss 1.3311512470245361 img loss 1.3429330587387085 img loss 1.3077472448349img loss 1.1524014472961426 img loss 1.2657101154327393 img loss 1.2204707860946655 img loss 1.2742818593978882 img loss 1.2913105487823486 img loss 1.3037548065185547 img loss 1.174608588218689 img loss 1.2425121068954468 img loss 1.3323686122894287 img loss 1.3666785955429077 img loss 1.2176258563995361 img loss 1.2244279384613037 img loss 1.3213727474212646 img loss 1.2323660850524902 img loss 1.2828220129013062 img loss 1.2840266227722168 img loss 1.2788524627685547 img loss 1.2257705926895142 img loss 1.3069374561309814 img loss 1.3741881847381592 img loss 1.319928526878357 img loss 1.2972924709320068 img loss 1.2987350225448608 img loss 1.2836525440216064 img loss 1.2590985298156738 img loss 1.2922543287277222 img loss 1.2079811096191406 img loss 1.2236881256103516 img loss 1.27689790725708 img loss 1.181146502494812 img loss 1.2395824193954468 img loss 1.2063440084457397 img loss 1.3326008319854736 img loss 1.2015140056610107 img loss 1.2266464233398438 img loss 1.1999117136001587 img loss 1.316483974456787 img loss 1.2735518217086792 img loss 1.3437025547027588 img loss 1.3052794933319092 img loss 1.22549307346344 img loss 1.1964302062988281 img loss 1.2670798301696777 img loss 1.2517199516296387 img loss 1.2293858528137207 img loss 1.2392839193344116 img loss 1.3484824895858765 img loss 1.29497492313385 img loss 1.1794352531433105 img loss 1.3005530834197998 img loss 1.2997708320617676 img loss 1.278247356414795 img loss 1.2235091924667358 img loss 1.270085334777832 img loss 1.2531689405441284 img loss 1.1781375408172607 img loss 1.266675353050232 img loss 1.240249514579773 img loss 1.264606237411499 img loss 1.2075283527374268 img loss 1.263110876083374 img loss 1.2791175842285156 img loss 1.1792610883712769 img loss 1.2303612232208252 img loss 1.2038824558258057 img loss 1.2067517042160034 img loss 1.4011772871017456 img loss 1.4206866025924683 img loss 1.3765233755111694 img loss 1.312193751335144 img loss 1.2290947437286377 img loss 1.2171977758407593 img loss 1.2986040115356445 img loss 1.2551673650741577 img loss 1.1630505323410034 img loss 1.2868850231170654 img loss 1.3271602392196655 img loss 1.1780774593353271 img loss 1.2301573753356934 img loss 1.29044771194458 img loss 1.309367060661316 img loss 1.1985831260681152 img loss 1.2161307334899902 img loss 1.1904802322387695 img loss 1.2071146965026855 img loss 1.3133397102355957 img loss 1.281247854232788 img loss 1.173826813697815 img loss 1.2338371276855469 img loss 1.2724735736846924 img loss 1.2385554313659668 img loss 1.2650192975997925 img loss 1.309862494468689 img loss 1.2912211418151855 img loss 1.3263286352157593 img loss 1.2852863073349 img loss 1.257667899131775 img loss 1.2911489009857178 img loss 1.302158236503601 img loss 1.239410400390625 img loss 1.2605226039886475 img loss 1.1973415613174438 img loss 1.2961891889572144 img loss 1.2638038396835327 img loss 1.255395770072937 img loss 1.271755576133728 img loss 1.268246054649353 img loss 1.4071269035339355 img loss 1.2228190898895264 img loss 1.2719221115112305 img loss 1.233675479888916 img loss 1.232033610343933 img loss 1.2803854942321777 img loss 1.292933702468872 {'loss': 1.2647, 'grad_norm': 0.5556836724281311, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2670475244522095 img loss 1.218390941619873 img loss 1.3611986637115479 img loss 1.2647969722747803 img loss 1.4458935260772705 img loss 1.242006778717041 img loss 1.2573986053466797 img loss 1.3059507608413696 img loss 1.2922627925872803 img loss 1.3291778564453125 img loss 1.2764147520065308 img loss 1.570534586906433 img loss 1.2435216903686523 img loss 1.278613567352295 img loss 1.2742513418197632 img loss 1.351166009902954 img loss 1.319066047668457 img loss 1.255703330039978 img loss 1.395316481590271 img loss 1.2677751779556274 img loss 1.4442929029464722 img loss 1.2625501155853271 img loss 1.3023438453674316 img loss 1.424729824066162 img loss 1.4572350978851318 img loss 1.2244813442230225 img loss 1.272490382194519 img loss 1.364120602607727 img loss 1.3029371500015259 img loss 1.4166655540466309 img loss 1.2544000148773193 img loss 1.3111742734909058 img loss 1.3572808504104614 img loss 1.3149406909942627 img loss 1.2560137510299683 img loss 1.2879002094268799 img loss 1.3252737522125244 img loss 1.323263168334961 img loss 1.278092622756958 img loss 1.32209050655365 img loss 1.2080507278442383 img loss 1.298541784286499 img loss 1.301039695739746 img loss 1.2203577756881714 img loss 1.3071997165679932 img loss 1.2769012451171875 img loss 1.255384922027588 img loss 1.449541449546814 img loss 1.2895010709762573 img loss 1.3950942754745483 img loss 1.3831746578216553img loss 1.386968731880188 img loss 1.26861572265625 img loss 1.3242201805114746 img loss 1.303110122680664 img loss 1.3021483421325684 img loss 1.3582968711853027 img loss 1.3126003742218018 img loss 1.3717780113220215 img loss 1.261644721031189 img loss 1.3280094861984253 img loss 1.4087443351745605 img loss 1.3398449420928955 img loss 1.3137184381484985 img loss 1.1914372444152832 img loss 1.384488821029663 img loss 1.2925703525543213 img loss 1.2982017993927002 img loss 1.2691326141357422 img loss 1.2972242832183838 img loss 1.3018673658370972 img loss 1.3309133052825928 img loss 1.2574008703231812 img loss 1.3817613124847412 img loss 1.3946422338485718 img loss 1.3404994010925293 img loss 1.2922543287277222 img loss 1.303192377090454 img loss 1.4142228364944458 img loss 1.3597885370254517 img loss 1.3171294927597046 img loss 1.289441704750061 img loss 1.3541882038116455 img loss 1.234249472618103 img loss 1.3713868856430054 img loss 1.3147438764572144 img loss 1.2173190116882324 img loss 1.357732892036438 img loss 1.3662495613098145 img loss 1.2194236516952515 img loss 1.298661708831787 img loss 1.2494724988937378 img loss 1.3616807460784912 img loss 1.2667735815048218 img loss 1.289709448814392 img loss 1.29764723777771 img loss 1.3596192598342896 img loss 1.3089665174484253 img loss 1.2630947828292847 img loss 1.2590901851654053 img loss 1.3800997734069824 img loss 1.371837854385376 img loss 1.2815998792648315 img loss 1.36607027053833 img loss 1.3027153015136719 img loss 1.3933634757995605 img loss 1.2884094715118408 img loss 1.3204550743103027 img loss 1.3403594493865967 img loss 1.306777834892273 img loss 1.2964887619018555 img loss 1.2347986698150635 img loss 1.4548003673553467 img loss 1.3515374660491943 img loss 1.2538284063339233 img loss 1.4140878915786743 img loss 1.3344353437423706 img loss 1.4639099836349487 img loss 1.4166629314422607 img loss 1.2788701057434082 img loss 1.3355669975280762 img loss 1.2845289707183838 img loss 1.3108471632003784 img loss 1.3427691459655762 img loss 1.3616255521774292 img loss 1.3907040357589722 img loss 1.3788163661956787 img loss 1.320166826248169 {'loss': 1.3208, 'grad_norm': 0.3120698034763336, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2417999505996704 img loss 1.2235130071640015 img loss 1.2823481559753418 img loss 1.2604498863220215 img loss 1.20730459690094 img loss 1.2293603420257568 img loss 1.2737915515899658 img loss 1.2147605419158936 img loss 1.3218425512313843 img loss 1.2888128757476807 img loss 1.1931166648864746 img loss 1.2380268573760986 img loss 1.2236384153366089 img loss 1.226912498474121 img loss 1.2177996635437012 img loss 1.289772391319275 img loss 1.2985543012619019 img loss 1.2435221672058105 img loss 1.2534630298614502 img loss 1.186572790145874 img loss 1.2874736785888672 img loss 1.3256947994232178 img loss 1.3424289226531982 img loss 1.2923588752746582 img loss 1.3194128274917603 img loss 1.2044044733047485 img loss 1.2537407875061035 img loss 1.344226360321045 img loss 1.2446857690811157 img loss 1.3476107120513916 img loss 1.1984189748764038 img loss 1.238048791885376 img loss 1.2892723083496094 img loss 1.2458016872406006 img loss 1.2593544721603394 img loss 1.2874771356582642 img loss 1.309933066368103 img loss 1.2879562377929688 img loss 1.2236263751983643 img loss 1.212519645690918 img loss 1.183492660522461 img loss 1.2108410596847534 img loss 1.159510850906372 img loss 1.1753251552581787 img loss 1.2286615371704102 img loss 1.1669425964355469 img loss 1.2445387840270996 img loss 1.343105435371399 img loss 1.2025476694107056 img loss 1.2081059217453003 img loss 1.2323498725891113 img loss 1.275002360343933 img loss 1.273223638534546 img loss 1.15934419631958 img loss 1.2816375494003296 img loss 1.2720186710357666 img loss 1.2585902214050293 img loss 1.31894052028656 img loss 1.3203341960906982 img loss 1.2050466537475586 img loss 1.2861353158950806 img loss 1.2280505895614624 img loss 1.2348726987838745 img loss 1.2544729709625244 img loss 1.197140097618103 img loss 1.3800228834152222 img loss 1.1447550058364868 img loss 1.301604151725769 img loss 1.2494558095932007 img loss 1.2020931243896484 img loss 1.3039425611495972 img loss 1.138924479484558 img loss 1.2458913326263428 img loss 1.2226462364196777 img loss 1.3046822547912598 img loss 1.2322571277618408 img loss 1.2675423622131348 img loss 1.3196152448654175 img loss 1.2388701438903809 img loss 1.2070412635803223 img loss 1.2702282667160034 img loss 1.213323950767517 img loss 1.1985533237457275 img loss 1.2044962644577026 img loss 1.2037067413330078 img loss 1.259237289428711 img loss 1.2246425151824951 img loss 1.2760074138641357 img loss 1.3646608591079712 img loss 1.2276930809020996 img loss 1.2491257190704346 img loss 1.207906723022461 img loss 1.271341323852539 img loss 1.1517503261566162 img loss 1.249138355255127 img loss 1.28964364528656 img loss 1.3417065143585205 img loss 1.2144798040390015 img loss 1.3128433227539062 img loss 1.2676053047180176 img loss 1.2046598196029663 img loss 1.2684580087661743 img loss 1.3252906799316406 img loss 1.291318655014038 img loss 1.2674615383148193 img loss 1.2769756317138672 img loss 1.1961877346038818 img loss 1.2748830318450928 img loss 1.2344579696655273 img loss 1.2593441009521484 img loss 1.2900233268737793 img loss 1.2692819833755493 img loss 1.321215271949768 img loss 1.259700059890747 img loss 1.2805418968200684 img loss 1.2701737880706787 img loss 1.2788562774658203 img loss 1.190420150756836 img loss 1.2255609035491943 img loss 1.2568209171295166 img loss 1.3367342948913574 img loss 1.306069254875183 img loss 1.30283522605896 img loss 1.2244691848754883 img loss 1.264037847518921 img loss 1.285896897315979 img loss 1.2872288227081299 img loss 1.3404868841171265 {'loss': 1.2554, 'grad_norm': 0.4407995045185089, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2549022436141968 img loss 1.24770188331604 img loss 1.2380205392837524 img loss 1.282679796218872 img loss 1.2866731882095337 img loss 1.1414581537246704 img loss 1.1982342004776 img loss 1.2512234449386597 img loss 1.2209391593933105 img loss 1.2025082111358643 img loss 1.3069418668746948 img loss 1.302943229675293 img loss 1.2113187313079834 img loss 1.233953833580017 img loss 1.2333345413208008 img loss 1.2441996335983276 img loss 1.2055517435073853 img loss 1.2229422330856323 img loss 1.3160680532455444 img loss 1.2566419839859009 img loss 1.2616432905197144 img loss 1.2031444311141968 img loss 1.1825430393218994 img loss 1.2129864692687988 img loss 1.2041587829589844 img loss 1.2281920909881592 img loss 1.24174964427948 img loss 1.2219511270523071 img loss 1.1980189085006714 img loss 1.2108707427978516 img loss 1.1907802820205688 img loss 1.2797846794128418 img loss 1.2148312330245972 img loss 1.215041995048523 img loss 1.1942373514175415 img loss 1.2064052820205688 img loss 1.16668701171875 img loss 1.2234010696411133 img loss 1.3423808813095093 img loss 1.1936981678009033 img loss 1.1880486011505127 img loss 1.1796648502349854 img loss 1.1804612874984741 img loss 1.199148178100586 img loss 1.177672028541565 img loss 1.2265491485595703 img loss 1.1537015438079834 img loss 1.3386728763580322 img loss 1.2129018306732178 img loss 1.21623957157135 img loss 1.2803658246994019 img loss 1.2328238487243652 img loss 1.2718031406402588 img loss 1.1809946298599243 img loss 1.1789642572402954 img loss 1.2329853773117065 img loss 1.2159866094589233 img loss 1.2953304052352905 img loss 1.1692016124725342 img loss 1.2867214679718018 img loss 1.2114994525909424 img loss 1.3129541873931885 img loss 1.2325314283370972 img loss 1.2127279043197632 img loss 1.2016419172286987 img loss 1.2257896661758423 img loss 1.2418818473815918 img loss 1.2399965524673462 img loss 1.2150026559829712 img loss 1.1965579986572266 img loss 1.19375741481781 img loss 1.2068132162094116 img loss 1.1751952171325684 img loss 1.25681471824646 img loss 1.1922900676727295 img loss 1.2600321769714355 img loss 1.2336488962173462 img loss 1.2285794019699097 img loss 1.2258495092391968 img loss 1.228597640991211 img loss 1.1985046863555908 img loss 1.2257518768310547 img loss 1.2324860095977783 img loss 1.1645053625106812 img loss 1.1743084192276 img loss 1.1846325397491455 img loss 1.234006404876709 img loss 1.2211824655532837 img loss 1.269160509109497 img loss 1.2548012733459473img loss 1.287453055381775 img loss 1.2304189205169678 img loss 1.2545418739318848 img loss 1.2077929973602295 img loss 1.3260440826416016 img loss 1.247512698173523 img loss 1.2563518285751343 img loss 1.2264693975448608 img loss 1.208640456199646 img loss 1.2444387674331665 img loss 1.2014310359954834 img loss 1.2109307050704956 img loss 1.1865653991699219 img loss 1.2110934257507324 img loss 1.2269471883773804 img loss 1.2589515447616577 img loss 1.1853957176208496 img loss 1.3018919229507446 img loss 1.2515170574188232 img loss 1.210580587387085 img loss 1.2031831741333008 img loss 1.169680118560791 img loss 1.2741855382919312 img loss 1.2483456134796143 img loss 1.206001877784729 img loss 1.2365007400512695 img loss 1.237465739250183 img loss 1.2269368171691895 img loss 1.2546672821044922 img loss 1.2210686206817627 img loss 1.1897276639938354 img loss 1.2122161388397217 img loss 1.291453242301941 img loss 1.2363516092300415 img loss 1.2066179513931274 img loss 1.2234896421432495 img loss 1.2280805110931396 img loss 1.229867935180664 {'loss': 1.2277, 'grad_norm': 0.46046704053878784, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3736430406570435 img loss 1.3047808408737183 img loss 1.365323781967163 img loss 1.3801605701446533 img loss 1.2990442514419556 img loss 1.3928090333938599 img loss 1.2218226194381714 img loss 1.3489524126052856 img loss 1.3273921012878418 img loss 1.2511237859725952 img loss 1.3447133302688599 img loss 1.3684242963790894 img loss 1.3536347150802612 img loss 1.3798469305038452 img loss 1.2087013721466064 img loss 1.336902379989624 img loss 1.2271755933761597 img loss 1.2743421792984009 img loss 1.29750657081604 img loss 1.304013729095459 img loss 1.294559359550476 img loss 1.3285642862319946 img loss 1.2766129970550537img loss 1.3148152828216553 img loss 1.3483250141143799 img loss 1.255184531211853 img loss 1.2716537714004517 img loss 1.2879737615585327 img loss 1.2786067724227905 img loss 1.3093070983886719 img loss 1.3474012613296509 img loss 1.264656662940979 img loss 1.2712904214859009 img loss 1.4238120317459106 img loss 1.3849314451217651 img loss 1.2717481851577759 img loss 1.439043402671814 img loss 1.3687790632247925 img loss 1.354535460472107 img loss 1.3344389200210571 img loss 1.3692785501480103 img loss 1.33965003490448 img loss 1.335139513015747 img loss 1.3171727657318115img loss 1.4595500230789185 img loss 1.2765979766845703 img loss 1.2511507272720337 img loss 1.2629259824752808 img loss 1.264473795890808 img loss 1.4230540990829468 img loss 1.36057448387146 img loss 1.4055601358413696 img loss 1.2934792041778564 img loss 1.3182029724121094 img loss 1.2845592498779297 img loss 1.2404720783233643 img loss 1.3162517547607422 img loss 1.4977717399597168 img loss 1.287658929824829 img loss 1.2366164922714233 img loss 1.3033719062805176 img loss 1.341996669769287 img loss 1.2123994827270508 img loss 1.371415376663208 img loss 1.3571836948394775 img loss 1.2880706787109375 img loss 1.3358670473098755 img loss 1.2558401823043823 img loss 1.2611234188079834 img loss 1.321529746055603 img loss 1.2910065650939941 img loss 1.3874069452285767 img loss 1.3450511693954468 img loss 1.4923936128616333 img loss 1.374070405960083 img loss 1.2960718870162964 img loss 1.24934720993042 img loss 1.2603216171264648 img loss 1.3143174648284912 img loss 1.2031134366989136 img loss 1.2963895797729492 img loss 1.3450617790222168 img loss 1.3027654886245728 img loss 1.32878577709198 img loss 1.3220993280410767 img loss 1.2959249019622803 img loss 1.3375096321105957 img loss 1.3819737434387207 img loss 1.40437650680542 img loss 1.3216907978057861 img loss 1.4816582202911377 img loss 1.3029639720916748 img loss 1.3280601501464844 img loss 1.3517504930496216 img loss 1.294380784034729 img loss 1.4179199934005737 img loss 1.3957470655441284 img loss 1.2701051235198975 img loss 1.3066211938858032 img loss 1.3094106912612915 img loss 1.4879499673843384 img loss 1.4137831926345825 img loss 1.3580597639083862 img loss 1.2884976863861084 img loss 1.4213117361068726 img loss 1.3813997507095337 img loss 1.366789698600769 img loss 1.2429938316345215 img loss 1.3008434772491455 img loss 1.262049913406372 img loss 1.2883057594299316 img loss 1.3758502006530762 img loss 1.441714882850647 img loss 1.2970807552337646 img loss 1.3785889148712158 img loss 1.2631425857543945 img loss 1.418280839920044 img loss 1.2226548194885254 img loss 1.419763445854187 img loss 1.2954156398773193 img loss 1.3713641166687012 img loss 1.3002891540527344 img loss 1.3599464893341064 img loss 1.2781665325164795 img loss 1.3225884437561035 img loss 1.3587539196014404 img loss 1.3655028343200684 img loss 1.371412754058838 {'loss': 1.3284, 'grad_norm': 0.2651066184043884, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2280868291854858 img loss 1.2151587009429932 img loss 1.2658647298812866 img loss 1.24867582321167 img loss 1.197749137878418 img loss 1.2486755847930908 img loss 1.2389272451400757 img loss 1.2303061485290527 img loss 1.190020203590393 img loss 1.178073525428772 img loss 1.2114207744598389 img loss 1.2600828409194946 img loss 1.193084478378296 img loss 1.262709140777588 img loss 1.19438898563385 img loss 1.195380687713623 img loss 1.3137574195861816 img loss 1.291473388671875 img loss 1.21822988986969 img loss 1.269243836402893 img loss 1.2773213386535645 img loss 1.2571996450424194 img loss 1.2485145330429077 img loss 1.217431902885437 img loss 1.2535228729248047 img loss 1.2816646099090576 img loss 1.2636125087738037 img loss 1.2680182456970215 img loss 1.2238819599151611 img loss 1.3022432327270508 img loss 1.3413825035095215 img loss 1.2565670013427734 img loss 1.201258897781372 img loss 1.224618911743164 img loss 1.2681686878204346 img loss 1.2603201866149902 img loss 1.2907462120056152 img loss 1.2408760786056519 img loss 1.2163140773773193 img loss 1.2771679162979126 img loss 1.2294644117355347 img loss 1.1957978010177612 img loss 1.2406961917877197 img loss 1.2464679479599 img loss 1.3010437488555908 img loss 1.2205402851104736 img loss 1.2591581344604492 img loss 1.2264450788497925 img loss 1.202340006828308 img loss 1.1916214227676392 img loss 1.2539376020431519 img loss 1.2527755498886108 img loss 1.2063063383102417 img loss 1.3047478199005127 img loss 1.1558775901794434 img loss 1.3184878826141357 img loss 1.271051049232483 img loss 1.238757848739624 img loss 1.184197187423706 img loss 1.2810261249542236 img loss 1.160379409790039 img loss 1.2269444465637207 img loss 1.228441596031189 img loss 1.3386939764022827 img loss 1.2582488059997559 img loss 1.2380039691925049 img loss 1.2274055480957031 img loss 1.2073067426681519 img loss 1.2221449613571167 img loss 1.2001187801361084 img loss 1.2365829944610596 img loss 1.1996010541915894 img loss 1.2841198444366455 img loss 1.1980252265930176 img loss 1.2067453861236572 img loss 1.294820785522461 img loss 1.1900901794433594 img loss 1.3736742734909058 img loss 1.1906585693359375 img loss 1.201330542564392 img loss 1.25650155544281 img loss 1.186716079711914 img loss 1.2549338340759277 img loss 1.225657343864441 img loss 1.2095228433609009 img loss 1.2254565954208374 img loss 1.182440996170044 img loss 1.2000854015350342 img loss 1.2749335765838623 img loss 1.2602124214172363 img loss 1.2242238521575928 img loss 1.2554771900177002 img loss 1.2355406284332275 img loss 1.2032021284103394 img loss 1.2068614959716797 img loss 1.2778751850128174 img loss 1.1791625022888184 img loss 1.1913095712661743 img loss 1.2716283798217773 img loss 1.193464756011963 img loss 1.2384662628173828 img loss 1.1960312128067017 img loss 1.2266172170639038 img loss 1.3199470043182373 img loss 1.2346696853637695 img loss 1.2882026433944702 img loss 1.3048442602157593 img loss 1.2011305093765259 img loss 1.2524325847625732 img loss 1.2046778202056885 img loss 1.2176644802093506 img loss 1.226616621017456 img loss 1.2621783018112183 img loss 1.2232086658477783 img loss 1.2217075824737549 img loss 1.1902376413345337 img loss 1.2423911094665527 img loss 1.3530100584030151 img loss 1.2683466672897339 img loss 1.2428349256515503 img loss 1.3195850849151611 img loss 1.2529712915420532 img loss 1.2617602348327637 img loss 1.1918294429779053 img loss 1.2491793632507324 img loss 1.2489651441574097 img loss 1.2269172668457031 img loss 1.3074142932891846 {'loss': 1.2404, 'grad_norm': 0.33127477765083313, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2907034158706665 img loss 1.1845126152038574 img loss 1.1856281757354736 img loss 1.1963242292404175 img loss 1.2504935264587402 img loss 1.1486996412277222 img loss 1.1956734657287598 img loss 1.2186503410339355 img loss 1.1795151233673096 img loss 1.161566138267517 img loss 1.265686273574829 img loss 1.2164939641952515 img loss 1.1568505764007568 img loss 1.2132065296173096 img loss 1.220088243484497 img loss 1.1834276914596558 img loss 1.1908003091812134 img loss 1.1698522567749023 img loss 1.2177551984786987 img loss 1.1836841106414795 img loss 1.159593939781189 img loss 1.1320710182189941 img loss 1.1761893033981323 img loss 1.2349942922592163 img loss 1.1949589252471924 img loss 1.169238567352295 img loss 1.1556403636932373 img loss 1.3529436588287354 img loss 1.1785333156585693 img loss 1.2364277839660645 img loss 1.204598307609558 img loss 1.2563385963439941 img loss 1.2413125038146973 img loss 1.271294355392456 img loss 1.2261641025543213 img loss 1.1659693717956543 img loss 1.2269538640975952 img loss 1.2061275243759155 img loss 1.2502050399780273 img loss 1.2753597497940063 img loss 1.2906596660614014 img loss 1.1882520914077759 img loss 1.2906901836395264 img loss 1.1650968790054321 img loss 1.189599871635437 img loss 1.2587324380874634 img loss 1.2021070718765259 img loss 1.2114126682281494 img loss 1.198119044303894 img loss 1.1490989923477173 img loss 1.2468726634979248 img loss 1.2156522274017334 img loss 1.2261475324630737 img loss 1.2141090631484985 img loss 1.129641056060791 img loss 1.2353997230529785 img loss 1.2647284269332886 img loss 1.1983404159545898 img loss 1.2161717414855957 img loss 1.238476276397705 img loss 1.1606969833374023 img loss 1.2227399349212646 img loss 1.1808770895004272 img loss 1.2828991413116455 img loss 1.1352791786193848 img loss 1.2335164546966553 img loss 1.2276962995529175 img loss 1.1543315649032593 img loss 1.23447585105896 img loss 1.1827024221420288 img loss 1.1965641975402832 img loss 1.2425464391708374 img loss 1.2339646816253662 img loss 1.217111587524414 img loss 1.1877484321594238 img loss 1.16436767578125 img loss 1.213977336883545 img loss 1.217376947402954 img loss 1.2185500860214233 img loss 1.208383321762085 img loss 1.2759425640106201 img loss 1.2317066192626953 img loss 1.2726331949234009 img loss 1.1344354152679443 img loss 1.1645851135253906 img loss 1.152655839920044 img loss 1.2069319486618042 img loss 1.148100733757019 img loss 1.262648105621338 img loss 1.1786551475524902 img loss 1.2604860067367554 img loss 1.2174042463302612 img loss 1.20623779296875 img loss 1.211896538734436 img loss 1.187177300453186 img loss 1.2256712913513184 img loss 1.2324081659317017 img loss 1.201685905456543 img loss 1.16384756565094 img loss 1.2121331691741943 img loss 1.2053859233856201 img loss 1.316489815711975 img loss 1.206438422203064 img loss 1.2105430364608765 img loss 1.2261757850646973 img loss 1.2451213598251343 img loss 1.2170904874801636 img loss 1.2453782558441162 img loss 1.1761374473571777 img loss 1.2437645196914673 img loss 1.1940288543701172 img loss 1.1667536497116089 img loss 1.1671327352523804 img loss 1.207565188407898 img loss 1.1781233549118042 img loss 1.1853926181793213 img loss 1.2102882862091064 img loss 1.1936964988708496 img loss 1.2082403898239136 img loss 1.1992712020874023 img loss 1.183600664138794 img loss 1.2863476276397705 img loss 1.2508749961853027 img loss 1.1126880645751953 img loss 1.2085232734680176 img loss 1.1565769910812378 img loss 1.352842092514038 img loss 1.239539623260498 {'loss': 1.2104, 'grad_norm': 0.4465583860874176, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.191233515739441 img loss 1.2754675149917603 img loss 1.2850370407104492 img loss 1.2710005044937134 img loss 1.2086100578308105 img loss 1.4500237703323364 img loss 1.3128609657287598 img loss 1.2458436489105225 img loss 1.2617807388305664 img loss 1.2879202365875244 img loss 1.107499599456787 img loss 1.136061429977417 img loss 1.2195876836776733 img loss 1.1420098543167114 img loss 1.330210566520691 img loss 1.3226916790008545 img loss 1.2290693521499634 img loss 1.2295165061950684 img loss 1.1445271968841553 img loss 1.2678364515304565 img loss 1.258979320526123 img loss 1.2631404399871826 img loss 1.2291663885116577 img loss 1.2691385746002197 img loss 1.191937804222107 img loss 1.1652170419692993 img loss 1.1352065801620483 img loss 1.152493953704834 img loss 1.310660719871521 img loss 1.2408567667007446 img loss 1.2410513162612915 img loss 1.1841864585876465 img loss 1.2693767547607422 img loss 1.270978569984436 img loss 1.2283133268356323 img loss 1.3130325078964233 img loss 1.3184309005737305 img loss 1.1755707263946533 img loss 1.2279391288757324 img loss 1.2631487846374512 img loss 1.2273098230361938 img loss 1.2194530963897705 img loss 1.2408298254013062 img loss 1.2805718183517456 img loss 1.2367178201675415 img loss 1.2778587341308594 img loss 1.2752997875213623 img loss 1.335028886795044 img loss 1.2166944742202759 img loss 1.2691549062728882 img loss 1.2511413097381592 img loss 1.1538002490997314 img loss 1.2362034320831299 img loss 1.2086256742477417 img loss 1.369674801826477 img loss 1.2839306592941284 img loss 1.2751258611679077 img loss 1.1948025226593018 img loss 1.2126805782318115 img loss 1.3601287603378296 img loss 1.209930419921875 img loss 1.207556962966919 img loss 1.2197195291519165 img loss 1.1849663257598877 img loss 1.2361795902252197 img loss 1.4036004543304443 img loss 1.3357408046722412 img loss 1.2472823858261108 img loss 1.1199809312820435 img loss 1.2629978656768799 img loss 1.2289148569107056 img loss 1.2925465106964111 img loss 1.3065861463546753 img loss 1.2130451202392578 img loss 1.2646174430847168 img loss 1.1406030654907227 img loss 1.2505435943603516 img loss 1.23017156124115 img loss 1.2415809631347656 img loss 1.3015797138214111 img loss 1.3633276224136353 img loss 1.1947134733200073 img loss 1.2319962978363037 img loss 1.3185144662857056 img loss 1.2054591178894043 img loss 1.3508036136627197 img loss 1.2243314981460571 img loss 1.2353789806365967 img loss 1.2810394763946533 img loss 1.2243045568466187 img loss 1.3871883153915405 img loss 1.1282159090042114 img loss 1.2603386640548706 img loss 1.2149715423583984 img loss 1.2997347116470337 img loss 1.255051851272583 img loss 1.245713710784912 img loss 1.2998249530792236 img loss 1.1819660663604736 img loss 1.251728892326355 img loss 1.1626830101013184 img loss 1.1915702819824219 img loss 1.2205383777618408 img loss 1.3238797187805176 img loss 1.212117075920105 img loss 1.2454614639282227 img loss 1.2480177879333496 img loss 1.2333428859710693 img loss 1.2513606548309326 img loss 1.2791073322296143 img loss 1.2985790967941284 img loss 1.3644001483917236 img loss 1.2758917808532715 img loss 1.2168205976486206 img loss 1.1816717386245728 img loss 1.149391770362854 img loss 1.1893939971923828 img loss 1.2624437808990479 img loss 1.292447805404663 img loss 1.2367709875106812 img loss 1.2374759912490845 img loss 1.2145756483078003 img loss 1.1876643896102905 img loss 1.2377489805221558 img loss 1.2726588249206543 img loss 1.1820955276489258 img loss 1.2483221292495728 img loss 1.2565453052520752 {'loss': 1.2459, 'grad_norm': 0.21280989050865173, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5392447710037231 img loss 1.6939587593078613 img loss 1.5617111921310425 img loss 1.5666518211364746 img loss 1.4961018562316895 img loss 1.7325540781021118 img loss 1.5063660144805908 img loss 1.6426571607589722 img loss 1.527259349822998 img loss 1.5785603523254395 img loss 1.5910629034042358 img loss 1.5971773862838745 img loss 1.7096623182296753 img loss 1.4986404180526733 img loss 1.5731950998306274 img loss 1.6137200593948364 img loss 1.5212537050247192 img loss 1.5628691911697388 img loss 1.6642241477966309 img loss 1.5467528104782104 img loss 1.581455111503601 img loss 1.5845381021499634 img loss 1.5824023485183716 img loss 1.5495823621749878 img loss 1.5452812910079956 img loss 1.5217417478561401 img loss 1.4802510738372803 img loss 1.5406042337417603 img loss 1.6510014533996582 img loss 1.5089045763015747 img loss 1.4332736730575562 img loss 1.5759819746017456 img loss 1.62965989112854 img loss 1.514593243598938 img loss 1.525306224822998 img loss 1.6925801038742065 img loss 1.6219727993011475 img loss 1.650976300239563 img loss 1.635315179824829 img loss 1.6453152894973755 img loss 1.5402638912200928 img loss 1.686439037322998 img loss 1.5869630575180054 img loss 1.5800195932388306 img loss 1.5102237462997437 img loss 1.5407296419143677 img loss 1.686917781829834 img loss 1.577074408531189 img loss 1.5580267906188965 img loss 1.5802743434906006 img loss 1.5577929019927979 img loss 1.6316560506820679 img loss 1.7939889430999756 img loss 1.7192386388778687 img loss 1.4691663980484009 img loss 1.6921054124832153 img loss 1.5542120933532715 img loss 1.4850810766220093img loss 1.70139479637146 img loss 1.5929617881774902 img loss 1.5481979846954346 img loss 1.5662795305252075 img loss 1.4708012342453003 img loss 1.6234573125839233 img loss 1.717923641204834 img loss 1.500900387763977 img loss 1.5731171369552612 img loss 1.6245313882827759 img loss 1.6629587411880493 img loss 1.6005370616912842 img loss 1.5993160009384155 img loss 1.5419052839279175 img loss 1.5255266427993774 img loss 1.384263277053833 img loss 1.6416345834732056 img loss 1.4984915256500244 img loss 1.4240305423736572 img loss 1.485199213027954 img loss 1.5401380062103271 img loss 1.6188727617263794 img loss 1.599676489830017 img loss 1.5672528743743896 img loss 1.48747718334198 img loss 1.4854159355163574 img loss 1.6146985292434692 img loss 1.6415690183639526 img loss 1.6304495334625244 img loss 1.630204439163208 img loss 1.5603044033050537 img loss 1.5873942375183105 img loss 1.760170578956604 img loss 1.5327602624893188 img loss 1.5963753461837769 img loss 1.6716692447662354 img loss 1.613290548324585 img loss 1.5890427827835083 img loss 1.7085778713226318 img loss 1.5239827632904053 img loss 1.5312039852142334 img loss 1.5801490545272827 img loss 1.507218837738037 img loss 1.6323550939559937 img loss 1.793105125427246 img loss 1.6262047290802002 img loss 1.7387475967407227 img loss 1.641904354095459 img loss 1.4273511171340942 img loss 1.5817598104476929 img loss 1.6478416919708252 img loss 1.728943109512329 img loss 1.562699556350708 img loss 1.6021395921707153 img loss 1.6402297019958496 img loss 1.523967981338501 img loss 1.5350233316421509 img loss 1.5627033710479736 img loss 1.569306492805481 img loss 1.5137180089950562 img loss 1.4945242404937744 img loss 1.6745747327804565 img loss 1.5186989307403564 img loss 1.6589189767837524 img loss 1.5921645164489746 img loss 1.6629289388656616 img loss 1.4567344188690186 img loss 1.5638821125030518 img loss 1.5236324071884155 img loss 1.512208104133606 {'loss': 1.5843, 'grad_norm': 0.399964839220047, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2584651708602905 img loss 1.2918974161148071 img loss 1.2699713706970215 img loss 1.1932035684585571 img loss 1.3237543106079102 img loss 1.2658727169036865 img loss 1.2921637296676636 img loss 1.2126572132110596 img loss 1.2187097072601318 img loss 1.1872870922088623 img loss 1.3788657188415527 img loss 1.1617944240570068 img loss 1.3971177339553833 img loss 1.1904798746109009 img loss 1.2812089920043945 img loss 1.2125158309936523 img loss 1.299280047416687 img loss 1.2771947383880615 img loss 1.1161569356918335 img loss 1.2405929565429688 img loss 1.2494789361953735 img loss 1.231744408607483 img loss 1.195027232170105 img loss 1.19907808303833 img loss 1.185423493385315 img loss 1.2778217792510986 img loss 1.232419729232788 img loss 1.2979583740234375 img loss 1.2696497440338135 img loss 1.2086533308029175 img loss 1.245532512664795 img loss 1.1733967065811157 img loss 1.2313207387924194 img loss 1.2640023231506348 img loss 1.3437345027923584 img loss 1.2209690809249878 img loss 1.2631752490997314 img loss 1.2738778591156006 img loss 1.31268310546875 img loss 1.2643113136291504 img loss 1.2815098762512207 img loss 1.202561378479004 img loss 1.2324087619781494 img loss 1.252661943435669 img loss 1.3106104135513306 img loss 1.2480406761169434 img loss 1.2788113355636597 img loss 1.2035061120986938 img loss 1.3163686990737915 img loss 1.2455564737319946 img loss 1.222072958946228 img loss 1.2374873161315918 img loss 1.1773275136947632 img loss 1.2350916862487793 img loss 1.2238718271255493 img loss 1.2720985412597656 img loss 1.2055513858795166 img loss 1.2093628644943237 img loss 1.2597591876983643 img loss 1.2225440740585327 img loss 1.2300615310668945 img loss 1.2494556903839111 img loss 1.2414493560791016 img loss 1.302952766418457 img loss 1.3181387186050415 img loss 1.2636131048202515 img loss 1.2561376094818115 img loss 1.2074772119522095 img loss 1.2423245906829834 img loss 1.2846561670303345 img loss 1.2116984128952026 img loss 1.245145320892334 img loss 1.32305109500885 img loss 1.3122259378433228 img loss 1.2374489307403564 img loss 1.2332947254180908 img loss 1.2838290929794312 img loss 1.26664400100708 img loss 1.2116200923919678 img loss 1.1685864925384521 img loss 1.3211381435394287 img loss 1.247353196144104 img loss 1.238786220550537 img loss 1.2627418041229248 img loss 1.3258605003356934 img loss 1.2467421293258667 img loss 1.2733951807022095 img loss 1.2192716598510742 img loss 1.2393829822540283 img loss 1.1989312171936035 img loss 1.122056245803833 img loss 1.2275279760360718 img loss 1.2323243618011475 img loss 1.249544620513916 img loss 1.1827648878097534 img loss 1.352980136871338 img loss 1.2254170179367065 img loss 1.2208791971206665 img loss 1.262967586517334 img loss 1.1781244277954102 img loss 1.3541157245635986 img loss 1.2455323934555054 img loss 1.222947597503662 img loss 1.2676684856414795 img loss 1.236722707748413 img loss 1.2613252401351929 img loss 1.154884696006775 img loss 1.206762671470642 img loss 1.196195363998413 img loss 1.2116535902023315 img loss 1.2739348411560059 img loss 1.3644688129425049 img loss 1.2829010486602783 img loss 1.3092505931854248 img loss 1.229344129562378 img loss 1.2056150436401367 img loss 1.25531804561615 img loss 1.216446876525879 img loss 1.2962726354599 img loss 1.257062554359436 img loss 1.212127685546875 img loss 1.212144374847412 img loss 1.1976099014282227 img loss 1.2709290981292725 img loss 1.2792552709579468 img loss 1.2804906368255615 img loss 1.2344881296157837 img loss 1.2697724103927612 {'loss': 1.2482, 'grad_norm': 0.3812777101993561, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.332965612411499 img loss 1.3343092203140259 img loss 1.3608734607696533 img loss 1.2309603691101074 img loss 1.2733036279678345 img loss 1.1953521966934204 img loss 1.314270257949829 img loss 1.3109581470489502 img loss 1.3195406198501587 img loss 1.3727641105651855 img loss 1.289244532585144 img loss 1.318308711051941 img loss 1.2979363203048706 img loss 1.2881317138671875 img loss 1.288072943687439 img loss 1.4062001705169678 img loss 1.2768030166625977 img loss 1.3612077236175537 img loss 1.2567384243011475 img loss 1.4386807680130005 img loss 1.336069941520691 img loss 1.3486298322677612 img loss 1.2601661682128906 img loss 1.2828972339630127 img loss 1.2855291366577148 img loss 1.1708568334579468 img loss 1.3439372777938843 img loss 1.219698429107666 img loss 1.3230834007263184 img loss 1.3049614429473877 img loss 1.3278402090072632 img loss 1.2564972639083862 img loss 1.224565863609314 img loss 1.28236722946167 img loss 1.3703835010528564 img loss 1.333748459815979 img loss 1.4037086963653564 img loss 1.3194639682769775 img loss 1.362549901008606 img loss 1.3398090600967407 img loss 1.356803297996521 img loss 1.4552441835403442 img loss 1.4569231271743774 img loss 1.2099273204803467 img loss 1.2103650569915771 img loss 1.485400676727295 img loss 1.3516162633895874 img loss 1.3375906944274902 img loss 1.2892415523529053 img loss 1.3643461465835571 img loss 1.35820472240448 img loss 1.3248038291931152 img loss 1.2327743768692017 img loss 1.316444993019104 img loss 1.324353575706482 img loss 1.2836196422576904 img loss 1.2871712446212769 img loss 1.2898094654083252 img loss 1.3300902843475342 img loss 1.2425119876861572 img loss 1.2991300821304321 img loss 1.201582670211792 img loss 1.3241957426071167 img loss 1.3867522478103638 img loss 1.2884292602539062 img loss 1.2373995780944824 img loss 1.1887142658233643 img loss 1.3205103874206543 img loss 1.4660086631774902 img loss 1.4506335258483887 img loss 1.2555043697357178 img loss 1.1799263954162598 img loss 1.312167763710022 img loss 1.3064202070236206 img loss 1.3960386514663696 img loss 1.313320517539978 img loss 1.3303838968276978 img loss 1.181846261024475 img loss 1.300641655921936 img loss 1.2788723707199097 img loss 1.367042899131775 img loss 1.2876077890396118 img loss 1.354166865348816 img loss 1.4001048803329468 img loss 1.2835609912872314 img loss 1.2793707847595215 img loss 1.3168301582336426 img loss 1.3467915058135986 img loss 1.2450981140136719 img loss 1.305799126625061 img loss 1.2233644723892212 img loss 1.3151769638061523 img loss 1.2706362009048462 img loss 1.2676151990890503 img loss 1.2846009731292725 img loss 1.3382073640823364 img loss 1.3972086906433105 img loss 1.2071720361709595 img loss 1.2419774532318115 img loss 1.28243887424469 img loss 1.3671811819076538 img loss 1.2475517988204956 img loss 1.2822083234786987 img loss 1.2387447357177734 img loss 1.33285653591156 img loss 1.436124324798584 img loss 1.239494800567627 img loss 1.249297022819519 img loss 1.237821102142334 img loss 1.3355345726013184 img loss 1.452950119972229 img loss 1.3737605810165405 img loss 1.2370071411132812 img loss 1.1659282445907593 img loss 1.3279740810394287 img loss 1.3015010356903076 img loss 1.288521409034729 img loss 1.2936407327651978 img loss 1.3751246929168701 img loss 1.2256476879119873 img loss 1.3690969944000244 img loss 1.238552451133728 img loss 1.3032538890838623 img loss 1.3254814147949219 img loss 1.3367220163345337 img loss 1.3171818256378174 img loss 1.2046844959259033 img loss 1.327197790145874 {'loss': 1.3073, 'grad_norm': 0.2270815223455429, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.163051962852478 img loss 1.2113778591156006 img loss 1.2009168863296509 img loss 1.2123146057128906 img loss 1.2746061086654663 img loss 1.1609771251678467 img loss 1.200097680091858 img loss 1.2100204229354858 img loss 1.2198814153671265 img loss 1.2356295585632324 img loss 1.2445340156555176 img loss 1.1864008903503418 img loss 1.1968170404434204 img loss 1.2162508964538574 img loss 1.215703010559082 img loss 1.2528117895126343 img loss 1.1737216711044312 img loss 1.186693549156189 img loss 1.2431408166885376 img loss 1.218013048171997 img loss 1.209241271018982 img loss 1.141226053237915 img loss 1.2161719799041748 img loss 1.1725136041641235 img loss 1.1672282218933105 img loss 1.1752490997314453 img loss 1.1820321083068848 img loss 1.252772331237793 img loss 1.2311385869979858 img loss 1.2200220823287964 img loss 1.178505778312683 img loss 1.2234872579574585 img loss 1.2269562482833862 img loss 1.2596590518951416 img loss 1.2714447975158691 img loss 1.273401141166687 img loss 1.2192246913909912 img loss 1.1816562414169312 img loss 1.2300434112548828 img loss 1.210425853729248 img loss 1.1920725107192993 img loss 1.2580684423446655 img loss 1.2016384601593018 img loss 1.2259849309921265 img loss 1.2361369132995605 img loss 1.2234325408935547 img loss 1.2015327215194702 img loss 1.2021658420562744 img loss 1.1521825790405273 img loss 1.2927169799804688 img loss 1.2016762495040894 img loss 1.1857829093933105 img loss 1.1372361183166504 img loss 1.2284435033798218 img loss 1.1894458532333374 img loss 1.225825548171997 img loss 1.179365634918213 img loss 1.1852086782455444 img loss 1.175858736038208 img loss 1.1990737915039062 img loss 1.1825761795043945 img loss 1.2101044654846191 img loss 1.183457612991333 img loss 1.202086329460144 img loss 1.2143661975860596 img loss 1.1870869398117065 img loss 1.2134414911270142 img loss 1.197312593460083 img loss 1.1931408643722534 img loss 1.1830729246139526 img loss 1.189512014389038 img loss 1.2532274723052979 img loss 1.178128957748413 img loss 1.2208740711212158 img loss 1.2614350318908691 img loss 1.1822994947433472 img loss 1.2249361276626587 img loss 1.2194114923477173 img loss 1.2866833209991455 img loss 1.2122691869735718 img loss 1.249044418334961 img loss 1.1752874851226807 img loss 1.1615257263183594 img loss 1.2534964084625244 img loss 1.2034133672714233 img loss 1.2460869550704956 img loss 1.2697699069976807 img loss 1.2690056562423706 img loss 1.256438136100769 img loss 1.2322914600372314 img loss 1.1965337991714478 img loss 1.2335329055786133 img loss 1.240373134613037 img loss 1.1785856485366821 img loss 1.2288872003555298 img loss 1.166746735572815 img loss 1.2194257974624634 img loss 1.1988838911056519 img loss 1.1749060153961182 img loss 1.2367193698883057 img loss 1.2824273109436035 img loss 1.217706322669983 img loss 1.2161563634872437 img loss 1.2107890844345093 img loss 1.1722838878631592 img loss 1.2183356285095215 img loss 1.1992801427841187 img loss 1.2175462245941162 img loss 1.2629964351654053 img loss 1.2007100582122803 img loss 1.1220784187316895 img loss 1.1844803094863892 img loss 1.2689757347106934 img loss 1.1867865324020386 img loss 1.2444934844970703 img loss 1.201766014099121 img loss 1.2374165058135986 img loss 1.2339107990264893 img loss 1.2374012470245361 img loss 1.16133713722229 img loss 1.212061882019043 img loss 1.1930921077728271 img loss 1.2234783172607422 img loss 1.1653718948364258 img loss 1.2386096715927124 img loss 1.169066309928894 img loss 1.194486141204834 img loss 1.1888296604156494 {'loss': 1.211, 'grad_norm': 0.23791497945785522, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2760494947433472 img loss 1.2649868726730347 img loss 1.3872147798538208 img loss 1.3085706233978271 img loss 1.3854995965957642 img loss 1.3719112873077393 img loss 1.2862858772277832 img loss 1.2317901849746704 img loss 1.2439744472503662 img loss 1.2775484323501587 img loss 1.3405849933624268 img loss 1.2520616054534912 img loss 1.2432820796966553 img loss 1.301299810409546 img loss 1.174763560295105 img loss 1.2312467098236084 img loss 1.3958481550216675 img loss 1.226794719696045 img loss 1.4383256435394287 img loss 1.2302887439727783 img loss 1.3009943962097168 img loss 1.2956751585006714 img loss 1.2589133977890015 img loss 1.333825707435608 img loss 1.266693353652954 img loss 1.186806321144104 img loss 1.2454802989959717 img loss 1.2821288108825684 img loss 1.305607795715332 img loss 1.2595055103302002 img loss 1.311937689781189 img loss 1.2222888469696045 img loss 1.2618759870529175 img loss 1.268856406211853 img loss 1.2850990295410156 img loss 1.206164836883545 img loss 1.4517083168029785 img loss 1.2324117422103882 img loss 1.2388091087341309 img loss 1.337899088859558 img loss 1.2543652057647705 img loss 1.242749810218811 img loss 1.2151544094085693 img loss 1.2385368347167969 img loss 1.2109779119491577 img loss 1.2796311378479004 img loss 1.285469889640808 img loss 1.210629940032959 img loss 1.3086267709732056 img loss 1.2494275569915771 img loss 1.2270331382751465 img loss 1.3411473035812378 img loss 1.1382544040679932 img loss 1.3200916051864624 img loss 1.308200478553772 img loss 1.2686405181884766 img loss 1.3269647359848022 img loss 1.3753888607025146 img loss 1.3028883934020996 img loss 1.233985185623169 img loss 1.2858761548995972 img loss 1.2088372707366943img loss 1.2574485540390015 img loss 1.1915203332901 img loss 1.2506698369979858 img loss 1.3558412790298462 img loss 1.2961394786834717 img loss 1.357459306716919 img loss 1.2617167234420776 img loss 1.2495001554489136 img loss 1.1451823711395264 img loss 1.2516330480575562 img loss 1.3097190856933594 img loss 1.3484302759170532 img loss 1.2422351837158203 img loss 1.2983572483062744 img loss 1.3959364891052246 img loss 1.3084867000579834 img loss 1.499626636505127 img loss 1.2677853107452393 img loss 1.2525066137313843 img loss 1.4514901638031006 img loss 1.267483115196228 img loss 1.3651013374328613 img loss 1.2904938459396362 img loss 1.2356898784637451 img loss 1.2499594688415527 img loss 1.2187219858169556 img loss 1.2666438817977905 img loss 1.2158255577087402 img loss 1.2711222171783447 img loss 1.432881236076355 img loss 1.3823449611663818 img loss 1.3590527772903442 img loss 1.2924506664276123 img loss 1.3813681602478027 img loss 1.3499311208724976 img loss 1.2821786403656006 img loss 1.2600969076156616 img loss 1.3296180963516235 img loss 1.2026464939117432 img loss 1.403590440750122 img loss 1.354885458946228 img loss 1.265254259109497 img loss 1.2270886898040771 img loss 1.210690975189209 img loss 1.2524820566177368 img loss 1.2267799377441406 img loss 1.3346667289733887 img loss 1.2094967365264893 img loss 1.1663990020751953 img loss 1.1755510568618774 img loss 1.3193106651306152 img loss 1.2292211055755615 img loss 1.3785722255706787 img loss 1.3057409524917603 img loss 1.2337335348129272 img loss 1.2310762405395508 img loss 1.1991485357284546 img loss 1.2108192443847656 img loss 1.2285293340682983 img loss 1.2406654357910156 img loss 1.3457344770431519 img loss 1.2010498046875 img loss 1.238024353981018 img loss 1.2736479043960571 img loss 1.2155345678329468 img loss 1.456974744796753 {'loss': 1.2815, 'grad_norm': 0.35802161693573, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4707906246185303 img loss 1.4747661352157593 img loss 1.445773959159851 img loss 1.5443663597106934 img loss 1.5681513547897339 img loss 1.5596565008163452 img loss 1.5791256427764893 img loss 1.5687354803085327 img loss 1.455909252166748 img loss 1.5527926683425903 img loss 1.6169655323028564 img loss 1.5704082250595093 img loss 1.44405996799469 img loss 1.5734184980392456 img loss 1.6111036539077759 img loss 1.3792566061019897 img loss 1.6776225566864014 img loss 1.6917757987976074 img loss 1.7143141031265259 img loss 1.5836907625198364 img loss 1.534797191619873 img loss 1.444653034210205 img loss 1.606787085533142 img loss 1.54249906539917 img loss 1.6181252002716064 img loss 1.5132933855056763 img loss 1.5658482313156128 img loss 1.4442269802093506 img loss 1.5840753316879272 img loss 1.5245013236999512 img loss 1.5365036725997925 img loss 1.4685441255569458 img loss 1.5674996376037598 img loss 1.6212407350540161 img loss 1.7122079133987427 img loss 1.545498251914978 img loss 1.5664292573928833 img loss 1.616150975227356 img loss 1.6720908880233765 img loss 1.7273238897323608 img loss 1.5184141397476196 img loss 1.5182948112487793 img loss 1.7080539464950562 img loss 1.6287600994110107 img loss 1.5391114950180054 img loss 1.4973280429840088 img loss 1.6008152961730957 img loss 1.5465906858444214 img loss 1.529463291168213 img loss 1.601915955543518 img loss 1.6044399738311768 img loss 1.7692152261734009 img loss 1.608485460281372 img loss 1.5313020944595337 img loss 1.5016201734542847 img loss 1.551124930381775 img loss 1.6430115699768066 img loss 1.5137449502944946 img loss 1.5776773691177368 img loss 1.7372204065322876 img loss 1.5627026557922363 img loss 1.5626057386398315 img loss 1.5629518032073975 img loss 1.5787432193756104 img loss 1.6368411779403687 img loss 1.5554492473602295 img loss 1.4395684003829956 img loss 1.4780042171478271 img loss 1.7036160230636597 img loss 1.5362128019332886 img loss 1.6960413455963135 img loss 1.4720498323440552 img loss 1.5742195844650269 img loss 1.6590819358825684 img loss 1.388657808303833 img loss 1.5687363147735596 img loss 1.603385329246521 img loss 1.5296742916107178 img loss 1.6835768222808838 img loss 1.5568610429763794 img loss 1.5884345769882202 img loss 1.5443521738052368 img loss 1.4692729711532593 img loss 1.5082381963729858 img loss 1.569973349571228 img loss 1.5340263843536377 img loss 1.4616122245788574 img loss 1.4538294076919556 img loss 1.6659331321716309 img loss 1.6709010601043701 img loss 1.456030249595642 img loss 1.651373267173767 img loss 1.4931246042251587 img loss 1.6592576503753662 img loss 1.5161629915237427 img loss 1.5970110893249512 img loss 1.5777677297592163 img loss 1.52763831615448 img loss 1.4469902515411377 img loss 1.5416028499603271 img loss 1.5024887323379517 img loss 1.495800256729126 img loss 1.5350486040115356 img loss 1.6034064292907715 img loss 1.451352596282959 img loss 1.5333870649337769 img loss 1.5041842460632324 img loss 1.5770996809005737 img loss 1.4619938135147095 img loss 1.6038366556167603 img loss 1.5321468114852905 img loss 1.5653365850448608 img loss 1.5366489887237549 img loss 1.6145368814468384 img loss 1.5810719728469849 img loss 1.594119906425476 img loss 1.6295218467712402 img loss 1.4440171718597412 img loss 1.5635813474655151 img loss 1.617633581161499 img loss 1.62675142288208 img loss 1.5943914651870728 img loss 1.5946357250213623 img loss 1.5248323678970337 img loss 1.4667770862579346 img loss 1.7032021284103394 img loss 1.483445644378662 img loss 1.50425124168396 {'loss': 1.5621, 'grad_norm': 0.30961644649505615, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2855287790298462 img loss 1.304529070854187 img loss 1.3248437643051147 img loss 1.3139511346817017 img loss 1.1927423477172852 img loss 1.2344684600830078 img loss 1.2238212823867798 img loss 1.3074544668197632 img loss 1.2080113887786865 img loss 1.258076548576355 img loss 1.2394965887069702 img loss 1.2845988273620605 img loss 1.2355425357818604 img loss 1.2356109619140625 img loss 1.160853624343872 img loss 1.2309339046478271 img loss 1.2516627311706543 img loss 1.2304131984710693 img loss 1.2557117938995361 img loss 1.3103834390640259 img loss 1.2965526580810547 img loss 1.1304833889007568 img loss 1.1879875659942627 img loss 1.246207594871521 img loss 1.2791575193405151 img loss 1.2265541553497314 img loss 1.207678198814392 img loss 1.277219295501709 img loss 1.2216612100601196 img loss 1.2428239583969116 img loss 1.285355567932129 img loss 1.2576091289520264 img loss 1.2292191982269287 img loss 1.3022421598434448 img loss 1.2635633945465088 img loss 1.1793292760849 img loss 1.3236494064331055 img loss 1.1895599365234375 img loss 1.153395652770996 img loss 1.1968024969100952 img loss 1.2323830127716064 img loss 1.2548792362213135 img loss 1.2840162515640259 img loss 1.2390837669372559 img loss 1.3328301906585693 img loss 1.1747528314590454 img loss 1.21085786819458 img loss 1.1690067052841187 img loss 1.3101134300231934 img loss 1.3080334663391113 img loss 1.2264946699142456 img loss 1.2205767631530762 img loss 1.1998566389083862 img loss 1.2112767696380615 img loss 1.1927764415740967 img loss 1.2250728607177734 img loss 1.251177430152893 img loss 1.2435317039489746 img loss 1.1956491470336914 img loss 1.2649524211883545 img loss 1.2813827991485596 img loss 1.1541211605072021 img loss 1.2170474529266357 img loss 1.2258509397506714 img loss 1.3662450313568115 img loss 1.2732418775558472 img loss 1.2743868827819824 img loss 1.2487232685089111 img loss 1.1886733770370483 img loss 1.2379868030548096 img loss 1.1967906951904297 img loss 1.2337737083435059 img loss 1.3092424869537354 img loss 1.3906813859939575 img loss 1.2185291051864624 img loss 1.1729496717453003 img loss 1.294613242149353 img loss 1.3056856393814087 img loss 1.2791154384613037 img loss 1.3346903324127197 img loss 1.3062056303024292 img loss 1.2055532932281494 img loss 1.275923252105713 img loss 1.2096970081329346 img loss 1.300379753112793 img loss 1.2172859907150269 img loss 1.2186130285263062 img loss 1.2800287008285522 img loss 1.2973618507385254 img loss 1.1536402702331543 img loss 1.2741752862930298 img loss 1.1648393869400024 img loss 1.2429790496826172 img loss 1.1664786338806152 img loss 1.2756199836730957 img loss 1.261927843093872 img loss 1.2074992656707764 img loss 1.273455023765564 img loss 1.3141603469848633 img loss 1.277594804763794 img loss 1.1715229749679565 img loss 1.2477775812149048 img loss 1.2048068046569824 img loss 1.180428147315979 img loss 1.2840533256530762 img loss 1.209572196006775 img loss 1.3407108783721924 img loss 1.2772819995880127 img loss 1.2354458570480347 img loss 1.1704883575439453 img loss 1.254828691482544 img loss 1.191540241241455 img loss 1.2868927717208862 img loss 1.1888277530670166 img loss 1.22428560256958 img loss 1.2082221508026123 img loss 1.2170244455337524 img loss 1.2063202857971191 img loss 1.1922359466552734 img loss 1.168975591659546 img loss 1.2249152660369873 img loss 1.2458794116973877 img loss 1.1958993673324585 img loss 1.3028786182403564 img loss 1.3082393407821655 img loss 1.2408835887908936 img loss 1.1905224323272705 img loss 1.133110761642456 {'loss': 1.2419, 'grad_norm': 0.2934822142124176, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3349003791809082 img loss 1.2935752868652344 img loss 1.3303022384643555 img loss 1.3897926807403564 img loss 1.3168094158172607 img loss 1.441724181175232 img loss 1.4180420637130737 img loss 1.3185428380966187 img loss 1.3692128658294678 img loss 1.450026273727417 img loss 1.304492712020874 img loss 1.2833837270736694 img loss 1.3240450620651245 img loss 1.3335566520690918 img loss 1.3531230688095093 img loss 1.4233533143997192 img loss 1.435012698173523 img loss 1.3954118490219116 img loss 1.321793794631958 img loss 1.441587209701538 img loss 1.4157044887542725 img loss 1.265734314918518 img loss 1.343531847000122 img loss 1.431473970413208 img loss 1.3750485181808472 img loss 1.3478219509124756 img loss 1.3721137046813965 img loss 1.3757439851760864 img loss 1.3398672342300415 img loss 1.3933875560760498 img loss 1.4572761058807373 img loss 1.2982136011123657 img loss 1.3504128456115723 img loss 1.2869670391082764 img loss 1.3420203924179077 img loss 1.3888894319534302 img loss 1.4015971422195435 img loss 1.5530505180358887 img loss 1.3704382181167603 img loss 1.3261668682098389 img loss 1.3741459846496582 img loss 1.4082748889923096 img loss 1.4130864143371582 img loss 1.3837107419967651 img loss 1.3618358373641968 img loss 1.4339330196380615 img loss 1.3339117765426636 img loss 1.3302149772644043 img loss 1.3299545049667358 img loss 1.4696580171585083 img loss 1.359117865562439 img loss 1.415165662765503 img loss 1.3730610609054565 img loss 1.2681975364685059 img loss 1.3541672229766846 img loss 1.4039361476898193 img loss 1.3449132442474365 img loss 1.361107349395752 img loss 1.3957651853561401 img loss 1.3496010303497314 img loss 1.3266029357910156 img loss 1.3182286024093628 img loss 1.2928987741470337 img loss 1.368831992149353 img loss 1.3245404958724976 img loss 1.3564890623092651 img loss 1.3749940395355225 img loss 1.2410262823104858 img loss 1.4352772235870361 img loss 1.318131685256958 img loss 1.2922887802124023 img loss 1.3261114358901978 img loss 1.2930550575256348 img loss 1.2469995021820068 img loss 1.368371844291687 img loss 1.3534353971481323 img loss 1.3865708112716675 img loss 1.3574891090393066 img loss 1.4075838327407837 img loss 1.4620498418807983 img loss 1.279783010482788 img loss 1.345181941986084 img loss 1.232340693473816 img loss 1.287791132926941 img loss 1.4254406690597534 img loss 1.4602558612823486 img loss 1.3515037298202515 img loss 1.3252520561218262 img loss 1.3125817775726318 img loss 1.3327375650405884 img loss 1.3220500946044922 img loss 1.3437997102737427 img loss 1.3983895778656006 img loss 1.4430335760116577 img loss 1.5156147480010986 img loss 1.380285620689392 img loss 1.327492117881775 img loss 1.259456992149353 img loss 1.3989607095718384 img loss 1.3249526023864746 img loss 1.4610631465911865 img loss 1.4979115724563599 img loss 1.3975274562835693 img loss 1.346047282218933 img loss 1.3466541767120361 img loss 1.380123496055603 img loss 1.3595532178878784 img loss 1.3274950981140137 img loss 1.4278985261917114 img loss 1.4197840690612793 img loss 1.3013217449188232 img loss 1.3061262369155884 img loss 1.4376558065414429 img loss 1.4395893812179565 img loss 1.3893235921859741 img loss 1.363139033317566 img loss 1.3862370252609253 img loss 1.2929298877716064 img loss 1.3123515844345093 img loss 1.3700700998306274 img loss 1.3386138677597046 img loss 1.2745424509048462 img loss 1.3278449773788452 img loss 1.4649912118911743 img loss 1.344538927078247 img loss 1.3180139064788818 img loss 1.3378251791000366 img loss 1.3753727674484253 {'loss': 1.3628, 'grad_norm': 0.3216765820980072, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2221922874450684 img loss 1.1899746656417847 img loss 1.2525441646575928 img loss 1.2158894538879395 img loss 1.160898208618164 img loss 1.1983888149261475 img loss 1.2092968225479126 img loss 1.292628526687622 img loss 1.1436315774917603 img loss 1.2338542938232422 img loss 1.255873680114746 img loss 1.208952784538269 img loss 1.160936951637268 img loss 1.1642310619354248 img loss 1.20909583568573 img loss 1.2002695798873901 img loss 1.1580671072006226 img loss 1.172118902206421 img loss 1.264909029006958 img loss 1.1877501010894775 img loss 1.1530871391296387 img loss 1.166887640953064 img loss 1.243761658668518 img loss 1.2663264274597168 img loss 1.1952147483825684 img loss 1.2301557064056396 img loss 1.1514623165130615 img loss 1.21807861328125 img loss 1.1788042783737183 img loss 1.1701058149337769 img loss 1.190488576889038 img loss 1.1942615509033203 img loss 1.1501154899597168 img loss 1.2201789617538452 img loss 1.2040894031524658 img loss 1.1923891305923462 img loss 1.154322624206543 img loss 1.1921566724777222 img loss 1.1880308389663696 img loss 1.234941005706787 img loss 1.1897482872009277 img loss 1.2484384775161743 img loss 1.208325743675232 img loss 1.204496145248413 img loss 1.215222716331482 img loss 1.1980136632919312 img loss 1.185247778892517 img loss 1.189531922340393 img loss 1.2240560054779053 img loss 1.2766125202178955 img loss 1.2080035209655762 img loss 1.1433175802230835 img loss 1.1607576608657837 img loss 1.1953951120376587 img loss 1.2147384881973267 img loss 1.213092565536499 img loss 1.2574188709259033 img loss 1.2128353118896484 img loss 1.214705228805542 img loss 1.182716727256775 img loss 1.2164897918701172 img loss 1.1749210357666016 img loss 1.1572794914245605 img loss 1.2429261207580566 img loss 1.1198967695236206 img loss 1.2032883167266846 img loss 1.2032321691513062 img loss 1.202949047088623 img loss 1.152998924255371 img loss 1.1823867559432983 img loss 1.1859683990478516 img loss 1.1799296140670776 img loss 1.2465229034423828 img loss 1.1652523279190063 img loss 1.2032949924468994 img loss 1.1970878839492798 img loss 1.2009387016296387 img loss 1.2244162559509277 img loss 1.2216380834579468 img loss 1.1760761737823486 img loss 1.1547435522079468 img loss 1.2525746822357178 img loss 1.1812095642089844 img loss 1.1680195331573486 img loss 1.1708602905273438 img loss 1.1857284307479858 img loss 1.2091108560562134 img loss 1.2718181610107422 img loss 1.252179741859436 img loss 1.163522481918335 img loss 1.2164610624313354 img loss 1.164597749710083 img loss 1.163923978805542 img loss 1.1928131580352783 img loss 1.2298924922943115 img loss 1.172890067100525 img loss 1.2241926193237305 img loss 1.2087585926055908 img loss 1.2362666130065918 img loss 1.1942037343978882 img loss 1.2315974235534668 img loss 1.1873635053634644 img loss 1.2036914825439453 img loss 1.1975311040878296 img loss 1.142093539237976 img loss 1.1799774169921875 img loss 1.1504170894622803 img loss 1.1526000499725342 img loss 1.225265383720398 img loss 1.2522624731063843 img loss 1.2326959371566772 img loss 1.1891552209854126 img loss 1.2071975469589233 img loss 1.2871854305267334 img loss 1.2093303203582764 img loss 1.1726431846618652 img loss 1.298386812210083 img loss 1.2120615243911743 img loss 1.1836655139923096 img loss 1.1564488410949707 img loss 1.1747349500656128 img loss 1.2270587682724 img loss 1.1852439641952515 img loss 1.2455180883407593 img loss 1.166978359222412 img loss 1.1822874546051025 img loss 1.2169759273529053 img loss 1.1759976148605347 {'loss': 1.2004, 'grad_norm': 0.22359482944011688, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1531044244766235 img loss 1.1756699085235596 img loss 1.283023715019226 img loss 1.2804428339004517 img loss 1.2429289817810059 img loss 1.202643632888794 img loss 1.2673404216766357 img loss 1.1795613765716553 img loss 1.2213971614837646 img loss 1.2792176008224487 img loss 1.2958400249481201 img loss 1.3571797609329224 img loss 1.1783634424209595 img loss 1.2537447214126587 img loss 1.1773905754089355 img loss 1.320363998413086 img loss 1.2017961740493774 img loss 1.2520955801010132 img loss 1.2332985401153564 img loss 1.2017520666122437 img loss 1.2654398679733276 img loss 1.1955476999282837 img loss 1.2466940879821777 img loss 1.2325105667114258 img loss 1.119476556777954 img loss 1.2683254480361938 img loss 1.2210263013839722 img loss 1.2262543439865112 img loss 1.1942310333251953 img loss 1.266886591911316 img loss 1.2531483173370361 img loss 1.2806662321090698 img loss 1.204759955406189 img loss 1.2462997436523438 img loss 1.2140088081359863 img loss 1.2747958898544312 img loss 1.2580021619796753 img loss 1.143318772315979 img loss 1.291902780532837 img loss 1.252614974975586 img loss 1.32645845413208 img loss 1.1975988149642944 img loss 1.1884231567382812 img loss 1.150604248046875 img loss 1.2573697566986084 img loss 1.2373539209365845 img loss 1.2112071514129639 img loss 1.189953088760376 img loss 1.1750991344451904 img loss 1.2156405448913574 img loss 1.297579288482666 img loss 1.244368076324463 img loss 1.2818610668182373 img loss 1.2143524885177612 img loss 1.2005550861358643 img loss 1.2448949813842773 img loss 1.296022653579712 img loss 1.285356879234314 img loss 1.17820405960083 img loss 1.2406831979751587 img loss 1.1656137704849243 img loss 1.250307559967041 img loss 1.1563423871994019 img loss 1.265633225440979 img loss 1.2119250297546387 img loss 1.279010534286499 img loss 1.230587363243103 img loss 1.2363135814666748 img loss 1.2461214065551758 img loss 1.1961917877197266 img loss 1.1495692729949951 img loss 1.2097654342651367 img loss 1.2445447444915771 img loss 1.1350902318954468 img loss 1.168618083000183 img loss 1.3209147453308105 img loss 1.1838090419769287 img loss 1.1181820631027222 img loss 1.2818388938903809 img loss 1.2108560800552368 img loss 1.187329649925232 img loss 1.2835440635681152 img loss 1.1704822778701782 img loss 1.2029989957809448 img loss 1.2017605304718018 img loss 1.2083547115325928 img loss 1.2981362342834473 img loss 1.2125928401947021 img loss 1.2682424783706665 img loss 1.2602370977401733 img loss 1.3090711832046509 img loss 1.2304404973983765 img loss 1.3734116554260254 img loss 1.1647093296051025 img loss 1.2791666984558105 img loss 1.2661826610565186 img loss 1.1962618827819824 img loss 1.2209389209747314 img loss 1.1951223611831665 img loss 1.1732373237609863 img loss 1.2680492401123047 img loss 1.2668637037277222 img loss 1.2134466171264648 img loss 1.1764612197875977 img loss 1.295997142791748 img loss 1.186213731765747 img loss 1.217820644378662 img loss 1.2397781610488892 img loss 1.1701445579528809 img loss 1.3256696462631226 img loss 1.1366839408874512 img loss 1.279921293258667 img loss 1.1693413257598877 img loss 1.2290757894515991 img loss 1.2491075992584229 img loss 1.2271785736083984 img loss 1.1684246063232422 img loss 1.184084177017212 img loss 1.2626217603683472 img loss 1.2052280902862549 img loss 1.2287431955337524 img loss 1.2678579092025757 img loss 1.2363694906234741 img loss 1.4149271249771118 img loss 1.2350842952728271 img loss 1.186572551727295 img loss 1.206906795501709 img loss 1.385912537574768 {'loss': 1.2316, 'grad_norm': 0.2205609828233719, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3507323265075684 img loss 1.27359938621521 img loss 1.2833800315856934 img loss 1.3727856874465942 img loss 1.27535080909729 img loss 1.2208802700042725 img loss 1.2916629314422607 img loss 1.3070013523101807 img loss 1.3217506408691406 img loss 1.267362356185913 img loss 1.28654146194458 img loss 1.2204394340515137 img loss 1.3211190700531006 img loss 1.4354796409606934 img loss 1.4705857038497925 img loss 1.2006564140319824 img loss 1.3495465517044067 img loss 1.2996200323104858 img loss 1.35031259059906 img loss 1.3168891668319702 img loss 1.31715726852417 img loss 1.3820998668670654 img loss 1.3407528400421143 img loss 1.3382542133331299 img loss 1.252755045890808 img loss 1.3001790046691895 img loss 1.2157361507415771 img loss 1.3126945495605469 img loss 1.456409215927124 img loss 1.2732146978378296 img loss 1.2037675380706787 img loss 1.3219400644302368 img loss 1.385618805885315 img loss 1.310347318649292 img loss 1.318438172340393 img loss 1.2821853160858154 img loss 1.3446584939956665 img loss 1.3283687829971313 img loss 1.3587491512298584 img loss 1.2749073505401611 img loss 1.3432313203811646 img loss 1.345927357673645 img loss 1.2312859296798706 img loss 1.278417944908142 img loss 1.2445741891860962 img loss 1.3552173376083374 img loss 1.3099851608276367 img loss 1.354884386062622 img loss 1.298691987991333 img loss 1.249314785003662 img loss 1.2904548645019531 img loss 1.3349413871765137 img loss 1.3353670835494995 img loss 1.3342998027801514 img loss 1.4061150550842285 img loss 1.2824609279632568 img loss 1.367104172706604 img loss 1.3280714750289917 img loss 1.2377809286117554 img loss 1.3372548818588257 img loss 1.2459676265716553 img loss 1.3142852783203125 img loss 1.3481072187423706 img loss 1.292809009552002 img loss 1.2773795127868652 img loss 1.485440731048584 img loss 1.3511245250701904 img loss 1.3554669618606567 img loss 1.3399337530136108 img loss 1.335513949394226 img loss 1.337471842765808 img loss 1.3661998510360718 img loss 1.4353728294372559 img loss 1.3891948461532593 img loss 1.3154842853546143 img loss 1.3700060844421387 img loss 1.2725510597229004 img loss 1.3316402435302734 img loss 1.3425440788269043 img loss 1.3538508415222168 img loss 1.3595677614212036 img loss 1.2743719816207886 img loss 1.4299235343933105 img loss 1.440895676612854 img loss 1.3378626108169556 img loss 1.3832303285598755 img loss 1.3537843227386475 img loss 1.3951767683029175 img loss 1.3028366565704346 img loss 1.4449962377548218 img loss 1.2840677499771118 img loss 1.3730273246765137 img loss 1.2345421314239502 img loss 1.2654006481170654 img loss 1.213437557220459 img loss 1.2647632360458374 img loss 1.2737841606140137 img loss 1.335153341293335 img loss 1.347176432609558 img loss 1.4041454792022705 img loss 1.28696870803833 img loss 1.2941721677780151 img loss 1.2341952323913574 img loss 1.3497627973556519 img loss 1.2925679683685303 img loss 1.3189890384674072 img loss 1.3615432977676392 img loss 1.3178210258483887 img loss 1.311225175857544 img loss 1.2946720123291016 img loss 1.3729485273361206 img loss 1.245835542678833 img loss 1.2758605480194092 img loss 1.3255527019500732 img loss 1.305945873260498 img loss 1.3034886121749878 img loss 1.3362852334976196 img loss 1.367274522781372 img loss 1.3293509483337402 img loss 1.2517324686050415 img loss 1.364418387413025 img loss 1.2946118116378784 img loss 1.2203649282455444 img loss 1.4044729471206665 img loss 1.3205467462539673 img loss 1.3267226219177246 img loss 1.2674013376235962 img loss 1.2793636322021484 {'loss': 1.3206, 'grad_norm': 0.2493664026260376, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.258631944656372 img loss 1.257871389389038 img loss 1.2360358238220215 img loss 1.2747520208358765 img loss 1.266310453414917 img loss 1.167267084121704 img loss 1.3517705202102661 img loss 1.2145687341690063 img loss 1.2857294082641602 img loss 1.2209396362304688 img loss 1.2351949214935303 img loss 1.2058117389678955 img loss 1.2589787244796753 img loss 1.2789721488952637 img loss 1.2683806419372559 img loss 1.2225004434585571 img loss 1.2491682767868042 img loss 1.2275362014770508 img loss 1.187278389930725 img loss 1.275198221206665 img loss 1.2929314374923706 img loss 1.2478760480880737 img loss 1.2002509832382202 img loss 1.2456488609313965 img loss 1.181875228881836 img loss 1.2357094287872314 img loss 1.3374134302139282 img loss 1.2417583465576172 img loss 1.3813527822494507 img loss 1.2091397047042847 img loss 1.3423956632614136 img loss 1.2686561346054077 img loss 1.2430005073547363 img loss 1.2526291608810425 img loss 1.242222785949707 img loss 1.248504400253296 img loss 1.2737528085708618 img loss 1.2326494455337524 img loss 1.2783782482147217 img loss 1.2449829578399658 img loss 1.3385651111602783 img loss 1.1849174499511719 img loss 1.3095425367355347 img loss 1.2842307090759277 img loss 1.2325576543807983 img loss 1.244121789932251 img loss 1.3158836364746094 img loss 1.3313318490982056 img loss 1.254889726638794 img loss 1.2601029872894287 img loss 1.247416377067566 img loss 1.2867249250411987 img loss 1.2743728160858154 img loss 1.2771590948104858 img loss 1.240544319152832 img loss 1.1774916648864746 img loss 1.355600118637085 img loss 1.3161306381225586 img loss 1.2462409734725952 img loss 1.263433814048767 img loss 1.2256382703781128 img loss 1.2806179523468018 img loss 1.1878910064697266 img loss 1.2650076150894165 img loss 1.3108971118927002 img loss 1.2458572387695312 img loss 1.252838134765625 img loss 1.170490026473999 img loss 1.3401857614517212img loss 1.2482174634933472 img loss 1.27959144115448 img loss 1.2112820148468018 img loss 1.2253977060317993 img loss 1.3354175090789795 img loss 1.2792599201202393 img loss 1.2946056127548218 img loss 1.2510093450546265 img loss 1.2192291021347046 img loss 1.1473993062973022 img loss 1.3279584646224976 img loss 1.2590023279190063 img loss 1.2532659769058228 img loss 1.3810125589370728img loss 1.2299600839614868 img loss 1.2700852155685425 img loss 1.2534217834472656 img loss 1.2259933948516846 img loss 1.1930701732635498 img loss 1.1723723411560059 img loss 1.2305285930633545 img loss 1.178313970565796 img loss 1.2181816101074219 img loss 1.2576204538345337 img loss 1.3260960578918457 img loss 1.2900797128677368 img loss 1.2096039056777954 img loss 1.237973928451538 img loss 1.254911184310913 img loss 1.2983211278915405 img loss 1.2235291004180908 img loss 1.1902215480804443 img loss 1.2475011348724365 img loss 1.3020761013031006 img loss 1.256345272064209 img loss 1.20680570602417 img loss 1.1919841766357422 img loss 1.1706085205078125 img loss 1.2288365364074707 img loss 1.2482630014419556 img loss 1.223305106163025 img loss 1.2621769905090332 img loss 1.2459245920181274 img loss 1.21477472782135 img loss 1.2943848371505737 img loss 1.2493886947631836 img loss 1.227769374847412 img loss 1.2493385076522827 img loss 1.2205902338027954 img loss 1.2165876626968384 img loss 1.1896589994430542 img loss 1.2761026620864868 img loss 1.1710090637207031 img loss 1.3393255472183228 img loss 1.2533403635025024 img loss 1.2724595069885254 img loss 1.3065022230148315 img loss 1.18498694896698 img loss 1.2883151769638062 {'loss': 1.2529, 'grad_norm': 0.3186787962913513, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2096866369247437 img loss 1.2834808826446533 img loss 1.249918818473816 img loss 1.2218103408813477 img loss 1.2742347717285156 img loss 1.2306333780288696 img loss 1.208270788192749 img loss 1.23237943649292 img loss 1.2771862745285034 img loss 1.2166002988815308 img loss 1.2376922369003296 img loss 1.2348860502243042 img loss 1.2451587915420532 img loss 1.2749626636505127 img loss 1.242919921875 img loss 1.231024146080017 img loss 1.2333011627197266 img loss 1.2398782968521118 img loss 1.2313107252120972 img loss 1.2820377349853516 img loss 1.229583740234375 img loss 1.2358911037445068 img loss 1.2489490509033203 img loss 1.274412751197815 img loss 1.2466633319854736 img loss 1.2279465198516846 img loss 1.320111870765686 img loss 1.2619131803512573 img loss 1.2358741760253906 img loss 1.2720144987106323 img loss 1.2355854511260986 img loss 1.226502776145935 img loss 1.2453216314315796 img loss 1.2471243143081665 img loss 1.284542441368103 img loss 1.2893166542053223 img loss 1.2944774627685547 img loss 1.252096176147461 img loss 1.2299439907073975 img loss 1.214953064918518 img loss 1.2122933864593506 img loss 1.2229869365692139 img loss 1.2326806783676147 img loss 1.2509799003601074 img loss 1.2267394065856934 img loss 1.2333183288574219 img loss 1.252701997756958 img loss 1.2486575841903687 img loss 1.2483513355255127 img loss 1.2716106176376343 img loss 1.2036831378936768 img loss 1.2244596481323242 img loss 1.2670807838439941 img loss 1.2539573907852173 img loss 1.2277723550796509 img loss 1.2601828575134277 img loss 1.2603920698165894 img loss 1.2506499290466309 img loss 1.2234693765640259 img loss 1.2647370100021362 img loss 1.2307745218276978 img loss 1.2714588642120361 img loss 1.2643550634384155 img loss 1.2334511280059814 img loss 1.2266743183135986 img loss 1.2532382011413574 img loss 1.2964954376220703 img loss 1.2449414730072021 img loss 1.2150970697402954 img loss 1.2426035404205322 img loss 1.2539714574813843 img loss 1.261665940284729 img loss 1.2577723264694214 img loss 1.296721339225769 img loss 1.237517237663269 img loss 1.2527480125427246 img loss 1.239100694656372 img loss 1.297881841659546 img loss 1.2346820831298828 img loss 1.2365455627441406 img loss 1.2279167175292969 img loss 1.2844890356063843 img loss 1.2336385250091553 img loss 1.213692307472229 img loss 1.274698257446289 img loss 1.1947760581970215 img loss 1.2636750936508179 img loss 1.2101558446884155 img loss 1.2507071495056152 img loss 1.2282578945159912 img loss 1.2594773769378662 img loss 1.2412117719650269 img loss 1.2918754816055298 img loss 1.252435326576233 img loss 1.2640799283981323 img loss 1.2381248474121094 img loss 1.2299838066101074 img loss 1.2704997062683105 img loss 1.198891043663025 img loss 1.2761675119400024 img loss 1.2496063709259033 img loss 1.2658884525299072 img loss 1.2534774541854858 img loss 1.2658133506774902 img loss 1.2774548530578613 img loss 1.2170814275741577 img loss 1.283006191253662 img loss 1.2335662841796875 img loss 1.3219822645187378 img loss 1.2330938577651978 img loss 1.2427246570587158 img loss 1.2596845626831055 img loss 1.2493816614151 img loss 1.2178596258163452 img loss 1.243527889251709 img loss 1.2329154014587402 img loss 1.2737805843353271 img loss 1.2414872646331787 img loss 1.2826271057128906 img loss 1.2492308616638184 img loss 1.25803542137146 img loss 1.2426141500473022 img loss 1.241493582725525 img loss 1.2942062616348267 img loss 1.2544991970062256 img loss 1.2343496084213257 img loss 1.265598177909851 img loss 1.2738394737243652 {'loss': 1.2491, 'grad_norm': 0.23467426002025604, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4821416139602661 img loss 1.5413033962249756 img loss 1.5777506828308105 img loss 1.4751492738723755 img loss 1.4152170419692993 img loss 1.475368618965149 img loss 1.40888249874115 img loss 1.5634368658065796 img loss 1.5095795392990112 img loss 1.5504746437072754 img loss 1.5416628122329712 img loss 1.5186474323272705 img loss 1.5083727836608887 img loss 1.4669345617294312 img loss 1.6968846321105957 img loss 1.4913135766983032 img loss 1.5984433889389038 img loss 1.54574453830719 img loss 1.4479142427444458 img loss 1.494641661643982 img loss 1.483181357383728 img loss 1.6171501874923706 img loss 1.5010894536972046 img loss 1.444870114326477 img loss 1.4840388298034668 img loss 1.5974133014678955 img loss 1.5560286045074463 img loss 1.442766785621643 img loss 1.5227077007293701 img loss 1.532774567604065 img loss 1.5037741661071777 img loss 1.399006724357605 img loss 1.475471019744873 img loss 1.417024850845337 img loss 1.659286618232727 img loss 1.4217664003372192 img loss 1.4093343019485474 img loss 1.5017333030700684 img loss 1.4847379922866821 img loss 1.5204991102218628 img loss 1.6300240755081177 img loss 1.575343370437622 img loss 1.506751298904419 img loss 1.5548311471939087 img loss 1.4228394031524658 img loss 1.4285862445831299 img loss 1.6200711727142334 img loss 1.4110312461853027 img loss 1.5606677532196045 img loss 1.5212044715881348 img loss 1.5272901058197021 img loss 1.443143367767334 img loss 1.4448148012161255 img loss 1.4948666095733643 img loss 1.4635975360870361 img loss 1.5589667558670044 img loss 1.5428998470306396 img loss 1.4649540185928345 img loss 1.589928150177002 img loss 1.5312037467956543 img loss 1.56763756275177 img loss 1.5678085088729858 img loss 1.5341087579727173 img loss 1.489122986793518 img loss 1.3884402513504028 img loss 1.410666823387146 img loss 1.34986412525177 img loss 1.6211053133010864 img loss 1.6154630184173584 img loss 1.509921908378601 img loss 1.4880608320236206 img loss 1.5864942073822021 img loss 1.3712363243103027 img loss 1.3874894380569458 img loss 1.523170828819275 img loss 1.4035149812698364 img loss 1.4567972421646118 img loss 1.5851930379867554 img loss 1.418657898902893 img loss 1.4632898569107056 img loss 1.5424631834030151 img loss 1.3927315473556519 img loss 1.5131741762161255 img loss 1.4496204853057861 img loss 1.5065618753433228 img loss 1.4634215831756592 img loss 1.505690336227417 img loss 1.5026347637176514 img loss 1.423052191734314 img loss 1.4775614738464355 img loss 1.5953576564788818 img loss 1.5280667543411255 img loss 1.5279184579849243 img loss 1.4279202222824097 img loss 1.296434998512268 img loss 1.4924604892730713 img loss 1.4364259243011475 img loss 1.398192286491394 img loss 1.438081979751587 img loss 1.5186587572097778 img loss 1.4920766353607178 img loss 1.5573006868362427 img loss 1.585067868232727 img loss 1.5559853315353394 img loss 1.6165066957473755 img loss 1.4924919605255127 img loss 1.6047847270965576 img loss 1.3865838050842285 img loss 1.434874176979065 img loss 1.4721664190292358 img loss 1.3315520286560059 img loss 1.5310486555099487 img loss 1.636711597442627 img loss 1.5098118782043457 img loss 1.6410466432571411 img loss 1.5937296152114868 img loss 1.38474440574646 img loss 1.5709834098815918 img loss 1.6150386333465576 img loss 1.4849317073822021 img loss 1.496558427810669 img loss 1.621874451637268 img loss 1.486533284187317 img loss 1.442211389541626 img loss 1.5183732509613037 img loss 1.4159367084503174 img loss 1.4583803415298462 img loss 1.478704810142517 {'loss': 1.5013, 'grad_norm': 0.40273919701576233, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2638229131698608 img loss 1.2278245687484741 img loss 1.2029942274093628 img loss 1.2611689567565918 img loss 1.2708936929702759 img loss 1.1119332313537598 img loss 1.2299299240112305 img loss 1.182178020477295 img loss 1.2031490802764893 img loss 1.2447052001953125 img loss 1.1632086038589478 img loss 1.187311053276062 img loss 1.2343921661376953 img loss 1.2009741067886353 img loss 1.1525019407272339 img loss 1.2348703145980835 img loss 1.2142740488052368 img loss 1.180426001548767 img loss 1.1877788305282593 img loss 1.2049119472503662 img loss 1.2101387977600098 img loss 1.1912990808486938 img loss 1.2163584232330322 img loss 1.1830592155456543 img loss 1.196022629737854 img loss 1.3173911571502686 img loss 1.2418599128723145 img loss 1.2415916919708252 img loss 1.193406105041504 img loss 1.2021411657333374 img loss 1.2681719064712524 img loss 1.2039660215377808 img loss 1.2313220500946045 img loss 1.2292323112487793 img loss 1.2561372518539429 img loss 1.1746662855148315 img loss 1.2369599342346191 img loss 1.235644817352295 img loss 1.2639394998550415 img loss 1.260575771331787 img loss 1.1706234216690063 img loss 1.198449969291687 img loss 1.2458305358886719 img loss 1.2366876602172852 img loss 1.2537033557891846 img loss 1.1626592874526978 img loss 1.153908610343933 img loss 1.2353614568710327 img loss 1.25620698928833 img loss 1.232470154762268 img loss 1.2862350940704346 img loss 1.2071125507354736 img loss 1.1901485919952393 img loss 1.1960207223892212 img loss 1.204429268836975 img loss 1.1893185377120972 img loss 1.2389087677001953 img loss 1.1827504634857178 img loss 1.2037999629974365 img loss 1.1681158542633057 img loss 1.1979182958602905 img loss 1.2468559741973877 img loss 1.2599468231201172 img loss 1.2341206073760986 img loss 1.152044653892517 img loss 1.1417955160140991 img loss 1.2156933546066284 img loss 1.2374398708343506 img loss 1.1624397039413452 img loss 1.176916480064392 img loss 1.184334635734558 img loss 1.1966065168380737img loss 1.2552742958068848 img loss 1.249633550643921 img loss 1.1782630681991577 img loss 1.2429503202438354 img loss 1.1846654415130615 img loss 1.2008628845214844 img loss 1.2093899250030518 img loss 1.2147953510284424 img loss 1.1895134449005127 img loss 1.2258527278900146 img loss 1.1947569847106934 img loss 1.218221664428711 img loss 1.1804306507110596 img loss 1.1812747716903687 img loss 1.2336097955703735 img loss 1.2638568878173828 img loss 1.155116081237793 img loss 1.214384913444519 img loss 1.2492597103118896 img loss 1.2435649633407593 img loss 1.1736339330673218 img loss 1.1792494058609009 img loss 1.2449660301208496 img loss 1.210314393043518 img loss 1.2170339822769165 img loss 1.2239329814910889 img loss 1.1209195852279663 img loss 1.1548709869384766 img loss 1.1929638385772705 img loss 1.215759038925171 img loss 1.2649818658828735 img loss 1.1539076566696167 img loss 1.2196156978607178 img loss 1.1899670362472534 img loss 1.1153322458267212 img loss 1.1316943168640137 img loss 1.2478679418563843 img loss 1.2320737838745117 img loss 1.1939388513565063 img loss 1.2252012491226196 img loss 1.2124853134155273 img loss 1.22958242893219 img loss 1.2005324363708496 img loss 1.1805837154388428 img loss 1.2081084251403809 img loss 1.2852306365966797 img loss 1.189103364944458 img loss 1.1794145107269287 img loss 1.1853389739990234 img loss 1.2583956718444824 img loss 1.2111200094223022 img loss 1.1935526132583618 img loss 1.1809412240982056 img loss 1.1907554864883423 img loss 1.217627763748169 img loss 1.1672788858413696 {'loss': 1.2095, 'grad_norm': 0.22276344895362854, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.210465908050537 img loss 1.2239930629730225 img loss 1.1757938861846924 img loss 1.2785868644714355 img loss 1.2376247644424438 img loss 1.1487375497817993 img loss 1.2715364694595337 img loss 1.2413675785064697 img loss 1.2009350061416626 img loss 1.208768606185913 img loss 1.263292908668518 img loss 1.1907155513763428 img loss 1.181476354598999 img loss 1.2290194034576416 img loss 1.2081637382507324 img loss 1.1836016178131104 img loss 1.1848348379135132 img loss 1.1669811010360718 img loss 1.1748898029327393 img loss 1.2424545288085938 img loss 1.2732819318771362 img loss 1.2364463806152344 img loss 1.2681223154067993 img loss 1.1843966245651245 img loss 1.2003636360168457 img loss 1.199119210243225 img loss 1.1808537244796753 img loss 1.2287898063659668 img loss 1.2005741596221924 img loss 1.239758014678955 img loss 1.160576343536377 img loss 1.1887210607528687 img loss 1.1690481901168823 img loss 1.202317476272583 img loss 1.2317159175872803 img loss 1.2117552757263184 img loss 1.2184425592422485 img loss 1.2273228168487549 img loss 1.2284791469573975 img loss 1.1695530414581299 img loss 1.2055305242538452 img loss 1.18563711643219 img loss 1.1968066692352295 img loss 1.278913140296936 img loss 1.2802388668060303 img loss 1.2093241214752197 img loss 1.2572706937789917 img loss 1.2071263790130615 img loss 1.1960341930389404 img loss 1.248308539390564 img loss 1.2136768102645874 img loss 1.3064647912979126 img loss 1.2938191890716553 img loss 1.215863585472107 img loss 1.21007239818573 img loss 1.1982421875 img loss 1.3043568134307861 img loss 1.243019700050354 img loss 1.2576698064804077 img loss 1.2066103219985962 img loss 1.1943424940109253 img loss 1.2895272970199585 img loss 1.1834625005722046 img loss 1.2372615337371826 img loss 1.2298532724380493 img loss 1.2312347888946533 img loss 1.2276710271835327 img loss 1.2058597803115845 img loss 1.2032005786895752 img loss 1.2628302574157715 img loss 1.1874605417251587 img loss 1.1514767408370972 img loss 1.2108522653579712 img loss 1.2163918018341064 img loss 1.2343690395355225 img loss 1.1919097900390625 img loss 1.215706467628479 img loss 1.1518874168395996 img loss 1.2326754331588745 img loss 1.2106304168701172 img loss 1.206136703491211 img loss 1.2672828435897827 img loss 1.2479196786880493 img loss 1.2125765085220337 img loss 1.1744263172149658 img loss 1.2133605480194092 img loss 1.2669599056243896 img loss 1.2498583793640137 img loss 1.2511696815490723 img loss 1.2492815256118774 img loss 1.183073878288269 img loss 1.217528223991394 img loss 1.234708309173584 img loss 1.3017652034759521 img loss 1.230890154838562 img loss 1.2428969144821167 img loss 1.2270666360855103 img loss 1.1983044147491455 img loss 1.2743955850601196 img loss 1.2004966735839844 img loss 1.234311819076538 img loss 1.2410287857055664 img loss 1.2109508514404297 img loss 1.2785284519195557 img loss 1.2323527336120605 img loss 1.177809715270996 img loss 1.2539795637130737 img loss 1.14017915725708 img loss 1.1570929288864136 img loss 1.2363210916519165 img loss 1.241727352142334 img loss 1.2165780067443848 img loss 1.2120195627212524 img loss 1.219457983970642 img loss 1.1979048252105713 img loss 1.2309486865997314 img loss 1.2142250537872314 img loss 1.212625503540039 img loss 1.2203501462936401 img loss 1.198060393333435 img loss 1.238511562347412 img loss 1.1837384700775146 img loss 1.2272090911865234 img loss 1.2468127012252808 img loss 1.2644832134246826 img loss 1.2619171142578125 img loss 1.3068733215332031 img loss 1.234790563583374 {'loss': 1.2216, 'grad_norm': 0.22843658924102783, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2031803131103516 img loss 1.2562564611434937 img loss 1.2392109632492065 img loss 1.1479506492614746 img loss 1.2379944324493408 img loss 1.2424907684326172 img loss 1.318336844444275 img loss 1.1921112537384033 img loss 1.3271706104278564 img loss 1.2176635265350342 img loss 1.2266566753387451 img loss 1.272836446762085 img loss 1.1666053533554077 img loss 1.270250916481018 img loss 1.2037357091903687 img loss 1.2598398923873901 img loss 1.3002601861953735 img loss 1.1965254545211792 img loss 1.321345329284668 img loss 1.286839246749878 img loss 1.361633062362671 img loss 1.2759699821472168 img loss 1.2201142311096191 img loss 1.2492297887802124 img loss 1.2540743350982666 img loss 1.1626911163330078 img loss 1.207248568534851 img loss 1.2818882465362549 img loss 1.2991377115249634 img loss 1.2726913690567017 img loss 1.2248108386993408 img loss 1.2986810207366943 img loss 1.1967922449111938 img loss 1.2755951881408691 img loss 1.3055709600448608 img loss 1.3059732913970947 img loss 1.2955080270767212 img loss 1.1929832696914673 img loss 1.3801237344741821 img loss 1.3497216701507568 img loss 1.2730786800384521 img loss 1.2555668354034424 img loss 1.173052430152893 img loss 1.237992286682129 img loss 1.2569115161895752 img loss 1.2687376737594604 img loss 1.2461527585983276 img loss 1.2987688779830933 img loss 1.2702879905700684 img loss 1.2886199951171875 img loss 1.1806001663208008 img loss 1.2307277917861938 img loss 1.2933673858642578 img loss 1.3271147012710571 img loss 1.2014615535736084 img loss 1.235388994216919 img loss 1.2746999263763428 img loss 1.3833787441253662 img loss 1.2520313262939453 img loss 1.2288422584533691 img loss 1.2604539394378662 img loss 1.3150041103363037 img loss 1.2551873922348022 img loss 1.1986823081970215 img loss 1.2461233139038086 img loss 1.1815121173858643 img loss 1.1797202825546265 img loss 1.2835931777954102 img loss 1.2284204959869385 img loss 1.2568049430847168 img loss 1.1756932735443115 img loss 1.2481138706207275 img loss 1.2198989391326904 img loss 1.2190310955047607 img loss 1.18744695186615 img loss 1.2023776769638062 img loss 1.2497743368148804 img loss 1.2354739904403687 img loss 1.355570912361145 img loss 1.2202587127685547 img loss 1.1784629821777344 img loss 1.2502670288085938 img loss 1.2786977291107178 img loss 1.3295395374298096 img loss 1.3034652471542358 img loss 1.2959789037704468 img loss 1.1783431768417358 img loss 1.242647647857666 img loss 1.309070348739624 img loss 1.3410837650299072 img loss 1.188982367515564 img loss 1.2569624185562134 img loss 1.1974494457244873 img loss 1.3396779298782349 img loss 1.18436598777771 img loss 1.247410535812378 img loss 1.2457976341247559 img loss 1.280550479888916 img loss 1.1864627599716187 img loss 1.2271013259887695 img loss 1.1754558086395264 img loss 1.2177492380142212 img loss 1.3346779346466064 img loss 1.227759599685669 img loss 1.186488389968872img loss 1.2621166706085205 img loss 1.1955410242080688 img loss 1.362861156463623 img loss 1.2663780450820923 img loss 1.2431713342666626 img loss 1.295480728149414 img loss 1.3625949621200562 img loss 1.1882215738296509 img loss 1.1952779293060303 img loss 1.1844556331634521 img loss 1.2525123357772827 img loss 1.1397693157196045 img loss 1.2439044713974 img loss 1.2056515216827393 img loss 1.3353911638259888 img loss 1.1900911331176758 img loss 1.1883296966552734 img loss 1.209855556488037 img loss 1.2195783853530884 img loss 1.289254903793335 img loss 1.2449431419372559 img loss 1.237281084060669 img loss 1.2175538539886475 {'loss': 1.2494, 'grad_norm': 0.6448658108711243, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2714476585388184 img loss 1.1951823234558105 img loss 1.2845426797866821 img loss 1.2162740230560303 img loss 1.26815664768219 img loss 1.1648485660552979 img loss 1.2356085777282715 img loss 1.2114914655685425 img loss 1.2237480878829956 img loss 1.247146487236023 img loss 1.2622883319854736 img loss 1.2550493478775024 img loss 1.2593008279800415 img loss 1.2937672138214111 img loss 1.2137370109558105 img loss 1.2468076944351196 img loss 1.216753602027893 img loss 1.2148634195327759 img loss 1.2249479293823242 img loss 1.2622421979904175 img loss 1.241735816001892 img loss 1.3215395212173462 img loss 1.1754677295684814 img loss 1.2548880577087402 img loss 1.1428842544555664 img loss 1.2325644493103027 img loss 1.1706205606460571 img loss 1.2065472602844238 img loss 1.196205496788025 img loss 1.2382808923721313 img loss 1.2571839094161987 img loss 1.2348039150238037 img loss 1.3142523765563965 img loss 1.1831649541854858 img loss 1.2643566131591797 img loss 1.173531413078308 img loss 1.2347967624664307 img loss 1.231432557106018 img loss 1.1921218633651733 img loss 1.2732162475585938 img loss 1.2562706470489502 img loss 1.237881064414978 img loss 1.2541636228561401 img loss 1.2687561511993408 img loss 1.235429286956787 img loss 1.2055739164352417 img loss 1.2684531211853027 img loss 1.1898324489593506 img loss 1.3264174461364746 img loss 1.2330849170684814 img loss 1.223130226135254 img loss 1.215155005455017 img loss 1.197540044784546 img loss 1.2416495084762573 img loss 1.2448886632919312 img loss 1.223183512687683 img loss 1.250441074371338 img loss 1.2841309309005737 img loss 1.285860538482666 img loss 1.2146522998809814 img loss 1.2162889242172241 img loss 1.2462453842163086 img loss 1.2078208923339844 img loss 1.2119643688201904 img loss 1.2736485004425049 img loss 1.3456170558929443 img loss 1.2149661779403687 img loss 1.255393624305725 img loss 1.2449826002120972 img loss 1.2021865844726562 img loss 1.2685965299606323 img loss 1.2587521076202393 img loss 1.256115198135376 img loss 1.2084282636642456 img loss 1.2061837911605835 img loss 1.2063746452331543 img loss 1.2614046335220337 img loss 1.2015647888183594 img loss 1.2521616220474243img loss 1.2055596113204956 img loss 1.325008749961853 img loss 1.2219386100769043 img loss 1.2475526332855225 img loss 1.2600942850112915 img loss 1.2058347463607788 img loss 1.2361568212509155 img loss 1.1770813465118408 img loss 1.2317777872085571 img loss 1.3364745378494263 img loss 1.2298134565353394 img loss 1.2446222305297852 img loss 1.2556337118148804 img loss 1.2340017557144165 img loss 1.1676878929138184 img loss 1.2696346044540405 img loss 1.2817286252975464 img loss 1.2260998487472534 img loss 1.2623817920684814 img loss 1.3051280975341797 img loss 1.26045823097229 img loss 1.2904813289642334 img loss 1.2889915704727173 img loss 1.1472876071929932 img loss 1.2198070287704468 img loss 1.2085145711898804 img loss 1.2487678527832031 img loss 1.1990995407104492 img loss 1.1746567487716675 img loss 1.2631332874298096 img loss 1.2295777797698975 img loss 1.1941279172897339 img loss 1.2272415161132812 img loss 1.2898472547531128 img loss 1.2406946420669556 img loss 1.2167227268218994 img loss 1.281033992767334 img loss 1.2212380170822144 img loss 1.217403769493103 img loss 1.2483338117599487 img loss 1.224860429763794 img loss 1.340192437171936 img loss 1.2475851774215698 img loss 1.2371361255645752 img loss 1.2325305938720703 img loss 1.1696031093597412 img loss 1.1916570663452148 img loss 1.1156522035598755 img loss 1.1688073873519897 {'loss': 1.2361, 'grad_norm': 0.22949786484241486, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3811447620391846 img loss 1.3180488348007202 img loss 1.3470170497894287 img loss 1.289354681968689 img loss 1.2940199375152588 img loss 1.3179700374603271 img loss 1.2958784103393555 img loss 1.2606945037841797 img loss 1.3586137294769287 img loss 1.4195750951766968 img loss 1.3698503971099854 img loss 1.2801183462142944 img loss 1.3804677724838257 img loss 1.4443835020065308 img loss 1.3651167154312134 img loss 1.265297770500183 img loss 1.3588573932647705 img loss 1.2797998189926147 img loss 1.3510385751724243 img loss 1.2460217475891113 img loss 1.280240774154663 img loss 1.3320705890655518 img loss 1.334462285041809 img loss 1.3266772031784058 img loss 1.3349031209945679 img loss 1.3758927583694458 img loss 1.3533285856246948 img loss 1.4267268180847168 img loss 1.268933653831482 img loss 1.4359108209609985 img loss 1.3509013652801514 img loss 1.4177792072296143 img loss 1.3525445461273193 img loss 1.3778984546661377 img loss 1.321836233139038 img loss 1.4175993204116821 img loss 1.2462142705917358 img loss 1.2685202360153198 img loss 1.2761567831039429 img loss 1.3765302896499634 img loss 1.2849613428115845 img loss 1.2410001754760742 img loss 1.3955789804458618 img loss 1.3638862371444702 img loss 1.2442264556884766 img loss 1.3079605102539062 img loss 1.2994502782821655img loss 1.4215714931488037 img loss 1.3733478784561157 img loss 1.3945600986480713 img loss 1.2401554584503174 img loss 1.3271220922470093 img loss 1.2996611595153809 img loss 1.2355570793151855 img loss 1.4692606925964355 img loss 1.3309967517852783 img loss 1.441800832748413 img loss 1.2959851026535034 img loss 1.3102871179580688 img loss 1.2592800855636597 img loss 1.4282128810882568 img loss 1.29757559299469 img loss 1.3065916299819946 img loss 1.319058895111084 img loss 1.244500756263733 img loss 1.339647650718689 img loss 1.3735003471374512 img loss 1.2824745178222656 img loss 1.400590419769287 img loss 1.2551379203796387 img loss 1.3152897357940674 img loss 1.3356375694274902 img loss 1.3075363636016846 img loss 1.2693172693252563 img loss 1.2343323230743408 img loss 1.3345965147018433 img loss 1.3140127658843994 img loss 1.3179435729980469 img loss 1.2854427099227905 img loss 1.2271009683609009 img loss 1.3500126600265503 img loss 1.3476195335388184 img loss 1.4633610248565674 img loss 1.320111632347107 img loss 1.303628921508789 img loss 1.3269075155258179 img loss 1.3168777227401733 img loss 1.3437409400939941 img loss 1.2966439723968506 img loss 1.3282579183578491 img loss 1.333929419517517 img loss 1.2510828971862793 img loss 1.2554773092269897 img loss 1.338568091392517 img loss 1.359861135482788 img loss 1.2849444150924683 img loss 1.3347599506378174 img loss 1.296364426612854 img loss 1.372162938117981 img loss 1.3449337482452393 img loss 1.405700445175171 img loss 1.4236655235290527 img loss 1.3119081258773804 img loss 1.475258469581604 img loss 1.4246889352798462 img loss 1.358580470085144 img loss 1.4501491785049438 img loss 1.3702775239944458 img loss 1.3213392496109009 img loss 1.22821044921875 img loss 1.3108587265014648 img loss 1.3846136331558228 img loss 1.3455380201339722 img loss 1.3299816846847534 img loss 1.478108286857605 img loss 1.328094720840454 img loss 1.3059287071228027 img loss 1.431038498878479 img loss 1.2833713293075562 img loss 1.3495211601257324 img loss 1.3189442157745361 img loss 1.286304235458374 img loss 1.4201979637145996 img loss 1.354465126991272 img loss 1.3347735404968262 img loss 1.4803757667541504 img loss 1.342474341392517 img loss 1.305430293083191 {'loss': 1.3356, 'grad_norm': 0.2693268656730652, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2477600574493408 img loss 1.2648051977157593 img loss 1.2239787578582764 img loss 1.2086751461029053 img loss 1.2135413885116577 img loss 1.2147718667984009 img loss 1.1742162704467773 img loss 1.190712809562683 img loss 1.22309148311615 img loss 1.212349772453308 img loss 1.1348857879638672 img loss 1.24790620803833 img loss 1.2688010931015015 img loss 1.1707805395126343 img loss 1.2221239805221558 img loss 1.3009439706802368 img loss 1.198616623878479 img loss 1.2126585245132446 img loss 1.219224214553833 img loss 1.2316726446151733 img loss 1.165995478630066 img loss 1.1987552642822266 img loss 1.2603625059127808 img loss 1.2749065160751343 img loss 1.1987533569335938 img loss 1.204515814781189 img loss 1.192974328994751 img loss 1.1852272748947144 img loss 1.2434511184692383 img loss 1.2184596061706543 img loss 1.2667509317398071 img loss 1.3056128025054932 img loss 1.2052472829818726 img loss 1.1976391077041626 img loss 1.2037830352783203 img loss 1.2151068449020386 img loss 1.1995909214019775 img loss 1.0955556631088257 img loss 1.1747490167617798 img loss 1.2106093168258667 img loss 1.28520667552948 img loss 1.1582043170928955 img loss 1.2257746458053589 img loss 1.262946367263794 img loss 1.1722197532653809 img loss 1.2512965202331543 img loss 1.1532478332519531 img loss 1.2243589162826538 img loss 1.1944611072540283 img loss 1.1653025150299072 img loss 1.188683032989502 img loss 1.2504870891571045 img loss 1.2066993713378906 img loss 1.2917321920394897 img loss 1.2622379064559937 img loss 1.1561338901519775 img loss 1.2665395736694336 img loss 1.1239513158798218 img loss 1.187258005142212 img loss 1.242509365081787 img loss 1.174497127532959 img loss 1.2210015058517456 img loss 1.2597002983093262 img loss 1.271847128868103 img loss 1.1523841619491577 img loss 1.2311407327651978 img loss 1.1082701683044434 img loss 1.2497040033340454 img loss 1.181342601776123 img loss 1.2538926601409912 img loss 1.213008165359497 img loss 1.1663936376571655 img loss 1.1581026315689087 img loss 1.174430251121521 img loss 1.23086416721344 img loss 1.2411640882492065 img loss 1.146567940711975 img loss 1.1872776746749878 img loss 1.1821701526641846 img loss 1.197509765625 img loss 1.2567360401153564 img loss 1.1617200374603271 img loss 1.2257236242294312 img loss 1.1756826639175415 img loss 1.2270973920822144 img loss 1.2030380964279175 img loss 1.1998926401138306 img loss 1.230388879776001 img loss 1.1244323253631592 img loss 1.2212765216827393 img loss 1.165982961654663 img loss 1.2713714838027954 img loss 1.2708497047424316 img loss 1.2597150802612305 img loss 1.2716856002807617 img loss 1.1915901899337769 img loss 1.285284399986267 img loss 1.251868486404419 img loss 1.1703579425811768 img loss 1.189089059829712 img loss 1.2271130084991455 img loss 1.2777340412139893 img loss 1.245351791381836 img loss 1.184842824935913 img loss 1.1298282146453857 img loss 1.2948007583618164 img loss 1.1522552967071533 img loss 1.1109387874603271 img loss 1.1187976598739624 img loss 1.2231098413467407 img loss 1.2175225019454956 img loss 1.1678622961044312 img loss 1.176661729812622 img loss 1.1768989562988281 img loss 1.1608383655548096 img loss 1.3173288106918335 img loss 1.2900015115737915 img loss 1.1362190246582031 img loss 1.1934890747070312 img loss 1.1798784732818604 img loss 1.2182836532592773 img loss 1.243265986442566 img loss 1.2678359746932983 img loss 1.2533386945724487 img loss 1.2625268697738647 img loss 1.1662483215332031 img loss 1.1701401472091675 img loss 1.2615593671798706 {'loss': 1.2113, 'grad_norm': 0.7671449184417725, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.394829273223877 img loss 1.3495484590530396 img loss 1.3620213270187378 img loss 1.3505748510360718 img loss 1.3380261659622192 img loss 1.3719478845596313 img loss 1.3178234100341797 img loss 1.4517616033554077 img loss 1.5479246377944946 img loss 1.3736987113952637 img loss 1.3824490308761597 img loss 1.3220925331115723 img loss 1.4309020042419434 img loss 1.3884164094924927 img loss 1.3691648244857788 img loss 1.3798753023147583 img loss 1.3650792837142944 img loss 1.3374391794204712 img loss 1.3679652214050293 img loss 1.327569603919983 img loss 1.3606903553009033 img loss 1.4095988273620605 img loss 1.4321463108062744 img loss 1.3668296337127686 img loss 1.340343952178955 img loss 1.3945573568344116 img loss 1.3922263383865356 img loss 1.4559651613235474 img loss 1.3270158767700195 img loss 1.4159939289093018 img loss 1.2966889142990112 img loss 1.3834612369537354 img loss 1.454939603805542 img loss 1.201234221458435 img loss 1.343870759010315 img loss 1.3700382709503174 img loss 1.407364010810852 img loss 1.3231301307678223 img loss 1.3935741186141968 img loss 1.2939420938491821 img loss 1.431334376335144 img loss 1.3140251636505127 img loss 1.332709550857544 img loss 1.3778274059295654 img loss 1.3339720964431763 img loss 1.413631796836853 img loss 1.5136654376983643 img loss 1.344309687614441 img loss 1.493377923965454 img loss 1.389617681503296 img loss 1.364726185798645 img loss 1.287437915802002 img loss 1.5516782999038696 img loss 1.3030070066452026 img loss 1.4419859647750854 img loss 1.4242066144943237 img loss 1.4099472761154175 img loss 1.4618881940841675img loss 1.4431698322296143 img loss 1.421819806098938 img loss 1.3846125602722168 img loss 1.4477342367172241 img loss 1.4149709939956665 img loss 1.383700966835022 img loss 1.3551055192947388 img loss 1.435065507888794 img loss 1.3415805101394653 img loss 1.4129424095153809 img loss 1.3071407079696655 img loss 1.3802415132522583 img loss 1.4545912742614746 img loss 1.3951756954193115 img loss 1.4450643062591553 img loss 1.3362778425216675 img loss 1.3529601097106934 img loss 1.390086054801941 img loss 1.3346010446548462 img loss 1.2900749444961548 img loss 1.3425079584121704 img loss 1.508266806602478 img loss 1.3869907855987549 img loss 1.4359997510910034 img loss 1.2858024835586548 img loss 1.413223385810852 img loss 1.3011707067489624 img loss 1.2582111358642578 img loss 1.4263851642608643 img loss 1.4796475172042847 img loss 1.2230710983276367 img loss 1.3007690906524658 img loss 1.3920400142669678 img loss 1.2987140417099 img loss 1.4883393049240112 img loss 1.3606230020523071 img loss 1.3173702955245972 img loss 1.4093711376190186 img loss 1.3200254440307617 img loss 1.3739131689071655 img loss 1.4003348350524902 img loss 1.3313357830047607 img loss 1.4896684885025024 img loss 1.482675313949585 img loss 1.378943920135498 img loss 1.4084218740463257 img loss 1.4452707767486572 img loss 1.3957773447036743 img loss 1.324207067489624 img loss 1.4045846462249756 img loss 1.3202097415924072 img loss 1.500686764717102 img loss 1.2945632934570312 img loss 1.4106676578521729 img loss 1.3991533517837524 img loss 1.415584683418274 img loss 1.3038692474365234 img loss 1.287195086479187 img loss 1.3467355966567993 img loss 1.4447429180145264 img loss 1.40583074092865 img loss 1.4397398233413696 img loss 1.3513637781143188 img loss 1.290120005607605 img loss 1.469462275505066 img loss 1.4680286645889282 img loss 1.4429701566696167 img loss 1.4221765995025635 img loss 1.3625972270965576 img loss 1.4558392763137817 {'loss': 1.383, 'grad_norm': 0.29505735635757446, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.36201012134552 img loss 1.4040617942810059 img loss 1.3295406103134155 img loss 1.2474641799926758 img loss 1.3983310461044312 img loss 1.3260334730148315 img loss 1.4314147233963013 img loss 1.3325811624526978 img loss 1.3325681686401367 img loss 1.3554127216339111 img loss 1.2608215808868408 img loss 1.3228847980499268 img loss 1.288464069366455 img loss 1.3213140964508057 img loss 1.370734453201294 img loss 1.352508783340454 img loss 1.321923017501831 img loss 1.4543864727020264 img loss 1.4379712343215942 img loss 1.3040404319763184 img loss 1.2640576362609863 img loss 1.2755571603775024 img loss 1.4423493146896362 img loss 1.346749186515808 img loss 1.2858065366744995 img loss 1.3745850324630737 img loss 1.2935203313827515 img loss 1.3105340003967285 img loss 1.3481780290603638 img loss 1.2425330877304077 img loss 1.2208083868026733 img loss 1.284348964691162 img loss 1.3761013746261597 img loss 1.3374593257904053 img loss 1.3234913349151611 img loss 1.3004461526870728 img loss 1.3602917194366455 img loss 1.2972878217697144 img loss 1.4717395305633545 img loss 1.4075998067855835 img loss 1.403410792350769 img loss 1.5406458377838135 img loss 1.3138697147369385 img loss 1.4015276432037354 img loss 1.43024480342865 img loss 1.3317259550094604 img loss 1.2792744636535645 img loss 1.3167766332626343 img loss 1.324360728263855 img loss 1.3246639966964722 img loss 1.286226749420166 img loss 1.414561152458191 img loss 1.356723666191101 img loss 1.3159598112106323 img loss 1.3786438703536987 img loss 1.2236454486846924 img loss 1.2961004972457886 img loss 1.4485676288604736 img loss 1.378507137298584 img loss 1.3569130897521973 img loss 1.3386601209640503 img loss 1.408532738685608 img loss 1.2220680713653564 img loss 1.2963454723358154 img loss 1.3192838430404663 img loss 1.271928071975708 img loss 1.2401061058044434 img loss 1.28349769115448 img loss 1.2218470573425293 img loss 1.4747482538223267 img loss 1.3683807849884033 img loss 1.2977867126464844 img loss 1.2102545499801636 img loss 1.2382357120513916 img loss 1.3854575157165527 img loss 1.34064781665802 img loss 1.2555631399154663 img loss 1.3152401447296143 img loss 1.2826728820800781 img loss 1.3663662672042847 img loss 1.2780872583389282 img loss 1.4088667631149292 img loss 1.3786877393722534 img loss 1.2993004322052002 img loss 1.5285885334014893 img loss 1.3728044033050537 img loss 1.2877159118652344 img loss 1.4032765626907349 img loss 1.2242636680603027 img loss 1.3161702156066895 img loss 1.372761845588684 img loss 1.3361438512802124 img loss 1.4026631116867065 img loss 1.4908404350280762 img loss 1.4027804136276245 img loss 1.340378999710083 img loss 1.273148775100708 img loss 1.404059886932373 img loss 1.3458036184310913 img loss 1.3685730695724487 img loss 1.408493161201477 img loss 1.3126113414764404 img loss 1.3688997030258179 img loss 1.3919942378997803 img loss 1.358494520187378 img loss 1.247772216796875 img loss 1.2855160236358643 img loss 1.263683557510376 img loss 1.2941293716430664 img loss 1.3542568683624268 img loss 1.3058700561523438 img loss 1.3167505264282227 img loss 1.307084560394287 img loss 1.318522334098816 img loss 1.2994143962860107 img loss 1.2756366729736328 img loss 1.2994869947433472 img loss 1.2192026376724243 img loss 1.2674705982208252 img loss 1.316202998161316 img loss 1.4737050533294678 img loss 1.43820059299469 img loss 1.3403637409210205 img loss 1.3441392183303833 img loss 1.3266749382019043 img loss 1.404700756072998 img loss 1.4508850574493408 img loss 1.3560118675231934 {'loss': 1.3387, 'grad_norm': 0.5363025069236755, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4162055253982544 img loss 1.3284519910812378 img loss 1.4664647579193115 img loss 1.4244990348815918 img loss 1.5373969078063965 img loss 1.4689561128616333 img loss 1.3862431049346924 img loss 1.384071946144104 img loss 1.3712575435638428 img loss 1.416058897972107 img loss 1.3497728109359741 img loss 1.4729630947113037 img loss 1.4968830347061157 img loss 1.4107705354690552 img loss 1.3730837106704712 img loss 1.4400858879089355 img loss 1.4501855373382568 img loss 1.4349781274795532 img loss 1.5460107326507568 img loss 1.48984694480896 img loss 1.3689348697662354 img loss 1.3868409395217896 img loss 1.451063632965088 img loss 1.4350602626800537 img loss 1.4438750743865967 img loss 1.4660696983337402 img loss 1.321358323097229 img loss 1.4121339321136475 img loss 1.347917079925537 img loss 1.4519283771514893 img loss 1.543317198753357 img loss 1.510496973991394 img loss 1.41859769821167 img loss 1.442897081375122 img loss 1.500413179397583 img loss 1.4149407148361206 img loss 1.4921292066574097 img loss 1.34627366065979 img loss 1.400219440460205 img loss 1.4247382879257202 img loss 1.3902631998062134 img loss 1.316714882850647 img loss 1.4534097909927368 img loss 1.4833629131317139 img loss 1.4871121644973755 img loss 1.4905544519424438 img loss 1.4724652767181396 img loss 1.5594414472579956 img loss 1.3155226707458496 img loss 1.468683123588562 img loss 1.4554131031036377 img loss 1.3830128908157349 img loss 1.333936333656311 img loss 1.4593662023544312 img loss 1.3241174221038818 img loss 1.4272406101226807 img loss 1.392026662826538 img loss 1.5419402122497559 img loss 1.446978211402893 img loss 1.3858201503753662 img loss 1.386393427848816 img loss 1.4584453105926514 img loss 1.5015403032302856 img loss 1.439455509185791 img loss 1.4401965141296387 img loss 1.5090676546096802 img loss 1.3973456621170044 img loss 1.4058648347854614 img loss 1.4184277057647705 img loss 1.5987048149108887 img loss 1.4654933214187622 img loss 1.3777676820755005 img loss 1.4269206523895264 img loss 1.2513083219528198 img loss 1.3405543565750122 img loss 1.4528244733810425 img loss 1.2965799570083618 img loss 1.5886893272399902 img loss 1.4462968111038208 img loss 1.4345320463180542 img loss 1.3480898141860962 img loss 1.3953803777694702 img loss 1.471993088722229 img loss 1.4525929689407349 img loss 1.4137485027313232 img loss 1.2885576486587524 img loss 1.512610912322998 img loss 1.4056380987167358 img loss 1.476265549659729 img loss 1.43472158908844 img loss 1.387825608253479 img loss 1.4897176027297974 img loss 1.503714680671692 img loss 1.3874539136886597 img loss 1.4154397249221802 img loss 1.4952374696731567 img loss 1.482586145401001 img loss 1.5242687463760376 img loss 1.3626981973648071 img loss 1.364425778388977 img loss 1.5225803852081299 img loss 1.4100838899612427 img loss 1.34663724899292 img loss 1.406532883644104 img loss 1.4712737798690796 img loss 1.3684145212173462 img loss 1.5060023069381714 img loss 1.5701477527618408 img loss 1.396704077720642 img loss 1.467405915260315 img loss 1.5288206338882446 img loss 1.4415810108184814 img loss 1.4400842189788818 img loss 1.469942569732666 img loss 1.4680081605911255 img loss 1.4047445058822632 img loss 1.382574439048767 img loss 1.4879249334335327 img loss 1.4772217273712158 img loss 1.3210670948028564 img loss 1.3072398900985718 img loss 1.5516799688339233 img loss 1.3081711530685425 img loss 1.4771374464035034 img loss 1.3831204175949097 img loss 1.4423261880874634 img loss 1.3796509504318237 img loss 1.4571443796157837 {'loss': 1.4318, 'grad_norm': 0.3126286566257477, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.861957311630249 img loss 1.737778663635254 img loss 1.5763490200042725 img loss 1.8080610036849976 img loss 1.905718445777893 img loss 1.9767032861709595 img loss 1.8948009014129639 img loss 1.6677477359771729 img loss 1.7890832424163818 img loss 1.8753739595413208 img loss 1.8343119621276855 img loss 1.6943002939224243 img loss 1.746762752532959 img loss 1.6960797309875488 img loss 1.8665508031845093 img loss 1.8388957977294922 img loss 1.8519010543823242 img loss 1.9374867677688599 img loss 1.9025386571884155 img loss 1.935442566871643 img loss 1.9096037149429321 img loss 1.7997993230819702 img loss 1.8257665634155273 img loss 1.5708848237991333 img loss 1.7466917037963867 img loss 1.8172922134399414 img loss 1.8135095834732056 img loss 1.7320160865783691 img loss 1.8070781230926514 img loss 1.6589713096618652 img loss 1.7598938941955566 img loss 1.946357250213623 img loss 1.7932502031326294 img loss 1.9694318771362305 img loss 1.6657192707061768 img loss 1.7559049129486084 img loss 1.766581654548645 img loss 1.819222092628479 img loss 1.7210325002670288 img loss 1.979030728340149 img loss 1.9002797603607178 img loss 1.8976426124572754 img loss 1.7999906539916992 img loss 1.8289839029312134 img loss 1.7237026691436768 img loss 1.7793726921081543 img loss 1.8528867959976196 img loss 2.007025957107544 img loss 1.8556044101715088 img loss 1.8653861284255981 img loss 1.7616512775421143 img loss 1.8949525356292725 img loss 1.7110602855682373 img loss 1.8839106559753418 img loss 1.7425098419189453 img loss 1.7969191074371338 img loss 1.7524036169052124 img loss 1.7242511510849 img loss 1.7320438623428345 img loss 1.7940664291381836 img loss 1.7209465503692627 img loss 1.7216745615005493 img loss 1.7852590084075928 img loss 1.94523024559021 img loss 1.833216905593872 img loss 1.8432179689407349 img loss 1.5822829008102417 img loss 1.8344768285751343 img loss 1.6967103481292725 img loss 1.789646863937378 img loss 1.7153964042663574 img loss 1.744175910949707 img loss 1.8375669717788696 img loss 1.8202035427093506 img loss 1.7280280590057373 img loss 1.7900152206420898 img loss 1.8143880367279053 img loss 1.8391776084899902 img loss 1.8366893529891968 img loss 1.7438764572143555 img loss 1.84775710105896 img loss 1.7470542192459106 img loss 1.718227744102478 img loss 1.821386456489563 img loss 1.8264373540878296 img loss 1.6737431287765503 img loss 1.6915725469589233 img loss 2.04282283782959 img loss 1.8210920095443726 img loss 1.8095672130584717 img loss 1.7950351238250732 img loss 1.8757171630859375 img loss 1.7846252918243408 img loss 1.850969910621643 img loss 1.94544517993927 img loss 2.0006396770477295 img loss 1.9088797569274902 img loss 1.659462332725525 img loss 1.693973183631897 img loss 1.7594707012176514 img loss 1.8974072933197021 img loss 1.8280277252197266 img loss 1.887093186378479 img loss 1.9219170808792114 img loss 1.9879581928253174 img loss 1.6768381595611572 img loss 1.857853889465332 img loss 1.8415753841400146 img loss 1.871830701828003 img loss 1.783705711364746 img loss 1.7928696870803833 img loss 1.6614139080047607 img loss 1.9283783435821533 img loss 1.9304927587509155 img loss 1.7467682361602783 img loss 1.8779455423355103 img loss 1.6976830959320068 img loss 2.011007070541382 img loss 1.820063591003418 img loss 1.8288052082061768 img loss 1.7552865743637085 img loss 1.7669329643249512 img loss 1.6766839027404785 img loss 2.0281338691711426 img loss 1.6091282367706299 img loss 1.736956238746643 img loss 1.9310121536254883 img loss 1.8056303262710571 {'loss': 1.8095, 'grad_norm': 0.30988621711730957, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2886682748794556 img loss 1.176235556602478 img loss 1.2570427656173706 img loss 1.2459462881088257 img loss 1.301471471786499 img loss 1.2494754791259766 img loss 1.2826279401779175 img loss 1.2205333709716797 img loss 1.278548002243042 img loss 1.2712583541870117 img loss 1.2335246801376343 img loss 1.2290763854980469 img loss 1.245720386505127 img loss 1.243842363357544 img loss 1.2574774026870728 img loss 1.2585582733154297 img loss 1.2551944255828857 img loss 1.2743934392929077 img loss 1.223354697227478 img loss 1.2532771825790405 img loss 1.283199667930603 img loss 1.3334888219833374 img loss 1.2731873989105225 img loss 1.2491706609725952 img loss 1.1477410793304443 img loss 1.2774076461791992 img loss 1.2804737091064453 img loss 1.3099043369293213 img loss 1.1558588743209839 img loss 1.302734375 img loss 1.2074458599090576 img loss 1.2353224754333496 img loss 1.2091987133026123 img loss 1.254177451133728 img loss 1.2132986783981323 img loss 1.2155659198760986 img loss 1.2628971338272095 img loss 1.2485474348068237 img loss 1.1752103567123413 img loss 1.1998162269592285 img loss 1.2324148416519165 img loss 1.27484929561615 img loss 1.270257830619812 img loss 1.2444924116134644 img loss 1.1998686790466309 img loss 1.2057292461395264 img loss 1.2456403970718384 img loss 1.2835047245025635 img loss 1.27680242061615 img loss 1.2303435802459717 img loss 1.2113450765609741 img loss 1.303082823753357 img loss 1.2809948921203613 img loss 1.2355225086212158 img loss 1.2289482355117798 img loss 1.265624761581421 img loss 1.3025416135787964 img loss 1.2453663349151611 img loss 1.2092502117156982 img loss 1.3042234182357788 img loss 1.270097017288208 img loss 1.2169101238250732 img loss 1.2933998107910156 img loss 1.2163498401641846 img loss 1.2166938781738281 img loss 1.1610980033874512 img loss 1.1872329711914062 img loss 1.2751941680908203 img loss 1.253819227218628 img loss 1.2530186176300049 img loss 1.2376701831817627 img loss 1.2739660739898682 img loss 1.2086727619171143 img loss 1.2509297132492065 img loss 1.2459783554077148 img loss 1.3223114013671875 img loss 1.2591760158538818 img loss 1.2215476036071777 img loss 1.2112764120101929 img loss 1.2414711713790894 img loss 1.2377746105194092 img loss 1.1797165870666504 img loss 1.206925868988037 img loss 1.2267755270004272 img loss 1.2132335901260376 img loss 1.2373236417770386 img loss 1.2575422525405884 img loss 1.2196476459503174 img loss 1.294238805770874 img loss 1.2908909320831299 img loss 1.2648953199386597 img loss 1.2307486534118652 img loss 1.2679165601730347 img loss 1.1917308568954468 img loss 1.172574758529663 img loss 1.2113854885101318 img loss 1.2632099390029907 img loss 1.2182462215423584 img loss 1.27825927734375 img loss 1.2889784574508667 img loss 1.199080467224121 img loss 1.2485460042953491 img loss 1.2356067895889282 img loss 1.2982096672058105 img loss 1.2178024053573608 img loss 1.2340837717056274 img loss 1.234161376953125 img loss 1.2392297983169556 img loss 1.2577885389328003 img loss 1.2395477294921875 img loss 1.265134572982788 img loss 1.2377872467041016 img loss 1.2299808263778687 img loss 1.201941967010498 img loss 1.1924688816070557 img loss 1.2207475900650024 img loss 1.2352955341339111 img loss 1.2413491010665894 img loss 1.3038984537124634 img loss 1.223070502281189 img loss 1.2162424325942993 img loss 1.2491859197616577 img loss 1.2729580402374268 img loss 1.2571367025375366 img loss 1.3115251064300537 img loss 1.1958824396133423 img loss 1.2801549434661865 img loss 1.3215439319610596 {'loss': 1.245, 'grad_norm': 0.25446662306785583, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3679696321487427 img loss 1.3579407930374146 img loss 1.272397518157959 img loss 1.3004209995269775 img loss 1.3496195077896118 img loss 1.3526180982589722 img loss 1.3294196128845215 img loss 1.3249008655548096 img loss 1.2728277444839478 img loss 1.3890204429626465 img loss 1.3451311588287354 img loss 1.3266600370407104 img loss 1.4051239490509033 img loss 1.3316773176193237 img loss 1.407885193824768 img loss 1.3751055002212524 img loss 1.3667644262313843 img loss 1.3551430702209473 img loss 1.3905327320098877 img loss 1.3571431636810303 img loss 1.3711186647415161 img loss 1.3423631191253662 img loss 1.414566159248352 img loss 1.407356858253479 img loss 1.341029405593872 img loss 1.2616994380950928 img loss 1.3707760572433472 img loss 1.3366138935089111 img loss 1.3613032102584839 img loss 1.3492602109909058 img loss 1.3158406019210815 img loss 1.3941738605499268 img loss 1.497863531112671 img loss 1.4556477069854736 img loss 1.37213933467865 img loss 1.299129843711853 img loss 1.527773380279541 img loss 1.3040387630462646 img loss 1.5134023427963257 img loss 1.3479154109954834 img loss 1.3557559251785278 img loss 1.4255013465881348 img loss 1.3697049617767334 img loss 1.3724161386489868 img loss 1.3860650062561035 img loss 1.304888129234314 img loss 1.4187605381011963 img loss 1.434912085533142 img loss 1.4110770225524902 img loss 1.3946338891983032 img loss 1.3345606327056885 img loss 1.48703134059906 img loss 1.3384062051773071 img loss 1.4724470376968384 img loss 1.3627604246139526 img loss 1.343314290046692 img loss 1.358516812324524 img loss 1.3501639366149902 img loss 1.3337842226028442 img loss 1.3547910451889038 img loss 1.3204236030578613 img loss 1.3590816259384155 img loss 1.3089302778244019 img loss 1.3977618217468262 img loss 1.3994001150131226 img loss 1.3329825401306152 img loss 1.3777908086776733 img loss 1.393571376800537 img loss 1.3401399850845337 img loss 1.36660635471344 img loss 1.393699049949646 img loss 1.4125103950500488 img loss 1.3641164302825928 img loss 1.4441629648208618 img loss 1.3767937421798706 img loss 1.3994791507720947 img loss 1.4243390560150146 img loss 1.3857923746109009 img loss 1.4078963994979858 img loss 1.317920446395874 img loss 1.3464781045913696 img loss 1.3593151569366455 img loss 1.380425214767456 img loss 1.4250246286392212 img loss 1.3003106117248535 img loss 1.4621976613998413 img loss 1.3980244398117065 img loss 1.3675258159637451 img loss 1.3578436374664307 img loss 1.4497151374816895 img loss 1.2196508646011353 img loss 1.2462323904037476 img loss 1.3353711366653442 img loss 1.4557931423187256 img loss 1.2438116073608398 img loss 1.3173757791519165 img loss 1.331165075302124 img loss 1.292876958847046 img loss 1.3087185621261597 img loss 1.2792840003967285 img loss 1.246996521949768 img loss 1.3143510818481445 img loss 1.2723840475082397 img loss 1.2354004383087158 img loss 1.324296236038208 img loss 1.3968111276626587 img loss 1.3139317035675049 img loss 1.3094614744186401 img loss 1.373664379119873 img loss 1.4054757356643677 img loss 1.3039698600769043 img loss 1.2724277973175049 img loss 1.4374388456344604 img loss 1.3055561780929565 img loss 1.3069634437561035 img loss 1.4049235582351685 img loss 1.3485562801361084 img loss 1.394699215888977 img loss 1.287431001663208 img loss 1.361711025238037 img loss 1.3745191097259521 img loss 1.3766392469406128 img loss 1.3122602701187134 img loss 1.3798221349716187 img loss 1.3038336038589478 img loss 1.3097093105316162 img loss 1.367552638053894 img loss 1.397026538848877 {'loss': 1.3595, 'grad_norm': 0.5551686882972717, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.374308466911316 img loss 1.2866874933242798 img loss 1.4081461429595947 img loss 1.3784117698669434 img loss 1.3609429597854614 img loss 1.3228892087936401 img loss 1.2849457263946533 img loss 1.293644666671753 img loss 1.3925501108169556 img loss 1.3850618600845337 img loss 1.551055669784546 img loss 1.4198578596115112 img loss 1.4456963539123535 img loss 1.4187170267105103 img loss 1.3572723865509033 img loss 1.3857438564300537 img loss 1.3698245286941528 img loss 1.335813283920288 img loss 1.3639557361602783 img loss 1.4548375606536865 img loss 1.3695834875106812 img loss 1.3481895923614502 img loss 1.4163734912872314 img loss 1.4783265590667725 img loss 1.4291532039642334 img loss 1.3596608638763428 img loss 1.3938078880310059 img loss 1.3292701244354248 img loss 1.3694682121276855 img loss 1.4151475429534912 img loss 1.3573435544967651 img loss 1.3702733516693115 img loss 1.4747254848480225 img loss 1.4087597131729126img loss 1.3804495334625244 img loss 1.3751527070999146 img loss 1.4831976890563965 img loss 1.3723877668380737 img loss 1.329959750175476 img loss 1.4143922328948975 img loss 1.3674396276474 img loss 1.5075745582580566 img loss 1.3446599245071411 img loss 1.332047939300537 img loss 1.4119881391525269 img loss 1.328091025352478 img loss 1.4934055805206299 img loss 1.3169829845428467 img loss 1.3478715419769287 img loss 1.336795449256897 img loss 1.3109402656555176 img loss 1.3922330141067505 img loss 1.4594991207122803 img loss 1.367533802986145 img loss 1.4521385431289673 img loss 1.243994116783142 img loss 1.4566962718963623 img loss 1.4429280757904053 img loss 1.3518985509872437 img loss 1.5846894979476929 img loss 1.3614510297775269 img loss 1.4569591283798218 img loss 1.4416145086288452 img loss 1.526068091392517 img loss 1.4907758235931396 img loss 1.4400330781936646 img loss 1.355762004852295 img loss 1.2918649911880493 img loss 1.361884593963623 img loss 1.403143286705017 img loss 1.4281147718429565 img loss 1.3825651407241821 img loss 1.4212476015090942 img loss 1.363594889640808 img loss 1.507734775543213 img loss 1.2913538217544556 img loss 1.4446063041687012 img loss 1.4084579944610596 img loss 1.4323867559432983 img loss 1.3571189641952515 img loss 1.3678910732269287 img loss 1.4060419797897339 img loss 1.496601939201355 img loss 1.4198538064956665 img loss 1.3801180124282837 img loss 1.3817473649978638 img loss 1.3769285678863525 img loss 1.451844334602356 img loss 1.371774435043335 img loss 1.4485809803009033 img loss 1.484052062034607 img loss 1.502228021621704 img loss 1.4281659126281738 img loss 1.5211787223815918 img loss 1.383998990058899 img loss 1.5025163888931274 img loss 1.3440544605255127 img loss 1.4174246788024902 img loss 1.2852914333343506 img loss 1.3129209280014038 img loss 1.424395203590393 img loss 1.4242581129074097 img loss 1.2752307653427124 img loss 1.4272485971450806 img loss 1.3356424570083618 img loss 1.37544584274292 img loss 1.3764139413833618 img loss 1.3419444561004639 img loss 1.4722198247909546img loss 1.3440277576446533 img loss 1.3489158153533936 img loss 1.364153504371643 img loss 1.5244401693344116 img loss 1.430111050605774 img loss 1.3922364711761475 img loss 1.3860104084014893 img loss 1.3310747146606445 img loss 1.4018117189407349 img loss 1.4577257633209229 img loss 1.2676054239273071 img loss 1.3223626613616943 img loss 1.4909145832061768 img loss 1.385157823562622 img loss 1.4153026342391968 img loss 1.4657825231552124 img loss 1.346088171005249 img loss 1.2370619773864746 img loss 1.437815546989441 {'loss': 1.3951, 'grad_norm': 0.3177737593650818, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.337256669998169 img loss 1.3671363592147827 img loss 1.2295271158218384 img loss 1.2418053150177002 img loss 1.4099572896957397 img loss 1.3562806844711304 img loss 1.3464559316635132 img loss 1.4188956022262573 img loss 1.38667893409729 img loss 1.4288270473480225 img loss 1.4976862668991089 img loss 1.3283830881118774 img loss 1.3863978385925293 img loss 1.4754666090011597 img loss 1.3979133367538452 img loss 1.2783517837524414 img loss 1.331626296043396 img loss 1.4548983573913574 img loss 1.4023326635360718 img loss 1.3541152477264404 img loss 1.393231987953186 img loss 1.3834327459335327 img loss 1.4622838497161865 img loss 1.4239743947982788 img loss 1.3599251508712769 img loss 1.4007638692855835 img loss 1.280529260635376 img loss 1.3472048044204712 img loss 1.3328330516815186 img loss 1.3142451047897339 img loss 1.2955878973007202 img loss 1.3553411960601807 img loss 1.2965291738510132 img loss 1.3777552843093872 img loss 1.5525175333023071 img loss 1.4507834911346436 img loss 1.4104348421096802 img loss 1.3075695037841797 img loss 1.451139211654663 img loss 1.4375545978546143 img loss 1.3741775751113892 img loss 1.351402997970581 img loss 1.2786221504211426 img loss 1.2848259210586548 img loss 1.3375264406204224 img loss 1.3977386951446533 img loss 1.360512137413025 img loss 1.482358455657959 img loss 1.3992725610733032 img loss 1.5102553367614746 img loss 1.3328392505645752 img loss 1.3839691877365112 img loss 1.3157657384872437 img loss 1.24066162109375 img loss 1.2512670755386353 img loss 1.347435712814331 img loss 1.3583089113235474 img loss 1.3679217100143433 img loss 1.4560980796813965 img loss 1.3658510446548462 img loss 1.3954838514328003 img loss 1.5113072395324707 img loss 1.4385454654693604 img loss 1.3001213073730469 img loss 1.353675127029419 img loss 1.270240068435669 img loss 1.297012209892273 img loss 1.3725205659866333 img loss 1.218592882156372 img loss 1.4004236459732056 img loss 1.2827643156051636 img loss 1.4390180110931396 img loss 1.358173131942749 img loss 1.3965498208999634 img loss 1.369963526725769 img loss 1.3803000450134277 img loss 1.3968453407287598 img loss 1.4072215557098389 img loss 1.455847978591919 img loss 1.3170902729034424 img loss 1.350537896156311 img loss 1.4176533222198486 img loss 1.4399791955947876 img loss 1.3613295555114746 img loss 1.383156657218933 img loss 1.3969404697418213 img loss 1.4544106721878052 img loss 1.44855535030365 img loss 1.289729356765747 img loss 1.3359259366989136 img loss 1.3194808959960938 img loss 1.4624272584915161 img loss 1.3789570331573486 img loss 1.2666324377059937 img loss 1.3502157926559448 img loss 1.332664132118225 img loss 1.2671321630477905 img loss 1.3171409368515015 img loss 1.383203148841858 img loss 1.4408057928085327 img loss 1.4783862829208374 img loss 1.5529061555862427 img loss 1.4288222789764404 img loss 1.3807991743087769 img loss 1.4801563024520874 img loss 1.4736268520355225 img loss 1.3781720399856567 img loss 1.3564189672470093 img loss 1.330066442489624 img loss 1.2470968961715698 img loss 1.330251693725586 img loss 1.4055038690567017 img loss 1.4257243871688843 img loss 1.407784104347229 img loss 1.4040778875350952 img loss 1.3126814365386963 img loss 1.3592305183410645 img loss 1.4322818517684937 img loss 1.4101873636245728 img loss 1.4326260089874268 img loss 1.42551589012146 img loss 1.4743996858596802 img loss 1.3336282968521118 img loss 1.3499805927276611 img loss 1.4652982950210571 img loss 1.3948948383331299 img loss 1.3864738941192627 img loss 1.3617361783981323 {'loss': 1.3769, 'grad_norm': 0.3166057765483856, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.24889075756073 img loss 1.226759672164917 img loss 1.4010547399520874 img loss 1.3613064289093018 img loss 1.4111088514328003 img loss 1.3825066089630127 img loss 1.37124764919281 img loss 1.26593017578125 img loss 1.2885369062423706 img loss 1.2047724723815918 img loss 1.2802634239196777 img loss 1.3552395105361938 img loss 1.3317866325378418 img loss 1.2397606372833252 img loss 1.2554905414581299 img loss 1.4821761846542358 img loss 1.2734827995300293 img loss 1.4050906896591187 img loss 1.2478830814361572 img loss 1.244964361190796 img loss 1.3126544952392578 img loss 1.418169617652893 img loss 1.3680237531661987 img loss 1.3111584186553955 img loss 1.301149606704712 img loss 1.2507357597351074 img loss 1.3682070970535278 img loss 1.2945683002471924 img loss 1.3733292818069458 img loss 1.5048173666000366 img loss 1.4134048223495483 img loss 1.4154715538024902 img loss 1.2513668537139893 img loss 1.4072699546813965 img loss 1.3575080633163452 img loss 1.3069874048233032 img loss 1.2734391689300537 img loss 1.361082911491394 img loss 1.3503361940383911 img loss 1.2718579769134521 img loss 1.4303256273269653 img loss 1.3023837804794312 img loss 1.3578673601150513 img loss 1.2357333898544312 img loss 1.320342779159546 img loss 1.3377788066864014 img loss 1.331455111503601 img loss 1.32745361328125 img loss 1.2364126443862915 img loss 1.378160834312439 img loss 1.3650559186935425 img loss 1.307281494140625 img loss 1.3375447988510132 img loss 1.4329276084899902 img loss 1.432542324066162 img loss 1.5060245990753174 img loss 1.3446745872497559 img loss 1.2642672061920166 img loss 1.3180416822433472 img loss 1.3780924081802368 img loss 1.4344178438186646 img loss 1.2570692300796509 img loss 1.2638605833053589 img loss 1.3725025653839111 img loss 1.3891289234161377 img loss 1.3021917343139648 img loss 1.3998463153839111 img loss 1.3623613119125366 img loss 1.2642123699188232 img loss 1.4162918329238892 img loss 1.327484369277954 img loss 1.4699738025665283 img loss 1.4131577014923096 img loss 1.2159515619277954 img loss 1.3351328372955322 img loss 1.2908430099487305 img loss 1.3772015571594238 img loss 1.212465763092041 img loss 1.3513187170028687 img loss 1.342312216758728 img loss 1.3269481658935547 img loss 1.3740344047546387 img loss 1.3520519733428955 img loss 1.4677022695541382 img loss 1.380997896194458 img loss 1.404325246810913 img loss 1.2609264850616455 img loss 1.2848166227340698 img loss 1.2654743194580078 img loss 1.26370108127594 img loss 1.3561159372329712 img loss 1.3881211280822754 img loss 1.3019382953643799 img loss 1.356113076210022 img loss 1.327758550643921 img loss 1.424508810043335 img loss 1.3743771314620972 img loss 1.2581634521484375 img loss 1.2771375179290771 img loss 1.3606699705123901 img loss 1.4023538827896118 img loss 1.417507290840149 img loss 1.414344310760498 img loss 1.4154059886932373 img loss 1.334088921546936 img loss 1.3439451456069946 img loss 1.296434998512268 img loss 1.245397925376892 img loss 1.3454060554504395 img loss 1.3811348676681519 img loss 1.2848104238510132 img loss 1.4572293758392334 img loss 1.2827428579330444 img loss 1.330054759979248 img loss 1.3311971426010132 img loss 1.327996850013733 img loss 1.3265026807785034 img loss 1.3841034173965454 img loss 1.3736369609832764 img loss 1.2866424322128296 img loss 1.367787480354309 img loss 1.2771782875061035 img loss 1.383010983467102 img loss 1.4126942157745361 img loss 1.29580557346344 img loss 1.2044367790222168 img loss 1.246990442276001 img loss 1.2920650243759155 {'loss': 1.3375, 'grad_norm': 0.5782646536827087, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.39760160446167 img loss 1.2876890897750854 img loss 1.3104519844055176 img loss 1.265132188796997 img loss 1.389011025428772 img loss 1.265939712524414 img loss 1.3792335987091064 img loss 1.3203160762786865 img loss 1.3883384466171265 img loss 1.2856476306915283 img loss 1.3076508045196533 img loss 1.3254648447036743 img loss 1.2714478969573975 img loss 1.245448350906372 img loss 1.2668719291687012 img loss 1.327964186668396 img loss 1.483626127243042 img loss 1.2524619102478027 img loss 1.2373969554901123 img loss 1.3544175624847412 img loss 1.3171172142028809 img loss 1.4466439485549927 img loss 1.2866512537002563 img loss 1.3653324842453003 img loss 1.2837128639221191 img loss 1.309692621231079 img loss 1.3328016996383667 img loss 1.2466251850128174 img loss 1.2989859580993652 img loss 1.2631553411483765 img loss 1.2932298183441162 img loss 1.452633023262024 img loss 1.2663072347640991 img loss 1.233680009841919 img loss 1.3503552675247192 img loss 1.3364176750183105 img loss 1.312557578086853 img loss 1.323458194732666 img loss 1.3681837320327759 img loss 1.2920454740524292 img loss 1.3892518281936646 img loss 1.353299856185913 img loss 1.3109840154647827 img loss 1.280147910118103 img loss 1.3872090578079224 img loss 1.3393784761428833 img loss 1.3516069650650024 img loss 1.3242425918579102 img loss 1.292751669883728 img loss 1.3179547786712646 img loss 1.3346431255340576 img loss 1.287970781326294 img loss 1.3103179931640625 img loss 1.2915996313095093 img loss 1.2916648387908936 img loss 1.3069294691085815 img loss 1.3446167707443237img loss 1.2997150421142578 img loss 1.3306117057800293 img loss 1.2613166570663452 img loss 1.2778959274291992 img loss 1.3617528676986694 img loss 1.3958656787872314 img loss 1.221548318862915 img loss 1.2984780073165894 img loss 1.342219591140747 img loss 1.2860748767852783 img loss 1.2698874473571777 img loss 1.254404902458191 img loss 1.254411220550537 img loss 1.3244810104370117 img loss 1.336885690689087 img loss 1.3046544790267944 img loss 1.2911806106567383 img loss 1.360938310623169 img loss 1.298271894454956img loss 1.2881174087524414 img loss 1.329110860824585 img loss 1.339779019355774 img loss 1.339160680770874 img loss 1.3349612951278687 img loss 1.3826773166656494 img loss 1.3391443490982056 img loss 1.3551437854766846 img loss 1.2372719049453735 img loss 1.3007922172546387 img loss 1.253456950187683 img loss 1.3451206684112549 img loss 1.3734174966812134 img loss 1.2640947103500366 img loss 1.3497231006622314 img loss 1.2965103387832642 img loss 1.334165334701538 img loss 1.2948856353759766 img loss 1.3388707637786865 img loss 1.3196394443511963 img loss 1.2742828130722046 img loss 1.2973202466964722 img loss 1.311471700668335 img loss 1.3636137247085571 img loss 1.395180344581604 img loss 1.2897727489471436 img loss 1.380247950553894 img loss 1.2812267541885376 img loss 1.3758634328842163 img loss 1.3214964866638184 img loss 1.3579143285751343 img loss 1.3095486164093018 img loss 1.3525665998458862 img loss 1.320280909538269 img loss 1.2525440454483032 img loss 1.3373863697052002 img loss 1.3651946783065796 img loss 1.2878388166427612 img loss 1.2713816165924072 img loss 1.3144134283065796 img loss 1.247357964515686 img loss 1.2788920402526855 img loss 1.2816600799560547 img loss 1.3299282789230347 img loss 1.3140687942504883 img loss 1.3404258489608765 img loss 1.27061927318573 img loss 1.4208998680114746 img loss 1.3693081140518188 img loss 1.3832687139511108 img loss 1.333019733428955 img loss 1.320631504058838 {'loss': 1.3187, 'grad_norm': 0.2891184985637665, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.131420373916626 img loss 1.31846022605896 img loss 1.254291296005249 img loss 1.2514537572860718 img loss 1.2297518253326416 img loss 1.3114725351333618 img loss 1.3271827697753906 img loss 1.3078017234802246 img loss 1.3047237396240234 img loss 1.2689034938812256 img loss 1.1963691711425781 img loss 1.3635388612747192 img loss 1.3014938831329346 img loss 1.3267822265625 img loss 1.2744721174240112 img loss 1.2657161951065063 img loss 1.270829200744629 img loss 1.294075608253479 img loss 1.2773606777191162 img loss 1.2164185047149658 img loss 1.335852861404419 img loss 1.3402941226959229 img loss 1.1921851634979248 img loss 1.2751519680023193 img loss 1.2766742706298828 img loss 1.290537714958191 img loss 1.2983282804489136 img loss 1.3764132261276245 img loss 1.3069700002670288 img loss 1.2440407276153564 img loss 1.3437124490737915 img loss 1.2258541584014893 img loss 1.2448348999023438 img loss 1.2980399131774902 img loss 1.381350040435791 img loss 1.2675585746765137 img loss 1.3468925952911377 img loss 1.2910206317901611 img loss 1.2917779684066772 img loss 1.1999956369400024 img loss 1.307070016860962 img loss 1.247817873954773 img loss 1.144566297531128 img loss 1.2069511413574219 img loss 1.3228163719177246 img loss 1.2885570526123047 img loss 1.3971694707870483 img loss 1.3365873098373413 img loss 1.231675624847412 img loss 1.2777435779571533 img loss 1.2912876605987549 img loss 1.4336466789245605 img loss 1.178026795387268 img loss 1.2794439792633057 img loss 1.1931403875350952 img loss 1.3013657331466675 img loss 1.357549786567688 img loss 1.248927116394043 img loss 1.3173508644104004 img loss 1.4050010442733765 img loss 1.3032102584838867 img loss 1.3202342987060547 img loss 1.2306896448135376 img loss 1.2601070404052734 img loss 1.259817123413086 img loss 1.286520004272461 img loss 1.263777494430542 img loss 1.2674493789672852 img loss 1.2654520273208618 img loss 1.208785057067871 img loss 1.243209719657898 img loss 1.2701866626739502 img loss 1.2852026224136353 img loss 1.2599616050720215 img loss 1.2758941650390625 img loss 1.3088436126708984 img loss 1.1995649337768555 img loss 1.2734400033950806 img loss 1.322090983390808 img loss 1.2464103698730469 img loss 1.3050296306610107 img loss 1.253395915031433 img loss 1.2001023292541504 img loss 1.1903979778289795 img loss 1.3421151638031006 img loss 1.2349674701690674 img loss 1.2966423034667969 img loss 1.2452980279922485 img loss 1.2739999294281006 img loss 1.296393871307373 img loss 1.3203506469726562 img loss 1.289824366569519 img loss 1.3737112283706665 img loss 1.2772843837738037 img loss 1.2458248138427734 img loss 1.316229224205017 img loss 1.3335134983062744 img loss 1.2584223747253418 img loss 1.2798733711242676 img loss 1.2363640069961548 img loss 1.2209622859954834 img loss 1.3312046527862549 img loss 1.3226382732391357 img loss 1.2041809558868408 img loss 1.3152976036071777 img loss 1.290321946144104 img loss 1.3630516529083252 img loss 1.2698149681091309 img loss 1.3251070976257324 img loss 1.2832238674163818 img loss 1.258320689201355 img loss 1.3141567707061768 img loss 1.2518202066421509 img loss 1.2549927234649658 img loss 1.2290042638778687 img loss 1.2357286214828491 img loss 1.3629498481750488 img loss 1.22345769405365 img loss 1.3270944356918335 img loss 1.282539963722229 img loss 1.3017826080322266 img loss 1.2760519981384277 img loss 1.201852560043335 img loss 1.2567681074142456 img loss 1.351894736289978 img loss 1.279509425163269 img loss 1.269873857498169 img loss 1.2929596900939941 {'loss': 1.2805, 'grad_norm': 0.2761051654815674, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1827491521835327 img loss 1.2421650886535645 img loss 1.3056837320327759 img loss 1.1885159015655518 img loss 1.2816505432128906 img loss 1.2553915977478027 img loss 1.1828477382659912 img loss 1.2997573614120483 img loss 1.308427333831787 img loss 1.2237077951431274 img loss 1.2113375663757324 img loss 1.304185390472412 img loss 1.1960160732269287 img loss 1.2742223739624023 img loss 1.1580818891525269 img loss 1.2491110563278198 img loss 1.2629103660583496 img loss 1.2874712944030762 img loss 1.155669093132019 img loss 1.1235158443450928 img loss 1.219389796257019 img loss 1.2026070356369019 img loss 1.2215216159820557 img loss 1.2734146118164062 img loss 1.2907508611679077 img loss 1.2146358489990234 img loss 1.3704878091812134 img loss 1.2562817335128784 img loss 1.2506940364837646 img loss 1.2836451530456543 img loss 1.2018465995788574 img loss 1.2909595966339111 img loss 1.250754714012146 img loss 1.2385013103485107 img loss 1.2507953643798828 img loss 1.2578907012939453 img loss 1.2605005502700806 img loss 1.2387633323669434 img loss 1.2331252098083496 img loss 1.249525547027588 img loss 1.2285162210464478 img loss 1.168673038482666 img loss 1.2880017757415771 img loss 1.2430760860443115 img loss 1.287346363067627 img loss 1.2308154106140137 img loss 1.2699779272079468 img loss 1.3181129693984985 img loss 1.2187212705612183 img loss 1.2461261749267578 img loss 1.274962067604065 img loss 1.341404676437378 img loss 1.3194422721862793 img loss 1.268065094947815 img loss 1.2587966918945312 img loss 1.2814821004867554 img loss 1.2350285053253174 img loss 1.220990777015686 img loss 1.2549946308135986 img loss 1.3581491708755493 img loss 1.2879276275634766 img loss 1.2783217430114746 img loss 1.2824681997299194 img loss 1.2719361782073975 img loss 1.2958875894546509 img loss 1.2910969257354736 img loss 1.2634522914886475 img loss 1.2280030250549316 img loss 1.1930890083312988 img loss 1.308992862701416 img loss 1.3223910331726074 img loss 1.3583862781524658 img loss 1.3233369588851929 img loss 1.3084239959716797 img loss 1.2715801000595093 img loss 1.304093837738037 img loss 1.2353274822235107 img loss 1.3416367769241333 img loss 1.2140324115753174 img loss 1.2190594673156738 img loss 1.3011841773986816 img loss 1.2373415231704712 img loss 1.2468395233154297 img loss 1.2372349500656128 img loss 1.147552728652954 img loss 1.2877416610717773 img loss 1.3021541833877563 img loss 1.3503538370132446 img loss 1.3234974145889282 img loss 1.2479883432388306 img loss 1.1917970180511475 img loss 1.278293251991272 img loss 1.2696681022644043 img loss 1.239941120147705 img loss 1.2757467031478882 img loss 1.3024852275848389 img loss 1.278726577758789 img loss 1.332375168800354 img loss 1.2867697477340698 img loss 1.3270069360733032 img loss 1.2659615278244019 img loss 1.2572417259216309 img loss 1.2602773904800415 img loss 1.2892041206359863 img loss 1.1905978918075562 img loss 1.2912113666534424 img loss 1.2652568817138672 img loss 1.2578245401382446 img loss 1.294019341468811 img loss 1.2516834735870361 img loss 1.1975401639938354 img loss 1.1901209354400635 img loss 1.2979896068572998 img loss 1.2679767608642578 img loss 1.243707537651062 img loss 1.2671566009521484 img loss 1.2278048992156982 img loss 1.2442564964294434 img loss 1.1910278797149658 img loss 1.23553466796875 img loss 1.1944690942764282 img loss 1.2918651103973389 img loss 1.3426175117492676 img loss 1.1463160514831543 img loss 1.185655117034912 img loss 1.2955201864242554 img loss 1.232547402381897 img loss 1.3185409307479858 {'loss': 1.2588, 'grad_norm': 0.30486100912094116, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.210073471069336 img loss 1.2164415121078491 img loss 1.1744734048843384 img loss 1.1246442794799805 img loss 1.1638908386230469 img loss 1.2083864212036133 img loss 1.2018787860870361 img loss 1.1878101825714111 img loss 1.1999242305755615 img loss 1.2387100458145142 img loss 1.178161382675171 img loss 1.224196195602417 img loss 1.1761682033538818 img loss 1.2537323236465454 img loss 1.1945827007293701 img loss 1.1778382062911987 img loss 1.1722781658172607 img loss 1.1704976558685303 img loss 1.23721444606781 img loss 1.3099592924118042 img loss 1.1965842247009277 img loss 1.1762374639511108 img loss 1.2116323709487915 img loss 1.2458490133285522 img loss 1.1737349033355713 img loss 1.1843868494033813 img loss 1.1646757125854492 img loss 1.1528743505477905 img loss 1.191126823425293 img loss 1.1685590744018555 img loss 1.1593916416168213 img loss 1.1741889715194702 img loss 1.211011528968811 img loss 1.218988299369812 img loss 1.197045087814331 img loss 1.1886932849884033 img loss 1.1914671659469604 img loss 1.199050784111023 img loss 1.186182975769043 img loss 1.1744316816329956 img loss 1.2147502899169922 img loss 1.2702926397323608 img loss 1.3339108228683472 img loss 1.1808826923370361 img loss 1.2143888473510742 img loss 1.291543960571289 img loss 1.2128301858901978 img loss 1.153158187866211 img loss 1.2472333908081055 img loss 1.1782289743423462 img loss 1.2033097743988037 img loss 1.2499665021896362 img loss 1.1510871648788452 img loss 1.325181007385254 img loss 1.238959550857544 img loss 1.2450218200683594 img loss 1.202828049659729 img loss 1.1634461879730225 img loss 1.17104971408844 img loss 1.1725401878356934 img loss 1.1699028015136719 img loss 1.2010202407836914 img loss 1.1548893451690674 img loss 1.17021906375885 img loss 1.2430275678634644 img loss 1.2809942960739136 img loss 1.2252569198608398 img loss 1.2303587198257446 img loss 1.1972002983093262 img loss 1.1992424726486206 img loss 1.2320393323898315 img loss 1.2361704111099243 img loss 1.2195119857788086 img loss 1.1607685089111328 img loss 1.1589685678482056 img loss 1.2088543176651 img loss 1.1885439157485962 img loss 1.1923267841339111 img loss 1.2049572467803955 img loss 1.1517311334609985 img loss 1.1499696969985962 img loss 1.2396034002304077 img loss 1.159641146659851 img loss 1.225656509399414 img loss 1.2046887874603271 img loss 1.2135300636291504 img loss 1.2613719701766968 img loss 1.2644084692001343img loss 1.1694443225860596 img loss 1.2188628911972046 img loss 1.1721744537353516 img loss 1.157678484916687 img loss 1.1571712493896484 img loss 1.246845006942749 img loss 1.1736164093017578 img loss 1.1921381950378418 img loss 1.1506843566894531 img loss 1.1469762325286865 img loss 1.213350772857666img loss 1.2828257083892822 img loss 1.245635986328125 img loss 1.2173023223876953 img loss 1.1936256885528564 img loss 1.1953800916671753 img loss 1.213841438293457 img loss 1.2529983520507812 img loss 1.2387065887451172 img loss 1.293237328529358 img loss 1.1644091606140137 img loss 1.1481411457061768 img loss 1.1869292259216309 img loss 1.2591667175292969 img loss 1.2662427425384521 img loss 1.2844727039337158 img loss 1.276280164718628 img loss 1.184701681137085 img loss 1.201728343963623 img loss 1.1790904998779297 img loss 1.190097689628601 img loss 1.10783052444458 img loss 1.1457716226577759 img loss 1.2113538980484009 img loss 1.1590895652770996 img loss 1.190622329711914 img loss 1.2036645412445068 img loss 1.1533503532409668 img loss 1.2321823835372925 img loss 1.208251953125 {'loss': 1.2034, 'grad_norm': 0.25697192549705505, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.200270414352417 img loss 1.1795597076416016 img loss 1.2771672010421753 img loss 1.2932584285736084 img loss 1.2859638929367065 img loss 1.2067240476608276 img loss 1.2392756938934326 img loss 1.2479896545410156 img loss 1.3088546991348267 img loss 1.2621487379074097 img loss 1.2304781675338745 img loss 1.2448304891586304 img loss 1.2660818099975586 img loss 1.2647285461425781 img loss 1.3106316328048706 img loss 1.3606339693069458 img loss 1.2361150979995728 img loss 1.2427401542663574 img loss 1.2146011590957642 img loss 1.2583823204040527 img loss 1.2289066314697266 img loss 1.233398675918579 img loss 1.2993085384368896 img loss 1.2456605434417725 img loss 1.2708046436309814 img loss 1.1845183372497559 img loss 1.243570327758789 img loss 1.2030320167541504 img loss 1.2758727073669434 img loss 1.2869610786437988 img loss 1.2168651819229126 img loss 1.2767767906188965 img loss 1.216377854347229 img loss 1.2153280973434448 img loss 1.225021243095398 img loss 1.2539926767349243 img loss 1.344794511795044 img loss 1.283663034439087 img loss 1.2174876928329468 img loss 1.239460825920105 img loss 1.2305294275283813 img loss 1.2620348930358887 img loss 1.177781343460083 img loss 1.225433349609375 img loss 1.2785859107971191 img loss 1.3303711414337158 img loss 1.195383071899414 img loss 1.2417147159576416 img loss 1.3607430458068848 img loss 1.3368974924087524 img loss 1.2510963678359985 img loss 1.2288545370101929 img loss 1.2192940711975098 img loss 1.2362401485443115 img loss 1.1279107332229614 img loss 1.1882460117340088 img loss 1.31222665309906 img loss 1.2305817604064941 img loss 1.2204043865203857 img loss 1.1610426902770996 img loss 1.2839435338974 img loss 1.3223518133163452 img loss 1.2765072584152222 img loss 1.2477192878723145 img loss 1.2672910690307617 img loss 1.3081061840057373 img loss 1.2125160694122314 img loss 1.2183690071105957 img loss 1.2821025848388672 img loss 1.323354721069336 img loss 1.2185194492340088 img loss 1.210573673248291 img loss 1.338276743888855 img loss 1.3194338083267212 img loss 1.2446229457855225 img loss 1.2982317209243774 img loss 1.1820533275604248 img loss 1.1903539896011353 img loss 1.2154232263565063 img loss 1.3553298711776733 img loss 1.270018219947815 img loss 1.2724910974502563 img loss 1.2379592657089233 img loss 1.2200920581817627 img loss 1.2680338621139526 img loss 1.2412216663360596 img loss 1.1988970041275024 img loss 1.1970371007919312 img loss 1.197187900543213 img loss 1.2337124347686768 img loss 1.2427830696105957 img loss 1.2008174657821655 img loss 1.2125275135040283 img loss 1.230188012123108 img loss 1.264751672744751 img loss 1.2450499534606934 img loss 1.203215479850769 img loss 1.3441447019577026 img loss 1.2830100059509277 img loss 1.2216914892196655img loss 1.1992195844650269 img loss 1.2914388179779053 img loss 1.2660048007965088 img loss 1.2302813529968262 img loss 1.219357967376709 img loss 1.2689759731292725 img loss 1.3066458702087402 img loss 1.2332851886749268 img loss 1.210557222366333img loss 1.1833692789077759 img loss 1.3178592920303345 img loss 1.2869391441345215 img loss 1.226494550704956 img loss 1.2311738729476929 img loss 1.3532837629318237 img loss 1.236119270324707 img loss 1.2782135009765625 img loss 1.3740869760513306 img loss 1.198341727256775 img loss 1.2601690292358398 img loss 1.1912237405776978 img loss 1.1789915561676025 img loss 1.2850394248962402 img loss 1.3203891515731812 img loss 1.2349210977554321 img loss 1.2986738681793213 img loss 1.2057138681411743 img loss 1.243283748626709 {'loss': 1.2511, 'grad_norm': 0.31347939372062683, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.244767427444458 img loss 1.2059824466705322 img loss 1.2658964395523071 img loss 1.215320348739624 img loss 1.1319025754928589 img loss 1.1718353033065796 img loss 1.2096763849258423 img loss 1.250562071800232 img loss 1.2230753898620605 img loss 1.2248406410217285 img loss 1.2254509925842285 img loss 1.2354464530944824 img loss 1.1983628273010254 img loss 1.1809135675430298 img loss 1.2164251804351807 img loss 1.2419371604919434 img loss 1.243512749671936 img loss 1.202492594718933 img loss 1.1880823373794556 img loss 1.258388876914978 img loss 1.2084044218063354 img loss 1.2339134216308594 img loss 1.1863905191421509 img loss 1.246001958847046 img loss 1.206737995147705 img loss 1.2549469470977783 img loss 1.240565299987793 img loss 1.1946626901626587 img loss 1.2361758947372437 img loss 1.172096610069275 img loss 1.1742298603057861 img loss 1.1930034160614014 img loss 1.2614433765411377 img loss 1.28811776638031 img loss 1.2354578971862793 img loss 1.230741024017334 img loss 1.2373319864273071 img loss 1.188313364982605 img loss 1.2353712320327759 img loss 1.2037285566329956 img loss 1.204196810722351 img loss 1.2062442302703857 img loss 1.196321725845337 img loss 1.2440030574798584 img loss 1.2953428030014038 img loss 1.2203125953674316 img loss 1.220896601676941 img loss 1.1884286403656006 img loss 1.1972768306732178img loss 1.1921627521514893 img loss 1.2282614707946777 img loss 1.2122077941894531 img loss 1.2089591026306152 img loss 1.1687878370285034 img loss 1.2315726280212402 img loss 1.1992948055267334 img loss 1.1581214666366577 img loss 1.1939187049865723 img loss 1.1869795322418213 img loss 1.1781175136566162 img loss 1.2301815748214722 img loss 1.1629180908203125 img loss 1.2243409156799316 img loss 1.1915899515151978 img loss 1.141355276107788 img loss 1.225393295288086 img loss 1.212867021560669 img loss 1.1832681894302368 img loss 1.1527128219604492 img loss 1.219537377357483 img loss 1.2002094984054565 img loss 1.2451202869415283 img loss 1.1538596153259277 img loss 1.2423661947250366 img loss 1.2081265449523926 img loss 1.232055425643921 img loss 1.2508971691131592 img loss 1.262600302696228 img loss 1.2485002279281616 img loss 1.2033710479736328 img loss 1.2074947357177734 img loss 1.2114285230636597 img loss 1.1904305219650269 img loss 1.2136963605880737 img loss 1.1982197761535645 img loss 1.284944772720337 img loss 1.2677090167999268 img loss 1.231066107749939 img loss 1.218341588973999 img loss 1.271084189414978 img loss 1.2368748188018799 img loss 1.2067642211914062 img loss 1.2143009901046753 img loss 1.226590871810913 img loss 1.2200950384140015 img loss 1.1843006610870361 img loss 1.1839396953582764 img loss 1.238838791847229 img loss 1.2278547286987305 img loss 1.2334703207015991 img loss 1.2549726963043213 img loss 1.194376826286316 img loss 1.2233017683029175 img loss 1.2611868381500244 img loss 1.2186272144317627 img loss 1.2686156034469604 img loss 1.2549188137054443 img loss 1.197185754776001 img loss 1.3282631635665894img loss 1.194421410560608 img loss 1.267110824584961img loss 1.2211263179779053 img loss 1.2222248315811157 img loss 1.184993028640747 img loss 1.1731880903244019 img loss 1.1188675165176392img loss 1.1880391836166382img loss 1.177148461341858 img loss 1.2292625904083252img loss 1.23330557346344 img loss 1.2028478384017944 img loss 1.2496274709701538 img loss 1.2790573835372925 img loss 1.2338742017745972 img loss 1.2141835689544678 img loss 1.2319064140319824 img loss 1.2084635496139526 img loss 1.2142397165298462 {'loss': 1.2172, 'grad_norm': 0.4686286449432373, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3119218349456787 img loss 1.2755740880966187 img loss 1.243080973625183 img loss 1.2049391269683838 img loss 1.3259711265563965 img loss 1.2681000232696533 img loss 1.2975232601165771 img loss 1.2314319610595703 img loss 1.229590892791748 img loss 1.350242018699646 img loss 1.2165597677230835 img loss 1.2907602787017822 img loss 1.292319893836975 img loss 1.4367226362228394 img loss 1.1965264081954956 img loss 1.362568736076355 img loss 1.2062873840332031 img loss 1.2573906183242798 img loss 1.282724380493164 img loss 1.2136424779891968 img loss 1.3917397260665894 img loss 1.1927242279052734 img loss 1.2454462051391602 img loss 1.2327651977539062 img loss 1.2995409965515137 img loss 1.2270227670669556 img loss 1.231514573097229 img loss 1.2587530612945557 img loss 1.1635546684265137 img loss 1.317380666732788 img loss 1.2185271978378296 img loss 1.310003638267517 img loss 1.1481746435165405 img loss 1.2900536060333252 img loss 1.2189202308654785 img loss 1.1750859022140503 img loss 1.2990975379943848 img loss 1.309295415878296 img loss 1.2545188665390015 img loss 1.2702699899673462 img loss 1.2412033081054688 img loss 1.259480357170105 img loss 1.2517648935317993 img loss 1.22281813621521 img loss 1.2668226957321167 img loss 1.253293752670288 img loss 1.2867085933685303 img loss 1.2775882482528687 img loss 1.273388147354126 img loss 1.2731263637542725 img loss 1.345962405204773 img loss 1.2654436826705933 img loss 1.2835361957550049 img loss 1.2162121534347534 img loss 1.2229257822036743 img loss 1.2618310451507568 img loss 1.2328404188156128 img loss 1.3078399896621704 img loss 1.2416706085205078 img loss 1.3255287408828735 img loss 1.2921615839004517 img loss 1.1795767545700073 img loss 1.2909181118011475 img loss 1.2798229455947876 img loss 1.3361181020736694 img loss 1.2885655164718628 img loss 1.1981747150421143 img loss 1.2781085968017578 img loss 1.276973009109497 img loss 1.2733039855957031 img loss 1.3314929008483887 img loss 1.2302513122558594 img loss 1.196202039718628 img loss 1.196988582611084 img loss 1.2586555480957031 img loss 1.2209644317626953 img loss 1.2314671277999878 img loss 1.2779808044433594 img loss 1.1952779293060303 img loss 1.205625295639038 img loss 1.2574542760849 img loss 1.3090938329696655 img loss 1.1771996021270752 img loss 1.2838987112045288 img loss 1.2482097148895264 img loss 1.2487778663635254 img loss 1.2810828685760498 img loss 1.1708507537841797 img loss 1.2471179962158203 img loss 1.2961540222167969 img loss 1.2745968103408813 img loss 1.186622977256775 img loss 1.2758147716522217 img loss 1.2670388221740723 img loss 1.3083833456039429 img loss 1.2921231985092163 img loss 1.3582998514175415 img loss 1.2918734550476074 img loss 1.2538927793502808 img loss 1.2225788831710815 img loss 1.3191207647323608 img loss 1.278098464012146 img loss 1.18715238571167 img loss 1.2020024061203003 img loss 1.1730798482894897 img loss 1.2078713178634644 img loss 1.276374340057373 img loss 1.2459070682525635 img loss 1.1968154907226562 img loss 1.2919921875 img loss 1.2616238594055176 img loss 1.272872805595398 img loss 1.2293628454208374 img loss 1.2674678564071655 img loss 1.3242038488388062 img loss 1.3145450353622437 img loss 1.2997071743011475 img loss 1.2338578701019287 img loss 1.329912543296814 img loss 1.2946548461914062 img loss 1.2653220891952515 img loss 1.298614501953125 img loss 1.1716513633728027 img loss 1.2197309732437134 img loss 1.2230194807052612 img loss 1.2919193506240845 img loss 1.2889988422393799 img loss 1.2092217206954956 {'loss': 1.2603, 'grad_norm': 0.33515840768814087, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3038735389709473 img loss 1.27303946018219 img loss 1.224025011062622 img loss 1.2271755933761597 img loss 1.2496566772460938 img loss 1.2658523321151733 img loss 1.261244297027588 img loss 1.2083487510681152 img loss 1.349488615989685 img loss 1.3390823602676392 img loss 1.1917799711227417 img loss 1.200406551361084 img loss 1.2600349187850952 img loss 1.2790082693099976 img loss 1.18369722366333 img loss 1.2440627813339233 img loss 1.195105791091919 img loss 1.350380778312683 img loss 1.2649967670440674 img loss 1.3581938743591309 img loss 1.2525752782821655 img loss 1.1984219551086426 img loss 1.2246897220611572 img loss 1.2285492420196533 img loss 1.2502341270446777 img loss 1.2423806190490723 img loss 1.1649826765060425 img loss 1.2585196495056152 img loss 1.180895209312439 img loss 1.1072442531585693 img loss 1.2938934564590454 img loss 1.3574326038360596 img loss 1.2160334587097168 img loss 1.2017675638198853 img loss 1.3020251989364624 img loss 1.2542208433151245 img loss 1.3140058517456055 img loss 1.2157379388809204 img loss 1.1576995849609375 img loss 1.2175534963607788 img loss 1.246895432472229 img loss 1.215635061264038 img loss 1.2021842002868652 img loss 1.223842978477478 img loss 1.2507632970809937 img loss 1.2693724632263184 img loss 1.1766592264175415 img loss 1.2581700086593628 img loss 1.241621971130371 img loss 1.2697563171386719 img loss 1.294138789176941 img loss 1.2509818077087402 img loss 1.2446415424346924 img loss 1.279388189315796 img loss 1.2069694995880127 img loss 1.2051246166229248 img loss 1.1838940382003784 img loss 1.2088907957077026 img loss 1.2182793617248535 img loss 1.3156521320343018 img loss 1.2372440099716187 img loss 1.3098087310791016 img loss 1.1348086595535278 img loss 1.1383488178253174 img loss 1.2463306188583374 img loss 1.328874945640564 img loss 1.1898045539855957 img loss 1.278336763381958 img loss 1.2158626317977905 img loss 1.2244163751602173 img loss 1.2544002532958984 img loss 1.260566234588623 img loss 1.2521876096725464 img loss 1.225175142288208 img loss 1.2595916986465454 img loss 1.3196028470993042 img loss 1.319964051246643 img loss 1.241823434829712 img loss 1.2310106754302979 img loss 1.2948805093765259 img loss 1.2471882104873657 img loss 1.23995840549469 img loss 1.251874327659607 img loss 1.1275490522384644 img loss 1.2070090770721436 img loss 1.2771937847137451 img loss 1.277243971824646 img loss 1.2596572637557983 img loss 1.2070125341415405 img loss 1.2038761377334595 img loss 1.2025904655456543 img loss 1.2727305889129639 img loss 1.2325576543807983 img loss 1.2621008157730103 img loss 1.2341943979263306 img loss 1.2066690921783447 img loss 1.3344266414642334 img loss 1.188515543937683 img loss 1.2483105659484863 img loss 1.1816041469573975 img loss 1.2526596784591675 img loss 1.2413537502288818 img loss 1.1736677885055542 img loss 1.2042574882507324 img loss 1.2574087381362915 img loss 1.281848430633545 img loss 1.2298173904418945 img loss 1.2174699306488037 img loss 1.2057209014892578 img loss 1.2284163236618042 img loss 1.218029499053955 img loss 1.1760082244873047 img loss 1.2158589363098145 img loss 1.204965591430664 img loss 1.2504613399505615 img loss 1.2159706354141235 img loss 1.3309509754180908 img loss 1.2400305271148682 img loss 1.1623026132583618 img loss 1.3401554822921753 img loss 1.2318381071090698 img loss 1.2150564193725586 img loss 1.2797996997833252 img loss 1.2930595874786377 img loss 1.2133285999298096 img loss 1.1692705154418945 img loss 1.3097542524337769 img loss 1.1808292865753174 {'loss': 1.2406, 'grad_norm': 0.2127583622932434, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2386842966079712 img loss 1.2050024271011353 img loss 1.241196632385254 img loss 1.1328336000442505 img loss 1.241229772567749 img loss 1.3099650144577026 img loss 1.1708017587661743 img loss 1.1979801654815674 img loss 1.1644424200057983 img loss 1.12943434715271 img loss 1.2324074506759644 img loss 1.1897989511489868 img loss 1.2832082509994507 img loss 1.1710323095321655 img loss 1.095778465270996 img loss 1.2699943780899048 img loss 1.212470293045044 img loss 1.1805853843688965 img loss 1.1835144758224487 img loss 1.2236874103546143 img loss 1.2004035711288452 img loss 1.230384349822998 img loss 1.207688808441162 img loss 1.196937084197998 img loss 1.207054615020752 img loss 1.1847786903381348 img loss 1.2108525037765503 img loss 1.2552334070205688 img loss 1.1454874277114868 img loss 1.1967999935150146 img loss 1.2048968076705933 img loss 1.1920441389083862 img loss 1.183654546737671 img loss 1.2330303192138672 img loss 1.2761597633361816 img loss 1.161614179611206 img loss 1.2004578113555908 img loss 1.2080363035202026 img loss 1.1718496084213257 img loss 1.1861252784729004 img loss 1.1409698724746704 img loss 1.2457245588302612 img loss 1.2057101726531982 img loss 1.2278121709823608 img loss 1.2425000667572021 img loss 1.2300869226455688 img loss 1.3141647577285767 img loss 1.2369086742401123 img loss 1.150895595550537 img loss 1.1187458038330078 img loss 1.180985927581787 img loss 1.2158317565917969 img loss 1.1782867908477783 img loss 1.323724389076233 img loss 1.2326223850250244 img loss 1.2565279006958008 img loss 1.2115275859832764 img loss 1.2031276226043701 img loss 1.2717504501342773 img loss 1.240861415863037 img loss 1.1737613677978516 img loss 1.1579577922821045 img loss 1.1899313926696777 img loss 1.1950603723526 img loss 1.2082239389419556 img loss 1.17366361618042 img loss 1.2229859828948975 img loss 1.222257137298584 img loss 1.1866278648376465 img loss 1.211677074432373 img loss 1.1405532360076904 img loss 1.197391152381897 img loss 1.1665012836456299 img loss 1.2010936737060547 img loss 1.1960417032241821 img loss 1.155994176864624 img loss 1.2483850717544556 img loss 1.1876137256622314 img loss 1.1624878644943237 img loss 1.1799583435058594 img loss 1.2541216611862183 img loss 1.1662471294403076 img loss 1.185532808303833 img loss 1.191420078277588 img loss 1.2307751178741455 img loss 1.1970455646514893 img loss 1.253795862197876 img loss 1.2484937906265259 img loss 1.2017154693603516 img loss 1.2026116847991943 img loss 1.161952257156372 img loss 1.2107337713241577 img loss 1.2921288013458252 img loss 1.2401256561279297 img loss 1.203515887260437 img loss 1.2095016241073608 img loss 1.2092071771621704 img loss 1.2266830205917358 img loss 1.159665822982788 img loss 1.214201807975769 img loss 1.2771165370941162 img loss 1.241797685623169 img loss 1.2242116928100586 img loss 1.18999183177948 img loss 1.2179405689239502 img loss 1.2150108814239502 img loss 1.1928842067718506 img loss 1.2107539176940918 img loss 1.2451781034469604 img loss 1.227022409439087 img loss 1.1729228496551514 img loss 1.1484200954437256 img loss 1.2752666473388672 img loss 1.1935657262802124 img loss 1.16706120967865 img loss 1.1706385612487793 img loss 1.2075742483139038 img loss 1.1862255334854126 img loss 1.2769079208374023 img loss 1.2256312370300293 img loss 1.2873826026916504 img loss 1.2017643451690674 img loss 1.1844761371612549 img loss 1.2345821857452393 img loss 1.2510201930999756 img loss 1.1654698848724365 img loss 1.1908230781555176 img loss 1.2288347482681274 {'loss': 1.2078, 'grad_norm': 0.2963027060031891, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5366331338882446 img loss 1.4649145603179932 img loss 1.446550965309143 img loss 1.3511985540390015 img loss 1.576088547706604 img loss 1.3803166151046753 img loss 1.4540010690689087 img loss 1.5525394678115845 img loss 1.451819896697998 img loss 1.355545163154602 img loss 1.4364352226257324 img loss 1.4913933277130127 img loss 1.47792649269104 img loss 1.448717713356018 img loss 1.3892484903335571 img loss 1.341609239578247 img loss 1.491837978363037 img loss 1.5070611238479614 img loss 1.4502320289611816 img loss 1.4685664176940918 img loss 1.5914632081985474 img loss 1.4636486768722534 img loss 1.407073736190796 img loss 1.5261807441711426 img loss 1.4786041975021362 img loss 1.4067034721374512 img loss 1.3865035772323608 img loss 1.4615999460220337 img loss 1.5257316827774048 img loss 1.3698009252548218 img loss 1.4384671449661255 img loss 1.3921345472335815 img loss 1.457809567451477 img loss 1.4646621942520142 img loss 1.3782275915145874 img loss 1.5475380420684814 img loss 1.4007538557052612 img loss 1.5436373949050903 img loss 1.5459710359573364 img loss 1.6474416255950928img loss 1.4010428190231323 img loss 1.4357333183288574 img loss 1.4639699459075928 img loss 1.4913028478622437 img loss 1.5047537088394165 img loss 1.711411952972412 img loss 1.454336404800415 img loss 1.445409893989563 img loss 1.3690826892852783 img loss 1.4200565814971924 img loss 1.572137713432312 img loss 1.4488253593444824 img loss 1.6396088600158691 img loss 1.558266043663025 img loss 1.4440096616744995 img loss 1.356971025466919 img loss 1.553837537765503 img loss 1.5421764850616455 img loss 1.5483537912368774 img loss 1.6887742280960083 img loss 1.5648709535598755 img loss 1.4440668821334839 img loss 1.439731240272522 img loss 1.425932765007019 img loss 1.4989491701126099 img loss 1.4794503450393677 img loss 1.4667915105819702 img loss 1.4416921138763428 img loss 1.492384672164917 img loss 1.5831639766693115 img loss 1.4936946630477905 img loss 1.3835698366165161 img loss 1.5046945810317993 img loss 1.522810459136963 img loss 1.4334120750427246 img loss 1.6292870044708252 img loss 1.497632622718811 img loss 1.46877121925354 img loss 1.533695101737976 img loss 1.4160277843475342 img loss 1.4007505178451538 img loss 1.4953690767288208 img loss 1.4912049770355225 img loss 1.5018773078918457 img loss 1.4640593528747559 img loss 1.466245174407959 img loss 1.4156653881072998 img loss 1.6045500040054321 img loss 1.3880894184112549 img loss 1.6422245502471924 img loss 1.5317960977554321 img loss 1.475317358970642 img loss 1.4344942569732666 img loss 1.3422328233718872 img loss 1.4242432117462158 img loss 1.4258484840393066 img loss 1.605029821395874 img loss 1.5824533700942993 img loss 1.4597290754318237 img loss 1.5352309942245483 img loss 1.4106179475784302 img loss 1.5322108268737793 img loss 1.4627833366394043 img loss 1.533581018447876 img loss 1.4280306100845337 img loss 1.4889451265335083 img loss 1.4364533424377441 img loss 1.3530287742614746 img loss 1.428791880607605 img loss 1.541420817375183 img loss 1.5062390565872192 img loss 1.6440215110778809 img loss 1.4418728351593018img loss 1.568358063697815img loss 1.4195753335952759 img loss 1.6323648691177368 img loss 1.5020134449005127 img loss 1.4368902444839478 img loss 1.5943838357925415 img loss 1.5280424356460571 img loss 1.397341251373291 img loss 1.424796462059021 img loss 1.5089648962020874 img loss 1.3580927848815918 img loss 1.4288042783737183 img loss 1.5533207654953003 img loss 1.520058035850525 img loss 1.491125226020813 {'loss': 1.4807, 'grad_norm': 0.4398922324180603, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3871821165084839 img loss 1.3695255517959595 img loss 1.381857991218567 img loss 1.3527541160583496 img loss 1.4275814294815063 img loss 1.40162193775177 img loss 1.4913127422332764 img loss 1.4535040855407715 img loss 1.2352731227874756 img loss 1.5215579271316528 img loss 1.3157366514205933 img loss 1.5106440782546997 img loss 1.3349026441574097 img loss 1.3760554790496826 img loss 1.3193442821502686 img loss 1.408331274986267 img loss 1.3498778343200684 img loss 1.4861856698989868 img loss 1.3228530883789062 img loss 1.3908051252365112 img loss 1.4738519191741943 img loss 1.297396183013916 img loss 1.2927260398864746 img loss 1.3608660697937012 img loss 1.460180401802063 img loss 1.3923801183700562 img loss 1.355157732963562 img loss 1.32974112033844 img loss 1.418159008026123 img loss 1.343472957611084 img loss 1.3485757112503052 img loss 1.3707308769226074 img loss 1.4233975410461426img loss 1.345192551612854 img loss 1.3001660108566284 img loss 1.3395179510116577 img loss 1.2799406051635742 img loss 1.362638235092163 img loss 1.405840277671814 img loss 1.4231114387512207 img loss 1.36300528049469 img loss 1.3973435163497925 img loss 1.5099705457687378 img loss 1.389366626739502 img loss 1.4256794452667236 img loss 1.2461986541748047 img loss 1.3725743293762207 img loss 1.2592958211898804 img loss 1.4339433908462524 img loss 1.2592103481292725 img loss 1.4307020902633667 img loss 1.3473601341247559 img loss 1.300330400466919 img loss 1.4439809322357178 img loss 1.5385892391204834 img loss 1.3649656772613525 img loss 1.3724979162216187 img loss 1.2739198207855225 img loss 1.4030593633651733 img loss 1.368096947669983 img loss 1.3880566358566284 img loss 1.3618499040603638 img loss 1.1946052312850952 img loss 1.352005124092102 img loss 1.358009696006775 img loss 1.2773250341415405 img loss 1.2834070920944214 img loss 1.32724130153656 img loss 1.322134017944336 img loss 1.3619259595870972 img loss 1.4127987623214722 img loss 1.2609599828720093 img loss 1.3473989963531494 img loss 1.3935072422027588 img loss 1.3337334394454956 img loss 1.3617987632751465 img loss 1.2943732738494873 img loss 1.3283603191375732 img loss 1.279013991355896 img loss 1.3808175325393677 img loss 1.3486613035202026 img loss 1.337576150894165 img loss 1.4321106672286987 img loss 1.361883521080017 img loss 1.4084935188293457 img loss 1.3929413557052612 img loss 1.4266358613967896 img loss 1.2955255508422852 img loss 1.4776097536087036 img loss 1.4144699573516846 img loss 1.3590794801712036 img loss 1.36062490940094 img loss 1.324766755104065 img loss 1.2845758199691772 img loss 1.3619366884231567 img loss 1.4079163074493408 img loss 1.3698475360870361 img loss 1.4803311824798584 img loss 1.3203794956207275 img loss 1.27644944190979 img loss 1.475161075592041 img loss 1.4212071895599365 img loss 1.3267914056777954 img loss 1.372930884361267 img loss 1.3650628328323364 img loss 1.360542893409729 img loss 1.480405569076538 img loss 1.4135571718215942 img loss 1.4264413118362427 img loss 1.302916169166565 img loss 1.432974934577942 img loss 1.3220452070236206 img loss 1.4735188484191895 img loss 1.476908802986145 img loss 1.363326907157898 img loss 1.3947595357894897 img loss 1.3422638177871704 img loss 1.5554536581039429 img loss 1.355225920677185 img loss 1.3505274057388306 img loss 1.4508166313171387 img loss 1.3331329822540283 img loss 1.3737521171569824 img loss 1.3495533466339111 img loss 1.419969916343689 img loss 1.4687285423278809 img loss 1.4132068157196045 img loss 1.4517627954483032 {'loss': 1.375, 'grad_norm': 0.3095741271972656, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.282334804534912 img loss 1.435581922531128 img loss 1.303982138633728 img loss 1.3439552783966064 img loss 1.4828219413757324 img loss 1.3722140789031982 img loss 1.432172417640686 img loss 1.3390781879425049 img loss 1.3815518617630005 img loss 1.2794729471206665 img loss 1.5384243726730347 img loss 1.344492793083191 img loss 1.3888847827911377 img loss 1.4243146181106567 img loss 1.390651822090149 img loss 1.2731926441192627 img loss 1.5106972455978394 img loss 1.2745760679244995 img loss 1.3311594724655151 img loss 1.4538332223892212 img loss 1.4572490453720093 img loss 1.3643087148666382 img loss 1.4611252546310425 img loss 1.274542212486267 img loss 1.4372944831848145 img loss 1.318846583366394 img loss 1.2841614484786987 img loss 1.236090064048767 img loss 1.2343549728393555 img loss 1.4004136323928833 img loss 1.2875494956970215 img loss 1.6541812419891357 img loss 1.3119102716445923 img loss 1.4045416116714478 img loss 1.2660127878189087 img loss 1.3260210752487183 img loss 1.3758260011672974 img loss 1.4344545602798462 img loss 1.4117807149887085 img loss 1.4144370555877686 img loss 1.2736537456512451 img loss 1.3225549459457397 img loss 1.3140583038330078 img loss 1.3568987846374512 img loss 1.3207719326019287 img loss 1.3156280517578125 img loss 1.3882081508636475 img loss 1.3924710750579834 img loss 1.3274132013320923 img loss 1.3699623346328735 img loss 1.42501699924469 img loss 1.3724420070648193 img loss 1.3119436502456665 img loss 1.351456880569458 img loss 1.3873692750930786 img loss 1.2958132028579712 img loss 1.4405226707458496 img loss 1.3703662157058716 img loss 1.3008111715316772 img loss 1.383439540863037 img loss 1.3358349800109863 img loss 1.325113296508789 img loss 1.4492446184158325 img loss 1.335816740989685 img loss 1.4248642921447754 img loss 1.2787455320358276 img loss 1.4302510023117065 img loss 1.360226035118103 img loss 1.3749266862869263 img loss 1.3911480903625488 img loss 1.367982268333435 img loss 1.3446274995803833 img loss 1.4023655652999878 img loss 1.371796727180481 img loss 1.4499070644378662 img loss 1.4107862710952759 img loss 1.2914884090423584 img loss 1.379740595817566 img loss 1.3417694568634033 img loss 1.4381598234176636 img loss 1.3185609579086304 img loss 1.3769110441207886 img loss 1.334370493888855 img loss 1.4644054174423218 img loss 1.3502600193023682 img loss 1.272580862045288 img loss 1.376193642616272 img loss 1.2840598821640015 img loss 1.3702905178070068 img loss 1.4378570318222046 img loss 1.4890044927597046 img loss 1.3407179117202759 img loss 1.4608814716339111 img loss 1.3772530555725098 img loss 1.2988218069076538 img loss 1.320123553276062 img loss 1.3242716789245605 img loss 1.3663887977600098 img loss 1.5223127603530884 img loss 1.512381672859192 img loss 1.2992380857467651 img loss 1.339497447013855 img loss 1.235809564590454 img loss 1.3148502111434937 img loss 1.4874212741851807 img loss 1.3544012308120728 img loss 1.3657736778259277 img loss 1.3354928493499756 img loss 1.325080394744873 img loss 1.3421680927276611 img loss 1.4633797407150269 img loss 1.4012032747268677 img loss 1.3796192407608032 img loss 1.3954418897628784 img loss 1.4202027320861816 img loss 1.3121446371078491 img loss 1.3355048894882202 img loss 1.3908337354660034 img loss 1.3162055015563965 img loss 1.4287011623382568 img loss 1.4452217817306519 img loss 1.323849081993103 img loss 1.325964331626892 img loss 1.3603132963180542 img loss 1.2112644910812378 img loss 1.314262866973877 img loss 1.3930583000183105 img loss 1.3489419221878052 {'loss': 1.3674, 'grad_norm': 0.40270209312438965, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3176398277282715 img loss 1.2919968366622925 img loss 1.3048973083496094 img loss 1.2154414653778076 img loss 1.233947515487671 img loss 1.3611797094345093 img loss 1.188169002532959 img loss 1.2173188924789429 img loss 1.2783470153808594 img loss 1.2517178058624268 img loss 1.3109034299850464 img loss 1.3180245161056519 img loss 1.271971344947815 img loss 1.208146572113037 img loss 1.2029774188995361 img loss 1.3866714239120483 img loss 1.3971949815750122 img loss 1.3380247354507446 img loss 1.3156657218933105 img loss 1.2601416110992432 img loss 1.187089443206787 img loss 1.3234851360321045 img loss 1.25023353099823 img loss 1.2235145568847656 img loss 1.2564520835876465 img loss 1.199268102645874 img loss 1.2454477548599243 img loss 1.4076154232025146 img loss 1.3190093040466309 img loss 1.2750478982925415 img loss 1.2254327535629272 img loss 1.3191676139831543 img loss 1.2614179849624634 img loss 1.233031153678894 img loss 1.3659565448760986 img loss 1.3975844383239746 img loss 1.3104679584503174 img loss 1.2508926391601562 img loss 1.220388412475586 img loss 1.2845113277435303 img loss 1.2639575004577637 img loss 1.4003785848617554 img loss 1.1518512964248657 img loss 1.3240002393722534 img loss 1.2987782955169678 img loss 1.2493717670440674 img loss 1.339676022529602 img loss 1.279892921447754 img loss 1.2644544839859009 img loss 1.2747950553894043 img loss 1.3154531717300415 img loss 1.2359299659729004 img loss 1.2350682020187378 img loss 1.245970368385315 img loss 1.2944179773330688 img loss 1.2197315692901611 img loss 1.315673589706421 img loss 1.1676809787750244 img loss 1.3168907165527344 img loss 1.2640414237976074 img loss 1.34657883644104 img loss 1.3167483806610107 img loss 1.2031216621398926 img loss 1.273728609085083 img loss 1.4192793369293213 img loss 1.3181917667388916 img loss 1.3286359310150146 img loss 1.290328860282898 img loss 1.3151496648788452 img loss 1.2390875816345215 img loss 1.3449422121047974 img loss 1.2655844688415527 img loss 1.364884853363037 img loss 1.2592953443527222 img loss 1.2072241306304932 img loss 1.3309179544448853 img loss 1.2509245872497559 img loss 1.3018989562988281 img loss 1.4145170450210571 img loss 1.2946784496307373 img loss 1.2450300455093384 img loss 1.2449697256088257 img loss 1.262086272239685 img loss 1.5135945081710815 img loss 1.3506377935409546 img loss 1.2840570211410522 img loss 1.3022334575653076 img loss 1.2951692342758179 img loss 1.3516885042190552 img loss 1.2517982721328735 img loss 1.2692184448242188 img loss 1.206088662147522 img loss 1.2852925062179565 img loss 1.3248651027679443 img loss 1.2784194946289062 img loss 1.2508095502853394 img loss 1.3898099660873413 img loss 1.2804622650146484 img loss 1.187011957168579 img loss 1.2793248891830444 img loss 1.2183536291122437 img loss 1.2136715650558472 img loss 1.270229697227478 img loss 1.255195140838623 img loss 1.3133702278137207 img loss 1.2058318853378296 img loss 1.393786907196045 img loss 1.202979564666748 img loss 1.206740140914917 img loss 1.2832010984420776 img loss 1.340014934539795 img loss 1.2485976219177246 img loss 1.3013942241668701 img loss 1.2802324295043945 img loss 1.1999844312667847 img loss 1.2747244834899902 img loss 1.276203989982605 img loss 1.1690175533294678 img loss 1.2497390508651733 img loss 1.315626621246338 img loss 1.3078190088272095 img loss 1.333605408668518 img loss 1.1935242414474487 img loss 1.2936804294586182 img loss 1.3236839771270752 img loss 1.2594754695892334 img loss 1.2469685077667236 img loss 1.3018240928649902 {'loss': 1.282, 'grad_norm': 0.23203808069229126, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2479946613311768 img loss 1.2069348096847534 img loss 1.162514090538025 img loss 1.1480164527893066 img loss 1.1773414611816406 img loss 1.1747703552246094 img loss 1.2011111974716187 img loss 1.1906893253326416 img loss 1.2197299003601074 img loss 1.2103623151779175 img loss 1.1846555471420288 img loss 1.124690294265747 img loss 1.2403572797775269 img loss 1.2752776145935059 img loss 1.2241255044937134 img loss 1.2588800191879272 img loss 1.1730077266693115 img loss 1.2753188610076904 img loss 1.1753414869308472 img loss 1.1423580646514893 img loss 1.1977689266204834 img loss 1.2114543914794922 img loss 1.1646230220794678 img loss 1.1596333980560303 img loss 1.174936294555664 img loss 1.2341058254241943 img loss 1.309324860572815 img loss 1.134677767753601 img loss 1.1888480186462402 img loss 1.1271377801895142 img loss 1.2777315378189087 img loss 1.199054479598999 img loss 1.1952489614486694 img loss 1.116946816444397 img loss 1.211555004119873 img loss 1.2715669870376587 img loss 1.2156378030776978 img loss 1.1690888404846191 img loss 1.1515724658966064 img loss 1.1327611207962036 img loss 1.2151092290878296 img loss 1.1436498165130615 img loss 1.2618272304534912 img loss 1.1985414028167725 img loss 1.1646111011505127 img loss 1.2366091012954712 img loss 1.2783544063568115 img loss 1.1863311529159546 img loss 1.2618035078048706 img loss 1.1593745946884155 img loss 1.2909406423568726 img loss 1.1517291069030762 img loss 1.28944730758667 img loss 1.1625635623931885 img loss 1.1669597625732422 img loss 1.223459005355835 img loss 1.2499216794967651 img loss 1.2409998178482056 img loss 1.2815067768096924 img loss 1.1694458723068237 img loss 1.2449047565460205 img loss 1.1535356044769287 img loss 1.1347615718841553 img loss 1.212515115737915 img loss 1.1382216215133667 img loss 1.1801722049713135 img loss 1.2064952850341797 img loss 1.20908784866333 img loss 1.2232134342193604 img loss 1.2483265399932861 img loss 1.1648480892181396 img loss 1.160673975944519 img loss 1.1430773735046387 img loss 1.1385315656661987 img loss 1.184981107711792 img loss 1.1889933347702026 img loss 1.2258591651916504 img loss 1.24216628074646 img loss 1.2465742826461792 img loss 1.1553373336791992 img loss 1.1648039817810059 img loss 1.1655062437057495 img loss 1.1938016414642334 img loss 1.2031970024108887 img loss 1.249666690826416 img loss 1.218082070350647 img loss 1.1488595008850098 img loss 1.1664236783981323 img loss 1.1998637914657593 img loss 1.1400283575057983 img loss 1.155632734298706 img loss 1.2213032245635986 img loss 1.2309309244155884 img loss 1.2416744232177734 img loss 1.193812370300293 img loss 1.2497525215148926 img loss 1.2991082668304443 img loss 1.1608269214630127 img loss 1.1623386144638062 img loss 1.0905039310455322 img loss 1.2678029537200928 img loss 1.244688868522644 img loss 1.15478515625 img loss 1.15763521194458 img loss 1.1720987558364868 img loss 1.24540376663208 img loss 1.1575456857681274 img loss 1.146106481552124 img loss 1.226629614830017img loss 1.2273887395858765 img loss 1.2565128803253174 img loss 1.248450517654419 img loss 1.2495625019073486 img loss 1.1954454183578491 img loss 1.208773136138916 img loss 1.1507993936538696 img loss 1.222603678703308 img loss 1.2032647132873535img loss 1.1476768255233765 img loss 1.1770057678222656 img loss 1.150957465171814 img loss 1.1891686916351318 img loss 1.1937586069107056 img loss 1.2333157062530518 img loss 1.1926772594451904 img loss 1.2065143585205078 img loss 1.2211644649505615 img loss 1.184293270111084 {'loss': 1.1991, 'grad_norm': 0.3051412105560303, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2251993417739868 img loss 1.2006182670593262 img loss 1.2301232814788818 img loss 1.1862075328826904 img loss 1.1976217031478882 img loss 1.2203724384307861 img loss 1.285284399986267 img loss 1.2638765573501587 img loss 1.243565320968628 img loss 1.2177008390426636 img loss 1.276108980178833 img loss 1.1170427799224854 img loss 1.190291166305542 img loss 1.2416995763778687 img loss 1.1940317153930664 img loss 1.2672538757324219 img loss 1.200147271156311 img loss 1.2092584371566772 img loss 1.1212940216064453 img loss 1.171055793762207 img loss 1.168071985244751 img loss 1.1676357984542847 img loss 1.1903290748596191 img loss 1.2588417530059814 img loss 1.2062660455703735 img loss 1.2258151769638062 img loss 1.1944893598556519 img loss 1.1838041543960571 img loss 1.2139724493026733 img loss 1.276131272315979 img loss 1.2279237508773804 img loss 1.2345287799835205 img loss 1.2318929433822632 img loss 1.2044837474822998 img loss 1.1959259510040283 img loss 1.1970975399017334 img loss 1.2038429975509644 img loss 1.1543686389923096 img loss 1.2381149530410767 img loss 1.1817481517791748 img loss 1.1732338666915894 img loss 1.2010177373886108 img loss 1.1828806400299072 img loss 1.2329845428466797 img loss 1.1974599361419678 img loss 1.1723971366882324 img loss 1.205600619316101 img loss 1.164164423942566 img loss 1.1440376043319702 img loss 1.2523059844970703 img loss 1.2226839065551758 img loss 1.1757123470306396 img loss 1.2237977981567383 img loss 1.2377512454986572 img loss 1.223276972770691 img loss 1.179461121559143 img loss 1.1572011709213257 img loss 1.1845226287841797 img loss 1.2273677587509155 img loss 1.1508115530014038 img loss 1.2444281578063965 img loss 1.1506307125091553 img loss 1.1619184017181396 img loss 1.1433658599853516 img loss 1.2135887145996094 img loss 1.1655429601669312 img loss 1.2021480798721313 img loss 1.2063816785812378 img loss 1.2546303272247314 img loss 1.2114150524139404 img loss 1.2367311716079712 img loss 1.2272710800170898 img loss 1.1966092586517334 img loss 1.2861248254776 img loss 1.2242830991744995 img loss 1.2012627124786377 img loss 1.1857109069824219 img loss 1.243003487586975 img loss 1.1393851041793823 img loss 1.1984764337539673 img loss 1.1988184452056885 img loss 1.148332953453064 img loss 1.2124871015548706 img loss 1.176787257194519 img loss 1.211273431777954 img loss 1.27239990234375 img loss 1.207209825515747 img loss 1.230399489402771 img loss 1.2027405500411987 img loss 1.1796623468399048 img loss 1.1752498149871826 img loss 1.1856811046600342 img loss 1.1698654890060425 img loss 1.166020154953003 img loss 1.2842538356781006 img loss 1.2037795782089233 img loss 1.1913163661956787 img loss 1.2269623279571533 img loss 1.2297451496124268 img loss 1.1418225765228271 img loss 1.1763286590576172 img loss 1.1937636137008667 img loss 1.2153362035751343 img loss 1.2332642078399658 img loss 1.2133212089538574 img loss 1.2260980606079102 img loss 1.2570327520370483 img loss 1.1314787864685059 img loss 1.1872217655181885 img loss 1.2247447967529297 img loss 1.185611367225647 img loss 1.1878031492233276 img loss 1.2476282119750977 img loss 1.2175490856170654 img loss 1.18768310546875 img loss 1.252132773399353 img loss 1.18718421459198 img loss 1.191932201385498 img loss 1.2133949995040894 img loss 1.1230944395065308 img loss 1.1575253009796143 img loss 1.2349189519882202 img loss 1.2297595739364624 img loss 1.1862989664077759 img loss 1.1535581350326538 img loss 1.217893123626709 img loss 1.1961665153503418 img loss 1.182817816734314 {'loss': 1.2035, 'grad_norm': 0.19742007553577423, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3215389251708984 img loss 1.3842899799346924 img loss 1.3931370973587036 img loss 1.3673824071884155 img loss 1.4764536619186401 img loss 1.350043773651123 img loss 1.381260633468628 img loss 1.3767503499984741 img loss 1.4324753284454346 img loss 1.3169273138046265 img loss 1.4248595237731934 img loss 1.2417973279953003 img loss 1.271056056022644 img loss 1.4008299112319946 img loss 1.3797749280929565 img loss 1.2864576578140259 img loss 1.2875896692276 img loss 1.3724416494369507 img loss 1.405321717262268 img loss 1.4429570436477661 img loss 1.3497956991195679 img loss 1.3807578086853027 img loss 1.4133533239364624 img loss 1.356134295463562 img loss 1.422603964805603 img loss 1.4032269716262817 img loss 1.419925570487976 img loss 1.2553399801254272 img loss 1.4024523496627808 img loss 1.3858705759048462 img loss 1.231261134147644 img loss 1.3859716653823853 img loss 1.3213447332382202 img loss 1.3827756643295288 img loss 1.323050856590271 img loss 1.3282784223556519 img loss 1.431612491607666 img loss 1.315734624862671 img loss 1.4926344156265259 img loss 1.4126304388046265 img loss 1.3626271486282349 img loss 1.4282199144363403 img loss 1.3853371143341064 img loss 1.3313953876495361 img loss 1.3804606199264526 img loss 1.3450661897659302 img loss 1.296037197113037 img loss 1.3866099119186401 img loss 1.1860342025756836 img loss 1.27993643283844 img loss 1.3820960521697998 img loss 1.3871432542800903 img loss 1.326343059539795 img loss 1.4300726652145386 img loss 1.2916264533996582 img loss 1.356433391571045 img loss 1.3213722705841064 img loss 1.3815358877182007 img loss 1.327725887298584 img loss 1.3530141115188599 img loss 1.2751350402832031 img loss 1.4264380931854248 img loss 1.3860911130905151 img loss 1.5281364917755127 img loss 1.465591311454773img loss 1.473697543144226 img loss 1.3517950773239136 img loss 1.3868924379348755 img loss 1.404215931892395 img loss 1.3989250659942627 img loss 1.334542989730835 img loss 1.3481085300445557 img loss 1.3605185747146606 img loss 1.4137749671936035 img loss 1.2986458539962769 img loss 1.28761625289917 img loss 1.3671361207962036 img loss 1.3380818367004395 img loss 1.358627438545227 img loss 1.4016486406326294 img loss 1.2916555404663086 img loss 1.3236702680587769 img loss 1.3526489734649658 img loss 1.2955186367034912 img loss 1.3443291187286377 img loss 1.3059476613998413 img loss 1.5266565084457397 img loss 1.3031005859375 img loss 1.2297546863555908 img loss 1.366125226020813 img loss 1.4581784009933472 img loss 1.4257067441940308 img loss 1.4014302492141724 img loss 1.3806594610214233 img loss 1.3964130878448486 img loss 1.323469638824463 img loss 1.383178472518921 img loss 1.4506356716156006 img loss 1.3788625001907349 img loss 1.3499172925949097 img loss 1.372607707977295 img loss 1.3800225257873535 img loss 1.3545854091644287 img loss 1.401323676109314 img loss 1.3722020387649536 img loss 1.3061155080795288 img loss 1.3686140775680542 img loss 1.4340308904647827 img loss 1.4687312841415405 img loss 1.42293381690979 img loss 1.4305261373519897 img loss 1.394498348236084 img loss 1.3101673126220703 img loss 1.413382649421692 img loss 1.2477316856384277 img loss 1.3121260404586792 img loss 1.357857346534729 img loss 1.332377314567566 img loss 1.3661938905715942 img loss 1.3965190649032593 img loss 1.417102575302124 img loss 1.4120266437530518 img loss 1.3814997673034668 img loss 1.3377792835235596 img loss 1.3329112529754639 img loss 1.2700562477111816 img loss 1.4205737113952637 img loss 1.4850815534591675 {'loss': 1.3677, 'grad_norm': 0.34827563166618347, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3735651969909668 img loss 1.3239269256591797 img loss 1.2547444105148315 img loss 1.3368525505065918 img loss 1.202080488204956 img loss 1.388649344444275 img loss 1.1977943181991577 img loss 1.2717936038970947 img loss 1.2611244916915894 img loss 1.2453351020812988 img loss 1.3226574659347534 img loss 1.1921488046646118 img loss 1.2980945110321045 img loss 1.2219135761260986 img loss 1.358770728111267 img loss 1.2807917594909668 img loss 1.3006635904312134 img loss 1.259973406791687 img loss 1.3002583980560303 img loss 1.2580804824829102 img loss 1.2755206823349 img loss 1.2451485395431519 img loss 1.3146986961364746 img loss 1.2491087913513184 img loss 1.286675214767456 img loss 1.2012228965759277 img loss 1.266890287399292 img loss 1.2590421438217163 img loss 1.215523362159729 img loss 1.296144962310791 img loss 1.241421103477478 img loss 1.264887809753418 img loss 1.2903060913085938 img loss 1.244188666343689 img loss 1.3326401710510254 img loss 1.2517074346542358 img loss 1.2452348470687866 img loss 1.189887285232544 img loss 1.3224838972091675 img loss 1.1863281726837158 img loss 1.2792631387710571 img loss 1.2162880897521973 img loss 1.217759132385254 img loss 1.3536255359649658 img loss 1.333189606666565 img loss 1.2212715148925781 img loss 1.2892730236053467 img loss 1.2956104278564453 img loss 1.2271925210952759 img loss 1.2905634641647339 img loss 1.2121882438659668 img loss 1.3036551475524902 img loss 1.279500961303711 img loss 1.2831419706344604 img loss 1.3093925714492798 img loss 1.251808524131775 img loss 1.2863892316818237 img loss 1.2384889125823975 img loss 1.2634998559951782 img loss 1.1820634603500366 img loss 1.2264342308044434 img loss 1.2553892135620117 img loss 1.3888137340545654 img loss 1.27428138256073 img loss 1.274970293045044 img loss 1.221678376197815 img loss 1.359435796737671 img loss 1.30264413356781 img loss 1.2468458414077759 img loss 1.2324209213256836 img loss 1.3297476768493652 img loss 1.2836568355560303 img loss 1.2160018682479858 img loss 1.3047192096710205 img loss 1.281421422958374 img loss 1.1690361499786377 img loss 1.2539552450180054 img loss 1.280609130859375 img loss 1.3746755123138428 img loss 1.226144790649414 img loss 1.3173134326934814 img loss 1.3507813215255737 img loss 1.2746585607528687 img loss 1.2904356718063354 img loss 1.2595319747924805 img loss 1.2433085441589355 img loss 1.3261222839355469 img loss 1.25082528591156 img loss 1.2665656805038452 img loss 1.342416524887085 img loss 1.262115240097046 img loss 1.2986335754394531 img loss 1.241877555847168 img loss 1.3018226623535156 img loss 1.2855637073516846 img loss 1.2848507165908813 img loss 1.2565343379974365 img loss 1.2831296920776367 img loss 1.22469162940979 img loss 1.2721985578536987 img loss 1.2624537944793701 img loss 1.2894952297210693 img loss 1.3001106977462769 img loss 1.1836210489273071 img loss 1.2435789108276367 img loss 1.458534836769104 img loss 1.2576088905334473 img loss 1.229182481765747 img loss 1.3060131072998047 img loss 1.3203709125518799 img loss 1.2369153499603271 img loss 1.1956956386566162 img loss 1.319553017616272 img loss 1.299304485321045 img loss 1.2648568153381348 img loss 1.2487313747406006 img loss 1.2950598001480103 img loss 1.2996914386749268 img loss 1.2720247507095337 img loss 1.2442834377288818 img loss 1.2075122594833374 img loss 1.3344007730484009 img loss 1.2586500644683838 img loss 1.2484416961669922 img loss 1.302636742591858 img loss 1.2382296323776245 img loss 1.2586572170257568 img loss 1.218291997909546 {'loss': 1.2726, 'grad_norm': 0.2735016942024231, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.229652762413025 img loss 1.223444938659668 img loss 1.2622787952423096 img loss 1.2035633325576782 img loss 1.155175805091858 img loss 1.3085507154464722 img loss 1.3471890687942505 img loss 1.2581956386566162 img loss 1.256901502609253 img loss 1.1850746870040894 img loss 1.201793909072876 img loss 1.206277847290039 img loss 1.2730766534805298 img loss 1.257059931755066 img loss 1.3165916204452515 img loss 1.2751520872116089 img loss 1.2735084295272827 img loss 1.2465254068374634 img loss 1.2933101654052734 img loss 1.2667253017425537 img loss 1.245568037033081 img loss 1.2905898094177246 img loss 1.340343713760376 img loss 1.1836411952972412 img loss 1.2586930990219116 img loss 1.2984586954116821 img loss 1.1691769361495972 img loss 1.2984769344329834 img loss 1.318664312362671 img loss 1.2858366966247559 img loss 1.2140527963638306 img loss 1.3252171277999878 img loss 1.269266128540039 img loss 1.262673258781433 img loss 1.2636722326278687 img loss 1.2995868921279907 img loss 1.2180101871490479 img loss 1.254136562347412 img loss 1.335567831993103 img loss 1.2540496587753296 img loss 1.2272909879684448 img loss 1.1654930114746094 img loss 1.322302222251892 img loss 1.253023386001587 img loss 1.2681671380996704 img loss 1.1685924530029297 img loss 1.3199007511138916 img loss 1.223019003868103 img loss 1.2615714073181152 img loss 1.3943727016448975 img loss 1.2210750579833984 img loss 1.2910362482070923 img loss 1.2428406476974487 img loss 1.3639553785324097 img loss 1.201404094696045 img loss 1.3206696510314941 img loss 1.2366538047790527 img loss 1.238067626953125 img loss 1.397182822227478 img loss 1.263277292251587 img loss 1.2696986198425293 img loss 1.2856134176254272 img loss 1.1767899990081787 img loss 1.2814120054244995 img loss 1.2058829069137573 img loss 1.2848137617111206 img loss 1.2761316299438477 img loss 1.3523207902908325 img loss 1.202552080154419 img loss 1.2238826751708984 img loss 1.3099716901779175 img loss 1.199652910232544 img loss 1.2457599639892578 img loss 1.2577241659164429 img loss 1.2087609767913818 img loss 1.2364332675933838 img loss 1.1970946788787842 img loss 1.2639130353927612 img loss 1.287502646446228 img loss 1.2993205785751343 img loss 1.29116690158844 img loss 1.2763935327529907 img loss 1.2312142848968506 img loss 1.2015717029571533 img loss 1.3607128858566284 img loss 1.26316237449646 img loss 1.270263433456421 img loss 1.2859785556793213 img loss 1.3251065015792847 img loss 1.2591060400009155 img loss 1.2953916788101196 img loss 1.384833812713623 img loss 1.2202446460723877 img loss 1.2297375202178955 img loss 1.2971124649047852 img loss 1.3029186725616455 img loss 1.183601975440979 img loss 1.1546849012374878 img loss 1.2934995889663696 img loss 1.3000257015228271 img loss 1.2810912132263184 img loss 1.1994452476501465 img loss 1.2502269744873047 img loss 1.2858256101608276 img loss 1.2403230667114258 img loss 1.2864795923233032 img loss 1.2737042903900146 img loss 1.2426655292510986 img loss 1.2004218101501465 img loss 1.2771778106689453 img loss 1.2196471691131592 img loss 1.3007866144180298 img loss 1.2984060049057007 img loss 1.3447176218032837 img loss 1.3033052682876587 img loss 1.1801252365112305 img loss 1.2078418731689453 img loss 1.295518159866333 img loss 1.3191790580749512 img loss 1.2399020195007324 img loss 1.268768072128296 img loss 1.2586987018585205 img loss 1.2618049383163452 img loss 1.2990775108337402 img loss 1.3094499111175537 img loss 1.2738960981369019 img loss 1.2254903316497803 img loss 1.2391846179962158 {'loss': 1.2631, 'grad_norm': 0.2576112747192383, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2165926694869995 img loss 1.2254788875579834 img loss 1.263950228691101 img loss 1.2252342700958252 img loss 1.2365715503692627 img loss 1.2788543701171875 img loss 1.146600365638733 img loss 1.1997483968734741 img loss 1.192572832107544 img loss 1.239069938659668 img loss 1.2089669704437256 img loss 1.2221946716308594 img loss 1.3091466426849365 img loss 1.1841330528259277 img loss 1.2558544874191284 img loss 1.219820261001587 img loss 1.323783278465271 img loss 1.2343565225601196 img loss 1.223140001296997 img loss 1.2664276361465454 img loss 1.1957204341888428 img loss 1.1891196966171265 img loss 1.2345234155654907 img loss 1.2192952632904053 img loss 1.211726188659668 img loss 1.2575488090515137 img loss 1.2330739498138428 img loss 1.1920032501220703 img loss 1.2210164070129395 img loss 1.12386155128479 img loss 1.1673415899276733 img loss 1.2285178899765015 img loss 1.1967854499816895 img loss 1.2838667631149292 img loss 1.1360554695129395 img loss 1.2091013193130493 img loss 1.1657994985580444 img loss 1.1928337812423706 img loss 1.274271011352539 img loss 1.2927262783050537 img loss 1.1843314170837402 img loss 1.1935744285583496 img loss 1.3433438539505005 img loss 1.22451651096344 img loss 1.2591137886047363 img loss 1.173685908317566 img loss 1.273529291152954 img loss 1.1756107807159424 img loss 1.294433832168579 img loss 1.1960114240646362 img loss 1.2763078212738037 img loss 1.2418320178985596 img loss 1.235708475112915 img loss 1.2535513639450073 img loss 1.2278861999511719 img loss 1.3539069890975952 img loss 1.241999864578247 img loss 1.1962686777114868 img loss 1.2865686416625977 img loss 1.256386637687683 img loss 1.177107810974121 img loss 1.27737557888031 img loss 1.1768810749053955 img loss 1.2363181114196777 img loss 1.1803091764450073 img loss 1.2116599082946777 img loss 1.2341949939727783 img loss 1.238661766052246 img loss 1.1930125951766968 img loss 1.196925401687622 img loss 1.254917025566101 img loss 1.2221975326538086 img loss 1.2786048650741577 img loss 1.2636202573776245 img loss 1.1510727405548096 img loss 1.2027294635772705 img loss 1.2989940643310547 img loss 1.2171216011047363 img loss 1.1666860580444336 img loss 1.3002878427505493 img loss 1.1786991357803345 img loss 1.238850474357605 img loss 1.2319610118865967 img loss 1.227899193763733 img loss 1.2671103477478027 img loss 1.217221736907959 img loss 1.222880244255066 img loss 1.2714775800704956 img loss 1.1587097644805908 img loss 1.2900776863098145 img loss 1.3539328575134277 img loss 1.215688705444336 img loss 1.239390254020691 img loss 1.207550287246704 img loss 1.2441915273666382 img loss 1.17509925365448 img loss 1.2046211957931519 img loss 1.2206473350524902 img loss 1.26707923412323 img loss 1.2954891920089722 img loss 1.2007174491882324 img loss 1.2079302072525024 img loss 1.196092963218689 img loss 1.3165581226348877 img loss 1.1350806951522827 img loss 1.2123522758483887 img loss 1.2378554344177246 img loss 1.2396395206451416 img loss 1.2037887573242188 img loss 1.2441614866256714 img loss 1.208678126335144img loss 1.26120924949646 img loss 1.258837342262268 img loss 1.233335018157959 img loss 1.211681842803955 img loss 1.2788256406784058 img loss 1.2018193006515503 img loss 1.3191277980804443 img loss 1.1999752521514893 img loss 1.2129706144332886 img loss 1.278752088546753 img loss 1.1905959844589233 img loss 1.2031315565109253 img loss 1.2989414930343628 img loss 1.156365990638733 img loss 1.1506271362304688 img loss 1.3158167600631714 img loss 1.299772024154663 {'loss': 1.2302, 'grad_norm': 0.2292816936969757, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.239134430885315 img loss 1.1910629272460938 img loss 1.245847463607788 img loss 1.2021799087524414 img loss 1.1830848455429077 img loss 1.2029476165771484 img loss 1.2042735815048218 img loss 1.1626228094100952 img loss 1.2433040142059326 img loss 1.10418701171875 img loss 1.1715110540390015 img loss 1.274853229522705 img loss 1.2176933288574219 img loss 1.2141193151474 img loss 1.1525635719299316 img loss 1.2058367729187012 img loss 1.2575401067733765 img loss 1.2318410873413086 img loss 1.1652542352676392 img loss 1.1325995922088623 img loss 1.1755908727645874 img loss 1.237412452697754 img loss 1.2501444816589355 img loss 1.217069387435913 img loss 1.1863415241241455 img loss 1.1402699947357178 img loss 1.1905630826950073 img loss 1.1887993812561035 img loss 1.2762073278427124 img loss 1.1927744150161743 img loss 1.1873962879180908 img loss 1.1001942157745361 img loss 1.3440004587173462 img loss 1.1883682012557983 img loss 1.2485849857330322 img loss 1.2012890577316284 img loss 1.155624270439148 img loss 1.1904370784759521 img loss 1.1789028644561768 img loss 1.1768155097961426 img loss 1.2269073724746704 img loss 1.160414457321167 img loss 1.25201416015625 img loss 1.1736665964126587 img loss 1.248327612876892img loss 1.1946899890899658 img loss 1.217731237411499 img loss 1.1723922491073608 img loss 1.1517168283462524 img loss 1.157999873161316 img loss 1.1405816078186035 img loss 1.177706241607666 img loss 1.2294529676437378 img loss 1.1748385429382324 img loss 1.1488401889801025 img loss 1.122746467590332 img loss 1.1511428356170654 img loss 1.1641024351119995 img loss 1.2381043434143066 img loss 1.2195180654525757 img loss 1.251792550086975 img loss 1.1153780221939087 img loss 1.134513258934021 img loss 1.1953400373458862 img loss 1.1651849746704102 img loss 1.2650811672210693 img loss 1.2409428358078003 img loss 1.1457017660140991 img loss 1.139289379119873 img loss 1.1995142698287964 img loss 1.2300167083740234 img loss 1.2252106666564941 img loss 1.1981902122497559 img loss 1.1520599126815796 img loss 1.163257122039795 img loss 1.1881321668624878 img loss 1.1355738639831543 img loss 1.2342655658721924 img loss 1.2285916805267334 img loss 1.1771682500839233 img loss 1.2549993991851807 img loss 1.2276884317398071 img loss 1.1245173215866089 img loss 1.2143272161483765 img loss 1.114241123199463 img loss 1.1373449563980103 img loss 1.182769775390625img loss 1.2078303098678589 img loss 1.191758632659912 img loss 1.1652007102966309 img loss 1.2057740688323975 img loss 1.2110950946807861 img loss 1.2277007102966309 img loss 1.186978816986084 img loss 1.2117054462432861 img loss 1.1244620084762573 img loss 1.1706256866455078 img loss 1.202501654624939 img loss 1.1902742385864258 img loss 1.2333506345748901 img loss 1.189387559890747 img loss 1.132239580154419 img loss 1.2643078565597534 img loss 1.2307056188583374 img loss 1.221524953842163 img loss 1.1519038677215576 img loss 1.2221884727478027 img loss 1.292236566543579 img loss 1.2349674701690674 img loss 1.172167420387268 img loss 1.1593000888824463 img loss 1.1830047369003296 img loss 1.188126564025879 img loss 1.2156450748443604 img loss 1.217685341835022 img loss 1.2540981769561768 img loss 1.3231703042984009 img loss 1.1547870635986328 img loss 1.0946698188781738 img loss 1.2010302543640137 img loss 1.1137586832046509 img loss 1.1798768043518066 img loss 1.2061653137207031 img loss 1.2190876007080078 img loss 1.2335861921310425 img loss 1.1669458150863647 img loss 1.1678636074066162 img loss 1.2149181365966797 {'loss': 1.1947, 'grad_norm': 0.29828181862831116, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1589621305465698 img loss 1.1780486106872559 img loss 1.3015377521514893 img loss 1.2337347269058228 img loss 1.18393874168396 img loss 1.1836485862731934 img loss 1.2419722080230713 img loss 1.2125307321548462 img loss 1.2267030477523804 img loss 1.178006887435913 img loss 1.1788997650146484 img loss 1.1929476261138916 img loss 1.2271203994750977 img loss 1.1349177360534668 img loss 1.139611840248108 img loss 1.2067822217941284 img loss 1.2037795782089233 img loss 1.2193084955215454 img loss 1.1958974599838257 img loss 1.220263123512268 img loss 1.2493427991867065 img loss 1.197803020477295 img loss 1.2083240747451782 img loss 1.232394814491272 img loss 1.3285521268844604 img loss 1.2296298742294312 img loss 1.237154245376587 img loss 1.1992239952087402 img loss 1.1766748428344727 img loss 1.2270731925964355 img loss 1.1608598232269287 img loss 1.190962553024292 img loss 1.2431941032409668 img loss 1.2206764221191406 img loss 1.2040534019470215 img loss 1.2331202030181885 img loss 1.2304208278656006 img loss 1.3447985649108887 img loss 1.233007788658142 img loss 1.1943225860595703 img loss 1.18123197555542 img loss 1.2449368238449097img loss 1.192324161529541 img loss 1.1743472814559937 img loss 1.3157479763031006 img loss 1.169729471206665 img loss 1.2601268291473389 img loss 1.2772196531295776 img loss 1.2234407663345337 img loss 1.1924567222595215 img loss 1.2173426151275635 img loss 1.2135403156280518 img loss 1.2273030281066895 img loss 1.2897958755493164 img loss 1.247070550918579 img loss 1.1359333992004395 img loss 1.1544060707092285 img loss 1.151998519897461 img loss 1.288928508758545 img loss 1.2755274772644043 img loss 1.2485404014587402 img loss 1.1498034000396729 img loss 1.3069267272949219 img loss 1.2509136199951172 img loss 1.2738666534423828 img loss 1.1945730447769165 img loss 1.2241178750991821 img loss 1.2858467102050781 img loss 1.182512640953064 img loss 1.1129964590072632 img loss 1.1053762435913086 img loss 1.156138300895691 img loss 1.3052424192428589 img loss 1.1749063730239868 img loss 1.3043608665466309 img loss 1.2657771110534668 img loss 1.172768473625183 img loss 1.1513378620147705 img loss 1.243813157081604 img loss 1.1444776058197021 img loss 1.151353359222412 img loss 1.167701005935669 img loss 1.1088154315948486 img loss 1.200866460800171 img loss 1.1954180002212524 img loss 1.2317676544189453 img loss 1.1707521677017212 img loss 1.1701759099960327 img loss 1.2185726165771484 img loss 1.2518792152404785 img loss 1.1561453342437744 img loss 1.185483455657959 img loss 1.178679347038269 img loss 1.1552257537841797 img loss 1.1746294498443604 img loss 1.265907645225525 img loss 1.1699931621551514 img loss 1.3269275426864624 img loss 1.2221429347991943 img loss 1.1293325424194336 img loss 1.279518485069275 img loss 1.2459321022033691 img loss 1.2119808197021484 img loss 1.159663438796997 img loss 1.2136015892028809 img loss 1.205454707145691 img loss 1.187512993812561 img loss 1.2288365364074707 img loss 1.194535732269287 img loss 1.1931121349334717 img loss 1.22304368019104img loss 1.241112470626831 img loss 1.2394888401031494 img loss 1.149674892425537 img loss 1.2183871269226074 img loss 1.1521177291870117 img loss 1.2014557123184204 img loss 1.175452709197998 img loss 1.2586983442306519 img loss 1.1702088117599487 img loss 1.132212519645691 img loss 1.2640893459320068 img loss 1.0753655433654785 img loss 1.1567178964614868 img loss 1.1968885660171509 img loss 1.1082611083984375 img loss 1.1538219451904297 img loss 1.2047051191329956 {'loss': 1.2072, 'grad_norm': 0.18532343208789825, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2596575021743774 img loss 1.2275656461715698 img loss 1.2284691333770752 img loss 1.3102394342422485 img loss 1.302323818206787 img loss 1.3357555866241455 img loss 1.1575086116790771 img loss 1.2894700765609741 img loss 1.2501981258392334 img loss 1.338409662246704 img loss 1.2455555200576782 img loss 1.3731694221496582 img loss 1.2666137218475342 img loss 1.2795170545578003 img loss 1.2631239891052246 img loss 1.2287005186080933 img loss 1.1564501523971558 img loss 1.2821762561798096 img loss 1.2297385931015015 img loss 1.1949398517608643 img loss 1.2511138916015625 img loss 1.3302525281906128 img loss 1.333950161933899 img loss 1.2363518476486206 img loss 1.3123376369476318 img loss 1.3514882326126099 img loss 1.2893508672714233 img loss 1.220552682876587 img loss 1.3283461332321167 img loss 1.2524559497833252 img loss 1.2622888088226318 img loss 1.3480018377304077 img loss 1.280577301979065 img loss 1.2557858228683472 img loss 1.3672295808792114 img loss 1.25173020362854 img loss 1.2853786945343018 img loss 1.3155243396759033 img loss 1.4683411121368408 img loss 1.3601871728897095 img loss 1.2125412225723267 img loss 1.333062767982483 img loss 1.2236037254333496 img loss 1.2229007482528687 img loss 1.2994105815887451 img loss 1.302234172821045 img loss 1.2213619947433472 img loss 1.2466726303100586 img loss 1.469966173171997 img loss 1.3310858011245728 img loss 1.2565665245056152 img loss 1.284314751625061 img loss 1.2252130508422852 img loss 1.2134350538253784 img loss 1.3228576183319092 img loss 1.2688976526260376 img loss 1.2894052267074585 img loss 1.2452013492584229 img loss 1.2091375589370728 img loss 1.311409831047058 img loss 1.2626278400421143 img loss 1.288907766342163 img loss 1.2982109785079956 img loss 1.2751686573028564 img loss 1.2131860256195068 img loss 1.2594355344772339 img loss 1.2750118970870972 img loss 1.2182931900024414 img loss 1.2567646503448486 img loss 1.2490737438201904 img loss 1.2670485973358154 img loss 1.2432074546813965 img loss 1.172249674797058 img loss 1.2634308338165283 img loss 1.259917140007019 img loss 1.2671267986297607 img loss 1.2312830686569214 img loss 1.2208788394927979 img loss 1.285374641418457 img loss 1.2581061124801636 img loss 1.1959972381591797 img loss 1.319787859916687 img loss 1.2178993225097656 img loss 1.2781250476837158 img loss 1.3348222970962524 img loss 1.2690824270248413 img loss 1.183966040611267 img loss 1.1964490413665771 img loss 1.2853809595108032 img loss 1.2810254096984863 img loss 1.2636440992355347 img loss 1.2930666208267212 img loss 1.3028538227081299 img loss 1.1737940311431885 img loss 1.247277021408081 img loss 1.25139319896698 img loss 1.210701584815979 img loss 1.2945525646209717 img loss 1.259213924407959 img loss 1.23997163772583 img loss 1.2820279598236084 img loss 1.218644618988037 img loss 1.24094557762146 img loss 1.2407524585723877 img loss 1.199992060661316 img loss 1.2195745706558228 img loss 1.2074544429779053 img loss 1.3292367458343506 img loss 1.2841541767120361 img loss 1.2212631702423096 img loss 1.21550452709198img loss 1.2626948356628418 img loss 1.2600939273834229 img loss 1.2713412046432495 img loss 1.3326154947280884 img loss 1.2616294622421265 img loss 1.2048890590667725 img loss 1.3399443626403809 img loss 1.2226386070251465 img loss 1.2719608545303345 img loss 1.251664638519287 img loss 1.235677719116211 img loss 1.3966313600540161 img loss 1.251602053642273 img loss 1.269618272781372 img loss 1.288751244544983 img loss 1.2363905906677246 img loss 1.2694993019104004 {'loss': 1.2677, 'grad_norm': 0.2189173549413681, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3486592769622803 img loss 1.350936770439148 img loss 1.305968999862671 img loss 1.3335896730422974 img loss 1.3141626119613647 img loss 1.3157143592834473 img loss 1.2863616943359375 img loss 1.3777114152908325 img loss 1.2844904661178589 img loss 1.329992651939392 img loss 1.330239176750183 img loss 1.3855408430099487 img loss 1.3224586248397827 img loss 1.262851357460022 img loss 1.3482184410095215 img loss 1.3022758960723877 img loss 1.3452249765396118 img loss 1.3716638088226318 img loss 1.326236605644226 img loss 1.3156981468200684 img loss 1.3880506753921509 img loss 1.3482648134231567 img loss 1.3531206846237183 img loss 1.3211798667907715 img loss 1.284440517425537 img loss 1.3622783422470093 img loss 1.285409688949585 img loss 1.3772238492965698 img loss 1.2941694259643555 img loss 1.2891477346420288 img loss 1.2722790241241455 img loss 1.382584810256958 img loss 1.4652845859527588 img loss 1.391433835029602 img loss 1.3254718780517578 img loss 1.2492750883102417 img loss 1.3167970180511475 img loss 1.33336341381073 img loss 1.3894165754318237 img loss 1.3104679584503174 img loss 1.3300459384918213 img loss 1.4310745000839233 img loss 1.3008893728256226img loss 1.3141390085220337 img loss 1.4009689092636108 img loss 1.403347134590149 img loss 1.4090476036071777 img loss 1.3780320882797241 img loss 1.3302973508834839 img loss 1.3552114963531494 img loss 1.3389657735824585 img loss 1.3464810848236084 img loss 1.3508374691009521 img loss 1.3483656644821167 img loss 1.4145615100860596 img loss 1.361189365386963 img loss 1.3471312522888184 img loss 1.4464964866638184 img loss 1.4077802896499634 img loss 1.2541052103042603 img loss 1.3001925945281982 img loss 1.2907702922821045 img loss 1.3551115989685059 img loss 1.3879516124725342 img loss 1.2004272937774658 img loss 1.3291972875595093 img loss 1.3911913633346558 img loss 1.296435832977295 img loss 1.4247791767120361 img loss 1.488899827003479 img loss 1.33881676197052 img loss 1.309679388999939 img loss 1.3391644954681396 img loss 1.2726486921310425 img loss 1.372554063796997 img loss 1.3463740348815918 img loss 1.3359004259109497 img loss 1.3030312061309814 img loss 1.3521052598953247 img loss 1.3472545146942139 img loss 1.3282641172409058 img loss 1.2410368919372559 img loss 1.3524895906448364 img loss 1.3019663095474243 img loss 1.2924598455429077 img loss 1.3364520072937012 img loss 1.3444303274154663 img loss 1.29962956905365 img loss 1.3273811340332031 img loss 1.3913419246673584 img loss 1.3174958229064941 img loss 1.2526700496673584 img loss 1.5132536888122559 img loss 1.2963453531265259 img loss 1.3464443683624268 img loss 1.306914210319519 img loss 1.3520394563674927 img loss 1.2888425588607788 img loss 1.5201294422149658 img loss 1.3649094104766846 img loss 1.384944200515747 img loss 1.2855323553085327 img loss 1.3342665433883667 img loss 1.2913830280303955 img loss 1.3798528909683228 img loss 1.344406008720398 img loss 1.373378038406372 img loss 1.3307632207870483 img loss 1.2841757535934448 img loss 1.35443913936615 img loss 1.31480872631073 img loss 1.3274264335632324 img loss 1.3108563423156738 img loss 1.236320972442627 img loss 1.2668108940124512 img loss 1.2927310466766357 img loss 1.2997856140136719 img loss 1.3248506784439087 img loss 1.315216302871704 img loss 1.2896478176116943 img loss 1.2887181043624878 img loss 1.3091579675674438 img loss 1.3098125457763672 img loss 1.311969518661499 img loss 1.295824646949768 img loss 1.3619900941848755 img loss 1.2876423597335815 img loss 1.267324447631836 {'loss': 1.3351, 'grad_norm': 0.293009489774704, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.234026312828064 img loss 1.2562925815582275 img loss 1.257279872894287 img loss 1.3177039623260498 img loss 1.2587664127349854 img loss 1.2460083961486816 img loss 1.3122109174728394 img loss 1.2841546535491943 img loss 1.2273812294006348 img loss 1.2928189039230347 img loss 1.2457637786865234 img loss 1.2392584085464478 img loss 1.2773128747940063 img loss 1.3890354633331299 img loss 1.2675005197525024 img loss 1.3266561031341553 img loss 1.288246750831604 img loss 1.2438548803329468 img loss 1.1929011344909668 img loss 1.3105624914169312 img loss 1.2386577129364014 img loss 1.2824890613555908 img loss 1.3623946905136108 img loss 1.2001618146896362 img loss 1.2849512100219727 img loss 1.2497972249984741 img loss 1.244771957397461 img loss 1.2667014598846436 img loss 1.2418341636657715 img loss 1.3034600019454956 img loss 1.2543491125106812 img loss 1.2658838033676147 img loss 1.2283061742782593 img loss 1.3289692401885986 img loss 1.2247978448867798 img loss 1.307176947593689 img loss 1.230947732925415 img loss 1.2041025161743164 img loss 1.2600688934326172 img loss 1.280044436454773 img loss 1.2345138788223267 img loss 1.2144944667816162 img loss 1.2724370956420898 img loss 1.2007354497909546 img loss 1.2450966835021973 img loss 1.178476333618164 img loss 1.2289749383926392 img loss 1.2801082134246826 img loss 1.1933354139328003img loss 1.296837568283081 img loss 1.25957190990448 img loss 1.2783186435699463 img loss 1.195005178451538 img loss 1.361494779586792 img loss 1.253369927406311 img loss 1.2572810649871826 img loss 1.2623718976974487 img loss 1.3106555938720703 img loss 1.2415142059326172 img loss 1.217209815979004 img loss 1.2797296047210693 img loss 1.2676680088043213 img loss 1.273818016052246 img loss 1.2639192342758179 img loss 1.2856097221374512 img loss 1.2210534811019897 img loss 1.219430923461914 img loss 1.3049838542938232 img loss 1.290324091911316 img loss 1.2773489952087402 img loss 1.217757225036621 img loss 1.237047791481018 img loss 1.27182137966156 img loss 1.3085485696792603 img loss 1.276698350906372 img loss 1.3534064292907715 img loss 1.2291587591171265 img loss 1.2969521284103394 img loss 1.2649893760681152 img loss 1.222170352935791 img loss 1.2765430212020874 img loss 1.2807639837265015 img loss 1.3569132089614868 img loss 1.3141849040985107 img loss 1.2750908136367798 img loss 1.2383666038513184 img loss 1.2566182613372803 img loss 1.3143153190612793 img loss 1.220116138458252 img loss 1.2797104120254517 img loss 1.2624835968017578 img loss 1.3109183311462402 img loss 1.2486913204193115 img loss 1.2198772430419922 img loss 1.2555139064788818 img loss 1.2581844329833984 img loss 1.261316180229187 img loss 1.2386444807052612 img loss 1.2736644744873047 img loss 1.3136602640151978 img loss 1.3093458414077759 img loss 1.2402417659759521 img loss 1.2327816486358643 img loss 1.2282415628433228 img loss 1.3842194080352783 img loss 1.2892544269561768 img loss 1.2658720016479492 img loss 1.2107609510421753 img loss 1.2558857202529907 img loss 1.2530598640441895 img loss 1.2400774955749512 img loss 1.2227338552474976 img loss 1.210335612297058 img loss 1.3082793951034546 img loss 1.2628531455993652 img loss 1.2265410423278809 img loss 1.2769211530685425 img loss 1.2736179828643799 img loss 1.274138331413269 img loss 1.2391870021820068 img loss 1.2282466888427734 img loss 1.2364100217819214 img loss 1.3350293636322021 img loss 1.2054885625839233 img loss 1.2904666662216187 img loss 1.314500331878662 img loss 1.2340881824493408 img loss 1.2346996068954468 {'loss': 1.2641, 'grad_norm': 0.2574017345905304, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.298429250717163 img loss 1.3219765424728394 img loss 1.3459727764129639 img loss 1.1656701564788818 img loss 1.2727992534637451 img loss 1.3355098962783813 img loss 1.2763948440551758 img loss 1.4071627855300903 img loss 1.2722322940826416 img loss 1.3290833234786987 img loss 1.3043352365493774 img loss 1.2637653350830078 img loss 1.2952876091003418 img loss 1.3504055738449097 img loss 1.2672147750854492 img loss 1.3022091388702393 img loss 1.2563629150390625 img loss 1.3182414770126343 img loss 1.1848760843276978 img loss 1.2059638500213623 img loss 1.3473066091537476 img loss 1.4930434226989746 img loss 1.2861193418502808 img loss 1.3043044805526733 img loss 1.2766642570495605 img loss 1.3121181726455688 img loss 1.4204028844833374 img loss 1.3068156242370605 img loss 1.3616200685501099 img loss 1.4574328660964966 img loss 1.2251039743423462 img loss 1.2740734815597534 img loss 1.3660999536514282 img loss 1.4005963802337646 img loss 1.2577364444732666 img loss 1.391357183456421 img loss 1.2412457466125488 img loss 1.1378722190856934 img loss 1.255483627319336 img loss 1.3729203939437866 img loss 1.243870735168457 img loss 1.1991972923278809 img loss 1.3297470808029175 img loss 1.2914358377456665 img loss 1.3254512548446655 img loss 1.3287798166275024 img loss 1.2811306715011597 img loss 1.3161205053329468 img loss 1.3182076215744019 img loss 1.3013380765914917 img loss 1.3530462980270386 img loss 1.410041332244873 img loss 1.2932813167572021 img loss 1.3285356760025024 img loss 1.329843282699585 img loss 1.3165137767791748 img loss 1.2901291847229004 img loss 1.356677770614624 img loss 1.4526461362838745 img loss 1.2387722730636597 img loss 1.2989450693130493 img loss 1.3688576221466064 img loss 1.3282222747802734 img loss 1.2450889348983765 img loss 1.3320555686950684 img loss 1.2652469873428345 img loss 1.3324978351593018 img loss 1.2646820545196533 img loss 1.3973208665847778 img loss 1.2895734310150146 img loss 1.2663164138793945 img loss 1.2355257272720337 img loss 1.2742375135421753 img loss 1.4542709589004517 img loss 1.2982097864151 img loss 1.3551995754241943 img loss 1.348972201347351 img loss 1.2950172424316406 img loss 1.3417484760284424 img loss 1.231733798980713img loss 1.2274432182312012 img loss 1.3911502361297607 img loss 1.313190221786499 img loss 1.2273902893066406 img loss 1.2767664194107056 img loss 1.3814494609832764 img loss 1.3346747159957886 img loss 1.3367928266525269 img loss 1.3030271530151367 img loss 1.2927119731903076 img loss 1.1876531839370728 img loss 1.266324520111084 img loss 1.385260820388794 img loss 1.3593541383743286 img loss 1.4480087757110596 img loss 1.3534995317459106 img loss 1.4105936288833618 img loss 1.4158841371536255 img loss 1.3014906644821167 img loss 1.2508350610733032 img loss 1.3009371757507324 img loss 1.3559257984161377 img loss 1.2565815448760986 img loss 1.37711501121521 img loss 1.2532024383544922 img loss 1.2798571586608887 img loss 1.322005033493042 img loss 1.2542017698287964 img loss 1.3618649244308472 img loss 1.409331202507019 img loss 1.3775869607925415 img loss 1.2225048542022705 img loss 1.366453766822815 img loss 1.2964513301849365 img loss 1.3940675258636475 img loss 1.2739453315734863 img loss 1.4285863637924194 img loss 1.4145160913467407 img loss 1.4199551343917847 img loss 1.2791662216186523 img loss 1.275585412979126 img loss 1.3809469938278198 img loss 1.3739134073257446 img loss 1.3196378946304321 img loss 1.257721185684204 img loss 1.4160205125808716 img loss 1.3515647649765015 img loss 1.2729218006134033 {'loss': 1.3168, 'grad_norm': 0.26186057925224304, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2189743518829346 img loss 1.1917389631271362 img loss 1.2289501428604126 img loss 1.2054057121276855 img loss 1.2908350229263306 img loss 1.1860690116882324 img loss 1.220223307609558 img loss 1.2671730518341064 img loss 1.381624698638916 img loss 1.192075252532959 img loss 1.299140214920044 img loss 1.2197208404541016 img loss 1.2091896533966064 img loss 1.2784773111343384 img loss 1.2016626596450806 img loss 1.2429275512695312 img loss 1.2106446027755737 img loss 1.1382604837417603 img loss 1.249063491821289 img loss 1.260699987411499 img loss 1.2498126029968262 img loss 1.2176977396011353 img loss 1.2112858295440674 img loss 1.2017862796783447 img loss 1.2943778038024902 img loss 1.2506117820739746 img loss 1.2664101123809814 img loss 1.2051523923873901 img loss 1.1597318649291992 img loss 1.168318510055542 img loss 1.3006216287612915 img loss 1.234168291091919 img loss 1.2316497564315796 img loss 1.1712802648544312 img loss 1.2601239681243896 img loss 1.268065094947815 img loss 1.1780366897583008 img loss 1.2700811624526978 img loss 1.239439845085144 img loss 1.2410850524902344 img loss 1.201607584953308 img loss 1.219597578048706 img loss 1.1950623989105225 img loss 1.297896385192871 img loss 1.2487378120422363 img loss 1.150566577911377 img loss 1.2531404495239258 img loss 1.286926031112671 img loss 1.2416014671325684 img loss 1.1730175018310547 img loss 1.2667592763900757 img loss 1.210497260093689 img loss 1.1989922523498535 img loss 1.262789249420166 img loss 1.1786627769470215 img loss 1.2697596549987793 img loss 1.2814909219741821 img loss 1.313280701637268 img loss 1.2386465072631836 img loss 1.206437349319458 img loss 1.2269998788833618 img loss 1.0828572511672974 img loss 1.236157774925232 img loss 1.2059674263000488 img loss 1.1803128719329834 img loss 1.292585849761963 img loss 1.2972652912139893 img loss 1.2329992055892944 img loss 1.2316279411315918 img loss 1.227455496788025 img loss 1.2777588367462158 img loss 1.2107844352722168 img loss 1.2223014831542969 img loss 1.253988265991211 img loss 1.1744372844696045 img loss 1.1940608024597168 img loss 1.22786545753479 img loss 1.3076189756393433 img loss 1.2676525115966797 img loss 1.2597391605377197 img loss 1.1736913919448853 img loss 1.2467314004898071 img loss 1.2730950117111206 img loss 1.2578409910202026 img loss 1.2632064819335938 img loss 1.30595862865448 img loss 1.3092517852783203 img loss 1.2361650466918945 img loss 1.2140768766403198 img loss 1.3549447059631348 img loss 1.2407853603363037 img loss 1.2713745832443237 img loss 1.2079437971115112 img loss 1.331714391708374 img loss 1.2828624248504639 img loss 1.2397944927215576 img loss 1.2395570278167725 img loss 1.184962272644043 img loss 1.2103430032730103 img loss 1.2765023708343506 img loss 1.266528606414795 img loss 1.3179256916046143 img loss 1.2850879430770874 img loss 1.305060625076294 img loss 1.1903300285339355 img loss 1.2688908576965332 img loss 1.1774784326553345 img loss 1.2133679389953613 img loss 1.179370403289795 img loss 1.2022007703781128 img loss 1.280198574066162 img loss 1.2885345220565796 img loss 1.2650600671768188 img loss 1.24452543258667 img loss 1.243667483329773 img loss 1.264522910118103 img loss 1.1767338514328003 img loss 1.25722074508667 img loss 1.2502861022949219 img loss 1.2364592552185059 img loss 1.1831146478652954 img loss 1.2782752513885498 img loss 1.2204595804214478 img loss 1.2115894556045532 img loss 1.2242469787597656 img loss 1.2063337564468384 img loss 1.2603577375411987 img loss 1.206160068511963 {'loss': 1.2378, 'grad_norm': 0.3673643469810486, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1188055276870728 img loss 1.2966952323913574 img loss 1.3289337158203125 img loss 1.2627460956573486 img loss 1.1476293802261353 img loss 1.1612470149993896 img loss 1.170445203781128 img loss 1.1867825984954834 img loss 1.1695562601089478 img loss 1.2111432552337646 img loss 1.2187962532043457 img loss 1.196318507194519 img loss 1.1753202676773071 img loss 1.2061002254486084 img loss 1.1329550743103027 img loss 1.301676630973816 img loss 1.1677998304367065 img loss 1.1572636365890503 img loss 1.1875561475753784 img loss 1.2206737995147705 img loss 1.1461515426635742 img loss 1.2382886409759521 img loss 1.2356303930282593 img loss 1.2976107597351074 img loss 1.2419390678405762 img loss 1.1419404745101929 img loss 1.2025997638702393 img loss 1.1787986755371094 img loss 1.2444041967391968 img loss 1.1684900522232056 img loss 1.1547794342041016 img loss 1.2122235298156738 img loss 1.315808892250061 img loss 1.3849022388458252 img loss 1.2182164192199707 img loss 1.17605721950531 img loss 1.1876795291900635 img loss 1.215158224105835 img loss 1.2143089771270752 img loss 1.1992104053497314 img loss 1.2691917419433594 img loss 1.2118101119995117 img loss 1.2485512495040894 img loss 1.1709791421890259 img loss 1.276110053062439 img loss 1.2834792137145996 img loss 1.264643907546997 img loss 1.3252445459365845 img loss 1.227306604385376 img loss 1.3118832111358643 img loss 1.2521367073059082 img loss 1.2613215446472168 img loss 1.1547832489013672 img loss 1.2383846044540405 img loss 1.0955727100372314 img loss 1.1960760354995728 img loss 1.3134273290634155 img loss 1.1492271423339844 img loss 1.1377732753753662 img loss 1.1823229789733887 img loss 1.2742183208465576 img loss 1.2124512195587158 img loss 1.1255849599838257 img loss 1.2429826259613037 img loss 1.2957061529159546 img loss 1.1895771026611328 img loss 1.2220585346221924 img loss 1.2195472717285156 img loss 1.272918939590454 img loss 1.1991828680038452 img loss 1.1946520805358887 img loss 1.2144047021865845 img loss 1.254698634147644 img loss 1.2609981298446655 img loss 1.209662675857544 img loss 1.292916178703308 img loss 1.2482774257659912 img loss 1.2380154132843018 img loss 1.2010964155197144 img loss 1.24003005027771 img loss 1.2286125421524048 img loss 1.2486518621444702 img loss 1.1883442401885986 img loss 1.3150742053985596 img loss 1.278058648109436 img loss 1.2479976415634155 img loss 1.2114492654800415 img loss 1.1972062587738037 img loss 1.2764533758163452 img loss 1.2092311382293701 img loss 1.2248835563659668 img loss 1.1579813957214355 img loss 1.1738370656967163img loss 1.2196661233901978 img loss 1.2112886905670166 img loss 1.1731303930282593 img loss 1.1945164203643799 img loss 1.2183212041854858 img loss 1.2270870208740234 img loss 1.2525584697723389 img loss 1.2251627445220947 img loss 1.1669524908065796 img loss 1.265868902206421 img loss 1.2550044059753418 img loss 1.107576847076416 img loss 1.1426087617874146 img loss 1.2219207286834717 img loss 1.2623348236083984 img loss 1.2219040393829346 img loss 1.225237250328064 img loss 1.18486750125885 img loss 1.2074203491210938 img loss 1.253881812095642 img loss 1.2353096008300781 img loss 1.228156566619873 img loss 1.2176507711410522 img loss 1.1003358364105225 img loss 1.2114136219024658 img loss 1.2162405252456665 img loss 1.2046575546264648 img loss 1.197075366973877 img loss 1.161845088005066 img loss 1.2110133171081543 img loss 1.2329896688461304 img loss 1.2251914739608765 img loss 1.201921820640564 img loss 1.2372095584869385 img loss 1.312105655670166 {'loss': 1.2184, 'grad_norm': 0.29441770911216736, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.313542127609253 img loss 1.494665503501892 img loss 1.4599186182022095 img loss 1.478554368019104 img loss 1.3576083183288574 img loss 1.5455604791641235 img loss 1.586164951324463 img loss 1.469260334968567 img loss 1.3963581323623657 img loss 1.4411838054656982 img loss 1.4673234224319458 img loss 1.2529209852218628 img loss 1.4178493022918701 img loss 1.5349326133728027 img loss 1.372023105621338 img loss 1.4038374423980713 img loss 1.4304251670837402 img loss 1.34749174118042 img loss 1.3790837526321411 img loss 1.4079807996749878 img loss 1.3978393077850342 img loss 1.3279962539672852 img loss 1.3522230386734009 img loss 1.505051851272583 img loss 1.4690011739730835 img loss 1.27829110622406 img loss 1.3948397636413574 img loss 1.3974143266677856 img loss 1.4112075567245483 img loss 1.4217296838760376 img loss 1.4210957288742065 img loss 1.3486469984054565 img loss 1.5119820833206177 img loss 1.2592260837554932 img loss 1.41071355342865 img loss 1.3950978517532349 img loss 1.375712275505066 img loss 1.358923316001892 img loss 1.465539574623108 img loss 1.3796828985214233 img loss 1.3717714548110962 img loss 1.2924556732177734 img loss 1.4226046800613403 img loss 1.4840608835220337 img loss 1.3446555137634277 img loss 1.4704796075820923 img loss 1.4176304340362549 img loss 1.4105218648910522 img loss 1.442745566368103 img loss 1.4644933938980103 img loss 1.3496801853179932 img loss 1.4157854318618774 img loss 1.4359633922576904 img loss 1.4622963666915894 img loss 1.4084422588348389 img loss 1.3813530206680298 img loss 1.3883030414581299 img loss 1.4213852882385254 img loss 1.3900419473648071 img loss 1.2676857709884644 img loss 1.3885829448699951 img loss 1.4312993288040161 img loss 1.503253698348999 img loss 1.4286434650421143 img loss 1.3276760578155518 img loss 1.4390273094177246 img loss 1.580073595046997 img loss 1.3325588703155518 img loss 1.6243643760681152 img loss 1.4161113500595093 img loss 1.4293255805969238 img loss 1.3167970180511475 img loss 1.4718616008758545 img loss 1.3835699558258057 img loss 1.2891086339950562 img loss 1.3356478214263916 img loss 1.3906601667404175 img loss 1.4412646293640137 img loss 1.39140784740448 img loss 1.333024263381958 img loss 1.4713327884674072 img loss 1.4498345851898193 img loss 1.4891048669815063 img loss 1.462214708328247 img loss 1.320228099822998 img loss 1.4833729267120361 img loss 1.4724583625793457 img loss 1.4811886548995972 img loss 1.3022212982177734 img loss 1.4288475513458252 img loss 1.4879425764083862 img loss 1.4292747974395752 img loss 1.3781167268753052 img loss 1.4011276960372925 img loss 1.51571786403656 img loss 1.5059176683425903 img loss 1.415347695350647 img loss 1.4900100231170654 img loss 1.371578335762024 img loss 1.3404117822647095 img loss 1.4284889698028564 img loss 1.4316242933273315 img loss 1.353809118270874 img loss 1.3986846208572388 img loss 1.326056718826294 img loss 1.3192152976989746 img loss 1.2962137460708618 img loss 1.3746981620788574 img loss 1.3306803703308105 img loss 1.4558268785476685 img loss 1.3882182836532593 img loss 1.531340479850769 img loss 1.362313151359558 img loss 1.3756234645843506 img loss 1.4646248817443848 img loss 1.427011251449585 img loss 1.4060720205307007 img loss 1.414323329925537 img loss 1.354184865951538 img loss 1.372591495513916 img loss 1.568972110748291 img loss 1.362158179283142 img loss 1.4441745281219482 img loss 1.3753085136413574 img loss 1.3737305402755737 img loss 1.3234100341796875 img loss 1.4000585079193115 img loss 1.3295881748199463 {'loss': 1.4095, 'grad_norm': 0.4175417423248291, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2477730512619019 img loss 1.1733191013336182 img loss 1.2057956457138062 img loss 1.2142882347106934 img loss 1.2257802486419678 img loss 1.1562451124191284 img loss 1.212242841720581 img loss 1.1967060565948486 img loss 1.2555053234100342 img loss 1.1822937726974487 img loss 1.2333513498306274 img loss 1.1800540685653687 img loss 1.1566715240478516 img loss 1.2314938306808472 img loss 1.3047420978546143 img loss 1.1933479309082031 img loss 1.2231175899505615 img loss 1.1725059747695923 img loss 1.155199408531189 img loss 1.1731836795806885 img loss 1.1532143354415894 img loss 1.1712254285812378 img loss 1.1489453315734863 img loss 1.1688930988311768 img loss 1.1721036434173584 img loss 1.1453626155853271 img loss 1.2451120615005493 img loss 1.2437671422958374 img loss 1.23665189743042 img loss 1.2076059579849243 img loss 1.2243846654891968 img loss 1.198857069015503 img loss 1.1809875965118408 img loss 1.174937129020691 img loss 1.2550690174102783 img loss 1.1590503454208374 img loss 1.2150005102157593 img loss 1.2328418493270874 img loss 1.2622184753417969 img loss 1.2243660688400269 img loss 1.2685840129852295 img loss 1.1930408477783203 img loss 1.155525803565979 img loss 1.2964837551116943 img loss 1.2969003915786743 img loss 1.2350250482559204 img loss 1.1953171491622925 img loss 1.2790184020996094 img loss 1.1854503154754639 img loss 1.2895116806030273 img loss 1.3367198705673218 img loss 1.133007287979126 img loss 1.21160888671875 img loss 1.2513060569763184 img loss 1.199540376663208 img loss 1.1945476531982422 img loss 1.2066848278045654 img loss 1.1949436664581299 img loss 1.2170542478561401 img loss 1.2917320728302002img loss 1.1533355712890625 img loss 1.2116621732711792 img loss 1.2378623485565186 img loss 1.2405933141708374 img loss 1.2449859380722046 img loss 1.173550009727478 img loss 1.2252453565597534 img loss 1.245840072631836 img loss 1.168273687362671 img loss 1.194814682006836 img loss 1.23289954662323 img loss 1.239466667175293 img loss 1.2524858713150024 img loss 1.2131437063217163 img loss 1.262988567352295 img loss 1.2573144435882568 img loss 1.1887199878692627 img loss 1.2084681987762451 img loss 1.231345772743225 img loss 1.2313507795333862 img loss 1.2280266284942627 img loss 1.2556949853897095 img loss 1.2831861972808838 img loss 1.284794807434082 img loss 1.1954355239868164 img loss 1.2710907459259033 img loss 1.2222355604171753 img loss 1.2393206357955933 img loss 1.2191766500473022 img loss 1.259091854095459 img loss 1.1731488704681396 img loss 1.2946504354476929 img loss 1.2873361110687256 img loss 1.1979296207427979 img loss 1.2677353620529175 img loss 1.1977107524871826 img loss 1.2346271276474 img loss 1.1956696510314941 img loss 1.2419852018356323 img loss 1.178231120109558 img loss 1.1982895135879517 img loss 1.236348032951355 img loss 1.2019274234771729 img loss 1.2220252752304077 img loss 1.2224462032318115 img loss 1.1852173805236816 img loss 1.210237979888916 img loss 1.2316513061523438 img loss 1.2064536809921265 img loss 1.1587308645248413 img loss 1.1303850412368774 img loss 1.2250707149505615 img loss 1.1808063983917236 img loss 1.2847484350204468 img loss 1.1967310905456543 img loss 1.1803375482559204 img loss 1.3193917274475098 img loss 1.25395929813385 img loss 1.1857086420059204 img loss 1.2445491552352905 img loss 1.1785199642181396 img loss 1.3238798379898071 img loss 1.2331044673919678 img loss 1.1841713190078735 img loss 1.2612828016281128 img loss 1.2022528648376465 img loss 1.245915412902832 img loss 1.2450151443481445 {'loss': 1.219, 'grad_norm': 0.20741598308086395, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.249455451965332 img loss 1.345903754234314 img loss 1.3014934062957764 img loss 1.3915257453918457 img loss 1.4306966066360474 img loss 1.3131484985351562 img loss 1.306699514389038 img loss 1.229419231414795 img loss 1.1749398708343506 img loss 1.2963775396347046 img loss 1.2516591548919678 img loss 1.3144166469573975 img loss 1.3449532985687256 img loss 1.3253483772277832 img loss 1.390876054763794 img loss 1.2871589660644531 img loss 1.328592300415039 img loss 1.254294753074646 img loss 1.3056284189224243 img loss 1.2076529264450073 img loss 1.3181084394454956 img loss 1.2746835947036743 img loss 1.3405755758285522 img loss 1.349438190460205 img loss 1.2361862659454346 img loss 1.2816218137741089 img loss 1.2139496803283691 img loss 1.2927650213241577 img loss 1.2865822315216064 img loss 1.268126368522644 img loss 1.2488192319869995 img loss 1.1893043518066406 img loss 1.2666223049163818 img loss 1.3377786874771118 img loss 1.3100610971450806 img loss 1.3891079425811768 img loss 1.2897928953170776 img loss 1.2563303709030151 img loss 1.2308014631271362 img loss 1.3210327625274658 img loss 1.2986726760864258 img loss 1.4062448740005493 img loss 1.3107507228851318 img loss 1.25163733959198 img loss 1.2923963069915771 img loss 1.2895710468292236 img loss 1.2243249416351318img loss 1.3251934051513672 img loss 1.312831163406372 img loss 1.3089611530303955 img loss 1.309488296508789 img loss 1.2854256629943848 img loss 1.3280466794967651 img loss 1.390409231185913 img loss 1.1761500835418701 img loss 1.3109101057052612 img loss 1.3511208295822144 img loss 1.252614974975586 img loss 1.2270582914352417 img loss 1.3044769763946533 img loss 1.3079408407211304 img loss 1.2810029983520508 img loss 1.3607420921325684 img loss 1.2670618295669556 img loss 1.2851685285568237 img loss 1.3048205375671387 img loss 1.2259783744812012 img loss 1.306816577911377 img loss 1.335964322090149 img loss 1.3875969648361206 img loss 1.3379136323928833 img loss 1.1672303676605225 img loss 1.246975302696228 img loss 1.3140181303024292 img loss 1.3119370937347412 img loss 1.3175997734069824 img loss 1.3174654245376587 img loss 1.3136365413665771 img loss 1.2968803644180298 img loss 1.2874749898910522 img loss 1.2894134521484375 img loss 1.2967866659164429 img loss 1.3071832656860352 img loss 1.349495768547058 img loss 1.3365463018417358 img loss 1.2835612297058105 img loss 1.3674789667129517 img loss 1.3868542909622192 img loss 1.2708587646484375 img loss 1.295672059059143img loss 1.3046287298202515 img loss 1.2750217914581299 img loss 1.231270432472229 img loss 1.3127496242523193 img loss 1.2926890850067139 img loss 1.2827544212341309 img loss 1.3481392860412598 img loss 1.276169776916504 img loss 1.3501276969909668 img loss 1.2547335624694824 img loss 1.320993185043335 img loss 1.326190710067749 img loss 1.3641178607940674 img loss 1.3239179849624634 img loss 1.3382169008255005 img loss 1.3022247552871704 img loss 1.3361732959747314 img loss 1.3921867609024048 img loss 1.34502112865448 img loss 1.2070424556732178 img loss 1.3699357509613037 img loss 1.386481523513794 img loss 1.2417320013046265 img loss 1.3259462118148804 img loss 1.288011908531189 img loss 1.3444494009017944 img loss 1.2948360443115234 img loss 1.3274340629577637 img loss 1.334153413772583 img loss 1.2755800485610962 img loss 1.3095663785934448 img loss 1.2748912572860718 img loss 1.2875561714172363 img loss 1.2932990789413452 img loss 1.3041181564331055 img loss 1.340400218963623 img loss 1.380584478378296 img loss 1.2985213994979858 {'loss': 1.3026, 'grad_norm': 0.2340562343597412, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4718018770217896 img loss 1.5463441610336304 img loss 1.460639476776123 img loss 1.4065619707107544 img loss 1.3564732074737549 img loss 1.4108175039291382 img loss 1.695475459098816 img loss 1.4644665718078613 img loss 1.3841004371643066 img loss 1.4502564668655396 img loss 1.3825970888137817 img loss 1.455544352531433 img loss 1.3445802927017212 img loss 1.2664158344268799 img loss 1.3537811040878296 img loss 1.3448736667633057 img loss 1.3584771156311035 img loss 1.4312084913253784 img loss 1.4676395654678345 img loss 1.3758997917175293 img loss 1.4710489511489868 img loss 1.4535318613052368 img loss 1.4943934679031372 img loss 1.4522778987884521 img loss 1.6052488088607788 img loss 1.3803422451019287 img loss 1.4643930196762085 img loss 1.4561612606048584 img loss 1.4783951044082642 img loss 1.4859813451766968 img loss 1.4170734882354736 img loss 1.475950837135315 img loss 1.4477814435958862 img loss 1.3795826435089111 img loss 1.5349680185317993 img loss 1.4889520406723022 img loss 1.4858969449996948 img loss 1.4093228578567505 img loss 1.3640843629837036 img loss 1.3418209552764893 img loss 1.4104045629501343 img loss 1.394111156463623 img loss 1.3272422552108765 img loss 1.4945498704910278 img loss 1.4146511554718018 img loss 1.3792980909347534 img loss 1.4689182043075562 img loss 1.3939907550811768 img loss 1.535784125328064 img loss 1.3971436023712158 img loss 1.4151614904403687 img loss 1.5576071739196777 img loss 1.439224362373352 img loss 1.5111479759216309 img loss 1.288572072982788 img loss 1.3666707277297974 img loss 1.3310472965240479 img loss 1.321837067604065 img loss 1.3805334568023682 img loss 1.3792792558670044 img loss 1.5933994054794312 img loss 1.6001354455947876 img loss 1.4273889064788818 img loss 1.4035351276397705 img loss 1.5248091220855713 img loss 1.483487606048584 img loss 1.5208708047866821 img loss 1.4299343824386597 img loss 1.5681993961334229 img loss 1.3712903261184692 img loss 1.4848809242248535 img loss 1.465255618095398 img loss 1.4400185346603394 img loss 1.5366865396499634 img loss 1.5298930406570435 img loss 1.4274815320968628 img loss 1.3546074628829956 img loss 1.5955708026885986 img loss 1.3743809461593628 img loss 1.4731848239898682 img loss 1.3936158418655396 img loss 1.4294946193695068 img loss 1.4952574968338013 img loss 1.3940627574920654 img loss 1.508256435394287 img loss 1.466873049736023 img loss 1.3326023817062378 img loss 1.5134392976760864 img loss 1.4504889249801636 img loss 1.3815821409225464 img loss 1.4185595512390137 img loss 1.4617292881011963 img loss 1.4352444410324097 img loss 1.3857471942901611 img loss 1.5167697668075562 img loss 1.3642727136611938 img loss 1.4397493600845337 img loss 1.4690985679626465 img loss 1.5304559469223022 img loss 1.4422062635421753 img loss 1.4617536067962646 img loss 1.4648572206497192 img loss 1.3992313146591187 img loss 1.384077787399292 img loss 1.4822524785995483 img loss 1.3872606754302979 img loss 1.509062647819519 img loss 1.4823012351989746 img loss 1.3860337734222412 img loss 1.4730244874954224 img loss 1.3840640783309937 img loss 1.4539752006530762 img loss 1.4668653011322021 img loss 1.4378113746643066 img loss 1.3910187482833862img loss 1.5770021677017212 img loss 1.3900738954544067 img loss 1.4794631004333496 img loss 1.5405999422073364 img loss 1.483420729637146 img loss 1.377501130104065img loss 1.3790231943130493 img loss 1.3724583387374878 img loss 1.4211002588272095 img loss 1.4305649995803833 img loss 1.4681476354599 img loss 1.4445931911468506 img loss 1.4217276573181152 {'loss': 1.4415, 'grad_norm': 0.2965988218784332, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.181631088256836 img loss 1.3392503261566162 img loss 1.2071266174316406 img loss 1.224071979522705 img loss 1.1763471364974976 img loss 1.1943072080612183 img loss 1.1220158338546753 img loss 1.158638596534729 img loss 1.2478597164154053 img loss 1.1671184301376343 img loss 1.2638425827026367 img loss 1.1837183237075806 img loss 1.1369606256484985 img loss 1.119213581085205 img loss 1.2601972818374634 img loss 1.2846870422363281 img loss 1.1485569477081299 img loss 1.1690003871917725 img loss 1.161786437034607 img loss 1.2386950254440308 img loss 1.206345558166504 img loss 1.1845225095748901 img loss 1.1783041954040527 img loss 1.236351490020752 img loss 1.268890142440796 img loss 1.2694313526153564 img loss 1.2403960227966309 img loss 1.3111553192138672 img loss 1.131098747253418 img loss 1.1193150281906128 img loss 1.2408268451690674 img loss 1.1063518524169922 img loss 1.1878738403320312img loss 1.1941250562667847 img loss 1.301647424697876 img loss 1.1885387897491455 img loss 1.19212007522583 img loss 1.241212248802185 img loss 1.1770352125167847 img loss 1.2299516201019287 img loss 1.1616911888122559 img loss 1.146126627922058 img loss 1.1983836889266968 img loss 1.1477394104003906 img loss 1.1886199712753296 img loss 1.1706881523132324 img loss 1.1474255323410034 img loss 1.1866658926010132 img loss 1.2726677656173706 img loss 1.2840436697006226 img loss 1.1954563856124878 img loss 1.315292239189148 img loss 1.277113676071167 img loss 1.2323678731918335 img loss 1.1691805124282837 img loss 1.1253598928451538 img loss 1.2180479764938354 img loss 1.0918561220169067 img loss 1.1212738752365112 img loss 1.1882375478744507 img loss 1.1878925561904907 img loss 1.224134087562561 img loss 1.1490005254745483 img loss 1.3362270593643188 img loss 1.2400249242782593 img loss 1.1885496377944946 img loss 1.3424607515335083 img loss 1.2145689725875854 img loss 1.241865634918213 img loss 1.1401081085205078 img loss 1.2127927541732788 img loss 1.154310941696167 img loss 1.191965103149414 img loss 1.2202298641204834 img loss 1.1485999822616577 img loss 1.2048699855804443 img loss 1.1527410745620728 img loss 1.1474113464355469 img loss 1.1025350093841553 img loss 1.1634925603866577 img loss 1.2392834424972534 img loss 1.2235865592956543 img loss 1.152832269668579 img loss 1.155129075050354 img loss 1.1208540201187134 img loss 1.088409423828125 img loss 1.1641167402267456 img loss 1.2050234079360962 img loss 1.1215770244598389 img loss 1.2007368803024292 img loss 1.1153900623321533 img loss 1.2001419067382812 img loss 1.2398369312286377 img loss 1.2634637355804443 img loss 1.1339938640594482 img loss 1.3084839582443237 img loss 1.1990336179733276 img loss 1.2982372045516968 img loss 1.1029798984527588 img loss 1.2168784141540527 img loss 1.1239264011383057 img loss 1.1407496929168701 img loss 1.152198314666748 img loss 1.232002854347229 img loss 1.1498875617980957 img loss 1.166053056716919 img loss 1.1607904434204102 img loss 1.3016458749771118 img loss 1.0841916799545288 img loss 1.1662731170654297 img loss 1.1511266231536865 img loss 1.251237154006958 img loss 1.2385218143463135 img loss 1.2997245788574219 img loss 1.3026641607284546 img loss 1.2469303607940674 img loss 1.2558742761611938 img loss 1.194190263748169 img loss 1.2719296216964722 img loss 1.2528139352798462 img loss 1.2089629173278809 img loss 1.21500563621521 img loss 1.1618480682373047 img loss 1.1428991556167603 img loss 1.233095407485962 img loss 1.3146183490753174 img loss 1.2222983837127686 img loss 1.189357042312622 {'loss': 1.1998, 'grad_norm': 0.5905215740203857, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2134525775909424 img loss 1.1883296966552734 img loss 1.3871188163757324 img loss 1.244550347328186 img loss 1.2769724130630493 img loss 1.1791094541549683 img loss 1.3043949604034424 img loss 1.1766951084136963 img loss 1.2569688558578491 img loss 1.1751177310943604 img loss 1.2658145427703857 img loss 1.1534818410873413 img loss 1.312687635421753 img loss 1.290466547012329 img loss 1.2047027349472046 img loss 1.282694697380066 img loss 1.279655933380127 img loss 1.3085682392120361 img loss 1.2844966650009155 img loss 1.2633041143417358 img loss 1.2431856393814087 img loss 1.2506183385849 img loss 1.2348344326019287 img loss 1.2422813177108765 img loss 1.2445398569107056 img loss 1.1915266513824463 img loss 1.3123779296875 img loss 1.2571723461151123 img loss 1.2233383655548096 img loss 1.2295252084732056 img loss 1.1959342956542969 img loss 1.239194631576538 img loss 1.2069835662841797 img loss 1.2595348358154297 img loss 1.2194626331329346 img loss 1.3412078619003296 img loss 1.213575839996338 img loss 1.271013855934143 img loss 1.1350059509277344 img loss 1.2109031677246094 img loss 1.2079682350158691 img loss 1.243665337562561 img loss 1.218320369720459 img loss 1.2237377166748047 img loss 1.2765696048736572 img loss 1.2314420938491821 img loss 1.2643249034881592 img loss 1.2843871116638184 img loss 1.2651201486587524 img loss 1.288663387298584 img loss 1.2427982091903687 img loss 1.2146466970443726 img loss 1.2473161220550537 img loss 1.2794690132141113 img loss 1.2403182983398438 img loss 1.245417833328247 img loss 1.1931588649749756 img loss 1.2997562885284424 img loss 1.2893450260162354 img loss 1.2921242713928223 img loss 1.2151024341583252 img loss 1.2541422843933105 img loss 1.2726593017578125 img loss 1.274202585220337 img loss 1.234462022781372 img loss 1.27329421043396 img loss 1.2604385614395142 img loss 1.266233205795288 img loss 1.293913722038269 img loss 1.2496984004974365 img loss 1.1788614988327026 img loss 1.2058128118515015 img loss 1.2421215772628784 img loss 1.278532862663269 img loss 1.1785271167755127 img loss 1.1531713008880615 img loss 1.1984890699386597 img loss 1.3240095376968384 img loss 1.2522395849227905 img loss 1.2446434497833252 img loss 1.2539916038513184 img loss 1.2020466327667236 img loss 1.2398910522460938 img loss 1.2128580808639526 img loss 1.202568769454956 img loss 1.2555797100067139 img loss 1.2611000537872314 img loss 1.2279013395309448 img loss 1.1866047382354736 img loss 1.2887077331542969 img loss 1.275272250175476 img loss 1.1777852773666382 img loss 1.3123321533203125 img loss 1.2445026636123657 img loss 1.238921046257019 img loss 1.2914739847183228 img loss 1.3064918518066406 img loss 1.2262085676193237 img loss 1.1762027740478516 img loss 1.3011630773544312 img loss 1.2201189994812012 img loss 1.3927617073059082 img loss 1.1516847610473633 img loss 1.3139748573303223 img loss 1.3153444528579712 img loss 1.1806284189224243 img loss 1.2990148067474365 img loss 1.223732352256775 img loss 1.1449124813079834 img loss 1.2755192518234253 img loss 1.3482239246368408 img loss 1.2936114072799683 img loss 1.3035461902618408 img loss 1.1701104640960693 img loss 1.3305991888046265 img loss 1.2045092582702637 img loss 1.2547125816345215 img loss 1.4486100673675537 img loss 1.2161701917648315 img loss 1.2026866674423218 img loss 1.2886061668395996 img loss 1.3425886631011963 img loss 1.2034767866134644 img loss 1.1804096698760986 img loss 1.2767329216003418 img loss 1.2728965282440186 img loss 1.2028911113739014 img loss 1.2633466720581055 {'loss': 1.249, 'grad_norm': 0.3195917308330536, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2114046812057495 img loss 1.2536685466766357 img loss 1.2372980117797852 img loss 1.2031522989273071 img loss 1.220951795578003 img loss 1.2058848142623901 img loss 1.4521538019180298 img loss 1.2095921039581299 img loss 1.2402074337005615 img loss 1.1895344257354736 img loss 1.197810411453247 img loss 1.1771471500396729 img loss 1.2641394138336182 img loss 1.255076289176941 img loss 1.3052376508712769 img loss 1.2199342250823975 img loss 1.2931954860687256 img loss 1.3082607984542847 img loss 1.1195800304412842 img loss 1.3235583305358887 img loss 1.1943542957305908 img loss 1.2888659238815308 img loss 1.1805845499038696 img loss 1.2997844219207764 img loss 1.247312068939209 img loss 1.2540104389190674 img loss 1.285622477531433 img loss 1.230689287185669 img loss 1.1815162897109985 img loss 1.1542202234268188 img loss 1.242709994316101 img loss 1.1330174207687378 img loss 1.298473834991455 img loss 1.3367305994033813 img loss 1.2255805730819702 img loss 1.2422394752502441 img loss 1.2725903987884521 img loss 1.275680422782898 img loss 1.2348397970199585 img loss 1.2344616651535034 img loss 1.2846503257751465 img loss 1.2195448875427246 img loss 1.2654300928115845 img loss 1.323765754699707 img loss 1.2297248840332031 img loss 1.2679461240768433 img loss 1.2235047817230225 img loss 1.3435028791427612 img loss 1.2114028930664062 img loss 1.294869065284729 img loss 1.2626155614852905 img loss 1.2367123365402222 img loss 1.2385976314544678 img loss 1.2225687503814697 img loss 1.3110687732696533 img loss 1.2683066129684448 img loss 1.1542860269546509 img loss 1.2570970058441162 img loss 1.3010600805282593 img loss 1.28983736038208 img loss 1.2109336853027344 img loss 1.1937122344970703 img loss 1.2465450763702393 img loss 1.2927823066711426 img loss 1.225776195526123 img loss 1.2071166038513184 img loss 1.2528752088546753 img loss 1.1923398971557617 img loss 1.209898591041565 img loss 1.2837473154067993 img loss 1.2460784912109375 img loss 1.2144724130630493 img loss 1.3325871229171753 img loss 1.2347049713134766 img loss 1.274243950843811 img loss 1.3807597160339355 img loss 1.320555329322815 img loss 1.1609084606170654 img loss 1.3488212823867798 img loss 1.1972635984420776 img loss 1.1764549016952515 img loss 1.2414063215255737img loss 1.2067296504974365 img loss 1.273253083229065 img loss 1.26711106300354 img loss 1.2166600227355957 img loss 1.230527639389038 img loss 1.2490354776382446 img loss 1.1866997480392456 img loss 1.2924015522003174 img loss 1.1880651712417603 img loss 1.2734582424163818 img loss 1.1882143020629883 img loss 1.2356036901474 img loss 1.25896155834198 img loss 1.303131341934204 img loss 1.148895025253296 img loss 1.2369247674942017 img loss 1.2317771911621094 img loss 1.2391602993011475 img loss 1.2275253534317017 img loss 1.149035930633545 img loss 1.1331918239593506 img loss 1.3737362623214722 img loss 1.339963674545288 img loss 1.2427438497543335 img loss 1.3135687112808228 img loss 1.194080114364624 img loss 1.2480777502059937 img loss 1.2682636976242065 img loss 1.242801308631897 img loss 1.1804221868515015 img loss 1.260035753250122 img loss 1.2538506984710693 img loss 1.224535346031189 img loss 1.3193978071212769 img loss 1.2374112606048584 img loss 1.2590965032577515 img loss 1.3104546070098877 img loss 1.2372239828109741 img loss 1.2302124500274658 img loss 1.2591626644134521 img loss 1.3383716344833374 img loss 1.1926169395446777 img loss 1.2039152383804321 img loss 1.2173914909362793 img loss 1.3177411556243896 img loss 1.3209205865859985 {'loss': 1.2475, 'grad_norm': 0.5025820732116699, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3488576412200928 img loss 1.3219563961029053 img loss 1.2286560535430908 img loss 1.3699796199798584 img loss 1.3740267753601074 img loss 1.2695286273956299 img loss 1.3518086671829224 img loss 1.2817115783691406 img loss 1.3431705236434937 img loss 1.300429105758667 img loss 1.3388116359710693 img loss 1.2574011087417603 img loss 1.329228162765503 img loss 1.216321349143982 img loss 1.2449616193771362 img loss 1.3166000843048096 img loss 1.2853609323501587 img loss 1.3724392652511597 img loss 1.2999292612075806 img loss 1.3273487091064453 img loss 1.2733196020126343 img loss 1.2790868282318115 img loss 1.2508878707885742 img loss 1.2383272647857666 img loss 1.2834316492080688 img loss 1.412614107131958 img loss 1.1994895935058594 img loss 1.323831558227539 img loss 1.3367416858673096 img loss 1.3315112590789795 img loss 1.2604392766952515 img loss 1.3693346977233887 img loss 1.2834287881851196 img loss 1.264549732208252 img loss 1.2496535778045654 img loss 1.273637056350708 img loss 1.3563628196716309 img loss 1.3335026502609253 img loss 1.2796443700790405 img loss 1.390835165977478 img loss 1.2839634418487549 img loss 1.344358205795288img loss 1.3815877437591553 img loss 1.4218274354934692 img loss 1.396079421043396 img loss 1.4977573156356812 img loss 1.3070666790008545 img loss 1.3356064558029175 img loss 1.2607109546661377 img loss 1.189708948135376 img loss 1.2938038110733032 img loss 1.263953447341919 img loss 1.2991832494735718 img loss 1.3221306800842285 img loss 1.3038749694824219 img loss 1.3902764320373535 img loss 1.3119428157806396 img loss 1.2938107252120972 img loss 1.243198037147522 img loss 1.2864820957183838 img loss 1.3002960681915283 img loss 1.203538179397583 img loss 1.292864441871643 img loss 1.1950803995132446 img loss 1.2565240859985352 img loss 1.2162903547286987 img loss 1.239782691001892 img loss 1.2377245426177979 img loss 1.3086832761764526 img loss 1.3093839883804321 img loss 1.246533751487732 img loss 1.3999711275100708 img loss 1.355271816253662 img loss 1.305406928062439 img loss 1.2445411682128906 img loss 1.3261959552764893 img loss 1.3096041679382324 img loss 1.2333121299743652 img loss 1.326955795288086 img loss 1.3472650051116943 img loss 1.3897382020950317 img loss 1.3646266460418701img loss 1.2588300704956055 img loss 1.2625356912612915 img loss 1.2597869634628296 img loss 1.343969464302063 img loss 1.2274835109710693 img loss 1.3011219501495361 img loss 1.3085254430770874 img loss 1.2641828060150146 img loss 1.2406647205352783 img loss 1.2479071617126465 img loss 1.419400930404663 img loss 1.2882689237594604 img loss 1.2718232870101929 img loss 1.2095974683761597 img loss 1.2700564861297607 img loss 1.3483418226242065 img loss 1.2869681119918823 img loss 1.3292908668518066 img loss 1.3748458623886108 img loss 1.280797004699707 img loss 1.349809169769287 img loss 1.2559775114059448 img loss 1.2403048276901245 img loss 1.358030080795288 img loss 1.29958975315094 img loss 1.253506064414978 img loss 1.2629752159118652 img loss 1.2576388120651245 img loss 1.3593595027923584 img loss 1.332350492477417 img loss 1.4437901973724365 img loss 1.2496079206466675 img loss 1.2301937341690063 img loss 1.3467527627944946 img loss 1.2255828380584717 img loss 1.2716233730316162 img loss 1.3466325998306274 img loss 1.3720238208770752 img loss 1.2628452777862549 img loss 1.3598248958587646 img loss 1.328883409500122 img loss 1.2958316802978516 img loss 1.2810418605804443 img loss 1.3252686262130737 img loss 1.338944911956787 img loss 1.2972633838653564 {'loss': 1.3027, 'grad_norm': 0.29284337162971497, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1928884983062744 img loss 1.1864063739776611 img loss 1.175977110862732 img loss 1.2043014764785767 img loss 1.1888986825942993 img loss 1.223650574684143 img loss 1.1926867961883545 img loss 1.2089964151382446 img loss 1.2387444972991943 img loss 1.1872501373291016 img loss 1.1714203357696533 img loss 1.1435692310333252 img loss 1.163195013999939 img loss 1.1581838130950928 img loss 1.2157659530639648 img loss 1.2324271202087402 img loss 1.1290173530578613 img loss 1.182621717453003 img loss 1.221472144126892 img loss 1.1691538095474243 img loss 1.2576144933700562 img loss 1.166448950767517 img loss 1.258553385734558 img loss 1.2477569580078125 img loss 1.1739095449447632 img loss 1.172673225402832 img loss 1.2366329431533813 img loss 1.188995122909546 img loss 1.162790298461914 img loss 1.1896997690200806 img loss 1.1380271911621094 img loss 1.2547674179077148 img loss 1.2763200998306274 img loss 1.1656670570373535 img loss 1.1845791339874268 img loss 1.2036083936691284 img loss 1.1710975170135498 img loss 1.1860805749893188 img loss 1.1633356809616089 img loss 1.235703706741333 img loss 1.2177761793136597 img loss 1.125990867614746 img loss 1.2090781927108765 img loss 1.2337377071380615 img loss 1.2398592233657837 img loss 1.2023454904556274 img loss 1.1692205667495728 img loss 1.2300974130630493 img loss 1.2757915258407593 img loss 1.1941925287246704 img loss 1.151405930519104 img loss 1.188525915145874 img loss 1.2126842737197876 img loss 1.1149380207061768 img loss 1.1917946338653564 img loss 1.2294200658798218 img loss 1.1651448011398315 img loss 1.200274109840393 img loss 1.1846222877502441 img loss 1.2063623666763306 img loss 1.1721513271331787 img loss 1.2113964557647705 img loss 1.2136335372924805 img loss 1.2874330282211304 img loss 1.1808156967163086 img loss 1.2137917280197144 img loss 1.226786494255066 img loss 1.2683234214782715 img loss 1.1521413326263428 img loss 1.2560601234436035 img loss 1.1598050594329834 img loss 1.173891544342041 img loss 1.1695442199707031 img loss 1.283416509628296 img loss 1.1766490936279297 img loss 1.234081745147705 img loss 1.2678676843643188 img loss 1.2956942319869995 img loss 1.2426109313964844 img loss 1.2235151529312134 img loss 1.1943485736846924 img loss 1.1971491575241089 img loss 1.1308048963546753 img loss 1.2923088073730469 img loss 1.2019013166427612 img loss 1.1761322021484375 img loss 1.1855992078781128 img loss 1.1797349452972412 img loss 1.2766127586364746 img loss 1.1962518692016602 img loss 1.1725358963012695 img loss 1.1850725412368774 img loss 1.2299513816833496 img loss 1.200926423072815 img loss 1.2789433002471924 img loss 1.173776626586914 img loss 1.2920875549316406 img loss 1.2465900182724 img loss 1.2480919361114502 img loss 1.1608867645263672 img loss 1.1348202228546143 img loss 1.273442029953003 img loss 1.207261085510254 img loss 1.2590364217758179 img loss 1.2353949546813965 img loss 1.1622602939605713 img loss 1.236973524093628 img loss 1.200036644935608 img loss 1.208085060119629 img loss 1.2527357339859009 img loss 1.1525179147720337 img loss 1.1815128326416016img loss 1.238090991973877 img loss 1.2042797803878784 img loss 1.22641122341156 img loss 1.2493009567260742 img loss 1.1978596448898315 img loss 1.2520365715026855 img loss 1.1998085975646973 img loss 1.2776525020599365 img loss 1.1926429271697998 img loss 1.2147388458251953 img loss 1.1683292388916016 img loss 1.1644666194915771 img loss 1.1386706829071045 img loss 1.1978386640548706 img loss 1.2113604545593262 img loss 1.1361337900161743 {'loss': 1.2044, 'grad_norm': 0.24846191704273224, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1806995868682861 img loss 1.2189515829086304 img loss 1.2887639999389648 img loss 1.2662148475646973 img loss 1.2511519193649292 img loss 1.3062959909439087 img loss 1.2738125324249268 img loss 1.333018183708191 img loss 1.2842612266540527 img loss 1.2409923076629639 img loss 1.2217633724212646 img loss 1.2424273490905762 img loss 1.2120691537857056 img loss 1.1859157085418701 img loss 1.2314586639404297 img loss 1.2808935642242432 img loss 1.2310281991958618 img loss 1.2487448453903198 img loss 1.222665786743164 img loss 1.2343366146087646 img loss 1.2967286109924316 img loss 1.2608951330184937 img loss 1.2646831274032593 img loss 1.258297324180603 img loss 1.2339404821395874 img loss 1.2382779121398926 img loss 1.2512309551239014 img loss 1.217890739440918 img loss 1.2985444068908691 img loss 1.3041536808013916 img loss 1.239835262298584 img loss 1.2230571508407593 img loss 1.283240556716919 img loss 1.2593094110488892 img loss 1.250342607498169 img loss 1.2506910562515259 img loss 1.2279889583587646 img loss 1.2514618635177612 img loss 1.2072229385375977 img loss 1.2353813648223877 img loss 1.2432407140731812 img loss 1.2447357177734375 img loss 1.2154169082641602 img loss 1.1866488456726074 img loss 1.159386157989502 img loss 1.1294260025024414 img loss 1.234524130821228 img loss 1.2475404739379883 img loss 1.3208459615707397 img loss 1.2405335903167725 img loss 1.157186508178711 img loss 1.294432520866394 img loss 1.280547857284546 img loss 1.1993306875228882 img loss 1.2520177364349365 img loss 1.26398503780365 img loss 1.2247551679611206 img loss 1.2362017631530762 img loss 1.28666090965271 img loss 1.1875911951065063 img loss 1.2765836715698242 img loss 1.2277500629425049 img loss 1.24437415599823 img loss 1.2374681234359741 img loss 1.2049610614776611 img loss 1.2073198556900024 img loss 1.255671501159668 img loss 1.2594008445739746 img loss 1.16383695602417 img loss 1.2277169227600098 img loss 1.2152179479599 img loss 1.334745168685913 img loss 1.3161624670028687 img loss 1.2678613662719727 img loss 1.2032970190048218 img loss 1.2121963500976562 img loss 1.259528636932373 img loss 1.1732213497161865 img loss 1.2964942455291748 img loss 1.3665355443954468 img loss 1.2293355464935303 img loss 1.3232805728912354 img loss 1.3212254047393799 img loss 1.2640187740325928 img loss 1.253416657447815 img loss 1.205740213394165 img loss 1.304324984550476 img loss 1.1954727172851562 img loss 1.215798258781433 img loss 1.2715744972229004 img loss 1.2285139560699463 img loss 1.1756725311279297 img loss 1.3118200302124023 img loss 1.1735584735870361 img loss 1.2462679147720337 img loss 1.185856580734253 img loss 1.174386739730835 img loss 1.2552951574325562 img loss 1.2388414144515991 img loss 1.2950611114501953 img loss 1.2175813913345337 img loss 1.285353422164917 img loss 1.2441238164901733 img loss 1.214522361755371 img loss 1.2337605953216553 img loss 1.299285888671875 img loss 1.2182871103286743 img loss 1.3257057666778564 img loss 1.2259297370910645 img loss 1.2146223783493042 img loss 1.2154531478881836 img loss 1.2176023721694946 img loss 1.1840400695800781 img loss 1.2949951887130737 img loss 1.2031828165054321 img loss 1.2284092903137207 img loss 1.248453974723816 img loss 1.235256552696228 img loss 1.2516593933105469 img loss 1.209816575050354 img loss 1.207126259803772 img loss 1.169063925743103 img loss 1.2908066511154175 img loss 1.2717498540878296 img loss 1.2413628101348877 img loss 1.2232173681259155 img loss 1.2099789381027222 img loss 1.2331031560897827 {'loss': 1.2426, 'grad_norm': 0.3259882926940918, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3437559604644775 img loss 1.2509421110153198 img loss 1.358359456062317 img loss 1.3450192213058472 img loss 1.3193848133087158 img loss 1.3556429147720337 img loss 1.347185730934143 img loss 1.364068627357483 img loss 1.3673913478851318 img loss 1.3322808742523193 img loss 1.2006471157073975 img loss 1.3870681524276733 img loss 1.4528658390045166 img loss 1.3361306190490723 img loss 1.4325878620147705 img loss 1.3135216236114502 img loss 1.396259069442749 img loss 1.3636895418167114 img loss 1.3117812871932983 img loss 1.3515280485153198 img loss 1.3697987794876099 img loss 1.5018888711929321 img loss 1.1893013715744019 img loss 1.3004268407821655 img loss 1.2725121974945068 img loss 1.393898844718933 img loss 1.238149642944336 img loss 1.4173036813735962 img loss 1.3878930807113647 img loss 1.341565489768982 img loss 1.3292477130889893 img loss 1.2752563953399658 img loss 1.2529444694519043 img loss 1.3444546461105347 img loss 1.3735222816467285 img loss 1.3361132144927979 img loss 1.3423579931259155 img loss 1.4421011209487915 img loss 1.3587177991867065 img loss 1.367520809173584 img loss 1.3897072076797485 img loss 1.3501849174499512 img loss 1.3089454174041748 img loss 1.3323328495025635 img loss 1.4093928337097168 img loss 1.2580970525741577 img loss 1.3697186708450317 img loss 1.2972159385681152 img loss 1.3759229183197021 img loss 1.334606647491455 img loss 1.5103256702423096 img loss 1.3613039255142212 img loss 1.2078357934951782 img loss 1.4368870258331299 img loss 1.4763047695159912 img loss 1.3751981258392334 img loss 1.2974467277526855 img loss 1.298290491104126 img loss 1.3071132898330688 img loss 1.3052403926849365 img loss 1.4101784229278564 img loss 1.4151304960250854 img loss 1.308811068534851 img loss 1.2830692529678345 img loss 1.3439375162124634 img loss 1.2693848609924316 img loss 1.431147813796997 img loss 1.4053021669387817 img loss 1.3384544849395752 img loss 1.4890178442001343 img loss 1.2429834604263306 img loss 1.4175899028778076 img loss 1.3323007822036743 img loss 1.3051390647888184 img loss 1.324973702430725 img loss 1.2742655277252197 img loss 1.3361666202545166 img loss 1.3087562322616577 img loss 1.2618999481201172 img loss 1.2573096752166748 img loss 1.3096164464950562 img loss 1.4178030490875244 img loss 1.4408921003341675img loss 1.379909873008728 img loss 1.3157920837402344 img loss 1.2141863107681274 img loss 1.3522526025772095 img loss 1.4677011966705322 img loss 1.4455913305282593 img loss 1.3680001497268677 img loss 1.3420710563659668 img loss 1.2925918102264404 img loss 1.304591417312622 img loss 1.206983208656311 img loss 1.399527907371521 img loss 1.3120306730270386 img loss 1.3515461683273315 img loss 1.617465615272522 img loss 1.3714679479599 img loss 1.4436975717544556img loss 1.427984595298767 img loss 1.359404444694519 img loss 1.2810628414154053 img loss 1.3116679191589355 img loss 1.375525712966919 img loss 1.2559486627578735 img loss 1.3594565391540527 img loss 1.3081291913986206 img loss 1.477739691734314 img loss 1.326465368270874 img loss 1.3713206052780151 img loss 1.3148695230484009 img loss 1.3824191093444824 img loss 1.2575278282165527 img loss 1.3054033517837524 img loss 1.4207855463027954 img loss 1.5134284496307373 img loss 1.4088021516799927 img loss 1.1808785200119019 img loss 1.3129894733428955 img loss 1.2498775720596313 img loss 1.2192256450653076 img loss 1.3210206031799316 img loss 1.2069061994552612 img loss 1.3661935329437256 img loss 1.4739415645599365 img loss 1.3176710605621338 img loss 1.365748643875122 {'loss': 1.3465, 'grad_norm': 0.321183443069458, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.214440107345581 img loss 1.2009975910186768 img loss 1.264866590499878 img loss 1.2642078399658203 img loss 1.1837106943130493 img loss 1.2339195013046265 img loss 1.1702584028244019 img loss 1.139285922050476 img loss 1.19192636013031 img loss 1.1278656721115112 img loss 1.2057980298995972 img loss 1.1994603872299194 img loss 1.2371227741241455 img loss 1.1799455881118774 img loss 1.179785132408142 img loss 1.2380270957946777 img loss 1.2202194929122925 img loss 1.2156699895858765 img loss 1.20638906955719 img loss 1.236549735069275 img loss 1.1711066961288452 img loss 1.1486200094223022 img loss 1.1781431436538696 img loss 1.1376756429672241 img loss 1.152493953704834 img loss 1.1881449222564697 img loss 1.3201653957366943 img loss 1.1564710140228271 img loss 1.286590814590454 img loss 1.21446692943573 img loss 1.206390380859375 img loss 1.204952597618103 img loss 1.147886872291565 img loss 1.1337673664093018 img loss 1.2582082748413086 img loss 1.2546449899673462 img loss 1.2272121906280518 img loss 1.115983247756958 img loss 1.2473455667495728 img loss 1.1699676513671875 img loss 1.2768516540527344 img loss 1.2478768825531006 img loss 1.2814228534698486 img loss 1.2655811309814453 img loss 1.2812713384628296 img loss 1.2113138437271118 img loss 1.1931766271591187 img loss 1.1708102226257324 img loss 1.3033604621887207 img loss 1.2085155248641968 img loss 1.2174843549728394 img loss 1.16262948513031 img loss 1.1483532190322876 img loss 1.1648061275482178 img loss 1.3055076599121094 img loss 1.2133424282073975 img loss 1.1688628196716309img loss 1.1966280937194824 img loss 1.1995830535888672 img loss 1.1932225227355957 img loss 1.2754968404769897 img loss 1.2296888828277588 img loss 1.3313416242599487 img loss 1.201759934425354 img loss 1.2148852348327637 img loss 1.177008032798767 img loss 1.1774100065231323 img loss 1.3157471418380737 img loss 1.1772449016571045 img loss 1.2126888036727905 img loss 1.1672073602676392 img loss 1.187082290649414 img loss 1.2509186267852783 img loss 1.23026442527771 img loss 1.215066909790039 img loss 1.2045544385910034 img loss 1.2539576292037964 img loss 1.2126073837280273 img loss 1.298553466796875 img loss 1.2730435132980347 img loss 1.1000913381576538 img loss 1.2443851232528687 img loss 1.2214516401290894 img loss 1.2795418500900269 img loss 1.2395232915878296 img loss 1.1798624992370605 img loss 1.1740137338638306 img loss 1.1954662799835205 img loss 1.1792311668395996 img loss 1.2175185680389404 img loss 1.2337491512298584 img loss 1.2204163074493408 img loss 1.2345329523086548 img loss 1.2365738153457642 img loss 1.2021286487579346 img loss 1.2532776594161987 img loss 1.2290890216827393 img loss 1.1620793342590332 img loss 1.156530737876892 img loss 1.2311300039291382 img loss 1.2037270069122314 img loss 1.2447521686553955 img loss 1.1830520629882812 img loss 1.2330701351165771 img loss 1.1800755262374878 img loss 1.2512397766113281 img loss 1.1353685855865479 img loss 1.199141025543213 img loss 1.2507953643798828 img loss 1.2054640054702759 img loss 1.2234392166137695 img loss 1.1733851432800293 img loss 1.220426082611084 img loss 1.2197860479354858 img loss 1.235303521156311 img loss 1.2129321098327637 img loss 1.1745328903198242 img loss 1.1673774719238281 img loss 1.22102952003479 img loss 1.3014569282531738 img loss 1.2420259714126587 img loss 1.2596971988677979 img loss 1.153267741203308 img loss 1.2299683094024658 img loss 1.3096473217010498 img loss 1.2500641345977783 img loss 1.1376357078552246 img loss 1.2125059366226196 {'loss': 1.213, 'grad_norm': 0.21229512989521027, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2832069396972656 img loss 1.4610072374343872 img loss 1.2466410398483276 img loss 1.2282581329345703 img loss 1.3029632568359375 img loss 1.2943799495697021 img loss 1.2738507986068726 img loss 1.320704698562622 img loss 1.2593743801116943 img loss 1.2954623699188232 img loss 1.2694106101989746 img loss 1.2617031335830688 img loss 1.2465628385543823 img loss 1.262022614479065 img loss 1.453013300895691 img loss 1.389626383781433 img loss 1.3433250188827515 img loss 1.3092046976089478 img loss 1.3182567358016968 img loss 1.3902608156204224 img loss 1.2806297540664673 img loss 1.347017526626587 img loss 1.3074232339859009 img loss 1.303759217262268 img loss 1.2777680158615112 img loss 1.2278132438659668 img loss 1.3508851528167725 img loss 1.277795672416687 img loss 1.243665099143982 img loss 1.2843589782714844 img loss 1.310084581375122 img loss 1.2473653554916382 img loss 1.2398390769958496 img loss 1.3487566709518433 img loss 1.3114391565322876 img loss 1.3334956169128418 img loss 1.4274033308029175 img loss 1.3416141271591187 img loss 1.4221551418304443 img loss 1.3210705518722534 img loss 1.2813434600830078 img loss 1.1846948862075806 img loss 1.3929190635681152 img loss 1.3574477434158325 img loss 1.389892339706421 img loss 1.2878872156143188 img loss 1.1913551092147827 img loss 1.2632560729980469 img loss 1.2687702178955078 img loss 1.3682453632354736 img loss 1.3047254085540771 img loss 1.4235175848007202 img loss 1.3775705099105835 img loss 1.234713077545166 img loss 1.262541651725769 img loss 1.3310946226119995 img loss 1.36656653881073 img loss 1.2627346515655518 img loss 1.2785524129867554 img loss 1.249112606048584 img loss 1.3033297061920166 img loss 1.2370569705963135 img loss 1.458120584487915 img loss 1.262189269065857 img loss 1.1707799434661865 img loss 1.2864727973937988 img loss 1.2053550481796265 img loss 1.2794382572174072img loss 1.3199784755706787 img loss 1.2405592203140259 img loss 1.2629010677337646 img loss 1.3055493831634521 img loss 1.2874053716659546 img loss 1.3765790462493896 img loss 1.2887824773788452 img loss 1.3250643014907837 img loss 1.2660527229309082 img loss 1.2704495191574097 img loss 1.2598474025726318 img loss 1.271045446395874 img loss 1.340562343597412 img loss 1.2233632802963257 img loss 1.3340662717819214 img loss 1.3601361513137817 img loss 1.238135576248169 img loss 1.342536211013794 img loss 1.3882195949554443 img loss 1.317803144454956 img loss 1.253700852394104 img loss 1.3581494092941284 img loss 1.295272707939148 img loss 1.2574784755706787 img loss 1.2506548166275024 img loss 1.2402794361114502 img loss 1.319580316543579 img loss 1.2554585933685303 img loss 1.3295361995697021 img loss 1.3199574947357178 img loss 1.3130192756652832 img loss 1.3109158277511597 img loss 1.3346847295761108 img loss 1.2881206274032593 img loss 1.1841905117034912 img loss 1.280992031097412 img loss 1.2687443494796753 img loss 1.3689314126968384 img loss 1.3054311275482178 img loss 1.2440704107284546 img loss 1.249794363975525 img loss 1.3058092594146729 img loss 1.324002742767334 img loss 1.3390263319015503 img loss 1.4366706609725952 img loss 1.2836251258850098 img loss 1.322485327720642 img loss 1.3095921277999878 img loss 1.3440632820129395 img loss 1.3736109733581543 img loss 1.332940936088562 img loss 1.3044954538345337 img loss 1.3319902420043945 img loss 1.3110947608947754 img loss 1.325762152671814 img loss 1.295176386833191 img loss 1.3277878761291504 img loss 1.322337031364441 img loss 1.1557185649871826 img loss 1.3121401071548462 {'loss': 1.3031, 'grad_norm': 0.3461654484272003, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6961387395858765 img loss 1.6633950471878052 img loss 1.7723346948623657 img loss 1.5869125127792358 img loss 1.695388913154602 img loss 1.6004455089569092 img loss 1.6951632499694824 img loss 1.5847092866897583 img loss 1.6597764492034912 img loss 1.4049487113952637 img loss 1.5513094663619995 img loss 1.6077388525009155 img loss 1.631689429283142 img loss 1.682819128036499 img loss 1.51787269115448 img loss 1.6175036430358887 img loss 1.554714322090149 img loss 1.6549201011657715 img loss 1.5527606010437012 img loss 1.5805562734603882 img loss 1.6375054121017456 img loss 1.640844702720642 img loss 1.6545822620391846 img loss 1.5719637870788574 img loss 1.6337236166000366 img loss 1.4991602897644043 img loss 1.6520124673843384 img loss 1.7146320343017578 img loss 1.7604920864105225 img loss 1.6453813314437866 img loss 1.5036672353744507 img loss 1.538076639175415 img loss 1.5797654390335083 img loss 1.6287728548049927 img loss 1.5592687129974365 img loss 1.6032111644744873 img loss 1.529496431350708 img loss 1.5044714212417603 img loss 1.776728868484497 img loss 1.6405770778656006 img loss 1.6620533466339111 img loss 1.4798604249954224 img loss 1.5387459993362427 img loss 1.6660730838775635 img loss 1.508160948753357 img loss 1.4817020893096924 img loss 1.6051660776138306 img loss 1.7908653020858765 img loss 1.5554909706115723 img loss 1.4852949380874634 img loss 1.6732275485992432 img loss 1.6098158359527588img loss 1.5585922002792358 img loss 1.5820108652114868 img loss 1.7415320873260498 img loss 1.5823017358779907 img loss 1.6763815879821777 img loss 1.6526033878326416 img loss 1.7219674587249756 img loss 1.570420742034912 img loss 1.6025774478912354 img loss 1.5592354536056519 img loss 1.6160132884979248 img loss 1.547831416130066 img loss 1.7022793292999268 img loss 1.7680503129959106 img loss 1.5742770433425903 img loss 1.5847885608673096 img loss 1.6467212438583374 img loss 1.5646204948425293 img loss 1.6747395992279053 img loss 1.7052580118179321 img loss 1.7770910263061523 img loss 1.614943265914917 img loss 1.5202137231826782 img loss 1.5714516639709473 img loss 1.741921067237854 img loss 1.5584145784378052 img loss 1.4987720251083374 img loss 1.7873815298080444 img loss 1.5412923097610474 img loss 1.7146425247192383 img loss 1.6526440382003784 img loss 1.5481301546096802 img loss 1.5957988500595093 img loss 1.4529892206192017 img loss 1.5506904125213623 img loss 1.490404486656189 img loss 1.611422061920166 img loss 1.5207531452178955 img loss 1.5470118522644043 img loss 1.5534710884094238 img loss 1.5270577669143677 img loss 1.776450753211975 img loss 1.6869404315948486 img loss 1.677064061164856img loss 1.4933115243911743 img loss 1.5732742547988892 img loss 1.5240776538848877 img loss 1.593546748161316 img loss 1.5842316150665283 img loss 1.512900948524475 img loss 1.6061527729034424 img loss 1.695676565170288 img loss 1.5727769136428833 img loss 1.5710762739181519 img loss 1.5990759134292603 img loss 1.5484747886657715 img loss 1.5503031015396118 img loss 1.662462830543518 img loss 1.5417853593826294 img loss 1.5640302896499634 img loss 1.5999706983566284 img loss 1.5125784873962402 img loss 1.652270793914795 img loss 1.595811128616333 img loss 1.6609464883804321 img loss 1.5996822118759155 img loss 1.5976946353912354 img loss 1.6162267923355103 img loss 1.6566129922866821 img loss 1.6282299757003784 img loss 1.5552496910095215 img loss 1.6734340190887451 img loss 1.611836314201355 img loss 1.623327612876892 img loss 1.4417957067489624 img loss 1.6241201162338257 {'loss': 1.6065, 'grad_norm': 0.34431713819503784, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2588077783584595 img loss 1.265031099319458 img loss 1.1304749250411987 img loss 1.2152509689331055 img loss 1.2566819190979004 img loss 1.1733951568603516 img loss 1.3530241250991821 img loss 1.309491515159607 img loss 1.1185916662216187 img loss 1.4073230028152466 img loss 1.239641547203064 img loss 1.2459913492202759 img loss 1.3317807912826538 img loss 1.2591578960418701 img loss 1.3148964643478394 img loss 1.2091718912124634 img loss 1.2192389965057373 img loss 1.2957508563995361 img loss 1.2462968826293945 img loss 1.2116386890411377 img loss 1.281354546546936 img loss 1.204662799835205 img loss 1.2163426876068115 img loss 1.2881580591201782 img loss 1.2580755949020386 img loss 1.1515549421310425 img loss 1.1887128353118896 img loss 1.2039642333984375 img loss 1.2928237915039062 img loss 1.2409155368804932 img loss 1.2322149276733398 img loss 1.2167974710464478 img loss 1.1904608011245728img loss 1.1975711584091187 img loss 1.3315558433532715 img loss 1.2271333932876587 img loss 1.2678946256637573 img loss 1.2701176404953003 img loss 1.2041242122650146 img loss 1.2650070190429688 img loss 1.2250069379806519 img loss 1.1665563583374023 img loss 1.2995140552520752 img loss 1.1984219551086426 img loss 1.2922197580337524 img loss 1.2513011693954468 img loss 1.2817468643188477 img loss 1.3540886640548706 img loss 1.2788071632385254 img loss 1.288462519645691 img loss 1.2759395837783813 img loss 1.2984994649887085 img loss 1.2501659393310547 img loss 1.3220386505126953 img loss 1.2994794845581055 img loss 1.2100443840026855 img loss 1.2427366971969604 img loss 1.1430163383483887 img loss 1.2850263118743896 img loss 1.1264245510101318 img loss 1.2426600456237793 img loss 1.2093679904937744 img loss 1.12039315700531 img loss 1.358908772468567 img loss 1.2598997354507446 img loss 1.2681572437286377 img loss 1.1805546283721924 img loss 1.2163276672363281 img loss 1.2680822610855103 img loss 1.2653826475143433 img loss 1.196160912513733 img loss 1.248561143875122 img loss 1.2036045789718628 img loss 1.3112874031066895 img loss 1.2434037923812866 img loss 1.3629486560821533 img loss 1.2720377445220947 img loss 1.271944522857666 img loss 1.2243340015411377 img loss 1.2350356578826904 img loss 1.212276816368103 img loss 1.3118677139282227 img loss 1.2166963815689087 img loss 1.2436497211456299 img loss 1.2589187622070312 img loss 1.165346384048462 img loss 1.219154953956604 img loss 1.1756715774536133 img loss 1.173922061920166 img loss 1.1883233785629272 img loss 1.2429311275482178 img loss 1.1830940246582031 img loss 1.1796586513519287 img loss 1.1100356578826904 img loss 1.2517125606536865 img loss 1.2016489505767822 img loss 1.2253758907318115 img loss 1.3194109201431274 img loss 1.2529199123382568img loss 1.0805325508117676 img loss 1.2114887237548828 img loss 1.2994521856307983 img loss 1.2369542121887207 img loss 1.2339595556259155 img loss 1.3263403177261353 img loss 1.2051560878753662 img loss 1.3417131900787354 img loss 1.3014774322509766 img loss 1.1651710271835327 img loss 1.200346827507019 img loss 1.2216793298721313 img loss 1.213861107826233 img loss 1.2383339405059814 img loss 1.3752319812774658 img loss 1.2767212390899658 img loss 1.230818748474121 img loss 1.2863010168075562 img loss 1.178039789199829 img loss 1.3307803869247437 img loss 1.2022051811218262 img loss 1.2168326377868652 img loss 1.248718023300171 img loss 1.2873740196228027 img loss 1.381947636604309 img loss 1.3260681629180908 img loss 1.2647318840026855 img loss 1.2128338813781738 img loss 1.3332241773605347 {'loss': 1.2453, 'grad_norm': 0.29937174916267395, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.257952332496643 img loss 1.288172721862793 img loss 1.2338910102844238 img loss 1.3174304962158203 img loss 1.3349111080169678 img loss 1.3055576086044312 img loss 1.3215988874435425 img loss 1.2504770755767822 img loss 1.3069061040878296 img loss 1.248724341392517 img loss 1.34865140914917 img loss 1.2372726202011108 img loss 1.2965341806411743 img loss 1.4108563661575317 img loss 1.2355345487594604 img loss 1.381035566329956 img loss 1.2936339378356934 img loss 1.307908296585083 img loss 1.2872833013534546 img loss 1.2637239694595337 img loss 1.2916768789291382 img loss 1.379582166671753 img loss 1.204525351524353 img loss 1.293272852897644 img loss 1.254310965538025 img loss 1.2581570148468018 img loss 1.2448444366455078 img loss 1.2745941877365112 img loss 1.2864559888839722 img loss 1.3102624416351318 img loss 1.248025894165039 img loss 1.2542158365249634 img loss 1.2558608055114746 img loss 1.3069636821746826 img loss 1.3079872131347656 img loss 1.208568811416626 img loss 1.2418174743652344 img loss 1.2317460775375366 img loss 1.324628472328186 img loss 1.230777621269226 img loss 1.2542469501495361 img loss 1.2737367153167725 img loss 1.3526753187179565 img loss 1.2916446924209595 img loss 1.240792989730835 img loss 1.274972915649414 img loss 1.3287161588668823 img loss 1.313429355621338 img loss 1.3827617168426514 img loss 1.236623764038086 img loss 1.2123901844024658 img loss 1.2569148540496826 img loss 1.2751814126968384 img loss 1.2993885278701782 img loss 1.2908177375793457 img loss 1.2915714979171753 img loss 1.3529212474822998 img loss 1.4944499731063843 img loss 1.3731948137283325 img loss 1.3231523036956787 img loss 1.2784868478775024 img loss 1.310739278793335 img loss 1.3456568717956543 img loss 1.2962274551391602 img loss 1.365728735923767 img loss 1.2286194562911987 img loss 1.3149809837341309 img loss 1.4020743370056152 img loss 1.308511734008789 img loss 1.3180670738220215 img loss 1.3671175241470337 img loss 1.348098635673523 img loss 1.2767541408538818 img loss 1.2573838233947754 img loss 1.285279631614685 img loss 1.3194456100463867 img loss 1.2563365697860718 img loss 1.3154582977294922 img loss 1.2575842142105103 img loss 1.2069604396820068 img loss 1.2567065954208374 img loss 1.3185019493103027 img loss 1.3395105600357056 img loss 1.4187824726104736 img loss 1.2189301252365112 img loss 1.2935237884521484 img loss 1.3415923118591309 img loss 1.2130097150802612 img loss 1.1930303573608398 img loss 1.2889305353164673 img loss 1.3387776613235474 img loss 1.220228672027588 img loss 1.2382258176803589 img loss 1.2004384994506836 img loss 1.3095703125 img loss 1.267494797706604 img loss 1.2895725965499878 img loss 1.407473087310791 img loss 1.3537421226501465 img loss 1.2852189540863037 img loss 1.2636888027191162 img loss 1.300558090209961 img loss 1.377497911453247 img loss 1.317621111869812 img loss 1.2686736583709717 img loss 1.1981905698776245 img loss 1.4057480096817017 img loss 1.3859950304031372 img loss 1.2631276845932007 img loss 1.296544075012207 img loss 1.3341513872146606 img loss 1.2945008277893066 img loss 1.2461540699005127 img loss 1.3554540872573853 img loss 1.3480887413024902 img loss 1.2830920219421387 img loss 1.2780530452728271 img loss 1.2889914512634277 img loss 1.4136395454406738 img loss 1.39797842502594 img loss 1.3440037965774536 img loss 1.3077950477600098 img loss 1.212998390197754 img loss 1.2806307077407837 img loss 1.3364802598953247 img loss 1.31316077709198 img loss 1.2778472900390625 img loss 1.3486393690109253 {'loss': 1.2973, 'grad_norm': 0.33266016840934753, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6399599313735962 img loss 1.6414891481399536 img loss 1.4248344898223877 img loss 1.540647029876709 img loss 1.6131356954574585 img loss 1.5458197593688965 img loss 1.58073091506958 img loss 1.6709107160568237 img loss 1.6492445468902588 img loss 1.3247264623641968 img loss 1.5337978601455688 img loss 1.51273512840271 img loss 1.6867836713790894 img loss 1.5775731801986694 img loss 1.5811264514923096 img loss 1.4925110340118408 img loss 1.7166885137557983 img loss 1.5940886735916138 img loss 1.4480360746383667 img loss 1.381029486656189 img loss 1.6048829555511475 img loss 1.6215389966964722 img loss 1.4229949712753296 img loss 1.7138043642044067 img loss 1.4522449970245361 img loss 1.5323212146759033 img loss 1.7864364385604858 img loss 1.4432884454727173 img loss 1.5962597131729126 img loss 1.541736125946045 img loss 1.6027255058288574 img loss 1.5016534328460693 img loss 1.5463467836380005 img loss 1.4826083183288574 img loss 1.6213301420211792 img loss 1.5016483068466187 img loss 1.4264147281646729 img loss 1.5786579847335815 img loss 1.4538242816925049 img loss 1.480642557144165 img loss 1.6320831775665283 img loss 1.3878953456878662 img loss 1.5306884050369263 img loss 1.564918875694275 img loss 1.487714171409607 img loss 1.6395765542984009 img loss 1.3894578218460083 img loss 1.484615445137024 img loss 1.4998433589935303 img loss 1.4433722496032715 img loss 1.6113415956497192 img loss 1.598143458366394 img loss 1.6046315431594849 img loss 1.6300259828567505 img loss 1.7365113496780396 img loss 1.5921427011489868 img loss 1.4875210523605347 img loss 1.5096708536148071 img loss 1.669950246810913 img loss 1.5857443809509277 img loss 1.5600358247756958 img loss 1.6130789518356323 img loss 1.577643632888794 img loss 1.5825536251068115 img loss 1.5448424816131592 img loss 1.7075926065444946 img loss 1.7053513526916504 img loss 1.5262531042099 img loss 1.5825556516647339 img loss 1.5149120092391968 img loss 1.6210907697677612 img loss 1.5484178066253662 img loss 1.4273264408111572 img loss 1.6263177394866943 img loss 1.5989782810211182 img loss 1.4849131107330322 img loss 1.5875672101974487 img loss 1.453349232673645 img loss 1.5582191944122314 img loss 1.485365629196167 img loss 1.5470192432403564 img loss 1.5905470848083496 img loss 1.5912731885910034 img loss 1.6048691272735596 img loss 1.4966214895248413 img loss 1.728201150894165 img loss 1.620888590812683 img loss 1.5979968309402466 img loss 1.5462716817855835 img loss 1.6668064594268799 img loss 1.4159437417984009 img loss 1.4643700122833252 img loss 1.6199352741241455 img loss 1.646146535873413 img loss 1.4607511758804321 img loss 1.659978985786438 img loss 1.5970224142074585 img loss 1.546303391456604 img loss 1.4787060022354126 img loss 1.5655771493911743 img loss 1.577104091644287 img loss 1.4655919075012207 img loss 1.7652111053466797 img loss 1.561861515045166 img loss 1.7065892219543457 img loss 1.5453485250473022 img loss 1.572283148765564 img loss 1.6898328065872192 img loss 1.5567431449890137 img loss 1.514630913734436 img loss 1.4891314506530762 img loss 1.6517205238342285 img loss 1.5941483974456787 img loss 1.4977189302444458 img loss 1.4741957187652588 img loss 1.5265547037124634 img loss 1.5073883533477783 img loss 1.513304591178894 img loss 1.5001598596572876 img loss 1.45650053024292 img loss 1.5372521877288818 img loss 1.4764460325241089 img loss 1.5263354778289795 img loss 1.6993235349655151 img loss 1.5578601360321045 img loss 1.4487096071243286 img loss 1.5695692300796509 img loss 1.4806166887283325 {'loss': 1.5576, 'grad_norm': 0.3644590377807617, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.341240406036377 img loss 1.4722925424575806 img loss 1.3819994926452637 img loss 1.434462308883667 img loss 1.5126997232437134 img loss 1.4736474752426147 img loss 1.510405421257019 img loss 1.359546422958374 img loss 1.4611085653305054 img loss 1.4964722394943237 img loss 1.533319354057312 img loss 1.6434807777404785 img loss 1.2595585584640503 img loss 1.4614554643630981 img loss 1.4266973733901978 img loss 1.4142661094665527 img loss 1.4214794635772705 img loss 1.4011677503585815 img loss 1.3539174795150757 img loss 1.4707787036895752 img loss 1.397632122039795 img loss 1.5319560766220093 img loss 1.4951653480529785 img loss 1.5441601276397705 img loss 1.574855089187622 img loss 1.4910281896591187 img loss 1.553504467010498 img loss 1.254118800163269 img loss 1.7715373039245605 img loss 1.520323395729065 img loss 1.4019700288772583 img loss 1.4375321865081787 img loss 1.3984522819519043 img loss 1.342911958694458 img loss 1.545478343963623 img loss 1.4259129762649536 img loss 1.4464386701583862 img loss 1.434659481048584 img loss 1.3755452632904053 img loss 1.5008584260940552 img loss 1.4156315326690674 img loss 1.4548285007476807 img loss 1.3977035284042358 img loss 1.4672662019729614 img loss 1.4662178754806519 img loss 1.2998511791229248 img loss 1.3511278629302979 img loss 1.5289944410324097 img loss 1.3978294134140015 img loss 1.4476414918899536 img loss 1.5395817756652832 img loss 1.4569017887115479 img loss 1.6156270503997803 img loss 1.4001544713974 img loss 1.6403234004974365 img loss 1.5344176292419434 img loss 1.384019136428833 img loss 1.462605357170105 img loss 1.4906418323516846 img loss 1.5674892663955688 img loss 1.58962082862854 img loss 1.5676442384719849 img loss 1.4392434358596802 img loss 1.3874939680099487 img loss 1.4479937553405762 img loss 1.477994441986084 img loss 1.4676088094711304 img loss 1.3496876955032349 img loss 1.4482744932174683 img loss 1.6218974590301514 img loss 1.4839301109313965 img loss 1.4803059101104736 img loss 1.5125672817230225 img loss 1.4958546161651611 img loss 1.4239211082458496 img loss 1.426035761833191 img loss 1.4539580345153809 img loss 1.4523874521255493 img loss 1.5226476192474365 img loss 1.5240042209625244 img loss 1.4534205198287964 img loss 1.4641615152359009 img loss 1.4875562191009521 img loss 1.5658594369888306 img loss 1.6409707069396973 img loss 1.5069547891616821 img loss 1.4722917079925537 img loss 1.399713397026062 img loss 1.5703084468841553 img loss 1.4843822717666626 img loss 1.5140308141708374 img loss 1.594928503036499 img loss 1.5056356191635132 img loss 1.5940887928009033 img loss 1.4870903491973877 img loss 1.3205974102020264 img loss 1.4676827192306519 img loss 1.3697888851165771 img loss 1.647174596786499 img loss 1.5113986730575562 img loss 1.525143027305603 img loss 1.383359670639038 img loss 1.5093722343444824 img loss 1.3774815797805786 img loss 1.4705086946487427 img loss 1.4970529079437256 img loss 1.5628055334091187 img loss 1.5872703790664673 img loss 1.5018736124038696 img loss 1.4095091819763184 img loss 1.536298394203186 img loss 1.366819977760315 img loss 1.5684257745742798 img loss 1.3729349374771118 img loss 1.44753897190094 img loss 1.4317166805267334 img loss 1.5262163877487183 img loss 1.4291962385177612 img loss 1.265390396118164 img loss 1.4600340127944946 img loss 1.548180103302002 img loss 1.3718984127044678 img loss 1.396580457687378 img loss 1.4102295637130737 img loss 1.4791655540466309 img loss 1.5270740985870361 img loss 1.4161982536315918 img loss 1.354264497756958 {'loss': 1.4684, 'grad_norm': 0.23458360135555267, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1776243448257446 img loss 1.3455227613449097 img loss 1.2524744272232056 img loss 1.3627163171768188 img loss 1.2306631803512573 img loss 1.254785418510437 img loss 1.3507367372512817 img loss 1.188188076019287 img loss 1.2990821599960327 img loss 1.3237533569335938 img loss 1.3145986795425415 img loss 1.268815517425537 img loss 1.18435800075531 img loss 1.2240910530090332 img loss 1.2809480428695679 img loss 1.2636091709136963 img loss 1.241133689880371 img loss 1.2213263511657715 img loss 1.2737210988998413 img loss 1.3075414896011353 img loss 1.270799994468689 img loss 1.303983449935913 img loss 1.3501436710357666 img loss 1.32467782497406 img loss 1.2221323251724243 img loss 1.1828466653823853 img loss 1.2934815883636475 img loss 1.2945568561553955 img loss 1.2694411277770996 img loss 1.2917495965957642 img loss 1.2750861644744873 img loss 1.3491547107696533 img loss 1.2622956037521362 img loss 1.232663631439209 img loss 1.2948158979415894 img loss 1.176293969154358 img loss 1.2519346475601196 img loss 1.2782691717147827 img loss 1.1918678283691406 img loss 1.3121916055679321 img loss 1.323369026184082 img loss 1.3284157514572144 img loss 1.1909844875335693 img loss 1.2038415670394897 img loss 1.2286899089813232 img loss 1.279666543006897 img loss 1.3087897300720215 img loss 1.1977226734161377 img loss 1.3064199686050415 img loss 1.3551421165466309 img loss 1.2604591846466064 img loss 1.2965892553329468 img loss 1.2999645471572876 img loss 1.3073793649673462 img loss 1.2995641231536865 img loss 1.2255845069885254 img loss 1.2402304410934448 img loss 1.238261103630066 img loss 1.2572485208511353 img loss 1.248044490814209 img loss 1.2789020538330078 img loss 1.1874462366104126 img loss 1.1755980253219604 img loss 1.2718958854675293 img loss 1.1765782833099365 img loss 1.2275112867355347 img loss 1.2527283430099487 img loss 1.1924340724945068 img loss 1.2602052688598633 img loss 1.2492823600769043 img loss 1.2405900955200195 img loss 1.3335446119308472 img loss 1.1953667402267456 img loss 1.2909950017929077 img loss 1.2969540357589722 img loss 1.2211154699325562 img loss 1.3149441480636597img loss 1.2817970514297485 img loss 1.2349897623062134 img loss 1.1740745306015015 img loss 1.2292174100875854 img loss 1.2576946020126343 img loss 1.2209573984146118 img loss 1.236467957496643 img loss 1.245797038078308 img loss 1.2464584112167358 img loss 1.209256887435913 img loss 1.3217504024505615 img loss 1.3040504455566406 img loss 1.264841079711914 img loss 1.3760939836502075 img loss 1.364564061164856 img loss 1.2126044034957886 img loss 1.2411469221115112 img loss 1.1738817691802979 img loss 1.2349071502685547 img loss 1.3022570610046387 img loss 1.2429218292236328 img loss 1.2490582466125488 img loss 1.3121458292007446 img loss 1.1935944557189941 img loss 1.2175538539886475 img loss 1.2494292259216309 img loss 1.2311997413635254 img loss 1.259680986404419 img loss 1.2360502481460571 img loss 1.3116213083267212 img loss 1.2907379865646362 img loss 1.1919918060302734 img loss 1.2417278289794922 img loss 1.216680884361267 img loss 1.2146623134613037 img loss 1.313750982284546 img loss 1.2773710489273071 img loss 1.3330130577087402 img loss 1.26558518409729 img loss 1.3131885528564453 img loss 1.3351454734802246 img loss 1.2488532066345215 img loss 1.2076157331466675 img loss 1.21445631980896 img loss 1.1950101852416992 img loss 1.254577398300171 img loss 1.3422731161117554 img loss 1.3011707067489624 img loss 1.3578011989593506 img loss 1.2160266637802124 img loss 1.2812151908874512 {'loss': 1.2625, 'grad_norm': 0.194342240691185, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2593644857406616 img loss 1.2340941429138184 img loss 1.192552089691162 img loss 1.2131894826889038 img loss 1.1509456634521484 img loss 1.248053789138794 img loss 1.2250827550888062 img loss 1.2232757806777954 img loss 1.2199677228927612 img loss 1.2437055110931396 img loss 1.2945317029953003 img loss 1.1814894676208496 img loss 1.190218448638916 img loss 1.198508620262146 img loss 1.2777131795883179 img loss 1.1967285871505737 img loss 1.2825244665145874 img loss 1.1956079006195068 img loss 1.1928465366363525 img loss 1.2457976341247559 img loss 1.2023265361785889 img loss 1.2315881252288818 img loss 1.2101383209228516 img loss 1.2536215782165527 img loss 1.1406396627426147 img loss 1.246351957321167 img loss 1.1808401346206665 img loss 1.3148802518844604 img loss 1.3026167154312134 img loss 1.1976343393325806 img loss 1.1474850177764893 img loss 1.2365509271621704 img loss 1.2259955406188965 img loss 1.1447170972824097 img loss 1.1741654872894287 img loss 1.2265715599060059 img loss 1.2219293117523193 img loss 1.2282650470733643 img loss 1.1530089378356934 img loss 1.2316358089447021 img loss 1.2234333753585815 img loss 1.3233833312988281 img loss 1.2148685455322266 img loss 1.226540446281433 img loss 1.2552452087402344 img loss 1.2019555568695068 img loss 1.1887010335922241 img loss 1.1908257007598877 img loss 1.200746774673462 img loss 1.2546002864837646 img loss 1.2582892179489136 img loss 1.3004965782165527 img loss 1.219236969947815 img loss 1.2559633255004883 img loss 1.296194076538086 img loss 1.2014062404632568 img loss 1.228353500366211 img loss 1.278871774673462 img loss 1.1412900686264038 img loss 1.2351570129394531 img loss 1.2486883401870728 img loss 1.2083015441894531 img loss 1.252439260482788 img loss 1.2078131437301636 img loss 1.2789745330810547 img loss 1.1833537817001343 img loss 1.2198138236999512 img loss 1.2254337072372437 img loss 1.1546261310577393 img loss 1.197538137435913 img loss 1.2280975580215454 img loss 1.2014060020446777 img loss 1.1768821477890015 img loss 1.1677930355072021 img loss 1.2736307382583618 img loss 1.2364548444747925 img loss 1.180344820022583 img loss 1.1712840795516968 img loss 1.1428097486495972 img loss 1.1986652612686157 img loss 1.2463479042053223 img loss 1.311697244644165 img loss 1.3072391748428345 img loss 1.169870138168335 img loss 1.2433812618255615 img loss 1.2608088254928589 img loss 1.1763956546783447 img loss 1.1945847272872925 img loss 1.2277902364730835 img loss 1.2265641689300537 img loss 1.2135132551193237 img loss 1.2776896953582764 img loss 1.2177317142486572 img loss 1.1448277235031128 img loss 1.3130367994308472 img loss 1.2240207195281982 img loss 1.2770051956176758img loss 1.3178093433380127 img loss 1.206530213356018 img loss 1.2105140686035156 img loss 1.2192190885543823 img loss 1.2275418043136597 img loss 1.2740687131881714 img loss 1.2408556938171387 img loss 1.3389297723770142 img loss 1.3094638586044312 img loss 1.1252409219741821 img loss 1.1862008571624756 img loss 1.2412896156311035 img loss 1.1971911191940308 img loss 1.2189832925796509 img loss 1.2375322580337524 img loss 1.1670994758605957 img loss 1.2164356708526611 img loss 1.2561440467834473 img loss 1.1824918985366821 img loss 1.181046962738037 img loss 1.2496118545532227 img loss 1.253138780593872 img loss 1.2052732706069946 img loss 1.268995761871338 img loss 1.2386565208435059 img loss 1.1973190307617188 img loss 1.144388198852539 img loss 1.1534470319747925 img loss 1.316917896270752 img loss 1.2241649627685547 img loss 1.266243577003479 {'loss': 1.2242, 'grad_norm': 0.3253081440925598, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2830311059951782 img loss 1.2261836528778076 img loss 1.164364218711853 img loss 1.1703516244888306 img loss 1.2474697828292847 img loss 1.2095164060592651 img loss 1.1880487203598022 img loss 1.2835029363632202 img loss 1.2063310146331787 img loss 1.152208685874939 img loss 1.1528072357177734 img loss 1.165519118309021 img loss 1.1223022937774658 img loss 1.3006867170333862 img loss 1.202042579650879 img loss 1.2069863080978394 img loss 1.3298076391220093 img loss 1.1837223768234253 img loss 1.2360734939575195 img loss 1.1736682653427124 img loss 1.2045615911483765 img loss 1.2261836528778076 img loss 1.220049500465393 img loss 1.2298835515975952 img loss 1.2179979085922241 img loss 1.2618736028671265 img loss 1.1424819231033325 img loss 1.1344178915023804 img loss 1.171863317489624 img loss 1.2148966789245605 img loss 1.2653249502182007 img loss 1.3588870763778687 img loss 1.1892458200454712img loss 1.2356956005096436 img loss 1.2543902397155762 img loss 1.2269258499145508 img loss 1.2334171533584595 img loss 1.1956977844238281 img loss 1.0917646884918213 img loss 1.2174546718597412 img loss 1.2170642614364624 img loss 1.164785623550415 img loss 1.191224455833435 img loss 1.1972827911376953 img loss 1.1968743801116943 img loss 1.2522289752960205 img loss 1.155588150024414 img loss 1.2861124277114868 img loss 1.2299355268478394 img loss 1.1632870435714722 img loss 1.1989917755126953 img loss 1.195640206336975 img loss 1.2324599027633667 img loss 1.1935352087020874 img loss 1.2003971338272095 img loss 1.3132139444351196 img loss 1.2490043640136719 img loss 1.222643256187439 img loss 1.2818121910095215 img loss 1.2020432949066162 img loss 1.2027958631515503 img loss 1.256771445274353 img loss 1.270588755607605 img loss 1.1564526557922363 img loss 1.1131601333618164 img loss 1.2944483757019043 img loss 1.2037664651870728 img loss 1.2124910354614258 img loss 1.2238906621932983 img loss 1.24363112449646 img loss 1.1600713729858398 img loss 1.1809186935424805 img loss 1.174627661705017 img loss 1.0828349590301514 img loss 1.2261282205581665 img loss 1.3065706491470337 img loss 1.1900503635406494 img loss 1.2836939096450806 img loss 1.3658396005630493 img loss 1.2757766246795654 img loss 1.2835369110107422 img loss 1.0650829076766968 img loss 1.195300579071045 img loss 1.1677544116973877 img loss 1.244713544845581 img loss 1.1816860437393188 img loss 1.1195021867752075 img loss 1.2595398426055908 img loss 1.24497389793396 img loss 1.3355470895767212 img loss 1.1854429244995117 img loss 1.172295331954956 img loss 1.1822872161865234 img loss 1.2365258932113647 img loss 1.1714801788330078 img loss 1.1884771585464478 img loss 1.1384778022766113 img loss 1.114870548248291 img loss 1.265188217163086 img loss 1.1527305841445923 img loss 1.2052645683288574 img loss 1.1562590599060059 img loss 1.2265042066574097 img loss 1.2751432657241821 img loss 1.2848352193832397 img loss 1.2610653638839722 img loss 1.2141050100326538 img loss 1.146775484085083 img loss 1.1334933042526245 img loss 1.4309262037277222 img loss 1.165445327758789 img loss 1.2289979457855225 img loss 1.166882038116455 img loss 1.152006983757019 img loss 1.2424743175506592 img loss 1.2149208784103394 img loss 1.17754328250885 img loss 1.1733899116516113 img loss 1.1947894096374512 img loss 1.2110201120376587 img loss 1.164467692375183 img loss 1.1962114572525024 img loss 1.1842020750045776 img loss 1.092178225517273 img loss 1.2205235958099365 img loss 1.260109305381775 img loss 1.1966183185577393 img loss 1.2231521606445312 {'loss': 1.2107, 'grad_norm': 0.21776485443115234, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1954262256622314 img loss 1.2124898433685303 img loss 1.2289347648620605 img loss 1.2297519445419312 img loss 1.256090760231018 img loss 1.2275140285491943 img loss 1.2618175745010376 img loss 1.23836088180542 img loss 1.1679511070251465 img loss 1.2341220378875732 img loss 1.244558334350586 img loss 1.2322404384613037 img loss 1.2347592115402222 img loss 1.2262651920318604 img loss 1.2646297216415405 img loss 1.30829656124115 img loss 1.2259653806686401 img loss 1.2522566318511963 img loss 1.1586993932724 img loss 1.1992523670196533 img loss 1.255979299545288 img loss 1.2261955738067627 img loss 1.2038514614105225 img loss 1.2340126037597656 img loss 1.23183012008667 img loss 1.2649891376495361 img loss 1.2859151363372803 img loss 1.2792999744415283 img loss 1.2329565286636353 img loss 1.206921100616455 img loss 1.180341362953186 img loss 1.2350082397460938 img loss 1.2117094993591309 img loss 1.196984052658081 img loss 1.2271794080734253 img loss 1.1881401538848877 img loss 1.236318588256836 img loss 1.2755515575408936 img loss 1.1828343868255615 img loss 1.242451548576355 img loss 1.2240931987762451 img loss 1.2083964347839355 img loss 1.269858717918396 img loss 1.178937315940857 img loss 1.2378168106079102 img loss 1.2480111122131348 img loss 1.2267613410949707 img loss 1.2025630474090576 img loss 1.2501482963562012 img loss 1.242812156677246 img loss 1.191078782081604 img loss 1.242155909538269 img loss 1.3087468147277832 img loss 1.2339444160461426 img loss 1.245837688446045 img loss 1.1996052265167236 img loss 1.2054193019866943 img loss 1.2343904972076416 img loss 1.2241265773773193 img loss 1.2688709497451782 img loss 1.2165225744247437 img loss 1.2415207624435425 img loss 1.2526960372924805 img loss 1.214523196220398 img loss 1.2228312492370605 img loss 1.2101895809173584 img loss 1.2197461128234863 img loss 1.1887840032577515 img loss 1.1985852718353271 img loss 1.2220091819763184 img loss 1.2228657007217407 img loss 1.225230097770691 img loss 1.2559113502502441 img loss 1.2095705270767212 img loss 1.2118691205978394 img loss 1.1963695287704468 img loss 1.2758307456970215 img loss 1.255072832107544 img loss 1.2362399101257324 img loss 1.2579681873321533 img loss 1.2270472049713135 img loss 1.227730393409729 img loss 1.2863082885742188 img loss 1.2879390716552734 img loss 1.1577030420303345 img loss 1.202736496925354 img loss 1.2031177282333374 img loss 1.2107549905776978 img loss 1.273212194442749 img loss 1.2264490127563477 img loss 1.253665804862976 img loss 1.1994651556015015 img loss 1.2089518308639526 img loss 1.2007668018341064 img loss 1.195855736732483 img loss 1.2457029819488525 img loss 1.2775830030441284 img loss 1.2255828380584717 img loss 1.1718028783798218 img loss 1.2185096740722656 img loss 1.2136160135269165 img loss 1.1901193857192993 img loss 1.255592942237854 img loss 1.2921297550201416 img loss 1.2610307931900024 img loss 1.2490551471710205 img loss 1.1936092376708984 img loss 1.2129147052764893 img loss 1.2560138702392578 img loss 1.2913731336593628 img loss 1.301802635192871 img loss 1.258206844329834 img loss 1.2900549173355103 img loss 1.2611889839172363 img loss 1.220715045928955 img loss 1.1943825483322144 img loss 1.2810797691345215 img loss 1.2107365131378174 img loss 1.2271976470947266 img loss 1.2192065715789795 img loss 1.2202194929122925 img loss 1.2397632598876953 img loss 1.2072876691818237 img loss 1.2072734832763672 img loss 1.2153124809265137 img loss 1.234068512916565 img loss 1.2701327800750732 img loss 1.2643280029296875 {'loss': 1.2314, 'grad_norm': 0.23739565908908844, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.22624933719635 img loss 1.240633249282837 img loss 1.2264072895050049 img loss 1.2154688835144043 img loss 1.1848094463348389 img loss 1.2050845623016357 img loss 1.2283527851104736 img loss 1.2479137182235718 img loss 1.238054871559143 img loss 1.218870997428894 img loss 1.2373842000961304 img loss 1.2456601858139038 img loss 1.2060825824737549 img loss 1.214057445526123 img loss 1.2257431745529175 img loss 1.2371898889541626 img loss 1.1925934553146362 img loss 1.2400463819503784 img loss 1.2192745208740234 img loss 1.1534233093261719 img loss 1.2027583122253418 img loss 1.216033935546875 img loss 1.2864006757736206 img loss 1.2786083221435547 img loss 1.1756923198699951 img loss 1.1999962329864502 img loss 1.175824761390686 img loss 1.2559906244277954 img loss 1.24669349193573 img loss 1.2194656133651733 img loss 1.2299426794052124 img loss 1.191606879234314 img loss 1.2110296487808228 img loss 1.2505136728286743 img loss 1.1894283294677734 img loss 1.2260831594467163 img loss 1.1601723432540894 img loss 1.3156722784042358 img loss 1.2818775177001953 img loss 1.1384929418563843 img loss 1.2250726222991943 img loss 1.2062067985534668 img loss 1.2464258670806885 img loss 1.217068076133728 img loss 1.1803697347640991 img loss 1.150305151939392 img loss 1.2229118347167969 img loss 1.2466447353363037 img loss 1.234212875366211 img loss 1.2007282972335815 img loss 1.2044882774353027 img loss 1.2333486080169678 img loss 1.199139952659607 img loss 1.2349153757095337 img loss 1.2323859930038452 img loss 1.2092195749282837 img loss 1.2523472309112549img loss 1.226733922958374 img loss 1.246535301208496 img loss 1.2121788263320923 img loss 1.2306654453277588 img loss 1.2600147724151611 img loss 1.2383421659469604 img loss 1.2035729885101318 img loss 1.260129690170288 img loss 1.2622226476669312 img loss 1.1372575759887695 img loss 1.2455780506134033 img loss 1.3129183053970337 img loss 1.2577431201934814 img loss 1.212999701499939 img loss 1.1982430219650269 img loss 1.177167296409607 img loss 1.194624900817871 img loss 1.250885009765625 img loss 1.2472167015075684 img loss 1.1982468366622925 img loss 1.2088361978530884 img loss 1.178065538406372 img loss 1.1902985572814941 img loss 1.1764816045761108 img loss 1.242249846458435 img loss 1.2755138874053955 img loss 1.1521625518798828 img loss 1.2095670700073242 img loss 1.2669086456298828 img loss 1.182888388633728 img loss 1.2651550769805908 img loss 1.2735639810562134 img loss 1.232033133506775 img loss 1.1655020713806152 img loss 1.2373985052108765 img loss 1.240900993347168 img loss 1.2202433347702026 img loss 1.2267653942108154 img loss 1.1680097579956055 img loss 1.1861701011657715 img loss 1.2147307395935059 img loss 1.2928167581558228 img loss 1.1825506687164307 img loss 1.2793879508972168 img loss 1.2600345611572266 img loss 1.262779712677002 img loss 1.2242317199707031 img loss 1.2414727210998535 img loss 1.258012294769287 img loss 1.1595513820648193 img loss 1.0921859741210938 img loss 1.2876951694488525 img loss 1.20169198513031 img loss 1.2143272161483765 img loss 1.1762760877609253 img loss 1.2253084182739258 img loss 1.1618865728378296 img loss 1.2309889793395996 img loss 1.183125376701355 img loss 1.329807162284851 img loss 1.1969621181488037 img loss 1.209193468093872 img loss 1.255415439605713 img loss 1.2493243217468262 img loss 1.2195897102355957 img loss 1.230006456375122 img loss 1.2294028997421265 img loss 1.1637102365493774 img loss 1.1695600748062134 img loss 1.246811866760254 img loss 1.1763063669204712 {'loss': 1.2207, 'grad_norm': 0.18997865915298462, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2885158061981201 img loss 1.2140172719955444 img loss 1.2653203010559082 img loss 1.299548625946045 img loss 1.2326710224151611 img loss 1.250049352645874 img loss 1.241046667098999 img loss 1.2976107597351074 img loss 1.189746379852295 img loss 1.2073969841003418 img loss 1.3436647653579712 img loss 1.2635929584503174 img loss 1.2296288013458252 img loss 1.2696533203125 img loss 1.4291493892669678 img loss 1.298236608505249 img loss 1.2937372922897339 img loss 1.1813417673110962 img loss 1.2045505046844482 img loss 1.2328472137451172 img loss 1.315124273300171 img loss 1.2186272144317627 img loss 1.2134894132614136 img loss 1.1851698160171509 img loss 1.2069025039672852 img loss 1.3831783533096313 img loss 1.3355653285980225 img loss 1.1606014966964722 img loss 1.2127500772476196 img loss 1.2960832118988037 img loss 1.2207844257354736 img loss 1.1897599697113037 img loss 1.2219643592834473 img loss 1.2346861362457275 img loss 1.301361083984375 img loss 1.256973147392273 img loss 1.3050575256347656 img loss 1.2157702445983887 img loss 1.2358344793319702 img loss 1.2214034795761108 img loss 1.2746492624282837 img loss 1.2097008228302002 img loss 1.2556695938110352 img loss 1.2503553628921509 img loss 1.3230934143066406 img loss 1.2101038694381714 img loss 1.2525395154953003 img loss 1.2660460472106934 img loss 1.259549856185913 img loss 1.2809265851974487 img loss 1.3135160207748413img loss 1.1850767135620117 img loss 1.3041712045669556 img loss 1.2884106636047363 img loss 1.303660273551941 img loss 1.2163138389587402 img loss 1.3726630210876465 img loss 1.3086316585540771 img loss 1.217569351196289 img loss 1.2571394443511963 img loss 1.2378079891204834img loss 1.280094027519226 img loss 1.2652466297149658 img loss 1.2759431600570679 img loss 1.203395128250122 img loss 1.2160381078720093 img loss 1.3146861791610718 img loss 1.1565394401550293 img loss 1.3388367891311646 img loss 1.1946203708648682 img loss 1.207337737083435 img loss 1.2481361627578735 img loss 1.296379804611206 img loss 1.2088980674743652 img loss 1.2322590351104736 img loss 1.1510846614837646 img loss 1.251731514930725 img loss 1.2373731136322021 img loss 1.2577117681503296 img loss 1.2510123252868652 img loss 1.244495153427124 img loss 1.2764862775802612 img loss 1.2970625162124634 img loss 1.2265251874923706 img loss 1.2197312116622925 img loss 1.1961758136749268 img loss 1.3264433145523071 img loss 1.297377109527588 img loss 1.2772464752197266 img loss 1.3199762105941772 img loss 1.2621771097183228 img loss 1.228023886680603 img loss 1.2150449752807617 img loss 1.3383082151412964 img loss 1.2440286874771118 img loss 1.3025104999542236 img loss 1.2790052890777588 img loss 1.2999980449676514 img loss 1.3299920558929443 img loss 1.2525629997253418 img loss 1.235039234161377 img loss 1.1879446506500244 img loss 1.2911403179168701 img loss 1.239183783531189 img loss 1.2010387182235718 img loss 1.262664556503296 img loss 1.1861122846603394 img loss 1.3216301202774048 img loss 1.2527856826782227 img loss 1.2683300971984863 img loss 1.2177540063858032 img loss 1.2292044162750244 img loss 1.3035800457000732 img loss 1.2007683515548706 img loss 1.2906341552734375 img loss 1.1741818189620972 img loss 1.2971590757369995 img loss 1.317203164100647 img loss 1.2566276788711548 img loss 1.2099106311798096 img loss 1.273773431777954 img loss 1.2069330215454102 img loss 1.3180888891220093 img loss 1.2862870693206787 img loss 1.284466028213501 img loss 1.3181376457214355 img loss 1.2646526098251343 img loss 1.3392564058303833 {'loss': 1.2579, 'grad_norm': 0.2512432336807251, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.213966965675354 img loss 1.3062633275985718 img loss 1.1874165534973145 img loss 1.1966307163238525 img loss 1.3016085624694824 img loss 1.2701802253723145 img loss 1.259157419204712 img loss 1.2010256052017212 img loss 1.2349791526794434 img loss 1.2140882015228271 img loss 1.2803503274917603 img loss 1.3213298320770264 img loss 1.1267726421356201 img loss 1.2039772272109985 img loss 1.2373816967010498 img loss 1.2487080097198486 img loss 1.2299412488937378 img loss 1.165151596069336 img loss 1.2179617881774902 img loss 1.1410363912582397 img loss 1.2397438287734985 img loss 1.173192024230957 img loss 1.1917799711227417 img loss 1.1376967430114746 img loss 1.1671228408813477 img loss 1.15327787399292 img loss 1.16677725315094 img loss 1.1861777305603027 img loss 1.204458236694336 img loss 1.2174100875854492 img loss 1.1871122121810913 img loss 1.2300331592559814 img loss 1.2453973293304443 img loss 1.1886508464813232 img loss 1.1850786209106445 img loss 1.3378008604049683 img loss 1.196449637413025 img loss 1.2553046941757202 img loss 1.2301794290542603 img loss 1.2263047695159912 img loss 1.227861762046814 img loss 1.231515645980835 img loss 1.195508599281311 img loss 1.2828311920166016 img loss 1.2066209316253662 img loss 1.2038414478302002 img loss 1.3113796710968018 img loss 1.227769136428833 img loss 1.2619999647140503 img loss 1.1552109718322754 img loss 1.2273958921432495 img loss 1.1779131889343262 img loss 1.2645976543426514 img loss 1.2065991163253784 img loss 1.2013647556304932 img loss 1.1554666757583618 img loss 1.2778942584991455 img loss 1.227142095565796 img loss 1.166587233543396 img loss 1.2001551389694214 img loss 1.2237927913665771 img loss 1.1810671091079712 img loss 1.2912243604660034 img loss 1.2144426107406616 img loss 1.2054290771484375 img loss 1.240922451019287 img loss 1.1978681087493896 img loss 1.2610113620758057 img loss 1.2245649099349976 img loss 1.1638978719711304 img loss 1.2417510747909546 img loss 1.2031049728393555 img loss 1.1150486469268799 img loss 1.16219961643219 img loss 1.2146921157836914 img loss 1.1743347644805908 img loss 1.1839747428894043 img loss 1.298176646232605 img loss 1.2388007640838623 img loss 1.2241853475570679 img loss 1.2359919548034668 img loss 1.1378209590911865 img loss 1.2497680187225342 img loss 1.1596835851669312 img loss 1.1753590106964111 img loss 1.2001526355743408 img loss 1.1973421573638916 img loss 1.1300556659698486 img loss 1.257065773010254 img loss 1.1375278234481812 img loss 1.1460583209991455 img loss 1.1138370037078857 img loss 1.241584062576294img loss 1.1424137353897095 img loss 1.2713792324066162 img loss 1.1755263805389404 img loss 1.132256269454956 img loss 1.1401070356369019 img loss 1.2111170291900635 img loss 1.3213958740234375 img loss 1.2276533842086792 img loss 1.2543513774871826 img loss 1.1455423831939697 img loss 1.1953003406524658 img loss 1.190138339996338 img loss 1.233824372291565 img loss 1.2212028503417969 img loss 1.1290130615234375 img loss 1.121688723564148 img loss 1.169793725013733 img loss 1.1676883697509766 img loss 1.251554250717163 img loss 1.1871182918548584 img loss 1.1635963916778564 img loss 1.1130698919296265 img loss 1.2664514780044556 img loss 1.2036669254302979 img loss 1.1715010404586792 img loss 1.2594654560089111 img loss 1.2363287210464478 img loss 1.1397022008895874 img loss 1.2505202293395996 img loss 1.2359237670898438 img loss 1.1956039667129517 img loss 1.2349947690963745 img loss 1.176416277885437 img loss 1.1868418455123901 img loss 1.227663278579712 {'loss': 1.2084, 'grad_norm': 0.2330651581287384, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2581913471221924 img loss 1.226885199546814 img loss 1.1946169137954712 img loss 1.1856963634490967 img loss 1.2533416748046875 img loss 1.2108983993530273 img loss 1.1747360229492188 img loss 1.2397054433822632 img loss 1.229273796081543 img loss 1.2551982402801514 img loss 1.2149081230163574 img loss 1.254575252532959 img loss 1.1668143272399902 img loss 1.1400905847549438 img loss 1.2553975582122803 img loss 1.2982077598571777 img loss 1.2004201412200928 img loss 1.1338855028152466 img loss 1.1901825666427612 img loss 1.1292123794555664 img loss 1.2267756462097168 img loss 1.1796672344207764 img loss 1.1497913599014282 img loss 1.18266761302948 img loss 1.2401434183120728 img loss 1.2300219535827637 img loss 1.2144231796264648 img loss 1.2076466083526611 img loss 1.313017725944519 img loss 1.2165584564208984 img loss 1.2237218618392944 img loss 1.2046114206314087 img loss 1.1893980503082275 img loss 1.1990723609924316 img loss 1.2032150030136108 img loss 1.2443279027938843 img loss 1.1563708782196045 img loss 1.2769323587417603 img loss 1.1962264776229858 img loss 1.1331291198730469 img loss 1.2255505323410034 img loss 1.2434306144714355 img loss 1.1632095575332642 img loss 1.203695297241211 img loss 1.1532039642333984 img loss 1.22216796875 img loss 1.192116618156433 img loss 1.1571413278579712 img loss 1.1678541898727417 img loss 1.2112386226654053 img loss 1.2656075954437256 img loss 1.2597267627716064 img loss 1.1813256740570068 img loss 1.3452585935592651 img loss 1.2645542621612549 img loss 1.1481945514678955 img loss 1.1985353231430054 img loss 1.1801151037216187 img loss 1.1652181148529053 img loss 1.2071348428726196 img loss 1.246687889099121 img loss 1.1346819400787354 img loss 1.3063465356826782 img loss 1.1933670043945312 img loss 1.274348497390747 img loss 1.2452099323272705 img loss 1.26072096824646 img loss 1.2587381601333618 img loss 1.3921147584915161 img loss 1.281205415725708 img loss 1.164648413658142 img loss 1.2820152044296265 img loss 1.137223243713379 img loss 1.252915620803833 img loss 1.2225680351257324 img loss 1.2282694578170776 img loss 1.1917188167572021 img loss 1.1763272285461426 img loss 1.2374695539474487 img loss 1.1790484189987183 img loss 1.1484696865081787 img loss 1.2427139282226562 img loss 1.1193771362304688 img loss 1.1524475812911987 img loss 1.2049988508224487 img loss 1.1812750101089478 img loss 1.19487726688385 img loss 1.312382698059082 img loss 1.240488886833191 img loss 1.211280345916748 img loss 1.176598310470581 img loss 1.1854057312011719 img loss 1.1858831644058228 img loss 1.1809018850326538 img loss 1.1872210502624512 img loss 1.211329698562622 img loss 1.2193669080734253 img loss 1.2244164943695068 img loss 1.1969937086105347 img loss 1.150825023651123 img loss 1.220841646194458 img loss 1.2019420862197876 img loss 1.2670447826385498 img loss 1.2168247699737549 img loss 1.2030277252197266 img loss 1.2142876386642456 img loss 1.1878654956817627 img loss 1.304898977279663 img loss 1.1701433658599854 img loss 1.230262279510498 img loss 1.2564723491668701 img loss 1.332695722579956 img loss 1.2040655612945557 img loss 1.2897498607635498 img loss 1.192999243736267 img loss 1.2293537855148315 img loss 1.1855783462524414 img loss 1.2124667167663574 img loss 1.2322498559951782 img loss 1.1442245244979858 img loss 1.1483368873596191 img loss 1.2584518194198608 img loss 1.1639807224273682 img loss 1.105346918106079 img loss 1.182958960533142 img loss 1.2101492881774902 img loss 1.161750316619873 img loss 1.1992714405059814 {'loss': 1.2115, 'grad_norm': 0.19147735834121704, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.269102931022644 img loss 1.3725521564483643 img loss 1.31899893283844 img loss 1.2347705364227295 img loss 1.2584720849990845 img loss 1.2294142246246338 img loss 1.259779691696167 img loss 1.1871575117111206 img loss 1.3433178663253784 img loss 1.2600033283233643 img loss 1.3479998111724854 img loss 1.299039602279663 img loss 1.3563696146011353 img loss 1.2981855869293213 img loss 1.345525860786438 img loss 1.3254019021987915 img loss 1.2419946193695068 img loss 1.4190407991409302 img loss 1.2786540985107422 img loss 1.3291873931884766 img loss 1.1855051517486572 img loss 1.3234093189239502 img loss 1.2635142803192139 img loss 1.3290657997131348 img loss 1.2976245880126953 img loss 1.272498369216919 img loss 1.2623275518417358 img loss 1.3157572746276855 img loss 1.2795095443725586 img loss 1.2405469417572021 img loss 1.2513394355773926 img loss 1.2460606098175049 img loss 1.3203285932540894 img loss 1.2619177103042603 img loss 1.3099802732467651 img loss 1.3708261251449585 img loss 1.2980480194091797 img loss 1.2775894403457642 img loss 1.32611083984375 img loss 1.1991925239562988 img loss 1.3213191032409668 img loss 1.2936921119689941 img loss 1.3401001691818237 img loss 1.2889666557312012 img loss 1.4625154733657837 img loss 1.2835447788238525 img loss 1.252548098564148 img loss 1.3131307363510132 img loss 1.3291395902633667 img loss 1.2487839460372925 img loss 1.4313372373580933 img loss 1.3819645643234253 img loss 1.241480827331543 img loss 1.3416563272476196 img loss 1.2739098072052002 img loss 1.3177818059921265 img loss 1.3028337955474854 img loss 1.3295717239379883 img loss 1.3069570064544678 img loss 1.2794328927993774 img loss 1.2758394479751587 img loss 1.234995722770691 img loss 1.2193388938903809 img loss 1.3309112787246704 img loss 1.3521075248718262 img loss 1.3414661884307861 img loss 1.3278316259384155 img loss 1.230982780456543 img loss 1.245095133781433 img loss 1.1766607761383057 img loss 1.1919541358947754 img loss 1.2553032636642456 img loss 1.2723196744918823 img loss 1.3250726461410522 img loss 1.3202571868896484 img loss 1.276076078414917 img loss 1.2325197458267212 img loss 1.3033397197723389 img loss 1.3381811380386353 img loss 1.3286333084106445 img loss 1.2870707511901855 img loss 1.2304900884628296 img loss 1.2867530584335327 img loss 1.2941442728042603 img loss 1.3012123107910156 img loss 1.2612318992614746 img loss 1.2726044654846191 img loss 1.3836305141448975 img loss 1.3278613090515137 img loss 1.2753329277038574 img loss 1.2221601009368896 img loss 1.3877357244491577 img loss 1.3501592874526978 img loss 1.3544601202011108 img loss 1.3755276203155518 img loss 1.2873395681381226 img loss 1.2803246974945068 img loss 1.2761852741241455 img loss 1.3174175024032593 img loss 1.2771106958389282 img loss 1.3187792301177979 img loss 1.3228363990783691 img loss 1.277614951133728 img loss 1.3467735052108765 img loss 1.36831796169281 img loss 1.3709757328033447 img loss 1.28973388671875 img loss 1.312877893447876 img loss 1.3115240335464478 img loss 1.2541202306747437 img loss 1.3387386798858643 img loss 1.3081711530685425 img loss 1.35996413230896 img loss 1.2591073513031006 img loss 1.2618024349212646 img loss 1.344012975692749 img loss 1.2875971794128418 img loss 1.2806673049926758 img loss 1.3440788984298706 img loss 1.3471206426620483 img loss 1.3385002613067627 img loss 1.3245389461517334 img loss 1.322343349456787 img loss 1.2537896633148193 img loss 1.2786877155303955 img loss 1.3367496728897095 img loss 1.2156195640563965 img loss 1.351639986038208 {'loss': 1.2992, 'grad_norm': 0.20111475884914398, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.224327564239502 img loss 1.200082778930664 img loss 1.2683560848236084 img loss 1.2163679599761963 img loss 1.2285516262054443 img loss 1.1807256937026978 img loss 1.2248249053955078 img loss 1.1486101150512695 img loss 1.2139781713485718 img loss 1.1905122995376587 img loss 1.1829774379730225 img loss 1.2403488159179688 img loss 1.1558879613876343 img loss 1.190773606300354 img loss 1.2410387992858887 img loss 1.1810905933380127 img loss 1.2270660400390625 img loss 1.173073410987854 img loss 1.2041059732437134 img loss 1.1947321891784668 img loss 1.2408154010772705 img loss 1.2292377948760986 img loss 1.1651357412338257 img loss 1.1635127067565918 img loss 1.1813583374023438 img loss 1.2508023977279663 img loss 1.178045630455017 img loss 1.1832188367843628 img loss 1.229686975479126 img loss 1.18150794506073 img loss 1.1489142179489136 img loss 1.2068743705749512 img loss 1.1801517009735107 img loss 1.2067911624908447 img loss 1.186435580253601 img loss 1.2063806056976318 img loss 1.1922107934951782 img loss 1.2263431549072266 img loss 1.2475509643554688 img loss 1.2337204217910767 img loss 1.197671890258789 img loss 1.1861540079116821 img loss 1.2111129760742188 img loss 1.1764180660247803 img loss 1.2365139722824097 img loss 1.2567814588546753 img loss 1.2213375568389893 img loss 1.161667823791504 img loss 1.2613277435302734 img loss 1.2046858072280884 img loss 1.2008999586105347 img loss 1.2001556158065796 img loss 1.2096421718597412 img loss 1.168648362159729 img loss 1.1918904781341553 img loss 1.2131868600845337 img loss 1.1816028356552124 img loss 1.1944496631622314 img loss 1.2748645544052124 img loss 1.1281218528747559 img loss 1.2132835388183594 img loss 1.2013678550720215 img loss 1.2038849592208862 img loss 1.2268530130386353img loss 1.2625043392181396 img loss 1.2086368799209595 img loss 1.2195067405700684 img loss 1.1874034404754639 img loss 1.2060432434082031 img loss 1.1521955728530884 img loss 1.2081398963928223 img loss 1.2567647695541382 img loss 1.1892240047454834 img loss 1.1951522827148438 img loss 1.225197672843933 img loss 1.198657512664795 img loss 1.1967222690582275 img loss 1.2266536951065063 img loss 1.178025484085083 img loss 1.2233402729034424 img loss 1.254442811012268 img loss 1.2084171772003174 img loss 1.1912932395935059 img loss 1.1192152500152588 img loss 1.2220313549041748 img loss 1.2193946838378906 img loss 1.232557773590088 img loss 1.258280634880066 img loss 1.230513334274292 img loss 1.192087173461914 img loss 1.2207835912704468 img loss 1.1750881671905518 img loss 1.2272151708602905 img loss 1.2191823720932007 img loss 1.197170615196228 img loss 1.218329906463623 img loss 1.1832878589630127 img loss 1.2066444158554077 img loss 1.1823136806488037 img loss 1.166874647140503 img loss 1.2560856342315674 img loss 1.1578209400177002 img loss 1.2097220420837402 img loss 1.2282952070236206 img loss 1.2008002996444702 img loss 1.2493168115615845 img loss 1.1194685697555542 img loss 1.2296156883239746 img loss 1.1881593465805054 img loss 1.2314801216125488 img loss 1.204951524734497 img loss 1.1617017984390259 img loss 1.1791017055511475 img loss 1.1934514045715332 img loss 1.1923110485076904 img loss 1.172577142715454 img loss 1.211369514465332 img loss 1.2646411657333374 img loss 1.2407581806182861 img loss 1.2098534107208252 img loss 1.1961735486984253 img loss 1.1849421262741089 img loss 1.2592382431030273 img loss 1.2200465202331543 img loss 1.2619215250015259 img loss 1.257009744644165 img loss 1.236967921257019 img loss 1.262294054031372 {'loss': 1.2069, 'grad_norm': 0.3351675271987915, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2976235151290894 img loss 1.2762458324432373 img loss 1.2584232091903687 img loss 1.2600921392440796 img loss 1.2336715459823608 img loss 1.3223446607589722 img loss 1.3048851490020752 img loss 1.2585428953170776 img loss 1.2548942565917969 img loss 1.288973093032837 img loss 1.223202109336853 img loss 1.2235592603683472 img loss 1.3165333271026611 img loss 1.2404829263687134 img loss 1.3075932264328003 img loss 1.2841334342956543 img loss 1.2601308822631836 img loss 1.2422668933868408 img loss 1.2543531656265259 img loss 1.2532331943511963 img loss 1.2433942556381226 img loss 1.1626167297363281 img loss 1.1894147396087646 img loss 1.2825380563735962 img loss 1.2465747594833374 img loss 1.2023487091064453 img loss 1.3156527280807495 img loss 1.2649812698364258 img loss 1.2983721494674683 img loss 1.227752447128296 img loss 1.2339280843734741 img loss 1.2291271686553955 img loss 1.229901671409607 img loss 1.2123552560806274 img loss 1.266413927078247 img loss 1.2832502126693726 img loss 1.2025076150894165 img loss 1.3146772384643555 img loss 1.202125906944275 img loss 1.2600741386413574 img loss 1.262926697731018 img loss 1.257814645767212 img loss 1.2603663206100464 img loss 1.3099656105041504 img loss 1.2786266803741455 img loss 1.2986466884613037 img loss 1.2117353677749634 img loss 1.2799806594848633 img loss 1.2622618675231934 img loss 1.2380671501159668 img loss 1.16041898727417 img loss 1.2450406551361084 img loss 1.2828843593597412 img loss 1.2747242450714111 img loss 1.2632452249526978 img loss 1.2904410362243652 img loss 1.234578013420105 img loss 1.3550536632537842 img loss 1.2372322082519531 img loss 1.3249329328536987 img loss 1.2509994506835938 img loss 1.223515510559082 img loss 1.2847926616668701 img loss 1.2944049835205078 img loss 1.2075351476669312 img loss 1.2389161586761475 img loss 1.2264355421066284 img loss 1.245736837387085 img loss 1.2510733604431152 img loss 1.3129764795303345 img loss 1.276820421218872 img loss 1.2825695276260376 img loss 1.2605732679367065 img loss 1.2983717918395996 img loss 1.2509406805038452 img loss 1.2652214765548706 img loss 1.244027853012085 img loss 1.2531654834747314 img loss 1.200316309928894 img loss 1.2417712211608887 img loss 1.2547564506530762 img loss 1.2412145137786865 img loss 1.1848913431167603 img loss 1.3055771589279175 img loss 1.2105251550674438 img loss 1.236685037612915 img loss 1.279597520828247 img loss 1.2185853719711304 img loss 1.272499442100525 img loss 1.3675150871276855 img loss 1.2651948928833008 img loss 1.2508457899093628 img loss 1.2761176824569702 img loss 1.2377517223358154 img loss 1.2169758081436157 img loss 1.249880313873291 img loss 1.2607667446136475 img loss 1.321332335472107 img loss 1.2259242534637451 img loss 1.1766488552093506 img loss 1.216156005859375 img loss 1.2222261428833008 img loss 1.1932504177093506 img loss 1.236549735069275 img loss 1.242711067199707 img loss 1.2457090616226196 img loss 1.239878535270691 img loss 1.2984169721603394 img loss 1.278578519821167 img loss 1.2523351907730103 img loss 1.2904636859893799 img loss 1.314309000968933 img loss 1.256568193435669 img loss 1.2267086505889893 img loss 1.2137529850006104 img loss 1.234748125076294 img loss 1.2295873165130615 img loss 1.2430552244186401 img loss 1.2792284488677979 img loss 1.2858508825302124 img loss 1.196327567100525 img loss 1.2557899951934814 img loss 1.2554022073745728 img loss 1.2415703535079956 img loss 1.30167555809021 img loss 1.2095255851745605 img loss 1.267601490020752 img loss 1.2303050756454468 {'loss': 1.2553, 'grad_norm': 0.3005622327327728, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1755273342132568 img loss 1.2218201160430908 img loss 1.17438542842865 img loss 1.182271957397461 img loss 1.1629470586776733 img loss 1.275879144668579 img loss 1.2305513620376587 img loss 1.1935005187988281 img loss 1.2268743515014648 img loss 1.254151701927185 img loss 1.2907825708389282 img loss 1.2299392223358154 img loss 1.2404382228851318 img loss 1.2868207693099976 img loss 1.2348148822784424 img loss 1.2206287384033203 img loss 1.2298855781555176 img loss 1.1630653142929077 img loss 1.2319927215576172 img loss 1.286982536315918 img loss 1.1689246892929077 img loss 1.2511948347091675 img loss 1.1975024938583374 img loss 1.2552145719528198 img loss 1.2351843118667603 img loss 1.19111967086792 img loss 1.2277675867080688 img loss 1.202547311782837 img loss 1.2050422430038452 img loss 1.2457258701324463 img loss 1.2212066650390625img loss 1.1858766078948975 img loss 1.2410789728164673 img loss 1.2754178047180176 img loss 1.1846628189086914 img loss 1.2188007831573486 img loss 1.1905630826950073 img loss 1.0789612531661987 img loss 1.166818618774414 img loss 1.1453518867492676 img loss 1.1880755424499512 img loss 1.2179360389709473 img loss 1.1993626356124878img loss 1.279112696647644 img loss 1.2491616010665894 img loss 1.2502164840698242 img loss 1.2166898250579834 img loss 1.22555410861969 img loss 1.2182080745697021 img loss 1.1700239181518555 img loss 1.3235937356948853 img loss 1.243874192237854 img loss 1.2098013162612915 img loss 1.2020854949951172 img loss 1.2543160915374756 img loss 1.2083239555358887 img loss 1.3069918155670166 img loss 1.1634820699691772 img loss 1.2693217992782593 img loss 1.1996736526489258 img loss 1.2362148761749268 img loss 1.1504778861999512 img loss 1.2420382499694824 img loss 1.3453809022903442 img loss 1.1779954433441162 img loss 1.1587936878204346 img loss 1.220977544784546 img loss 1.1907861232757568 img loss 1.1427968740463257 img loss 1.1721023321151733 img loss 1.2884461879730225 img loss 1.1867196559906006 img loss 1.177665114402771 img loss 1.191691279411316 img loss 1.1768691539764404 img loss 1.26230788230896 img loss 1.1543567180633545 img loss 1.2152056694030762 img loss 1.2404170036315918 img loss 1.2887053489685059 img loss 1.1942042112350464 img loss 1.181024193763733 img loss 1.247890830039978 img loss 1.183881402015686 img loss 1.1989024877548218 img loss 1.2539833784103394 img loss 1.2545928955078125 img loss 1.1814144849777222 img loss 1.2172119617462158 img loss 1.2342900037765503 img loss 1.243884563446045 img loss 1.138554334640503 img loss 1.2870277166366577 img loss 1.1660892963409424 img loss 1.2431252002716064 img loss 1.2456986904144287 img loss 1.1635189056396484 img loss 1.2599194049835205 img loss 1.2547566890716553 img loss 1.2979791164398193 img loss 1.124683141708374 img loss 1.2659339904785156 img loss 1.2209733724594116 img loss 1.175967812538147 img loss 1.191225528717041 img loss 1.2587393522262573 img loss 1.2643239498138428 img loss 1.2427330017089844 img loss 1.2045940160751343 img loss 1.1059643030166626 img loss 1.192095160484314 img loss 1.249171257019043 img loss 1.0869089365005493 img loss 1.2128760814666748 img loss 1.288959264755249 img loss 1.2343034744262695 img loss 1.2023422718048096 img loss 1.2642992734909058 img loss 1.1041226387023926 img loss 1.2118052244186401 img loss 1.1857057809829712 img loss 1.2277250289916992 img loss 1.2245306968688965 img loss 1.1978034973144531 img loss 1.1438350677490234 img loss 1.2217882871627808 img loss 1.2051877975463867 img loss 1.2115758657455444 {'loss': 1.2155, 'grad_norm': 0.252241849899292, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2766296863555908 img loss 1.3320286273956299 img loss 1.4052873849868774 img loss 1.3085780143737793 img loss 1.4338033199310303 img loss 1.3750919103622437 img loss 1.3211206197738647 img loss 1.3332421779632568 img loss 1.3208004236221313 img loss 1.474739909172058 img loss 1.3791601657867432 img loss 1.253485918045044 img loss 1.3459848165512085 img loss 1.1880611181259155 img loss 1.2854925394058228 img loss 1.2300238609313965 img loss 1.3477762937545776 img loss 1.2808167934417725 img loss 1.2739943265914917 img loss 1.4350746870040894 img loss 1.3367278575897217 img loss 1.3096542358398438 img loss 1.3408125638961792 img loss 1.3701460361480713 img loss 1.315529704093933 img loss 1.3142943382263184 img loss 1.2699817419052124 img loss 1.295501708984375 img loss 1.4954835176467896 img loss 1.4580765962600708 img loss 1.362445592880249 img loss 1.2580397129058838 img loss 1.4212071895599365 img loss 1.3417860269546509 img loss 1.411232352256775 img loss 1.3876370191574097 img loss 1.4418948888778687 img loss 1.2278178930282593 img loss 1.3752690553665161 img loss 1.4844220876693726 img loss 1.2305008172988892 img loss 1.3114452362060547 img loss 1.382834792137146 img loss 1.3752782344818115 img loss 1.3939507007598877 img loss 1.396410346031189 img loss 1.258948802947998 img loss 1.3310127258300781 img loss 1.3510544300079346 img loss 1.306495189666748 img loss 1.28439199924469 img loss 1.3756192922592163 img loss 1.3951326608657837 img loss 1.4218004941940308 img loss 1.1588252782821655 img loss 1.2275357246398926 img loss 1.2614567279815674 img loss 1.180464506149292 img loss 1.3669962882995605 img loss 1.2388838529586792 img loss 1.2815756797790527 img loss 1.3389103412628174 img loss 1.2402156591415405 img loss 1.2768259048461914 img loss 1.3068809509277344 img loss 1.3415647745132446 img loss 1.2700085639953613 img loss 1.3729522228240967 img loss 1.3708417415618896 img loss 1.3263834714889526 img loss 1.2744572162628174 img loss 1.2654972076416016 img loss 1.4283387660980225 img loss 1.41586172580719 img loss 1.3301223516464233 img loss 1.4380834102630615 img loss 1.2974342107772827 img loss 1.2981925010681152 img loss 1.3443467617034912 img loss 1.2720874547958374 img loss 1.199155569076538 img loss 1.3225195407867432 img loss 1.288333773612976 img loss 1.4668580293655396 img loss 1.3434312343597412 img loss 1.2776211500167847 img loss 1.2878834009170532 img loss 1.235930323600769 img loss 1.3291735649108887 img loss 1.2876763343811035 img loss 1.3294874429702759 img loss 1.3020615577697754 img loss 1.4316133260726929 img loss 1.3955076932907104 img loss 1.4606068134307861 img loss 1.345659852027893 img loss 1.247649908065796 img loss 1.372463345527649 img loss 1.362473964691162 img loss 1.334944248199463 img loss 1.292264461517334 img loss 1.319199800491333 img loss 1.2979047298431396 img loss 1.3491538763046265 img loss 1.238511323928833 img loss 1.403542160987854 img loss 1.2721869945526123 img loss 1.3885948657989502 img loss 1.202349066734314 img loss 1.232468605041504 img loss 1.314043641090393 img loss 1.33274245262146 img loss 1.310917615890503 img loss 1.3331326246261597 img loss 1.4267560243606567 img loss 1.4305673837661743 img loss 1.3351136445999146 img loss 1.330348253250122 img loss 1.4670917987823486 img loss 1.2927510738372803 img loss 1.294226050376892 img loss 1.434456706047058 img loss 1.235990047454834 img loss 1.337280035018921 img loss 1.2665432691574097 img loss 1.3081365823745728 img loss 1.3669017553329468 img loss 1.328285574913025 {'loss': 1.3306, 'grad_norm': 0.3484923243522644, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3116719722747803 img loss 1.235167384147644 img loss 1.2570918798446655 img loss 1.4067524671554565 img loss 1.2942194938659668 img loss 1.421120285987854 img loss 1.3956655263900757 img loss 1.349745512008667 img loss 1.4575446844100952 img loss 1.286677598953247 img loss 1.4051309823989868 img loss 1.2948516607284546 img loss 1.2392984628677368 img loss 1.3095512390136719 img loss 1.279797077178955 img loss 1.3133827447891235 img loss 1.2556867599487305 img loss 1.3355613946914673 img loss 1.3411905765533447 img loss 1.3418787717819214 img loss 1.4932233095169067 img loss 1.3841502666473389 img loss 1.3343833684921265 img loss 1.394760251045227 img loss 1.395465612411499 img loss 1.2136015892028809 img loss 1.3911703824996948 img loss 1.31093430519104 img loss 1.3784139156341553 img loss 1.3534034490585327 img loss 1.3323843479156494 img loss 1.2749154567718506 img loss 1.3184452056884766 img loss 1.3813554048538208 img loss 1.3017810583114624 img loss 1.4557007551193237 img loss 1.3680360317230225 img loss 1.3431264162063599 img loss 1.4102370738983154 img loss 1.3259941339492798 img loss 1.3434646129608154 img loss 1.3555546998977661 img loss 1.2496360540390015 img loss 1.2760698795318604 img loss 1.2888579368591309 img loss 1.3110833168029785 img loss 1.432249903678894 img loss 1.225517988204956 img loss 1.3696852922439575 img loss 1.3028850555419922 img loss 1.2845007181167603 img loss 1.3048088550567627 img loss 1.2264466285705566 img loss 1.3648078441619873 img loss 1.386850118637085 img loss 1.4061481952667236 img loss 1.3690630197525024 img loss 1.3567277193069458 img loss 1.3389607667922974 img loss 1.3281115293502808 img loss 1.3405579328536987 img loss 1.352530837059021 img loss 1.3972830772399902 img loss 1.3664662837982178 img loss 1.4141228199005127 img loss 1.3799244165420532 img loss 1.3232855796813965 img loss 1.2936856746673584 img loss 1.3680055141448975 img loss 1.4380513429641724 img loss 1.2590185403823853 img loss 1.3513121604919434 img loss 1.2830671072006226 img loss 1.3198684453964233 img loss 1.3579751253128052 img loss 1.3164784908294678 img loss 1.4092094898223877 img loss 1.3577438592910767 img loss 1.4415562152862549 img loss 1.3126095533370972 img loss 1.3253443241119385 img loss 1.4272189140319824 img loss 1.243868350982666 img loss 1.3082197904586792 img loss 1.275404930114746 img loss 1.2806297540664673 img loss 1.3187711238861084 img loss 1.3522478342056274 img loss 1.4075337648391724 img loss 1.41975736618042 img loss 1.3880741596221924 img loss 1.2205407619476318 img loss 1.3071069717407227 img loss 1.3532048463821411 img loss 1.3442317247390747 img loss 1.2823905944824219 img loss 1.3358179330825806 img loss 1.361417293548584 img loss 1.3325527906417847 img loss 1.2994464635849 img loss 1.3435051441192627 img loss 1.2939666509628296 img loss 1.2979259490966797 img loss 1.3906347751617432 img loss 1.3947787284851074 img loss 1.334810495376587 img loss 1.3309129476547241 img loss 1.3335716724395752 img loss 1.4106194972991943 img loss 1.2490829229354858 img loss 1.4500497579574585 img loss 1.3244634866714478 img loss 1.3391138315200806 img loss 1.285139799118042 img loss 1.37899649143219 img loss 1.2673085927963257 img loss 1.3593218326568604 img loss 1.382087230682373 img loss 1.4573482275009155 img loss 1.3049839735031128 img loss 1.3547853231430054 img loss 1.3488408327102661 img loss 1.3554950952529907 img loss 1.2668520212173462 img loss 1.3254441022872925 img loss 1.3449140787124634 img loss 1.328814148902893 img loss 1.223279356956482 {'loss': 1.3387, 'grad_norm': 0.2672869861125946, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1793333292007446 img loss 1.1740869283676147 img loss 1.2431284189224243 img loss 1.1777061223983765 img loss 1.2192598581314087 img loss 1.1800390481948853 img loss 1.2447216510772705 img loss 1.1428632736206055 img loss 1.2145507335662842 img loss 1.2232508659362793 img loss 1.3038088083267212 img loss 1.175901174545288 img loss 1.234860897064209 img loss 1.16441810131073 img loss 1.263960838317871 img loss 1.2255687713623047 img loss 1.1507513523101807 img loss 1.2046226263046265 img loss 1.1444462537765503 img loss 1.1734520196914673img loss 1.1349916458129883 img loss 1.3030941486358643 img loss 1.2872942686080933 img loss 1.2212562561035156 img loss 1.1645482778549194 img loss 1.221636414527893 img loss 1.2266819477081299 img loss 1.1694297790527344 img loss 1.1811041831970215 img loss 1.2314287424087524 img loss 1.204283595085144 img loss 1.1702442169189453 img loss 1.2306686639785767 img loss 1.209164023399353 img loss 1.2066318988800049 img loss 1.2048084735870361 img loss 1.2285161018371582 img loss 1.3052314519882202 img loss 1.2174853086471558 img loss 1.1575279235839844 img loss 1.2461999654769897 img loss 1.3149182796478271 img loss 1.1957759857177734 img loss 1.2179203033447266 img loss 1.2689756155014038 img loss 1.245214819908142 img loss 1.1112569570541382 img loss 1.2416893243789673 img loss 1.1913182735443115 img loss 1.186486840248108 img loss 1.311779260635376 img loss 1.1389673948287964 img loss 1.2399448156356812 img loss 1.1886274814605713 img loss 1.2325375080108643 img loss 1.23263418674469 img loss 1.2170860767364502 img loss 1.2762141227722168 img loss 1.1804832220077515 img loss 1.153601884841919 img loss 1.324125051498413 img loss 1.2138069868087769 img loss 1.1960598230361938 img loss 1.105649709701538 img loss 1.1964354515075684 img loss 1.1592633724212646 img loss 1.2011665105819702 img loss 1.1731599569320679 img loss 1.1855196952819824 img loss 1.2562146186828613 img loss 1.2482872009277344 img loss 1.2623522281646729 img loss 1.2461212873458862 img loss 1.1703946590423584 img loss 1.2805956602096558 img loss 1.2751106023788452 img loss 1.32687246799469 img loss 1.1691498756408691 img loss 1.2567754983901978 img loss 1.162862777709961 img loss 1.1775734424591064 img loss 1.3410917520523071 img loss 1.2498853206634521 img loss 1.1787896156311035 img loss 1.1321094036102295 img loss 1.1350854635238647 img loss 1.1000375747680664 img loss 1.2062091827392578 img loss 1.1826261281967163 img loss 1.1567833423614502 img loss 1.146155834197998 img loss 1.1669877767562866 img loss 1.2100319862365723 img loss 1.1093864440917969 img loss 1.244972586631775 img loss 1.1894009113311768 img loss 1.2033772468566895 img loss 1.141340970993042 img loss 1.2772440910339355 img loss 1.246283769607544 img loss 1.1521124839782715 img loss 1.2281665802001953 img loss 1.2532062530517578 img loss 1.200420618057251 img loss 1.2456421852111816 img loss 1.2595335245132446 img loss 1.207000494003296 img loss 1.2245194911956787 img loss 1.2204375267028809 img loss 1.144256353378296 img loss 1.1607955694198608 img loss 1.2451953887939453 img loss 1.1396201848983765 img loss 1.3410731554031372 img loss 1.2147533893585205 img loss 1.1572990417480469 img loss 1.2026337385177612 img loss 1.2235475778579712 img loss 1.2196228504180908 img loss 1.2514610290527344 img loss 1.2811894416809082 img loss 1.1703388690948486 img loss 1.2327208518981934 img loss 1.1786774396896362 img loss 1.1400986909866333 img loss 1.2123160362243652 img loss 1.1921765804290771 img loss 1.269317626953125 {'loss': 1.21, 'grad_norm': 0.19165049493312836, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2065305709838867 img loss 1.232914924621582 img loss 1.22064208984375 img loss 1.1357684135437012 img loss 1.2250334024429321 img loss 1.1463360786437988 img loss 1.152767539024353 img loss 1.2128372192382812 img loss 1.2179138660430908 img loss 1.2113170623779297 img loss 1.1736952066421509 img loss 1.2176233530044556 img loss 1.1910264492034912 img loss 1.1446999311447144 img loss 1.2321842908859253 img loss 1.1628003120422363 img loss 1.2147798538208008 img loss 1.2221482992172241 img loss 1.1798347234725952 img loss 1.2260841131210327 img loss 1.2002601623535156 img loss 1.2750614881515503 img loss 1.2666659355163574 img loss 1.2641406059265137 img loss 1.1614350080490112 img loss 1.3223384618759155 img loss 1.212733507156372 img loss 1.1577153205871582 img loss 1.1052991151809692 img loss 1.2466506958007812 img loss 1.1849244832992554 img loss 1.1807059049606323 img loss 1.1358966827392578 img loss 1.2112826108932495 img loss 1.2858260869979858 img loss 1.2095006704330444 img loss 1.1633981466293335 img loss 1.1829090118408203 img loss 1.3006083965301514 img loss 1.1916706562042236 img loss 1.1738065481185913 img loss 1.2158305644989014 img loss 1.2014095783233643 img loss 1.1246877908706665 img loss 1.1730191707611084 img loss 1.179399847984314 img loss 1.2146670818328857 img loss 1.1574522256851196 img loss 1.1959409713745117 img loss 1.231125831604004 img loss 1.188092589378357 img loss 1.2733293771743774 img loss 1.1743555068969727 img loss 1.2472680807113647 img loss 1.1870675086975098 img loss 1.1483490467071533 img loss 1.2138478755950928 img loss 1.1895653009414673 img loss 1.2170034646987915 img loss 1.2141432762145996img loss 1.1492592096328735 img loss 1.1569980382919312 img loss 1.1898555755615234 img loss 1.1908199787139893 img loss 1.2324495315551758 img loss 1.2088215351104736 img loss 1.1720850467681885 img loss 1.178577184677124 img loss 1.178245186805725 img loss 1.1843160390853882 img loss 1.2302017211914062 img loss 1.2227356433868408 img loss 1.2214736938476562 img loss 1.2267178297042847 img loss 1.2470319271087646 img loss 1.2111746072769165 img loss 1.214139461517334 img loss 1.1792652606964111 img loss 1.2236677408218384 img loss 1.1524977684020996 img loss 1.216063380241394 img loss 1.2061904668807983 img loss 1.152522325515747 img loss 1.2537790536880493 img loss 1.1777193546295166 img loss 1.1868870258331299 img loss 1.2065205574035645 img loss 1.1747779846191406 img loss 1.2050859928131104 img loss 1.0983108282089233 img loss 1.2397559881210327 img loss 1.290992259979248 img loss 1.1995456218719482 img loss 1.172835111618042 img loss 1.2112395763397217 img loss 1.1870081424713135 img loss 1.1758350133895874 img loss 1.1612906455993652 img loss 1.2638895511627197 img loss 1.160675048828125 img loss 1.140419602394104 img loss 1.2294660806655884 img loss 1.276404857635498 img loss 1.2132830619812012 img loss 1.274696707725525 img loss 1.1627954244613647 img loss 1.1871403455734253 img loss 1.2239869832992554 img loss 1.2593052387237549 img loss 1.2770708799362183 img loss 1.2349109649658203 img loss 1.2493387460708618 img loss 1.1542160511016846 img loss 1.2025601863861084 img loss 1.1944210529327393 img loss 1.2032403945922852 img loss 1.237369179725647 img loss 1.1653633117675781 img loss 1.2112547159194946 img loss 1.2168091535568237 img loss 1.1991231441497803 img loss 1.1947271823883057 img loss 1.188477873802185 img loss 1.1898202896118164 img loss 1.1531676054000854 img loss 1.204840898513794 img loss 1.1842533349990845 img loss 1.1778706312179565 {'loss': 1.2017, 'grad_norm': 0.21169939637184143, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.256212830543518 img loss 1.223099946975708 img loss 1.2466461658477783 img loss 1.3036117553710938 img loss 1.2387714385986328 img loss 1.1927324533462524 img loss 1.312410831451416 img loss 1.251421570777893 img loss 1.2607228755950928 img loss 1.2301247119903564 img loss 1.2338956594467163 img loss 1.219804048538208 img loss 1.2656134366989136 img loss 1.2328599691390991 img loss 1.2794548273086548 img loss 1.2689729928970337 img loss 1.187307357788086 img loss 1.2600958347320557 img loss 1.2610254287719727 img loss 1.209286093711853 img loss 1.1871757507324219 img loss 1.2209128141403198 img loss 1.2360482215881348 img loss 1.1974684000015259 img loss 1.2681140899658203 img loss 1.3114389181137085 img loss 1.23795747756958 img loss 1.2758500576019287 img loss 1.2090294361114502 img loss 1.1976797580718994 img loss 1.2640804052352905 img loss 1.2680988311767578 img loss 1.225609302520752 img loss 1.2460415363311768 img loss 1.1447476148605347 img loss 1.2406986951828003 img loss 1.155139684677124 img loss 1.2779544591903687 img loss 1.234706163406372 img loss 1.2152050733566284 img loss 1.2791950702667236 img loss 1.1837687492370605 img loss 1.2434325218200684 img loss 1.3249680995941162 img loss 1.2430951595306396 img loss 1.2395031452178955 img loss 1.2305107116699219 img loss 1.2961639165878296 img loss 1.2456958293914795 img loss 1.2165029048919678 img loss 1.2252585887908936 img loss 1.2521049976348877 img loss 1.3716566562652588 img loss 1.2055381536483765 img loss 1.1824908256530762 img loss 1.2008140087127686 img loss 1.2667806148529053 img loss 1.2236337661743164 img loss 1.2973617315292358 img loss 1.2579002380371094 img loss 1.1830726861953735 img loss 1.190117597579956 img loss 1.1966537237167358 img loss 1.248826265335083 img loss 1.1922476291656494 img loss 1.2030820846557617 img loss 1.2640904188156128 img loss 1.2289365530014038 img loss 1.2797412872314453 img loss 1.3114169836044312 img loss 1.2872203588485718 img loss 1.1865659952163696 img loss 1.2083799839019775 img loss 1.2054476737976074 img loss 1.2331396341323853 img loss 1.2880243062973022 img loss 1.2807568311691284 img loss 1.2783770561218262 img loss 1.3421614170074463 img loss 1.20638906955719 img loss 1.205320119857788 img loss 1.227798342704773 img loss 1.2188770771026611 img loss 1.2233463525772095 img loss 1.2197332382202148 img loss 1.2166917324066162 img loss 1.2399723529815674 img loss 1.2334775924682617 img loss 1.2652791738510132 img loss 1.1994456052780151 img loss 1.1891478300094604 img loss 1.2684162855148315 img loss 1.3008664846420288 img loss 1.2111353874206543 img loss 1.1830974817276 img loss 1.2004657983779907 img loss 1.242116928100586 img loss 1.1752842664718628 img loss 1.2441575527191162 img loss 1.2681782245635986 img loss 1.2174195051193237 img loss 1.2196518182754517 img loss 1.2074819803237915 img loss 1.2508445978164673 img loss 1.2904850244522095 img loss 1.2270132303237915 img loss 1.2165778875350952 img loss 1.3237920999526978 img loss 1.245656967163086 img loss 1.2158050537109375 img loss 1.2478243112564087 img loss 1.1953513622283936 img loss 1.2368873357772827 img loss 1.219268560409546 img loss 1.2823519706726074 img loss 1.232490062713623 img loss 1.2594417333602905 img loss 1.2336257696151733 img loss 1.3018910884857178 img loss 1.2430109977722168 img loss 1.2812526226043701 img loss 1.2299941778182983 img loss 1.2018122673034668 img loss 1.2728512287139893 img loss 1.2321439981460571 img loss 1.2723209857940674 img loss 1.2861571311950684 img loss 1.2007169723510742 {'loss': 1.24, 'grad_norm': 0.2079308032989502, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.450520396232605 img loss 1.4129879474639893 img loss 1.5277692079544067 img loss 1.5404590368270874 img loss 1.56816565990448 img loss 1.5334552526474 img loss 1.6081775426864624 img loss 1.5662978887557983 img loss 1.5987426042556763 img loss 1.5612595081329346 img loss 1.4644578695297241 img loss 1.420407772064209 img loss 1.526201605796814 img loss 1.5321851968765259 img loss 1.584104061126709 img loss 1.4712547063827515 img loss 1.4749630689620972 img loss 1.5470377206802368 img loss 1.4894753694534302 img loss 1.4748634099960327 img loss 1.561253309249878 img loss 1.643999695777893 img loss 1.562633991241455 img loss 1.5174882411956787 img loss 1.4864510297775269 img loss 1.396323323249817img loss 1.5207841396331787 img loss 1.6076229810714722 img loss 1.632477879524231 img loss 1.4547065496444702 img loss 1.504046082496643 img loss 1.5584967136383057 img loss 1.5792500972747803 img loss 1.600282073020935 img loss 1.4243513345718384 img loss 1.5389233827590942 img loss 1.6445010900497437 img loss 1.5392769575119019 img loss 1.7070977687835693 img loss 1.5884449481964111 img loss 1.5867798328399658 img loss 1.5703703165054321 img loss 1.4633358716964722 img loss 1.5587432384490967 img loss 1.573115587234497 img loss 1.6151139736175537 img loss 1.4439008235931396 img loss 1.4581952095031738 img loss 1.409371018409729 img loss 1.5736024379730225 img loss 1.6328400373458862 img loss 1.570215106010437 img loss 1.3650916814804077 img loss 1.5379983186721802 img loss 1.5075194835662842 img loss 1.6017404794692993 img loss 1.5245574712753296 img loss 1.6135085821151733 img loss 1.546811819076538 img loss 1.5561035871505737 img loss 1.4773859977722168 img loss 1.5520118474960327 img loss 1.4238923788070679 img loss 1.5823782682418823 img loss 1.6089808940887451 img loss 1.4810410737991333 img loss 1.45156729221344 img loss 1.5130294561386108 img loss 1.465683102607727 img loss 1.5251821279525757 img loss 1.5607002973556519 img loss 1.4974684715270996 img loss 1.4976791143417358 img loss 1.5784096717834473 img loss 1.5004669427871704 img loss 1.4245911836624146 img loss 1.5083647966384888 img loss 1.6059492826461792 img loss 1.454561710357666 img loss 1.409967064857483 img loss 1.5553994178771973 img loss 1.5477995872497559 img loss 1.5555270910263062 img loss 1.5346910953521729 img loss 1.6042126417160034 img loss 1.5935524702072144 img loss 1.508432149887085 img loss 1.4419257640838623 img loss 1.5640157461166382 img loss 1.6037957668304443 img loss 1.5056815147399902 img loss 1.3650603294372559 img loss 1.4132609367370605 img loss 1.563881754875183 img loss 1.5375558137893677 img loss 1.3625568151474 img loss 1.488665223121643 img loss 1.5375946760177612 img loss 1.4606596231460571 img loss 1.4865291118621826 img loss 1.5759491920471191 img loss 1.5319581031799316 img loss 1.4790557622909546 img loss 1.511837124824524 img loss 1.608244776725769 img loss 1.646487832069397 img loss 1.4729446172714233 img loss 1.473620057106018 img loss 1.5535452365875244 img loss 1.5878394842147827 img loss 1.4800022840499878 img loss 1.4740206003189087 img loss 1.5022565126419067 img loss 1.604772686958313 img loss 1.5284955501556396 img loss 1.5212219953536987 img loss 1.6020100116729736 img loss 1.527951717376709 img loss 1.539412260055542 img loss 1.499781847000122 img loss 1.5821751356124878 img loss 1.6213529109954834 img loss 1.595639944076538 img loss 1.4107677936553955 img loss 1.4750401973724365 img loss 1.5154070854187012 img loss 1.3689175844192505 img loss 1.475649356842041 {'loss': 1.5254, 'grad_norm': 0.3889455795288086, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2914972305297852 img loss 1.321121096611023 img loss 1.3254437446594238 img loss 1.439283013343811 img loss 1.445231318473816 img loss 1.5266155004501343 img loss 1.4264146089553833 img loss 1.3920063972473145 img loss 1.4170773029327393 img loss 1.435531497001648 img loss 1.3015954494476318 img loss 1.2673943042755127 img loss 1.3321194648742676 img loss 1.3222005367279053 img loss 1.3538886308670044 img loss 1.3899084329605103 img loss 1.3746055364608765 img loss 1.3034206628799438 img loss 1.402687907218933 img loss 1.411771535873413 img loss 1.3760586977005005 img loss 1.4313551187515259 img loss 1.420541524887085 img loss 1.4346226453781128 img loss 1.3077455759048462 img loss 1.32744562625885 img loss 1.3838659524917603 img loss 1.3719688653945923 img loss 1.3437399864196777 img loss 1.4063889980316162 img loss 1.3540886640548706 img loss 1.4018293619155884 img loss 1.3984168767929077 img loss 1.338995337486267 img loss 1.2373578548431396 img loss 1.358799695968628 img loss 1.3577066659927368 img loss 1.2718322277069092 img loss 1.3818228244781494 img loss 1.381824254989624 img loss 1.3702616691589355 img loss 1.4413686990737915 img loss 1.3367537260055542 img loss 1.4059685468673706 img loss 1.3357170820236206 img loss 1.2863233089447021 img loss 1.3694698810577393 img loss 1.3987114429473877 img loss 1.4199368953704834 img loss 1.2805850505828857 img loss 1.3379266262054443 img loss 1.3738640546798706 img loss 1.3247826099395752 img loss 1.3782960176467896 img loss 1.420642375946045 img loss 1.3374102115631104 img loss 1.3397918939590454 img loss 1.3419573307037354 img loss 1.3203198909759521 img loss 1.422999620437622 img loss 1.4481512308120728 img loss 1.3252967596054077 img loss 1.3862944841384888 img loss 1.2294872999191284 img loss 1.3046209812164307 img loss 1.3933920860290527 img loss 1.4691671133041382 img loss 1.3784376382827759 img loss 1.3765252828598022 img loss 1.2454107999801636 img loss 1.4010519981384277 img loss 1.3122971057891846 img loss 1.316291093826294 img loss 1.321908712387085 img loss 1.3922886848449707 img loss 1.3157827854156494 img loss 1.4082034826278687 img loss 1.34561026096344 img loss 1.4546982049942017 img loss 1.3350461721420288 img loss 1.3237323760986328 img loss 1.315561294555664 img loss 1.3150275945663452 img loss 1.301927089691162 img loss 1.2997347116470337 img loss 1.3822475671768188 img loss 1.3453339338302612 img loss 1.305603265762329 img loss 1.4689972400665283 img loss 1.416320562362671 img loss 1.318047285079956 img loss 1.3497928380966187 img loss 1.3570867776870728 img loss 1.3134602308273315 img loss 1.4029746055603027 img loss 1.4752410650253296 img loss 1.331945776939392 img loss 1.4050644636154175 img loss 1.2917091846466064 img loss 1.3960907459259033 img loss 1.3510922193527222 img loss 1.3768620491027832 img loss 1.3168084621429443 img loss 1.451479434967041 img loss 1.3713324069976807 img loss 1.3814475536346436 img loss 1.381262183189392 img loss 1.3551595211029053 img loss 1.3715919256210327 img loss 1.412522554397583 img loss 1.263176679611206 img loss 1.52199125289917 img loss 1.3640602827072144 img loss 1.3516525030136108 img loss 1.370607852935791 img loss 1.3313137292861938 img loss 1.4249351024627686 img loss 1.4178603887557983 img loss 1.348869800567627 img loss 1.3183152675628662 img loss 1.5004369020462036 img loss 1.29531729221344 img loss 1.307250738143921 img loss 1.3237665891647339 img loss 1.354880928993225 img loss 1.3569170236587524 img loss 1.2328630685806274 img loss 1.4729254245758057 {'loss': 1.3642, 'grad_norm': 0.3421643376350403, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3979352712631226 img loss 1.3389067649841309 img loss 1.385967493057251 img loss 1.3766038417816162 img loss 1.4570062160491943 img loss 1.4450792074203491 img loss 1.4217878580093384 img loss 1.4465672969818115 img loss 1.4799859523773193 img loss 1.4488883018493652 img loss 1.6391743421554565 img loss 1.4199174642562866 img loss 1.326241135597229 img loss 1.462319254875183 img loss 1.5081788301467896 img loss 1.382949709892273 img loss 1.4653664827346802 img loss 1.3865649700164795 img loss 1.4179085493087769 img loss 1.4408338069915771 img loss 1.351380467414856 img loss 1.4083994626998901 img loss 1.4149292707443237 img loss 1.5025752782821655 img loss 1.4694746732711792 img loss 1.4798911809921265 img loss 1.3895562887191772 img loss 1.4437280893325806 img loss 1.4425660371780396 img loss 1.5734580755233765 img loss 1.4022934436798096 img loss 1.339807391166687 img loss 1.372399091720581 img loss 1.4047772884368896 img loss 1.47438383102417 img loss 1.3861706256866455 img loss 1.3673909902572632 img loss 1.4042478799819946 img loss 1.3499914407730103 img loss 1.4764922857284546 img loss 1.5101927518844604 img loss 1.3630589246749878 img loss 1.5007383823394775 img loss 1.4464603662490845 img loss 1.40370512008667 img loss 1.4419360160827637 img loss 1.345255732536316 img loss 1.3682911396026611 img loss 1.4517468214035034 img loss 1.4332746267318726 img loss 1.5039297342300415 img loss 1.4319393634796143 img loss 1.4098448753356934 img loss 1.4780365228652954 img loss 1.4304099082946777 img loss 1.3733599185943604 img loss 1.3058563470840454 img loss 1.5012117624282837 img loss 1.3722039461135864 img loss 1.4276158809661865 img loss 1.4168181419372559 img loss 1.3392068147659302 img loss 1.433706521987915 img loss 1.4266276359558105 img loss 1.4484686851501465 img loss 1.375608205795288 img loss 1.609017252922058 img loss 1.4716236591339111 img loss 1.403672695159912 img loss 1.4241639375686646 img loss 1.4254189729690552 img loss 1.485543131828308 img loss 1.3561313152313232 img loss 1.3464781045913696 img loss 1.3647738695144653 img loss 1.3076473474502563 img loss 1.3743836879730225 img loss 1.5176537036895752 img loss 1.4917458295822144 img loss 1.5236670970916748img loss 1.335215449333191 img loss 1.2809994220733643 img loss 1.421290636062622 img loss 1.3953577280044556 img loss 1.3984886407852173 img loss 1.4586366415023804 img loss 1.404619812965393 img loss 1.5692212581634521 img loss 1.4309611320495605 img loss 1.383087396621704 img loss 1.4543193578720093 img loss 1.4522300958633423 img loss 1.4088948965072632 img loss 1.3563543558120728 img loss 1.47075617313385 img loss 1.4307507276535034 img loss 1.4841761589050293 img loss 1.3192707300186157 img loss 1.380651593208313 img loss 1.3735681772232056 img loss 1.431370496749878 img loss 1.403786540031433 img loss 1.4270174503326416 img loss 1.419729471206665 img loss 1.5102728605270386 img loss 1.389971375465393 img loss 1.3657463788986206 img loss 1.4129490852355957 img loss 1.4404393434524536 img loss 1.4183685779571533 img loss 1.4851552248001099 img loss 1.3531556129455566 img loss 1.3441879749298096 img loss 1.3804622888565063 img loss 1.5094869136810303 img loss 1.4619170427322388 img loss 1.4025721549987793 img loss 1.4325700998306274 img loss 1.4317574501037598 img loss 1.4744497537612915 img loss 1.4714748859405518 img loss 1.4847617149353027 img loss 1.4883149862289429 img loss 1.335780382156372 img loss 1.4249216318130493 img loss 1.3551865816116333 img loss 1.451535701751709 img loss 1.3698586225509644 {'loss': 1.4237, 'grad_norm': 0.5149921178817749, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.593849778175354 img loss 1.650468349456787 img loss 1.523607850074768 img loss 1.558379054069519 img loss 1.643434762954712 img loss 1.6909562349319458 img loss 1.5724174976348877 img loss 1.657763123512268 img loss 1.7049791812896729 img loss 1.5079646110534668 img loss 1.8779491186141968 img loss 1.7361117601394653 img loss 1.6888333559036255 img loss 1.564329981803894 img loss 1.629259467124939 img loss 1.6371651887893677 img loss 1.6972371339797974 img loss 1.5555510520935059 img loss 1.5624321699142456 img loss 1.501734972000122 img loss 1.5584110021591187 img loss 1.5781655311584473 img loss 1.6127963066101074 img loss 1.607000470161438 img loss 1.564358115196228 img loss 1.651660442352295 img loss 1.5349973440170288 img loss 1.5112508535385132 img loss 1.470508337020874 img loss 1.6180646419525146 img loss 1.6696979999542236 img loss 1.5732275247573853 img loss 1.7127296924591064 img loss 1.655283808708191 img loss 1.700201392173767 img loss 1.6020677089691162 img loss 1.7164825201034546 img loss 1.6590940952301025 img loss 1.6034208536148071 img loss 1.5293465852737427 img loss 1.630130648612976 img loss 1.5691139698028564 img loss 1.6413466930389404 img loss 1.7047215700149536 img loss 1.58265221118927 img loss 1.6937992572784424 img loss 1.7388776540756226 img loss 1.410304307937622 img loss 1.6477601528167725 img loss 1.5065300464630127 img loss 1.5593260526657104 img loss 1.6801927089691162 img loss 1.5374988317489624 img loss 1.5883305072784424 img loss 1.5181138515472412 img loss 1.5763689279556274 img loss 1.6032391786575317 img loss 1.8252742290496826 img loss 1.539136290550232 img loss 1.9109435081481934 img loss 1.7499662637710571 img loss 1.6461663246154785 img loss 1.631597876548767 img loss 1.705777645111084 img loss 1.6425021886825562 img loss 1.5232435464859009 img loss 1.6440263986587524 img loss 1.557739496231079 img loss 1.656237244606018 img loss 1.707403540611267 img loss 1.726986050605774 img loss 1.7264580726623535 img loss 1.6415095329284668 img loss 1.6686407327651978 img loss 1.5981876850128174 img loss 1.5851105451583862 img loss 1.6839230060577393 img loss 1.727220058441162 img loss 1.693346381187439 img loss 1.4521362781524658 img loss 1.6063412427902222 img loss 1.5312258005142212 img loss 1.7322694063186646 img loss 1.7228113412857056 img loss 1.5809714794158936 img loss 1.5940601825714111 img loss 1.666553020477295 img loss 1.6680353879928589 img loss 1.6357758045196533 img loss 1.6184422969818115 img loss 1.5657391548156738 img loss 1.5679985284805298 img loss 1.6081137657165527 img loss 1.6323901414871216 img loss 1.7112886905670166 img loss 1.6590161323547363 img loss 1.6054693460464478 img loss 1.5952857732772827 img loss 1.622698187828064 img loss 1.583838939666748 img loss 1.687603235244751 img loss 1.5757969617843628 img loss 1.517281413078308 img loss 1.6581225395202637 img loss 1.535785436630249 img loss 1.6613777875900269 img loss 1.6496999263763428 img loss 1.5689047574996948 img loss 1.8815128803253174 img loss 1.7680082321166992 img loss 1.6350877285003662 img loss 1.6065418720245361 img loss 1.5629621744155884 img loss 1.5027060508728027 img loss 1.54082453250885 img loss 1.5637668371200562 img loss 1.6373509168624878 img loss 1.6220122575759888 img loss 1.6527966260910034 img loss 1.7398663759231567 img loss 1.6144212484359741 img loss 1.5654820203781128 img loss 1.6057257652282715 img loss 1.688567042350769 img loss 1.557090401649475 img loss 1.3732330799102783 img loss 1.5012379884719849 img loss 1.599465012550354 {'loss': 1.6226, 'grad_norm': 0.4160899519920349, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.265444040298462 img loss 1.2420861721038818 img loss 1.2002956867218018 img loss 1.2549787759780884 img loss 1.2749029397964478 img loss 1.2244021892547607 img loss 1.2189220190048218 img loss 1.2283873558044434 img loss 1.253279447555542 img loss 1.2434746026992798 img loss 1.2478139400482178 img loss 1.263532042503357 img loss 1.2667596340179443img loss 1.2692056894302368 img loss 1.2771847248077393 img loss 1.2252402305603027 img loss 1.2380897998809814 img loss 1.2303317785263062 img loss 1.2329089641571045 img loss 1.2358535528182983 img loss 1.243119478225708 img loss 1.2259788513183594 img loss 1.2810354232788086 img loss 1.2481956481933594 img loss 1.3011696338653564 img loss 1.254852056503296 img loss 1.2223639488220215 img loss 1.2500425577163696 img loss 1.2478548288345337 img loss 1.2700401544570923 img loss 1.271073818206787 img loss 1.3072259426116943 img loss 1.2502415180206299 img loss 1.229064702987671 img loss 1.2705879211425781 img loss 1.2067744731903076 img loss 1.1993329524993896 img loss 1.2809269428253174 img loss 1.2504827976226807 img loss 1.2759956121444702 img loss 1.2586101293563843 img loss 1.2277377843856812 img loss 1.2432889938354492 img loss 1.2867692708969116 img loss 1.2419832944869995 img loss 1.205946922302246 img loss 1.1980605125427246 img loss 1.278493881225586 img loss 1.2718441486358643 img loss 1.2506682872772217 img loss 1.2203469276428223 img loss 1.2367089986801147 img loss 1.199069857597351 img loss 1.1974382400512695 img loss 1.2368125915527344 img loss 1.2206647396087646 img loss 1.3139853477478027 img loss 1.2150182723999023 img loss 1.240771770477295 img loss 1.2864805459976196 img loss 1.2429720163345337 img loss 1.2915985584259033 img loss 1.2658369541168213 img loss 1.2756134271621704 img loss 1.3176767826080322 img loss 1.212026834487915 img loss 1.2770416736602783 img loss 1.2570688724517822 img loss 1.2322324514389038 img loss 1.235345721244812 img loss 1.2698009014129639 img loss 1.2126567363739014 img loss 1.2862554788589478 img loss 1.2399241924285889 img loss 1.2638001441955566 img loss 1.2283189296722412 img loss 1.2313838005065918 img loss 1.2260671854019165 img loss 1.204143762588501 img loss 1.2536872625350952 img loss 1.2361055612564087 img loss 1.2664780616760254 img loss 1.2709438800811768 img loss 1.2275807857513428 img loss 1.2219825983047485 img loss 1.2341402769088745 img loss 1.23910391330719 img loss 1.2229582071304321 img loss 1.206526756286621 img loss 1.2685893774032593 img loss 1.2410701513290405 img loss 1.2217563390731812 img loss 1.17287015914917 img loss 1.2180423736572266 img loss 1.2224349975585938 img loss 1.2416398525238037 img loss 1.2840830087661743 img loss 1.2250772714614868 img loss 1.2351984977722168 img loss 1.244383692741394 img loss 1.2040512561798096 img loss 1.2126119136810303 img loss 1.2407556772232056 img loss 1.2142747640609741 img loss 1.2371511459350586 img loss 1.2322601079940796 img loss 1.2619705200195312 img loss 1.236722469329834 img loss 1.2408794164657593 img loss 1.2284783124923706 img loss 1.326120138168335 img loss 1.2013113498687744 img loss 1.2389239072799683 img loss 1.2166213989257812 img loss 1.251232385635376 img loss 1.224403977394104 img loss 1.2311434745788574 img loss 1.2877472639083862 img loss 1.2220810651779175 img loss 1.241600513458252 img loss 1.294443130493164 img loss 1.2382495403289795 img loss 1.3130457401275635 img loss 1.265763759613037 img loss 1.2645583152770996 img loss 1.2666500806808472 img loss 1.2277055978775024 img loss 1.2851178646087646 {'loss': 1.2456, 'grad_norm': 0.2473403811454773, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1178747415542603 img loss 1.2275203466415405 img loss 1.15099036693573 img loss 1.3339329957962036 img loss 1.173906922340393 img loss 1.2370011806488037 img loss 1.1374050378799438 img loss 1.159259557723999 img loss 1.1873745918273926 img loss 1.2000373601913452 img loss 1.1508235931396484 img loss 1.2387570142745972 img loss 1.1915066242218018 img loss 1.2317852973937988 img loss 1.1542422771453857 img loss 1.2399145364761353 img loss 1.2274754047393799 img loss 1.2255760431289673 img loss 1.1853210926055908 img loss 1.2016026973724365 img loss 1.186583161354065 img loss 1.213367223739624 img loss 1.1760389804840088 img loss 1.2245514392852783 img loss 1.1546558141708374 img loss 1.1982736587524414 img loss 1.2266769409179688 img loss 1.2241737842559814 img loss 1.1482185125350952 img loss 1.2326154708862305 img loss 1.2423769235610962 img loss 1.2258450984954834 img loss 1.1479549407958984 img loss 1.214829683303833 img loss 1.21452796459198 img loss 1.2889560461044312 img loss 1.256818413734436 img loss 1.2386986017227173 img loss 1.228070616722107 img loss 1.2025692462921143 img loss 1.2291802167892456 img loss 1.26999032497406 img loss 1.1575778722763062 img loss 1.156894564628601 img loss 1.2250694036483765 img loss 1.2281320095062256 img loss 1.1854256391525269 img loss 1.173117995262146 img loss 1.1888062953948975 img loss 1.2037664651870728 img loss 1.214439868927002 img loss 1.1793372631072998 img loss 1.198115587234497 img loss 1.1393215656280518 img loss 1.1794954538345337 img loss 1.1967523097991943 img loss 1.2499747276306152 img loss 1.1469459533691406 img loss 1.2078077793121338 img loss 1.2100895643234253 img loss 1.1986898183822632 img loss 1.1754363775253296 img loss 1.2033817768096924 img loss 1.1965458393096924 img loss 1.3058600425720215 img loss 1.255620002746582 img loss 1.1820080280303955 img loss 1.189487338066101 img loss 1.2677959203720093 img loss 1.1578630208969116 img loss 1.1403417587280273 img loss 1.222429633140564 img loss 1.1997926235198975 img loss 1.3041901588439941 img loss 1.1925947666168213 img loss 1.1417016983032227 img loss 1.2948689460754395 img loss 1.143347978591919 img loss 1.2040703296661377 img loss 1.1840866804122925 img loss 1.184649109840393 img loss 1.1904128789901733 img loss 1.2005610466003418 img loss 1.1787456274032593 img loss 1.223374843597412 img loss 1.2317818403244019 img loss 1.2017980813980103 img loss 1.2402470111846924 img loss 1.2255171537399292 img loss 1.2443735599517822 img loss 1.1753959655761719 img loss 1.1858749389648438 img loss 1.1519182920455933 img loss 1.179093837738037 img loss 1.2089561223983765 img loss 1.2133864164352417 img loss 1.190709114074707 img loss 1.139532446861267 img loss 1.1618506908416748 img loss 1.1988474130630493 img loss 1.1718506813049316 img loss 1.2366070747375488 img loss 1.2131427526474 img loss 1.2124454975128174 img loss 1.187039852142334 img loss 1.1918613910675049 img loss 1.1389654874801636 img loss 1.1758441925048828 img loss 1.1746740341186523 img loss 1.271615743637085 img loss 1.2323627471923828 img loss 1.2238738536834717 img loss 1.1155551671981812 img loss 1.2191721200942993 img loss 1.1911343336105347 img loss 1.1394065618515015 img loss 1.2162975072860718 img loss 1.193359613418579 img loss 1.1228299140930176 img loss 1.2142664194107056 img loss 1.2517199516296387 img loss 1.1688388586044312 img loss 1.1458275318145752 img loss 1.1409807205200195 img loss 1.2315067052841187 img loss 1.2020183801651 img loss 1.212776780128479 img loss 1.2349178791046143 {'loss': 1.2006, 'grad_norm': 0.21463970839977264, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2630494832992554 img loss 1.263495683670044 img loss 1.416688084602356 img loss 1.3238346576690674 img loss 1.344884991645813 img loss 1.3518617153167725 img loss 1.335699439048767 img loss 1.313110113143921 img loss 1.3040251731872559 img loss 1.257469654083252 img loss 1.2418804168701172 img loss 1.2397905588150024 img loss 1.3402445316314697 img loss 1.2457973957061768 img loss 1.2413411140441895 img loss 1.298500418663025 img loss 1.3074982166290283 img loss 1.3998225927352905 img loss 1.2625731229782104 img loss 1.3167665004730225 img loss 1.3558971881866455 img loss 1.3766340017318726 img loss 1.3203836679458618 img loss 1.2944942712783813 img loss 1.27151620388031 img loss 1.3546044826507568 img loss 1.2891769409179688 img loss 1.3501709699630737 img loss 1.4292693138122559 img loss 1.2354284524917603 img loss 1.2613760232925415 img loss 1.4102541208267212 img loss 1.4430335760116577 img loss 1.2740839719772339 img loss 1.3815228939056396 img loss 1.318906545639038 img loss 1.264102816581726 img loss 1.3752330541610718 img loss 1.243600606918335 img loss 1.2883983850479126 img loss 1.3586246967315674 img loss 1.2802457809448242 img loss 1.3300985097885132 img loss 1.3767263889312744 img loss 1.3498666286468506 img loss 1.441577434539795 img loss 1.3286411762237549 img loss 1.3812223672866821 img loss 1.3615156412124634 img loss 1.3255966901779175 img loss 1.2825771570205688 img loss 1.264456033706665 img loss 1.3522400856018066 img loss 1.3454746007919312 img loss 1.38835608959198 img loss 1.2999763488769531 img loss 1.2583024501800537 img loss 1.3471004962921143 img loss 1.3595426082611084 img loss 1.3260414600372314 img loss 1.2515251636505127 img loss 1.3388593196868896 img loss 1.2265095710754395 img loss 1.3858476877212524 img loss 1.2767517566680908 img loss 1.3065037727355957 img loss 1.2538502216339111 img loss 1.3893275260925293 img loss 1.371099591255188 img loss 1.2009731531143188 img loss 1.416365146636963 img loss 1.2968372106552124 img loss 1.216049075126648 img loss 1.2625198364257812 img loss 1.2702029943466187 img loss 1.3288494348526 img loss 1.3140308856964111 img loss 1.3482636213302612 img loss 1.3424789905548096 img loss 1.2657841444015503 img loss 1.3207553625106812 img loss 1.2049874067306519 img loss 1.3310209512710571 img loss 1.307310938835144 img loss 1.2712266445159912 img loss 1.4375077486038208 img loss 1.2789950370788574 img loss 1.2878074645996094 img loss 1.3896197080612183 img loss 1.3470617532730103 img loss 1.260211706161499 img loss 1.288392424583435 img loss 1.3105638027191162 img loss 1.2678228616714478 img loss 1.3239285945892334 img loss 1.4066184759140015 img loss 1.2567076683044434 img loss 1.2901954650878906 img loss 1.3559192419052124 img loss 1.4051471948623657 img loss 1.1986541748046875 img loss 1.3074429035186768 img loss 1.2415969371795654 img loss 1.2824223041534424 img loss 1.2752386331558228 img loss 1.393660306930542 img loss 1.2835092544555664 img loss 1.3627952337265015 img loss 1.3508622646331787 img loss 1.2866291999816895 img loss 1.3417048454284668 img loss 1.3449900150299072 img loss 1.2892487049102783 img loss 1.3306117057800293 img loss 1.278702974319458 img loss 1.2882568836212158 img loss 1.391586422920227 img loss 1.3265323638916016 img loss 1.3731820583343506 img loss 1.3892970085144043 img loss 1.2453879117965698 img loss 1.3323400020599365 img loss 1.3202561140060425 img loss 1.2826370000839233 img loss 1.2247638702392578 img loss 1.1954338550567627 img loss 1.3993345499038696 img loss 1.3630508184432983 {'loss': 1.3162, 'grad_norm': 0.23889094591140747, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5901187658309937 img loss 1.6500569581985474 img loss 1.5031847953796387 img loss 1.5611233711242676 img loss 1.6857041120529175 img loss 1.5839463472366333 img loss 1.5111891031265259 img loss 1.4673188924789429 img loss 1.6449517011642456 img loss 1.5667580366134644 img loss 1.5586646795272827 img loss 1.571175456047058 img loss 1.6232472658157349 img loss 1.5052552223205566 img loss 1.550604224205017 img loss 1.5689398050308228 img loss 1.6460297107696533 img loss 1.5094305276870728 img loss 1.5754808187484741 img loss 1.5216387510299683 img loss 1.4310084581375122 img loss 1.6156872510910034 img loss 1.508987545967102 img loss 1.6340410709381104 img loss 1.6537214517593384 img loss 1.6531827449798584 img loss 1.4259499311447144 img loss 1.5561025142669678 img loss 1.4427707195281982 img loss 1.4890782833099365 img loss 1.6706538200378418 img loss 1.671268105506897 img loss 1.5898202657699585 img loss 1.4878946542739868 img loss 1.4604648351669312 img loss 1.5243394374847412 img loss 1.48800528049469 img loss 1.6317908763885498 img loss 1.5451470613479614 img loss 1.526206612586975img loss 1.6751335859298706 img loss 1.6737875938415527 img loss 1.6798930168151855 img loss 1.720435619354248 img loss 1.601999044418335 img loss 1.5602120161056519 img loss 1.5998164415359497 img loss 1.5009185075759888 img loss 1.4849040508270264 img loss 1.643760323524475 img loss 1.4905308485031128 img loss 1.5524232387542725 img loss 1.547985553741455img loss 1.5028709173202515 img loss 1.519774317741394 img loss 1.5901085138320923 img loss 1.5268841981887817 img loss 1.6727417707443237 img loss 1.691955327987671 img loss 1.553736925125122 img loss 1.551371455192566 img loss 1.5515810251235962 img loss 1.5560977458953857 img loss 1.516987681388855 img loss 1.7214263677597046 img loss 1.6303913593292236 img loss 1.6409786939620972 img loss 1.6456376314163208 img loss 1.5679455995559692 img loss 1.520097255706787 img loss 1.5238038301467896 img loss 1.5096591711044312 img loss 1.6739647388458252 img loss 1.5139803886413574 img loss 1.6310763359069824 img loss 1.5348550081253052 img loss 1.555213451385498 img loss 1.541719913482666 img loss 1.4680355787277222 img loss 1.5798633098602295 img loss 1.5127384662628174 img loss 1.6502712965011597 img loss 1.6697189807891846 img loss 1.6949256658554077 img loss 1.7265621423721313 img loss 1.5052582025527954 img loss 1.4816361665725708 img loss 1.648250699043274 img loss 1.6268649101257324 img loss 1.5801653861999512 img loss 1.6025006771087646 img loss 1.6101347208023071 img loss 1.728018879890442 img loss 1.5087326765060425 img loss 1.659521222114563 img loss 1.4991005659103394 img loss 1.4648724794387817 img loss 1.5340211391448975 img loss 1.489458680152893 img loss 1.4564120769500732 img loss 1.6703532934188843 img loss 1.5549578666687012 img loss 1.585211157798767 img loss 1.5516903400421143 img loss 1.514997124671936 img loss 1.57850980758667 img loss 1.5714151859283447 img loss 1.549618124961853 img loss 1.6313319206237793 img loss 1.6055320501327515 img loss 1.6334308385849 img loss 1.60214364528656 img loss 1.5730499029159546 img loss 1.5278656482696533img loss 1.528065800666809 img loss 1.6073983907699585 img loss 1.5913751125335693 img loss 1.6101185083389282 img loss 1.5740655660629272 img loss 1.5916228294372559 img loss 1.5901402235031128 img loss 1.6605573892593384 img loss 1.5041921138763428 img loss 1.6100445985794067 img loss 1.5490010976791382 img loss 1.5458546876907349 img loss 1.573037028312683 img loss 1.5502543449401855 {'loss': 1.5743, 'grad_norm': 0.3590207099914551, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2248096466064453 img loss 1.2261698246002197 img loss 1.197214126586914 img loss 1.1976860761642456 img loss 1.2301642894744873 img loss 1.2270481586456299 img loss 1.277062177658081 img loss 1.2760971784591675 img loss 1.2343432903289795 img loss 1.2019307613372803 img loss 1.2352409362792969 img loss 1.1153002977371216 img loss 1.2373402118682861 img loss 1.2358510494232178 img loss 1.1182019710540771 img loss 1.2027050256729126 img loss 1.146105170249939 img loss 1.1958612203598022 img loss 1.2549920082092285 img loss 1.2454627752304077 img loss 1.355542540550232 img loss 1.2072992324829102 img loss 1.3386386632919312 img loss 1.1840800046920776 img loss 1.2729278802871704 img loss 1.182361125946045 img loss 1.2157305479049683 img loss 1.2652558088302612 img loss 1.2526869773864746 img loss 1.2676162719726562 img loss 1.22898268699646 img loss 1.185276985168457 img loss 1.2287424802780151 img loss 1.2291929721832275 img loss 1.2399091720581055 img loss 1.1826941967010498 img loss 1.2579036951065063 img loss 1.2232788801193237 img loss 1.2062537670135498 img loss 1.2828152179718018 img loss 1.2322075366973877 img loss 1.234140157699585 img loss 1.1769428253173828 img loss 1.2028253078460693 img loss 1.2133525609970093 img loss 1.2104015350341797 img loss 1.353084683418274 img loss 1.1954677104949951 img loss 1.255217432975769 img loss 1.2909808158874512 img loss 1.2048983573913574 img loss 1.2581074237823486 img loss 1.240700364112854 img loss 1.2366046905517578 img loss 1.2431319952011108 img loss 1.2429779767990112 img loss 1.1287211179733276 img loss 1.18172025680542 img loss 1.2059580087661743 img loss 1.1778019666671753 img loss 1.228353500366211 img loss 1.1903479099273682 img loss 1.2276325225830078 img loss 1.2233223915100098 img loss 1.295548677444458 img loss 1.1262547969818115 img loss 1.22879958152771 img loss 1.2200031280517578 img loss 1.246130347251892 img loss 1.2498804330825806 img loss 1.2884221076965332 img loss 1.2042747735977173 img loss 1.1781307458877563 img loss 1.216944694519043 img loss 1.2630809545516968 img loss 1.2415975332260132 img loss 1.2003107070922852 img loss 1.2193735837936401 img loss 1.2196707725524902 img loss 1.2238401174545288 img loss 1.2006040811538696 img loss 1.209937334060669 img loss 1.2663209438323975 img loss 1.2003793716430664 img loss 1.2187137603759766 img loss 1.3080639839172363 img loss 1.2385904788970947 img loss 1.3321471214294434 img loss 1.1529664993286133 img loss 1.3046687841415405 img loss 1.2315720319747925 img loss 1.2599451541900635 img loss 1.2993189096450806 img loss 1.2205740213394165 img loss 1.2022713422775269 img loss 1.2011479139328003 img loss 1.2199681997299194 img loss 1.1820131540298462 img loss 1.1361340284347534 img loss 1.186933994293213 img loss 1.2574964761734009 img loss 1.2047370672225952 img loss 1.3208098411560059 img loss 1.1592376232147217 img loss 1.2232402563095093 img loss 1.2198905944824219 img loss 1.1870895624160767 img loss 1.1710554361343384 img loss 1.2679860591888428 img loss 1.2434886693954468 img loss 1.370355486869812 img loss 1.2056242227554321 img loss 1.251866340637207 img loss 1.2394695281982422 img loss 1.2491393089294434 img loss 1.2170331478118896 img loss 1.1673206090927124 img loss 1.218431830406189 img loss 1.3296332359313965 img loss 1.158534049987793 img loss 1.2797907590866089 img loss 1.3179899454116821 img loss 1.216132640838623 img loss 1.2229410409927368 img loss 1.2173677682876587 img loss 1.3569399118423462 img loss 1.1952579021453857 img loss 1.196604609489441 {'loss': 1.2289, 'grad_norm': 0.1985749900341034, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6382486820220947 img loss 1.8768336772918701 img loss 1.5412713289260864 img loss 1.8681788444519043 img loss 1.8104087114334106 img loss 1.8493815660476685 img loss 1.8842140436172485 img loss 1.6488765478134155 img loss 1.7225995063781738 img loss 1.6791309118270874 img loss 1.797839641571045 img loss 1.781163215637207 img loss 1.8139783143997192 img loss 1.5196501016616821 img loss 1.6683584451675415 img loss 1.8411133289337158 img loss 1.7050644159317017 img loss 1.7280919551849365 img loss 1.7721021175384521 img loss 1.7806497812271118 img loss 1.7173221111297607 img loss 1.6016067266464233 img loss 1.7143666744232178 img loss 1.781126618385315 img loss 1.8279151916503906 img loss 1.700408697128296 img loss 1.630553126335144 img loss 1.6399601697921753 img loss 1.6325169801712036 img loss 1.8717279434204102 img loss 1.8976871967315674 img loss 1.7050615549087524 img loss 1.6353851556777954 img loss 1.7539939880371094 img loss 1.5373424291610718 img loss 1.7459003925323486 img loss 1.7069364786148071 img loss 1.7053576707839966 img loss 1.745505690574646 img loss 1.755528450012207 img loss 1.6499741077423096 img loss 1.762656569480896 img loss 1.896040916442871 img loss 1.8240909576416016 img loss 1.6910984516143799 img loss 1.5653529167175293 img loss 1.7778692245483398 img loss 1.720670461654663 img loss 1.7989156246185303 img loss 1.6224006414413452 img loss 1.6669083833694458 img loss 1.681395173072815 img loss 1.7652356624603271 img loss 1.6644551753997803 img loss 1.8069944381713867 img loss 1.7197479009628296 img loss 1.6805044412612915 img loss 1.5532965660095215 img loss 1.7297011613845825 img loss 1.7788233757019043 img loss 1.7364717721939087 img loss 1.7690954208374023 img loss 1.6295030117034912 img loss 1.7160874605178833 img loss 1.782958745956421 img loss 1.8753571510314941 img loss 1.727818489074707 img loss 1.6176793575286865 img loss 1.6196587085723877 img loss 1.7277966737747192 img loss 1.676841378211975 img loss 1.7259923219680786 img loss 1.640581727027893 img loss 1.7002737522125244 img loss 1.566392183303833 img loss 1.6083219051361084 img loss 1.747937560081482 img loss 1.7858080863952637 img loss 1.7225854396820068 img loss 1.6739975214004517 img loss 1.7110451459884644 img loss 1.545189619064331 img loss 1.6523042917251587 img loss 1.5735259056091309 img loss 1.751330852508545 img loss 1.8172115087509155 img loss 1.710901141166687 img loss 1.7202696800231934 img loss 1.6580721139907837 img loss 1.7354660034179688 img loss 1.721653938293457 img loss 1.7849020957946777 img loss 1.7692323923110962 img loss 1.5800005197525024 img loss 1.8594938516616821 img loss 1.8138768672943115 img loss 1.6111254692077637 img loss 1.6194965839385986 img loss 1.6940406560897827 img loss 1.7663795948028564 img loss 1.803273320198059 img loss 1.7433984279632568 img loss 1.6496106386184692 img loss 1.6942311525344849 img loss 1.7798058986663818 img loss 1.7578283548355103 img loss 1.6509308815002441 img loss 1.7692883014678955 img loss 1.5943939685821533 img loss 1.7320055961608887 img loss 1.6238828897476196 img loss 1.7292685508728027 img loss 1.7980314493179321 img loss 1.6984927654266357 img loss 1.7226625680923462 img loss 1.6828763484954834 img loss 1.8324480056762695 img loss 1.9092131853103638 img loss 1.5915440320968628 img loss 1.8897204399108887 img loss 1.628149151802063 img loss 1.7958929538726807 img loss 1.7232561111450195 img loss 1.7872023582458496 img loss 1.6490014791488647 img loss 1.5457631349563599 img loss 1.732398509979248 img loss 1.6576822996139526 {'loss': 1.718, 'grad_norm': 0.2538321018218994, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2799021005630493 img loss 1.1980549097061157 img loss 1.2172683477401733 img loss 1.2442190647125244 img loss 1.2064319849014282 img loss 1.1501587629318237 img loss 1.2733685970306396 img loss 1.2019164562225342 img loss 1.2699514627456665 img loss 1.2690536975860596 img loss 1.239363193511963 img loss 1.198707938194275 img loss 1.237324595451355 img loss 1.2190083265304565 img loss 1.1932039260864258 img loss 1.240912675857544 img loss 1.2477859258651733 img loss 1.2153247594833374 img loss 1.227742075920105 img loss 1.2332731485366821 img loss 1.2003836631774902 img loss 1.2398431301116943 img loss 1.2430150508880615 img loss 1.242409586906433 img loss 1.225858449935913 img loss 1.241088628768921 img loss 1.1999943256378174 img loss 1.2832950353622437 img loss 1.2102693319320679 img loss 1.2544962167739868 img loss 1.2087739706039429 img loss 1.231431484222412 img loss 1.2506624460220337 img loss 1.2795807123184204 img loss 1.2252393960952759 img loss 1.2641342878341675 img loss 1.2212164402008057 img loss 1.1940609216690063 img loss 1.207495927810669 img loss 1.1743172407150269 img loss 1.2591654062271118 img loss 1.1941308975219727 img loss 1.2581229209899902 img loss 1.199676513671875 img loss 1.21101713180542 img loss 1.2524807453155518 img loss 1.2116260528564453 img loss 1.2716941833496094 img loss 1.2203083038330078 img loss 1.1917529106140137 img loss 1.2820124626159668 img loss 1.2659149169921875 img loss 1.2658485174179077 img loss 1.2972949743270874 img loss 1.2635959386825562 img loss 1.2300306558609009 img loss 1.2030210494995117 img loss 1.196784496307373 img loss 1.2778356075286865 img loss 1.2297015190124512 img loss 1.2537769079208374 img loss 1.3085054159164429 img loss 1.1652132272720337 img loss 1.305369257926941 img loss 1.2469842433929443 img loss 1.2756967544555664 img loss 1.2864124774932861 img loss 1.20160710811615 img loss 1.2261919975280762 img loss 1.2337621450424194 img loss 1.2312930822372437 img loss 1.3232712745666504 img loss 1.2116012573242188 img loss 1.2605119943618774 img loss 1.2195738554000854 img loss 1.2682303190231323 img loss 1.2673419713974 img loss 1.2174841165542603 img loss 1.1936430931091309 img loss 1.1901512145996094 img loss 1.2440829277038574 img loss 1.2229723930358887 img loss 1.2003639936447144 img loss 1.26450514793396 img loss 1.2239583730697632 img loss 1.2563931941986084 img loss 1.1659774780273438 img loss 1.2580188512802124 img loss 1.241795301437378 img loss 1.1847164630889893 img loss 1.260230302810669 img loss 1.1876678466796875 img loss 1.1632436513900757 img loss 1.1995594501495361 img loss 1.2665131092071533 img loss 1.2110751867294312 img loss 1.2992557287216187 img loss 1.2569308280944824 img loss 1.2807420492172241 img loss 1.2113784551620483 img loss 1.215911626815796 img loss 1.2269797325134277 img loss 1.2997355461120605 img loss 1.2993602752685547 img loss 1.2310527563095093 img loss 1.2166380882263184 img loss 1.2144827842712402 img loss 1.2507981061935425 img loss 1.2674782276153564 img loss 1.2595632076263428 img loss 1.2387919425964355 img loss 1.1930540800094604 img loss 1.314064621925354 img loss 1.2405399084091187 img loss 1.2433621883392334 img loss 1.2840226888656616 img loss 1.2639329433441162 img loss 1.2288683652877808 img loss 1.2405672073364258 img loss 1.2077232599258423 img loss 1.2539469003677368 img loss 1.198925495147705 img loss 1.2123416662216187 img loss 1.2328433990478516 img loss 1.254474401473999 img loss 1.249503493309021 img loss 1.284891963005066 img loss 1.1779085397720337 {'loss': 1.2362, 'grad_norm': 0.3048372268676758, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3145431280136108 img loss 1.2478522062301636 img loss 1.2286728620529175 img loss 1.260813593864441 img loss 1.209606647491455 img loss 1.2813071012496948 img loss 1.299619436264038 img loss 1.2085784673690796 img loss 1.227710247039795 img loss 1.2480244636535645 img loss 1.1897406578063965 img loss 1.2359727621078491 img loss 1.1966657638549805 img loss 1.2023359537124634 img loss 1.3677490949630737 img loss 1.2364801168441772 img loss 1.2456550598144531 img loss 1.379546880722046 img loss 1.2531204223632812 img loss 1.2133148908615112 img loss 1.219750165939331 img loss 1.1931252479553223 img loss 1.1793674230575562 img loss 1.2453151941299438 img loss 1.260519027709961 img loss 1.2963738441467285 img loss 1.3159817457199097 img loss 1.2196595668792725 img loss 1.2475937604904175 img loss 1.283525824546814 img loss 1.266571044921875 img loss 1.2591264247894287 img loss 1.2468209266662598 img loss 1.2853050231933594 img loss 1.2805728912353516 img loss 1.2662272453308105 img loss 1.2072714567184448 img loss 1.2684839963912964 img loss 1.22714102268219 img loss 1.2176170349121094 img loss 1.2063435316085815 img loss 1.3783318996429443 img loss 1.2963347434997559 img loss 1.2297276258468628 img loss 1.2021522521972656 img loss 1.2246055603027344 img loss 1.3309288024902344 img loss 1.2853877544403076 img loss 1.2071298360824585 img loss 1.1977936029434204 img loss 1.2008675336837769 img loss 1.2813433408737183 img loss 1.3056068420410156 img loss 1.2657549381256104 img loss 1.1778504848480225 img loss 1.2207978963851929 img loss 1.2797119617462158 img loss 1.3246750831604004 img loss 1.2908750772476196 img loss 1.2901877164840698 img loss 1.297566294670105 img loss 1.2160999774932861 img loss 1.1947734355926514 img loss 1.207422137260437 img loss 1.254889965057373 img loss 1.237138271331787 img loss 1.199291706085205img loss 1.26058828830719 img loss 1.2486966848373413 img loss 1.1834282875061035 img loss 1.3341268301010132 img loss 1.208778977394104 img loss 1.1677669286727905 img loss 1.2484450340270996 img loss 1.2355753183364868 img loss 1.2191721200942993 img loss 1.148624062538147 img loss 1.2391719818115234 img loss 1.2722820043563843 img loss 1.2854437828063965 img loss 1.3790152072906494 img loss 1.2717567682266235 img loss 1.2943153381347656 img loss 1.23655104637146 img loss 1.3236061334609985 img loss 1.256975531578064 img loss 1.3072376251220703 img loss 1.238219976425171 img loss 1.1923770904541016 img loss 1.1913011074066162 img loss 1.2264584302902222 img loss 1.2996079921722412 img loss 1.200786828994751 img loss 1.2297050952911377 img loss 1.2229734659194946 img loss 1.230176568031311 img loss 1.1592075824737549 img loss 1.1973556280136108 img loss 1.1885570287704468 img loss 1.2230212688446045 img loss 1.2497987747192383 img loss 1.2254579067230225 img loss 1.2346928119659424 img loss 1.2652498483657837 img loss 1.238250494003296 img loss 1.1988370418548584 img loss 1.2164360284805298 img loss 1.2285993099212646 img loss 1.317916750907898 img loss 1.278903841972351 img loss 1.1665390729904175 img loss 1.2113748788833618 img loss 1.254248857498169 img loss 1.314211368560791 img loss 1.184792399406433 img loss 1.3468669652938843 img loss 1.2441062927246094 img loss 1.2644389867782593 img loss 1.3477650880813599 img loss 1.2468054294586182 img loss 1.283778190612793 img loss 1.1249134540557861 img loss 1.1786221265792847 img loss 1.1483454704284668 img loss 1.241773247718811 img loss 1.2091538906097412 img loss 1.2019248008728027 img loss 1.229417085647583 {'loss': 1.2454, 'grad_norm': 0.2426164299249649, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2953039407730103 img loss 1.2180360555648804 img loss 1.2302255630493164 img loss 1.1949471235275269 img loss 1.2023212909698486 img loss 1.2709312438964844 img loss 1.2437591552734375 img loss 1.2465629577636719 img loss 1.2664680480957031 img loss 1.1930493116378784 img loss 1.271340250968933 img loss 1.2425570487976074 img loss 1.2327693700790405 img loss 1.1668164730072021 img loss 1.2163089513778687 img loss 1.3412381410598755 img loss 1.1772706508636475 img loss 1.2505831718444824 img loss 1.2755340337753296 img loss 1.2397505044937134 img loss 1.2104076147079468 img loss 1.2312922477722168 img loss 1.30973482131958 img loss 1.1953530311584473 img loss 1.205390453338623 img loss 1.235243797302246 img loss 1.2086623907089233 img loss 1.286690592765808 img loss 1.2289154529571533 img loss 1.2298550605773926 img loss 1.2635573148727417 img loss 1.1972755193710327 img loss 1.266497015953064 img loss 1.2148633003234863 img loss 1.1893820762634277 img loss 1.2242072820663452 img loss 1.2096575498580933 img loss 1.1912312507629395 img loss 1.2569730281829834 img loss 1.2186262607574463 img loss 1.2225761413574219 img loss 1.3073891401290894 img loss 1.252323031425476 img loss 1.1538842916488647 img loss 1.2350497245788574 img loss 1.2543483972549438 img loss 1.2634811401367188 img loss 1.2818235158920288 img loss 1.2896320819854736 img loss 1.2708075046539307 img loss 1.2957390546798706 img loss 1.2351679801940918 img loss 1.2405962944030762 img loss 1.2348787784576416 img loss 1.1643787622451782 img loss 1.2727563381195068 img loss 1.239848017692566 img loss 1.2373144626617432 img loss 1.2223774194717407 img loss 1.3279094696044922 img loss 1.2277363538742065 img loss 1.2287399768829346 img loss 1.2848163843154907 img loss 1.245774745941162 img loss 1.1764332056045532 img loss 1.1955524682998657 img loss 1.2473084926605225 img loss 1.2355670928955078 img loss 1.2432583570480347 img loss 1.260272741317749 img loss 1.256978988647461 img loss 1.2633272409439087 img loss 1.2111284732818604 img loss 1.219683051109314 img loss 1.1922540664672852 img loss 1.2811421155929565 img loss 1.2240318059921265 img loss 1.2432901859283447 img loss 1.2081254720687866 img loss 1.216826319694519 img loss 1.2404578924179077 img loss 1.2818944454193115 img loss 1.2798051834106445 img loss 1.214669108390808 img loss 1.2243380546569824 img loss 1.245682954788208 img loss 1.2467491626739502 img loss 1.284446358680725 img loss 1.2697408199310303 img loss 1.221582055091858 img loss 1.202148199081421 img loss 1.2576522827148438 img loss 1.2246909141540527 img loss 1.212424874305725 img loss 1.2222683429718018 img loss 1.286803126335144 img loss 1.2103838920593262 img loss 1.2884947061538696 img loss 1.3391578197479248 img loss 1.1982313394546509 img loss 1.234963059425354 img loss 1.2090816497802734 img loss 1.274907112121582 img loss 1.288697600364685 img loss 1.1429462432861328 img loss 1.2895005941390991 img loss 1.2372124195098877 img loss 1.1994022130966187 img loss 1.2796982526779175 img loss 1.2449946403503418 img loss 1.2645549774169922 img loss 1.1882442235946655 img loss 1.2181018590927124 img loss 1.2239930629730225 img loss 1.3048847913742065 img loss 1.163683533668518 img loss 1.198759913444519 img loss 1.2321295738220215 img loss 1.2391637563705444 img loss 1.210205078125 img loss 1.2416789531707764 img loss 1.2097021341323853 img loss 1.2817429304122925 img loss 1.2640109062194824 img loss 1.248525619506836 img loss 1.2724202871322632 img loss 1.2551748752593994 img loss 1.2380611896514893 {'loss': 1.2392, 'grad_norm': 0.28722137212753296, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1475616693496704 img loss 1.2796295881271362 img loss 1.2345727682113647 img loss 1.2319495677947998 img loss 1.2076832056045532 img loss 1.2210955619812012 img loss 1.231504201889038 img loss 1.184984803199768 img loss 1.1131727695465088 img loss 1.241352915763855 img loss 1.1871925592422485 img loss 1.182906150817871 img loss 1.196645736694336 img loss 1.2487579584121704 img loss 1.308607816696167 img loss 1.2249932289123535 img loss 1.1842710971832275 img loss 1.193161964416504 img loss 1.1653404235839844 img loss 1.2661216259002686 img loss 1.18867826461792 img loss 1.2262152433395386 img loss 1.212584137916565 img loss 1.1924409866333008 img loss 1.1557739973068237 img loss 1.191549301147461 img loss 1.2087790966033936 img loss 1.1945953369140625 img loss 1.1652145385742188 img loss 1.1432228088378906 img loss 1.259183645248413 img loss 1.213868498802185 img loss 1.1236680746078491 img loss 1.23074209690094 img loss 1.1709425449371338 img loss 1.1717047691345215 img loss 1.193002700805664 img loss 1.2432926893234253 img loss 1.2448488473892212 img loss 1.2030025720596313 img loss 1.2398689985275269 img loss 1.232282280921936 img loss 1.2310311794281006 img loss 1.1643898487091064 img loss 1.2495100498199463 img loss 1.1657317876815796 img loss 1.1666340827941895 img loss 1.2143118381500244 img loss 1.135847806930542 img loss 1.0987677574157715 img loss 1.204418659210205 img loss 1.206231713294983 img loss 1.2043710947036743 img loss 1.1722491979599 img loss 1.1739495992660522 img loss 1.199692964553833 img loss 1.2194278240203857 img loss 1.1990511417388916 img loss 1.2054498195648193 img loss 1.2350285053253174 img loss 1.2565968036651611 img loss 1.2499330043792725 img loss 1.2025927305221558 img loss 1.213922142982483 img loss 1.261589527130127 img loss 1.224137544631958 img loss 1.2082592248916626 img loss 1.1850942373275757 img loss 1.2904471158981323 img loss 1.2496788501739502 img loss 1.206406831741333 img loss 1.1658365726470947 img loss 1.1589374542236328 img loss 1.1879163980484009 img loss 1.2378356456756592 img loss 1.2385801076889038 img loss 1.187090516090393 img loss 1.1692765951156616 img loss 1.170161247253418 img loss 1.235884189605713 img loss 1.1908735036849976 img loss 1.2238689661026 img loss 1.232497215270996 img loss 1.1935886144638062 img loss 1.1710975170135498 img loss 1.2891124486923218 img loss 1.1567027568817139 img loss 1.2003226280212402 img loss 1.1986826658248901 img loss 1.1665738821029663 img loss 1.1918939352035522 img loss 1.1099226474761963 img loss 1.2056797742843628 img loss 1.2212169170379639 img loss 1.2018299102783203 img loss 1.1649627685546875 img loss 1.2825263738632202 img loss 1.1325095891952515 img loss 1.2342088222503662 img loss 1.2445968389511108 img loss 1.2463703155517578 img loss 1.1977472305297852 img loss 1.1855518817901611 img loss 1.2374098300933838 img loss 1.2409965991973877 img loss 1.1984680891036987 img loss 1.2029107809066772 img loss 1.2986719608306885 img loss 1.1634043455123901 img loss 1.189212679862976 img loss 1.1980247497558594 img loss 1.2354167699813843 img loss 1.2115859985351562 img loss 1.24040949344635 img loss 1.1661272048950195 img loss 1.2134668827056885 img loss 1.2494938373565674 img loss 1.1612857580184937 img loss 1.167168378829956 img loss 1.2144535779953003 img loss 1.22359037399292 img loss 1.2210021018981934 img loss 1.1932597160339355 img loss 1.17805814743042 img loss 1.164729356765747 img loss 1.1805410385131836 img loss 1.2163456678390503 img loss 1.1996091604232788 {'loss': 1.2048, 'grad_norm': 0.22615744173526764, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1989376544952393 img loss 1.2350993156433105 img loss 1.2709511518478394 img loss 1.2473505735397339 img loss 1.2455381155014038 img loss 1.2179145812988281 img loss 1.3476307392120361 img loss 1.211974859237671 img loss 1.2578283548355103 img loss 1.1470764875411987 img loss 1.1814894676208496 img loss 1.2532846927642822 img loss 1.3883795738220215 img loss 1.1887168884277344 img loss 1.2790753841400146 img loss 1.1972719430923462 img loss 1.261622667312622 img loss 1.238777995109558 img loss 1.2076762914657593 img loss 1.1763995885849 img loss 1.1821434497833252 img loss 1.1974296569824219 img loss 1.231793999671936 img loss 1.1711974143981934 img loss 1.2850005626678467 img loss 1.2303698062896729 img loss 1.2788922786712646 img loss 1.2512441873550415 img loss 1.217029333114624 img loss 1.2616947889328003 img loss 1.2294927835464478 img loss 1.2966344356536865 img loss 1.2187745571136475 img loss 1.2714638710021973 img loss 1.1991961002349854 img loss 1.2058696746826172 img loss 1.2252448797225952 img loss 1.179321050643921 img loss 1.2113635540008545 img loss 1.2656692266464233 img loss 1.257340669631958 img loss 1.2145696878433228 img loss 1.229607105255127 img loss 1.2687300443649292 img loss 1.302045464515686 img loss 1.2017416954040527 img loss 1.2052983045578003 img loss 1.1823457479476929 img loss 1.1636794805526733 img loss 1.187880516052246 img loss 1.2063969373703003 img loss 1.245058298110962 img loss 1.1970746517181396 img loss 1.2322832345962524 img loss 1.2580047845840454 img loss 1.228671908378601 img loss 1.2348307371139526 img loss 1.235227108001709 img loss 1.1837902069091797 img loss 1.1869663000106812 img loss 1.2072454690933228 img loss 1.2644994258880615 img loss 1.1852744817733765 img loss 1.2448610067367554img loss 1.2453631162643433 img loss 1.2018864154815674 img loss 1.3127477169036865 img loss 1.1948846578598022 img loss 1.2806501388549805 img loss 1.2456802129745483 img loss 1.246926188468933 img loss 1.2249925136566162 img loss 1.189616084098816 img loss 1.2404217720031738 img loss 1.2388927936553955 img loss 1.1743828058242798 img loss 1.226135492324829 img loss 1.2755686044692993 img loss 1.1901946067810059 img loss 1.2392581701278687 img loss 1.1654281616210938 img loss 1.2281548976898193 img loss 1.2195757627487183 img loss 1.2267584800720215 img loss 1.1829941272735596 img loss 1.2529728412628174 img loss 1.184831976890564 img loss 1.242070198059082 img loss 1.1943509578704834 img loss 1.1978259086608887 img loss 1.2529741525650024 img loss 1.2610596418380737 img loss 1.2313190698623657 img loss 1.2150160074234009 img loss 1.19497549533844 img loss 1.2485311031341553 img loss 1.1694316864013672 img loss 1.1804611682891846 img loss 1.2375608682632446 img loss 1.1485592126846313 img loss 1.2208373546600342 img loss 1.226511836051941 img loss 1.2139028310775757 img loss 1.212609887123108 img loss 1.1909468173980713 img loss 1.2065024375915527 img loss 1.2445282936096191 img loss 1.2063488960266113 img loss 1.1795622110366821 img loss 1.1966472864151 img loss 1.214267611503601 img loss 1.2954310178756714 img loss 1.3197758197784424 img loss 1.2280247211456299 img loss 1.2991523742675781 img loss 1.1938958168029785 img loss 1.2424941062927246 img loss 1.186185359954834 img loss 1.1848745346069336 img loss 1.202760934829712 img loss 1.21207594871521 img loss 1.161771297454834 img loss 1.2461732625961304 img loss 1.1799633502960205 img loss 1.2862647771835327 img loss 1.236366868019104 img loss 1.2435071468353271 img loss 1.2456318140029907 {'loss': 1.226, 'grad_norm': 0.1870054453611374, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.698447346687317 img loss 1.4343005418777466 img loss 1.4932663440704346 img loss 1.609133005142212 img loss 1.5903555154800415 img loss 1.6506239175796509 img loss 1.70016610622406 img loss 1.7063915729522705 img loss 1.5966250896453857 img loss 1.4243725538253784 img loss 1.5929840803146362 img loss 1.7654125690460205 img loss 1.5053231716156006 img loss 1.593265414237976 img loss 1.494249701499939 img loss 1.37039053440094 img loss 1.6126600503921509 img loss 1.5927633047103882 img loss 1.5302727222442627 img loss 1.6594504117965698 img loss 1.5293198823928833 img loss 1.5681469440460205 img loss 1.5247886180877686 img loss 1.5652766227722168 img loss 1.7027888298034668 img loss 1.5184032917022705 img loss 1.5395675897598267 img loss 1.5500909090042114 img loss 1.4699680805206299 img loss 1.5246268510818481 img loss 1.6221483945846558 img loss 1.5764013528823853 img loss 1.523445725440979 img loss 1.6863137483596802img loss 1.5968279838562012 img loss 1.4874902963638306 img loss 1.6440759897232056 img loss 1.4972633123397827 img loss 1.3650412559509277 img loss 1.5477919578552246 img loss 1.6040867567062378 img loss 1.4865750074386597 img loss 1.7220313549041748 img loss 1.47496497631073 img loss 1.4367982149124146 img loss 1.4227802753448486 img loss 1.4242336750030518 img loss 1.623480200767517 img loss 1.602799654006958 img loss 1.5478771924972534 img loss 1.5013760328292847 img loss 1.53281831741333 img loss 1.642345666885376 img loss 1.6970068216323853 img loss 1.5255906581878662 img loss 1.585641622543335 img loss 1.5532166957855225 img loss 1.5813976526260376 img loss 1.4133961200714111 img loss 1.5932090282440186 img loss 1.5674103498458862 img loss 1.5980976819992065 img loss 1.6512364149093628img loss 1.554720401763916 img loss 1.4303487539291382 img loss 1.5552247762680054 img loss 1.6528820991516113 img loss 1.6277354955673218 img loss 1.6197893619537354 img loss 1.6961960792541504 img loss 1.584189772605896 img loss 1.612291932106018 img loss 1.403339147567749 img loss 1.6042454242706299 img loss 1.5609179735183716 img loss 1.5288161039352417 img loss 1.4665114879608154 img loss 1.5980480909347534 img loss 1.5776093006134033 img loss 1.6232198476791382 img loss 1.3925498723983765 img loss 1.4432848691940308 img loss 1.493221640586853 img loss 1.5824228525161743 img loss 1.675534963607788 img loss 1.5478860139846802 img loss 1.7906030416488647 img loss 1.5837877988815308 img loss 1.5217937231063843 img loss 1.5328679084777832 img loss 1.4425817728042603 img loss 1.6286474466323853 img loss 1.5830429792404175 img loss 1.5043267011642456 img loss 1.4994136095046997 img loss 1.5345350503921509 img loss 1.5180219411849976 img loss 1.5138272047042847 img loss 1.5877858400344849 img loss 1.6421253681182861 img loss 1.5542070865631104 img loss 1.5366549491882324 img loss 1.5966686010360718 img loss 1.4606178998947144 img loss 1.536841869354248 img loss 1.5533528327941895 img loss 1.4387387037277222 img loss 1.5634074211120605 img loss 1.5092424154281616 img loss 1.6679714918136597 img loss 1.5984050035476685 img loss 1.7102272510528564 img loss 1.5944734811782837 img loss 1.5774857997894287 img loss 1.6532472372055054 img loss 1.6010947227478027 img loss 1.5713139772415161 img loss 1.457395315170288 img loss 1.447619915008545 img loss 1.605648398399353 img loss 1.4441601037979126 img loss 1.4414831399917603 img loss 1.6079179048538208 img loss 1.6353564262390137 img loss 1.5921069383621216 img loss 1.367488980293274 img loss 1.6460422277450562 img loss 1.5599309206008911 {'loss': 1.5601, 'grad_norm': 0.3194185793399811, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3279321193695068 img loss 1.2794358730316162 img loss 1.2562744617462158 img loss 1.2456251382827759 img loss 1.3085839748382568 img loss 1.2496856451034546 img loss 1.3245849609375 img loss 1.330454707145691 img loss 1.2754720449447632 img loss 1.2883985042572021 img loss 1.3112760782241821 img loss 1.3322465419769287 img loss 1.3479710817337036 img loss 1.2788996696472168 img loss 1.2165268659591675 img loss 1.338008999824524 img loss 1.261272668838501 img loss 1.2822052240371704 img loss 1.2013438940048218 img loss 1.236620545387268 img loss 1.3488086462020874 img loss 1.2812039852142334 img loss 1.2573598623275757 img loss 1.3378068208694458 img loss 1.332983374595642 img loss 1.272275686264038 img loss 1.2408134937286377 img loss 1.2678298950195312 img loss 1.3305195569992065 img loss 1.3013322353363037 img loss 1.296470284461975 img loss 1.2264094352722168 img loss 1.3778284788131714 img loss 1.3275907039642334 img loss 1.29575777053833 img loss 1.241081953048706 img loss 1.2903010845184326 img loss 1.2201900482177734 img loss 1.2972129583358765 img loss 1.3981149196624756 img loss 1.3031162023544312 img loss 1.2119028568267822 img loss 1.231514573097229 img loss 1.3665592670440674 img loss 1.4085571765899658 img loss 1.2476937770843506 img loss 1.283954381942749 img loss 1.2171375751495361 img loss 1.2688087224960327 img loss 1.3114383220672607 img loss 1.3799773454666138 img loss 1.2686893939971924 img loss 1.3174946308135986 img loss 1.2034021615982056 img loss 1.229947566986084 img loss 1.2530388832092285 img loss 1.2319328784942627 img loss 1.3074069023132324 img loss 1.3123538494110107 img loss 1.2754454612731934 img loss 1.2698585987091064 img loss 1.2278107404708862 img loss 1.3071434497833252 img loss 1.2713552713394165 img loss 1.3020849227905273 img loss 1.3527462482452393 img loss 1.2460553646087646 img loss 1.2312371730804443 img loss 1.3348612785339355 img loss 1.3459516763687134 img loss 1.3245704174041748 img loss 1.282223105430603 img loss 1.2644853591918945 img loss 1.2656128406524658 img loss 1.208098292350769 img loss 1.2202609777450562 img loss 1.2489725351333618 img loss 1.312528133392334 img loss 1.31143057346344 img loss 1.2957216501235962 img loss 1.3197050094604492 img loss 1.2965126037597656 img loss 1.3249975442886353 img loss 1.2067238092422485 img loss 1.304110050201416 img loss 1.3233299255371094 img loss 1.2217944860458374 img loss 1.25282883644104 img loss 1.3078731298446655 img loss 1.269914984703064 img loss 1.2875938415527344 img loss 1.2087111473083496 img loss 1.3227920532226562 img loss 1.3281625509262085 img loss 1.2651538848876953 img loss 1.314716100692749 img loss 1.3079017400741577 img loss 1.2640550136566162 img loss 1.2568912506103516 img loss 1.3600658178329468 img loss 1.2665479183197021 img loss 1.4353001117706299 img loss 1.2697257995605469 img loss 1.2383766174316406 img loss 1.3693054914474487 img loss 1.3259148597717285 img loss 1.2454971075057983 img loss 1.297163486480713 img loss 1.3710774183273315 img loss 1.273760437965393 img loss 1.2336472272872925 img loss 1.2840369939804077 img loss 1.3404104709625244 img loss 1.3141828775405884 img loss 1.3154006004333496 img loss 1.21257746219635 img loss 1.4207518100738525 img loss 1.2163722515106201 img loss 1.370637059211731 img loss 1.41319739818573 img loss 1.2300866842269897 img loss 1.2828086614608765 img loss 1.331295371055603 img loss 1.2878718376159668 img loss 1.3091763257980347 img loss 1.3300880193710327 img loss 1.244636058807373 img loss 1.2509989738464355 {'loss': 1.2899, 'grad_norm': 0.2477053999900818, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2082570791244507 img loss 1.2184017896652222 img loss 1.142952561378479 img loss 1.2450528144836426 img loss 1.2047500610351562 img loss 1.231039047241211 img loss 1.2091984748840332 img loss 1.2181065082550049 img loss 1.2271323204040527 img loss 1.2588787078857422 img loss 1.2238571643829346 img loss 1.1712543964385986 img loss 1.2012830972671509 img loss 1.2888097763061523 img loss 1.196865439414978 img loss 1.256055235862732 img loss 1.2769954204559326 img loss 1.2466472387313843 img loss 1.2403614521026611 img loss 1.1899750232696533 img loss 1.2784814834594727 img loss 1.174971342086792 img loss 1.1439528465270996 img loss 1.1992768049240112 img loss 1.1999515295028687 img loss 1.2373358011245728 img loss 1.144034743309021 img loss 1.2192052602767944 img loss 1.227168321609497 img loss 1.208185076713562 img loss 1.2651875019073486 img loss 1.237709403038025 img loss 1.1709588766098022 img loss 1.313976764678955 img loss 1.2205673456192017 img loss 1.1723072528839111 img loss 1.2065033912658691 img loss 1.1216061115264893 img loss 1.1740665435791016 img loss 1.221685767173767 img loss 1.169371485710144 img loss 1.2039210796356201 img loss 1.294413447380066 img loss 1.3423629999160767 img loss 1.1626641750335693 img loss 1.1385912895202637 img loss 1.2636332511901855 img loss 1.1566872596740723 img loss 1.2098002433776855 img loss 1.2345974445343018 img loss 1.1642454862594604 img loss 1.220819115638733 img loss 1.1768215894699097 img loss 1.1794754266738892 img loss 1.20708429813385 img loss 1.2126811742782593 img loss 1.2265827655792236 img loss 1.223914384841919 img loss 1.2214081287384033 img loss 1.2533849477767944 img loss 1.226583480834961 img loss 1.2220486402511597 img loss 1.3229708671569824 img loss 1.274078607559204 img loss 1.2324631214141846 img loss 1.249732255935669 img loss 1.2418065071105957 img loss 1.1859203577041626 img loss 1.2171372175216675 img loss 1.2323110103607178 img loss 1.1849874258041382 img loss 1.2160444259643555 img loss 1.2416725158691406 img loss 1.233429193496704 img loss 1.1330617666244507 img loss 1.2650359869003296 img loss 1.2076023817062378 img loss 1.2903251647949219 img loss 1.1846646070480347 img loss 1.198646068572998 img loss 1.1364105939865112 img loss 1.1424193382263184 img loss 1.2479236125946045 img loss 1.234412670135498 img loss 1.221179485321045 img loss 1.3585638999938965 img loss 1.2547118663787842 img loss 1.2675260305404663 img loss 1.1912505626678467 img loss 1.1958528757095337 img loss 1.3342033624649048 img loss 1.2484334707260132 img loss 1.270331859588623 img loss 1.2194373607635498 img loss 1.1965367794036865 img loss 1.2161672115325928 img loss 1.2424875497817993 img loss 1.189522624015808 img loss 1.202704668045044 img loss 1.2598214149475098 img loss 1.2139157056808472 img loss 1.3071571588516235 img loss 1.3393511772155762 img loss 1.2455034255981445 img loss 1.267615795135498 img loss 1.25327730178833 img loss 1.1549460887908936 img loss 1.200347900390625 img loss 1.160663366317749 img loss 1.1544731855392456 img loss 1.1867214441299438 img loss 1.2862038612365723 img loss 1.138107419013977 img loss 1.2455137968063354 img loss 1.18137788772583 img loss 1.270431399345398 img loss 1.2346203327178955 img loss 1.2620971202850342 img loss 1.2107778787612915 img loss 1.2095054388046265 img loss 1.1685470342636108 img loss 1.184522032737732 img loss 1.2239818572998047 img loss 1.2234991788864136 img loss 1.242598295211792 img loss 1.2185875177383423 img loss 1.2818634510040283 img loss 1.2317073345184326 {'loss': 1.2214, 'grad_norm': 0.199227973818779, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4631524085998535 img loss 1.3366007804870605 img loss 1.2941830158233643 img loss 1.4652965068817139 img loss 1.3333767652511597 img loss 1.338029384613037 img loss 1.3507753610610962 img loss 1.345552682876587 img loss 1.3574159145355225 img loss 1.3093791007995605 img loss 1.3871381282806396 img loss 1.3401035070419312 img loss 1.3586276769638062 img loss 1.5121294260025024 img loss 1.3450922966003418 img loss 1.3530888557434082 img loss 1.3667728900909424 img loss 1.4287079572677612 img loss 1.3847805261611938 img loss 1.4274051189422607 img loss 1.2675637006759644 img loss 1.4356590509414673 img loss 1.3755630254745483 img loss 1.3528355360031128 img loss 1.306835651397705 img loss 1.4277921915054321 img loss 1.343500018119812 img loss 1.4079563617706299 img loss 1.382018804550171 img loss 1.4326834678649902 img loss 1.4344465732574463 img loss 1.478371262550354 img loss 1.3955005407333374 img loss 1.2339012622833252 img loss 1.3872495889663696 img loss 1.2718966007232666 img loss 1.3450168371200562 img loss 1.3521742820739746 img loss 1.5181992053985596 img loss 1.3741729259490967 img loss 1.3615031242370605 img loss 1.2882821559906006 img loss 1.353525996208191 img loss 1.3344670534133911 img loss 1.502081036567688 img loss 1.318282961845398 img loss 1.3023371696472168 img loss 1.496713399887085 img loss 1.2907593250274658 img loss 1.337826132774353 img loss 1.3350279331207275 img loss 1.4127460718154907 img loss 1.2936735153198242 img loss 1.4010403156280518 img loss 1.3305904865264893 img loss 1.4054920673370361 img loss 1.2543529272079468 img loss 1.2904770374298096 img loss 1.3788001537322998 img loss 1.2282373905181885img loss 1.288320779800415 img loss 1.3003778457641602 img loss 1.3905303478240967 img loss 1.3489677906036377 img loss 1.302964210510254 img loss 1.3504561185836792 img loss 1.331984281539917 img loss 1.3421034812927246 img loss 1.4730464220046997 img loss 1.3748868703842163 img loss 1.354056715965271 img loss 1.3744651079177856 img loss 1.3264259099960327 img loss 1.2953381538391113 img loss 1.3327600955963135 img loss 1.4121038913726807 img loss 1.3474680185317993 img loss 1.5077122449874878 img loss 1.3582799434661865 img loss 1.443813443183899 img loss 1.355578064918518 img loss 1.3067299127578735 img loss 1.362635850906372img loss 1.340938925743103 img loss 1.348868489265442 img loss 1.383319616317749 img loss 1.3196425437927246 img loss 1.2805325984954834 img loss 1.3312487602233887 img loss 1.295385718345642 img loss 1.343207836151123 img loss 1.2545626163482666 img loss 1.2700438499450684 img loss 1.3582282066345215 img loss 1.4970728158950806 img loss 1.4928300380706787 img loss 1.4117190837860107 img loss 1.4611176252365112 img loss 1.3078556060791016 img loss 1.2907443046569824 img loss 1.468233346939087 img loss 1.3198201656341553 img loss 1.331472635269165 img loss 1.2594318389892578 img loss 1.4649709463119507 img loss 1.3373816013336182 img loss 1.3174583911895752 img loss 1.2958087921142578 img loss 1.3443790674209595 img loss 1.3902636766433716 img loss 1.2947843074798584 img loss 1.363564372062683 img loss 1.418422818183899 img loss 1.3940374851226807 img loss 1.4148732423782349 img loss 1.4264473915100098 img loss 1.3773714303970337 img loss 1.4385507106781006 img loss 1.1769368648529053 img loss 1.3233413696289062 img loss 1.2708443403244019 img loss 1.586159586906433 img loss 1.3237756490707397 img loss 1.4844249486923218 img loss 1.4576623439788818 img loss 1.306383728981018 img loss 1.4425686597824097 img loss 1.3943144083023071 {'loss': 1.3643, 'grad_norm': 0.30795371532440186, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3153111934661865 img loss 1.2216476202011108 img loss 1.2614771127700806 img loss 1.2509535551071167 img loss 1.2188425064086914 img loss 1.1357853412628174 img loss 1.326761245727539 img loss 1.18439519405365 img loss 1.2720661163330078 img loss 1.2138440608978271 img loss 1.2083584070205688 img loss 1.289753794670105 img loss 1.251810908317566 img loss 1.2034742832183838 img loss 1.1636475324630737 img loss 1.211148977279663 img loss 1.2065331935882568 img loss 1.1671024560928345 img loss 1.2395710945129395 img loss 1.2519872188568115 img loss 1.184093713760376 img loss 1.1912158727645874 img loss 1.2175019979476929 img loss 1.1624609231948853 img loss 1.2079538106918335 img loss 1.1876583099365234 img loss 1.205345630645752 img loss 1.201927661895752 img loss 1.190904974937439 img loss 1.2064480781555176 img loss 1.221717119216919 img loss 1.2178795337677002 img loss 1.2541978359222412 img loss 1.1944793462753296 img loss 1.2019466161727905 img loss 1.1917880773544312 img loss 1.2294771671295166 img loss 1.1748104095458984 img loss 1.2517261505126953 img loss 1.206010341644287 img loss 1.2208610773086548 img loss 1.2667871713638306 img loss 1.2366938591003418 img loss 1.2391984462738037 img loss 1.2371826171875 img loss 1.1943384408950806 img loss 1.2474720478057861 img loss 1.211410403251648 img loss 1.2212045192718506img loss 1.1794724464416504 img loss 1.2478632926940918 img loss 1.1906752586364746 img loss 1.189612627029419 img loss 1.196285605430603 img loss 1.1917427778244019 img loss 1.1725586652755737 img loss 1.2196331024169922 img loss 1.238996982574463 img loss 1.1636070013046265 img loss 1.2386009693145752 img loss 1.2540054321289062 img loss 1.1989552974700928 img loss 1.2267987728118896 img loss 1.2843025922775269 img loss 1.2121814489364624 img loss 1.1897642612457275 img loss 1.2691198587417603 img loss 1.1614283323287964 img loss 1.1494877338409424 img loss 1.2241971492767334 img loss 1.2718284130096436 img loss 1.2500991821289062 img loss 1.2185308933258057 img loss 1.1660794019699097 img loss 1.232137680053711 img loss 1.237966537475586 img loss 1.2850922346115112 img loss 1.2891769409179688 img loss 1.1830233335494995 img loss 1.152066707611084 img loss 1.15106999874115 img loss 1.2485169172286987 img loss 1.204744815826416 img loss 1.2123228311538696 img loss 1.2637275457382202 img loss 1.2078197002410889 img loss 1.2109416723251343 img loss 1.19719660282135 img loss 1.1446539163589478 img loss 1.2089731693267822 img loss 1.270057201385498 img loss 1.2242166996002197 img loss 1.2184442281723022 img loss 1.1937291622161865 img loss 1.232416033744812 img loss 1.190462589263916 img loss 1.244575023651123 img loss 1.1936991214752197 img loss 1.2034276723861694 img loss 1.15863037109375 img loss 1.213087797164917 img loss 1.1761118173599243 img loss 1.260340690612793 img loss 1.1982859373092651 img loss 1.15840482711792 img loss 1.2167260646820068 img loss 1.1982171535491943 img loss 1.2092937231063843 img loss 1.230008840560913 img loss 1.2524646520614624 img loss 1.1925063133239746 img loss 1.2532795667648315 img loss 1.216666579246521 img loss 1.2053930759429932 img loss 1.191135048866272 img loss 1.2688745260238647 img loss 1.1944102048873901 img loss 1.156580924987793 img loss 1.2050731182098389 img loss 1.225818157196045 img loss 1.2598541975021362 img loss 1.2261930704116821 img loss 1.202131986618042 img loss 1.253293752670288 img loss 1.2055625915527344 img loss 1.220240592956543 img loss 1.2367141246795654 img loss 1.1971142292022705 {'loss': 1.2161, 'grad_norm': 0.20479752123355865, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1936002969741821 img loss 1.2583286762237549 img loss 1.2040958404541016 img loss 1.2225899696350098 img loss 1.2212791442871094 img loss 1.3391271829605103 img loss 1.2082918882369995 img loss 1.2803051471710205 img loss 1.2413344383239746 img loss 1.193669319152832 img loss 1.2299227714538574 img loss 1.164110779762268 img loss 1.192945957183838 img loss 1.2931759357452393 img loss 1.249814510345459 img loss 1.234629511833191 img loss 1.2198817729949951 img loss 1.2748523950576782 img loss 1.1765116453170776 img loss 1.2521693706512451 img loss 1.154417634010315 img loss 1.203411340713501 img loss 1.2232530117034912 img loss 1.2715396881103516 img loss 1.2301324605941772 img loss 1.2277779579162598 img loss 1.2371456623077393 img loss 1.250404953956604 img loss 1.2403210401535034 img loss 1.2374693155288696 img loss 1.2478764057159424 img loss 1.2318834066390991 img loss 1.2201999425888062 img loss 1.3145694732666016 img loss 1.2458436489105225 img loss 1.2242854833602905 img loss 1.2586066722869873 img loss 1.2789379358291626 img loss 1.156079888343811 img loss 1.2759504318237305 img loss 1.2235603332519531 img loss 1.2889785766601562 img loss 1.2304320335388184 img loss 1.2108097076416016 img loss 1.2885407209396362 img loss 1.2700378894805908 img loss 1.268491268157959 img loss 1.2333418130874634 img loss 1.2074570655822754 img loss 1.2022769451141357 img loss 1.2274651527404785 img loss 1.2401951551437378 img loss 1.2213600873947144 img loss 1.2660937309265137 img loss 1.2471752166748047 img loss 1.1833332777023315 img loss 1.2386624813079834 img loss 1.194476842880249 img loss 1.1877361536026 img loss 1.2211929559707642 img loss 1.2156929969787598 img loss 1.24984610080719 img loss 1.1787829399108887 img loss 1.2468559741973877 img loss 1.2688926458358765 img loss 1.2589466571807861 img loss 1.2532204389572144 img loss 1.2777296304702759 img loss 1.2619130611419678 img loss 1.2059606313705444 img loss 1.3001923561096191 img loss 1.2198809385299683 img loss 1.2207751274108887 img loss 1.2283897399902344 img loss 1.2573018074035645 img loss 1.2185102701187134 img loss 1.2095425128936768 img loss 1.2910772562026978img loss 1.2635600566864014 img loss 1.2164644002914429 img loss 1.2378523349761963 img loss 1.303079605102539 img loss 1.2090319395065308 img loss 1.2982254028320312 img loss 1.2643686532974243 img loss 1.2119066715240479 img loss 1.2733986377716064 img loss 1.270645022392273 img loss 1.2457547187805176 img loss 1.2624295949935913 img loss 1.226787805557251 img loss 1.2524833679199219 img loss 1.2166317701339722 img loss 1.2542699575424194 img loss 1.206455111503601 img loss 1.1822068691253662 img loss 1.229515790939331 img loss 1.2618001699447632 img loss 1.2360975742340088 img loss 1.1957602500915527 img loss 1.2721880674362183 img loss 1.2393145561218262 img loss 1.1537268161773682 img loss 1.2175312042236328 img loss 1.2056605815887451 img loss 1.2485605478286743 img loss 1.269470453262329 img loss 1.1893657445907593 img loss 1.2691847085952759 img loss 1.1914341449737549 img loss 1.2160097360610962 img loss 1.235075831413269 img loss 1.2294402122497559 img loss 1.2157686948776245 img loss 1.2376964092254639 img loss 1.2546095848083496 img loss 1.2159011363983154 img loss 1.238490343093872 img loss 1.1839420795440674 img loss 1.2607176303863525 img loss 1.1481974124908447 img loss 1.2273887395858765 img loss 1.2743762731552124 img loss 1.2090657949447632 img loss 1.180214524269104 img loss 1.2590863704681396 img loss 1.2463706731796265 img loss 1.2200018167495728 {'loss': 1.2346, 'grad_norm': 0.23981136083602905, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.267366886138916 img loss 1.2341651916503906 img loss 1.1955286264419556 img loss 1.157080054283142 img loss 1.374202013015747 img loss 1.1985633373260498 img loss 1.231806993484497 img loss 1.2173393964767456 img loss 1.234658122062683 img loss 1.233426809310913 img loss 1.3149633407592773 img loss 1.2606940269470215 img loss 1.30917227268219 img loss 1.1896774768829346 img loss 1.2274993658065796 img loss 1.232802152633667 img loss 1.2385529279708862 img loss 1.189024806022644 img loss 1.1422102451324463 img loss 1.1580854654312134 img loss 1.3196024894714355 img loss 1.2255287170410156 img loss 1.2143113613128662 img loss 1.1570152044296265 img loss 1.217115044593811 img loss 1.2155649662017822 img loss 1.1737335920333862 img loss 1.1244940757751465 img loss 1.2789486646652222 img loss 1.2846660614013672 img loss 1.2403156757354736 img loss 1.2149782180786133 img loss 1.2264378070831299 img loss 1.1275418996810913 img loss 1.2526631355285645 img loss 1.219939947128296 img loss 1.2258732318878174 img loss 1.2160526514053345 img loss 1.2617613077163696 img loss 1.2648065090179443 img loss 1.3041270971298218 img loss 1.2371176481246948 img loss 1.1054329872131348 img loss 1.3639241456985474 img loss 1.201138973236084 img loss 1.2542301416397095 img loss 1.227293848991394 img loss 1.2537208795547485 img loss 1.2212066650390625 img loss 1.2432842254638672 img loss 1.2515323162078857 img loss 1.1988708972930908 img loss 1.1884392499923706 img loss 1.2100872993469238 img loss 1.2742080688476562 img loss 1.2615251541137695 img loss 1.289130449295044 img loss 1.247889757156372 img loss 1.2350397109985352 img loss 1.1846073865890503 img loss 1.2894800901412964 img loss 1.2613410949707031 img loss 1.3639754056930542 img loss 1.2413556575775146 img loss 1.2094606161117554 img loss 1.2806124687194824 img loss 1.2809598445892334 img loss 1.2736870050430298 img loss 1.2054957151412964 img loss 1.227372646331787 img loss 1.2675150632858276 img loss 1.2032018899917603 img loss 1.273301124572754 img loss 1.311022400856018 img loss 1.2905861139297485 img loss 1.254354476928711 img loss 1.2477450370788574 img loss 1.3024497032165527 img loss 1.2746903896331787 img loss 1.2546794414520264 img loss 1.2079130411148071 img loss 1.2879536151885986 img loss 1.2301933765411377 img loss 1.260843276977539 img loss 1.2929835319519043 img loss 1.1985584497451782 img loss 1.17226243019104 img loss 1.2018359899520874 img loss 1.27971351146698 img loss 1.2178101539611816 img loss 1.1870012283325195 img loss 1.302682876586914 img loss 1.2788317203521729 img loss 1.2536518573760986 img loss 1.256277084350586 img loss 1.1646108627319336 img loss 1.2293466329574585 img loss 1.2835201025009155 img loss 1.179909110069275 img loss 1.2910864353179932 img loss 1.2683416604995728 img loss 1.272162675857544 img loss 1.25408935546875 img loss 1.1854501962661743 img loss 1.2200326919555664 img loss 1.3219692707061768 img loss 1.1945569515228271 img loss 1.190880537033081 img loss 1.2569783926010132 img loss 1.3063944578170776 img loss 1.2756969928741455 img loss 1.2408559322357178 img loss 1.2692062854766846 img loss 1.204089879989624 img loss 1.174424409866333 img loss 1.218371033668518 img loss 1.1645257472991943 img loss 1.1353120803833008 img loss 1.1637418270111084 img loss 1.1784393787384033 img loss 1.185455083847046 img loss 1.22709059715271 img loss 1.224951982498169 img loss 1.2303974628448486 img loss 1.2353475093841553 img loss 1.1976184844970703 img loss 1.2679173946380615 img loss 1.2300260066986084 {'loss': 1.236, 'grad_norm': 0.3842236399650574, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2526534795761108 img loss 1.201622724533081 img loss 1.2612338066101074 img loss 1.2348456382751465 img loss 1.2838547229766846 img loss 1.1923027038574219 img loss 1.2687405347824097 img loss 1.1922518014907837 img loss 1.1977784633636475 img loss 1.237313985824585 img loss 1.2419111728668213 img loss 1.1875652074813843 img loss 1.2176434993743896 img loss 1.2206223011016846 img loss 1.2740724086761475 img loss 1.1645992994308472 img loss 1.2583465576171875 img loss 1.200081467628479 img loss 1.2490001916885376 img loss 1.2344355583190918 img loss 1.2168926000595093 img loss 1.2434715032577515 img loss 1.3543684482574463 img loss 1.22416090965271 img loss 1.2444405555725098 img loss 1.1686582565307617 img loss 1.2345433235168457 img loss 1.2142947912216187 img loss 1.2029390335083008 img loss 1.2217639684677124 img loss 1.191951036453247 img loss 1.2022196054458618 img loss 1.202253818511963 img loss 1.1820182800292969 img loss 1.2377204895019531 img loss 1.2769646644592285 img loss 1.2559667825698853 img loss 1.256029486656189 img loss 1.1585171222686768 img loss 1.1838616132736206 img loss 1.2578954696655273 img loss 1.210282325744629 img loss 1.2056505680084229 img loss 1.223754644393921 img loss 1.1933109760284424 img loss 1.2137813568115234 img loss 1.1677796840667725 img loss 1.2000149488449097 img loss 1.2558839321136475 img loss 1.2922394275665283 img loss 1.1480928659439087 img loss 1.256203055381775 img loss 1.2336628437042236 img loss 1.2441381216049194 img loss 1.192185640335083 img loss 1.2648417949676514 img loss 1.2650444507598877 img loss 1.2057108879089355 img loss 1.16800856590271 img loss 1.1956229209899902 img loss 1.2537815570831299 img loss 1.2330058813095093 img loss 1.226204514503479 img loss 1.31585693359375 img loss 1.1888349056243896 img loss 1.1647554636001587 img loss 1.2860374450683594 img loss 1.2713590860366821 img loss 1.2668240070343018 img loss 1.2337925434112549 img loss 1.2516027688980103 img loss 1.2762171030044556 img loss 1.2481921911239624 img loss 1.2549335956573486 img loss 1.2100757360458374 img loss 1.220487117767334 img loss 1.2093071937561035 img loss 1.1973414421081543 img loss 1.2037453651428223 img loss 1.1535223722457886 img loss 1.1707271337509155 img loss 1.2153984308242798 img loss 1.2168900966644287 img loss 1.2802377939224243 img loss 1.1866297721862793 img loss 1.25290846824646 img loss 1.1673921346664429 img loss 1.2627142667770386 img loss 1.1976490020751953 img loss 1.2720303535461426 img loss 1.2498210668563843 img loss 1.179492712020874 img loss 1.276834487915039 img loss 1.1934614181518555 img loss 1.2126502990722656 img loss 1.2273874282836914 img loss 1.1890009641647339 img loss 1.244736909866333 img loss 1.1866117715835571 img loss 1.2437950372695923 img loss 1.2236789464950562 img loss 1.1998497247695923 img loss 1.2308768033981323 img loss 1.2481749057769775 img loss 1.2247064113616943 img loss 1.2178146839141846 img loss 1.252078890800476 img loss 1.2717006206512451 img loss 1.2389057874679565 img loss 1.2123030424118042 img loss 1.221517562866211 img loss 1.2593106031417847 img loss 1.2362984418869019 img loss 1.2558144330978394 img loss 1.1578731536865234 img loss 1.2626513242721558 img loss 1.2238881587982178 img loss 1.2148528099060059 img loss 1.2525850534439087 img loss 1.2200326919555664 img loss 1.2455486059188843 img loss 1.229570746421814 img loss 1.2392200231552124 img loss 1.1927298307418823 img loss 1.23373281955719 img loss 1.1995970010757446 img loss 1.263056993484497 img loss 1.2350267171859741 {'loss': 1.2265, 'grad_norm': 0.171393483877182, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4203312397003174 img loss 1.383806586265564 img loss 1.53316068649292 img loss 1.4019052982330322 img loss 1.3591281175613403 img loss 1.4009038209915161 img loss 1.4355813264846802 img loss 1.4116580486297607 img loss 1.4069002866744995 img loss 1.593878984451294 img loss 1.4290364980697632 img loss 1.4313790798187256img loss 1.4639917612075806 img loss 1.5145107507705688 img loss 1.581357717514038 img loss 1.5854231119155884 img loss 1.4806104898452759 img loss 1.3792083263397217 img loss 1.4025894403457642 img loss 1.6119980812072754 img loss 1.429235816001892 img loss 1.4521912336349487 img loss 1.5129637718200684 img loss 1.5076147317886353 img loss 1.4473029375076294 img loss 1.5530344247817993 img loss 1.5116850137710571 img loss 1.4194303750991821 img loss 1.4256209135055542 img loss 1.3677337169647217 img loss 1.5004781484603882 img loss 1.4094220399856567 img loss 1.49358069896698 img loss 1.5989364385604858 img loss 1.47869074344635 img loss 1.2898330688476562 img loss 1.3281950950622559 img loss 1.4048926830291748 img loss 1.366731882095337 img loss 1.4521706104278564 img loss 1.4607354402542114 img loss 1.425547480583191 img loss 1.4257429838180542 img loss 1.4479130506515503 img loss 1.3774467706680298 img loss 1.4517956972122192 img loss 1.486594557762146 img loss 1.427204966545105 img loss 1.4711244106292725 img loss 1.6403697729110718 img loss 1.5200427770614624 img loss 1.4166934490203857 img loss 1.4691144227981567 img loss 1.3841089010238647 img loss 1.4838941097259521 img loss 1.3851649761199951 img loss 1.279158592224121 img loss 1.3627396821975708 img loss 1.4725326299667358 img loss 1.498340368270874 img loss 1.4613343477249146 img loss 1.4528334140777588 img loss 1.5160174369812012 img loss 1.414325475692749 img loss 1.3768523931503296 img loss 1.475136399269104 img loss 1.4258781671524048 img loss 1.6316053867340088 img loss 1.4072304964065552 img loss 1.4972971677780151 img loss 1.4267066717147827 img loss 1.515326976776123 img loss 1.4303895235061646 img loss 1.5239007472991943 img loss 1.3877959251403809 img loss 1.4378751516342163 img loss 1.4180960655212402 img loss 1.603788137435913 img loss 1.4823590517044067 img loss 1.4870362281799316 img loss 1.440478801727295 img loss 1.3192119598388672 img loss 1.2465027570724487 img loss 1.4224848747253418 img loss 1.4429062604904175 img loss 1.5165375471115112 img loss 1.3523768186569214 img loss 1.4597328901290894 img loss 1.48330557346344 img loss 1.5488470792770386 img loss 1.4444496631622314 img loss 1.4474338293075562 img loss 1.5106743574142456 img loss 1.4525386095046997 img loss 1.2931183576583862 img loss 1.5072710514068604 img loss 1.6155037879943848 img loss 1.4372916221618652 img loss 1.5241807699203491 img loss 1.4707138538360596 img loss 1.575681209564209 img loss 1.346635103225708 img loss 1.5010056495666504 img loss 1.3733506202697754 img loss 1.4496277570724487 img loss 1.5115801095962524 img loss 1.5796715021133423 img loss 1.6497464179992676 img loss 1.4754797220230103 img loss 1.5624253749847412 img loss 1.6168553829193115 img loss 1.4473645687103271 img loss 1.396713376045227 img loss 1.5412613153457642 img loss 1.417690396308899 img loss 1.297877311706543 img loss 1.5140825510025024 img loss 1.418887734413147 img loss 1.8142764568328857 img loss 1.4730699062347412 img loss 1.4525457620620728 img loss 1.4559944868087769 img loss 1.5017426013946533 img loss 1.3869446516036987 img loss 1.4322055578231812 img loss 1.3885352611541748 img loss 1.5229675769805908 img loss 1.6779221296310425 {'loss': 1.4621, 'grad_norm': 0.5583523511886597, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4744431972503662 img loss 1.4628407955169678 img loss 1.483722448348999 img loss 1.42988121509552 img loss 1.5103719234466553 img loss 1.5683656930923462 img loss 1.2952923774719238 img loss 1.4781548976898193 img loss 1.4456286430358887 img loss 1.4051663875579834 img loss 1.3590360879898071 img loss 1.3560521602630615 img loss 1.3813658952713013 img loss 1.3606171607971191 img loss 1.3851896524429321 img loss 1.5004897117614746 img loss 1.292589783668518 img loss 1.3570971488952637 img loss 1.3991351127624512 img loss 1.4519520998001099 img loss 1.4621015787124634 img loss 1.4010809659957886 img loss 1.516919732093811 img loss 1.5518642663955688 img loss 1.441558599472046 img loss 1.4757978916168213 img loss 1.5241618156433105 img loss 1.3623460531234741 img loss 1.4881298542022705 img loss 1.5744251012802124 img loss 1.3502399921417236 img loss 1.466496229171753 img loss 1.4724072217941284 img loss 1.3622996807098389 img loss 1.3715436458587646 img loss 1.4183743000030518 img loss 1.3036540746688843 img loss 1.415568232536316 img loss 1.4848428964614868 img loss 1.334776520729065 img loss 1.465175747871399 img loss 1.4400829076766968 img loss 1.4228780269622803 img loss 1.4829522371292114 img loss 1.500130295753479 img loss 1.496111273765564 img loss 1.3935643434524536 img loss 1.2587451934814453 img loss 1.4351894855499268 img loss 1.4397984743118286 img loss 1.3466042280197144 img loss 1.3689125776290894 img loss 1.277465581893921 img loss 1.262343168258667 img loss 1.4955543279647827 img loss 1.4214497804641724 img loss 1.4097081422805786 img loss 1.4299196004867554 img loss 1.4285417795181274 img loss 1.3832534551620483 img loss 1.4609586000442505 img loss 1.419956088066101 img loss 1.4264780282974243 img loss 1.4082541465759277 img loss 1.3953794240951538 img loss 1.4287445545196533 img loss 1.5194190740585327 img loss 1.4013627767562866 img loss 1.349402666091919 img loss 1.3928724527359009 img loss 1.5538181066513062 img loss 1.4665064811706543 img loss 1.5871895551681519 img loss 1.406853437423706 img loss 1.291870355606079 img loss 1.409427285194397 img loss 1.456756830215454 img loss 1.4287532567977905 img loss 1.4199527502059937 img loss 1.4164652824401855 img loss 1.4185950756072998 img loss 1.4149326086044312 img loss 1.3906548023223877 img loss 1.4290655851364136 img loss 1.365417242050171 img loss 1.3452162742614746 img loss 1.4429233074188232 img loss 1.3822014331817627 img loss 1.3985997438430786 img loss 1.4037582874298096 img loss 1.4296834468841553 img loss 1.4719369411468506 img loss 1.45749032497406 img loss 1.3227258920669556 img loss 1.3986650705337524 img loss 1.3733041286468506 img loss 1.3852089643478394 img loss 1.4475122690200806 img loss 1.4975600242614746 img loss 1.3087787628173828 img loss 1.3889027833938599 img loss 1.5137571096420288 img loss 1.3755868673324585 img loss 1.4317699670791626 img loss 1.350319266319275 img loss 1.2917916774749756 img loss 1.5622116327285767 img loss 1.4208941459655762 img loss 1.4339057207107544 img loss 1.4741451740264893 img loss 1.3806718587875366 img loss 1.3567067384719849 img loss 1.2708460092544556 img loss 1.3659024238586426 img loss 1.3904035091400146 img loss 1.346306324005127 img loss 1.4056249856948853 img loss 1.505179762840271 img loss 1.3869330883026123 img loss 1.4150277376174927 img loss 1.3608814477920532 img loss 1.5323097705841064 img loss 1.449296236038208 img loss 1.4548283815383911 img loss 1.4828592538833618 img loss 1.4131934642791748 img loss 1.5282009840011597 img loss 1.3712522983551025 {'loss': 1.4197, 'grad_norm': 0.314809113740921, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2229775190353394 img loss 1.4063503742218018 img loss 1.2308857440948486 img loss 1.300024390220642 img loss 1.2998340129852295 img loss 1.2415742874145508 img loss 1.4005197286605835 img loss 1.265610694885254 img loss 1.3263225555419922 img loss 1.2693631649017334 img loss 1.2176222801208496 img loss 1.3810924291610718 img loss 1.237402319908142 img loss 1.256103515625 img loss 1.303544044494629 img loss 1.2746909856796265 img loss 1.4082353115081787 img loss 1.2847779989242554img loss 1.3073363304138184 img loss 1.3212217092514038 img loss 1.2829258441925049 img loss 1.3558791875839233 img loss 1.2973556518554688 img loss 1.37092924118042 img loss 1.3411494493484497 img loss 1.3283517360687256 img loss 1.2958630323410034 img loss 1.3316720724105835 img loss 1.3320741653442383 img loss 1.3654898405075073 img loss 1.3988282680511475 img loss 1.3009510040283203 img loss 1.3085496425628662 img loss 1.3107038736343384 img loss 1.4534155130386353 img loss 1.3557946681976318 img loss 1.2759231328964233 img loss 1.2807211875915527 img loss 1.2994012832641602 img loss 1.25239896774292 img loss 1.3406070470809937 img loss 1.328360915184021 img loss 1.2699800729751587 img loss 1.307809829711914 img loss 1.406318187713623 img loss 1.374903917312622 img loss 1.278319239616394 img loss 1.270510196685791 img loss 1.2426608800888062 img loss 1.2939742803573608 img loss 1.3630082607269287 img loss 1.3044878244400024 img loss 1.2727268934249878 img loss 1.279005527496338 img loss 1.311389684677124 img loss 1.3584424257278442 img loss 1.3406611680984497 img loss 1.2888376712799072 img loss 1.2217298746109009 img loss 1.4543057680130005 img loss 1.3540856838226318 img loss 1.2597594261169434 img loss 1.4001485109329224 img loss 1.3506799936294556 img loss 1.3535516262054443 img loss 1.3054931163787842 img loss 1.3941651582717896 img loss 1.3758741617202759 img loss 1.3890191316604614 img loss 1.347378134727478 img loss 1.3380154371261597 img loss 1.216675043106079 img loss 1.3093746900558472 img loss 1.3050740957260132 img loss 1.3101290464401245 img loss 1.3208366632461548 img loss 1.3036749362945557 img loss 1.3111450672149658 img loss 1.2478466033935547 img loss 1.3670809268951416 img loss 1.304441213607788 img loss 1.3059420585632324 img loss 1.2661216259002686 img loss 1.3285775184631348 img loss 1.2426763772964478 img loss 1.3389790058135986 img loss 1.2925996780395508 img loss 1.3201607465744019 img loss 1.4195023775100708 img loss 1.4802902936935425 img loss 1.3555731773376465 img loss 1.227960228919983 img loss 1.2602428197860718 img loss 1.3015612363815308 img loss 1.3648754358291626 img loss 1.3359452486038208 img loss 1.3548617362976074 img loss 1.264783263206482 img loss 1.2059520483016968 img loss 1.3972021341323853 img loss 1.3043568134307861 img loss 1.332857370376587 img loss 1.2849889993667603 img loss 1.41742742061615 img loss 1.3765782117843628 img loss 1.2768363952636719 img loss 1.4337918758392334 img loss 1.2859551906585693 img loss 1.3132370710372925 img loss 1.2929458618164062 img loss 1.3909293413162231 img loss 1.3185938596725464 img loss 1.180808424949646 img loss 1.3537650108337402 img loss 1.2855480909347534 img loss 1.2673184871673584 img loss 1.2879762649536133 img loss 1.2689872980117798 img loss 1.329845905303955 img loss 1.2842296361923218 img loss 1.3249584436416626 img loss 1.286736249923706 img loss 1.3129706382751465 img loss 1.3164221048355103 img loss 1.271815538406372 img loss 1.2894905805587769 img loss 1.2487057447433472 img loss 1.266337275505066 {'loss': 1.3151, 'grad_norm': 0.6938787698745728, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2802026271820068 img loss 1.3028795719146729 img loss 1.226932406425476 img loss 1.1837955713272095 img loss 1.1220107078552246 img loss 1.2673771381378174 img loss 1.2183527946472168 img loss 1.3208357095718384 img loss 1.1854512691497803 img loss 1.1863956451416016 img loss 1.2206778526306152 img loss 1.239859938621521 img loss 1.223191261291504 img loss 1.2220262289047241 img loss 1.1848089694976807 img loss 1.3066556453704834 img loss 1.2695600986480713 img loss 1.2788946628570557 img loss 1.2495876550674438 img loss 1.187680959701538 img loss 1.16072416305542 img loss 1.2858208417892456 img loss 1.156290888786316 img loss 1.2137353420257568 img loss 1.2274746894836426 img loss 1.258392572402954 img loss 1.2658076286315918 img loss 1.223643183708191 img loss 1.4102168083190918 img loss 1.2100601196289062 img loss 1.230784296989441 img loss 1.17779541015625 img loss 1.257938027381897 img loss 1.2354148626327515 img loss 1.2375876903533936 img loss 1.202121376991272 img loss 1.248034119606018 img loss 1.2543359994888306 img loss 1.2152875661849976 img loss 1.149399995803833 img loss 1.2365391254425049 img loss 1.2333519458770752 img loss 1.2482521533966064 img loss 1.2471041679382324 img loss 1.413467526435852 img loss 1.2443112134933472 img loss 1.204572319984436 img loss 1.2430171966552734 img loss 1.2505428791046143 img loss 1.203994631767273 img loss 1.2856366634368896 img loss 1.180173635482788 img loss 1.1878986358642578 img loss 1.1888954639434814 img loss 1.2899055480957031 img loss 1.1851192712783813 img loss 1.1315057277679443 img loss 1.2741584777832031 img loss 1.221358299255371 img loss 1.3163836002349854 img loss 1.2557915449142456 img loss 1.2211198806762695 img loss 1.2767417430877686 img loss 1.1709263324737549 img loss 1.2237766981124878 img loss 1.3278769254684448 img loss 1.166418433189392 img loss 1.191041350364685 img loss 1.214803695678711 img loss 1.1299864053726196 img loss 1.3369669914245605 img loss 1.1961370706558228 img loss 1.1572301387786865 img loss 1.2383909225463867 img loss 1.1503040790557861 img loss 1.2791929244995117 img loss 1.2669363021850586 img loss 1.2470605373382568 img loss 1.183206558227539 img loss 1.2520346641540527 img loss 1.18271803855896 img loss 1.2072200775146484 img loss 1.2177727222442627 img loss 1.2445523738861084 img loss 1.226061224937439 img loss 1.2560265064239502 img loss 1.2753772735595703 img loss 1.2659997940063477 img loss 1.2152687311172485 img loss 1.19241201877594 img loss 1.2947834730148315 img loss 1.2115788459777832 img loss 1.2505974769592285 img loss 1.1715283393859863 img loss 1.2062675952911377 img loss 1.2170323133468628 img loss 1.2837616205215454 img loss 1.1937634944915771 img loss 1.1808393001556396 img loss 1.1841286420822144 img loss 1.3455002307891846 img loss 1.256019115447998 img loss 1.226365089416504 img loss 1.1830326318740845 img loss 1.2440414428710938 img loss 1.3271673917770386 img loss 1.2299625873565674 img loss 1.2381134033203125 img loss 1.1113693714141846 img loss 1.113039255142212 img loss 1.2452150583267212 img loss 1.273963451385498 img loss 1.1546282768249512 img loss 1.2948276996612549 img loss 1.200438380241394 img loss 1.1544655561447144 img loss 1.314873218536377 img loss 1.1812254190444946 img loss 1.2660634517669678 img loss 1.2837704420089722 img loss 1.2652230262756348 img loss 1.2379775047302246 img loss 1.2227833271026611 img loss 1.320448398590088 img loss 1.1794767379760742 img loss 1.2458686828613281 img loss 1.1881612539291382 img loss 1.254514217376709 {'loss': 1.2313, 'grad_norm': 0.28671693801879883, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3172721862792969 img loss 1.4349150657653809 img loss 1.4510329961776733 img loss 1.3345551490783691 img loss 1.4262537956237793 img loss 1.475370168685913 img loss 1.5806634426116943 img loss 1.37804114818573 img loss 1.495974063873291 img loss 1.2388559579849243 img loss 1.4134811162948608 img loss 1.4388355016708374 img loss 1.4260573387145996 img loss 1.4019957780838013 img loss 1.3273168802261353 img loss 1.3625400066375732 img loss 1.3032461404800415 img loss 1.4108645915985107 img loss 1.457076907157898 img loss 1.339927077293396 img loss 1.437627911567688 img loss 1.5783536434173584 img loss 1.4704426527023315 img loss 1.428936243057251 img loss 1.3986375331878662 img loss 1.414772629737854 img loss 1.4856984615325928 img loss 1.426108956336975 img loss 1.4744092226028442 img loss 1.6252877712249756 img loss 1.3167415857315063 img loss 1.3681883811950684 img loss 1.344886064529419 img loss 1.4700987339019775 img loss 1.4156014919281006 img loss 1.3178138732910156 img loss 1.4065921306610107 img loss 1.4274067878723145 img loss 1.4723879098892212 img loss 1.4834014177322388 img loss 1.4025958776474 img loss 1.4256014823913574 img loss 1.4693745374679565 img loss 1.402554988861084 img loss 1.4377444982528687 img loss 1.408770203590393 img loss 1.3624199628829956 img loss 1.4642424583435059 img loss 1.3141320943832397 img loss 1.4971777200698853 img loss 1.3421223163604736 img loss 1.5086044073104858 img loss 1.4648802280426025 img loss 1.3589584827423096 img loss 1.4962354898452759 img loss 1.4103018045425415 img loss 1.3271903991699219 img loss 1.3119735717773438 img loss 1.376015067100525 img loss 1.5110515356063843 img loss 1.5383538007736206 img loss 1.3724244832992554 img loss 1.4271210432052612 img loss 1.3252395391464233 img loss 1.6004517078399658 img loss 1.3813790082931519 img loss 1.5200506448745728 img loss 1.3632786273956299 img loss 1.2810076475143433 img loss 1.4711579084396362 img loss 1.4690048694610596 img loss 1.504848837852478 img loss 1.3984876871109009 img loss 1.4094609022140503 img loss 1.3280885219573975 img loss 1.3873158693313599 img loss 1.3913609981536865 img loss 1.5901713371276855 img loss 1.4942482709884644 img loss 1.5839937925338745 img loss 1.3549433946609497 img loss 1.4284363985061646 img loss 1.3341047763824463 img loss 1.2761616706848145 img loss 1.382729172706604 img loss 1.5289645195007324 img loss 1.4046924114227295 img loss 1.3989084959030151 img loss 1.3966397047042847 img loss 1.3549925088882446 img loss 1.336713194847107 img loss 1.4707881212234497 img loss 1.3802636861801147 img loss 1.4720675945281982 img loss 1.4806548357009888 img loss 1.4537293910980225 img loss 1.450874924659729 img loss 1.507319688796997 img loss 1.456414818763733 img loss 1.3781167268753052 img loss 1.41350257396698 img loss 1.530017614364624 img loss 1.3987187147140503 img loss 1.4421875476837158 img loss 1.3648325204849243 img loss 1.4003883600234985 img loss 1.3902428150177002 img loss 1.3695260286331177 img loss 1.4519869089126587 img loss 1.441646933555603 img loss 1.3988010883331299 img loss 1.350849986076355 img loss 1.412865400314331 img loss 1.4188647270202637 img loss 1.5496279001235962 img loss 1.4411319494247437 img loss 1.3834431171417236 img loss 1.3993767499923706 img loss 1.3941398859024048 img loss 1.3816128969192505 img loss 1.4925423860549927 img loss 1.499255895614624 img loss 1.459147334098816 img loss 1.3907475471496582 img loss 1.3887850046157837 img loss 1.4583241939544678 img loss 1.4222158193588257 img loss 1.4886538982391357 {'loss': 1.4226, 'grad_norm': 0.3987659215927124, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3792458772659302 img loss 1.2870726585388184 img loss 1.304750680923462 img loss 1.5784947872161865 img loss 1.3625986576080322 img loss 1.408186435699463 img loss 1.4943240880966187 img loss 1.5045055150985718 img loss 1.4172332286834717 img loss 1.3520572185516357 img loss 1.3037976026535034 img loss 1.5471593141555786 img loss 1.422737717628479 img loss 1.4188367128372192 img loss 1.390444278717041 img loss 1.4750901460647583 img loss 1.5317376852035522 img loss 1.4312349557876587 img loss 1.3622393608093262 img loss 1.3712174892425537 img loss 1.424879550933838 img loss 1.3942161798477173 img loss 1.3445862531661987 img loss 1.4229408502578735 img loss 1.527572751045227 img loss 1.3048323392868042 img loss 1.3824665546417236 img loss 1.3464951515197754 img loss 1.3524972200393677 img loss 1.5009673833847046 img loss 1.5115220546722412 img loss 1.5001050233840942 img loss 1.4339183568954468 img loss 1.4140799045562744 img loss 1.4001977443695068 img loss 1.420940637588501 img loss 1.3530644178390503 img loss 1.4200104475021362 img loss 1.3925844430923462 img loss 1.3937748670578003 img loss 1.4081947803497314 img loss 1.4517096281051636 img loss 1.351723313331604 img loss 1.5001894235610962 img loss 1.3537012338638306 img loss 1.455878734588623 img loss 1.4684773683547974 img loss 1.247684359550476 img loss 1.5367858409881592 img loss 1.5326755046844482 img loss 1.3581796884536743 img loss 1.4971991777420044 img loss 1.3371988534927368 img loss 1.3865996599197388 img loss 1.4323362112045288 img loss 1.5503458976745605 img loss 1.3316562175750732 img loss 1.4109835624694824 img loss 1.418294072151184 img loss 1.4109177589416504 img loss 1.3902958631515503 img loss 1.454099416732788 img loss 1.4377820491790771 img loss 1.5252163410186768 img loss 1.387241005897522 img loss 1.3556028604507446 img loss 1.2203317880630493 img loss 1.4191113710403442 img loss 1.5745857954025269 img loss 1.5104812383651733 img loss 1.3513563871383667 img loss 1.455338954925537 img loss 1.3527066707611084 img loss 1.5360252857208252 img loss 1.4191733598709106 img loss 1.3876488208770752 img loss 1.4886208772659302 img loss 1.38858962059021 img loss 1.5170080661773682 img loss 1.5334725379943848 img loss 1.4433197975158691 img loss 1.4636495113372803 img loss 1.4710183143615723 img loss 1.5475090742111206 img loss 1.5756314992904663 img loss 1.394956350326538 img loss 1.4180725812911987 img loss 1.4404189586639404 img loss 1.4451621770858765 img loss 1.387699842453003 img loss 1.4857970476150513 img loss 1.3484617471694946 img loss 1.5079535245895386 img loss 1.466338038444519 img loss 1.3924269676208496 img loss 1.3919528722763062 img loss 1.485514521598816 img loss 1.4867424964904785 img loss 1.4580519199371338 img loss 1.3857461214065552 img loss 1.391039490699768 img loss 1.4364980459213257 img loss 1.5126423835754395 img loss 1.494747519493103 img loss 1.4302217960357666 img loss 1.4111868143081665 img loss 1.4997384548187256 img loss 1.5062681436538696 img loss 1.4157103300094604 img loss 1.6102287769317627 img loss 1.4761074781417847 img loss 1.5043892860412598 img loss 1.4139519929885864 img loss 1.39481520652771 img loss 1.4545255899429321 img loss 1.5318282842636108 img loss 1.5566662549972534 img loss 1.467028021812439 img loss 1.4023061990737915 img loss 1.4253736734390259 img loss 1.3584225177764893 img loss 1.6776646375656128 img loss 1.4844802618026733 img loss 1.5119640827178955 img loss 1.635953664779663 img loss 1.3171133995056152 img loss 1.3842275142669678 img loss 1.493040680885315 {'loss': 1.4369, 'grad_norm': 0.42564496397972107, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1598708629608154 img loss 1.1687170267105103 img loss 1.3027465343475342 img loss 1.2274669408798218 img loss 1.2547945976257324 img loss 1.322070598602295 img loss 1.1831146478652954 img loss 1.243992567062378 img loss 1.2725615501403809 img loss 1.1794499158859253 img loss 1.3011984825134277 img loss 1.1256206035614014 img loss 1.1958072185516357 img loss 1.2102359533309937 img loss 1.2166649103164673 img loss 1.2008870840072632 img loss 1.3235278129577637 img loss 1.368088960647583 img loss 1.191292643547058 img loss 1.1497352123260498 img loss 1.1637523174285889 img loss 1.2389329671859741 img loss 1.2470195293426514 img loss 1.2934894561767578 img loss 1.112558126449585 img loss 1.2953146696090698 img loss 1.2034108638763428 img loss 1.277726411819458 img loss 1.360662817955017 img loss 1.2508753538131714 img loss 1.2415951490402222 img loss 1.2343930006027222 img loss 1.2663733959197998 img loss 1.2834205627441406 img loss 1.1819965839385986 img loss 1.2837721109390259 img loss 1.1899486780166626 img loss 1.3171775341033936 img loss 1.1484218835830688 img loss 1.2084846496582031 img loss 1.2905466556549072 img loss 1.2842416763305664 img loss 1.1874456405639648 img loss 1.0780576467514038 img loss 1.3276150226593018 img loss 1.2600923776626587 img loss 1.3326466083526611 img loss 1.1931796073913574 img loss 1.2243388891220093 img loss 1.2774540185928345 img loss 1.2667362689971924 img loss 1.3187062740325928 img loss 1.1884520053863525 img loss 1.3722862005233765 img loss 1.2854236364364624 img loss 1.262061595916748 img loss 1.3014039993286133 img loss 1.383074164390564 img loss 1.2426484823226929 img loss 1.260136365890503 img loss 1.2564756870269775 img loss 1.3033198118209839 img loss 1.1899445056915283 img loss 1.3395839929580688 img loss 1.2088216543197632 img loss 1.2482218742370605 img loss 1.2562360763549805 img loss 1.3175652027130127 img loss 1.2298836708068848 img loss 1.203549861907959 img loss 1.3160291910171509 img loss 1.229488730430603 img loss 1.237825632095337 img loss 1.224237084388733 img loss 1.2094522714614868 img loss 1.2012169361114502 img loss 1.1529626846313477 img loss 1.3002502918243408 img loss 1.3654652833938599 img loss 1.1874675750732422 img loss 1.192434549331665 img loss 1.2014321088790894 img loss 1.387128472328186 img loss 1.2363357543945312 img loss 1.292752981185913 img loss 1.1690731048583984 img loss 1.2205265760421753 img loss 1.262559413909912 img loss 1.2409641742706299 img loss 1.185997724533081 img loss 1.1794973611831665 img loss 1.2258127927780151 img loss 1.2454155683517456 img loss 1.3098526000976562 img loss 1.2751469612121582 img loss 1.2873824834823608 img loss 1.312259316444397 img loss 1.25465726852417 img loss 1.3122117519378662 img loss 1.248354196548462 img loss 1.2110209465026855 img loss 1.304246425628662 img loss 1.2959096431732178 img loss 1.3315250873565674 img loss 1.232676386833191 img loss 1.256273627281189 img loss 1.2966151237487793 img loss 1.235398292541504 img loss 1.391898274421692 img loss 1.2153639793395996 img loss 1.263043999671936 img loss 1.218833327293396 img loss 1.1933708190917969 img loss 1.22226881980896 img loss 1.2819406986236572 img loss 1.290024757385254 img loss 1.436994194984436 img loss 1.2591803073883057 img loss 1.2492719888687134 img loss 1.168317437171936 img loss 1.3031834363937378 img loss 1.3103253841400146 img loss 1.4086500406265259 img loss 1.2472485303878784 img loss 1.1521104574203491 img loss 1.33327054977417 img loss 1.2251430749893188 img loss 1.1750725507736206 {'loss': 1.252, 'grad_norm': 0.3910626173019409, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.338929295539856 img loss 1.297776460647583 img loss 1.3913911581039429 img loss 1.4412709474563599 img loss 1.358047604560852 img loss 1.370110034942627 img loss 1.270249605178833 img loss 1.429206132888794 img loss 1.3671071529388428 img loss 1.2623209953308105 img loss 1.4522103071212769 img loss 1.3874499797821045 img loss 1.3003805875778198 img loss 1.2652437686920166 img loss 1.4165197610855103 img loss 1.380621314048767 img loss 1.304054617881775 img loss 1.3809914588928223 img loss 1.4231688976287842 img loss 1.4294623136520386 img loss 1.3652112483978271 img loss 1.439968466758728 img loss 1.3264961242675781 img loss 1.3281948566436768 img loss 1.3219060897827148 img loss 1.4522128105163574 img loss 1.472878098487854 img loss 1.4829833507537842 img loss 1.4508551359176636 img loss 1.2168067693710327 img loss 1.3318856954574585 img loss 1.359596848487854 img loss 1.4431687593460083 img loss 1.359026551246643 img loss 1.2454172372817993 img loss 1.447009801864624 img loss 1.3930706977844238 img loss 1.3694682121276855 img loss 1.3683236837387085 img loss 1.3654930591583252 img loss 1.2705638408660889 img loss 1.3853366374969482 img loss 1.3138196468353271 img loss 1.3329503536224365 img loss 1.3361866474151611 img loss 1.497759222984314 img loss 1.4477335214614868 img loss 1.3172011375427246 img loss 1.324365258216858 img loss 1.4242929220199585 img loss 1.3991073369979858 img loss 1.3803108930587769 img loss 1.5451253652572632 img loss 1.3495196104049683 img loss 1.4145760536193848 img loss 1.3471200466156006 img loss 1.3676106929779053 img loss 1.333304762840271 img loss 1.3163599967956543 img loss 1.3820817470550537 img loss 1.359738826751709 img loss 1.4174197912216187 img loss 1.444220781326294 img loss 1.3651682138442993 img loss 1.3105237483978271 img loss 1.4149901866912842 img loss 1.4516113996505737 img loss 1.4389065504074097 img loss 1.2847867012023926img loss 1.3334275484085083 img loss 1.3807003498077393 img loss 1.4256396293640137 img loss 1.6188194751739502 img loss 1.354596495628357 img loss 1.3584686517715454 img loss 1.3703590631484985 img loss 1.356463074684143 img loss 1.3361481428146362 img loss 1.472830891609192 img loss 1.4518425464630127 img loss 1.3591570854187012 img loss 1.4729636907577515 img loss 1.3681913614273071 img loss 1.3497328758239746 img loss 1.4607373476028442 img loss 1.4060778617858887 img loss 1.501218557357788 img loss 1.337887167930603 img loss 1.420776128768921 img loss 1.4247716665267944 img loss 1.3838486671447754 img loss 1.2510292530059814 img loss 1.435020089149475 img loss 1.4970818758010864 img loss 1.395392656326294 img loss 1.324113130569458 img loss 1.2720937728881836 img loss 1.3619390726089478 img loss 1.363186240196228 img loss 1.429703950881958 img loss 1.44718337059021 img loss 1.4805833101272583 img loss 1.3195711374282837 img loss 1.2974483966827393 img loss 1.4422775506973267 img loss 1.3656738996505737 img loss 1.4582146406173706 img loss 1.4524378776550293 img loss 1.3275790214538574 img loss 1.4254668951034546 img loss 1.3027520179748535 img loss 1.3488199710845947 img loss 1.3609633445739746 img loss 1.3693026304244995 img loss 1.4535925388336182 img loss 1.3374857902526855 img loss 1.470474362373352 img loss 1.3179603815078735 img loss 1.3527947664260864 img loss 1.5070674419403076 img loss 1.4489343166351318 img loss 1.2950206995010376 img loss 1.4383987188339233 img loss 1.3886345624923706 img loss 1.352993369102478 img loss 1.3713319301605225 img loss 1.4330259561538696 img loss 1.384428858757019 {'loss': 1.3828, 'grad_norm': 0.40410086512565613, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.225172758102417 img loss 1.137410044670105 img loss 1.2080144882202148 img loss 1.166197419166565 img loss 1.1723744869232178 img loss 1.1974633932113647 img loss 1.2559099197387695 img loss 1.2515697479248047 img loss 1.1966934204101562 img loss 1.2438684701919556 img loss 1.2147691249847412 img loss 1.1657919883728027 img loss 1.2420928478240967 img loss 1.1860790252685547 img loss 1.1802687644958496 img loss 1.1714262962341309 img loss 1.195784091949463 img loss 1.17218017578125 img loss 1.1821837425231934 img loss 1.232205867767334 img loss 1.1890729665756226 img loss 1.26842200756073 img loss 1.169431209564209 img loss 1.311802625656128 img loss 1.2153736352920532 img loss 1.1036174297332764 img loss 1.2378393411636353 img loss 1.1884253025054932 img loss 1.2488025426864624 img loss 1.2298482656478882 img loss 1.1625275611877441 img loss 1.2586753368377686 img loss 1.1864970922470093 img loss 1.2500578165054321 img loss 1.1796025037765503 img loss 1.2221708297729492 img loss 1.18461012840271 img loss 1.293352723121643 img loss 1.219805121421814 img loss 1.1557729244232178 img loss 1.2892744541168213 img loss 1.2373347282409668 img loss 1.313822627067566 img loss 1.2205204963684082 img loss 1.175087332725525 img loss 1.2877686023712158 img loss 1.2158247232437134 img loss 1.1668938398361206 img loss 1.2038555145263672 img loss 1.340303659439087 img loss 1.1420347690582275 img loss 1.2423675060272217 img loss 1.2055623531341553 img loss 1.208777666091919 img loss 1.190225601196289 img loss 1.1755940914154053 img loss 1.236889362335205 img loss 1.279813528060913 img loss 1.2448475360870361 img loss 1.2454878091812134 img loss 1.1498631238937378 img loss 1.2122855186462402 img loss 1.208425760269165 img loss 1.2542619705200195 img loss 1.2579272985458374 img loss 1.2249730825424194 img loss 1.1650851964950562 img loss 1.2381614446640015 img loss 1.161516785621643 img loss 1.2427939176559448 img loss 1.1593798398971558 img loss 1.201615810394287 img loss 1.1854438781738281 img loss 1.1785664558410645 img loss 1.1966736316680908 img loss 1.1967005729675293 img loss 1.2676525115966797 img loss 1.1825278997421265 img loss 1.1615188121795654 img loss 1.2085293531417847 img loss 1.260117769241333 img loss 1.1907929182052612 img loss 1.224709153175354 img loss 1.1819818019866943 img loss 1.2135883569717407 img loss 1.238607406616211 img loss 1.2655653953552246 img loss 1.2954000234603882 img loss 1.1982358694076538 img loss 1.1883034706115723 img loss 1.2758814096450806 img loss 1.2518725395202637 img loss 1.1780455112457275 img loss 1.2618411779403687 img loss 1.2211203575134277 img loss 1.1949785947799683 img loss 1.213299036026001 img loss 1.2092950344085693 img loss 1.2478232383728027 img loss 1.2601162195205688 img loss 1.2924238443374634 img loss 1.1895174980163574 img loss 1.2648205757141113 img loss 1.2316906452178955 img loss 1.2207311391830444 img loss 1.1776659488677979 img loss 1.2102737426757812 img loss 1.1985231637954712 img loss 1.2301162481307983 img loss 1.211052656173706 img loss 1.179999828338623 img loss 1.2635893821716309 img loss 1.2488075494766235 img loss 1.1995967626571655 img loss 1.1967859268188477 img loss 1.21763277053833 img loss 1.2488763332366943 img loss 1.2077152729034424 img loss 1.1966240406036377 img loss 1.2924717664718628 img loss 1.1924024820327759 img loss 1.1939047574996948 img loss 1.1653187274932861 img loss 1.2172291278839111 img loss 1.217211127281189 img loss 1.142632246017456 img loss 1.2304563522338867 img loss 1.1432547569274902 {'loss': 1.2149, 'grad_norm': 0.398461252450943, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5228193998336792 img loss 1.582475185394287 img loss 1.4524457454681396 img loss 1.423715353012085 img loss 1.377686858177185 img loss 1.577530026435852 img loss 1.4576534032821655 img loss 1.6543394327163696 img loss 1.5718188285827637 img loss 1.4323376417160034 img loss 1.3211593627929688 img loss 1.4381378889083862 img loss 1.4753973484039307 img loss 1.4164608716964722 img loss 1.2836557626724243 img loss 1.524483561515808 img loss 1.347180724143982 img loss 1.4032405614852905 img loss 1.5414071083068848 img loss 1.3996177911758423 img loss 1.531009554862976 img loss 1.364769458770752 img loss 1.4212243556976318 img loss 1.4021118879318237 img loss 1.516947865486145 img loss 1.4936825037002563 img loss 1.5293517112731934 img loss 1.5517367124557495 img loss 1.5066964626312256 img loss 1.598875880241394 img loss 1.4876588582992554 img loss 1.5574971437454224 img loss 1.40201735496521 img loss 1.3550962209701538 img loss 1.4646731615066528 img loss 1.4026669263839722 img loss 1.523027777671814 img loss 1.5469516515731812 img loss 1.4469945430755615 img loss 1.407395839691162 img loss 1.5157400369644165 img loss 1.4777015447616577 img loss 1.4078630208969116 img loss 1.435961127281189 img loss 1.552557110786438 img loss 1.499205231666565 img loss 1.47854483127594 img loss 1.4163516759872437 img loss 1.699838399887085 img loss 1.5844453573226929 img loss 1.545172095298767 img loss 1.4647029638290405 img loss 1.4875396490097046 img loss 1.4502936601638794 img loss 1.487977147102356 img loss 1.5436848402023315 img loss 1.5018677711486816 img loss 1.377466082572937 img loss 1.5296218395233154 img loss 1.4332363605499268 img loss 1.3532577753067017 img loss 1.48261296749115 img loss 1.5161163806915283 img loss 1.3136228322982788 img loss 1.438101053237915 img loss 1.5964806079864502 img loss 1.6168915033340454 img loss 1.4589370489120483 img loss 1.4354511499404907 img loss 1.6149550676345825 img loss 1.5247236490249634 img loss 1.5842565298080444 img loss 1.4655345678329468 img loss 1.461790919303894 img loss 1.5279086828231812 img loss 1.5063917636871338 img loss 1.3752599954605103 img loss 1.4597476720809937 img loss 1.3366774320602417 img loss 1.496985912322998img loss 1.3357863426208496 img loss 1.3793865442276 img loss 1.520941138267517 img loss 1.5068525075912476 img loss 1.4811732769012451 img loss 1.318877100944519 img loss 1.4881983995437622 img loss 1.3378244638442993 img loss 1.3765406608581543 img loss 1.4954755306243896 img loss 1.4293104410171509 img loss 1.404086947441101 img loss 1.4743781089782715 img loss 1.386114239692688 img loss 1.4244191646575928 img loss 1.4352049827575684 img loss 1.4520487785339355 img loss 1.364418864250183 img loss 1.483099341392517 img loss 1.432401180267334 img loss 1.5009677410125732 img loss 1.4631094932556152 img loss 1.3475950956344604 img loss 1.5344232320785522 img loss 1.3856364488601685 img loss 1.5367921590805054 img loss 1.4715886116027832 img loss 1.4775331020355225 img loss 1.357719898223877 img loss 1.4683327674865723 img loss 1.407956838607788 img loss 1.4672127962112427 img loss 1.5406841039657593 img loss 1.4602211713790894 img loss 1.3355333805084229 img loss 1.377402424812317 img loss 1.504952073097229 img loss 1.4267590045928955 img loss 1.4325188398361206 img loss 1.522093415260315 img loss 1.279629111289978 img loss 1.4621617794036865 img loss 1.3104641437530518 img loss 1.374834418296814 img loss 1.4816137552261353 img loss 1.2677826881408691 img loss 1.4664227962493896 img loss 1.637457251548767 {'loss': 1.4609, 'grad_norm': 0.5049200057983398, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2860307693481445 img loss 1.281208872795105 img loss 1.2763421535491943 img loss 1.2673606872558594 img loss 1.3478108644485474 img loss 1.2583138942718506 img loss 1.246204137802124 img loss 1.3143763542175293 img loss 1.2294445037841797 img loss 1.256273865699768 img loss 1.2796096801757812 img loss 1.2532730102539062 img loss 1.2107853889465332 img loss 1.2702511548995972 img loss 1.2733229398727417 img loss 1.3069698810577393 img loss 1.2672685384750366 img loss 1.2645318508148193 img loss 1.2368253469467163 img loss 1.2763179540634155 img loss 1.2024120092391968 img loss 1.246045708656311 img loss 1.2589020729064941 img loss 1.261383056640625 img loss 1.332658290863037 img loss 1.3031291961669922 img loss 1.279369831085205 img loss 1.2767261266708374 img loss 1.242088794708252 img loss 1.3285231590270996 img loss 1.2419798374176025 img loss 1.281996250152588 img loss 1.261702537536621 img loss 1.2703081369400024 img loss 1.2802810668945312 img loss 1.1825274229049683 img loss 1.291896104812622 img loss 1.2717759609222412 img loss 1.2563079595565796 img loss 1.2568655014038086 img loss 1.2694542407989502 img loss 1.2870906591415405 img loss 1.2341078519821167 img loss 1.2579293251037598 img loss 1.3192270994186401 img loss 1.2837755680084229 img loss 1.2038978338241577 img loss 1.2558904886245728 img loss 1.2626034021377563 img loss 1.3127068281173706 img loss 1.2874424457550049 img loss 1.3215787410736084 img loss 1.2857402563095093 img loss 1.228682518005371 img loss 1.3068281412124634 img loss 1.2705702781677246 img loss 1.2922534942626953 img loss 1.2136539220809937 img loss 1.2904599905014038 img loss 1.3020013570785522 img loss 1.2868636846542358 img loss 1.3260411024093628 img loss 1.2720370292663574 img loss 1.3357971906661987 img loss 1.2584329843521118 img loss 1.2417020797729492 img loss 1.308613657951355 img loss 1.321197509765625 img loss 1.2312698364257812 img loss 1.289709448814392 img loss 1.243678331375122 img loss 1.2915928363800049 img loss 1.238901138305664 img loss 1.3283462524414062 img loss 1.3326053619384766 img loss 1.334471344947815 img loss 1.3149197101593018 img loss 1.2350029945373535 img loss 1.2611230611801147 img loss 1.252744436264038 img loss 1.235135793685913 img loss 1.255115270614624 img loss 1.2347322702407837 img loss 1.2761772871017456 img loss 1.2797244787216187 img loss 1.2810790538787842 img loss 1.2968056201934814 img loss 1.3178526163101196 img loss 1.2330973148345947 img loss 1.3083000183105469 img loss 1.2762361764907837 img loss 1.3040988445281982 img loss 1.2864220142364502 img loss 1.2933547496795654 img loss 1.2654272317886353 img loss 1.292466402053833 img loss 1.2973276376724243 img loss 1.2730860710144043 img loss 1.2714070081710815 img loss 1.3218177556991577 img loss 1.294586181640625 img loss 1.2840054035186768 img loss 1.2411121129989624 img loss 1.2612907886505127 img loss 1.330147624015808 img loss 1.299880027770996 img loss 1.2625452280044556 img loss 1.2445671558380127 img loss 1.232426404953003 img loss 1.3187270164489746 img loss 1.3000669479370117 img loss 1.2521836757659912 img loss 1.2609515190124512 img loss 1.2226780652999878 img loss 1.2862366437911987 img loss 1.1991089582443237 img loss 1.2380207777023315 img loss 1.3228095769882202 img loss 1.2550104856491089 img loss 1.2778342962265015 img loss 1.2936056852340698 img loss 1.3186564445495605 img loss 1.2941206693649292 img loss 1.327838659286499 img loss 1.286780595779419 img loss 1.2937217950820923 img loss 1.2836925983428955 img loss 1.2732350826263428 {'loss': 1.2756, 'grad_norm': 0.24829789996147156, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2329914569854736 img loss 1.325765609741211 img loss 1.269691824913025 img loss 1.2306078672409058 img loss 1.3361760377883911 img loss 1.2390497922897339 img loss 1.310646891593933 img loss 1.2363449335098267 img loss 1.313311219215393 img loss 1.3042515516281128 img loss 1.2850780487060547 img loss 1.2796480655670166 img loss 1.3362683057785034 img loss 1.2238134145736694 img loss 1.2761800289154053 img loss 1.2241768836975098 img loss 1.4027601480484009 img loss 1.2355360984802246 img loss 1.201850414276123 img loss 1.2032121419906616 img loss 1.3121137619018555 img loss 1.2799938917160034 img loss 1.2990524768829346 img loss 1.2530686855316162 img loss 1.3782150745391846 img loss 1.226775050163269 img loss 1.287867546081543 img loss 1.2379077672958374 img loss 1.2938206195831299 img loss 1.2966924905776978 img loss 1.3481053113937378 img loss 1.2761963605880737 img loss 1.2845109701156616 img loss 1.3654662370681763 img loss 1.2962567806243896 img loss 1.2734482288360596 img loss 1.2581325769424438 img loss 1.298348069190979 img loss 1.2758152484893799 img loss 1.2559003829956055 img loss 1.217561960220337 img loss 1.371193766593933 img loss 1.1702474355697632 img loss 1.3198899030685425 img loss 1.2957996129989624 img loss 1.2237056493759155 img loss 1.2238132953643799 img loss 1.2888998985290527 img loss 1.3676525354385376 img loss 1.4520413875579834 img loss 1.357469916343689 img loss 1.2039321660995483 img loss 1.2825214862823486 img loss 1.22012197971344 img loss 1.3749181032180786 img loss 1.1771361827850342 img loss 1.3161572217941284 img loss 1.2702250480651855 img loss 1.2260559797286987 img loss 1.2389812469482422 img loss 1.3357443809509277 img loss 1.2945213317871094 img loss 1.3000305891036987 img loss 1.2814784049987793 img loss 1.3284094333648682 img loss 1.279855728149414 img loss 1.2644420862197876 img loss 1.343798041343689 img loss 1.269950270652771 img loss 1.2960041761398315 img loss 1.3922762870788574 img loss 1.2420992851257324 img loss 1.303931713104248 img loss 1.282562017440796 img loss 1.28257155418396 img loss 1.3201645612716675 img loss 1.3173637390136719 img loss 1.2442972660064697 img loss 1.2105772495269775 img loss 1.2963354587554932 img loss 1.2520332336425781 img loss 1.2887341976165771 img loss 1.3244702816009521 img loss 1.2205618619918823 img loss 1.2807207107543945img loss 1.2769607305526733 img loss 1.2807940244674683 img loss 1.2425973415374756 img loss 1.212144136428833 img loss 1.2288148403167725 img loss 1.3033623695373535 img loss 1.3193812370300293 img loss 1.2955478429794312 img loss 1.2730176448822021 img loss 1.2577780485153198 img loss 1.27640700340271 img loss 1.2365163564682007 img loss 1.2625035047531128 img loss 1.3099467754364014 img loss 1.3415380716323853img loss 1.2469017505645752 img loss 1.2928351163864136 img loss 1.322722315788269 img loss 1.3096835613250732 img loss 1.2750952243804932 img loss 1.2597217559814453 img loss 1.3552519083023071 img loss 1.182477593421936 img loss 1.2024130821228027 img loss 1.3300615549087524 img loss 1.2712992429733276 img loss 1.338415265083313 img loss 1.4097363948822021 img loss 1.3066049814224243 img loss 1.2689350843429565 img loss 1.3580836057662964 img loss 1.2811781167984009 img loss 1.209914207458496 img loss 1.2688400745391846 img loss 1.3068889379501343 img loss 1.2268577814102173 img loss 1.2771148681640625 img loss 1.324164628982544 img loss 1.2213778495788574 img loss 1.2043075561523438 img loss 1.2996515035629272 img loss 1.3428661823272705 img loss 1.3166272640228271 {'loss': 1.2832, 'grad_norm': 0.36852601170539856, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3012619018554688 img loss 1.2818015813827515 img loss 1.1799360513687134 img loss 1.2700316905975342 img loss 1.234507441520691 img loss 1.266218662261963 img loss 1.20124089717865 img loss 1.315704345703125 img loss 1.1812447309494019 img loss 1.2262263298034668 img loss 1.1942155361175537 img loss 1.2081022262573242 img loss 1.2384181022644043 img loss 1.2017812728881836 img loss 1.177367091178894 img loss 1.2123724222183228 img loss 1.3045101165771484 img loss 1.1232019662857056 img loss 1.1973836421966553 img loss 1.1850769519805908 img loss 1.144842505455017 img loss 1.168616771697998 img loss 1.2086588144302368 img loss 1.2247898578643799 img loss 1.2216770648956299 img loss 1.1719789505004883 img loss 1.1804213523864746 img loss 1.2350443601608276 img loss 1.1936949491500854 img loss 1.12775456905365 img loss 1.1565556526184082 img loss 1.3000227212905884 img loss 1.2210839986801147 img loss 1.1695585250854492 img loss 1.1365711688995361 img loss 1.205099105834961 img loss 1.241452693939209 img loss 1.250946283340454 img loss 1.3065907955169678 img loss 1.1992411613464355 img loss 1.2359082698822021 img loss 1.2223633527755737 img loss 1.1798769235610962 img loss 1.242501974105835 img loss 1.2333965301513672 img loss 1.1815736293792725 img loss 1.2935600280761719 img loss 1.1980711221694946 img loss 1.310339331626892 img loss 1.2304424047470093 img loss 1.1670193672180176 img loss 1.305582880973816 img loss 1.315163254737854 img loss 1.2320250272750854 img loss 1.132206678390503 img loss 1.284514307975769 img loss 1.231752634048462 img loss 1.203287959098816 img loss 1.2318543195724487 img loss 1.1529649496078491 img loss 1.2980197668075562 img loss 1.1619815826416016 img loss 1.2652727365493774 img loss 1.1895630359649658 img loss 1.243912935256958 img loss 1.2164922952651978 img loss 1.15714693069458 img loss 1.1766258478164673 img loss 1.1519416570663452 img loss 1.130591869354248 img loss 1.2050062417984009 img loss 1.208057165145874 img loss 1.2173970937728882 img loss 1.1634814739227295 img loss 1.1237685680389404 img loss 1.2101986408233643 img loss 1.1798352003097534 img loss 1.2418829202651978 img loss 1.2735458612442017 img loss 1.2416000366210938 img loss 1.2707642316818237 img loss 1.192586898803711 img loss 1.239211916923523 img loss 1.1638866662979126 img loss 1.2352262735366821 img loss 1.2384096384048462 img loss 1.1456279754638672 img loss 1.200958013534546 img loss 1.2538282871246338 img loss 1.2636209726333618 img loss 1.243273377418518 img loss 1.3008806705474854 img loss 1.148537516593933 img loss 1.3197792768478394 img loss 1.2488291263580322 img loss 1.2513973712921143 img loss 1.1585880517959595 img loss 1.2525367736816406 img loss 1.173803687095642 img loss 1.2297481298446655 img loss 1.1766575574874878 img loss 1.2903046607971191 img loss 1.1964285373687744 img loss 1.3076112270355225 img loss 1.157312035560608 img loss 1.2597715854644775 img loss 1.3319745063781738 img loss 1.1711509227752686 img loss 1.2715656757354736 img loss 1.2210357189178467 img loss 1.1927335262298584 img loss 1.3300118446350098 img loss 1.1510623693466187 img loss 1.2032097578048706 img loss 1.1466063261032104 img loss 1.224821925163269 img loss 1.2402691841125488 img loss 1.2843713760375977 img loss 1.2726958990097046 img loss 1.2445068359375 img loss 1.2724806070327759 img loss 1.1345280408859253 img loss 1.2760721445083618 img loss 1.1433019638061523 img loss 1.260713815689087 img loss 1.2436378002166748 img loss 1.1793502569198608 img loss 1.215282678604126 {'loss': 1.2198, 'grad_norm': 0.239890918135643, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1609337329864502 img loss 1.136354684829712 img loss 1.2673137187957764 img loss 1.192660927772522 img loss 1.2408241033554077 img loss 1.2221293449401855 img loss 1.198931336402893 img loss 1.2068910598754883 img loss 1.2106921672821045 img loss 1.2824674844741821 img loss 1.2223821878433228 img loss 1.172755241394043 img loss 1.186439871788025 img loss 1.196282982826233 img loss 1.150478720664978 img loss 1.1823714971542358 img loss 1.1982455253601074 img loss 1.3120876550674438 img loss 1.1939787864685059 img loss 1.224158525466919 img loss 1.215728521347046 img loss 1.2651499509811401 img loss 1.1932621002197266 img loss 1.1448442935943604 img loss 1.1953966617584229 img loss 1.1875436305999756 img loss 1.131657600402832 img loss 1.1464242935180664 img loss 1.3124921321868896 img loss 1.1956055164337158 img loss 1.1851377487182617 img loss 1.1932090520858765 img loss 1.304269552230835 img loss 1.2242377996444702 img loss 1.1568571329116821 img loss 1.175289511680603 img loss 1.2756428718566895 img loss 1.2151144742965698 img loss 1.15704345703125 img loss 1.1817930936813354 img loss 1.187467336654663 img loss 1.1317089796066284 img loss 1.2477058172225952 img loss 1.2022769451141357 img loss 1.2761106491088867 img loss 1.1805638074874878 img loss 1.1995749473571777 img loss 1.2289135456085205 img loss 1.2352538108825684 img loss 1.240478515625 img loss 1.2304619550704956 img loss 1.2597204446792603 img loss 1.2657705545425415 img loss 1.1517503261566162 img loss 1.2241394519805908 img loss 1.1824878454208374 img loss 1.2225472927093506 img loss 1.1896320581436157 img loss 1.171518325805664 img loss 1.1544697284698486 img loss 1.2057394981384277 img loss 1.1890499591827393 img loss 1.2098373174667358 img loss 1.2509043216705322 img loss 1.2385698556900024 img loss 1.2193344831466675 img loss 1.3028481006622314 img loss 1.1662715673446655 img loss 1.1597394943237305 img loss 1.1867188215255737 img loss 1.1775635480880737 img loss 1.2167705297470093 img loss 1.2082542181015015 img loss 1.2425522804260254 img loss 1.2422775030136108 img loss 1.1016550064086914 img loss 1.1766003370285034 img loss 1.2263939380645752 img loss 1.2090775966644287 img loss 1.1872329711914062 img loss 1.2107419967651367 img loss 1.199248194694519 img loss 1.2264533042907715 img loss 1.1950321197509766 img loss 1.2335031032562256 img loss 1.2412645816802979 img loss 1.1757135391235352 img loss 1.2658920288085938 img loss 1.19133722782135 img loss 1.1999822854995728 img loss 1.2738150358200073 img loss 1.1662030220031738 img loss 1.199310064315796 img loss 1.2715409994125366 img loss 1.2042763233184814 img loss 1.1573759317398071 img loss 1.2404526472091675 img loss 1.2482820749282837 img loss 1.2258195877075195 img loss 1.2365330457687378 img loss 1.2026065587997437 img loss 1.1704877614974976 img loss 1.2246922254562378 img loss 1.2239307165145874 img loss 1.1842997074127197 img loss 1.2482388019561768 img loss 1.3214582204818726 img loss 1.2633854150772095 img loss 1.2567505836486816 img loss 1.2569715976715088 img loss 1.1511569023132324 img loss 1.2083289623260498 img loss 1.2207965850830078 img loss 1.2062227725982666 img loss 1.2262362241744995 img loss 1.239236831665039 img loss 1.2189749479293823 img loss 1.1808695793151855 img loss 1.1874417066574097 img loss 1.123093605041504 img loss 1.2461093664169312 img loss 1.1741516590118408 img loss 1.323990821838379 img loss 1.1977335214614868 img loss 1.2523332834243774 img loss 1.240801453590393 img loss 1.1382359266281128 img loss 1.2191784381866455 {'loss': 1.2108, 'grad_norm': 0.203619584441185, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4105851650238037 img loss 1.2239067554473877 img loss 1.3067514896392822 img loss 1.245892882347107 img loss 1.2996406555175781 img loss 1.297440767288208 img loss 1.296903133392334 img loss 1.3444770574569702 img loss 1.3286535739898682 img loss 1.2342716455459595 img loss 1.2144968509674072 img loss 1.332580327987671 img loss 1.2441749572753906 img loss 1.243956208229065 img loss 1.307352066040039 img loss 1.2409019470214844 img loss 1.2143478393554688 img loss 1.2558125257492065 img loss 1.2337665557861328 img loss 1.2103931903839111 img loss 1.3615772724151611 img loss 1.3202637434005737 img loss 1.2510040998458862 img loss 1.2380378246307373 img loss 1.2981657981872559 img loss 1.3531821966171265 img loss 1.1601383686065674 img loss 1.290128469467163 img loss 1.2077860832214355 img loss 1.241542100906372 img loss 1.2166261672973633 img loss 1.291334867477417 img loss 1.333441972732544 img loss 1.224290370941162 img loss 1.185442566871643 img loss 1.1982084512710571 img loss 1.1554253101348877 img loss 1.2206649780273438 img loss 1.3508192300796509 img loss 1.2050179243087769 img loss 1.3532624244689941 img loss 1.3040039539337158 img loss 1.3649414777755737 img loss 1.2408409118652344 img loss 1.2517393827438354 img loss 1.2621831893920898 img loss 1.1971477270126343 img loss 1.2234587669372559 img loss 1.3102378845214844 img loss 1.2833813428878784 img loss 1.2056176662445068 img loss 1.2030390501022339 img loss 1.311267614364624 img loss 1.1856019496917725 img loss 1.2895522117614746 img loss 1.2648100852966309 img loss 1.254045009613037 img loss 1.278591513633728 img loss 1.181952714920044 img loss 1.3077600002288818 img loss 1.296741008758545 img loss 1.2366033792495728 img loss 1.2403723001480103 img loss 1.292453408241272 img loss 1.3345979452133179 img loss 1.1887149810791016 img loss 1.1247376203536987 img loss 1.393065094947815 img loss 1.1880054473876953 img loss 1.329554796218872 img loss 1.1963237524032593 img loss 1.2247793674468994 img loss 1.2770048379898071 img loss 1.21651029586792 img loss 1.224109172821045 img loss 1.2029266357421875 img loss 1.2503079175949097 img loss 1.2339975833892822 img loss 1.2110989093780518 img loss 1.2829564809799194 img loss 1.273085117340088 img loss 1.1896567344665527 img loss 1.200449824333191 img loss 1.2684162855148315 img loss 1.3051074743270874 img loss 1.2558923959732056 img loss 1.173816204071045 img loss 1.2510133981704712 img loss 1.1704633235931396 img loss 1.2476933002471924 img loss 1.2040379047393799 img loss 1.223077654838562 img loss 1.3230292797088623 img loss 1.29886794090271 img loss 1.2967467308044434 img loss 1.299041748046875 img loss 1.2746244668960571 img loss 1.2594847679138184 img loss 1.2165859937667847 img loss 1.281512975692749 img loss 1.285959005355835 img loss 1.2329590320587158 img loss 1.213519811630249 img loss 1.2565349340438843 img loss 1.3255585432052612 img loss 1.2155405282974243 img loss 1.3359078168869019 img loss 1.3054958581924438 img loss 1.281416654586792 img loss 1.2644250392913818 img loss 1.2781405448913574 img loss 1.2570966482162476 img loss 1.219787359237671 img loss 1.2158607244491577 img loss 1.241254210472107 img loss 1.1666576862335205 img loss 1.2847487926483154 img loss 1.2992368936538696 img loss 1.1795719861984253 img loss 1.1877959966659546 img loss 1.268446445465088 img loss 1.257347822189331 img loss 1.2690699100494385 img loss 1.2242802381515503 img loss 1.3735125064849854 img loss 1.285125494003296 img loss 1.2297877073287964 img loss 1.2389612197875977 {'loss': 1.2579, 'grad_norm': 0.419523686170578, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.072916865348816 img loss 1.1301764249801636 img loss 1.211463212966919 img loss 1.1354519128799438 img loss 1.1870741844177246 img loss 1.1626179218292236 img loss 1.2009305953979492 img loss 1.2266647815704346 img loss 1.173439860343933 img loss 1.122568130493164 img loss 1.2635915279388428 img loss 1.1925594806671143 img loss 1.2001945972442627 img loss 1.135725736618042 img loss 1.2101300954818726 img loss 1.167163372039795 img loss 1.1484326124191284 img loss 1.1714311838150024 img loss 1.1794170141220093 img loss 1.2038058042526245 img loss 1.2018474340438843 img loss 1.1257133483886719 img loss 1.150107741355896 img loss 1.1211026906967163 img loss 1.1348211765289307 img loss 1.186271071434021 img loss 1.162251353263855 img loss 1.156150460243225 img loss 1.1556318998336792 img loss 1.1205893754959106 img loss 1.0961484909057617 img loss 1.0928186178207397 img loss 1.135616660118103 img loss 1.118273138999939 img loss 1.169583797454834 img loss 1.32510507106781 img loss 1.1387813091278076 img loss 1.161780595779419 img loss 1.2420265674591064 img loss 1.1483354568481445 img loss 1.1462560892105103 img loss 1.2154667377471924 img loss 1.2008988857269287 img loss 1.1825478076934814 img loss 1.150857925415039 img loss 1.1576976776123047 img loss 1.0445541143417358 img loss 1.2442095279693604 img loss 1.128826379776001 img loss 1.1585773229599 img loss 1.1838488578796387 img loss 1.1677401065826416 img loss 1.127197504043579 img loss 1.232932448387146 img loss 1.2973484992980957 img loss 1.2378605604171753 img loss 1.200822114944458 img loss 1.1952828168869019 img loss 1.141943097114563 img loss 1.1365808248519897 img loss 1.181969404220581 img loss 1.2029845714569092 img loss 1.161253809928894 img loss 1.179120659828186 img loss 1.2455761432647705 img loss 1.203421950340271 img loss 1.1502139568328857 img loss 1.1891610622406006 img loss 1.134000301361084 img loss 1.0887010097503662 img loss 1.1636369228363037 img loss 1.1569366455078125 img loss 1.2322508096694946 img loss 1.151994228363037 img loss 1.1872209310531616 img loss 1.1728360652923584 img loss 1.1157879829406738 img loss 1.2140861749649048 img loss 1.1559232473373413 img loss 1.2171385288238525 img loss 1.1400954723358154 img loss 1.1637592315673828 img loss 1.194270133972168 img loss 1.2233803272247314 img loss 1.1302549839019775 img loss 1.233358383178711 img loss 1.1267662048339844 img loss 1.1022182703018188 img loss 1.1858315467834473 img loss 1.2011444568634033 img loss 1.2460273504257202 img loss 1.3111803531646729 img loss 1.121208667755127 img loss 1.1408156156539917 img loss 1.149792194366455 img loss 1.1364606618881226 img loss 1.117427110671997 img loss 1.1929380893707275 img loss 1.1862081289291382 img loss 1.1516996622085571 img loss 1.1911389827728271 img loss 1.286609172821045 img loss 1.1460132598876953 img loss 1.1501203775405884 img loss 1.1973994970321655 img loss 1.166622519493103 img loss 1.0940308570861816 img loss 1.2437167167663574 img loss 1.1256166696548462 img loss 1.2925351858139038 img loss 1.1900628805160522 img loss 1.236457109451294 img loss 1.139749526977539 img loss 1.2126520872116089 img loss 1.1697731018066406 img loss 1.1174103021621704 img loss 1.1309778690338135 img loss 1.1741927862167358 img loss 1.1712521314620972 img loss 1.136316180229187 img loss 1.1976581811904907 img loss 1.1528326272964478 img loss 1.230278730392456 img loss 1.1579091548919678 img loss 1.1535381078720093 img loss 1.1564083099365234 img loss 1.1664555072784424 img loss 1.1838412284851074 {'loss': 1.1728, 'grad_norm': 0.20277716219425201, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1921043395996094 img loss 1.211679458618164 img loss 1.2330955266952515 img loss 1.1323721408843994 img loss 1.2397047281265259 img loss 1.2289625406265259 img loss 1.1789512634277344 img loss 1.2016347646713257 img loss 1.256463885307312 img loss 1.1390188932418823 img loss 1.1745562553405762 img loss 1.1755504608154297 img loss 1.1850382089614868 img loss 1.2138751745224 img loss 1.180418610572815 img loss 1.266680359840393 img loss 1.180611252784729 img loss 1.2361996173858643 img loss 1.1606693267822266 img loss 1.2074391841888428 img loss 1.2370195388793945 img loss 1.1658382415771484 img loss 1.1570093631744385 img loss 1.163752794265747 img loss 1.1882188320159912 img loss 1.1783698797225952 img loss 1.2071640491485596 img loss 1.2044744491577148 img loss 1.2522035837173462 img loss 1.1878160238265991 img loss 1.1888948678970337 img loss 1.2151055335998535 img loss 1.215511679649353 img loss 1.1599984169006348 img loss 1.2222980260849 img loss 1.1922087669372559 img loss 1.2307491302490234 img loss 1.2519022226333618 img loss 1.1850817203521729 img loss 1.232893943786621 img loss 1.1856441497802734 img loss 1.2255008220672607 img loss 1.2340892553329468 img loss 1.1756654977798462 img loss 1.1600909233093262 img loss 1.2538269758224487 img loss 1.1722216606140137 img loss 1.1801929473876953 img loss 1.1914043426513672 img loss 1.2255597114562988 img loss 1.133047342300415 img loss 1.193221092224121 img loss 1.2120251655578613 img loss 1.2254918813705444 img loss 1.1808793544769287 img loss 1.189014196395874 img loss 1.2413947582244873 img loss 1.1619395017623901 img loss 1.2075021266937256 img loss 1.2811704874038696 img loss 1.176344871520996 img loss 1.1853431463241577 img loss 1.2035127878189087 img loss 1.1150264739990234 img loss 1.2068876028060913 img loss 1.293962001800537 img loss 1.1841949224472046 img loss 1.1965229511260986 img loss 1.1227424144744873 img loss 1.2144019603729248 img loss 1.217354416847229 img loss 1.1784512996673584 img loss 1.1759657859802246 img loss 1.1604552268981934 img loss 1.2147958278656006 img loss 1.166471004486084 img loss 1.2141321897506714 img loss 1.1825389862060547 img loss 1.172031044960022 img loss 1.199480414390564 img loss 1.2005447149276733 img loss 1.1503827571868896 img loss 1.2996494770050049 img loss 1.2046446800231934 img loss 1.2286317348480225 img loss 1.1966404914855957 img loss 1.2012876272201538 img loss 1.2549107074737549 img loss 1.2627837657928467 img loss 1.1638249158859253 img loss 1.2015985250473022 img loss 1.2501060962677002 img loss 1.1963629722595215 img loss 1.204740285873413 img loss 1.1928362846374512 img loss 1.170045256614685 img loss 1.1871562004089355 img loss 1.1798864603042603 img loss 1.1873233318328857 img loss 1.2295678853988647 img loss 1.2288421392440796 img loss 1.240838646888733 img loss 1.1654932498931885 img loss 1.284981608390808 img loss 1.230480670928955 img loss 1.1792668104171753 img loss 1.2024879455566406 img loss 1.2262351512908936 img loss 1.1914070844650269 img loss 1.2150334119796753 img loss 1.2467284202575684 img loss 1.1163387298583984 img loss 1.2029396295547485 img loss 1.26705801486969 img loss 1.1841614246368408 img loss 1.194097876548767 img loss 1.1696970462799072 img loss 1.2342497110366821 img loss 1.1705577373504639 img loss 1.2438900470733643 img loss 1.1557754278182983 img loss 1.1799907684326172 img loss 1.2146412134170532 img loss 1.1564587354660034 img loss 1.2010416984558105 img loss 1.200223684310913 img loss 1.2905819416046143 img loss 1.2048887014389038 {'loss': 1.2016, 'grad_norm': 0.26191043853759766, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2096484899520874 img loss 1.2284839153289795 img loss 1.2345436811447144 img loss 1.2244030237197876 img loss 1.2336335182189941 img loss 1.1747665405273438 img loss 1.1739349365234375 img loss 1.2085089683532715 img loss 1.2682974338531494 img loss 1.2126898765563965 img loss 1.1567955017089844 img loss 1.208303451538086 img loss 1.2458820343017578 img loss 1.1847766637802124 img loss 1.1865744590759277 img loss 1.1981480121612549 img loss 1.172593593597412 img loss 1.1062095165252686 img loss 1.1282250881195068 img loss 1.1347988843917847 img loss 1.1719592809677124 img loss 1.25905442237854 img loss 1.1454811096191406 img loss 1.1896545886993408 img loss 1.1935689449310303 img loss 1.1691467761993408 img loss 1.2876747846603394 img loss 1.2428215742111206 img loss 1.2898635864257812 img loss 1.2225340604782104 img loss 1.162756323814392 img loss 1.2903752326965332 img loss 1.2333115339279175 img loss 1.1904524564743042 img loss 1.1960105895996094 img loss 1.2337430715560913 img loss 1.1312168836593628 img loss 1.2259819507598877 img loss 1.1817479133605957 img loss 1.2524555921554565 img loss 1.2705541849136353 img loss 1.1902053356170654 img loss 1.2388275861740112 img loss 1.2217557430267334 img loss 1.1968114376068115 img loss 1.2032086849212646 img loss 1.1759909391403198 img loss 1.2231979370117188 img loss 1.222473382949829 img loss 1.2120068073272705 img loss 1.2356923818588257 img loss 1.1348785161972046 img loss 1.178503394126892 img loss 1.1952768564224243 img loss 1.2498893737792969 img loss 1.1647138595581055 img loss 1.1481693983078003 img loss 1.2097448110580444 img loss 1.2579139471054077 img loss 1.2302985191345215 img loss 1.1794761419296265 img loss 1.2633100748062134 img loss 1.179093360900879 img loss 1.1438125371932983 img loss 1.1533641815185547 img loss 1.2926615476608276 img loss 1.170967936515808 img loss 1.2544504404067993 img loss 1.1904778480529785 img loss 1.191823959350586 img loss 1.2624872922897339 img loss 1.1874942779541016 img loss 1.1671148538589478 img loss 1.221186876296997 img loss 1.1853007078170776 img loss 1.2188726663589478 img loss 1.2110538482666016 img loss 1.2252498865127563 img loss 1.1442798376083374 img loss 1.2461042404174805 img loss 1.214852213859558 img loss 1.1318092346191406 img loss 1.2743439674377441 img loss 1.202477216720581 img loss 1.2322717905044556 img loss 1.1676750183105469 img loss 1.2225614786148071 img loss 1.2680414915084839 img loss 1.2339216470718384 img loss 1.2091264724731445 img loss 1.287341594696045 img loss 1.2322444915771484 img loss 1.1368440389633179 img loss 1.1546180248260498 img loss 1.2994149923324585 img loss 1.2011067867279053 img loss 1.2208385467529297 img loss 1.229449987411499 img loss 1.2494254112243652 img loss 1.1488356590270996 img loss 1.1338344812393188 img loss 1.2402229309082031 img loss 1.2237766981124878 img loss 1.2334530353546143 img loss 1.2082542181015015 img loss 1.2396458387374878 img loss 1.2650814056396484 img loss 1.1410560607910156 img loss 1.2414487600326538 img loss 1.1694821119308472 img loss 1.180490255355835 img loss 1.2032740116119385 img loss 1.1898415088653564 img loss 1.2490209341049194 img loss 1.1479504108428955 img loss 1.2684227228164673 img loss 1.1324925422668457 img loss 1.201916217803955 img loss 1.2006378173828125 img loss 1.2029552459716797 img loss 1.2066181898117065 img loss 1.1888773441314697 img loss 1.2298810482025146 img loss 1.2289743423461914 img loss 1.193305492401123 img loss 1.2135677337646484 img loss 1.2342513799667358 img loss 1.2531347274780273 {'loss': 1.2074, 'grad_norm': 0.19150884449481964, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5288975238800049 img loss 1.3862279653549194 img loss 1.4872395992279053 img loss 1.4104009866714478 img loss 1.3946081399917603 img loss 1.4418736696243286 img loss 1.556758165359497 img loss 1.350294589996338 img loss 1.4229224920272827 img loss 1.4130066633224487 img loss 1.3947988748550415 img loss 1.4805004596710205 img loss 1.3121204376220703 img loss 1.6012941598892212 img loss 1.4481664896011353 img loss 1.3716719150543213 img loss 1.4622195959091187 img loss 1.3674365282058716 img loss 1.3878254890441895 img loss 1.601915955543518 img loss 1.458491563796997 img loss 1.3656600713729858 img loss 1.3062255382537842 img loss 1.5247160196304321 img loss 1.453279972076416 img loss 1.5820220708847046 img loss 1.3932206630706787 img loss 1.5054261684417725 img loss 1.4607079029083252 img loss 1.3795294761657715 img loss 1.43755042552948 img loss 1.3712788820266724 img loss 1.593392252922058 img loss 1.4680181741714478 img loss 1.515440583229065 img loss 1.4215184450149536 img loss 1.4226435422897339 img loss 1.4160391092300415 img loss 1.5121400356292725 img loss 1.3430947065353394 img loss 1.4769080877304077 img loss 1.4302098751068115 img loss 1.593883991241455 img loss 1.368873119354248 img loss 1.522555947303772 img loss 1.5625382661819458 img loss 1.5246129035949707 img loss 1.3714993000030518 img loss 1.3866420984268188 img loss 1.5027976036071777 img loss 1.3424819707870483 img loss 1.461251139640808 img loss 1.4003137350082397 img loss 1.4183043241500854 img loss 1.415871262550354 img loss 1.4056620597839355 img loss 1.4461570978164673 img loss 1.4133669137954712 img loss 1.5100195407867432 img loss 1.398269534111023 img loss 1.4750895500183105 img loss 1.5129390954971313 img loss 1.4986673593521118 img loss 1.3705843687057495 img loss 1.4547635316848755 img loss 1.4719053506851196 img loss 1.4883418083190918 img loss 1.5866215229034424 img loss 1.2779057025909424 img loss 1.4032078981399536 img loss 1.2662644386291504 img loss 1.5352509021759033 img loss 1.3509972095489502 img loss 1.4297646284103394 img loss 1.3370901346206665 img loss 1.6287667751312256 img loss 1.4775875806808472 img loss 1.3491672277450562 img loss 1.3227448463439941 img loss 1.3243787288665771 img loss 1.4613748788833618 img loss 1.4124912023544312 img loss 1.4126412868499756 img loss 1.4058767557144165 img loss 1.4638184309005737 img loss 1.3063112497329712 img loss 1.3742536306381226 img loss 1.434370756149292 img loss 1.3992149829864502 img loss 1.5005958080291748 img loss 1.363900899887085 img loss 1.4333484172821045 img loss 1.4740914106369019 img loss 1.2746824026107788 img loss 1.3897918462753296 img loss 1.4000003337860107 img loss 1.5048853158950806 img loss 1.4240919351577759 img loss 1.474241852760315 img loss 1.4228577613830566 img loss 1.5809756517410278 img loss 1.5009169578552246 img loss 1.4201388359069824 img loss 1.3381906747817993 img loss 1.4156574010849 img loss 1.4345594644546509 img loss 1.4069418907165527 img loss 1.4763556718826294 img loss 1.4400744438171387 img loss 1.3589509725570679 img loss 1.3983803987503052 img loss 1.5401185750961304 img loss 1.435064435005188 img loss 1.5850882530212402 img loss 1.4392496347427368 img loss 1.5130561590194702 img loss 1.4496653079986572 img loss 1.4509855508804321 img loss 1.3954253196716309 img loss 1.5344904661178589 img loss 1.3911863565444946 img loss 1.4744410514831543 img loss 1.3687615394592285 img loss 1.4916256666183472 img loss 1.5571633577346802 img loss 1.3595951795578003 img loss 1.5028783082962036 img loss 1.4039466381072998 {'loss': 1.4395, 'grad_norm': 0.22550731897354126, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2719972133636475 img loss 1.3024356365203857 img loss 1.2530782222747803 img loss 1.3499064445495605 img loss 1.2968944311141968 img loss 1.2367290258407593 img loss 1.3555808067321777 img loss 1.2859207391738892 img loss 1.3087133169174194 img loss 1.309210181236267 img loss 1.2944344282150269 img loss 1.2708839178085327 img loss 1.272083044052124 img loss 1.4375405311584473 img loss 1.2925976514816284 img loss 1.185791254043579 img loss 1.2994047403335571 img loss 1.2119258642196655 img loss 1.283708930015564 img loss 1.1989593505859375 img loss 1.2447150945663452 img loss 1.303788423538208 img loss 1.309458613395691 img loss 1.340360403060913 img loss 1.3209278583526611 img loss 1.2700791358947754 img loss 1.2964301109313965 img loss 1.4014092683792114 img loss 1.2788007259368896 img loss 1.2837350368499756 img loss 1.2886672019958496 img loss 1.1825706958770752 img loss 1.4052547216415405 img loss 1.2348675727844238 img loss 1.2427916526794434 img loss 1.2750566005706787 img loss 1.2610301971435547 img loss 1.1751728057861328 img loss 1.2970300912857056 img loss 1.4771391153335571 img loss 1.2385190725326538 img loss 1.267538070678711 img loss 1.3427175283432007 img loss 1.3070425987243652 img loss 1.3366268873214722 img loss 1.2995190620422363 img loss 1.3038277626037598 img loss 1.2523239850997925 img loss 1.3093894720077515 img loss 1.2634711265563965 img loss 1.2744159698486328 img loss 1.360286831855774 img loss 1.3241146802902222 img loss 1.3720906972885132 img loss 1.4375436305999756 img loss 1.2512524127960205 img loss 1.3497728109359741 img loss 1.2188756465911865 img loss 1.2538105249404907 img loss 1.4038594961166382 img loss 1.2591254711151123 img loss 1.376981496810913 img loss 1.4153386354446411 img loss 1.2662380933761597 img loss 1.2656784057617188 img loss 1.431363821029663 img loss 1.2458720207214355 img loss 1.3397724628448486 img loss 1.3509761095046997 img loss 1.25099515914917 img loss 1.347564935684204 img loss 1.3474713563919067 img loss 1.3608753681182861 img loss 1.2393605709075928 img loss 1.2658936977386475 img loss 1.3299049139022827 img loss 1.2583650350570679 img loss 1.1715729236602783 img loss 1.2086548805236816 img loss 1.3037810325622559 img loss 1.2898412942886353 img loss 1.2651222944259644 img loss 1.3310253620147705 img loss 1.400712251663208 img loss 1.215117335319519 img loss 1.2756801843643188 img loss 1.2724864482879639 img loss 1.2753050327301025 img loss 1.2998145818710327 img loss 1.1885566711425781 img loss 1.228001594543457 img loss 1.2938631772994995 img loss 1.211605429649353 img loss 1.2680481672286987 img loss 1.2223410606384277 img loss 1.3247073888778687 img loss 1.2545089721679688 img loss 1.298857569694519 img loss 1.2951574325561523 img loss 1.346428632736206 img loss 1.362644910812378 img loss 1.276752233505249 img loss 1.2799783945083618 img loss 1.2597613334655762 img loss 1.2130359411239624 img loss 1.3202226161956787 img loss 1.2636210918426514 img loss 1.1831175088882446 img loss 1.279505729675293 img loss 1.3161253929138184 img loss 1.3921936750411987 img loss 1.2917520999908447 img loss 1.3111234903335571 img loss 1.4584242105484009 img loss 1.3745133876800537 img loss 1.2688004970550537 img loss 1.277217149734497 img loss 1.2831764221191406 img loss 1.1984612941741943 img loss 1.2291553020477295 img loss 1.3851991891860962img loss 1.2698469161987305img loss 1.327614426612854img loss 1.3300203084945679img loss 1.3578344583511353 img loss 1.2385311126708984 img loss 1.3152912855148315 img loss 1.2896852493286133 {'loss': 1.2947, 'grad_norm': 0.3921286165714264, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1671390533447266 img loss 1.1124767065048218 img loss 1.142013430595398 img loss 1.2215499877929688 img loss 1.1089847087860107 img loss 1.199296474456787 img loss 1.2272698879241943 img loss 1.3156259059906006 img loss 1.154895305633545 img loss 1.1963424682617188 img loss 1.220732569694519 img loss 1.2395551204681396 img loss 1.2242388725280762 img loss 1.1167596578598022 img loss 1.1708258390426636 img loss 1.1328061819076538 img loss 1.2454341650009155 img loss 1.1801172494888306 img loss 1.2967993021011353 img loss 1.1613705158233643 img loss 1.209456443786621 img loss 1.1147327423095703 img loss 1.2458140850067139 img loss 1.2019413709640503 img loss 1.2280166149139404 img loss 1.189056158065796 img loss 1.17605459690094 img loss 1.1581225395202637 img loss 1.187901258468628 img loss 1.2075471878051758 img loss 1.1937531232833862 img loss 1.2111451625823975 img loss 1.2182422876358032 img loss 1.0984333753585815 img loss 1.1101078987121582 img loss 1.3554250001907349 img loss 1.1791366338729858 img loss 1.2832590341567993 img loss 1.2304668426513672 img loss 1.066856861114502 img loss 1.2081209421157837 img loss 1.2003790140151978 img loss 1.1545978784561157 img loss 1.213726282119751 img loss 1.1640832424163818 img loss 1.1306066513061523 img loss 1.153115153312683 img loss 1.358529806137085 img loss 1.1501803398132324 img loss 1.211355447769165 img loss 1.174601435661316 img loss 1.1442029476165771 img loss 1.1471385955810547 img loss 1.2698397636413574 img loss 1.2915611267089844 img loss 1.2161575555801392 img loss 1.1449389457702637 img loss 1.211778998374939 img loss 1.1888030767440796 img loss 1.135236144065857 img loss 1.142458200454712 img loss 1.1213172674179077 img loss 1.2017755508422852 img loss 1.2824348211288452 img loss 1.1923397779464722 img loss 1.2956714630126953 img loss 1.2148919105529785 img loss 1.3179172277450562 img loss 1.1782840490341187 img loss 1.16161048412323 img loss 1.2178149223327637 img loss 1.1779885292053223 img loss 1.2171220779418945 img loss 1.2755106687545776 img loss 1.2236942052841187 img loss 1.140936255455017 img loss 1.2282757759094238 img loss 1.1459641456604004 img loss 1.1647037267684937 img loss 1.2531360387802124 img loss 1.1430120468139648 img loss 1.171284556388855 img loss 1.2246907949447632 img loss 1.1904017925262451 img loss 1.1390553712844849 img loss 1.2253259420394897 img loss 1.2153269052505493 img loss 1.2120212316513062 img loss 1.2263858318328857 img loss 1.2003730535507202 img loss 1.1584171056747437 img loss 1.2146868705749512 img loss 1.2069456577301025 img loss 1.1645643711090088 img loss 1.2195985317230225 img loss 1.2718223333358765 img loss 1.275509238243103 img loss 1.1868562698364258 img loss 1.2975804805755615 img loss 1.1856682300567627 img loss 1.2313055992126465 img loss 1.3267483711242676 img loss 1.1449599266052246 img loss 1.16062331199646 img loss 1.2550581693649292 img loss 1.1180540323257446 img loss 1.241159439086914 img loss 1.2009670734405518 img loss 1.2155859470367432 img loss 1.1692421436309814 img loss 1.1919292211532593 img loss 1.1862207651138306 img loss 1.2057698965072632 img loss 1.1869457960128784 img loss 1.1927580833435059 img loss 1.1965196132659912 img loss 1.1958317756652832 img loss 1.1769046783447266 img loss 1.2077608108520508 img loss 1.2339091300964355 img loss 1.2671419382095337 img loss 1.1700537204742432 img loss 1.147349238395691 img loss 1.239480972290039 img loss 1.227718710899353 img loss 1.2012248039245605 img loss 1.1663415431976318 img loss 1.2093170881271362 {'loss': 1.1994, 'grad_norm': 0.2939370274543762, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2167763710021973 img loss 1.304025650024414 img loss 1.2155650854110718 img loss 1.1918830871582031 img loss 1.1801626682281494 img loss 1.22040593624115 img loss 1.2323205471038818 img loss 1.232481837272644 img loss 1.1751827001571655 img loss 1.3066575527191162 img loss 1.157294750213623 img loss 1.1313308477401733 img loss 1.1294025182724 img loss 1.1681654453277588 img loss 1.3927319049835205 img loss 1.3304622173309326 img loss 1.3181507587432861 img loss 1.234699010848999 img loss 1.1631624698638916 img loss 1.2853409051895142 img loss 1.212680697441101 img loss 1.2117198705673218 img loss 1.234158992767334 img loss 1.2582218647003174 img loss 1.2304000854492188 img loss 1.2033178806304932 img loss 1.2410513162612915 img loss 1.2380008697509766 img loss 1.3002686500549316 img loss 1.2004588842391968 img loss 1.2170312404632568 img loss 1.2870458364486694 img loss 1.195502519607544 img loss 1.314906358718872 img loss 1.227190613746643 img loss 1.159225344657898 img loss 1.2033591270446777 img loss 1.252652883529663 img loss 1.2663559913635254 img loss 1.300524115562439 img loss 1.1972869634628296 img loss 1.1944897174835205 img loss 1.2471879720687866 img loss 1.2884176969528198 img loss 1.219329595565796 img loss 1.2190250158309937 img loss 1.227116584777832 img loss 1.2298599481582642 img loss 1.2467628717422485 img loss 1.2400683164596558 img loss 1.2112911939620972 img loss 1.2167364358901978img loss 1.2395938634872437 img loss 1.2575726509094238 img loss 1.3054423332214355 img loss 1.1902775764465332 img loss 1.24196195602417 img loss 1.219431757926941 img loss 1.169656753540039 img loss 1.183531641960144 img loss 1.246173620223999 img loss 1.2456938028335571 img loss 1.1802586317062378 img loss 1.2589259147644043 img loss 1.1907649040222168 img loss 1.22366201877594 img loss 1.258561611175537 img loss 1.218027114868164 img loss 1.1910921335220337 img loss 1.283524513244629 img loss 1.211923599243164 img loss 1.2095516920089722 img loss 1.2399725914001465 img loss 1.229500412940979 img loss 1.2570704221725464 img loss 1.341806173324585 img loss 1.2667343616485596 img loss 1.2963453531265259 img loss 1.2679650783538818 img loss 1.24325430393219 img loss 1.175180435180664 img loss 1.2685655355453491 img loss 1.2638602256774902 img loss 1.1588006019592285 img loss 1.2428109645843506 img loss 1.1783345937728882 img loss 1.2287769317626953 img loss 1.2623703479766846 img loss 1.184228777885437 img loss 1.187482476234436 img loss 1.2661187648773193 img loss 1.2457188367843628 img loss 1.1705135107040405 img loss 1.260271668434143 img loss 1.248978853225708 img loss 1.1119235754013062 img loss 1.250793695449829 img loss 1.2587727308273315 img loss 1.3096100091934204 img loss 1.1719530820846558 img loss 1.2810924053192139 img loss 1.1760834455490112 img loss 1.279831886291504 img loss 1.293506383895874 img loss 1.1748307943344116 img loss 1.2459332942962646 img loss 1.2574166059494019 img loss 1.2284996509552002 img loss 1.2071701288223267 img loss 1.2142655849456787 img loss 1.1855006217956543 img loss 1.2402900457382202 img loss 1.265190601348877 img loss 1.3127129077911377 img loss 1.199109673500061 img loss 1.1581077575683594 img loss 1.2606360912322998 img loss 1.308030605316162 img loss 1.2426142692565918 img loss 1.2264479398727417 img loss 1.2026466131210327 img loss 1.237313151359558 img loss 1.1541372537612915 img loss 1.2884352207183838 img loss 1.2076449394226074 img loss 1.2829240560531616 img loss 1.2242048978805542 img loss 1.2289985418319702 {'loss': 1.2326, 'grad_norm': 0.1845737099647522, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5387169122695923 img loss 1.5798572301864624 img loss 1.489351749420166 img loss 1.470794439315796 img loss 1.3254752159118652 img loss 1.5347057580947876 img loss 1.4273768663406372 img loss 1.4766050577163696 img loss 1.4438194036483765 img loss 1.4156805276870728 img loss 1.3056989908218384 img loss 1.5005120038986206 img loss 1.4058377742767334 img loss 1.3299480676651 img loss 1.5633196830749512 img loss 1.6190601587295532 img loss 1.5323420763015747 img loss 1.4550505876541138 img loss 1.653701901435852 img loss 1.6125317811965942 img loss 1.4138200283050537 img loss 1.3472973108291626 img loss 1.4226155281066895 img loss 1.4233105182647705 img loss 1.3676848411560059 img loss 1.5748661756515503 img loss 1.390440821647644 img loss 1.4142194986343384 img loss 1.6695224046707153 img loss 1.5045230388641357 img loss 1.4420911073684692 img loss 1.5460436344146729 img loss 1.5198718309402466 img loss 1.4101303815841675 img loss 1.4088314771652222 img loss 1.4606149196624756 img loss 1.2923933267593384 img loss 1.4412695169448853 img loss 1.3134275674819946 img loss 1.57431960105896 img loss 1.4517947435379028 img loss 1.3906956911087036 img loss 1.3596421480178833 img loss 1.3888174295425415 img loss 1.4086968898773193 img loss 1.5486652851104736 img loss 1.6027179956436157 img loss 1.4670568704605103 img loss 1.505475640296936 img loss 1.612297773361206 img loss 1.3929133415222168 img loss 1.4482510089874268 img loss 1.3981269598007202 img loss 1.5284408330917358 img loss 1.570655345916748 img loss 1.4010661840438843 img loss 1.444256067276001 img loss 1.4185473918914795 img loss 1.4217846393585205 img loss 1.408971905708313 img loss 1.3417001962661743 img loss 1.288678765296936 img loss 1.3893847465515137 img loss 1.5276216268539429 img loss 1.4966679811477661 img loss 1.4734489917755127 img loss 1.287411093711853 img loss 1.4402556419372559 img loss 1.4178129434585571 img loss 1.3505526781082153 img loss 1.472800850868225 img loss 1.4665296077728271 img loss 1.4402258396148682 img loss 1.4905905723571777 img loss 1.3305381536483765 img loss 1.3552407026290894 img loss 1.4267895221710205 img loss 1.4214707612991333 img loss 1.3829907178878784 img loss 1.4418243169784546 img loss 1.4089173078536987 img loss 1.3681546449661255 img loss 1.463428258895874 img loss 1.5125638246536255 img loss 1.4190374612808228 img loss 1.401353120803833 img loss 1.4507943391799927 img loss 1.4072345495224 img loss 1.424269199371338 img loss 1.4439839124679565 img loss 1.5630913972854614 img loss 1.4499847888946533 img loss 1.4491528272628784 img loss 1.4383100271224976 img loss 1.3610684871673584 img loss 1.5689177513122559 img loss 1.4405220746994019 img loss 1.5226935148239136 img loss 1.3777204751968384 img loss 1.4674571752548218 img loss 1.5164319276809692 img loss 1.3437808752059937 img loss 1.4622632265090942 img loss 1.4767831563949585 img loss 1.5862356424331665 img loss 1.3793692588806152 img loss 1.4620435237884521 img loss 1.428835153579712 img loss 1.406441330909729 img loss 1.4427635669708252 img loss 1.4058631658554077 img loss 1.4953314065933228 img loss 1.5459448099136353 img loss 1.416458249092102 img loss 1.3791574239730835 img loss 1.505511999130249 img loss 1.5078152418136597 img loss 1.4712029695510864 img loss 1.4190113544464111 img loss 1.489371657371521 img loss 1.3696924448013306 img loss 1.6693521738052368 img loss 1.446110486984253 img loss 1.4889642000198364 img loss 1.552821397781372 img loss 1.450759768486023 img loss 1.4354764223098755 img loss 1.5244858264923096 {'loss': 1.4535, 'grad_norm': 0.4251229166984558, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2029812335968018 img loss 1.2010958194732666 img loss 1.197110891342163 img loss 1.2000187635421753 img loss 1.231217861175537 img loss 1.229771375656128 img loss 1.2251428365707397 img loss 1.159371018409729 img loss 1.1642911434173584 img loss 1.109806776046753 img loss 1.2727506160736084 img loss 1.2081243991851807 img loss 1.2198753356933594 img loss 1.232378602027893 img loss 1.1968989372253418 img loss 1.219517707824707 img loss 1.2676200866699219 img loss 1.1993906497955322 img loss 1.3031071424484253 img loss 1.2573083639144897 img loss 1.239936113357544 img loss 1.2598332166671753 img loss 1.1877195835113525 img loss 1.19852614402771 img loss 1.1591947078704834 img loss 1.19416081905365 img loss 1.180130958557129 img loss 1.2748359441757202 img loss 1.2244715690612793 img loss 1.2336440086364746 img loss 1.2084040641784668 img loss 1.234019160270691 img loss 1.209909439086914 img loss 1.216428518295288 img loss 1.2288745641708374 img loss 1.2366290092468262 img loss 1.2218378782272339 img loss 1.2061853408813477 img loss 1.2146631479263306 img loss 1.2313603162765503 img loss 1.2271192073822021 img loss 1.206671953201294img loss 1.277318000793457 img loss 1.1914507150650024 img loss 1.2168598175048828 img loss 1.191500186920166 img loss 1.2532849311828613 img loss 1.291907787322998 img loss 1.2355782985687256 img loss 1.2498550415039062 img loss 1.168333649635315 img loss 1.2261607646942139 img loss 1.2276270389556885 img loss 1.2027356624603271 img loss 1.2755119800567627 img loss 1.1681010723114014 img loss 1.221686840057373 img loss 1.1991634368896484 img loss 1.2939977645874023 img loss 1.1708248853683472 img loss 1.2973753213882446 img loss 1.1813271045684814 img loss 1.2171157598495483 img loss 1.2534183263778687 img loss 1.2106655836105347 img loss 1.1845072507858276 img loss 1.2187652587890625 img loss 1.2467044591903687 img loss 1.1212186813354492 img loss 1.2478147745132446 img loss 1.2433338165283203 img loss 1.2019987106323242 img loss 1.2217531204223633 img loss 1.2517553567886353 img loss 1.266944169998169 img loss 1.2559642791748047 img loss 1.266669511795044 img loss 1.1776211261749268 img loss 1.2478312253952026 img loss 1.299770712852478 img loss 1.2283129692077637 img loss 1.208093523979187 img loss 1.2452867031097412 img loss 1.1263127326965332 img loss 1.1989474296569824 img loss 1.2398602962493896 img loss 1.2601383924484253 img loss 1.16156005859375 img loss 1.234170913696289 img loss 1.1884063482284546 img loss 1.1884500980377197 img loss 1.1936920881271362 img loss 1.2966498136520386 img loss 1.2424319982528687 img loss 1.1690394878387451 img loss 1.2603825330734253 img loss 1.2192912101745605 img loss 1.1960203647613525 img loss 1.224460482597351 img loss 1.2199695110321045 img loss 1.2455799579620361 img loss 1.1955580711364746 img loss 1.2033413648605347 img loss 1.1564267873764038 img loss 1.1645891666412354 img loss 1.2097656726837158 img loss 1.2685203552246094 img loss 1.2148895263671875 img loss 1.131110429763794 img loss 1.2097856998443604 img loss 1.2139525413513184 img loss 1.2507169246673584 img loss 1.217050552368164 img loss 1.2354005575180054 img loss 1.2019991874694824 img loss 1.1866769790649414 img loss 1.2032305002212524 img loss 1.109649419784546 img loss 1.2523391246795654 img loss 1.2677302360534668 img loss 1.2014919519424438 img loss 1.2243868112564087 img loss 1.19223952293396 img loss 1.2542921304702759 img loss 1.2791740894317627 img loss 1.2639706134796143 img loss 1.240883469581604 img loss 1.192007303237915 {'loss': 1.2192, 'grad_norm': 0.35009440779685974, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.267055869102478 img loss 1.2609760761260986 img loss 1.156421422958374 img loss 1.1317226886749268 img loss 1.1134577989578247 img loss 1.207700490951538 img loss 1.1102207899093628 img loss 1.2237927913665771 img loss 1.1774818897247314 img loss 1.1544928550720215 img loss 1.1461775302886963 img loss 1.1970661878585815 img loss 1.1434786319732666 img loss 1.2113251686096191 img loss 1.181960105895996 img loss 1.0974780321121216 img loss 1.2019000053405762 img loss 1.1874442100524902 img loss 1.1579434871673584 img loss 1.194961428642273 img loss 1.2341737747192383 img loss 1.1787160634994507 img loss 1.166400671005249 img loss 1.1690223217010498 img loss 1.2069101333618164 img loss 1.1996654272079468 img loss 1.2091174125671387 img loss 1.1925022602081299 img loss 1.243586778640747 img loss 1.1684849262237549 img loss 1.2455213069915771 img loss 1.2394585609436035 img loss 1.0859864950180054 img loss 1.1036081314086914 img loss 1.1161011457443237 img loss 1.1212842464447021 img loss 1.1017998456954956 img loss 1.1901524066925049 img loss 1.1732189655303955 img loss 1.1396055221557617 img loss 1.098644733428955 img loss 1.199501633644104 img loss 1.206537127494812 img loss 1.1464585065841675 img loss 1.2044674158096313 img loss 1.2525930404663086 img loss 1.1998944282531738 img loss 1.2275055646896362 img loss 1.286141037940979 img loss 1.1686744689941406 img loss 1.0949981212615967 img loss 1.1055439710617065 img loss 1.195107340812683 img loss 1.1627838611602783 img loss 1.1805044412612915 img loss 1.1758687496185303 img loss 1.1490776538848877 img loss 1.2210209369659424 img loss 1.254106044769287 img loss 1.1596753597259521 img loss 1.25039541721344 img loss 1.1926672458648682 img loss 1.1671278476715088 img loss 1.1283116340637207 img loss 1.1542571783065796 img loss 1.2364434003829956 img loss 1.1469758749008179 img loss 1.244922161102295 img loss 1.2030466794967651 img loss 1.2445061206817627 img loss 1.2153021097183228 img loss 1.2109100818634033 img loss 1.2344610691070557 img loss 1.2103650569915771 img loss 1.2836177349090576 img loss 1.3317103385925293 img loss 1.1965776681900024 img loss 1.1301935911178589 img loss 1.2808693647384644 img loss 1.306993007659912 img loss 1.2448763847351074img loss 1.1206116676330566 img loss 1.1486660242080688 img loss 1.2240556478500366 img loss 1.224098563194275 img loss 1.1612775325775146 img loss 1.1840720176696777 img loss 1.2350726127624512 img loss 1.2011981010437012 img loss 1.1501197814941406 img loss 1.2534596920013428 img loss 1.1945613622665405 img loss 1.1546257734298706 img loss 1.199167013168335 img loss 1.1547613143920898 img loss 1.1814810037612915 img loss 1.1717642545700073 img loss 1.2219781875610352 img loss 1.3003206253051758 img loss 1.1661499738693237 img loss 1.1577423810958862 img loss 1.2359241247177124 img loss 1.1794143915176392 img loss 1.183132529258728 img loss 1.1809173822402954 img loss 1.1696783304214478 img loss 1.1586887836456299 img loss 1.2207438945770264 img loss 1.3537923097610474 img loss 1.1646227836608887 img loss 1.1711043119430542 img loss 1.1945070028305054 img loss 1.173630952835083 img loss 1.1734813451766968 img loss 1.238410472869873 img loss 1.208999514579773 img loss 1.268961787223816 img loss 1.1771799325942993 img loss 1.2043530941009521 img loss 1.1956905126571655 img loss 1.1639686822891235 img loss 1.16631281375885 img loss 1.2288522720336914 img loss 1.0953264236450195 img loss 1.2705119848251343 img loss 1.1500511169433594 img loss 1.327771782875061 img loss 1.1849713325500488 {'loss': 1.1919, 'grad_norm': 0.31508252024650574, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4742475748062134 img loss 1.5540262460708618 img loss 1.579005479812622 img loss 1.6147040128707886 img loss 1.5975584983825684 img loss 1.6466634273529053 img loss 1.4432728290557861 img loss 1.6272876262664795 img loss 1.5996670722961426 img loss 1.4464752674102783 img loss 1.60379159450531 img loss 1.498634696006775 img loss 1.5673482418060303 img loss 1.4975717067718506 img loss 1.5066325664520264 img loss 1.5910565853118896 img loss 1.480826735496521 img loss 1.4201551675796509 img loss 1.6144658327102661 img loss 1.5996073484420776 img loss 1.6760400533676147 img loss 1.6742470264434814 img loss 1.6221630573272705 img loss 1.6934216022491455 img loss 1.6307622194290161 img loss 1.5929272174835205 img loss 1.5638476610183716 img loss 1.469563364982605 img loss 1.6033073663711548 img loss 1.5618687868118286 img loss 1.5358989238739014 img loss 1.7739455699920654 img loss 1.5084277391433716 img loss 1.7528308629989624 img loss 1.593868374824524 img loss 1.6820343732833862 img loss 1.7458415031433105 img loss 1.5274604558944702 img loss 1.6561936140060425 img loss 1.503868579864502 img loss 1.5258963108062744 img loss 1.611223816871643 img loss 1.5154392719268799 img loss 1.6471524238586426 img loss 1.55770742893219 img loss 1.497052788734436 img loss 1.6493785381317139 img loss 1.528181791305542 img loss 1.6426151990890503 img loss 1.4615676403045654 img loss 1.4854323863983154 img loss 1.6552871465682983img loss 1.6776140928268433 img loss 1.6956523656845093 img loss 1.679878830909729 img loss 1.449043869972229 img loss 1.756872534751892 img loss 1.5871394872665405 img loss 1.590569019317627 img loss 1.761972427368164 img loss 1.5581711530685425 img loss 1.557807207107544 img loss 1.630237102508545 img loss 1.4029806852340698 img loss 1.6797611713409424 img loss 1.5483815670013428 img loss 1.5595892667770386 img loss 1.642022728919983 img loss 1.5202240943908691 img loss 1.4823039770126343 img loss 1.524440884590149 img loss 1.536267876625061 img loss 1.5824497938156128 img loss 1.5832407474517822 img loss 1.5091068744659424 img loss 1.6676090955734253 img loss 1.6245824098587036 img loss 1.594804286956787 img loss 1.6916611194610596 img loss 1.661375880241394 img loss 1.5616259574890137 img loss 1.6155365705490112 img loss 1.4533272981643677 img loss 1.680040955543518 img loss 1.6585639715194702 img loss 1.5831329822540283 img loss 1.4494184255599976 img loss 1.6580373048782349 img loss 1.6775387525558472 img loss 1.5952738523483276 img loss 1.430285096168518 img loss 1.6346418857574463 img loss 1.5593568086624146 img loss 1.5194534063339233 img loss 1.7356497049331665 img loss 1.557047724723816 img loss 1.4885413646697998 img loss 1.4409244060516357 img loss 1.4875483512878418 img loss 1.7213876247406006 img loss 1.4752204418182373 img loss 1.5557514429092407 img loss 1.5842338800430298 img loss 1.5580964088439941 img loss 1.5353482961654663 img loss 1.5756360292434692 img loss 1.5469815731048584 img loss 1.5751160383224487 img loss 1.6349804401397705 img loss 1.6446033716201782 img loss 1.5562913417816162 img loss 1.8319964408874512 img loss 1.6601064205169678 img loss 1.648484706878662 img loss 1.5887211561203003 img loss 1.5134929418563843 img loss 1.6599985361099243 img loss 1.6006399393081665 img loss 1.5848954916000366 img loss 1.5162299871444702 img loss 1.4658942222595215 img loss 1.6328245401382446 img loss 1.6961417198181152 img loss 1.584892749786377 img loss 1.4327515363693237 img loss 1.5793126821517944 img loss 1.56564199924469 img loss 1.5605823993682861 {'loss': 1.5839, 'grad_norm': 0.40733399987220764, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.7584316730499268 img loss 1.7909282445907593 img loss 1.5082852840423584 img loss 1.8122153282165527 img loss 1.6719847917556763 img loss 1.7539292573928833 img loss 1.852336049079895 img loss 1.5401958227157593 img loss 1.5426279306411743 img loss 1.609594464302063 img loss 1.5694178342819214 img loss 1.6809464693069458 img loss 1.5880980491638184 img loss 1.777570128440857 img loss 1.7742371559143066 img loss 1.5235087871551514 img loss 1.5803724527359009 img loss 1.561355710029602 img loss 1.6368848085403442 img loss 1.650474190711975 img loss 1.8040552139282227 img loss 1.5811086893081665 img loss 1.581357717514038 img loss 1.5190397500991821 img loss 1.6827722787857056 img loss 1.6356607675552368 img loss 1.7016507387161255 img loss 1.6150691509246826 img loss 1.6645371913909912 img loss 1.6202653646469116 img loss 1.5980937480926514 img loss 1.4957700967788696 img loss 1.8254575729370117 img loss 1.5862656831741333 img loss 1.6414705514907837 img loss 1.6071858406066895 img loss 1.6291557550430298 img loss 1.6771233081817627 img loss 1.6468291282653809 img loss 1.5191727876663208 img loss 1.723604440689087 img loss 1.7323657274246216 img loss 1.6523921489715576 img loss 1.6974818706512451 img loss 1.7610299587249756 img loss 1.5458085536956787 img loss 1.632197618484497 img loss 1.7418845891952515 img loss 1.5017727613449097 img loss 1.7258641719818115 img loss 1.604306697845459 img loss 1.8149991035461426 img loss 1.4434292316436768 img loss 1.504372239112854 img loss 1.650140404701233 img loss 1.8134515285491943 img loss 1.5968279838562012 img loss 1.6168941259384155 img loss 1.6045377254486084 img loss 1.6930270195007324 img loss 1.64568030834198 img loss 1.7033512592315674 img loss 1.6405885219573975 img loss 1.6185791492462158 img loss 1.6506308317184448 img loss 1.637574315071106 img loss 1.5622916221618652 img loss 1.6238762140274048 img loss 1.5659213066101074 img loss 1.5175989866256714 img loss 1.653138279914856 img loss 1.7115893363952637 img loss 1.7704236507415771 img loss 1.6984208822250366 img loss 1.615674376487732 img loss 1.5926105976104736 img loss 1.5645687580108643 img loss 1.7464985847473145 img loss 1.8213351964950562 img loss 1.6141693592071533 img loss 1.7172995805740356 img loss 1.5043359994888306 img loss 1.5618224143981934 img loss 1.6376774311065674 img loss 1.5577038526535034 img loss 1.7261152267456055 img loss 1.5689796209335327 img loss 1.646671175956726 img loss 1.6464476585388184 img loss 1.5981909036636353 img loss 1.6535900831222534 img loss 1.6298223733901978 img loss 1.6582027673721313 img loss 1.600458025932312 img loss 1.561529517173767 img loss 1.5843987464904785 img loss 1.6540158987045288 img loss 1.5463756322860718 img loss 1.5725539922714233 img loss 1.555955410003662 img loss 1.8558770418167114 img loss 1.6759727001190186 img loss 1.6218245029449463 img loss 1.5264252424240112 img loss 1.6117197275161743 img loss 1.506303071975708 img loss 1.563241720199585 img loss 1.540906310081482 img loss 1.5907999277114868 img loss 1.6275891065597534 img loss 1.629555583000183 img loss 1.637743353843689 img loss 1.6015323400497437 img loss 1.588910460472107 img loss 1.7082728147506714 img loss 1.5430890321731567 img loss 1.5213711261749268 img loss 1.6285719871520996 img loss 1.518153429031372 img loss 1.7025749683380127 img loss 1.5524966716766357 img loss 1.554578423500061 img loss 1.6774722337722778 img loss 1.7677006721496582 img loss 1.5747286081314087 img loss 1.8451268672943115 img loss 1.6039291620254517 img loss 1.5700865983963013 {'loss': 1.6356, 'grad_norm': 0.4085417091846466, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.318245530128479 img loss 1.2525100708007812 img loss 1.3189923763275146 img loss 1.2690225839614868 img loss 1.430383324623108 img loss 1.293166995048523 img loss 1.4271061420440674 img loss 1.2995173931121826 img loss 1.31538724899292 img loss 1.268344521522522 img loss 1.4046359062194824 img loss 1.4159027338027954 img loss 1.331602692604065 img loss 1.3367769718170166 img loss 1.3152730464935303 img loss 1.2238432168960571 img loss 1.2882161140441895 img loss 1.283200740814209 img loss 1.3802746534347534 img loss 1.3191531896591187 img loss 1.4025156497955322 img loss 1.2896240949630737 img loss 1.3145997524261475 img loss 1.3391249179840088 img loss 1.4379371404647827 img loss 1.2985591888427734 img loss 1.2713212966918945 img loss 1.42013418674469 img loss 1.3441215753555298 img loss 1.2834978103637695 img loss 1.4052468538284302 img loss 1.3826912641525269 img loss 1.3842921257019043 img loss 1.3198890686035156 img loss 1.3231810331344604 img loss 1.3999563455581665 img loss 1.299763560295105 img loss 1.3011516332626343 img loss 1.2965549230575562 img loss 1.3314893245697021 img loss 1.2852452993392944 img loss 1.2613767385482788 img loss 1.236047387123108 img loss 1.2709922790527344 img loss 1.2800545692443848 img loss 1.321851372718811 img loss 1.3474317789077759 img loss 1.4131256341934204 img loss 1.3597527742385864 img loss 1.3816951513290405 img loss 1.3718807697296143 img loss 1.3473007678985596 img loss 1.4044688940048218 img loss 1.2822922468185425 img loss 1.3153893947601318 img loss 1.2600560188293457 img loss 1.333146333694458 img loss 1.425402045249939 img loss 1.3674349784851074 img loss 1.3269115686416626 img loss 1.2375844717025757 img loss 1.3393073081970215 img loss 1.4085313081741333 img loss 1.286322832107544 img loss 1.4177968502044678 img loss 1.1984002590179443 img loss 1.2021206617355347 img loss 1.3336557149887085 img loss 1.3047930002212524 img loss 1.2880685329437256 img loss 1.298196792602539 img loss 1.369085669517517 img loss 1.3735169172286987 img loss 1.4069260358810425 img loss 1.2970407009124756 img loss 1.285696029663086 img loss 1.285301923751831 img loss 1.2857434749603271 img loss 1.3665889501571655 img loss 1.3627431392669678 img loss 1.3790056705474854 img loss 1.417431354522705 img loss 1.3100318908691406 img loss 1.3081194162368774 img loss 1.2831649780273438 img loss 1.2945352792739868 img loss 1.3738940954208374img loss 1.3381321430206299 img loss 1.2553651332855225 img loss 1.3065385818481445 img loss 1.2519378662109375 img loss 1.2844891548156738 img loss 1.2452785968780518 img loss 1.3427506685256958 img loss 1.252023458480835 img loss 1.4015644788742065 img loss 1.2872593402862549 img loss 1.3460915088653564 img loss 1.3473683595657349 img loss 1.3354060649871826 img loss 1.3272866010665894 img loss 1.3541475534439087 img loss 1.3474241495132446 img loss 1.3431917428970337 img loss 1.2977039813995361 img loss 1.2924524545669556 img loss 1.299944281578064 img loss 1.244881510734558 img loss 1.2812947034835815 img loss 1.4660357236862183 img loss 1.3385378122329712 img loss 1.2795517444610596 img loss 1.2815555334091187 img loss 1.3291267156600952 img loss 1.2875498533248901 img loss 1.2994412183761597 img loss 1.268619418144226 img loss 1.3133983612060547 img loss 1.331037998199463 img loss 1.303544282913208 img loss 1.3285013437271118 img loss 1.3148868083953857 img loss 1.3055614233016968 img loss 1.359293818473816 img loss 1.365490436553955 img loss 1.2741832733154297 img loss 1.373534917831421 img loss 1.2460014820098877 {'loss': 1.3241, 'grad_norm': 0.28549307584762573, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.19187593460083 img loss 1.1864526271820068 img loss 1.157618761062622 img loss 1.1734063625335693 img loss 1.212518334388733 img loss 1.1946700811386108 img loss 1.1469459533691406 img loss 1.237531065940857 img loss 1.282769799232483 img loss 1.1741522550582886 img loss 1.2081167697906494 img loss 1.1692348718643188 img loss 1.2387030124664307 img loss 1.1885780096054077 img loss 1.2076536417007446 img loss 1.211266279220581 img loss 1.249962568283081 img loss 1.2016395330429077 img loss 1.2116811275482178 img loss 1.1633634567260742 img loss 1.1560914516448975 img loss 1.2914464473724365 img loss 1.2863843441009521 img loss 1.1552599668502808 img loss 1.1904977560043335 img loss 1.1577675342559814 img loss 1.2534770965576172 img loss 1.1389079093933105 img loss 1.2060927152633667 img loss 1.2282501459121704 img loss 1.1776912212371826 img loss 1.2244718074798584 img loss 1.1358306407928467 img loss 1.1775126457214355 img loss 1.2397812604904175 img loss 1.1893738508224487 img loss 1.2192935943603516 img loss 1.1266794204711914 img loss 1.2545485496520996 img loss 1.2248718738555908 img loss 1.1649692058563232 img loss 1.1792995929718018 img loss 1.1862510442733765 img loss 1.1350247859954834 img loss 1.2049158811569214 img loss 1.2485404014587402 img loss 1.2034199237823486 img loss 1.266582727432251 img loss 1.2472721338272095 img loss 1.1832239627838135 img loss 1.154998540878296img loss 1.1883200407028198 img loss 1.2448515892028809 img loss 1.2245968580245972 img loss 1.1801810264587402 img loss 1.231230616569519 img loss 1.2301719188690186 img loss 1.1885989904403687 img loss 1.1700643301010132 img loss 1.1884512901306152 img loss 1.221093773841858 img loss 1.223673701286316 img loss 1.252316951751709 img loss 1.283474326133728 img loss 1.2732317447662354 img loss 1.1129722595214844 img loss 1.2479714155197144 img loss 1.2163386344909668 img loss 1.2082586288452148 img loss 1.1850008964538574 img loss 1.1784390211105347 img loss 1.1971185207366943 img loss 1.1994788646697998 img loss 1.216461420059204 img loss 1.2036659717559814 img loss 1.2413480281829834 img loss 1.3520283699035645 img loss 1.2101478576660156 img loss 1.1611793041229248 img loss 1.27642822265625 img loss 1.2155441045761108 img loss 1.0583847761154175 img loss 1.1728919744491577 img loss 1.210766077041626 img loss 1.1992307901382446 img loss 1.3029907941818237 img loss 1.2126797437667847 img loss 1.2699886560440063 img loss 1.2060205936431885 img loss 1.2361654043197632 img loss 1.202622890472412 img loss 1.1838468313217163 img loss 1.2243309020996094 img loss 1.141776204109192 img loss 1.1462370157241821 img loss 1.1487443447113037 img loss 1.240274429321289 img loss 1.1876236200332642 img loss 1.193236231803894 img loss 1.2092206478118896 img loss 1.2510513067245483 img loss 1.1491316556930542 img loss 1.2703416347503662 img loss 1.2145830392837524 img loss 1.1353381872177124 img loss 1.142838954925537 img loss 1.2425408363342285 img loss 1.1714699268341064 img loss 1.1697214841842651 img loss 1.1133254766464233 img loss 1.1978920698165894 img loss 1.24397873878479 img loss 1.2438445091247559 img loss 1.1828912496566772 img loss 1.2459133863449097 img loss 1.2320835590362549 img loss 1.1626862287521362 img loss 1.2190542221069336 img loss 1.2059162855148315 img loss 1.2023662328720093 img loss 1.183226466178894 img loss 1.1973119974136353 img loss 1.15024733543396 img loss 1.285230278968811 img loss 1.1812714338302612 img loss 1.1818528175354004 img loss 1.192457914352417 img loss 1.2315443754196167 {'loss': 1.2038, 'grad_norm': 0.23138074576854706, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.226771354675293 img loss 1.226226568222046 img loss 1.265667200088501 img loss 1.223580241203308 img loss 1.2714154720306396 img loss 1.2527378797531128 img loss 1.277167558670044 img loss 1.2471225261688232 img loss 1.200987696647644 img loss 1.2441171407699585 img loss 1.272557020187378 img loss 1.1895025968551636 img loss 1.2098634243011475 img loss 1.2381832599639893 img loss 1.232561469078064 img loss 1.2355257272720337 img loss 1.3063466548919678 img loss 1.2356047630310059 img loss 1.240333080291748 img loss 1.2462193965911865 img loss 1.309906005859375 img loss 1.2315224409103394 img loss 1.2482420206069946 img loss 1.228346824645996 img loss 1.2591617107391357 img loss 1.2771536111831665 img loss 1.2208685874938965 img loss 1.2014005184173584 img loss 1.2030051946640015 img loss 1.2419036626815796 img loss 1.3079540729522705img loss 1.274956464767456 img loss 1.2044343948364258 img loss 1.2121086120605469 img loss 1.2756736278533936 img loss 1.265289306640625 img loss 1.2384332418441772 img loss 1.2789478302001953 img loss 1.2198747396469116 img loss 1.2905590534210205 img loss 1.2729647159576416 img loss 1.2082359790802002 img loss 1.2983988523483276 img loss 1.2349679470062256 img loss 1.2592558860778809 img loss 1.2455942630767822 img loss 1.2764450311660767 img loss 1.2388445138931274 img loss 1.2822604179382324 img loss 1.2763108015060425 img loss 1.2413578033447266 img loss 1.229692816734314 img loss 1.230150818824768 img loss 1.2906211614608765 img loss 1.2435235977172852 img loss 1.2427611351013184 img loss 1.25302255153656 img loss 1.255054235458374 img loss 1.2250677347183228 img loss 1.2203978300094604 img loss 1.247476577758789 img loss 1.2671259641647339 img loss 1.1989332437515259 img loss 1.2807097434997559 img loss 1.2394450902938843 img loss 1.2416207790374756 img loss 1.2031645774841309 img loss 1.2617299556732178 img loss 1.22115957736969 img loss 1.2595539093017578 img loss 1.2603576183319092 img loss 1.2421159744262695 img loss 1.2205662727355957 img loss 1.2449839115142822 img loss 1.3140687942504883 img loss 1.2363156080245972 img loss 1.218265175819397 img loss 1.2298986911773682 img loss 1.2280285358428955 img loss 1.253792405128479 img loss 1.27252995967865 img loss 1.2567002773284912 img loss 1.2243056297302246 img loss 1.2540619373321533 img loss 1.2683818340301514 img loss 1.2376935482025146 img loss 1.2701572179794312 img loss 1.285013198852539 img loss 1.2258503437042236 img loss 1.2862529754638672 img loss 1.306052565574646 img loss 1.2584288120269775 img loss 1.2533934116363525 img loss 1.221942663192749 img loss 1.2550157308578491 img loss 1.1847400665283203 img loss 1.3031511306762695 img loss 1.2060353755950928 img loss 1.2504676580429077 img loss 1.249351978302002 img loss 1.2445358037948608 img loss 1.218159556388855 img loss 1.2669943571090698 img loss 1.248932123184204 img loss 1.2795422077178955 img loss 1.2373664379119873 img loss 1.2445564270019531 img loss 1.1800689697265625 img loss 1.248328447341919 img loss 1.2676365375518799 img loss 1.2314132452011108 img loss 1.2694101333618164 img loss 1.2374851703643799 img loss 1.2514259815216064 img loss 1.243056058883667 img loss 1.2265503406524658 img loss 1.271031141281128 img loss 1.2694220542907715 img loss 1.2350471019744873 img loss 1.1975682973861694 img loss 1.2476770877838135 img loss 1.22081458568573 img loss 1.251664638519287 img loss 1.265123963356018 img loss 1.1971848011016846 img loss 1.2113206386566162 img loss 1.2710766792297363 img loss 1.278403639793396 {'loss': 1.2469, 'grad_norm': 0.31086400151252747, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2666051387786865 img loss 1.332173228263855 img loss 1.2747416496276855 img loss 1.3050875663757324 img loss 1.1845240592956543 img loss 1.2415742874145508 img loss 1.282183051109314 img loss 1.3266035318374634 img loss 1.485521674156189 img loss 1.2689208984375 img loss 1.3308391571044922 img loss 1.304656982421875 img loss 1.330217957496643 img loss 1.3395764827728271 img loss 1.2300304174423218 img loss 1.2913957834243774 img loss 1.270254135131836 img loss 1.327330231666565 img loss 1.270587682723999 img loss 1.3254706859588623 img loss 1.2855236530303955 img loss 1.398566722869873 img loss 1.3053481578826904 img loss 1.323004126548767 img loss 1.3232637643814087 img loss 1.2664283514022827 img loss 1.346240758895874 img loss 1.3209987878799438 img loss 1.3184571266174316 img loss 1.2723376750946045 img loss 1.2969712018966675 img loss 1.310572862625122 img loss 1.322752833366394 img loss 1.3142261505126953 img loss 1.252647876739502 img loss 1.2527779340744019 img loss 1.2858574390411377 img loss 1.2628991603851318 img loss 1.2225621938705444 img loss 1.3630328178405762 img loss 1.3476570844650269 img loss 1.314645767211914 img loss 1.363969326019287 img loss 1.2830873727798462 img loss 1.2573527097702026 img loss 1.342467188835144 img loss 1.366478443145752 img loss 1.265822410583496 img loss 1.3216259479522705 img loss 1.2987240552902222 img loss 1.3108458518981934 img loss 1.2455013990402222 img loss 1.328015923500061 img loss 1.333774447441101 img loss 1.3018641471862793 img loss 1.3336408138275146 img loss 1.405048131942749 img loss 1.286523461341858 img loss 1.29744291305542 img loss 1.2943000793457031 img loss 1.4024760723114014 img loss 1.282905101776123 img loss 1.3715014457702637 img loss 1.277233362197876 img loss 1.219386339187622 img loss 1.2854766845703125 img loss 1.3555715084075928 img loss 1.2616264820098877 img loss 1.2016414403915405 img loss 1.3407864570617676 img loss 1.2858980894088745 img loss 1.3498170375823975 img loss 1.2644119262695312 img loss 1.2234385013580322 img loss 1.2234491109848022 img loss 1.2683371305465698 img loss 1.3574354648590088 img loss 1.2442245483398438 img loss 1.1866161823272705 img loss 1.353111743927002 img loss 1.305436372756958 img loss 1.3468735218048096 img loss 1.3868906497955322 img loss 1.3598119020462036 img loss 1.3216335773468018 img loss 1.2567027807235718 img loss 1.3846218585968018 img loss 1.3146194219589233 img loss 1.4106367826461792 img loss 1.3522549867630005 img loss 1.2598122358322144 img loss 1.2749309539794922 img loss 1.336391806602478 img loss 1.3264756202697754 img loss 1.2865855693817139 img loss 1.346087098121643 img loss 1.2995322942733765 img loss 1.3608468770980835 img loss 1.2832458019256592 img loss 1.274295449256897 img loss 1.2548779249191284 img loss 1.297945261001587 img loss 1.3192212581634521 img loss 1.393894910812378 img loss 1.3306689262390137 img loss 1.3127360343933105 img loss 1.2671916484832764 img loss 1.356260895729065 img loss 1.3479653596878052 img loss 1.3337584733963013 img loss 1.204115629196167 img loss 1.3255096673965454 img loss 1.2584367990493774 img loss 1.3590539693832397 img loss 1.2721174955368042 img loss 1.2934284210205078 img loss 1.3711565732955933 img loss 1.255868673324585 img loss 1.2665833234786987 img loss 1.3560220003128052 img loss 1.2495421171188354 img loss 1.3154016733169556 img loss 1.3532477617263794 img loss 1.3835768699645996 img loss 1.268568754196167 img loss 1.2626173496246338 img loss 1.3971917629241943 img loss 1.214742660522461 {'loss': 1.3062, 'grad_norm': 0.3038957417011261, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.404233694076538 img loss 1.5465224981307983 img loss 1.4224705696105957 img loss 1.4764503240585327 img loss 1.3740813732147217 img loss 1.462876796722412 img loss 1.3317207098007202 img loss 1.5817097425460815 img loss 1.588528037071228 img loss 1.4984980821609497 img loss 1.5676723718643188 img loss 1.48801589012146 img loss 1.563292384147644 img loss 1.5395764112472534 img loss 1.503718614578247 img loss 1.4273689985275269 img loss 1.5546717643737793 img loss 1.5573149919509888 img loss 1.5387059450149536 img loss 1.4560452699661255 img loss 1.4875810146331787 img loss 1.3938583135604858 img loss 1.461885929107666 img loss 1.55210280418396 img loss 1.516909122467041 img loss 1.63890540599823 img loss 1.5933791399002075 img loss 1.4906742572784424 img loss 1.5585682392120361 img loss 1.3686916828155518 img loss 1.3926664590835571 img loss 1.5038930177688599 img loss 1.4678919315338135 img loss 1.6256864070892334 img loss 1.497860312461853 img loss 1.4812331199645996 img loss 1.4976102113723755 img loss 1.4676343202590942 img loss 1.4248899221420288 img loss 1.3904988765716553 img loss 1.476991057395935 img loss 1.4644898176193237 img loss 1.487148404121399 img loss 1.5242429971694946 img loss 1.6283752918243408 img loss 1.5696632862091064 img loss 1.4807935953140259 img loss 1.4693303108215332 img loss 1.5860021114349365 img loss 1.5726417303085327 img loss 1.391711950302124 img loss 1.6140458583831787 img loss 1.5437016487121582 img loss 1.6724236011505127 img loss 1.408676266670227 img loss 1.5162768363952637 img loss 1.6135865449905396 img loss 1.5363696813583374 img loss 1.3630926609039307 img loss 1.4929423332214355 img loss 1.6068434715270996 img loss 1.4342715740203857img loss 1.510536551475525 img loss 1.4907803535461426 img loss 1.5435117483139038 img loss 1.5556120872497559 img loss 1.543605923652649 img loss 1.60468327999115 img loss 1.5298912525177002 img loss 1.5708706378936768 img loss 1.4766486883163452 img loss 1.4574863910675049 img loss 1.4622873067855835 img loss 1.418350338935852 img loss 1.4723495244979858 img loss 1.4609612226486206 img loss 1.4055867195129395 img loss 1.561875581741333 img loss 1.4760587215423584 img loss 1.506299376487732 img loss 1.58127760887146 img loss 1.5074305534362793 img loss 1.6661922931671143 img loss 1.4258869886398315 img loss 1.418535828590393 img loss 1.4476181268692017 img loss 1.484070062637329 img loss 1.4841822385787964 img loss 1.3825700283050537 img loss 1.450089931488037 img loss 1.3555220365524292 img loss 1.45209538936615 img loss 1.4669668674468994 img loss 1.4840209484100342 img loss 1.5719903707504272 img loss 1.5850170850753784 img loss 1.4947458505630493 img loss 1.477628231048584 img loss 1.4218884706497192 img loss 1.4368727207183838 img loss 1.4789551496505737 img loss 1.5657902956008911 img loss 1.3025251626968384 img loss 1.46505606174469 img loss 1.5901309251785278 img loss 1.4980823993682861 img loss 1.520642876625061 img loss 1.5104882717132568 img loss 1.6293549537658691 img loss 1.424789547920227 img loss 1.4679951667785645 img loss 1.438494324684143 img loss 1.5918749570846558 img loss 1.5491806268692017 img loss 1.495795726776123 img loss 1.4041274785995483img loss 1.4493920803070068img loss 1.4895840883255005 img loss 1.4630600214004517img loss 1.4594438076019287 img loss 1.5683207511901855 img loss 1.5604462623596191 img loss 1.4736472368240356 img loss 1.43448805809021 img loss 1.5743647813796997 img loss 1.5500770807266235 img loss 1.5098880529403687 img loss 1.5526378154754639 {'loss': 1.4985, 'grad_norm': 0.49028828740119934, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1638553142547607 img loss 1.3242992162704468 img loss 1.1431884765625 img loss 1.2019517421722412 img loss 1.2202116250991821 img loss 1.246188759803772 img loss 1.2391889095306396 img loss 1.2120394706726074 img loss 1.1827185153961182 img loss 1.1632726192474365 img loss 1.1665425300598145 img loss 1.1414687633514404 img loss 1.1963776350021362 img loss 1.2071198225021362 img loss 1.2698172330856323 img loss 1.2440085411071777 img loss 1.1682554483413696 img loss 1.319170355796814 img loss 1.2579485177993774 img loss 1.1866531372070312 img loss 1.1563477516174316 img loss 1.2236015796661377 img loss 1.1739810705184937 img loss 1.1708061695098877 img loss 1.2327011823654175 img loss 1.2163519859313965 img loss 1.180053472518921 img loss 1.1824069023132324 img loss 1.2501311302185059 img loss 1.1682217121124268 img loss 1.179951548576355 img loss 1.2003353834152222 img loss 1.188016414642334 img loss 1.1831306219100952 img loss 1.204097032546997 img loss 1.1953376531600952 img loss 1.190098762512207 img loss 1.2488343715667725 img loss 1.2108920812606812img loss 1.2073501348495483 img loss 1.2531003952026367 img loss 1.2091751098632812 img loss 1.173795223236084 img loss 1.1170347929000854 img loss 1.1478853225708008 img loss 1.279381513595581 img loss 1.1879374980926514 img loss 1.1362160444259644 img loss 1.1329586505889893 img loss 1.2360320091247559 img loss 1.2387771606445312 img loss 1.154079794883728 img loss 1.3306773900985718 img loss 1.202244520187378 img loss 1.2463613748550415 img loss 1.1618866920471191 img loss 1.1950275897979736 img loss 1.220568060874939 img loss 1.1934152841567993 img loss 1.2152414321899414 img loss 1.1483381986618042 img loss 1.2134928703308105 img loss 1.1570677757263184 img loss 1.1364569664001465 img loss 1.2040812969207764 img loss 1.1813572645187378 img loss 1.1994590759277344 img loss 1.2134443521499634 img loss 1.1856821775436401 img loss 1.146328330039978 img loss 1.2400938272476196 img loss 1.1153833866119385 img loss 1.2774500846862793 img loss 1.2641313076019287 img loss 1.2486133575439453 img loss 1.208513617515564 img loss 1.1041655540466309 img loss 1.2175735235214233 img loss 1.2050215005874634 img loss 1.1304757595062256 img loss 1.2181894779205322 img loss 1.1986936330795288 img loss 1.1846904754638672 img loss 1.1919161081314087 img loss 1.120627760887146 img loss 1.1989446878433228 img loss 1.227182388305664 img loss 1.177558422088623 img loss 1.2396595478057861 img loss 1.1682249307632446 img loss 1.188912272453308 img loss 1.231920599937439 img loss 1.2294005155563354 img loss 1.3136475086212158 img loss 1.2343635559082031 img loss 1.1805813312530518 img loss 1.1617224216461182 img loss 1.2166545391082764 img loss 1.1828854084014893 img loss 1.2672710418701172 img loss 1.2217241525650024 img loss 1.2373014688491821 img loss 1.1564397811889648 img loss 1.1375259160995483 img loss 1.1983829736709595 img loss 1.2492973804473877 img loss 1.19966459274292 img loss 1.211817979812622 img loss 1.1584900617599487 img loss 1.2481411695480347 img loss 1.1420495510101318 img loss 1.2215121984481812 img loss 1.2722818851470947 img loss 1.1400303840637207 img loss 1.24569571018219 img loss 1.2713230848312378 img loss 1.201343297958374 img loss 1.1834882497787476 img loss 1.158306360244751 img loss 1.237858772277832 img loss 1.271261215209961 img loss 1.192472219467163 img loss 1.1160141229629517 img loss 1.240932822227478 img loss 1.1672351360321045 img loss 1.1926103830337524 img loss 1.194638729095459 img loss 1.1738061904907227 {'loss': 1.2017, 'grad_norm': 0.24556797742843628, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.8248610496520996 img loss 1.6861199140548706 img loss 1.8768965005874634 img loss 1.9311563968658447 img loss 1.6205569505691528 img loss 1.805739164352417 img loss 1.6986587047576904 img loss 1.8036961555480957 img loss 1.8236442804336548 img loss 1.738643765449524 img loss 1.6590253114700317 img loss 1.568350911140442 img loss 1.6509560346603394 img loss 1.7489312887191772 img loss 1.8224241733551025 img loss 1.7416754961013794 img loss 1.6527711153030396 img loss 1.7272098064422607 img loss 1.6672590970993042 img loss 1.7944055795669556 img loss 1.8880879878997803 img loss 1.611777424812317 img loss 1.7070249319076538 img loss 1.895382285118103 img loss 1.716334581375122 img loss 1.7684978246688843 img loss 1.6530014276504517 img loss 1.700846552848816 img loss 1.781219482421875 img loss 1.6922746896743774 img loss 1.5707875490188599 img loss 1.7248815298080444 img loss 1.6160658597946167 img loss 1.650706171989441 img loss 1.775773048400879 img loss 1.7887117862701416 img loss 1.6697372198104858 img loss 1.8314011096954346 img loss 1.7524235248565674 img loss 1.5185109376907349 img loss 1.5948803424835205 img loss 1.692481279373169 img loss 1.788453459739685 img loss 1.7783528566360474 img loss 1.785021424293518 img loss 1.785457968711853 img loss 1.7454071044921875 img loss 1.7032653093338013 img loss 1.7017722129821777 img loss 1.7038334608078003 img loss 1.6622978448867798 img loss 1.6029651165008545 img loss 1.8445818424224854 img loss 1.70655357837677 img loss 1.599015712738037 img loss 1.6013903617858887 img loss 1.768520474433899 img loss 1.8011267185211182 img loss 1.597873568534851 img loss 1.5719655752182007 img loss 1.7058113813400269 img loss 1.6982531547546387 img loss 1.7681801319122314 img loss 1.8153138160705566 img loss 1.657364010810852 img loss 1.6574290990829468 img loss 1.7190271615982056 img loss 1.679160237312317 img loss 1.854681372642517 img loss 1.7319608926773071 img loss 1.720077633857727 img loss 2.0256571769714355 img loss 1.5068869590759277 img loss 1.9921342134475708 img loss 1.8663667440414429 img loss 1.4607549905776978 img loss 1.7819236516952515 img loss 1.6305692195892334 img loss 1.874099850654602 img loss 1.6925511360168457 img loss 1.6558144092559814 img loss 1.7719664573669434 img loss 1.5670583248138428 img loss 1.6301506757736206 img loss 1.725518822669983 img loss 1.8064101934432983 img loss 1.6499791145324707 img loss 1.720563530921936 img loss 1.8391542434692383 img loss 1.7944669723510742 img loss 1.7393758296966553 img loss 1.6899793148040771 img loss 1.766470193862915 img loss 1.6086218357086182 img loss 1.7918367385864258 img loss 1.6187736988067627 img loss 1.7881176471710205 img loss 1.5323830842971802 img loss 1.8049379587173462 img loss 1.553511142730713 img loss 1.7884752750396729 img loss 1.666054368019104 img loss 1.6755197048187256 img loss 1.8600465059280396 img loss 1.7737739086151123 img loss 1.5868728160858154 img loss 1.5170649290084839 img loss 1.7684283256530762 img loss 1.8247768878936768 img loss 1.6328696012496948 img loss 1.742053747177124 img loss 1.6149532794952393 img loss 1.6035082340240479 img loss 1.618656873703003 img loss 1.6720267534255981 img loss 2.006131172180176 img loss 1.7290928363800049 img loss 1.67605459690094 img loss 1.5457671880722046 img loss 1.7623666524887085 img loss 1.7204079627990723 img loss 1.8400850296020508 img loss 2.1086130142211914 img loss 1.6518778800964355 img loss 1.6975616216659546 img loss 1.693847417831421 img loss 1.6382042169570923 img loss 1.776430606842041 {'loss': 1.7209, 'grad_norm': 0.7673577666282654, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1553528308868408 img loss 1.351465106010437 img loss 1.3286073207855225 img loss 1.2255276441574097 img loss 1.2523285150527954 img loss 1.232643723487854 img loss 1.315427541732788 img loss 1.2512147426605225 img loss 1.2446666955947876 img loss 1.2514787912368774 img loss 1.2475112676620483 img loss 1.2434948682785034 img loss 1.2991561889648438 img loss 1.200599193572998 img loss 1.2200539112091064 img loss 1.2580353021621704 img loss 1.2274494171142578 img loss 1.2857822179794312 img loss 1.2603200674057007 img loss 1.3089232444763184 img loss 1.2105846405029297 img loss 1.1994388103485107 img loss 1.246469259262085 img loss 1.2551389932632446 img loss 1.3188731670379639 img loss 1.2743641138076782 img loss 1.2369327545166016 img loss 1.236002802848816 img loss 1.203503131866455 img loss 1.2128781080245972 img loss 1.2437646389007568 img loss 1.2363471984863281 img loss 1.2505028247833252 img loss 1.1665538549423218 img loss 1.2320818901062012 img loss 1.2864737510681152 img loss 1.2389262914657593 img loss 1.2166924476623535 img loss 1.2834341526031494 img loss 1.2062029838562012 img loss 1.179384708404541 img loss 1.2035019397735596 img loss 1.3518738746643066 img loss 1.3028571605682373 img loss 1.2644248008728027 img loss 1.3071117401123047 img loss 1.1561211347579956 img loss 1.2376551628112793 img loss 1.2771155834197998 img loss 1.1908490657806396 img loss 1.2600703239440918 img loss 1.3364113569259644img loss 1.2663904428482056 img loss 1.254857063293457 img loss 1.283811330795288 img loss 1.257778525352478 img loss 1.206591248512268 img loss 1.293426752090454 img loss 1.2606620788574219 img loss 1.2443128824234009 img loss 1.1711091995239258 img loss 1.1856682300567627 img loss 1.2195534706115723 img loss 1.321299433708191 img loss 1.2957427501678467 img loss 1.2105293273925781 img loss 1.2009425163269043 img loss 1.258262276649475 img loss 1.2264935970306396 img loss 1.1723332405090332 img loss 1.1731995344161987 img loss 1.2533820867538452 img loss 1.1639612913131714 img loss 1.3462903499603271 img loss 1.1970043182373047 img loss 1.3056706190109253 img loss 1.2417749166488647 img loss 1.1799873113632202 img loss 1.2289915084838867 img loss 1.2725991010665894 img loss 1.290769100189209 img loss 1.1297210454940796 img loss 1.1808559894561768 img loss 1.2281111478805542 img loss 1.275851845741272 img loss 1.2546700239181519 img loss 1.3068093061447144 img loss 1.258008360862732 img loss 1.2651218175888062 img loss 1.2820029258728027 img loss 1.2777948379516602 img loss 1.3120180368423462 img loss 1.2523702383041382 img loss 1.2500371932983398 img loss 1.2260124683380127 img loss 1.249539852142334 img loss 1.2810120582580566 img loss 1.2456600666046143 img loss 1.2483885288238525 img loss 1.1980842351913452 img loss 1.1924176216125488 img loss 1.1971137523651123 img loss 1.1748402118682861 img loss 1.2531945705413818 img loss 1.2167048454284668 img loss 1.2234210968017578 img loss 1.22482430934906 img loss 1.2035458087921143 img loss 1.1906726360321045 img loss 1.262327790260315 img loss 1.297023057937622 img loss 1.3089779615402222 img loss 1.2737032175064087 img loss 1.2343382835388184 img loss 1.2394942045211792 img loss 1.2712825536727905 img loss 1.2338192462921143 img loss 1.2948322296142578 img loss 1.3046432733535767 img loss 1.2709753513336182 img loss 1.2869603633880615 img loss 1.3088479042053223 img loss 1.2381738424301147 img loss 1.211004614830017 img loss 1.2154979705810547 img loss 1.2488981485366821 img loss 1.2198569774627686 img loss 1.1780439615249634 {'loss': 1.2458, 'grad_norm': 0.45439910888671875, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2688679695129395 img loss 1.2922508716583252 img loss 1.3573747873306274 img loss 1.320404052734375 img loss 1.2459076642990112 img loss 1.2801010608673096 img loss 1.3218104839324951 img loss 1.2002108097076416 img loss 1.1960437297821045 img loss 1.247070074081421 img loss 1.3509927988052368 img loss 1.3540288209915161 img loss 1.2665318250656128 img loss 1.3464709520339966 img loss 1.316494345664978 img loss 1.3006751537322998 img loss 1.352343201637268 img loss 1.3763831853866577 img loss 1.282050371170044 img loss 1.307396650314331 img loss 1.3759099245071411 img loss 1.2643318176269531 img loss 1.330167531967163 img loss 1.3748551607131958 img loss 1.2098511457443237 img loss 1.285569429397583 img loss 1.3330391645431519 img loss 1.3632292747497559 img loss 1.3556493520736694 img loss 1.2872495651245117 img loss 1.3288381099700928 img loss 1.299559235572815 img loss 1.3542077541351318 img loss 1.2590231895446777 img loss 1.2074487209320068img loss 1.2787004709243774 img loss 1.3147220611572266 img loss 1.3985780477523804 img loss 1.3052942752838135 img loss 1.2469689846038818 img loss 1.3719528913497925 img loss 1.2635390758514404 img loss 1.371995210647583 img loss 1.30478036403656 img loss 1.3484424352645874 img loss 1.3550764322280884 img loss 1.288163185119629 img loss 1.2632324695587158 img loss 1.3715318441390991 img loss 1.2377980947494507 img loss 1.214823603630066 img loss 1.3476479053497314 img loss 1.3816555738449097 img loss 1.252767562866211 img loss 1.3197169303894043 img loss 1.3817603588104248 img loss 1.3287105560302734 img loss 1.325951337814331 img loss 1.3545674085617065 img loss 1.2932329177856445 img loss 1.308326244354248 img loss 1.3566004037857056 img loss 1.296866774559021 img loss 1.319028377532959 img loss 1.4046165943145752 img loss 1.2647813558578491 img loss 1.3619428873062134 img loss 1.2955636978149414 img loss 1.288153886795044 img loss 1.2949674129486084 img loss 1.3950769901275635 img loss 1.2516419887542725 img loss 1.2800023555755615 img loss 1.3210350275039673 img loss 1.243262767791748 img loss 1.3976060152053833 img loss 1.2588844299316406 img loss 1.2657707929611206 img loss 1.2514885663986206 img loss 1.2493760585784912 img loss 1.3630216121673584 img loss 1.493798017501831 img loss 1.3415741920471191 img loss 1.3192973136901855 img loss 1.2555420398712158 img loss 1.3220716714859009 img loss 1.3177839517593384 img loss 1.321382999420166 img loss 1.295549750328064 img loss 1.322558879852295 img loss 1.2290229797363281 img loss 1.1826558113098145 img loss 1.3465012311935425 img loss 1.297894835472107 img loss 1.2006787061691284 img loss 1.308653712272644 img loss 1.3559374809265137 img loss 1.363961100578308 img loss 1.2601041793823242 img loss 1.2492328882217407 img loss 1.3572241067886353 img loss 1.3366506099700928 img loss 1.4015288352966309 img loss 1.189105749130249 img loss 1.3684238195419312 img loss 1.3374278545379639 img loss 1.3093916177749634 img loss 1.2521297931671143 img loss 1.369143009185791 img loss 1.404183030128479 img loss 1.3794409036636353 img loss 1.2852691411972046 img loss 1.2957013845443726 img loss 1.3274847269058228 img loss 1.2874839305877686 img loss 1.4122127294540405 img loss 1.2468656301498413 img loss 1.3833004236221313 img loss 1.3778784275054932 img loss 1.271032691001892 img loss 1.3880399465560913 img loss 1.319610595703125 img loss 1.3453705310821533 img loss 1.4442065954208374 img loss 1.3373081684112549 img loss 1.304481863975525 img loss 1.4233715534210205 img loss 1.3362237215042114 {'loss': 1.3147, 'grad_norm': 0.33020785450935364, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1983708143234253 img loss 1.1802055835723877 img loss 1.1990272998809814 img loss 1.30684232711792 img loss 1.3124701976776123 img loss 1.2127017974853516 img loss 1.2513974905014038 img loss 1.192939281463623 img loss 1.250329852104187 img loss 1.1907373666763306 img loss 1.2209281921386719 img loss 1.21903395652771 img loss 1.2191566228866577 img loss 1.2162882089614868 img loss 1.185526728630066 img loss 1.1954269409179688 img loss 1.199634313583374 img loss 1.2422250509262085 img loss 1.255035638809204 img loss 1.265906810760498 img loss 1.1799277067184448 img loss 1.2132580280303955 img loss 1.2956228256225586 img loss 1.2632697820663452 img loss 1.1885771751403809 img loss 1.191658616065979 img loss 1.3282902240753174 img loss 1.2425484657287598 img loss 1.1464903354644775 img loss 1.1744403839111328 img loss 1.2071552276611328 img loss 1.2058204412460327 img loss 1.1762332916259766 img loss 1.2015044689178467 img loss 1.1642736196517944 img loss 1.2423580884933472 img loss 1.1823501586914062 img loss 1.3217090368270874 img loss 1.1422080993652344 img loss 1.229276418685913 img loss 1.2746578454971313 img loss 1.1629470586776733 img loss 1.281856894493103 img loss 1.1780245304107666 img loss 1.2235685586929321 img loss 1.2219693660736084 img loss 1.1508152484893799 img loss 1.2398649454116821 img loss 1.2239402532577515 img loss 1.2819275856018066 img loss 1.1616544723510742 img loss 1.2142785787582397 img loss 1.1864805221557617 img loss 1.2500618696212769 img loss 1.2740558385849 img loss 1.181524634361267 img loss 1.2260421514511108 img loss 1.208307147026062 img loss 1.1556174755096436 img loss 1.172734022140503 img loss 1.236325740814209 img loss 1.2098026275634766 img loss 1.233655333518982 img loss 1.2271990776062012 img loss 1.1584652662277222 img loss 1.1633199453353882 img loss 1.19746732711792 img loss 1.1811723709106445 img loss 1.2090072631835938 img loss 1.169581651687622 img loss 1.1802787780761719 img loss 1.2255195379257202 img loss 1.208094596862793 img loss 1.2313534021377563 img loss 1.2201991081237793 img loss 1.1575582027435303 img loss 1.2203478813171387 img loss 1.2152395248413086 img loss 1.1999950408935547 img loss 1.1756341457366943 img loss 1.2437405586242676 img loss 1.2360928058624268 img loss 1.256903052330017 img loss 1.260911464691162 img loss 1.130424976348877 img loss 1.2911489009857178 img loss 1.2440733909606934 img loss 1.220229148864746 img loss 1.1842807531356812 img loss 1.2431267499923706 img loss 1.2294142246246338 img loss 1.2508461475372314 img loss 1.2507147789001465 img loss 1.3051350116729736 img loss 1.1798065900802612 img loss 1.2371883392333984 img loss 1.2151716947555542 img loss 1.222543478012085 img loss 1.1762712001800537 img loss 1.1731609106063843 img loss 1.1978013515472412 img loss 1.3207918405532837 img loss 1.3199520111083984 img loss 1.2246217727661133 img loss 1.1445660591125488 img loss 1.1770246028900146 img loss 1.2257270812988281 img loss 1.1693028211593628 img loss 1.262660026550293 img loss 1.1387571096420288 img loss 1.2106297016143799 img loss 1.2037982940673828 img loss 1.1900362968444824 img loss 1.2158879041671753 img loss 1.198424220085144 img loss 1.3356554508209229 img loss 1.2285650968551636 img loss 1.1851115226745605 img loss 1.2203012704849243 img loss 1.191288709640503 img loss 1.1705881357192993 img loss 1.2582850456237793 img loss 1.1512898206710815 img loss 1.2303746938705444 img loss 1.1528880596160889 img loss 1.3406976461410522 img loss 1.2112882137298584 img loss 1.1925370693206787 {'loss': 1.2166, 'grad_norm': 0.33251285552978516, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2507129907608032 img loss 1.2819985151290894 img loss 1.3482719659805298 img loss 1.2450029850006104 img loss 1.285536527633667 img loss 1.2430905103683472 img loss 1.3365929126739502 img loss 1.264788031578064 img loss 1.273569107055664 img loss 1.2680596113204956 img loss 1.2349737882614136 img loss 1.2841370105743408 img loss 1.2976713180541992 img loss 1.3867698907852173 img loss 1.2677247524261475 img loss 1.2461049556732178 img loss 1.3442598581314087 img loss 1.3058478832244873 img loss 1.42001473903656 img loss 1.2887992858886719 img loss 1.208443522453308 img loss 1.3061809539794922 img loss 1.2897484302520752 img loss 1.3119065761566162 img loss 1.2572959661483765 img loss 1.2370543479919434 img loss 1.2190674543380737 img loss 1.262383222579956 img loss 1.3164348602294922 img loss 1.3792916536331177 img loss 1.293527603149414 img loss 1.296472191810608 img loss 1.227301836013794 img loss 1.330319881439209 img loss 1.2837705612182617 img loss 1.2473043203353882 img loss 1.2504886388778687 img loss 1.2418909072875977 img loss 1.3432034254074097 img loss 1.3136017322540283 img loss 1.31266188621521 img loss 1.283132553100586 img loss 1.3199000358581543 img loss 1.3681676387786865 img loss 1.2293691635131836 img loss 1.2508931159973145 img loss 1.270760178565979 img loss 1.3018020391464233 img loss 1.299334168434143 img loss 1.2507282495498657 img loss 1.1982736587524414 img loss 1.1861412525177002 img loss 1.3506780862808228 img loss 1.2954802513122559 img loss 1.2653406858444214 img loss 1.2786836624145508 img loss 1.390733242034912 img loss 1.2520757913589478 img loss 1.2525266408920288 img loss 1.271178126335144 img loss 1.3282463550567627 img loss 1.2680017948150635 img loss 1.3187212944030762 img loss 1.330256700515747 img loss 1.2396986484527588 img loss 1.2854359149932861 img loss 1.322813868522644 img loss 1.2221131324768066 img loss 1.1946773529052734 img loss 1.278928279876709 img loss 1.37514328956604 img loss 1.3156847953796387 img loss 1.2540335655212402 img loss 1.2495532035827637 img loss 1.217029094696045 img loss 1.2381014823913574 img loss 1.2895225286483765 img loss 1.2253832817077637 img loss 1.2950509786605835 img loss 1.304294228553772 img loss 1.2787699699401855 img loss 1.415354609489441 img loss 1.3007303476333618 img loss 1.3684356212615967 img loss 1.2223761081695557 img loss 1.333194613456726 img loss 1.2630583047866821 img loss 1.3156251907348633 img loss 1.2665716409683228 img loss 1.268699288368225 img loss 1.341030478477478 img loss 1.2473573684692383 img loss 1.2131781578063965 img loss 1.266434669494629 img loss 1.3846498727798462 img loss 1.1352484226226807 img loss 1.2286853790283203 img loss 1.2754042148590088 img loss 1.258424162864685 img loss 1.2271952629089355 img loss 1.3316570520401 img loss 1.23983633518219img loss 1.2671027183532715 img loss 1.2097539901733398 img loss 1.326515555381775 img loss 1.2582861185073853 img loss 1.2974913120269775 img loss 1.3306337594985962 img loss 1.2430839538574219 img loss 1.3155014514923096 img loss 1.2759668827056885 img loss 1.3613725900650024 img loss 1.279484748840332 img loss 1.3737603425979614 img loss 1.2995729446411133 img loss 1.272533655166626 img loss 1.3404985666275024 img loss 1.2781652212142944 img loss 1.4636130332946777 img loss 1.2623575925827026 img loss 1.2742745876312256 img loss 1.383068561553955 img loss 1.2566313743591309 img loss 1.3024815320968628 img loss 1.2475312948226929 img loss 1.1591947078704834 img loss 1.2619364261627197 img loss 1.188154935836792 {'loss': 1.2842, 'grad_norm': 0.4054657220840454, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.218183159828186 img loss 1.2178871631622314 img loss 1.2391184568405151 img loss 1.288991928100586 img loss 1.256537914276123 img loss 1.207362413406372 img loss 1.2979377508163452 img loss 1.2800387144088745 img loss 1.234806776046753 img loss 1.225980520248413 img loss 1.2862160205841064 img loss 1.2388908863067627 img loss 1.1749591827392578 img loss 1.2895246744155884 img loss 1.28813898563385 img loss 1.2622343301773071 img loss 1.2549338340759277 img loss 1.2319798469543457 img loss 1.2563903331756592 img loss 1.1719660758972168 img loss 1.1968730688095093 img loss 1.2701163291931152 img loss 1.3208651542663574 img loss 1.2040733098983765 img loss 1.229154109954834 img loss 1.1799097061157227 img loss 1.2560805082321167 img loss 1.3285267353057861 img loss 1.2297931909561157 img loss 1.2404289245605469 img loss 1.241624116897583 img loss 1.2172534465789795 img loss 1.276326060295105img loss 1.2612189054489136 img loss 1.2520618438720703 img loss 1.262536644935608 img loss 1.2200241088867188 img loss 1.2183258533477783 img loss 1.2394614219665527 img loss 1.1663551330566406 img loss 1.2520395517349243 img loss 1.247889518737793 img loss 1.2361986637115479 img loss 1.2011520862579346 img loss 1.2161797285079956 img loss 1.2387290000915527 img loss 1.1979883909225464 img loss 1.234065294265747 img loss 1.2572870254516602 img loss 1.2049468755722046 img loss 1.2655081748962402 img loss 1.2519689798355103 img loss 1.222652792930603 img loss 1.2629684209823608 img loss 1.2801494598388672 img loss 1.1915338039398193 img loss 1.2482961416244507 img loss 1.197953462600708 img loss 1.2016910314559937img loss 1.1692066192626953 img loss 1.2353180646896362 img loss 1.1882842779159546 img loss 1.238616704940796 img loss 1.2154072523117065 img loss 1.1878330707550049 img loss 1.171433687210083 img loss 1.1885572671890259 img loss 1.2681827545166016 img loss 1.2399632930755615 img loss 1.2899078130722046 img loss 1.2864254713058472 img loss 1.2897872924804688 img loss 1.2319698333740234 img loss 1.1843668222427368 img loss 1.3073217868804932 img loss 1.2457225322723389 img loss 1.2720909118652344 img loss 1.222724437713623 img loss 1.2893166542053223 img loss 1.21647047996521 img loss 1.2732210159301758 img loss 1.2006088495254517 img loss 1.2516415119171143 img loss 1.2147642374038696 img loss 1.2464556694030762 img loss 1.2869690656661987 img loss 1.3077980279922485 img loss 1.263230562210083 img loss 1.2622287273406982 img loss 1.2600055932998657 img loss 1.175819993019104 img loss 1.2260189056396484 img loss 1.233403205871582 img loss 1.2647883892059326 img loss 1.2535889148712158 img loss 1.1834330558776855 img loss 1.188880205154419 img loss 1.1834251880645752 img loss 1.2142572402954102 img loss 1.2217005491256714 img loss 1.339767575263977 img loss 1.1824586391448975 img loss 1.3297479152679443 img loss 1.2524099349975586 img loss 1.2605323791503906 img loss 1.165773630142212 img loss 1.2388739585876465 img loss 1.2421817779541016 img loss 1.2118754386901855 img loss 1.2486542463302612 img loss 1.3538472652435303 img loss 1.2524651288986206 img loss 1.1602745056152344 img loss 1.2214903831481934 img loss 1.2519276142120361 img loss 1.2472673654556274 img loss 1.2288784980773926 img loss 1.2339714765548706 img loss 1.236982822418213 img loss 1.288851022720337 img loss 1.2156835794448853 img loss 1.267223596572876 img loss 1.2839659452438354 img loss 1.220841646194458 img loss 1.2496627569198608 img loss 1.1684540510177612 img loss 1.2780383825302124 img loss 1.2575550079345703 {'loss': 1.2397, 'grad_norm': 0.36763933300971985, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2211140394210815 img loss 1.2633817195892334 img loss 1.2277687788009644 img loss 1.1839275360107422 img loss 1.2321312427520752 img loss 1.2674471139907837 img loss 1.2431962490081787 img loss 1.2432518005371094 img loss 1.2653690576553345 img loss 1.283151388168335 img loss 1.2552120685577393 img loss 1.2775448560714722 img loss 1.198049545288086 img loss 1.2394378185272217 img loss 1.283322811126709 img loss 1.212637186050415 img loss 1.333750605583191 img loss 1.313582181930542 img loss 1.2617626190185547 img loss 1.2202688455581665 img loss 1.2819194793701172 img loss 1.307480812072754 img loss 1.2960588932037354 img loss 1.2584751844406128 img loss 1.2477519512176514 img loss 1.26852548122406 img loss 1.2506263256072998 img loss 1.2473218441009521 img loss 1.2245934009552002 img loss 1.2332112789154053 img loss 1.316493272781372 img loss 1.2927302122116089 img loss 1.2883410453796387 img loss 1.1999906301498413 img loss 1.2718052864074707 img loss 1.2094089984893799 img loss 1.3148763179779053 img loss 1.231045126914978 img loss 1.287602424621582img loss 1.268088936805725 img loss 1.234699010848999 img loss 1.2504609823226929 img loss 1.2428405284881592 img loss 1.2266929149627686 img loss 1.2356904745101929 img loss 1.3420013189315796 img loss 1.2389960289001465 img loss 1.258281946182251 img loss 1.206210970878601 img loss 1.2812927961349487 img loss 1.275306224822998 img loss 1.2636666297912598 img loss 1.237565279006958 img loss 1.2502284049987793 img loss 1.260716438293457 img loss 1.2893421649932861 img loss 1.3338438272476196 img loss 1.2354867458343506 img loss 1.2703509330749512 img loss 1.2566323280334473 img loss 1.2638410329818726 img loss 1.2972557544708252 img loss 1.2600942850112915 img loss 1.3188918828964233 img loss 1.292392373085022 img loss 1.2435486316680908 img loss 1.263360619544983 img loss 1.2916216850280762 img loss 1.292307734489441 img loss 1.2064075469970703 img loss 1.2572362422943115 img loss 1.3307852745056152 img loss 1.304477572441101 img loss 1.1867578029632568 img loss 1.3294341564178467 img loss 1.3324459791183472 img loss 1.2460787296295166 img loss 1.280393123626709 img loss 1.2232179641723633 img loss 1.2458728551864624 img loss 1.1559338569641113 img loss 1.2373600006103516 img loss 1.2503163814544678 img loss 1.2553869485855103 img loss 1.2623741626739502 img loss 1.231941819190979 img loss 1.323819637298584 img loss 1.2160857915878296 img loss 1.3387101888656616 img loss 1.205178141593933 img loss 1.171458125114441 img loss 1.2432926893234253 img loss 1.2794939279556274 img loss 1.1988388299942017 img loss 1.2112058401107788 img loss 1.2295820713043213 img loss 1.252428412437439 img loss 1.1881959438323975 img loss 1.2895228862762451 img loss 1.2132108211517334 img loss 1.2303396463394165 img loss 1.2984001636505127 img loss 1.2059425115585327 img loss 1.2394434213638306 img loss 1.245800256729126 img loss 1.2326778173446655 img loss 1.2276897430419922 img loss 1.1669402122497559 img loss 1.3189280033111572 img loss 1.245414137840271 img loss 1.2296875715255737 img loss 1.237059235572815 img loss 1.2410645484924316 img loss 1.19858717918396 img loss 1.2697491645812988 img loss 1.2558046579360962 img loss 1.2372807264328003 img loss 1.2722972631454468 img loss 1.297519564628601 img loss 1.2787086963653564 img loss 1.2527645826339722 img loss 1.2244843244552612 img loss 1.2517584562301636 img loss 1.2410820722579956 img loss 1.2376922369003296 img loss 1.2098090648651123 img loss 1.2611923217773438 img loss 1.2978096008300781 {'loss': 1.255, 'grad_norm': 0.23489545285701752, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3532536029815674 img loss 1.3283230066299438 img loss 1.3989182710647583 img loss 1.3973584175109863 img loss 1.3088492155075073 img loss 1.2339643239974976 img loss 1.297745943069458 img loss 1.2751563787460327 img loss 1.3830292224884033 img loss 1.37259840965271 img loss 1.3233468532562256 img loss 1.2783896923065186 img loss 1.2095253467559814 img loss 1.3038729429244995 img loss 1.288723349571228 img loss 1.3586639165878296 img loss 1.3272724151611328 img loss 1.3483623266220093 img loss 1.2837885618209839 img loss 1.2918119430541992 img loss 1.252309799194336 img loss 1.2771885395050049 img loss 1.301744818687439 img loss 1.3126060962677002 img loss 1.329916000366211 img loss 1.2530632019042969 img loss 1.4649548530578613 img loss 1.432574987411499 img loss 1.3135700225830078 img loss 1.3649061918258667 img loss 1.4861271381378174 img loss 1.326803207397461 img loss 1.2900969982147217 img loss 1.3658831119537354 img loss 1.3049554824829102 img loss 1.3526990413665771 img loss 1.2527824640274048 img loss 1.346401572227478 img loss 1.293075442314148 img loss 1.303246021270752 img loss 1.338171124458313 img loss 1.3032183647155762 img loss 1.3491123914718628 img loss 1.28135347366333 img loss 1.2825106382369995 img loss 1.2509797811508179 img loss 1.2731163501739502 img loss 1.2286839485168457 img loss 1.313942790031433 img loss 1.4049913883209229 img loss 1.3385175466537476 img loss 1.2708687782287598 img loss 1.3351484537124634 img loss 1.3313555717468262 img loss 1.2120776176452637 img loss 1.3601410388946533 img loss 1.263425350189209 img loss 1.3999699354171753 img loss 1.5052142143249512 img loss 1.3427119255065918 img loss 1.301506519317627 img loss 1.418310523033142 img loss 1.3432790040969849 img loss 1.2259764671325684 img loss 1.247089147567749 img loss 1.2304314374923706 img loss 1.353432536125183 img loss 1.3096879720687866 img loss 1.2600929737091064 img loss 1.2911617755889893 img loss 1.296900749206543 img loss 1.2346433401107788 img loss 1.3566890954971313 img loss 1.5402547121047974 img loss 1.4020003080368042 img loss 1.2947033643722534 img loss 1.2079954147338867 img loss 1.3282997608184814 img loss 1.2884336709976196 img loss 1.2546825408935547 img loss 1.3646169900894165 img loss 1.399656891822815 img loss 1.3401046991348267 img loss 1.479323148727417 img loss 1.2962188720703125 img loss 1.3646990060806274 img loss 1.240271806716919 img loss 1.5291190147399902 img loss 1.3619130849838257 img loss 1.2906988859176636 img loss 1.3306102752685547 img loss 1.2992883920669556 img loss 1.2036027908325195 img loss 1.4687217473983765 img loss 1.2884247303009033 img loss 1.2953633069992065 img loss 1.2978837490081787 img loss 1.31587553024292 img loss 1.34041166305542 img loss 1.3073093891143799 img loss 1.4991743564605713 img loss 1.3625065088272095 img loss 1.3273122310638428 img loss 1.3131427764892578 img loss 1.3136152029037476 img loss 1.2336719036102295 img loss 1.3082646131515503 img loss 1.348962426185608 img loss 1.2657991647720337 img loss 1.3340555429458618 img loss 1.3504064083099365 img loss 1.2654149532318115 img loss 1.442144513130188 img loss 1.1777998208999634 img loss 1.2828832864761353 img loss 1.383158802986145 img loss 1.3223850727081299 img loss 1.4086798429489136 img loss 1.3293278217315674 img loss 1.2622934579849243 img loss 1.3179620504379272 img loss 1.399746060371399 img loss 1.3903008699417114 img loss 1.2917039394378662 img loss 1.2916679382324219 img loss 1.4995286464691162 img loss 1.4335951805114746 img loss 1.3837735652923584 {'loss': 1.3274, 'grad_norm': 0.5235770344734192, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2176966667175293 img loss 1.1458849906921387 img loss 1.1818137168884277 img loss 1.1091649532318115 img loss 1.2441972494125366 img loss 1.2381927967071533 img loss 1.2308342456817627 img loss 1.1850395202636719 img loss 1.2054494619369507 img loss 1.1871089935302734 img loss 1.2274682521820068 img loss 1.1594570875167847 img loss 1.1554893255233765 img loss 1.167790412902832 img loss 1.1628856658935547 img loss 1.1796272993087769 img loss 1.23291015625 img loss 1.104596734046936 img loss 1.1487140655517578 img loss 1.2169463634490967 img loss 1.2168421745300293 img loss 1.0978506803512573 img loss 1.136479139328003 img loss 1.1636512279510498 img loss 1.1842387914657593 img loss 1.2191383838653564 img loss 1.0883783102035522 img loss 1.2654918432235718 img loss 1.1955301761627197 img loss 1.1893277168273926 img loss 1.174890160560608 img loss 1.223184585571289 img loss 1.162255048751831 img loss 1.1694393157958984 img loss 1.1763328313827515 img loss 1.2633271217346191 img loss 1.2288932800292969 img loss 1.2048345804214478 img loss 1.2600959539413452 img loss 1.2593038082122803 img loss 1.1536881923675537 img loss 1.2161710262298584 img loss 1.1671794652938843 img loss 1.2210594415664673 img loss 1.1989960670471191 img loss 1.258518934249878 img loss 1.3620507717132568 img loss 1.3059719800949097 img loss 1.1719846725463867 img loss 1.2141355276107788 img loss 1.1028674840927124 img loss 1.175058126449585 img loss 1.1915749311447144 img loss 1.2068670988082886 img loss 1.1388492584228516 img loss 1.1991615295410156 img loss 1.2762136459350586 img loss 1.1909030675888062 img loss 1.1306540966033936 img loss 1.1671082973480225 img loss 1.2719166278839111 img loss 1.2399965524673462 img loss 1.1653306484222412 img loss 1.1139440536499023 img loss 1.1908345222473145 img loss 1.2454657554626465 img loss 1.1430124044418335 img loss 1.151454210281372 img loss 1.1143467426300049 img loss 1.2277793884277344 img loss 1.1980777978897095 img loss 1.2018704414367676 img loss 1.2203917503356934 img loss 1.2286808490753174 img loss 1.2514723539352417 img loss 1.1888630390167236 img loss 1.2685275077819824 img loss 1.1318479776382446 img loss 1.1373984813690186 img loss 1.1843090057373047 img loss 1.2417597770690918 img loss 1.1276469230651855 img loss 1.2140765190124512 img loss 1.2101397514343262 img loss 1.310218334197998 img loss 1.1669163703918457 img loss 1.158347725868225 img loss 1.1846587657928467img loss 1.156636118888855 img loss 1.2540864944458008 img loss 1.0765641927719116 img loss 1.321574091911316 img loss 1.110499382019043 img loss 1.155623435974121 img loss 1.1989548206329346 img loss 1.2435661554336548 img loss 1.222129225730896 img loss 1.1332833766937256 img loss 1.2157409191131592 img loss 1.129354476928711 img loss 1.2178490161895752 img loss 1.1509034633636475 img loss 1.1778805255889893 img loss 1.1963316202163696 img loss 1.195115327835083 img loss 1.1557807922363281 img loss 1.2048505544662476 img loss 1.1057738065719604 img loss 1.2314810752868652 img loss 1.193247675895691 img loss 1.1613037586212158 img loss 1.2369489669799805 img loss 1.1782646179199219 img loss 1.1744625568389893 img loss 1.204301118850708 img loss 1.1851106882095337 img loss 1.161497712135315 img loss 1.233338713645935 img loss 1.2543888092041016 img loss 1.1181349754333496 img loss 1.2285107374191284 img loss 1.219014048576355 img loss 1.2152535915374756 img loss 1.1718707084655762 img loss 1.1987931728363037 img loss 1.1966089010238647 img loss 1.2169994115829468 img loss 1.2160964012145996 {'loss': 1.1933, 'grad_norm': 0.26145997643470764, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.224199891090393 img loss 1.2105813026428223 img loss 1.207801103591919 img loss 1.18276846408844 img loss 1.2226159572601318 img loss 1.2066324949264526 img loss 1.235955834388733 img loss 1.1727006435394287 img loss 1.1983280181884766 img loss 1.2819029092788696 img loss 1.2257893085479736 img loss 1.2654881477355957 img loss 1.283151626586914 img loss 1.231832504272461 img loss 1.2125415802001953 img loss 1.230804443359375 img loss 1.2109984159469604 img loss 1.1977767944335938 img loss 1.2289385795593262 img loss 1.191483736038208 img loss 1.1926599740982056 img loss 1.2725721597671509 img loss 1.2170510292053223 img loss 1.1877245903015137 img loss 1.2213257551193237 img loss 1.2116587162017822 img loss 1.2146224975585938 img loss 1.1909185647964478 img loss 1.2519031763076782 img loss 1.210646390914917 img loss 1.1846685409545898 img loss 1.1688730716705322 img loss 1.21052885055542 img loss 1.3055280447006226 img loss 1.183286428451538 img loss 1.2097299098968506 img loss 1.1948230266571045 img loss 1.2460122108459473 img loss 1.2354153394699097 img loss 1.2116492986679077 img loss 1.1886519193649292 img loss 1.2625977993011475 img loss 1.2162034511566162 img loss 1.2482385635375977 img loss 1.2068756818771362 img loss 1.2060030698776245 img loss 1.189934253692627 img loss 1.2284075021743774 img loss 1.2635968923568726 img loss 1.2054404020309448 img loss 1.2373818159103394 img loss 1.2224143743515015 img loss 1.2511299848556519 img loss 1.146105170249939 img loss 1.2206887006759644 img loss 1.2337383031845093 img loss 1.2121219635009766 img loss 1.2526335716247559 img loss 1.2320518493652344 img loss 1.165809154510498 img loss 1.2062289714813232 img loss 1.16917884349823 img loss 1.1744025945663452 img loss 1.2367571592330933 img loss 1.2139896154403687 img loss 1.1971710920333862 img loss 1.1588730812072754 img loss 1.2090288400650024 img loss 1.2409751415252686 img loss 1.1892151832580566 img loss 1.1608043909072876 img loss 1.212179183959961 img loss 1.231073021888733 img loss 1.1847121715545654 img loss 1.28127920627594 img loss 1.1933008432388306 img loss 1.2389134168624878 img loss 1.2461278438568115 img loss 1.1686524152755737 img loss 1.182671070098877 img loss 1.1913903951644897 img loss 1.1812858581542969 img loss 1.1955722570419312 img loss 1.1986775398254395 img loss 1.19269597530365 img loss 1.2214115858078003 img loss 1.2265446186065674 img loss 1.2341498136520386 img loss 1.2502392530441284 img loss 1.1916923522949219 img loss 1.2015272378921509 img loss 1.2601908445358276 img loss 1.159929633140564 img loss 1.2380080223083496 img loss 1.2079765796661377 img loss 1.2276279926300049 img loss 1.236249327659607 img loss 1.1985338926315308 img loss 1.2516288757324219 img loss 1.184659719467163 img loss 1.2275774478912354 img loss 1.2252260446548462 img loss 1.2504096031188965 img loss 1.2048075199127197 img loss 1.2656018733978271 img loss 1.2366584539413452 img loss 1.2112343311309814 img loss 1.240692377090454 img loss 1.214058518409729 img loss 1.28947913646698 img loss 1.2222059965133667 img loss 1.218362808227539 img loss 1.2073463201522827 img loss 1.1794753074645996 img loss 1.2288389205932617 img loss 1.2192986011505127 img loss 1.300431728363037 img loss 1.2099107503890991 img loss 1.3125371932983398 img loss 1.2019919157028198 img loss 1.1897163391113281 img loss 1.2909832000732422 img loss 1.2027117013931274 img loss 1.208402156829834 img loss 1.2070116996765137 img loss 1.1829180717468262 img loss 1.267228364944458 img loss 1.1657650470733643 {'loss': 1.2177, 'grad_norm': 0.31532037258148193, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2291755676269531 img loss 1.1194308996200562 img loss 1.2435991764068604 img loss 1.1762367486953735 img loss 1.2674397230148315 img loss 1.2589240074157715 img loss 1.151898741722107 img loss 1.196230173110962 img loss 1.2212175130844116 img loss 1.1667793989181519 img loss 1.165684461593628 img loss 1.200019359588623 img loss 1.195342779159546 img loss 1.1419878005981445 img loss 1.1116775274276733 img loss 1.1997487545013428 img loss 1.17525315284729 img loss 1.2189617156982422 img loss 1.1523396968841553 img loss 1.150855541229248 img loss 1.194158911705017 img loss 1.1241803169250488 img loss 1.2051312923431396 img loss 1.1150829792022705 img loss 1.114127516746521 img loss 1.238054871559143 img loss 1.2197612524032593 img loss 1.1243451833724976 img loss 1.1667412519454956 img loss 1.1846299171447754 img loss 1.2610621452331543 img loss 1.171976923942566 img loss 1.1239726543426514 img loss 1.1636027097702026 img loss 1.1520071029663086 img loss 1.1473643779754639 img loss 1.1768677234649658 img loss 1.1902942657470703 img loss 1.1531298160552979 img loss 1.167711615562439 img loss 1.1833866834640503 img loss 1.2525948286056519 img loss 1.1968154907226562 img loss 1.218854546546936 img loss 1.219327449798584 img loss 1.199379324913025 img loss 1.1470407247543335 img loss 1.1802728176116943 img loss 1.197184443473816 img loss 1.1484421491622925 img loss 1.162102460861206 img loss 1.1735758781433105 img loss 1.2072819471359253 img loss 1.1545636653900146 img loss 1.1352604627609253 img loss 1.2196881771087646 img loss 1.1532795429229736 img loss 1.1635985374450684 img loss 1.1417136192321777 img loss 1.2737349271774292 img loss 1.2012600898742676 img loss 1.1378854513168335 img loss 1.235449194908142 img loss 1.159515142440796 img loss 1.170373558998108 img loss 1.2060446739196777 img loss 1.1483817100524902 img loss 1.2282373905181885 img loss 1.2313649654388428 img loss 1.236618995666504 img loss 1.268393874168396 img loss 1.1391860246658325 img loss 1.1880468130111694 img loss 1.2356414794921875 img loss 1.1915076971054077 img loss 1.181790828704834 img loss 1.2000384330749512img loss 1.1000432968139648 img loss 1.1965007781982422 img loss 1.1944632530212402 img loss 1.1547460556030273 img loss 1.1410813331604004 img loss 1.218239426612854 img loss 1.218279242515564 img loss 1.1466261148452759 img loss 1.1480106115341187 img loss 1.2035731077194214 img loss 1.1147816181182861 img loss 1.1545780897140503 img loss 1.1994106769561768 img loss 1.230780839920044 img loss 1.1726036071777344 img loss 1.165879487991333 img loss 1.1430000066757202 img loss 1.2219574451446533 img loss 1.2449877262115479 img loss 1.1155555248260498 img loss 1.177083969116211 img loss 1.1121296882629395 img loss 1.2255420684814453 img loss 1.2102962732315063 img loss 1.1135318279266357 img loss 1.247788906097412 img loss 1.1658525466918945 img loss 1.1737297773361206 img loss 1.1850240230560303 img loss 1.1068933010101318 img loss 1.1794471740722656 img loss 1.2029615640640259 img loss 1.120439052581787 img loss 1.118548035621643 img loss 1.136031150817871 img loss 1.1787344217300415 img loss 1.2126517295837402 img loss 1.1408478021621704 img loss 1.1657841205596924 img loss 1.2317395210266113 img loss 1.1446784734725952 img loss 1.198102355003357 img loss 1.1848807334899902 img loss 1.0703092813491821 img loss 1.1411683559417725 img loss 1.0926958322525024 img loss 1.191266655921936 img loss 1.1081680059432983 img loss 1.1981483697891235 img loss 1.2802846431732178 img loss 1.0889588594436646 {'loss': 1.1782, 'grad_norm': 0.41532158851623535, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2884259223937988 img loss 1.3323665857315063 img loss 1.3791556358337402 img loss 1.260342001914978 img loss 1.2796621322631836 img loss 1.2185070514678955 img loss 1.244024634361267 img loss 1.2199280261993408 img loss 1.2480014562606812 img loss 1.1505441665649414 img loss 1.2787322998046875 img loss 1.2269409894943237 img loss 1.214470624923706 img loss 1.3107779026031494 img loss 1.2639433145523071 img loss 1.223759412765503 img loss 1.3233264684677124 img loss 1.2923073768615723 img loss 1.2980568408966064 img loss 1.2655342817306519 img loss 1.2217192649841309 img loss 1.310280203819275 img loss 1.1871638298034668 img loss 1.254292368888855 img loss 1.2735729217529297 img loss 1.2190784215927124 img loss 1.245391607284546 img loss 1.2583993673324585 img loss 1.2734909057617188 img loss 1.2706964015960693 img loss 1.2747037410736084 img loss 1.3045551776885986 img loss 1.2640659809112549 img loss 1.2483088970184326 img loss 1.2775416374206543 img loss 1.277306079864502 img loss 1.245473861694336 img loss 1.2899277210235596 img loss 1.3316236734390259 img loss 1.297342300415039 img loss 1.2269127368927002 img loss 1.285042643547058 img loss 1.2020882368087769 img loss 1.3875166177749634 img loss 1.2694920301437378 img loss 1.2210948467254639 img loss 1.3098316192626953 img loss 1.2502256631851196 img loss 1.2069319486618042 img loss 1.2459063529968262 img loss 1.2948166131973267 img loss 1.2237671613693237 img loss 1.228959560394287 img loss 1.2811754941940308 img loss 1.295581340789795 img loss 1.2135310173034668 img loss 1.245185375213623 img loss 1.288808822631836 img loss 1.2525686025619507 img loss 1.269142985343933 img loss 1.2038583755493164 img loss 1.288827657699585 img loss 1.3445948362350464 img loss 1.2291151285171509 img loss 1.2785738706588745 img loss 1.302029013633728 img loss 1.3324202299118042 img loss 1.2271994352340698 img loss 1.2156977653503418 img loss 1.286285161972046 img loss 1.201454997062683 img loss 1.3116302490234375 img loss 1.2172386646270752 img loss 1.3509247303009033 img loss 1.2593920230865479 img loss 1.3811542987823486 img loss 1.4149925708770752 img loss 1.2150315046310425 img loss 1.2583730220794678 img loss 1.2628185749053955 img loss 1.3683524131774902 img loss 1.2508591413497925 img loss 1.3363029956817627 img loss 1.2527796030044556 img loss 1.155511498451233 img loss 1.1624563932418823 img loss 1.2226791381835938 img loss 1.2582405805587769 img loss 1.2637583017349243 img loss 1.290254831314087 img loss 1.2651447057724 img loss 1.3474229574203491 img loss 1.3050625324249268 img loss 1.2587621212005615 img loss 1.2489573955535889 img loss 1.271680474281311 img loss 1.2172130346298218 img loss 1.2885183095932007 img loss 1.2662224769592285 img loss 1.2973583936691284 img loss 1.2786304950714111 img loss 1.3782360553741455 img loss 1.1965893507003784 img loss 1.2153470516204834 img loss 1.2294279336929321 img loss 1.2132205963134766 img loss 1.1500446796417236 img loss 1.2119678258895874 img loss 1.2153334617614746 img loss 1.369831919670105 img loss 1.293216586112976 img loss 1.2235596179962158 img loss 1.2404837608337402 img loss 1.2044419050216675 img loss 1.2417168617248535 img loss 1.2657032012939453 img loss 1.3290601968765259 img loss 1.3122341632843018 img loss 1.2309292554855347 img loss 1.3369688987731934 img loss 1.246029257774353 img loss 1.237518310546875 img loss 1.265804648399353 img loss 1.2117542028427124 img loss 1.2760803699493408 img loss 1.3184072971343994 img loss 1.282609224319458 img loss 1.29280686378479 {'loss': 1.2658, 'grad_norm': 0.24621567130088806, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2363052368164062 img loss 1.1811851263046265 img loss 1.242761492729187 img loss 1.303134799003601 img loss 1.1809778213500977 img loss 1.3217581510543823 img loss 1.2585842609405518 img loss 1.224655032157898 img loss 1.1575545072555542 img loss 1.250497579574585 img loss 1.1894844770431519 img loss 1.3176792860031128 img loss 1.2263113260269165 img loss 1.194820761680603 img loss 1.2061123847961426 img loss 1.2326973676681519 img loss 1.2180006504058838 img loss 1.2044280767440796 img loss 1.269356608390808 img loss 1.1932874917984009 img loss 1.3259940147399902 img loss 1.1848766803741455 img loss 1.2340303659439087 img loss 1.2554409503936768 img loss 1.2068727016448975 img loss 1.3244178295135498 img loss 1.234472632408142 img loss 1.1525582075119019 img loss 1.1729693412780762 img loss 1.1544945240020752 img loss 1.262047290802002 img loss 1.2315657138824463 img loss 1.2105278968811035 img loss 1.1532230377197266 img loss 1.1993844509124756 img loss 1.1823310852050781 img loss 1.2247543334960938 img loss 1.224839687347412 img loss 1.1902403831481934 img loss 1.2529047727584839 img loss 1.3850018978118896 img loss 1.2212402820587158 img loss 1.286589503288269 img loss 1.3283746242523193 img loss 1.230139136314392 img loss 1.3152450323104858 img loss 1.1796468496322632 img loss 1.2237364053726196 img loss 1.1843478679656982 img loss 1.2319180965423584 img loss 1.2800827026367188 img loss 1.2767146825790405 img loss 1.218056559562683 img loss 1.3131014108657837 img loss 1.2580317258834839 img loss 1.3410648107528687 img loss 1.2443217039108276 img loss 1.2659263610839844 img loss 1.2377865314483643 img loss 1.2502191066741943 img loss 1.2173645496368408 img loss 1.2175445556640625 img loss 1.2736873626708984 img loss 1.2270963191986084 img loss 1.2692095041275024 img loss 1.2164175510406494 img loss 1.2421330213546753 img loss 1.2765862941741943 img loss 1.241379976272583 img loss 1.1968294382095337 img loss 1.1826237440109253 img loss 1.238040566444397 img loss 1.2279784679412842 img loss 1.2438676357269287 img loss 1.2869484424591064 img loss 1.1774094104766846 img loss 1.2653969526290894 img loss 1.2469853162765503 img loss 1.279122233390808 img loss 1.2775360345840454 img loss 1.2102763652801514 img loss 1.2543785572052002 img loss 1.273366928100586 img loss 1.1860014200210571 img loss 1.2274703979492188 img loss 1.2752625942230225 img loss 1.1775712966918945 img loss 1.2986719608306885 img loss 1.2950317859649658 img loss 1.1880072355270386 img loss 1.161948800086975 img loss 1.2946404218673706 img loss 1.2483699321746826 img loss 1.2676401138305664 img loss 1.3115220069885254 img loss 1.204636812210083 img loss 1.215017318725586 img loss 1.1640288829803467 img loss 1.2253862619400024 img loss 1.2022380828857422 img loss 1.260929822921753 img loss 1.205077052116394 img loss 1.2331933975219727 img loss 1.1265513896942139 img loss 1.245237946510315 img loss 1.2150969505310059 img loss 1.2647950649261475 img loss 1.166388988494873 img loss 1.2829906940460205 img loss 1.3085639476776123 img loss 1.194079875946045 img loss 1.178495168685913 img loss 1.2084261178970337 img loss 1.207271933555603 img loss 1.226510763168335 img loss 1.2022637128829956 img loss 1.256242275238037 img loss 1.2058448791503906 img loss 1.2183566093444824 img loss 1.2607665061950684 img loss 1.1876163482666016 img loss 1.3080946207046509 img loss 1.314788818359375 img loss 1.161353349685669 img loss 1.1984143257141113 img loss 1.2066465616226196 img loss 1.23529851436615 img loss 1.2660748958587646 {'loss': 1.2351, 'grad_norm': 0.23750464618206024, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.242613434791565 img loss 1.2465986013412476 img loss 1.2143607139587402 img loss 1.192496657371521 img loss 1.2865252494812012 img loss 1.2153246402740479 img loss 1.255645513534546 img loss 1.2258217334747314 img loss 1.2684762477874756 img loss 1.2379850149154663 img loss 1.1844494342803955 img loss 1.2238924503326416 img loss 1.3135573863983154 img loss 1.1545320749282837 img loss 1.2323298454284668 img loss 1.1705063581466675 img loss 1.1948565244674683 img loss 1.208999514579773 img loss 1.280221700668335 img loss 1.2714409828186035 img loss 1.212445855140686 img loss 1.3118054866790771 img loss 1.2029807567596436 img loss 1.2475155591964722 img loss 1.2284554243087769 img loss 1.1845201253890991 img loss 1.2704166173934937 img loss 1.203396201133728 img loss 1.2731873989105225 img loss 1.3192774057388306 img loss 1.2092080116271973 img loss 1.1668260097503662 img loss 1.2312524318695068 img loss 1.2024606466293335 img loss 1.1894938945770264 img loss 1.2239452600479126 img loss 1.3277548551559448 img loss 1.2500180006027222 img loss 1.3326756954193115 img loss 1.2029646635055542 img loss 1.1914705038070679 img loss 1.3116400241851807 img loss 1.2652125358581543 img loss 1.211351990699768 img loss 1.1988027095794678 img loss 1.2080109119415283 img loss 1.2034584283828735 img loss 1.2616114616394043 img loss 1.2979650497436523 img loss 1.1643215417861938 img loss 1.2859901189804077 img loss 1.2601385116577148 img loss 1.2132740020751953 img loss 1.2301253080368042 img loss 1.2416090965270996 img loss 1.2351653575897217 img loss 1.1742870807647705 img loss 1.1591886281967163 img loss 1.2101414203643799 img loss 1.188139796257019 img loss 1.2047399282455444 img loss 1.255388617515564 img loss 1.2295050621032715 img loss 1.227548599243164 img loss 1.2070645093917847 img loss 1.2596218585968018 img loss 1.2568671703338623 img loss 1.2372856140136719 img loss 1.2257407903671265 img loss 1.176003336906433 img loss 1.2266223430633545 img loss 1.2289100885391235 img loss 1.2819690704345703 img loss 1.1796374320983887 img loss 1.2732465267181396 img loss 1.1964473724365234 img loss 1.254066824913025 img loss 1.16942298412323 img loss 1.1781861782073975 img loss 1.2670135498046875 img loss 1.2910104990005493 img loss 1.1824461221694946 img loss 1.1803889274597168 img loss 1.2569563388824463 img loss 1.1677415370941162 img loss 1.2029378414154053 img loss 1.2586464881896973 img loss 1.2289135456085205 img loss 1.2035728693008423 img loss 1.19840407371521 img loss 1.2545456886291504 img loss 1.1902974843978882 img loss 1.2163490056991577 img loss 1.1774497032165527 img loss 1.2797592878341675 img loss 1.2274603843688965 img loss 1.2337605953216553 img loss 1.1587345600128174 img loss 1.2360572814941406 img loss 1.2347828149795532 img loss 1.2351099252700806 img loss 1.16240394115448 img loss 1.317434549331665 img loss 1.2497177124023438 img loss 1.194490909576416 img loss 1.2398009300231934 img loss 1.2643771171569824 img loss 1.2104246616363525 img loss 1.2337875366210938 img loss 1.2400143146514893 img loss 1.2368156909942627 img loss 1.1576762199401855 img loss 1.1795551776885986 img loss 1.1963040828704834 img loss 1.2796095609664917 img loss 1.2604564428329468 img loss 1.1434657573699951 img loss 1.1872451305389404 img loss 1.210231065750122 img loss 1.3074696063995361 img loss 1.213234782218933 img loss 1.2038261890411377 img loss 1.275355339050293 img loss 1.1396493911743164 img loss 1.2516748905181885 img loss 1.184619426727295 img loss 1.180066704750061 img loss 1.183354377746582 {'loss': 1.2264, 'grad_norm': 0.25137022137641907, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2851818799972534 img loss 1.3477118015289307 img loss 1.4151734113693237 img loss 1.367294430732727 img loss 1.3213809728622437 img loss 1.4346566200256348 img loss 1.3625706434249878 img loss 1.6408798694610596 img loss 1.4029594659805298 img loss 1.2895255088806152 img loss 1.3876723051071167 img loss 1.287412166595459 img loss 1.3484394550323486 img loss 1.561150074005127 img loss 1.4043017625808716 img loss 1.3717812299728394 img loss 1.385661244392395 img loss 1.4183776378631592 img loss 1.3718212842941284 img loss 1.5470799207687378 img loss 1.2393813133239746 img loss 1.257698655128479 img loss 1.335060954093933 img loss 1.3929879665374756 img loss 1.2391036748886108 img loss 1.3707267045974731 img loss 1.278014063835144 img loss 1.5038148164749146 img loss 1.3475991487503052 img loss 1.34701406955719 img loss 1.3936994075775146 img loss 1.308380126953125 img loss 1.4086906909942627img loss 1.3583464622497559 img loss 1.3079166412353516 img loss 1.3736618757247925 img loss 1.4738472700119019 img loss 1.358152985572815 img loss 1.4610103368759155 img loss 1.2973512411117554 img loss 1.36783766746521 img loss 1.425881028175354 img loss 1.3957690000534058 img loss 1.4400299787521362 img loss 1.3144912719726562 img loss 1.2806167602539062 img loss 1.297743797302246 img loss 1.3839585781097412 img loss 1.283265471458435 img loss 1.5018142461776733 img loss 1.3336055278778076 img loss 1.315589427947998 img loss 1.3554112911224365 img loss 1.4217830896377563 img loss 1.4210456609725952 img loss 1.297491431236267 img loss 1.3491437435150146 img loss 1.4312050342559814 img loss 1.4217876195907593 img loss 1.443463683128357 img loss 1.2868542671203613 img loss 1.3665794134140015 img loss 1.3843337297439575 img loss 1.4038227796554565 img loss 1.4595242738723755 img loss 1.4067819118499756 img loss 1.403485894203186 img loss 1.3315719366073608 img loss 1.3432594537734985 img loss 1.3250572681427002 img loss 1.354998230934143 img loss 1.3888558149337769 img loss 1.38003671169281 img loss 1.373299479484558 img loss 1.34756338596344 img loss 1.246070384979248 img loss 1.347665548324585 img loss 1.3690106868743896 img loss 1.336169958114624 img loss 1.5286883115768433 img loss 1.2958627939224243 img loss 1.3651986122131348 img loss 1.3160762786865234 img loss 1.4140299558639526 img loss 1.3925520181655884 img loss 1.3462796211242676 img loss 1.306660532951355 img loss 1.2611048221588135 img loss 1.1835469007492065 img loss 1.4385801553726196 img loss 1.4392834901809692 img loss 1.2973248958587646 img loss 1.3914341926574707 img loss 1.47126042842865 img loss 1.3713351488113403 img loss 1.384052038192749 img loss 1.254638671875 img loss 1.2063602209091187 img loss 1.323262095451355 img loss 1.431217074394226 img loss 1.514931321144104 img loss 1.393164873123169 img loss 1.3542765378952026 img loss 1.284401774406433 img loss 1.3104395866394043 img loss 1.4046990871429443 img loss 1.491273283958435 img loss 1.3432313203811646 img loss 1.500435471534729 img loss 1.4221875667572021 img loss 1.289344310760498 img loss 1.4264649152755737 img loss 1.4091097116470337 img loss 1.3520138263702393 img loss 1.5405558347702026 img loss 1.3619009256362915 img loss 1.3555704355239868 img loss 1.404090166091919 img loss 1.5039621591567993 img loss 1.4094805717468262 img loss 1.3114163875579834 img loss 1.5743670463562012 img loss 1.3892490863800049 img loss 1.3285620212554932 img loss 1.4583241939544678 img loss 1.3718311786651611 img loss 1.4168325662612915 img loss 1.3303827047348022 {'loss': 1.3751, 'grad_norm': 0.2647574245929718, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2506738901138306 img loss 1.3615696430206299 img loss 1.3277697563171387 img loss 1.2930201292037964 img loss 1.3259798288345337 img loss 1.370730996131897 img loss 1.302335262298584 img loss 1.2339752912521362 img loss 1.402575135231018 img loss 1.2992525100708008 img loss 1.3680322170257568 img loss 1.359329342842102 img loss 1.3959976434707642 img loss 1.285154104232788 img loss 1.334946870803833 img loss 1.3261398077011108 img loss 1.2961596250534058 img loss 1.2914644479751587 img loss 1.2887029647827148 img loss 1.356811285018921 img loss 1.2442259788513184 img loss 1.2991628646850586 img loss 1.2405303716659546 img loss 1.485408902168274 img loss 1.2765296697616577 img loss 1.3254849910736084 img loss 1.2925071716308594 img loss 1.4032950401306152 img loss 1.291510820388794 img loss 1.3419716358184814 img loss 1.3421815633773804 img loss 1.359412431716919 img loss 1.2982707023620605 img loss 1.3376421928405762 img loss 1.3135950565338135 img loss 1.3078651428222656 img loss 1.337410807609558 img loss 1.3373820781707764 img loss 1.1845773458480835 img loss 1.3246711492538452 img loss 1.2890352010726929 img loss 1.3672080039978027 img loss 1.2282161712646484 img loss 1.4008584022521973 img loss 1.3483357429504395 img loss 1.399964451789856 img loss 1.3268102407455444 img loss 1.278647780418396 img loss 1.363627314567566 img loss 1.3419157266616821 img loss 1.3278204202651978 img loss 1.2867361307144165 img loss 1.2136741876602173 img loss 1.3147938251495361 img loss 1.3026397228240967 img loss 1.32571542263031 img loss 1.3840454816818237 img loss 1.4351000785827637 img loss 1.4093831777572632 img loss 1.3300340175628662 img loss 1.228989839553833 img loss 1.2474340200424194 img loss 1.3697422742843628 img loss 1.2922205924987793 img loss 1.3072642087936401 img loss 1.2853350639343262 img loss 1.2789580821990967 img loss 1.2864269018173218 img loss 1.2270066738128662 img loss 1.3094596862792969 img loss 1.3195316791534424 img loss 1.335618257522583 img loss 1.346824288368225 img loss 1.2132896184921265 img loss 1.3203794956207275 img loss 1.2577745914459229 img loss 1.3507740497589111 img loss 1.244565725326538 img loss 1.2761191129684448 img loss 1.2855122089385986 img loss 1.3254187107086182 img loss 1.2523689270019531 img loss 1.3665755987167358 img loss 1.3569703102111816 img loss 1.3360847234725952 img loss 1.2391753196716309 img loss 1.2951164245605469 img loss 1.2910614013671875 img loss 1.3636807203292847 img loss 1.254503607749939 img loss 1.2874443531036377 img loss 1.3250328302383423 img loss 1.2959121465682983 img loss 1.303343653678894 img loss 1.3463799953460693 img loss 1.4224616289138794 img loss 1.2987785339355469 img loss 1.3697644472122192 img loss 1.2471500635147095 img loss 1.353588581085205 img loss 1.3906776905059814 img loss 1.3739228248596191 img loss 1.3043897151947021 img loss 1.2725787162780762 img loss 1.4319711923599243 img loss 1.258122444152832 img loss 1.3341572284698486 img loss 1.3134071826934814 img loss 1.435383677482605 img loss 1.2977831363677979 img loss 1.3266983032226562 img loss 1.3136695623397827 img loss 1.356632947921753 img loss 1.3266838788986206 img loss 1.3541325330734253 img loss 1.246774435043335 img loss 1.3110542297363281 img loss 1.27603018283844 img loss 1.3628363609313965 img loss 1.201423168182373 img loss 1.281609058380127 img loss 1.3845760822296143 img loss 1.324558973312378 img loss 1.362060308456421 img loss 1.385016679763794 img loss 1.251503825187683 img loss 1.3427163362503052 img loss 1.2722059488296509 {'loss': 1.3179, 'grad_norm': 0.38458675146102905, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2719552516937256 img loss 1.2122315168380737 img loss 1.1701908111572266 img loss 1.189522385597229 img loss 1.2502307891845703 img loss 1.16744863986969 img loss 1.2063053846359253 img loss 1.2220600843429565 img loss 1.209864854812622 img loss 1.2820611000061035 img loss 1.2195309400558472 img loss 1.2129029035568237 img loss 1.21075439453125 img loss 1.3416190147399902 img loss 1.2212005853652954 img loss 1.1325719356536865 img loss 1.1302993297576904 img loss 1.1788758039474487 img loss 1.2162798643112183 img loss 1.2246242761611938 img loss 1.2111896276474 img loss 1.1985187530517578 img loss 1.164961814880371 img loss 1.217508316040039 img loss 1.2377477884292603 img loss 1.1192442178726196 img loss 1.187342882156372 img loss 1.2255464792251587 img loss 1.2161089181900024 img loss 1.2338552474975586 img loss 1.2633470296859741 img loss 1.2520763874053955 img loss 1.1602877378463745 img loss 1.1597265005111694 img loss 1.2980657815933228 img loss 1.2005877494812012 img loss 1.1998506784439087 img loss 1.2474950551986694 img loss 1.23392653465271 img loss 1.3008806705474854 img loss 1.3141064643859863 img loss 1.1833300590515137 img loss 1.1877087354660034 img loss 1.2175381183624268 img loss 1.1465402841567993 img loss 1.2662495374679565 img loss 1.2717082500457764 img loss 1.1643195152282715 img loss 1.223734736442566 img loss 1.2313932180404663 img loss 1.2140344381332397 img loss 1.2611654996871948 img loss 1.2092701196670532 img loss 1.253222942352295 img loss 1.1785074472427368 img loss 1.2295494079589844 img loss 1.2591503858566284 img loss 1.1346430778503418 img loss 1.1945736408233643 img loss 1.242915391921997 img loss 1.2371258735656738 img loss 1.1910748481750488 img loss 1.2010419368743896 img loss 1.3245189189910889 img loss 1.1736552715301514 img loss 1.152292013168335 img loss 1.1121478080749512 img loss 1.2488071918487549 img loss 1.2416654825210571 img loss 1.2049144506454468 img loss 1.3311221599578857 img loss 1.2157151699066162 img loss 1.2835395336151123 img loss 1.158119797706604 img loss 1.1877360343933105 img loss 1.2173296213150024 img loss 1.2207211256027222 img loss 1.2278274297714233 img loss 1.1373804807662964 img loss 1.1403045654296875 img loss 1.213675856590271 img loss 1.2626500129699707 img loss 1.1861553192138672 img loss 1.1227115392684937 img loss 1.2289193868637085 img loss 1.339327096939087 img loss 1.2524937391281128 img loss 1.2111510038375854 img loss 1.1757049560546875 img loss 1.182225227355957 img loss 1.2789673805236816 img loss 1.153795599937439 img loss 1.1391539573669434 img loss 1.2116806507110596 img loss 1.180138349533081 img loss 1.2827517986297607 img loss 1.1982777118682861 img loss 1.2009285688400269 img loss 1.2501542568206787 img loss 1.165188193321228 img loss 1.125196099281311 img loss 1.2384065389633179 img loss 1.2456111907958984 img loss 1.205762267112732 img loss 1.170336365699768 img loss 1.2035061120986938 img loss 1.2233304977416992 img loss 1.2126765251159668 img loss 1.1943581104278564 img loss 1.2974226474761963 img loss 1.1824204921722412 img loss 1.2690823078155518 img loss 1.2601274251937866 img loss 1.26292884349823img loss 1.2161781787872314 img loss 1.2269904613494873 img loss 1.238459825515747 img loss 1.2239059209823608 img loss 1.234193205833435 img loss 1.2985529899597168 img loss 1.2441341876983643 img loss 1.1014657020568848 img loss 1.2003215551376343 img loss 1.2056530714035034 img loss 1.3024027347564697 img loss 1.2787015438079834 img loss 1.1114658117294312 img loss 1.281583547592163 {'loss': 1.2163, 'grad_norm': 0.2337999939918518, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3729965686798096 img loss 1.3298990726470947 img loss 1.5663444995880127 img loss 1.4800012111663818 img loss 1.360999584197998 img loss 1.346114993095398 img loss 1.2920374870300293 img loss 1.4155610799789429 img loss 1.3225828409194946 img loss 1.2746984958648682 img loss 1.4325801134109497 img loss 1.4445334672927856 img loss 1.386753797531128 img loss 1.3617197275161743 img loss 1.3005489110946655 img loss 1.3354319334030151 img loss 1.460587739944458 img loss 1.337460994720459 img loss 1.4651857614517212 img loss 1.2602157592773438 img loss 1.2834100723266602 img loss 1.3648799657821655 img loss 1.2264751195907593 img loss 1.293420672416687 img loss 1.2718018293380737 img loss 1.2818870544433594 img loss 1.3401854038238525 img loss 1.4413564205169678 img loss 1.4581525325775146 img loss 1.3942586183547974 img loss 1.382523775100708 img loss 1.3503730297088623 img loss 1.4112675189971924 img loss 1.2721296548843384 img loss 1.3554015159606934 img loss 1.2896960973739624 img loss 1.415866494178772 img loss 1.392443299293518 img loss 1.5367704629898071 img loss 1.3678988218307495 img loss 1.3925896883010864 img loss 1.4119149446487427 img loss 1.266339898109436 img loss 1.4167004823684692 img loss 1.4311009645462036 img loss 1.3508312702178955 img loss 1.3969026803970337 img loss 1.287638545036316 img loss 1.3540828227996826 img loss 1.231283187866211 img loss 1.4337193965911865 img loss 1.4660791158676147 img loss 1.3794900178909302 img loss 1.3713124990463257 img loss 1.3498942852020264 img loss 1.2385680675506592 img loss 1.40147864818573 img loss 1.4058119058609009 img loss 1.422088384628296 img loss 1.4581485986709595 img loss 1.3348641395568848 img loss 1.2578864097595215 img loss 1.41864812374115 img loss 1.3416413068771362 img loss 1.3341546058654785 img loss 1.3531991243362427 img loss 1.4352796077728271 img loss 1.4484789371490479 img loss 1.3919024467468262 img loss 1.383277416229248 img loss 1.4190753698349 img loss 1.4675958156585693 img loss 1.3558869361877441 img loss 1.3257954120635986 img loss 1.369178056716919 img loss 1.3683617115020752 img loss 1.3204888105392456 img loss 1.368048906326294 img loss 1.4322963953018188 img loss 1.3830362558364868 img loss 1.33956778049469 img loss 1.430336356163025 img loss 1.3408056497573853 img loss 1.360595464706421 img loss 1.4251008033752441 img loss 1.3217798471450806 img loss 1.3515511751174927 img loss 1.450547456741333 img loss 1.4623312950134277 img loss 1.307372808456421 img loss 1.336200475692749 img loss 1.4157423973083496 img loss 1.3243114948272705 img loss 1.4374306201934814 img loss 1.34479558467865 img loss 1.3525328636169434 img loss 1.3300708532333374 img loss 1.306301474571228 img loss 1.2947393655776978 img loss 1.2357556819915771 img loss 1.3203471899032593 img loss 1.3485170602798462 img loss 1.33894681930542 img loss 1.2919529676437378 img loss 1.3633875846862793 img loss 1.2432721853256226 img loss 1.4473580121994019 img loss 1.3827121257781982 img loss 1.4127975702285767 img loss 1.369057297706604 img loss 1.3595236539840698 img loss 1.3467761278152466 img loss 1.416725516319275 img loss 1.2872962951660156 img loss 1.3263276815414429 img loss 1.4417542219161987 img loss 1.2310453653335571 img loss 1.3086916208267212 img loss 1.4594212770462036 img loss 1.2967973947525024 img loss 1.344451665878296 img loss 1.3139173984527588 img loss 1.3643262386322021 img loss 1.3216018676757812 img loss 1.3221240043640137 img loss 1.5538051128387451 img loss 1.2763279676437378 img loss 1.3185526132583618 {'loss': 1.3643, 'grad_norm': 0.3276161253452301, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2265046834945679 img loss 1.1682802438735962 img loss 1.2126789093017578 img loss 1.2201917171478271 img loss 1.1612342596054077 img loss 1.1703908443450928 img loss 1.217803716659546 img loss 1.1698980331420898 img loss 1.211984634399414 img loss 1.324601411819458 img loss 1.1844031810760498 img loss 1.212166428565979 img loss 1.1953986883163452 img loss 1.159625768661499 img loss 1.2390975952148438 img loss 1.1827824115753174 img loss 1.1801090240478516 img loss 1.201137900352478 img loss 1.1627674102783203 img loss 1.16371488571167 img loss 1.2263516187667847 img loss 1.1872907876968384 img loss 1.1765657663345337 img loss 1.2415308952331543 img loss 1.2996208667755127 img loss 1.2437928915023804 img loss 1.2587082386016846 img loss 1.2585985660552979 img loss 1.2487289905548096 img loss 1.2266592979431152 img loss 1.1952863931655884 img loss 1.245229959487915 img loss 1.1655744314193726 img loss 1.2229399681091309img loss 1.1729366779327393 img loss 1.1814903020858765 img loss 1.2688645124435425 img loss 1.2538899183273315 img loss 1.180083990097046 img loss 1.12764573097229 img loss 1.277372121810913 img loss 1.1608424186706543 img loss 1.2295594215393066 img loss 1.2060362100601196 img loss 1.2431116104125977 img loss 1.2067523002624512 img loss 1.2102575302124023 img loss 1.299975037574768 img loss 1.254079818725586 img loss 1.1417440176010132 img loss 1.2013187408447266 img loss 1.241350531578064 img loss 1.217039704322815 img loss 1.1987251043319702 img loss 1.1900619268417358 img loss 1.211108922958374 img loss 1.2451845407485962 img loss 1.2231453657150269 img loss 1.3655352592468262 img loss 1.189002275466919 img loss 1.256577491760254 img loss 1.2108879089355469 img loss 1.2530125379562378 img loss 1.2235649824142456 img loss 1.195922613143921 img loss 1.1436512470245361 img loss 1.205872893333435 img loss 1.2813873291015625 img loss 1.193759560585022 img loss 1.2280735969543457 img loss 1.2292497158050537 img loss 1.2211456298828125 img loss 1.3305778503417969 img loss 1.2261852025985718 img loss 1.0821256637573242 img loss 1.1953811645507812 img loss 1.1660170555114746 img loss 1.1404836177825928 img loss 1.1821000576019287 img loss 1.1751655340194702 img loss 1.1701894998550415 img loss 1.261977195739746 img loss 1.1357172727584839 img loss 1.230100393295288 img loss 1.1953423023223877 img loss 1.2365026473999023 img loss 1.203468918800354 img loss 1.185554027557373 img loss 1.202695608139038 img loss 1.2372779846191406 img loss 1.1767289638519287 img loss 1.2285429239273071 img loss 1.2123894691467285 img loss 1.2093147039413452 img loss 1.1913456916809082 img loss 1.238926887512207 img loss 1.1745809316635132 img loss 1.2678372859954834 img loss 1.234905481338501 img loss 1.3164414167404175 img loss 1.2247116565704346 img loss 1.1474831104278564 img loss 1.282494068145752 img loss 1.1632317304611206 img loss 1.1586672067642212 img loss 1.1851005554199219 img loss 1.1802815198898315 img loss 1.1969760656356812 img loss 1.207632064819336 img loss 1.2093040943145752 img loss 1.1760730743408203 img loss 1.199683666229248 img loss 1.2514865398406982 img loss 1.2259594202041626 img loss 1.130172610282898 img loss 1.2123146057128906 img loss 1.1973251104354858 img loss 1.1691296100616455 img loss 1.220428228378296 img loss 1.1990106105804443 img loss 1.1995787620544434 img loss 1.180802822113037 img loss 1.248216152191162 img loss 1.1698849201202393 img loss 1.1700252294540405 img loss 1.2221636772155762 img loss 1.2321653366088867 img loss 1.2572219371795654 {'loss': 1.2104, 'grad_norm': 0.3202577233314514, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2457622289657593 img loss 1.1841663122177124 img loss 1.13737952709198 img loss 1.1165450811386108 img loss 1.2233600616455078 img loss 1.2079105377197266 img loss 1.210161805152893 img loss 1.1968238353729248 img loss 1.1825063228607178 img loss 1.2032082080841064 img loss 1.2243232727050781 img loss 1.2053749561309814 img loss 1.183194875717163 img loss 1.3049732446670532 img loss 1.2308210134506226 img loss 1.2414166927337646 img loss 1.228218913078308 img loss 1.2533702850341797 img loss 1.2060368061065674 img loss 1.2251031398773193 img loss 1.2701443433761597 img loss 1.1754480600357056 img loss 1.2078365087509155 img loss 1.202441930770874 img loss 1.183753252029419 img loss 1.2723890542984009 img loss 1.1927517652511597 img loss 1.2833614349365234 img loss 1.280597448348999 img loss 1.2045807838439941 img loss 1.1856210231781006 img loss 1.185825228691101 img loss 1.2302887439727783 img loss 1.1885594129562378 img loss 1.2412693500518799 img loss 1.1534667015075684 img loss 1.184740662574768 img loss 1.2523961067199707 img loss 1.1849777698516846 img loss 1.1681352853775024 img loss 1.1516321897506714 img loss 1.1604604721069336 img loss 1.224081039428711 img loss 1.2626445293426514 img loss 1.2817249298095703 img loss 1.2140862941741943 img loss 1.2409381866455078 img loss 1.2431845664978027 img loss 1.2053163051605225 img loss 1.2792037725448608 img loss 1.1443581581115723 img loss 1.1976265907287598 img loss 1.1270945072174072 img loss 1.120861291885376 img loss 1.1170823574066162 img loss 1.245255470275879 img loss 1.2855020761489868 img loss 1.1922976970672607 img loss 1.2116590738296509 img loss 1.2380547523498535 img loss 1.3069992065429688 img loss 1.1723699569702148 img loss 1.2489687204360962 img loss 1.212835669517517 img loss 1.2502872943878174 img loss 1.1378588676452637 img loss 1.2975671291351318 img loss 1.213985800743103 img loss 1.1701055765151978 img loss 1.2359004020690918 img loss 1.2023206949234009 img loss 1.1595110893249512 img loss 1.188461184501648 img loss 1.1958931684494019 img loss 1.2405914068222046 img loss 1.207560420036316 img loss 1.2265652418136597 img loss 1.1852493286132812 img loss 1.2267487049102783 img loss 1.2191771268844604 img loss 1.3204460144042969 img loss 1.23160982131958img loss 1.229142665863037 img loss 1.2258003950119019 img loss 1.2551945447921753 img loss 1.2517929077148438 img loss 1.2439311742782593 img loss 1.2585443258285522 img loss 1.2692722082138062 img loss 1.2290947437286377 img loss 1.179449439048767 img loss 1.167805552482605 img loss 1.209572672843933 img loss 1.2743662595748901 img loss 1.2483800649642944 img loss 1.2187633514404297 img loss 1.2611305713653564 img loss 1.2408323287963867 img loss 1.172019362449646 img loss 1.2442076206207275 img loss 1.2341927289962769 img loss 1.160037875175476 img loss 1.2592226266860962 img loss 1.1885696649551392 img loss 1.1875314712524414 img loss 1.1555794477462769 img loss 1.1804311275482178 img loss 1.2114473581314087 img loss 1.1703333854675293 img loss 1.185730218887329 img loss 1.163964867591858 img loss 1.2457935810089111 img loss 1.2249191999435425 img loss 1.1490304470062256 img loss 1.283185601234436 img loss 1.179417371749878 img loss 1.2069095373153687 img loss 1.1511300802230835 img loss 1.1583209037780762 img loss 1.1870548725128174 img loss 1.2523720264434814 img loss 1.23142671585083 img loss 1.202958583831787 img loss 1.1608895063400269 img loss 1.2178806066513062 img loss 1.1084885597229004 img loss 1.2775150537490845 img loss 1.256295919418335 {'loss': 1.2127, 'grad_norm': 0.18870511651039124, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.253272294998169 img loss 1.1349267959594727 img loss 1.1462233066558838 img loss 1.198055624961853 img loss 1.1468788385391235 img loss 1.26059889793396 img loss 1.2552636861801147 img loss 1.1968637704849243 img loss 1.1142171621322632 img loss 1.2656011581420898 img loss 1.2168669700622559 img loss 1.16692316532135 img loss 1.3173539638519287 img loss 1.226567029953003 img loss 1.1868784427642822 img loss 1.1590964794158936 img loss 1.149045705795288 img loss 1.2125887870788574 img loss 1.2924118041992188 img loss 1.251415729522705 img loss 1.231195330619812 img loss 1.2670334577560425 img loss 1.2459981441497803 img loss 1.2766962051391602 img loss 1.2260301113128662 img loss 1.1327089071273804 img loss 1.3198620080947876 img loss 1.2178854942321777 img loss 1.2278536558151245 img loss 1.2131521701812744 img loss 1.2075533866882324 img loss 1.0836539268493652 img loss 1.264134168624878 img loss 1.2025585174560547 img loss 1.2854938507080078 img loss 1.2448017597198486 img loss 1.328089952468872 img loss 1.1341155767440796 img loss 1.3065805435180664 img loss 1.223792552947998 img loss 1.2663332223892212 img loss 1.2038369178771973 img loss 1.203216791152954 img loss 1.2102669477462769 img loss 1.2051670551300049 img loss 1.2415497303009033 img loss 1.2353131771087646 img loss 1.1715412139892578 img loss 1.1834545135498047 img loss 1.2394866943359375 img loss 1.2099615335464478 img loss 1.2625916004180908 img loss 1.2355706691741943 img loss 1.1890270709991455 img loss 1.1987007856369019 img loss 1.2483229637145996 img loss 1.1928373575210571 img loss 1.2556551694869995 img loss 1.351710557937622 img loss 1.182201623916626 img loss 1.1970278024673462 img loss 1.1626847982406616 img loss 1.1726073026657104 img loss 1.161511778831482 img loss 1.1791260242462158 img loss 1.2721357345581055 img loss 1.1668332815170288 img loss 1.2302308082580566 img loss 1.2624988555908203 img loss 1.1795856952667236 img loss 1.1510437726974487 img loss 1.2353355884552002 img loss 1.2037426233291626 img loss 1.1815799474716187 img loss 1.2211450338363647 img loss 1.1727081537246704 img loss 1.2956559658050537 img loss 1.2281663417816162 img loss 1.2705415487289429 img loss 1.1980289220809937 img loss 1.2126368284225464 img loss 1.2105013132095337 img loss 1.32610023021698 img loss 1.17440664768219 img loss 1.235113501548767 img loss 1.211381196975708 img loss 1.3667199611663818 img loss 1.16632080078125 img loss 1.2408055067062378 img loss 1.2430171966552734 img loss 1.2277615070343018 img loss 1.2002770900726318 img loss 1.1136990785598755 img loss 1.2373383045196533 img loss 1.269446849822998 img loss 1.2466058731079102 img loss 1.4271036386489868 img loss 1.1637519598007202 img loss 1.125594973564148 img loss 1.2199901342391968 img loss 1.279571533203125 img loss 1.2413289546966553 img loss 1.2233860492706299 img loss 1.2998275756835938 img loss 1.2638777494430542 img loss 1.1571669578552246 img loss 1.2252311706542969 img loss 1.2048053741455078 img loss 1.3120121955871582 img loss 1.2468433380126953 img loss 1.3148199319839478 img loss 1.1947784423828125 img loss 1.3073911666870117 img loss 1.1735470294952393 img loss 1.1894680261611938 img loss 1.2834821939468384 img loss 1.3406250476837158 img loss 1.2616806030273438 img loss 1.2060842514038086 img loss 1.1941375732421875 img loss 1.3585219383239746 img loss 1.2393101453781128 img loss 1.192349910736084 img loss 1.2290455102920532 img loss 1.1663745641708374 img loss 1.2416162490844727 img loss 1.2070378065109253 img loss 1.2228230237960815 {'loss': 1.2251, 'grad_norm': 0.20147548615932465, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.234982967376709 img loss 1.1999841928482056 img loss 1.2827167510986328 img loss 1.1996827125549316 img loss 1.2274773120880127 img loss 1.1329071521759033 img loss 1.1073771715164185 img loss 1.1916718482971191 img loss 1.3067954778671265 img loss 1.1780837774276733 img loss 1.206554651260376 img loss 1.2034509181976318 img loss 1.3529092073440552 img loss 1.151935338973999 img loss 1.2352519035339355 img loss 1.2564504146575928 img loss 1.3146460056304932 img loss 1.1270149946212769 img loss 1.2755961418151855 img loss 1.229072093963623 img loss 1.2794586420059204 img loss 1.243701457977295 img loss 1.1864614486694336 img loss 1.200722098350525 img loss 1.2285038232803345 img loss 1.1555629968643188 img loss 1.2654389142990112 img loss 1.1647099256515503 img loss 1.283380389213562 img loss 1.2044711112976074 img loss 1.2150609493255615 img loss 1.2011369466781616 img loss 1.1717461347579956 img loss 1.206150770187378 img loss 1.1825485229492188 img loss 1.2154419422149658 img loss 1.1824123859405518 img loss 1.1770395040512085 img loss 1.1599907875061035 img loss 1.2253493070602417 img loss 1.2067865133285522 img loss 1.1321090459823608 img loss 1.2547240257263184 img loss 1.1918023824691772 img loss 1.1478931903839111 img loss 1.204362392425537 img loss 1.293656826019287 img loss 1.1542778015136719 img loss 1.2364104986190796 img loss 1.217343807220459 img loss 1.248477578163147 img loss 1.1915004253387451 img loss 1.1686161756515503 img loss 1.2241086959838867img loss 1.2300670146942139 img loss 1.2195438146591187 img loss 1.1893837451934814 img loss 1.2191646099090576 img loss 1.235406517982483 img loss 1.235243797302246 img loss 1.2186068296432495 img loss 1.260167121887207 img loss 1.2477539777755737 img loss 1.207970142364502 img loss 1.27794349193573 img loss 1.272072196006775 img loss 1.2186682224273682 img loss 1.2411377429962158 img loss 1.2616536617279053 img loss 1.2423202991485596 img loss 1.2466379404067993 img loss 1.2229759693145752 img loss 1.19829523563385 img loss 1.199070930480957 img loss 1.329138159751892 img loss 1.214343547821045 img loss 1.196984052658081 img loss 1.1906181573867798 img loss 1.2885680198669434 img loss 1.2342257499694824 img loss 1.2166601419448853 img loss 1.2177828550338745 img loss 1.1827600002288818 img loss 1.2649812698364258 img loss 1.1717259883880615 img loss 1.3316106796264648 img loss 1.1983311176300049 img loss 1.223798155784607 img loss 1.1542495489120483 img loss 1.2440483570098877 img loss 1.237306833267212 img loss 1.1952989101409912 img loss 1.175984263420105 img loss 1.2978222370147705 img loss 1.1679034233093262 img loss 1.2817579507827759 img loss 1.2197601795196533 img loss 1.206865668296814 img loss 1.1797150373458862 img loss 1.1265729665756226 img loss 1.1981046199798584 img loss 1.1890617609024048 img loss 1.1710188388824463 img loss 1.2444374561309814 img loss 1.1972076892852783 img loss 1.2370166778564453 img loss 1.2261486053466797 img loss 1.2228977680206299 img loss 1.2409000396728516 img loss 1.2401663064956665 img loss 1.1652475595474243 img loss 1.1389845609664917 img loss 1.2409708499908447 img loss 1.18922758102417 img loss 1.1748476028442383 img loss 1.295174479484558 img loss 1.2011650800704956 img loss 1.2458410263061523 img loss 1.1248419284820557 img loss 1.2810465097427368 img loss 1.1587698459625244 img loss 1.1896804571151733 img loss 1.225776195526123 img loss 1.1461732387542725 img loss 1.2487494945526123 img loss 1.2317359447479248 img loss 1.22130286693573 img loss 1.2275209426879883 {'loss': 1.2164, 'grad_norm': 0.3776169717311859, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2640444040298462 img loss 1.3023689985275269 img loss 1.273935079574585 img loss 1.3013094663619995 img loss 1.45167875289917 img loss 1.3323783874511719 img loss 1.3519623279571533 img loss 1.273240566253662 img loss 1.2650455236434937 img loss 1.1985626220703125 img loss 1.2998027801513672 img loss 1.294468879699707 img loss 1.2510814666748047 img loss 1.2803840637207031 img loss 1.3052431344985962 img loss 1.2188334465026855 img loss 1.287901520729065 img loss 1.170728087425232 img loss 1.265493631362915 img loss 1.371810793876648 img loss 1.2809906005859375 img loss 1.2952470779418945 img loss 1.3320072889328003 img loss 1.3282558917999268 img loss 1.2139647006988525 img loss 1.2600702047348022 img loss 1.2734711170196533 img loss 1.2436141967773438 img loss 1.2598638534545898 img loss 1.266601324081421 img loss 1.2623833417892456 img loss 1.2939399480819702 img loss 1.2666015625 img loss 1.262937307357788 img loss 1.2572076320648193 img loss 1.289491057395935 img loss 1.2871497869491577 img loss 1.3272860050201416 img loss 1.2800558805465698 img loss 1.2837976217269897 img loss 1.22919499874115 img loss 1.311663031578064 img loss 1.270530343055725 img loss 1.2734031677246094 img loss 1.2317920923233032 img loss 1.3327229022979736 img loss 1.3294224739074707 img loss 1.280342936515808 img loss 1.379248023033142 img loss 1.2773184776306152 img loss 1.3297133445739746 img loss 1.2935672998428345 img loss 1.2475006580352783 img loss 1.3368027210235596 img loss 1.2847800254821777 img loss 1.292483925819397 img loss 1.2583757638931274 img loss 1.3656648397445679 img loss 1.2904200553894043 img loss 1.2228684425354004 img loss 1.2288084030151367 img loss 1.2908918857574463 img loss 1.2665696144104004 img loss 1.3254135847091675 img loss 1.3099713325500488 img loss 1.2636374235153198 img loss 1.2829012870788574 img loss 1.3479706048965454 img loss 1.240415096282959 img loss 1.285315990447998 img loss 1.3933254480361938 img loss 1.3347151279449463 img loss 1.2828993797302246 img loss 1.234745979309082 img loss 1.301491618156433 img loss 1.316402792930603 img loss 1.3207687139511108 img loss 1.266839861869812 img loss 1.248450756072998 img loss 1.3193678855895996 img loss 1.211053490638733 img loss 1.4021440744400024 img loss 1.1879596710205078 img loss 1.2881110906600952 img loss 1.270065188407898 img loss 1.2781083583831787 img loss 1.3015960454940796 img loss 1.3157291412353516 img loss 1.2710585594177246 img loss 1.2760485410690308 img loss 1.1852487325668335 img loss 1.2981364727020264 img loss 1.2514771223068237 img loss 1.3666527271270752 img loss 1.2182507514953613 img loss 1.3701874017715454 img loss 1.290453553199768 img loss 1.2104759216308594 img loss 1.2538542747497559 img loss 1.2240900993347168 img loss 1.327392578125 img loss 1.3016821146011353 img loss 1.2618951797485352 img loss 1.256974458694458 img loss 1.3128288984298706 img loss 1.2289155721664429 img loss 1.3612061738967896 img loss 1.2939636707305908 img loss 1.2970147132873535 img loss 1.2519774436950684 img loss 1.2362228631973267 img loss 1.311881422996521 img loss 1.2842247486114502 img loss 1.219338297843933 img loss 1.4078688621520996 img loss 1.3910943269729614 img loss 1.2667975425720215 img loss 1.330001711845398 img loss 1.268248200416565 img loss 1.2913703918457031 img loss 1.2414929866790771 img loss 1.2539833784103394 img loss 1.3644366264343262 img loss 1.2231459617614746 img loss 1.289408564567566 img loss 1.337377905845642 img loss 1.262094259262085 img loss 1.5000659227371216 {'loss': 1.288, 'grad_norm': 0.2912740111351013, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2740074396133423 img loss 1.245632529258728 img loss 1.157296895980835 img loss 1.177040696144104 img loss 1.2961812019348145 img loss 1.249729871749878 img loss 1.1458557844161987 img loss 1.2541041374206543 img loss 1.2142549753189087 img loss 1.3248757123947144 img loss 1.2248371839523315 img loss 1.2817350625991821 img loss 1.348040223121643 img loss 1.302995204925537 img loss 1.2958149909973145 img loss 1.2533206939697266 img loss 1.2974157333374023 img loss 1.2697337865829468 img loss 1.3245512247085571 img loss 1.2390117645263672 img loss 1.2493222951889038 img loss 1.3295092582702637 img loss 1.2176706790924072 img loss 1.2544941902160645 img loss 1.2512158155441284 img loss 1.2305573225021362 img loss 1.3024297952651978 img loss 1.2211987972259521 img loss 1.258944034576416 img loss 1.1997534036636353 img loss 1.3143821954727173 img loss 1.2784875631332397 img loss 1.2260974645614624 img loss 1.3164396286010742 img loss 1.2466936111450195 img loss 1.1720184087753296 img loss 1.2653964757919312 img loss 1.3067853450775146 img loss 1.2981960773468018 img loss 1.2976661920547485 img loss 1.355302095413208 img loss 1.1808289289474487 img loss 1.317535400390625 img loss 1.3378816843032837 img loss 1.278990387916565 img loss 1.1967356204986572 img loss 1.2358349561691284 img loss 1.3014907836914062 img loss 1.2536591291427612 img loss 1.3077620267868042 img loss 1.2943642139434814 img loss 1.2404943704605103 img loss 1.2781753540039062 img loss 1.3095238208770752 img loss 1.3609822988510132 img loss 1.1851787567138672 img loss 1.1578270196914673 img loss 1.2671525478363037 img loss 1.2473474740982056 img loss 1.144153118133545 img loss 1.2106876373291016 img loss 1.25357186794281 img loss 1.230102300643921 img loss 1.257158637046814 img loss 1.1950854063034058 img loss 1.221716284751892 img loss 1.189616084098816 img loss 1.2603988647460938 img loss 1.2652854919433594 img loss 1.3454574346542358 img loss 1.2971928119659424 img loss 1.206758975982666 img loss 1.318528652191162 img loss 1.2444276809692383 img loss 1.3880945444107056 img loss 1.2394729852676392 img loss 1.343088984489441 img loss 1.1278687715530396 img loss 1.3007559776306152 img loss 1.1934877634048462 img loss 1.2820003032684326 img loss 1.2841123342514038 img loss 1.2505121231079102 img loss 1.2843220233917236 img loss 1.3025426864624023 img loss 1.3374828100204468 img loss 1.3022382259368896 img loss 1.190796136856079 img loss 1.3826804161071777 img loss 1.3005417585372925 img loss 1.2766512632369995 img loss 1.3097642660140991 img loss 1.2256771326065063 img loss 1.2318460941314697 img loss 1.2535359859466553 img loss 1.278002142906189 img loss 1.1897417306900024 img loss 1.2367700338363647 img loss 1.272497534751892 img loss 1.1902145147323608 img loss 1.1760461330413818 img loss 1.3178800344467163 img loss 1.2148936986923218 img loss 1.2830318212509155 img loss 1.3536789417266846 img loss 1.295046091079712 img loss 1.323251724243164 img loss 1.194262981414795 img loss 1.2439345121383667 img loss 1.3304179906845093 img loss 1.227737307548523 img loss 1.3908714056015015 img loss 1.2520473003387451 img loss 1.2312685251235962 img loss 1.2290853261947632 img loss 1.213805913925171 img loss 1.2710015773773193 img loss 1.2177685499191284 img loss 1.2271980047225952 img loss 1.289209246635437 img loss 1.2863539457321167 img loss 1.3437694311141968 img loss 1.3719627857208252 img loss 1.3070684671401978 img loss 1.2455711364746094 img loss 1.196822166442871 img loss 1.2318216562271118 img loss 1.3598138093948364 {'loss': 1.2638, 'grad_norm': 0.2558683454990387, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3491145372390747 img loss 1.5337796211242676 img loss 1.3370689153671265 img loss 1.4730209112167358 img loss 1.4714800119400024 img loss 1.5263007879257202 img loss 1.5529398918151855 img loss 1.3772435188293457 img loss 1.4871885776519775 img loss 1.2836865186691284 img loss 1.4542564153671265 img loss 1.2939159870147705 img loss 1.3032035827636719 img loss 1.3790194988250732 img loss 1.3927160501480103 img loss 1.486935019493103 img loss 1.348081111907959 img loss 1.3866156339645386 img loss 1.5237888097763062 img loss 1.2589600086212158 img loss 1.3789035081863403 img loss 1.4410697221755981 img loss 1.3502309322357178 img loss 1.3085063695907593 img loss 1.4991956949234009 img loss 1.4713337421417236 img loss 1.4275716543197632 img loss 1.4080474376678467 img loss 1.2227028608322144 img loss 1.3336138725280762 img loss 1.4314913749694824 img loss 1.3905539512634277 img loss 1.4669498205184937 img loss 1.3406070470809937 img loss 1.3372528553009033 img loss 1.4742844104766846 img loss 1.4748852252960205 img loss 1.514504075050354 img loss 1.3259921073913574 img loss 1.4040472507476807 img loss 1.4439393281936646 img loss 1.4675476551055908 img loss 1.425132393836975 img loss 1.3344473838806152 img loss 1.5713125467300415 img loss 1.4031195640563965 img loss 1.3369306325912476 img loss 1.386963129043579 img loss 1.5408895015716553 img loss 1.5239092111587524 img loss 1.5079511404037476 img loss 1.3834373950958252 img loss 1.5093562602996826 img loss 1.3830465078353882 img loss 1.4153767824172974 img loss 1.5071494579315186 img loss 1.5406564474105835 img loss 1.4226611852645874 img loss 1.3233654499053955 img loss 1.4401861429214478 img loss 1.311563491821289 img loss 1.3731181621551514 img loss 1.3808244466781616 img loss 1.3792130947113037 img loss 1.5010201930999756 img loss 1.4381054639816284 img loss 1.4918729066848755 img loss 1.4947057962417603 img loss 1.4189941883087158 img loss 1.3342201709747314 img loss 1.4081361293792725 img loss 1.4993036985397339 img loss 1.3905731439590454 img loss 1.525560736656189 img loss 1.3601959943771362 img loss 1.238489031791687 img loss 1.4034544229507446 img loss 1.4737094640731812 img loss 1.461717128753662 img loss 1.6304231882095337 img loss 1.402310848236084 img loss 1.4325308799743652 img loss 1.3073101043701172 img loss 1.4442254304885864 img loss 1.5240885019302368 img loss 1.5001558065414429 img loss 1.5347797870635986 img loss 1.437686562538147 img loss 1.2865833044052124 img loss 1.5110818147659302 img loss 1.455056071281433 img loss 1.5141125917434692 img loss 1.4761617183685303 img loss 1.4862418174743652 img loss 1.4727431535720825 img loss 1.3582370281219482 img loss 1.43087899684906 img loss 1.336769700050354 img loss 1.5169135332107544 img loss 1.3523963689804077 img loss 1.409972906112671 img loss 1.4234459400177002 img loss 1.4030461311340332 img loss 1.4250189065933228 img loss 1.4305338859558105 img loss 1.379513144493103 img loss 1.4614386558532715 img loss 1.4261804819107056 img loss 1.1806949377059937 img loss 1.4227122068405151 img loss 1.4203013181686401 img loss 1.63506281375885 img loss 1.5350590944290161 img loss 1.5288280248641968 img loss 1.4919297695159912 img loss 1.3272018432617188 img loss 1.3138760328292847 img loss 1.388000726699829 img loss 1.4208961725234985 img loss 1.3186702728271484 img loss 1.4323346614837646 img loss 1.3798331022262573 img loss 1.43471097946167 img loss 1.3825098276138306 img loss 1.3965065479278564 img loss 1.4412518739700317 img loss 1.497271180152893 img loss 1.440041422843933 {'loss': 1.4229, 'grad_norm': 0.2869834303855896, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2016853094100952 img loss 1.1791985034942627 img loss 1.1600632667541504 img loss 1.2531447410583496 img loss 1.2681903839111328 img loss 1.2642122507095337 img loss 1.301061987876892 img loss 1.2030746936798096 img loss 1.1717278957366943 img loss 1.1770780086517334 img loss 1.1737827062606812 img loss 1.1290836334228516 img loss 1.2122429609298706 img loss 1.2117750644683838 img loss 1.2580337524414062 img loss 1.185997486114502 img loss 1.1967504024505615 img loss 1.1889379024505615 img loss 1.2281074523925781 img loss 1.1869992017745972 img loss 1.1418448686599731 img loss 1.2416406869888306 img loss 1.2191132307052612 img loss 1.2125988006591797 img loss 1.2328990697860718 img loss 1.2344121932983398 img loss 1.2017104625701904 img loss 1.1379669904708862 img loss 1.1775894165039062 img loss 1.218777060508728 img loss 1.219040870666504 img loss 1.2242687940597534 img loss 1.196927785873413 img loss 1.1745100021362305 img loss 1.1488949060440063 img loss 1.2654526233673096 img loss 1.2258471250534058 img loss 1.1968066692352295 img loss 1.203011155128479 img loss 1.1645214557647705 img loss 1.1783889532089233 img loss 1.247470498085022 img loss 1.2055526971817017 img loss 1.2076165676116943 img loss 1.1770861148834229 img loss 1.2129638195037842 img loss 1.1819090843200684 img loss 1.2698523998260498 img loss 1.1592612266540527 img loss 1.2600942850112915 img loss 1.2946524620056152 img loss 1.186255931854248 img loss 1.3044036626815796 img loss 1.2249606847763062 img loss 1.2483237981796265 img loss 1.2118439674377441 img loss 1.2130898237228394 img loss 1.22260320186615 img loss 1.2244659662246704 img loss 1.1584075689315796 img loss 1.225104808807373 img loss 1.1858344078063965 img loss 1.16413152217865 img loss 1.2405998706817627 img loss 1.1733249425888062 img loss 1.1456642150878906 img loss 1.2229914665222168 img loss 1.1535309553146362 img loss 1.2001041173934937 img loss 1.16616952419281 img loss 1.124310851097107 img loss 1.210686206817627 img loss 1.1803220510482788 img loss 1.2793481349945068 img loss 1.1229774951934814 img loss 1.3110976219177246 img loss 1.1324790716171265 img loss 1.1991033554077148 img loss 1.2070765495300293 img loss 1.1925442218780518 img loss 1.1614516973495483 img loss 1.1626943349838257 img loss 1.178556203842163 img loss 1.2108802795410156 img loss 1.215462327003479 img loss 1.2073943614959717 img loss 1.2502621412277222 img loss 1.1972198486328125 img loss 1.1883516311645508 img loss 1.2107274532318115 img loss 1.2529667615890503 img loss 1.1794753074645996 img loss 1.2525014877319336 img loss 1.2370507717132568 img loss 1.1935337781906128 img loss 1.2028907537460327 img loss 1.152997612953186 img loss 1.2229619026184082 img loss 1.2986376285552979 img loss 1.2764875888824463 img loss 1.2126023769378662img loss 1.1415704488754272 img loss 1.1417899131774902 img loss 1.185402274131775 img loss 1.2519298791885376img loss 1.220819354057312 img loss 1.2192103862762451 img loss 1.2305238246917725 img loss 1.2203881740570068 img loss 1.179582118988037 img loss 1.2098814249038696 img loss 1.2451658248901367 img loss 1.1508843898773193 img loss 1.1800082921981812 img loss 1.2413315773010254 img loss 1.2011711597442627 img loss 1.1946561336517334 img loss 1.195900559425354 img loss 1.182765245437622 img loss 1.2229503393173218 img loss 1.188154697418213 img loss 1.224273681640625 img loss 1.206119179725647 img loss 1.237099289894104 img loss 1.229215145111084 img loss 1.1969858407974243 img loss 1.2252538204193115 img loss 1.1842129230499268 {'loss': 1.2062, 'grad_norm': 0.26403099298477173, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1294225454330444 img loss 1.2077583074569702 img loss 1.1376503705978394 img loss 1.2157829999923706 img loss 1.234021782875061 img loss 1.154008388519287 img loss 1.1909561157226562 img loss 1.229560136795044 img loss 1.1534452438354492 img loss 1.2122005224227905 img loss 1.2346075773239136 img loss 1.252490520477295 img loss 1.2220367193222046 img loss 1.2438172101974487 img loss 1.0771487951278687 img loss 1.2231769561767578 img loss 1.1430189609527588 img loss 1.1993569135665894 img loss 1.1163330078125 img loss 1.235625982284546 img loss 1.183287501335144 img loss 1.2346243858337402 img loss 1.2227692604064941 img loss 1.2528594732284546 img loss 1.214124321937561 img loss 1.222766399383545 img loss 1.226045846939087 img loss 1.1998748779296875 img loss 1.253024697303772 img loss 1.1733922958374023 img loss 1.1977596282958984 img loss 1.1819177865982056 img loss 1.2693097591400146 img loss 1.2268898487091064 img loss 1.179504632949829 img loss 1.2033812999725342 img loss 1.178542137145996 img loss 1.1229228973388672 img loss 1.1727535724639893 img loss 1.2240298986434937 img loss 1.20542573928833 img loss 1.2703346014022827 img loss 1.3264440298080444 img loss 1.1786495447158813 img loss 1.1578643321990967 img loss 1.247464895248413 img loss 1.206876516342163 img loss 1.1798806190490723 img loss 1.2092176675796509 img loss 1.2228659391403198 img loss 1.203104853630066 img loss 1.2176426649093628 img loss 1.1881420612335205 img loss 1.229185700416565 img loss 1.2814346551895142 img loss 1.179072380065918 img loss 1.2822977304458618 img loss 1.2489522695541382 img loss 1.2310311794281006 img loss 1.1696697473526 img loss 1.2247225046157837 img loss 1.1477890014648438 img loss 1.204156517982483 img loss 1.2196192741394043 img loss 1.2227118015289307 img loss 1.2334976196289062 img loss 1.2486202716827393 img loss 1.1724591255187988 img loss 1.1973659992218018 img loss 1.2685356140136719 img loss 1.1866755485534668 img loss 1.2053086757659912 img loss 1.1976345777511597 img loss 1.1972488164901733 img loss 1.2151660919189453 img loss 1.2220511436462402 img loss 1.1804821491241455 img loss 1.22404146194458 img loss 1.1941752433776855 img loss 1.153618574142456 img loss 1.2633670568466187 img loss 1.1989400386810303 img loss 1.2122291326522827 img loss 1.2051434516906738 img loss 1.25571608543396 img loss 1.2215169668197632 img loss 1.1604342460632324 img loss 1.1532306671142578 img loss 1.2294142246246338 img loss 1.2762377262115479 img loss 1.2704401016235352 img loss 1.178760051727295 img loss 1.278632402420044 img loss 1.2173144817352295 img loss 1.2373722791671753 img loss 1.2040337324142456 img loss 1.2473875284194946 img loss 1.211106538772583 img loss 1.2714333534240723 img loss 1.2352628707885742 img loss 1.204802393913269 img loss 1.209275722503662 img loss 1.213836431503296 img loss 1.2212049961090088 img loss 1.1988461017608643 img loss 1.175729751586914 img loss 1.1959580183029175 img loss 1.1496102809906006 img loss 1.2561057806015015 img loss 1.2489924430847168 img loss 1.1703161001205444 img loss 1.179462194442749 img loss 1.273341417312622 img loss 1.1650996208190918 img loss 1.1837087869644165 img loss 1.304925560951233 img loss 1.2108933925628662 img loss 1.2455534934997559 img loss 1.1960896253585815 img loss 1.3504681587219238 img loss 1.1606353521347046 img loss 1.2664272785186768 img loss 1.2821884155273438 img loss 1.3179166316986084 img loss 1.2614269256591797 img loss 1.2324936389923096 img loss 1.2090015411376953 img loss 1.2831592559814453 {'loss': 1.2141, 'grad_norm': 0.5115879774093628, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.405031681060791 img loss 1.5248898267745972 img loss 1.6015104055404663 img loss 1.4228752851486206 img loss 1.4876571893692017 img loss 1.3106796741485596 img loss 1.3952622413635254 img loss 1.399462103843689 img loss 1.4037978649139404 img loss 1.5640097856521606 img loss 1.4206739664077759 img loss 1.4441806077957153 img loss 1.4308687448501587 img loss 1.534975528717041 img loss 1.2668282985687256 img loss 1.4670937061309814 img loss 1.5212857723236084 img loss 1.4658223390579224 img loss 1.3524893522262573 img loss 1.4226720333099365 img loss 1.297720193862915 img loss 1.4725754261016846 img loss 1.4071202278137207 img loss 1.527809739112854 img loss 1.5070987939834595 img loss 1.3644278049468994 img loss 1.506386637687683 img loss 1.4057077169418335 img loss 1.5240509510040283 img loss 1.3770517110824585 img loss 1.4405910968780518 img loss 1.3837403059005737 img loss 1.3427342176437378 img loss 1.481908917427063 img loss 1.3758639097213745 img loss 1.4002116918563843 img loss 1.3615005016326904 img loss 1.3370007276535034 img loss 1.5676281452178955 img loss 1.529855489730835 img loss 1.4662578105926514 img loss 1.4173929691314697 img loss 1.4623262882232666 img loss 1.331785798072815 img loss 1.4437094926834106 img loss 1.448359727859497 img loss 1.3760535717010498 img loss 1.299066424369812 img loss 1.3950787782669067 img loss 1.3488203287124634 img loss 1.5435930490493774 img loss 1.4779301881790161 img loss 1.3725234270095825 img loss 1.3551007509231567 img loss 1.4645752906799316 img loss 1.3292579650878906 img loss 1.3922092914581299 img loss 1.4940260648727417 img loss 1.4521563053131104 img loss 1.2882870435714722 img loss 1.399206280708313 img loss 1.4178072214126587 img loss 1.3894120454788208 img loss 1.3646970987319946 img loss 1.3852601051330566 img loss 1.4693223237991333 img loss 1.43764066696167 img loss 1.457962155342102 img loss 1.4581094980239868 img loss 1.351610779762268 img loss 1.4081534147262573 img loss 1.3256330490112305 img loss 1.3143726587295532 img loss 1.4383972883224487 img loss 1.4476983547210693 img loss 1.4161962270736694 img loss 1.3247162103652954 img loss 1.4432607889175415 img loss 1.4899355173110962 img loss 1.5061622858047485 img loss 1.4138168096542358 img loss 1.415789246559143 img loss 1.446324110031128 img loss 1.3953214883804321 img loss 1.4398747682571411 img loss 1.584132432937622 img loss 1.4882121086120605 img loss 1.4700521230697632 img loss 1.5453020334243774 img loss 1.4052536487579346 img loss 1.6614162921905518 img loss 1.4248478412628174 img loss 1.4555275440216064 img loss 1.3974496126174927 img loss 1.3873845338821411 img loss 1.3805245161056519 img loss 1.3975250720977783 img loss 1.4570943117141724 img loss 1.425270438194275 img loss 1.5114465951919556 img loss 1.5174216032028198 img loss 1.375708818435669 img loss 1.4790303707122803 img loss 1.4641270637512207 img loss 1.5698189735412598 img loss 1.3739873170852661 img loss 1.4640555381774902 img loss 1.44492769241333 img loss 1.3415043354034424 img loss 1.38703191280365 img loss 1.4427917003631592 img loss 1.3516069650650024 img loss 1.451768159866333 img loss 1.5000935792922974 img loss 1.3746676445007324 img loss 1.570563554763794 img loss 1.292480230331421 img loss 1.3675793409347534 img loss 1.3290935754776 img loss 1.3422092199325562 img loss 1.2506707906723022 img loss 1.2876794338226318 img loss 1.5343109369277954 img loss 1.456633448600769 img loss 1.3977724313735962 img loss 1.3586628437042236 img loss 1.5609384775161743 img loss 1.425037145614624 {'loss': 1.4271, 'grad_norm': 0.28715580701828003, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3657959699630737 img loss 1.2884587049484253 img loss 1.3247982263565063 img loss 1.2097816467285156 img loss 1.3387526273727417 img loss 1.3256027698516846 img loss 1.3572903871536255 img loss 1.306164026260376 img loss 1.341101050376892 img loss 1.2771564722061157 img loss 1.3058533668518066 img loss 1.3651480674743652 img loss 1.3664478063583374 img loss 1.2208495140075684 img loss 1.272043228149414 img loss 1.3129613399505615 img loss 1.2813074588775635 img loss 1.3345226049423218 img loss 1.4962254762649536 img loss 1.2203168869018555 img loss 1.364579677581787 img loss 1.3704205751419067 img loss 1.2022796869277954 img loss 1.352736234664917 img loss 1.3684430122375488 img loss 1.287261724472046 img loss 1.3544366359710693 img loss 1.312665581703186 img loss 1.3381372690200806 img loss 1.263865351676941 img loss 1.3408890962600708 img loss 1.321295976638794 img loss 1.3849323987960815 img loss 1.2265211343765259 img loss 1.3058534860610962 img loss 1.337336778640747 img loss 1.3588935136795044 img loss 1.2706165313720703 img loss 1.3226810693740845 img loss 1.2849228382110596 img loss 1.281825304031372 img loss 1.381976842880249 img loss 1.3907421827316284 img loss 1.2979134321212769 img loss 1.3785001039505005 img loss 1.3708544969558716 img loss 1.3095226287841797 img loss 1.2635878324508667 img loss 1.3236302137374878 img loss 1.342780351638794 img loss 1.2783219814300537 img loss 1.305431604385376 img loss 1.381253719329834 img loss 1.3320586681365967 img loss 1.3163368701934814 img loss 1.3065201044082642 img loss 1.3171234130859375 img loss 1.328946590423584 img loss 1.293996810913086 img loss 1.3207416534423828 img loss 1.3235729932785034 img loss 1.4418939352035522 img loss 1.2369701862335205 img loss 1.2743533849716187 img loss 1.2131394147872925 img loss 1.3602306842803955 img loss 1.3396713733673096 img loss 1.2476733922958374 img loss 1.2547450065612793 img loss 1.2964911460876465 img loss 1.3265013694763184 img loss 1.3473235368728638 img loss 1.2090790271759033 img loss 1.3725475072860718 img loss 1.2695519924163818 img loss 1.3607327938079834 img loss 1.27113676071167 img loss 1.3169282674789429 img loss 1.3670579195022583 img loss 1.2360968589782715 img loss 1.2661583423614502 img loss 1.5163776874542236 img loss 1.3012418746948242 img loss 1.3787139654159546 img loss 1.3018498420715332 img loss 1.3000844717025757 img loss 1.3182379007339478 img loss 1.279612421989441 img loss 1.3161667585372925 img loss 1.322688341140747 img loss 1.2430062294006348 img loss 1.3420881032943726 img loss 1.3473045825958252 img loss 1.2877451181411743 img loss 1.4176135063171387 img loss 1.2592816352844238 img loss 1.2865272760391235 img loss 1.335417628288269 img loss 1.2913941144943237 img loss 1.348965048789978 img loss 1.2690865993499756 img loss 1.320376992225647 img loss 1.3713090419769287 img loss 1.2436176538467407 img loss 1.2975298166275024 img loss 1.222111701965332 img loss 1.2242835760116577 img loss 1.2010297775268555 img loss 1.22810959815979 img loss 1.2838293313980103 img loss 1.3097196817398071 img loss 1.3585022687911987 img loss 1.2519029378890991 img loss 1.3077316284179688 img loss 1.323330283164978 img loss 1.3048603534698486 img loss 1.2223987579345703 img loss 1.3151477575302124 img loss 1.3213566541671753 img loss 1.220590591430664 img loss 1.377539873123169 img loss 1.3240050077438354 img loss 1.2260088920593262 img loss 1.3418991565704346 img loss 1.291175365447998 img loss 1.2481218576431274 img loss 1.391883134841919 img loss 1.374277949333191 {'loss': 1.3117, 'grad_norm': 0.707807183265686, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2856237888336182 img loss 1.291069746017456 img loss 1.2436901330947876 img loss 1.2833058834075928 img loss 1.3770079612731934 img loss 1.2812966108322144 img loss 1.3689863681793213 img loss 1.2099494934082031 img loss 1.2957677841186523 img loss 1.3632346391677856 img loss 1.3229169845581055 img loss 1.2139027118682861 img loss 1.3915084600448608 img loss 1.3251389265060425 img loss 1.3349570035934448 img loss 1.2480747699737549 img loss 1.235327959060669 img loss 1.2933735847473145 img loss 1.2840685844421387 img loss 1.2458676099777222 img loss 1.4086076021194458 img loss 1.3687936067581177 img loss 1.2736910581588745 img loss 1.3026739358901978 img loss 1.3182671070098877 img loss 1.28621506690979 img loss 1.2963682413101196 img loss 1.2904056310653687 img loss 1.3428971767425537 img loss 1.2847603559494019 img loss 1.284094214439392 img loss 1.2900909185409546 img loss 1.2706637382507324 img loss 1.2733454704284668 img loss 1.2651920318603516 img loss 1.2435626983642578 img loss 1.3280138969421387 img loss 1.2673672437667847 img loss 1.2797932624816895 img loss 1.1708767414093018 img loss 1.261916160583496 img loss 1.283272624015808 img loss 1.2395403385162354 img loss 1.3159019947052002 img loss 1.3017408847808838 img loss 1.3265022039413452 img loss 1.1846823692321777 img loss 1.24481201171875 img loss 1.2497594356536865 img loss 1.290446162223816 img loss 1.3204247951507568 img loss 1.3453843593597412 img loss 1.2321232557296753 img loss 1.3756393194198608 img loss 1.208617925643921 img loss 1.301378607749939 img loss 1.2536184787750244 img loss 1.2401059865951538 img loss 1.349695086479187 img loss 1.2833991050720215 img loss 1.3587180376052856 img loss 1.2737404108047485 img loss 1.2707252502441406 img loss 1.3545076847076416 img loss 1.2966818809509277 img loss 1.2915104627609253 img loss 1.2808866500854492 img loss 1.3476325273513794 img loss 1.2616161108016968 img loss 1.2604737281799316 img loss 1.3226613998413086 img loss 1.3073883056640625 img loss 1.3119372129440308 img loss 1.3205363750457764 img loss 1.3031505346298218 img loss 1.3433506488800049 img loss 1.284668207168579 img loss 1.2761592864990234 img loss 1.2453527450561523 img loss 1.2768642902374268 img loss 1.331546664237976 img loss 1.2168636322021484 img loss 1.3220665454864502 img loss 1.210466980934143 img loss 1.3115280866622925 img loss 1.319854736328125 img loss 1.250937819480896 img loss 1.3408650159835815 img loss 1.3209569454193115 img loss 1.2053419351577759 img loss 1.238633394241333 img loss 1.271731972694397 img loss 1.1615352630615234 img loss 1.3695523738861084 img loss 1.2670156955718994 img loss 1.2885593175888062 img loss 1.27721107006073 img loss 1.2475652694702148 img loss 1.2962853908538818 img loss 1.193361759185791 img loss 1.2172256708145142 img loss 1.337896704673767 img loss 1.2751009464263916 img loss 1.3118423223495483 img loss 1.281170129776001 img loss 1.2786916494369507 img loss 1.3083271980285645 img loss 1.2785202264785767 img loss 1.2672302722930908 img loss 1.372606873512268 img loss 1.3067044019699097 img loss 1.3327209949493408 img loss 1.3585373163223267 img loss 1.239494800567627 img loss 1.2698991298675537 img loss 1.336162805557251 img loss 1.2309783697128296 img loss 1.2689359188079834 img loss 1.3698877096176147 img loss 1.3567036390304565 img loss 1.281221866607666 img loss 1.3476831912994385 img loss 1.2982004880905151 img loss 1.2595348358154297 img loss 1.259721279144287 img loss 1.3169455528259277 img loss 1.3497393131256104 img loss 1.2231953144073486 {'loss': 1.29, 'grad_norm': 0.23830381035804749, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3152925968170166 img loss 1.3194397687911987 img loss 1.286676049232483 img loss 1.222227931022644 img loss 1.2375128269195557 img loss 1.2236932516098022 img loss 1.230803370475769 img loss 1.3034298419952393 img loss 1.2450672388076782 img loss 1.2842178344726562 img loss 1.2882636785507202 img loss 1.261415719985962 img loss 1.219710350036621 img loss 1.326257348060608 img loss 1.3012495040893555 img loss 1.2783539295196533 img loss 1.2753236293792725 img loss 1.2699135541915894 img loss 1.308427333831787 img loss 1.2321536540985107 img loss 1.340925931930542 img loss 1.1502768993377686 img loss 1.1550438404083252 img loss 1.2062413692474365 img loss 1.2696894407272339 img loss 1.2276122570037842 img loss 1.2370456457138062 img loss 1.296545386314392 img loss 1.2263418436050415 img loss 1.152464747428894 img loss 1.3189916610717773 img loss 1.311095952987671 img loss 1.2469520568847656 img loss 1.278624415397644 img loss 1.1914507150650024 img loss 1.3023381233215332 img loss 1.2611172199249268 img loss 1.3378609418869019 img loss 1.1973092555999756 img loss 1.252332329750061 img loss 1.217519760131836 img loss 1.2962937355041504 img loss 1.3269315958023071 img loss 1.3043358325958252 img loss 1.2530580759048462 img loss 1.2379709482192993 img loss 1.3000357151031494 img loss 1.252833604812622 img loss 1.2880123853683472 img loss 1.2176522016525269 img loss 1.2298883199691772 img loss 1.3241993188858032 img loss 1.3061957359313965 img loss 1.2141547203063965 img loss 1.2544084787368774 img loss 1.260575771331787 img loss 1.2593038082122803 img loss 1.29185950756073 img loss 1.2600730657577515 img loss 1.2497555017471313 img loss 1.2991161346435547 img loss 1.3170193433761597 img loss 1.248703956604004 img loss 1.2352417707443237 img loss 1.2547283172607422 img loss 1.28212571144104 img loss 1.2954422235488892 img loss 1.2932803630828857 img loss 1.2428984642028809 img loss 1.237729549407959 img loss 1.2216938734054565 img loss 1.217215895652771 img loss 1.2290980815887451 img loss 1.2350832223892212 img loss 1.2407225370407104 img loss 1.3187787532806396 img loss 1.2689403295516968 img loss 1.3204330205917358 img loss 1.263725996017456 img loss 1.2773981094360352 img loss 1.3510979413986206 img loss 1.2383850812911987 img loss 1.2259571552276611 img loss 1.2925336360931396 img loss 1.2114973068237305 img loss 1.1675382852554321 img loss 1.3538326025009155 img loss 1.2520809173583984 img loss 1.2440770864486694img loss 1.2939499616622925 img loss 1.2516324520111084 img loss 1.3171839714050293 img loss 1.2515496015548706 img loss 1.2880216836929321 img loss 1.266815185546875 img loss 1.28731107711792 img loss 1.2468597888946533 img loss 1.3001923561096191 img loss 1.3800313472747803 img loss 1.1878670454025269 img loss 1.2039436101913452 img loss 1.3090076446533203 img loss 1.3075984716415405 img loss 1.3514162302017212 img loss 1.2083003520965576 img loss 1.1772689819335938 img loss 1.1984182596206665 img loss 1.2990442514419556 img loss 1.1837995052337646 img loss 1.2548030614852905 img loss 1.291449785232544 img loss 1.257070541381836 img loss 1.2599395513534546 img loss 1.1908280849456787 img loss 1.253745675086975 img loss 1.331243872642517 img loss 1.3025034666061401 img loss 1.1942009925842285 img loss 1.2265832424163818 img loss 1.2413287162780762 img loss 1.2637813091278076 img loss 1.239722728729248 img loss 1.2764513492584229 img loss 1.2130306959152222 img loss 1.3438481092453003 img loss 1.232532262802124 img loss 1.2498539686203003 img loss 1.2503060102462769 {'loss': 1.2621, 'grad_norm': 0.4116005003452301, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.197945475578308 img loss 1.1796810626983643 img loss 1.2430334091186523 img loss 1.2334731817245483 img loss 1.2144699096679688 img loss 1.1951674222946167 img loss 1.2439053058624268 img loss 1.26606023311615 img loss 1.1980421543121338 img loss 1.167576551437378 img loss 1.2409700155258179 img loss 1.2655400037765503 img loss 1.2291878461837769 img loss 1.2566547393798828 img loss 1.2305386066436768 img loss 1.2652324438095093 img loss 1.2364329099655151 img loss 1.2007216215133667 img loss 1.2483781576156616 img loss 1.197588562965393 img loss 1.1931817531585693 img loss 1.259401798248291 img loss 1.2096288204193115 img loss 1.1867445707321167 img loss 1.2217812538146973 img loss 1.1854733228683472 img loss 1.2145686149597168 img loss 1.197414755821228 img loss 1.173431396484375 img loss 1.238990068435669 img loss 1.2790067195892334 img loss 1.186793565750122 img loss 1.2617475986480713 img loss 1.1290457248687744 img loss 1.126810073852539 img loss 1.2498490810394287 img loss 1.1118592023849487 img loss 1.1752188205718994 img loss 1.1574223041534424 img loss 1.161806344985962 img loss 1.1856093406677246 img loss 1.1713542938232422 img loss 1.2308930158615112 img loss 1.2617673873901367 img loss 1.1337465047836304 img loss 1.1971874237060547 img loss 1.2337946891784668 img loss 1.161604404449463 img loss 1.210659384727478 img loss 1.3164795637130737 img loss 1.293607473373413 img loss 1.2832497358322144 img loss 1.1856961250305176 img loss 1.206380844116211 img loss 1.1523051261901855 img loss 1.207869052886963 img loss 1.2195141315460205 img loss 1.2433079481124878 img loss 1.1757792234420776 img loss 1.1683090925216675 img loss 1.1950641870498657 img loss 1.1662826538085938 img loss 1.1651312112808228 img loss 1.2251821756362915 img loss 1.2375357151031494 img loss 1.227561593055725 img loss 1.333504319190979 img loss 1.2738723754882812 img loss 1.2289959192276 img loss 1.221856713294983 img loss 1.1059632301330566 img loss 1.2058939933776855 img loss 1.2029670476913452 img loss 1.199061632156372 img loss 1.3006600141525269 img loss 1.1762911081314087 img loss 1.2760251760482788 img loss 1.159895896911621 img loss 1.197648048400879 img loss 1.2020920515060425 img loss 1.1886003017425537 img loss 1.2902867794036865 img loss 1.20086669921875 img loss 1.1873635053634644 img loss 1.1774892807006836 img loss 1.1533329486846924 img loss 1.137839913368225 img loss 1.2529815435409546 img loss 1.2720985412597656 img loss 1.118048071861267 img loss 1.2336502075195312 img loss 1.185341715812683 img loss 1.283057451248169 img loss 1.1770811080932617 img loss 1.2152035236358643 img loss 1.2123279571533203 img loss 1.2205791473388672 img loss 1.1412780284881592 img loss 1.1733250617980957 img loss 1.205816626548767 img loss 1.239113211631775 img loss 1.1575427055358887 img loss 1.1719492673873901 img loss 1.2078943252563477 img loss 1.1982837915420532 img loss 1.2048488855361938 img loss 1.1910663843154907 img loss 1.1944022178649902 img loss 1.1445591449737549 img loss 1.2573989629745483 img loss 1.1854069232940674 img loss 1.2433404922485352 img loss 1.1255072355270386 img loss 1.2147032022476196 img loss 1.2095288038253784 img loss 1.176475167274475 img loss 1.1456527709960938 img loss 1.1160805225372314 img loss 1.242979884147644 img loss 1.1787728071212769 img loss 1.1943506002426147 img loss 1.2426785230636597 img loss 1.1442337036132812 img loss 1.1985973119735718 img loss 1.32170832157135 img loss 1.1567251682281494 img loss 1.234457015991211 img loss 1.1581748723983765 {'loss': 1.2067, 'grad_norm': 0.5695443153381348, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.276837706565857 img loss 1.252029299736023 img loss 1.2478673458099365 img loss 1.4007160663604736 img loss 1.3080755472183228 img loss 1.3746970891952515 img loss 1.3035792112350464 img loss 1.3427951335906982 img loss 1.2593669891357422 img loss 1.329568862915039 img loss 1.3070220947265625 img loss 1.3544126749038696 img loss 1.2479636669158936 img loss 1.3865355253219604 img loss 1.3289779424667358 img loss 1.2860710620880127img loss 1.2644243240356445 img loss 1.3316081762313843 img loss 1.3116892576217651 img loss 1.3023641109466553 img loss 1.3390629291534424 img loss 1.3039178848266602 img loss 1.262845516204834 img loss 1.3418850898742676 img loss 1.2806307077407837 img loss 1.4825434684753418 img loss 1.2873905897140503 img loss 1.3744513988494873 img loss 1.273364782333374 img loss 1.31039559841156 img loss 1.36719810962677 img loss 1.3273344039916992 img loss 1.3605464696884155 img loss 1.3953553438186646 img loss 1.3276019096374512 img loss 1.2546806335449219 img loss 1.2378467321395874 img loss 1.3060029745101929 img loss 1.3803328275680542 img loss 1.2588948011398315 img loss 1.3995187282562256 img loss 1.3758164644241333 img loss 1.3054847717285156 img loss 1.2794033288955688 img loss 1.279512643814087 img loss 1.2959812879562378 img loss 1.2365186214447021 img loss 1.3006130456924438 img loss 1.260456919670105 img loss 1.308401346206665 img loss 1.2515151500701904 img loss 1.265318751335144 img loss 1.2035255432128906 img loss 1.2740604877471924 img loss 1.5056382417678833 img loss 1.2777502536773682 img loss 1.2606223821640015 img loss 1.3082308769226074 img loss 1.252244234085083 img loss 1.3580927848815918 img loss 1.431697130203247 img loss 1.2824537754058838 img loss 1.2236113548278809 img loss 1.3326596021652222 img loss 1.3244749307632446 img loss 1.2986438274383545 img loss 1.2378921508789062 img loss 1.3180605173110962 img loss 1.31252920627594 img loss 1.3084025382995605 img loss 1.247965693473816 img loss 1.2623623609542847 img loss 1.3554165363311768 img loss 1.2720482349395752 img loss 1.2307426929473877 img loss 1.2450891733169556 img loss 1.2621067762374878 img loss 1.2409921884536743 img loss 1.3274329900741577 img loss 1.3106744289398193 img loss 1.2925630807876587 img loss 1.2993927001953125 img loss 1.3996636867523193 img loss 1.2925790548324585 img loss 1.3351867198944092 img loss 1.3787211179733276 img loss 1.4838824272155762 img loss 1.333929181098938 img loss 1.3121107816696167 img loss 1.2665090560913086 img loss 1.3499516248703003 img loss 1.271918773651123 img loss 1.223341703414917 img loss 1.257652759552002 img loss 1.2910361289978027 img loss 1.2674769163131714 img loss 1.251768946647644 img loss 1.329502820968628 img loss 1.3235454559326172 img loss 1.296996831893921 img loss 1.3068127632141113 img loss 1.3196651935577393 img loss 1.279154658317566 img loss 1.2992510795593262 img loss 1.379999041557312 img loss 1.2904621362686157 img loss 1.2726391553878784 img loss 1.4180132150650024 img loss 1.3937381505966187 img loss 1.2752901315689087 img loss 1.4077402353286743 img loss 1.2681735754013062 img loss 1.3515422344207764 img loss 1.3869508504867554 img loss 1.4120250940322876 img loss 1.238900065422058 img loss 1.3196285963058472 img loss 1.4066059589385986 img loss 1.3131474256515503 img loss 1.263375997543335 img loss 1.2246445417404175 img loss 1.2146222591400146 img loss 1.342409372329712 img loss 1.3036736249923706 img loss 1.2130506038665771 img loss 1.3621639013290405 img loss 1.3433928489685059 img loss 1.2885174751281738 {'loss': 1.3099, 'grad_norm': 0.254300594329834, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2476829290390015 img loss 1.2522048950195312 img loss 1.329427719116211 img loss 1.1993064880371094 img loss 1.2902557849884033 img loss 1.3410180807113647 img loss 1.2332792282104492 img loss 1.2558841705322266 img loss 1.2637531757354736 img loss 1.2250442504882812 img loss 1.2138270139694214 img loss 1.2723785638809204 img loss 1.2043291330337524 img loss 1.1444082260131836 img loss 1.1970335245132446 img loss 1.2467848062515259 img loss 1.291735053062439 img loss 1.2744814157485962 img loss 1.2440826892852783 img loss 1.178963303565979 img loss 1.2673090696334839 img loss 1.201261281967163 img loss 1.3043534755706787 img loss 1.2844523191452026 img loss 1.268253207206726 img loss 1.246410608291626 img loss 1.1611982583999634 img loss 1.2718312740325928 img loss 1.236804723739624 img loss 1.2100836038589478 img loss 1.2340238094329834 img loss 1.224669098854065 img loss 1.341640591621399 img loss 1.2414511442184448 img loss 1.2625162601470947 img loss 1.2678544521331787 img loss 1.17831289768219 img loss 1.1966465711593628 img loss 1.2246125936508179 img loss 1.243242859840393 img loss 1.2804408073425293 img loss 1.285632610321045 img loss 1.1882082223892212 img loss 1.2513751983642578 img loss 1.2506223917007446 img loss 1.1974995136260986 img loss 1.2564204931259155 img loss 1.3023890256881714 img loss 1.3528319597244263 img loss 1.2429569959640503 img loss 1.3624430894851685 img loss 1.2533807754516602 img loss 1.2092623710632324 img loss 1.205008864402771 img loss 1.2421578168869019 img loss 1.3273334503173828 img loss 1.25067937374115 img loss 1.193051815032959 img loss 1.2335124015808105 img loss 1.2193388938903809 img loss 1.2835525274276733 img loss 1.2536635398864746 img loss 1.194831132888794 img loss 1.263751745223999 img loss 1.2923376560211182 img loss 1.2449071407318115 img loss 1.2350635528564453 img loss 1.2462823390960693 img loss 1.2038005590438843 img loss 1.2287373542785645 img loss 1.2356919050216675 img loss 1.2557862997055054 img loss 1.242862582206726 img loss 1.1659168004989624 img loss 1.254255771636963 img loss 1.2354650497436523 img loss 1.2523293495178223 img loss 1.1832102537155151 img loss 1.2683414220809937 img loss 1.1943321228027344 img loss 1.2265042066574097 img loss 1.3356109857559204 img loss 1.3206270933151245 img loss 1.2286545038223267 img loss 1.264041781425476 img loss 1.2079627513885498 img loss 1.241937518119812 img loss 1.2168136835098267 img loss 1.2162916660308838 img loss 1.2357378005981445 img loss 1.2635425329208374 img loss 1.2585294246673584 img loss 1.248436689376831 img loss 1.2306454181671143 img loss 1.2341361045837402 img loss 1.2024993896484375 img loss 1.27993643283844 img loss 1.2666679620742798 img loss 1.3154267072677612 img loss 1.3066424131393433 img loss 1.2621376514434814 img loss 1.3238590955734253 img loss 1.2522330284118652 img loss 1.1963623762130737 img loss 1.2036914825439453 img loss 1.1702723503112793 img loss 1.2202105522155762 img loss 1.1576029062271118 img loss 1.2862319946289062 img loss 1.3274016380310059 img loss 1.2051550149917603 img loss 1.209693193435669 img loss 1.2266031503677368 img loss 1.3347094058990479 img loss 1.2301985025405884 img loss 1.2254985570907593 img loss 1.2479515075683594 img loss 1.2194573879241943 img loss 1.2872333526611328 img loss 1.2936296463012695 img loss 1.325160264968872 img loss 1.3492467403411865 img loss 1.4400330781936646 img loss 1.2025625705718994 img loss 1.238687515258789 img loss 1.2109249830245972 img loss 1.276268720626831 img loss 1.2897179126739502 {'loss': 1.2494, 'grad_norm': 0.6160804033279419, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2464022636413574 img loss 1.160083532333374 img loss 1.184719443321228 img loss 1.3239758014678955 img loss 1.1544345617294312 img loss 1.20254385471344 img loss 1.2314772605895996 img loss 1.2943272590637207 img loss 1.2577074766159058 img loss 1.2329211235046387 img loss 1.2191650867462158 img loss 1.2757622003555298 img loss 1.2714192867279053 img loss 1.2471458911895752 img loss 1.2197740077972412 img loss 1.2855695486068726 img loss 1.199929118156433 img loss 1.3231934309005737 img loss 1.3275283575057983 img loss 1.2812912464141846 img loss 1.263319969177246 img loss 1.1877694129943848 img loss 1.2128517627716064 img loss 1.2163605690002441 img loss 1.2468513250350952 img loss 1.3075779676437378 img loss 1.2565267086029053 img loss 1.169512152671814 img loss 1.2107579708099365 img loss 1.264626145362854 img loss 1.2092567682266235img loss 1.3519189357757568 img loss 1.2710691690444946 img loss 1.2954202890396118 img loss 1.153109073638916 img loss 1.2492167949676514 img loss 1.28948974609375 img loss 1.1942591667175293 img loss 1.2706184387207031 img loss 1.1901134252548218 img loss 1.2640008926391602 img loss 1.2296289205551147 img loss 1.2402851581573486 img loss 1.2755522727966309 img loss 1.2944939136505127 img loss 1.2934941053390503 img loss 1.2581331729888916 img loss 1.1995596885681152 img loss 1.2283843755722046 img loss 1.320359468460083 img loss 1.2573368549346924 img loss 1.3177599906921387 img loss 1.2344279289245605 img loss 1.2185726165771484 img loss 1.2004907131195068 img loss 1.2964212894439697 img loss 1.3417627811431885 img loss 1.3150177001953125 img loss 1.2228999137878418 img loss 1.3143079280853271 img loss 1.2157214879989624 img loss 1.302355170249939 img loss 1.2601902484893799 img loss 1.3504334688186646 img loss 1.3283405303955078 img loss 1.2979485988616943 img loss 1.2341445684432983 img loss 1.2204307317733765 img loss 1.2255381345748901 img loss 1.2901712656021118 img loss 1.2795065641403198 img loss 1.2140623331069946 img loss 1.2559890747070312 img loss 1.3484653234481812 img loss 1.1818569898605347 img loss 1.2196518182754517 img loss 1.255079746246338 img loss 1.2141309976577759 img loss 1.2413123846054077 img loss 1.2278331518173218 img loss 1.2742526531219482 img loss 1.294654130935669 img loss 1.2986208200454712 img loss 1.3001670837402344 img loss 1.2181811332702637 img loss 1.2429224252700806 img loss 1.2482789754867554 img loss 1.3453925848007202 img loss 1.2052018642425537 img loss 1.1991586685180664 img loss 1.2340099811553955 img loss 1.2287440299987793 img loss 1.2888950109481812 img loss 1.2916101217269897 img loss 1.2859553098678589 img loss 1.285109519958496 img loss 1.1614726781845093 img loss 1.281563401222229 img loss 1.3698656558990479 img loss 1.209031581878662 img loss 1.341767430305481 img loss 1.2127808332443237 img loss 1.1907761096954346 img loss 1.2290091514587402 img loss 1.1872161626815796 img loss 1.2473065853118896 img loss 1.2660986185073853 img loss 1.239070177078247 img loss 1.3444408178329468 img loss 1.278389573097229 img loss 1.1746692657470703 img loss 1.2734735012054443 img loss 1.1994438171386719 img loss 1.2575008869171143 img loss 1.3146872520446777 img loss 1.2323764562606812 img loss 1.2242704629898071 img loss 1.2102149724960327 img loss 1.294051170349121 img loss 1.2324631214141846 img loss 1.2995963096618652 img loss 1.1894118785858154 img loss 1.286394715309143 img loss 1.2496254444122314 img loss 1.3019214868545532 img loss 1.141467571258545 img loss 1.3096758127212524 img loss 1.2455946207046509 {'loss': 1.2537, 'grad_norm': 0.2376001924276352, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3250077962875366 img loss 1.3564339876174927 img loss 1.2425222396850586 img loss 1.4143824577331543 img loss 1.3612685203552246 img loss 1.3838608264923096 img loss 1.356149435043335 img loss 1.344048023223877 img loss 1.443813443183899 img loss 1.3852730989456177 img loss 1.3299882411956787 img loss 1.3540045022964478 img loss 1.5161937475204468 img loss 1.4652925729751587 img loss 1.4215505123138428 img loss 1.2955646514892578 img loss 1.3484063148498535 img loss 1.4857017993927002 img loss 1.3022387027740479 img loss 1.4298319816589355 img loss 1.3577227592468262 img loss 1.3726316690444946 img loss 1.4022294282913208 img loss 1.3590176105499268 img loss 1.3951877355575562 img loss 1.3411980867385864 img loss 1.4252821207046509 img loss 1.4511202573776245 img loss 1.4287889003753662 img loss 1.3175400495529175 img loss 1.424108624458313 img loss 1.3680576086044312 img loss 1.3294533491134644 img loss 1.3214085102081299 img loss 1.426358938217163img loss 1.2605465650558472 img loss 1.415174961090088 img loss 1.4077277183532715 img loss 1.4204872846603394 img loss 1.3276056051254272 img loss 1.4388593435287476 img loss 1.4307976961135864 img loss 1.4011836051940918 img loss 1.3652195930480957 img loss 1.3958990573883057 img loss 1.3139781951904297 img loss 1.4265118837356567 img loss 1.4540321826934814 img loss 1.4240418672561646 img loss 1.4008187055587769 img loss 1.4599117040634155 img loss 1.375031590461731 img loss 1.3430107831954956 img loss 1.4963068962097168 img loss 1.4123759269714355 img loss 1.3134772777557373 img loss 1.449255108833313 img loss 1.50544273853302 img loss 1.3197591304779053 img loss 1.425068974494934 img loss 1.4617840051651 img loss 1.397539496421814 img loss 1.6116125583648682 img loss 1.388496994972229 img loss 1.3900840282440186 img loss 1.3161327838897705 img loss 1.33760404586792 img loss 1.3007028102874756 img loss 1.3187100887298584 img loss 1.4106266498565674 img loss 1.281136393547058 img loss 1.3950040340423584 img loss 1.329493761062622 img loss 1.439292550086975 img loss 1.3911854028701782 img loss 1.402671217918396 img loss 1.3433560132980347 img loss 1.4254329204559326 img loss 1.4147149324417114 img loss 1.4320625066757202 img loss 1.4207260608673096 img loss 1.4148834943771362 img loss 1.2804653644561768 img loss 1.368079423904419 img loss 1.423744559288025 img loss 1.3882572650909424 img loss 1.3087685108184814 img loss 1.4204723834991455 img loss 1.3469175100326538 img loss 1.3234905004501343 img loss 1.4433119297027588 img loss 1.3945742845535278 img loss 1.394911289215088 img loss 1.387642741203308 img loss 1.3721152544021606 img loss 1.4752724170684814 img loss 1.3721174001693726 img loss 1.448858380317688 img loss 1.4079203605651855 img loss 1.4498801231384277 img loss 1.3433988094329834 img loss 1.3431628942489624 img loss 1.3386350870132446 img loss 1.4728411436080933 img loss 1.3569750785827637 img loss 1.4095491170883179 img loss 1.3463026285171509 img loss 1.3159704208374023 img loss 1.4167214632034302 img loss 1.333770513534546 img loss 1.371294617652893 img loss 1.3818573951721191 img loss 1.3354642391204834 img loss 1.3895657062530518 img loss 1.3662954568862915 img loss 1.4140126705169678 img loss 1.2569975852966309 img loss 1.5062005519866943 img loss 1.3460869789123535 img loss 1.283397912979126 img loss 1.3375626802444458 img loss 1.4142345190048218 img loss 1.4604190587997437 img loss 1.4306939840316772 img loss 1.2012487649917603 img loss 1.23643958568573 img loss 1.5520576238632202 img loss 1.3831212520599365 {'loss': 1.3847, 'grad_norm': 0.4164413809776306, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2403171062469482 img loss 1.2222626209259033 img loss 1.2395881414413452 img loss 1.1899185180664062 img loss 1.18932044506073 img loss 1.2241783142089844 img loss 1.2267134189605713 img loss 1.1696833372116089 img loss 1.2538574934005737 img loss 1.2931783199310303 img loss 1.1729130744934082 img loss 1.2953660488128662 img loss 1.2320104837417603 img loss 1.2290292978286743 img loss 1.2250168323516846 img loss 1.2362544536590576 img loss 1.1581734418869019 img loss 1.225589632987976 img loss 1.1515321731567383 img loss 1.1991716623306274 img loss 1.3093044757843018 img loss 1.2658284902572632 img loss 1.2388948202133179 img loss 1.2054334878921509 img loss 1.247175693511963 img loss 1.2300660610198975 img loss 1.1754438877105713 img loss 1.2404558658599854 img loss 1.1596287488937378 img loss 1.215152621269226 img loss 1.1883797645568848 img loss 1.2655787467956543 img loss 1.2440917491912842 img loss 1.2133846282958984 img loss 1.2079378366470337 img loss 1.1694667339324951 img loss 1.1755235195159912 img loss 1.1604803800582886 img loss 1.2665157318115234 img loss 1.2308647632598877 img loss 1.1974016427993774 img loss 1.2283928394317627 img loss 1.1737632751464844 img loss 1.1849110126495361 img loss 1.1789849996566772 img loss 1.2548584938049316 img loss 1.1984713077545166 img loss 1.217797040939331 img loss 1.2650666236877441 img loss 1.2111859321594238 img loss 1.2287747859954834 img loss 1.2093085050582886 img loss 1.1715189218521118 img loss 1.207103967666626 img loss 1.213745355606079 img loss 1.231483817100525 img loss 1.241929292678833 img loss 1.3325796127319336 img loss 1.2432270050048828 img loss 1.202614665031433 img loss 1.3182225227355957 img loss 1.3509639501571655 img loss 1.2370151281356812 img loss 1.2507294416427612 img loss 1.251495122909546 img loss 1.2139265537261963 img loss 1.2647126913070679 img loss 1.248254418373108 img loss 1.2483758926391602 img loss 1.183916449546814 img loss 1.3226885795593262 img loss 1.162744402885437 img loss 1.2150328159332275 img loss 1.206542730331421 img loss 1.2213767766952515 img loss 1.2060680389404297 img loss 1.2060716152191162 img loss 1.2540757656097412 img loss 1.2420686483383179 img loss 1.1766208410263062 img loss 1.3443801403045654 img loss 1.225389838218689 img loss 1.2961187362670898 img loss 1.2146186828613281 img loss 1.2737241983413696 img loss 1.3047462701797485 img loss 1.1582667827606201 img loss 1.1713474988937378 img loss 1.2238105535507202 img loss 1.1878035068511963 img loss 1.1978306770324707 img loss 1.1922776699066162 img loss 1.0958101749420166 img loss 1.1914242506027222 img loss 1.214720606803894 img loss 1.2769802808761597 img loss 1.2293423414230347 img loss 1.1939043998718262 img loss 1.3335473537445068 img loss 1.226702332496643 img loss 1.1894688606262207 img loss 1.2075953483581543 img loss 1.3024290800094604 img loss 1.2857205867767334 img loss 1.1853537559509277 img loss 1.2613528966903687 img loss 1.2423322200775146 img loss 1.2276899814605713 img loss 1.2034040689468384 img loss 1.169513463973999 img loss 1.2169593572616577 img loss 1.2808483839035034 img loss 1.2153228521347046 img loss 1.2642408609390259 img loss 1.1925468444824219 img loss 1.2225273847579956 img loss 1.2116037607192993 img loss 1.1532902717590332 img loss 1.1460926532745361 img loss 1.1832102537155151 img loss 1.299271583557129 img loss 1.2714736461639404 img loss 1.142778754234314 img loss 1.2745918035507202 img loss 1.1891963481903076 img loss 1.1743401288986206 img loss 1.20016610622406 img loss 1.2496027946472168 {'loss': 1.224, 'grad_norm': 0.3176604211330414, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1919169425964355 img loss 1.279282808303833 img loss 1.1814475059509277 img loss 1.2216129302978516 img loss 1.1706873178482056 img loss 1.2816299200057983 img loss 1.1930373907089233 img loss 1.183835744857788 img loss 1.2414772510528564 img loss 1.3114770650863647 img loss 1.3221733570098877 img loss 1.155077576637268 img loss 1.3046802282333374 img loss 1.2415817975997925 img loss 1.2504425048828125 img loss 1.2864322662353516 img loss 1.1959998607635498 img loss 1.2039037942886353 img loss 1.2315651178359985 img loss 1.249163269996643 img loss 1.1375017166137695 img loss 1.319591760635376 img loss 1.4063754081726074 img loss 1.19036865234375 img loss 1.288023591041565 img loss 1.1835612058639526 img loss 1.1516071557998657 img loss 1.1173285245895386 img loss 1.2921661138534546 img loss 1.1862424612045288 img loss 1.139380693435669 img loss 1.1853866577148438 img loss 1.159396767616272 img loss 1.081122636795044 img loss 1.1902967691421509 img loss 1.2958388328552246 img loss 1.191481590270996 img loss 1.2515071630477905 img loss 1.3288249969482422 img loss 1.2160732746124268 img loss 1.2596653699874878 img loss 1.20930814743042 img loss 1.242912769317627 img loss 1.2079768180847168 img loss 1.1787394285202026 img loss 1.1580066680908203 img loss 1.3303626775741577 img loss 1.1874784231185913 img loss 1.1873661279678345 img loss 1.1648478507995605 img loss 1.19724440574646 img loss 1.2349809408187866 img loss 1.1682491302490234 img loss 1.1860029697418213 img loss 1.127146601676941 img loss 1.2251741886138916 img loss 1.206052541732788 img loss 1.321772813796997 img loss 1.192824125289917 img loss 1.2594149112701416 img loss 1.1654372215270996 img loss 1.2662757635116577 img loss 1.2172813415527344 img loss 1.125051498413086 img loss 1.2098405361175537 img loss 1.2607061862945557 img loss 1.2390340566635132 img loss 1.1981697082519531 img loss 1.2752598524093628 img loss 1.25018310546875 img loss 1.2323095798492432 img loss 1.3200125694274902 img loss 1.1615818738937378 img loss 1.2446056604385376 img loss 1.2443805932998657 img loss 1.2108533382415771 img loss 1.2577654123306274 img loss 1.2285512685775757 img loss 1.146384835243225 img loss 1.327338457107544 img loss 1.2255949974060059 img loss 1.1875319480895996 img loss 1.2475345134735107 img loss 1.1866130828857422 img loss 1.2460803985595703 img loss 1.205857515335083 img loss 1.2485188245773315 img loss 1.23210608959198 img loss 1.2800953388214111 img loss 1.1356112957000732 img loss 1.1776173114776611 img loss 1.1780855655670166 img loss 1.164513349533081 img loss 1.2496237754821777 img loss 1.2233718633651733 img loss 1.264836072921753 img loss 1.11373770236969 img loss 1.2910867929458618 img loss 1.1766389608383179 img loss 1.2726589441299438 img loss 1.125928282737732 img loss 1.2390871047973633 img loss 1.2887893915176392 img loss 1.2616026401519775 img loss 1.2457484006881714 img loss 1.2769427299499512 img loss 1.1596455574035645 img loss 1.2379791736602783 img loss 1.151646375656128 img loss 1.22029447555542 img loss 1.2522858381271362 img loss 1.2777369022369385 img loss 1.2952804565429688 img loss 1.207615613937378 img loss 1.2131251096725464 img loss 1.1911932229995728 img loss 1.1982897520065308 img loss 1.1862224340438843 img loss 1.1770597696304321 img loss 1.2235101461410522 img loss 1.2381114959716797 img loss 1.211516261100769 img loss 1.2170425653457642 img loss 1.202339768409729 img loss 1.1431236267089844 img loss 1.1410272121429443 img loss 1.290095567703247 img loss 1.2507386207580566 {'loss': 1.2208, 'grad_norm': 0.425355464220047, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1392544507980347 img loss 1.2388417720794678 img loss 1.1827768087387085 img loss 1.1325101852416992 img loss 1.1707943677902222 img loss 1.2050764560699463 img loss 1.2001280784606934 img loss 1.2258458137512207 img loss 1.1647886037826538 img loss 1.3069243431091309 img loss 1.2319697141647339 img loss 1.2001113891601562 img loss 1.3055368661880493 img loss 1.1642553806304932 img loss 1.2033153772354126 img loss 1.1623895168304443 img loss 1.1545140743255615 img loss 1.2706952095031738 img loss 1.1406700611114502 img loss 1.2025907039642334 img loss 1.1995155811309814 img loss 1.1275215148925781 img loss 1.2301924228668213 img loss 1.184229850769043 img loss 1.1613391637802124 img loss 1.2575345039367676 img loss 1.2113885879516602 img loss 1.1824880838394165 img loss 1.2389945983886719 img loss 1.2184388637542725 img loss 1.1368627548217773 img loss 1.2580746412277222 img loss 1.1638191938400269img loss 1.1940975189208984 img loss 1.186220407485962 img loss 1.1641137599945068 img loss 1.185767650604248 img loss 1.180606722831726 img loss 1.1729099750518799 img loss 1.2193632125854492 img loss 1.1902801990509033 img loss 1.1868934631347656 img loss 1.2784056663513184 img loss 1.221178650856018 img loss 1.1250851154327393 img loss 1.1428086757659912 img loss 1.1942843198776245 img loss 1.1860809326171875 img loss 1.1620985269546509 img loss 1.1785452365875244 img loss 1.1634902954101562 img loss 1.2018946409225464 img loss 1.156216025352478 img loss 1.1951630115509033 img loss 1.116538405418396 img loss 1.1454540491104126 img loss 1.1264594793319702 img loss 1.2267754077911377 img loss 1.2086460590362549 img loss 1.2182868719100952 img loss 1.1803566217422485 img loss 1.1861122846603394 img loss 1.2229524850845337 img loss 1.1820311546325684 img loss 1.2227263450622559 img loss 1.223207712173462 img loss 1.1789288520812988 img loss 1.1894125938415527 img loss 1.1804542541503906 img loss 1.2887725830078125 img loss 1.2599866390228271 img loss 1.1327002048492432 img loss 1.214042067527771 img loss 1.1606159210205078 img loss 1.1775153875350952 img loss 1.1960877180099487 img loss 1.1722763776779175 img loss 1.1885566711425781 img loss 1.2875025272369385 img loss 1.2338080406188965 img loss 1.1697190999984741 img loss 1.2445666790008545 img loss 1.1588081121444702 img loss 1.1756224632263184 img loss 1.203598976135254 img loss 1.2463070154190063 img loss 1.2049334049224854 img loss 1.2704215049743652 img loss 1.1488157510757446 img loss 1.1900030374526978 img loss 1.1795361042022705 img loss 1.1683037281036377 img loss 1.195946216583252 img loss 1.1566637754440308 img loss 1.2046129703521729 img loss 1.2171969413757324 img loss 1.1835861206054688 img loss 1.1760644912719727 img loss 1.1681565046310425 img loss 1.2599895000457764 img loss 1.2554821968078613 img loss 1.1799325942993164 img loss 1.1761448383331299 img loss 1.200005054473877 img loss 1.2439345121383667 img loss 1.1369953155517578 img loss 1.19552743434906 img loss 1.1540443897247314 img loss 1.17306387424469 img loss 1.2036281824111938 img loss 1.1781343221664429 img loss 1.1472877264022827 img loss 1.1451600790023804 img loss 1.147998571395874 img loss 1.1377308368682861 img loss 1.238418459892273 img loss 1.1853229999542236 img loss 1.1724960803985596 img loss 1.1791794300079346 img loss 1.1670663356781006 img loss 1.2306654453277588 img loss 1.194891333580017 img loss 1.1935272216796875 img loss 1.1404253244400024 img loss 1.1394760608673096 img loss 1.1035414934158325 img loss 1.1926970481872559 img loss 1.1223622560501099 {'loss': 1.1909, 'grad_norm': 0.266510933637619, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3535445928573608 img loss 1.2995837926864624 img loss 1.3281795978546143 img loss 1.2367618083953857 img loss 1.2617615461349487 img loss 1.3739625215530396 img loss 1.2533926963806152 img loss 1.158620834350586 img loss 1.282432198524475 img loss 1.4386394023895264 img loss 1.2504825592041016 img loss 1.2359193563461304 img loss 1.285711646080017 img loss 1.2276268005371094 img loss 1.2838680744171143 img loss 1.244018793106079 img loss 1.2516865730285645 img loss 1.3138270378112793 img loss 1.2001365423202515 img loss 1.3091676235198975 img loss 1.3445934057235718 img loss 1.3026536703109741 img loss 1.2356202602386475 img loss 1.3546026945114136 img loss 1.3109502792358398 img loss 1.3681029081344604 img loss 1.35801100730896 img loss 1.394917368888855 img loss 1.3434110879898071 img loss 1.2351925373077393 img loss 1.1900725364685059 img loss 1.2867168188095093 img loss 1.3448601961135864 img loss 1.3106257915496826 img loss 1.3620296716690063 img loss 1.4499326944351196 img loss 1.344846487045288 img loss 1.3603733777999878 img loss 1.282305121421814 img loss 1.345506191253662 img loss 1.365418791770935 img loss 1.2951240539550781 img loss 1.3615434169769287 img loss 1.3495965003967285 img loss 1.285620927810669 img loss 1.300168752670288 img loss 1.2195171117782593 img loss 1.2959407567977905 img loss 1.3472800254821777 img loss 1.3476845026016235 img loss 1.3502228260040283 img loss 1.298262357711792 img loss 1.331061840057373 img loss 1.3481515645980835 img loss 1.3902207612991333 img loss 1.2721585035324097 img loss 1.3299942016601562 img loss 1.3713945150375366 img loss 1.360705852508545 img loss 1.394766092300415 img loss 1.2890725135803223 img loss 1.30795419216156 img loss 1.233817458152771 img loss 1.2923564910888672 img loss 1.3267046213150024 img loss 1.3044123649597168 img loss 1.2951549291610718 img loss 1.3711961507797241 img loss 1.2825655937194824 img loss 1.2721601724624634 img loss 1.32321298122406 img loss 1.3616963624954224 img loss 1.4650944471359253 img loss 1.286923885345459 img loss 1.2905524969100952 img loss 1.2959569692611694 img loss 1.2781999111175537 img loss 1.274080514907837 img loss 1.3596665859222412 img loss 1.3104660511016846 img loss 1.3150620460510254 img loss 1.4089295864105225 img loss 1.279528260231018 img loss 1.3855072259902954 img loss 1.3793929815292358img loss 1.2898118495941162 img loss 1.328275203704834 img loss 1.476686716079712 img loss 1.2930908203125 img loss 1.2802162170410156 img loss 1.3252158164978027 img loss 1.3640385866165161 img loss 1.3162107467651367 img loss 1.2430977821350098 img loss 1.2464451789855957 img loss 1.2809699773788452 img loss 1.3116357326507568 img loss 1.262948989868164 img loss 1.251990795135498img loss 1.3129316568374634 img loss 1.3135192394256592 img loss 1.3505059480667114 img loss 1.2899748086929321 img loss 1.2352499961853027 img loss 1.359961748123169 img loss 1.3388895988464355 img loss 1.316312313079834 img loss 1.359174132347107 img loss 1.334879755973816 img loss 1.3378117084503174 img loss 1.3171896934509277 img loss 1.348570704460144 img loss 1.2953712940216064 img loss 1.3323628902435303 img loss 1.3051085472106934 img loss 1.31903874874115 img loss 1.4868521690368652 img loss 1.3066707849502563 img loss 1.3122972249984741 img loss 1.2938549518585205 img loss 1.4114240407943726 img loss 1.2924679517745972 img loss 1.3458173274993896 img loss 1.2837555408477783 img loss 1.3273897171020508 img loss 1.2641156911849976 img loss 1.3002266883850098 img loss 1.2868293523788452 {'loss': 1.3154, 'grad_norm': 0.2804626524448395, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.259417176246643 img loss 1.168371558189392 img loss 1.1843355894088745 img loss 1.2082717418670654 img loss 1.1865642070770264 img loss 1.1908702850341797 img loss 1.18346107006073 img loss 1.2329586744308472 img loss 1.0986822843551636 img loss 1.245903491973877 img loss 1.2358700037002563 img loss 1.1538171768188477 img loss 1.2862184047698975 img loss 1.2033100128173828 img loss 1.1780534982681274 img loss 1.2089974880218506 img loss 1.1937193870544434 img loss 1.1898033618927002 img loss 1.2659250497817993 img loss 1.2311128377914429 img loss 1.2476980686187744 img loss 1.2398842573165894 img loss 1.2244080305099487 img loss 1.1281778812408447 img loss 1.204763412475586 img loss 1.170953631401062 img loss 1.1915401220321655 img loss 1.1732099056243896 img loss 1.2200895547866821 img loss 1.219835638999939 img loss 1.1758084297180176 img loss 1.2512096166610718 img loss 1.1661399602890015 img loss 1.1956853866577148 img loss 1.1510281562805176 img loss 1.1950030326843262 img loss 1.174985647201538 img loss 1.1905313730239868 img loss 1.216740369796753 img loss 1.2237838506698608 img loss 1.1639028787612915 img loss 1.19394850730896 img loss 1.1992120742797852 img loss 1.1608966588974 img loss 1.2185912132263184 img loss 1.197883129119873 img loss 1.1152424812316895 img loss 1.209000825881958 img loss 1.1400455236434937 img loss 1.2134206295013428 img loss 1.1635463237762451 img loss 1.21623957157135 img loss 1.1486525535583496 img loss 1.1227316856384277 img loss 1.171699047088623 img loss 1.1895456314086914 img loss 1.262929916381836 img loss 1.213770866394043 img loss 1.180804967880249 img loss 1.1676791906356812 img loss 1.2197707891464233 img loss 1.2664836645126343 img loss 1.2167143821716309 img loss 1.1366525888442993 img loss 1.222306489944458 img loss 1.2646394968032837 img loss 1.216490387916565 img loss 1.1668224334716797 img loss 1.2491450309753418 img loss 1.2641785144805908 img loss 1.2608808279037476 img loss 1.1806087493896484 img loss 1.2400047779083252 img loss 1.3272643089294434 img loss 1.1398884057998657 img loss 1.2584284543991089 img loss 1.2522610425949097 img loss 1.206936240196228 img loss 1.2224302291870117 img loss 1.2459768056869507 img loss 1.1945321559906006img loss 1.2144334316253662 img loss 1.167038917541504 img loss 1.1983107328414917 img loss 1.188322901725769 img loss 1.1943717002868652 img loss 1.2092254161834717 img loss 1.2384650707244873 img loss 1.1730740070343018 img loss 1.2023371458053589 img loss 1.2593075037002563 img loss 1.236362099647522 img loss 1.2242546081542969 img loss 1.159440279006958 img loss 1.1543357372283936 img loss 1.1362872123718262 img loss 1.1179224252700806 img loss 1.1777455806732178 img loss 1.2091585397720337 img loss 1.1881332397460938 img loss 1.2176289558410645 img loss 1.2312239408493042 img loss 1.1690243482589722 img loss 1.166167974472046 img loss 1.1797542572021484 img loss 1.1670769453048706 img loss 1.2467275857925415 img loss 1.1518405675888062 img loss 1.1845147609710693 img loss 1.1848995685577393 img loss 1.234850287437439 img loss 1.1905354261398315 img loss 1.2158331871032715 img loss 1.2872148752212524 img loss 1.1489369869232178 img loss 1.2201064825057983 img loss 1.1787914037704468 img loss 1.185393214225769 img loss 1.238579273223877 img loss 1.2593724727630615 img loss 1.193994402885437 img loss 1.1912226676940918 img loss 1.2276452779769897 img loss 1.1783561706542969 img loss 1.1551918983459473 img loss 1.2222411632537842 img loss 1.1904476881027222 img loss 1.2035155296325684 {'loss': 1.2011, 'grad_norm': 0.34777167439460754, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2729475498199463 img loss 1.2501749992370605 img loss 1.2790406942367554 img loss 1.1965465545654297 img loss 1.3559218645095825 img loss 1.3308491706848145 img loss 1.2336230278015137 img loss 1.2038707733154297 img loss 1.1921322345733643 img loss 1.406103253364563 img loss 1.2458213567733765 img loss 1.2748478651046753 img loss 1.2943896055221558 img loss 1.2227157354354858 img loss 1.2439556121826172 img loss 1.3685322999954224 img loss 1.2819932699203491 img loss 1.3219099044799805 img loss 1.2434059381484985 img loss 1.2311033010482788 img loss 1.3208297491073608 img loss 1.2635550498962402 img loss 1.2573829889297485 img loss 1.3257793188095093 img loss 1.2790945768356323 img loss 1.2692791223526 img loss 1.249998927116394 img loss 1.2920223474502563 img loss 1.321736216545105 img loss 1.316051721572876 img loss 1.2842211723327637 img loss 1.285566806793213 img loss 1.2638740539550781 img loss 1.2596060037612915 img loss 1.2967591285705566 img loss 1.2748969793319702 img loss 1.280266284942627 img loss 1.288796067237854 img loss 1.2489619255065918 img loss 1.2889742851257324 img loss 1.2040035724639893 img loss 1.230639100074768 img loss 1.2652029991149902 img loss 1.2680892944335938 img loss 1.2637979984283447 img loss 1.188083291053772 img loss 1.271614909172058 img loss 1.2423979043960571 img loss 1.2671183347702026 img loss 1.2997171878814697 img loss 1.1888058185577393 img loss 1.2297532558441162 img loss 1.2619318962097168 img loss 1.2052853107452393 img loss 1.2616583108901978 img loss 1.2886492013931274 img loss 1.2567964792251587 img loss 1.2102959156036377 img loss 1.2736485004425049 img loss 1.2164089679718018 img loss 1.2359168529510498 img loss 1.2738957405090332 img loss 1.2132203578948975 img loss 1.2018828392028809 img loss 1.1869474649429321 img loss 1.214210033416748 img loss 1.2175394296646118 img loss 1.2869786024093628 img loss 1.2373363971710205 img loss 1.2573659420013428 img loss 1.2315438985824585 img loss 1.267199993133545 img loss 1.2818683385849 img loss 1.3823946714401245 img loss 1.1977230310440063 img loss 1.210715889930725 img loss 1.3006607294082642 img loss 1.177114486694336 img loss 1.257933259010315 img loss 1.291487455368042 img loss 1.3074558973312378 img loss 1.2336864471435547 img loss 1.1874275207519531 img loss 1.2444915771484375 img loss 1.1588263511657715 img loss 1.1777827739715576 img loss 1.340640902519226 img loss 1.260311484336853 img loss 1.3413288593292236 img loss 1.301791787147522 img loss 1.2433032989501953 img loss 1.2283234596252441 img loss 1.3165385723114014 img loss 1.2432494163513184 img loss 1.2046234607696533 img loss 1.2447572946548462 img loss 1.261629343032837 img loss 1.2579978704452515 img loss 1.1978437900543213 img loss 1.2487128973007202 img loss 1.2807966470718384 img loss 1.249636173248291 img loss 1.1911242008209229 img loss 1.321256160736084 img loss 1.267025351524353 img loss 1.2400908470153809 img loss 1.2993409633636475 img loss 1.269993782043457 img loss 1.2617486715316772 img loss 1.2336938381195068 img loss 1.280670404434204 img loss 1.221376657485962 img loss 1.2262016534805298 img loss 1.2570747137069702 img loss 1.2252830266952515 img loss 1.2576297521591187 img loss 1.2287840843200684 img loss 1.2194151878356934 img loss 1.1728336811065674 img loss 1.2558716535568237 img loss 1.2038986682891846 img loss 1.2611397504806519 img loss 1.2322125434875488 img loss 1.2480840682983398 img loss 1.208761215209961 img loss 1.3146014213562012 img loss 1.3057880401611328 img loss 1.23907470703125 {'loss': 1.2571, 'grad_norm': 0.2624436318874359, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3152916431427002 img loss 1.2871923446655273 img loss 1.380531907081604 img loss 1.210919737815857 img loss 1.3090616464614868 img loss 1.2323671579360962 img loss 1.3087300062179565 img loss 1.270269751548767 img loss 1.284227728843689 img loss 1.3924708366394043 img loss 1.363052487373352 img loss 1.4060426950454712 img loss 1.3296725749969482 img loss 1.3922497034072876 img loss 1.2709691524505615 img loss 1.263413906097412 img loss 1.3202877044677734 img loss 1.1597737073898315 img loss 1.245390772819519 img loss 1.3010345697402954 img loss 1.2429804801940918 img loss 1.2521480321884155 img loss 1.2653913497924805 img loss 1.4589601755142212 img loss 1.315244197845459 img loss 1.2522767782211304 img loss 1.3460592031478882 img loss 1.2699989080429077 img loss 1.2569538354873657 img loss 1.2549471855163574 img loss 1.246714472770691 img loss 1.2988821268081665 img loss 1.373717188835144 img loss 1.2908241748809814 img loss 1.3190916776657104 img loss 1.4765151739120483 img loss 1.1998298168182373 img loss 1.430030345916748 img loss 1.281603455543518 img loss 1.3609012365341187 img loss 1.325731635093689 img loss 1.2573686838150024 img loss 1.2424063682556152 img loss 1.290948748588562 img loss 1.272592306137085 img loss 1.3469903469085693 img loss 1.4442719221115112 img loss 1.2692822217941284 img loss 1.2830519676208496 img loss 1.3138307332992554 img loss 1.2439019680023193 img loss 1.4098840951919556 img loss 1.2948024272918701 img loss 1.2642732858657837 img loss 1.3282756805419922 img loss 1.3021434545516968 img loss 1.2943189144134521 img loss 1.3273299932479858 img loss 1.2984055280685425 img loss 1.244383692741394 img loss 1.2895606756210327 img loss 1.3587679862976074 img loss 1.388738989830017 img loss 1.3352643251419067 img loss 1.3403236865997314 img loss 1.3297810554504395 img loss 1.2661806344985962 img loss 1.3712078332901 img loss 1.1987109184265137 img loss 1.3608273267745972 img loss 1.4371520280838013 img loss 1.367448329925537 img loss 1.2922582626342773 img loss 1.2442859411239624 img loss 1.2334952354431152 img loss 1.21041738986969 img loss 1.4153846502304077 img loss 1.3615409135818481 img loss 1.3530051708221436 img loss 1.4100242853164673 img loss 1.2897977828979492 img loss 1.3726229667663574 img loss 1.299680471420288 img loss 1.2817323207855225 img loss 1.3433210849761963 img loss 1.3059648275375366 img loss 1.2106674909591675 img loss 1.3568562269210815 img loss 1.241868019104004 img loss 1.299385905265808 img loss 1.3098390102386475 img loss 1.3143621683120728 img loss 1.2824102640151978 img loss 1.2752612829208374 img loss 1.2399063110351562 img loss 1.264933466911316 img loss 1.37106454372406 img loss 1.3313610553741455 img loss 1.266650915145874 img loss 1.3407670259475708 img loss 1.30228853225708 img loss 1.2668784856796265 img loss 1.4944113492965698 img loss 1.3454080820083618 img loss 1.2839609384536743 img loss 1.2964388132095337 img loss 1.2909677028656006 img loss 1.2417875528335571 img loss 1.3605821132659912 img loss 1.2680912017822266 img loss 1.3810771703720093 img loss 1.281899094581604 img loss 1.230651617050171 img loss 1.2666428089141846 img loss 1.3984863758087158 img loss 1.3545771837234497 img loss 1.2813347578048706 img loss 1.3498737812042236 img loss 1.2669367790222168 img loss 1.3125823736190796 img loss 1.3584214448928833 img loss 1.2552030086517334 img loss 1.3392279148101807 img loss 1.2949843406677246 img loss 1.3377339839935303 img loss 1.2996042966842651 img loss 1.1952569484710693 img loss 1.3254152536392212 {'loss': 1.3089, 'grad_norm': 0.2410186380147934, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2447725534439087 img loss 1.3517025709152222 img loss 1.3666901588439941 img loss 1.2949618101119995 img loss 1.4317518472671509 img loss 1.2608286142349243 img loss 1.3350149393081665 img loss 1.4007536172866821 img loss 1.3661788702011108 img loss 1.4804778099060059 img loss 1.3259280920028687 img loss 1.3194096088409424 img loss 1.3590754270553589 img loss 1.322387456893921 img loss 1.3977395296096802 img loss 1.3365405797958374 img loss 1.319201946258545 img loss 1.3215206861495972 img loss 1.4723197221755981 img loss 1.2582831382751465 img loss 1.4476529359817505 img loss 1.3723582029342651 img loss 1.3549504280090332 img loss 1.312923789024353 img loss 1.2972228527069092 img loss 1.3874253034591675 img loss 1.3099422454833984 img loss 1.3632034063339233 img loss 1.3095340728759766 img loss 1.4682561159133911 img loss 1.3456473350524902 img loss 1.4779075384140015 img loss 1.3499459028244019 img loss 1.2639961242675781 img loss 1.4958984851837158 img loss 1.331411361694336 img loss 1.3206703662872314 img loss 1.4101320505142212 img loss 1.346075415611267 img loss 1.3649545907974243 img loss 1.317744255065918 img loss 1.470502495765686 img loss 1.3907294273376465 img loss 1.5413817167282104 img loss 1.3312267065048218 img loss 1.4129536151885986 img loss 1.3478152751922607 img loss 1.4467387199401855 img loss 1.4177502393722534 img loss 1.3136060237884521 img loss 1.3134455680847168 img loss 1.3521602153778076 img loss 1.4425338506698608 img loss 1.39003324508667 img loss 1.394213318824768 img loss 1.4150375127792358 img loss 1.3208165168762207 img loss 1.4530762434005737 img loss 1.3786675930023193 img loss 1.3530641794204712 img loss 1.3936179876327515 img loss 1.38621985912323 img loss 1.3966708183288574 img loss 1.3472692966461182 img loss 1.3837686777114868 img loss 1.4328210353851318 img loss 1.4104361534118652 img loss 1.492632269859314 img loss 1.3463094234466553 img loss 1.4255620241165161 img loss 1.3672205209732056 img loss 1.39425528049469 img loss 1.321927547454834 img loss 1.3400200605392456 img loss 1.2765039205551147 img loss 1.3094829320907593 img loss 1.4546078443527222 img loss 1.358461856842041 img loss 1.4048062562942505 img loss 1.3913291692733765 img loss 1.4244235754013062 img loss 1.2945889234542847 img loss 1.259594202041626 img loss 1.4267207384109497 img loss 1.3931434154510498 img loss 1.3047758340835571 img loss 1.4069361686706543 img loss 1.367782473564148 img loss 1.3926228284835815 img loss 1.37950599193573 img loss 1.4142385721206665 img loss 1.3804137706756592 img loss 1.3639572858810425 img loss 1.271966814994812 img loss 1.4087803363800049 img loss 1.330207347869873 img loss 1.526065468788147 img loss 1.4373458623886108 img loss 1.331236481666565 img loss 1.385951280593872 img loss 1.3610397577285767 img loss 1.3682023286819458 img loss 1.4100778102874756 img loss 1.3238587379455566 img loss 1.2895132303237915 img loss 1.4020806550979614 img loss 1.3741545677185059 img loss 1.3982712030410767 img loss 1.36815345287323 img loss 1.4804612398147583 img loss 1.4024860858917236 img loss 1.3506261110305786 img loss 1.3078581094741821 img loss 1.4805830717086792 img loss 1.3498977422714233 img loss 1.3884024620056152 img loss 1.5140297412872314 img loss 1.3341642618179321 img loss 1.1948680877685547 img loss 1.2963593006134033 img loss 1.4252249002456665 img loss 1.3844319581985474 img loss 1.3377538919448853 img loss 1.3582135438919067 img loss 1.345760464668274 img loss 1.2833871841430664 img loss 1.517241358757019 img loss 1.3720139265060425 {'loss': 1.3723, 'grad_norm': 0.30231210589408875, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4440656900405884 img loss 1.4479714632034302 img loss 1.2661817073822021 img loss 1.4113057851791382 img loss 1.4047315120697021img loss 1.3799376487731934 img loss 1.4624770879745483 img loss 1.4147416353225708 img loss 1.3217642307281494 img loss 1.4207243919372559 img loss 1.3603965044021606 img loss 1.3078464269638062 img loss 1.3473652601242065 img loss 1.4553946256637573 img loss 1.3773149251937866 img loss 1.314822793006897 img loss 1.477385401725769 img loss 1.4447296857833862 img loss 1.3447235822677612 img loss 1.4664093255996704 img loss 1.5071825981140137 img loss 1.472943663597107 img loss 1.3448220491409302 img loss 1.4620343446731567 img loss 1.3995288610458374 img loss 1.357665777206421 img loss 1.2360703945159912 img loss 1.4176734685897827 img loss 1.417661428451538 img loss 1.246358871459961 img loss 1.3702406883239746 img loss 1.4734429121017456 img loss 1.5122768878936768 img loss 1.379544734954834 img loss 1.3961435556411743 img loss 1.3806474208831787 img loss 1.3502813577651978 img loss 1.3750251531600952 img loss 1.4129968881607056 img loss 1.444140911102295 img loss 1.2619844675064087 img loss 1.2685351371765137 img loss 1.3550066947937012 img loss 1.4421299695968628 img loss 1.4223344326019287 img loss 1.3729764223098755 img loss 1.2901105880737305 img loss 1.4440562725067139 img loss 1.3985188007354736 img loss 1.319517970085144 img loss 1.3178558349609375 img loss 1.403733491897583 img loss 1.4212658405303955 img loss 1.345628261566162 img loss 1.3402866125106812 img loss 1.3067995309829712 img loss 1.4432533979415894 img loss 1.385740041732788 img loss 1.3638519048690796 img loss 1.4317667484283447 img loss 1.3262466192245483 img loss 1.3563990592956543 img loss 1.3486278057098389 img loss 1.4306789636611938 img loss 1.5095337629318237 img loss 1.5016556978225708 img loss 1.3689864873886108 img loss 1.388251781463623 img loss 1.4214261770248413 img loss 1.3942573070526123 img loss 1.4528752565383911 img loss 1.3503881692886353 img loss 1.2906821966171265 img loss 1.3655356168746948 img loss 1.4418110847473145 img loss 1.414589762687683 img loss 1.3950421810150146 img loss 1.4743086099624634 img loss 1.3100937604904175 img loss 1.383105993270874 img loss 1.2854397296905518 img loss 1.3604358434677124 img loss 1.3649262189865112 img loss 1.2242481708526611 img loss 1.3945425748825073 img loss 1.3820531368255615 img loss 1.4461673498153687 img loss 1.4335030317306519 img loss 1.3427436351776123 img loss 1.4099892377853394 img loss 1.3265221118927002 img loss 1.3320209980010986 img loss 1.369362473487854 img loss 1.2760833501815796 img loss 1.4002288579940796 img loss 1.3674734830856323 img loss 1.3393522500991821 img loss 1.258415699005127 img loss 1.2418237924575806 img loss 1.4575144052505493 img loss 1.397021770477295 img loss 1.411956548690796 img loss 1.4293534755706787 img loss 1.3396023511886597 img loss 1.4051402807235718 img loss 1.3155324459075928 img loss 1.3286583423614502 img loss 1.3312337398529053 img loss 1.39293372631073 img loss 1.366350769996643 img loss 1.2517399787902832 img loss 1.3028074502944946 img loss 1.4385777711868286 img loss 1.3889600038528442 img loss 1.461884617805481 img loss 1.3298839330673218 img loss 1.3986612558364868 img loss 1.428637146949768 img loss 1.3779046535491943 img loss 1.2812117338180542 img loss 1.3174875974655151 img loss 1.2413442134857178 img loss 1.3521002531051636 img loss 1.4244006872177124 img loss 1.262053370475769 img loss 1.3626933097839355 img loss 1.4775748252868652 img loss 1.3168022632598877 {'loss': 1.3768, 'grad_norm': 0.4030141830444336, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2744699716567993 img loss 1.3264541625976562 img loss 1.329587459564209 img loss 1.1713844537734985 img loss 1.2175511121749878 img loss 1.2855148315429688 img loss 1.2909259796142578 img loss 1.2279325723648071 img loss 1.3275030851364136 img loss 1.2460341453552246 img loss 1.292472243309021 img loss 1.3128526210784912 img loss 1.27858304977417 img loss 1.0873167514801025 img loss 1.1828055381774902 img loss 1.3522546291351318 img loss 1.265001654624939 img loss 1.2238328456878662 img loss 1.3120158910751343 img loss 1.2142618894577026 img loss 1.2996383905410767 img loss 1.331581950187683 img loss 1.243751049041748 img loss 1.3031622171401978 img loss 1.2929461002349854 img loss 1.212685465812683 img loss 1.3101242780685425 img loss 1.2960938215255737 img loss 1.2493637800216675 img loss 1.2219761610031128 img loss 1.3145101070404053 img loss 1.2825863361358643 img loss 1.1515934467315674 img loss 1.3712646961212158 img loss 1.2953096628189087 img loss 1.2897720336914062 img loss 1.2568023204803467 img loss 1.263070821762085 img loss 1.2321066856384277 img loss 1.2766361236572266 img loss 1.2569764852523804 img loss 1.256627082824707 img loss 1.3069894313812256 img loss 1.301277995109558 img loss 1.20307195186615 img loss 1.1885809898376465 img loss 1.2460325956344604 img loss 1.2073333263397217 img loss 1.2210384607315063 img loss 1.2792271375656128 img loss 1.2505218982696533 img loss 1.3559898138046265 img loss 1.2515015602111816 img loss 1.3422410488128662 img loss 1.3530782461166382 img loss 1.3027585744857788 img loss 1.2928513288497925 img loss 1.3203150033950806 img loss 1.2109336853027344 img loss 1.3264654874801636 img loss 1.2960257530212402 img loss 1.1906518936157227 img loss 1.2923706769943237 img loss 1.285550594329834 img loss 1.2511568069458008 img loss 1.2224457263946533 img loss 1.2297285795211792 img loss 1.3319553136825562 img loss 1.2890857458114624 img loss 1.2596678733825684 img loss 1.2923959493637085 img loss 1.239614725112915 img loss 1.2381749153137207 img loss 1.2793827056884766 img loss 1.2749435901641846 img loss 1.2919154167175293 img loss 1.319548487663269 img loss 1.323779582977295 img loss 1.2368807792663574 img loss 1.2292927503585815 img loss 1.2338861227035522 img loss 1.194314956665039 img loss 1.259463906288147 img loss 1.3118183612823486 img loss 1.1631386280059814 img loss 1.2915887832641602 img loss 1.215791940689087 img loss 1.4278851747512817 img loss 1.2678875923156738 img loss 1.2245930433273315 img loss 1.2963322401046753 img loss 1.3215503692626953 img loss 1.3094253540039062 img loss 1.2087820768356323 img loss 1.2494919300079346 img loss 1.2711604833602905 img loss 1.28500497341156 img loss 1.163669228553772 img loss 1.3080615997314453 img loss 1.2981971502304077 img loss 1.2407301664352417 img loss 1.358852505683899 img loss 1.177722692489624 img loss 1.247170090675354 img loss 1.211887240409851 img loss 1.2261642217636108 img loss 1.2014062404632568 img loss 1.2517226934432983 img loss 1.2348291873931885 img loss 1.2640405893325806 img loss 1.269470453262329 img loss 1.2548726797103882 img loss 1.310412883758545 img loss 1.2986621856689453 img loss 1.1930763721466064 img loss 1.1679515838623047 img loss 1.2881759405136108 img loss 1.2971587181091309 img loss 1.2407209873199463 img loss 1.2217466831207275 img loss 1.2992194890975952 img loss 1.192339301109314 img loss 1.265649676322937 img loss 1.2908276319503784 img loss 1.2066410779953003 img loss 1.2675261497497559 img loss 1.2402511835098267 img loss 1.295625925064087 {'loss': 1.2647, 'grad_norm': 0.23623265326023102, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.231841802597046 img loss 1.1757341623306274 img loss 1.1636898517608643 img loss 1.2344635725021362 img loss 1.276314616203308 img loss 1.22074556350708 img loss 1.2404428720474243 img loss 1.1815500259399414 img loss 1.1525639295578003 img loss 1.2153137922286987 img loss 1.3523277044296265 img loss 1.2309629917144775 img loss 1.2349162101745605 img loss 1.3235005140304565 img loss 1.2144839763641357 img loss 1.159697413444519 img loss 1.2462793588638306 img loss 1.2236993312835693 img loss 1.2503665685653687 img loss 1.2199921607971191 img loss 1.2767884731292725 img loss 1.1506999731063843 img loss 1.2918592691421509 img loss 1.183122158050537 img loss 1.2403137683868408 img loss 1.2236121892929077 img loss 1.1538279056549072 img loss 1.2542428970336914 img loss 1.2764450311660767 img loss 1.2901681661605835 img loss 1.243864893913269 img loss 1.2238248586654663 img loss 1.2021782398223877 img loss 1.1915374994277954 img loss 1.221048355102539 img loss 1.2749518156051636 img loss 1.3019521236419678 img loss 1.1638662815093994 img loss 1.1644905805587769 img loss 1.2663116455078125 img loss 1.2475875616073608 img loss 1.372942566871643 img loss 1.3261549472808838 img loss 1.2679023742675781 img loss 1.1840124130249023 img loss 1.3543285131454468 img loss 1.3259390592575073 img loss 1.24270761013031 img loss 1.1946442127227783 img loss 1.2778400182724 img loss 1.2032718658447266 img loss 1.2685737609863281 img loss 1.239864706993103 img loss 1.226583480834961 img loss 1.2737663984298706 img loss 1.2201488018035889 img loss 1.3141497373580933 img loss 1.2896426916122437 img loss 1.2312955856323242 img loss 1.1692932844161987 img loss 1.2372976541519165 img loss 1.2934623956680298 img loss 1.2321975231170654 img loss 1.1693884134292603 img loss 1.1619553565979004 img loss 1.2816057205200195 img loss 1.3282890319824219 img loss 1.1763925552368164 img loss 1.2508608102798462 img loss 1.2742092609405518 img loss 1.2280478477478027 img loss 1.2178521156311035 img loss 1.1918600797653198 img loss 1.188880443572998 img loss 1.2063446044921875 img loss 1.2564404010772705 img loss 1.238977074623108 img loss 1.2528986930847168 img loss 1.17940092086792 img loss 1.2238140106201172 img loss 1.1912964582443237 img loss 1.2128161191940308 img loss 1.2379698753356934 img loss 1.1889564990997314 img loss 1.206404209136963 img loss 1.1461645364761353 img loss 1.2569591999053955 img loss 1.225330114364624 img loss 1.2034015655517578 img loss 1.277859091758728 img loss 1.2943695783615112 img loss 1.3675322532653809 img loss 1.2680981159210205 img loss 1.1386630535125732 img loss 1.1611881256103516 img loss 1.2077500820159912 img loss 1.2420252561569214 img loss 1.2582261562347412 img loss 1.242422103881836 img loss 1.14545476436615 img loss 1.2894062995910645 img loss 1.2252177000045776 img loss 1.1984646320343018 img loss 1.1846612691879272 img loss 1.2641239166259766 img loss 1.2574266195297241 img loss 1.1407270431518555 img loss 1.2378395795822144 img loss 1.2005677223205566 img loss 1.25884211063385 img loss 1.269108772277832 img loss 1.2294530868530273 img loss 1.1917701959609985 img loss 1.2715524435043335 img loss 1.216501235961914 img loss 1.286049485206604 img loss 1.174872875213623 img loss 1.1600074768066406 img loss 1.3325151205062866 img loss 1.256421685218811 img loss 1.3484196662902832 img loss 1.287706971168518img loss 1.2395061254501343 img loss 1.2758829593658447 img loss 1.275224208831787 img loss 1.2988172769546509 img loss 1.1546809673309326 img loss 1.2304058074951172 {'loss': 1.2359, 'grad_norm': 0.1957908272743225, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5157896280288696 img loss 1.2343066930770874 img loss 1.3398041725158691 img loss 1.4280511140823364 img loss 1.269232988357544 img loss 1.3252922296524048 img loss 1.460288166999817 img loss 1.4042264223098755 img loss 1.4747244119644165 img loss 1.4453825950622559 img loss 1.4175746440887451 img loss 1.418527364730835 img loss 1.4575917720794678 img loss 1.387805700302124 img loss 1.3694510459899902 img loss 1.3516091108322144 img loss 1.486771821975708 img loss 1.3764259815216064 img loss 1.4228943586349487 img loss 1.5211329460144043 img loss 1.403246283531189 img loss 1.493865728378296 img loss 1.4639075994491577 img loss 1.4138349294662476 img loss 1.3548332452774048 img loss 1.5576531887054443 img loss 1.5739195346832275 img loss 1.4784451723098755 img loss 1.4150456190109253 img loss 1.4367594718933105 img loss 1.5127575397491455 img loss 1.3720228672027588 img loss 1.4171555042266846 img loss 1.4543224573135376 img loss 1.4420605897903442 img loss 1.4141132831573486 img loss 1.5096086263656616 img loss 1.3711297512054443 img loss 1.422553300857544 img loss 1.3622673749923706 img loss 1.3913730382919312 img loss 1.3782000541687012 img loss 1.416706919670105 img loss 1.3658658266067505 img loss 1.3946797847747803 img loss 1.3277947902679443 img loss 1.5191504955291748 img loss 1.3943078517913818 img loss 1.4627948999404907 img loss 1.570156455039978 img loss 1.3159844875335693 img loss 1.4186861515045166 img loss 1.3168838024139404 img loss 1.3951092958450317 img loss 1.3495291471481323 img loss 1.2824125289916992 img loss 1.2808374166488647 img loss 1.337109088897705 img loss 1.4139764308929443 img loss 1.3772205114364624 img loss 1.4093165397644043 img loss 1.555335521697998 img loss 1.3668826818466187 img loss 1.4434330463409424 img loss 1.4373642206192017 img loss 1.435930848121643 img loss 1.409472107887268 img loss 1.4563138484954834 img loss 1.42393159866333 img loss 1.2779775857925415 img loss 1.3809610605239868 img loss 1.3295446634292603 img loss 1.3956029415130615 img loss 1.4110409021377563 img loss 1.3960374593734741 img loss 1.4900091886520386 img loss 1.503750205039978 img loss 1.4582207202911377 img loss 1.3754202127456665 img loss 1.3691011667251587 img loss 1.4437016248703003 img loss 1.4709982872009277 img loss 1.4274237155914307 img loss 1.3939939737319946 img loss 1.3389642238616943 img loss 1.3502637147903442 img loss 1.3078877925872803 img loss 1.4101605415344238 img loss 1.429115653038025 img loss 1.4136385917663574 img loss 1.4891200065612793 img loss 1.4638010263442993 img loss 1.450196385383606 img loss 1.3221614360809326 img loss 1.4499403238296509 img loss 1.3597415685653687 img loss 1.4355340003967285 img loss 1.372921109199524 img loss 1.2950832843780518 img loss 1.349488377571106 img loss 1.4616501331329346 img loss 1.4622360467910767 img loss 1.3883198499679565 img loss 1.4181644916534424 img loss 1.4759610891342163 img loss 1.3712430000305176 img loss 1.3374401330947876 img loss 1.3054615259170532 img loss 1.414660930633545 img loss 1.4214622974395752 img loss 1.512816309928894 img loss 1.4104300737380981 img loss 1.372588038444519 img loss 1.3633179664611816 img loss 1.3457276821136475 img loss 1.5870378017425537 img loss 1.3544882535934448 img loss 1.441365122795105img loss 1.4267624616622925 img loss 1.4128973484039307 img loss 1.3091951608657837 img loss 1.3735591173171997 img loss 1.3589845895767212 img loss 1.4519399404525757 img loss 1.4682241678237915 img loss 1.4319708347320557 img loss 1.4868066310882568 img loss 1.4518295526504517 {'loss': 1.4109, 'grad_norm': 0.2986910045146942, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3122223615646362 img loss 1.3288154602050781 img loss 1.3669407367706299 img loss 1.4277623891830444 img loss 1.3792006969451904 img loss 1.508409857749939 img loss 1.434181571006775 img loss 1.3371638059616089 img loss 1.4838663339614868 img loss 1.3690437078475952 img loss 1.3036227226257324 img loss 1.2975304126739502 img loss 1.359165072441101 img loss 1.3895118236541748 img loss 1.3381353616714478 img loss 1.4061102867126465 img loss 1.3337452411651611 img loss 1.4116345643997192 img loss 1.4194356203079224img loss 1.3414024114608765 img loss 1.325872778892517 img loss 1.4429861307144165 img loss 1.411158800125122 img loss 1.3223814964294434 img loss 1.3930659294128418 img loss 1.3404802083969116 img loss 1.3873463869094849 img loss 1.4727991819381714 img loss 1.3342397212982178 img loss 1.274379014968872 img loss 1.429724097251892 img loss 1.3653532266616821 img loss 1.337571382522583 img loss 1.449235200881958 img loss 1.3737232685089111 img loss 1.472352385520935 img loss 1.3122889995574951 img loss 1.3034241199493408 img loss 1.4229063987731934 img loss 1.3641619682312012 img loss 1.440908670425415 img loss 1.3326067924499512 img loss 1.316300630569458 img loss 1.2873715162277222 img loss 1.4446605443954468 img loss 1.4392144680023193 img loss 1.4453850984573364 img loss 1.2916944026947021 img loss 1.3513236045837402 img loss 1.3447705507278442 img loss 1.3510535955429077 img loss 1.4505256414413452 img loss 1.30052649974823 img loss 1.3345814943313599 img loss 1.3833863735198975 img loss 1.382330060005188 img loss 1.4374291896820068 img loss 1.2958885431289673 img loss 1.390302062034607 img loss 1.4230180978775024 img loss 1.4092670679092407 img loss 1.4208608865737915 img loss 1.3207253217697144 img loss 1.3626295328140259 img loss 1.5148454904556274 img loss 1.4394651651382446 img loss 1.3878968954086304 img loss 1.4263012409210205 img loss 1.532110333442688 img loss 1.369547724723816 img loss 1.3865636587142944 img loss 1.3307617902755737 img loss 1.4856266975402832 img loss 1.485117793083191 img loss 1.386034369468689 img loss 1.440181016921997 img loss 1.549084186553955 img loss 1.3554013967514038 img loss 1.4073501825332642 img loss 1.4013293981552124 img loss 1.3456429243087769 img loss 1.4975041151046753 img loss 1.3031039237976074 img loss 1.312463402748108 img loss 1.3585304021835327 img loss 1.3499940633773804 img loss 1.3687682151794434 img loss 1.40157949924469 img loss 1.2713568210601807 img loss 1.3559783697128296 img loss 1.420425295829773 img loss 1.3601757287979126 img loss 1.4224698543548584 img loss 1.3987476825714111 img loss 1.3375585079193115 img loss 1.4530292749404907 img loss 1.389971375465393 img loss 1.44418466091156 img loss 1.3971073627471924 img loss 1.4873268604278564 img loss 1.4340685606002808 img loss 1.4120110273361206 img loss 1.5167542695999146 img loss 1.4495463371276855 img loss 1.3506640195846558 img loss 1.3742016553878784 img loss 1.5632561445236206 img loss 1.4398505687713623 img loss 1.3766586780548096 img loss 1.4075348377227783 img loss 1.3744860887527466 img loss 1.501608967781067 img loss 1.460408091545105 img loss 1.4405826330184937 img loss 1.4920248985290527 img loss 1.3749172687530518 img loss 1.5825728178024292 img loss 1.4699510335922241 img loss 1.496242642402649 img loss 1.2849104404449463 img loss 1.3437029123306274 img loss 1.334825873374939 img loss 1.2858378887176514 img loss 1.4525525569915771 img loss 1.4601138830184937 img loss 1.3468140363693237 img loss 1.354470133781433 img loss 1.36955726146698 {'loss': 1.3935, 'grad_norm': 0.3426929712295532, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2977149486541748 img loss 1.2993195056915283 img loss 1.240329384803772 img loss 1.1673400402069092 img loss 1.1417300701141357 img loss 1.1971662044525146 img loss 1.1797865629196167 img loss 1.2299306392669678 img loss 1.2013542652130127 img loss 1.244850993156433 img loss 1.2620060443878174 img loss 1.2187727689743042 img loss 1.2779721021652222 img loss 1.1790766716003418 img loss 1.3330906629562378 img loss 1.2157542705535889 img loss 1.189321517944336 img loss 1.2085416316986084 img loss 1.2625197172164917 img loss 1.3595490455627441 img loss 1.2558257579803467 img loss 1.259325385093689 img loss 1.1591613292694092 img loss 1.2526543140411377 img loss 1.24869966506958 img loss 1.1900527477264404 img loss 1.2836097478866577 img loss 1.3136706352233887 img loss 1.3102420568466187 img loss 1.2344434261322021 img loss 1.2460297346115112 img loss 1.3410967588424683 img loss 1.3057883977890015 img loss 1.2151225805282593 img loss 1.2241039276123047 img loss 1.2279239892959595 img loss 1.2536776065826416 img loss 1.2538106441497803 img loss 1.266963005065918 img loss 1.2194862365722656 img loss 1.235113501548767 img loss 1.2520179748535156 img loss 1.2913240194320679 img loss 1.1388695240020752 img loss 1.2619835138320923 img loss 1.156747579574585 img loss 1.305704116821289 img loss 1.2485929727554321 img loss 1.3599861860275269 img loss 1.1831032037734985 img loss 1.2682634592056274 img loss 1.196536660194397 img loss 1.3426101207733154 img loss 1.2078527212142944 img loss 1.2300437688827515 img loss 1.1937024593353271 img loss 1.2592991590499878 img loss 1.2126766443252563 img loss 1.1860744953155518 img loss 1.222080945968628 img loss 1.1819490194320679 img loss 1.2969330549240112 img loss 1.2358412742614746 img loss 1.267322301864624 img loss 1.271519422531128 img loss 1.140984296798706 img loss 1.2340515851974487 img loss 1.2219377756118774 img loss 1.2448666095733643 img loss 1.2570215463638306 img loss 1.209963321685791 img loss 1.3617373704910278 img loss 1.3253201246261597 img loss 1.2048699855804443 img loss 1.2001259326934814 img loss 1.289000153541565 img loss 1.3234894275665283 img loss 1.2624995708465576 img loss 1.1861015558242798 img loss 1.2698299884796143 img loss 1.2166732549667358 img loss 1.2723175287246704 img loss 1.2097718715667725 img loss 1.2230377197265625 img loss 1.278178095817566 img loss 1.175262212753296 img loss 1.2730926275253296 img loss 1.2009482383728027 img loss 1.1485315561294556 img loss 1.220219373703003 img loss 1.213089942932129 img loss 1.2479766607284546 img loss 1.224644660949707 img loss 1.1903057098388672 img loss 1.2866464853286743 img loss 1.2595648765563965 img loss 1.2217521667480469 img loss 1.2144885063171387 img loss 1.2518270015716553 img loss 1.2064027786254883 img loss 1.2638190984725952 img loss 1.2040380239486694img loss 1.2690948247909546 img loss 1.3923395872116089 img loss 1.1811211109161377 img loss 1.2421295642852783 img loss 1.2190556526184082 img loss 1.2886399030685425 img loss 1.2473548650741577 img loss 1.3296964168548584 img loss 1.2654273509979248 img loss 1.1832749843597412 img loss 1.3742938041687012 img loss 1.2687656879425049 img loss 1.2190966606140137 img loss 1.199847936630249 img loss 1.2851479053497314 img loss 1.1404469013214111 img loss 1.2054650783538818 img loss 1.3223752975463867 img loss 1.1994333267211914 img loss 1.1351321935653687 img loss 1.3671382665634155 img loss 1.18497633934021 img loss 1.302879810333252 img loss 1.2962597608566284 img loss 1.2065911293029785 img loss 1.2766165733337402 {'loss': 1.2431, 'grad_norm': 0.316302627325058, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.246256709098816 img loss 1.3730742931365967 img loss 1.2670847177505493 img loss 1.4009902477264404 img loss 1.3354417085647583 img loss 1.3814481496810913 img loss 1.3633732795715332 img loss 1.3068745136260986 img loss 1.3994792699813843 img loss 1.301218867301941 img loss 1.4104787111282349 img loss 1.361838459968567 img loss 1.3575845956802368 img loss 1.2881778478622437 img loss 1.2801545858383179 img loss 1.3448636531829834 img loss 1.352813482284546 img loss 1.350563645362854 img loss 1.286495566368103 img loss 1.3426178693771362 img loss 1.4112200736999512 img loss 1.2997045516967773 img loss 1.4140723943710327 img loss 1.3029590845108032 img loss 1.2987908124923706 img loss 1.4575566053390503 img loss 1.3126177787780762 img loss 1.256714105606079 img loss 1.3367503881454468 img loss 1.2911933660507202 img loss 1.4345145225524902 img loss 1.340246558189392 img loss 1.325059413909912 img loss 1.271138072013855 img loss 1.3296407461166382 img loss 1.3471510410308838 img loss 1.347533941268921 img loss 1.4236023426055908 img loss 1.2892284393310547 img loss 1.405853033065796 img loss 1.2899177074432373 img loss 1.3572050333023071 img loss 1.4381117820739746 img loss 1.3693349361419678 img loss 1.2768278121948242 img loss 1.3578572273254395 img loss 1.2722160816192627 img loss 1.2974319458007812 img loss 1.3152989149093628 img loss 1.3886891603469849 img loss 1.3960106372833252 img loss 1.4548627138137817 img loss 1.376430630683899 img loss 1.2549002170562744 img loss 1.2720030546188354 img loss 1.4340527057647705 img loss 1.4132249355316162 img loss 1.3706995248794556 img loss 1.23102605342865 img loss 1.474003553390503 img loss 1.3207215070724487 img loss 1.349456548690796 img loss 1.3604788780212402 img loss 1.386619210243225img loss 1.2285598516464233 img loss 1.2694928646087646 img loss 1.33335280418396 img loss 1.3820128440856934 img loss 1.2901331186294556 img loss 1.3453506231307983 img loss 1.3586593866348267 img loss 1.4044040441513062 img loss 1.3245779275894165 img loss 1.285752296447754 img loss 1.3515866994857788 img loss 1.407680630683899 img loss 1.3400092124938965 img loss 1.328804612159729 img loss 1.4126698970794678 img loss 1.329079270362854 img loss 1.329250693321228 img loss 1.2806625366210938 img loss 1.4069466590881348 img loss 1.3948585987091064 img loss 1.3201748132705688 img loss 1.324656367301941 img loss 1.3849529027938843 img loss 1.365917444229126 img loss 1.252089500427246 img loss 1.4419645071029663 img loss 1.3796039819717407 img loss 1.4129259586334229 img loss 1.385291576385498 img loss 1.3511427640914917 img loss 1.374369502067566 img loss 1.3590925931930542 img loss 1.3294620513916016 img loss 1.351415753364563 img loss 1.3479726314544678 img loss 1.4385024309158325 img loss 1.3137595653533936 img loss 1.3465282917022705 img loss 1.413198709487915 img loss 1.3180397748947144 img loss 1.2731739282608032 img loss 1.4033867120742798 img loss 1.3707014322280884 img loss 1.325347661972046 img loss 1.4018006324768066 img loss 1.3371223211288452 img loss 1.2919723987579346 img loss 1.3544367551803589 img loss 1.3627396821975708 img loss 1.287510633468628 img loss 1.3446279764175415 img loss 1.3504595756530762 img loss 1.2989933490753174 img loss 1.3233814239501953 img loss 1.3341190814971924 img loss 1.2842243909835815 img loss 1.2972044944763184 img loss 1.2845014333724976 img loss 1.37992262840271 img loss 1.4234555959701538 img loss 1.396782636642456 img loss 1.491576075553894 img loss 1.2632176876068115 img loss 1.352384090423584 {'loss': 1.3465, 'grad_norm': 0.24122124910354614, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6164878606796265 img loss 1.649822473526001 img loss 1.5640705823898315 img loss 1.5004122257232666 img loss 1.6040338277816772 img loss 1.598321795463562 img loss 1.6790186166763306 img loss 1.60634183883667 img loss 1.64690101146698 img loss 1.4029860496520996 img loss 1.5221673250198364 img loss 1.5260560512542725 img loss 1.3945000171661377 img loss 1.563213586807251 img loss 1.7492985725402832 img loss 1.5769731998443604 img loss 1.4952809810638428 img loss 1.6070815324783325 img loss 1.6286938190460205 img loss 1.5454566478729248 img loss 1.5500034093856812 img loss 1.5281975269317627 img loss 1.6013399362564087 img loss 1.5118428468704224 img loss 1.6768685579299927 img loss 1.4690474271774292 img loss 1.4041998386383057 img loss 1.6378003358840942 img loss 1.6381930112838745 img loss 1.4901031255722046 img loss 1.6694530248641968 img loss 1.6353954076766968 img loss 1.465523362159729 img loss 1.4333299398422241 img loss 1.4535139799118042 img loss 1.540024995803833 img loss 1.4868146181106567 img loss 1.5164729356765747 img loss 1.628354549407959 img loss 1.5751367807388306 img loss 1.504270315170288 img loss 1.5393487215042114 img loss 1.5877488851547241 img loss 1.6182783842086792 img loss 1.427179217338562 img loss 1.614747166633606 img loss 1.5083869695663452 img loss 1.5223525762557983 img loss 1.642698884010315 img loss 1.563437819480896 img loss 1.6174167394638062 img loss 1.5246316194534302 img loss 1.476165533065796 img loss 1.5043566226959229 img loss 1.6410009860992432 img loss 1.6696467399597168 img loss 1.459040880203247 img loss 1.5203698873519897 img loss 1.5415083169937134 img loss 1.4646114110946655 img loss 1.5612082481384277 img loss 1.474016547203064 img loss 1.2928924560546875 img loss 1.535032868385315 img loss 1.4624073505401611 img loss 1.5743858814239502 img loss 1.6657260656356812 img loss 1.6273586750030518 img loss 1.6093891859054565 img loss 1.5527355670928955 img loss 1.4726195335388184 img loss 1.7816106081008911 img loss 1.4639188051223755img loss 1.6585958003997803 img loss 1.4298081398010254 img loss 1.4199093580245972 img loss 1.5686477422714233 img loss 1.5315945148468018 img loss 1.5540587902069092 img loss 1.5954302549362183 img loss 1.572494387626648 img loss 1.4570502042770386 img loss 1.5131466388702393 img loss 1.4532010555267334 img loss 1.5972806215286255 img loss 1.6652203798294067 img loss 1.5106329917907715 img loss 1.5528360605239868img loss 1.6713470220565796 img loss 1.5647141933441162 img loss 1.7160236835479736 img loss 1.5843260288238525 img loss 1.577928066253662 img loss 1.5416024923324585 img loss 1.5796102285385132 img loss 1.6422063112258911 img loss 1.6368082761764526 img loss 1.6516493558883667 img loss 1.601549506187439 img loss 1.5052392482757568 img loss 1.5616096258163452 img loss 1.5894732475280762 img loss 1.5327495336532593 img loss 1.6412562131881714 img loss 1.4158949851989746 img loss 1.636022686958313 img loss 1.5280708074569702 img loss 1.565045714378357 img loss 1.5651917457580566 img loss 1.584632158279419 img loss 1.657620906829834 img loss 1.4950145483016968 img loss 1.4677752256393433 img loss 1.5620452165603638 img loss 1.5477620363235474 img loss 1.4935736656188965 img loss 1.6693246364593506 img loss 1.666979432106018 img loss 1.389309287071228 img loss 1.5998536348342896 img loss 1.600832223892212 img loss 1.5652600526809692 img loss 1.6127619743347168 img loss 1.5162841081619263 img loss 1.5807808637619019 img loss 1.4908779859542847 img loss 1.534759283065796 img loss 1.5754072666168213 {'loss': 1.5579, 'grad_norm': 1.1877597570419312, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.274263620376587 img loss 1.4460256099700928 img loss 1.2863006591796875 img loss 1.2811449766159058 img loss 1.3704288005828857 img loss 1.2840595245361328 img loss 1.2628895044326782 img loss 1.2590168714523315 img loss 1.186079502105713 img loss 1.2867625951766968 img loss 1.2260956764221191 img loss 1.3468340635299683 img loss 1.2805323600769043 img loss 1.3503726720809937 img loss 1.3069597482681274 img loss 1.2991968393325806 img loss 1.2341450452804565 img loss 1.2935584783554077 img loss 1.1732399463653564 img loss 1.2347869873046875 img loss 1.2966336011886597 img loss 1.259145736694336 img loss 1.33485746383667 img loss 1.2306269407272339 img loss 1.296099066734314 img loss 1.3146162033081055 img loss 1.253955602645874 img loss 1.2590206861495972 img loss 1.370057463645935 img loss 1.2812427282333374 img loss 1.270556092262268 img loss 1.2961208820343018 img loss 1.2948960065841675 img loss 1.2150259017944336 img loss 1.2968990802764893 img loss 1.4007070064544678 img loss 1.2572929859161377 img loss 1.464301586151123 img loss 1.2876520156860352 img loss 1.2515244483947754 img loss 1.2925598621368408 img loss 1.2864010334014893 img loss 1.2911031246185303 img loss 1.271977424621582 img loss 1.3426587581634521 img loss 1.3944965600967407 img loss 1.2220947742462158 img loss 1.2414870262145996 img loss 1.3350834846496582 img loss 1.2786802053451538 img loss 1.2087799310684204 img loss 1.3709332942962646 img loss 1.1654013395309448 img loss 1.358660101890564 img loss 1.2993237972259521 img loss 1.2881033420562744 img loss 1.276945948600769 img loss 1.4086394309997559 img loss 1.261431097984314 img loss 1.3176155090332031 img loss 1.2922470569610596 img loss 1.3056913614273071 img loss 1.2082077264785767 img loss 1.356081247329712 img loss 1.2946455478668213 img loss 1.2686550617218018 img loss 1.2897413969039917 img loss 1.2712475061416626 img loss 1.2270967960357666 img loss 1.2552365064620972 img loss 1.3097050189971924 img loss 1.2980411052703857 img loss 1.2524025440216064 img loss 1.2842490673065186 img loss 1.3435441255569458 img loss 1.3471709489822388 img loss 1.2834954261779785 img loss 1.3521969318389893 img loss 1.2372702360153198 img loss 1.2070393562316895 img loss 1.2458828687667847 img loss 1.3254806995391846 img loss 1.30062997341156 img loss 1.1699864864349365 img loss 1.27010977268219 img loss 1.3124594688415527 img loss 1.2812694311141968 img loss 1.2961488962173462 img loss 1.329205870628357 img loss 1.238710880279541 img loss 1.354659914970398 img loss 1.3575494289398193 img loss 1.3275620937347412 img loss 1.2783457040786743 img loss 1.3165470361709595 img loss 1.3400884866714478 img loss 1.2721086740493774 img loss 1.2668102979660034 img loss 1.2186678647994995 img loss 1.2412314414978027 img loss 1.30282461643219 img loss 1.3055824041366577 img loss 1.3369488716125488 img loss 1.3777153491973877 img loss 1.2463573217391968 img loss 1.3988280296325684 img loss 1.2689710855484009 img loss 1.2540507316589355 img loss 1.2035471200942993 img loss 1.276684284210205 img loss 1.341597318649292 img loss 1.310631275177002 img loss 1.2890249490737915 img loss 1.184122920036316 img loss 1.387630820274353 img loss 1.267385482788086 img loss 1.325966238975525 img loss 1.2547862529754639 img loss 1.3438853025436401 img loss 1.2619036436080933 img loss 1.2460057735443115 img loss 1.2833179235458374 img loss 1.306160569190979 img loss 1.2820260524749756 img loss 1.2637732028961182 img loss 1.2773644924163818 img loss 1.3349920511245728 img loss 1.2770060300827026 {'loss': 1.2903, 'grad_norm': 0.30146610736846924, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1350172758102417 img loss 1.1833919286727905 img loss 1.1971536874771118 img loss 1.2279102802276611 img loss 1.189421534538269 img loss 1.1562023162841797 img loss 1.223223328590393 img loss 1.2273032665252686 img loss 1.1915369033813477 img loss 1.190852403640747 img loss 1.1767593622207642 img loss 1.1194673776626587 img loss 1.1772754192352295 img loss 1.1493841409683228 img loss 1.2481544017791748 img loss 1.169062614440918 img loss 1.1263855695724487 img loss 1.2101987600326538 img loss 1.1583315134048462 img loss 1.179193139076233 img loss 1.2095915079116821 img loss 1.0963432788848877 img loss 1.1722064018249512 img loss 1.1740450859069824 img loss 1.1459053754806519 img loss 1.22832453250885 img loss 1.1903663873672485 img loss 1.236830234527588 img loss 1.243260383605957 img loss 1.1615217924118042 img loss 1.2250957489013672 img loss 1.1615564823150635 img loss 1.1672407388687134 img loss 1.1780070066452026 img loss 1.2541240453720093 img loss 1.2204679250717163 img loss 1.2157459259033203 img loss 1.2607603073120117 img loss 1.1211341619491577 img loss 1.145867109298706 img loss 1.1871575117111206 img loss 1.1928613185882568 img loss 1.164162516593933 img loss 1.0968437194824219 img loss 1.1781328916549683 img loss 1.241151213645935 img loss 1.248387336730957 img loss 1.1827442646026611 img loss 1.1904196739196777 img loss 1.2134416103363037 img loss 1.2063359022140503 img loss 1.1287060976028442 img loss 1.2097113132476807 img loss 1.132643461227417 img loss 1.1720707416534424 img loss 1.2077264785766602 img loss 1.1742851734161377 img loss 1.2251709699630737 img loss 1.161903977394104 img loss 1.1391905546188354 img loss 1.1964237689971924 img loss 1.2200363874435425 img loss 1.1507726907730103 img loss 1.2037408351898193 img loss 1.1770390272140503 img loss 1.2158892154693604 img loss 1.254494071006775 img loss 1.16414475440979 img loss 1.2037708759307861 img loss 1.2491563558578491 img loss 1.1717078685760498 img loss 1.2247923612594604 img loss 1.1580636501312256 img loss 1.142803430557251 img loss 1.1797816753387451 img loss 1.0994932651519775 img loss 1.1728227138519287 img loss 1.1546720266342163 img loss 1.2512054443359375 img loss 1.1938786506652832 img loss 1.2082370519638062 img loss 1.247025966644287 img loss 1.1639857292175293 img loss 1.1882508993148804 img loss 1.1773786544799805 img loss 1.150882601737976 img loss 1.2228249311447144 img loss 1.2543256282806396 img loss 1.2127224206924438 img loss 1.1447643041610718 img loss 1.2464357614517212 img loss 1.2548373937606812 img loss 1.2218440771102905 img loss 1.191301941871643 img loss 1.2892578840255737 img loss 1.2203571796417236 img loss 1.1324816942214966 img loss 1.2147865295410156 img loss 1.1832408905029297 img loss 1.1677130460739136 img loss 1.1245288848876953img loss 1.1734434366226196 img loss 1.2006136178970337 img loss 1.1471855640411377 img loss 1.1163910627365112 img loss 1.1746361255645752 img loss 1.1573748588562012 img loss 1.2057157754898071 img loss 1.1350610256195068 img loss 1.2243032455444336 img loss 1.1917526721954346 img loss 1.164637804031372 img loss 1.253821611404419 img loss 1.243999719619751 img loss 1.1842248439788818 img loss 1.1919403076171875 img loss 1.1762549877166748 img loss 1.21737539768219 img loss 1.1975758075714111 img loss 1.174993872642517 img loss 1.1855242252349854 img loss 1.1908588409423828 img loss 1.1279536485671997 img loss 1.231881856918335 img loss 1.1916077136993408 img loss 1.219109058380127 img loss 1.1996198892593384 img loss 1.2784643173217773 {'loss': 1.1895, 'grad_norm': 0.22843924164772034, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.313840627670288 img loss 1.0789763927459717 img loss 1.2265799045562744 img loss 1.1768721342086792 img loss 1.2447973489761353 img loss 1.2516274452209473 img loss 1.1619107723236084 img loss 1.1726174354553223 img loss 1.2454230785369873 img loss 1.2401361465454102 img loss 1.2661232948303223 img loss 1.2208775281906128 img loss 1.187437891960144 img loss 1.2762119770050049 img loss 1.1850556135177612 img loss 1.1881828308105469 img loss 1.1184145212173462 img loss 1.1375845670700073 img loss 1.2453101873397827 img loss 1.2295660972595215 img loss 1.2713550329208374 img loss 1.3253860473632812 img loss 1.1995378732681274 img loss 1.1339924335479736 img loss 1.1944736242294312 img loss 1.2269394397735596 img loss 1.2193200588226318 img loss 1.2141401767730713 img loss 1.2274802923202515 img loss 1.2302448749542236 img loss 1.2451205253601074 img loss 1.1278923749923706 img loss 1.1725472211837769 img loss 1.1795501708984375 img loss 1.197153925895691 img loss 1.1928532123565674 img loss 1.1667770147323608 img loss 1.212625503540039 img loss 1.2015961408615112 img loss 1.1727300882339478 img loss 1.2338882684707642 img loss 1.143688678741455 img loss 1.167750597000122 img loss 1.2379419803619385 img loss 1.230619192123413 img loss 1.2415308952331543 img loss 1.2059215307235718 img loss 1.1897711753845215 img loss 1.179667353630066 img loss 1.2485979795455933 img loss 1.2020776271820068 img loss 1.176450490951538 img loss 1.1924283504486084 img loss 1.2166039943695068 img loss 1.2424299716949463 img loss 1.19066321849823 img loss 1.3309898376464844 img loss 1.229095220565796 img loss 1.270958662033081 img loss 1.2544667720794678 img loss 1.1485942602157593 img loss 1.1991398334503174 img loss 1.0935075283050537 img loss 1.2109596729278564 img loss 1.1463360786437988 img loss 1.1946591138839722 img loss 1.1917548179626465 img loss 1.33354651927948 img loss 1.2014096975326538 img loss 1.1785671710968018 img loss 1.2033209800720215 img loss 1.2070130109786987 img loss 1.1686185598373413 img loss 1.1955668926239014 img loss 1.222817301750183 img loss 1.189638614654541 img loss 1.2507352828979492 img loss 1.346351146697998 img loss 1.2805124521255493 img loss 1.2654002904891968 img loss 1.1818050146102905 img loss 1.2251713275909424 img loss 1.1887085437774658 img loss 1.2404744625091553 img loss 1.2276920080184937 img loss 1.2830631732940674 img loss 1.2512205839157104 img loss 1.3559385538101196 img loss 1.2639193534851074 img loss 1.2374826669692993 img loss 1.2005996704101562 img loss 1.1780694723129272 img loss 1.2550833225250244 img loss 1.1916499137878418 img loss 1.1313165426254272 img loss 1.1799955368041992 img loss 1.2018945217132568 img loss 1.2537399530410767 img loss 1.327818512916565 img loss 1.2593873739242554 img loss 1.1532751321792603 img loss 1.2048438787460327 img loss 1.2268260717391968 img loss 1.2049726247787476 img loss 1.2011154890060425 img loss 1.1575549840927124 img loss 1.2243975400924683 img loss 1.2706196308135986 img loss 1.0724681615829468 img loss 1.2708892822265625 img loss 1.1706783771514893 img loss 1.174371361732483 img loss 1.235511302947998 img loss 1.1571155786514282 img loss 1.1969356536865234 img loss 1.217098593711853 img loss 1.2918834686279297 img loss 1.2745281457901 img loss 1.2512575387954712 img loss 1.2670326232910156 img loss 1.2386317253112793 img loss 1.2488071918487549 img loss 1.2889598608016968 img loss 1.2091501951217651 img loss 1.2552862167358398 img loss 1.1405645608901978 img loss 1.2093091011047363 img loss 1.2027825117111206 {'loss': 1.2152, 'grad_norm': 0.23062153160572052, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.211907982826233 img loss 1.2286889553070068 img loss 1.248189926147461 img loss 1.2997668981552124 img loss 1.2454875707626343 img loss 1.2311094999313354 img loss 1.2245677709579468 img loss 1.3003002405166626 img loss 1.2718960046768188 img loss 1.1970601081848145 img loss 1.2782230377197266 img loss 1.1974575519561768 img loss 1.211907982826233 img loss 1.2253265380859375 img loss 1.232831597328186 img loss 1.2157399654388428 img loss 1.26533842086792 img loss 1.2556463479995728 img loss 1.2801154851913452 img loss 1.2459652423858643 img loss 1.1622657775878906 img loss 1.2044967412948608 img loss 1.2735307216644287 img loss 1.2837436199188232 img loss 1.237425446510315 img loss 1.3079707622528076 img loss 1.204281210899353 img loss 1.3192031383514404 img loss 1.2410980463027954 img loss 1.2255085706710815 img loss 1.2182743549346924 img loss 1.193042516708374 img loss 1.218607783317566 img loss 1.228445291519165 img loss 1.214759349822998 img loss 1.2884857654571533 img loss 1.224266767501831 img loss 1.269101858139038 img loss 1.184875249862671 img loss 1.2535152435302734 img loss 1.2177799940109253 img loss 1.1464370489120483 img loss 1.238633632659912 img loss 1.3026983737945557 img loss 1.2134708166122437 img loss 1.2489389181137085 img loss 1.2842543125152588 img loss 1.1957908868789673 img loss 1.2365736961364746 img loss 1.2561979293823242 img loss 1.2750943899154663 img loss 1.1377935409545898 img loss 1.237282156944275 img loss 1.26750648021698 img loss 1.2218968868255615 img loss 1.1987195014953613 img loss 1.2397377490997314 img loss 1.2483246326446533 img loss 1.2201756238937378 img loss 1.2939257621765137 img loss 1.2536041736602783 img loss 1.2681185007095337 img loss 1.335922360420227 img loss 1.2054715156555176 img loss 1.2343600988388062 img loss 1.2300738096237183 img loss 1.245157241821289 img loss 1.1968588829040527 img loss 1.1830507516860962 img loss 1.2418047189712524 img loss 1.1692137718200684 img loss 1.3209037780761719 img loss 1.2174129486083984 img loss 1.2349350452423096 img loss 1.2150427103042603 img loss 1.2363884449005127 img loss 1.264975905418396 img loss 1.1781214475631714 img loss 1.2569116353988647 img loss 1.2935407161712646 img loss 1.2168434858322144 img loss 1.298362374305725 img loss 1.2368706464767456 img loss 1.2367428541183472 img loss 1.2834628820419312 img loss 1.217778205871582 img loss 1.2078888416290283 img loss 1.211965799331665 img loss 1.2137857675552368 img loss 1.263343334197998 img loss 1.1819313764572144 img loss 1.2594659328460693 img loss 1.249518871307373 img loss 1.263129472732544 img loss 1.2414085865020752 img loss 1.296470046043396 img loss 1.2144203186035156 img loss 1.2085312604904175 img loss 1.1972099542617798 img loss 1.2629404067993164 img loss 1.2308069467544556 img loss 1.2022876739501953 img loss 1.165016531944275 img loss 1.2691090106964111 img loss 1.2425702810287476 img loss 1.1930491924285889 img loss 1.233567476272583 img loss 1.300734043121338 img loss 1.2888057231903076 img loss 1.1901987791061401 img loss 1.2450628280639648 img loss 1.2860441207885742 img loss 1.2332127094268799 img loss 1.2496562004089355 img loss 1.3016085624694824 img loss 1.2676037549972534 img loss 1.235685110092163 img loss 1.2399837970733643 img loss 1.2414464950561523 img loss 1.201422095298767 img loss 1.2738099098205566 img loss 1.2607760429382324 img loss 1.2601269483566284 img loss 1.2842100858688354 img loss 1.3280123472213745 img loss 1.2462131977081299 img loss 1.2556527853012085 img loss 1.2521523237228394 {'loss': 1.2408, 'grad_norm': 0.2643784284591675, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.254281759262085 img loss 1.2197729349136353 img loss 1.2593815326690674 img loss 1.220961570739746 img loss 1.210451602935791 img loss 1.2375977039337158 img loss 1.1923103332519531 img loss 1.2324968576431274 img loss 1.2106037139892578 img loss 1.1832349300384521 img loss 1.1801859140396118 img loss 1.2399471998214722 img loss 1.2074809074401855 img loss 1.2744604349136353 img loss 1.1875057220458984 img loss 1.2261207103729248 img loss 1.1996724605560303 img loss 1.2376437187194824 img loss 1.2446609735488892 img loss 1.1641993522644043 img loss 1.2614929676055908 img loss 1.2102478742599487 img loss 1.2317578792572021 img loss 1.2537195682525635 img loss 1.234770655632019 img loss 1.2119522094726562 img loss 1.2770193815231323 img loss 1.2234761714935303 img loss 1.1948307752609253 img loss 1.2377122640609741 img loss 1.2263038158416748 img loss 1.2597980499267578 img loss 1.2052571773529053 img loss 1.237332820892334 img loss 1.2809877395629883 img loss 1.2265957593917847 img loss 1.224168300628662 img loss 1.216752290725708 img loss 1.190825343132019 img loss 1.2571251392364502 img loss 1.2100603580474854 img loss 1.1936525106430054 img loss 1.2909467220306396 img loss 1.223721981048584 img loss 1.1853957176208496 img loss 1.2314738035202026 img loss 1.2350234985351562 img loss 1.1892070770263672 img loss 1.187517523765564 img loss 1.2350623607635498 img loss 1.2225544452667236 img loss 1.2043180465698242 img loss 1.226709246635437 img loss 1.2019141912460327 img loss 1.2216228246688843 img loss 1.2300227880477905 img loss 1.1997947692871094 img loss 1.2241036891937256 img loss 1.2388129234313965 img loss 1.2229923009872437 img loss 1.2161600589752197img loss 1.2498023509979248 img loss 1.2075051069259644 img loss 1.1921409368515015 img loss 1.2340818643569946 img loss 1.223885178565979 img loss 1.2630716562271118 img loss 1.2361360788345337 img loss 1.2217737436294556 img loss 1.2135899066925049 img loss 1.2282317876815796 img loss 1.2227184772491455 img loss 1.2617212533950806 img loss 1.25437331199646 img loss 1.1876773834228516 img loss 1.217893362045288 img loss 1.1884136199951172 img loss 1.2594950199127197 img loss 1.1826704740524292 img loss 1.2639217376708984 img loss 1.202811598777771 img loss 1.177917718887329 img loss 1.1925616264343262 img loss 1.2104384899139404 img loss 1.2646329402923584 img loss 1.2316009998321533 img loss 1.2176069021224976 img loss 1.2117146253585815 img loss 1.282134771347046 img loss 1.2675708532333374 img loss 1.2523945569992065 img loss 1.2788021564483643 img loss 1.2082293033599854 img loss 1.2683711051940918 img loss 1.2511485815048218 img loss 1.178451418876648 img loss 1.221980333328247 img loss 1.242030143737793 img loss 1.2358835935592651 img loss 1.2394111156463623 img loss 1.3079172372817993 img loss 1.1889142990112305 img loss 1.2231266498565674 img loss 1.1728252172470093 img loss 1.239567756652832 img loss 1.2061408758163452 img loss 1.2124460935592651 img loss 1.2149723768234253 img loss 1.2040207386016846 img loss 1.2895443439483643 img loss 1.2288756370544434 img loss 1.2484166622161865 img loss 1.1595969200134277 img loss 1.2508007287979126 img loss 1.2599148750305176 img loss 1.2309538125991821 img loss 1.266947627067566 img loss 1.204222559928894 img loss 1.2526663541793823 img loss 1.1997981071472168 img loss 1.2979252338409424 img loss 1.2434310913085938 img loss 1.2028696537017822 img loss 1.228696346282959 img loss 1.2145886421203613 img loss 1.2387502193450928 img loss 1.2294015884399414 img loss 1.2114795446395874 {'loss': 1.2266, 'grad_norm': 0.20414067804813385, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.724660873413086 img loss 1.7209293842315674 img loss 1.8726475238800049 img loss 1.7896389961242676 img loss 1.6733826398849487 img loss 1.7520661354064941 img loss 1.7830268144607544 img loss 1.7378959655761719 img loss 1.7885525226593018 img loss 1.80024254322052 img loss 1.781410574913025 img loss 1.7489240169525146 img loss 1.7976804971694946 img loss 1.6502386331558228 img loss 1.815016746520996 img loss 1.864916205406189 img loss 1.8173115253448486 img loss 1.6892554759979248 img loss 1.6993359327316284 img loss 1.823974370956421 img loss 2.012296438217163 img loss 1.7802433967590332 img loss 1.7747273445129395 img loss 1.7579517364501953 img loss 1.8933488130569458 img loss 1.836187720298767 img loss 1.762690782546997 img loss 1.797268271446228 img loss 1.8460652828216553 img loss 2.087158203125 img loss 1.8750743865966797 img loss 1.812742829322815 img loss 1.7640063762664795 img loss 1.969321846961975 img loss 1.7882113456726074 img loss 2.0517804622650146 img loss 1.8715951442718506 img loss 1.719478964805603 img loss 1.7130100727081299 img loss 1.7079967260360718 img loss 1.7814304828643799 img loss 1.7767564058303833 img loss 1.8975659608840942 img loss 1.7802602052688599 img loss 1.8356660604476929 img loss 1.7231807708740234 img loss 1.7517226934432983 img loss 1.759609580039978 img loss 1.7170040607452393 img loss 1.7308120727539062img loss 1.9124032258987427 img loss 1.8738723993301392 img loss 1.8479304313659668 img loss 1.9035143852233887 img loss 1.8024499416351318 img loss 1.7373625040054321 img loss 1.748472809791565 img loss 1.6816542148590088 img loss 1.891858696937561 img loss 1.8362163305282593 img loss 1.7323089838027954 img loss 1.8019990921020508 img loss 1.7745287418365479 img loss 1.6531010866165161 img loss 1.686976671218872 img loss 1.7265517711639404 img loss 1.7629152536392212 img loss 1.7118359804153442 img loss 1.707674503326416 img loss 1.8613325357437134 img loss 1.8193894624710083 img loss 1.9197736978530884 img loss 1.7539011240005493 img loss 1.8461601734161377 img loss 1.7851192951202393 img loss 1.7013509273529053 img loss 1.7746148109436035 img loss 1.8816510438919067 img loss 1.8252933025360107 img loss 1.6600021123886108 img loss 1.7609450817108154 img loss 1.7206989526748657 img loss 1.8605295419692993 img loss 1.8103586435317993 img loss 1.6539685726165771 img loss 1.6390039920806885 img loss 1.8272833824157715 img loss 1.9101998805999756 img loss 1.7192575931549072 img loss 1.930487036705017 img loss 1.7880852222442627 img loss 1.6680712699890137 img loss 1.7341922521591187 img loss 1.7926675081253052 img loss 1.881119728088379 img loss 1.6519099473953247 img loss 1.762621521949768 img loss 1.670074224472046 img loss 1.9205589294433594 img loss 1.7637689113616943 img loss 1.8597586154937744 img loss 1.7491627931594849 img loss 1.6947816610336304 img loss 1.9061832427978516 img loss 1.77606999874115 img loss 1.7697463035583496 img loss 1.7886658906936646 img loss 1.7544976472854614 img loss 1.6871256828308105 img loss 1.92581045627594 img loss 1.9334007501602173 img loss 1.7569568157196045 img loss 1.8310760259628296 img loss 1.854508399963379 img loss 1.7750558853149414 img loss 1.8687667846679688 img loss 1.7974984645843506 img loss 1.8340431451797485 img loss 1.65256667137146 img loss 1.905606746673584 img loss 1.6747990846633911 img loss 1.7240153551101685 img loss 1.8184881210327148 img loss 1.7753573656082153 img loss 1.6419142484664917 img loss 1.941167950630188 img loss 1.8566480875015259 img loss 1.7390234470367432 {'loss': 1.7913, 'grad_norm': 1.1608141660690308, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2169723510742188 img loss 1.1274300813674927 img loss 1.2056422233581543 img loss 1.1265789270401 img loss 1.1727873086929321 img loss 1.235334873199463 img loss 1.1988667249679565 img loss 1.1634546518325806 img loss 1.1902613639831543 img loss 1.1962708234786987 img loss 1.121000051498413 img loss 1.093087077140808 img loss 1.1228822469711304 img loss 1.1804817914962769 img loss 1.182602882385254 img loss 1.1955294609069824 img loss 1.2159245014190674 img loss 1.2424161434173584 img loss 1.158155083656311 img loss 1.1467605829238892 img loss 1.3071205615997314 img loss 1.2036808729171753 img loss 1.1602716445922852 img loss 1.1659215688705444 img loss 1.1383416652679443 img loss 1.233310580253601 img loss 1.15437650680542 img loss 1.217672348022461 img loss 1.2217309474945068 img loss 1.2156437635421753 img loss 1.2117599248886108 img loss 1.2203590869903564 img loss 1.212196707725525 img loss 1.1582332849502563 img loss 1.2000138759613037 img loss 1.2657657861709595 img loss 1.1844756603240967 img loss 1.1194438934326172 img loss 1.1578625440597534 img loss 1.2703074216842651 img loss 1.1919384002685547 img loss 1.1383919715881348 img loss 1.2294214963912964 img loss 1.20663321018219 img loss 1.1516504287719727 img loss 1.2080116271972656 img loss 1.215105652809143 img loss 1.2508728504180908 img loss 1.2287756204605103 img loss 1.1709537506103516 img loss 1.1739304065704346 img loss 1.1536587476730347 img loss 1.201302170753479 img loss 1.1991040706634521 img loss 1.254494071006775 img loss 1.1000003814697266 img loss 1.125675916671753 img loss 1.211614966392517 img loss 1.263100266456604 img loss 1.1358511447906494 img loss 1.1389000415802002 img loss 1.171264410018921 img loss 1.1653560400009155 img loss 1.17721426486969 img loss 1.1614532470703125 img loss 1.255612850189209 img loss 1.1690946817398071 img loss 1.1652586460113525 img loss 1.2222912311553955 img loss 1.2186857461929321 img loss 1.2605037689208984 img loss 1.1655186414718628 img loss 1.1770050525665283 img loss 1.1476762294769287 img loss 1.1464512348175049 img loss 1.1442837715148926 img loss 1.229116678237915 img loss 1.154592514038086 img loss 1.2000641822814941 img loss 1.1117504835128784 img loss 1.142841100692749 img loss 1.1711199283599854 img loss 1.2560514211654663 img loss 1.1698499917984009 img loss 1.1720597743988037 img loss 1.2021210193634033 img loss 1.1893486976623535 img loss 1.157386302947998 img loss 1.1815153360366821 img loss 1.1581480503082275 img loss 1.3082853555679321 img loss 1.1937313079833984 img loss 1.1491215229034424 img loss 1.1425611972808838 img loss 1.160815715789795 img loss 1.2128233909606934 img loss 1.1501916646957397 img loss 1.1542315483093262 img loss 1.2021499872207642 img loss 1.1737959384918213 img loss 1.1717286109924316 img loss 1.2175451517105103 img loss 1.167216181755066 img loss 1.2081736326217651 img loss 1.1019558906555176 img loss 1.184486985206604 img loss 1.2687275409698486 img loss 1.200533151626587 img loss 1.1771128177642822 img loss 1.1543362140655518 img loss 1.2246135473251343 img loss 1.2383192777633667 img loss 1.1864336729049683 img loss 1.1492650508880615 img loss 1.1993458271026611 img loss 1.205574631690979 img loss 1.2149291038513184 img loss 1.1853933334350586 img loss 1.203810691833496 img loss 1.1307423114776611 img loss 1.1780275106430054 img loss 1.2002685070037842 img loss 1.172217607498169 img loss 1.1343387365341187 img loss 1.2622432708740234 img loss 1.2123857736587524 img loss 1.1404414176940918 img loss 1.2098263502120972 {'loss': 1.1863, 'grad_norm': 0.38267603516578674, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5975701808929443 img loss 1.5521794557571411 img loss 1.548256278038025 img loss 1.611570954322815 img loss 1.5299887657165527 img loss 1.6011286973953247 img loss 1.4960733652114868 img loss 1.617245078086853 img loss 1.647045612335205 img loss 1.5718809366226196 img loss 1.5507124662399292 img loss 1.741085410118103 img loss 1.6373025178909302 img loss 1.5996448993682861 img loss 1.4965649843215942 img loss 1.7418859004974365 img loss 1.4428048133850098 img loss 1.4526809453964233 img loss 1.6215596199035645 img loss 1.6346863508224487 img loss 1.5937234163284302 img loss 1.52987539768219 img loss 1.5855752229690552 img loss 1.5677754878997803 img loss 1.5495296716690063 img loss 1.6284117698669434 img loss 1.5387645959854126 img loss 1.5372296571731567 img loss 1.5301012992858887 img loss 1.4692203998565674 img loss 1.4551289081573486 img loss 1.5623105764389038 img loss 1.5837385654449463 img loss 1.5673426389694214 img loss 1.4703794717788696 img loss 1.6059504747390747 img loss 1.5431475639343262 img loss 1.4498142004013062 img loss 1.631445050239563 img loss 1.6572765111923218 img loss 1.615576982498169 img loss 1.5528780221939087 img loss 1.4051225185394287 img loss 1.57051420211792 img loss 1.3767226934432983 img loss 1.49765145778656 img loss 1.612529993057251 img loss 1.5456918478012085 img loss 1.549052119255066 img loss 1.5681116580963135 img loss 1.4879753589630127 img loss 1.568306803703308 img loss 1.4216080904006958 img loss 1.6500859260559082 img loss 1.6758580207824707 img loss 1.5853323936462402 img loss 1.5401971340179443 img loss 1.5126439332962036 img loss 1.6636987924575806 img loss 1.4776737689971924 img loss 1.6773860454559326 img loss 1.6119047403335571 img loss 1.5004780292510986 img loss 1.5711311101913452 img loss 1.6249972581863403 img loss 1.6181663274765015 img loss 1.4562841653823853 img loss 1.6147971153259277 img loss 1.4391121864318848 img loss 1.5307605266571045 img loss 1.6240507364273071 img loss 1.6239336729049683 img loss 1.6527211666107178 img loss 1.6067488193511963 img loss 1.5956103801727295 img loss 1.5219082832336426 img loss 1.451453447341919 img loss 1.4831783771514893 img loss 1.5583291053771973 img loss 1.654283046722412 img loss 1.4736968278884888 img loss 1.4947537183761597 img loss 1.5134718418121338 img loss 1.734194278717041 img loss 1.5091617107391357 img loss 1.636313557624817 img loss 1.576475977897644 img loss 1.558741807937622 img loss 1.377074956893921 img loss 1.5066678524017334 img loss 1.5677464008331299 img loss 1.4509450197219849 img loss 1.5573545694351196 img loss 1.4321577548980713 img loss 1.5649844408035278 img loss 1.4748718738555908 img loss 1.4846737384796143 img loss 1.5792607069015503 img loss 1.545121431350708 img loss 1.467273235321045 img loss 1.5500242710113525 img loss 1.6093919277191162 img loss 1.5126408338546753 img loss 1.5713706016540527 img loss 1.477496862411499 img loss 1.44163978099823 img loss 1.667792797088623 img loss 1.5243006944656372 img loss 1.552501916885376 img loss 1.5118813514709473 img loss 1.489761233329773 img loss 1.523208737373352 img loss 1.509488821029663 img loss 1.6284111738204956 img loss 1.5760691165924072 img loss 1.647470235824585 img loss 1.5266474485397339 img loss 1.4984430074691772 img loss 1.393412709236145 img loss 1.497740626335144 img loss 1.4827711582183838 img loss 1.6023001670837402 img loss 1.661160945892334 img loss 1.5874269008636475 img loss 1.6721036434173584 img loss 1.7069361209869385 img loss 1.557083249092102 img loss 1.5720038414001465 {'loss': 1.5555, 'grad_norm': 0.6464500427246094, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4750922918319702 img loss 1.4930384159088135 img loss 1.4405723810195923 img loss 1.5382659435272217 img loss 1.421881079673767 img loss 1.6205145120620728 img loss 1.5467535257339478 img loss 1.5843853950500488 img loss 1.3854986429214478 img loss 1.568336844444275 img loss 1.3693422079086304 img loss 1.4345742464065552 img loss 1.5128295421600342 img loss 1.4367762804031372 img loss 1.4120078086853027 img loss 1.4191302061080933 img loss 1.4160977602005005 img loss 1.492378830909729 img loss 1.4911437034606934 img loss 1.5796353816986084 img loss 1.3447396755218506 img loss 1.4365136623382568 img loss 1.4116214513778687 img loss 1.4442713260650635 img loss 1.501981496810913 img loss 1.3082393407821655 img loss 1.3145332336425781 img loss 1.371935248374939 img loss 1.5034812688827515 img loss 1.4481542110443115 img loss 1.3793013095855713 img loss 1.5029188394546509 img loss 1.573683261871338 img loss 1.3929816484451294 img loss 1.388198971748352 img loss 1.4346935749053955 img loss 1.4510782957077026 img loss 1.5660690069198608 img loss 1.4110180139541626 img loss 1.5909287929534912 img loss 1.388153314590454 img loss 1.3292049169540405 img loss 1.4344078302383423 img loss 1.6031383275985718 img loss 1.3306626081466675 img loss 1.5189025402069092 img loss 1.636084794998169 img loss 1.5051850080490112 img loss 1.5308451652526855 img loss 1.47649085521698 img loss 1.4514950513839722 img loss 1.424627423286438 img loss 1.500080943107605 img loss 1.4173213243484497 img loss 1.4198917150497437 img loss 1.5434772968292236 img loss 1.3663078546524048 img loss 1.4387354850769043 img loss 1.4699475765228271 img loss 1.5534292459487915 img loss 1.495482325553894 img loss 1.362617015838623 img loss 1.4974309206008911 img loss 1.4777671098709106 img loss 1.4079298973083496 img loss 1.603684902191162 img loss 1.5727072954177856 img loss 1.5477240085601807 img loss 1.4533687829971313 img loss 1.4653047323226929 img loss 1.424744963645935 img loss 1.4244712591171265 img loss 1.4962624311447144 img loss 1.3366833925247192 img loss 1.4676858186721802 img loss 1.4686015844345093 img loss 1.4468796253204346 img loss 1.5514495372772217 img loss 1.4299664497375488 img loss 1.401099443435669 img loss 1.4922071695327759 img loss 1.6401313543319702 img loss 1.4855679273605347 img loss 1.4087469577789307 img loss 1.445892572402954 img loss 1.5278469324111938 img loss 1.3178542852401733 img loss 1.5020172595977783 img loss 1.4534831047058105 img loss 1.4537155628204346 img loss 1.4722598791122437 img loss 1.4867465496063232 img loss 1.4420987367630005 img loss 1.4145060777664185 img loss 1.407063603401184 img loss 1.5325312614440918 img loss 1.3666132688522339 img loss 1.4526203870773315 img loss 1.4869869947433472 img loss 1.5472674369812012 img loss 1.4532454013824463 img loss 1.3590786457061768 img loss 1.5305836200714111 img loss 1.5137670040130615 img loss 1.387710690498352 img loss 1.5799214839935303 img loss 1.493346929550171img loss 1.4845644235610962 img loss 1.4148576259613037 img loss 1.4975526332855225 img loss 1.471889615058899 img loss 1.4095652103424072 img loss 1.5223356485366821 img loss 1.5162869691848755 img loss 1.4341390132904053 img loss 1.4811137914657593 img loss 1.4490059614181519 img loss 1.4350532293319702 img loss 1.4217513799667358 img loss 1.5992257595062256 img loss 1.41619074344635 img loss 1.5147700309753418 img loss 1.5182243585586548 img loss 1.4707258939743042 img loss 1.465175986289978 img loss 1.5296604633331299 img loss 1.523337483406067 img loss 1.56304132938385 {'loss': 1.4678, 'grad_norm': 0.34181472659111023, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3228507041931152 img loss 1.3691697120666504 img loss 1.3736516237258911 img loss 1.2569183111190796 img loss 1.3388131856918335 img loss 1.3962730169296265 img loss 1.3880351781845093 img loss 1.3415122032165527 img loss 1.227956771850586 img loss 1.3227144479751587 img loss 1.3324947357177734 img loss 1.2637345790863037 img loss 1.2651948928833008 img loss 1.2301576137542725 img loss 1.2954602241516113 img loss 1.3517249822616577 img loss 1.3842873573303223 img loss 1.2998303174972534 img loss 1.3913408517837524 img loss 1.4330273866653442 img loss 1.3155053853988647 img loss 1.2566438913345337 img loss 1.4169539213180542 img loss 1.2017433643341064 img loss 1.190030813217163 img loss 1.2920887470245361 img loss 1.2981762886047363 img loss 1.2785342931747437 img loss 1.389440655708313 img loss 1.4705979824066162 img loss 1.2327526807785034 img loss 1.2888931035995483 img loss 1.3209017515182495 img loss 1.4301270246505737 img loss 1.2358731031417847 img loss 1.274200201034546 img loss 1.2681572437286377 img loss 1.5179795026779175 img loss 1.3127859830856323 img loss 1.4464422464370728 img loss 1.265892505645752 img loss 1.3914448022842407 img loss 1.3699010610580444 img loss 1.226593017578125 img loss 1.3065677881240845 img loss 1.3114742040634155 img loss 1.295936107635498 img loss 1.3944666385650635 img loss 1.3210405111312866 img loss 1.3790899515151978 img loss 1.250129222869873 img loss 1.357438325881958 img loss 1.314939022064209 img loss 1.3749011754989624 img loss 1.3318449258804321 img loss 1.1934651136398315 img loss 1.2757039070129395 img loss 1.398555040359497 img loss 1.4218519926071167 img loss 1.3179939985275269 img loss 1.3027900457382202 img loss 1.2521454095840454 img loss 1.2916439771652222 img loss 1.2503732442855835 img loss 1.4183696508407593 img loss 1.341421365737915 img loss 1.3344753980636597 img loss 1.2523307800292969 img loss 1.2439522743225098 img loss 1.3529274463653564 img loss 1.416514277458191 img loss 1.3572794198989868 img loss 1.2691696882247925 img loss 1.321735143661499 img loss 1.4584033489227295 img loss 1.3947160243988037 img loss 1.3762881755828857 img loss 1.3092378377914429 img loss 1.3760217428207397 img loss 1.323392629623413 img loss 1.2772096395492554 img loss 1.2435126304626465 img loss 1.39139986038208 img loss 1.3436435461044312 img loss 1.2776778936386108 img loss 1.3053226470947266 img loss 1.4465632438659668 img loss 1.3976277112960815 img loss 1.4027924537658691 img loss 1.3102927207946777 img loss 1.3610411882400513 img loss 1.2607978582382202 img loss 1.243149757385254 img loss 1.4007651805877686 img loss 1.4016000032424927 img loss 1.3244351148605347 img loss 1.3645060062408447 img loss 1.278429627418518 img loss 1.2954959869384766 img loss 1.2571629285812378 img loss 1.485148310661316 img loss 1.367819905281067 img loss 1.341863989830017 img loss 1.3310264348983765 img loss 1.3058794736862183 img loss 1.336768388748169 img loss 1.4032838344573975 img loss 1.3362370729446411 img loss 1.377104640007019 img loss 1.3177458047866821 img loss 1.3330967426300049 img loss 1.2744077444076538 img loss 1.3025861978530884 img loss 1.255908489227295 img loss 1.3368594646453857 img loss 1.3202136754989624 img loss 1.2968816757202148 img loss 1.25686514377594 img loss 1.4061696529388428 img loss 1.4090893268585205 img loss 1.3340117931365967 img loss 1.4616421461105347 img loss 1.3431898355484009 img loss 1.281337022781372 img loss 1.3019541501998901 img loss 1.3844040632247925 img loss 1.2406041622161865 img loss 1.4210482835769653 {'loss': 1.3306, 'grad_norm': 0.662523627281189, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3570102453231812 img loss 1.389575719833374 img loss 1.3248801231384277 img loss 1.3447487354278564 img loss 1.3536280393600464 img loss 1.3234188556671143 img loss 1.493943691253662 img loss 1.3827321529388428 img loss 1.3319405317306519 img loss 1.2239454984664917 img loss 1.3848580121994019 img loss 1.3705346584320068 img loss 1.4251434803009033 img loss 1.4081023931503296 img loss 1.409117341041565 img loss 1.281032919883728 img loss 1.2693290710449219 img loss 1.2587209939956665 img loss 1.410304307937622 img loss 1.4265698194503784 img loss 1.3248659372329712 img loss 1.3836076259613037 img loss 1.403847575187683 img loss 1.3331830501556396img loss 1.3766590356826782 img loss 1.3292090892791748 img loss 1.2249908447265625 img loss 1.3561245203018188 img loss 1.2874560356140137 img loss 1.3366607427597046 img loss 1.4136594533920288 img loss 1.4366154670715332 img loss 1.3408514261245728 img loss 1.3830851316452026 img loss 1.3702577352523804 img loss 1.440018892288208 img loss 1.3816441297531128 img loss 1.4693381786346436 img loss 1.3401097059249878 img loss 1.473278522491455 img loss 1.3847334384918213 img loss 1.3677767515182495 img loss 1.3272604942321777 img loss 1.4222606420516968 img loss 1.3904032707214355 img loss 1.2528809309005737 img loss 1.3404828310012817 img loss 1.2995336055755615 img loss 1.2855595350265503 img loss 1.2727593183517456 img loss 1.4040865898132324 img loss 1.2364540100097656 img loss 1.2895992994308472 img loss 1.295647382736206 img loss 1.467183232307434 img loss 1.3665878772735596 img loss 1.2231043577194214 img loss 1.2940993309020996 img loss 1.3198800086975098 img loss 1.3536550998687744 img loss 1.3969069719314575 img loss 1.306882381439209 img loss 1.300537109375 img loss 1.3275864124298096 img loss 1.2670903205871582 img loss 1.3260411024093628 img loss 1.3724560737609863 img loss 1.3280951976776123 img loss 1.342674732208252 img loss 1.4545226097106934 img loss 1.469069242477417 img loss 1.3560121059417725 img loss 1.5150573253631592 img loss 1.3619791269302368 img loss 1.4355052709579468 img loss 1.3729575872421265 img loss 1.2741444110870361 img loss 1.3255776166915894 img loss 1.317023754119873 img loss 1.3225725889205933 img loss 1.385632872581482 img loss 1.384285569190979 img loss 1.3052818775177002 img loss 1.2943096160888672 img loss 1.3663948774337769 img loss 1.4207091331481934 img loss 1.3123279809951782 img loss 1.388617992401123 img loss 1.4479085206985474 img loss 1.2699302434921265 img loss 1.2911112308502197 img loss 1.530498743057251 img loss 1.3938183784484863 img loss 1.3544652462005615 img loss 1.5177452564239502 img loss 1.3114784955978394 img loss 1.4477665424346924 img loss 1.3474544286727905 img loss 1.4237483739852905 img loss 1.2779693603515625 img loss 1.3670928478240967 img loss 1.28756844997406 img loss 1.3706241846084595 img loss 1.3188755512237549 img loss 1.4086239337921143 img loss 1.487984538078308 img loss 1.3281668424606323 img loss 1.2535855770111084 img loss 1.3020176887512207 img loss 1.3997998237609863 img loss 1.3371927738189697 img loss 1.2375805377960205 img loss 1.3181569576263428 img loss 1.3210349082946777 img loss 1.4941033124923706img loss 1.3241068124771118 img loss 1.3704025745391846 img loss 1.356809377670288 img loss 1.2203965187072754 img loss 1.300855040550232 img loss 1.3269585371017456 img loss 1.3510249853134155 img loss 1.4362493753433228 img loss 1.3865582942962646 img loss 1.4330352544784546 img loss 1.2953109741210938 img loss 1.3681731224060059 img loss 1.3393608331680298 {'loss': 1.3559, 'grad_norm': 0.4281396269798279, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2728012800216675 img loss 1.2351993322372437 img loss 1.210689902305603 img loss 1.2363357543945312 img loss 1.240063190460205 img loss 1.1740072965621948 img loss 1.3095829486846924 img loss 1.2384001016616821 img loss 1.1859594583511353 img loss 1.2157360315322876 img loss 1.2516169548034668 img loss 1.18280827999115 img loss 1.149545669555664 img loss 1.2492587566375732 img loss 1.226983904838562 img loss 1.2008819580078125 img loss 1.2517703771591187 img loss 1.2748082876205444 img loss 1.2177718877792358 img loss 1.3012832403182983 img loss 1.2141374349594116 img loss 1.2794582843780518 img loss 1.2716882228851318 img loss 1.2546179294586182 img loss 1.2512155771255493 img loss 1.2247227430343628 img loss 1.2347573041915894 img loss 1.2942854166030884 img loss 1.1982941627502441 img loss 1.2539682388305664 img loss 1.214193344116211 img loss 1.2386066913604736 img loss 1.1685250997543335 img loss 1.1995222568511963 img loss 1.298384428024292 img loss 1.218056559562683 img loss 1.252683401107788 img loss 1.1963651180267334 img loss 1.2120451927185059 img loss 1.14427649974823 img loss 1.194292426109314 img loss 1.213485598564148 img loss 1.3209341764450073 img loss 1.1956098079681396 img loss 1.1772215366363525 img loss 1.1974365711212158 img loss 1.2007282972335815 img loss 1.28507661819458 img loss 1.2721457481384277 img loss 1.2411292791366577 img loss 1.2675151824951172 img loss 1.236061453819275 img loss 1.2689793109893799 img loss 1.2337650060653687 img loss 1.2701374292373657 img loss 1.2246453762054443 img loss 1.2092031240463257 img loss 1.236579418182373 img loss 1.1948927640914917 img loss 1.2583463191986084 img loss 1.1940569877624512 img loss 1.2324426174163818 img loss 1.317188024520874 img loss 1.2536442279815674 img loss 1.2305958271026611 img loss 1.2276095151901245 img loss 1.1725468635559082 img loss 1.2155299186706543 img loss 1.2507288455963135 img loss 1.2437341213226318 img loss 1.1934072971343994 img loss 1.2471725940704346 img loss 1.1829107999801636 img loss 1.277565836906433 img loss 1.2493760585784912 img loss 1.2742502689361572 img loss 1.2499291896820068 img loss 1.3041216135025024 img loss 1.272479772567749 img loss 1.2183358669281006 img loss 1.2704493999481201 img loss 1.2987991571426392 img loss 1.191270351409912 img loss 1.3207604885101318 img loss 1.3044401407241821 img loss 1.2566555738449097 img loss 1.234934687614441 img loss 1.3205991983413696 img loss 1.2982172966003418 img loss 1.2415368556976318 img loss 1.1929352283477783 img loss 1.165566325187683 img loss 1.2603485584259033 img loss 1.3148243427276611 img loss 1.3154411315917969 img loss 1.253588080406189 img loss 1.268506646156311 img loss 1.216231107711792 img loss 1.187243103981018 img loss 1.3161439895629883 img loss 1.218589425086975 img loss 1.2198508977890015 img loss 1.326300024986267 img loss 1.1973053216934204 img loss 1.248076319694519 img loss 1.240164041519165 img loss 1.2305246591567993 img loss 1.2677764892578125 img loss 1.2193158864974976 img loss 1.2373770475387573 img loss 1.2623169422149658 img loss 1.272735595703125 img loss 1.2126444578170776 img loss 1.1724257469177246 img loss 1.1754502058029175 img loss 1.224807620048523 img loss 1.2380279302597046 img loss 1.2362675666809082 img loss 1.2002665996551514 img loss 1.1862406730651855 img loss 1.1642382144927979 img loss 1.21695077419281 img loss 1.2810468673706055 img loss 1.229459524154663 img loss 1.2131073474884033 img loss 1.246091365814209 img loss 1.1907707452774048 img loss 1.2655165195465088 {'loss': 1.2373, 'grad_norm': 0.4359942376613617, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1928128004074097 img loss 1.2446606159210205 img loss 1.3209514617919922 img loss 1.280647873878479 img loss 1.2827394008636475 img loss 1.413278341293335 img loss 1.2778071165084839 img loss 1.2676547765731812 img loss 1.3011099100112915 img loss 1.2613015174865723 img loss 1.361995816230774 img loss 1.3816152811050415 img loss 1.193646788597107 img loss 1.2387213706970215 img loss 1.2192819118499756 img loss 1.326810359954834 img loss 1.31378972530365 img loss 1.3007385730743408 img loss 1.234593152999878 img loss 1.379149317741394 img loss 1.3719913959503174 img loss 1.3773709535598755 img loss 1.2909725904464722 img loss 1.3051344156265259 img loss 1.2649266719818115 img loss 1.383242130279541 img loss 1.3321280479431152 img loss 1.3088706731796265 img loss 1.3150849342346191 img loss 1.3141496181488037 img loss 1.288464903831482 img loss 1.225605845451355 img loss 1.2452534437179565 img loss 1.253225564956665 img loss 1.3500784635543823 img loss 1.3241870403289795 img loss 1.3363300561904907 img loss 1.405540108680725 img loss 1.2712290287017822 img loss 1.3504832983016968 img loss 1.2572721242904663 img loss 1.2995600700378418 img loss 1.2240318059921265 img loss 1.344178318977356 img loss 1.3821767568588257 img loss 1.3434067964553833 img loss 1.3085898160934448 img loss 1.2956371307373047 img loss 1.405593752861023 img loss 1.328527808189392 img loss 1.2822246551513672 img loss 1.272658348083496 img loss 1.278692603111267 img loss 1.2626022100448608 img loss 1.3191697597503662 img loss 1.3404721021652222 img loss 1.3386701345443726 img loss 1.363139033317566 img loss 1.3072121143341064 img loss 1.3503330945968628 img loss 1.3725873231887817 img loss 1.2296720743179321 img loss 1.293813705444336 img loss 1.46847403049469 img loss 1.2900184392929077 img loss 1.258643627166748 img loss 1.2506240606307983 img loss 1.3501650094985962 img loss 1.3446143865585327 img loss 1.3444682359695435 img loss 1.2838268280029297 img loss 1.3298170566558838 img loss 1.296722173690796 img loss 1.2496384382247925 img loss 1.3679747581481934 img loss 1.2869610786437988 img loss 1.2929203510284424 img loss 1.4101811647415161 img loss 1.2945764064788818 img loss 1.2744178771972656 img loss 1.2932140827178955 img loss 1.23857843875885 img loss 1.1652159690856934 img loss 1.330355167388916 img loss 1.2456510066986084 img loss 1.2672783136367798 img loss 1.3032604455947876 img loss 1.2180311679840088 img loss 1.3356544971466064 img loss 1.2611536979675293 img loss 1.304273247718811 img loss 1.2717149257659912 img loss 1.221984624862671 img loss 1.2531778812408447 img loss 1.2774654626846313 img loss 1.3949586153030396 img loss 1.2661856412887573 img loss 1.2724746465682983 img loss 1.3610769510269165 img loss 1.3025003671646118 img loss 1.4315129518508911 img loss 1.2953829765319824 img loss 1.2881535291671753 img loss 1.3582695722579956 img loss 1.2759979963302612 img loss 1.3015937805175781 img loss 1.276492714881897 img loss 1.38548743724823 img loss 1.3557955026626587 img loss 1.2932047843933105 img loss 1.2213551998138428 img loss 1.3305721282958984 img loss 1.2403769493103027 img loss 1.3513697385787964 img loss 1.2927906513214111 img loss 1.2752437591552734 img loss 1.3212316036224365 img loss 1.300875186920166 img loss 1.2322174310684204 img loss 1.298791766166687 img loss 1.2667596340179443 img loss 1.3026869297027588 img loss 1.376754879951477 img loss 1.3235142230987549 img loss 1.3525023460388184 img loss 1.2699822187423706 img loss 1.3275504112243652 img loss 1.272566795349121 {'loss': 1.3039, 'grad_norm': 0.4673837721347809, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.254714012145996 img loss 1.2636098861694336 img loss 1.3484759330749512 img loss 1.3375896215438843 img loss 1.4096418619155884 img loss 1.3632980585098267 img loss 1.253136396408081 img loss 1.293623685836792 img loss 1.25601065158844 img loss 1.36958909034729 img loss 1.3172959089279175 img loss 1.3674031496047974 img loss 1.2625751495361328 img loss 1.2279093265533447 img loss 1.4136072397232056 img loss 1.3323982954025269 img loss 1.3080357313156128 img loss 1.3275021314620972 img loss 1.3117859363555908 img loss 1.3193466663360596 img loss 1.2352551221847534img loss 1.3310809135437012 img loss 1.284367561340332 img loss 1.2849323749542236 img loss 1.4104520082473755 img loss 1.346445918083191 img loss 1.2864173650741577 img loss 1.2776293754577637 img loss 1.2441520690917969 img loss 1.3321622610092163 img loss 1.3319129943847656 img loss 1.2120290994644165 img loss 1.24604070186615 img loss 1.2352699041366577 img loss 1.2768484354019165 img loss 1.216326355934143 img loss 1.2017207145690918 img loss 1.3231525421142578 img loss 1.3331849575042725 img loss 1.322153091430664 img loss 1.3169305324554443 img loss 1.2784913778305054 img loss 1.2872103452682495 img loss 1.226590871810913 img loss 1.1574780941009521 img loss 1.2856874465942383 img loss 1.2560548782348633 img loss 1.3456940650939941 img loss 1.2722773551940918img loss 1.2393722534179688 img loss 1.3714680671691895 img loss 1.3016464710235596 img loss 1.251760721206665 img loss 1.3742185831069946 img loss 1.3359148502349854 img loss 1.297450304031372 img loss 1.2949223518371582 img loss 1.3040452003479004 img loss 1.316640853881836 img loss 1.3283754587173462 img loss 1.359931468963623 img loss 1.255135178565979 img loss 1.290356993675232 img loss 1.3157532215118408 img loss 1.2948813438415527 img loss 1.2739055156707764 img loss 1.311173915863037 img loss 1.2252273559570312 img loss 1.2698073387145996 img loss 1.294397234916687 img loss 1.4205001592636108 img loss 1.3290982246398926 img loss 1.268315315246582 img loss 1.3296074867248535 img loss 1.2313141822814941 img loss 1.2313774824142456 img loss 1.304663896560669 img loss 1.3435217142105103 img loss 1.2920472621917725 img loss 1.1980867385864258 img loss 1.2868621349334717 img loss 1.2872734069824219 img loss 1.3649747371673584 img loss 1.3791455030441284 img loss 1.2558884620666504 img loss 1.2871462106704712 img loss 1.3738751411437988 img loss 1.383907437324524 img loss 1.2255680561065674 img loss 1.2623594999313354 img loss 1.357027292251587 img loss 1.1961321830749512 img loss 1.3670880794525146 img loss 1.2455954551696777 img loss 1.2987111806869507 img loss 1.2714704275131226 img loss 1.2357085943222046 img loss 1.1926950216293335 img loss 1.2425992488861084 img loss 1.3152098655700684 img loss 1.2516885995864868 img loss 1.2736949920654297 img loss 1.3272091150283813 img loss 1.327908992767334 img loss 1.4233959913253784 img loss 1.2746130228042603 img loss 1.2991671562194824 img loss 1.3610416650772095 img loss 1.306783676147461 img loss 1.2344334125518799 img loss 1.3055886030197144 img loss 1.2413098812103271 img loss 1.2986186742782593 img loss 1.326500654220581 img loss 1.246315360069275 img loss 1.2761476039886475 img loss 1.2626402378082275 img loss 1.3158296346664429 img loss 1.249460220336914 img loss 1.352028250694275 img loss 1.2713087797164917 img loss 1.315478801727295 img loss 1.2867448329925537 img loss 1.2824820280075073 img loss 1.3222441673278809 img loss 1.2937273979187012 img loss 1.334755778312683 img loss 1.3594175577163696 {'loss': 1.2969, 'grad_norm': 0.41716495156288147, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2615196704864502 img loss 1.3184431791305542 img loss 1.2535743713378906 img loss 1.220752477645874 img loss 1.2679855823516846 img loss 1.2812803983688354 img loss 1.2602119445800781 img loss 1.201164960861206 img loss 1.2664432525634766 img loss 1.1752557754516602 img loss 1.3063366413116455 img loss 1.2663437128067017 img loss 1.2575798034667969 img loss 1.275987148284912 img loss 1.271243691444397 img loss 1.1651318073272705 img loss 1.2557353973388672 img loss 1.2661770582199097 img loss 1.2116889953613281 img loss 1.1939245462417603 img loss 1.3007436990737915 img loss 1.288572907447815 img loss 1.2266353368759155 img loss 1.1681350469589233 img loss 1.3347779512405396 img loss 1.2079963684082031 img loss 1.3118709325790405 img loss 1.3109086751937866 img loss 1.2343480587005615 img loss 1.2547191381454468 img loss 1.227421522140503 img loss 1.235682487487793 img loss 1.3241558074951172img loss 1.2888286113739014 img loss 1.3232084512710571 img loss 1.227362871170044 img loss 1.2806823253631592 img loss 1.26222562789917 img loss 1.1911368370056152 img loss 1.2911995649337769 img loss 1.2741608619689941 img loss 1.3410216569900513 img loss 1.2825255393981934 img loss 1.2709805965423584 img loss 1.2073969841003418 img loss 1.2521450519561768 img loss 1.245444893836975 img loss 1.2603367567062378 img loss 1.2232201099395752 img loss 1.2391935586929321 img loss 1.3072788715362549 img loss 1.246119737625122 img loss 1.3022159337997437 img loss 1.3088940382003784 img loss 1.313306212425232 img loss 1.298500895500183 img loss 1.3613570928573608 img loss 1.2412598133087158 img loss 1.2144278287887573 img loss 1.2991483211517334 img loss 1.2365703582763672 img loss 1.2133195400238037 img loss 1.2908111810684204 img loss 1.2092880010604858 img loss 1.2985671758651733 img loss 1.326341152191162 img loss 1.2226669788360596 img loss 1.2283806800842285 img loss 1.1982553005218506 img loss 1.2913869619369507 img loss 1.2337963581085205 img loss 1.2466493844985962 img loss 1.2729394435882568 img loss 1.194638729095459 img loss 1.2242414951324463 img loss 1.2433688640594482 img loss 1.267411470413208 img loss 1.2079901695251465 img loss 1.2246859073638916 img loss 1.293487787246704 img loss 1.376056432723999 img loss 1.2632213830947876 img loss 1.2700815200805664 img loss 1.2122266292572021 img loss 1.2235279083251953 img loss 1.26947021484375 img loss 1.32297682762146 img loss 1.3258147239685059 img loss 1.2090877294540405 img loss 1.239065408706665 img loss 1.251816987991333 img loss 1.1878228187561035 img loss 1.2185664176940918 img loss 1.2855583429336548 img loss 1.2497062683105469 img loss 1.253499984741211 img loss 1.2751177549362183 img loss 1.31560218334198 img loss 1.2338941097259521 img loss 1.2553067207336426 img loss 1.2674801349639893 img loss 1.2507390975952148 img loss 1.2591367959976196 img loss 1.2929534912109375 img loss 1.3023788928985596 img loss 1.2618205547332764 img loss 1.2431280612945557 img loss 1.2505359649658203 img loss 1.2623392343521118 img loss 1.2960342168807983 img loss 1.2592779397964478 img loss 1.2383784055709839 img loss 1.2476725578308105 img loss 1.2011631727218628img loss 1.1994251012802124 img loss 1.2618077993392944 img loss 1.2488577365875244 img loss 1.2483288049697876 img loss 1.2618446350097656 img loss 1.3088798522949219 img loss 1.2640798091888428 img loss 1.2239125967025757 img loss 1.2639827728271484 img loss 1.2243554592132568 img loss 1.2682340145111084 img loss 1.2775273323059082 img loss 1.2684084177017212 img loss 1.2020810842514038 {'loss': 1.2584, 'grad_norm': 0.37288835644721985, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.49875807762146 img loss 1.3644911050796509 img loss 1.3659336566925049 img loss 1.5107353925704956 img loss 1.3292624950408936 img loss 1.392981767654419 img loss 1.4629594087600708 img loss 1.5867440700531006 img loss 1.4674302339553833 img loss 1.670407772064209 img loss 1.4302297830581665 img loss 1.3524669408798218 img loss 1.3456014394760132 img loss 1.4003231525421143 img loss 1.4995521306991577 img loss 1.5255815982818604 img loss 1.40640127658844 img loss 1.4007915258407593 img loss 1.5295337438583374 img loss 1.4706052541732788 img loss 1.493671178817749 img loss 1.7601820230484009 img loss 1.449784755706787 img loss 1.5647767782211304 img loss 1.4494242668151855 img loss 1.520365595817566 img loss 1.5607529878616333 img loss 1.5319432020187378 img loss 1.3958678245544434 img loss 1.5622886419296265 img loss 1.3934084177017212 img loss 1.3310906887054443 img loss 1.4961353540420532 img loss 1.4925172328948975 img loss 1.469152808189392 img loss 1.527549386024475 img loss 1.3918042182922363 img loss 1.425991415977478 img loss 1.4599814414978027 img loss 1.4951425790786743 img loss 1.4331611394882202 img loss 1.6835606098175049 img loss 1.5427024364471436 img loss 1.4467394351959229 img loss 1.3851381540298462 img loss 1.5310471057891846 img loss 1.4006508588790894 img loss 1.509027123451233 img loss 1.4164283275604248 img loss 1.4501453638076782 img loss 1.4965275526046753 img loss 1.580694556236267 img loss 1.3843722343444824 img loss 1.4863002300262451 img loss 1.5037966966629028 img loss 1.389554500579834 img loss 1.4231317043304443 img loss 1.5898756980895996 img loss 1.48247230052948 img loss 1.5171242952346802 img loss 1.4800693988800049 img loss 1.6653761863708496 img loss 1.5372042655944824 img loss 1.492275357246399 img loss 1.383092999458313 img loss 1.425929307937622 img loss 1.4856988191604614 img loss 1.425727367401123 img loss 1.473238468170166 img loss 1.4571688175201416 img loss 1.5741455554962158 img loss 1.567821979522705 img loss 1.4927328824996948 img loss 1.4234750270843506 img loss 1.4101282358169556 img loss 1.3961198329925537 img loss 1.6011617183685303 img loss 1.4236901998519897 img loss 1.4637854099273682 img loss 1.5049422979354858 img loss 1.4968684911727905 img loss 1.3511955738067627 img loss 1.4212061166763306 img loss 1.4842544794082642 img loss 1.373867154121399 img loss 1.6764181852340698 img loss 1.4873138666152954 img loss 1.4350379705429077 img loss 1.6078704595565796 img loss 1.3851028680801392 img loss 1.4081614017486572 img loss 1.5915299654006958 img loss 1.5410743951797485 img loss 1.5173460245132446 img loss 1.3972370624542236 img loss 1.4842458963394165 img loss 1.31094229221344 img loss 1.5176035165786743 img loss 1.5921558141708374 img loss 1.4458471536636353 img loss 1.5208443403244019 img loss 1.4124153852462769 img loss 1.4646934270858765 img loss 1.488969087600708 img loss 1.4625693559646606 img loss 1.3879226446151733 img loss 1.503013253211975 img loss 1.67289137840271 img loss 1.5140135288238525 img loss 1.6271958351135254 img loss 1.4858758449554443 img loss 1.5108553171157837 img loss 1.5260684490203857 img loss 1.4309526681900024 img loss 1.4290066957473755 img loss 1.5440372228622437 img loss 1.4113266468048096 img loss 1.4959675073623657 img loss 1.602542757987976 img loss 1.3797411918640137 img loss 1.391165852546692 img loss 1.4322727918624878 img loss 1.4934011697769165 img loss 1.4931379556655884 img loss 1.454118251800537 img loss 1.4347681999206543 img loss 1.3923945426940918 img loss 1.4595162868499756 {'loss': 1.4771, 'grad_norm': 0.4060048460960388, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2989466190338135 img loss 1.3251975774765015 img loss 1.4400280714035034 img loss 1.2719007730484009 img loss 1.2679760456085205 img loss 1.4420400857925415 img loss 1.3233879804611206 img loss 1.2556285858154297 img loss 1.3372882604599 img loss 1.3184747695922852 img loss 1.3181933164596558 img loss 1.2537368535995483 img loss 1.298459768295288 img loss 1.3825045824050903 img loss 1.4281278848648071 img loss 1.2997393608093262 img loss 1.3597663640975952 img loss 1.271510124206543 img loss 1.3834177255630493 img loss 1.3452497720718384 img loss 1.4617942571640015 img loss 1.4774415493011475 img loss 1.4245778322219849 img loss 1.4269986152648926 img loss 1.3007898330688477 img loss 1.3088444471359253 img loss 1.3879773616790771 img loss 1.2704161405563354 img loss 1.3385015726089478 img loss 1.2983077764511108 img loss 1.4532405138015747 img loss 1.4522122144699097 img loss 1.3387285470962524 img loss 1.3879272937774658 img loss 1.3761136531829834 img loss 1.3019039630889893 img loss 1.2664717435836792 img loss 1.378049373626709 img loss 1.2753456830978394 img loss 1.401184320449829 img loss 1.3243801593780518 img loss 1.2998802661895752 img loss 1.3078627586364746 img loss 1.241153359413147 img loss 1.37356698513031 img loss 1.3472354412078857 img loss 1.3220939636230469 img loss 1.3526540994644165 img loss 1.2758585214614868 img loss 1.3129298686981201 img loss 1.3015384674072266 img loss 1.3674362897872925 img loss 1.3180744647979736 img loss 1.2421470880508423 img loss 1.3601088523864746 img loss 1.3205021619796753 img loss 1.266290307044983 img loss 1.29185152053833 img loss 1.2560937404632568 img loss 1.2813252210617065 img loss 1.3011009693145752 img loss 1.3473559617996216 img loss 1.22109055519104 img loss 1.3562103509902954 img loss 1.2624096870422363 img loss 1.3150575160980225 img loss 1.4142215251922607 img loss 1.363574504852295 img loss 1.2960851192474365 img loss 1.282235026359558 img loss 1.3324803113937378 img loss 1.331274390220642 img loss 1.2962268590927124 img loss 1.4270764589309692 img loss 1.4325653314590454 img loss 1.3042314052581787 img loss 1.2705110311508179 img loss 1.3639320135116577 img loss 1.2897237539291382 img loss 1.3737618923187256 img loss 1.260130524635315 img loss 1.1597540378570557 img loss 1.3126716613769531 img loss 1.2601795196533203 img loss 1.2966457605361938 img loss 1.316758394241333 img loss 1.247415542602539 img loss 1.3242855072021484 img loss 1.2909072637557983 img loss 1.263794183731079 img loss 1.275991678237915 img loss 1.2979656457901 img loss 1.3676989078521729 img loss 1.3192265033721924 img loss 1.3766818046569824 img loss 1.3981268405914307 img loss 1.3242992162704468 img loss 1.3361009359359741 img loss 1.415337085723877 img loss 1.359955906867981 img loss 1.3666837215423584 img loss 1.3803555965423584 img loss 1.4319289922714233 img loss 1.3531854152679443 img loss 1.3209422826766968 img loss 1.396910309791565 img loss 1.3370740413665771 img loss 1.4460030794143677 img loss 1.3947699069976807 img loss 1.2694650888442993 img loss 1.333544135093689 img loss 1.4030629396438599 img loss 1.4160820245742798 img loss 1.4023375511169434 img loss 1.3707672357559204 img loss 1.286322832107544 img loss 1.3603825569152832 img loss 1.317057490348816 img loss 1.3866742849349976 img loss 1.2600501775741577 img loss 1.330704927444458 img loss 1.2599480152130127 img loss 1.3501296043395996 img loss 1.447031855583191 img loss 1.3778733015060425 img loss 1.4086464643478394 img loss 1.361244797706604 img loss 1.3201067447662354 {'loss': 1.3358, 'grad_norm': 0.48484742641448975, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.487993597984314 img loss 1.6493031978607178 img loss 1.6718471050262451 img loss 1.5535401105880737 img loss 1.6845043897628784 img loss 1.8601211309432983 img loss 1.6248193979263306 img loss 1.7452003955841064 img loss 1.584317684173584 img loss 1.7550275325775146 img loss 1.762955665588379 img loss 1.6991381645202637 img loss 1.6210205554962158 img loss 1.7850829362869263 img loss 1.6576863527297974 img loss 1.632487177848816 img loss 1.776092767715454 img loss 1.5986297130584717 img loss 1.5265593528747559 img loss 1.774065375328064 img loss 1.6027647256851196 img loss 1.5947060585021973 img loss 1.634151577949524 img loss 1.636258840560913 img loss 1.5473297834396362 img loss 1.6808793544769287 img loss 1.7769759893417358 img loss 1.6652767658233643 img loss 1.6161162853240967 img loss 1.6032952070236206 img loss 1.7672020196914673 img loss 1.4751933813095093 img loss 1.6525026559829712 img loss 1.72480309009552 img loss 1.70310640335083 img loss 1.5414873361587524 img loss 1.8636659383773804 img loss 1.6110175848007202 img loss 1.5686081647872925 img loss 1.754835844039917 img loss 1.4946072101593018 img loss 1.642048716545105 img loss 1.6154615879058838 img loss 1.5814942121505737 img loss 1.5730302333831787 img loss 1.6827565431594849 img loss 1.7032862901687622 img loss 1.7253859043121338 img loss 1.7132707834243774 img loss 1.6335152387619019 img loss 1.413414716720581 img loss 1.4632306098937988 img loss 1.6271483898162842 img loss 1.4722301959991455 img loss 1.6042797565460205 img loss 1.7271162271499634 img loss 1.502638339996338 img loss 1.5107038021087646 img loss 1.4753273725509644 img loss 1.7716100215911865 img loss 1.7185251712799072 img loss 1.6221821308135986 img loss 1.7705918550491333 img loss 1.7169991731643677 img loss 1.5893691778182983 img loss 1.7652671337127686 img loss 1.5622665882110596 img loss 1.7129857540130615 img loss 1.5187523365020752 img loss 1.6681545972824097 img loss 1.7304558753967285 img loss 1.6723744869232178 img loss 1.596382975578308 img loss 1.5527416467666626 img loss 1.4250472784042358 img loss 1.5710903406143188 img loss 1.5709000825881958 img loss 1.5391151905059814 img loss 1.6692129373550415 img loss 1.740662932395935 img loss 1.494147539138794 img loss 1.4461567401885986 img loss 1.584594488143921 img loss 1.6998610496520996 img loss 1.6766972541809082 img loss 1.7443666458129883 img loss 1.5841566324234009 img loss 1.630429983139038 img loss 1.7814332246780396 img loss 1.6294353008270264 img loss 1.8775511980056763 img loss 1.7229865789413452 img loss 1.583882212638855 img loss 1.61863374710083 img loss 1.6950596570968628 img loss 1.6143832206726074 img loss 1.537506341934204 img loss 1.7874585390090942 img loss 1.7607232332229614 img loss 1.7127114534378052 img loss 1.6814343929290771 img loss 1.5639256238937378 img loss 1.708611011505127 img loss 1.514924168586731 img loss 1.5315388441085815 img loss 1.6658631563186646 img loss 1.8289058208465576 img loss 1.6429649591445923 img loss 1.725263237953186 img loss 1.6766914129257202 img loss 1.5875239372253418 img loss 1.766985535621643 img loss 1.506324052810669 img loss 1.753671407699585 img loss 1.7457358837127686 img loss 1.6510876417160034 img loss 1.8459203243255615 img loss 1.6836473941802979 img loss 2.0076072216033936 img loss 1.6516635417938232 img loss 1.6072680950164795 img loss 1.4123111963272095 img loss 1.566199541091919 img loss 1.5713926553726196 img loss 1.7643043994903564 img loss 1.6637227535247803 img loss 1.7896848917007446 img loss 1.565524935722351 {'loss': 1.6483, 'grad_norm': 0.3388265073299408, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2103419303894043 img loss 1.250038743019104 img loss 1.1358718872070312 img loss 1.1039133071899414 img loss 1.2693777084350586 img loss 1.202638864517212 img loss 1.1912479400634766 img loss 1.2318981885910034 img loss 1.2375167608261108 img loss 1.3188396692276 img loss 1.2500807046890259 img loss 1.2305630445480347 img loss 1.1954253911972046 img loss 1.3360530138015747 img loss 1.1893467903137207 img loss 1.259479284286499 img loss 1.256719946861267 img loss 1.1159709692001343 img loss 1.1954349279403687 img loss 1.2193619012832642 img loss 1.1558688879013062 img loss 1.203072190284729 img loss 1.1909594535827637 img loss 1.1891320943832397 img loss 1.2179090976715088 img loss 1.1665303707122803 img loss 1.1856298446655273 img loss 1.1906410455703735 img loss 1.0997949838638306 img loss 1.189276099205017 img loss 1.2083282470703125 img loss 1.1798616647720337 img loss 1.2734391689300537 img loss 1.2106698751449585 img loss 1.19268000125885 img loss 1.2334532737731934 img loss 1.1504892110824585 img loss 1.1452897787094116 img loss 1.252855658531189 img loss 1.194770097732544 img loss 1.2439625263214111 img loss 1.2032488584518433 img loss 1.1404588222503662 img loss 1.1419652700424194 img loss 1.216313123703003 img loss 1.1635618209838867 img loss 1.240365743637085 img loss 1.2269175052642822 img loss 1.2489395141601562 img loss 1.2135053873062134 img loss 1.3453803062438965 img loss 1.3190637826919556 img loss 1.2001445293426514 img loss 1.2421644926071167 img loss 1.2407273054122925 img loss 1.1956570148468018 img loss 1.2545994520187378 img loss 1.2781219482421875 img loss 1.1588971614837646 img loss 1.14736807346344 img loss 1.2464319467544556 img loss 1.2417579889297485 img loss 1.2255125045776367 img loss 1.259362816810608 img loss 1.2655036449432373 img loss 1.3794907331466675 img loss 1.1886528730392456 img loss 1.202270269393921 img loss 1.2195547819137573 img loss 1.1504722833633423 img loss 1.2189854383468628 img loss 1.2190279960632324 img loss 1.2254661321640015 img loss 1.3069369792938232 img loss 1.165342926979065 img loss 1.2761887311935425 img loss 1.2846876382827759 img loss 1.1712219715118408 img loss 1.1720889806747437 img loss 1.2735613584518433 img loss 1.1570625305175781 img loss 1.1589655876159668 img loss 1.200242519378662 img loss 1.217339277267456 img loss 1.1982437372207642 img loss 1.2731447219848633 img loss 1.2546181678771973 img loss 1.2168030738830566 img loss 1.3883253335952759 img loss 1.2752739191055298 img loss 1.2506357431411743 img loss 1.2443369626998901 img loss 1.2346340417861938 img loss 1.234997272491455 img loss 1.1984856128692627 img loss 1.2119919061660767 img loss 1.1635527610778809 img loss 1.1138522624969482 img loss 1.3148733377456665 img loss 1.1683882474899292 img loss 1.2308554649353027 img loss 1.236921787261963 img loss 1.2398499250411987 img loss 1.2175383567810059 img loss 1.2690348625183105 img loss 1.1889190673828125 img loss 1.2277731895446777 img loss 1.1948297023773193 img loss 1.2427985668182373 img loss 1.1923595666885376 img loss 1.2152369022369385 img loss 1.2793912887573242 img loss 1.2444194555282593img loss 1.2371526956558228 img loss 1.274993896484375 img loss 1.144602656364441 img loss 1.224374771118164 img loss 1.1788276433944702 img loss 1.2977631092071533 img loss 1.2426621913909912 img loss 1.1715110540390015 img loss 1.2626569271087646 img loss 1.1699378490447998 img loss 1.235578179359436 img loss 1.265642762184143 img loss 1.2197102308273315 img loss 1.2154549360275269 img loss 1.2305434942245483 {'loss': 1.2201, 'grad_norm': 0.25787946581840515, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1935408115386963 img loss 1.1974595785140991 img loss 1.2232979536056519 img loss 1.2125675678253174 img loss 1.2227685451507568 img loss 1.2139650583267212 img loss 1.290414571762085 img loss 1.1585214138031006 img loss 1.1897690296173096 img loss 1.2283951044082642 img loss 1.1525681018829346 img loss 1.1771938800811768 img loss 1.1894088983535767 img loss 1.2334305047988892 img loss 1.220353364944458 img loss 1.1859192848205566 img loss 1.2746862173080444 img loss 1.2289015054702759 img loss 1.2069534063339233 img loss 1.1968319416046143 img loss 1.2434757947921753 img loss 1.2556116580963135 img loss 1.1128543615341187 img loss 1.2878605127334595 img loss 1.2477638721466064 img loss 1.198238730430603 img loss 1.2853379249572754 img loss 1.310759425163269 img loss 1.195115089416504 img loss 1.2416572570800781 img loss 1.1761574745178223 img loss 1.1332043409347534 img loss 1.2036679983139038 img loss 1.2196519374847412 img loss 1.2607018947601318 img loss 1.2702038288116455 img loss 1.1895363330841064 img loss 1.3150027990341187 img loss 1.2162048816680908 img loss 1.1982907056808472 img loss 1.169065237045288 img loss 1.184120535850525 img loss 1.2096197605133057 img loss 1.1937719583511353 img loss 1.1308103799819946 img loss 1.229809045791626 img loss 1.2887619733810425 img loss 1.1597410440444946 img loss 1.2842556238174438 img loss 1.2184035778045654 img loss 1.2285798788070679 img loss 1.2099800109863281 img loss 1.1874349117279053 img loss 1.2078579664230347 img loss 1.234224557876587 img loss 1.1832749843597412 img loss 1.2344633340835571 img loss 1.1997321844100952 img loss 1.2167268991470337 img loss 1.228166103363037 img loss 1.1741724014282227 img loss 1.119354486465454 img loss 1.2716095447540283 img loss 1.2431806325912476 img loss 1.1876068115234375 img loss 1.2468376159667969 img loss 1.2586978673934937 img loss 1.3468858003616333 img loss 1.238005518913269 img loss 1.2167103290557861 img loss 1.2326276302337646 img loss 1.2047691345214844 img loss 1.2239577770233154 img loss 1.2556915283203125 img loss 1.1893455982208252 img loss 1.2135473489761353 img loss 1.2255363464355469 img loss 1.218153953552246 img loss 1.2425155639648438 img loss 1.2473264932632446 img loss 1.1662499904632568 img loss 1.2138639688491821 img loss 1.268410563468933 img loss 1.368677020072937 img loss 1.2102558612823486 img loss 1.2806787490844727 img loss 1.213150978088379 img loss 1.2146451473236084 img loss 1.1523663997650146 img loss 1.2335983514785767 img loss 1.1816613674163818 img loss 1.256612777709961 img loss 1.1933495998382568 img loss 1.240015983581543 img loss 1.1454730033874512 img loss 1.2496646642684937 img loss 1.2359566688537598 img loss 1.1412814855575562 img loss 1.1226133108139038 img loss 1.135392427444458 img loss 1.2011253833770752 img loss 1.148295283317566 img loss 1.270841360092163 img loss 1.197386622428894 img loss 1.1395734548568726 img loss 1.232933521270752 img loss 1.250056266784668 img loss 1.1889331340789795 img loss 1.1724300384521484 img loss 1.2322794198989868 img loss 1.2694523334503174 img loss 1.2309715747833252 img loss 1.1840815544128418 img loss 1.2965677976608276 img loss 1.2036869525909424 img loss 1.2529864311218262 img loss 1.1782186031341553 img loss 1.2464039325714111 img loss 1.266260027885437 img loss 1.2230851650238037 img loss 1.2642769813537598 img loss 1.2218269109725952 img loss 1.1872389316558838 img loss 1.162405252456665 img loss 1.187170386314392 img loss 1.2179086208343506 img loss 1.1806542873382568 img loss 1.1753864288330078 {'loss': 1.2166, 'grad_norm': 0.25093725323677063, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.263288140296936 img loss 1.1890161037445068 img loss 1.2351000308990479 img loss 1.199915885925293 img loss 1.2947622537612915 img loss 1.3149601221084595 img loss 1.1823718547821045 img loss 1.2710297107696533 img loss 1.1549909114837646 img loss 1.2493741512298584 img loss 1.3245222568511963 img loss 1.2444908618927002 img loss 1.2427431344985962 img loss 1.2089803218841553 img loss 1.3053984642028809 img loss 1.1912201642990112 img loss 1.3296912908554077 img loss 1.2566982507705688 img loss 1.2591345310211182 img loss 1.250273585319519 img loss 1.3243083953857422 img loss 1.2740893363952637 img loss 1.2655730247497559 img loss 1.242205262184143 img loss 1.2702606916427612 img loss 1.2153067588806152 img loss 1.3272647857666016 img loss 1.2502648830413818 img loss 1.2940088510513306 img loss 1.1747089624404907 img loss 1.2280460596084595 img loss 1.1852891445159912 img loss 1.2468140125274658 img loss 1.2387367486953735 img loss 1.2013850212097168 img loss 1.2809011936187744 img loss 1.3103210926055908 img loss 1.3191463947296143 img loss 1.2621654272079468 img loss 1.273978590965271 img loss 1.3235467672348022 img loss 1.3094923496246338 img loss 1.2427211999893188 img loss 1.2266902923583984 img loss 1.3073735237121582 img loss 1.2292592525482178 img loss 1.2101296186447144 img loss 1.2322978973388672 img loss 1.2415510416030884 img loss 1.2971549034118652 img loss 1.2443302869796753 img loss 1.2345150709152222 img loss 1.2777230739593506 img loss 1.2618988752365112 img loss 1.2258832454681396 img loss 1.2673845291137695 img loss 1.2389264106750488 img loss 1.2902153730392456 img loss 1.1881508827209473 img loss 1.2337646484375 img loss 1.2160446643829346 img loss 1.2922775745391846 img loss 1.2820103168487549 img loss 1.2625163793563843 img loss 1.276986837387085 img loss 1.2684673070907593 img loss 1.2418935298919678 img loss 1.3732815980911255 img loss 1.2783753871917725 img loss 1.3286824226379395 img loss 1.1894587278366089 img loss 1.3160121440887451 img loss 1.1912031173706055 img loss 1.2513567209243774 img loss 1.279869556427002 img loss 1.3049875497817993 img loss 1.186105489730835 img loss 1.3693701028823853 img loss 1.300576090812683 img loss 1.448233723640442 img loss 1.1629424095153809 img loss 1.2684818506240845 img loss 1.2189477682113647 img loss 1.197763442993164 img loss 1.2164448499679565 img loss 1.1751962900161743 img loss 1.3023077249526978 img loss 1.3305776119232178 img loss 1.264647126197815 img loss 1.3035578727722168 img loss 1.2241255044937134 img loss 1.3083741664886475 img loss 1.1855454444885254 img loss 1.3020247220993042 img loss 1.2775157690048218 img loss 1.2513954639434814 img loss 1.1878384351730347 img loss 1.3269907236099243 img loss 1.3311493396759033 img loss 1.2567627429962158 img loss 1.2311989068984985 img loss 1.2824541330337524 img loss 1.2920551300048828 img loss 1.274979829788208 img loss 1.2965644598007202 img loss 1.2520605325698853 img loss 1.2710320949554443 img loss 1.2217652797698975 img loss 1.2149009704589844 img loss 1.322176456451416 img loss 1.3084131479263306 img loss 1.1999176740646362 img loss 1.2477540969848633 img loss 1.2474875450134277 img loss 1.2421584129333496 img loss 1.2096343040466309 img loss 1.2454180717468262 img loss 1.3019713163375854 img loss 1.2673485279083252 img loss 1.3397432565689087 img loss 1.2321560382843018 img loss 1.226811170578003 img loss 1.2397221326828003 img loss 1.2582305669784546 img loss 1.2836261987686157 img loss 1.3125518560409546 img loss 1.256465196609497 img loss 1.3079973459243774 {'loss': 1.2607, 'grad_norm': 0.3198366165161133, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1823360919952393 img loss 1.2269017696380615 img loss 1.180969476699829 img loss 1.2197624444961548 img loss 1.1182861328125 img loss 1.1723442077636719 img loss 1.1502821445465088 img loss 1.0944530963897705 img loss 1.3498002290725708 img loss 1.2001583576202393 img loss 1.156189203262329 img loss 1.1957467794418335 img loss 1.2488799095153809 img loss 1.0785049200057983 img loss 1.207879662513733 img loss 1.1254609823226929 img loss 1.247549057006836 img loss 1.1467700004577637 img loss 1.1410996913909912 img loss 1.2643040418624878 img loss 1.2127655744552612 img loss 1.1623203754425049 img loss 1.112511157989502 img loss 1.2342188358306885 img loss 1.1780869960784912 img loss 1.2785567045211792 img loss 1.2103885412216187 img loss 1.1799752712249756 img loss 1.2045683860778809 img loss 1.207702398300171 img loss 1.3342149257659912 img loss 1.1834712028503418 img loss 1.1765954494476318 img loss 1.2043558359146118 img loss 1.180046558380127 img loss 1.153834581375122 img loss 1.1559691429138184 img loss 1.2030493021011353 img loss 1.12832510471344 img loss 1.1652941703796387 img loss 1.146636724472046 img loss 1.2168241739273071 img loss 1.121019721031189 img loss 1.1352589130401611 img loss 1.2218741178512573 img loss 1.2388352155685425 img loss 1.1724894046783447 img loss 1.2024486064910889 img loss 1.1742652654647827 img loss 1.199447512626648 img loss 1.139228343963623 img loss 1.1627006530761719 img loss 1.1659467220306396 img loss 1.2783886194229126img loss 1.170487642288208 img loss 1.157233476638794 img loss 1.244863748550415 img loss 1.2131340503692627 img loss 1.151842474937439 img loss 1.2453978061676025 img loss 1.2222009897232056 img loss 1.1964153051376343 img loss 1.2868919372558594 img loss 1.2418373823165894 img loss 1.2309374809265137 img loss 1.2126576900482178 img loss 1.16754949092865 img loss 1.2208393812179565 img loss 1.209505319595337 img loss 1.2175276279449463 img loss 1.2214958667755127 img loss 1.200783610343933 img loss 1.1404627561569214 img loss 1.2074527740478516 img loss 1.1687980890274048 img loss 1.1219897270202637 img loss 1.2687139511108398 img loss 1.141143560409546 img loss 1.2183496952056885 img loss 1.1619563102722168 img loss 1.1521389484405518 img loss 1.16776442527771 img loss 1.1481835842132568 img loss 1.1805142164230347 img loss 1.1155575513839722 img loss 1.2053457498550415 img loss 1.142923355102539 img loss 1.1620979309082031 img loss 1.191331386566162 img loss 1.1736608743667603 img loss 1.1557573080062866 img loss 1.1627315282821655 img loss 1.2515816688537598 img loss 1.197875738143921 img loss 1.2214598655700684 img loss 1.151788592338562 img loss 1.245877742767334 img loss 1.2257301807403564 img loss 1.181494116783142 img loss 1.2145190238952637 img loss 1.1615184545516968 img loss 1.1663777828216553 img loss 1.2925113439559937 img loss 1.2518128156661987 img loss 1.1803855895996094 img loss 1.174920916557312 img loss 1.132114052772522 img loss 1.2238460779190063 img loss 1.1906193494796753 img loss 1.2749484777450562 img loss 1.2375808954238892 img loss 1.2728323936462402 img loss 1.2343450784683228 img loss 1.2000172138214111 img loss 1.1305444240570068 img loss 1.2468303442001343 img loss 1.1586549282073975 img loss 1.163503885269165 img loss 1.1788854598999023 img loss 1.1864417791366577 img loss 1.2013206481933594 img loss 1.151918888092041 img loss 1.0964078903198242 img loss 1.231347918510437 img loss 1.1774471998214722 img loss 1.3107240200042725 img loss 1.342679738998413 img loss 1.1572463512420654 {'loss': 1.1935, 'grad_norm': 0.37773969769477844, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1962039470672607 img loss 1.185056447982788 img loss 1.210748553276062 img loss 1.2343233823776245 img loss 1.202329158782959 img loss 1.2739671468734741 img loss 1.2443889379501343 img loss 1.2097313404083252 img loss 1.1858406066894531 img loss 1.1904329061508179 img loss 1.1400394439697266 img loss 1.210832953453064 img loss 1.2327287197113037 img loss 1.2257769107818604 img loss 1.1953457593917847 img loss 1.1811500787734985 img loss 1.2305835485458374 img loss 1.3192296028137207 img loss 1.2904796600341797 img loss 1.236398458480835 img loss 1.267702341079712 img loss 1.270043134689331 img loss 1.1962836980819702 img loss 1.1816766262054443 img loss 1.218950867652893 img loss 1.2364959716796875 img loss 1.2689189910888672 img loss 1.2303495407104492 img loss 1.3129801750183105 img loss 1.173963189125061 img loss 1.3556334972381592 img loss 1.1774718761444092 img loss 1.2345492839813232 img loss 1.2839219570159912 img loss 1.1743234395980835 img loss 1.2876598834991455 img loss 1.2393710613250732 img loss 1.231955885887146 img loss 1.268681526184082 img loss 1.2638094425201416 img loss 1.1852893829345703 img loss 1.250162959098816 img loss 1.264504075050354 img loss 1.2740248441696167 img loss 1.3011465072631836 img loss 1.237086534500122 img loss 1.1735174655914307 img loss 1.2186675071716309 img loss 1.3411552906036377 img loss 1.2285418510437012 img loss 1.288543701171875 img loss 1.2527496814727783 img loss 1.181122064590454 img loss 1.2216068506240845 img loss 1.2349203824996948 img loss 1.264214038848877 img loss 1.1054500341415405 img loss 1.2419222593307495 img loss 1.2260868549346924 img loss 1.24140202999115 img loss 1.2820141315460205 img loss 1.2095749378204346 img loss 1.2578961849212646 img loss 1.199378252029419 img loss 1.2249903678894043 img loss 1.2604618072509766 img loss 1.2111999988555908 img loss 1.2597579956054688 img loss 1.242794394493103 img loss 1.2396011352539062 img loss 1.1665924787521362 img loss 1.2109239101409912 img loss 1.2435098886489868 img loss 1.3302092552185059 img loss 1.1514497995376587 img loss 1.2075071334838867 img loss 1.199284553527832 img loss 1.3985008001327515 img loss 1.282345175743103 img loss 1.3128925561904907 img loss 1.213175654411316 img loss 1.1747550964355469 img loss 1.2878936529159546 img loss 1.110641360282898 img loss 1.1660418510437012 img loss 1.1304486989974976 img loss 1.1099509000778198 img loss 1.1807276010513306 img loss 1.2553532123565674 img loss 1.320412039756775 img loss 1.3086843490600586 img loss 1.2344567775726318 img loss 1.250205397605896 img loss 1.2606862783432007 img loss 1.3394204378128052 img loss 1.2043999433517456 img loss 1.2221466302871704 img loss 1.3197133541107178 img loss 1.2054767608642578 img loss 1.3313883543014526 img loss 1.2333048582077026 img loss 1.3246935606002808 img loss 1.2518198490142822 img loss 1.195249319076538 img loss 1.2971123456954956 img loss 1.23091459274292 img loss 1.274599552154541 img loss 1.1727720499038696 img loss 1.2286221981048584 img loss 1.1815240383148193 img loss 1.2038015127182007 img loss 1.248796820640564 img loss 1.1920220851898193 img loss 1.3897610902786255 img loss 1.1943947076797485 img loss 1.1726734638214111 img loss 1.2321821451187134 img loss 1.1824147701263428 img loss 1.2475346326828003img loss 1.203671932220459 img loss 1.2415955066680908 img loss 1.1233246326446533 img loss 1.216413974761963 img loss 1.2009022235870361 img loss 1.2208967208862305 img loss 1.3023761510849 img loss 1.1969572305679321 img loss 1.2449932098388672 {'loss': 1.2338, 'grad_norm': 0.19424772262573242, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3456517457962036 img loss 1.3387396335601807 img loss 1.4410159587860107 img loss 1.2111847400665283 img loss 1.2385221719741821 img loss 1.3789814710617065 img loss 1.3170384168624878 img loss 1.4402711391448975 img loss 1.3679498434066772 img loss 1.13678777217865 img loss 1.2907464504241943 img loss 1.2941477298736572 img loss 1.28290593624115 img loss 1.374475121498108 img loss 1.3239291906356812 img loss 1.2330623865127563 img loss 1.383522868156433 img loss 1.2813630104064941 img loss 1.1749805212020874 img loss 1.225369930267334 img loss 1.2771313190460205 img loss 1.235253095626831 img loss 1.260249376296997 img loss 1.3375128507614136 img loss 1.2681642770767212 img loss 1.2661490440368652 img loss 1.2537325620651245 img loss 1.3318653106689453 img loss 1.224779725074768 img loss 1.2163679599761963 img loss 1.2508411407470703 img loss 1.2895417213439941 img loss 1.3493810892105103 img loss 1.3643683195114136 img loss 1.2882888317108154 img loss 1.2842897176742554 img loss 1.3286147117614746 img loss 1.4176820516586304 img loss 1.3273779153823853 img loss 1.4125832319259644 img loss 1.3629013299942017 img loss 1.3365079164505005 img loss 1.2609280347824097 img loss 1.321643590927124 img loss 1.337519884109497 img loss 1.3322359323501587 img loss 1.3977386951446533 img loss 1.3583606481552124 img loss 1.3950222730636597 img loss 1.232776403427124 img loss 1.351110577583313 img loss 1.4349645376205444 img loss 1.3921990394592285 img loss 1.2683236598968506 img loss 1.2926737070083618 img loss 1.3919249773025513 img loss 1.3074910640716553 img loss 1.3106530904769897 img loss 1.2662067413330078 img loss 1.190158486366272 img loss 1.2820274829864502 img loss 1.2749658823013306 img loss 1.2401790618896484 img loss 1.4127377271652222 img loss 1.4209568500518799 img loss 1.4774693250656128 img loss 1.4028064012527466img loss 1.3448430299758911 img loss 1.3632996082305908 img loss 1.3459570407867432 img loss 1.350042700767517 img loss 1.3531187772750854 img loss 1.2905739545822144 img loss 1.458641529083252 img loss 1.288103461265564 img loss 1.359130620956421 img loss 1.3721390962600708 img loss 1.277503490447998 img loss 1.3318637609481812 img loss 1.2733608484268188 img loss 1.2667003870010376 img loss 1.2907559871673584 img loss 1.2066421508789062 img loss 1.2855067253112793 img loss 1.377274990081787 img loss 1.2381302118301392 img loss 1.2278965711593628 img loss 1.2514569759368896 img loss 1.4021421670913696 img loss 1.3428740501403809 img loss 1.2162058353424072 img loss 1.2147672176361084 img loss 1.3311822414398193 img loss 1.2030913829803467 img loss 1.3147283792495728 img loss 1.3289320468902588 img loss 1.2935312986373901 img loss 1.370369553565979 img loss 1.4562299251556396 img loss 1.2070149183273315 img loss 1.2867218255996704img loss 1.2011374235153198 img loss 1.3007326126098633 img loss 1.2923259735107422 img loss 1.203894853591919 img loss 1.3468796014785767 img loss 1.4424937963485718 img loss 1.2395167350769043 img loss 1.2340381145477295 img loss 1.241927981376648 img loss 1.3192110061645508 img loss 1.398369550704956 img loss 1.2208304405212402 img loss 1.1811678409576416 img loss 1.2509390115737915 img loss 1.3038597106933594 img loss 1.2675331830978394 img loss 1.2213538885116577 img loss 1.3070265054702759 img loss 1.3561352491378784 img loss 1.3265502452850342 img loss 1.2775285243988037 img loss 1.3044078350067139 img loss 1.2784454822540283 img loss 1.3297466039657593 img loss 1.2964377403259277 img loss 1.3300583362579346 img loss 1.2353894710540771 {'loss': 1.3074, 'grad_norm': 0.4787011444568634, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1764178276062012 img loss 1.2397804260253906 img loss 1.2247933149337769 img loss 1.2401789426803589 img loss 1.2543842792510986 img loss 1.2481396198272705 img loss 1.2365587949752808 img loss 1.2210114002227783 img loss 1.1995227336883545 img loss 1.2578989267349243 img loss 1.2225935459136963 img loss 1.2279590368270874 img loss 1.2605661153793335 img loss 1.2202088832855225 img loss 1.2325056791305542 img loss 1.3185548782348633 img loss 1.2047371864318848 img loss 1.218583345413208 img loss 1.256617784500122 img loss 1.2020657062530518 img loss 1.2321668863296509 img loss 1.2237944602966309 img loss 1.2291314601898193 img loss 1.2081272602081299 img loss 1.2836500406265259 img loss 1.253878116607666 img loss 1.267232894897461 img loss 1.2509326934814453 img loss 1.2664803266525269 img loss 1.3022257089614868 img loss 1.235421061515808 img loss 1.2608847618103027 img loss 1.2395495176315308 img loss 1.2177377939224243 img loss 1.2496954202651978 img loss 1.265148639678955 img loss 1.3191684484481812 img loss 1.29777991771698 img loss 1.2227061986923218 img loss 1.2640236616134644 img loss 1.2722680568695068 img loss 1.1768653392791748 img loss 1.3261897563934326 img loss 1.2646385431289673 img loss 1.2347793579101562 img loss 1.2215598821640015 img loss 1.2281688451766968 img loss 1.2279642820358276 img loss 1.2395827770233154 img loss 1.2531505823135376 img loss 1.2641923427581787 img loss 1.221566081047058 img loss 1.212746500968933 img loss 1.2743326425552368 img loss 1.251785159111023 img loss 1.3077073097229004 img loss 1.3086681365966797 img loss 1.2197195291519165 img loss 1.2312783002853394 img loss 1.1822082996368408 img loss 1.2586673498153687 img loss 1.2240957021713257 img loss 1.2867472171783447 img loss 1.212827444076538 img loss 1.2106614112854004 img loss 1.2376689910888672 img loss 1.2596242427825928 img loss 1.2495847940444946 img loss 1.2605479955673218 img loss 1.2122119665145874 img loss 1.2357614040374756 img loss 1.3092339038848877 img loss 1.2078156471252441 img loss 1.2227144241333008 img loss 1.240875482559204 img loss 1.2971572875976562 img loss 1.192678451538086 img loss 1.2909094095230103 img loss 1.2413567304611206 img loss 1.2151306867599487 img loss 1.178039312362671 img loss 1.217061996459961 img loss 1.307389736175537 img loss 1.2126941680908203 img loss 1.2427940368652344 img loss 1.2996469736099243 img loss 1.214034914970398 img loss 1.2019315958023071 img loss 1.2715849876403809 img loss 1.2230143547058105 img loss 1.2555644512176514 img loss 1.2971349954605103 img loss 1.246943712234497 img loss 1.2324179410934448 img loss 1.2949360609054565 img loss 1.2276296615600586 img loss 1.2871906757354736 img loss 1.210748314857483 img loss 1.2529237270355225 img loss 1.2521425485610962 img loss 1.2338472604751587 img loss 1.2680174112319946 img loss 1.2047522068023682 img loss 1.2422447204589844 img loss 1.2508972883224487 img loss 1.243324875831604 img loss 1.2172105312347412 img loss 1.2615360021591187 img loss 1.2506911754608154 img loss 1.33601975440979 img loss 1.2467695474624634 img loss 1.173581838607788 img loss 1.3323984146118164 img loss 1.2698402404785156 img loss 1.2441678047180176 img loss 1.2492458820343018 img loss 1.3128225803375244 img loss 1.2559332847595215 img loss 1.2203583717346191 img loss 1.2297782897949219 img loss 1.2798666954040527 img loss 1.2890639305114746 img loss 1.2242876291275024 img loss 1.2221956253051758 img loss 1.2171016931533813 img loss 1.218268871307373 img loss 1.2163586616516113 img loss 1.1993343830108643 {'loss': 1.2451, 'grad_norm': 0.35362204909324646, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.296378493309021 img loss 1.4869409799575806 img loss 1.338252305984497 img loss 1.4356248378753662 img loss 1.4158293008804321 img loss 1.4032299518585205 img loss 1.4017876386642456 img loss 1.3871055841445923 img loss 1.6099294424057007 img loss 1.38947331905365 img loss 1.3638218641281128 img loss 1.45331609249115 img loss 1.3693562746047974 img loss 1.371597409248352 img loss 1.4443320035934448 img loss 1.4165126085281372 img loss 1.3713034391403198 img loss 1.3301520347595215 img loss 1.350934624671936 img loss 1.4287663698196411 img loss 1.474026083946228 img loss 1.3653737306594849 img loss 1.3994187116622925 img loss 1.4460512399673462 img loss 1.3174833059310913 img loss 1.4760209321975708 img loss 1.3257545232772827 img loss 1.3688088655471802 img loss 1.241011381149292 img loss 1.5297596454620361 img loss 1.444761037826538 img loss 1.4356337785720825 img loss 1.373066782951355 img loss 1.5488694906234741 img loss 1.4099997282028198 img loss 1.44807767868042 img loss 1.341986894607544 img loss 1.4713066816329956 img loss 1.3766549825668335 img loss 1.4285333156585693 img loss 1.3728902339935303 img loss 1.434666395187378 img loss 1.4019697904586792 img loss 1.3277294635772705 img loss 1.479072093963623 img loss 1.5192148685455322 img loss 1.287369728088379 img loss 1.3728817701339722 img loss 1.4131308794021606 img loss 1.4074361324310303 img loss 1.4340516328811646 img loss 1.3420249223709106 img loss 1.4380117654800415 img loss 1.3497989177703857 img loss 1.4281222820281982 img loss 1.4158843755722046 img loss 1.3647700548171997 img loss 1.5422947406768799 img loss 1.3862309455871582 img loss 1.4253294467926025 img loss 1.3533216714859009 img loss 1.4937608242034912 img loss 1.319549560546875 img loss 1.367234468460083 img loss 1.391191840171814 img loss 1.5593409538269043 img loss 1.4486361742019653 img loss 1.385533094406128 img loss 1.4704545736312866 img loss 1.5103291273117065 img loss 1.4847890138626099 img loss 1.3073123693466187 img loss 1.4884283542633057 img loss 1.3355697393417358 img loss 1.2443876266479492 img loss 1.2894437313079834 img loss 1.4184900522232056 img loss 1.2507158517837524 img loss 1.3627256155014038 img loss 1.3835512399673462 img loss 1.5185391902923584 img loss 1.342318058013916 img loss 1.464494228363037 img loss 1.4313706159591675 img loss 1.4781224727630615 img loss 1.5524420738220215 img loss 1.3525360822677612 img loss 1.4041838645935059 img loss 1.5019723176956177 img loss 1.3600993156433105 img loss 1.4478838443756104 img loss 1.3412699699401855 img loss 1.3373948335647583 img loss 1.3932842016220093 img loss 1.3510347604751587 img loss 1.4900609254837036 img loss 1.3423402309417725 img loss 1.5858608484268188 img loss 1.439215898513794 img loss 1.5614229440689087 img loss 1.4441208839416504 img loss 1.5412222146987915 img loss 1.3914345502853394 img loss 1.389857530593872 img loss 1.3396813869476318 img loss 1.386017084121704 img loss 1.3782719373703003 img loss 1.4622308015823364 img loss 1.5001972913742065 img loss 1.452000379562378 img loss 1.4562547206878662 img loss 1.4733225107192993 img loss 1.429275393486023 img loss 1.460597276687622 img loss 1.4610239267349243 img loss 1.4428139925003052 img loss 1.3901654481887817 img loss 1.4422401189804077 img loss 1.493548035621643 img loss 1.4065260887145996 img loss 1.370702862739563 img loss 1.4441338777542114 img loss 1.3408147096633911 img loss 1.4197221994400024 img loss 1.3751300573349 img loss 1.4050582647323608 img loss 1.385518193244934 img loss 1.344538927078247 {'loss': 1.4126, 'grad_norm': 0.28615546226501465, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.24668550491333 img loss 1.2092441320419312 img loss 1.2374732494354248 img loss 1.2238279581069946 img loss 1.1459457874298096 img loss 1.1822184324264526 img loss 1.1583876609802246 img loss 1.2194595336914062 img loss 1.2169699668884277 img loss 1.2341889142990112 img loss 1.1743900775909424 img loss 1.242254614830017 img loss 1.1516307592391968 img loss 1.2686550617218018 img loss 1.2549465894699097 img loss 1.176357626914978 img loss 1.1628968715667725 img loss 1.1735265254974365 img loss 1.14867103099823 img loss 1.1288524866104126 img loss 1.2080609798431396 img loss 1.1542176008224487 img loss 1.2421810626983643 img loss 1.2038873434066772 img loss 1.214992880821228 img loss 1.1724027395248413 img loss 1.3142286539077759 img loss 1.1542809009552002 img loss 1.1958729028701782 img loss 1.1485157012939453 img loss 1.1432827711105347 img loss 1.0945265293121338 img loss 1.247167944908142 img loss 1.197507381439209 img loss 1.1714551448822021 img loss 1.205057978630066 img loss 1.1609662771224976 img loss 1.213061809539795 img loss 1.21975576877594 img loss 1.212459921836853 img loss 1.212157130241394 img loss 1.1887515783309937 img loss 1.2399826049804688 img loss 1.2188739776611328 img loss 1.2353147268295288 img loss 1.202257752418518 img loss 1.2082878351211548 img loss 1.1792371273040771 img loss 1.1764380931854248 img loss 1.188835620880127 img loss 1.2239350080490112 img loss 1.2176274061203003 img loss 1.1822164058685303 img loss 1.2688498497009277 img loss 1.161150336265564 img loss 1.3080296516418457 img loss 1.2123215198516846 img loss 1.3151501417160034 img loss 1.1782219409942627 img loss 1.2151405811309814 img loss 1.2402862310409546 img loss 1.2080696821212769 img loss 1.2092945575714111 img loss 1.1876142024993896 img loss 1.1646840572357178 img loss 1.2255892753601074 img loss 1.317643642425537 img loss 1.2553954124450684 img loss 1.221351146697998 img loss 1.2065150737762451 img loss 1.2311513423919678 img loss 1.2354016304016113 img loss 1.2131493091583252 img loss 1.2820528745651245 img loss 1.1759843826293945 img loss 1.2226829528808594 img loss 1.290447473526001 img loss 1.1330715417861938 img loss 1.123482584953308 img loss 1.2189514636993408 img loss 1.2305996417999268 img loss 1.1733731031417847 img loss 1.1331723928451538 img loss 1.2295359373092651 img loss 1.160491943359375 img loss 1.209838628768921 img loss 1.1456871032714844 img loss 1.25930917263031 img loss 1.2243881225585938 img loss 1.1609668731689453 img loss 1.1762516498565674 img loss 1.1602100133895874 img loss 1.182645559310913 img loss 1.19864821434021 img loss 1.1889660358428955 img loss 1.1647777557373047 img loss 1.1895027160644531 img loss 1.2441682815551758 img loss 1.2208936214447021 img loss 1.1491457223892212 img loss 1.1463416814804077 img loss 1.1949352025985718 img loss 1.2395222187042236 img loss 1.2865607738494873 img loss 1.1629596948623657 img loss 1.2479618787765503 img loss 1.241782546043396 img loss 1.2345499992370605 img loss 1.2222263813018799 img loss 1.2221628427505493 img loss 1.144454836845398 img loss 1.315163016319275 img loss 1.1867698431015015 img loss 1.262319564819336 img loss 1.194262146949768 img loss 1.1288933753967285 img loss 1.1786396503448486 img loss 1.2183074951171875 img loss 1.1736103296279907 img loss 1.235071063041687 img loss 1.1926172971725464 img loss 1.216196060180664 img loss 1.2460561990737915 img loss 1.230407476425171 img loss 1.2145106792449951 img loss 1.1631361246109009 img loss 1.2571080923080444 img loss 1.1880531311035156 {'loss': 1.2053, 'grad_norm': 0.3384515047073364, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2758349180221558 img loss 1.306821584701538 img loss 1.3744767904281616 img loss 1.3714157342910767 img loss 1.1637065410614014 img loss 1.3050507307052612 img loss 1.194362998008728 img loss 1.275963306427002 img loss 1.262320876121521 img loss 1.194612741470337 img loss 1.3041343688964844 img loss 1.2996792793273926 img loss 1.276761531829834 img loss 1.4168676137924194 img loss 1.276111125946045 img loss 1.3589149713516235 img loss 1.2769367694854736 img loss 1.3687001466751099 img loss 1.3374298810958862 img loss 1.3264062404632568 img loss 1.3013311624526978 img loss 1.2135965824127197 img loss 1.2509639263153076 img loss 1.2453123331069946 img loss 1.2013448476791382 img loss 1.2426162958145142 img loss 1.3309307098388672 img loss 1.1778630018234253 img loss 1.2895077466964722 img loss 1.4453847408294678 img loss 1.1893478631973267 img loss 1.3277422189712524 img loss 1.248691201210022 img loss 1.2564830780029297 img loss 1.248853325843811 img loss 1.2612543106079102 img loss 1.3349299430847168 img loss 1.24131178855896 img loss 1.2400531768798828 img loss 1.3156496286392212 img loss 1.3287891149520874 img loss 1.2491689920425415 img loss 1.3269363641738892 img loss 1.3449808359146118 img loss 1.2580467462539673 img loss 1.288398027420044 img loss 1.3686832189559937 img loss 1.292511224746704 img loss 1.2985786199569702 img loss 1.287016749382019 img loss 1.3740090131759644 img loss 1.3041070699691772 img loss 1.3048779964447021 img loss 1.3227362632751465 img loss 1.2898612022399902 img loss 1.302955150604248 img loss 1.3054932355880737 img loss 1.2360472679138184 img loss 1.2356927394866943 img loss 1.3376572132110596 img loss 1.3070329427719116 img loss 1.3087928295135498 img loss 1.2586572170257568 img loss 1.3920713663101196 img loss 1.2924416065216064 img loss 1.2995834350585938 img loss 1.2784841060638428 img loss 1.3179984092712402 img loss 1.2533591985702515 img loss 1.217142939567566 img loss 1.3541371822357178 img loss 1.3743802309036255 img loss 1.2664860486984253 img loss 1.3466277122497559 img loss 1.3186259269714355 img loss 1.2749385833740234 img loss 1.3429514169692993 img loss 1.3571652173995972 img loss 1.3307750225067139 img loss 1.3613178730010986 img loss 1.3771809339523315 img loss 1.2729840278625488 img loss 1.2501561641693115 img loss 1.3641753196716309 img loss 1.3104366064071655 img loss 1.3208461999893188 img loss 1.273500680923462 img loss 1.2922580242156982 img loss 1.3460403680801392 img loss 1.2655905485153198 img loss 1.2469725608825684 img loss 1.2834917306900024 img loss 1.1986969709396362 img loss 1.2991148233413696 img loss 1.3386236429214478 img loss 1.2681721448898315 img loss 1.2435581684112549 img loss 1.302384376525879 img loss 1.2381951808929443 img loss 1.2275140285491943 img loss 1.3136982917785645 img loss 1.2390927076339722 img loss 1.2989634275436401 img loss 1.3084152936935425 img loss 1.2040047645568848 img loss 1.2679779529571533 img loss 1.310535192489624 img loss 1.2990554571151733 img loss 1.262009620666504 img loss 1.2869713306427002 img loss 1.241774320602417 img loss 1.2655155658721924 img loss 1.1956993341445923 img loss 1.2021539211273193 img loss 1.3113064765930176 img loss 1.3470622301101685 img loss 1.2950042486190796 img loss 1.3080360889434814 img loss 1.263547658920288 img loss 1.2312649488449097 img loss 1.282056212425232 img loss 1.2980787754058838 img loss 1.265650987625122 img loss 1.275108814239502 img loss 1.19798743724823 img loss 1.302366852760315 img loss 1.3814457654953003 img loss 1.4119441509246826 {'loss': 1.2908, 'grad_norm': 0.26133280992507935, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.332960605621338 img loss 1.3023872375488281 img loss 1.2684303522109985 img loss 1.2159334421157837 img loss 1.2767771482467651 img loss 1.2325341701507568 img loss 1.2221587896347046 img loss 1.1932417154312134 img loss 1.2303454875946045 img loss 1.2679460048675537 img loss 1.3055486679077148 img loss 1.2601666450500488 img loss 1.2432746887207031 img loss 1.3027957677841187 img loss 1.3232654333114624 img loss 1.2574602365493774 img loss 1.1980500221252441 img loss 1.2730696201324463 img loss 1.1706264019012451 img loss 1.2227429151535034 img loss 1.2770755290985107 img loss 1.240156888961792 img loss 1.2577660083770752 img loss 1.2716748714447021 img loss 1.318833589553833 img loss 1.2949390411376953 img loss 1.239137053489685 img loss 1.2506213188171387 img loss 1.2194292545318604 img loss 1.2785415649414062 img loss 1.2724831104278564 img loss 1.2829712629318237 img loss 1.2287228107452393 img loss 1.262580156326294 img loss 1.3128468990325928 img loss 1.3377946615219116 img loss 1.4332187175750732 img loss 1.305014967918396 img loss 1.2702134847640991 img loss 1.254408359527588 img loss 1.3465120792388916 img loss 1.2354358434677124 img loss 1.3425086736679077 img loss 1.3420193195343018 img loss 1.2110728025436401 img loss 1.2448450326919556 img loss 1.321703314781189 img loss 1.3075460195541382 img loss 1.2179630994796753 img loss 1.214843511581421 img loss 1.2704710960388184 img loss 1.2733633518218994 img loss 1.2100632190704346 img loss 1.2359312772750854 img loss 1.2984027862548828 img loss 1.3184797763824463 img loss 1.2552454471588135 img loss 1.2871674299240112 img loss 1.3110458850860596 img loss 1.2924063205718994 img loss 1.3643583059310913 img loss 1.2555229663848877 img loss 1.2707716226577759 img loss 1.2875664234161377 img loss 1.3136160373687744 img loss 1.2919096946716309 img loss 1.2586396932601929 img loss 1.2866487503051758 img loss 1.2458959817886353 img loss 1.2604964971542358 img loss 1.3104655742645264 img loss 1.2825515270233154 img loss 1.156900405883789 img loss 1.2631680965423584 img loss 1.2712154388427734 img loss 1.2225691080093384 img loss 1.2638418674468994 img loss 1.2646347284317017 img loss 1.246875286102295 img loss 1.2321815490722656 img loss 1.2738736867904663 img loss 1.291982889175415 img loss 1.3113495111465454 img loss 1.3389580249786377 img loss 1.372717022895813 img loss 1.232932686805725 img loss 1.2154557704925537 img loss 1.2916901111602783 img loss 1.302145004272461 img loss 1.2387326955795288 img loss 1.2477669715881348 img loss 1.259852647781372 img loss 1.2005391120910645 img loss 1.258542776107788 img loss 1.2819550037384033 img loss 1.1931504011154175 img loss 1.3012809753417969 img loss 1.2310950756072998 img loss 1.284083604812622 img loss 1.3423571586608887 img loss 1.2672488689422607 img loss 1.236316204071045 img loss 1.2243497371673584 img loss 1.3510518074035645 img loss 1.2881425619125366 img loss 1.2923578023910522 img loss 1.186672568321228 img loss 1.230642557144165 img loss 1.2213871479034424 img loss 1.2189439535140991 img loss 1.2256466150283813 img loss 1.2395399808883667img loss 1.2543056011199951 img loss 1.272810459136963 img loss 1.3080387115478516 img loss 1.1921051740646362 img loss 1.2392717599868774 img loss 1.2354416847229004 img loss 1.2994768619537354 img loss 1.2911666631698608img loss 1.1776444911956787img loss 1.3015817403793335 img loss 1.3466506004333496 img loss 1.1870505809783936 img loss 1.272760272026062img loss 1.2345987558364868 img loss 1.1849082708358765 img loss 1.309639811515808 {'loss': 1.2668, 'grad_norm': 0.34463614225387573, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3643279075622559 img loss 1.3346678018569946 img loss 1.3049674034118652 img loss 1.3049960136413574 img loss 1.4398162364959717 img loss 1.463079810142517 img loss 1.432492971420288 img loss 1.3370776176452637 img loss 1.4642770290374756 img loss 1.5851376056671143 img loss 1.4259039163589478 img loss 1.342451572418213 img loss 1.5025125741958618 img loss 1.2651691436767578 img loss 1.4260669946670532 img loss 1.4862476587295532 img loss 1.3519188165664673 img loss 1.5646698474884033 img loss 1.40265691280365 img loss 1.3811408281326294 img loss 1.469391942024231 img loss 1.5023348331451416 img loss 1.422744870185852 img loss 1.3443045616149902 img loss 1.418769121170044 img loss 1.3103834390640259 img loss 1.3735345602035522 img loss 1.49867844581604 img loss 1.2966307401657104 img loss 1.4244399070739746 img loss 1.2102086544036865 img loss 1.3721777200698853 img loss 1.3348649740219116 img loss 1.4550588130950928 img loss 1.4023053646087646 img loss 1.335139513015747 img loss 1.4140287637710571 img loss 1.5072271823883057 img loss 1.584672451019287 img loss 1.4174977540969849 img loss 1.3509680032730103 img loss 1.4230358600616455 img loss 1.3160749673843384 img loss 1.41585111618042 img loss 1.3854267597198486 img loss 1.3956694602966309 img loss 1.3808739185333252 img loss 1.3111099004745483 img loss 1.388170838356018 img loss 1.4378880262374878 img loss 1.3782581090927124 img loss 1.4652087688446045 img loss 1.3536826372146606 img loss 1.3761504888534546 img loss 1.2482707500457764 img loss 1.3378552198410034 img loss 1.366260051727295 img loss 1.3793877363204956 img loss 1.3554660081863403 img loss 1.432356357574463 img loss 1.4968572854995728 img loss 1.4168802499771118 img loss 1.317757487297058 img loss 1.357366681098938 img loss 1.2802841663360596 img loss 1.5069295167922974 img loss 1.3470066785812378 img loss 1.3967070579528809 img loss 1.374809741973877 img loss 1.265143871307373 img loss 1.3351079225540161 img loss 1.4583793878555298 img loss 1.504485011100769 img loss 1.330121636390686 img loss 1.3884533643722534 img loss 1.4071859121322632 img loss 1.2968672513961792 img loss 1.3804672956466675 img loss 1.3887858390808105 img loss 1.4549082517623901 img loss 1.4056779146194458 img loss 1.475286602973938 img loss 1.4811415672302246 img loss 1.3329956531524658 img loss 1.4165292978286743 img loss 1.3743176460266113 img loss 1.3511451482772827 img loss 1.4616658687591553 img loss 1.4428359270095825 img loss 1.269080400466919 img loss 1.3445976972579956 img loss 1.4353516101837158 img loss 1.500495195388794 img loss 1.482965111732483 img loss 1.427506923675537 img loss 1.4259142875671387 img loss 1.4428881406784058 img loss 1.3306913375854492img loss 1.402286410331726 img loss 1.4068944454193115 img loss 1.4125815629959106 img loss 1.3637646436691284 img loss 1.328887939453125 img loss 1.4399992227554321 img loss 1.4209500551223755 img loss 1.2948898077011108 img loss 1.414779543876648 img loss 1.472272515296936 img loss 1.471866488456726 img loss 1.4765450954437256 img loss 1.4486076831817627 img loss 1.4066579341888428 img loss 1.3861433267593384 img loss 1.3866689205169678 img loss 1.305464506149292 img loss 1.4783978462219238 img loss 1.3854377269744873 img loss 1.3907922506332397 img loss 1.4820008277893066 img loss 1.4699416160583496 img loss 1.2269848585128784 img loss 1.4277328252792358 img loss 1.364652395248413 img loss 1.455695629119873 img loss 1.3835890293121338 img loss 1.4116424322128296 img loss 1.2672557830810547 img loss 1.3451000452041626 {'loss': 1.3969, 'grad_norm': 0.35728850960731506, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2510579824447632 img loss 1.270338535308838 img loss 1.2515321969985962 img loss 1.221969485282898 img loss 1.2856749296188354 img loss 1.2572120428085327 img loss 1.278260588645935 img loss 1.261347770690918 img loss 1.3499377965927124 img loss 1.378119945526123 img loss 1.225299596786499 img loss 1.3220566511154175 img loss 1.334814429283142 img loss 1.255469560623169 img loss 1.3343899250030518 img loss 1.3148361444473267 img loss 1.2479089498519897 img loss 1.292041301727295 img loss 1.1894420385360718 img loss 1.2483139038085938 img loss 1.2869987487792969 img loss 1.3221919536590576 img loss 1.2925183773040771 img loss 1.2678711414337158 img loss 1.285792350769043img loss 1.222327709197998 img loss 1.3074309825897217 img loss 1.322264313697815 img loss 1.2310532331466675 img loss 1.2611896991729736 img loss 1.3089807033538818 img loss 1.2938590049743652 img loss 1.3494184017181396 img loss 1.2786004543304443 img loss 1.3924343585968018 img loss 1.2591817378997803 img loss 1.3491148948669434 img loss 1.2242743968963623 img loss 1.2830348014831543 img loss 1.3027361631393433 img loss 1.4058279991149902 img loss 1.2361633777618408 img loss 1.3283216953277588 img loss 1.2820276021957397 img loss 1.2528812885284424 img loss 1.3169972896575928 img loss 1.2935352325439453 img loss 1.2703254222869873 img loss 1.2970589399337769 img loss 1.2628886699676514 img loss 1.3268555402755737 img loss 1.37069833278656 img loss 1.2711633443832397 img loss 1.2687962055206299 img loss 1.1999223232269287 img loss 1.242688775062561 img loss 1.3253220319747925 img loss 1.284792184829712 img loss 1.2526441812515259 img loss 1.335871934890747 img loss 1.2953994274139404 img loss 1.2576138973236084 img loss 1.316497564315796 img loss 1.2642652988433838 img loss 1.307113528251648 img loss 1.2378543615341187 img loss 1.2941107749938965 img loss 1.302306890487671 img loss 1.2540768384933472 img loss 1.2964314222335815 img loss 1.1811206340789795 img loss 1.2892699241638184 img loss 1.2638752460479736 img loss 1.3031175136566162 img loss 1.2246568202972412 img loss 1.2851448059082031 img loss 1.2584871053695679 img loss 1.2390258312225342 img loss 1.4108803272247314 img loss 1.38629949092865 img loss 1.3075779676437378 img loss 1.3482320308685303 img loss 1.4074492454528809 img loss 1.3229776620864868 img loss 1.3579014539718628 img loss 1.2465816736221313 img loss 1.3143975734710693 img loss 1.2107093334197998 img loss 1.2845580577850342 img loss 1.255821704864502 img loss 1.3315919637680054 img loss 1.2957737445831299 img loss 1.251446008682251img loss 1.3264135122299194 img loss 1.2909742593765259 img loss 1.2719452381134033 img loss 1.3667608499526978 img loss 1.365799069404602 img loss 1.2161375284194946 img loss 1.2687249183654785 img loss 1.2997385263442993 img loss 1.273084282875061 img loss 1.3606932163238525 img loss 1.3114515542984009 img loss 1.2806000709533691 img loss 1.3406307697296143 img loss 1.2621656656265259 img loss 1.2831990718841553 img loss 1.2605985403060913 img loss 1.343027949333191 img loss 1.3847249746322632 img loss 1.3186273574829102 img loss 1.248398780822754 img loss 1.2214463949203491 img loss 1.333759069442749 img loss 1.347291111946106 img loss 1.3183730840682983 img loss 1.2629154920578003 img loss 1.2927913665771484 img loss 1.363349437713623 img loss 1.3212400674819946 img loss 1.346860647201538 img loss 1.299453616142273 img loss 1.3084837198257446 img loss 1.3815741539001465 img loss 1.2844442129135132 img loss 1.2603342533111572 img loss 1.2979987859725952 {'loss': 1.2934, 'grad_norm': 0.2340138852596283, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.188615322113037 img loss 1.2505989074707031 img loss 1.229611873626709 img loss 1.1677584648132324 img loss 1.2049150466918945 img loss 1.2616037130355835 img loss 1.1887565851211548 img loss 1.1932978630065918 img loss 1.2475817203521729 img loss 1.1724603176116943 img loss 1.2341350317001343 img loss 1.237498164176941 img loss 1.1098361015319824 img loss 1.1610908508300781 img loss 1.1671284437179565 img loss 1.1311122179031372 img loss 1.2010921239852905 img loss 1.2398687601089478 img loss 1.112435221672058 img loss 1.2197315692901611 img loss 1.2692615985870361 img loss 1.153903603553772 img loss 1.1487058401107788 img loss 1.2626336812973022 img loss 1.2235164642333984 img loss 1.1737687587738037 img loss 1.2672133445739746 img loss 1.2542451620101929 img loss 1.206887125968933 img loss 1.1568113565444946 img loss 1.1844052076339722 img loss 1.2849448919296265 img loss 1.2292273044586182 img loss 1.3089298009872437 img loss 1.2348486185073853 img loss 1.1971535682678223 img loss 1.1923948526382446 img loss 1.221308946609497 img loss 1.2436665296554565 img loss 1.1641643047332764 img loss 1.167484998703003 img loss 1.222018837928772 img loss 1.2671623229980469 img loss 1.2559545040130615 img loss 1.207059383392334 img loss 1.2438678741455078 img loss 1.3092669248580933 img loss 1.247178554534912 img loss 1.3591082096099854 img loss 1.2489722967147827 img loss 1.274060606956482 img loss 1.2692699432373047 img loss 1.30730402469635 img loss 1.295246958732605 img loss 1.2959649562835693 img loss 1.2635650634765625 img loss 1.254672884941101 img loss 1.2800953388214111 img loss 1.2514901161193848 img loss 1.2550795078277588 img loss 1.270615816116333 img loss 1.1011617183685303 img loss 1.189738154411316 img loss 1.1968531608581543 img loss 1.2670786380767822 img loss 1.2374553680419922 img loss 1.1852664947509766 img loss 1.1889667510986328 img loss 1.2369025945663452 img loss 1.2301944494247437 img loss 1.0696706771850586 img loss 1.2294249534606934 img loss 1.4157519340515137 img loss 1.2096976041793823 img loss 1.2540295124053955 img loss 1.217552900314331 img loss 1.2281874418258667 img loss 1.1744303703308105 img loss 1.2265021800994873 img loss 1.385949730873108 img loss 1.1051782369613647 img loss 1.2958834171295166 img loss 1.1509983539581299 img loss 1.2435425519943237 img loss 1.3416215181350708 img loss 1.2709840536117554 img loss 1.1807764768600464 img loss 1.2847952842712402 img loss 1.1642801761627197 img loss 1.197003722190857 img loss 1.2137349843978882 img loss 1.2339916229248047 img loss 1.2797447443008423 img loss 1.1708271503448486 img loss 1.2640929222106934 img loss 1.1710772514343262 img loss 1.2406524419784546 img loss 1.1958115100860596 img loss 1.1477429866790771 img loss 1.1590584516525269 img loss 1.1515212059020996 img loss 1.165083646774292 img loss 1.2308472394943237 img loss 1.1924359798431396 img loss 1.2388856410980225 img loss 1.1956489086151123 img loss 1.2840430736541748 img loss 1.2947514057159424 img loss 1.1122318506240845 img loss 1.2047500610351562 img loss 1.1772878170013428 img loss 1.2065868377685547 img loss 1.188765287399292 img loss 1.2075620889663696 img loss 1.174743413925171 img loss 1.1619930267333984 img loss 1.131661295890808 img loss 1.311116099357605 img loss 1.189958095550537 img loss 1.1877464056015015 img loss 1.2518820762634277 img loss 1.2454216480255127 img loss 1.231622338294983 img loss 1.2463915348052979 img loss 1.2832691669464111 img loss 1.216490626335144 img loss 1.1771706342697144 img loss 1.260617733001709 {'loss': 1.2212, 'grad_norm': 0.47066718339920044, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.154994010925293 img loss 1.298130989074707 img loss 1.1991188526153564 img loss 1.381933569908142 img loss 1.1265596151351929 img loss 1.2347049713134766 img loss 1.2986496686935425 img loss 1.176309585571289 img loss 1.2609443664550781 img loss 1.3031535148620605 img loss 1.1807888746261597 img loss 1.2394970655441284 img loss 1.315467357635498 img loss 1.205235481262207 img loss 1.2582223415374756 img loss 1.1603285074234009 img loss 1.2042073011398315 img loss 1.3406425714492798 img loss 1.1816089153289795 img loss 1.1890758275985718 img loss 1.2183116674423218 img loss 1.146766185760498 img loss 1.3682668209075928 img loss 1.231333613395691 img loss 1.1994171142578125 img loss 1.2962692975997925 img loss 1.296709418296814 img loss 1.2012180089950562 img loss 1.2117639780044556 img loss 1.224402904510498 img loss 1.2427377700805664 img loss 1.204822063446045 img loss 1.217835783958435 img loss 1.274210810661316 img loss 1.2295854091644287 img loss 1.2747434377670288 img loss 1.2002257108688354 img loss 1.131718635559082 img loss 1.2681190967559814 img loss 1.180223822593689 img loss 1.2228612899780273 img loss 1.236635446548462 img loss 1.26985502243042 img loss 1.2243813276290894 img loss 1.250060796737671 img loss 1.3038008213043213 img loss 1.207558512687683 img loss 1.1708210706710815 img loss 1.2399966716766357 img loss 1.3412129878997803 img loss 1.2064331769943237 img loss 1.2337217330932617 img loss 1.224351167678833 img loss 1.1681181192398071 img loss 1.224008560180664 img loss 1.1447288990020752 img loss 1.169752836227417 img loss 1.2899843454360962 img loss 1.2066487073898315 img loss 1.2346646785736084 img loss 1.2019544839859009 img loss 1.2087221145629883 img loss 1.2486891746520996 img loss 1.1838161945343018 img loss 1.2971123456954956 img loss 1.211857557296753 img loss 1.231688141822815 img loss 1.2757618427276611 img loss 1.2496145963668823 img loss 1.2420469522476196 img loss 1.1377171277999878 img loss 1.1608918905258179 img loss 1.2649873495101929 img loss 1.2641366720199585 img loss 1.2715896368026733 img loss 1.202409267425537 img loss 1.1468253135681152 img loss 1.1586461067199707 img loss 1.2702877521514893 img loss 1.2894396781921387 img loss 1.2773971557617188 img loss 1.1165690422058105 img loss 1.207924485206604 img loss 1.199116587638855 img loss 1.2384884357452393 img loss 1.1895458698272705 img loss 1.2786411046981812 img loss 1.2421026229858398 img loss 1.183901309967041 img loss 1.2416324615478516 img loss 1.1886444091796875 img loss 1.1534550189971924 img loss 1.2375500202178955 img loss 1.266469955444336img loss 1.264562964439392 img loss 1.3384077548980713 img loss 1.222947597503662 img loss 1.3759783506393433 img loss 1.1956614255905151 img loss 1.190440058708191 img loss 1.256208062171936 img loss 1.2259749174118042 img loss 1.24681556224823 img loss 1.2543519735336304 img loss 1.2940956354141235 img loss 1.3099077939987183 img loss 1.2375977039337158 img loss 1.1731994152069092 img loss 1.1819181442260742 img loss 1.2350716590881348 img loss 1.2225993871688843 img loss 1.263934850692749 img loss 1.1561579704284668 img loss 1.2392209768295288 img loss 1.2023844718933105 img loss 1.2416356801986694 img loss 1.2163825035095215 img loss 1.2459895610809326 img loss 1.208974838256836 img loss 1.1870561838150024 img loss 1.2217010259628296 img loss 1.217038869857788 img loss 1.1699755191802979 img loss 1.1895625591278076 img loss 1.1756682395935059 img loss 1.2782666683197021 img loss 1.211167812347412 img loss 1.2301576137542725 {'loss': 1.2291, 'grad_norm': 0.2229054570198059, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2290806770324707 img loss 1.2759244441986084 img loss 1.2698181867599487 img loss 1.2638193368911743 img loss 1.217832326889038 img loss 1.1748294830322266 img loss 1.2118117809295654 img loss 1.2177681922912598 img loss 1.2548061609268188 img loss 1.323494791984558 img loss 1.2401173114776611 img loss 1.2670629024505615 img loss 1.2609230279922485 img loss 1.2864519357681274 img loss 1.2577903270721436 img loss 1.2585705518722534 img loss 1.3340847492218018 img loss 1.2318623065948486 img loss 1.2285603284835815 img loss 1.2188328504562378 img loss 1.291756272315979 img loss 1.231768012046814 img loss 1.2296818494796753 img loss 1.2461514472961426 img loss 1.273909091949463 img loss 1.2129192352294922 img loss 1.1843159198760986 img loss 1.159075140953064 img loss 1.1868900060653687 img loss 1.114314317703247 img loss 1.2146053314208984 img loss 1.1721810102462769 img loss 1.3040128946304321 img loss 1.2276142835617065 img loss 1.2080868482589722 img loss 1.2557616233825684 img loss 1.222777009010315 img loss 1.2464885711669922 img loss 1.2947858572006226 img loss 1.2212421894073486 img loss 1.229166865348816 img loss 1.248904824256897 img loss 1.2940374612808228 img loss 1.2896137237548828 img loss 1.3061587810516357 img loss 1.2085310220718384 img loss 1.2411565780639648 img loss 1.2231948375701904 img loss 1.2029367685317993 img loss 1.233557939529419 img loss 1.2450897693634033 img loss 1.2616419792175293 img loss 1.217092514038086 img loss 1.2544434070587158 img loss 1.2150006294250488 img loss 1.292905330657959 img loss 1.1664819717407227 img loss 1.2238978147506714 img loss 1.2316633462905884 img loss 1.1993407011032104 img loss 1.1598389148712158 img loss 1.2267040014266968 img loss 1.2240692377090454 img loss 1.2579269409179688 img loss 1.1999549865722656 img loss 1.2168285846710205 img loss 1.2887136936187744 img loss 1.2219585180282593 img loss 1.2988183498382568 img loss 1.2850748300552368 img loss 1.207457184791565 img loss 1.1724478006362915 img loss 1.2347830533981323 img loss 1.2823002338409424 img loss 1.2430920600891113 img loss 1.2849019765853882 img loss 1.2694580554962158 img loss 1.2375006675720215 img loss 1.214453101158142 img loss 1.262694001197815 img loss 1.249553918838501 img loss 1.2190587520599365 img loss 1.2422339916229248 img loss 1.22490656375885 img loss 1.234134316444397 img loss 1.333545207977295 img loss 1.210740327835083 img loss 1.242159366607666 img loss 1.2525163888931274 img loss 1.2199348211288452 img loss 1.2693392038345337 img loss 1.294193148612976 img loss 1.1952131986618042 img loss 1.2173974514007568 img loss 1.176337480545044 img loss 1.1964869499206543 img loss 1.2267917394638062 img loss 1.2669239044189453 img loss 1.2494903802871704 img loss 1.3096550703048706 img loss 1.2348847389221191 img loss 1.2326836585998535 img loss 1.1940157413482666 img loss 1.2590588331222534 img loss 1.2137402296066284 img loss 1.244309663772583 img loss 1.2960476875305176 img loss 1.2413146495819092 img loss 1.1368807554244995 img loss 1.2114012241363525 img loss 1.2556369304656982 img loss 1.2157353162765503 img loss 1.203609824180603 img loss 1.2634673118591309 img loss 1.282492995262146 img loss 1.2167590856552124 img loss 1.3306193351745605 img loss 1.2435554265975952 img loss 1.2120819091796875 img loss 1.2605007886886597 img loss 1.2355588674545288 img loss 1.202064037322998 img loss 1.2384907007217407 img loss 1.2109589576721191 img loss 1.278888463973999 img loss 1.2512924671173096 img loss 1.1760939359664917 img loss 1.2180767059326172 {'loss': 1.2382, 'grad_norm': 0.343183308839798, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5438843965530396 img loss 1.5564600229263306 img loss 1.6142985820770264 img loss 1.8849327564239502 img loss 1.6298470497131348 img loss 1.7313251495361328 img loss 1.612212896347046 img loss 1.6634037494659424 img loss 1.6013661623001099 img loss 1.6197350025177002 img loss 1.590281367301941 img loss 1.7813348770141602 img loss 1.6474950313568115 img loss 1.7343225479125977 img loss 1.9969189167022705 img loss 1.714035153388977 img loss 1.5840240716934204 img loss 1.667981505393982 img loss 1.7481889724731445 img loss 1.9412428140640259 img loss 1.6956007480621338 img loss 1.5430591106414795 img loss 1.6098273992538452 img loss 1.6400411128997803 img loss 1.658539891242981 img loss 1.6806025505065918 img loss 1.7873704433441162 img loss 1.6926628351211548 img loss 1.5445634126663208 img loss 1.7229714393615723 img loss 1.6382527351379395 img loss 1.6904206275939941 img loss 1.7067762613296509 img loss 1.5349854230880737 img loss 1.6680456399917603 img loss 1.7518155574798584 img loss 1.7022696733474731 img loss 1.7321027517318726 img loss 1.5949536561965942 img loss 1.4798399209976196 img loss 1.7648200988769531 img loss 1.6276119947433472 img loss 1.6111434698104858 img loss 1.5228493213653564 img loss 1.8016233444213867 img loss 1.6076388359069824 img loss 1.6206848621368408 img loss 1.7387497425079346 img loss 1.5768953561782837 img loss 1.6649868488311768 img loss 1.6934055089950562 img loss 1.5137859582901 img loss 1.6266047954559326 img loss 1.6955286264419556 img loss 1.5560003519058228 img loss 1.608786702156067 img loss 1.7254037857055664 img loss 1.779486894607544 img loss 1.6184240579605103 img loss 1.8529561758041382 img loss 1.725358247756958 img loss 1.5692219734191895 img loss 1.6986726522445679 img loss 1.7374300956726074 img loss 1.7633283138275146 img loss 1.5348763465881348 img loss 1.6175531148910522 img loss 1.4847455024719238 img loss 1.6942212581634521 img loss 1.8941535949707031 img loss 1.610245943069458 img loss 1.7012817859649658 img loss 1.7301422357559204 img loss 1.6608389616012573 img loss 1.6327402591705322 img loss 1.681688904762268 img loss 1.4218467473983765 img loss 1.8033266067504883 img loss 1.594123363494873 img loss 1.6834814548492432 img loss 1.634255290031433 img loss 1.723806381225586 img loss 1.6018375158309937 img loss 1.7014657258987427 img loss 1.5230686664581299 img loss 1.5486795902252197 img loss 1.8002350330352783 img loss 1.6458457708358765 img loss 1.6280215978622437 img loss 1.558477759361267 img loss 1.7675256729125977 img loss 1.7339402437210083 img loss 1.5702483654022217 img loss 1.5864360332489014 img loss 1.7087143659591675 img loss 1.7571250200271606 img loss 1.889853835105896 img loss 1.605831503868103 img loss 1.4995977878570557 img loss 1.6626639366149902 img loss 1.8366830348968506 img loss 1.5967048406600952 img loss 1.5715069770812988 img loss 1.6274068355560303 img loss 1.7080810070037842 img loss 1.7717000246047974 img loss 1.7085503339767456 img loss 1.6177235841751099 img loss 1.5931448936462402 img loss 1.5517808198928833 img loss 1.746288776397705 img loss 1.7592711448669434 img loss 1.6034821271896362 img loss 1.7074278593063354 img loss 1.6983997821807861 img loss 1.6718565225601196 img loss 1.518608570098877 img loss 1.555583119392395 img loss 1.5330140590667725 img loss 1.7273015975952148 img loss 1.4678078889846802 img loss 1.4989255666732788 img loss 1.5891138315200806 img loss 1.649569034576416 img loss 1.7663168907165527 img loss 1.5672975778579712 img loss 1.7191321849822998 img loss 1.6472513675689697 {'loss': 1.6605, 'grad_norm': 0.8816347122192383, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1686073541641235 img loss 1.2406272888183594 img loss 1.2475628852844238 img loss 1.1508070230484009 img loss 1.1929539442062378 img loss 1.1406927108764648 img loss 1.2086657285690308 img loss 1.1800341606140137 img loss 1.207261562347412 img loss 1.2117832899093628 img loss 1.2191214561462402 img loss 1.17784583568573 img loss 1.240951418876648 img loss 1.2023109197616577 img loss 1.116770625114441 img loss 1.1533887386322021 img loss 1.2982547283172607 img loss 1.172178864479065 img loss 1.1357682943344116 img loss 1.1545219421386719 img loss 1.1799254417419434 img loss 1.1863059997558594 img loss 1.1540429592132568 img loss 1.223348617553711 img loss 1.1804403066635132 img loss 1.1849230527877808 img loss 1.174842119216919 img loss 1.1867650747299194 img loss 1.258625864982605 img loss 1.1351107358932495 img loss 1.188982367515564 img loss 1.2032184600830078 img loss 1.1789463758468628 img loss 1.2025699615478516 img loss 1.2294987440109253 img loss 1.2682554721832275 img loss 1.2886364459991455img loss 1.2449473142623901 img loss 1.239318609237671 img loss 1.211836576461792 img loss 1.1671464443206787 img loss 1.2546520233154297 img loss 1.172726035118103 img loss 1.2273133993148804 img loss 1.214870810508728 img loss 1.1896231174468994 img loss 1.1859956979751587 img loss 1.220717430114746 img loss 1.2091572284698486 img loss 1.2700607776641846 img loss 1.1810414791107178 img loss 1.3331230878829956 img loss 1.279505968093872 img loss 1.2732127904891968 img loss 1.306404709815979 img loss 1.147955298423767 img loss 1.1796118021011353 img loss 1.1619194746017456 img loss 1.257749080657959 img loss 1.1744191646575928 img loss 1.2875430583953857 img loss 1.2241939306259155 img loss 1.2207225561141968 img loss 1.2192316055297852 img loss 1.1581776142120361 img loss 1.2765544652938843 img loss 1.1748766899108887 img loss 1.1653193235397339 img loss 1.1934493780136108img loss 1.1348543167114258 img loss 1.2490549087524414 img loss 1.1838711500167847 img loss 1.174945592880249 img loss 1.256441593170166 img loss 1.168343424797058 img loss 1.2884666919708252 img loss 1.175824761390686 img loss 1.2705644369125366 img loss 1.2156577110290527 img loss 1.2134966850280762 img loss 1.23777174949646 img loss 1.1599502563476562 img loss 1.2298170328140259 img loss 1.0844645500183105 img loss 1.2308663129806519 img loss 1.2710198163986206 img loss 1.1818052530288696 img loss 1.2319782972335815 img loss 1.1890792846679688 img loss 1.2452847957611084 img loss 1.2753193378448486 img loss 1.2011345624923706 img loss 1.2154432535171509 img loss 1.2170616388320923 img loss 1.184346079826355 img loss 1.1314501762390137 img loss 1.1780952215194702 img loss 1.2012605667114258 img loss 1.1633325815200806 img loss 1.176585078239441 img loss 1.2091420888900757 img loss 1.214714527130127 img loss 1.1839512586593628 img loss 1.2817885875701904 img loss 1.336129903793335 img loss 1.2252388000488281 img loss 1.172990322113037 img loss 1.2114500999450684 img loss 1.2035672664642334 img loss 1.2030775547027588 img loss 1.248761773109436 img loss 1.1968392133712769 img loss 1.2376645803451538 img loss 1.2111871242523193 img loss 1.1825538873672485 img loss 1.2668981552124023 img loss 1.2033665180206299 img loss 1.2011287212371826 img loss 1.2095355987548828 img loss 1.2288366556167603 img loss 1.2604039907455444 img loss 1.1776036024093628 img loss 1.230386734008789 img loss 1.3040060997009277 img loss 1.135558843612671 img loss 1.1890995502471924 img loss 1.2434303760528564 img loss 1.1625906229019165 {'loss': 1.2089, 'grad_norm': 0.2731773853302002, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1703851222991943 img loss 1.1995980739593506img loss 1.2745970487594604 img loss 1.2534503936767578 img loss 1.220315933227539 img loss 1.1972672939300537 img loss 1.1013455390930176 img loss 1.1929529905319214 img loss 1.1771072149276733 img loss 1.198077917098999 img loss 1.1183276176452637 img loss 1.2462834119796753 img loss 1.193685531616211 img loss 1.2391066551208496 img loss 1.1960716247558594 img loss 1.1841932535171509 img loss 1.2588087320327759 img loss 1.1973661184310913 img loss 1.2356147766113281 img loss 1.2667484283447266 img loss 1.1566121578216553 img loss 1.2299208641052246 img loss 1.2411764860153198 img loss 1.1913020610809326 img loss 1.1752758026123047 img loss 1.158687949180603 img loss 1.1915478706359863 img loss 1.248289942741394 img loss 1.1934640407562256 img loss 1.227839708328247 img loss 1.188567042350769 img loss 1.282716155052185 img loss 1.146615743637085 img loss 1.1854231357574463 img loss 1.24552583694458 img loss 1.2102035284042358 img loss 1.2095845937728882 img loss 1.1304175853729248 img loss 1.2250099182128906 img loss 1.2186800241470337 img loss 1.1474264860153198 img loss 1.1379197835922241 img loss 1.1864125728607178 img loss 1.2422337532043457 img loss 1.3228540420532227 img loss 1.1503114700317383 img loss 1.163794994354248 img loss 1.2041033506393433 img loss 1.2312685251235962 img loss 1.1805006265640259 img loss 1.2490484714508057 img loss 1.1777876615524292 img loss 1.1397491693496704 img loss 1.2204816341400146 img loss 1.1246731281280518 img loss 1.1870121955871582 img loss 1.2164121866226196 img loss 1.1970844268798828 img loss 1.189246654510498 img loss 1.1961103677749634 img loss 1.1690990924835205 img loss 1.2118514776229858 img loss 1.0769879817962646 img loss 1.1581401824951172 img loss 1.2644051313400269 img loss 1.169858694076538 img loss 1.201052188873291 img loss 1.1717475652694702 img loss 1.1444730758666992 img loss 1.1796746253967285 img loss 1.2292556762695312 img loss 1.2038486003875732 img loss 1.2000553607940674 img loss 1.1831034421920776 img loss 1.3426625728607178 img loss 1.1753652095794678 img loss 1.2049248218536377 img loss 1.2472740411758423 img loss 1.2570796012878418 img loss 1.1884033679962158 img loss 1.1452481746673584 img loss 1.2772231101989746 img loss 1.1474469900131226 img loss 1.1236745119094849 img loss 1.1869179010391235 img loss 1.1960546970367432 img loss 1.2082070112228394 img loss 1.2061249017715454 img loss 1.2609792947769165 img loss 1.2346205711364746 img loss 1.152097463607788 img loss 1.2771707773208618 img loss 1.238680124282837 img loss 1.1469930410385132 img loss 1.225246787071228 img loss 1.1701056957244873 img loss 1.2825877666473389 img loss 1.2189985513687134 img loss 1.1523948907852173 img loss 1.1654205322265625 img loss 1.2698304653167725 img loss 1.2248916625976562 img loss 1.182199478149414 img loss 1.1473032236099243 img loss 1.2755897045135498 img loss 1.225110411643982 img loss 1.136765480041504 img loss 1.1319408416748047 img loss 1.1448755264282227 img loss 1.1916327476501465 img loss 1.1817352771759033 img loss 1.222316026687622 img loss 1.1609493494033813 img loss 1.2232739925384521 img loss 1.1537346839904785 img loss 1.2171987295150757 img loss 1.1712579727172852 img loss 1.1860826015472412 img loss 1.2607083320617676 img loss 1.0908466577529907 img loss 1.1565392017364502img loss 1.249403953552246 img loss 1.2085390090942383 img loss 1.1858247518539429 img loss 1.1382005214691162 img loss 1.2262760400772095 img loss 1.1934858560562134 img loss 1.2127299308776855 {'loss': 1.1985, 'grad_norm': 0.42401787638664246, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1936043500900269 img loss 1.2375917434692383 img loss 1.1833794116973877 img loss 1.1881475448608398 img loss 1.173862338066101 img loss 1.2514543533325195 img loss 1.2377893924713135 img loss 1.222190499305725 img loss 1.221527099609375 img loss 1.1945483684539795 img loss 1.1462103128433228 img loss 1.1437748670578003 img loss 1.2410862445831299 img loss 1.1564711332321167 img loss 1.1628812551498413 img loss 1.1372497081756592 img loss 1.1484092473983765 img loss 1.1395373344421387 img loss 1.1911967992782593 img loss 1.1584173440933228 img loss 1.2061333656311035 img loss 1.2732208967208862 img loss 1.2587480545043945 img loss 1.2283443212509155 img loss 1.2437406778335571 img loss 1.1049927473068237 img loss 1.3251084089279175 img loss 1.2657809257507324 img loss 1.1888651847839355 img loss 1.1411303281784058 img loss 1.196765661239624 img loss 1.283883810043335 img loss 1.2128477096557617 img loss 1.1974425315856934 img loss 1.1792271137237549 img loss 1.2393251657485962 img loss 1.2436957359313965 img loss 1.2643359899520874 img loss 1.1828464269638062 img loss 1.244158387184143 img loss 1.168749451637268 img loss 1.2584624290466309 img loss 1.2452826499938965 img loss 1.2290058135986328 img loss 1.21689772605896 img loss 1.3322155475616455 img loss 1.1574113368988037 img loss 1.2277803421020508 img loss 1.149791955947876 img loss 1.189988613128662 img loss 1.2017300128936768 img loss 1.206333875656128 img loss 1.1311825513839722 img loss 1.2620896100997925 img loss 1.1780903339385986 img loss 1.233642816543579 img loss 1.239073395729065 img loss 1.154397964477539 img loss 1.2225369215011597 img loss 1.1964718103408813 img loss 1.1983885765075684 img loss 1.2691609859466553 img loss 1.1761726140975952img loss 1.2195606231689453 img loss 1.1537518501281738 img loss 1.1130170822143555 img loss 1.1986606121063232 img loss 1.145994782447815 img loss 1.2220922708511353 img loss 1.0700820684432983 img loss 1.300707221031189 img loss 1.2207173109054565 img loss 1.1085975170135498 img loss 1.234019160270691 img loss 1.1763832569122314 img loss 1.3550537824630737 img loss 1.160851001739502 img loss 1.3040250539779663 img loss 1.1841399669647217 img loss 1.403082013130188 img loss 1.2459464073181152 img loss 1.203937292098999 img loss 1.2720896005630493 img loss 1.193489909172058 img loss 1.2240995168685913 img loss 1.2436819076538086 img loss 1.2424472570419312 img loss 1.1801708936691284 img loss 1.1757433414459229 img loss 1.0994685888290405 img loss 1.2151286602020264 img loss 1.2049129009246826 img loss 1.1273651123046875 img loss 1.2069858312606812 img loss 1.194510817527771 img loss 1.1740989685058594 img loss 1.1240155696868896 img loss 1.2065256834030151 img loss 1.191548228263855 img loss 1.1685956716537476 img loss 1.1674445867538452 img loss 1.1703829765319824 img loss 1.2151740789413452 img loss 1.1619160175323486 img loss 1.2082581520080566 img loss 1.2322070598602295 img loss 1.1543607711791992 img loss 1.2078602313995361 img loss 1.2352843284606934 img loss 1.1873464584350586 img loss 1.169596552848816 img loss 1.2096760272979736 img loss 1.2327810525894165 img loss 1.2066099643707275 img loss 1.2409706115722656 img loss 1.1752820014953613 img loss 1.1962676048278809 img loss 1.2120544910430908 img loss 1.1550991535186768 img loss 1.1627161502838135 img loss 1.2593662738800049 img loss 1.150944471359253 img loss 1.1558456420898438 img loss 1.1937880516052246 img loss 1.2134933471679688 img loss 1.2463558912277222 img loss 1.2568624019622803 img loss 1.206559419631958 {'loss': 1.2039, 'grad_norm': 0.2966299057006836, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4269769191741943 img loss 1.2432529926300049 img loss 1.4469788074493408 img loss 1.388263463973999 img loss 1.5364497900009155 img loss 1.301200270652771 img loss 1.238198161125183 img loss 1.2676570415496826 img loss 1.42894446849823 img loss 1.3933929204940796 img loss 1.3280266523361206 img loss 1.4451063871383667 img loss 1.3547862768173218 img loss 1.395738124847412 img loss 1.4162122011184692 img loss 1.3149114847183228 img loss 1.4329777956008911 img loss 1.522985816001892 img loss 1.3067946434020996 img loss 1.3947526216506958 img loss 1.3683676719665527 img loss 1.4348660707473755 img loss 1.3337548971176147 img loss 1.3267444372177124 img loss 1.3054003715515137 img loss 1.382820725440979 img loss 1.4442362785339355 img loss 1.327341914176941 img loss 1.3207625150680542 img loss 1.340078592300415 img loss 1.4306002855300903 img loss 1.3082528114318848 img loss 1.3705668449401855 img loss 1.2910979986190796 img loss 1.333741307258606 img loss 1.3941048383712769 img loss 1.3720382452011108 img loss 1.3907707929611206 img loss 1.3946534395217896 img loss 1.2889822721481323 img loss 1.3251112699508667 img loss 1.2904362678527832 img loss 1.3789235353469849 img loss 1.2657721042633057 img loss 1.3779447078704834 img loss 1.3600529432296753 img loss 1.3459694385528564 img loss 1.2726044654846191 img loss 1.3630805015563965 img loss 1.3076528310775757 img loss 1.3805105686187744 img loss 1.3451975584030151 img loss 1.3226807117462158 img loss 1.421992540359497 img loss 1.3690930604934692 img loss 1.3690458536148071 img loss 1.2886768579483032 img loss 1.449963092803955 img loss 1.3608641624450684 img loss 1.3589539527893066 img loss 1.386078119277954 img loss 1.358618140220642 img loss 1.353385329246521 img loss 1.343800663948059 img loss 1.405505895614624 img loss 1.4613438844680786 img loss 1.3027255535125732 img loss 1.3637080192565918 img loss 1.4182194471359253 img loss 1.4752801656723022 img loss 1.462143063545227 img loss 1.4279824495315552 img loss 1.371537685394287 img loss 1.4491232633590698 img loss 1.4373325109481812 img loss 1.3245009183883667 img loss 1.3607640266418457 img loss 1.3620610237121582 img loss 1.4072320461273193 img loss 1.2884135246276855 img loss 1.44779372215271 img loss 1.3821803331375122 img loss 1.4223648309707642 img loss 1.3662848472595215 img loss 1.2755999565124512 img loss 1.3991633653640747 img loss 1.3518246412277222 img loss 1.3452521562576294 img loss 1.3680698871612549 img loss 1.3490808010101318 img loss 1.3292443752288818 img loss 1.4063546657562256 img loss 1.3852019309997559 img loss 1.3319096565246582 img loss 1.2972627878189087 img loss 1.4873731136322021 img loss 1.271126389503479 img loss 1.408690094947815 img loss 1.343403697013855 img loss 1.3545681238174438 img loss 1.298033356666565 img loss 1.2890827655792236 img loss 1.3457146883010864 img loss 1.2785993814468384 img loss 1.4292864799499512 img loss 1.3885542154312134 img loss 1.3933626413345337 img loss 1.602685570716858 img loss 1.2360862493515015 img loss 1.4309914112091064 img loss 1.3657925128936768 img loss 1.344611644744873 img loss 1.346771478652954 img loss 1.323354721069336 img loss 1.4189512729644775 img loss 1.4236820936203003 img loss 1.3483816385269165 img loss 1.3301849365234375 img loss 1.4086098670959473 img loss 1.4321542978286743 img loss 1.4633554220199585 img loss 1.3557504415512085 img loss 1.3026989698410034 img loss 1.4410150051116943 img loss 1.2948901653289795 img loss 1.2730076313018799 img loss 1.357061505317688 img loss 1.2875990867614746 {'loss': 1.3671, 'grad_norm': 0.35089269280433655, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2297824621200562 img loss 1.269216775894165 img loss 1.262062430381775 img loss 1.2208514213562012 img loss 1.2336921691894531 img loss 1.2467646598815918 img loss 1.2320501804351807 img loss 1.2609822750091553 img loss 1.2824130058288574 img loss 1.2012594938278198 img loss 1.196754813194275 img loss 1.2098252773284912 img loss 1.2960877418518066 img loss 1.1959717273712158 img loss 1.189748764038086 img loss 1.1918144226074219 img loss 1.2319225072860718 img loss 1.189754843711853 img loss 1.2339061498641968 img loss 1.3050687313079834 img loss 1.3297464847564697 img loss 1.2314246892929077img loss 1.3546297550201416 img loss 1.2716732025146484 img loss 1.3462094068527222 img loss 1.3105238676071167 img loss 1.2916653156280518 img loss 1.294459581375122 img loss 1.1850866079330444 img loss 1.281262755393982 img loss 1.3148677349090576 img loss 1.2485647201538086 img loss 1.3543168306350708 img loss 1.253598928451538 img loss 1.2766138315200806 img loss 1.3133039474487305 img loss 1.240562081336975 img loss 1.2144994735717773 img loss 1.3718172311782837 img loss 1.2395176887512207 img loss 1.3105024099349976 img loss 1.1965277194976807 img loss 1.2803696393966675 img loss 1.2309961318969727 img loss 1.2771581411361694 img loss 1.2772488594055176 img loss 1.329164981842041 img loss 1.3341983556747437 img loss 1.206449270248413 img loss 1.4096795320510864 img loss 1.2050392627716064 img loss 1.2336137294769287 img loss 1.293159008026123 img loss 1.2221829891204834 img loss 1.2647024393081665 img loss 1.2281326055526733 img loss 1.3226855993270874 img loss 1.274452805519104 img loss 1.2672452926635742 img loss 1.2903215885162354 img loss 1.2176647186279297 img loss 1.242272138595581 img loss 1.307262659072876 img loss 1.3781650066375732 img loss 1.3088107109069824 img loss 1.2041101455688477 img loss 1.225237488746643 img loss 1.2548309564590454 img loss 1.2735965251922607 img loss 1.2707140445709229 img loss 1.239293098449707 img loss 1.2671278715133667 img loss 1.282026767730713 img loss 1.208319902420044 img loss 1.3590903282165527 img loss 1.3111686706542969 img loss 1.197853684425354 img loss 1.2691452503204346 img loss 1.187121033668518 img loss 1.1584858894348145 img loss 1.2439734935760498 img loss 1.1952791213989258 img loss 1.242874026298523 img loss 1.23867666721344 img loss 1.1515241861343384 img loss 1.2399492263793945 img loss 1.2325851917266846 img loss 1.2049006223678589 img loss 1.2310367822647095 img loss 1.3268146514892578 img loss 1.21471107006073 img loss 1.2884982824325562 img loss 1.2493046522140503img loss 1.1795439720153809 img loss 1.2840583324432373 img loss 1.247821569442749 img loss 1.2264397144317627 img loss 1.272255778312683 img loss 1.2557090520858765 img loss 1.2931668758392334 img loss 1.2541989088058472 img loss 1.3161782026290894 img loss 1.284870982170105 img loss 1.2854039669036865 img loss 1.2839688062667847 img loss 1.2228212356567383 img loss 1.258035659790039 img loss 1.2475204467773438 img loss 1.2743333578109741 img loss 1.3316973447799683 img loss 1.3105063438415527 img loss 1.3809001445770264 img loss 1.2646498680114746 img loss 1.4142582416534424 img loss 1.1709030866622925 img loss 1.2386772632598877 img loss 1.3016687631607056 img loss 1.2730743885040283 img loss 1.2216020822525024 img loss 1.3324545621871948 img loss 1.315977692604065 img loss 1.2982996702194214 img loss 1.3008335828781128 img loss 1.3633085489273071 img loss 1.197505235671997 img loss 1.3004992008209229 img loss 1.2724685668945312 img loss 1.2189315557479858 {'loss': 1.2639, 'grad_norm': 0.4007894992828369, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2008482217788696 img loss 1.2210397720336914 img loss 1.1993175745010376 img loss 1.1807124614715576 img loss 1.2025582790374756 img loss 1.2828025817871094 img loss 1.2082509994506836 img loss 1.1643623113632202 img loss 1.2082306146621704 img loss 1.2210739850997925 img loss 1.2227354049682617 img loss 1.2446954250335693 img loss 1.2856320142745972 img loss 1.1896313428878784 img loss 1.3080335855484009 img loss 1.241523265838623 img loss 1.2812427282333374 img loss 1.313506007194519 img loss 1.2945661544799805 img loss 1.1296848058700562 img loss 1.2021414041519165 img loss 1.293630599975586 img loss 1.157731533050537 img loss 1.3188109397888184 img loss 1.2625770568847656 img loss 1.2999073266983032 img loss 1.2622580528259277 img loss 1.2181293964385986 img loss 1.2608733177185059 img loss 1.2637782096862793 img loss 1.227527379989624 img loss 1.244178056716919 img loss 1.2080371379852295 img loss 1.1841614246368408 img loss 1.2066435813903809 img loss 1.252850890159607 img loss 1.215025782585144 img loss 1.1977471113204956 img loss 1.391742467880249 img loss 1.229346752166748 img loss 1.322911024093628 img loss 1.270790696144104 img loss 1.1911506652832031 img loss 1.2197235822677612 img loss 1.3258171081542969 img loss 1.238132119178772 img loss 1.262154459953308 img loss 1.2463079690933228 img loss 1.2844339609146118 img loss 1.255666971206665 img loss 1.2219151258468628 img loss 1.3349865674972534 img loss 1.2016934156417847 img loss 1.35903000831604 img loss 1.2004714012145996 img loss 1.3067535161972046 img loss 1.2649312019348145 img loss 1.2599196434020996 img loss 1.222227692604065 img loss 1.3739314079284668 img loss 1.184617519378662 img loss 1.2282741069793701 img loss 1.2341619729995728 img loss 1.1926792860031128 img loss 1.3146300315856934 img loss 1.2353765964508057 img loss 1.3613897562026978 img loss 1.2411434650421143 img loss 1.2084338665008545 img loss 1.2928636074066162 img loss 1.1829112768173218 img loss 1.3063396215438843 img loss 1.3371816873550415 img loss 1.1875531673431396 img loss 1.202609896659851 img loss 1.347236156463623 img loss 1.3079067468643188 img loss 1.2636308670043945 img loss 1.279244303703308 img loss 1.32880437374115 img loss 1.3094353675842285 img loss 1.2233104705810547 img loss 1.2856184244155884 img loss 1.2698465585708618 img loss 1.2021673917770386 img loss 1.2722198963165283 img loss 1.2968906164169312 img loss 1.2124353647232056 img loss 1.2421205043792725 img loss 1.1895523071289062 img loss 1.121036410331726 img loss 1.284761905670166 img loss 1.3657869100570679 img loss 1.2169609069824219 img loss 1.2932761907577515 img loss 1.2738263607025146 img loss 1.2406580448150635 img loss 1.2506542205810547 img loss 1.2255222797393799 img loss 1.1580781936645508 img loss 1.3652912378311157 img loss 1.1840099096298218 img loss 1.249826431274414 img loss 1.2071547508239746 img loss 1.2354017496109009 img loss 1.2137447595596313 img loss 1.3104197978973389 img loss 1.2742421627044678 img loss 1.2599376440048218 img loss 1.2420947551727295 img loss 1.252502202987671 img loss 1.2824866771697998 img loss 1.2598955631256104 img loss 1.3132154941558838 img loss 1.2252105474472046 img loss 1.193603515625 img loss 1.2888132333755493 img loss 1.2904385328292847 img loss 1.2737476825714111 img loss 1.2314732074737549 img loss 1.146766185760498 img loss 1.16959547996521 img loss 1.1862215995788574 img loss 1.4118554592132568 img loss 1.2966301441192627 img loss 1.2234869003295898 img loss 1.2200361490249634 img loss 1.2743778228759766 {'loss': 1.2509, 'grad_norm': 0.29575058817863464, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2497658729553223 img loss 1.2856327295303345 img loss 1.208272933959961 img loss 1.2228339910507202 img loss 1.2527194023132324 img loss 1.2497577667236328 img loss 1.288712978363037 img loss 1.2322701215744019 img loss 1.1993736028671265 img loss 1.245208501815796 img loss 1.2399929761886597 img loss 1.1661725044250488 img loss 1.2565959692001343 img loss 1.2839055061340332 img loss 1.3657132387161255 img loss 1.2091703414916992 img loss 1.2792088985443115 img loss 1.178326964378357 img loss 1.274549126625061 img loss 1.2468372583389282 img loss 1.226304292678833 img loss 1.2343147993087769 img loss 1.3221368789672852 img loss 1.257861852645874 img loss 1.3132013082504272 img loss 1.170980453491211 img loss 1.210737705230713 img loss 1.3315799236297607 img loss 1.1880451440811157 img loss 1.200067400932312 img loss 1.2699226140975952 img loss 1.239788293838501 img loss 1.2373377084732056 img loss 1.222086787223816 img loss 1.3088135719299316 img loss 1.2693620920181274 img loss 1.243427038192749 img loss 1.3417503833770752 img loss 1.2905192375183105 img loss 1.2788634300231934 img loss 1.2157349586486816 img loss 1.2740916013717651 img loss 1.2676512002944946 img loss 1.2383663654327393 img loss 1.196713924407959 img loss 1.27168607711792 img loss 1.1720623970031738 img loss 1.2141225337982178 img loss 1.206570029258728 img loss 1.203298568725586 img loss 1.2145860195159912 img loss 1.2283788919448853 img loss 1.2162069082260132 img loss 1.308905005455017 img loss 1.3074640035629272 img loss 1.248536467552185 img loss 1.2342432737350464 img loss 1.2622830867767334 img loss 1.2814029455184937 img loss 1.251717448234558 img loss 1.1622804403305054 img loss 1.222314476966858 img loss 1.268558382987976 img loss 1.253570318222046 img loss 1.1756188869476318 img loss 1.334776520729065 img loss 1.2194457054138184 img loss 1.2169625759124756 img loss 1.2874895334243774 img loss 1.4202178716659546 img loss 1.260113000869751 img loss 1.2727885246276855 img loss 1.2923473119735718 img loss 1.1661498546600342 img loss 1.183558702468872 img loss 1.3301811218261719 img loss 1.2453349828720093 img loss 1.2713921070098877 img loss 1.2941917181015015 img loss 1.2662546634674072 img loss 1.1787643432617188 img loss 1.251644492149353 img loss 1.180942416191101 img loss 1.2126026153564453 img loss 1.2690742015838623 img loss 1.2143548727035522 img loss 1.2458914518356323 img loss 1.2180646657943726 img loss 1.2887166738510132 img loss 1.209373116493225 img loss 1.2575054168701172 img loss 1.2614978551864624 img loss 1.2342580556869507 img loss 1.2156693935394287 img loss 1.2597795724868774 img loss 1.275330901145935 img loss 1.2146258354187012 img loss 1.1699740886688232 img loss 1.2920751571655273 img loss 1.240212082862854 img loss 1.2497155666351318 img loss 1.1886199712753296 img loss 1.2747459411621094 img loss 1.2522130012512207 img loss 1.1916460990905762 img loss 1.2708263397216797 img loss 1.323603630065918 img loss 1.3569666147232056 img loss 1.205353021621704 img loss 1.31342351436615 img loss 1.1908272504806519 img loss 1.3397027254104614 img loss 1.3080196380615234 img loss 1.2025811672210693 img loss 1.2612826824188232 img loss 1.3373992443084717 img loss 1.2393308877944946 img loss 1.2597596645355225 img loss 1.2921712398529053 img loss 1.311368703842163 img loss 1.2701904773712158 img loss 1.2336828708648682 img loss 1.2438325881958008 img loss 1.2494909763336182 img loss 1.2916725873947144 img loss 1.2718642950057983 img loss 1.2613248825073242 img loss 1.267594337463379 {'loss': 1.2516, 'grad_norm': 0.2656070291996002, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2515491247177124 img loss 1.139778733253479 img loss 1.362497091293335 img loss 1.1896657943725586 img loss 1.192370891571045 img loss 1.292834997177124 img loss 1.1636186838150024 img loss 1.187624216079712 img loss 1.3096929788589478 img loss 1.2384880781173706 img loss 1.2603727579116821 img loss 1.2459886074066162 img loss 1.2083708047866821 img loss 1.232775330543518 img loss 1.1953730583190918 img loss 1.339776635169983 img loss 1.362816572189331 img loss 1.2261486053466797 img loss 1.2733228206634521 img loss 1.1943215131759644 img loss 1.1947237253189087 img loss 1.2394936084747314 img loss 1.1357486248016357 img loss 1.3479750156402588 img loss 1.2413825988769531 img loss 1.2098023891448975 img loss 1.1580042839050293 img loss 1.1830689907073975 img loss 1.222314715385437 img loss 1.214792013168335 img loss 1.221734642982483 img loss 1.3627103567123413 img loss 1.186571717262268 img loss 1.2513293027877808 img loss 1.2349084615707397 img loss 1.218207597732544 img loss 1.3215007781982422 img loss 1.2594046592712402 img loss 1.2405874729156494 img loss 1.2722139358520508 img loss 1.2481797933578491 img loss 1.3013677597045898 img loss 1.2830904722213745 img loss 1.2120776176452637 img loss 1.1992305517196655 img loss 1.2154606580734253 img loss 1.2145856618881226 img loss 1.2008541822433472 img loss 1.2123085260391235 img loss 1.2041573524475098 img loss 1.2535591125488281 img loss 1.2014408111572266 img loss 1.2302916049957275 img loss 1.137687087059021 img loss 1.2092156410217285 img loss 1.2104036808013916 img loss 1.2187522649765015 img loss 1.2386763095855713 img loss 1.2219862937927246 img loss 1.253229022026062 img loss 1.2800343036651611 img loss 1.2326828241348267 img loss 1.2460163831710815 img loss 1.2637977600097656 img loss 1.3033218383789062 img loss 1.1804232597351074 img loss 1.2085847854614258 img loss 1.285215973854065 img loss 1.2770274877548218 img loss 1.2512180805206299 img loss 1.2042348384857178 img loss 1.1998956203460693 img loss 1.2361876964569092 img loss 1.1949983835220337 img loss 1.1902188062667847 img loss 1.2852360010147095 img loss 1.2362644672393799 img loss 1.256995677947998 img loss 1.20497465133667 img loss 1.1277108192443848 img loss 1.3105003833770752 img loss 1.1909501552581787 img loss 1.184903621673584 img loss 1.1629447937011719 img loss 1.2334669828414917 img loss 1.2266724109649658 img loss 1.1852035522460938 img loss 1.1895273923873901 img loss 1.2448339462280273 img loss 1.2640645503997803 img loss 1.2636375427246094 img loss 1.1796624660491943 img loss 1.2782838344573975 img loss 1.228912591934204 img loss 1.1943689584732056 img loss 1.1903225183486938 img loss 1.235625982284546 img loss 1.1901276111602783 img loss 1.2464981079101562 img loss 1.237803339958191 img loss 1.188521146774292 img loss 1.2136675119400024 img loss 1.2724192142486572 img loss 1.2999902963638306 img loss 1.2511422634124756 img loss 1.2004151344299316 img loss 1.2120088338851929 img loss 1.2027111053466797 img loss 1.226027488708496 img loss 1.3395081758499146 img loss 1.1950576305389404 img loss 1.2111072540283203 img loss 1.2017619609832764 img loss 1.183990478515625 img loss 1.1747344732284546 img loss 1.2282321453094482 img loss 1.1700128316879272 img loss 1.2136379480361938 img loss 1.237128734588623 img loss 1.2272480726242065 img loss 1.2350367307662964 img loss 1.1693123579025269 img loss 1.257773756980896 img loss 1.2997949123382568 img loss 1.1838454008102417 img loss 1.2170337438583374 img loss 1.2428251504898071 img loss 1.276998519897461 {'loss': 1.2304, 'grad_norm': 0.421974778175354, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2978706359863281 img loss 1.2143105268478394 img loss 1.1845461130142212 img loss 1.142799973487854 img loss 1.1900383234024048 img loss 1.1506786346435547 img loss 1.1909164190292358 img loss 1.2991379499435425 img loss 1.2573926448822021 img loss 1.1776559352874756 img loss 1.2050666809082031 img loss 1.2278343439102173 img loss 1.2238587141036987 img loss 1.1742228269577026 img loss 1.2756211757659912 img loss 1.1773226261138916 img loss 1.1846574544906616 img loss 1.1953214406967163 img loss 1.2943472862243652 img loss 1.2874835729599 img loss 1.2343028783798218 img loss 1.178025484085083 img loss 1.204717993736267 img loss 1.19291090965271 img loss 1.126841425895691 img loss 1.2014787197113037 img loss 1.2261894941329956 img loss 1.2236188650131226 img loss 1.1837810277938843 img loss 1.2011868953704834 img loss 1.1841790676116943 img loss 1.2487876415252686 img loss 1.1368937492370605 img loss 1.166510820388794 img loss 1.1326003074645996 img loss 1.2740334272384644 img loss 1.2186516523361206 img loss 1.2254852056503296 img loss 1.201880693435669 img loss 1.1768853664398193 img loss 1.1866583824157715 img loss 1.1749258041381836 img loss 1.2315247058868408 img loss 1.217160701751709 img loss 1.2370020151138306 img loss 1.2466076612472534 img loss 1.1884781122207642 img loss 1.183501124382019 img loss 1.179955244064331 img loss 1.1957530975341797 img loss 1.20828115940094 img loss 1.2453975677490234 img loss 1.1375104188919067 img loss 1.2234857082366943 img loss 1.2022480964660645 img loss 1.1486748456954956 img loss 1.1332190036773682 img loss 1.2002620697021484 img loss 1.246509313583374 img loss 1.1767964363098145 img loss 1.1738255023956299 img loss 1.2171895503997803 img loss 1.131991982460022 img loss 1.2005926370620728 img loss 1.207843542098999 img loss 1.2297333478927612 img loss 1.253690242767334 img loss 1.16629958152771 img loss 1.1562288999557495 img loss 1.305824637413025 img loss 1.2577170133590698 img loss 1.23787522315979 img loss 1.2608976364135742 img loss 1.253283977508545 img loss 1.1510299444198608 img loss 1.2170844078063965 img loss 1.2276664972305298 img loss 1.172086238861084 img loss 1.2360737323760986 img loss 1.1829687356948853 img loss 1.1993157863616943 img loss 1.1794977188110352 img loss 1.2427812814712524 img loss 1.255033016204834 img loss 1.1978745460510254 img loss 1.2907993793487549 img loss 1.2274398803710938 img loss 1.2353070974349976 img loss 1.206835389137268 img loss 1.2106910943984985 img loss 1.1896145343780518 img loss 1.2099052667617798 img loss 1.2097744941711426 img loss 1.332078456878662 img loss 1.2799620628356934 img loss 1.1227654218673706 img loss 1.220289945602417 img loss 1.2111120223999023 img loss 1.169007658958435 img loss 1.1875951290130615 img loss 1.2007439136505127 img loss 1.1488568782806396 img loss 1.2661656141281128 img loss 1.2878090143203735 img loss 1.1333606243133545 img loss 1.1247687339782715 img loss 1.1871665716171265img loss 1.2649520635604858 img loss 1.198947548866272 img loss 1.2742122411727905 img loss 1.174294114112854 img loss 1.1956671476364136 img loss 1.1921665668487549 img loss 1.1925705671310425 img loss 1.1696876287460327 img loss 1.1590161323547363 img loss 1.2518125772476196 img loss 1.168069839477539 img loss 1.1982618570327759 img loss 1.2429695129394531 img loss 1.3209717273712158 img loss 1.2335586547851562 img loss 1.213054895401001 img loss 1.1381884813308716 img loss 1.1277350187301636 img loss 1.178518295288086 img loss 1.1739449501037598 img loss 1.2760008573532104 {'loss': 1.2075, 'grad_norm': 0.24557512998580933, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2717164754867554 img loss 1.3366484642028809 img loss 1.3240629434585571 img loss 1.216011643409729 img loss 1.3345272541046143 img loss 1.1854727268218994 img loss 1.310563325881958 img loss 1.2644847631454468 img loss 1.3294605016708374 img loss 1.3124041557312012 img loss 1.2367690801620483 img loss 1.2087786197662354 img loss 1.3330563306808472 img loss 1.248826026916504 img loss 1.2468918561935425 img loss 1.259629249572754 img loss 1.3203468322753906 img loss 1.3045109510421753 img loss 1.3158955574035645 img loss 1.303006649017334 img loss 1.344844937324524 img loss 1.1757280826568604 img loss 1.2950960397720337 img loss 1.2613368034362793 img loss 1.291090488433838 img loss 1.2701311111450195 img loss 1.289210557937622 img loss 1.2026487588882446 img loss 1.2749049663543701 img loss 1.2626842260360718 img loss 1.2909977436065674 img loss 1.2316757440567017 img loss 1.2592806816101074 img loss 1.2724411487579346 img loss 1.2827376127243042 img loss 1.2672264575958252 img loss 1.3362079858779907 img loss 1.2015578746795654 img loss 1.2846417427062988 img loss 1.278631567955017 img loss 1.2806894779205322 img loss 1.3223605155944824 img loss 1.2479052543640137 img loss 1.2726929187774658 img loss 1.2793974876403809 img loss 1.1692650318145752 img loss 1.270729422569275 img loss 1.2791218757629395 img loss 1.271654725074768 img loss 1.2443370819091797 img loss 1.2766046524047852 img loss 1.2733796834945679 img loss 1.2517133951187134 img loss 1.2160271406173706 img loss 1.4069361686706543 img loss 1.2153434753417969 img loss 1.3648316860198975 img loss 1.292731761932373 img loss 1.3303635120391846 img loss 1.2441439628601074 img loss 1.2621610164642334 img loss 1.2034434080123901 img loss 1.223724126815796 img loss 1.1892359256744385 img loss 1.2056677341461182 img loss 1.3063610792160034 img loss 1.327491283416748 img loss 1.2351382970809937 img loss 1.342018485069275 img loss 1.2758104801177979 img loss 1.2495205402374268 img loss 1.243202805519104 img loss 1.3547165393829346 img loss 1.2939459085464478 img loss 1.2702986001968384 img loss 1.2667301893234253 img loss 1.2017916440963745 img loss 1.2701849937438965 img loss 1.2782857418060303 img loss 1.3494486808776855 img loss 1.2736663818359375 img loss 1.1612071990966797 img loss 1.2708829641342163 img loss 1.309350848197937 img loss 1.3114519119262695 img loss 1.2956969738006592 img loss 1.2342830896377563 img loss 1.28080153465271 img loss 1.2141612768173218 img loss 1.3079719543457031 img loss 1.1932815313339233 img loss 1.236599326133728 img loss 1.271675705909729 img loss 1.2433937788009644 img loss 1.2785917520523071 img loss 1.264427661895752 img loss 1.2395689487457275 img loss 1.2769306898117065 img loss 1.388658046722412 img loss 1.3242356777191162 img loss 1.2930779457092285 img loss 1.2215309143066406 img loss 1.1783469915390015 img loss 1.3137402534484863 img loss 1.2366758584976196 img loss 1.2430390119552612 img loss 1.2108370065689087 img loss 1.2753057479858398 img loss 1.2197456359863281 img loss 1.2888723611831665 img loss 1.24820876121521 img loss 1.2867511510849 img loss 1.2868798971176147 img loss 1.32697331905365 img loss 1.357704758644104 img loss 1.2482811212539673img loss 1.350824236869812 img loss 1.214767336845398 img loss 1.24347722530365 img loss 1.2164636850357056 img loss 1.2880449295043945 img loss 1.2975472211837769 img loss 1.2635762691497803 img loss 1.2879728078842163 img loss 1.3377536535263062 img loss 1.2991091012954712 img loss 1.3236806392669678 img loss 1.3035284280776978 {'loss': 1.2729, 'grad_norm': 0.38968372344970703, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1901719570159912 img loss 1.2130982875823975 img loss 1.2312208414077759 img loss 1.166999340057373 img loss 1.2313196659088135 img loss 1.1451507806777954 img loss 1.1889352798461914 img loss 1.147763729095459 img loss 1.1850703954696655 img loss 1.2752909660339355 img loss 1.2572788000106812 img loss 1.2064975500106812 img loss 1.163583755493164 img loss 1.251611590385437 img loss 1.210679292678833 img loss 1.3036928176879883 img loss 1.2680326700210571 img loss 1.291041374206543 img loss 1.1816574335098267 img loss 1.1591202020645142 img loss 1.3081339597702026 img loss 1.2384850978851318 img loss 1.2911938428878784 img loss 1.216457724571228 img loss 1.1564677953720093 img loss 1.1764864921569824 img loss 1.201156497001648 img loss 1.1205921173095703 img loss 1.1896730661392212 img loss 1.2155544757843018 img loss 1.2192721366882324 img loss 1.2786563634872437 img loss 1.1207551956176758 img loss 1.1718412637710571 img loss 1.1481502056121826 img loss 1.2413511276245117 img loss 1.1953877210617065 img loss 1.2969807386398315 img loss 1.2495049238204956 img loss 1.256152868270874 img loss 1.2356504201889038 img loss 1.1912788152694702 img loss 1.1607290506362915 img loss 1.1563650369644165 img loss 1.1709400415420532 img loss 1.2295341491699219 img loss 1.3594268560409546 img loss 1.3078597784042358 img loss 1.2729965448379517 img loss 1.222339153289795 img loss 1.3111777305603027 img loss 1.1716060638427734 img loss 1.2456992864608765 img loss 1.1913751363754272 img loss 1.1254265308380127 img loss 1.162528395652771 img loss 1.1827062368392944 img loss 1.2849737405776978 img loss 1.2311596870422363 img loss 1.2034761905670166 img loss 1.314314365386963 img loss 1.1021913290023804 img loss 1.2242937088012695 img loss 1.1678225994110107 img loss 1.1937751770019531 img loss 1.1910561323165894 img loss 1.286881685256958 img loss 1.2703399658203125 img loss 1.1380410194396973 img loss 1.165374517440796 img loss 1.229348063468933 img loss 1.1939114332199097 img loss 1.19760262966156 img loss 1.1871294975280762 img loss 1.1848199367523193 img loss 1.256699800491333 img loss 1.1553713083267212 img loss 1.2839272022247314 img loss 1.1820570230484009 img loss 1.258009433746338 img loss 1.1920632123947144 img loss 1.1877741813659668 img loss 1.2594873905181885 img loss 1.1275436878204346 img loss 1.2285289764404297 img loss 1.2552168369293213 img loss 1.2136874198913574 img loss 1.186154842376709 img loss 1.1188894510269165 img loss 1.2508505582809448 img loss 1.2512493133544922 img loss 1.1551198959350586 img loss 1.2554316520690918 img loss 1.223828673362732 img loss 1.2621488571166992 img loss 1.2298686504364014 img loss 1.1685587167739868 img loss 1.212388277053833 img loss 1.2309455871582031 img loss 1.2284002304077148 img loss 1.251460313796997 img loss 1.2813522815704346 img loss 1.1262929439544678 img loss 1.2280362844467163 img loss 1.2016184329986572 img loss 1.1261141300201416 img loss 1.2795027494430542 img loss 1.1902598142623901 img loss 1.2165827751159668 img loss 1.2111023664474487 img loss 1.167617678642273 img loss 1.1538909673690796 img loss 1.194179892539978 img loss 1.244585394859314 img loss 1.2710760831832886 img loss 1.2197904586791992 img loss 1.2402422428131104 img loss 1.172197699546814 img loss 1.33674156665802 img loss 1.2019987106323242 img loss 1.142249345779419 img loss 1.3050687313079834 img loss 1.2075636386871338 img loss 1.2207953929901123 img loss 1.2111109495162964 img loss 1.2429509162902832 img loss 1.2743957042694092 img loss 1.1852086782455444 {'loss': 1.2149, 'grad_norm': 0.2692033350467682, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2099546194076538 img loss 1.1914809942245483 img loss 1.2379028797149658 img loss 1.1847681999206543 img loss 1.2700121402740479 img loss 1.1877338886260986 img loss 1.214616298675537 img loss 1.1640418767929077 img loss 1.1706063747406006 img loss 1.1704003810882568 img loss 1.2048171758651733 img loss 1.2397446632385254 img loss 1.1771780252456665 img loss 1.1947444677352905 img loss 1.2201406955718994 img loss 1.2166447639465332 img loss 1.2285325527191162 img loss 1.1780970096588135 img loss 1.1771963834762573 img loss 1.1547307968139648 img loss 1.1530193090438843 img loss 1.1082792282104492 img loss 1.2231051921844482 img loss 1.2899302244186401 img loss 1.170418381690979 img loss 1.1406899690628052 img loss 1.2167154550552368 img loss 1.1390846967697144 img loss 1.2063498497009277 img loss 1.196022629737854 img loss 1.177581548690796 img loss 1.1383230686187744 img loss 1.1576029062271118 img loss 1.187040090560913 img loss 1.1619690656661987 img loss 1.2790069580078125 img loss 1.2168140411376953 img loss 1.1566486358642578 img loss 1.1296542882919312 img loss 1.273353099822998 img loss 1.2237437963485718 img loss 1.1508426666259766 img loss 1.279181957244873 img loss 1.215596079826355 img loss 1.2582080364227295 img loss 1.24869966506958 img loss 1.2226316928863525 img loss 1.287355661392212 img loss 1.1966898441314697 img loss 1.1642742156982422 img loss 1.3036125898361206 img loss 1.1980863809585571 img loss 1.138664960861206 img loss 1.1323163509368896 img loss 1.1898472309112549 img loss 1.207679033279419 img loss 1.224658489227295 img loss 1.2613664865493774 img loss 1.1810709238052368 img loss 1.2385390996932983 img loss 1.1833031177520752 img loss 1.2683509588241577 img loss 1.1589759588241577 img loss 1.1914929151535034 img loss 1.1852473020553589 img loss 1.2322205305099487 img loss 1.1764721870422363 img loss 1.1673734188079834 img loss 1.2614809274673462 img loss 1.1915711164474487 img loss 1.233704924583435 img loss 1.167324423789978 img loss 1.274261474609375 img loss 1.1548597812652588 img loss 1.1397005319595337 img loss 1.1294829845428467 img loss 1.208463430404663 img loss 1.210636854171753 img loss 1.1840834617614746 img loss 1.203805685043335 img loss 1.2008546590805054 img loss 1.1743371486663818 img loss 1.1841514110565186 img loss 1.2208083868026733 img loss 1.1756318807601929 img loss 1.24289071559906 img loss 1.209360122680664 img loss 1.238970160484314 img loss 1.2034385204315186 img loss 1.2865155935287476 img loss 1.197518229484558 img loss 1.1923644542694092 img loss 1.2267764806747437 img loss 1.1282086372375488 img loss 1.1808003187179565 img loss 1.0828083753585815 img loss 1.164123296737671 img loss 1.2414358854293823 img loss 1.2327914237976074 img loss 1.1905981302261353 img loss 1.1407229900360107 img loss 1.2230713367462158 img loss 1.1443220376968384 img loss 1.2085522413253784 img loss 1.139108657836914 img loss 1.2640016078948975 img loss 1.1757868528366089 img loss 1.1699037551879883 img loss 1.1953845024108887 img loss 1.2420320510864258 img loss 1.2753088474273682 img loss 1.295372724533081 img loss 1.2531155347824097 img loss 1.232407808303833 img loss 1.2588611841201782 img loss 1.2466044425964355 img loss 1.1030471324920654 img loss 1.2242329120635986 img loss 1.2018146514892578 img loss 1.2033569812774658 img loss 1.1303749084472656 img loss 1.1907734870910645 img loss 1.2265312671661377 img loss 1.1341321468353271 img loss 1.1360669136047363 img loss 1.2068160772323608 img loss 1.1564273834228516 img loss 1.174517035484314 {'loss': 1.1991, 'grad_norm': 0.2977477014064789, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3422375917434692 img loss 1.3516546487808228 img loss 1.2465931177139282 img loss 1.2587676048278809 img loss 1.2612192630767822 img loss 1.2664871215820312 img loss 1.2180800437927246 img loss 1.1985138654708862 img loss 1.2029073238372803 img loss 1.2830021381378174 img loss 1.2408488988876343 img loss 1.2603973150253296 img loss 1.2574113607406616 img loss 1.306422233581543 img loss 1.1623408794403076 img loss 1.2540429830551147 img loss 1.2236409187316895 img loss 1.247101068496704 img loss 1.2200344800949097 img loss 1.2283366918563843 img loss 1.2765814065933228 img loss 1.2088446617126465 img loss 1.2739925384521484 img loss 1.2438414096832275 img loss 1.3023399114608765 img loss 1.281799077987671 img loss 1.2091081142425537 img loss 1.2663648128509521 img loss 1.2432973384857178 img loss 1.2559902667999268 img loss 1.2195696830749512 img loss 1.174126386642456 img loss 1.258673906326294 img loss 1.2129414081573486 img loss 1.2677582502365112 img loss 1.2222117185592651 img loss 1.2738094329833984 img loss 1.1358237266540527 img loss 1.224521279335022 img loss 1.2945659160614014 img loss 1.2719168663024902 img loss 1.2327667474746704 img loss 1.3036117553710938 img loss 1.2634333372116089 img loss 1.1902700662612915 img loss 1.2116838693618774 img loss 1.263401985168457 img loss 1.242337703704834 img loss 1.2074238061904907 img loss 1.2093913555145264 img loss 1.3270008563995361 img loss 1.2446484565734863 img loss 1.2626128196716309 img loss 1.1822494268417358 img loss 1.230893850326538 img loss 1.2546310424804688 img loss 1.25932776927948 img loss 1.2463772296905518 img loss 1.2757105827331543 img loss 1.2301814556121826 img loss 1.2227208614349365 img loss 1.262495994567871 img loss 1.2744579315185547 img loss 1.2416791915893555 img loss 1.20877206325531 img loss 1.2459170818328857 img loss 1.2725152969360352 img loss 1.2062113285064697 img loss 1.3434233665466309 img loss 1.3231233358383179 img loss 1.2259047031402588 img loss 1.4073601961135864 img loss 1.2568365335464478 img loss 1.2395633459091187 img loss 1.202665090560913 img loss 1.2749525308609009 img loss 1.219887614250183 img loss 1.2364224195480347 img loss 1.2750110626220703 img loss 1.2492765188217163 img loss 1.2334010601043701 img loss 1.2335764169692993 img loss 1.240038514137268 img loss 1.289060354232788 img loss 1.2602689266204834 img loss 1.2815879583358765 img loss 1.3331784009933472 img loss 1.4115511178970337 img loss 1.3185240030288696 img loss 1.1971803903579712 img loss 1.2166351079940796 img loss 1.293229341506958 img loss 1.249610185623169 img loss 1.2049038410186768 img loss 1.2168958187103271 img loss 1.2787538766860962 img loss 1.2674245834350586 img loss 1.2682636976242065 img loss 1.2956697940826416 img loss 1.2436217069625854 img loss 1.2487120628356934 img loss 1.2674111127853394 img loss 1.2629656791687012 img loss 1.2302448749542236 img loss 1.3036600351333618 img loss 1.258376955986023 img loss 1.2478218078613281 img loss 1.2385519742965698 img loss 1.28069007396698 img loss 1.1960338354110718 img loss 1.2833023071289062 img loss 1.2864233255386353 img loss 1.3178067207336426 img loss 1.2600250244140625 img loss 1.3097660541534424 img loss 1.2527666091918945 img loss 1.2224680185317993 img loss 1.2441154718399048 img loss 1.1592556238174438 img loss 1.3745416402816772 img loss 1.2777122259140015 img loss 1.209480881690979 img loss 1.2396574020385742 img loss 1.2537351846694946 img loss 1.2792469263076782 img loss 1.251330018043518 img loss 1.203927993774414 img loss 1.2830027341842651 {'loss': 1.2543, 'grad_norm': 0.2842734158039093, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1687911748886108 img loss 1.368690013885498 img loss 1.2455425262451172 img loss 1.2058942317962646 img loss 1.1835002899169922 img loss 1.1627960205078125 img loss 1.1455180644989014 img loss 1.2300450801849365 img loss 1.2581318616867065 img loss 1.194344162940979 img loss 1.27731192111969 img loss 1.2036508321762085 img loss 1.2104451656341553 img loss 1.238485336303711 img loss 1.2235279083251953 img loss 1.232003927230835 img loss 1.2102230787277222 img loss 1.242933988571167 img loss 1.27480947971344 img loss 1.1714088916778564 img loss 1.233527421951294 img loss 1.201196312904358 img loss 1.1818437576293945 img loss 1.258923888206482 img loss 1.1537814140319824 img loss 1.199480652809143 img loss 1.1619253158569336 img loss 1.268369197845459 img loss 1.1807703971862793 img loss 1.2619165182113647 img loss 1.1397016048431396 img loss 1.1922061443328857 img loss 1.1753284931182861 img loss 1.1490904092788696 img loss 1.1931703090667725 img loss 1.357890248298645 img loss 1.3030180931091309 img loss 1.2484209537506104 img loss 1.1348960399627686 img loss 1.2451167106628418 img loss 1.114130973815918 img loss 1.2299373149871826 img loss 1.2113816738128662 img loss 1.1987224817276 img loss 1.3285020589828491 img loss 1.2269542217254639 img loss 1.149668574333191 img loss 1.2288851737976074 img loss 1.1806919574737549 img loss 1.277531623840332 img loss 1.2757084369659424 img loss 1.257648229598999 img loss 1.1494207382202148 img loss 1.253058910369873 img loss 1.2549093961715698 img loss 1.2620121240615845 img loss 1.231106162071228 img loss 1.2014613151550293 img loss 1.2139604091644287 img loss 1.272552251815796 img loss 1.2085903882980347 img loss 1.170297622680664 img loss 1.2835506200790405 img loss 1.3026375770568848 img loss 1.3013968467712402 img loss 1.1926186084747314 img loss 1.2772750854492188 img loss 1.2382835149765015 img loss 1.1541322469711304 img loss 1.1329351663589478 img loss 1.2667683362960815 img loss 1.227113962173462 img loss 1.1783214807510376 img loss 1.2127710580825806 img loss 1.272329330444336 img loss 1.2050777673721313 img loss 1.1462825536727905 img loss 1.1820318698883057 img loss 1.2292400598526 img loss 1.1592563390731812 img loss 1.2561184167861938 img loss 1.196653962135315 img loss 1.244126319885254 img loss 1.1679015159606934 img loss 1.2517937421798706 img loss 1.2014849185943604 img loss 1.2667429447174072 img loss 1.204270839691162 img loss 1.213982343673706 img loss 1.3501871824264526 img loss 1.2624708414077759 img loss 1.1391916275024414 img loss 1.2524988651275635 img loss 1.1666102409362793 img loss 1.2148081064224243 img loss 1.2502292394638062 img loss 1.1857314109802246 img loss 1.1961135864257812 img loss 1.3005702495574951 img loss 1.1621224880218506 img loss 1.3687198162078857 img loss 1.220618486404419 img loss 1.1938456296920776 img loss 1.2048176527023315 img loss 1.2026309967041016 img loss 1.223211646080017 img loss 1.244844675064087 img loss 1.259987473487854 img loss 1.215606927871704 img loss 1.1863473653793335 img loss 1.2641358375549316 img loss 1.1775881052017212 img loss 1.203769564628601 img loss 1.188478708267212 img loss 1.1517102718353271 img loss 1.2441773414611816 img loss 1.2214596271514893 img loss 1.1944719552993774 img loss 1.314975380897522 img loss 1.1963132619857788 img loss 1.2322481870651245 img loss 1.2910077571868896 img loss 1.2520573139190674 img loss 1.1707791090011597 img loss 1.3351496458053589 img loss 1.214540958404541 img loss 1.1876529455184937 img loss 1.2256808280944824 {'loss': 1.222, 'grad_norm': 0.2006959766149521, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.28541898727417 img loss 1.3616453409194946 img loss 1.2565258741378784 img loss 1.3223671913146973 img loss 1.4056118726730347 img loss 1.31136953830719 img loss 1.4234156608581543 img loss 1.2769947052001953 img loss 1.2586636543273926 img loss 1.2944090366363525 img loss 1.3309401273727417 img loss 1.3053005933761597 img loss 1.2900787591934204 img loss 1.3072521686553955 img loss 1.4087004661560059 img loss 1.428648829460144 img loss 1.239546298980713 img loss 1.3520023822784424 img loss 1.2969233989715576 img loss 1.4139125347137451 img loss 1.3043831586837769 img loss 1.3247408866882324 img loss 1.3474138975143433 img loss 1.2988314628601074 img loss 1.269940733909607 img loss 1.3789727687835693 img loss 1.298014521598816 img loss 1.3089627027511597 img loss 1.2564501762390137 img loss 1.3988592624664307 img loss 1.3074040412902832 img loss 1.2698280811309814 img loss 1.3005187511444092 img loss 1.2169138193130493 img loss 1.3228507041931152 img loss 1.3233479261398315 img loss 1.2994111776351929 img loss 1.3137931823730469 img loss 1.3009793758392334 img loss 1.2825615406036377 img loss 1.3318334817886353 img loss 1.3261418342590332 img loss 1.4074078798294067 img loss 1.3456531763076782 img loss 1.3167680501937866 img loss 1.3404563665390015 img loss 1.3227450847625732 img loss 1.310915470123291 img loss 1.3033790588378906 img loss 1.402728796005249 img loss 1.3137619495391846 img loss 1.3073679208755493 img loss 1.2928112745285034 img loss 1.313454270362854 img loss 1.3980470895767212 img loss 1.301327109336853 img loss 1.3667863607406616 img loss 1.3828999996185303 img loss 1.3539862632751465 img loss 1.4005115032196045 img loss 1.3199374675750732 img loss 1.3205896615982056 img loss 1.3247132301330566 img loss 1.3927453756332397 img loss 1.4133154153823853 img loss 1.33457350730896 img loss 1.3155771493911743 img loss 1.3505667448043823 img loss 1.360592007637024 img loss 1.3719502687454224 img loss 1.362547516822815 img loss 1.326537847518921 img loss 1.3071736097335815 img loss 1.2920297384262085 img loss 1.3417418003082275 img loss 1.2910244464874268 img loss 1.2506097555160522 img loss 1.3333592414855957 img loss 1.339820146560669 img loss 1.4026570320129395 img loss 1.374364972114563 img loss 1.2381829023361206 img loss 1.2692464590072632 img loss 1.2766103744506836 img loss 1.3959386348724365 img loss 1.4032632112503052 img loss 1.2548404932022095 img loss 1.331596851348877 img loss 1.322164535522461 img loss 1.3456556797027588 img loss 1.363370656967163 img loss 1.3573819398880005 img loss 1.3944861888885498 img loss 1.3529636859893799 img loss 1.2944772243499756 img loss 1.4861091375350952 img loss 1.342872977256775 img loss 1.3264433145523071 img loss 1.332944393157959 img loss 1.3150348663330078 img loss 1.343717098236084 img loss 1.3848741054534912 img loss 1.3191498517990112 img loss 1.2878036499023438 img loss 1.3301018476486206 img loss 1.2588027715682983 img loss 1.282275676727295 img loss 1.2874550819396973 img loss 1.3424760103225708 img loss 1.3548903465270996 img loss 1.3896631002426147 img loss 1.2919334173202515 img loss 1.3710440397262573 img loss 1.263015627861023 img loss 1.3915563821792603 img loss 1.3377255201339722 img loss 1.3634953498840332 img loss 1.3298481702804565 img loss 1.3389781713485718 img loss 1.335884928703308 img loss 1.3738453388214111 img loss 1.4148255586624146 img loss 1.3986380100250244 img loss 1.3303236961364746 img loss 1.3734047412872314 img loss 1.2821292877197266 img loss 1.3931195735931396 img loss 1.4006036520004272 {'loss': 1.3331, 'grad_norm': 0.27624088525772095, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.217834711074829 img loss 1.3568519353866577 img loss 1.3223915100097656 img loss 1.278438925743103 img loss 1.2428269386291504 img loss 1.2210807800292969 img loss 1.2373203039169312 img loss 1.1996902227401733 img loss 1.273279070854187 img loss 1.231467604637146 img loss 1.2504832744598389 img loss 1.293407917022705 img loss 1.2902488708496094 img loss 1.207322359085083 img loss 1.2521553039550781 img loss 1.193833827972412 img loss 1.1524022817611694 img loss 1.2376363277435303 img loss 1.2360235452651978 img loss 1.16754150390625 img loss 1.2108261585235596 img loss 1.2679383754730225 img loss 1.2290226221084595 img loss 1.2027428150177002 img loss 1.2487196922302246 img loss 1.1791924238204956 img loss 1.230568766593933 img loss 1.2721184492111206 img loss 1.2223718166351318 img loss 1.20736825466156 img loss 1.235512375831604 img loss 1.2439428567886353 img loss 1.1948668956756592 img loss 1.2063190937042236 img loss 1.2930067777633667 img loss 1.1830341815948486 img loss 1.2157626152038574 img loss 1.2297443151474 img loss 1.225298285484314 img loss 1.2256325483322144 img loss 1.1243013143539429 img loss 1.2381943464279175 img loss 1.1702274084091187 img loss 1.1650351285934448 img loss 1.276746153831482 img loss 1.2203233242034912 img loss 1.2582330703735352 img loss 1.262774109840393 img loss 1.2278817892074585 img loss 1.2007019519805908 img loss 1.263635277748108 img loss 1.210529088973999 img loss 1.24506413936615 img loss 1.2443640232086182 img loss 1.2855194807052612 img loss 1.2349658012390137 img loss 1.2186954021453857 img loss 1.1565684080123901 img loss 1.2630013227462769 img loss 1.242396593093872 img loss 1.301630973815918 img loss 1.3018152713775635 img loss 1.202462911605835 img loss 1.2836898565292358 img loss 1.283980369567871 img loss 1.281991720199585 img loss 1.1838419437408447 img loss 1.2070509195327759 img loss 1.2788361310958862 img loss 1.2943708896636963 img loss 1.2060868740081787 img loss 1.174900770187378 img loss 1.143532395362854 img loss 1.195537805557251 img loss 1.233843207359314 img loss 1.20623779296875 img loss 1.2958042621612549 img loss 1.2268482446670532 img loss 1.2666183710098267 img loss 1.1985772848129272 img loss 1.2164465188980103 img loss 1.2576518058776855 img loss 1.2264082431793213 img loss 1.3142693042755127 img loss 1.1521470546722412 img loss 1.291282057762146 img loss 1.225583553314209 img loss 1.2807241678237915 img loss 1.233683466911316 img loss 1.2336937189102173 img loss 1.3231842517852783 img loss 1.2654892206192017 img loss 1.2105077505111694 img loss 1.1485122442245483 img loss 1.1751325130462646 img loss 1.2188218832015991 img loss 1.402525544166565 img loss 1.2267303466796875 img loss 1.292418122291565 img loss 1.2468905448913574 img loss 1.2864789962768555 img loss 1.2889404296875 img loss 1.2789901494979858 img loss 1.1709636449813843 img loss 1.1844373941421509 img loss 1.2441215515136719 img loss 1.1475677490234375 img loss 1.1637585163116455 img loss 1.2258661985397339 img loss 1.2406924962997437 img loss 1.2582509517669678 img loss 1.2705378532409668 img loss 1.2662509679794312 img loss 1.2230401039123535 img loss 1.2240768671035767 img loss 1.23910653591156 img loss 1.2943047285079956 img loss 1.2240597009658813 img loss 1.2375816106796265 img loss 1.221813678741455 img loss 1.2172058820724487 img loss 1.2519222497940063 img loss 1.2319549322128296 img loss 1.3059049844741821 img loss 1.3123825788497925 img loss 1.2101285457611084 img loss 1.2026172876358032 img loss 1.2672686576843262 {'loss': 1.2367, 'grad_norm': 0.21821096539497375, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.310706615447998 img loss 1.1548489332199097 img loss 1.2716333866119385 img loss 1.1707050800323486 img loss 1.2533633708953857 img loss 1.186601161956787 img loss 1.2154250144958496 img loss 1.2091490030288696 img loss 1.22014582157135 img loss 1.239150881767273 img loss 1.3292473554611206 img loss 1.2252309322357178 img loss 1.2304227352142334 img loss 1.2835559844970703 img loss 1.215919852256775 img loss 1.2261360883712769 img loss 1.157556414604187 img loss 1.254866361618042 img loss 1.2229925394058228 img loss 1.2414816617965698 img loss 1.2662948369979858 img loss 1.2035017013549805 img loss 1.2554653882980347 img loss 1.2056773900985718 img loss 1.2373559474945068 img loss 1.1771938800811768 img loss 1.2277297973632812 img loss 1.2462469339370728 img loss 1.2328108549118042 img loss 1.3327605724334717 img loss 1.2411394119262695 img loss 1.1789311170578003 img loss 1.1895256042480469 img loss 1.301104187965393 img loss 1.1874349117279053 img loss 1.2259584665298462 img loss 1.2763665914535522 img loss 1.2897475957870483 img loss 1.22244393825531 img loss 1.2424792051315308 img loss 1.2336424589157104 img loss 1.2778021097183228 img loss 1.2392072677612305 img loss 1.2421245574951172 img loss 1.1437937021255493 img loss 1.2071471214294434 img loss 1.2484327554702759 img loss 1.197588324546814 img loss 1.2535514831542969 img loss 1.257920265197754 img loss 1.2126573324203491 img loss 1.1731882095336914 img loss 1.2235825061798096 img loss 1.257704257965088 img loss 1.204696536064148 img loss 1.2784292697906494 img loss 1.1569082736968994 img loss 1.2415618896484375 img loss 1.2501941919326782 img loss 1.3317601680755615 img loss 1.2811040878295898 img loss 1.2024130821228027 img loss 1.2476046085357666 img loss 1.2100800275802612 img loss 1.250002384185791 img loss 1.238554835319519 img loss 1.2576360702514648 img loss 1.2554097175598145 img loss 1.21993887424469 img loss 1.2966679334640503 img loss 1.1785802841186523 img loss 1.2508379220962524 img loss 1.2791752815246582 img loss 1.2466278076171875 img loss 1.2174394130706787 img loss 1.2649297714233398 img loss 1.235318660736084 img loss 1.0990829467773438 img loss 1.3141419887542725 img loss 1.2102875709533691 img loss 1.266681432723999 img loss 1.2369590997695923 img loss 1.2895433902740479 img loss 1.271719217300415 img loss 1.215335488319397 img loss 1.2864336967468262 img loss 1.1810401678085327 img loss 1.229845643043518 img loss 1.2355968952178955 img loss 1.1643856763839722 img loss 1.287341594696045 img loss 1.2568565607070923 img loss 1.2529844045639038 img loss 1.1642221212387085 img loss 1.1915199756622314 img loss 1.261450171470642 img loss 1.2401418685913086 img loss 1.235155701637268 img loss 1.26344633102417 img loss 1.233140230178833 img loss 1.2122995853424072 img loss 1.173746109008789 img loss 1.2003198862075806 img loss 1.2228611707687378 img loss 1.2465366125106812 img loss 1.2283954620361328 img loss 1.2192577123641968 img loss 1.2188900709152222 img loss 1.1617183685302734 img loss 1.208910346031189 img loss 1.2628096342086792 img loss 1.1155502796173096 img loss 1.1782543659210205 img loss 1.211500644683838 img loss 1.2270094156265259 img loss 1.3388844728469849 img loss 1.2910159826278687 img loss 1.1870867013931274 img loss 1.1810883283615112 img loss 1.2714886665344238 img loss 1.2108780145645142img loss 1.2086222171783447img loss 1.165197730064392 img loss 1.1941896677017212 img loss 1.2096433639526367 img loss 1.2434637546539307 img loss 1.1805881261825562 img loss 1.1855238676071167 {'loss': 1.2302, 'grad_norm': 0.20508679747581482, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1730810403823853 img loss 1.2466168403625488 img loss 1.1621063947677612 img loss 1.2199877500534058 img loss 1.2060434818267822 img loss 1.1086333990097046 img loss 1.3769923448562622 img loss 1.2484855651855469 img loss 1.3130053281784058 img loss 1.2082767486572266 img loss 1.1886624097824097 img loss 1.2635498046875 img loss 1.2341772317886353 img loss 1.2219715118408203 img loss 1.2000011205673218 img loss 1.1408824920654297 img loss 1.2108010053634644 img loss 1.2536392211914062 img loss 1.2494970560073853 img loss 1.263359785079956 img loss 1.2049617767333984 img loss 1.2872072458267212 img loss 1.2307862043380737 img loss 1.2712457180023193 img loss 1.1935374736785889 img loss 1.2547862529754639 img loss 1.145077109336853 img loss 1.2331379652023315 img loss 1.2599315643310547 img loss 1.276751160621643 img loss 1.229093074798584 img loss 1.279377818107605 img loss 1.2935912609100342 img loss 1.1644549369812012 img loss 1.2545779943466187 img loss 1.1935583353042603 img loss 1.231573462486267 img loss 1.205343246459961 img loss 1.1980400085449219 img loss 1.1931473016738892 img loss 1.1760997772216797 img loss 1.1760562658309937 img loss 1.2381186485290527 img loss 1.2047382593154907 img loss 1.190189242362976 img loss 1.1957815885543823 img loss 1.1611677408218384 img loss 1.1996091604232788 img loss 1.2431434392929077 img loss 1.1679670810699463 img loss 1.2255779504776 img loss 1.178911566734314 img loss 1.16652250289917 img loss 1.2394044399261475 img loss 1.1839576959609985 img loss 1.2045421600341797 img loss 1.265278697013855 img loss 1.1769275665283203 img loss 1.1414391994476318 img loss 1.2023838758468628 img loss 1.2856411933898926 img loss 1.2963013648986816 img loss 1.425057053565979 img loss 1.2943477630615234 img loss 1.2114756107330322 img loss 1.1651142835617065 img loss 1.2265251874923706 img loss 1.2816572189331055 img loss 1.1638017892837524 img loss 1.1756618022918701 img loss 1.228554606437683 img loss 1.1944782733917236 img loss 1.2376612424850464 img loss 1.2926453351974487 img loss 1.1176341772079468 img loss 1.2377240657806396 img loss 1.2807644605636597 img loss 1.1812586784362793 img loss 1.2963513135910034 img loss 1.303020715713501 img loss 1.2007689476013184 img loss 1.1727126836776733 img loss 1.1694691181182861 img loss 1.2042099237442017 img loss 1.3027889728546143 img loss 1.2535942792892456 img loss 1.2942783832550049 img loss 1.2607917785644531 img loss 1.264463186264038 img loss 1.1880114078521729 img loss 1.1717246770858765 img loss 1.2083972692489624 img loss 1.2290573120117188 img loss 1.2698721885681152 img loss 1.173356533050537 img loss 1.2880775928497314 img loss 1.2459571361541748 img loss 1.188726782798767 img loss 1.207532525062561 img loss 1.2100547552108765 img loss 1.2159096002578735 img loss 1.2738587856292725 img loss 1.3543610572814941 img loss 1.1869385242462158 img loss 1.1861612796783447 img loss 1.1944928169250488 img loss 1.1464074850082397 img loss 1.1358212232589722 img loss 1.2333178520202637 img loss 1.2106558084487915 img loss 1.2034233808517456 img loss 1.2337613105773926 img loss 1.1880158185958862 img loss 1.21876859664917 img loss 1.2731176614761353 img loss 1.290703296661377 img loss 1.2449413537979126 img loss 1.1797808408737183 img loss 1.2001032829284668 img loss 1.2680351734161377 img loss 1.146679401397705 img loss 1.242573618888855 img loss 1.3333301544189453 img loss 1.2199691534042358 img loss 1.2531983852386475 img loss 1.095679759979248 img loss 1.1968214511871338 img loss 1.2093089818954468 {'loss': 1.2232, 'grad_norm': 0.30210205912590027, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.239112377166748 img loss 1.1352843046188354 img loss 1.2629495859146118 img loss 1.311318039894104 img loss 1.3082141876220703 img loss 1.2718846797943115 img loss 1.2291380167007446 img loss 1.1437225341796875 img loss 1.2116879224777222 img loss 1.2311444282531738 img loss 1.1908164024353027 img loss 1.2166118621826172 img loss 1.188514232635498 img loss 1.2878080606460571 img loss 1.2168750762939453 img loss 1.1833984851837158 img loss 1.2839453220367432 img loss 1.2533906698226929 img loss 1.2690980434417725 img loss 1.1513923406600952 img loss 1.2513256072998047 img loss 1.3049123287200928 img loss 1.2016708850860596 img loss 1.2575162649154663 img loss 1.260796070098877 img loss 1.2282224893569946 img loss 1.1819093227386475 img loss 1.2653907537460327 img loss 1.1988590955734253 img loss 1.1965959072113037 img loss 1.239485263824463 img loss 1.2651197910308838 img loss 1.2381309270858765 img loss 1.2499384880065918 img loss 1.1724966764450073 img loss 1.2143653631210327 img loss 1.2769856452941895 img loss 1.224008560180664 img loss 1.2279627323150635 img loss 1.2880971431732178 img loss 1.2113670110702515 img loss 1.2711567878723145 img loss 1.2350292205810547 img loss 1.247334361076355 img loss 1.2822368144989014 img loss 1.1921725273132324 img loss 1.2090805768966675 img loss 1.2873954772949219 img loss 1.2136781215667725 img loss 1.2840533256530762 img loss 1.2814563512802124 img loss 1.2511624097824097 img loss 1.3238877058029175 img loss 1.2270808219909668 img loss 1.2035844326019287 img loss 1.259063720703125 img loss 1.2891829013824463 img loss 1.1481693983078003 img loss 1.246878981590271 img loss 1.1733314990997314 img loss 1.32339608669281 img loss 1.187821388244629 img loss 1.2721866369247437 img loss 1.3223326206207275 img loss 1.259718894958496 img loss 1.1261729001998901 img loss 1.1748164892196655 img loss 1.2565640211105347 img loss 1.2568211555480957 img loss 1.1836379766464233 img loss 1.1913896799087524 img loss 1.230996012687683 img loss 1.3084681034088135 img loss 1.199930191040039 img loss 1.27396821975708 img loss 1.3766428232192993 img loss 1.2425841093063354 img loss 1.1649162769317627 img loss 1.156633973121643 img loss 1.2355930805206299 img loss 1.4199117422103882 img loss 1.1633141040802002 img loss 1.2849078178405762 img loss 1.1352035999298096 img loss 1.2880181074142456 img loss 1.2955340147018433 img loss 1.1762746572494507 img loss 1.261089563369751 img loss 1.2206352949142456 img loss 1.2000064849853516 img loss 1.2252864837646484 img loss 1.1857025623321533 img loss 1.252651572227478 img loss 1.2299121618270874 img loss 1.257322907447815 img loss 1.1705741882324219 img loss 1.158752202987671 img loss 1.0817363262176514 img loss 1.2369199991226196 img loss 1.1955785751342773 img loss 1.1674679517745972 img loss 1.1969425678253174 img loss 1.1488593816757202 img loss 1.231313943862915 img loss 1.1988662481307983 img loss 1.2190347909927368 img loss 1.222984790802002 img loss 1.0977673530578613 img loss 1.1830978393554688 img loss 1.2209179401397705 img loss 1.180863857269287 img loss 1.2976709604263306 img loss 1.2873427867889404 img loss 1.2322906255722046 img loss 1.1545772552490234 img loss 1.3587223291397095 img loss 1.2068405151367188 img loss 1.1314787864685059 img loss 1.1583187580108643 img loss 1.297305703163147 img loss 1.2761189937591553 img loss 1.2846791744232178 img loss 1.2617549896240234 img loss 1.126287817955017 img loss 1.30305814743042 img loss 1.188166856765747 img loss 1.1714627742767334 img loss 1.2146775722503662 {'loss': 1.2295, 'grad_norm': 0.219837486743927, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2184889316558838 img loss 1.1847842931747437 img loss 1.1890779733657837 img loss 1.206446886062622 img loss 1.214943528175354 img loss 1.1894663572311401 img loss 1.2290093898773193 img loss 1.1681751012802124 img loss 1.2361674308776855 img loss 1.1395456790924072 img loss 1.1745418310165405 img loss 1.2217540740966797 img loss 1.1527900695800781 img loss 1.2433236837387085 img loss 1.1601632833480835 img loss 1.1824785470962524 img loss 1.1744437217712402 img loss 1.2120425701141357 img loss 1.2141622304916382 img loss 1.2006880044937134 img loss 1.2376917600631714 img loss 1.2175588607788086 img loss 1.2099403142929077 img loss 1.1839290857315063 img loss 1.2144038677215576 img loss 1.194087028503418 img loss 1.1797388792037964 img loss 1.2519299983978271 img loss 1.1768872737884521 img loss 1.2205564975738525 img loss 1.1877692937850952 img loss 1.2364686727523804 img loss 1.203157663345337 img loss 1.209917664527893 img loss 1.1626390218734741 img loss 1.2133464813232422 img loss 1.1843843460083008 img loss 1.2003822326660156 img loss 1.2656433582305908 img loss 1.2004868984222412 img loss 1.2016092538833618 img loss 1.2063517570495605 img loss 1.204200029373169 img loss 1.160043478012085 img loss 1.25230073928833 img loss 1.153725266456604 img loss 1.2731765508651733 img loss 1.1453046798706055 img loss 1.1610006093978882 img loss 1.2164115905761719 img loss 1.1780017614364624 img loss 1.303323745727539 img loss 1.1902966499328613 img loss 1.2867180109024048 img loss 1.239499568939209 img loss 1.2193689346313477 img loss 1.2197531461715698 img loss 1.1885117292404175 img loss 1.2108356952667236 img loss 1.1899895668029785 img loss 1.2549501657485962 img loss 1.1945488452911377 img loss 1.1871620416641235 img loss 1.1792362928390503 img loss 1.2797901630401611 img loss 1.295166015625 img loss 1.1738464832305908 img loss 1.1989084482192993 img loss 1.1324681043624878 img loss 1.2273437976837158 img loss 1.1835761070251465 img loss 1.1861788034439087 img loss 1.1806052923202515 img loss 1.2709814310073853 img loss 1.2447878122329712 img loss 1.1792960166931152 img loss 1.2417856454849243 img loss 1.179643154144287 img loss 1.2378145456314087 img loss 1.1721572875976562 img loss 1.2028955221176147 img loss 1.2360036373138428 img loss 1.2295169830322266 img loss 1.2419075965881348 img loss 1.1604454517364502 img loss 1.1966552734375 img loss 1.239456057548523 img loss 1.2192189693450928 img loss 1.2552850246429443 img loss 1.2495543956756592 img loss 1.2335247993469238 img loss 1.2158629894256592 img loss 1.204115390777588 img loss 1.222655177116394 img loss 1.2451667785644531 img loss 1.2495863437652588 img loss 1.1904823780059814 img loss 1.296413779258728 img loss 1.213424563407898 img loss 1.2294853925704956 img loss 1.223812460899353 img loss 1.240191102027893 img loss 1.2525181770324707 img loss 1.2401249408721924 img loss 1.1948217153549194 img loss 1.1895612478256226 img loss 1.1555516719818115 img loss 1.1972780227661133 img loss 1.197314739227295 img loss 1.2453418970108032 img loss 1.2376841306686401 img loss 1.2170958518981934 img loss 1.1632179021835327 img loss 1.2011075019836426 img loss 1.218780517578125 img loss 1.1849294900894165 img loss 1.1828361749649048 img loss 1.204454779624939 img loss 1.1862379312515259 img loss 1.2373946905136108 img loss 1.2105950117111206 img loss 1.1830687522888184 img loss 1.2475428581237793 img loss 1.2018544673919678 img loss 1.2006405591964722 img loss 1.1865371465682983 img loss 1.1737312078475952 img loss 1.2005445957183838 {'loss': 1.2091, 'grad_norm': 0.24474041163921356, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.318764567375183 img loss 1.4273955821990967 img loss 1.3940178155899048 img loss 1.4062169790267944 img loss 1.4640816450119019 img loss 1.3785139322280884 img loss 1.4295166730880737 img loss 1.4400477409362793 img loss 1.3557361364364624 img loss 1.3982452154159546 img loss 1.4049557447433472 img loss 1.5295939445495605 img loss 1.3468884229660034 img loss 1.5049124956130981 img loss 1.529386281967163 img loss 1.5601197481155396 img loss 1.4322421550750732 img loss 1.4406733512878418 img loss 1.5021774768829346 img loss 1.3907090425491333 img loss 1.4017796516418457 img loss 1.4929862022399902 img loss 1.3952866792678833 img loss 1.2793569564819336 img loss 1.315557837486267 img loss 1.4335366487503052 img loss 1.5586804151535034 img loss 1.35165274143219 img loss 1.4233171939849854 img loss 1.4273279905319214 img loss 1.418269395828247 img loss 1.5765738487243652 img loss 1.4456849098205566 img loss 1.370885968208313 img loss 1.4493231773376465 img loss 1.446219563484192 img loss 1.4343034029006958 img loss 1.486583948135376 img loss 1.3805683851242065 img loss 1.5148144960403442 img loss 1.4182630777359009 img loss 1.4857224225997925 img loss 1.4483656883239746 img loss 1.3791531324386597 img loss 1.297025442123413 img loss 1.5390545129776 img loss 1.4617236852645874 img loss 1.5020670890808105 img loss 1.3988397121429443 img loss 1.49086594581604 img loss 1.4139214754104614 img loss 1.4134713411331177 img loss 1.4777952432632446 img loss 1.4819436073303223 img loss 1.2667347192764282 img loss 1.3804153203964233 img loss 1.4255341291427612 img loss 1.299928069114685 img loss 1.474775791168213 img loss 1.4066121578216553 img loss 1.5206273794174194 img loss 1.4018223285675049 img loss 1.2838481664657593 img loss 1.5117329359054565 img loss 1.3335717916488647 img loss 1.3748774528503418img loss 1.4558013677597046 img loss 1.4334321022033691 img loss 1.3604557514190674 img loss 1.3504871129989624 img loss 1.5711859464645386 img loss 1.4528746604919434 img loss 1.4314483404159546 img loss 1.4156534671783447 img loss 1.355268955230713 img loss 1.3707783222198486 img loss 1.5684010982513428 img loss 1.4263983964920044 img loss 1.3334184885025024 img loss 1.3160537481307983 img loss 1.4729048013687134 img loss 1.3710306882858276 img loss 1.4568296670913696 img loss 1.6076096296310425 img loss 1.4409308433532715 img loss 1.3949395418167114 img loss 1.3679429292678833 img loss 1.495482087135315 img loss 1.4484752416610718 img loss 1.4490677118301392 img loss 1.4678332805633545 img loss 1.5365583896636963 img loss 1.555722713470459 img loss 1.515635371208191 img loss 1.3658936023712158 img loss 1.5356860160827637 img loss 1.4792088270187378 img loss 1.4850518703460693 img loss 1.4530855417251587 img loss 1.4267879724502563 img loss 1.4174593687057495 img loss 1.4493833780288696 img loss 1.4866268634796143 img loss 1.3458181619644165 img loss 1.4937633275985718 img loss 1.338096022605896 img loss 1.3892505168914795 img loss 1.318752646446228 img loss 1.3771578073501587 img loss 1.4617440700531006 img loss 1.4469084739685059 img loss 1.3097913265228271 img loss 1.315489411354065 img loss 1.4611868858337402 img loss 1.4547419548034668 img loss 1.5259168148040771 img loss 1.545265555381775 img loss 1.4412673711776733 img loss 1.3581990003585815 img loss 1.378780722618103 img loss 1.2586091756820679 img loss 1.4970420598983765 img loss 1.5074937343597412 img loss 1.4918723106384277 img loss 1.3368314504623413 img loss 1.2955946922302246 img loss 1.4148842096328735 img loss 1.349427342414856 {'loss': 1.428, 'grad_norm': 0.24922172725200653, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3615976572036743 img loss 1.4208619594573975 img loss 1.3214905261993408 img loss 1.2434934377670288 img loss 1.2806042432785034 img loss 1.3541587591171265 img loss 1.2355600595474243 img loss 1.2631278038024902 img loss 1.3098158836364746 img loss 1.304665446281433 img loss 1.289119005203247 img loss 1.2997562885284424 img loss 1.1935371160507202 img loss 1.2999088764190674 img loss 1.2397634983062744 img loss 1.2736481428146362 img loss 1.3556244373321533 img loss 1.32245671749115 img loss 1.3491050004959106 img loss 1.292260766029358 img loss 1.2505888938903809 img loss 1.2809816598892212 img loss 1.3405413627624512 img loss 1.3434282541275024 img loss 1.2354873418807983 img loss 1.334526777267456 img loss 1.3510260581970215 img loss 1.2349947690963745 img loss 1.3973698616027832 img loss 1.2835767269134521 img loss 1.320924162864685 img loss 1.3270186185836792 img loss 1.2281479835510254 img loss 1.323904275894165 img loss 1.381975769996643 img loss 1.2935761213302612 img loss 1.2709776163101196 img loss 1.2776825428009033 img loss 1.2702908515930176 img loss 1.296476125717163 img loss 1.3337273597717285 img loss 1.1492677927017212 img loss 1.365596055984497 img loss 1.2431962490081787 img loss 1.3145540952682495 img loss 1.3209280967712402 img loss 1.262324571609497 img loss 1.3196682929992676 img loss 1.2879551649093628 img loss 1.2927461862564087 img loss 1.2681089639663696 img loss 1.2574619054794312 img loss 1.425105333328247 img loss 1.3531414270401 img loss 1.3078068494796753 img loss 1.34774649143219 img loss 1.2676582336425781 img loss 1.2604913711547852 img loss 1.3058617115020752 img loss 1.2832300662994385 img loss 1.338996410369873 img loss 1.2101558446884155 img loss 1.3335661888122559 img loss 1.3380647897720337 img loss 1.2962249517440796 img loss 1.2266658544540405 img loss 1.2273118495941162 img loss 1.3560253381729126 img loss 1.2644180059432983 img loss 1.3134666681289673 img loss 1.3308117389678955 img loss 1.3251724243164062 img loss 1.3756123781204224 img loss 1.3195356130599976 img loss 1.3598973751068115 img loss 1.2758681774139404 img loss 1.1940170526504517 img loss 1.3159539699554443 img loss 1.274483561515808 img loss 1.2262741327285767 img loss 1.3889738321304321 img loss 1.3408564329147339 img loss 1.258482813835144 img loss 1.39034903049469 img loss 1.203417420387268 img loss 1.2095658779144287 img loss 1.3105798959732056 img loss 1.1843583583831787 img loss 1.2792662382125854 img loss 1.224485158920288 img loss 1.2846256494522095 img loss 1.3037456274032593 img loss 1.2559716701507568 img loss 1.2825154066085815 img loss 1.3415400981903076 img loss 1.3159757852554321 img loss 1.3124470710754395 img loss 1.2900089025497437 img loss 1.3639007806777954 img loss 1.2917137145996094 img loss 1.2123057842254639 img loss 1.2602146863937378 img loss 1.3327231407165527 img loss 1.3197002410888672 img loss 1.2527904510498047 img loss 1.2950501441955566 img loss 1.1861567497253418 img loss 1.2555921077728271 img loss 1.3476903438568115 img loss 1.3607739210128784 img loss 1.283064603805542 img loss 1.2315082550048828 img loss 1.3096387386322021 img loss 1.3130788803100586 img loss 1.2899411916732788 img loss 1.2761032581329346 img loss 1.311185359954834 img loss 1.237995982170105 img loss 1.3336498737335205 img loss 1.2748916149139404 img loss 1.3407340049743652 img loss 1.3063044548034668 img loss 1.3560916185379028 img loss 1.341457486152649 img loss 1.4043223857879639 img loss 1.3616974353790283 img loss 1.4220584630966187 img loss 1.2676571607589722 {'loss': 1.2988, 'grad_norm': 0.32389721274375916, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1570942401885986 img loss 1.2390741109848022 img loss 1.2778774499893188 img loss 1.2073051929473877 img loss 1.3340338468551636 img loss 1.3341575860977173 img loss 1.3294894695281982 img loss 1.2837759256362915 img loss 1.2307347059249878 img loss 1.22897469997406 img loss 1.2452867031097412 img loss 1.3975852727890015 img loss 1.242811918258667 img loss 1.2534401416778564 img loss 1.293760895729065 img loss 1.226945400238037 img loss 1.2383636236190796 img loss 1.3670679330825806 img loss 1.2861659526824951 img loss 1.296934962272644 img loss 1.2992395162582397 img loss 1.2351826429367065 img loss 1.161324381828308 img loss 1.23595130443573 img loss 1.2708934545516968 img loss 1.1782963275909424 img loss 1.2407530546188354 img loss 1.289162039756775 img loss 1.266741156578064 img loss 1.2875480651855469 img loss 1.2450034618377686 img loss 1.2540085315704346 img loss 1.2885897159576416 img loss 1.3004281520843506 img loss 1.3068684339523315 img loss 1.2684988975524902 img loss 1.2264670133590698 img loss 1.2497152090072632 img loss 1.2817732095718384 img loss 1.2971577644348145 img loss 1.2857067584991455 img loss 1.2501857280731201 img loss 1.2885290384292603 img loss 1.2444103956222534 img loss 1.2642841339111328 img loss 1.2931938171386719 img loss 1.2746950387954712 img loss 1.2282742261886597 img loss 1.1968106031417847 img loss 1.4436843395233154 img loss 1.331398606300354 img loss 1.27187979221344 img loss 1.2781208753585815 img loss 1.3062355518341064 img loss 1.2438758611679077 img loss 1.2199844121932983 img loss 1.2073745727539062 img loss 1.3000935316085815 img loss 1.3528282642364502 img loss 1.2143588066101074 img loss 1.2546314001083374 img loss 1.2581242322921753 img loss 1.2262136936187744 img loss 1.3448851108551025 img loss 1.280958652496338 img loss 1.2160857915878296 img loss 1.2310214042663574 img loss 1.2481828927993774 img loss 1.2578359842300415 img loss 1.3257012367248535 img loss 1.2622196674346924 img loss 1.2261545658111572 img loss 1.3297713994979858 img loss 1.2812789678573608 img loss 1.3299111127853394 img loss 1.2415177822113037 img loss 1.3080142736434937 img loss 1.214040756225586 img loss 1.2086161375045776 img loss 1.2627589702606201 img loss 1.2395092248916626 img loss 1.17684805393219 img loss 1.3266010284423828 img loss 1.2583649158477783 img loss 1.278780460357666 img loss 1.3170603513717651 img loss 1.2810620069503784 img loss 1.3071091175079346 img loss 1.2923866510391235 img loss 1.2360742092132568 img loss 1.2680405378341675 img loss 1.2440717220306396 img loss 1.3330764770507812 img loss 1.2392796277999878 img loss 1.2883161306381226 img loss 1.1465593576431274 img loss 1.2096765041351318 img loss 1.2604520320892334 img loss 1.2147884368896484 img loss 1.2208809852600098 img loss 1.3469736576080322 img loss 1.2033332586288452 img loss 1.2482967376708984 img loss 1.186202883720398 img loss 1.277561068534851 img loss 1.1922575235366821 img loss 1.367613673210144 img loss 1.228067398071289 img loss 1.2419220209121704 img loss 1.2144787311553955 img loss 1.2200672626495361 img loss 1.2370786666870117 img loss 1.2180006504058838 img loss 1.223103404045105 img loss 1.2891173362731934 img loss 1.27373206615448 img loss 1.3112754821777344 img loss 1.2275499105453491 img loss 1.285325050354004 img loss 1.2316936254501343 img loss 1.2443621158599854 img loss 1.243080735206604 img loss 1.220548391342163 img loss 1.3452229499816895 img loss 1.2444565296173096 img loss 1.3264118432998657 img loss 1.2057996988296509 img loss 1.2267311811447144 {'loss': 1.2631, 'grad_norm': 0.2767423987388611, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2298221588134766 img loss 1.1700782775878906 img loss 1.310551404953003 img loss 1.303035020828247 img loss 1.2329086065292358 img loss 1.2181342840194702 img loss 1.131069540977478 img loss 1.2230088710784912 img loss 1.1330633163452148 img loss 1.2080415487289429 img loss 1.2321096658706665 img loss 1.204035758972168 img loss 1.242315649986267 img loss 1.2204235792160034 img loss 1.2564133405685425 img loss 1.2015923261642456 img loss 1.2517948150634766 img loss 1.2221416234970093 img loss 1.2394145727157593 img loss 1.1760227680206299 img loss 1.1742587089538574 img loss 1.3850083351135254 img loss 1.2261748313903809 img loss 1.2461423873901367 img loss 1.3095684051513672 img loss 1.2130804061889648 img loss 1.2141811847686768 img loss 1.1634962558746338 img loss 1.2759500741958618 img loss 1.2575825452804565 img loss 1.2396208047866821 img loss 1.258453130722046 img loss 1.2463493347167969 img loss 1.2152440547943115 img loss 1.2154966592788696 img loss 1.2680072784423828 img loss 1.2556333541870117 img loss 1.1877259016036987 img loss 1.298346757888794 img loss 1.2833867073059082 img loss 1.162810206413269 img loss 1.1796973943710327 img loss 1.2053093910217285 img loss 1.155503749847412 img loss 1.214156985282898 img loss 1.1888630390167236 img loss 1.1956233978271484 img loss 1.2869032621383667 img loss 1.251140832901001 img loss 1.230013132095337 img loss 1.1796855926513672 img loss 1.140489101409912 img loss 1.1810215711593628 img loss 1.2059863805770874 img loss 1.2674757242202759 img loss 1.2320630550384521 img loss 1.2729980945587158 img loss 1.2509963512420654 img loss 1.2266496419906616 img loss 1.1645971536636353 img loss 1.2507812976837158 img loss 1.2435150146484375 img loss 1.265753984451294 img loss 1.1862331628799438 img loss 1.2128846645355225 img loss 1.1999008655548096 img loss 1.2697486877441406 img loss 1.1814182996749878 img loss 1.1654525995254517 img loss 1.2272391319274902 img loss 1.2455507516860962 img loss 1.2072380781173706 img loss 1.215428352355957 img loss 1.260094165802002 img loss 1.1796855926513672 img loss 1.2342630624771118 img loss 1.2114585638046265 img loss 1.3109796047210693 img loss 1.2170170545578003 img loss 1.242801308631897 img loss 1.169482946395874 img loss 1.2013524770736694 img loss 1.17503821849823 img loss 1.2866836786270142 img loss 1.1948981285095215 img loss 1.2500803470611572 img loss 1.35560941696167 img loss 1.3023638725280762 img loss 1.1073427200317383 img loss 1.2334952354431152 img loss 1.346433162689209 img loss 1.2243287563323975 img loss 1.198889970779419 img loss 1.2467453479766846 img loss 1.226203203201294 img loss 1.2013157606124878 img loss 1.1709606647491455 img loss 1.2133784294128418 img loss 1.2133649587631226 img loss 1.2307939529418945 img loss 1.1999987363815308 img loss 1.1668380498886108 img loss 1.184395670890808 img loss 1.1744747161865234 img loss 1.2226402759552002 img loss 1.1732571125030518 img loss 1.2240618467330933 img loss 1.2299492359161377 img loss 1.1919746398925781 img loss 1.2442002296447754 img loss 1.257550835609436 img loss 1.1830939054489136 img loss 1.3185176849365234 img loss 1.1630998849868774 img loss 1.207963466644287 img loss 1.1917527914047241 img loss 1.2114826440811157 img loss 1.19219970703125 img loss 1.268960952758789 img loss 1.3329052925109863 img loss 1.2019596099853516 img loss 1.209450364112854 img loss 1.1891686916351318 img loss 1.2612724304199219 img loss 1.2407774925231934 img loss 1.2507823705673218 img loss 1.1422417163848877 img loss 1.1483049392700195 {'loss': 1.2234, 'grad_norm': 0.4031211733818054, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2260217666625977 img loss 1.181689739227295 img loss 1.2834439277648926 img loss 1.1045430898666382 img loss 1.2248257398605347 img loss 1.160439133644104 img loss 1.2061750888824463 img loss 1.2293453216552734 img loss 1.2211909294128418 img loss 1.2227462530136108 img loss 1.1870497465133667 img loss 1.1461880207061768 img loss 1.126366138458252 img loss 1.1290088891983032 img loss 1.1679255962371826 img loss 1.2225098609924316 img loss 1.112917423248291 img loss 1.2170084714889526 img loss 1.2087866067886353 img loss 1.2412641048431396 img loss 1.16535222530365 img loss 1.205255389213562 img loss 1.1961942911148071 img loss 1.2125656604766846 img loss 1.1545908451080322 img loss 1.1801812648773193 img loss 1.1144689321517944 img loss 1.2590726613998413 img loss 1.1827205419540405 img loss 1.1279109716415405 img loss 1.1601513624191284 img loss 1.188399314880371 img loss 1.1969163417816162 img loss 1.1356251239776611 img loss 1.1397335529327393 img loss 1.1515167951583862 img loss 1.2044788599014282 img loss 1.1114850044250488 img loss 1.2056587934494019 img loss 1.137426495552063 img loss 1.244014024734497 img loss 1.1565966606140137 img loss 1.1801646947860718 img loss 1.099752426147461 img loss 1.1793612241744995 img loss 1.225512146949768 img loss 1.2651164531707764 img loss 1.1340875625610352 img loss 1.1722500324249268 img loss 1.2057117223739624 img loss 1.227172613143921 img loss 1.1777530908584595 img loss 1.18385648727417 img loss 1.2093006372451782 img loss 1.2059615850448608 img loss 1.1247552633285522 img loss 1.2193963527679443 img loss 1.2015132904052734 img loss 1.2208752632141113 img loss 1.137807846069336 img loss 1.1106488704681396 img loss 1.1712799072265625 img loss 1.0941417217254639 img loss 1.221393346786499 img loss 1.1358379125595093 img loss 1.2566988468170166 img loss 1.097063660621643 img loss 1.1806999444961548 img loss 1.206744909286499 img loss 1.2032822370529175 img loss 1.1682533025741577 img loss 1.0704381465911865 img loss 1.1329216957092285 img loss 1.1996263265609741 img loss 1.1764211654663086 img loss 1.1849186420440674 img loss 1.164710521697998 img loss 1.1799726486206055 img loss 1.1371731758117676 img loss 1.1537615060806274 img loss 1.2955448627471924 img loss 1.1786839962005615 img loss 1.1783368587493896 img loss 1.1527202129364014 img loss 1.1249854564666748 img loss 1.1229054927825928 img loss 1.196337103843689 img loss 1.1235215663909912 img loss 1.1171393394470215 img loss 1.1390560865402222 img loss 1.147031545639038 img loss 1.1177966594696045 img loss 1.190524697303772 img loss 1.3053287267684937 img loss 1.1380324363708496 img loss 1.073679804801941 img loss 1.2312153577804565 img loss 1.2697484493255615 img loss 1.1833937168121338 img loss 1.2131065130233765 img loss 1.2330726385116577 img loss 1.112192153930664 img loss 1.2058199644088745 img loss 1.1945281028747559 img loss 1.2517781257629395 img loss 1.174396276473999 img loss 1.2042890787124634 img loss 1.1885290145874023 img loss 1.1135836839675903 img loss 1.14401376247406 img loss 1.1384599208831787 img loss 1.1329065561294556 img loss 1.158108115196228 img loss 1.1762919425964355 img loss 1.1768913269042969 img loss 1.1565808057785034 img loss 1.1854499578475952 img loss 1.0959162712097168 img loss 1.0931074619293213 img loss 1.170269250869751 img loss 1.1467393636703491 img loss 1.2091587781906128 img loss 1.2255483865737915 img loss 1.1860440969467163 img loss 1.2324028015136719 img loss 1.1749693155288696 img loss 1.1874957084655762 img loss 1.2611973285675049 {'loss': 1.1773, 'grad_norm': 0.25342240929603577, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.534934163093567 img loss 1.6218228340148926 img loss 1.6898877620697021 img loss 1.5752836465835571 img loss 1.6482923030853271 img loss 1.5378434658050537 img loss 1.5473145246505737 img loss 1.7245124578475952 img loss 1.7155895233154297 img loss 1.512370228767395 img loss 1.556858777999878 img loss 1.5887151956558228 img loss 1.615563154220581 img loss 1.3874949216842651 img loss 1.5652142763137817 img loss 1.6083855628967285 img loss 1.5297977924346924 img loss 1.5766243934631348 img loss 1.804938554763794 img loss 1.489709734916687 img loss 1.5252954959869385 img loss 1.5692417621612549 img loss 1.7303612232208252 img loss 1.5467132329940796 img loss 1.647454023361206 img loss 1.6814429759979248 img loss 1.7276252508163452 img loss 1.6362823247909546 img loss 1.4938260316848755 img loss 1.6969548463821411 img loss 1.6108487844467163 img loss 1.6663930416107178 img loss 1.540615200996399 img loss 1.4940680265426636 img loss 1.6734973192214966 img loss 1.541440486907959 img loss 1.7926678657531738 img loss 1.7132346630096436 img loss 1.7015630006790161 img loss 1.7454333305358887 img loss 1.478718638420105 img loss 1.5329067707061768 img loss 1.4774209260940552 img loss 1.5404503345489502 img loss 1.5529011487960815 img loss 1.5512439012527466 img loss 1.5284067392349243 img loss 1.625083565711975 img loss 1.65902841091156 img loss 1.5072743892669678 img loss 1.498885989189148 img loss 1.6298598051071167 img loss 1.4158269166946411 img loss 1.7439706325531006 img loss 1.654151201248169 img loss 1.6503437757492065 img loss 1.6318267583847046 img loss 1.7202177047729492 img loss 1.5683702230453491 img loss 1.5335255861282349 img loss 1.6048824787139893 img loss 1.57465398311615 img loss 1.5357307195663452 img loss 1.7566487789154053 img loss 1.4988394975662231 img loss 1.776380181312561 img loss 1.6847046613693237 img loss 1.723114252090454 img loss 1.714748740196228 img loss 1.6839572191238403 img loss 1.5983620882034302 img loss 1.5754001140594482 img loss 1.5553001165390015 img loss 1.6673407554626465 img loss 1.6786301136016846 img loss 1.6382182836532593 img loss 1.5220831632614136 img loss 1.4691375494003296 img loss 1.6239491701126099 img loss 1.5816348791122437 img loss 1.5480507612228394 img loss 1.5854207277297974 img loss 1.5717819929122925 img loss 1.5156261920928955 img loss 1.5112649202346802 img loss 1.4411834478378296 img loss 1.4702826738357544 img loss 1.5200773477554321 img loss 1.593115210533142 img loss 1.6117069721221924 img loss 1.6284763813018799 img loss 1.4860920906066895 img loss 1.45571768283844 img loss 1.5418003797531128 img loss 1.583606243133545 img loss 1.5103716850280762 img loss 1.6874535083770752 img loss 1.6090500354766846 img loss 1.4651435613632202 img loss 1.5603975057601929 img loss 1.5268670320510864 img loss 1.6982417106628418 img loss 1.4896998405456543 img loss 1.7709314823150635 img loss 1.4661632776260376 img loss 1.566017746925354 img loss 1.6142590045928955 img loss 1.6166270971298218 img loss 1.488226056098938 img loss 1.503832459449768 img loss 1.5680263042449951 img loss 1.4421734809875488 img loss 1.6466833353042603 img loss 1.4977374076843262 img loss 1.4850715398788452 img loss 1.7270313501358032 img loss 1.473650336265564 img loss 1.6623406410217285 img loss 1.7174656391143799img loss 1.604184627532959img loss 1.6520639657974243 img loss 1.5857363939285278 img loss 1.6089600324630737 img loss 1.6969311237335205 img loss 1.5602014064788818 img loss 1.6051377058029175 img loss 1.6291776895523071 img loss 1.6247082948684692 {'loss': 1.5934, 'grad_norm': 0.3013336956501007, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.375283122062683 img loss 1.2232271432876587 img loss 1.2889817953109741 img loss 1.3315882682800293 img loss 1.2467674016952515 img loss 1.278218150138855 img loss 1.295090913772583 img loss 1.3059377670288086 img loss 1.3359802961349487 img loss 1.243050217628479 img loss 1.3097862005233765 img loss 1.2626079320907593 img loss 1.2033004760742188 img loss 1.2623860836029053 img loss 1.3525135517120361 img loss 1.3077032566070557 img loss 1.3384191989898682 img loss 1.356423258781433 img loss 1.3018442392349243 img loss 1.2165017127990723 img loss 1.2584444284439087 img loss 1.3471770286560059 img loss 1.2615886926651 img loss 1.2798000574111938 img loss 1.3170526027679443 img loss 1.293008804321289 img loss 1.2389767169952393 img loss 1.2997936010360718 img loss 1.3376202583312988 img loss 1.3124656677246094 img loss 1.2464826107025146 img loss 1.2223808765411377 img loss 1.235371470451355 img loss 1.2456035614013672 img loss 1.2786298990249634 img loss 1.3087198734283447 img loss 1.3052458763122559 img loss 1.2779022455215454 img loss 1.3366395235061646 img loss 1.2646980285644531 img loss 1.3355802297592163 img loss 1.3942694664001465img loss 1.3336217403411865 img loss 1.373085856437683 img loss 1.2699798345565796 img loss 1.3848052024841309 img loss 1.3271431922912598 img loss 1.2116270065307617 img loss 1.2551835775375366 img loss 1.3085417747497559 img loss 1.24893057346344 img loss 1.2697043418884277 img loss 1.346676230430603 img loss 1.2723674774169922 img loss 1.3402302265167236 img loss 1.211727499961853 img loss 1.2503602504730225 img loss 1.302663803100586 img loss 1.2588317394256592 img loss 1.366753101348877 img loss 1.2838315963745117img loss 1.2028121948242188 img loss 1.2886090278625488 img loss 1.3668755292892456 img loss 1.2659204006195068 img loss 1.4195157289505005 img loss 1.306490182876587 img loss 1.2967009544372559 img loss 1.239012360572815 img loss 1.2876781225204468 img loss 1.3482754230499268 img loss 1.2695120573043823 img loss 1.2432531118392944 img loss 1.2637956142425537 img loss 1.3355783224105835 img loss 1.346752643585205 img loss 1.317264437675476 img loss 1.1913117170333862 img loss 1.3082716464996338 img loss 1.317105770111084 img loss 1.2436769008636475 img loss 1.3242127895355225 img loss 1.2688862085342407 img loss 1.2827726602554321 img loss 1.3046011924743652 img loss 1.4341816902160645 img loss 1.2903028726577759 img loss 1.2612959146499634 img loss 1.2844005823135376 img loss 1.3093609809875488 img loss 1.2898070812225342 img loss 1.346139669418335 img loss 1.2739919424057007 img loss 1.3882089853286743 img loss 1.207233190536499 img loss 1.2913789749145508 img loss 1.3374792337417603 img loss 1.331634521484375 img loss 1.347775936126709 img loss 1.320149302482605 img loss 1.3623173236846924 img loss 1.327521800994873 img loss 1.290637493133545 img loss 1.3187391757965088 img loss 1.3385710716247559 img loss 1.2413685321807861 img loss 1.3535182476043701 img loss 1.2572722434997559 img loss 1.3743005990982056 img loss 1.3024109601974487 img loss 1.2599798440933228 img loss 1.24639093875885 img loss 1.3509459495544434 img loss 1.1892733573913574 img loss 1.2781009674072266 img loss 1.367195725440979 img loss 1.3445898294448853 img loss 1.2941864728927612 img loss 1.3092135190963745 img loss 1.346521019935608 img loss 1.236891746520996 img loss 1.2935278415679932 img loss 1.2422385215759277 img loss 1.3176101446151733 img loss 1.2879607677459717 img loss 1.4006961584091187 img loss 1.2912912368774414 img loss 1.2606456279754639 {'loss': 1.2975, 'grad_norm': 0.4709479808807373, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1852343082427979 img loss 1.1722453832626343 img loss 1.3151183128356934 img loss 1.2288799285888672 img loss 1.212287425994873 img loss 1.230407476425171 img loss 1.2788418531417847 img loss 1.2224769592285156 img loss 1.2764475345611572 img loss 1.3058815002441406 img loss 1.3082131147384644 img loss 1.205868124961853 img loss 1.216845989227295 img loss 1.3149147033691406 img loss 1.2539334297180176 img loss 1.2409790754318237 img loss 1.2824671268463135 img loss 1.2529582977294922 img loss 1.249468207359314 img loss 1.372443437576294 img loss 1.2398757934570312 img loss 1.3117269277572632 img loss 1.2744066715240479 img loss 1.225481390953064 img loss 1.2162983417510986 img loss 1.2342723608016968 img loss 1.240638017654419 img loss 1.160835862159729 img loss 1.220659613609314 img loss 1.3557575941085815 img loss 1.252860426902771 img loss 1.2013092041015625 img loss 1.2378203868865967 img loss 1.2521603107452393 img loss 1.2472561597824097 img loss 1.2480854988098145 img loss 1.2470934391021729 img loss 1.2680308818817139 img loss 1.3302558660507202 img loss 1.1952028274536133 img loss 1.1369736194610596 img loss 1.3650749921798706 img loss 1.3281097412109375 img loss 1.2912448644638062 img loss 1.2701632976531982 img loss 1.3169735670089722 img loss 1.3388670682907104 img loss 1.2672594785690308 img loss 1.2330114841461182 img loss 1.3479082584381104 img loss 1.2797354459762573 img loss 1.2323459386825562 img loss 1.2250878810882568 img loss 1.2197492122650146 img loss 1.2560186386108398 img loss 1.26644766330719 img loss 1.2680994272232056 img loss 1.2759337425231934 img loss 1.2955148220062256 img loss 1.2417118549346924 img loss 1.2142390012741089 img loss 1.2814948558807373 img loss 1.2630773782730103 img loss 1.148673415184021 img loss 1.2734779119491577 img loss 1.3397470712661743 img loss 1.32122802734375 img loss 1.185923457145691 img loss 1.293877363204956 img loss 1.1915109157562256 img loss 1.3897340297698975 img loss 1.3401089906692505 img loss 1.2077674865722656 img loss 1.259071946144104 img loss 1.264477014541626 img loss 1.2950541973114014 img loss 1.1878182888031006 img loss 1.3040685653686523 img loss 1.2888211011886597 img loss 1.2226670980453491 img loss 1.2974777221679688 img loss 1.3091720342636108 img loss 1.2425661087036133 img loss 1.258543848991394 img loss 1.3087259531021118 img loss 1.2048470973968506 img loss 1.2578885555267334 img loss 1.1648764610290527 img loss 1.2955683469772339 img loss 1.2201647758483887 img loss 1.3291362524032593 img loss 1.280665636062622 img loss 1.4052252769470215 img loss 1.1999890804290771 img loss 1.2664231061935425 img loss 1.2954775094985962 img loss 1.2032585144042969 img loss 1.1440500020980835 img loss 1.185309648513794 img loss 1.3398879766464233 img loss 1.2268028259277344 img loss 1.26462721824646 img loss 1.342719316482544 img loss 1.2849830389022827 img loss 1.2163289785385132 img loss 1.1940417289733887 img loss 1.3022722005844116 img loss 1.2221746444702148 img loss 1.2180620431900024 img loss 1.2409559488296509 img loss 1.2945001125335693 img loss 1.1965080499649048 img loss 1.2838249206542969 img loss 1.2456331253051758 img loss 1.2794387340545654 img loss 1.3239421844482422 img loss 1.2673280239105225 img loss 1.2489945888519287 img loss 1.2200783491134644 img loss 1.312685489654541 img loss 1.2324180603027344 img loss 1.2276853322982788 img loss 1.2712008953094482 img loss 1.3260631561279297 img loss 1.3190512657165527 img loss 1.3550199270248413 img loss 1.2688063383102417 img loss 1.302379846572876 {'loss': 1.2618, 'grad_norm': 0.24223457276821136, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1633241176605225 img loss 1.2113592624664307 img loss 1.1877191066741943 img loss 1.1015567779541016 img loss 1.2238495349884033 img loss 1.2498012781143188 img loss 1.1820318698883057 img loss 1.125390887260437 img loss 1.1734691858291626 img loss 1.3184798955917358 img loss 1.2359453439712524 img loss 1.3036274909973145 img loss 1.1713358163833618 img loss 1.2328633069992065 img loss 1.1689783334732056 img loss 1.1867120265960693 img loss 1.1626039743423462 img loss 1.3053654432296753 img loss 1.2319400310516357 img loss 1.1781185865402222 img loss 1.149324655532837 img loss 1.1593061685562134 img loss 1.2544586658477783 img loss 1.2250938415527344 img loss 1.2455641031265259 img loss 1.2006843090057373 img loss 1.1363577842712402 img loss 1.2322165966033936 img loss 1.2768588066101074 img loss 1.1900547742843628 img loss 1.2586227655410767 img loss 1.230340600013733 img loss 1.0830078125 img loss 1.1951038837432861 img loss 1.2115353345870972 img loss 1.2203505039215088 img loss 1.2470009326934814 img loss 1.2216001749038696 img loss 1.2472103834152222 img loss 1.1549696922302246 img loss 1.258355975151062 img loss 1.1857032775878906 img loss 1.2397747039794922 img loss 1.2438675165176392 img loss 1.2508549690246582 img loss 1.1867398023605347 img loss 1.2574424743652344 img loss 1.2511932849884033 img loss 1.2618153095245361 img loss 1.2083203792572021 img loss 1.2504295110702515 img loss 1.1985714435577393 img loss 1.2037122249603271 img loss 1.2427459955215454 img loss 1.2421681880950928 img loss 1.2076451778411865 img loss 1.2110456228256226 img loss 1.225906252861023 img loss 1.2279369831085205 img loss 1.2348475456237793 img loss 1.2065634727478027 img loss 1.22336745262146 img loss 1.2055039405822754 img loss 1.2738407850265503 img loss 1.2150830030441284 img loss 1.2099674940109253 img loss 1.2744375467300415 img loss 1.2244877815246582 img loss 1.2396916151046753 img loss 1.131682276725769 img loss 1.1985183954238892 img loss 1.2195637226104736 img loss 1.210627555847168 img loss 1.231972098350525 img loss 1.238901138305664 img loss 1.2195560932159424 img loss 1.1266628503799438 img loss 1.210968255996704 img loss 1.2004536390304565 img loss 1.2656217813491821 img loss 1.1315964460372925 img loss 1.2672399282455444 img loss 1.25103759765625 img loss 1.1398838758468628 img loss 1.266792893409729 img loss 1.1950739622116089 img loss 1.14749276638031 img loss 1.2412950992584229 img loss 1.2511374950408936 img loss 1.2627283334732056 img loss 1.1879743337631226 img loss 1.2030768394470215 img loss 1.2369747161865234 img loss 1.2037471532821655 img loss 1.2511910200119019 img loss 1.1767959594726562 img loss 1.2381432056427002 img loss 1.199076533317566 img loss 1.1810531616210938 img loss 1.1476467847824097 img loss 1.2538799047470093 img loss 1.2210586071014404 img loss 1.1557512283325195 img loss 1.2415125370025635 img loss 1.2734575271606445 img loss 1.2302712202072144 img loss 1.2033660411834717 img loss 1.1870791912078857 img loss 1.2260583639144897 img loss 1.1784014701843262 img loss 1.2680469751358032 img loss 1.2811230421066284 img loss 1.2377231121063232img loss 1.19382643699646img loss 1.269274115562439 img loss 1.2025388479232788 img loss 1.2703614234924316 img loss 1.2391417026519775 img loss 1.2342894077301025 img loss 1.1678136587142944 img loss 1.2281067371368408 img loss 1.2187743186950684 img loss 1.2452036142349243 img loss 1.2466706037521362 img loss 1.1785553693771362 img loss 1.1743305921554565 img loss 1.1579607725143433 img loss 1.2139571905136108 {'loss': 1.2152, 'grad_norm': 0.26523101329803467, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1853938102722168 img loss 1.2671127319335938 img loss 1.381778359413147 img loss 1.2676429748535156 img loss 1.2639076709747314 img loss 1.2592861652374268 img loss 1.2403168678283691 img loss 1.3651660680770874 img loss 1.26065993309021 img loss 1.2760233879089355 img loss 1.1900888681411743 img loss 1.2373034954071045 img loss 1.2607749700546265 img loss 1.2613967657089233 img loss 1.2308558225631714 img loss 1.3917193412780762 img loss 1.247852087020874 img loss 1.2523648738861084 img loss 1.2207863330841064 img loss 1.227762222290039 img loss 1.261240839958191 img loss 1.2171571254730225 img loss 1.252864122390747 img loss 1.2387360334396362 img loss 1.2659215927124023 img loss 1.2542463541030884 img loss 1.1999256610870361 img loss 1.3114538192749023 img loss 1.261512279510498 img loss 1.3292139768600464 img loss 1.276303768157959 img loss 1.21990168094635 img loss 1.243726134300232 img loss 1.1962852478027344 img loss 1.2326020002365112 img loss 1.2686634063720703 img loss 1.3380111455917358 img loss 1.232937216758728 img loss 1.2891374826431274 img loss 1.2391774654388428 img loss 1.2321604490280151 img loss 1.3553783893585205 img loss 1.2297048568725586 img loss 1.2892802953720093 img loss 1.2728989124298096 img loss 1.2757612466812134 img loss 1.2953014373779297 img loss 1.2601275444030762 img loss 1.3016247749328613 img loss 1.3153493404388428 img loss 1.270002007484436 img loss 1.233296275138855 img loss 1.3166636228561401 img loss 1.3356541395187378 img loss 1.2295098304748535 img loss 1.3039188385009766 img loss 1.2625751495361328 img loss 1.2494540214538574 img loss 1.2107410430908203 img loss 1.2777926921844482 img loss 1.252726435661316 img loss 1.2266952991485596 img loss 1.3450980186462402 img loss 1.329128623008728 img loss 1.2068116664886475 img loss 1.3098480701446533 img loss 1.234865427017212 img loss 1.2625471353530884 img loss 1.2900097370147705 img loss 1.2547858953475952 img loss 1.1736220121383667 img loss 1.2874159812927246img loss 1.2044293880462646 img loss 1.3526089191436768 img loss 1.23960280418396 img loss 1.2737400531768799 img loss 1.2724651098251343 img loss 1.2152435779571533 img loss 1.2279232740402222 img loss 1.2883228063583374 img loss 1.2739781141281128 img loss 1.2730823755264282 img loss 1.311377763748169 img loss 1.2759650945663452 img loss 1.3124147653579712 img loss 1.2611100673675537 img loss 1.2793805599212646 img loss 1.2496356964111328 img loss 1.2510474920272827 img loss 1.2680996656417847 img loss 1.2214157581329346 img loss 1.2592648267745972 img loss 1.2129340171813965 img loss 1.296535849571228 img loss 1.2697436809539795 img loss 1.288473129272461 img loss 1.2774860858917236 img loss 1.3085161447525024 img loss 1.2128218412399292 img loss 1.2576841115951538 img loss 1.192428469657898 img loss 1.287139654159546 img loss 1.2311939001083374 img loss 1.3258509635925293 img loss 1.245235800743103 img loss 1.24350905418396 img loss 1.3562853336334229 img loss 1.3070554733276367 img loss 1.3060147762298584 img loss 1.2817342281341553 img loss 1.322974681854248 img loss 1.2145432233810425 img loss 1.3178691864013672 img loss 1.2075706720352173 img loss 1.1746256351470947 img loss 1.2716784477233887 img loss 1.3066651821136475 img loss 1.333604097366333 img loss 1.2259762287139893 img loss 1.27768874168396 img loss 1.1223585605621338 img loss 1.224953293800354 img loss 1.2189862728118896 img loss 1.2745780944824219 img loss 1.2246077060699463 img loss 1.2048945426940918 img loss 1.280486822128296 img loss 1.2711435556411743 {'loss': 1.264, 'grad_norm': 0.21193276345729828, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3128935098648071 img loss 1.2277488708496094 img loss 1.187619924545288 img loss 1.2483420372009277 img loss 1.2705776691436768 img loss 1.2259135246276855 img loss 1.24130380153656 img loss 1.2086784839630127 img loss 1.262581706047058 img loss 1.2076352834701538 img loss 1.210924506187439 img loss 1.155144214630127 img loss 1.1706470251083374 img loss 1.3046506643295288 img loss 1.1586332321166992 img loss 1.2601155042648315 img loss 1.218437910079956 img loss 1.253882646560669 img loss 1.255914330482483 img loss 1.1760807037353516 img loss 1.3094638586044312 img loss 1.2369306087493896 img loss 1.1854215860366821 img loss 1.2773159742355347 img loss 1.2612779140472412 img loss 1.3005354404449463 img loss 1.2589231729507446 img loss 1.2033966779708862 img loss 1.2870397567749023 img loss 1.1651719808578491 img loss 1.179992437362671 img loss 1.146170973777771 img loss 1.2342249155044556 img loss 1.163520336151123 img loss 1.198941946029663 img loss 1.1127487421035767 img loss 1.1962226629257202 img loss 1.2526806592941284 img loss 1.2441191673278809 img loss 1.1103633642196655 img loss 1.2171134948730469 img loss 1.2538349628448486 img loss 1.209827184677124 img loss 1.2311224937438965 img loss 1.25265371799469 img loss 1.2486226558685303 img loss 1.2124042510986328 img loss 1.1985174417495728 img loss 1.1894772052764893 img loss 1.1970465183258057 img loss 1.2463467121124268 img loss 1.1840357780456543 img loss 1.2184151411056519 img loss 1.1871565580368042 img loss 1.1678415536880493 img loss 1.2473669052124023 img loss 1.3417468070983887 img loss 1.2302156686782837 img loss 1.2520873546600342 img loss 1.165903925895691 img loss 1.1438812017440796 img loss 1.2310199737548828 img loss 1.2680854797363281 img loss 1.2115278244018555 img loss 1.159098505973816 img loss 1.245876669883728 img loss 1.1364576816558838 img loss 1.2392925024032593 img loss 1.2589237689971924 img loss 1.346994161605835 img loss 1.1935876607894897 img loss 1.2393414974212646 img loss 1.2150399684906006 img loss 1.2346689701080322 img loss 1.2276562452316284 img loss 1.2205358743667603 img loss 1.2846568822860718 img loss 1.2583260536193848 img loss 1.177945613861084 img loss 1.1355377435684204 img loss 1.2126553058624268 img loss 1.2680010795593262 img loss 1.186930537223816 img loss 1.2705097198486328 img loss 1.308349609375 img loss 1.1141437292099 img loss 1.2149193286895752 img loss 1.2027403116226196 img loss 1.2789483070373535 img loss 1.1828645467758179 img loss 1.1198084354400635 img loss 1.3379639387130737 img loss 1.2727673053741455 img loss 1.254835605621338 img loss 1.3070881366729736 img loss 1.1560742855072021 img loss 1.2033092975616455 img loss 1.2035783529281616 img loss 1.24381685256958 img loss 1.192423701286316 img loss 1.3554421663284302 img loss 1.1950368881225586 img loss 1.2178491353988647 img loss 1.2956960201263428 img loss 1.2622346878051758 img loss 1.2220131158828735 img loss 1.2581156492233276 img loss 1.2106335163116455 img loss 1.2457163333892822 img loss 1.2028794288635254 img loss 1.140525221824646 img loss 1.2476410865783691 img loss 1.2300312519073486 img loss 1.223345398902893 img loss 1.2479932308197021 img loss 1.1860311031341553 img loss 1.3144400119781494 img loss 1.2339398860931396 img loss 1.1743115186691284 img loss 1.192909836769104 img loss 1.2279324531555176 img loss 1.2163872718811035 img loss 1.1695561408996582 img loss 1.121936321258545 img loss 1.1909679174423218 img loss 1.0991648435592651 img loss 1.2468287944793701 img loss 1.250395655632019 {'loss': 1.2225, 'grad_norm': 0.23988068103790283, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2797026634216309 img loss 1.373568058013916 img loss 1.2528564929962158 img loss 1.1838191747665405 img loss 1.3233869075775146 img loss 1.2915655374526978 img loss 1.211860179901123 img loss 1.2622356414794922 img loss 1.3222599029541016 img loss 1.371161699295044 img loss 1.2550156116485596 img loss 1.2889584302902222 img loss 1.2382787466049194 img loss 1.3815864324569702 img loss 1.3592236042022705 img loss 1.2579340934753418 img loss 1.1765573024749756 img loss 1.2114219665527344 img loss 1.2706915140151978 img loss 1.240648627281189 img loss 1.3222229480743408 img loss 1.2253698110580444 img loss 1.278721809387207 img loss 1.2589409351348877 img loss 1.351955533027649 img loss 1.2928047180175781 img loss 1.2583509683609009 img loss 1.3593233823776245 img loss 1.3654052019119263 img loss 1.2417939901351929 img loss 1.3480383157730103 img loss 1.267810583114624 img loss 1.301499605178833 img loss 1.324143648147583 img loss 1.329291820526123 img loss 1.3440552949905396 img loss 1.2298412322998047 img loss 1.370358943939209 img loss 1.3365474939346313 img loss 1.1786541938781738 img loss 1.3075363636016846 img loss 1.2602981328964233 img loss 1.3325741291046143 img loss 1.2196388244628906 img loss 1.4500877857208252 img loss 1.283884882926941 img loss 1.2435858249664307 img loss 1.315670371055603 img loss 1.2929314374923706 img loss 1.3169240951538086 img loss 1.4367643594741821 img loss 1.3129048347473145 img loss 1.3457528352737427 img loss 1.3965734243392944 img loss 1.322079062461853 img loss 1.2984920740127563 img loss 1.3013557195663452 img loss 1.338311791419983 img loss 1.2777118682861328 img loss 1.2619270086288452 img loss 1.2796745300292969 img loss 1.3524764776229858 img loss 1.2441692352294922 img loss 1.2842425107955933 img loss 1.3823693990707397 img loss 1.3410696983337402 img loss 1.3168267011642456 img loss 1.2658655643463135 img loss 1.3406414985656738 img loss 1.2709344625473022 img loss 1.2992099523544312 img loss 1.2986820936203003 img loss 1.3307042121887207 img loss 1.4341853857040405 img loss 1.2397793531417847 img loss 1.3502068519592285 img loss 1.324930191040039 img loss 1.2440834045410156 img loss 1.2741050720214844 img loss 1.3344675302505493 img loss 1.2815067768096924 img loss 1.2775180339813232 img loss 1.3458492755889893 img loss 1.2874987125396729 img loss 1.346035122871399 img loss 1.2902297973632812 img loss 1.3357384204864502 img loss 1.2229437828063965 img loss 1.255626916885376 img loss 1.2169184684753418 img loss 1.2619365453720093 img loss 1.18366277217865 img loss 1.2936581373214722 img loss 1.400560975074768 img loss 1.2842012643814087 img loss 1.2452675104141235 img loss 1.2364424467086792 img loss 1.2309377193450928 img loss 1.2701057195663452 img loss 1.1676902770996094 img loss 1.3201260566711426 img loss 1.2191978693008423 img loss 1.3105871677398682 img loss 1.2989658117294312 img loss 1.3740657567977905 img loss 1.2457022666931152 img loss 1.246150255203247 img loss 1.2700432538986206 img loss 1.2251383066177368 img loss 1.3705382347106934 img loss 1.2827415466308594 img loss 1.167137622833252 img loss 1.192614197731018 img loss 1.2745527029037476 img loss 1.2055401802062988 img loss 1.2607204914093018 img loss 1.3685115575790405 img loss 1.2813938856124878 img loss 1.3374775648117065 img loss 1.2696211338043213 img loss 1.2341065406799316 img loss 1.4228042364120483 img loss 1.2593326568603516 img loss 1.264559268951416 img loss 1.322163462638855 img loss 1.2777026891708374 img loss 1.410854697227478 img loss 1.239624261856079 {'loss': 1.2926, 'grad_norm': 0.3057696521282196, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2864277362823486 img loss 1.2287027835845947 img loss 1.2353466749191284 img loss 1.2279129028320312 img loss 1.2142740488052368 img loss 1.1689369678497314 img loss 1.1907727718353271 img loss 1.1855207681655884 img loss 1.1223286390304565 img loss 1.3477730751037598 img loss 1.1964776515960693 img loss 1.204951524734497 img loss 1.2662646770477295 img loss 1.198159098625183 img loss 1.2009553909301758 img loss 1.1845736503601074 img loss 1.2615244388580322 img loss 1.2582430839538574 img loss 1.1717497110366821 img loss 1.2106318473815918 img loss 1.2286248207092285 img loss 1.2232240438461304 img loss 1.2102406024932861 img loss 1.239458441734314 img loss 1.208361268043518 img loss 1.367470622062683 img loss 1.2119512557983398 img loss 1.180586814880371 img loss 1.2835298776626587 img loss 1.2109243869781494 img loss 1.1675539016723633 img loss 1.2106750011444092 img loss 1.227036952972412 img loss 1.2463654279708862 img loss 1.2385801076889038 img loss 1.2648437023162842 img loss 1.189995288848877 img loss 1.2194440364837646 img loss 1.1706818342208862 img loss 1.1646645069122314 img loss 1.1719788312911987 img loss 1.2019109725952148 img loss 1.1687761545181274 img loss 1.3089717626571655 img loss 1.2414660453796387 img loss 1.2308375835418701 img loss 1.2174688577651978 img loss 1.1947064399719238 img loss 1.209464430809021 img loss 1.255264163017273 img loss 1.2735016345977783 img loss 1.2480627298355103 img loss 1.2598234415054321 img loss 1.196761965751648 img loss 1.232909083366394 img loss 1.224193811416626 img loss 1.267302393913269 img loss 1.2364810705184937 img loss 1.2566921710968018 img loss 1.1831908226013184 img loss 1.1889493465423584 img loss 1.2390695810317993 img loss 1.2204176187515259 img loss 1.2188429832458496 img loss 1.2450015544891357 img loss 1.2493765354156494 img loss 1.2451456785202026 img loss 1.2235348224639893 img loss 1.3121156692504883 img loss 1.2381809949874878 img loss 1.2473599910736084 img loss 1.2150291204452515 img loss 1.230279564857483 img loss 1.1870415210723877 img loss 1.2461928129196167 img loss 1.1462029218673706 img loss 1.1846821308135986 img loss 1.2750074863433838 img loss 1.1561827659606934 img loss 1.2312407493591309 img loss 1.2498371601104736 img loss 1.2590330839157104 img loss 1.2583355903625488 img loss 1.231013536453247 img loss 1.19743812084198 img loss 1.1734645366668701 img loss 1.2468280792236328 img loss 1.2676913738250732 img loss 1.1611179113388062 img loss 1.1997631788253784 img loss 1.290022850036621 img loss 1.1809957027435303 img loss 1.1887125968933105 img loss 1.344470739364624 img loss 1.2442944049835205 img loss 1.2178289890289307 img loss 1.2647565603256226 img loss 1.2893197536468506 img loss 1.220372200012207 img loss 1.307866096496582 img loss 1.2400810718536377 img loss 1.2426154613494873 img loss 1.2911709547042847 img loss 1.2797454595565796 img loss 1.1401535272598267 img loss 1.19240403175354 img loss 1.2334439754486084 img loss 1.2063355445861816 img loss 1.22091543674469 img loss 1.2330107688903809 img loss 1.2919039726257324 img loss 1.2269012928009033 img loss 1.2463116645812988 img loss 1.1784508228302002 img loss 1.239786148071289 img loss 1.3149960041046143 img loss 1.2248390913009644 img loss 1.3256025314331055 img loss 1.220384120941162 img loss 1.2907116413116455 img loss 1.2881169319152832 img loss 1.2326968908309937 img loss 1.1922746896743774 img loss 1.1970398426055908 img loss 1.3287999629974365 img loss 1.2295706272125244 img loss 1.1727805137634277 img loss 1.2416002750396729 {'loss': 1.2299, 'grad_norm': 0.4283596873283386, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3560404777526855 img loss 1.3152291774749756 img loss 1.4300786256790161 img loss 1.511847972869873 img loss 1.3340743780136108 img loss 1.3871363401412964 img loss 1.467422604560852 img loss 1.337295651435852 img loss 1.4205238819122314 img loss 1.31638765335083 img loss 1.268526315689087 img loss 1.376806378364563 img loss 1.254407525062561 img loss 1.353196620941162 img loss 1.3420233726501465 img loss 1.3247642517089844 img loss 1.3663297891616821 img loss 1.5551998615264893 img loss 1.4213463068008423 img loss 1.2567501068115234 img loss 1.4126852750778198 img loss 1.3520596027374268 img loss 1.3502564430236816 img loss 1.4063721895217896 img loss 1.319345235824585 img loss 1.4696232080459595 img loss 1.4172091484069824 img loss 1.391333818435669 img loss 1.574752688407898 img loss 1.482540249824524 img loss 1.3870999813079834 img loss 1.4034168720245361 img loss 1.4006298780441284 img loss 1.3356496095657349 img loss 1.3073068857192993 img loss 1.3032702207565308 img loss 1.4098035097122192 img loss 1.4595266580581665 img loss 1.3164799213409424 img loss 1.3702706098556519 img loss 1.3093223571777344 img loss 1.275816798210144 img loss 1.465269684791565 img loss 1.3104232549667358 img loss 1.2927287817001343 img loss 1.3352478742599487 img loss 1.350432276725769 img loss 1.3742940425872803 img loss 1.3369944095611572 img loss 1.4278169870376587 img loss 1.3841736316680908 img loss 1.3168425559997559 img loss 1.4840959310531616 img loss 1.3667412996292114 img loss 1.3387950658798218 img loss 1.3515477180480957 img loss 1.345070242881775 img loss 1.2367900609970093 img loss 1.3438866138458252 img loss 1.287638545036316 img loss 1.2062824964523315 img loss 1.285819411277771 img loss 1.548045039176941 img loss 1.3159536123275757 img loss 1.4066377878189087 img loss 1.3909744024276733 img loss 1.3296468257904053 img loss 1.36406409740448 img loss 1.3335607051849365 img loss 1.3533552885055542 img loss 1.3413158655166626 img loss 1.252753496170044 img loss 1.1754509210586548 img loss 1.4598795175552368 img loss 1.52678644657135 img loss 1.3676742315292358 img loss 1.3378303050994873 img loss 1.4095587730407715 img loss 1.3623316287994385 img loss 1.428576946258545 img loss 1.428526520729065 img loss 1.4219609498977661 img loss 1.3648145198822021 img loss 1.491992473602295 img loss 1.4189385175704956 img loss 1.4609416723251343 img loss 1.3545339107513428 img loss 1.345196008682251 img loss 1.342038869857788 img loss 1.375984787940979 img loss 1.334842324256897 img loss 1.4328733682632446 img loss 1.3773292303085327 img loss 1.3247387409210205 img loss 1.377200722694397 img loss 1.3981374502182007 img loss 1.342046856880188 img loss 1.498458981513977 img loss 1.36106538772583 img loss 1.4987164735794067 img loss 1.313240647315979 img loss 1.3443349599838257 img loss 1.3831019401550293 img loss 1.364806056022644 img loss 1.2817227840423584 img loss 1.350878119468689 img loss 1.318406343460083 img loss 1.4559295177459717 img loss 1.4890064001083374 img loss 1.3365695476531982 img loss 1.4807713031768799 img loss 1.3510069847106934 img loss 1.3350567817687988 img loss 1.4228084087371826 img loss 1.3360533714294434 img loss 1.3063149452209473 img loss 1.3681657314300537 img loss 1.3546420335769653 img loss 1.4317891597747803 img loss 1.3618171215057373 img loss 1.4142296314239502 img loss 1.3622934818267822 img loss 1.331348180770874 img loss 1.347269892692566 img loss 1.3620864152908325 img loss 1.4086793661117554 img loss 1.5057092905044556 img loss 1.4337807893753052 {'loss': 1.3742, 'grad_norm': 0.2668052017688751, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4725781679153442 img loss 1.5460435152053833 img loss 1.4093143939971924 img loss 1.387191891670227 img loss 1.4369853734970093 img loss 1.416892170906067 img loss 1.3486870527267456 img loss 1.5843642950057983 img loss 1.4412071704864502 img loss 1.5066169500350952 img loss 1.4108998775482178 img loss 1.4261524677276611 img loss 1.5013293027877808 img loss 1.3359426259994507 img loss 1.427558422088623img loss 1.4314017295837402 img loss 1.439510464668274 img loss 1.4592459201812744 img loss 1.406486988067627 img loss 1.3753228187561035 img loss 1.423149824142456 img loss 1.3864387273788452 img loss 1.388110637664795 img loss 1.5240200757980347 img loss 1.3604587316513062 img loss 1.6243064403533936 img loss 1.4294161796569824 img loss 1.3605170249938965 img loss 1.4172426462173462 img loss 1.465563416481018 img loss 1.4246455430984497 img loss 1.3420071601867676 img loss 1.3317289352416992 img loss 1.4112595319747925 img loss 1.4595798254013062 img loss 1.4046653509140015 img loss 1.4994747638702393 img loss 1.5284068584442139 img loss 1.4518511295318604 img loss 1.4886142015457153 img loss 1.3928453922271729 img loss 1.419728398323059 img loss 1.3850795030593872 img loss 1.4742510318756104 img loss 1.5217013359069824 img loss 1.5371644496917725 img loss 1.3572371006011963 img loss 1.36561918258667 img loss 1.4356729984283447 img loss 1.5129581689834595 img loss 1.5417653322219849 img loss 1.3940918445587158 img loss 1.4441136121749878 img loss 1.3650734424591064 img loss 1.311648964881897 img loss 1.4000455141067505 img loss 1.3804848194122314 img loss 1.5036698579788208 img loss 1.443365216255188 img loss 1.4970526695251465 img loss 1.4761312007904053 img loss 1.5029079914093018 img loss 1.3995007276535034 img loss 1.4106656312942505 img loss 1.5303189754486084 img loss 1.3708558082580566 img loss 1.4128930568695068 img loss 1.4440734386444092 img loss 1.4553120136260986 img loss 1.4703491926193237 img loss 1.479130506515503 img loss 1.455152153968811 img loss 1.4759241342544556 img loss 1.454484224319458 img loss 1.4983412027359009 img loss 1.3934552669525146 img loss 1.3980413675308228 img loss 1.4696849584579468 img loss 1.3899543285369873 img loss 1.4376881122589111 img loss 1.6131998300552368 img loss 1.4298361539840698 img loss 1.3460726737976074 img loss 1.318307638168335 img loss 1.4708926677703857 img loss 1.4275792837142944 img loss 1.4307796955108643 img loss 1.5015791654586792 img loss 1.4261963367462158 img loss 1.3655232191085815 img loss 1.4832663536071777 img loss 1.5084233283996582 img loss 1.5272051095962524 img loss 1.5927767753601074 img loss 1.3769594430923462 img loss 1.4557178020477295 img loss 1.4244998693466187 img loss 1.4196974039077759 img loss 1.4583163261413574 img loss 1.4510715007781982 img loss 1.4790972471237183 img loss 1.4244649410247803 img loss 1.4827711582183838 img loss 1.4931787252426147 img loss 1.3867161273956299 img loss 1.4064637422561646 img loss 1.4294146299362183 img loss 1.4653915166854858 img loss 1.4626133441925049 img loss 1.4141045808792114 img loss 1.4958264827728271 img loss 1.4325520992279053 img loss 1.437211275100708 img loss 1.36589777469635 img loss 1.4454673528671265 img loss 1.4802151918411255 img loss 1.5467349290847778 img loss 1.4740103483200073 img loss 1.526094675064087 img loss 1.4762729406356812 img loss 1.4991278648376465 img loss 1.5090956687927246 img loss 1.4801781177520752 img loss 1.4330729246139526 img loss 1.4359676837921143 img loss 1.5078274011611938 img loss 1.4621819257736206 img loss 1.5295614004135132 {'loss': 1.4461, 'grad_norm': 0.45646509528160095, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2649328708648682 img loss 1.3116295337677002 img loss 1.3309319019317627 img loss 1.2859312295913696 img loss 1.2391448020935059 img loss 1.3826340436935425 img loss 1.2487976551055908 img loss 1.2817462682724 img loss 1.3933367729187012 img loss 1.2945646047592163 img loss 1.352944016456604 img loss 1.2865418195724487 img loss 1.3950961828231812 img loss 1.228521704673767 img loss 1.3417980670928955 img loss 1.3537061214447021 img loss 1.3074760437011719 img loss 1.2309532165527344 img loss 1.3420922756195068 img loss 1.453364610671997 img loss 1.3476288318634033 img loss 1.3273289203643799 img loss 1.2564713954925537 img loss 1.3836594820022583 img loss 1.3441269397735596 img loss 1.3302983045578003 img loss 1.2145428657531738 img loss 1.2353003025054932 img loss 1.3866902589797974 img loss 1.3233108520507812 img loss 1.3481146097183228 img loss 1.451043725013733 img loss 1.363002061843872 img loss 1.2674479484558105 img loss 1.3864551782608032 img loss 1.3691731691360474 img loss 1.3423081636428833 img loss 1.4028955698013306 img loss 1.3092191219329834 img loss 1.276303768157959 img loss 1.280874252319336 img loss 1.296290636062622 img loss 1.3298985958099365 img loss 1.3552403450012207 img loss 1.2423453330993652 img loss 1.3749321699142456 img loss 1.4380841255187988 img loss 1.3922520875930786 img loss 1.342474341392517 img loss 1.2485853433609009 img loss 1.3437402248382568 img loss 1.316455602645874 img loss 1.3147529363632202 img loss 1.4255341291427612 img loss 1.3005127906799316 img loss 1.3281874656677246 img loss 1.2654329538345337 img loss 1.344438910484314 img loss 1.2975530624389648 img loss 1.274518370628357 img loss 1.3036521673202515 img loss 1.4027208089828491 img loss 1.4135470390319824 img loss 1.314379334449768 img loss 1.2723737955093384 img loss 1.2552913427352905 img loss 1.3112274408340454 img loss 1.3653055429458618 img loss 1.2612494230270386 img loss 1.347839117050171 img loss 1.304173469543457 img loss 1.3560787439346313 img loss 1.3287577629089355 img loss 1.3172848224639893 img loss 1.3174893856048584 img loss 1.3016767501831055 img loss 1.3147989511489868 img loss 1.3169835805892944 img loss 1.3318183422088623 img loss 1.3573262691497803 img loss 1.3060486316680908 img loss 1.435186505317688 img loss 1.3254798650741577 img loss 1.3080534934997559 img loss 1.3831318616867065 img loss 1.3025951385498047 img loss 1.3318032026290894 img loss 1.2707140445709229 img loss 1.396431803703308 img loss 1.3470977544784546 img loss 1.2758029699325562 img loss 1.346778392791748 img loss 1.34499990940094 img loss 1.2400164604187012 img loss 1.3362010717391968 img loss 1.1965217590332031 img loss 1.3960305452346802 img loss 1.3386784791946411 img loss 1.3551048040390015 img loss 1.2675899267196655 img loss 1.3581935167312622 img loss 1.3739954233169556 img loss 1.4030812978744507 img loss 1.3036580085754395 img loss 1.3441332578659058 img loss 1.3297944068908691 img loss 1.3337613344192505 img loss 1.2977144718170166 img loss 1.3503400087356567 img loss 1.3648555278778076 img loss 1.3930021524429321 img loss 1.2803642749786377 img loss 1.3129518032073975 img loss 1.308224081993103 img loss 1.3751965761184692 img loss 1.3483860492706299 img loss 1.2704102993011475 img loss 1.3188599348068237 img loss 1.2668083906173706 img loss 1.304339051246643 img loss 1.3187224864959717 img loss 1.2815778255462646 img loss 1.3280318975448608 img loss 1.390213131904602 img loss 1.2794928550720215 img loss 1.2944786548614502 img loss 1.297258734703064 img loss 1.4013012647628784 {'loss': 1.326, 'grad_norm': 0.5587648749351501, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2538235187530518 img loss 1.252683401107788 img loss 1.2192449569702148 img loss 1.3765500783920288 img loss 1.1754693984985352 img loss 1.392439365386963 img loss 1.2613694667816162 img loss 1.2478423118591309 img loss 1.2613282203674316 img loss 1.2043330669403076 img loss 1.2283713817596436 img loss 1.3247390985488892 img loss 1.2596468925476074 img loss 1.2371176481246948 img loss 1.2904999256134033 img loss 1.2031328678131104img loss 1.2976348400115967 img loss 1.231096863746643 img loss 1.2953901290893555 img loss 1.4188727140426636 img loss 1.3128477334976196 img loss 1.3027281761169434 img loss 1.2197033166885376 img loss 1.24143648147583 img loss 1.223548173904419 img loss 1.2655950784683228 img loss 1.2438496351242065 img loss 1.3561549186706543 img loss 1.1615523099899292 img loss 1.1485745906829834 img loss 1.2412197589874268img loss 1.2389734983444214 img loss 1.2863587141036987 img loss 1.301735520362854 img loss 1.1957154273986816 img loss 1.3150471448898315 img loss 1.298563838005066 img loss 1.368232250213623 img loss 1.2881031036376953 img loss 1.2202434539794922 img loss 1.285733699798584 img loss 1.1333527565002441 img loss 1.2391352653503418 img loss 1.243926763534546 img loss 1.285968542098999 img loss 1.2539068460464478 img loss 1.2765625715255737 img loss 1.2458781003952026 img loss 1.2272509336471558 img loss 1.2653025388717651 img loss 1.1880958080291748 img loss 1.419627070426941 img loss 1.2827609777450562 img loss 1.2902082204818726 img loss 1.2390921115875244 img loss 1.2834396362304688 img loss 1.2701119184494019 img loss 1.2313098907470703 img loss 1.2081269025802612 img loss 1.2504507303237915 img loss 1.2658178806304932 img loss 1.1759283542633057 img loss 1.2414023876190186 img loss 1.2072416543960571 img loss 1.2598785161972046 img loss 1.2125259637832642 img loss 1.2971611022949219 img loss 1.2911713123321533 img loss 1.305724859237671 img loss 1.2433422803878784 img loss 1.3393080234527588 img loss 1.239060401916504 img loss 1.2093559503555298 img loss 1.2940139770507812 img loss 1.3021996021270752 img loss 1.257371425628662 img loss 1.2440216541290283 img loss 1.3405039310455322 img loss 1.3395198583602905 img loss 1.1732374429702759 img loss 1.2864658832550049 img loss 1.3734948635101318 img loss 1.1415811777114868 img loss 1.3055086135864258 img loss 1.308401107788086 img loss 1.2387385368347168 img loss 1.360759973526001 img loss 1.2825723886489868 img loss 1.1770693063735962 img loss 1.272297739982605 img loss 1.3506972789764404 img loss 1.2084258794784546 img loss 1.1996608972549438 img loss 1.1929905414581299 img loss 1.265541672706604 img loss 1.3355963230133057 img loss 1.3391443490982056 img loss 1.266875982284546 img loss 1.2174500226974487 img loss 1.2810986042022705 img loss 1.207518219947815 img loss 1.2905302047729492 img loss 1.2625877857208252 img loss 1.1802191734313965 img loss 1.2032341957092285 img loss 1.2550849914550781 img loss 1.2664790153503418 img loss 1.2056241035461426 img loss 1.2097423076629639 img loss 1.2206255197525024 img loss 1.239258050918579 img loss 1.1931227445602417 img loss 1.3496758937835693 img loss 1.2315852642059326 img loss 1.2002649307250977 img loss 1.2954378128051758 img loss 1.2630784511566162 img loss 1.2298877239227295 img loss 1.248720407485962 img loss 1.2813383340835571 img loss 1.3136303424835205 img loss 1.2081959247589111 img loss 1.3193098306655884 img loss 1.2686631679534912 img loss 1.2117445468902588 img loss 1.2234853506088257 img loss 1.1976019144058228 img loss 1.2316124439239502 {'loss': 1.2596, 'grad_norm': 0.2150595784187317, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2561912536621094 img loss 1.3029558658599854 img loss 1.1819956302642822 img loss 1.143511414527893 img loss 1.2578845024108887 img loss 1.2764530181884766 img loss 1.2400832176208496 img loss 1.2372353076934814 img loss 1.1777052879333496 img loss 1.294241189956665 img loss 1.230129599571228 img loss 1.2962936162948608 img loss 1.2027153968811035 img loss 1.1792503595352173 img loss 1.26138174533844 img loss 1.2394016981124878 img loss 1.2591606378555298 img loss 1.1891703605651855 img loss 1.2225430011749268 img loss 1.1983082294464111 img loss 1.1776366233825684 img loss 1.2265644073486328 img loss 1.2743377685546875 img loss 1.2151288986206055 img loss 1.1851571798324585 img loss 1.230466604232788 img loss 1.3012512922286987img loss 1.2023487091064453 img loss 1.2726943492889404 img loss 1.2261673212051392 img loss 1.204422950744629 img loss 1.2344573736190796 img loss 1.2534878253936768 img loss 1.2389477491378784 img loss 1.1960171461105347 img loss 1.220963716506958 img loss 1.2088267803192139 img loss 1.219430685043335 img loss 1.24929678440094 img loss 1.2681621313095093 img loss 1.265523910522461 img loss 1.21062433719635 img loss 1.1896021366119385 img loss 1.2017580270767212 img loss 1.265420913696289 img loss 1.243323564529419 img loss 1.181118369102478 img loss 1.3086562156677246 img loss 1.2582911252975464 img loss 1.1935539245605469 img loss 1.2215461730957031 img loss 1.2615002393722534 img loss 1.2239489555358887 img loss 1.2360206842422485 img loss 1.2134051322937012 img loss 1.196093201637268 img loss 1.2880187034606934 img loss 1.2194764614105225 img loss 1.1958098411560059 img loss 1.1915003061294556 img loss 1.247038722038269 img loss 1.2170466184616089 img loss 1.260325312614441 img loss 1.1776313781738281 img loss 1.2120879888534546 img loss 1.2486059665679932 img loss 1.1856540441513062 img loss 1.2297468185424805 img loss 1.2447705268859863 img loss 1.1855602264404297 img loss 1.210384726524353 img loss 1.1713699102401733 img loss 1.237283706665039 img loss 1.2071713209152222 img loss 1.2875314950942993 img loss 1.2081936597824097 img loss 1.2050951719284058 img loss 1.1986280679702759 img loss 1.191152811050415 img loss 1.1841869354248047 img loss 1.2005915641784668 img loss 1.205361008644104 img loss 1.1768150329589844 img loss 1.2028954029083252 img loss 1.204910159111023 img loss 1.2111648321151733 img loss 1.212072730064392 img loss 1.2903616428375244 img loss 1.2011016607284546 img loss 1.1891818046569824 img loss 1.232812523841858 img loss 1.219723105430603 img loss 1.170478105545044 img loss 1.2266364097595215 img loss 1.2758443355560303 img loss 1.239728569984436 img loss 1.2165541648864746 img loss 1.240159273147583 img loss 1.2046964168548584 img loss 1.1997222900390625 img loss 1.266695499420166 img loss 1.1932575702667236 img loss 1.2492071390151978 img loss 1.1910982131958008 img loss 1.2005131244659424 img loss 1.2088007926940918 img loss 1.231519103050232 img loss 1.2102173566818237 img loss 1.2160810232162476 img loss 1.226496696472168 img loss 1.2719523906707764 img loss 1.3292038440704346 img loss 1.206929087638855 img loss 1.2290592193603516 img loss 1.2378082275390625 img loss 1.2255215644836426 img loss 1.2418569326400757 img loss 1.2108333110809326 img loss 1.2169570922851562 img loss 1.2128193378448486 img loss 1.2508888244628906 img loss 1.2248772382736206 img loss 1.2617247104644775 img loss 1.2438619136810303 img loss 1.24431312084198 img loss 1.2242765426635742 img loss 1.21929132938385 img loss 1.1949576139450073 {'loss': 1.2257, 'grad_norm': 0.22617687284946442, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3221534490585327 img loss 1.3039709329605103 img loss 1.2895007133483887 img loss 1.3041597604751587 img loss 1.292796015739441 img loss 1.2611368894577026 img loss 1.2295893430709839 img loss 1.2573896646499634 img loss 1.2132362127304077 img loss 1.3219165802001953 img loss 1.334370493888855 img loss 1.3409444093704224 img loss 1.284536361694336 img loss 1.2603459358215332 img loss 1.220590353012085 img loss 1.2883440256118774 img loss 1.2154908180236816 img loss 1.2678890228271484 img loss 1.3516103029251099 img loss 1.3608540296554565 img loss 1.3133620023727417 img loss 1.271991491317749 img loss 1.3151814937591553 img loss 1.225049614906311 img loss 1.2829357385635376 img loss 1.2395626306533813 img loss 1.3528611660003662 img loss 1.2938246726989746 img loss 1.3356261253356934 img loss 1.2428802251815796 img loss 1.3094022274017334 img loss 1.2275984287261963 img loss 1.2213342189788818 img loss 1.2805315256118774 img loss 1.2379264831542969 img loss 1.2397468090057373 img loss 1.2426284551620483 img loss 1.2434077262878418 img loss 1.2843430042266846 img loss 1.2963765859603882 img loss 1.233993411064148 img loss 1.2822388410568237 img loss 1.3036487102508545 img loss 1.2689322233200073 img loss 1.3590375185012817 img loss 1.3148455619812012 img loss 1.265730619430542 img loss 1.2819287776947021 img loss 1.3182133436203003 img loss 1.2385984659194946 img loss 1.2801182270050049 img loss 1.26067316532135 img loss 1.2860045433044434 img loss 1.295020341873169 img loss 1.363693356513977 img loss 1.247480869293213 img loss 1.2587040662765503 img loss 1.2016196250915527 img loss 1.2500332593917847 img loss 1.2608413696289062 img loss 1.3180649280548096 img loss 1.265173316001892 img loss 1.30234956741333 img loss 1.403382658958435 img loss 1.2824665307998657 img loss 1.2330777645111084 img loss 1.3693690299987793 img loss 1.3574862480163574 img loss 1.300530195236206 img loss 1.2725104093551636 img loss 1.2258819341659546 img loss 1.2708086967468262 img loss 1.289557933807373 img loss 1.279191493988037 img loss 1.30734121799469 img loss 1.2137863636016846 img loss 1.291289210319519 img loss 1.2492170333862305 img loss 1.3505418300628662 img loss 1.2754828929901123 img loss 1.2151367664337158 img loss 1.4013464450836182 img loss 1.309604287147522 img loss 1.3672451972961426img loss 1.328060507774353 img loss 1.2049329280853271 img loss 1.3312021493911743 img loss 1.2599601745605469 img loss 1.283287763595581 img loss 1.2505234479904175 img loss 1.2456960678100586 img loss 1.3663691282272339 img loss 1.2360377311706543 img loss 1.2568588256835938 img loss 1.3163161277770996 img loss 1.3170294761657715 img loss 1.2659176588058472 img loss 1.3080861568450928img loss 1.3398516178131104 img loss 1.2700252532958984 img loss 1.2883269786834717 img loss 1.30233633518219 img loss 1.1786854267120361 img loss 1.2433267831802368 img loss 1.3293352127075195 img loss 1.3268879652023315 img loss 1.327208399772644 img loss 1.3806573152542114 img loss 1.3139148950576782 img loss 1.270538568496704 img loss 1.2120246887207031 img loss 1.2605960369110107 img loss 1.3491520881652832 img loss 1.2813307046890259 img loss 1.3070943355560303 img loss 1.3473888635635376 img loss 1.342570185661316 img loss 1.3428752422332764 img loss 1.2605335712432861 img loss 1.2968028783798218 img loss 1.2792803049087524 img loss 1.3877885341644287 img loss 1.256163477897644 img loss 1.2978565692901611 img loss 1.3181817531585693 img loss 1.268720030784607 img loss 1.309262990951538 img loss 1.3203887939453125 {'loss': 1.2881, 'grad_norm': 0.5460441708564758, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5182498693466187 img loss 1.493354320526123 img loss 1.2926743030548096 img loss 1.4539779424667358 img loss 1.4562417268753052 img loss 1.3655047416687012 img loss 1.5754481554031372 img loss 1.3867722749710083 img loss 1.4902571439743042 img loss 1.3507170677185059 img loss 1.4879088401794434 img loss 1.3913391828536987 img loss 1.4291589260101318 img loss 1.5153939723968506 img loss 1.3859020471572876 img loss 1.4566676616668701 img loss 1.4274165630340576 img loss 1.4831938743591309 img loss 1.455258846282959 img loss 1.5046966075897217 img loss 1.404638409614563 img loss 1.465674877166748 img loss 1.3969556093215942 img loss 1.3878495693206787 img loss 1.5514025688171387 img loss 1.3407723903656006 img loss 1.3775877952575684 img loss 1.5072349309921265 img loss 1.4877911806106567 img loss 1.4460684061050415 img loss 1.5367432832717896 img loss 1.3304786682128906 img loss 1.4845067262649536 img loss 1.41190505027771 img loss 1.4734104871749878 img loss 1.365422010421753 img loss 1.3887661695480347 img loss 1.41201651096344 img loss 1.4880318641662598 img loss 1.4514272212982178 img loss 1.3922131061553955 img loss 1.4393064975738525 img loss 1.3392986059188843 img loss 1.4625858068466187 img loss 1.3608391284942627 img loss 1.4121850728988647 img loss 1.3948677778244019 img loss 1.4157655239105225 img loss 1.4981087446212769 img loss 1.4869990348815918 img loss 1.4155699014663696 img loss 1.443912386894226 img loss 1.3196320533752441 img loss 1.4880287647247314 img loss 1.3713785409927368 img loss 1.3907291889190674 img loss 1.5004395246505737 img loss 1.4900001287460327 img loss 1.4651683568954468 img loss 1.486068606376648 img loss 1.4206312894821167 img loss 1.5027047395706177 img loss 1.2586256265640259 img loss 1.445493221282959 img loss 1.4506590366363525 img loss 1.5982874631881714 img loss 1.5541032552719116 img loss 1.4166375398635864 img loss 1.3903502225875854 img loss 1.8360978364944458 img loss 1.6846935749053955 img loss 1.3848286867141724 img loss 1.3497376441955566 img loss 1.539843201637268 img loss 1.4081189632415771 img loss 1.3971190452575684 img loss 1.4189057350158691 img loss 1.4626688957214355 img loss 1.3737550973892212 img loss 1.2557201385498047 img loss 1.4224369525909424 img loss 1.4294445514678955 img loss 1.4194220304489136 img loss 1.3483384847640991 img loss 1.4620453119277954 img loss 1.548053503036499 img loss 1.339255928993225 img loss 1.2573518753051758 img loss 1.3855059146881104 img loss 1.5760400295257568 img loss 1.476698637008667 img loss 1.6097664833068848 img loss 1.5938833951950073 img loss 1.30706787109375 img loss 1.382543683052063 img loss 1.4145257472991943 img loss 1.5514096021652222 img loss 1.363694667816162 img loss 1.4736974239349365 img loss 1.372798204421997 img loss 1.3168964385986328 img loss 1.366913914680481 img loss 1.42942476272583 img loss 1.3925637006759644 img loss 1.3444792032241821 img loss 1.4153093099594116 img loss 1.4745001792907715 img loss 1.4690333604812622 img loss 1.4180443286895752 img loss 1.6390721797943115 img loss 1.5102530717849731 img loss 1.5333788394927979 img loss 1.3854562044143677 img loss 1.4087132215499878 img loss 1.3277562856674194 img loss 1.4012013673782349 img loss 1.508984088897705 img loss 1.4916273355484009 img loss 1.3348370790481567 img loss 1.388037919998169 img loss 1.3967232704162598 img loss 1.4048380851745605 img loss 1.4905043840408325 img loss 1.396186351776123 img loss 1.3953479528427124 img loss 1.524673581123352 img loss 1.4018614292144775 img loss 1.4207810163497925 {'loss': 1.4381, 'grad_norm': 0.30510076880455017, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2124532461166382 img loss 1.355153203010559 img loss 1.2587685585021973 img loss 1.2455172538757324 img loss 1.283477544784546 img loss 1.2621855735778809 img loss 1.2459105253219604 img loss 1.3298419713974 img loss 1.2853238582611084 img loss 1.3415340185165405 img loss 1.269731879234314 img loss 1.3215343952178955 img loss 1.2268898487091064 img loss 1.334649682044983 img loss 1.270949125289917 img loss 1.2815358638763428 img loss 1.2869699001312256 img loss 1.281901240348816 img loss 1.3203781843185425 img loss 1.2694553136825562 img loss 1.1689574718475342 img loss 1.2523411512374878 img loss 1.3032305240631104 img loss 1.2611877918243408 img loss 1.2369074821472168 img loss 1.3250280618667603 img loss 1.498130440711975 img loss 1.3131763935089111 img loss 1.355571985244751 img loss 1.2390058040618896 img loss 1.226253867149353 img loss 1.235802173614502 img loss 1.2685381174087524 img loss 1.3003555536270142 img loss 1.2195974588394165 img loss 1.1662135124206543 img loss 1.2007564306259155 img loss 1.3434773683547974 img loss 1.2696547508239746 img loss 1.2308204174041748 img loss 1.2917685508728027 img loss 1.271827220916748 img loss 1.2613861560821533 img loss 1.2809333801269531 img loss 1.3272861242294312 img loss 1.2501949071884155 img loss 1.2134599685668945 img loss 1.2535895109176636 img loss 1.27528977394104 img loss 1.2768663167953491 img loss 1.2631059885025024 img loss 1.3459690809249878 img loss 1.2640931606292725 img loss 1.2696384191513062 img loss 1.2506392002105713 img loss 1.270824909210205 img loss 1.2424278259277344 img loss 1.2545913457870483 img loss 1.1915621757507324 img loss 1.250268816947937 img loss 1.1766109466552734 img loss 1.3041324615478516 img loss 1.3141562938690186 img loss 1.2679216861724854 img loss 1.183131456375122 img loss 1.2922295331954956 img loss 1.2824912071228027 img loss 1.2953464984893799 img loss 1.2059147357940674 img loss 1.205719232559204 img loss 1.2925151586532593 img loss 1.312849760055542 img loss 1.3434083461761475 img loss 1.2831451892852783 img loss 1.2618486881256104 img loss 1.3294206857681274 img loss 1.3194549083709717 img loss 1.215324878692627 img loss 1.3186900615692139 img loss 1.2550852298736572 img loss 1.2129615545272827 img loss 1.265066146850586 img loss 1.2035703659057617 img loss 1.2518614530563354 img loss 1.2735023498535156 img loss 1.2766141891479492 img loss 1.252046823501587 img loss 1.2786375284194946 img loss 1.3319107294082642 img loss 1.2940624952316284 img loss 1.2595957517623901 img loss 1.2884087562561035 img loss 1.2885761260986328 img loss 1.3513070344924927 img loss 1.4277170896530151 img loss 1.2527141571044922 img loss 1.2961915731430054 img loss 1.2955317497253418 img loss 1.2981314659118652 img loss 1.2016568183898926 img loss 1.2207523584365845 img loss 1.2238287925720215 img loss 1.2951436042785645 img loss 1.2185486555099487 img loss 1.4990752935409546 img loss 1.2563596963882446 img loss 1.2204054594039917 img loss 1.153773546218872 img loss 1.2844892740249634 img loss 1.212436556816101 img loss 1.291125774383545 img loss 1.2854173183441162 img loss 1.1794523000717163 img loss 1.440263032913208 img loss 1.1443324089050293 img loss 1.3034822940826416 img loss 1.3065643310546875 img loss 1.3048579692840576 img loss 1.352616548538208 img loss 1.284320592880249 img loss 1.2685697078704834 img loss 1.2514492273330688 img loss 1.29278564453125 img loss 1.270822525024414 img loss 1.252941608428955 img loss 1.2796159982681274 img loss 1.2954936027526855 img loss 1.290198802947998 {'loss': 1.2746, 'grad_norm': 0.22334802150726318, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2101991176605225 img loss 1.2553174495697021 img loss 1.2064239978790283 img loss 1.2184933423995972 img loss 1.2144973278045654 img loss 1.2224143743515015 img loss 1.0831878185272217 img loss 1.231951117515564 img loss 1.2197154760360718 img loss 1.2009166479110718 img loss 1.359035849571228 img loss 1.2097454071044922 img loss 1.236627221107483 img loss 1.3705706596374512 img loss 1.1912548542022705 img loss 1.1424330472946167 img loss 1.1337990760803223 img loss 1.2241148948669434 img loss 1.266262412071228img loss 1.3521157503128052 img loss 1.147274374961853 img loss 1.217596411705017 img loss 1.2151122093200684 img loss 1.2926740646362305 img loss 1.2171592712402344 img loss 1.1923569440841675 img loss 1.2088931798934937 img loss 1.2081571817398071 img loss 1.1590620279312134 img loss 1.178699254989624 img loss 1.246672511100769 img loss 1.2318241596221924 img loss 1.209624171257019 img loss 1.116005301475525 img loss 1.2089309692382812 img loss 1.1535630226135254 img loss 1.2842249870300293 img loss 1.1697959899902344 img loss 1.279889702796936 img loss 1.1784189939498901 img loss 1.2882477045059204 img loss 1.2756088972091675 img loss 1.1903586387634277 img loss 1.2629926204681396 img loss 1.1668834686279297 img loss 1.2630304098129272 img loss 1.2341248989105225 img loss 1.243323802947998 img loss 1.1730036735534668 img loss 1.2651119232177734 img loss 1.2125619649887085 img loss 1.190983772277832 img loss 1.2640293836593628 img loss 1.1767692565917969 img loss 1.2244995832443237 img loss 1.3181647062301636 img loss 1.1841233968734741 img loss 1.2336204051971436 img loss 1.1894172430038452 img loss 1.237849473953247 img loss 1.2667430639266968 img loss 1.1673097610473633 img loss 1.27711820602417 img loss 1.2311553955078125 img loss 1.224503993988037 img loss 1.1853913068771362 img loss 1.275390386581421 img loss 1.2417970895767212 img loss 1.263846755027771 img loss 1.1858959197998047 img loss 1.2296122312545776 img loss 1.2225106954574585 img loss 1.1864651441574097 img loss 1.271291732788086 img loss 1.1842372417449951 img loss 1.1270817518234253 img loss 1.28582763671875 img loss 1.2009541988372803 img loss 1.1873747110366821 img loss 1.2710777521133423 img loss 1.2252449989318848 img loss 1.1548107862472534 img loss 1.1767892837524414 img loss 1.1637637615203857 img loss 1.1966474056243896 img loss 1.22635018825531 img loss 1.3446091413497925 img loss 1.2813199758529663 img loss 1.1725307703018188 img loss 1.213259220123291 img loss 1.22064208984375 img loss 1.3075478076934814 img loss 1.3263314962387085 img loss 1.207190990447998 img loss 1.2408127784729004 img loss 1.153968334197998 img loss 1.148155689239502 img loss 1.2785894870758057 img loss 1.1974446773529053 img loss 1.2311432361602783 img loss 1.2486095428466797 img loss 1.2352566719055176 img loss 1.1162651777267456 img loss 1.2628144025802612 img loss 1.2521120309829712 img loss 1.2726248502731323 img loss 1.1821750402450562 img loss 1.2152431011199951 img loss 1.2265143394470215 img loss 1.2554662227630615 img loss 1.1961796283721924 img loss 1.160699725151062 img loss 1.1458536386489868 img loss 1.2186650037765503 img loss 1.38283371925354 img loss 1.3412196636199951 img loss 1.158955454826355 img loss 1.25579035282135 img loss 1.2257417440414429 img loss 1.3544471263885498 img loss 1.1833199262619019 img loss 1.1952875852584839 img loss 1.245714783668518 img loss 1.30256986618042 img loss 1.153475284576416 img loss 1.3186330795288086 img loss 1.1415716409683228 img loss 1.270491600036621 {'loss': 1.2245, 'grad_norm': 0.20610253512859344, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2826273441314697 img loss 1.1319111585617065 img loss 1.1808722019195557 img loss 1.220357894897461 img loss 1.2325941324234009 img loss 1.2620569467544556 img loss 1.1646671295166016 img loss 1.1739872694015503img loss 1.1827752590179443 img loss 1.2306020259857178 img loss 1.1324067115783691 img loss 1.1889071464538574 img loss 1.249720811843872 img loss 1.2514193058013916 img loss 1.3452837467193604 img loss 1.167844295501709 img loss 1.2459239959716797 img loss 1.1372547149658203 img loss 1.3174757957458496 img loss 1.217596411705017 img loss 1.1667503118515015 img loss 1.2019184827804565 img loss 1.1964466571807861 img loss 1.2207732200622559 img loss 1.1684601306915283 img loss 1.2390762567520142 img loss 1.1820039749145508 img loss 1.2022446393966675 img loss 1.1463245153427124 img loss 1.2824968099594116 img loss 1.2280067205429077 img loss 1.2349135875701904 img loss 1.2112369537353516 img loss 1.2443511486053467 img loss 1.1315090656280518 img loss 1.2428967952728271 img loss 1.2107399702072144 img loss 1.2499386072158813 img loss 1.1701140403747559 img loss 1.2070400714874268 img loss 1.2067296504974365 img loss 1.2412763833999634 img loss 1.236588716506958 img loss 1.1865733861923218 img loss 1.1948171854019165 img loss 1.1662261486053467 img loss 1.2172608375549316 img loss 1.174419641494751 img loss 1.2398544549942017 img loss 1.2315735816955566 img loss 1.1579217910766602 img loss 1.2082443237304688 img loss 1.3015953302383423 img loss 1.1695797443389893 img loss 1.2107629776000977 img loss 1.148626685142517 img loss 1.261972427368164 img loss 1.2055011987686157 img loss 1.2719972133636475 img loss 1.1927294731140137 img loss 1.2632263898849487 img loss 1.1994216442108154 img loss 1.2308440208435059 img loss 1.2327220439910889 img loss 1.2303352355957031 img loss 1.1569571495056152 img loss 1.2080646753311157 img loss 1.1750818490982056 img loss 1.190051794052124 img loss 1.137271523475647 img loss 1.199745774269104 img loss 1.2190483808517456 img loss 1.1868257522583008 img loss 1.2044342756271362 img loss 1.177031397819519 img loss 1.1934956312179565 img loss 1.2196619510650635 img loss 1.1847642660140991 img loss 1.2343134880065918 img loss 1.1904371976852417 img loss 1.1257740259170532 img loss 1.2986598014831543 img loss 1.2222344875335693 img loss 1.317230224609375 img loss 1.2064017057418823 img loss 1.229349970817566 img loss 1.2318099737167358 img loss 1.2870597839355469 img loss 1.2723373174667358 img loss 1.20735502243042 img loss 1.1634334325790405 img loss 1.2064958810806274 img loss 1.1291050910949707 img loss 1.191429853439331 img loss 1.2658144235610962 img loss 1.1566578149795532 img loss 1.1688084602355957 img loss 1.1929776668548584 img loss 1.2663094997406006 img loss 1.239988923072815 img loss 1.1563198566436768 img loss 1.2385528087615967 img loss 1.2283096313476562 img loss 1.3169397115707397 img loss 1.1929450035095215 img loss 1.2573899030685425 img loss 1.2359845638275146 img loss 1.331711769104004 img loss 1.2297289371490479 img loss 1.2848610877990723 img loss 1.262965440750122 img loss 1.1974315643310547 img loss 1.215921401977539 img loss 1.2661645412445068 img loss 1.2831032276153564 img loss 1.140181064605713 img loss 1.1671665906906128 img loss 1.196254014968872 img loss 1.2121391296386719 img loss 1.256288766860962 img loss 1.138720989227295 img loss 1.2171968221664429 img loss 1.1461130380630493 img loss 1.2918251752853394 img loss 1.1777247190475464 img loss 1.1701637506484985 img loss 1.1800227165222168 img loss 1.1587117910385132 {'loss': 1.2128, 'grad_norm': 0.2545378804206848, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.357952356338501 img loss 1.3297260999679565 img loss 1.3450233936309814 img loss 1.332700252532959 img loss 1.2564432621002197 img loss 1.3436280488967896 img loss 1.2788680791854858 img loss 1.3708370923995972 img loss 1.3220398426055908 img loss 1.3534586429595947 img loss 1.390960454940796 img loss 1.3033196926116943 img loss 1.434954285621643 img loss 1.2893195152282715 img loss 1.3747977018356323 img loss 1.3478446006774902 img loss 1.2909564971923828 img loss 1.4123080968856812 img loss 1.2772854566574097 img loss 1.289504051208496 img loss 1.273698091506958 img loss 1.3600361347198486 img loss 1.3461023569107056 img loss 1.4062249660491943 img loss 1.273711085319519 img loss 1.3177738189697266 img loss 1.3230373859405518 img loss 1.3707472085952759 img loss 1.3004711866378784 img loss 1.2740309238433838 img loss 1.2881247997283936 img loss 1.2943494319915771 img loss 1.3872272968292236 img loss 1.4524563550949097 img loss 1.3100823163986206 img loss 1.3035600185394287 img loss 1.2925772666931152 img loss 1.3020880222320557 img loss 1.3082603216171265 img loss 1.3379008769989014 img loss 1.349241852760315 img loss 1.3666738271713257 img loss 1.3394533395767212 img loss 1.3395867347717285 img loss 1.3406035900115967 img loss 1.3278181552886963 img loss 1.3309086561203003 img loss 1.3687938451766968 img loss 1.3232529163360596 img loss 1.2877311706542969 img loss 1.3013172149658203 img loss 1.372079610824585 img loss 1.2842860221862793 img loss 1.2335776090621948 img loss 1.3598949909210205 img loss 1.2998932600021362 img loss 1.4908396005630493 img loss 1.3363518714904785 img loss 1.3416249752044678 img loss 1.3172796964645386 img loss 1.3135689496994019 img loss 1.375665545463562 img loss 1.3126020431518555 img loss 1.3599790334701538 img loss 1.2997443675994873 img loss 1.3316781520843506 img loss 1.3671954870224 img loss 1.3626068830490112 img loss 1.3807705640792847 img loss 1.431089997291565 img loss 1.2470836639404297 img loss 1.3109526634216309 img loss 1.2860897779464722 img loss 1.2991245985031128 img loss 1.4196839332580566 img loss 1.404159665107727 img loss 1.3532519340515137 img loss 1.3607075214385986 img loss 1.3228130340576172 img loss 1.418394923210144 img loss 1.3628662824630737 img loss 1.3804196119308472 img loss 1.3163092136383057 img loss 1.3297958374023438 img loss 1.2676719427108765 img loss 1.2496311664581299 img loss 1.3478015661239624 img loss 1.360411286354065 img loss 1.394199013710022 img loss 1.401770830154419 img loss 1.2909635305404663 img loss 1.3842865228652954 img loss 1.3840739727020264 img loss 1.2810661792755127 img loss 1.3836686611175537 img loss 1.245897650718689 img loss 1.357531189918518 img loss 1.2512050867080688 img loss 1.4102195501327515 img loss 1.2829205989837646 img loss 1.3536232709884644 img loss 1.365588903427124 img loss 1.2939391136169434 img loss 1.3537495136260986 img loss 1.3869272470474243 img loss 1.3451645374298096 img loss 1.2554373741149902 img loss 1.3424149751663208 img loss 1.3160979747772217 img loss 1.2617992162704468 img loss 1.3010574579238892 img loss 1.2535322904586792 img loss 1.213841199874878 img loss 1.3360724449157715 img loss 1.3856264352798462 img loss 1.2846901416778564 img loss 1.348906397819519 img loss 1.2423146963119507 img loss 1.2935197353363037 img loss 1.2185204029083252 img loss 1.2435967922210693 img loss 1.320055365562439 img loss 1.362583041191101 img loss 1.3509091138839722 img loss 1.3277466297149658 img loss 1.3436247110366821 img loss 1.3048036098480225 img loss 1.333843469619751 {'loss': 1.3306, 'grad_norm': 0.4459385871887207, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.25251042842865 img loss 1.228009581565857 img loss 1.2028653621673584 img loss 1.282975435256958 img loss 1.2496312856674194 img loss 1.2229660749435425 img loss 1.3103535175323486 img loss 1.2235027551651 img loss 1.2103265523910522 img loss 1.2588207721710205 img loss 1.311132788658142 img loss 1.244783639907837 img loss 1.2176626920700073 img loss 1.254183292388916 img loss 1.2262842655181885 img loss 1.20562744140625 img loss 1.2542206048965454 img loss 1.2848505973815918 img loss 1.2756589651107788 img loss 1.2347875833511353 img loss 1.231576681137085 img loss 1.2714122533798218 img loss 1.2020702362060547 img loss 1.2908382415771484 img loss 1.2643704414367676 img loss 1.284165859222412 img loss 1.2543902397155762 img loss 1.248985767364502 img loss 1.2601398229599 img loss 1.2745988368988037 img loss 1.3048670291900635 img loss 1.3137364387512207 img loss 1.251898169517517 img loss 1.2663682699203491 img loss 1.3169646263122559 img loss 1.265507459640503 img loss 1.225799322128296 img loss 1.2572457790374756 img loss 1.209755778312683 img loss 1.2778546810150146 img loss 1.2485120296478271 img loss 1.25533127784729 img loss 1.2496998310089111 img loss 1.2409868240356445 img loss 1.2392657995224 img loss 1.244282603263855 img loss 1.248920202255249 img loss 1.2372082471847534 img loss 1.2601724863052368 img loss 1.1976641416549683 img loss 1.2121590375900269 img loss 1.2224448919296265 img loss 1.2701656818389893 img loss 1.2203469276428223 img loss 1.2312276363372803 img loss 1.210727334022522 img loss 1.2071337699890137 img loss 1.2442983388900757 img loss 1.2722563743591309 img loss 1.2308584451675415 img loss 1.2914949655532837 img loss 1.256691336631775 img loss 1.260895013809204 img loss 1.2708220481872559 img loss 1.2941175699234009 img loss 1.2244315147399902 img loss 1.2411208152770996 img loss 1.3137776851654053 img loss 1.3292782306671143 img loss 1.2054343223571777 img loss 1.206673264503479 img loss 1.2383935451507568 img loss 1.2282447814941406 img loss 1.2758326530456543 img loss 1.193095088005066 img loss 1.2569512128829956 img loss 1.2959253787994385 img loss 1.2343392372131348 img loss 1.2311429977416992 img loss 1.271348237991333 img loss 1.228350043296814 img loss 1.2575643062591553 img loss 1.2471210956573486 img loss 1.3206746578216553 img loss 1.2388885021209717 img loss 1.2671533823013306 img loss 1.231723427772522 img loss 1.2816917896270752 img loss 1.2386536598205566 img loss 1.2459192276000977 img loss 1.2789090871810913 img loss 1.233773112297058 img loss 1.2722785472869873 img loss 1.248157024383545 img loss 1.2702288627624512 img loss 1.2736098766326904 img loss 1.2541509866714478 img loss 1.239405870437622 img loss 1.2070854902267456 img loss 1.2302334308624268 img loss 1.1624488830566406 img loss 1.2126269340515137 img loss 1.2211287021636963 img loss 1.2981185913085938 img loss 1.3017287254333496 img loss 1.2359912395477295 img loss 1.2705187797546387 img loss 1.29228675365448 img loss 1.209700584411621 img loss 1.203633189201355 img loss 1.2371840476989746 img loss 1.2538360357284546 img loss 1.2530202865600586 img loss 1.2552430629730225 img loss 1.2590757608413696 img loss 1.2353366613388062 img loss 1.2227585315704346 img loss 1.2780702114105225 img loss 1.259652853012085 img loss 1.2729586362838745 img loss 1.245814323425293 img loss 1.2637022733688354 img loss 1.2896697521209717 img loss 1.3232578039169312 img loss 1.2814784049987793 img loss 1.2870290279388428 img loss 1.2022840976715088 img loss 1.198608160018921 {'loss': 1.2514, 'grad_norm': 0.22931653261184692, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.327502727508545 img loss 1.3649450540542603 img loss 1.4550602436065674 img loss 1.3827884197235107 img loss 1.3291099071502686 img loss 1.3108611106872559 img loss 1.4040348529815674 img loss 1.4835883378982544 img loss 1.3637417554855347 img loss 1.4661046266555786 img loss 1.3600026369094849 img loss 1.4082282781600952 img loss 1.2731436491012573 img loss 1.4391218423843384 img loss 1.3219847679138184 img loss 1.4687168598175049 img loss 1.3263481855392456 img loss 1.3337467908859253 img loss 1.4258118867874146 img loss 1.352370023727417 img loss 1.3468682765960693 img loss 1.472713589668274 img loss 1.343095064163208 img loss 1.361578106880188 img loss 1.3552404642105103 img loss 1.3803967237472534 img loss 1.4048067331314087 img loss 1.5748155117034912 img loss 1.4197109937667847 img loss 1.3844059705734253 img loss 1.3444067239761353 img loss 1.4047439098358154 img loss 1.3963067531585693 img loss 1.3538533449172974 img loss 1.4121553897857666 img loss 1.4507191181182861 img loss 1.4451013803482056 img loss 1.5825947523117065 img loss 1.3846609592437744 img loss 1.2889505624771118 img loss 1.3298754692077637 img loss 1.3879001140594482 img loss 1.3688737154006958 img loss 1.4550307989120483 img loss 1.3894093036651611 img loss 1.625404953956604 img loss 1.4267646074295044 img loss 1.4862204790115356 img loss 1.510994791984558 img loss 1.4267936944961548 img loss 1.3348618745803833 img loss 1.4680231809616089 img loss 1.398706078529358 img loss 1.4179165363311768 img loss 1.3162943124771118 img loss 1.4004170894622803 img loss 1.3650472164154053 img loss 1.4082658290863037 img loss 1.4412263631820679 img loss 1.456989049911499 img loss 1.3787095546722412 img loss 1.3674893379211426 img loss 1.3499386310577393 img loss 1.4698269367218018 img loss 1.4089585542678833 img loss 1.4874625205993652 img loss 1.364055871963501 img loss 1.4071446657180786 img loss 1.4693208932876587 img loss 1.5219371318817139 img loss 1.4693266153335571 img loss 1.3809622526168823 img loss 1.3981372117996216 img loss 1.4696708917617798 img loss 1.4268933534622192 img loss 1.4327962398529053 img loss 1.305879831314087 img loss 1.336873173713684 img loss 1.307212233543396 img loss 1.3654086589813232 img loss 1.345274806022644 img loss 1.3486416339874268 img loss 1.3242151737213135 img loss 1.2947781085968018 img loss 1.406083583831787 img loss 1.296894907951355 img loss 1.428436040878296 img loss 1.2909786701202393 img loss 1.3243954181671143 img loss 1.4057449102401733 img loss 1.4113881587982178 img loss 1.4687097072601318 img loss 1.3548163175582886 img loss 1.3221710920333862 img loss 1.4225636720657349 img loss 1.4505709409713745 img loss 1.5925278663635254 img loss 1.353035807609558 img loss 1.4504656791687012 img loss 1.4030554294586182 img loss 1.4576470851898193 img loss 1.5041086673736572 img loss 1.399158000946045 img loss 1.3739123344421387 img loss 1.4087110757827759 img loss 1.384217381477356 img loss 1.4371453523635864 img loss 1.4056637287139893 img loss 1.3799052238464355img loss 1.4717427492141724 img loss 1.3676609992980957 img loss 1.3171007633209229 img loss 1.2818759679794312 img loss 1.3474043607711792 img loss 1.4552124738693237 img loss 1.466052532196045 img loss 1.3919910192489624 img loss 1.420223593711853 img loss 1.3350542783737183 img loss 1.4528882503509521 img loss 1.3782347440719604 img loss 1.4854282140731812 img loss 1.5026733875274658 img loss 1.455511212348938 img loss 1.3850152492523193 img loss 1.4836045503616333 img loss 1.3165653944015503 img loss 1.4527612924575806 {'loss': 1.4019, 'grad_norm': 0.3696572780609131, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4923436641693115 img loss 1.4763911962509155 img loss 1.5661436319351196 img loss 1.4620468616485596 img loss 1.4506001472473145 img loss 1.3804486989974976 img loss 1.4702264070510864 img loss 1.4249783754348755 img loss 1.3371113538742065 img loss 1.5082074403762817 img loss 1.3266291618347168 img loss 1.412977933883667 img loss 1.3555352687835693 img loss 1.5041314363479614 img loss 1.4151979684829712img loss 1.4560185670852661 img loss 1.5106967687606812 img loss 1.55657160282135 img loss 1.4659883975982666 img loss 1.4508862495422363 img loss 1.3529759645462036 img loss 1.487068772315979 img loss 1.4229720830917358 img loss 1.3499144315719604 img loss 1.4074128866195679 img loss 1.3398576974868774 img loss 1.385802149772644 img loss 1.5106831789016724 img loss 1.479995608329773 img loss 1.4758399724960327 img loss 1.5376088619232178 img loss 1.5010390281677246 img loss 1.467079520225525 img loss 1.2650792598724365 img loss 1.4519273042678833 img loss 1.3067165613174438 img loss 1.4178210496902466 img loss 1.3951992988586426 img loss 1.5213299989700317 img loss 1.3799175024032593 img loss 1.312899112701416 img loss 1.5337870121002197 img loss 1.4485948085784912 img loss 1.4711896181106567 img loss 1.4413831233978271 img loss 1.4922162294387817 img loss 1.4761111736297607 img loss 1.4832031726837158 img loss 1.3128008842468262 img loss 1.5298120975494385 img loss 1.4259483814239502 img loss 1.427531123161316 img loss 1.440261960029602 img loss 1.4395593404769897 img loss 1.5170857906341553 img loss 1.3838536739349365 img loss 1.4716612100601196 img loss 1.3503350019454956 img loss 1.4757587909698486 img loss 1.545311450958252 img loss 1.4208568334579468 img loss 1.52165687084198 img loss 1.3337340354919434 img loss 1.469175100326538 img loss 1.4717376232147217 img loss 1.407996654510498 img loss 1.4541316032409668 img loss 1.4301396608352661 img loss 1.5106011629104614 img loss 1.3017725944519043 img loss 1.4531810283660889 img loss 1.398201584815979 img loss 1.668764352798462 img loss 1.4302504062652588 img loss 1.505980134010315 img loss 1.369078516960144 img loss 1.4169937372207642 img loss 1.4355167150497437 img loss 1.5302871465682983 img loss 1.5238049030303955 img loss 1.5135751962661743 img loss 1.5346176624298096 img loss 1.441286325454712 img loss 1.435066819190979 img loss 1.4870402812957764 img loss 1.5357882976531982 img loss 1.5210613012313843 img loss 1.3711570501327515 img loss 1.5699137449264526 img loss 1.4191443920135498 img loss 1.427600622177124 img loss 1.4267486333847046 img loss 1.4853761196136475 img loss 1.3939177989959717 img loss 1.398654818534851 img loss 1.4040932655334473 img loss 1.4082480669021606 img loss 1.3827606439590454 img loss 1.510799527168274 img loss 1.4383137226104736 img loss 1.545102834701538 img loss 1.3958936929702759 img loss 1.4199049472808838 img loss 1.4523485898971558 img loss 1.4852527379989624 img loss 1.4712481498718262 img loss 1.423518419265747 img loss 1.4728361368179321 img loss 1.460235834121704 img loss 1.4774996042251587 img loss 1.4011969566345215 img loss 1.495775818824768 img loss 1.3948177099227905 img loss 1.2342381477355957 img loss 1.4051915407180786 img loss 1.3678333759307861 img loss 1.4606770277023315 img loss 1.545192837715149 img loss 1.4980701208114624 img loss 1.4565156698226929 img loss 1.478588342666626 img loss 1.4365321397781372 img loss 1.4659982919692993 img loss 1.482547402381897 img loss 1.4423514604568481 img loss 1.3378405570983887 img loss 1.4719716310501099 img loss 1.4360710382461548 {'loss': 1.4456, 'grad_norm': 0.4165647029876709, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1575068235397339 img loss 1.184311866760254 img loss 1.296501874923706 img loss 1.2135111093521118 img loss 1.1685009002685547 img loss 1.1694167852401733 img loss 1.265135645866394 img loss 1.1621677875518799 img loss 1.207425832748413 img loss 1.2044519186019897 img loss 1.2180721759796143 img loss 1.2331390380859375 img loss 1.2135865688323975 img loss 1.1855442523956299 img loss 1.2323230504989624 img loss 1.2322497367858887 img loss 1.1644178628921509 img loss 1.1934046745300293 img loss 1.1140228509902954 img loss 1.1775966882705688 img loss 1.202055811882019 img loss 1.2220125198364258 img loss 1.1699256896972656 img loss 1.1580419540405273 img loss 1.2696571350097656 img loss 1.3001430034637451 img loss 1.2480874061584473 img loss 1.1493908166885376 img loss 1.2255892753601074 img loss 1.215575933456421 img loss 1.2455204725265503 img loss 1.2030872106552124 img loss 1.1796774864196777 img loss 1.1846363544464111 img loss 1.1908444166183472 img loss 1.160491704940796 img loss 1.2524681091308594 img loss 1.1999506950378418 img loss 1.1703579425811768 img loss 1.2645072937011719 img loss 1.2129242420196533 img loss 1.2012474536895752 img loss 1.1808691024780273 img loss 1.2486300468444824 img loss 1.1397051811218262 img loss 1.197696328163147 img loss 1.1631062030792236 img loss 1.232857584953308 img loss 1.2082089185714722 img loss 1.2455408573150635 img loss 1.1911499500274658 img loss 1.1565093994140625 img loss 1.1946877241134644 img loss 1.168322205543518 img loss 1.2135608196258545 img loss 1.1991151571273804 img loss 1.219363808631897 img loss 1.1305173635482788 img loss 1.2092252969741821 img loss 1.1656110286712646 img loss 1.2360167503356934 img loss 1.271451473236084 img loss 1.2562826871871948 img loss 1.1832237243652344 img loss 1.1765650510787964 img loss 1.2119228839874268 img loss 1.204742431640625 img loss 1.2391986846923828 img loss 1.2291587591171265 img loss 1.2031290531158447 img loss 1.1954807043075562 img loss 1.2758152484893799 img loss 1.2282381057739258 img loss 1.1864433288574219 img loss 1.1989989280700684 img loss 1.2348588705062866 img loss 1.2600123882293701 img loss 1.185827612876892 img loss 1.1989587545394897 img loss 1.185259461402893 img loss 1.201008677482605 img loss 1.2000106573104858 img loss 1.2220735549926758 img loss 1.2214306592941284 img loss 1.2018932104110718 img loss 1.3264827728271484 img loss 1.191801905632019 img loss 1.2633202075958252 img loss 1.1765187978744507 img loss 1.1558204889297485 img loss 1.189602255821228 img loss 1.2542749643325806 img loss 1.2386120557785034 img loss 1.3068889379501343 img loss 1.2016098499298096 img loss 1.2264236211776733 img loss 1.2397980690002441 img loss 1.274730920791626 img loss 1.2560877799987793 img loss 1.243394374847412 img loss 1.212687373161316 img loss 1.1947557926177979 img loss 1.2758440971374512 img loss 1.215732216835022 img loss 1.1888799667358398 img loss 1.1644854545593262 img loss 1.1402024030685425 img loss 1.135842204093933 img loss 1.1958904266357422 img loss 1.220353603363037 img loss 1.2322981357574463 img loss 1.2380695343017578 img loss 1.2284783124923706 img loss 1.2165578603744507 img loss 1.223659873008728 img loss 1.2216579914093018 img loss 1.2825186252593994 img loss 1.0900495052337646 img loss 1.1851030588150024 img loss 1.2591218948364258 img loss 1.2145754098892212 img loss 1.238909363746643 img loss 1.2032313346862793 img loss 1.2714308500289917 img loss 1.206804633140564 img loss 1.1682345867156982 img loss 1.26142156124115 img loss 1.1763561964035034 {'loss': 1.2102, 'grad_norm': 0.2332989126443863, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2738174200057983 img loss 1.2374873161315918 img loss 1.2827386856079102 img loss 1.221571445465088 img loss 1.3638440370559692 img loss 1.2582281827926636 img loss 1.3554188013076782 img loss 1.325173258781433 img loss 1.2952591180801392 img loss 1.2845820188522339 img loss 1.3908171653747559 img loss 1.3064727783203125 img loss 1.2823034524917603 img loss 1.1666944026947021 img loss 1.3294070959091187 img loss 1.3242887258529663 img loss 1.2546381950378418 img loss 1.2972420454025269 img loss 1.2344001531600952 img loss 1.2512177228927612 img loss 1.2417453527450562 img loss 1.295295000076294 img loss 1.2279716730117798 img loss 1.2692878246307373 img loss 1.3646739721298218 img loss 1.290770173072815 img loss 1.296350121498108 img loss 1.3048548698425293 img loss 1.2430824041366577 img loss 1.230528712272644 img loss 1.333128809928894 img loss 1.2344878911972046 img loss 1.2803120613098145 img loss 1.3018171787261963 img loss 1.3227715492248535 img loss 1.4223487377166748 img loss 1.3614592552185059 img loss 1.2387826442718506 img loss 1.2273857593536377 img loss 1.2157723903656006 img loss 1.2503926753997803 img loss 1.3199760913848877 img loss 1.275278091430664 img loss 1.2464321851730347 img loss 1.2340320348739624 img loss 1.334118127822876 img loss 1.2328085899353027 img loss 1.2695305347442627 img loss 1.2897937297821045 img loss 1.2502129077911377 img loss 1.3283374309539795 img loss 1.3269293308258057 img loss 1.3197779655456543 img loss 1.2858269214630127 img loss 1.2949068546295166 img loss 1.4148892164230347 img loss 1.2228676080703735 img loss 1.2734570503234863 img loss 1.3663350343704224 img loss 1.3386896848678589 img loss 1.236175298690796 img loss 1.2907485961914062 img loss 1.3745256662368774 img loss 1.2889496088027954 img loss 1.3299092054367065 img loss 1.27865731716156 img loss 1.3090150356292725 img loss 1.2992619276046753 img loss 1.2908031940460205 img loss 1.3240989446640015 img loss 1.2679996490478516 img loss 1.2684576511383057 img loss 1.3206876516342163 img loss 1.2954647541046143 img loss 1.3405592441558838 img loss 1.307382345199585 img loss 1.264697790145874 img loss 1.247800588607788 img loss 1.1854006052017212 img loss 1.2359546422958374 img loss 1.1847788095474243 img loss 1.3466416597366333 img loss 1.1902079582214355 img loss 1.3355599641799927 img loss 1.280729055404663 img loss 1.2967000007629395 img loss 1.2496305704116821 img loss 1.2583311796188354 img loss 1.387153148651123 img loss 1.2381401062011719 img loss 1.268136739730835 img loss 1.2725728750228882 img loss 1.2270305156707764 img loss 1.3201855421066284 img loss 1.301135540008545 img loss 1.2282084226608276 img loss 1.3895951509475708 img loss 1.331651210784912 img loss 1.3202266693115234 img loss 1.368179202079773 img loss 1.34184730052948 img loss 1.2940177917480469 img loss 1.2860206365585327 img loss 1.2470463514328003 img loss 1.311825156211853 img loss 1.443154215812683 img loss 1.3326925039291382 img loss 1.303134799003601 img loss 1.2814624309539795 img loss 1.3617078065872192 img loss 1.375435471534729 img loss 1.2923635244369507 img loss 1.3507676124572754 img loss 1.3064953088760376 img loss 1.3142591714859009 img loss 1.3332970142364502 img loss 1.3345887660980225 img loss 1.2488272190093994 img loss 1.3093286752700806 img loss 1.3431522846221924 img loss 1.280178427696228 img loss 1.3162773847579956 img loss 1.2450709342956543 img loss 1.3153655529022217 img loss 1.2946712970733643 img loss 1.385897159576416 img loss 1.337355375289917 img loss 1.2454380989074707 {'loss': 1.2945, 'grad_norm': 0.6577833294868469, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.0753204822540283 img loss 1.18375563621521 img loss 1.1532410383224487 img loss 1.1502704620361328 img loss 1.1985515356063843 img loss 1.2100982666015625 img loss 1.2300434112548828 img loss 1.1532729864120483 img loss 1.1918199062347412 img loss 1.1547502279281616 img loss 1.1850732564926147 img loss 1.2512158155441284 img loss 1.1276506185531616 img loss 1.191568374633789 img loss 1.2360814809799194 img loss 1.1636769771575928 img loss 1.2235965728759766 img loss 1.1896326541900635 img loss 1.0959444046020508 img loss 1.1737937927246094 img loss 1.2510356903076172 img loss 1.2888071537017822 img loss 1.1718851327896118 img loss 1.0940051078796387 img loss 1.1598175764083862 img loss 1.1828917264938354 img loss 1.1645216941833496 img loss 1.250496745109558 img loss 1.2071453332901 img loss 1.2226701974868774 img loss 1.2013708353042603 img loss 1.15138578414917 img loss 1.1993160247802734 img loss 1.2543119192123413 img loss 1.138174295425415 img loss 1.2724125385284424 img loss 1.225633144378662 img loss 1.1829299926757812 img loss 1.1653411388397217 img loss 1.1381785869598389 img loss 1.1894466876983643 img loss 1.1944454908370972 img loss 1.1718461513519287 img loss 1.1541709899902344 img loss 1.2128652334213257 img loss 1.2816990613937378 img loss 1.2538914680480957 img loss 1.194932460784912 img loss 1.163028359413147 img loss 1.2162389755249023 img loss 1.1731712818145752 img loss 1.2406104803085327 img loss 1.1459606885910034 img loss 1.1634321212768555 img loss 1.2468210458755493 img loss 1.1777180433273315 img loss 1.2697235345840454 img loss 1.202815294265747 img loss 1.1407159566879272 img loss 1.1306260824203491 img loss 1.226609706878662 img loss 1.3048644065856934 img loss 1.1954468488693237 img loss 1.1513394117355347 img loss 1.25790274143219 img loss 1.1842397451400757 img loss 1.100500464439392 img loss 1.141679048538208 img loss 1.2721668481826782 img loss 1.1630820035934448 img loss 1.0931791067123413 img loss 1.2096872329711914 img loss 1.228293776512146 img loss 1.1912797689437866 img loss 1.1253796815872192 img loss 1.1394436359405518 img loss 1.1109063625335693 img loss 1.2397971153259277 img loss 1.2217459678649902 img loss 1.2288551330566406 img loss 1.1955578327178955 img loss 1.1978199481964111 img loss 1.2504322528839111 img loss 1.2242357730865479 img loss 1.1594903469085693 img loss 1.157446265220642 img loss 1.1863248348236084 img loss 1.1444203853607178 img loss 1.1461689472198486 img loss 1.187920093536377 img loss 1.1805216073989868 img loss 1.2198511362075806 img loss 1.2987622022628784 img loss 1.1521059274673462 img loss 1.18520987033844 img loss 1.1413172483444214 img loss 1.2193028926849365 img loss 1.1999926567077637 img loss 1.1852188110351562 img loss 1.180148720741272 img loss 1.1158696413040161 img loss 1.2716734409332275 img loss 1.177638292312622 img loss 1.2412325143814087 img loss 1.2305305004119873 img loss 1.1704658269882202 img loss 1.1754233837127686 img loss 1.1911791563034058 img loss 1.2883615493774414 img loss 1.2331246137619019 img loss 1.2213799953460693 img loss 1.1809648275375366 img loss 1.2304902076721191 img loss 1.2323901653289795 img loss 1.1631510257720947 img loss 1.202500581741333 img loss 1.205554485321045 img loss 1.2092342376708984 img loss 1.201064109802246 img loss 1.177634596824646 img loss 1.2068233489990234 img loss 1.1152234077453613 img loss 1.1834970712661743 img loss 1.227254867553711 img loss 1.2045954465866089 img loss 1.2212631702423096 img loss 1.1335804462432861 img loss 1.2087582349777222 {'loss': 1.1922, 'grad_norm': 0.3242111802101135, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.441206455230713 img loss 1.3909070491790771 img loss 1.2355058193206787 img loss 1.4221733808517456 img loss 1.294616460800171 img loss 1.3807333707809448 img loss 1.4088032245635986 img loss 1.2853419780731201 img loss 1.2816108465194702 img loss 1.3149131536483765 img loss 1.3113532066345215 img loss 1.2745182514190674 img loss 1.3367184400558472 img loss 1.2446180582046509 img loss 1.3370424509048462 img loss 1.3209097385406494 img loss 1.2767709493637085 img loss 1.401165246963501 img loss 1.3753317594528198 img loss 1.2087690830230713 img loss 1.2717020511627197 img loss 1.484987497329712 img loss 1.410559892654419 img loss 1.3085854053497314 img loss 1.4149588346481323 img loss 1.2843654155731201 img loss 1.2774181365966797 img loss 1.367647409439087 img loss 1.2575161457061768 img loss 1.2849193811416626 img loss 1.4129127264022827 img loss 1.3112900257110596 img loss 1.2641876935958862 img loss 1.370234727859497 img loss 1.3524668216705322 img loss 1.3521878719329834 img loss 1.252722978591919 img loss 1.1638298034667969 img loss 1.2631683349609375 img loss 1.3815420866012573 img loss 1.3601316213607788 img loss 1.354222059249878 img loss 1.2295126914978027 img loss 1.3501684665679932 img loss 1.3887722492218018 img loss 1.3260074853897095 img loss 1.3199570178985596 img loss 1.227111577987671 img loss 1.2774808406829834 img loss 1.2566735744476318 img loss 1.4260140657424927 img loss 1.3567516803741455 img loss 1.4023936986923218 img loss 1.338514804840088 img loss 1.4129726886749268 img loss 1.311434268951416 img loss 1.2613534927368164 img loss 1.3662199974060059 img loss 1.346697449684143 img loss 1.2842031717300415 img loss 1.238525390625 img loss 1.2621582746505737 img loss 1.335006833076477 img loss 1.3490735292434692 img loss 1.3297008275985718 img loss 1.3607124090194702 img loss 1.2307298183441162 img loss 1.2963893413543701img loss 1.3525121212005615 img loss 1.3512589931488037 img loss 1.292651891708374 img loss 1.2259448766708374 img loss 1.327634334564209 img loss 1.2693111896514893 img loss 1.3466753959655762 img loss 1.3760491609573364 img loss 1.3576098680496216 img loss 1.3349379301071167 img loss 1.3768147230148315 img loss 1.3337444067001343 img loss 1.276781678199768 img loss 1.3797639608383179 img loss 1.2886993885040283 img loss 1.186805009841919 img loss 1.3735806941986084 img loss 1.28456449508667 img loss 1.2538398504257202 img loss 1.408547282218933 img loss 1.4082227945327759 img loss 1.2285752296447754 img loss 1.314441204071045 img loss 1.1986031532287598 img loss 1.372968077659607 img loss 1.2521909475326538 img loss 1.306657075881958 img loss 1.2257263660430908 img loss 1.368188500404358 img loss 1.2618635892868042 img loss 1.292915940284729 img loss 1.3045194149017334 img loss 1.3063397407531738 img loss 1.2954527139663696 img loss 1.3184846639633179 img loss 1.3018591403961182 img loss 1.4072767496109009 img loss 1.3154302835464478 img loss 1.2561898231506348 img loss 1.3903454542160034 img loss 1.3489015102386475 img loss 1.385047197341919 img loss 1.534820795059204 img loss 1.4857126474380493 img loss 1.3185501098632812 img loss 1.2465976476669312 img loss 1.394262671470642 img loss 1.386452078819275 img loss 1.220452070236206 img loss 1.292140007019043 img loss 1.2450900077819824 img loss 1.3341447114944458 img loss 1.2299715280532837 img loss 1.2989537715911865 img loss 1.2996584177017212 img loss 1.3348218202590942 img loss 1.2201734781265259 img loss 1.2622480392456055 img loss 1.2791686058044434 img loss 1.3098301887512207 {'loss': 1.3202, 'grad_norm': 0.5721724629402161, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1665772199630737 img loss 1.3140209913253784 img loss 1.1833730936050415 img loss 1.3311491012573242 img loss 1.1733934879302979 img loss 1.2594236135482788 img loss 1.261258840560913 img loss 1.216411828994751 img loss 1.1410149335861206 img loss 1.2004375457763672 img loss 1.3027331829071045 img loss 1.2557605504989624 img loss 1.2350667715072632 img loss 1.2091305255889893 img loss 1.1360379457473755 img loss 1.2335069179534912 img loss 1.261458158493042 img loss 1.2472741603851318 img loss 1.1827046871185303 img loss 1.2044261693954468 img loss 1.2291630506515503 img loss 1.2249164581298828 img loss 1.2077032327651978 img loss 1.27290940284729 img loss 1.2474520206451416 img loss 1.1889253854751587 img loss 1.20621657371521 img loss 1.220080018043518 img loss 1.1895967721939087 img loss 1.1914403438568115 img loss 1.1869539022445679 img loss 1.1584781408309937 img loss 1.1883764266967773 img loss 1.2126102447509766 img loss 1.251627802848816 img loss 1.1821346282958984 img loss 1.1373887062072754 img loss 1.2441294193267822 img loss 1.1882752180099487 img loss 1.2409305572509766 img loss 1.1790082454681396 img loss 1.2479383945465088 img loss 1.1634565591812134 img loss 1.2195961475372314 img loss 1.263939380645752 img loss 1.275132179260254 img loss 1.1930882930755615 img loss 1.1512192487716675 img loss 1.1686780452728271 img loss 1.162191390991211 img loss 1.2106479406356812 img loss 1.1892085075378418 img loss 1.231635570526123 img loss 1.275398850440979 img loss 1.26266610622406 img loss 1.1269676685333252 img loss 1.2605427503585815 img loss 1.231532335281372 img loss 1.2593367099761963 img loss 1.1963332891464233 img loss 1.2588646411895752 img loss 1.274038314819336 img loss 1.2503818273544312 img loss 1.254939317703247 img loss 1.2101469039916992 img loss 1.2062294483184814 img loss 1.188999056816101 img loss 1.214596152305603 img loss 1.189612627029419 img loss 1.213578462600708 img loss 1.1875767707824707 img loss 1.1751947402954102 img loss 1.2976124286651611 img loss 1.0972980260849 img loss 1.2852206230163574 img loss 1.2186853885650635 img loss 1.2293192148208618 img loss 1.2637062072753906 img loss 1.1671116352081299 img loss 1.1822394132614136 img loss 1.2446303367614746 img loss 1.2272374629974365 img loss 1.196608543395996 img loss 1.180811882019043 img loss 1.314435601234436 img loss 1.2766942977905273 img loss 1.1820886135101318 img loss 1.2832560539245605 img loss 1.2443815469741821 img loss 1.2431761026382446 img loss 1.1799081563949585 img loss 1.1918251514434814 img loss 1.312312364578247 img loss 1.2761141061782837 img loss 1.2124649286270142 img loss 1.1700208187103271 img loss 1.2408332824707031 img loss 1.1484394073486328 img loss 1.1911640167236328 img loss 1.2003726959228516 img loss 1.2759268283843994 img loss 1.189073920249939img loss 1.265831470489502 img loss 1.2042078971862793 img loss 1.184966802597046 img loss 1.2165178060531616 img loss 1.2042986154556274 img loss 1.2415300607681274 img loss 1.2701441049575806 img loss 1.2119648456573486 img loss 1.2716617584228516 img loss 1.2081501483917236 img loss 1.172890543937683 img loss 1.2012161016464233 img loss 1.205140471458435 img loss 1.2191097736358643 img loss 1.1989099979400635 img loss 1.250344157218933 img loss 1.2558050155639648 img loss 1.2151836156845093 img loss 1.242064356803894 img loss 1.1744314432144165 img loss 1.188067078590393 img loss 1.2369534969329834 img loss 1.2289085388183594 img loss 1.2275209426879883 img loss 1.2105190753936768 img loss 1.2222603559494019 {'loss': 1.219, 'grad_norm': 0.5600029826164246, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2636826038360596 img loss 1.2023924589157104 img loss 1.2359336614608765 img loss 1.2728955745697021 img loss 1.2354662418365479 img loss 1.2029871940612793 img loss 1.1742874383926392 img loss 1.1827224493026733 img loss 1.1195478439331055 img loss 1.195504903793335 img loss 1.2819398641586304 img loss 1.2728116512298584 img loss 1.224818468093872 img loss 1.2915598154067993 img loss 1.2584494352340698 img loss 1.2157500982284546 img loss 1.3022966384887695 img loss 1.204797387123108 img loss 1.301918387413025 img loss 1.2473796606063843 img loss 1.250069260597229 img loss 1.201171636581421 img loss 1.2233092784881592 img loss 1.212860107421875img loss 1.2028796672821045 img loss 1.2604154348373413 img loss 1.3163063526153564 img loss 1.207719087600708 img loss 1.1936734914779663 img loss 1.1920264959335327 img loss 1.2440848350524902 img loss 1.173206090927124 img loss 1.2602375745773315 img loss 1.2507541179656982 img loss 1.2286239862442017 img loss 1.2045761346817017 img loss 1.218062162399292 img loss 1.2730467319488525 img loss 1.2187933921813965 img loss 1.333434820175171 img loss 1.298903465270996 img loss 1.2626795768737793 img loss 1.2305504083633423 img loss 1.1780831813812256 img loss 1.2261881828308105 img loss 1.3111521005630493 img loss 1.2875289916992188 img loss 1.1814216375350952 img loss 1.2984541654586792 img loss 1.2050800323486328 img loss 1.2226959466934204 img loss 1.3376553058624268 img loss 1.2214925289154053 img loss 1.21833074092865 img loss 1.250923991203308 img loss 1.307030200958252 img loss 1.3335340023040771 img loss 1.3802632093429565 img loss 1.2471070289611816 img loss 1.2183864116668701 img loss 1.3831727504730225 img loss 1.234800934791565 img loss 1.2984412908554077 img loss 1.2058029174804688 img loss 1.24741530418396 img loss 1.2032769918441772 img loss 1.260170340538025 img loss 1.2542030811309814 img loss 1.2395401000976562 img loss 1.3355094194412231 img loss 1.1949610710144043 img loss 1.2334086894989014 img loss 1.219430923461914 img loss 1.263546347618103 img loss 1.3055667877197266 img loss 1.251395583152771 img loss 1.2169239521026611 img loss 1.3087055683135986 img loss 1.2082346677780151 img loss 1.3562147617340088 img loss 1.1811466217041016 img loss 1.2195591926574707 img loss 1.249969482421875 img loss 1.2375930547714233 img loss 1.2044776678085327 img loss 1.2435861825942993 img loss 1.2623536586761475 img loss 1.2048696279525757 img loss 1.2956081628799438 img loss 1.3230825662612915 img loss 1.2175222635269165 img loss 1.2906979322433472 img loss 1.2051715850830078 img loss 1.2848665714263916 img loss 1.260108470916748 img loss 1.2297565937042236 img loss 1.2008109092712402 img loss 1.2067713737487793 img loss 1.31273353099823 img loss 1.212246298789978 img loss 1.2411965131759644 img loss 1.2194430828094482 img loss 1.3228615522384644 img loss 1.191107153892517 img loss 1.2257421016693115 img loss 1.14298677444458 img loss 1.3034902811050415 img loss 1.2360401153564453 img loss 1.313537836074829 img loss 1.2348864078521729 img loss 1.2857778072357178 img loss 1.3389487266540527 img loss 1.2627142667770386 img loss 1.2688264846801758 img loss 1.2236088514328003 img loss 1.1979833841323853 img loss 1.1996397972106934 img loss 1.2606399059295654 img loss 1.317102313041687 img loss 1.3218497037887573 img loss 1.1706969738006592 img loss 1.2448866367340088 img loss 1.1863024234771729 img loss 1.2121737003326416 img loss 1.180907130241394 img loss 1.222971796989441 img loss 1.2082233428955078 img loss 1.2367466688156128 {'loss': 1.2453, 'grad_norm': 0.3678838610649109, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.363922357559204 img loss 1.3356846570968628 img loss 1.4085232019424438 img loss 1.3140504360198975 img loss 1.2559549808502197 img loss 1.30586838722229 img loss 1.3021471500396729 img loss 1.369949221611023 img loss 1.2984766960144043 img loss 1.3297920227050781 img loss 1.274646282196045 img loss 1.3767507076263428 img loss 1.3541617393493652 img loss 1.4062187671661377 img loss 1.4589747190475464 img loss 1.3556541204452515 img loss 1.4278417825698853 img loss 1.295562982559204 img loss 1.4183717966079712 img loss 1.2790005207061768 img loss 1.1538562774658203 img loss 1.4268848896026611 img loss 1.309131383895874 img loss 1.371964693069458 img loss 1.268628478050232 img loss 1.2536828517913818 img loss 1.3658586740493774 img loss 1.4491811990737915 img loss 1.3722983598709106 img loss 1.3488231897354126 img loss 1.2572436332702637 img loss 1.3614522218704224 img loss 1.2758114337921143 img loss 1.432355523109436 img loss 1.3163070678710938 img loss 1.3687883615493774 img loss 1.296980619430542 img loss 1.290113091468811 img loss 1.382699728012085 img loss 1.288439393043518 img loss 1.3389408588409424 img loss 1.375373125076294 img loss 1.2442011833190918img loss 1.3935455083847046 img loss 1.422141194343567 img loss 1.3550753593444824 img loss 1.2625904083251953 img loss 1.3840010166168213 img loss 1.3410232067108154 img loss 1.349039912223816 img loss 1.2474688291549683 img loss 1.3529890775680542 img loss 1.3473774194717407 img loss 1.3345171213150024 img loss 1.3507484197616577 img loss 1.3644105195999146 img loss 1.2584261894226074 img loss 1.441799521446228 img loss 1.3393899202346802 img loss 1.3318523168563843 img loss 1.4279568195343018 img loss 1.3377530574798584 img loss 1.3936781883239746 img loss 1.4140592813491821 img loss 1.3938676118850708 img loss 1.4512234926223755 img loss 1.44325590133667 img loss 1.3592350482940674 img loss 1.3945986032485962 img loss 1.3165801763534546 img loss 1.3357843160629272 img loss 1.355999231338501 img loss 1.30458402633667 img loss 1.3213658332824707 img loss 1.3861125707626343 img loss 1.3417810201644897 img loss 1.3659855127334595 img loss 1.3076273202896118 img loss 1.4130303859710693 img loss 1.3092482089996338 img loss 1.2983837127685547 img loss 1.4445827007293701 img loss 1.364730715751648 img loss 1.352920651435852 img loss 1.373422384262085 img loss 1.2857296466827393 img loss 1.2215827703475952 img loss 1.3646279573440552 img loss 1.2726496458053589 img loss 1.3823591470718384 img loss 1.2624377012252808 img loss 1.3008625507354736 img loss 1.2338078022003174 img loss 1.2873895168304443 img loss 1.35385000705719 img loss 1.2727582454681396 img loss 1.2751972675323486 img loss 1.3608478307724 img loss 1.3546079397201538 img loss 1.3563148975372314 img loss 1.3311479091644287 img loss 1.3738774061203003 img loss 1.2890586853027344 img loss 1.3752351999282837 img loss 1.3605725765228271 img loss 1.3217929601669312 img loss 1.386261224746704 img loss 1.3453078269958496 img loss 1.295546531677246 img loss 1.3725848197937012 img loss 1.364416480064392 img loss 1.327692985534668 img loss 1.294451117515564 img loss 1.2825920581817627 img loss 1.3160018920898438 img loss 1.3618686199188232 img loss 1.3774733543395996 img loss 1.353022813796997 img loss 1.265556812286377 img loss 1.382483959197998 img loss 1.3339512348175049 img loss 1.4278818368911743 img loss 1.3059093952178955 img loss 1.4268587827682495 img loss 1.4633866548538208 img loss 1.2950152158737183 img loss 1.3335373401641846 img loss 1.3182371854782104 {'loss': 1.3424, 'grad_norm': 0.6885885000228882, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3172602653503418 img loss 1.3383907079696655 img loss 1.2519009113311768 img loss 1.289366364479065 img loss 1.234121561050415 img loss 1.2720272541046143 img loss 1.3891547918319702 img loss 1.2937558889389038 img loss 1.2394330501556396 img loss 1.2880595922470093 img loss 1.234521746635437 img loss 1.3237112760543823 img loss 1.2907021045684814 img loss 1.2538541555404663 img loss 1.3247692584991455img loss 1.3264204263687134 img loss 1.2752971649169922 img loss 1.2772002220153809 img loss 1.2301595211029053 img loss 1.3054823875427246 img loss 1.2353343963623047 img loss 1.2690117359161377 img loss 1.403918981552124 img loss 1.2613463401794434 img loss 1.3179895877838135 img loss 1.2782026529312134 img loss 1.364272952079773 img loss 1.2629680633544922 img loss 1.2847963571548462 img loss 1.3772832155227661 img loss 1.2852331399917603 img loss 1.352342128753662 img loss 1.335655927658081 img loss 1.3364427089691162 img loss 1.3239914178848267 img loss 1.3553061485290527 img loss 1.270330786705017 img loss 1.2908990383148193 img loss 1.3354145288467407 img loss 1.3414298295974731 img loss 1.3295029401779175 img loss 1.3019003868103027 img loss 1.2777683734893799 img loss 1.2524830102920532 img loss 1.2850360870361328 img loss 1.3210959434509277 img loss 1.362701654434204 img loss 1.2969812154769897 img loss 1.3321493864059448 img loss 1.320898413658142 img loss 1.4150673151016235 img loss 1.3083319664001465 img loss 1.357711672782898img loss 1.3098725080490112 img loss 1.2750089168548584img loss 1.290657877922058 img loss 1.2367887496948242 img loss 1.2910182476043701 img loss 1.2982391119003296 img loss 1.2624119520187378 img loss 1.2797826528549194 img loss 1.2987031936645508 img loss 1.3045743703842163 img loss 1.3302258253097534 img loss 1.308514952659607 img loss 1.1756998300552368 img loss 1.3243598937988281 img loss 1.3338531255722046 img loss 1.303138256072998 img loss 1.3089250326156616 img loss 1.2690186500549316 img loss 1.238389253616333 img loss 1.3126444816589355 img loss 1.2686421871185303 img loss 1.294472336769104 img loss 1.298406958580017 img loss 1.357054591178894 img loss 1.3388550281524658 img loss 1.2513880729675293 img loss 1.3081411123275757 img loss 1.3109817504882812 img loss 1.3400609493255615 img loss 1.3975272178649902 img loss 1.2799042463302612 img loss 1.1620086431503296 img loss 1.3124011754989624 img loss 1.2090110778808594 img loss 1.35098135471344 img loss 1.3005998134613037 img loss 1.3791295289993286 img loss 1.2607090473175049 img loss 1.264852523803711 img loss 1.3632372617721558 img loss 1.2548801898956299 img loss 1.2970607280731201 img loss 1.2709053754806519 img loss 1.2368364334106445 img loss 1.3003385066986084 img loss 1.2579395771026611 img loss 1.2283902168273926 img loss 1.270509958267212 img loss 1.3125452995300293 img loss 1.332335114479065 img loss 1.322664499282837 img loss 1.3619705438613892 img loss 1.2326668500900269 img loss 1.330996036529541 img loss 1.2404417991638184 img loss 1.3675158023834229 img loss 1.262125015258789 img loss 1.2744016647338867 img loss 1.2645024061203003 img loss 1.204427719116211 img loss 1.3508156538009644 img loss 1.27302885055542 img loss 1.3148550987243652 img loss 1.309104561805725 img loss 1.332950472831726 img loss 1.389112114906311 img loss 1.2716052532196045 img loss 1.2794121503829956 img loss 1.1823104619979858 img loss 1.197282075881958 img loss 1.334092617034912 img loss 1.2981213331222534 img loss 1.2670427560806274 img loss 1.2828991413116455 img loss 1.2714165449142456 {'loss': 1.2967, 'grad_norm': 0.21621005237102509, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2835347652435303 img loss 1.3472012281417847 img loss 1.2862249612808228 img loss 1.3268194198608398 img loss 1.3347688913345337 img loss 1.288537859916687 img loss 1.2368957996368408 img loss 1.1954411268234253 img loss 1.3181008100509644 img loss 1.3007769584655762 img loss 1.2760168313980103 img loss 1.2404755353927612 img loss 1.418536901473999 img loss 1.3924086093902588 img loss 1.3017581701278687 img loss 1.3164509534835815 img loss 1.2715153694152832 img loss 1.2730822563171387 img loss 1.3447623252868652 img loss 1.3187401294708252 img loss 1.2401965856552124 img loss 1.2923862934112549 img loss 1.3542640209197998 img loss 1.2998511791229248 img loss 1.3304260969161987 img loss 1.2419848442077637 img loss 1.2601237297058105 img loss 1.2473697662353516 img loss 1.3300470113754272 img loss 1.3919501304626465 img loss 1.3260654211044312 img loss 1.251291036605835 img loss 1.3015809059143066 img loss 1.2183020114898682 img loss 1.2658833265304565 img loss 1.2709509134292603 img loss 1.2360162734985352 img loss 1.2799263000488281 img loss 1.249239206314087 img loss 1.340684413909912 img loss 1.4459916353225708 img loss 1.3493001461029053 img loss 1.2870148420333862 img loss 1.3104828596115112 img loss 1.2772657871246338 img loss 1.1997835636138916 img loss 1.2048685550689697 img loss 1.2578343152999878 img loss 1.3003036975860596 img loss 1.3873332738876343 img loss 1.374371886253357 img loss 1.2517008781433105 img loss 1.2656002044677734 img loss 1.2579495906829834 img loss 1.251749038696289 img loss 1.2734029293060303 img loss 1.5020763874053955 img loss 1.256012201309204 img loss 1.310630202293396 img loss 1.3472341299057007 img loss 1.2186613082885742 img loss 1.2648833990097046 img loss 1.284023642539978 img loss 1.316531777381897 img loss 1.2172802686691284 img loss 1.3067032098770142 img loss 1.236937165260315 img loss 1.371127963066101 img loss 1.277330994606018 img loss 1.250293254852295 img loss 1.257981777191162 img loss 1.2492461204528809 img loss 1.448810338973999 img loss 1.2625610828399658 img loss 1.238274097442627 img loss 1.2650971412658691 img loss 1.3460568189620972 img loss 1.3531949520111084 img loss 1.308523178100586 img loss 1.2350281476974487 img loss 1.2685348987579346 img loss 1.3686779737472534 img loss 1.3400133848190308 img loss 1.2192070484161377 img loss 1.3108965158462524 img loss 1.3260045051574707 img loss 1.353358507156372 img loss 1.343708872795105 img loss 1.3066859245300293 img loss 1.3515170812606812 img loss 1.2760730981826782 img loss 1.2751882076263428 img loss 1.400986909866333 img loss 1.3825132846832275 img loss 1.4154868125915527 img loss 1.305301308631897 img loss 1.2764592170715332 img loss 1.3059594631195068 img loss 1.3257980346679688 img loss 1.261492371559143 img loss 1.3249558210372925 img loss 1.358831524848938 img loss 1.3295073509216309 img loss 1.239820957183838img loss 1.3297218084335327 img loss 1.3313673734664917 img loss 1.2999986410140991 img loss 1.219356894493103 img loss 1.307692289352417img loss 1.2873361110687256img loss 1.1556707620620728 img loss 1.2457650899887085 img loss 1.3424181938171387 img loss 1.3395545482635498 img loss 1.2227063179016113 img loss 1.2981584072113037 img loss 1.2389426231384277 img loss 1.3713017702102661 img loss 1.325828194618225 img loss 1.293480634689331 img loss 1.2788722515106201 img loss 1.3061301708221436 img loss 1.336158275604248 img loss 1.3049224615097046 img loss 1.3750029802322388 img loss 1.2393754720687866 img loss 1.27806556224823 img loss 1.2362384796142578 {'loss': 1.2988, 'grad_norm': 0.3697246015071869, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2802108526229858 img loss 1.301154613494873 img loss 1.2891979217529297 img loss 1.3133676052093506 img loss 1.2654411792755127 img loss 1.250933289527893 img loss 1.2422837018966675 img loss 1.2823224067687988 img loss 1.2091498374938965 img loss 1.2990202903747559 img loss 1.3177943229675293 img loss 1.221795916557312 img loss 1.2515974044799805 img loss 1.222258448600769 img loss 1.3216392993927002 img loss 1.2234764099121094 img loss 1.2632373571395874 img loss 1.2959346771240234 img loss 1.2124927043914795 img loss 1.248747706413269 img loss 1.3355019092559814 img loss 1.2637596130371094 img loss 1.1823937892913818 img loss 1.2088125944137573 img loss 1.2794411182403564 img loss 1.2681816816329956 img loss 1.3502192497253418 img loss 1.318183183670044 img loss 1.2742677927017212 img loss 1.276404619216919 img loss 1.2532631158828735 img loss 1.2348899841308594 img loss 1.229296088218689 img loss 1.2299668788909912 img loss 1.218759298324585 img loss 1.2409018278121948 img loss 1.30020272731781 img loss 1.25243079662323 img loss 1.2423756122589111 img loss 1.2399603128433228 img loss 1.277644395828247 img loss 1.2945975065231323 img loss 1.2153085470199585 img loss 1.3103302717208862 img loss 1.3048157691955566 img loss 1.2587412595748901 img loss 1.4103974103927612 img loss 1.3109544515609741 img loss 1.2597401142120361 img loss 1.3144493103027344 img loss 1.4009089469909668 img loss 1.256721019744873 img loss 1.2593590021133423 img loss 1.4404690265655518 img loss 1.3677464723587036 img loss 1.2537389993667603 img loss 1.3820312023162842 img loss 1.2604376077651978 img loss 1.2779020071029663 img loss 1.3013817071914673 img loss 1.2692497968673706 img loss 1.3691627979278564 img loss 1.1959228515625 img loss 1.18941068649292 img loss 1.2515887022018433 img loss 1.2217106819152832 img loss 1.3009529113769531 img loss 1.3039062023162842 img loss 1.3638131618499756 img loss 1.3740906715393066 img loss 1.3096368312835693 img loss 1.3199043273925781 img loss 1.2117385864257812 img loss 1.266535758972168 img loss 1.2390044927597046 img loss 1.2581866979599 img loss 1.29686439037323 img loss 1.2830551862716675 img loss 1.3309319019317627 img loss 1.329275369644165 img loss 1.3380628824234009 img loss 1.306760549545288 img loss 1.333319067955017 img loss 1.2650315761566162 img loss 1.332356333732605 img loss 1.2090928554534912 img loss 1.2787519693374634 img loss 1.2376105785369873 img loss 1.2024751901626587 img loss 1.2749992609024048 img loss 1.266396164894104 img loss 1.2669601440429688 img loss 1.2877042293548584 img loss 1.2442376613616943 img loss 1.2598979473114014 img loss 1.3036495447158813 img loss 1.2459163665771484 img loss 1.2881994247436523 img loss 1.3015964031219482 img loss 1.231463074684143 img loss 1.3043574094772339 img loss 1.2373188734054565 img loss 1.343772530555725 img loss 1.2396197319030762 img loss 1.3375535011291504 img loss 1.2843164205551147 img loss 1.3512448072433472 img loss 1.2253249883651733 img loss 1.3348349332809448 img loss 1.3426789045333862 img loss 1.2662509679794312 img loss 1.393541932106018 img loss 1.2392066717147827 img loss 1.2492942810058594 img loss 1.2754077911376953 img loss 1.3210482597351074 img loss 1.3173553943634033 img loss 1.3233985900878906 img loss 1.2635387182235718 img loss 1.3062362670898438 img loss 1.2425788640975952 img loss 1.31504487991333 img loss 1.2061355113983154 img loss 1.2704187631607056 img loss 1.2088887691497803 img loss 1.2761369943618774 img loss 1.2942875623703003 img loss 1.2957996129989624 {'loss': 1.2804, 'grad_norm': 0.3073621988296509, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.338278889656067 img loss 1.2827895879745483 img loss 1.359115481376648 img loss 1.2169544696807861 img loss 1.3013169765472412 img loss 1.3403297662734985 img loss 1.375916838645935 img loss 1.3493587970733643 img loss 1.3200066089630127 img loss 1.29379141330719 img loss 1.3422895669937134 img loss 1.3434051275253296 img loss 1.3296749591827393 img loss 1.3929368257522583 img loss 1.3169021606445312 img loss 1.3294715881347656 img loss 1.2546097040176392 img loss 1.4495612382888794 img loss 1.3962708711624146 img loss 1.3482964038848877 img loss 1.2562874555587769 img loss 1.4221656322479248 img loss 1.3718189001083374 img loss 1.3089284896850586 img loss 1.349779486656189 img loss 1.3036231994628906 img loss 1.3426450490951538 img loss 1.3529393672943115 img loss 1.3548405170440674 img loss 1.325107455253601 img loss 1.2814269065856934 img loss 1.3878611326217651 img loss 1.2504360675811768 img loss 1.3016424179077148 img loss 1.387365698814392 img loss 1.3323631286621094 img loss 1.2818397283554077 img loss 1.4358192682266235 img loss 1.3508721590042114 img loss 1.3827906847000122 img loss 1.2933720350265503 img loss 1.259628176689148 img loss 1.3816752433776855 img loss 1.299823522567749 img loss 1.359178066253662 img loss 1.2906391620635986 img loss 1.3369849920272827 img loss 1.2992702722549438 img loss 1.2624515295028687 img loss 1.3201885223388672 img loss 1.3345978260040283 img loss 1.3055589199066162 img loss 1.3444955348968506 img loss 1.337937831878662 img loss 1.3038069009780884 img loss 1.308995246887207 img loss 1.3559105396270752 img loss 1.2735000848770142 img loss 1.3848425149917603 img loss 1.291887640953064 img loss 1.3630306720733643 img loss 1.2759922742843628 img loss 1.305178165435791 img loss 1.218356728553772 img loss 1.3034882545471191 img loss 1.3212225437164307 img loss 1.3820284605026245 img loss 1.3399899005889893 img loss 1.3977558612823486 img loss 1.26443350315094 img loss 1.288377285003662 img loss 1.283017873764038 img loss 1.363761067390442 img loss 1.3367046117782593 img loss 1.2426655292510986 img loss 1.3548144102096558 img loss 1.3752224445343018 img loss 1.3749908208847046 img loss 1.4395403861999512 img loss 1.2857011556625366 img loss 1.1956440210342407 img loss 1.2933835983276367 img loss 1.4554228782653809 img loss 1.290561556816101 img loss 1.3435715436935425 img loss 1.35866117477417 img loss 1.378092646598816 img loss 1.220862627029419 img loss 1.2705309391021729 img loss 1.4066358804702759 img loss 1.2446129322052002 img loss 1.3822853565216064 img loss 1.3137139081954956 img loss 1.3055883646011353 img loss 1.3619178533554077 img loss 1.4089680910110474 img loss 1.3613334894180298 img loss 1.3319753408432007 img loss 1.216378092765808 img loss 1.3461579084396362 img loss 1.2940282821655273 img loss 1.5011564493179321 img loss 1.2726696729660034 img loss 1.325396180152893 img loss 1.2743937969207764 img loss 1.4487403631210327 img loss 1.3335720300674438 img loss 1.342418909072876 img loss 1.2710214853286743 img loss 1.384214162826538 img loss 1.351227045059204 img loss 1.2739588022232056 img loss 1.3128411769866943 img loss 1.327012062072754 img loss 1.3039768934249878 img loss 1.2287213802337646 img loss 1.350647211074829 img loss 1.3033881187438965 img loss 1.2451584339141846 img loss 1.4069050550460815 img loss 1.3239989280700684 img loss 1.2819206714630127 img loss 1.2829664945602417 img loss 1.3814319372177124 img loss 1.3340421915054321 img loss 1.3456887006759644 img loss 1.2689321041107178 img loss 1.3153977394104004 {'loss': 1.3273, 'grad_norm': 0.41838234663009644, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2197853326797485 img loss 1.2865465879440308 img loss 1.3787485361099243 img loss 1.309657096862793 img loss 1.286476969718933 img loss 1.3262214660644531 img loss 1.2797267436981201 img loss 1.3073687553405762 img loss 1.2465450763702393 img loss 1.2847715616226196 img loss 1.3042188882827759 img loss 1.285050868988037 img loss 1.2665462493896484 img loss 1.386613368988037 img loss 1.2780176401138306 img loss 1.3422707319259644 img loss 1.2059627771377563 img loss 1.3276478052139282 img loss 1.2427839040756226 img loss 1.2545803785324097 img loss 1.2871415615081787 img loss 1.347740888595581 img loss 1.4050097465515137 img loss 1.3053516149520874 img loss 1.2532414197921753 img loss 1.3480584621429443 img loss 1.3029714822769165 img loss 1.3173956871032715 img loss 1.3174160718917847 img loss 1.2463048696517944 img loss 1.3897411823272705 img loss 1.2741994857788086 img loss 1.315161943435669 img loss 1.3022401332855225 img loss 1.2658913135528564 img loss 1.3419251441955566 img loss 1.2652348279953003 img loss 1.3050389289855957 img loss 1.3325351476669312 img loss 1.3475216627120972 img loss 1.2980949878692627 img loss 1.322684645652771 img loss 1.3374664783477783 img loss 1.2454042434692383 img loss 1.2981789112091064 img loss 1.32322096824646 img loss 1.2650868892669678 img loss 1.288083553314209 img loss 1.2535817623138428 img loss 1.238991141319275 img loss 1.209487795829773 img loss 1.3247051239013672 img loss 1.3188700675964355 img loss 1.2275804281234741 img loss 1.2886167764663696 img loss 1.3329190015792847 img loss 1.3629041910171509 img loss 1.297694444656372 img loss 1.2920784950256348 img loss 1.3090605735778809 img loss 1.2452905178070068 img loss 1.3627049922943115 img loss 1.2640758752822876 img loss 1.3176522254943848 img loss 1.2369508743286133 img loss 1.407199740409851 img loss 1.2544841766357422img loss 1.2651150226593018 img loss 1.308046817779541 img loss 1.3970272541046143 img loss 1.3396283388137817 img loss 1.2463607788085938 img loss 1.3801919221878052 img loss 1.2448395490646362 img loss 1.317694902420044 img loss 1.280768632888794 img loss 1.3970551490783691 img loss 1.3024061918258667 img loss 1.2797858715057373 img loss 1.2625861167907715 img loss 1.3126544952392578 img loss 1.2707533836364746 img loss 1.3018807172775269 img loss 1.244739294052124 img loss 1.3507200479507446 img loss 1.2694661617279053 img loss 1.2590878009796143 img loss 1.249245524406433 img loss 1.2586314678192139 img loss 1.2538219690322876 img loss 1.3137301206588745 img loss 1.2501029968261719 img loss 1.308850646018982 img loss 1.412331461906433 img loss 1.2013239860534668 img loss 1.3659937381744385 img loss 1.2265901565551758 img loss 1.2001972198486328 img loss 1.2431625127792358 img loss 1.3358358144760132 img loss 1.3310173749923706 img loss 1.3270419836044312 img loss 1.3479222059249878 img loss 1.3318544626235962 img loss 1.2209219932556152 img loss 1.3615399599075317 img loss 1.286037802696228 img loss 1.326324462890625 img loss 1.3377197980880737 img loss 1.3108959197998047 img loss 1.2785975933074951 img loss 1.2275230884552002 img loss 1.3492857217788696 img loss 1.2443859577178955 img loss 1.291266679763794 img loss 1.3560824394226074 img loss 1.246903657913208 img loss 1.2558858394622803 img loss 1.26472806930542 img loss 1.2447556257247925 img loss 1.3915709257125854 img loss 1.3396217823028564 img loss 1.335170865058899 img loss 1.2762020826339722 img loss 1.4031345844268799 img loss 1.3710764646530151 img loss 1.3311671018600464 img loss 1.306100606918335 {'loss': 1.2997, 'grad_norm': 0.2519477605819702, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2565430402755737 img loss 1.2431217432022095 img loss 1.255885362625122 img loss 1.1623375415802002 img loss 1.237865924835205 img loss 1.1695045232772827 img loss 1.19998037815094 img loss 1.199303150177002 img loss 1.1754987239837646 img loss 1.2140212059020996 img loss 1.172304391860962 img loss 1.1958917379379272 img loss 1.214704155921936 img loss 1.1931028366088867 img loss 1.2614150047302246 img loss 1.2118089199066162 img loss 1.2083584070205688 img loss 1.2395329475402832 img loss 1.2567428350448608 img loss 1.195773720741272 img loss 1.1677573919296265 img loss 1.21873140335083 img loss 1.209429144859314 img loss 1.201300024986267 img loss 1.1788787841796875 img loss 1.2586033344268799 img loss 1.2566654682159424 img loss 1.1766998767852783 img loss 1.1166695356369019 img loss 1.175371766090393 img loss 1.1692557334899902 img loss 1.2148860692977905 img loss 1.181376338005066 img loss 1.2215335369110107 img loss 1.188702940940857 img loss 1.1639808416366577 img loss 1.2492974996566772 img loss 1.1367731094360352 img loss 1.1954087018966675 img loss 1.2066261768341064 img loss 1.1985735893249512 img loss 1.2625945806503296 img loss 1.1463377475738525 img loss 1.2594479322433472 img loss 1.2127759456634521 img loss 1.1858290433883667 img loss 1.2836966514587402 img loss 1.2229599952697754 img loss 1.1263736486434937 img loss 1.1974443197250366 img loss 1.2096449136734009 img loss 1.228826880455017 img loss 1.200925588607788 img loss 1.1530146598815918 img loss 1.1646708250045776img loss 1.159846544265747 img loss 1.2229273319244385 img loss 1.1806011199951172 img loss 1.202699065208435 img loss 1.2078909873962402 img loss 1.221130132675171 img loss 1.2642138004302979 img loss 1.222719430923462 img loss 1.2784810066223145 img loss 1.185805082321167 img loss 1.196175217628479 img loss 1.199012279510498 img loss 1.164150595664978 img loss 1.202736496925354 img loss 1.1778420209884644 img loss 1.2231088876724243 img loss 1.207029938697815 img loss 1.1544437408447266 img loss 1.1716649532318115 img loss 1.2283544540405273 img loss 1.210597038269043 img loss 1.2698931694030762 img loss 1.2304775714874268 img loss 1.2796401977539062 img loss 1.1416172981262207 img loss 1.1576642990112305 img loss 1.2168477773666382 img loss 1.2441542148590088 img loss 1.1937053203582764 img loss 1.2306150197982788 img loss 1.2315272092819214 img loss 1.2245430946350098 img loss 1.286661982536316 img loss 1.2261958122253418 img loss 1.2374777793884277 img loss 1.1862910985946655 img loss 1.2353044748306274 img loss 1.2365107536315918 img loss 1.1404207944869995 img loss 1.1838253736495972 img loss 1.2412859201431274 img loss 1.20854651927948 img loss 1.201729655265808 img loss 1.1597803831100464 img loss 1.2069746255874634 img loss 1.222839117050171 img loss 1.2087692022323608 img loss 1.2245314121246338 img loss 1.1837066411972046 img loss 1.1612259149551392 img loss 1.222856044769287 img loss 1.1300264596939087 img loss 1.222480058670044 img loss 1.1827545166015625 img loss 1.2413662672042847 img loss 1.215798258781433 img loss 1.215226173400879 img loss 1.230486512184143 img loss 1.2024837732315063 img loss 1.2010473012924194 img loss 1.1510601043701172 img loss 1.2008816003799438 img loss 1.1959874629974365 img loss 1.2167023420333862 img loss 1.2197493314743042 img loss 1.229467749595642 img loss 1.178240180015564 img loss 1.254085898399353 img loss 1.207404613494873 img loss 1.1596415042877197 img loss 1.198944091796875 img loss 1.2531296014785767 img loss 1.2041510343551636 {'loss': 1.2062, 'grad_norm': 0.21926641464233398, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.411586880683899 img loss 1.3205680847167969 img loss 1.366330862045288 img loss 1.2924225330352783 img loss 1.3698564767837524 img loss 1.4629607200622559 img loss 1.3641241788864136 img loss 1.416306734085083 img loss 1.295769214630127 img loss 1.4852967262268066 img loss 1.3108773231506348 img loss 1.2954343557357788 img loss 1.408714771270752 img loss 1.5131231546401978 img loss 1.3893277645111084 img loss 1.3803762197494507 img loss 1.3872414827346802 img loss 1.4658591747283936 img loss 1.3753894567489624 img loss 1.5139237642288208 img loss 1.3443081378936768 img loss 1.4730374813079834 img loss 1.4258828163146973 img loss 1.4559557437896729 img loss 1.378379464149475 img loss 1.466171145439148 img loss 1.548297643661499 img loss 1.3774243593215942 img loss 1.3585153818130493 img loss 1.3240504264831543 img loss 1.4394844770431519 img loss 1.3310002088546753 img loss 1.562187671661377 img loss 1.534226894378662 img loss 1.4078701734542847 img loss 1.3439691066741943 img loss 1.3542717695236206 img loss 1.3716577291488647 img loss 1.3833434581756592 img loss 1.5811917781829834 img loss 1.5702394247055054 img loss 1.394183874130249 img loss 1.5050499439239502 img loss 1.476388692855835 img loss 1.4099031686782837 img loss 1.3483744859695435 img loss 1.4644969701766968 img loss 1.347751259803772 img loss 1.4287973642349243 img loss 1.4333800077438354 img loss 1.388763189315796 img loss 1.5200839042663574 img loss 1.408141851425171 img loss 1.4231181144714355 img loss 1.5179811716079712 img loss 1.3860501050949097 img loss 1.3331372737884521 img loss 1.4292832612991333 img loss 1.3937193155288696 img loss 1.407893419265747 img loss 1.594846487045288 img loss 1.4075205326080322 img loss 1.4007033109664917 img loss 1.3206764459609985 img loss 1.4057695865631104 img loss 1.4816099405288696 img loss 1.2846388816833496 img loss 1.3923051357269287 img loss 1.3763842582702637 img loss 1.4603179693222046 img loss 1.331506609916687 img loss 1.4737703800201416 img loss 1.523036241531372 img loss 1.3446482419967651 img loss 1.4191499948501587 img loss 1.3574764728546143 img loss 1.4850001335144043 img loss 1.3715136051177979 img loss 1.4391578435897827 img loss 1.3992609977722168 img loss 1.4012808799743652 img loss 1.3275673389434814 img loss 1.432625651359558 img loss 1.4777734279632568 img loss 1.4348052740097046 img loss 1.4742680788040161 img loss 1.2924851179122925 img loss 1.4482332468032837 img loss 1.3932346105575562 img loss 1.5427708625793457 img loss 1.3963334560394287 img loss 1.478116750717163 img loss 1.6456340551376343 img loss 1.4821455478668213 img loss 1.4027043581008911 img loss 1.4797786474227905 img loss 1.3840023279190063 img loss 1.3919692039489746 img loss 1.4402016401290894 img loss 1.371614933013916 img loss 1.3379571437835693 img loss 1.370689868927002 img loss 1.4452186822891235 img loss 1.6574914455413818 img loss 1.4338022470474243 img loss 1.3297009468078613 img loss 1.5668330192565918 img loss 1.4756207466125488 img loss 1.3500574827194214 img loss 1.5337746143341064 img loss 1.4794927835464478 img loss 1.4074774980545044 img loss 1.482053518295288 img loss 1.3575952053070068 img loss 1.3454712629318237 img loss 1.574015498161316 img loss 1.3909860849380493 img loss 1.4207799434661865 img loss 1.470712423324585 img loss 1.379299283027649 img loss 1.2959988117218018 img loss 1.453718900680542 img loss 1.4194214344024658 img loss 1.4549888372421265 img loss 1.4158015251159668 img loss 1.3545892238616943 img loss 1.543883204460144 img loss 1.371744990348816 {'loss': 1.4216, 'grad_norm': 0.38761043548583984, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2960479259490967 img loss 1.2257225513458252 img loss 1.149958610534668 img loss 1.2937867641448975 img loss 1.1948065757751465 img loss 1.291372299194336 img loss 1.3288713693618774 img loss 1.3627219200134277 img loss 1.2340424060821533 img loss 1.251786231994629 img loss 1.34848952293396 img loss 1.2484959363937378 img loss 1.3015990257263184 img loss 1.3234517574310303 img loss 1.229478359222412 img loss 1.2720963954925537 img loss 1.2236438989639282 img loss 1.2146234512329102 img loss 1.245338797569275 img loss 1.2792739868164062 img loss 1.2879256010055542 img loss 1.2386343479156494 img loss 1.3269743919372559 img loss 1.22123122215271 img loss 1.2454328536987305 img loss 1.2032617330551147 img loss 1.2117738723754883 img loss 1.192243218421936 img loss 1.2857545614242554 img loss 1.2510735988616943 img loss 1.3850122690200806 img loss 1.3885937929153442 img loss 1.2360284328460693 img loss 1.3592140674591064 img loss 1.2796474695205688 img loss 1.1460450887680054 img loss 1.2086741924285889 img loss 1.1896414756774902 img loss 1.1997534036636353 img loss 1.4026020765304565 img loss 1.1924337148666382 img loss 1.210517406463623 img loss 1.2794547080993652 img loss 1.1927330493927002 img loss 1.2782008647918701 img loss 1.295854091644287 img loss 1.4285396337509155 img loss 1.2899688482284546 img loss 1.287851095199585 img loss 1.2371423244476318 img loss 1.2216742038726807 img loss 1.4014008045196533 img loss 1.3430615663528442 img loss 1.201019287109375 img loss 1.2590500116348267 img loss 1.2755711078643799 img loss 1.2719837427139282 img loss 1.2367470264434814 img loss 1.2541718482971191 img loss 1.2958749532699585 img loss 1.307918906211853 img loss 1.2961052656173706 img loss 1.3395321369171143 img loss 1.3008865118026733 img loss 1.1539287567138672 img loss 1.2818968296051025 img loss 1.341291904449463 img loss 1.2938830852508545 img loss 1.2850162982940674 img loss 1.236938238143921 img loss 1.2719253301620483 img loss 1.3043937683105469 img loss 1.2521007061004639 img loss 1.3483108282089233 img loss 1.1954033374786377 img loss 1.2938734292984009 img loss 1.1835250854492188 img loss 1.2662830352783203 img loss 1.3053853511810303 img loss 1.2588971853256226 img loss 1.3266921043395996 img loss 1.2803027629852295 img loss 1.2289936542510986 img loss 1.3395421504974365 img loss 1.2570561170578003 img loss 1.2021961212158203img loss 1.236889123916626 img loss 1.236063838005066 img loss 1.1302121877670288 img loss 1.2565256357192993 img loss 1.2390587329864502 img loss 1.205759882926941 img loss 1.2242906093597412 img loss 1.2708781957626343 img loss 1.1922887563705444 img loss 1.2796931266784668 img loss 1.2885665893554688 img loss 1.2263740301132202 img loss 1.284257173538208 img loss 1.1807880401611328 img loss 1.2872432470321655 img loss 1.192588210105896 img loss 1.1886730194091797 img loss 1.2365570068359375 img loss 1.283063530921936 img loss 1.4006215333938599 img loss 1.315208077430725 img loss 1.2072045803070068 img loss 1.357218623161316 img loss 1.2988775968551636 img loss 1.2667211294174194 img loss 1.1681156158447266 img loss 1.1707086563110352 img loss 1.2807130813598633 img loss 1.3340204954147339 img loss 1.229668378829956 img loss 1.208290934562683 img loss 1.2433840036392212 img loss 1.1177393198013306 img loss 1.3046143054962158 img loss 1.1426334381103516 img loss 1.3445948362350464 img loss 1.3161320686340332 img loss 1.320990800857544 img loss 1.203742265701294 img loss 1.2107912302017212 img loss 1.2652432918548584 img loss 1.2129828929901123 {'loss': 1.262, 'grad_norm': 0.2993175685405731, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2806476354599 img loss 1.145160436630249 img loss 1.2061290740966797 img loss 1.1969187259674072 img loss 1.2786369323730469 img loss 1.172922968864441 img loss 1.2594074010849 img loss 1.2485313415527344 img loss 1.2792096138000488 img loss 1.4645007848739624 img loss 1.388201355934143 img loss 1.277302622795105 img loss 1.3454375267028809 img loss 1.255350112915039 img loss 1.2826226949691772 img loss 1.3591945171356201 img loss 1.3361681699752808 img loss 1.463690161705017 img loss 1.2285412549972534 img loss 1.2491350173950195 img loss 1.2618392705917358 img loss 1.1527525186538696 img loss 1.2465280294418335 img loss 1.3001227378845215 img loss 1.2386627197265625img loss 1.2707490921020508 img loss 1.3379108905792236 img loss 1.2128628492355347 img loss 1.2700157165527344 img loss 1.3647592067718506 img loss 1.2483577728271484 img loss 1.3577719926834106 img loss 1.263179063796997 img loss 1.263453483581543 img loss 1.310388445854187 img loss 1.1916580200195312 img loss 1.263416051864624 img loss 1.2010207176208496 img loss 1.4577594995498657 img loss 1.2637827396392822 img loss 1.2144310474395752 img loss 1.1620301008224487 img loss 1.1921021938323975 img loss 1.276079535484314 img loss 1.2330726385116577 img loss 1.2611345052719116 img loss 1.445075511932373 img loss 1.431016206741333 img loss 1.2560948133468628 img loss 1.2197974920272827 img loss 1.2586463689804077 img loss 1.35771906375885 img loss 1.2601358890533447 img loss 1.338252305984497 img loss 1.2526350021362305 img loss 1.2924244403839111 img loss 1.141587257385254 img loss 1.2824528217315674 img loss 1.2984570264816284 img loss 1.2432472705841064 img loss 1.2075237035751343 img loss 1.3486125469207764 img loss 1.2976152896881104 img loss 1.4667643308639526 img loss 1.2424044609069824 img loss 1.321632981300354 img loss 1.19057297706604img loss 1.1873477697372437 img loss 1.3662327527999878 img loss 1.2762218713760376 img loss 1.2734841108322144 img loss 1.2542834281921387 img loss 1.2993125915527344 img loss 1.3075790405273438 img loss 1.2469333410263062 img loss 1.1576118469238281 img loss 1.3025860786437988 img loss 1.2619619369506836 img loss 1.1839970350265503 img loss 1.3312400579452515 img loss 1.3071513175964355 img loss 1.2271780967712402 img loss 1.3341422080993652 img loss 1.3510421514511108 img loss 1.209409475326538 img loss 1.2737969160079956 img loss 1.3180768489837646 img loss 1.3327280282974243 img loss 1.4111559391021729 img loss 1.2776713371276855 img loss 1.301987886428833 img loss 1.2896802425384521 img loss 1.302877426147461 img loss 1.293404459953308 img loss 1.2631993293762207 img loss 1.2746803760528564 img loss 1.2517988681793213 img loss 1.1819654703140259 img loss 1.2175815105438232 img loss 1.361194133758545 img loss 1.2853018045425415 img loss 1.3191417455673218 img loss 1.307379961013794 img loss 1.261951208114624 img loss 1.2072348594665527 img loss 1.2393120527267456 img loss 1.2408357858657837 img loss 1.3553332090377808 img loss 1.2017866373062134 img loss 1.1786470413208008 img loss 1.1546893119812012 img loss 1.3131763935089111 img loss 1.284213900566101 img loss 1.3424718379974365 img loss 1.3031129837036133 img loss 1.2230199575424194 img loss 1.2833828926086426 img loss 1.3277490139007568 img loss 1.2549264430999756 img loss 1.3378946781158447 img loss 1.233364462852478 img loss 1.1906954050064087 img loss 1.3178790807724 img loss 1.3288812637329102 img loss 1.2774513959884644 img loss 1.2489864826202393 img loss 1.3514314889907837 img loss 1.2684381008148193 {'loss': 1.2778, 'grad_norm': 0.2904602885246277, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4695285558700562 img loss 1.3800002336502075 img loss 1.3971688747406006 img loss 1.5000447034835815 img loss 1.2795815467834473 img loss 1.4760187864303589 img loss 1.5310097932815552 img loss 1.4738446474075317 img loss 1.4110249280929565 img loss 1.5502978563308716 img loss 1.3791346549987793 img loss 1.4504904747009277 img loss 1.4538533687591553 img loss 1.452177882194519 img loss 1.3584821224212646 img loss 1.4432027339935303 img loss 1.4608006477355957 img loss 1.4229886531829834 img loss 1.4785012006759644 img loss 1.4828194379806519 img loss 1.5538766384124756 img loss 1.5039781332015991 img loss 1.4021188020706177 img loss 1.4994927644729614 img loss 1.3391573429107666 img loss 1.5726158618927002 img loss 1.4247678518295288 img loss 1.5098421573638916 img loss 1.4476758241653442 img loss 1.3389372825622559 img loss 1.5241974592208862 img loss 1.3861043453216553 img loss 1.4393247365951538 img loss 1.4364266395568848 img loss 1.274086356163025 img loss 1.5329371690750122 img loss 1.4673649072647095 img loss 1.4646155834197998 img loss 1.4221028089523315 img loss 1.4525787830352783 img loss 1.479203462600708 img loss 1.5324375629425049 img loss 1.5091147422790527 img loss 1.4595474004745483 img loss 1.5298779010772705 img loss 1.350828766822815 img loss 1.3905755281448364 img loss 1.4160456657409668 img loss 1.311792254447937 img loss 1.4214377403259277 img loss 1.467069387435913 img loss 1.42234206199646 img loss 1.4691956043243408 img loss 1.4144597053527832 img loss 1.4556574821472168 img loss 1.3912643194198608 img loss 1.378833293914795 img loss 1.5513103008270264 img loss 1.3740956783294678 img loss 1.472114086151123 img loss 1.3087084293365479 img loss 1.402484655380249 img loss 1.4306871891021729 img loss 1.3885835409164429 img loss 1.2976982593536377 img loss 1.4701991081237793 img loss 1.5265443325042725 img loss 1.4264558553695679 img loss 1.317020058631897 img loss 1.494218111038208 img loss 1.3669884204864502 img loss 1.5146430730819702 img loss 1.386742353439331 img loss 1.4442914724349976 img loss 1.3872523307800293 img loss 1.2679404020309448 img loss 1.3063968420028687 img loss 1.5103641748428345 img loss 1.3661760091781616 img loss 1.459221601486206 img loss 1.38539719581604 img loss 1.407481074333191 img loss 1.5677860975265503 img loss 1.390811562538147 img loss 1.3523608446121216 img loss 1.5866398811340332 img loss 1.3527867794036865 img loss 1.5073645114898682 img loss 1.4812453985214233 img loss 1.4334546327590942 img loss 1.3953802585601807 img loss 1.4681451320648193 img loss 1.4557195901870728 img loss 1.5213500261306763 img loss 1.294964075088501 img loss 1.4505504369735718 img loss 1.3383640050888062 img loss 1.4374502897262573 img loss 1.4208890199661255 img loss 1.4284456968307495 img loss 1.4172871112823486 img loss 1.4736756086349487 img loss 1.4289480447769165 img loss 1.3669648170471191 img loss 1.4042633771896362 img loss 1.3815340995788574 img loss 1.307615041732788 img loss 1.5833985805511475 img loss 1.5084497928619385 img loss 1.499946117401123 img loss 1.5359816551208496 img loss 1.3869223594665527 img loss 1.451588749885559 img loss 1.3613513708114624 img loss 1.5536195039749146 img loss 1.4524587392807007 img loss 1.432787299156189 img loss 1.3989253044128418 img loss 1.519366979598999 img loss 1.4760372638702393img loss 1.4101157188415527 img loss 1.3380486965179443 img loss 1.435289978981018 img loss 1.3724541664123535 img loss 1.4182895421981812 img loss 1.375267505645752 img loss 1.6161322593688965 img loss 1.3163813352584839 {'loss': 1.4345, 'grad_norm': 0.3085770308971405, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.157489538192749 img loss 1.1795322895050049 img loss 1.1829038858413696 img loss 1.1274030208587646 img loss 1.2634435892105103 img loss 1.1989693641662598 img loss 1.1827647686004639 img loss 1.1465181112289429 img loss 1.1909946203231812 img loss 1.1723077297210693 img loss 1.1083232164382935 img loss 1.185147762298584 img loss 1.1982510089874268 img loss 1.16637122631073 img loss 1.2327122688293457 img loss 1.2262674570083618 img loss 1.1228852272033691 img loss 1.1879037618637085 img loss 1.211987018585205 img loss 1.1831051111221313 img loss 1.2322957515716553 img loss 1.2180075645446777 img loss 1.1562087535858154 img loss 1.1548198461532593 img loss 1.2675976753234863 img loss 1.205115795135498 img loss 1.1789594888687134 img loss 1.143899917602539 img loss 1.1539585590362549 img loss 1.1782358884811401 img loss 1.179800033569336 img loss 1.15101957321167 img loss 1.1464710235595703 img loss 1.1660106182098389 img loss 1.167312502861023 img loss 1.194141149520874 img loss 1.2063539028167725 img loss 1.193056344985962 img loss 1.2405258417129517 img loss 1.1966724395751953 img loss 1.178741693496704 img loss 1.2423069477081299 img loss 1.1152693033218384 img loss 1.2089755535125732 img loss 1.2039389610290527 img loss 1.154642939567566 img loss 1.1365466117858887 img loss 1.2295925617218018 img loss 1.231933355331421 img loss 1.1811225414276123 img loss 1.1689308881759644 img loss 1.2002906799316406 img loss 1.1784210205078125 img loss 1.17253839969635 img loss 1.143787145614624 img loss 1.172361135482788 img loss 1.1568282842636108 img loss 1.2659050226211548 img loss 1.1929373741149902 img loss 1.2358595132827759 img loss 1.1751855611801147 img loss 1.2625041007995605 img loss 1.1466560363769531 img loss 1.1285861730575562 img loss 1.1829004287719727 img loss 1.1749718189239502 img loss 1.214400053024292 img loss 1.1465609073638916 img loss 1.15596604347229 img loss 1.1421419382095337 img loss 1.163898229598999 img loss 1.198455810546875 img loss 1.261300802230835 img loss 1.2005937099456787 img loss 1.1931952238082886 img loss 1.243085503578186 img loss 1.1989994049072266 img loss 1.2286325693130493 img loss 1.1201006174087524 img loss 1.128220796585083 img loss 1.1751868724822998 img loss 1.190259575843811 img loss 1.1413723230361938 img loss 1.1837443113327026 img loss 1.1354942321777344 img loss 1.1702537536621094 img loss 1.1285836696624756 img loss 1.151780605316162 img loss 1.1831642389297485 img loss 1.14131498336792 img loss 1.1715049743652344 img loss 1.1521490812301636 img loss 1.1464608907699585 img loss 1.118542194366455 img loss 1.158225655555725 img loss 1.1186281442642212 img loss 1.1516329050064087 img loss 1.1905850172042847 img loss 1.1640639305114746 img loss 1.1805788278579712 img loss 1.157522439956665 img loss 1.159908652305603 img loss 1.2683367729187012 img loss 1.171478509902954 img loss 1.1933809518814087 img loss 1.1951115131378174 img loss 1.1306322813034058 img loss 1.1462700366973877 img loss 1.172866702079773 img loss 1.1586647033691406 img loss 1.2152626514434814 img loss 1.1876180171966553 img loss 1.1840633153915405 img loss 1.1808140277862549 img loss 1.197965383529663 img loss 1.2325091361999512 img loss 1.2580665349960327 img loss 1.2380080223083496 img loss 1.2189644575119019 img loss 1.1914088726043701 img loss 1.1447205543518066 img loss 1.134192705154419 img loss 1.1829630136489868 img loss 1.1440919637680054 img loss 1.2158600091934204 img loss 1.2256672382354736 img loss 1.2103170156478882 img loss 1.1503653526306152 {'loss': 1.1814, 'grad_norm': 0.2948997914791107, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.193063497543335 img loss 1.2520158290863037 img loss 1.1740044355392456 img loss 1.2992057800292969 img loss 1.267017126083374 img loss 1.1731641292572021 img loss 1.1962521076202393 img loss 1.140476107597351 img loss 1.248022437095642 img loss 1.1918896436691284 img loss 1.2376445531845093 img loss 1.187807559967041 img loss 1.216199517250061 img loss 1.2376110553741455 img loss 1.2176064252853394 img loss 1.2430591583251953 img loss 1.2465819120407104 img loss 1.2014470100402832 img loss 1.2185533046722412 img loss 1.1907027959823608 img loss 1.2534016370773315 img loss 1.2916088104248047 img loss 1.315102458000183 img loss 1.2206621170043945 img loss 1.219808578491211 img loss 1.2029441595077515 img loss 1.2709815502166748 img loss 1.2014391422271729 img loss 1.1862597465515137 img loss 1.2148282527923584 img loss 1.1592622995376587 img loss 1.1950569152832031 img loss 1.2214093208312988 img loss 1.2538574934005737 img loss 1.257748007774353 img loss 1.2444359064102173 img loss 1.2625585794448853 img loss 1.3081259727478027 img loss 1.2935388088226318 img loss 1.1928335428237915 img loss 1.1950435638427734 img loss 1.1662381887435913 img loss 1.199968695640564 img loss 1.2092803716659546 img loss 1.2134348154067993 img loss 1.2777658700942993 img loss 1.1989357471466064 img loss 1.296427607536316 img loss 1.2540514469146729 img loss 1.235356092453003 img loss 1.2604624032974243 img loss 1.1533489227294922 img loss 1.2017145156860352 img loss 1.3270487785339355 img loss 1.1317381858825684 img loss 1.2760393619537354 img loss 1.2153103351593018 img loss 1.2572921514511108 img loss 1.1838505268096924 img loss 1.2090091705322266 img loss 1.1638630628585815 img loss 1.253223180770874 img loss 1.3155006170272827 img loss 1.2443904876708984 img loss 1.1726455688476562 img loss 1.344897747039795 img loss 1.2485624551773071 img loss 1.1638293266296387 img loss 1.2731170654296875 img loss 1.1540371179580688 img loss 1.16025710105896 img loss 1.254716396331787 img loss 1.1970947980880737 img loss 1.2637498378753662 img loss 1.2019858360290527 img loss 1.269040584564209 img loss 1.2456539869308472 img loss 1.2030093669891357 img loss 1.2645734548568726 img loss 1.2267175912857056 img loss 1.1368776559829712 img loss 1.1975300312042236 img loss 1.2145566940307617 img loss 1.239498496055603 img loss 1.2182193994522095 img loss 1.156976580619812 img loss 1.310451865196228 img loss 1.1903330087661743 img loss 1.2549599409103394 img loss 1.227993369102478 img loss 1.2230350971221924 img loss 1.232521891593933 img loss 1.2160385847091675 img loss 1.2062077522277832 img loss 1.2663671970367432 img loss 1.2018746137619019 img loss 1.3271411657333374 img loss 1.2178338766098022 img loss 1.2423126697540283 img loss 1.2408554553985596 img loss 1.2542387247085571 img loss 1.2893980741500854 img loss 1.307610034942627 img loss 1.217254638671875 img loss 1.2550119161605835 img loss 1.217481017112732 img loss 1.2260042428970337 img loss 1.2369364500045776 img loss 1.2621914148330688 img loss 1.352649211883545 img loss 1.2513351440429688 img loss 1.2318000793457031 img loss 1.2689204216003418 img loss 1.27031409740448 img loss 1.3125308752059937 img loss 1.2434215545654297 img loss 1.206472396850586 img loss 1.1785683631896973 img loss 1.228978157043457 img loss 1.232791781425476 img loss 1.2452677488327026 img loss 1.2322849035263062 img loss 1.1869354248046875 img loss 1.2683616876602173 img loss 1.3544459342956543 img loss 1.1703546047210693 img loss 1.2145599126815796 img loss 1.2221037149429321 {'loss': 1.2316, 'grad_norm': 0.28613632917404175, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4476401805877686 img loss 1.3671791553497314 img loss 1.4104859828948975 img loss 1.3459506034851074 img loss 1.18047297000885 img loss 1.3709490299224854 img loss 1.4075026512145996 img loss 1.3565576076507568 img loss 1.4391624927520752 img loss 1.3094584941864014 img loss 1.4298831224441528 img loss 1.4868282079696655 img loss 1.365156650543213 img loss 1.3602837324142456 img loss 1.34941565990448 img loss 1.234156847000122 img loss 1.3598045110702515 img loss 1.3261573314666748 img loss 1.3661255836486816 img loss 1.418212652206421 img loss 1.307653784751892 img loss 1.3327593803405762 img loss 1.5269192457199097 img loss 1.3349918127059937 img loss 1.4389994144439697 img loss 1.3851474523544312 img loss 1.3007807731628418 img loss 1.448419213294983 img loss 1.4163671731948853 img loss 1.2707700729370117 img loss 1.3990007638931274 img loss 1.4661366939544678 img loss 1.3665454387664795 img loss 1.329354166984558 img loss 1.2910077571868896 img loss 1.365975022315979 img loss 1.4339573383331299 img loss 1.3626803159713745 img loss 1.3264662027359009 img loss 1.4080623388290405 img loss 1.3519994020462036 img loss 1.4123680591583252 img loss 1.6471389532089233 img loss 1.3558694124221802 img loss 1.4264657497406006 img loss 1.374583125114441 img loss 1.3114330768585205 img loss 1.3230664730072021 img loss 1.3849495649337769 img loss 1.2703776359558105 img loss 1.4088653326034546 img loss 1.3843141794204712 img loss 1.3622182607650757 img loss 1.3195686340332031 img loss 1.3486361503601074 img loss 1.428239107131958 img loss 1.362870693206787 img loss 1.3014729022979736 img loss 1.3437812328338623 img loss 1.4317656755447388 img loss 1.4441195726394653 img loss 1.4398270845413208 img loss 1.3213087320327759 img loss 1.2494992017745972 img loss 1.37492835521698 img loss 1.5180838108062744 img loss 1.3753615617752075 img loss 1.3880105018615723 img loss 1.4262034893035889 img loss 1.4218744039535522 img loss 1.3870280981063843 img loss 1.3185261487960815 img loss 1.280231237411499 img loss 1.3856548070907593 img loss 1.4000532627105713 img loss 1.3582197427749634 img loss 1.3831642866134644 img loss 1.3266520500183105 img loss 1.4280554056167603 img loss 1.370958924293518 img loss 1.309699535369873 img loss 1.3481686115264893 img loss 1.4322926998138428 img loss 1.2548160552978516 img loss 1.3298327922821045 img loss 1.4624334573745728 img loss 1.4029078483581543 img loss 1.3679492473602295 img loss 1.4124341011047363 img loss 1.337302803993225 img loss 1.3259257078170776 img loss 1.3311012983322144 img loss 1.4391849040985107 img loss 1.439090609550476 img loss 1.4329556226730347 img loss 1.329284429550171 img loss 1.3656690120697021 img loss 1.3155925273895264 img loss 1.231461763381958 img loss 1.4298182725906372 img loss 1.3128674030303955 img loss 1.2964913845062256 img loss 1.4889295101165771 img loss 1.4578297138214111 img loss 1.302925705909729 img loss 1.3201446533203125 img loss 1.4384342432022095 img loss 1.2833974361419678 img loss 1.245940923690796 img loss 1.3155654668807983 img loss 1.4341785907745361 img loss 1.2881211042404175 img loss 1.3527060747146606 img loss 1.4531563520431519 img loss 1.3258020877838135 img loss 1.370054006576538 img loss 1.4167227745056152 img loss 1.3899565935134888 img loss 1.41184401512146 img loss 1.4309518337249756 img loss 1.463346004486084 img loss 1.3870190382003784 img loss 1.3291637897491455 img loss 1.39857816696167 img loss 1.2735116481781006 img loss 1.459030270576477 img loss 1.3636353015899658 img loss 1.5184605121612549 {'loss': 1.3736, 'grad_norm': 0.2501199245452881, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4954780340194702 img loss 1.4759442806243896 img loss 1.5654360055923462 img loss 1.5532265901565552 img loss 1.4832600355148315 img loss 1.4945387840270996 img loss 1.5392491817474365 img loss 1.3693830966949463 img loss 1.420406460762024 img loss 1.5953198671340942 img loss 1.4178298711776733 img loss 1.4579559564590454 img loss 1.6117355823516846 img loss 1.363112211227417 img loss 1.351586937904358 img loss 1.399549126625061 img loss 1.4356515407562256 img loss 1.4856069087982178 img loss 1.448486089706421 img loss 1.4624454975128174 img loss 1.5556782484054565 img loss 1.3614448308944702 img loss 1.3740040063858032 img loss 1.4556032419204712 img loss 1.4225132465362549 img loss 1.4272042512893677 img loss 1.5661488771438599 img loss 1.4385197162628174 img loss 1.4611788988113403 img loss 1.5929646492004395 img loss 1.409230351448059 img loss 1.5175302028656006 img loss 1.3749871253967285 img loss 1.4412506818771362 img loss 1.4716821908950806 img loss 1.6528230905532837 img loss 1.5071176290512085 img loss 1.3310797214508057 img loss 1.4798109531402588 img loss 1.3890130519866943 img loss 1.4796172380447388 img loss 1.440698266029358 img loss 1.435774326324463 img loss 1.4766325950622559 img loss 1.461442470550537 img loss 1.4560829401016235 img loss 1.49570631980896 img loss 1.3389017581939697 img loss 1.478711724281311 img loss 1.388649582862854 img loss 1.4921166896820068 img loss 1.5502692461013794 img loss 1.4647904634475708 img loss 1.495577335357666 img loss 1.6502994298934937 img loss 1.632571816444397 img loss 1.5061924457550049 img loss 1.5409189462661743 img loss 1.552000641822815 img loss 1.4098446369171143 img loss 1.4514228105545044 img loss 1.4874807596206665 img loss 1.4659067392349243 img loss 1.5177273750305176 img loss 1.5226668119430542 img loss 1.4023064374923706 img loss 1.641302466392517 img loss 1.4262728691101074 img loss 1.4402966499328613 img loss 1.5613754987716675 img loss 1.5325435400009155 img loss 1.3778176307678223 img loss 1.531640648841858 img loss 1.5010164976119995 img loss 1.4574828147888184 img loss 1.504604697227478 img loss 1.3647390604019165 img loss 1.5612934827804565 img loss 1.4617966413497925 img loss 1.4338659048080444 img loss 1.4402509927749634 img loss 1.419002890586853 img loss 1.4747685194015503 img loss 1.4959943294525146 img loss 1.4960658550262451 img loss 1.4823342561721802 img loss 1.4412055015563965 img loss 1.5153419971466064 img loss 1.5062849521636963 img loss 1.4512850046157837 img loss 1.411853551864624 img loss 1.4338456392288208 img loss 1.4397321939468384 img loss 1.5045218467712402 img loss 1.5222722291946411 img loss 1.4422861337661743 img loss 1.4498847723007202 img loss 1.4375262260437012 img loss 1.5714390277862549 img loss 1.3846696615219116 img loss 1.4773226976394653 img loss 1.4843331575393677 img loss 1.7022240161895752 img loss 1.5165627002716064 img loss 1.4647094011306763 img loss 1.5413920879364014 img loss 1.511332392692566 img loss 1.4960519075393677 img loss 1.4356834888458252 img loss 1.5129915475845337 img loss 1.516416311264038 img loss 1.5179542303085327 img loss 1.389257550239563 img loss 1.5216161012649536 img loss 1.549172282218933 img loss 1.4277878999710083 img loss 1.5229572057724 img loss 1.4346848726272583 img loss 1.6613925695419312 img loss 1.489462971687317 img loss 1.4363901615142822 img loss 1.3592867851257324 img loss 1.5251328945159912 img loss 1.4754080772399902 img loss 1.4555667638778687 img loss 1.380908727645874 img loss 1.5956107378005981 img loss 1.4684855937957764 {'loss': 1.4784, 'grad_norm': 0.3294806480407715, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5319284200668335 img loss 1.4244881868362427 img loss 1.609818935394287 img loss 1.3428770303726196 img loss 1.4306491613388062 img loss 1.3847414255142212 img loss 1.36408269405365 img loss 1.3982937335968018 img loss 1.3763960599899292 img loss 1.5334259271621704 img loss 1.4211783409118652 img loss 1.6170698404312134 img loss 1.4781712293624878 img loss 1.3213180303573608 img loss 1.5448336601257324 img loss 1.3733657598495483 img loss 1.523720622062683 img loss 1.5079036951065063 img loss 1.5071617364883423 img loss 1.4292880296707153 img loss 1.3490298986434937 img loss 1.3673876523971558 img loss 1.4630961418151855 img loss 1.3712337017059326 img loss 1.4055384397506714 img loss 1.4846481084823608 img loss 1.3724477291107178 img loss 1.3737151622772217 img loss 1.4599498510360718 img loss 1.4102284908294678 img loss 1.40292489528656 img loss 1.5952788591384888 img loss 1.501793622970581 img loss 1.5661237239837646 img loss 1.5210258960723877 img loss 1.4547189474105835 img loss 1.412980556488037 img loss 1.4111926555633545 img loss 1.4851562976837158 img loss 1.4954551458358765 img loss 1.3566043376922607 img loss 1.4655154943466187 img loss 1.3255144357681274 img loss 1.5238384008407593 img loss 1.5124348402023315 img loss 1.4581115245819092 img loss 1.4960814714431763 img loss 1.4370330572128296 img loss 1.382129430770874 img loss 1.4080907106399536 img loss 1.4500858783721924 img loss 1.3727939128875732 img loss 1.4405595064163208 img loss 1.3242660760879517 img loss 1.4127579927444458 img loss 1.5466018915176392 img loss 1.4880989789962769 img loss 1.2783335447311401 img loss 1.4144558906555176 img loss 1.3245700597763062 img loss 1.3673160076141357 img loss 1.4826971292495728 img loss 1.390060544013977 img loss 1.5181535482406616 img loss 1.3256888389587402 img loss 1.5854507684707642 img loss 1.5016169548034668 img loss 1.4727380275726318 img loss 1.4010157585144043 img loss 1.314588189125061 img loss 1.53962242603302 img loss 1.3753905296325684 img loss 1.4710217714309692 img loss 1.317381501197815 img loss 1.420264720916748 img loss 1.5235707759857178 img loss 1.4365967512130737 img loss 1.4420517683029175 img loss 1.378569483757019 img loss 1.4289764165878296 img loss 1.3280904293060303 img loss 1.4661905765533447 img loss 1.3002147674560547 img loss 1.6417773962020874 img loss 1.3235106468200684 img loss 1.4523138999938965 img loss 1.3354517221450806 img loss 1.5762137174606323 img loss 1.4044550657272339 img loss 1.3726428747177124 img loss 1.458972692489624 img loss 1.5233261585235596 img loss 1.2638370990753174 img loss 1.455960750579834 img loss 1.4027857780456543 img loss 1.3625909090042114 img loss 1.340363621711731 img loss 1.3963277339935303 img loss 1.4677165746688843 img loss 1.4355214834213257 img loss 1.2640730142593384 img loss 1.3517142534255981 img loss 1.3952233791351318 img loss 1.4885891675949097 img loss 1.4162936210632324 img loss 1.350958228111267 img loss 1.469725489616394 img loss 1.449695348739624 img loss 1.432902455329895 img loss 1.3428466320037842 img loss 1.4754385948181152 img loss 1.4902578592300415 img loss 1.490681529045105 img loss 1.4672181606292725 img loss 1.506347417831421 img loss 1.4589253664016724 img loss 1.403903841972351 img loss 1.3613696098327637 img loss 1.436999797821045 img loss 1.4538893699645996 img loss 1.4641125202178955 img loss 1.3684757947921753 img loss 1.3207801580429077 img loss 1.4733939170837402 img loss 1.377921462059021 img loss 1.3840796947479248 img loss 1.3595980405807495 img loss 1.4107372760772705 {'loss': 1.4305, 'grad_norm': 0.22080422937870026, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2841336727142334 img loss 1.2857413291931152 img loss 1.353528380393982 img loss 1.3452198505401611 img loss 1.252950668334961 img loss 1.2819933891296387 img loss 1.2382738590240479 img loss 1.2494693994522095 img loss 1.473260760307312 img loss 1.2106385231018066 img loss 1.3806602954864502 img loss 1.3786838054656982 img loss 1.3205007314682007 img loss 1.3305364847183228 img loss 1.257978916168213 img loss 1.3592064380645752 img loss 1.3341314792633057 img loss 1.2811411619186401 img loss 1.260542631149292 img loss 1.3962630033493042 img loss 1.3963195085525513 img loss 1.1761671304702759 img loss 1.3509567975997925 img loss 1.3001384735107422 img loss 1.393257737159729 img loss 1.2581061124801636 img loss 1.381014347076416 img loss 1.2673437595367432 img loss 1.3284615278244019 img loss 1.32221257686615 img loss 1.201300024986267 img loss 1.336605429649353 img loss 1.2400681972503662 img loss 1.2671021223068237 img loss 1.269002914428711 img loss 1.3385288715362549 img loss 1.2615187168121338 img loss 1.4163066148757935 img loss 1.1734728813171387 img loss 1.2666596174240112 img loss 1.2162059545516968 img loss 1.2547763586044312 img loss 1.191035509109497 img loss 1.3225539922714233 img loss 1.3511006832122803 img loss 1.2903213500976562 img loss 1.2325706481933594 img loss 1.4128220081329346 img loss 1.2750377655029297 img loss 1.3483000993728638 img loss 1.2478116750717163 img loss 1.2545998096466064 img loss 1.266827940940857 img loss 1.2223777770996094 img loss 1.2513550519943237 img loss 1.2952865362167358 img loss 1.3043365478515625 img loss 1.203196406364441 img loss 1.3110301494598389 img loss 1.236174464225769 img loss 1.3907610177993774 img loss 1.180023431777954 img loss 1.1845968961715698 img loss 1.3239179849624634 img loss 1.3278663158416748 img loss 1.3056968450546265 img loss 1.4254231452941895 img loss 1.4472886323928833 img loss 1.2635351419448853 img loss 1.5111967325210571 img loss 1.3678991794586182 img loss 1.2595418691635132 img loss 1.242971658706665 img loss 1.2035553455352783 img loss 1.3163204193115234 img loss 1.2776304483413696 img loss 1.294043779373169 img loss 1.34739351272583 img loss 1.282299518585205 img loss 1.305519461631775 img loss 1.3289676904678345 img loss 1.3292661905288696 img loss 1.2673566341400146 img loss 1.320355772972107 img loss 1.2509477138519287 img loss 1.2587419748306274 img loss 1.4222655296325684 img loss 1.2709659337997437 img loss 1.3947209119796753 img loss 1.3712379932403564 img loss 1.2447891235351562 img loss 1.2772573232650757 img loss 1.339469313621521 img loss 1.2560228109359741 img loss 1.2736583948135376 img loss 1.21476149559021 img loss 1.3359991312026978 img loss 1.2058817148208618 img loss 1.2846388816833496 img loss 1.301788330078125 img loss 1.227351427078247 img loss 1.2414627075195312 img loss 1.3169788122177124 img loss 1.2994831800460815 img loss 1.2749449014663696 img loss 1.263314127922058 img loss 1.2532981634140015 img loss 1.3596142530441284 img loss 1.3160829544067383 img loss 1.350840449333191 img loss 1.3487026691436768 img loss 1.3142468929290771 img loss 1.3163973093032837 img loss 1.3424208164215088 img loss 1.1800405979156494 img loss 1.4115185737609863 img loss 1.249123215675354 img loss 1.309306025505066 img loss 1.2602447271347046 img loss 1.2916011810302734 img loss 1.2880396842956543 img loss 1.254569411277771 img loss 1.2919137477874756 img loss 1.3168991804122925 img loss 1.368894338607788 img loss 1.3861651420593262 img loss 1.2775598764419556 img loss 1.2920902967453003 {'loss': 1.2994, 'grad_norm': 0.3041608929634094, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1565691232681274 img loss 1.2949132919311523 img loss 1.2254095077514648 img loss 1.2990955114364624 img loss 1.2624897956848145 img loss 1.1582398414611816 img loss 1.290130376815796 img loss 1.2317492961883545 img loss 1.293412446975708 img loss 1.307930827140808 img loss 1.2699737548828125 img loss 1.284000277519226 img loss 1.2529646158218384 img loss 1.2498435974121094 img loss 1.2518553733825684 img loss 1.2746446132659912 img loss 1.1815212965011597 img loss 1.303831696510315 img loss 1.2322698831558228 img loss 1.1636663675308228 img loss 1.327514410018921 img loss 1.2209789752960205 img loss 1.2486388683319092 img loss 1.2104599475860596 img loss 1.2188202142715454 img loss 1.2630748748779297 img loss 1.21309232711792 img loss 1.2717876434326172 img loss 1.2513779401779175 img loss 1.2722285985946655 img loss 1.2876663208007812 img loss 1.2478859424591064 img loss 1.3371704816818237 img loss 1.2658201456069946 img loss 1.2936320304870605 img loss 1.1613661050796509 img loss 1.3386921882629395 img loss 1.3120769262313843 img loss 1.2149744033813477 img loss 1.2614701986312866 img loss 1.2484846115112305 img loss 1.2429730892181396 img loss 1.2058751583099365 img loss 1.2518861293792725 img loss 1.2659610509872437 img loss 1.3461289405822754 img loss 1.275062084197998 img loss 1.3019063472747803 img loss 1.2859026193618774 img loss 1.2486226558685303 img loss 1.284099817276001 img loss 1.2580612897872925 img loss 1.3110110759735107 img loss 1.2208476066589355 img loss 1.2817283868789673 img loss 1.2218739986419678 img loss 1.1922118663787842 img loss 1.2581779956817627 img loss 1.2047069072723389 img loss 1.2432183027267456 img loss 1.214211344718933 img loss 1.222217321395874 img loss 1.240777850151062 img loss 1.302181601524353 img loss 1.2641527652740479 img loss 1.2463692426681519 img loss 1.2175288200378418 img loss 1.1572983264923096 img loss 1.284666895866394 img loss 1.2127525806427002 img loss 1.2513309717178345 img loss 1.309075117111206 img loss 1.1789627075195312 img loss 1.2605990171432495 img loss 1.223558783531189 img loss 1.2873398065567017 img loss 1.2252575159072876 img loss 1.2187800407409668 img loss 1.2336126565933228 img loss 1.2801004648208618 img loss 1.3204846382141113 img loss 1.2267836332321167 img loss 1.2619184255599976 img loss 1.2425587177276611 img loss 1.2087513208389282 img loss 1.2505252361297607 img loss 1.2381645441055298 img loss 1.2920563220977783 img loss 1.3280327320098877 img loss 1.2008558511734009 img loss 1.3443472385406494 img loss 1.1786502599716187 img loss 1.2500137090682983 img loss 1.2185420989990234 img loss 1.2147700786590576 img loss 1.2798449993133545 img loss 1.3492472171783447 img loss 1.2535274028778076 img loss 1.2602699995040894 img loss 1.3212469816207886 img loss 1.2262892723083496 img loss 1.2402114868164062 img loss 1.281044363975525 img loss 1.248488187789917 img loss 1.2909778356552124 img loss 1.3131470680236816 img loss 1.1810340881347656 img loss 1.2693893909454346 img loss 1.229810118675232 img loss 1.2653728723526 img loss 1.269870638847351 img loss 1.228503942489624 img loss 1.215848445892334 img loss 1.2421900033950806 img loss 1.2826290130615234 img loss 1.162920355796814 img loss 1.2486215829849243 img loss 1.2577091455459595 img loss 1.2560787200927734img loss 1.227618932723999 img loss 1.2704063653945923 img loss 1.2794770002365112 img loss 1.2524316310882568 img loss 1.188931941986084 img loss 1.4032542705535889 img loss 1.1890512704849243 img loss 1.302628993988037 img loss 1.275490164756775 {'loss': 1.2541, 'grad_norm': 0.2132420539855957, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5184791088104248 img loss 1.6179786920547485 img loss 1.4605746269226074 img loss 1.4528032541275024 img loss 1.5945258140563965 img loss 1.4846864938735962 img loss 1.5198882818222046 img loss 1.5066649913787842 img loss 1.4920077323913574 img loss 1.532326102256775 img loss 1.4283921718597412 img loss 1.3956183195114136 img loss 1.3961399793624878 img loss 1.4640214443206787 img loss 1.4401144981384277 img loss 1.424477458000183 img loss 1.5569161176681519 img loss 1.551967978477478 img loss 1.5896213054656982 img loss 1.51482093334198 img loss 1.3590481281280518 img loss 1.4152132272720337 img loss 1.4196789264678955 img loss 1.3737139701843262 img loss 1.6755306720733643 img loss 1.5179928541183472 img loss 1.421554684638977 img loss 1.4630435705184937 img loss 1.5124231576919556 img loss 1.481291651725769 img loss 1.5804966688156128 img loss 1.4273812770843506 img loss 1.578778862953186 img loss 1.3737456798553467 img loss 1.307527780532837 img loss 1.5245187282562256 img loss 1.5867613554000854 img loss 1.463629961013794 img loss 1.4519164562225342 img loss 1.4231047630310059 img loss 1.4566798210144043 img loss 1.528619647026062 img loss 1.395525574684143 img loss 1.366349458694458 img loss 1.5070011615753174 img loss 1.5442373752593994 img loss 1.408901333808899 img loss 1.411002278327942 img loss 1.4427059888839722 img loss 1.5996516942977905 img loss 1.4367626905441284 img loss 1.4643585681915283 img loss 1.5397623777389526 img loss 1.5065475702285767 img loss 1.4474629163742065 img loss 1.3537622690200806 img loss 1.4994616508483887 img loss 1.525470495223999 img loss 1.5481178760528564 img loss 1.4614802598953247 img loss 1.4538302421569824 img loss 1.46078360080719 img loss 1.4238793849945068 img loss 1.691457986831665 img loss 1.401167631149292 img loss 1.437389612197876 img loss 1.3695061206817627 img loss 1.4132190942764282 img loss 1.3481576442718506 img loss 1.5279773473739624 img loss 1.3867443799972534 img loss 1.4428879022598267 img loss 1.3221898078918457 img loss 1.3956730365753174 img loss 1.3992983102798462 img loss 1.3296313285827637 img loss 1.4067472219467163 img loss 1.4015110731124878 img loss 1.4758535623550415 img loss 1.5564254522323608 img loss 1.4153285026550293 img loss 1.594612717628479 img loss 1.3155319690704346 img loss 1.50267493724823 img loss 1.4252418279647827 img loss 1.4005461931228638 img loss 1.3689182996749878 img loss 1.3181095123291016 img loss 1.4008580446243286 img loss 1.4452564716339111 img loss 1.4386495351791382 img loss 1.5183848142623901 img loss 1.415393590927124 img loss 1.4275052547454834 img loss 1.4486109018325806 img loss 1.3967269659042358 img loss 1.4838107824325562 img loss 1.431579351425171 img loss 1.4349894523620605 img loss 1.4891555309295654 img loss 1.3946787118911743 img loss 1.5320326089859009 img loss 1.5272424221038818 img loss 1.5722157955169678 img loss 1.4342902898788452 img loss 1.4558993577957153 img loss 1.4013077020645142 img loss 1.503208875656128 img loss 1.4913030862808228 img loss 1.5119773149490356 img loss 1.4490387439727783 img loss 1.4296759366989136 img loss 1.5757839679718018 img loss 1.4130046367645264 img loss 1.4310954809188843 img loss 1.4633466005325317 img loss 1.5781370401382446 img loss 1.5052207708358765 img loss 1.456498384475708 img loss 1.4382280111312866 img loss 1.4986546039581299 img loss 1.5832468271255493 img loss 1.3732600212097168 img loss 1.581870198249817 img loss 1.473368525505066 img loss 1.5238078832626343 img loss 1.284906268119812 img loss 1.4404237270355225 {'loss': 1.4639, 'grad_norm': 0.26881319284439087, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.486283540725708 img loss 1.4299207925796509 img loss 1.4736859798431396 img loss 1.681209683418274 img loss 1.5399407148361206 img loss 1.3977065086364746 img loss 1.4892979860305786 img loss 1.2708680629730225 img loss 1.5070606470108032 img loss 1.415208339691162 img loss 1.4186843633651733 img loss 1.5283361673355103 img loss 1.5131100416183472 img loss 1.4339489936828613 img loss 1.5563336610794067 img loss 1.4462038278579712 img loss 1.431606650352478 img loss 1.3152642250061035 img loss 1.4710897207260132 img loss 1.513268232345581 img loss 1.3644938468933105 img loss 1.5680899620056152 img loss 1.5697134733200073 img loss 1.3645024299621582 img loss 1.3119170665740967 img loss 1.5442330837249756 img loss 1.4003809690475464 img loss 1.4377044439315796 img loss 1.4294854402542114 img loss 1.5410577058792114 img loss 1.4875237941741943 img loss 1.5008958578109741 img loss 1.5061901807785034 img loss 1.322383165359497 img loss 1.4138737916946411 img loss 1.3267492055892944 img loss 1.4751403331756592 img loss 1.4717867374420166 img loss 1.356850028038025 img loss 1.4288592338562012 img loss 1.2825711965560913 img loss 1.521644115447998 img loss 1.4533365964889526 img loss 1.4709614515304565 img loss 1.4499768018722534 img loss 1.620222806930542 img loss 1.3615955114364624 img loss 1.3763782978057861 img loss 1.3851920366287231 img loss 1.4047421216964722 img loss 1.4664536714553833 img loss 1.408465027809143 img loss 1.3725277185440063 img loss 1.3976746797561646 img loss 1.370999813079834 img loss 1.4488565921783447 img loss 1.457425594329834 img loss 1.429634928703308 img loss 1.3722573518753052 img loss 1.6392635107040405 img loss 1.506639838218689 img loss 1.4407260417938232 img loss 1.3806767463684082 img loss 1.3922808170318604 img loss 1.5215048789978027 img loss 1.4722920656204224 img loss 1.5508321523666382 img loss 1.4286720752716064 img loss 1.615937352180481 img loss 1.4048665761947632 img loss 1.4694119691848755 img loss 1.354163408279419 img loss 1.4458215236663818 img loss 1.4518591165542603 img loss 1.5059272050857544 img loss 1.508164644241333 img loss 1.3637276887893677 img loss 1.4860749244689941 img loss 1.3708947896957397 img loss 1.393083095550537 img loss 1.4472016096115112 img loss 1.4434586763381958 img loss 1.5185078382492065 img loss 1.38524329662323 img loss 1.3794281482696533 img loss 1.3819305896759033 img loss 1.44734787940979 img loss 1.44124174118042 img loss 1.483352780342102 img loss 1.4741613864898682 img loss 1.3839471340179443 img loss 1.6294596195220947 img loss 1.4215821027755737 img loss 1.4743847846984863 img loss 1.5190736055374146 img loss 1.4843528270721436 img loss 1.3877861499786377 img loss 1.4256953001022339 img loss 1.3640562295913696 img loss 1.4522356986999512 img loss 1.4912923574447632 img loss 1.4676731824874878 img loss 1.4315627813339233 img loss 1.384690523147583 img loss 1.4115004539489746 img loss 1.5021878480911255 img loss 1.4236482381820679 img loss 1.389161467552185 img loss 1.4168741703033447 img loss 1.396251916885376 img loss 1.408841848373413 img loss 1.4554804563522339 img loss 1.453659176826477 img loss 1.4313957691192627 img loss 1.5172755718231201 img loss 1.4371224641799927 img loss 1.4879461526870728 img loss 1.4296151399612427 img loss 1.445848822593689 img loss 1.4498287439346313 img loss 1.3563483953475952 img loss 1.3873631954193115 img loss 1.4384701251983643 img loss 1.4848113059997559 img loss 1.38835608959198 img loss 1.4864164590835571 img loss 1.7191587686538696 img loss 1.3594404458999634 {'loss': 1.4476, 'grad_norm': 0.22476525604724884, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2005237340927124 img loss 1.2088383436203003 img loss 1.1430613994598389 img loss 1.2346762418746948 img loss 1.1486287117004395 img loss 1.1492269039154053 img loss 1.1725831031799316 img loss 1.1692051887512207 img loss 1.2111611366271973 img loss 1.2369352579116821 img loss 1.1278537511825562 img loss 1.221888780593872 img loss 1.1960115432739258 img loss 1.3050867319107056 img loss 1.2317434549331665 img loss 1.2460336685180664 img loss 1.2729835510253906 img loss 1.2605937719345093 img loss 1.2530786991119385 img loss 1.1757723093032837 img loss 1.1576173305511475 img loss 1.1864511966705322 img loss 1.2105133533477783 img loss 1.2734421491622925 img loss 1.0755831003189087 img loss 1.169798731803894 img loss 1.2068629264831543 img loss 1.2299693822860718 img loss 1.1848112344741821 img loss 1.1951041221618652 img loss 1.19691801071167 img loss 1.177884578704834 img loss 1.2539228200912476 img loss 1.272208571434021 img loss 1.3029124736785889 img loss 1.1701704263687134 img loss 1.2698032855987549 img loss 1.2171590328216553 img loss 1.217031717300415 img loss 1.1659685373306274 img loss 1.2607338428497314 img loss 1.1679198741912842 img loss 1.2331397533416748 img loss 1.2120013236999512 img loss 1.2804946899414062 img loss 1.1730364561080933 img loss 1.195316195487976 img loss 1.177080750465393 img loss 1.2468013763427734 img loss 1.2325782775878906 img loss 1.270965576171875 img loss 1.1784762144088745img loss 1.1261316537857056 img loss 1.2426971197128296 img loss 1.2830469608306885 img loss 1.1591585874557495 img loss 1.2622302770614624 img loss 1.2812085151672363 img loss 1.1916728019714355 img loss 1.148951768875122 img loss 1.2971941232681274 img loss 1.3074718713760376 img loss 1.2329028844833374 img loss 1.1851298809051514 img loss 1.2398509979248047 img loss 1.2753918170928955 img loss 1.1483306884765625 img loss 1.2582966089248657 img loss 1.196006178855896 img loss 1.1360487937927246 img loss 1.183261513710022 img loss 1.240899920463562 img loss 1.240048885345459 img loss 1.188779592514038 img loss 1.1277364492416382 img loss 1.2013843059539795 img loss 1.1530506610870361 img loss 1.2471245527267456 img loss 1.3356363773345947 img loss 1.2525341510772705 img loss 1.2132446765899658 img loss 1.2991008758544922 img loss 1.177683711051941 img loss 1.1660208702087402 img loss 1.1312683820724487 img loss 1.2002677917480469 img loss 1.186093807220459 img loss 1.1898531913757324 img loss 1.3822938203811646 img loss 1.1582740545272827 img loss 1.3867651224136353 img loss 1.268165946006775 img loss 1.2207655906677246 img loss 1.2110133171081543 img loss 1.2464325428009033 img loss 1.1383665800094604 img loss 1.2400963306427002 img loss 1.2133654356002808 img loss 1.3677867650985718 img loss 1.232478380203247 img loss 1.183296799659729 img loss 1.2134546041488647 img loss 1.192960262298584 img loss 1.276411771774292 img loss 1.2348229885101318 img loss 1.259699821472168 img loss 1.209065318107605 img loss 1.1946548223495483 img loss 1.2044321298599243 img loss 1.1490672826766968 img loss 1.1248493194580078 img loss 1.1936194896697998 img loss 1.2879151105880737 img loss 1.250643253326416 img loss 1.1896559000015259 img loss 1.2272109985351562 img loss 1.144219994544983 img loss 1.1823872327804565 img loss 1.2528162002563477 img loss 1.2357189655303955 img loss 1.156876564025879 img loss 1.1917997598648071 img loss 1.2544828653335571 img loss 1.1774600744247437 img loss 1.1421492099761963 img loss 1.2001266479492188 img loss 1.3073303699493408 img loss 1.2426855564117432 {'loss': 1.2155, 'grad_norm': 0.3317917585372925, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.529253602027893 img loss 1.3421931266784668 img loss 1.4931286573410034 img loss 1.4380265474319458 img loss 1.4144431352615356 img loss 1.4293816089630127 img loss 1.4281476736068726 img loss 1.4836167097091675 img loss 1.4315202236175537 img loss 1.4989330768585205 img loss 1.48641836643219 img loss 1.44157075881958 img loss 1.4995547533035278 img loss 1.5905424356460571 img loss 1.2907822132110596 img loss 1.4495280981063843 img loss 1.5378342866897583 img loss 1.3448221683502197 img loss 1.3464903831481934 img loss 1.3376574516296387 img loss 1.5355039834976196 img loss 1.5050324201583862 img loss 1.6388365030288696 img loss 1.5211018323898315 img loss 1.4596596956253052 img loss 1.5963412523269653 img loss 1.4196404218673706 img loss 1.4994218349456787 img loss 1.6010620594024658 img loss 1.5579487085342407 img loss 1.5633209943771362 img loss 1.4469830989837646 img loss 1.556185007095337 img loss 1.4050804376602173 img loss 1.4417866468429565 img loss 1.4167805910110474 img loss 1.4783941507339478 img loss 1.4575114250183105 img loss 1.5557799339294434 img loss 1.6594672203063965 img loss 1.5047955513000488 img loss 1.5582066774368286 img loss 1.474896788597107 img loss 1.61286199092865 img loss 1.4775737524032593 img loss 1.5389363765716553 img loss 1.5699251890182495 img loss 1.587740182876587 img loss 1.502358317375183 img loss 1.5632474422454834 img loss 1.4079352617263794 img loss 1.4086121320724487 img loss 1.4743732213974 img loss 1.544372797012329 img loss 1.3933866024017334 img loss 1.4562461376190186 img loss 1.646013617515564 img loss 1.4218510389328003 img loss 1.4673702716827393 img loss 1.5039210319519043 img loss 1.4048179388046265 img loss 1.5568913221359253 img loss 1.4743688106536865 img loss 1.5006502866744995 img loss 1.429479956626892 img loss 1.4777052402496338 img loss 1.4914129972457886 img loss 1.5206633806228638 img loss 1.5198934078216553 img loss 1.4997488260269165 img loss 1.5446445941925049 img loss 1.4630128145217896 img loss 1.4987343549728394 img loss 1.4004572629928589 img loss 1.5943154096603394 img loss 1.481080174446106 img loss 1.512009859085083 img loss 1.5301344394683838 img loss 1.3474375009536743 img loss 1.4795258045196533 img loss 1.4129430055618286 img loss 1.513177752494812 img loss 1.3851840496063232 img loss 1.4008290767669678 img loss 1.604539394378662 img loss 1.3605622053146362 img loss 1.6240801811218262 img loss 1.540251612663269 img loss 1.5596967935562134 img loss 1.4511648416519165 img loss 1.5111581087112427 img loss 1.5238354206085205 img loss 1.6638683080673218 img loss 1.3529951572418213 img loss 1.555131435394287 img loss 1.5084749460220337 img loss 1.4722775220870972 img loss 1.5015757083892822 img loss 1.5737491846084595 img loss 1.6067243814468384 img loss 1.4302974939346313 img loss 1.4097235202789307 img loss 1.3513448238372803 img loss 1.7674375772476196 img loss 1.4577142000198364 img loss 1.3640061616897583 img loss 1.5154950618743896 img loss 1.486828088760376 img loss 1.5271353721618652 img loss 1.4903017282485962 img loss 1.4418221712112427 img loss 1.4546455144882202 img loss 1.5289664268493652 img loss 1.4826054573059082 img loss 1.5314384698867798 img loss 1.5607802867889404 img loss 1.4307435750961304 img loss 1.441333293914795 img loss 1.5160859823226929 img loss 1.3764067888259888 img loss 1.3595300912857056 img loss 1.4135380983352661 img loss 1.5208632946014404 img loss 1.4887233972549438 img loss 1.627816915512085 img loss 1.3773468732833862 img loss 1.379770040512085 img loss 1.533074975013733 {'loss': 1.4872, 'grad_norm': 0.29140156507492065, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2296886444091797 img loss 1.1702110767364502 img loss 1.1898059844970703 img loss 1.1398037672042847 img loss 1.1376757621765137 img loss 1.1791112422943115 img loss 1.2293208837509155 img loss 1.2215898036956787 img loss 1.180949091911316 img loss 1.1393533945083618 img loss 1.198486566543579 img loss 1.1981120109558105 img loss 1.1911485195159912 img loss 1.1765135526657104 img loss 1.1004188060760498 img loss 1.160438895225525 img loss 1.152086615562439img loss 1.1777045726776123 img loss 1.1581226587295532 img loss 1.1688547134399414 img loss 1.1393966674804688 img loss 1.2090911865234375 img loss 1.1754635572433472 img loss 1.2613786458969116 img loss 1.1974740028381348 img loss 1.1707241535186768 img loss 1.1911553144454956 img loss 1.2503771781921387 img loss 1.2419432401657104 img loss 1.2459204196929932 img loss 1.224212884902954 img loss 1.180764079093933 img loss 1.1128695011138916 img loss 1.2516599893569946 img loss 1.2115811109542847 img loss 1.2011934518814087 img loss 1.1903032064437866 img loss 1.149182915687561 img loss 1.3101718425750732 img loss 1.195635199546814 img loss 1.1249727010726929 img loss 1.1887136697769165 img loss 1.2552924156188965 img loss 1.1553897857666016 img loss 1.1754815578460693 img loss 1.2360172271728516 img loss 1.14889657497406 img loss 1.1709439754486084 img loss 1.2519911527633667 img loss 1.1834378242492676 img loss 1.2052912712097168 img loss 1.2674083709716797 img loss 1.207002878189087 img loss 1.1833395957946777 img loss 1.223486304283142 img loss 1.2092894315719604 img loss 1.231887698173523 img loss 1.1984519958496094 img loss 1.2392241954803467 img loss 1.1933902502059937 img loss 1.1484978199005127 img loss 1.1920326948165894 img loss 1.285019874572754 img loss 1.2374491691589355 img loss 1.1805981397628784 img loss 1.1280769109725952 img loss 1.1431277990341187 img loss 1.2206814289093018 img loss 1.2880948781967163 img loss 1.0989415645599365 img loss 1.1468067169189453 img loss 1.2156708240509033 img loss 1.2262587547302246 img loss 1.1782073974609375 img loss 1.1578168869018555 img loss 1.260455846786499 img loss 1.1502403020858765 img loss 1.139143943786621 img loss 1.1392754316329956 img loss 1.283724069595337 img loss 1.2201792001724243 img loss 1.257499098777771 img loss 1.1928967237472534 img loss 1.1351734399795532 img loss 1.1636059284210205 img loss 1.204035997390747 img loss 1.2159771919250488 img loss 1.1255676746368408 img loss 1.2472188472747803 img loss 1.1314560174942017 img loss 1.1574723720550537 img loss 1.189579725265503 img loss 1.189247727394104 img loss 1.1853684186935425 img loss 1.2588832378387451 img loss 1.2526785135269165 img loss 1.0663435459136963 img loss 1.115975022315979 img loss 1.1278184652328491 img loss 1.1861788034439087 img loss 1.1198415756225586 img loss 1.2524000406265259 img loss 1.2061182260513306 img loss 1.1762521266937256 img loss 1.2061361074447632 img loss 1.340329885482788 img loss 1.1568260192871094 img loss 1.2068467140197754 img loss 1.231576919555664 img loss 1.2550004720687866 img loss 1.2486913204193115 img loss 1.0991473197937012 img loss 1.3024003505706787 img loss 1.1979694366455078 img loss 1.192739486694336 img loss 1.139898657798767 img loss 1.2165015935897827 img loss 1.1816060543060303 img loss 1.2262977361679077 img loss 1.2984837293624878 img loss 1.2016596794128418 img loss 1.2249298095703125 img loss 1.0928646326065063 img loss 1.1680984497070312 img loss 1.2118593454360962 img loss 1.2220087051391602 img loss 1.189591884613037 img loss 1.1258128881454468 {'loss': 1.1937, 'grad_norm': 0.239481121301651, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2897942066192627 img loss 1.2790331840515137 img loss 1.2420181035995483 img loss 1.212920904159546 img loss 1.2098958492279053 img loss 1.2295068502426147 img loss 1.2040419578552246 img loss 1.1893023252487183 img loss 1.2370820045471191 img loss 1.2649140357971191 img loss 1.2479891777038574 img loss 1.236283779144287 img loss 1.2177940607070923 img loss 1.2399139404296875 img loss 1.1615650653839111 img loss 1.2422497272491455 img loss 1.2663094997406006 img loss 1.1913927793502808 img loss 1.2173891067504883 img loss 1.2196705341339111 img loss 1.2164512872695923 img loss 1.2393826246261597 img loss 1.2159546613693237 img loss 1.2616299390792847 img loss 1.2451223134994507 img loss 1.2237591743469238 img loss 1.2172718048095703 img loss 1.2858364582061768 img loss 1.1932700872421265 img loss 1.1892049312591553 img loss 1.2679190635681152 img loss 1.2330987453460693 img loss 1.1815799474716187 img loss 1.235438585281372 img loss 1.243908405303955 img loss 1.1815422773361206 img loss 1.2985074520111084 img loss 1.2159318923950195 img loss 1.2081451416015625 img loss 1.2057609558105469 img loss 1.201525330543518 img loss 1.1958942413330078 img loss 1.2475732564926147 img loss 1.2028359174728394 img loss 1.2236508131027222 img loss 1.1836912631988525 img loss 1.187479853630066 img loss 1.2288254499435425 img loss 1.2129979133605957 img loss 1.1914145946502686 img loss 1.2816780805587769 img loss 1.2209405899047852 img loss 1.264912486076355 img loss 1.2449558973312378 img loss 1.2496212720870972 img loss 1.3038747310638428 img loss 1.272740125656128 img loss 1.193271279335022 img loss 1.202951192855835 img loss 1.1876815557479858 img loss 1.2907623052597046 img loss 1.1818082332611084 img loss 1.224249243736267 img loss 1.2476153373718262 img loss 1.2422552108764648 img loss 1.2380815744400024 img loss 1.1734453439712524 img loss 1.2882146835327148 img loss 1.2236732244491577 img loss 1.2798638343811035 img loss 1.1747404336929321 img loss 1.2487210035324097 img loss 1.208382487297058 img loss 1.2070715427398682 img loss 1.1972079277038574 img loss 1.2154076099395752 img loss 1.1692551374435425 img loss 1.266854166984558 img loss 1.1802914142608643 img loss 1.2237868309020996 img loss 1.2604354619979858 img loss 1.2807800769805908 img loss 1.188828945159912 img loss 1.247035026550293 img loss 1.2395843267440796 img loss 1.2356808185577393 img loss 1.1807962656021118 img loss 1.2789461612701416 img loss 1.2610423564910889 img loss 1.2281756401062012 img loss 1.251524806022644 img loss 1.2003517150878906 img loss 1.1734559535980225 img loss 1.1954216957092285 img loss 1.1944071054458618 img loss 1.2189658880233765 img loss 1.1738228797912598 img loss 1.2466318607330322 img loss 1.183653473854065 img loss 1.2545430660247803 img loss 1.2153123617172241 img loss 1.2566838264465332 img loss 1.2909420728683472 img loss 1.2049942016601562 img loss 1.2010420560836792 img loss 1.2178312540054321 img loss 1.2897400856018066 img loss 1.1928447484970093 img loss 1.2027549743652344 img loss 1.2014591693878174 img loss 1.2087681293487549 img loss 1.2420446872711182 img loss 1.2354118824005127 img loss 1.218971848487854 img loss 1.2044651508331299 img loss 1.2121171951293945 img loss 1.2075966596603394 img loss 1.1931052207946777 img loss 1.2913497686386108 img loss 1.2028260231018066 img loss 1.1870657205581665 img loss 1.2381892204284668 img loss 1.2461556196212769 img loss 1.1880311965942383 img loss 1.2361572980880737 img loss 1.2153239250183105 img loss 1.2016502618789673 img loss 1.2157409191131592 {'loss': 1.2254, 'grad_norm': 0.22612182796001434, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4030965566635132 img loss 1.344430685043335 img loss 1.2846014499664307 img loss 1.3156241178512573 img loss 1.4005168676376343 img loss 1.3423094749450684 img loss 1.427223563194275 img loss 1.3149267435073853 img loss 1.4343807697296143 img loss 1.3069883584976196 img loss 1.4327597618103027 img loss 1.2904293537139893 img loss 1.4238382577896118 img loss 1.410642385482788 img loss 1.447527527809143 img loss 1.2531938552856445 img loss 1.3845264911651611 img loss 1.4434154033660889 img loss 1.3204602003097534 img loss 1.481876254081726 img loss 1.3652344942092896 img loss 1.432991862297058 img loss 1.2685203552246094 img loss 1.3922743797302246 img loss 1.4079440832138062 img loss 1.3133609294891357 img loss 1.3015778064727783 img loss 1.3109076023101807 img loss 1.2984718084335327 img loss 1.4126769304275513 img loss 1.3835362195968628 img loss 1.5979541540145874 img loss 1.3604408502578735 img loss 1.3961743116378784 img loss 1.3709454536437988 img loss 1.4803366661071777 img loss 1.3237435817718506 img loss 1.295414686203003 img loss 1.3932052850723267 img loss 1.5705286264419556 img loss 1.4239935874938965 img loss 1.4475476741790771 img loss 1.3520933389663696 img loss 1.431869626045227 img loss 1.436620831489563 img loss 1.37057626247406 img loss 1.40343177318573 img loss 1.4410980939865112 img loss 1.4048601388931274 img loss 1.3845494985580444 img loss 1.3082141876220703 img loss 1.4776703119277954 img loss 1.3505139350891113 img loss 1.4169851541519165 img loss 1.429975152015686 img loss 1.3214701414108276 img loss 1.2453044652938843 img loss 1.402657151222229 img loss 1.3413021564483643 img loss 1.290844440460205 img loss 1.5678883790969849img loss 1.3178867101669312 img loss 1.3230228424072266 img loss 1.27999746799469 img loss 1.375719666481018 img loss 1.2009375095367432 img loss 1.3427424430847168 img loss 1.3600289821624756 img loss 1.5181182622909546 img loss 1.4313956499099731 img loss 1.4056569337844849 img loss 1.3078793287277222 img loss 1.358814001083374 img loss 1.4475904703140259 img loss 1.3762900829315186 img loss 1.4545334577560425 img loss 1.5883561372756958 img loss 1.3801480531692505 img loss 1.290920615196228 img loss 1.3032130002975464 img loss 1.3087126016616821 img loss 1.3325737714767456 img loss 1.5483195781707764 img loss 1.3697197437286377 img loss 1.3324817419052124 img loss 1.3266000747680664 img loss 1.315005898475647 img loss 1.4403767585754395 img loss 1.4654395580291748 img loss 1.2599457502365112 img loss 1.3741297721862793 img loss 1.5160471200942993 img loss 1.2287906408309937 img loss 1.2959678173065186 img loss 1.5522762537002563 img loss 1.429384708404541 img loss 1.3633596897125244 img loss 1.4253069162368774 img loss 1.2668975591659546 img loss 1.550930380821228 img loss 1.4829899072647095 img loss 1.3657422065734863 img loss 1.4492954015731812 img loss 1.475555181503296 img loss 1.2743830680847168 img loss 1.3417643308639526 img loss 1.4214167594909668 img loss 1.2861846685409546 img loss 1.587178349494934 img loss 1.3770298957824707 img loss 1.3385261297225952 img loss 1.40424382686615 img loss 1.3212469816207886 img loss 1.3355144262313843 img loss 1.371184229850769 img loss 1.392799735069275 img loss 1.3633865118026733 img loss 1.4107877016067505 img loss 1.418684482574463 img loss 1.4192966222763062 img loss 1.3957422971725464 img loss 1.483782410621643 img loss 1.4226480722427368 img loss 1.401609182357788 img loss 1.4085215330123901 img loss 1.3593887090682983 img loss 1.4170117378234863 img loss 1.3398040533065796 {'loss': 1.3845, 'grad_norm': 0.6281262636184692, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2896674871444702 img loss 1.1986157894134521 img loss 1.1859068870544434 img loss 1.2720234394073486 img loss 1.24101984500885 img loss 1.2374520301818848 img loss 1.236948847770691 img loss 1.2330416440963745 img loss 1.2266181707382202 img loss 1.328917145729065 img loss 1.285575270652771 img loss 1.2024370431900024 img loss 1.2027618885040283 img loss 1.2805732488632202 img loss 1.2806380987167358 img loss 1.2272584438323975 img loss 1.3973945379257202 img loss 1.1825929880142212 img loss 1.239755630493164 img loss 1.2463090419769287 img loss 1.1871025562286377 img loss 1.3121922016143799 img loss 1.2312628030776978 img loss 1.19779372215271 img loss 1.2303831577301025 img loss 1.225149393081665 img loss 1.2509914636611938 img loss 1.2743018865585327 img loss 1.2483747005462646 img loss 1.190437912940979 img loss 1.2345834970474243 img loss 1.2187647819519043 img loss 1.266507625579834 img loss 1.3614661693572998 img loss 1.1861813068389893 img loss 1.24281644821167 img loss 1.2089037895202637 img loss 1.1937588453292847 img loss 1.2780240774154663 img loss 1.20512855052948 img loss 1.2296802997589111 img loss 1.2081419229507446 img loss 1.2692888975143433 img loss 1.2321901321411133 img loss 1.2454725503921509 img loss 1.301450490951538 img loss 1.297696828842163 img loss 1.263651728630066 img loss 1.2388701438903809 img loss 1.282468557357788 img loss 1.2218167781829834 img loss 1.2576124668121338 img loss 1.22389817237854 img loss 1.2205504179000854 img loss 1.2590956687927246 img loss 1.3114360570907593 img loss 1.2744040489196777 img loss 1.2317653894424438 img loss 1.2055349349975586 img loss 1.153249979019165 img loss 1.2243927717208862 img loss 1.1546308994293213 img loss 1.2312500476837158 img loss 1.2800852060317993 img loss 1.2614562511444092 img loss 1.2309691905975342 img loss 1.292510986328125 img loss 1.1705807447433472 img loss 1.2128546237945557 img loss 1.3172279596328735 img loss 1.1803842782974243 img loss 1.2130647897720337 img loss 1.21858549118042 img loss 1.2503764629364014 img loss 1.223944902420044 img loss 1.228798747062683 img loss 1.2405198812484741 img loss 1.2912620306015015 img loss 1.2355408668518066 img loss 1.351672887802124 img loss 1.1806461811065674 img loss 1.2443311214447021 img loss 1.2026948928833008 img loss 1.2214343547821045 img loss 1.2107003927230835 img loss 1.2792129516601562 img loss 1.245168924331665 img loss 1.248415231704712 img loss 1.2216389179229736 img loss 1.2286595106124878 img loss 1.1871384382247925 img loss 1.3029478788375854 img loss 1.2213943004608154 img loss 1.2372984886169434 img loss 1.2613458633422852 img loss 1.2489804029464722 img loss 1.2398487329483032 img loss 1.2002041339874268 img loss 1.193811297416687 img loss 1.255157470703125 img loss 1.2131222486495972 img loss 1.2220968008041382 img loss 1.2453011274337769 img loss 1.2467254400253296 img loss 1.2333073616027832 img loss 1.322727918624878 img loss 1.1833806037902832 img loss 1.1985230445861816 img loss 1.2153841257095337 img loss 1.1982148885726929 img loss 1.2030500173568726 img loss 1.2277554273605347 img loss 1.2379190921783447 img loss 1.193462610244751 img loss 1.2551648616790771 img loss 1.2244518995285034 img loss 1.147356390953064 img loss 1.3215186595916748 img loss 1.2280584573745728 img loss 1.231692910194397 img loss 1.2113418579101562 img loss 1.2303645610809326 img loss 1.2070101499557495 img loss 1.254728078842163 img loss 1.1583060026168823 img loss 1.2083563804626465 img loss 1.164329171180725 img loss 1.216255784034729 {'loss': 1.2368, 'grad_norm': 0.22904632985591888, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1607450246810913 img loss 1.1271510124206543 img loss 1.2161047458648682 img loss 1.1885515451431274 img loss 1.2076447010040283 img loss 1.228450059890747 img loss 1.1849770545959473 img loss 1.1641700267791748 img loss 1.2039536237716675 img loss 1.1946991682052612 img loss 1.1927183866500854 img loss 1.1344144344329834 img loss 1.228835105895996 img loss 1.1137737035751343 img loss 1.1982760429382324 img loss 1.2037423849105835 img loss 1.2217788696289062 img loss 1.2252693176269531 img loss 1.1346639394760132 img loss 1.1998852491378784 img loss 1.242889404296875 img loss 1.1458853483200073 img loss 1.1829994916915894 img loss 1.138152837753296 img loss 1.2109125852584839 img loss 1.2036688327789307 img loss 1.2477741241455078 img loss 1.2968754768371582 img loss 1.1607939004898071 img loss 1.202227234840393 img loss 1.1409658193588257 img loss 1.2023475170135498 img loss 1.1377367973327637 img loss 1.226466178894043 img loss 1.1983997821807861 img loss 1.3044686317443848 img loss 1.1988203525543213 img loss 1.2001770734786987 img loss 1.188995599746704 img loss 1.3224973678588867 img loss 1.1614491939544678 img loss 1.1897836923599243 img loss 1.2145538330078125 img loss 1.1854737997055054 img loss 1.2400730848312378 img loss 1.2749446630477905 img loss 1.183579683303833 img loss 1.2103796005249023 img loss 1.2237181663513184 img loss 1.181862473487854 img loss 1.2462022304534912 img loss 1.2788257598876953 img loss 1.2427802085876465 img loss 1.1762702465057373 img loss 1.2297172546386719 img loss 1.2216334342956543 img loss 1.1809831857681274 img loss 1.1866687536239624 img loss 1.1334542036056519 img loss 1.1643224954605103 img loss 1.132230520248413 img loss 1.1762243509292603 img loss 1.204334020614624 img loss 1.1648633480072021 img loss 1.185503363609314 img loss 1.252633810043335 img loss 1.222313404083252 img loss 1.1149513721466064 img loss 1.2075462341308594 img loss 1.1685205698013306 img loss 1.2172141075134277 img loss 1.2333284616470337 img loss 1.216235876083374 img loss 1.1914877891540527 img loss 1.2410740852355957 img loss 1.1777199506759644 img loss 1.2374401092529297 img loss 1.1941273212432861 img loss 1.2515376806259155 img loss 1.1915148496627808 img loss 1.2125171422958374 img loss 1.2397445440292358 img loss 1.2950260639190674 img loss 1.1624876260757446 img loss 1.1501433849334717 img loss 1.2482929229736328 img loss 1.1759992837905884 img loss 1.145621657371521 img loss 1.1864478588104248 img loss 1.2530517578125 img loss 1.172400951385498 img loss 1.2308681011199951 img loss 1.1247004270553589 img loss 1.1670053005218506 img loss 1.2338597774505615 img loss 1.1907970905303955 img loss 1.3501064777374268 img loss 1.1246991157531738 img loss 1.1844613552093506 img loss 1.0912494659423828 img loss 1.2412598133087158 img loss 1.2389148473739624 img loss 1.1501253843307495 img loss 1.1599018573760986 img loss 1.1835429668426514 img loss 1.2059712409973145 img loss 1.107666254043579 img loss 1.2830921411514282 img loss 1.187114953994751 img loss 1.2290894985198975 img loss 1.2063440084457397 img loss 1.1306949853897095 img loss 1.2221503257751465 img loss 1.1588467359542847 img loss 1.164534330368042 img loss 1.2254130840301514 img loss 1.2233219146728516 img loss 1.211473822593689 img loss 1.2120490074157715 img loss 1.2662910223007202 img loss 1.2390350103378296 img loss 1.1980412006378174 img loss 1.228886604309082 img loss 1.1934139728546143 img loss 1.249459147453308 img loss 1.17604398727417 img loss 1.1836341619491577 img loss 1.25932776927948 {'loss': 1.2005, 'grad_norm': 0.3063235580921173, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.184756875038147 img loss 1.21602201461792 img loss 1.2186927795410156 img loss 1.239924669265747 img loss 1.2416508197784424 img loss 1.2461599111557007 img loss 1.2808862924575806 img loss 1.2611844539642334 img loss 1.2296910285949707 img loss 1.2241241931915283 img loss 1.2055355310440063 img loss 1.2700018882751465 img loss 1.2474017143249512 img loss 1.2596858739852905 img loss 1.2344765663146973 img loss 1.3046622276306152 img loss 1.3035751581192017 img loss 1.3527377843856812 img loss 1.2888323068618774 img loss 1.2415215969085693 img loss 1.2704722881317139 img loss 1.2838581800460815 img loss 1.2368744611740112 img loss 1.2682709693908691 img loss 1.2571020126342773 img loss 1.2431845664978027 img loss 1.2420291900634766 img loss 1.2190449237823486 img loss 1.2909417152404785 img loss 1.20378577709198 img loss 1.3358681201934814 img loss 1.2624906301498413 img loss 1.3169106245040894 img loss 1.2762725353240967 img loss 1.3291172981262207 img loss 1.1947722434997559img loss 1.3017135858535767 img loss 1.2373673915863037 img loss 1.2006912231445312 img loss 1.2739149332046509 img loss 1.185105800628662 img loss 1.260627031326294 img loss 1.2765201330184937 img loss 1.3085256814956665 img loss 1.2517458200454712 img loss 1.2545175552368164 img loss 1.2985644340515137 img loss 1.190036654472351 img loss 1.3231016397476196 img loss 1.4057056903839111 img loss 1.2821165323257446 img loss 1.1738470792770386 img loss 1.25071382522583 img loss 1.23715078830719 img loss 1.2762084007263184 img loss 1.2384039163589478 img loss 1.2714002132415771 img loss 1.1857295036315918 img loss 1.2945677042007446 img loss 1.3955397605895996 img loss 1.1902872323989868 img loss 1.2960069179534912 img loss 1.2277483940124512 img loss 1.238470435142517 img loss 1.2934181690216064 img loss 1.2605760097503662 img loss 1.158781886100769 img loss 1.2473080158233643 img loss 1.2127832174301147 img loss 1.2123997211456299 img loss 1.2393348217010498 img loss 1.2569936513900757 img loss 1.2700703144073486 img loss 1.2015380859375 img loss 1.2276350259780884 img loss 1.2114651203155518 img loss 1.312617540359497 img loss 1.2545979022979736 img loss 1.226304531097412 img loss 1.2500275373458862 img loss 1.1546812057495117 img loss 1.208960771560669 img loss 1.2683498859405518 img loss 1.2485668659210205 img loss 1.17990243434906 img loss 1.2499613761901855 img loss 1.2829656600952148 img loss 1.2300512790679932 img loss 1.3340351581573486 img loss 1.2695591449737549 img loss 1.2877849340438843 img loss 1.2120099067687988 img loss 1.1737459897994995 img loss 1.2639729976654053 img loss 1.2070386409759521 img loss 1.2756277322769165 img loss 1.2067620754241943 img loss 1.2606427669525146 img loss 1.1756359338760376 img loss 1.273802399635315 img loss 1.2744181156158447 img loss 1.2117313146591187 img loss 1.1969269514083862 img loss 1.2632594108581543 img loss 1.2379156351089478 img loss 1.1521424055099487 img loss 1.1974109411239624 img loss 1.2056944370269775 img loss 1.2434147596359253 img loss 1.2090251445770264 img loss 1.251847505569458 img loss 1.2774511575698853 img loss 1.2739940881729126 img loss 1.3366005420684814 img loss 1.209909200668335 img loss 1.3184237480163574 img loss 1.1639689207077026 img loss 1.299816608428955 img loss 1.250894546508789 img loss 1.2317003011703491 img loss 1.299315094947815 img loss 1.1842888593673706 img loss 1.2868231534957886 img loss 1.1728904247283936 img loss 1.1345758438110352 img loss 1.2858140468597412 img loss 1.2652583122253418 img loss 1.2761825323104858 {'loss': 1.2494, 'grad_norm': 0.26745718717575073, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.449787974357605 img loss 1.5600240230560303 img loss 1.677353024482727 img loss 1.5371320247650146 img loss 1.324851632118225 img loss 1.458246111869812 img loss 1.489854097366333 img loss 1.5382596254348755 img loss 1.4906266927719116 img loss 1.446705937385559 img loss 1.4784505367279053 img loss 1.5536363124847412 img loss 1.4688526391983032 img loss 1.5382448434829712 img loss 1.3976749181747437 img loss 1.3619731664657593 img loss 1.4998505115509033 img loss 1.5929176807403564 img loss 1.5014920234680176 img loss 1.4904710054397583 img loss 1.6581648588180542 img loss 1.4270802736282349 img loss 1.5097544193267822 img loss 1.460823655128479 img loss 1.5423636436462402 img loss 1.5575318336486816 img loss 1.6036202907562256 img loss 1.529030680656433 img loss 1.4329100847244263 img loss 1.4789847135543823 img loss 1.4959986209869385 img loss 1.4855897426605225 img loss 1.4813250303268433 img loss 1.5074044466018677 img loss 1.4104208946228027 img loss 1.550679087638855 img loss 1.459733486175537 img loss 1.485084891319275 img loss 1.507507085800171 img loss 1.5605509281158447 img loss 1.4512883424758911 img loss 1.3955302238464355 img loss 1.4919594526290894 img loss 1.4642266035079956 img loss 1.4663573503494263 img loss 1.5391918420791626 img loss 1.5186047554016113 img loss 1.5191938877105713 img loss 1.4576901197433472 img loss 1.635565161705017 img loss 1.451750636100769 img loss 1.5114487409591675 img loss 1.5193411111831665 img loss 1.5229460000991821 img loss 1.6540541648864746 img loss 1.5698975324630737 img loss 1.5552608966827393 img loss 1.5018352270126343img loss 1.4367073774337769 img loss 1.6716278791427612 img loss 1.537925124168396 img loss 1.5395989418029785 img loss 1.4933905601501465 img loss 1.3800088167190552 img loss 1.6040282249450684 img loss 1.5396742820739746 img loss 1.4460787773132324 img loss 1.6309603452682495 img loss 1.4014410972595215 img loss 1.3831894397735596 img loss 1.594616174697876 img loss 1.483406901359558 img loss 1.5131487846374512 img loss 1.5530513525009155 img loss 1.5865263938903809 img loss 1.4884183406829834 img loss 1.4831597805023193 img loss 1.4192906618118286 img loss 1.4886603355407715 img loss 1.475241780281067 img loss 1.4930784702301025 img loss 1.4574944972991943 img loss 1.4064157009124756 img loss 1.5673354864120483 img loss 1.4374730587005615 img loss 1.470683217048645 img loss 1.4576579332351685 img loss 1.3629857301712036 img loss 1.5066964626312256 img loss 1.4912867546081543 img loss 1.5782822370529175 img loss 1.5588306188583374 img loss 1.5380146503448486 img loss 1.56460702419281 img loss 1.5679157972335815 img loss 1.4295107126235962 img loss 1.5383111238479614 img loss 1.4411648511886597 img loss 1.4533835649490356 img loss 1.4702938795089722 img loss 1.430853009223938 img loss 1.2995039224624634 img loss 1.553401231765747 img loss 1.5719444751739502 img loss 1.5678268671035767 img loss 1.4534004926681519 img loss 1.4645893573760986 img loss 1.421726942062378 img loss 1.5685145854949951 img loss 1.5064549446105957 img loss 1.495510458946228 img loss 1.5040899515151978 img loss 1.4337223768234253 img loss 1.4994741678237915 img loss 1.5085872411727905 img loss 1.4521126747131348 img loss 1.4547871351242065 img loss 1.5121365785598755 img loss 1.4075093269348145 img loss 1.6331608295440674 img loss 1.562942624092102 img loss 1.5835880041122437 img loss 1.4486380815505981 img loss 1.589586615562439 img loss 1.548134207725525 img loss 1.6300586462020874 img loss 1.4840552806854248 img loss 1.3667094707489014 {'loss': 1.501, 'grad_norm': 0.7987756729125977, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2168724536895752 img loss 1.2617019414901733 img loss 1.2261028289794922 img loss 1.2728986740112305 img loss 1.257232427597046 img loss 1.2665722370147705 img loss 1.2173035144805908 img loss 1.2944015264511108 img loss 1.2819743156433105 img loss 1.273073673248291 img loss 1.2720935344696045 img loss 1.2486646175384521 img loss 1.2750167846679688 img loss 1.2987951040267944 img loss 1.3334519863128662 img loss 1.195330262184143 img loss 1.2876791954040527 img loss 1.20513916015625 img loss 1.258649468421936 img loss 1.186601996421814 img loss 1.331756830215454 img loss 1.1630443334579468 img loss 1.1970961093902588 img loss 1.2702572345733643 img loss 1.2421417236328125 img loss 1.2254317998886108 img loss 1.206133484840393 img loss 1.1683250665664673 img loss 1.2244770526885986 img loss 1.2400041818618774 img loss 1.2503259181976318 img loss 1.2404063940048218 img loss 1.206655502319336 img loss 1.237436056137085 img loss 1.2058453559875488 img loss 1.2417359352111816 img loss 1.1763834953308105 img loss 1.2922016382217407 img loss 1.2993717193603516 img loss 1.2800490856170654 img loss 1.2481962442398071 img loss 1.2071847915649414 img loss 1.276961088180542 img loss 1.2330039739608765 img loss 1.2820440530776978 img loss 1.224914312362671 img loss 1.2107704877853394 img loss 1.2757620811462402 img loss 1.2428234815597534 img loss 1.2593638896942139 img loss 1.2588542699813843 img loss 1.1891182661056519 img loss 1.265949010848999 img loss 1.3126658201217651 img loss 1.209665298461914 img loss 1.1895579099655151 img loss 1.2497954368591309 img loss 1.2862110137939453 img loss 1.2521567344665527 img loss 1.2344499826431274 img loss 1.2837700843811035 img loss 1.2322213649749756 img loss 1.2399423122406006 img loss 1.2015119791030884 img loss 1.2302616834640503 img loss 1.2796863317489624img loss 1.3390058279037476 img loss 1.2718710899353027 img loss 1.2684544324874878 img loss 1.2624351978302002 img loss 1.2379589080810547 img loss 1.2795034646987915 img loss 1.2506155967712402 img loss 1.2601889371871948 img loss 1.2355732917785645 img loss 1.194433569908142 img loss 1.2496265172958374 img loss 1.3032617568969727 img loss 1.2376956939697266 img loss 1.2781308889389038 img loss 1.283152461051941 img loss 1.2658240795135498 img loss 1.1809494495391846 img loss 1.237208604812622 img loss 1.214633822441101 img loss 1.2768635749816895 img loss 1.2154340744018555 img loss 1.314936637878418 img loss 1.2279438972473145 img loss 1.3311277627944946 img loss 1.2796216011047363 img loss 1.1871180534362793 img loss 1.2224578857421875 img loss 1.261757731437683 img loss 1.2767257690429688 img loss 1.257326364517212 img loss 1.241312861442566 img loss 1.2609485387802124 img loss 1.265624761581421 img loss 1.214625358581543 img loss 1.2507691383361816 img loss 1.2197470664978027 img loss 1.2868808507919312 img loss 1.281253457069397 img loss 1.291905403137207 img loss 1.2598117589950562 img loss 1.2030032873153687 img loss 1.2187893390655518 img loss 1.2801451683044434 img loss 1.2409042119979858 img loss 1.2684227228164673 img loss 1.1599855422973633 img loss 1.2384419441223145 img loss 1.2544654607772827 img loss 1.2500624656677246 img loss 1.2941794395446777 img loss 1.2016284465789795 img loss 1.2209275960922241 img loss 1.2551765441894531 img loss 1.2484034299850464 img loss 1.3026584386825562 img loss 1.2422205209732056 img loss 1.2470496892929077 img loss 1.2112740278244019 img loss 1.2885310649871826 img loss 1.253887414932251 img loss 1.2366821765899658 img loss 1.253078818321228 {'loss': 1.2488, 'grad_norm': 0.24700723588466644, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4404168128967285 img loss 1.2289015054702759 img loss 1.471288800239563 img loss 1.5731648206710815 img loss 1.506327509880066 img loss 1.3795121908187866 img loss 1.468231439590454 img loss 1.3897738456726074 img loss 1.356096625328064 img loss 1.3538457155227661 img loss 1.4076207876205444 img loss 1.3923392295837402 img loss 1.461254358291626 img loss 1.5034757852554321 img loss 1.384526014328003 img loss 1.32270085811615 img loss 1.41957426071167 img loss 1.4947607517242432 img loss 1.5437312126159668 img loss 1.4980864524841309 img loss 1.449855089187622 img loss 1.400357961654663 img loss 1.5395396947860718 img loss 1.477272868156433 img loss 1.2495189905166626 img loss 1.5371655225753784 img loss 1.388084888458252 img loss 1.4303683042526245 img loss 1.3862093687057495 img loss 1.4668586254119873 img loss 1.4822560548782349 img loss 1.4840482473373413 img loss 1.4531580209732056 img loss 1.449214220046997 img loss 1.485319972038269 img loss 1.4070457220077515 img loss 1.4975101947784424 img loss 1.351751685142517 img loss 1.3913744688034058 img loss 1.4675726890563965 img loss 1.3490239381790161 img loss 1.5133713483810425 img loss 1.5631346702575684 img loss 1.4095655679702759 img loss 1.428633451461792 img loss 1.490055799484253 img loss 1.4198344945907593 img loss 1.4965685606002808 img loss 1.480587363243103 img loss 1.438636064529419 img loss 1.4103448390960693 img loss 1.3729745149612427 img loss 1.3393501043319702 img loss 1.3995413780212402 img loss 1.5103329420089722 img loss 1.3531328439712524 img loss 1.423663854598999 img loss 1.437408208847046 img loss 1.5003868341445923 img loss 1.4992541074752808 img loss 1.4279729127883911 img loss 1.3117281198501587 img loss 1.5667823553085327 img loss 1.513181209564209 img loss 1.3782880306243896 img loss 1.370983600616455 img loss 1.3720558881759644 img loss 1.4630539417266846 img loss 1.3577779531478882 img loss 1.3617653846740723 img loss 1.4014780521392822 img loss 1.5042150020599365 img loss 1.4595195055007935 img loss 1.5621739625930786 img loss 1.5387990474700928 img loss 1.376604676246643 img loss 1.4517666101455688 img loss 1.4490692615509033 img loss 1.4710394144058228 img loss 1.4238808155059814 img loss 1.4043790102005005 img loss 1.4455758333206177 img loss 1.5138801336288452 img loss 1.3905936479568481 img loss 1.4037134647369385 img loss 1.5766972303390503 img loss 1.5359187126159668 img loss 1.4053372144699097 img loss 1.4317681789398193 img loss 1.3905081748962402 img loss 1.4038878679275513 img loss 1.2870701551437378 img loss 1.422078013420105 img loss 1.4950190782546997 img loss 1.512824296951294 img loss 1.4184871912002563 img loss 1.3582606315612793 img loss 1.3976209163665771 img loss 1.4029275178909302 img loss 1.4023114442825317 img loss 1.32564115524292 img loss 1.4470542669296265 img loss 1.4650996923446655 img loss 1.3904798030853271 img loss 1.4398096799850464 img loss 1.4679038524627686 img loss 1.320257544517517 img loss 1.4271636009216309 img loss 1.3703621625900269 img loss 1.6085114479064941 img loss 1.411333680152893 img loss 1.4352651834487915 img loss 1.443204641342163 img loss 1.3794621229171753 img loss 1.3516985177993774 img loss 1.347551941871643 img loss 1.403335452079773 img loss 1.5242925882339478 img loss 1.3886758089065552 img loss 1.300338625907898 img loss 1.5139778852462769 img loss 1.4977872371673584 img loss 1.4464409351348877 img loss 1.6133235692977905 img loss 1.3966716527938843 img loss 1.4730345010757446 img loss 1.5461286306381226 img loss 1.53981614112854 {'loss': 1.4364, 'grad_norm': 0.5159507393836975, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.204412817955017 img loss 1.1218305826187134 img loss 1.201899528503418 img loss 1.1790474653244019 img loss 1.2613838911056519 img loss 1.2575030326843262 img loss 1.175767421722412 img loss 1.1577181816101074 img loss 1.134009599685669 img loss 1.1141985654830933 img loss 1.1945509910583496 img loss 1.1518125534057617 img loss 1.1741383075714111 img loss 1.1090924739837646 img loss 1.14933180809021 img loss 1.1128196716308594 img loss 1.2194346189498901 img loss 1.173041820526123 img loss 1.1533734798431396 img loss 1.1430821418762207 img loss 1.1501305103302002 img loss 1.1470746994018555 img loss 1.0787192583084106 img loss 1.1555203199386597 img loss 1.2195088863372803 img loss 1.1513431072235107 img loss 1.1916158199310303 img loss 1.1459441184997559 img loss 1.1775795221328735 img loss 1.0941550731658936 img loss 1.1803419589996338 img loss 1.124917984008789 img loss 1.1820964813232422 img loss 1.1788374185562134 img loss 1.1865595579147339 img loss 1.1731979846954346 img loss 1.127113699913025 img loss 1.1724048852920532 img loss 1.1319923400878906 img loss 1.1409224271774292 img loss 1.1703546047210693 img loss 1.2193702459335327 img loss 1.1740957498550415 img loss 1.1543453931808472 img loss 1.1965614557266235 img loss 1.139197587966919 img loss 1.2156873941421509 img loss 1.1563360691070557 img loss 1.1422158479690552 img loss 1.137162685394287 img loss 1.1582109928131104 img loss 1.269702434539795 img loss 1.1313174962997437 img loss 1.1837544441223145 img loss 1.2804579734802246 img loss 1.1514167785644531 img loss 1.1179580688476562 img loss 1.2140907049179077 img loss 1.1815218925476074 img loss 1.1153404712677002 img loss 1.2638792991638184 img loss 1.1489992141723633 img loss 1.1252869367599487 img loss 1.1467443704605103 img loss 1.1516077518463135 img loss 1.1726109981536865 img loss 1.1421682834625244 img loss 1.2434492111206055 img loss 1.2169158458709717 img loss 1.1863787174224854 img loss 1.198767900466919 img loss 1.2212234735488892 img loss 1.1705646514892578 img loss 1.226868987083435 img loss 1.2027678489685059 img loss 1.185724139213562 img loss 1.0997732877731323 img loss 1.1486563682556152 img loss 1.126956820487976 img loss 1.2264267206192017 img loss 1.1308977603912354 img loss 1.171223521232605 img loss 1.1631255149841309 img loss 1.2274224758148193 img loss 1.1841635704040527 img loss 1.1217844486236572 img loss 1.1380703449249268 img loss 1.1425281763076782 img loss 1.264461874961853 img loss 1.1868594884872437 img loss 1.2146672010421753 img loss 1.1613234281539917 img loss 1.152083396911621 img loss 1.0798367261886597 img loss 1.1634294986724854 img loss 1.1371616125106812 img loss 1.1380778551101685 img loss 1.2187258005142212 img loss 1.259171724319458 img loss 1.1875418424606323 img loss 1.1888501644134521 img loss 1.140710711479187 img loss 1.1908345222473145 img loss 1.1895354986190796 img loss 1.1315927505493164 img loss 1.1609820127487183 img loss 1.1382408142089844 img loss 1.1869773864746094 img loss 1.157859444618225 img loss 1.1701369285583496 img loss 1.2046475410461426 img loss 1.1819570064544678 img loss 1.1943199634552002 img loss 1.186823844909668 img loss 1.2166086435317993 img loss 1.1276053190231323 img loss 1.1594679355621338 img loss 1.1586637496948242 img loss 1.2282460927963257 img loss 1.1204819679260254 img loss 1.1492969989776611 img loss 1.1241846084594727 img loss 1.1147063970565796 img loss 1.1943193674087524 img loss 1.1863759756088257 img loss 1.2088844776153564 img loss 1.1416895389556885 img loss 1.2222445011138916 {'loss': 1.1706, 'grad_norm': 0.3632543385028839, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2847833633422852 img loss 1.1879596710205078 img loss 1.2719424962997437 img loss 1.2141221761703491 img loss 1.0885205268859863 img loss 1.2114746570587158 img loss 1.1594990491867065 img loss 1.1749070882797241 img loss 1.2264076471328735 img loss 1.1896251440048218 img loss 1.179046630859375 img loss 1.1649646759033203 img loss 1.2814394235610962 img loss 1.228676676750183 img loss 1.2401729822158813 img loss 1.2488774061203003 img loss 1.190899133682251 img loss 1.1634029150009155 img loss 1.206356406211853 img loss 1.233199119567871 img loss 1.2466188669204712 img loss 1.1598351001739502 img loss 1.2026442289352417 img loss 1.2532304525375366 img loss 1.1723231077194214 img loss 1.2623307704925537 img loss 1.2717959880828857 img loss 1.2024364471435547 img loss 1.3014984130859375 img loss 1.2209012508392334 img loss 1.1644185781478882 img loss 1.210015892982483 img loss 1.1435620784759521 img loss 1.2494300603866577 img loss 1.157962441444397 img loss 1.228635311126709 img loss 1.208961009979248 img loss 1.2368981838226318 img loss 1.1979345083236694 img loss 1.2310938835144043 img loss 1.219642162322998 img loss 1.1478737592697144 img loss 1.177917718887329 img loss 1.1573755741119385 img loss 1.2305797338485718 img loss 1.1441234350204468 img loss 1.1608161926269531 img loss 1.2231500148773193 img loss 1.2026641368865967 img loss 1.253103256225586 img loss 1.2262147665023804 img loss 1.2307085990905762 img loss 1.240903615951538 img loss 1.1145837306976318 img loss 1.2526581287384033 img loss 1.24936842918396 img loss 1.1813099384307861 img loss 1.0941084623336792 img loss 1.2146590948104858 img loss 1.2973790168762207 img loss 1.2035937309265137 img loss 1.1445890665054321 img loss 1.2212748527526855 img loss 1.2660956382751465 img loss 1.2218111753463745 img loss 1.2097604274749756 img loss 1.225157618522644 img loss 1.1897850036621094 img loss 1.3117207288742065 img loss 1.1669399738311768 img loss 1.2026286125183105 img loss 1.2649883031845093 img loss 1.1785392761230469 img loss 1.1773537397384644 img loss 1.2083516120910645 img loss 1.1730589866638184 img loss 1.2513666152954102 img loss 1.2164143323898315 img loss 1.2423732280731201 img loss 1.2322434186935425 img loss 1.207732081413269 img loss 1.2160804271697998 img loss 1.1996605396270752 img loss 1.2069281339645386 img loss 1.2348833084106445 img loss 1.257444143295288 img loss 1.1836689710617065 img loss 1.225919485092163 img loss 1.1678522825241089 img loss 1.1810911893844604 img loss 1.1856759786605835 img loss 1.159818410873413 img loss 1.206215500831604 img loss 1.3382633924484253 img loss 1.1536394357681274 img loss 1.3125206232070923 img loss 1.2503695487976074 img loss 1.2525261640548706 img loss 1.2536081075668335 img loss 1.2167500257492065 img loss 1.221897840499878 img loss 1.2322297096252441 img loss 1.1953874826431274 img loss 1.2726716995239258 img loss 1.1839407682418823 img loss 1.1744970083236694 img loss 1.1598429679870605 img loss 1.1396160125732422 img loss 1.1923487186431885 img loss 1.2666517496109009 img loss 1.2566999197006226 img loss 1.252204179763794 img loss 1.1694186925888062 img loss 1.2011137008666992 img loss 1.3102924823760986 img loss 1.2083462476730347 img loss 1.231882929801941 img loss 1.1478452682495117 img loss 1.2770392894744873 img loss 1.2737220525741577 img loss 1.1805779933929443 img loss 1.2228198051452637 img loss 1.1937979459762573 img loss 1.216162919998169 img loss 1.2524083852767944 img loss 1.17426335811615 img loss 1.2111177444458008 img loss 1.2897064685821533 {'loss': 1.2134, 'grad_norm': 0.4641863703727722, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2598543167114258 img loss 1.2987432479858398 img loss 1.3811155557632446 img loss 1.3061779737472534 img loss 1.313281536102295 img loss 1.2985146045684814 img loss 1.2664159536361694 img loss 1.290084719657898 img loss 1.425066590309143 img loss 1.2518097162246704 img loss 1.2511354684829712 img loss 1.3515467643737793 img loss 1.3649336099624634 img loss 1.2851613759994507 img loss 1.4285674095153809 img loss 1.2552425861358643 img loss 1.2553744316101074 img loss 1.3020954132080078 img loss 1.3738905191421509 img loss 1.1778818368911743 img loss 1.345831274986267 img loss 1.3272641897201538 img loss 1.2552896738052368 img loss 1.277671456336975 img loss 1.4038264751434326 img loss 1.271323561668396 img loss 1.2608438730239868 img loss 1.2681890726089478 img loss 1.4250797033309937 img loss 1.240648865699768 img loss 1.2202179431915283 img loss 1.3348199129104614 img loss 1.29718017578125 img loss 1.283228874206543 img loss 1.3882948160171509 img loss 1.2394717931747437 img loss 1.2428221702575684 img loss 1.3005449771881104 img loss 1.3001246452331543 img loss 1.450408697128296 img loss 1.402000904083252 img loss 1.3439295291900635 img loss 1.153909683227539 img loss 1.2565858364105225 img loss 1.273547887802124 img loss 1.361940860748291 img loss 1.2929227352142334 img loss 1.26113760471344 img loss 1.233386754989624 img loss 1.2358192205429077 img loss 1.344164490699768 img loss 1.2941652536392212 img loss 1.3031439781188965 img loss 1.2566425800323486 img loss 1.3403198719024658img loss 1.2393364906311035 img loss 1.3778961896896362 img loss 1.347368836402893 img loss 1.3251307010650635 img loss 1.2354072332382202 img loss 1.2106449604034424 img loss 1.3545392751693726 img loss 1.3620553016662598 img loss 1.4624593257904053 img loss 1.3531639575958252 img loss 1.2883135080337524 img loss 1.287675380706787 img loss 1.2117408514022827 img loss 1.2380449771881104 img loss 1.273337721824646 img loss 1.3974965810775757 img loss 1.2710851430892944img loss 1.3052289485931396 img loss 1.2809104919433594 img loss 1.1834867000579834 img loss 1.2555515766143799 img loss 1.321946382522583 img loss 1.2824327945709229 img loss 1.294708013534546 img loss 1.3752037286758423 img loss 1.214931845664978 img loss 1.2984960079193115 img loss 1.3164265155792236 img loss 1.3604729175567627 img loss 1.3312227725982666 img loss 1.258802056312561 img loss 1.2687301635742188 img loss 1.3178400993347168 img loss 1.3139240741729736 img loss 1.2472670078277588 img loss 1.3299940824508667 img loss 1.2940173149108887 img loss 1.2743699550628662 img loss 1.3363786935806274 img loss 1.2731571197509766 img loss 1.3850643634796143 img loss 1.2890199422836304 img loss 1.3633779287338257 img loss 1.3224161863327026 img loss 1.29024076461792 img loss 1.3445152044296265 img loss 1.2581223249435425 img loss 1.3688578605651855 img loss 1.4028950929641724 img loss 1.320623755455017 img loss 1.312878966331482 img loss 1.3393380641937256 img loss 1.328896403312683 img loss 1.3199602365493774 img loss 1.2291382551193237 img loss 1.2804588079452515 img loss 1.2903932332992554 img loss 1.2191661596298218 img loss 1.2710853815078735 img loss 1.2697113752365112 img loss 1.2831884622573853 img loss 1.4632116556167603 img loss 1.3504421710968018 img loss 1.2681673765182495 img loss 1.2902755737304688 img loss 1.4349600076675415 img loss 1.4392036199569702 img loss 1.2769639492034912 img loss 1.265374779701233 img loss 1.2041394710540771 img loss 1.346435308456421 img loss 1.2785773277282715 img loss 1.272927165031433 {'loss': 1.3045, 'grad_norm': 0.25090664625167847, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2557880878448486 img loss 1.2172002792358398 img loss 1.3083513975143433 img loss 1.2760285139083862 img loss 1.2338758707046509 img loss 1.244030475616455 img loss 1.2153730392456055 img loss 1.1985576152801514 img loss 1.3287380933761597 img loss 1.2987312078475952 img loss 1.1864240169525146 img loss 1.2948803901672363 img loss 1.3183934688568115 img loss 1.2246826887130737 img loss 1.275309443473816 img loss 1.2056481838226318 img loss 1.199334979057312 img loss 1.1904897689819336 img loss 1.352094292640686 img loss 1.2452751398086548 img loss 1.2089191675186157 img loss 1.2568914890289307 img loss 1.2416952848434448 img loss 1.328623652458191 img loss 1.2657358646392822 img loss 1.220953345298767 img loss 1.2636874914169312 img loss 1.3331722021102905 img loss 1.163966178894043 img loss 1.2644331455230713 img loss 1.2418103218078613 img loss 1.1929168701171875 img loss 1.2811412811279297 img loss 1.2249491214752197 img loss 1.2667734622955322 img loss 1.2829115390777588 img loss 1.2180355787277222 img loss 1.1944416761398315 img loss 1.3448926210403442 img loss 1.1888643503189087 img loss 1.145057201385498 img loss 1.208633303642273 img loss 1.2676948308944702 img loss 1.2431758642196655 img loss 1.2357470989227295 img loss 1.2078583240509033 img loss 1.219195008277893 img loss 1.242104172706604 img loss 1.2228310108184814 img loss 1.1709429025650024 img loss 1.2837810516357422 img loss 1.2806241512298584 img loss 1.1234045028686523 img loss 1.2091912031173706 img loss 1.2064446210861206 img loss 1.2587445974349976 img loss 1.2446335554122925 img loss 1.2121634483337402 img loss 1.2412173748016357 img loss 1.2342621088027954 img loss 1.2129276990890503 img loss 1.2435262203216553 img loss 1.1845349073410034 img loss 1.2621549367904663 img loss 1.2779639959335327 img loss 1.266241431236267 img loss 1.2198822498321533 img loss 1.211147665977478 img loss 1.2372058629989624 img loss 1.2845200300216675 img loss 1.2039158344268799 img loss 1.274973750114441 img loss 1.3971470594406128 img loss 1.2149819135665894 img loss 1.2570613622665405 img loss 1.2571228742599487 img loss 1.2058167457580566 img loss 1.2506816387176514 img loss 1.1751070022583008 img loss 1.2533435821533203 img loss 1.2800201177597046 img loss 1.2204184532165527 img loss 1.1988705396652222 img loss 1.2771611213684082 img loss 1.2281546592712402 img loss 1.3082494735717773 img loss 1.1923516988754272 img loss 1.1986579895019531 img loss 1.1983366012573242 img loss 1.2221077680587769 img loss 1.153983473777771 img loss 1.3053297996520996 img loss 1.2605243921279907 img loss 1.2439401149749756 img loss 1.1724153757095337 img loss 1.271051049232483 img loss 1.2714152336120605 img loss 1.2965047359466553 img loss 1.188714861869812 img loss 1.204402208328247 img loss 1.2124767303466797 img loss 1.3624180555343628 img loss 1.3350694179534912 img loss 1.2091587781906128 img loss 1.2042672634124756 img loss 1.2250391244888306 img loss 1.1953121423721313 img loss 1.2073054313659668 img loss 1.3343775272369385 img loss 1.3026307821273804 img loss 1.1556246280670166 img loss 1.2463796138763428 img loss 1.2122465372085571 img loss 1.3079807758331299 img loss 1.215592861175537 img loss 1.1823115348815918 img loss 1.292954683303833 img loss 1.260859727859497 img loss 1.1489465236663818 img loss 1.250718593597412 img loss 1.1324255466461182 img loss 1.2319560050964355 img loss 1.271348476409912 img loss 1.2122896909713745 img loss 1.202435851097107 img loss 1.154449224472046 img loss 1.2373689413070679 img loss 1.1613366603851318 {'loss': 1.2387, 'grad_norm': 0.29506000876426697, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4344052076339722 img loss 1.385071039199829 img loss 1.3676326274871826 img loss 1.4073644876480103 img loss 1.4089382886886597 img loss 1.3848598003387451 img loss 1.483426809310913 img loss 1.5017540454864502 img loss 1.4068293571472168 img loss 1.578993558883667 img loss 1.3824303150177002 img loss 1.3880490064620972 img loss 1.5486901998519897 img loss 1.4903842210769653 img loss 1.4076966047286987 img loss 1.5419995784759521 img loss 1.4065964221954346 img loss 1.4560037851333618 img loss 1.384732961654663 img loss 1.4302077293395996 img loss 1.3787540197372437 img loss 1.473365306854248 img loss 1.5200008153915405 img loss 1.4891003370285034 img loss 1.485232949256897 img loss 1.4350426197052002 img loss 1.4514189958572388 img loss 1.4206146001815796 img loss 1.4244331121444702 img loss 1.390144944190979 img loss 1.346922755241394 img loss 1.5997451543807983 img loss 1.4701590538024902 img loss 1.549803376197815 img loss 1.475879430770874 img loss 1.4811691045761108 img loss 1.4569956064224243 img loss 1.5406335592269897 img loss 1.3863283395767212 img loss 1.4235599040985107 img loss 1.3941171169281006 img loss 1.4730641841888428 img loss 1.3973228931427002 img loss 1.4494484663009644 img loss 1.4806667566299438 img loss 1.4132505655288696 img loss 1.4763801097869873 img loss 1.5352022647857666 img loss 1.4190274477005005 img loss 1.4436862468719482 img loss 1.4789963960647583 img loss 1.4650015830993652 img loss 1.363389492034912 img loss 1.2961269617080688 img loss 1.4212003946304321 img loss 1.5622326135635376 img loss 1.4846447706222534 img loss 1.3310527801513672 img loss 1.4123629331588745 img loss 1.4808491468429565 img loss 1.4890679121017456 img loss 1.4200011491775513 img loss 1.4786509275436401 img loss 1.410609483718872 img loss 1.450205683708191 img loss 1.4488457441329956 img loss 1.502510905265808 img loss 1.458174467086792 img loss 1.4103163480758667 img loss 1.38292396068573 img loss 1.453804850578308 img loss 1.5319591760635376 img loss 1.5104920864105225 img loss 1.4799696207046509 img loss 1.3430441617965698 img loss 1.3518002033233643 img loss 1.5194545984268188 img loss 1.434935212135315 img loss 1.5175821781158447 img loss 1.4435604810714722 img loss 1.4838939905166626 img loss 1.4734045267105103 img loss 1.5632221698760986 img loss 1.4979921579360962 img loss 1.4953333139419556 img loss 1.3620860576629639 img loss 1.4873778820037842 img loss 1.4766709804534912 img loss 1.4194172620773315 img loss 1.4913171529769897 img loss 1.6131139993667603 img loss 1.4966464042663574 img loss 1.4281039237976074 img loss 1.6835366487503052 img loss 1.5046449899673462 img loss 1.4245502948760986 img loss 1.3640186786651611 img loss 1.4231046438217163 img loss 1.3406797647476196 img loss 1.366567850112915 img loss 1.5953260660171509 img loss 1.4759567975997925 img loss 1.679223656654358 img loss 1.5793687105178833 img loss 1.5297846794128418 img loss 1.3875232934951782 img loss 1.4322142601013184 img loss 1.4246655702590942 img loss 1.4138405323028564 img loss 1.5044834613800049 img loss 1.3396480083465576 img loss 1.5175915956497192 img loss 1.5713016986846924 img loss 1.5733940601348877 img loss 1.5006436109542847 img loss 1.4768846035003662 img loss 1.4226995706558228 img loss 1.373106598854065 img loss 1.55514395236969 img loss 1.336107611656189 img loss 1.311072587966919 img loss 1.4085756540298462 img loss 1.292070746421814 img loss 1.3161028623580933 img loss 1.4186257123947144 img loss 1.593858003616333 img loss 1.51766836643219 img loss 1.5817514657974243 {'loss': 1.4557, 'grad_norm': 0.342299222946167, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2631962299346924 img loss 1.295876145362854 img loss 1.2509839534759521 img loss 1.2570090293884277 img loss 1.2331383228302002 img loss 1.2875494956970215 img loss 1.2821563482284546 img loss 1.1938937902450562 img loss 1.2529771327972412 img loss 1.234755516052246 img loss 1.2478312253952026 img loss 1.247653841972351 img loss 1.3405829668045044 img loss 1.2770817279815674 img loss 1.3113930225372314 img loss 1.251359224319458 img loss 1.283761739730835 img loss 1.2363719940185547 img loss 1.2057421207427979 img loss 1.2445390224456787 img loss 1.2329113483428955 img loss 1.2568717002868652 img loss 1.2880990505218506 img loss 1.3061366081237793 img loss 1.2512099742889404 img loss 1.2175817489624023 img loss 1.2112038135528564 img loss 1.2503602504730225 img loss 1.25758695602417 img loss 1.2459267377853394 img loss 1.1808212995529175 img loss 1.1916282176971436 img loss 1.144497275352478 img loss 1.182452917098999 img loss 1.3156437873840332 img loss 1.2083888053894043 img loss 1.2992222309112549 img loss 1.310595154762268 img loss 1.2237447500228882 img loss 1.1772434711456299 img loss 1.2563507556915283 img loss 1.2375390529632568img loss 1.3237957954406738 img loss 1.318000078201294 img loss 1.2131328582763672 img loss 1.2186713218688965 img loss 1.2782299518585205 img loss 1.3003177642822266 img loss 1.2459337711334229 img loss 1.240923285484314 img loss 1.3225888013839722 img loss 1.2616329193115234 img loss 1.2046291828155518 img loss 1.2537572383880615 img loss 1.3325622081756592 img loss 1.2256405353546143 img loss 1.270267367362976 img loss 1.2432422637939453 img loss 1.2532105445861816 img loss 1.259918451309204 img loss 1.235827922821045 img loss 1.2168421745300293 img loss 1.2338619232177734 img loss 1.2022422552108765 img loss 1.2449642419815063 img loss 1.1868022680282593 img loss 1.2239265441894531 img loss 1.2778408527374268 img loss 1.2934213876724243 img loss 1.2083020210266113 img loss 1.2643423080444336 img loss 1.1983928680419922 img loss 1.2401485443115234 img loss 1.231423020362854 img loss 1.2371132373809814 img loss 1.2669577598571777 img loss 1.3789128065109253 img loss 1.2605180740356445 img loss 1.200838327407837 img loss 1.2810304164886475 img loss 1.1788666248321533 img loss 1.2309802770614624 img loss 1.2915228605270386 img loss 1.2562496662139893 img loss 1.3259527683258057 img loss 1.231688141822815 img loss 1.2177388668060303 img loss 1.2743680477142334 img loss 1.2590643167495728 img loss 1.2664095163345337 img loss 1.3225338459014893 img loss 1.2282726764678955 img loss 1.2924113273620605 img loss 1.2227140665054321 img loss 1.2190369367599487 img loss 1.2506107091903687 img loss 1.2072104215621948 img loss 1.3129916191101074 img loss 1.2918908596038818 img loss 1.2539453506469727 img loss 1.249672293663025 img loss 1.236061930656433 img loss 1.2294574975967407 img loss 1.3086096048355103 img loss 1.3083643913269043 img loss 1.22538423538208 img loss 1.3019566535949707 img loss 1.2529349327087402 img loss 1.198500633239746 img loss 1.1395982503890991 img loss 1.2444312572479248 img loss 1.1938982009887695 img loss 1.1462732553482056 img loss 1.1827728748321533 img loss 1.2745890617370605 img loss 1.2385317087173462 img loss 1.2861078977584839 img loss 1.2654845714569092 img loss 1.2072328329086304 img loss 1.1980814933776855 img loss 1.2062416076660156 img loss 1.262654185295105 img loss 1.2222604751586914 img loss 1.3023651838302612 img loss 1.2319825887680054 img loss 1.2167797088623047 img loss 1.2563694715499878 img loss 1.3032082319259644 {'loss': 1.2494, 'grad_norm': 0.2903902530670166, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2425777912139893 img loss 1.153691291809082 img loss 1.1163171529769897 img loss 1.2588391304016113 img loss 1.1864867210388184 img loss 1.2322763204574585 img loss 1.1412094831466675 img loss 1.1537479162216187 img loss 1.2257106304168701 img loss 1.2687972784042358 img loss 1.168809175491333 img loss 1.2485806941986084 img loss 1.179327368736267 img loss 1.153909683227539 img loss 1.223997712135315 img loss 1.2155888080596924 img loss 1.2240263223648071 img loss 1.1668953895568848 img loss 1.205529808998108 img loss 1.1419947147369385 img loss 1.228324294090271 img loss 1.0824875831604004 img loss 1.1329327821731567 img loss 1.2411446571350098 img loss 1.1731919050216675 img loss 1.1130874156951904 img loss 1.1306209564208984 img loss 1.1512582302093506 img loss 1.2317289113998413 img loss 1.2097446918487549 img loss 1.1911067962646484 img loss 1.2124601602554321 img loss 1.1581920385360718 img loss 1.15633225440979 img loss 1.098598837852478 img loss 1.1515750885009766 img loss 1.1583573818206787 img loss 1.138020396232605 img loss 1.1434643268585205 img loss 1.2240394353866577 img loss 1.130410075187683 img loss 1.2385156154632568 img loss 1.2585349082946777 img loss 1.1828657388687134 img loss 1.2170860767364502 img loss 1.1444536447525024 img loss 1.1471421718597412 img loss 1.199105143547058 img loss 1.172641634941101 img loss 1.159747838973999 img loss 1.286853313446045 img loss 1.2440547943115234 img loss 1.247741460800171 img loss 1.1184756755828857 img loss 1.1049082279205322 img loss 1.084972620010376 img loss 1.2078520059585571 img loss 1.174605369567871 img loss 1.208076000213623 img loss 1.0326523780822754 img loss 1.130453109741211 img loss 1.2270243167877197 img loss 1.209466576576233 img loss 1.2544481754302979 img loss 1.1542551517486572 img loss 1.1725733280181885 img loss 1.0965547561645508 img loss 1.1641584634780884 img loss 1.1539961099624634 img loss 1.2168984413146973 img loss 1.16157865524292 img loss 1.2891629934310913 img loss 1.2376983165740967 img loss 1.0509839057922363 img loss 1.1787761449813843 img loss 1.2145609855651855 img loss 1.282562255859375 img loss 1.1951804161071777 img loss 1.2190803289413452 img loss 1.1828702688217163 img loss 1.2001111507415771 img loss 1.2026218175888062 img loss 1.2221122980117798 img loss 1.3033204078674316 img loss 1.1834837198257446 img loss 1.2051786184310913 img loss 1.2366344928741455 img loss 1.2089874744415283 img loss 1.2444428205490112 img loss 1.2522697448730469 img loss 1.1458280086517334 img loss 1.1307576894760132 img loss 1.1938613653182983 img loss 1.1752887964248657 img loss 1.1984527111053467 img loss 1.1395658254623413 img loss 1.1897215843200684 img loss 1.0957797765731812 img loss 1.1883339881896973 img loss 1.1918941736221313 img loss 1.1711902618408203 img loss 1.0793743133544922 img loss 1.2928290367126465 img loss 1.1345505714416504 img loss 1.1873139142990112 img loss 1.1629996299743652 img loss 1.1577062606811523 img loss 1.192911982536316 img loss 1.1741746664047241 img loss 1.1045773029327393 img loss 1.24899160861969 img loss 1.1972293853759766 img loss 1.2336654663085938 img loss 1.2859361171722412 img loss 1.1523656845092773 img loss 1.2862229347229004 img loss 1.1746101379394531 img loss 1.1576040983200073 img loss 1.2068217992782593 img loss 1.1431846618652344 img loss 1.0840719938278198 img loss 1.2208311557769775 img loss 1.109217643737793 img loss 1.1401344537734985 img loss 1.2249231338500977 img loss 1.2286392450332642 img loss 1.1343791484832764 img loss 1.23811936378479 {'loss': 1.1845, 'grad_norm': 0.30882731080055237, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4713482856750488 img loss 1.357328176498413 img loss 1.3698986768722534 img loss 1.4550782442092896 img loss 1.2406108379364014 img loss 1.3788114786148071 img loss 1.2623637914657593 img loss 1.4085490703582764 img loss 1.4664361476898193 img loss 1.4067609310150146 img loss 1.313284158706665 img loss 1.3868790864944458 img loss 1.279085397720337 img loss 1.398842453956604 img loss 1.34687077999115 img loss 1.3773390054702759 img loss 1.421923279762268 img loss 1.432965636253357 img loss 1.3340965509414673 img loss 1.402605652809143 img loss 1.2675201892852783 img loss 1.3174381256103516 img loss 1.3751235008239746 img loss 1.3386706113815308 img loss 1.4016129970550537 img loss 1.4087913036346436 img loss 1.4009069204330444 img loss 1.4720271825790405 img loss 1.445067048072815 img loss 1.451478362083435 img loss 1.4076550006866455 img loss 1.3510568141937256 img loss 1.362828016281128 img loss 1.5265356302261353 img loss 1.4642707109451294 img loss 1.2323167324066162 img loss 1.4430545568466187 img loss 1.3908792734146118 img loss 1.4630656242370605 img loss 1.4949530363082886 img loss 1.3872119188308716 img loss 1.3766602277755737 img loss 1.4209176301956177 img loss 1.3173025846481323 img loss 1.444537878036499 img loss 1.3488404750823975 img loss 1.2993286848068237 img loss 1.3271169662475586 img loss 1.3497754335403442 img loss 1.3409634828567505 img loss 1.5012476444244385 img loss 1.5098398923873901 img loss 1.5664985179901123 img loss 1.5268689393997192 img loss 1.4244649410247803 img loss 1.4044270515441895 img loss 1.5214650630950928 img loss 1.324872612953186 img loss 1.455440878868103 img loss 1.4524060487747192 img loss 1.269266128540039 img loss 1.5250487327575684 img loss 1.4825588464736938 img loss 1.3821213245391846 img loss 1.340937852859497 img loss 1.338835597038269 img loss 1.2933334112167358 img loss 1.4016636610031128 img loss 1.38357412815094 img loss 1.3344815969467163 img loss 1.3771568536758423 img loss 1.3727003335952759 img loss 1.4107739925384521 img loss 1.4674283266067505 img loss 1.408942461013794 img loss 1.424975037574768 img loss 1.444799542427063 img loss 1.3411186933517456 img loss 1.4131333827972412 img loss 1.4332154989242554 img loss 1.4190069437026978 img loss 1.430791974067688 img loss 1.3479998111724854 img loss 1.4311292171478271 img loss 1.3112905025482178 img loss 1.3902760744094849 img loss 1.3861147165298462 img loss 1.457349181175232 img loss 1.526039481163025 img loss 1.5389901399612427 img loss 1.3558262586593628 img loss 1.2994352579116821 img loss 1.43317449092865 img loss 1.406735897064209 img loss 1.4075876474380493 img loss 1.3488399982452393 img loss 1.6145625114440918 img loss 1.359568476676941 img loss 1.3934909105300903 img loss 1.307427167892456 img loss 1.4788566827774048 img loss 1.3745959997177124 img loss 1.3716038465499878 img loss 1.367380976676941 img loss 1.3880201578140259 img loss 1.370124101638794 img loss 1.3700867891311646 img loss 1.4148411750793457 img loss 1.421303629875183 img loss 1.4446982145309448 img loss 1.3152663707733154 img loss 1.3794796466827393 img loss 1.3193548917770386 img loss 1.4296395778656006 img loss 1.4249796867370605 img loss 1.3725119829177856 img loss 1.2957836389541626 img loss 1.3832876682281494 img loss 1.3524354696273804 img loss 1.410366177558899 img loss 1.3790462017059326 img loss 1.3497880697250366 img loss 1.2859121561050415 img loss 1.3785274028778076 img loss 1.324180245399475 img loss 1.4492697715759277 img loss 1.2997268438339233 img loss 1.4609087705612183 {'loss': 1.3941, 'grad_norm': 0.4376957416534424, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1353073120117188 img loss 1.2222380638122559 img loss 1.1426689624786377 img loss 1.130703330039978 img loss 1.186043381690979 img loss 1.1598495244979858 img loss 1.1400508880615234 img loss 1.1530251502990723 img loss 1.1994656324386597 img loss 1.2243099212646484 img loss 1.2593656778335571 img loss 1.1687147617340088 img loss 1.1948379278182983 img loss 1.139042615890503 img loss 1.2324929237365723 img loss 1.23679780960083 img loss 1.3060317039489746 img loss 1.1561484336853027 img loss 1.1936453580856323 img loss 1.1808725595474243 img loss 1.2560738325119019 img loss 1.2081326246261597 img loss 1.1685847043991089 img loss 1.1528947353363037 img loss 1.1746079921722412 img loss 1.1353154182434082 img loss 1.1775953769683838 img loss 1.1994866132736206 img loss 1.2206300497055054 img loss 1.1815108060836792 img loss 1.2572007179260254 img loss 1.192245364189148 img loss 1.192500114440918img loss 1.2499091625213623 img loss 1.2214100360870361 img loss 1.2681152820587158 img loss 1.1889045238494873 img loss 1.1728649139404297 img loss 1.1261703968048096 img loss 1.1684597730636597 img loss 1.2206939458847046img loss 1.2437328100204468 img loss 1.178443193435669 img loss 1.182487964630127 img loss 1.161419153213501 img loss 1.29106605052948 img loss 1.2277971506118774 img loss 1.1820793151855469 img loss 1.217182993888855 img loss 1.1059967279434204 img loss 1.1546388864517212 img loss 1.124084711074829 img loss 1.1272848844528198 img loss 1.1964209079742432 img loss 1.2128645181655884 img loss 1.0885251760482788 img loss 1.1648576259613037 img loss 1.160805583000183 img loss 1.2176899909973145 img loss 1.2051416635513306 img loss 1.311988115310669 img loss 1.2075202465057373 img loss 1.2801971435546875 img loss 1.18380606174469 img loss 1.1269034147262573 img loss 1.174829125404358 img loss 1.1402196884155273 img loss 1.2315728664398193 img loss 1.2190771102905273 img loss 1.2013707160949707 img loss 1.157278060913086 img loss 1.2105658054351807 img loss 1.2223528623580933 img loss 1.2240254878997803 img loss 1.2143149375915527 img loss 1.282259464263916 img loss 1.2780485153198242 img loss 1.2156977653503418 img loss 1.1461657285690308 img loss 1.1909149885177612 img loss 1.2855290174484253 img loss 1.1279302835464478 img loss 1.238141417503357 img loss 1.1561769247055054 img loss 1.232409119606018 img loss 1.1802738904953003 img loss 1.16197669506073 img loss 1.1611298322677612 img loss 1.249477744102478 img loss 1.1802313327789307 img loss 1.1611865758895874 img loss 1.1252952814102173 img loss 1.2230658531188965 img loss 1.2171558141708374 img loss 1.1819767951965332 img loss 1.257250428199768 img loss 1.1957367658615112 img loss 1.18756103515625 img loss 1.156893253326416 img loss 1.2076632976531982 img loss 1.226117730140686 img loss 1.1993882656097412 img loss 1.1704572439193726 img loss 1.1716336011886597 img loss 1.175119400024414 img loss 1.1585114002227783 img loss 1.1933659315109253 img loss 1.2208400964736938 img loss 1.2980403900146484 img loss 1.1698511838912964 img loss 1.3011163473129272 img loss 1.2118895053863525 img loss 1.183505654335022 img loss 1.1600735187530518 img loss 1.1626033782958984 img loss 1.1790339946746826 img loss 1.1090588569641113 img loss 1.1964643001556396 img loss 1.207595705986023 img loss 1.2112947702407837 img loss 1.255069375038147 img loss 1.1714932918548584 img loss 1.225632667541504 img loss 1.1609396934509277 img loss 1.12223482131958 img loss 1.2106373310089111 img loss 1.1161837577819824 img loss 1.1860300302505493 {'loss': 1.1937, 'grad_norm': 0.40022459626197815, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2293907403945923 img loss 1.3814661502838135 img loss 1.1864511966705322 img loss 1.238326072692871 img loss 1.2709225416183472 img loss 1.205277919769287 img loss 1.2839434146881104 img loss 1.2283320426940918 img loss 1.1981171369552612 img loss 1.221975564956665 img loss 1.1824417114257812 img loss 1.2339094877243042 img loss 1.1461023092269897 img loss 1.2559192180633545 img loss 1.2396247386932373 img loss 1.3050466775894165 img loss 1.264017939567566 img loss 1.1957794427871704 img loss 1.2584378719329834 img loss 1.2221558094024658 img loss 1.1773312091827393 img loss 1.1879793405532837 img loss 1.2223916053771973 img loss 1.2244724035263062 img loss 1.2426189184188843 img loss 1.2470240592956543 img loss 1.2529665231704712 img loss 1.2017974853515625 img loss 1.2507569789886475 img loss 1.2178798913955688 img loss 1.2434699535369873 img loss 1.2330784797668457 img loss 1.2872222661972046 img loss 1.225358009338379 img loss 1.2503447532653809 img loss 1.1782686710357666 img loss 1.3301721811294556 img loss 1.280963659286499 img loss 1.2076740264892578 img loss 1.2061699628829956 img loss 1.2219561338424683 img loss 1.2055726051330566 img loss 1.298896074295044 img loss 1.1776258945465088 img loss 1.2143774032592773 img loss 1.22781240940094 img loss 1.2385666370391846 img loss 1.2067497968673706 img loss 1.176262378692627 img loss 1.2070049047470093 img loss 1.22331702709198 img loss 1.2500675916671753 img loss 1.216694712638855 img loss 1.2122490406036377 img loss 1.188108205795288 img loss 1.29244863986969 img loss 1.2340469360351562 img loss 1.2758479118347168 img loss 1.2287744283676147 img loss 1.179451823234558 img loss 1.1689836978912354 img loss 1.2133903503417969 img loss 1.2308889627456665 img loss 1.2608579397201538 img loss 1.186750888824463 img loss 1.2842533588409424 img loss 1.2863348722457886 img loss 1.2373167276382446 img loss 1.2031819820404053 img loss 1.286863088607788 img loss 1.3693302869796753 img loss 1.3468010425567627 img loss 1.1706451177597046 img loss 1.236707329750061 img loss 1.209517240524292 img loss 1.1994892358779907 img loss 1.1475672721862793 img loss 1.2304017543792725 img loss 1.2237404584884644 img loss 1.28091561794281 img loss 1.3364096879959106 img loss 1.2076400518417358 img loss 1.20285964012146 img loss 1.1330960988998413 img loss 1.3030096292495728 img loss 1.2257745265960693 img loss 1.2144124507904053 img loss 1.181049108505249 img loss 1.2023695707321167 img loss 1.2013548612594604 img loss 1.2250889539718628 img loss 1.2462925910949707 img loss 1.2395555973052979 img loss 1.2837132215499878 img loss 1.2560296058654785 img loss 1.1862818002700806 img loss 1.2037885189056396 img loss 1.228337049484253 img loss 1.2794522047042847 img loss 1.1997299194335938 img loss 1.2067503929138184 img loss 1.2338072061538696 img loss 1.158151626586914 img loss 1.1712207794189453 img loss 1.1587949991226196 img loss 1.1933574676513672 img loss 1.1877102851867676 img loss 1.1651198863983154 img loss 1.264129877090454 img loss 1.2696176767349243 img loss 1.2618197202682495 img loss 1.2581394910812378 img loss 1.2227084636688232 img loss 1.2032800912857056 img loss 1.2713136672973633 img loss 1.2481625080108643 img loss 1.2661209106445312 img loss 1.290549635887146 img loss 1.2619863748550415 img loss 1.2246911525726318 img loss 1.1925480365753174 img loss 1.2470667362213135 img loss 1.2663984298706055 img loss 1.206220269203186 img loss 1.258126139640808 img loss 1.2226701974868774 img loss 1.2633614540100098 img loss 1.228726863861084 {'loss': 1.2314, 'grad_norm': 0.24343645572662354, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.490339994430542 img loss 1.5041085481643677 img loss 1.4462002515792847 img loss 1.5091477632522583 img loss 1.4976248741149902 img loss 1.4925752878189087 img loss 1.5114986896514893 img loss 1.446304440498352 img loss 1.4818319082260132 img loss 1.4354603290557861 img loss 1.3809866905212402 img loss 1.5370609760284424 img loss 1.3966176509857178 img loss 1.3304771184921265 img loss 1.4667977094650269 img loss 1.4514763355255127 img loss 1.4239777326583862 img loss 1.4349976778030396 img loss 1.4754825830459595 img loss 1.3648545742034912 img loss 1.370521068572998 img loss 1.496532917022705 img loss 1.4172704219818115 img loss 1.424426555633545 img loss 1.4610828161239624 img loss 1.5381416082382202 img loss 1.4497898817062378 img loss 1.5782572031021118 img loss 1.4864777326583862 img loss 1.4674497842788696 img loss 1.48960280418396 img loss 1.4370259046554565 img loss 1.6483721733093262 img loss 1.6049870252609253 img loss 1.4742016792297363 img loss 1.4137924909591675 img loss 1.423663854598999 img loss 1.5457208156585693 img loss 1.457463026046753 img loss 1.4054890871047974 img loss 1.395648717880249 img loss 1.5584824085235596 img loss 1.4113675355911255 img loss 1.5964516401290894 img loss 1.3451523780822754 img loss 1.5701414346694946 img loss 1.554616093635559 img loss 1.470562219619751 img loss 1.592666745185852 img loss 1.4838987588882446 img loss 1.4232734441757202 img loss 1.505094051361084 img loss 1.4547502994537354 img loss 1.3541274070739746 img loss 1.375029444694519 img loss 1.4056446552276611 img loss 1.349637746810913 img loss 1.5304896831512451 img loss 1.4692628383636475 img loss 1.40418541431427 img loss 1.4122421741485596 img loss 1.5119774341583252 img loss 1.4615997076034546 img loss 1.5401132106781006 img loss 1.4610111713409424 img loss 1.3498244285583496 img loss 1.3588292598724365 img loss 1.5615936517715454 img loss 1.4948986768722534 img loss 1.4768747091293335 img loss 1.4794865846633911 img loss 1.4532506465911865 img loss 1.3223732709884644 img loss 1.462451457977295 img loss 1.5101841688156128 img loss 1.4428445100784302 img loss 1.5457442998886108 img loss 1.4981913566589355 img loss 1.3946422338485718 img loss 1.4140247106552124 img loss 1.5363985300064087 img loss 1.4680278301239014 img loss 1.4856632947921753 img loss 1.5208525657653809 img loss 1.5832340717315674 img loss 1.4475324153900146 img loss 1.362094521522522 img loss 1.3943945169448853 img loss 1.3899050951004028 img loss 1.382213830947876 img loss 1.4102669954299927 img loss 1.5961781740188599 img loss 1.482430338859558 img loss 1.297105312347412 img loss 1.593859076499939 img loss 1.444646954536438 img loss 1.4400495290756226 img loss 1.4239375591278076 img loss 1.3844894170761108 img loss 1.4847058057785034 img loss 1.5199567079544067 img loss 1.5282102823257446 img loss 1.518847942352295 img loss 1.3953242301940918 img loss 1.497200846672058 img loss 1.3648160696029663 img loss 1.570728063583374 img loss 1.46796452999115 img loss 1.4003132581710815 img loss 1.310777187347412 img loss 1.4336011409759521 img loss 1.3687260150909424 img loss 1.4929755926132202 img loss 1.4777576923370361 img loss 1.3978807926177979 img loss 1.3816853761672974 img loss 1.4444222450256348 img loss 1.458510160446167 img loss 1.4281742572784424 img loss 1.5446611642837524 img loss 1.6469992399215698 img loss 1.3760809898376465 img loss 1.2954448461532593 img loss 1.373919129371643 img loss 1.4182363748550415 img loss 1.4862102270126343 img loss 1.4783117771148682 img loss 1.6151677370071411 {'loss': 1.4601, 'grad_norm': 0.5705522298812866, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.147451400756836 img loss 1.205467700958252 img loss 1.230102777481079 img loss 1.2154213190078735 img loss 1.2734181880950928 img loss 1.1596035957336426 img loss 1.2124890089035034 img loss 1.1957448720932007 img loss 1.172146201133728 img loss 1.1815507411956787 img loss 1.17165207862854 img loss 1.2202050685882568 img loss 1.1643956899642944 img loss 1.148040771484375 img loss 1.109804630279541 img loss 1.1398191452026367 img loss 1.258458137512207 img loss 1.1983351707458496 img loss 1.1852613687515259 img loss 1.1854956150054932 img loss 1.2439497709274292 img loss 1.158140778541565 img loss 1.2003830671310425 img loss 1.2024242877960205 img loss 1.1560227870941162 img loss 1.2322009801864624 img loss 1.2019245624542236 img loss 1.1923149824142456 img loss 1.2450180053710938 img loss 1.118180751800537 img loss 1.1900711059570312 img loss 1.173452377319336 img loss 1.1435779333114624 img loss 1.1804358959197998 img loss 1.1412992477416992 img loss 1.188367486000061 img loss 1.2104198932647705 img loss 1.1927934885025024 img loss 1.211097002029419 img loss 1.192595362663269 img loss 1.111358642578125 img loss 1.2934224605560303 img loss 1.2245100736618042 img loss 1.1712464094161987 img loss 1.2070419788360596 img loss 1.1675775051116943 img loss 1.1685192584991455 img loss 1.2709206342697144 img loss 1.252617359161377 img loss 1.1427949666976929 img loss 1.2191027402877808 img loss 1.1678948402404785 img loss 1.1716129779815674 img loss 1.2043068408966064 img loss 1.2161483764648438 img loss 1.2112312316894531 img loss 1.1983108520507812 img loss 1.1794207096099854 img loss 1.1364588737487793 img loss 1.2096420526504517 img loss 1.297723650932312 img loss 1.122852087020874 img loss 1.2145640850067139 img loss 1.143074631690979 img loss 1.247240424156189 img loss 1.1891945600509644 img loss 1.1358606815338135 img loss 1.186826229095459 img loss 1.2145143747329712 img loss 1.311977744102478 img loss 1.2771307229995728 img loss 1.1602915525436401 img loss 1.1950603723526 img loss 1.2366113662719727 img loss 1.1688170433044434 img loss 1.2360284328460693 img loss 1.1579716205596924 img loss 1.1940855979919434 img loss 1.208106279373169 img loss 1.2065465450286865 img loss 1.2340912818908691 img loss 1.1777780055999756 img loss 1.145586609840393 img loss 1.159899115562439 img loss 1.1897815465927124 img loss 1.1755845546722412 img loss 1.2334704399108887 img loss 1.1848863363265991 img loss 1.2390868663787842 img loss 1.2261589765548706 img loss 1.2324187755584717 img loss 1.1858808994293213 img loss 1.1739304065704346 img loss 1.2444714307785034 img loss 1.1452358961105347 img loss 1.234168291091919 img loss 1.1507048606872559 img loss 1.0842586755752563 img loss 1.2838586568832397 img loss 1.1660544872283936 img loss 1.1750366687774658 img loss 1.143669605255127 img loss 1.2522894144058228 img loss 1.2466390132904053 img loss 1.1727491617202759 img loss 1.1414234638214111 img loss 1.196382999420166 img loss 1.2345833778381348 img loss 1.2299761772155762 img loss 1.2137529850006104 img loss 1.1299675703048706 img loss 1.1676933765411377 img loss 1.1285475492477417 img loss 1.2227816581726074 img loss 1.2382733821868896 img loss 1.1257513761520386 img loss 1.2668240070343018 img loss 1.2166156768798828 img loss 1.187774896621704 img loss 1.1707658767700195 img loss 1.2117680311203003 img loss 1.1372489929199219 img loss 1.173964262008667 img loss 1.1901576519012451 img loss 1.2134711742401123 img loss 1.0913102626800537 img loss 1.195508599281311 img loss 1.2781333923339844 {'loss': 1.1937, 'grad_norm': 0.3372096121311188, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4813824892044067 img loss 1.462862253189087 img loss 1.4216148853302002 img loss 1.5181984901428223 img loss 1.4986976385116577 img loss 1.467826247215271 img loss 1.5422829389572144 img loss 1.4762474298477173 img loss 1.4578386545181274 img loss 1.4214346408843994 img loss 1.597522497177124 img loss 1.495702862739563 img loss 1.4228284358978271 img loss 1.54404616355896 img loss 1.4482179880142212 img loss 1.541061520576477 img loss 1.524754285812378 img loss 1.4602220058441162 img loss 1.57781183719635 img loss 1.4218754768371582 img loss 1.512836217880249 img loss 1.4483158588409424 img loss 1.6453455686569214 img loss 1.428109049797058 img loss 1.3964495658874512 img loss 1.559099555015564 img loss 1.6050597429275513 img loss 1.3252077102661133 img loss 1.4233046770095825 img loss 1.5553104877471924 img loss 1.573922038078308 img loss 1.6225537061691284 img loss 1.5348031520843506 img loss 1.5005782842636108 img loss 1.512245774269104 img loss 1.4670846462249756 img loss 1.5342210531234741 img loss 1.4013497829437256 img loss 1.4297271966934204 img loss 1.4816006422042847 img loss 1.4935805797576904 img loss 1.4264529943466187 img loss 1.4026480913162231 img loss 1.491723656654358 img loss 1.390826940536499 img loss 1.4932156801223755 img loss 1.478884220123291 img loss 1.5216386318206787 img loss 1.453163743019104 img loss 1.5593324899673462 img loss 1.5849528312683105 img loss 1.5305882692337036 img loss 1.557256817817688 img loss 1.587726354598999 img loss 1.6668391227722168 img loss 1.4176949262619019 img loss 1.4992024898529053 img loss 1.564963459968567 img loss 1.5190587043762207 img loss 1.4211323261260986 img loss 1.3420206308364868 img loss 1.4418864250183105 img loss 1.5461102724075317 img loss 1.5062509775161743 img loss 1.6953847408294678 img loss 1.3672683238983154 img loss 1.4672715663909912 img loss 1.4978750944137573 img loss 1.4388717412948608 img loss 1.5944098234176636 img loss 1.3777700662612915 img loss 1.4562000036239624 img loss 1.5608803033828735 img loss 1.464586853981018 img loss 1.5414828062057495 img loss 1.468786597251892 img loss 1.5002347230911255 img loss 1.4884378910064697 img loss 1.5144141912460327 img loss 1.5967808961868286 img loss 1.5052224397659302 img loss 1.4011589288711548 img loss 1.5354007482528687 img loss 1.6180579662322998 img loss 1.458217740058899 img loss 1.5377637147903442 img loss 1.4946001768112183 img loss 1.4091860055923462 img loss 1.5361791849136353 img loss 1.4742454290390015 img loss 1.3618301153182983 img loss 1.4201115369796753 img loss 1.4789092540740967 img loss 1.4849125146865845 img loss 1.5345579385757446 img loss 1.4255576133728027 img loss 1.4640547037124634 img loss 1.4242156744003296 img loss 1.523041844367981 img loss 1.5066686868667603 img loss 1.4770311117172241 img loss 1.4143186807632446 img loss 1.4306309223175049 img loss 1.466281771659851 img loss 1.4561781883239746 img loss 1.4332009553909302 img loss 1.4473780393600464 img loss 1.442036747932434 img loss 1.4948804378509521 img loss 1.6783262491226196 img loss 1.5067660808563232 img loss 1.4231072664260864 img loss 1.605242371559143 img loss 1.3494597673416138 img loss 1.4905709028244019 img loss 1.4902924299240112 img loss 1.576418399810791 img loss 1.45018470287323 img loss 1.4964176416397095 img loss 1.4824917316436768 img loss 1.5252453088760376 img loss 1.4918882846832275 img loss 1.5206503868103027 img loss 1.5179227590560913 img loss 1.4637349843978882 img loss 1.4533250331878662 img loss 1.4829745292663574 img loss 1.4984943866729736 {'loss': 1.4908, 'grad_norm': 0.40164923667907715, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.686277151107788 img loss 1.648890733718872 img loss 1.6966454982757568 img loss 1.5666669607162476 img loss 1.6425188779830933 img loss 1.5518420934677124 img loss 1.6942312717437744 img loss 1.7323479652404785 img loss 1.6672505140304565 img loss 1.7292834520339966 img loss 1.6839896440505981 img loss 1.6151454448699951 img loss 1.4960941076278687 img loss 1.6237300634384155 img loss 1.459986925125122 img loss 1.8100926876068115 img loss 1.8036246299743652 img loss 1.6631200313568115 img loss 1.647196650505066 img loss 1.7173246145248413 img loss 1.6183009147644043 img loss 1.5867562294006348 img loss 1.5307271480560303 img loss 1.7077747583389282 img loss 1.6119614839553833 img loss 1.6468098163604736 img loss 1.5486286878585815 img loss 1.5730692148208618 img loss 1.6263073682785034 img loss 1.8310872316360474 img loss 1.6481568813323975 img loss 1.7363183498382568 img loss 1.6342259645462036 img loss 1.600837230682373 img loss 1.5398775339126587 img loss 1.561966061592102 img loss 1.530031442642212 img loss 1.714237928390503 img loss 1.6942484378814697 img loss 1.5979368686676025 img loss 1.3336073160171509 img loss 1.6309515237808228 img loss 1.674807071685791 img loss 1.552276372909546 img loss 1.606308102607727 img loss 1.5301814079284668 img loss 1.6567168235778809 img loss 1.6767785549163818 img loss 1.703886866569519 img loss 1.61832594871521 img loss 1.506282091140747 img loss 1.647188663482666 img loss 1.784268856048584 img loss 1.7208995819091797 img loss 1.7164846658706665 img loss 1.7464243173599243 img loss 1.647436261177063 img loss 1.4228510856628418 img loss 1.653351068496704 img loss 1.6984542608261108 img loss 1.6735682487487793 img loss 1.6236040592193604 img loss 1.5713725090026855 img loss 1.5863938331604004 img loss 1.5690799951553345 img loss 1.612321138381958 img loss 1.530650019645691 img loss 1.4723533391952515 img loss 1.703026533126831 img loss 1.5335830450057983 img loss 1.5401500463485718 img loss 1.6087507009506226 img loss 1.7069919109344482 img loss 1.5388602018356323 img loss 1.5071743726730347 img loss 1.8395917415618896 img loss 1.6734572649002075 img loss 1.5027954578399658 img loss 1.7098504304885864 img loss 1.5258396863937378 img loss 1.6481740474700928 img loss 1.8452579975128174 img loss 1.6518776416778564 img loss 1.7829928398132324 img loss 1.6675766706466675 img loss 1.6136510372161865 img loss 1.5979257822036743 img loss 1.5355620384216309 img loss 1.481355905532837 img loss 1.6666723489761353 img loss 1.6446782350540161 img loss 1.656432867050171 img loss 1.762709140777588 img loss 1.6969319581985474 img loss 1.5586851835250854 img loss 1.5137711763381958 img loss 1.8537302017211914 img loss 1.7348599433898926 img loss 1.7271173000335693 img loss 1.5503294467926025 img loss 1.5236618518829346 img loss 1.5763366222381592 img loss 1.586849570274353 img loss 1.6077017784118652 img loss 1.697454810142517 img loss 1.7420971393585205 img loss 1.6841055154800415 img loss 1.5762895345687866 img loss 1.6172940731048584 img loss 1.7221390008926392 img loss 1.7656338214874268 img loss 1.5890032052993774 img loss 1.6618372201919556 img loss 1.531693696975708 img loss 1.7000774145126343 img loss 1.6387696266174316 img loss 1.5302354097366333 img loss 1.5661828517913818 img loss 1.7082651853561401 img loss 1.6898785829544067 img loss 1.6573036909103394 img loss 1.4799202680587769 img loss 1.5462394952774048 img loss 1.663103461265564 img loss 1.4704464673995972 img loss 1.6564451456069946 img loss 1.5606461763381958 img loss 1.534746766090393 {'loss': 1.6305, 'grad_norm': 0.3493290841579437, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2062143087387085 img loss 1.2622363567352295 img loss 1.2254419326782227 img loss 1.28815495967865 img loss 1.285936713218689 img loss 1.2510039806365967 img loss 1.3045949935913086 img loss 1.1984366178512573 img loss 1.205148458480835 img loss 1.2836439609527588 img loss 1.1609339714050293 img loss 1.1955572366714478 img loss 1.2420289516448975 img loss 1.243455410003662 img loss 1.2138792276382446 img loss 1.2877731323242188 img loss 1.2811931371688843 img loss 1.1530673503875732 img loss 1.2156208753585815 img loss 1.2223351001739502 img loss 1.198280930519104 img loss 1.19908607006073 img loss 1.2374900579452515 img loss 1.2191026210784912 img loss 1.1971138715744019 img loss 1.2123892307281494 img loss 1.3410953283309937 img loss 1.2579853534698486 img loss 1.3427280187606812 img loss 1.2726467847824097 img loss 1.1648164987564087 img loss 1.205527663230896 img loss 1.1707077026367188 img loss 1.3090524673461914 img loss 1.2091642618179321 img loss 1.2902415990829468 img loss 1.2343486547470093 img loss 1.3479353189468384 img loss 1.2199790477752686 img loss 1.2063078880310059 img loss 1.2803009748458862 img loss 1.1658369302749634 img loss 1.2442810535430908 img loss 1.2234549522399902 img loss 1.299886703491211 img loss 1.1813368797302246 img loss 1.2739065885543823 img loss 1.3143486976623535 img loss 1.2257860898971558 img loss 1.249091625213623 img loss 1.2033381462097168 img loss 1.2161527872085571 img loss 1.239511489868164 img loss 1.2444474697113037 img loss 1.2047449350357056 img loss 1.2110021114349365 img loss 1.2629038095474243 img loss 1.1655677556991577 img loss 1.1806548833847046 img loss 1.2180588245391846 img loss 1.1885766983032227 img loss 1.138319969177246 img loss 1.1754125356674194 img loss 1.1931082010269165 img loss 1.362634301185608 img loss 1.1751025915145874 img loss 1.2193162441253662 img loss 1.2365845441818237 img loss 1.0947048664093018 img loss 1.248729944229126 img loss 1.3255913257598877 img loss 1.302638053894043 img loss 1.3141752481460571 img loss 1.1820850372314453 img loss 1.2267063856124878 img loss 1.3066307306289673 img loss 1.2408255338668823 img loss 1.1762216091156006 img loss 1.3262430429458618 img loss 1.267856478691101 img loss 1.2784974575042725 img loss 1.2867677211761475 img loss 1.1619009971618652 img loss 1.2077856063842773 img loss 1.1636683940887451 img loss 1.2349590063095093 img loss 1.2506893873214722 img loss 1.24264657497406 img loss 1.2035106420516968 img loss 1.2502727508544922 img loss 1.111116886138916 img loss 1.201560378074646 img loss 1.2232441902160645 img loss 1.2041363716125488 img loss 1.2754907608032227 img loss 1.2406141757965088 img loss 1.21340811252594 img loss 1.2389891147613525 img loss 1.2475614547729492 img loss 1.2054786682128906 img loss 1.1657140254974365 img loss 1.325844407081604 img loss 1.3066673278808594 img loss 1.2428964376449585 img loss 1.2618950605392456 img loss 1.2379688024520874 img loss 1.1363261938095093 img loss 1.2527121305465698 img loss 1.2389540672302246 img loss 1.2419743537902832 img loss 1.138203501701355 img loss 1.1745622158050537 img loss 1.1286182403564453 img loss 1.1703249216079712 img loss 1.2352790832519531 img loss 1.2500537633895874 img loss 1.2840309143066406 img loss 1.16567063331604 img loss 1.1614084243774414 img loss 1.242568850517273 img loss 1.2486705780029297 img loss 1.1964225769042969 img loss 1.3116897344589233 img loss 1.2619425058364868 img loss 1.1891016960144043 img loss 1.1261816024780273 img loss 1.2644093036651611 img loss 1.257016897201538 {'loss': 1.2307, 'grad_norm': 0.359094500541687, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3243920803070068 img loss 1.368371605873108 img loss 1.3840564489364624 img loss 1.404705286026001 img loss 1.3467999696731567 img loss 1.370938777923584 img loss 1.3900361061096191 img loss 1.444250226020813 img loss 1.5572761297225952 img loss 1.4209542274475098 img loss 1.3979008197784424 img loss 1.573089361190796 img loss 1.412476897239685 img loss 1.481590747833252 img loss 1.4035991430282593 img loss 1.5884969234466553 img loss 1.430719256401062 img loss 1.394875168800354 img loss 1.4494673013687134 img loss 1.4265990257263184 img loss 1.5446745157241821 img loss 1.3358157873153687 img loss 1.3557696342468262 img loss 1.361737847328186 img loss 1.3773590326309204 img loss 1.5443421602249146 img loss 1.4798805713653564 img loss 1.4665420055389404 img loss 1.4253610372543335 img loss 1.4974347352981567 img loss 1.391790509223938 img loss 1.477666974067688 img loss 1.3644039630889893 img loss 1.4695581197738647 img loss 1.4339672327041626 img loss 1.445676326751709 img loss 1.3316154479980469 img loss 1.52724289894104 img loss 1.524828314781189 img loss 1.5236765146255493 img loss 1.4941946268081665 img loss 1.5477045774459839 img loss 1.5307488441467285 img loss 1.5172159671783447 img loss 1.4802603721618652 img loss 1.418053388595581 img loss 1.4073644876480103 img loss 1.4512178897857666 img loss 1.4172202348709106 img loss 1.4967466592788696 img loss 1.4254971742630005 img loss 1.367438793182373 img loss 1.4376336336135864 img loss 1.360154628753662 img loss 1.4234029054641724 img loss 1.3786534070968628 img loss 1.5200228691101074 img loss 1.373447060585022 img loss 1.4202431440353394 img loss 1.3775886297225952 img loss 1.3412593603134155 img loss 1.3758400678634644 img loss 1.420091986656189 img loss 1.4294228553771973 img loss 1.3918646574020386 img loss 1.46451735496521 img loss 1.423380732536316 img loss 1.5177985429763794 img loss 1.457392930984497 img loss 1.4156410694122314 img loss 1.431890845298767 img loss 1.3850196599960327 img loss 1.3944947719573975 img loss 1.4471224546432495 img loss 1.3840625286102295 img loss 1.5144317150115967 img loss 1.5341683626174927 img loss 1.4562264680862427 img loss 1.29951810836792 img loss 1.428266167640686 img loss 1.3046491146087646 img loss 1.4051419496536255 img loss 1.4728091955184937 img loss 1.4570826292037964 img loss 1.460120439529419 img loss 1.4187123775482178 img loss 1.4772568941116333 img loss 1.4036692380905151 img loss 1.3535666465759277 img loss 1.364569067955017 img loss 1.3100831508636475 img loss 1.460223913192749 img loss 1.502496361732483 img loss 1.4263015985488892 img loss 1.4341639280319214 img loss 1.5167754888534546 img loss 1.4082884788513184 img loss 1.3539097309112549 img loss 1.440112590789795 img loss 1.3935385942459106 img loss 1.49107825756073 img loss 1.478027582168579 img loss 1.4491238594055176 img loss 1.6333788633346558 img loss 1.3753173351287842 img loss 1.3989275693893433 img loss 1.2761437892913818 img loss 1.444476842880249 img loss 1.3915714025497437img loss 1.6179120540618896 img loss 1.3490281105041504 img loss 1.367248296737671 img loss 1.317368745803833 img loss 1.4177602529525757 img loss 1.3598581552505493 img loss 1.4143368005752563 img loss 1.4345192909240723 img loss 1.3872231245040894 img loss 1.3358806371688843 img loss 1.4821311235427856 img loss 1.308068037033081 img loss 1.3158714771270752 img loss 1.415687084197998 img loss 1.4246832132339478 img loss 1.46817147731781 img loss 1.45596182346344 img loss 1.3978607654571533 img loss 1.3593480587005615 {'loss': 1.4276, 'grad_norm': 0.29473230242729187, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2996629476547241 img loss 1.4029908180236816 img loss 1.2892950773239136 img loss 1.2032966613769531 img loss 1.1651890277862549 img loss 1.3429852724075317 img loss 1.2580779790878296 img loss 1.2353074550628662 img loss 1.3094326257705688 img loss 1.2225358486175537 img loss 1.2853710651397705 img loss 1.3094511032104492 img loss 1.3070123195648193 img loss 1.3150523900985718 img loss 1.2871761322021484 img loss 1.3234572410583496 img loss 1.3162956237792969 img loss 1.2735906839370728 img loss 1.1639407873153687 img loss 1.227135419845581 img loss 1.2543861865997314 img loss 1.2575275897979736 img loss 1.2697277069091797 img loss 1.265462875366211 img loss 1.2226159572601318 img loss 1.2576979398727417 img loss 1.3024605512619019 img loss 1.232398509979248 img loss 1.2855303287506104 img loss 1.26790189743042 img loss 1.2734867334365845 img loss 1.3432732820510864 img loss 1.2327055931091309 img loss 1.2442196607589722 img loss 1.2433905601501465 img loss 1.319681167602539 img loss 1.2143577337265015 img loss 1.2116667032241821 img loss 1.2521997690200806 img loss 1.1809183359146118 img loss 1.268485426902771 img loss 1.385250210762024 img loss 1.2705461978912354 img loss 1.2109010219573975 img loss 1.2803757190704346 img loss 1.2985172271728516 img loss 1.2462908029556274 img loss 1.1892216205596924 img loss 1.2867549657821655 img loss 1.183438777923584 img loss 1.2652536630630493 img loss 1.2803369760513306 img loss 1.1774049997329712 img loss 1.308255672454834 img loss 1.2754753828048706 img loss 1.2308545112609863 img loss 1.3014439344406128 img loss 1.291613221168518 img loss 1.2897241115570068 img loss 1.3242602348327637 img loss 1.2915937900543213 img loss 1.2301746606826782 img loss 1.2004280090332031 img loss 1.2606722116470337 img loss 1.300005316734314 img loss 1.2161072492599487 img loss 1.2550690174102783 img loss 1.305372953414917 img loss 1.260425329208374 img loss 1.3759676218032837 img loss 1.2012351751327515 img loss 1.2678945064544678 img loss 1.326366901397705 img loss 1.318009614944458 img loss 1.2029273509979248 img loss 1.3036848306655884 img loss 1.2399425506591797 img loss 1.23225998878479 img loss 1.309008240699768 img loss 1.2109826803207397 img loss 1.3053325414657593 img loss 1.2066562175750732 img loss 1.253125786781311 img loss 1.2285276651382446 img loss 1.2982814311981201 img loss 1.2511109113693237 img loss 1.2756046056747437 img loss 1.2013559341430664 img loss 1.2586932182312012 img loss 1.2484254837036133 img loss 1.2862690687179565 img loss 1.2513455152511597 img loss 1.1823937892913818 img loss 1.2175706624984741 img loss 1.253495454788208 img loss 1.2752156257629395 img loss 1.2923630475997925 img loss 1.2223252058029175 img loss 1.298621654510498 img loss 1.2582825422286987 img loss 1.1981313228607178 img loss 1.266985297203064 img loss 1.249254584312439 img loss 1.226294994354248 img loss 1.234748125076294 img loss 1.2898671627044678 img loss 1.346787929534912 img loss 1.2643532752990723 img loss 1.2714887857437134 img loss 1.3665812015533447 img loss 1.21242094039917 img loss 1.2865493297576904 img loss 1.2505810260772705 img loss 1.2352575063705444 img loss 1.2700246572494507 img loss 1.1806339025497437 img loss 1.2367627620697021 img loss 1.334075689315796 img loss 1.2789812088012695 img loss 1.3474682569503784 img loss 1.2195627689361572 img loss 1.189675211906433 img loss 1.214335322380066 img loss 1.3461453914642334 img loss 1.2831729650497437 img loss 1.2711304426193237 img loss 1.3141369819641113 img loss 1.2318933010101318 {'loss': 1.2642, 'grad_norm': 0.5756428241729736, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2630615234375 img loss 1.190338134765625 img loss 1.1624891757965088 img loss 1.269232988357544 img loss 1.1796784400939941 img loss 1.148345708847046 img loss 1.35210120677948 img loss 1.4000420570373535 img loss 1.2813571691513062 img loss 1.244107723236084 img loss 1.2614517211914062 img loss 1.2905094623565674 img loss 1.2426979541778564 img loss 1.2596100568771362 img loss 1.326923131942749 img loss 1.2086904048919678 img loss 1.2651207447052002 img loss 1.2732501029968262 img loss 1.237155556678772 img loss 1.1755924224853516 img loss 1.241890788078308 img loss 1.255460500717163 img loss 1.2097792625427246 img loss 1.1357187032699585 img loss 1.1843475103378296 img loss 1.2444231510162354 img loss 1.2371548414230347 img loss 1.293502688407898 img loss 1.131210207939148 img loss 1.3127096891403198 img loss 1.2325719594955444 img loss 1.2355566024780273 img loss 1.2285001277923584 img loss 1.2854747772216797 img loss 1.2731966972351074 img loss 1.3085829019546509 img loss 1.2254928350448608 img loss 1.29989755153656 img loss 1.3268555402755737 img loss 1.1692233085632324 img loss 1.257718801498413 img loss 1.1714714765548706 img loss 1.1974071264266968 img loss 1.2629444599151611 img loss 1.181024193763733 img loss 1.2746317386627197 img loss 1.2870922088623047 img loss 1.1982945203781128 img loss 1.2844657897949219 img loss 1.2142318487167358 img loss 1.2796601057052612 img loss 1.2776124477386475 img loss 1.1843492984771729 img loss 1.19295072555542 img loss 1.1943317651748657 img loss 1.2392791509628296 img loss 1.1764371395111084 img loss 1.216494083404541 img loss 1.2883734703063965 img loss 1.1623432636260986 img loss 1.1687943935394287 img loss 1.2123438119888306 img loss 1.2587541341781616 img loss 1.3326661586761475 img loss 1.2608314752578735 img loss 1.1921298503875732 img loss 1.270293116569519 img loss 1.1979992389678955 img loss 1.281772494316101 img loss 1.2002415657043457 img loss 1.2710708379745483 img loss 1.2226539850234985 img loss 1.2018721103668213 img loss 1.2366876602172852 img loss 1.2077852487564087 img loss 1.2791365385055542 img loss 1.2405704259872437 img loss 1.2386364936828613 img loss 1.1898198127746582 img loss 1.2624040842056274 img loss 1.270225167274475 img loss 1.2291868925094604 img loss 1.3854035139083862 img loss 1.2337322235107422 img loss 1.25182044506073 img loss 1.3543999195098877 img loss 1.2758187055587769 img loss 1.299345850944519 img loss 1.1418507099151611 img loss 1.231289267539978 img loss 1.2372150421142578 img loss 1.2548770904541016 img loss 1.220397710800171 img loss 1.2634751796722412 img loss 1.290238618850708 img loss 1.2499425411224365 img loss 1.2282336950302124 img loss 1.2749236822128296 img loss 1.2956215143203735 img loss 1.1689860820770264 img loss 1.2393749952316284 img loss 1.1303972005844116 img loss 1.2295620441436768 img loss 1.259347915649414 img loss 1.2977032661437988 img loss 1.2714171409606934 img loss 1.2251806259155273 img loss 1.2767980098724365 img loss 1.233885407447815 img loss 1.1637189388275146 img loss 1.179551601409912 img loss 1.218075156211853 img loss 1.2959935665130615 img loss 1.2041244506835938 img loss 1.2457826137542725 img loss 1.1959221363067627 img loss 1.2227766513824463 img loss 1.3257242441177368 img loss 1.1889785528182983 img loss 1.234113335609436 img loss 1.2987804412841797 img loss 1.2873926162719727 img loss 1.1818968057632446 img loss 1.204747200012207 img loss 1.2466983795166016 img loss 1.2444804906845093 img loss 1.2409110069274902 img loss 1.2379395961761475 {'loss': 1.2412, 'grad_norm': 0.19489136338233948, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.182267665863037 img loss 1.1817874908447266 img loss 1.2002012729644775 img loss 1.2335296869277954 img loss 1.212643027305603 img loss 1.1698328256607056 img loss 1.1802600622177124 img loss 1.2197704315185547 img loss 1.2353429794311523 img loss 1.1581220626831055 img loss 1.2620997428894043 img loss 1.2220375537872314 img loss 1.2414636611938477 img loss 1.194414496421814 img loss 1.1700423955917358 img loss 1.1883478164672852 img loss 1.2828173637390137 img loss 1.188658595085144 img loss 1.1817861795425415 img loss 1.1842647790908813 img loss 1.2090134620666504 img loss 1.1968485116958618 img loss 1.2218608856201172 img loss 1.2817074060440063 img loss 1.174913763999939 img loss 1.2633006572723389 img loss 1.121140480041504 img loss 1.2758119106292725 img loss 1.3000084161758423 img loss 1.2498821020126343 img loss 1.1806360483169556 img loss 1.1208256483078003 img loss 1.233511209487915 img loss 1.2119274139404297 img loss 1.2698554992675781 img loss 1.1663415431976318 img loss 1.256654977798462 img loss 1.2267464399337769 img loss 1.2628660202026367 img loss 1.1977665424346924 img loss 1.221208095550537 img loss 1.2085020542144775 img loss 1.1252344846725464 img loss 1.2840276956558228 img loss 1.2213371992111206 img loss 1.2112517356872559 img loss 1.102480411529541 img loss 1.2448859214782715 img loss 1.1941792964935303 img loss 1.2046722173690796 img loss 1.3174341917037964 img loss 1.2541396617889404 img loss 1.1765598058700562 img loss 1.204435110092163 img loss 1.2362922430038452 img loss 1.1499334573745728 img loss 1.1477326154708862 img loss 1.1188077926635742 img loss 1.1850435733795166 img loss 1.2382290363311768 img loss 1.195019245147705 img loss 1.3228381872177124 img loss 1.294945478439331 img loss 1.2608228921890259 img loss 1.2206742763519287 img loss 1.2569993734359741 img loss 1.170174241065979 img loss 1.213570475578308 img loss 1.1665980815887451 img loss 1.251554012298584 img loss 1.235586166381836 img loss 1.2007625102996826 img loss 1.218635082244873 img loss 1.2180427312850952 img loss 1.1511954069137573 img loss 1.2821483612060547 img loss 1.224880576133728 img loss 1.2220045328140259 img loss 1.3049875497817993 img loss 1.1966756582260132 img loss 1.2744051218032837 img loss 1.1618313789367676 img loss 1.329109787940979 img loss 1.2853227853775024 img loss 1.2828468084335327 img loss 1.2003456354141235 img loss 1.1978414058685303 img loss 1.187876582145691 img loss 1.2075073719024658 img loss 1.1732109785079956 img loss 1.176207423210144 img loss 1.1446818113327026 img loss 1.1882822513580322 img loss 1.1634774208068848 img loss 1.2151083946228027 img loss 1.1879057884216309 img loss 1.1680189371109009 img loss 1.2182791233062744 img loss 1.2206109762191772 img loss 1.1490920782089233 img loss 1.2252269983291626 img loss 1.1649998426437378 img loss 1.2491271495819092 img loss 1.169106125831604 img loss 1.2668397426605225 img loss 1.167144775390625 img loss 1.1441550254821777 img loss 1.213034987449646 img loss 1.2203218936920166 img loss 1.1535568237304688 img loss 1.1656147241592407 img loss 1.1645240783691406 img loss 1.1958999633789062 img loss 1.2269741296768188 img loss 1.2394379377365112 img loss 1.188392162322998 img loss 1.303688883781433 img loss 1.2138866186141968 img loss 1.2028716802597046 img loss 1.2427194118499756 img loss 1.1603317260742188 img loss 1.2737025022506714 img loss 1.2430237531661987 img loss 1.1773066520690918 img loss 1.187595248222351 img loss 1.2603591680526733 img loss 1.2519334554672241 img loss 1.246736764907837 {'loss': 1.2126, 'grad_norm': 0.34610220789909363, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.200194239616394 img loss 1.3352220058441162 img loss 1.2209148406982422 img loss 1.2980544567108154 img loss 1.2628449201583862 img loss 1.1986172199249268 img loss 1.15267813205719 img loss 1.288661241531372 img loss 1.2193577289581299 img loss 1.1752928495407104 img loss 1.1754908561706543 img loss 1.2372500896453857 img loss 1.2005172967910767 img loss 1.2548550367355347 img loss 1.2051215171813965 img loss 1.1141562461853027 img loss 1.2181411981582642 img loss 1.2375186681747437 img loss 1.1855113506317139 img loss 1.2281780242919922 img loss 1.19874906539917 img loss 1.2052948474884033 img loss 1.2156181335449219 img loss 1.2479071617126465 img loss 1.2847671508789062 img loss 1.2193927764892578 img loss 1.2191100120544434 img loss 1.187922716140747 img loss 1.2283979654312134 img loss 1.2377164363861084 img loss 1.2097729444503784 img loss 1.246997594833374 img loss 1.2257369756698608 img loss 1.261757493019104 img loss 1.2165321111679077 img loss 1.130705714225769 img loss 1.1211867332458496 img loss 1.2564499378204346 img loss 1.1707998514175415 img loss 1.2117183208465576 img loss 1.2585369348526 img loss 1.1901851892471313 img loss 1.2063062191009521 img loss 1.1972222328186035 img loss 1.2665737867355347 img loss 1.2555817365646362 img loss 1.1931997537612915 img loss 1.2238705158233643 img loss 1.2132986783981323 img loss 1.3166611194610596 img loss 1.2193410396575928 img loss 1.2708390951156616 img loss 1.191413164138794 img loss 1.227891445159912 img loss 1.1878392696380615 img loss 1.247527837753296 img loss 1.2410811185836792 img loss 1.260364294052124 img loss 1.3404589891433716 img loss 1.2328790426254272img loss 1.2365156412124634 img loss 1.2077524662017822 img loss 1.2243798971176147 img loss 1.2841415405273438 img loss 1.1432833671569824 img loss 1.1201882362365723 img loss 1.2492976188659668 img loss 1.2046394348144531 img loss 1.1942297220230103 img loss 1.1816132068634033 img loss 1.2627320289611816 img loss 1.2584953308105469 img loss 1.1874804496765137 img loss 1.2132526636123657 img loss 1.2236130237579346 img loss 1.2646334171295166 img loss 1.244653344154358 img loss 1.2702125310897827 img loss 1.2879799604415894 img loss 1.2092500925064087 img loss 1.2733770608901978 img loss 1.265810251235962 img loss 1.240041971206665 img loss 1.3020408153533936 img loss 1.1859251260757446 img loss 1.1565500497817993 img loss 1.191088318824768 img loss 1.189156174659729 img loss 1.1950619220733643 img loss 1.2519720792770386 img loss 1.2033653259277344 img loss 1.2264915704727173 img loss 1.1741695404052734 img loss 1.197771430015564 img loss 1.3234264850616455 img loss 1.2064765691757202 img loss 1.185849666595459 img loss 1.2363709211349487 img loss 1.1845825910568237 img loss 1.3162717819213867 img loss 1.301987886428833 img loss 1.1311893463134766 img loss 1.237243413925171 img loss 1.2024158239364624 img loss 1.2700133323669434 img loss 1.250603437423706 img loss 1.2178759574890137 img loss 1.3155395984649658 img loss 1.3165422677993774 img loss 1.2365126609802246 img loss 1.1655597686767578 img loss 1.2998071908950806 img loss 1.1941864490509033 img loss 1.24418306350708 img loss 1.2280429601669312 img loss 1.2745424509048462 img loss 1.2324857711791992 img loss 1.1945971250534058 img loss 1.2605479955673218 img loss 1.258016586303711 img loss 1.2308918237686157 img loss 1.32597815990448 img loss 1.2660003900527954 img loss 1.3325414657592773 img loss 1.2509998083114624 img loss 1.1718552112579346 img loss 1.3202049732208252 img loss 1.1412622928619385 {'loss': 1.2288, 'grad_norm': 0.36333534121513367, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2705574035644531 img loss 1.2765673398971558 img loss 1.2687389850616455 img loss 1.2108696699142456 img loss 1.243507742881775 img loss 1.265144944190979 img loss 1.2304847240447998 img loss 1.2121469974517822 img loss 1.2678029537200928 img loss 1.1694629192352295 img loss 1.1691999435424805 img loss 1.2565191984176636 img loss 1.1846779584884644 img loss 1.156721830368042 img loss 1.3396623134613037 img loss 1.2700445652008057 img loss 1.1894267797470093 img loss 1.2868114709854126 img loss 1.2045862674713135 img loss 1.2043358087539673 img loss 1.2399758100509644 img loss 1.209959864616394 img loss 1.2577731609344482 img loss 1.1712044477462769 img loss 1.2406984567642212 img loss 1.206214189529419 img loss 1.241312026977539 img loss 1.2356657981872559 img loss 1.2130283117294312 img loss 1.2287170886993408 img loss 1.2297232151031494 img loss 1.1795562505722046 img loss 1.218725562095642 img loss 1.3176259994506836 img loss 1.1733555793762207 img loss 1.1690821647644043 img loss 1.126667857170105 img loss 1.2257808446884155 img loss 1.1676733493804932 img loss 1.2295646667480469 img loss 1.2157509326934814 img loss 1.2723596096038818 img loss 1.283974289894104 img loss 1.3095937967300415 img loss 1.1620213985443115 img loss 1.2960518598556519 img loss 1.2946001291275024 img loss 1.3176095485687256 img loss 1.1586906909942627 img loss 1.265223741531372 img loss 1.2023814916610718 img loss 1.3479158878326416 img loss 1.2295265197753906 img loss 1.2954543828964233 img loss 1.20920729637146 img loss 1.183057427406311 img loss 1.212346076965332 img loss 1.287365198135376 img loss 1.2607293128967285 img loss 1.2156956195831299 img loss 1.2768408060073853 img loss 1.2221088409423828 img loss 1.1967456340789795 img loss 1.3090507984161377 img loss 1.2527049779891968 img loss 1.2942399978637695 img loss 1.2287447452545166 img loss 1.1608513593673706 img loss 1.334565281867981 img loss 1.1860712766647339 img loss 1.2343060970306396 img loss 1.2312278747558594 img loss 1.180336594581604 img loss 1.3036984205245972 img loss 1.2105481624603271 img loss 1.20265793800354 img loss 1.3117331266403198img loss 1.2138237953186035 img loss 1.1803377866744995 img loss 1.2375181913375854 img loss 1.2018976211547852 img loss 1.22119140625 img loss 1.1815457344055176 img loss 1.2005882263183594 img loss 1.16396963596344 img loss 1.2265567779541016 img loss 1.2608919143676758 img loss 1.1524958610534668 img loss 1.302039384841919 img loss 1.2343716621398926 img loss 1.213275671005249 img loss 1.199554204940796 img loss 1.2932713031768799 img loss 1.2287111282348633 img loss 1.3309218883514404 img loss 1.2344573736190796 img loss 1.1972553730010986 img loss 1.3130736351013184 img loss 1.1555676460266113 img loss 1.2422995567321777 img loss 1.187549114227295 img loss 1.2736907005310059 img loss 1.2123737335205078 img loss 1.2510032653808594 img loss 1.2722928524017334 img loss 1.2448053359985352 img loss 1.156726598739624 img loss 1.205554723739624 img loss 1.177587866783142 img loss 1.2146563529968262 img loss 1.1973283290863037 img loss 1.288804531097412 img loss 1.2210121154785156 img loss 1.1665990352630615 img loss 1.2265563011169434 img loss 1.2362017631530762 img loss 1.1618751287460327 img loss 1.2520380020141602 img loss 1.19268000125885 img loss 1.2215160131454468img loss 1.2535901069641113 img loss 1.2042601108551025 img loss 1.3228836059570312 img loss 1.2050237655639648 img loss 1.2120318412780762 img loss 1.2744029760360718 img loss 1.2816007137298584 img loss 1.2950043678283691 {'loss': 1.2321, 'grad_norm': 0.20386268198490143, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1917673349380493 img loss 1.1956062316894531 img loss 1.1639479398727417 img loss 1.164131760597229 img loss 1.1931252479553223 img loss 1.1985915899276733 img loss 1.2020559310913086 img loss 1.2584538459777832 img loss 1.2241944074630737 img loss 1.1738178730010986 img loss 1.2607882022857666 img loss 1.1575323343276978 img loss 1.2424774169921875 img loss 1.2405109405517578 img loss 1.2167549133300781 img loss 1.2372446060180664 img loss 1.2689294815063477 img loss 1.194353461265564 img loss 1.223150610923767 img loss 1.2512842416763306 img loss 1.2781037092208862 img loss 1.2541346549987793 img loss 1.1600366830825806 img loss 1.2706449031829834 img loss 1.1824899911880493 img loss 1.2227576971054077 img loss 1.1973896026611328 img loss 1.2643858194351196 img loss 1.2180598974227905 img loss 1.2145591974258423 img loss 1.2785146236419678 img loss 1.3269767761230469 img loss 1.1985114812850952 img loss 1.2038567066192627 img loss 1.283071517944336 img loss 1.1812900304794312 img loss 1.2406799793243408 img loss 1.1438297033309937img loss 1.2302688360214233 img loss 1.2556816339492798 img loss 1.1880146265029907 img loss 1.231371521949768 img loss 1.1764358282089233 img loss 1.224627137184143 img loss 1.194514513015747 img loss 1.18428373336792 img loss 1.2664644718170166 img loss 1.1901081800460815 img loss 1.1984485387802124 img loss 1.2247328758239746 img loss 1.1986639499664307 img loss 1.1117304563522339 img loss 1.2307442426681519 img loss 1.224150538444519 img loss 1.2391403913497925 img loss 1.2378088235855103 img loss 1.1993330717086792 img loss 1.2003711462020874 img loss 1.1421562433242798 img loss 1.2434065341949463 img loss 1.2066764831542969 img loss 1.2413005828857422 img loss 1.2126986980438232 img loss 1.2135084867477417 img loss 1.1750450134277344 img loss 1.2407009601593018 img loss 1.1930184364318848 img loss 1.2128015756607056 img loss 1.1793625354766846 img loss 1.2055162191390991 img loss 1.1957882642745972 img loss 1.2324985265731812 img loss 1.2325376272201538 img loss 1.2032208442687988 img loss 1.237857460975647 img loss 1.1443620920181274 img loss 1.1831305027008057 img loss 1.250080943107605 img loss 1.214958906173706 img loss 1.182288408279419 img loss 1.185653567314148 img loss 1.1487740278244019 img loss 1.1885912418365479 img loss 1.2350796461105347 img loss 1.2123044729232788 img loss 1.179540991783142 img loss 1.234293818473816 img loss 1.2244666814804077 img loss 1.1660199165344238 img loss 1.2060587406158447 img loss 1.1916614770889282 img loss 1.2162386178970337 img loss 1.1742428541183472 img loss 1.2809829711914062 img loss 1.2228410243988037 img loss 1.1706135272979736 img loss 1.2632310390472412 img loss 1.1720001697540283 img loss 1.1577452421188354 img loss 1.22512948513031 img loss 1.2275545597076416 img loss 1.1749190092086792 img loss 1.2190595865249634img loss 1.1768052577972412 img loss 1.2464401721954346 img loss 1.1762176752090454 img loss 1.1525750160217285 img loss 1.166324496269226 img loss 1.1754707098007202 img loss 1.1807312965393066 img loss 1.2062110900878906 img loss 1.24895179271698 img loss 1.2228455543518066 img loss 1.1903635263442993 img loss 1.1720832586288452 img loss 1.2339979410171509 img loss 1.2691779136657715 img loss 1.2249454259872437 img loss 1.1997565031051636 img loss 1.2434982061386108 img loss 1.2450071573257446 img loss 1.1722116470336914 img loss 1.2177238464355469 img loss 1.1709476709365845 img loss 1.229650855064392 img loss 1.1843894720077515 img loss 1.1935185194015503 img loss 1.202793836593628 {'loss': 1.2102, 'grad_norm': 0.43516993522644043, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2143988609313965 img loss 1.2009742259979248 img loss 1.2519550323486328 img loss 1.3441002368927002 img loss 1.2297123670578003 img loss 1.2234666347503662 img loss 1.2103548049926758 img loss 1.2569143772125244 img loss 1.205257773399353 img loss 1.2496488094329834 img loss 1.1780906915664673 img loss 1.2229540348052979 img loss 1.2219666242599487 img loss 1.2155563831329346 img loss 1.2340399026870728 img loss 1.240848422050476 img loss 1.2299396991729736 img loss 1.295253038406372 img loss 1.1888835430145264 img loss 1.2832435369491577 img loss 1.180450201034546 img loss 1.2520602941513062 img loss 1.2032275199890137 img loss 1.149863600730896 img loss 1.1832654476165771 img loss 1.199414849281311 img loss 1.3781135082244873 img loss 1.2041292190551758 img loss 1.258743166923523 img loss 1.1730104684829712 img loss 1.2622324228286743 img loss 1.2498319149017334img loss 1.202197551727295 img loss 1.2187124490737915 img loss 1.3351185321807861 img loss 1.2345547676086426 img loss 1.2679182291030884 img loss 1.1905899047851562 img loss 1.2366379499435425 img loss 1.2265452146530151 img loss 1.2172781229019165 img loss 1.19501531124115 img loss 1.2277138233184814 img loss 1.1854404211044312 img loss 1.207197904586792 img loss 1.2302281856536865 img loss 1.2433003187179565 img loss 1.2105528116226196 img loss 1.2140344381332397 img loss 1.2602322101593018 img loss 1.2314813137054443 img loss 1.251079797744751 img loss 1.2601436376571655 img loss 1.2113922834396362 img loss 1.236208438873291 img loss 1.170671820640564 img loss 1.2193353176116943 img loss 1.1786861419677734 img loss 1.1788239479064941 img loss 1.2662196159362793 img loss 1.1538165807724 img loss 1.2729732990264893 img loss 1.196077585220337 img loss 1.153246283531189 img loss 1.2026973962783813 img loss 1.307590365409851 img loss 1.227730393409729 img loss 1.1959567070007324 img loss 1.1839683055877686 img loss 1.3397228717803955 img loss 1.1933177709579468 img loss 1.1960875988006592 img loss 1.270188570022583 img loss 1.2358912229537964 img loss 1.2700575590133667 img loss 1.231932520866394 img loss 1.3081841468811035 img loss 1.2922027111053467 img loss 1.1493700742721558 img loss 1.3356229066848755 img loss 1.1629307270050049 img loss 1.2265145778656006 img loss 1.1577576398849487 img loss 1.2407358884811401 img loss 1.2367634773254395 img loss 1.2398675680160522 img loss 1.2059054374694824 img loss 1.1779989004135132 img loss 1.2492812871932983 img loss 1.1409659385681152 img loss 1.2889049053192139 img loss 1.2675691843032837 img loss 1.2311677932739258 img loss 1.230504035949707 img loss 1.2475323677062988 img loss 1.1777536869049072 img loss 1.2836203575134277 img loss 1.1909183263778687 img loss 1.2673803567886353 img loss 1.245814561843872 img loss 1.1794462203979492 img loss 1.1917365789413452 img loss 1.2296851873397827 img loss 1.182356834411621 img loss 1.166896104812622 img loss 1.2203031778335571 img loss 1.2277052402496338 img loss 1.2375562191009521 img loss 1.1865997314453125 img loss 1.2528607845306396 img loss 1.2708975076675415 img loss 1.1370095014572144 img loss 1.1514462232589722 img loss 1.229936957359314 img loss 1.143093466758728 img loss 1.307692050933838 img loss 1.254259467124939 img loss 1.217705488204956 img loss 1.1904724836349487 img loss 1.2632744312286377 img loss 1.296777606010437 img loss 1.2595041990280151 img loss 1.277902364730835 img loss 1.250616431236267 img loss 1.2388150691986084 img loss 1.171090841293335 img loss 1.2092506885528564 img loss 1.2356147766113281 {'loss': 1.2271, 'grad_norm': 0.25483959913253784, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5394682884216309 img loss 1.3485066890716553 img loss 1.4906617403030396 img loss 1.3253577947616577 img loss 1.328957200050354 img loss 1.4120508432388306 img loss 1.5195869207382202 img loss 1.4148133993148804 img loss 1.4083863496780396 img loss 1.5159509181976318 img loss 1.358845591545105 img loss 1.3653095960617065 img loss 1.4527865648269653 img loss 1.3125102519989014 img loss 1.311194658279419 img loss 1.3383839130401611 img loss 1.4206280708312988 img loss 1.3305084705352783 img loss 1.3795015811920166 img loss 1.5630003213882446 img loss 1.4561612606048584 img loss 1.2210623025894165 img loss 1.571109652519226 img loss 1.358650803565979 img loss 1.5731425285339355 img loss 1.332214117050171 img loss 1.4089257717132568 img loss 1.4513620138168335 img loss 1.4370510578155518 img loss 1.4743945598602295 img loss 1.4472378492355347 img loss 1.3821698427200317 img loss 1.4120959043502808 img loss 1.4294768571853638 img loss 1.4439826011657715 img loss 1.5767806768417358 img loss 1.429655909538269 img loss 1.3436554670333862 img loss 1.5119740962982178 img loss 1.3878804445266724 img loss 1.400926947593689 img loss 1.427119493484497 img loss 1.3220994472503662 img loss 1.5124176740646362 img loss 1.5158965587615967 img loss 1.4634002447128296 img loss 1.3486350774765015 img loss 1.333088755607605 img loss 1.4106069803237915 img loss 1.2986137866973877 img loss 1.3506590127944946 img loss 1.455932855606079 img loss 1.389100432395935 img loss 1.3330274820327759 img loss 1.3993985652923584 img loss 1.4518884420394897 img loss 1.404113531112671 img loss 1.319597601890564 img loss 1.356674313545227 img loss 1.354508876800537 img loss 1.4171968698501587 img loss 1.3541709184646606 img loss 1.3562939167022705 img loss 1.3562581539154053 img loss 1.406977891921997 img loss 1.3070449829101562 img loss 1.5612601041793823 img loss 1.4340319633483887 img loss 1.295764446258545 img loss 1.33462393283844 img loss 1.3649747371673584 img loss 1.2994941473007202 img loss 1.4437549114227295 img loss 1.3898569345474243 img loss 1.453763723373413 img loss 1.3589588403701782 img loss 1.3681141138076782 img loss 1.4403728246688843 img loss 1.4367692470550537 img loss 1.5289599895477295 img loss 1.2878996133804321 img loss 1.444110631942749 img loss 1.404667615890503 img loss 1.4347360134124756 img loss 1.4471027851104736 img loss 1.4694561958312988 img loss 1.4688552618026733 img loss 1.4018837213516235 img loss 1.3371764421463013 img loss 1.4856244325637817 img loss 1.4176431894302368img loss 1.4560258388519287 img loss 1.3047798871994019 img loss 1.351365566253662 img loss 1.3274459838867188 img loss 1.304752230644226 img loss 1.4740949869155884 img loss 1.294068694114685 img loss 1.3646981716156006 img loss 1.2893877029418945 img loss 1.4383232593536377 img loss 1.3221428394317627 img loss 1.3913557529449463 img loss 1.3376909494400024 img loss 1.3587334156036377 img loss 1.39186429977417 img loss 1.423671841621399 img loss 1.427796483039856 img loss 1.486147165298462 img loss 1.4691797494888306 img loss 1.4181665182113647 img loss 1.3755244016647339 img loss 1.4462069272994995 img loss 1.3726837635040283 img loss 1.3047411441802979 img loss 1.3835361003875732 img loss 1.4278309345245361 img loss 1.386592984199524 img loss 1.3639940023422241 img loss 1.4585449695587158 img loss 1.4535411596298218 img loss 1.4143861532211304 img loss 1.286837100982666 img loss 1.3989449739456177 img loss 1.3982127904891968 img loss 1.426430344581604 img loss 1.4443522691726685 img loss 1.5400900840759277 {'loss': 1.4036, 'grad_norm': 0.370158851146698, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2228128910064697 img loss 1.2062792778015137 img loss 1.204659104347229 img loss 1.2107889652252197 img loss 1.2324758768081665 img loss 1.19673490524292 img loss 1.20101797580719 img loss 1.2307772636413574 img loss 1.1927354335784912 img loss 1.1937518119812012 img loss 1.1734312772750854 img loss 1.159429907798767 img loss 1.1605584621429443 img loss 1.1407908201217651 img loss 1.1663293838500977 img loss 1.179452896118164 img loss 1.2260385751724243 img loss 1.1677088737487793 img loss 1.1666401624679565 img loss 1.2714307308197021 img loss 1.2496076822280884 img loss 1.2400641441345215 img loss 1.1935487985610962 img loss 1.1592909097671509 img loss 1.108498215675354 img loss 1.2696213722229004 img loss 1.212480068206787 img loss 1.1922138929367065 img loss 1.2081876993179321 img loss 1.212420105934143 img loss 1.1945174932479858 img loss 1.1899656057357788 img loss 1.1912497282028198 img loss 1.3299431800842285 img loss 1.2101223468780518 img loss 1.2539539337158203 img loss 1.171628475189209 img loss 1.1593506336212158 img loss 1.1463897228240967 img loss 1.1218032836914062 img loss 1.1599730253219604 img loss 1.212567925453186 img loss 1.2227009534835815 img loss 1.2243437767028809 img loss 1.2265393733978271 img loss 1.1925734281539917 img loss 1.1730263233184814 img loss 1.2716673612594604 img loss 1.2142890691757202 img loss 1.2117947340011597 img loss 1.1663984060287476 img loss 1.1853928565979004 img loss 1.2108086347579956 img loss 1.1913883686065674 img loss 1.1651356220245361 img loss 1.1669193506240845 img loss 1.1836174726486206 img loss 1.1550345420837402 img loss 1.226069450378418 img loss 1.1667617559432983 img loss 1.1771812438964844 img loss 1.2240480184555054 img loss 1.2332652807235718 img loss 1.1922566890716553 img loss 1.2296619415283203 img loss 1.2071675062179565 img loss 1.167203664779663 img loss 1.2094579935073853 img loss 1.1672000885009766 img loss 1.2536934614181519 img loss 1.2199747562408447 img loss 1.2692737579345703 img loss 1.1804695129394531 img loss 1.1666936874389648 img loss 1.2369590997695923 img loss 1.2263816595077515 img loss 1.1762135028839111 img loss 1.2274383306503296 img loss 1.2416369915008545 img loss 1.1716464757919312 img loss 1.2107595205307007 img loss 1.1345796585083008 img loss 1.2229355573654175 img loss 1.1631958484649658 img loss 1.1918035745620728 img loss 1.16045081615448 img loss 1.2051301002502441 img loss 1.2000702619552612 img loss 1.1766754388809204 img loss 1.1848989725112915 img loss 1.1675055027008057 img loss 1.2060022354125977 img loss 1.184550166130066 img loss 1.1667590141296387 img loss 1.225048303604126 img loss 1.1518895626068115 img loss 1.1504249572753906 img loss 1.187605619430542 img loss 1.1815011501312256 img loss 1.179827332496643 img loss 1.1766365766525269 img loss 1.2356016635894775 img loss 1.1771996021270752 img loss 1.2160354852676392 img loss 1.233070731163025 img loss 1.142635703086853 img loss 1.1725211143493652 img loss 1.3843066692352295 img loss 1.1737654209136963 img loss 1.277576208114624 img loss 1.184202790260315 img loss 1.2751882076263428 img loss 1.191914439201355 img loss 1.1713348627090454 img loss 1.2459001541137695 img loss 1.2337007522583008 img loss 1.180426001548767 img loss 1.1432132720947266 img loss 1.1717478036880493 img loss 1.2092443704605103 img loss 1.2372175455093384 img loss 1.1285412311553955 img loss 1.2007455825805664 img loss 1.1791318655014038 img loss 1.132242202758789 img loss 1.166832447052002 img loss 1.1308155059814453 img loss 1.1641162633895874 {'loss': 1.197, 'grad_norm': 0.263573557138443, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2362768650054932 img loss 1.213594675064087 img loss 1.2352683544158936 img loss 1.169572353363037 img loss 1.2042715549468994img loss 1.2031188011169434 img loss 1.2537258863449097 img loss 1.2886650562286377 img loss 1.2584314346313477 img loss 1.2872982025146484 img loss 1.1979318857192993 img loss 1.2168124914169312 img loss 1.2719954252243042 img loss 1.2338050603866577 img loss 1.1855881214141846 img loss 1.2255061864852905 img loss 1.2848377227783203 img loss 1.1976418495178223 img loss 1.2235584259033203 img loss 1.215324878692627 img loss 1.2732288837432861 img loss 1.231626033782959 img loss 1.1992857456207275 img loss 1.2731069326400757 img loss 1.2327936887741089 img loss 1.233328104019165 img loss 1.216892123222351 img loss 1.2699955701828003 img loss 1.2618118524551392 img loss 1.216391921043396 img loss 1.2232691049575806 img loss 1.215066909790039 img loss 1.242242693901062 img loss 1.2594493627548218 img loss 1.2083438634872437 img loss 1.264672875404358 img loss 1.2108972072601318 img loss 1.2340707778930664 img loss 1.1747713088989258 img loss 1.2742760181427002 img loss 1.3026313781738281 img loss 1.2087736129760742 img loss 1.2336353063583374 img loss 1.1987221240997314 img loss 1.2666099071502686 img loss 1.2516788244247437 img loss 1.2147409915924072 img loss 1.2842254638671875 img loss 1.157846450805664 img loss 1.212859034538269img loss 1.2378662824630737 img loss 1.2678991556167603 img loss 1.2293055057525635 img loss 1.2111928462982178 img loss 1.2303494215011597 img loss 1.2742420434951782 img loss 1.206597089767456 img loss 1.2596757411956787 img loss 1.2352864742279053 img loss 1.2344493865966797 img loss 1.2667430639266968 img loss 1.2305361032485962 img loss 1.2141786813735962 img loss 1.2127350568771362 img loss 1.2624187469482422 img loss 1.263533353805542 img loss 1.2669734954833984 img loss 1.205709457397461 img loss 1.2297852039337158 img loss 1.2158311605453491 img loss 1.2323169708251953 img loss 1.22767972946167 img loss 1.1953308582305908 img loss 1.223365068435669 img loss 1.2679321765899658 img loss 1.3010516166687012 img loss 1.200560212135315 img loss 1.2222603559494019 img loss 1.2260936498641968 img loss 1.2349365949630737 img loss 1.2818702459335327 img loss 1.1948904991149902 img loss 1.1956849098205566 img loss 1.2385767698287964 img loss 1.2061970233917236 img loss 1.2298847436904907 img loss 1.2669280767440796 img loss 1.213762640953064 img loss 1.236876130104065 img loss 1.2053200006484985 img loss 1.2292115688323975 img loss 1.1751559972763062 img loss 1.2161891460418701 img loss 1.2514370679855347 img loss 1.2474498748779297 img loss 1.2106645107269287 img loss 1.232837438583374 img loss 1.2151039838790894 img loss 1.2206025123596191 img loss 1.217680811882019 img loss 1.1744873523712158 img loss 1.2544163465499878 img loss 1.2118085622787476 img loss 1.2322251796722412 img loss 1.2343205213546753 img loss 1.2465763092041016 img loss 1.2186464071273804 img loss 1.2694315910339355 img loss 1.2208244800567627 img loss 1.2086920738220215 img loss 1.2094639539718628 img loss 1.2474076747894287 img loss 1.2404121160507202 img loss 1.2257391214370728 img loss 1.2256593704223633 img loss 1.2246408462524414 img loss 1.1830469369888306 img loss 1.2381318807601929 img loss 1.213973045349121 img loss 1.2488977909088135 img loss 1.225748896598816 img loss 1.1946123838424683 img loss 1.2757153511047363 img loss 1.2328784465789795 img loss 1.2976245880126953 img loss 1.203235149383545 img loss 1.1970113515853882 img loss 1.2149475812911987 {'loss': 1.2312, 'grad_norm': 0.5581095814704895, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4136606454849243 img loss 1.3014845848083496 img loss 1.297913908958435 img loss 1.2300680875778198 img loss 1.2328622341156006 img loss 1.274910569190979 img loss 1.217729091644287 img loss 1.240666151046753 img loss 1.3131545782089233 img loss 1.2696139812469482 img loss 1.2996190786361694 img loss 1.281069278717041 img loss 1.18514883518219 img loss 1.2604656219482422 img loss 1.2254645824432373 img loss 1.1799850463867188 img loss 1.4118024110794067 img loss 1.252592921257019 img loss 1.219266414642334 img loss 1.2883325815200806 img loss 1.2279858589172363 img loss 1.2717232704162598 img loss 1.2932251691818237 img loss 1.2741466760635376 img loss 1.2777067422866821 img loss 1.2540087699890137 img loss 1.40691077709198 img loss 1.2631776332855225 img loss 1.2242674827575684 img loss 1.217840552330017 img loss 1.2678425312042236 img loss 1.2321447134017944 img loss 1.3019160032272339 img loss 1.2217813730239868 img loss 1.2589420080184937 img loss 1.2480218410491943 img loss 1.3128505945205688 img loss 1.217415690422058 img loss 1.1658527851104736 img loss 1.2419804334640503 img loss 1.2780609130859375 img loss 1.201598882675171 img loss 1.2830913066864014 img loss 1.2999684810638428 img loss 1.336676836013794 img loss 1.3221746683120728 img loss 1.2161716222763062 img loss 1.2922213077545166 img loss 1.360154628753662 img loss 1.4304088354110718 img loss 1.174536108970642 img loss 1.2938648462295532 img loss 1.2592289447784424 img loss 1.2505857944488525 img loss 1.2281783819198608 img loss 1.3629292249679565 img loss 1.3008192777633667 img loss 1.2530851364135742 img loss 1.289730429649353 img loss 1.2826770544052124 img loss 1.2982090711593628 img loss 1.1727460622787476 img loss 1.2042324542999268 img loss 1.2168612480163574 img loss 1.2284282445907593 img loss 1.229392409324646 img loss 1.2847105264663696 img loss 1.2143492698669434 img loss 1.2822890281677246 img loss 1.2691724300384521 img loss 1.2116446495056152 img loss 1.376341462135315 img loss 1.279242753982544 img loss 1.2440028190612793 img loss 1.2246249914169312 img loss 1.20306396484375 img loss 1.3083856105804443 img loss 1.2920640707015991 img loss 1.312697410583496 img loss 1.2828924655914307 img loss 1.2995346784591675 img loss 1.2563799619674683 img loss 1.256304144859314 img loss 1.222612977027893 img loss 1.2163852453231812 img loss 1.2559716701507568 img loss 1.2094372510910034 img loss 1.272406816482544 img loss 1.2247352600097656 img loss 1.236875057220459 img loss 1.323578119277954 img loss 1.19243323802948 img loss 1.32000732421875 img loss 1.2338552474975586 img loss 1.23892343044281 img loss 1.2572622299194336 img loss 1.1670082807540894 img loss 1.3327279090881348 img loss 1.2853153944015503 img loss 1.1799592971801758 img loss 1.2296385765075684 img loss 1.2475299835205078 img loss 1.360964298248291 img loss 1.2830960750579834 img loss 1.2632602453231812 img loss 1.2461307048797607 img loss 1.2083152532577515 img loss 1.3110642433166504 img loss 1.307645320892334 img loss 1.3158384561538696 img loss 1.3556758165359497 img loss 1.2353219985961914 img loss 1.2966957092285156 img loss 1.203203558921814 img loss 1.2405567169189453 img loss 1.2550466060638428 img loss 1.2768981456756592 img loss 1.2831579446792603 img loss 1.2382850646972656 img loss 1.2056996822357178 img loss 1.2251001596450806 img loss 1.2881834506988525 img loss 1.2353744506835938 img loss 1.3271141052246094 img loss 1.2983570098876953 img loss 1.279423475265503 img loss 1.2410893440246582 img loss 1.2642674446105957 {'loss': 1.2651, 'grad_norm': 0.232254296541214, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1989120244979858 img loss 1.1720921993255615 img loss 1.2395095825195312 img loss 1.235114574432373 img loss 1.2569507360458374 img loss 1.1951531171798706 img loss 1.1974561214447021 img loss 1.242264986038208 img loss 1.1804510354995728 img loss 1.261094570159912 img loss 1.160841941833496 img loss 1.1429392099380493 img loss 1.1570696830749512 img loss 1.255462646484375 img loss 1.2284715175628662 img loss 1.235682725906372 img loss 1.2202228307724 img loss 1.247567892074585 img loss 1.2046765089035034 img loss 1.2071266174316406 img loss 1.3166308403015137 img loss 1.2284188270568848 img loss 1.1877154111862183 img loss 1.2025953531265259 img loss 1.1861122846603394 img loss 1.1800533533096313 img loss 1.1670187711715698 img loss 1.2436025142669678 img loss 1.2451438903808594 img loss 1.194671630859375 img loss 1.2995085716247559 img loss 1.2361582517623901 img loss 1.225140929222107 img loss 1.1785483360290527 img loss 1.2388019561767578 img loss 1.177303671836853 img loss 1.201985239982605 img loss 1.2236683368682861 img loss 1.2213108539581299 img loss 1.2135446071624756 img loss 1.1855535507202148 img loss 1.2543458938598633 img loss 1.2074177265167236 img loss 1.1897629499435425 img loss 1.2315325736999512 img loss 1.2018685340881348 img loss 1.2602226734161377 img loss 1.2744481563568115 img loss 1.2230706214904785 img loss 1.2426025867462158 img loss 1.236135721206665 img loss 1.2239704132080078 img loss 1.2297487258911133img loss 1.222464919090271 img loss 1.24361252784729 img loss 1.2338922023773193 img loss 1.1541130542755127 img loss 1.251085638999939 img loss 1.1720595359802246 img loss 1.2431588172912598 img loss 1.2333916425704956 img loss 1.2330970764160156 img loss 1.1085232496261597 img loss 1.1833407878875732 img loss 1.2328935861587524 img loss 1.2255582809448242 img loss 1.193709373474121 img loss 1.2225875854492188 img loss 1.23799729347229 img loss 1.2210314273834229 img loss 1.2796906232833862 img loss 1.2006206512451172 img loss 1.2162368297576904 img loss 1.2083324193954468 img loss 1.1712431907653809 img loss 1.2166855335235596 img loss 1.1347801685333252 img loss 1.1844749450683594 img loss 1.2326557636260986 img loss 1.2257837057113647 img loss 1.2292234897613525 img loss 1.204831600189209 img loss 1.2028839588165283 img loss 1.250491976737976 img loss 1.2285435199737549 img loss 1.211753487586975 img loss 1.1708552837371826 img loss 1.2559174299240112 img loss 1.1924453973770142 img loss 1.1770734786987305 img loss 1.2964175939559937 img loss 1.254827857017517 img loss 1.1986225843429565 img loss 1.2187268733978271 img loss 1.2107890844345093 img loss 1.2112843990325928 img loss 1.2751801013946533 img loss 1.2324540615081787 img loss 1.2260136604309082 img loss 1.1624151468276978img loss 1.2105509042739868 img loss 1.218691349029541 img loss 1.303297758102417 img loss 1.185572624206543 img loss 1.1998696327209473 img loss 1.1536786556243896 img loss 1.1753355264663696 img loss 1.2157227993011475 img loss 1.1542315483093262 img loss 1.2038261890411377 img loss 1.1978901624679565 img loss 1.19066321849823 img loss 1.1636555194854736 img loss 1.1897732019424438 img loss 1.2283062934875488 img loss 1.2175135612487793 img loss 1.191251516342163 img loss 1.2294120788574219 img loss 1.2289958000183105 img loss 1.2004932165145874 img loss 1.2169225215911865 img loss 1.2031612396240234 img loss 1.1775872707366943 img loss 1.209957480430603 img loss 1.2138475179672241 img loss 1.201551079750061 img loss 1.2179253101348877 img loss 1.2048358917236328 {'loss': 1.2138, 'grad_norm': 0.33403271436691284, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.510993480682373 img loss 1.4545596837997437 img loss 1.4052536487579346 img loss 1.4841982126235962 img loss 1.4454087018966675 img loss 1.4596563577651978 img loss 1.437933325767517 img loss 1.4210954904556274 img loss 1.4365931749343872 img loss 1.5730929374694824 img loss 1.4630566835403442 img loss 1.3876879215240479 img loss 1.54398512840271 img loss 1.4997169971466064 img loss 1.4133164882659912 img loss 1.4449599981307983 img loss 1.48821222782135 img loss 1.5620959997177124 img loss 1.467254400253296 img loss 1.325826644897461 img loss 1.3347493410110474 img loss 1.456132411956787 img loss 1.387222170829773 img loss 1.375707983970642 img loss 1.4067991971969604 img loss 1.377052903175354 img loss 1.3576505184173584 img loss 1.471627950668335 img loss 1.3363350629806519 img loss 1.4334818124771118 img loss 1.397411823272705 img loss 1.3446574211120605 img loss 1.4530919790267944 img loss 1.376237154006958 img loss 1.4431065320968628 img loss 1.5115476846694946 img loss 1.4473967552185059 img loss 1.3547494411468506 img loss 1.4088168144226074 img loss 1.5139966011047363 img loss 1.5199037790298462 img loss 1.5062576532363892 img loss 1.5124305486679077 img loss 1.5426231622695923 img loss 1.3559156656265259 img loss 1.2861683368682861 img loss 1.4046988487243652 img loss 1.4818800687789917 img loss 1.5110141038894653 img loss 1.3935869932174683 img loss 1.4325352907180786 img loss 1.415244221687317 img loss 1.3967987298965454 img loss 1.4685461521148682 img loss 1.2706866264343262 img loss 1.4511610269546509 img loss 1.4501726627349854 img loss 1.336944341659546 img loss 1.341042399406433 img loss 1.365230917930603 img loss 1.390663504600525 img loss 1.475277066230774 img loss 1.3800514936447144 img loss 1.4338802099227905 img loss 1.3961106538772583 img loss 1.3752837181091309 img loss 1.2814081907272339 img loss 1.3834501504898071 img loss 1.323717713356018 img loss 1.3422380685806274 img loss 1.4469354152679443 img loss 1.3129485845565796 img loss 1.269652247428894 img loss 1.4657691717147827 img loss 1.3772767782211304 img loss 1.4865232706069946 img loss 1.4538776874542236 img loss 1.5142381191253662 img loss 1.4507670402526855 img loss 1.345639705657959 img loss 1.445830225944519 img loss 1.4089726209640503 img loss 1.3733047246932983 img loss 1.3829635381698608 img loss 1.448525071144104 img loss 1.340316891670227 img loss 1.3122639656066895 img loss 1.406867265701294 img loss 1.382012128829956 img loss 1.6374573707580566 img loss 1.4329583644866943 img loss 1.4558073282241821 img loss 1.493196725845337 img loss 1.3929203748703003 img loss 1.4739511013031006 img loss 1.4046269655227661 img loss 1.4959466457366943 img loss 1.3336387872695923 img loss 1.5581246614456177 img loss 1.4705039262771606 img loss 1.4338194131851196 img loss 1.326267957687378 img loss 1.347956895828247 img loss 1.5624295473098755 img loss 1.425052285194397 img loss 1.2523157596588135 img loss 1.4441403150558472 img loss 1.5277894735336304 img loss 1.4337526559829712 img loss 1.4039093255996704 img loss 1.3736368417739868 img loss 1.3952149152755737 img loss 1.4243102073669434 img loss 1.5094562768936157 img loss 1.5828994512557983 img loss 1.4610190391540527 img loss 1.4814369678497314 img loss 1.4102513790130615 img loss 1.4160792827606201 img loss 1.4498211145401 img loss 1.4332760572433472 img loss 1.2766460180282593 img loss 1.4464582204818726 img loss 1.4992756843566895 img loss 1.4382750988006592 img loss 1.435722827911377 img loss 1.4626269340515137 img loss 1.4511306285858154 {'loss': 1.4259, 'grad_norm': 0.30087533593177795, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.735348105430603 img loss 1.6111286878585815 img loss 1.5882521867752075 img loss 1.6403534412384033 img loss 1.7172868251800537 img loss 1.7203149795532227 img loss 1.7290550470352173 img loss 1.6339612007141113 img loss 1.530476450920105 img loss 1.5396101474761963 img loss 1.7749836444854736 img loss 1.6602489948272705 img loss 1.573717713356018 img loss 1.5974153280258179 img loss 1.642734408378601 img loss 1.714629888534546img loss 1.618566632270813 img loss 1.6572811603546143 img loss 1.5977145433425903 img loss 1.698005199432373 img loss 1.8254541158676147 img loss 1.5794528722763062 img loss 1.6600137948989868 img loss 1.7696629762649536 img loss 1.7481156587600708 img loss 1.6577321290969849 img loss 1.6356817483901978 img loss 1.6684279441833496 img loss 1.6183265447616577 img loss 1.6490486860275269 img loss 1.715917706489563 img loss 1.6429120302200317 img loss 1.6394422054290771 img loss 1.6601320505142212 img loss 1.536975622177124 img loss 1.6812491416931152 img loss 1.5927560329437256 img loss 1.5438166856765747 img loss 1.5728814601898193 img loss 1.5472350120544434 img loss 1.718356728553772 img loss 1.8210136890411377 img loss 1.7258310317993164 img loss 1.6153429746627808 img loss 1.9420171976089478 img loss 1.6531444787979126 img loss 1.5178806781768799 img loss 1.5872818231582642 img loss 1.641945242881775 img loss 1.755017876625061 img loss 1.5800398588180542 img loss 1.5997649431228638 img loss 1.7713336944580078 img loss 1.5967694520950317 img loss 1.6663483381271362 img loss 1.5809544324874878 img loss 1.5644440650939941 img loss 1.6083875894546509 img loss 1.6129361391067505 img loss 1.7695608139038086 img loss 1.6159366369247437 img loss 1.644487738609314 img loss 1.6786514520645142 img loss 1.6315538883209229 img loss 1.6251879930496216 img loss 1.5965410470962524 img loss 1.6842710971832275 img loss 1.6444727182388306 img loss 1.6071536540985107 img loss 1.741511344909668 img loss 1.5986016988754272 img loss 1.7982771396636963 img loss 1.7579114437103271 img loss 1.6793214082717896 img loss 1.5883557796478271 img loss 1.610432505607605 img loss 1.7262786626815796 img loss 1.6275848150253296 img loss 1.7329537868499756 img loss 1.5532804727554321 img loss 1.671202301979065 img loss 1.5841243267059326 img loss 1.6870055198669434 img loss 1.845007300376892 img loss 1.6481910943984985 img loss 1.773687481880188 img loss 1.588446021080017 img loss 1.6204359531402588 img loss 1.7792255878448486 img loss 1.7071248292922974 img loss 1.6234840154647827 img loss 1.6576985120773315 img loss 1.6964175701141357 img loss 1.6539710760116577 img loss 1.5652047395706177 img loss 1.6929155588150024 img loss 1.743709921836853 img loss 1.7105624675750732 img loss 1.748744010925293 img loss 1.6171222925186157 img loss 1.7095303535461426 img loss 1.655382513999939 img loss 1.6147292852401733 img loss 1.5897637605667114 img loss 1.678096055984497 img loss 1.5738343000411987 img loss 1.9687862396240234 img loss 1.6213124990463257 img loss 1.6585248708724976 img loss 1.6695469617843628 img loss 1.6916601657867432 img loss 1.673274278640747 img loss 1.7571866512298584 img loss 1.5874520540237427 img loss 1.6757407188415527 img loss 1.6436848640441895 img loss 1.559790015220642 img loss 1.579588532447815 img loss 1.5888302326202393 img loss 1.6923024654388428 img loss 1.7154372930526733 img loss 1.8319711685180664 img loss 1.6769894361495972 img loss 1.689348816871643 img loss 1.5395417213439941 img loss 1.6294387578964233 img loss 1.651626706123352 img loss 1.701870083808899 {'loss': 1.6612, 'grad_norm': 0.3796832859516144, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2503619194030762 img loss 1.1862939596176147 img loss 1.1415811777114868 img loss 1.1960363388061523 img loss 1.1223270893096924 img loss 1.1637654304504395 img loss 1.0869238376617432 img loss 1.1745678186416626 img loss 1.2574595212936401 img loss 1.1690144538879395 img loss 1.1323120594024658 img loss 1.2138031721115112 img loss 1.2478961944580078 img loss 1.2084577083587646 img loss 1.2022942304611206 img loss 1.123618721961975 img loss 1.1513891220092773 img loss 1.1744229793548584 img loss 1.2030495405197144 img loss 1.1209220886230469 img loss 1.1868290901184082 img loss 1.1939830780029297 img loss 1.156348466873169 img loss 1.1731760501861572 img loss 1.2129342555999756 img loss 1.254734754562378 img loss 1.1831016540527344 img loss 1.1664930582046509 img loss 1.2019809484481812 img loss 1.1621659994125366 img loss 1.1931953430175781 img loss 1.2073140144348145 img loss 1.1558574438095093 img loss 1.1857715845108032 img loss 1.128575086593628 img loss 1.1961934566497803 img loss 1.1616674661636353 img loss 1.1819685697555542 img loss 1.182666540145874 img loss 1.1740626096725464 img loss 1.14909827709198 img loss 1.1316660642623901 img loss 1.2483247518539429 img loss 1.1550991535186768 img loss 1.1462969779968262 img loss 1.2887306213378906 img loss 1.273904800415039 img loss 1.099717617034912 img loss 1.3326832056045532 img loss 1.214751124382019 img loss 1.2171217203140259 img loss 1.2001183032989502 img loss 1.1430574655532837 img loss 1.1397922039031982 img loss 1.1957156658172607 img loss 1.1953115463256836 img loss 1.2716922760009766 img loss 1.229744553565979 img loss 1.1960999965667725 img loss 1.2467308044433594 img loss 1.2465150356292725 img loss 1.1848580837249756 img loss 1.2188180685043335 img loss 1.1818280220031738 img loss 1.1684728860855103 img loss 1.2145051956176758 img loss 1.1520713567733765 img loss 1.2285407781600952 img loss 1.2816812992095947 img loss 1.2155523300170898 img loss 1.1544169187545776 img loss 1.1918836832046509 img loss 1.19253408908844 img loss 1.1916321516036987 img loss 1.1954180002212524 img loss 1.150559663772583 img loss 1.17354154586792 img loss 1.1706197261810303 img loss 1.3169875144958496 img loss 1.1515153646469116 img loss 1.1840956211090088 img loss 1.1553045511245728 img loss 1.1209663152694702 img loss 1.1953825950622559 img loss 1.2256821393966675 img loss 1.294236421585083 img loss 1.2053085565567017 img loss 1.165511131286621 img loss 1.2419853210449219 img loss 1.174628734588623 img loss 1.1558239459991455 img loss 1.2194578647613525 img loss 1.2280900478363037 img loss 1.2013810873031616 img loss 1.207732915878296 img loss 1.1850812435150146 img loss 1.1047331094741821 img loss 1.3158421516418457 img loss 1.27423894405365 img loss 1.2051743268966675 img loss 1.2576547861099243 img loss 1.1552371978759766 img loss 1.1768449544906616 img loss 1.2534512281417847 img loss 1.200696349143982 img loss 1.1775826215744019 img loss 1.1921842098236084 img loss 1.1617333889007568 img loss 1.1594390869140625 img loss 1.1802847385406494 img loss 1.1977640390396118 img loss 1.1815142631530762 img loss 1.1919610500335693 img loss 1.2516978979110718 img loss 1.239867925643921 img loss 1.1651257276535034 img loss 1.2907383441925049 img loss 1.2188955545425415 img loss 1.219275712966919 img loss 1.125731348991394 img loss 1.2201201915740967 img loss 1.2187446355819702 img loss 1.2305734157562256 img loss 1.1440714597702026 img loss 1.1583495140075684 img loss 1.1986865997314453 img loss 1.2020316123962402 img loss 1.2438925504684448 {'loss': 1.1947, 'grad_norm': 0.2319483906030655, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.615071177482605 img loss 1.4880448579788208 img loss 1.3513168096542358 img loss 1.4575849771499634 img loss 1.449603796005249 img loss 1.4476597309112549 img loss 1.3519721031188965 img loss 1.4857269525527954 img loss 1.414182186126709 img loss 1.3217977285385132 img loss 1.6640756130218506 img loss 1.3950457572937012 img loss 1.4873898029327393 img loss 1.4490889310836792 img loss 1.4425599575042725 img loss 1.5060179233551025 img loss 1.6173232793807983 img loss 1.5252842903137207 img loss 1.5526573657989502 img loss 1.6466811895370483 img loss 1.4259753227233887 img loss 1.5071457624435425 img loss 1.6763031482696533 img loss 1.3947062492370605 img loss 1.7018052339553833 img loss 1.544321894645691 img loss 1.6053922176361084 img loss 1.4967262744903564 img loss 1.4323201179504395 img loss 1.6452326774597168 img loss 1.5629937648773193 img loss 1.394129991531372 img loss 1.50874924659729 img loss 1.5772736072540283 img loss 1.5327661037445068 img loss 1.4521269798278809 img loss 1.4041177034378052 img loss 1.3702737092971802 img loss 1.4068646430969238 img loss 1.5376423597335815 img loss 1.550018548965454 img loss 1.4854966402053833 img loss 1.6210148334503174 img loss 1.5192790031433105 img loss 1.6067631244659424 img loss 1.4756863117218018 img loss 1.357491135597229 img loss 1.507466435432434 img loss 1.3401442766189575 img loss 1.5094959735870361 img loss 1.352561593055725 img loss 1.4274373054504395 img loss 1.472025990486145 img loss 1.634324312210083 img loss 1.5761888027191162 img loss 1.4231747388839722 img loss 1.5399386882781982 img loss 1.3842694759368896 img loss 1.4962466955184937 img loss 1.5594700574874878 img loss 1.55817711353302 img loss 1.6148431301116943 img loss 1.583562970161438 img loss 1.425072431564331 img loss 1.610942006111145 img loss 1.506386637687683 img loss 1.4714000225067139 img loss 1.3734943866729736 img loss 1.4470394849777222 img loss 1.541991114616394 img loss 1.5944236516952515 img loss 1.444828748703003 img loss 1.4689232110977173 img loss 1.5619235038757324 img loss 1.5696736574172974 img loss 1.5433422327041626 img loss 1.541789174079895 img loss 1.4077322483062744 img loss 1.374497890472412 img loss 1.478240728378296 img loss 1.7159897089004517 img loss 1.604622483253479 img loss 1.451801061630249 img loss 1.55088210105896 img loss 1.4646652936935425 img loss 1.5333939790725708 img loss 1.6712275743484497 img loss 1.4931542873382568 img loss 1.5264519453048706 img loss 1.4866265058517456 img loss 1.4637868404388428 img loss 1.724891185760498 img loss 1.5819028615951538 img loss 1.361804723739624 img loss 1.6485340595245361 img loss 1.5859674215316772 img loss 1.491668462753296 img loss 1.5462695360183716 img loss 1.504615306854248 img loss 1.4667909145355225 img loss 1.5664817094802856 img loss 1.4195611476898193 img loss 1.4945542812347412 img loss 1.6228786706924438 img loss 1.5758906602859497 img loss 1.4639296531677246 img loss 1.6327728033065796 img loss 1.4641988277435303 img loss 1.67299485206604 img loss 1.5161608457565308img loss 1.6333515644073486 img loss 1.414550542831421 img loss 1.540688395500183 img loss 1.5160787105560303 img loss 1.5681918859481812 img loss 1.5505014657974243 img loss 1.454987645149231 img loss 1.538123369216919 img loss 1.4755617380142212 img loss 1.4640504121780396 img loss 1.5397610664367676 img loss 1.654264211654663 img loss 1.6193333864212036 img loss 1.5082460641860962 img loss 1.5124468803405762 img loss 1.4867584705352783 img loss 1.4638211727142334 img loss 1.5723789930343628 {'loss': 1.5127, 'grad_norm': 0.3558675944805145, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.184976577758789 img loss 1.1693118810653687 img loss 1.1380760669708252 img loss 1.1864341497421265 img loss 1.2291526794433594 img loss 1.1997522115707397 img loss 1.1823583841323853 img loss 1.1807188987731934 img loss 1.2111046314239502 img loss 1.1995649337768555 img loss 1.278059482574463 img loss 1.190499186515808 img loss 1.137903094291687 img loss 1.2233434915542603 img loss 1.2145864963531494 img loss 1.1564042568206787 img loss 1.1502984762191772 img loss 1.214659571647644 img loss 1.2859416007995605 img loss 1.184156060218811 img loss 1.2735133171081543 img loss 1.1917552947998047 img loss 1.1797497272491455 img loss 1.209818720817566 img loss 1.2250020503997803 img loss 1.2185111045837402 img loss 1.2035411596298218 img loss 1.1981054544448853 img loss 1.225358247756958 img loss 1.1792305707931519 img loss 1.2251739501953125 img loss 1.2253659963607788 img loss 1.231813669204712 img loss 1.1936365365982056 img loss 1.2108427286148071 img loss 1.170423150062561 img loss 1.2176380157470703 img loss 1.2662549018859863 img loss 1.2205079793930054 img loss 1.1548627614974976 img loss 1.2043441534042358 img loss 1.16853666305542 img loss 1.2109947204589844 img loss 1.1560657024383545 img loss 1.1835674047470093 img loss 1.207828164100647 img loss 1.228662371635437 img loss 1.256091833114624 img loss 1.216307520866394 img loss 1.2165840864181519 img loss 1.3065427541732788 img loss 1.243734359741211 img loss 1.2628332376480103 img loss 1.1530951261520386 img loss 1.1652464866638184 img loss 1.1906790733337402 img loss 1.1754130125045776 img loss 1.1861093044281006 img loss 1.1422975063323975 img loss 1.2167366743087769 img loss 1.2367992401123047 img loss 1.1530526876449585 img loss 1.2046940326690674 img loss 1.2310091257095337 img loss 1.1928104162216187 img loss 1.164900779724121 img loss 1.236858606338501 img loss 1.1795872449874878 img loss 1.1845641136169434 img loss 1.229660987854004 img loss 1.182027816772461 img loss 1.213631272315979 img loss 1.1332249641418457 img loss 1.199828863143921 img loss 1.2841724157333374 img loss 1.1899715662002563 img loss 1.2526698112487793 img loss 1.1210874319076538 img loss 1.218514323234558 img loss 1.2077322006225586 img loss 1.2333611249923706 img loss 1.199279546737671 img loss 1.1452922821044922 img loss 1.1837961673736572 img loss 1.1807998418807983 img loss 1.1974834203720093 img loss 1.2937220335006714 img loss 1.1991227865219116 img loss 1.2069294452667236 img loss 1.2579624652862549 img loss 1.19596266746521 img loss 1.2219034433364868 img loss 1.176239252090454 img loss 1.2046668529510498 img loss 1.226123571395874 img loss 1.2191784381866455 img loss 1.18832266330719 img loss 1.1705303192138672 img loss 1.201354742050171 img loss 1.2259533405303955 img loss 1.1419094800949097 img loss 1.2389397621154785 img loss 1.2149531841278076 img loss 1.1833961009979248 img loss 1.2451720237731934 img loss 1.174202561378479 img loss 1.207801103591919 img loss 1.2376984357833862 img loss 1.25286865234375 img loss 1.1780908107757568 img loss 1.2382344007492065 img loss 1.198950171470642 img loss 1.202091097831726 img loss 1.2293071746826172 img loss 1.2134736776351929 img loss 1.13946533203125 img loss 1.174534559249878 img loss 1.1727042198181152 img loss 1.249554991722107 img loss 1.2003154754638672 img loss 1.1844834089279175 img loss 1.2114089727401733 img loss 1.3175324201583862 img loss 1.1891820430755615 img loss 1.2456039190292358 img loss 1.1449882984161377 img loss 1.2177181243896484 img loss 1.2123584747314453 {'loss': 1.2046, 'grad_norm': 0.25050464272499084, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1634645462036133 img loss 1.1531307697296143 img loss 1.2089266777038574 img loss 1.214432716369629 img loss 1.2056794166564941 img loss 1.202124834060669 img loss 1.1642036437988281 img loss 1.217430830001831 img loss 1.1752221584320068 img loss 1.201555609703064 img loss 1.20769464969635 img loss 1.1882667541503906 img loss 1.22825026512146 img loss 1.1679843664169312 img loss 1.1914738416671753 img loss 1.2043005228042603 img loss 1.211590051651001 img loss 1.2430124282836914 img loss 1.2234618663787842 img loss 1.2086937427520752 img loss 1.2066704034805298 img loss 1.1977994441986084 img loss 1.1725648641586304 img loss 1.2230652570724487 img loss 1.1517301797866821 img loss 1.2031004428863525 img loss 1.225231647491455 img loss 1.2216938734054565 img loss 1.2585203647613525 img loss 1.1813111305236816 img loss 1.1905937194824219 img loss 1.1943244934082031 img loss 1.2216601371765137 img loss 1.2174055576324463 img loss 1.1756845712661743 img loss 1.1756523847579956 img loss 1.2139803171157837 img loss 1.1644032001495361 img loss 1.1729438304901123 img loss 1.165844440460205 img loss 1.2315785884857178 img loss 1.1813104152679443 img loss 1.2028179168701172 img loss 1.1739882230758667 img loss 1.1724649667739868 img loss 1.236887812614441 img loss 1.2019195556640625 img loss 1.2169666290283203 img loss 1.2214808464050293 img loss 1.16848623752594 img loss 1.2182625532150269 img loss 1.231981635093689 img loss 1.2168996334075928 img loss 1.2181894779205322 img loss 1.1893821954727173 img loss 1.1700462102890015 img loss 1.1891963481903076 img loss 1.1965200901031494 img loss 1.2123236656188965 img loss 1.231276035308838 img loss 1.1724917888641357 img loss 1.1755911111831665 img loss 1.1975454092025757 img loss 1.1518120765686035 img loss 1.1896779537200928img loss 1.1466025114059448 img loss 1.2433452606201172 img loss 1.1852836608886719 img loss 1.2093865871429443 img loss 1.140641450881958 img loss 1.1699702739715576 img loss 1.1894512176513672 img loss 1.2127240896224976 img loss 1.2354881763458252 img loss 1.1729705333709717 img loss 1.1548492908477783 img loss 1.2162601947784424 img loss 1.184478521347046 img loss 1.205030918121338 img loss 1.2185235023498535 img loss 1.2445529699325562 img loss 1.2499617338180542 img loss 1.2334650754928589 img loss 1.1957536935806274 img loss 1.1724509000778198 img loss 1.1982719898223877 img loss 1.1926777362823486 img loss 1.2113749980926514 img loss 1.1659393310546875 img loss 1.1915849447250366 img loss 1.2584660053253174 img loss 1.1982916593551636 img loss 1.2316346168518066 img loss 1.1979459524154663 img loss 1.154873251914978 img loss 1.209847092628479 img loss 1.1346759796142578 img loss 1.1386970281600952 img loss 1.2079261541366577 img loss 1.1807267665863037 img loss 1.1910359859466553 img loss 1.1556355953216553 img loss 1.1578480005264282 img loss 1.172132968902588 img loss 1.2668596506118774 img loss 1.2664152383804321 img loss 1.1869181394577026 img loss 1.1859941482543945 img loss 1.1651567220687866 img loss 1.2543858289718628 img loss 1.1864449977874756 img loss 1.1822679042816162 img loss 1.2025381326675415 img loss 1.2617288827896118 img loss 1.2439305782318115 img loss 1.1834805011749268 img loss 1.1982738971710205 img loss 1.1518421173095703 img loss 1.1859829425811768 img loss 1.2034685611724854 img loss 1.171282410621643 img loss 1.2003159523010254 img loss 1.220079779624939 img loss 1.2277898788452148 img loss 1.2134407758712769 img loss 1.2038393020629883 img loss 1.2054808139801025 img loss 1.2139650583267212 {'loss': 1.1984, 'grad_norm': 0.2614114284515381, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.387805461883545 img loss 1.3310470581054688 img loss 1.2939685583114624 img loss 1.2605293989181519 img loss 1.3059204816818237 img loss 1.3340078592300415 img loss 1.3282122611999512 img loss 1.2795770168304443 img loss 1.3183115720748901 img loss 1.368317723274231 img loss 1.270493745803833 img loss 1.3821147680282593 img loss 1.3802733421325684 img loss 1.3109041452407837 img loss 1.408454179763794 img loss 1.3376833200454712 img loss 1.2987401485443115 img loss 1.3109962940216064 img loss 1.335727334022522 img loss 1.3283662796020508 img loss 1.3387922048568726 img loss 1.3593268394470215 img loss 1.3948321342468262 img loss 1.3397421836853027 img loss 1.3225200176239014 img loss 1.3552794456481934 img loss 1.332756519317627 img loss 1.2711395025253296 img loss 1.3422954082489014 img loss 1.3094514608383179 img loss 1.3737720251083374 img loss 1.3644452095031738 img loss 1.308598279953003 img loss 1.4870541095733643 img loss 1.3286136388778687 img loss 1.351190447807312 img loss 1.2933603525161743 img loss 1.3176130056381226 img loss 1.3037481307983398 img loss 1.2900152206420898 img loss 1.349608302116394 img loss 1.2852017879486084 img loss 1.3191524744033813 img loss 1.3679646253585815 img loss 1.3342175483703613 img loss 1.3099594116210938 img loss 1.3712910413742065 img loss 1.3747214078903198 img loss 1.3444563150405884 img loss 1.284131646156311 img loss 1.359371304512024 img loss 1.2890647649765015 img loss 1.293059229850769 img loss 1.3435438871383667 img loss 1.3658453226089478 img loss 1.2884448766708374 img loss 1.3527522087097168 img loss 1.3367798328399658 img loss 1.291123628616333 img loss 1.3143647909164429 img loss 1.404965877532959 img loss 1.3273134231567383 img loss 1.3502299785614014 img loss 1.3286590576171875 img loss 1.3685240745544434 img loss 1.3618597984313965 img loss 1.3089673519134521 img loss 1.4372401237487793 img loss 1.3313190937042236 img loss 1.3817954063415527 img loss 1.3011748790740967 img loss 1.3105818033218384 img loss 1.3306312561035156 img loss 1.3252809047698975 img loss 1.285212755203247 img loss 1.2891781330108643 img loss 1.3630492687225342 img loss 1.3760701417922974 img loss 1.3958752155303955 img loss 1.3896526098251343 img loss 1.3838317394256592 img loss 1.3783890008926392 img loss 1.3251426219940186 img loss 1.3710157871246338 img loss 1.403654932975769 img loss 1.3660894632339478 img loss 1.2863126993179321 img loss 1.3108608722686768 img loss 1.3038010597229004 img loss 1.2741097211837769 img loss 1.3700635433197021 img loss 1.3290659189224243 img loss 1.342475414276123 img loss 1.2854312658309937 img loss 1.2833728790283203 img loss 1.4047399759292603 img loss 1.3065202236175537 img loss 1.225351095199585 img loss 1.3631432056427002 img loss 1.3654812574386597 img loss 1.3450090885162354 img loss 1.2762163877487183 img loss 1.304084062576294 img loss 1.3261566162109375 img loss 1.3982990980148315 img loss 1.3192226886749268 img loss 1.2847718000411987 img loss 1.4094699621200562 img loss 1.3133177757263184 img loss 1.3777412176132202 img loss 1.3343933820724487 img loss 1.325392723083496 img loss 1.238742470741272 img loss 1.300027847290039 img loss 1.3428221940994263 img loss 1.3589025735855103 img loss 1.3689215183258057 img loss 1.310229778289795 img loss 1.3152436017990112 img loss 1.3112906217575073 img loss 1.3003787994384766 img loss 1.3286478519439697 img loss 1.4475027322769165 img loss 1.3416906595230103 img loss 1.3234306573867798 img loss 1.3009312152862549 img loss 1.3711600303649902 img loss 1.2991727590560913 {'loss': 1.3348, 'grad_norm': 0.3262327313423157, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2336912155151367 img loss 1.1419448852539062 img loss 1.151132345199585 img loss 1.1578835248947144 img loss 1.1403816938400269 img loss 1.2090790271759033 img loss 1.1904807090759277 img loss 1.1407644748687744 img loss 1.1806038618087769 img loss 1.2891613245010376 img loss 1.124550223350525 img loss 1.3591351509094238 img loss 1.1722664833068848 img loss 1.1985375881195068 img loss 1.1793396472930908 img loss 1.175532341003418 img loss 1.1483564376831055 img loss 1.2095444202423096 img loss 1.1632601022720337 img loss 1.186675786972046 img loss 1.2817368507385254 img loss 1.172951102256775 img loss 1.212796688079834 img loss 1.2243646383285522 img loss 1.1836429834365845 img loss 1.087788462638855 img loss 1.152331829071045 img loss 1.1751749515533447 img loss 1.203501582145691 img loss 1.1915538311004639 img loss 1.1890865564346313 img loss 1.1888967752456665 img loss 1.228507399559021 img loss 1.180579423904419 img loss 1.1468353271484375 img loss 1.193621277809143 img loss 1.1801528930664062 img loss 1.1454675197601318 img loss 1.2360336780548096 img loss 1.1967912912368774 img loss 1.18663489818573 img loss 1.2745903730392456 img loss 1.2294174432754517 img loss 1.1417510509490967 img loss 1.1825957298278809 img loss 1.227597713470459 img loss 1.2724359035491943 img loss 1.1361812353134155 img loss 1.2266464233398438 img loss 1.1898505687713623 img loss 1.1571919918060303 img loss 1.2501987218856812 img loss 1.2557830810546875 img loss 1.2110775709152222 img loss 1.2777197360992432 img loss 1.1803001165390015 img loss 1.1970412731170654 img loss 1.2231652736663818 img loss 1.1765437126159668 img loss 1.182795763015747 img loss 1.1850637197494507 img loss 1.208686113357544 img loss 1.1908096075057983img loss 1.1927999258041382 img loss 1.2084369659423828 img loss 1.2135348320007324 img loss 1.1371570825576782 img loss 1.1729295253753662 img loss 1.270621657371521 img loss 1.2188421487808228 img loss 1.143438696861267 img loss 1.1678282022476196 img loss 1.1875941753387451 img loss 1.2668285369873047 img loss 1.2103803157806396 img loss 1.1418837308883667 img loss 1.2801544666290283 img loss 1.2364200353622437 img loss 1.2059242725372314 img loss 1.261400580406189 img loss 1.2347919940948486 img loss 1.1735719442367554 img loss 1.2285956144332886 img loss 1.1636947393417358 img loss 1.1731942892074585 img loss 1.1925047636032104 img loss 1.2175071239471436 img loss 1.181029200553894 img loss 1.2327951192855835 img loss 1.1717472076416016 img loss 1.252183198928833 img loss 1.1973869800567627 img loss 1.2094601392745972 img loss 1.1768261194229126 img loss 1.2099246978759766 img loss 1.2089653015136719 img loss 1.1683595180511475 img loss 1.166218638420105 img loss 1.2050836086273193 img loss 1.181373119354248 img loss 1.17422354221344 img loss 1.1650985479354858 img loss 1.1904747486114502 img loss 1.144316554069519 img loss 1.201831579208374 img loss 1.2117289304733276 img loss 1.1564605236053467 img loss 1.183957576751709 img loss 1.24430513381958 img loss 1.2121789455413818 img loss 1.218774437904358 img loss 1.2007206678390503 img loss 1.240681529045105 img loss 1.2028611898422241 img loss 1.1818184852600098 img loss 1.2846105098724365 img loss 1.2026640176773071 img loss 1.1864547729492188 img loss 1.1428784132003784 img loss 1.2090463638305664 img loss 1.2132983207702637 img loss 1.1645971536636353 img loss 1.1855000257492065 img loss 1.2277507781982422 img loss 1.2026095390319824 img loss 1.2083122730255127 img loss 1.1660335063934326 img loss 1.197363257408142 {'loss': 1.1974, 'grad_norm': 0.26807165145874023, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2912571430206299 img loss 1.271547555923462 img loss 1.4084389209747314 img loss 1.2131450176239014 img loss 1.168461561203003 img loss 1.2786325216293335 img loss 1.2544511556625366 img loss 1.2874001264572144 img loss 1.2428851127624512 img loss 1.1561874151229858 img loss 1.278242588043213 img loss 1.3347188234329224 img loss 1.2283152341842651 img loss 1.313826084136963 img loss 1.2319751977920532 img loss 1.2873486280441284 img loss 1.2562940120697021 img loss 1.2167558670043945 img loss 1.2955535650253296 img loss 1.2808078527450562 img loss 1.2662618160247803 img loss 1.224983811378479 img loss 1.2203212976455688 img loss 1.3269487619400024 img loss 1.1652913093566895 img loss 1.178750991821289 img loss 1.190484881401062 img loss 1.1938772201538086 img loss 1.2246614694595337 img loss 1.1646885871887207 img loss 1.2186076641082764 img loss 1.2834900617599487 img loss 1.228635549545288 img loss 1.1288788318634033 img loss 1.258188009262085 img loss 1.1861251592636108 img loss 1.2357008457183838 img loss 1.206419587135315 img loss 1.2192598581314087 img loss 1.261043906211853 img loss 1.311077356338501 img loss 1.2350437641143799 img loss 1.2271990776062012 img loss 1.2224242687225342 img loss 1.3139686584472656 img loss 1.3059200048446655 img loss 1.265440821647644 img loss 1.2293188571929932 img loss 1.2769726514816284 img loss 1.266721248626709 img loss 1.2880074977874756 img loss 1.2209441661834717 img loss 1.2718112468719482 img loss 1.377883791923523 img loss 1.2435524463653564 img loss 1.218278169631958 img loss 1.2847105264663696 img loss 1.285714864730835 img loss 1.2134445905685425 img loss 1.2531145811080933 img loss 1.1999166011810303 img loss 1.312630295753479 img loss 1.2494703531265259 img loss 1.201697826385498 img loss 1.160524606704712 img loss 1.195224404335022 img loss 1.186521291732788 img loss 1.2573012113571167 img loss 1.257972240447998 img loss 1.3017905950546265 img loss 1.17710280418396 img loss 1.2286142110824585 img loss 1.246293544769287 img loss 1.2504619359970093 img loss 1.2375774383544922 img loss 1.234926700592041 img loss 1.2112888097763062 img loss 1.2277177572250366 img loss 1.2558627128601074 img loss 1.3293424844741821 img loss 1.2079176902770996 img loss 1.1998465061187744 img loss 1.2930443286895752 img loss 1.2294745445251465 img loss 1.2229385375976562 img loss 1.3456364870071411 img loss 1.3872076272964478 img loss 1.2894914150238037 img loss 1.1486530303955078 img loss 1.2296504974365234 img loss 1.2572681903839111 img loss 1.170267939567566 img loss 1.1973166465759277 img loss 1.250139594078064 img loss 1.240538477897644 img loss 1.1737370491027832 img loss 1.2591880559921265 img loss 1.3042702674865723 img loss 1.231270432472229 img loss 1.2023416757583618 img loss 1.191495656967163 img loss 1.2757158279418945 img loss 1.1546618938446045 img loss 1.276792049407959 img loss 1.2430877685546875 img loss 1.2110211849212646 img loss 1.2557239532470703 img loss 1.2400522232055664 img loss 1.1993885040283203 img loss 1.2752723693847656 img loss 1.2051374912261963 img loss 1.2720725536346436 img loss 1.2102206945419312 img loss 1.2716147899627686 img loss 1.2366241216659546 img loss 1.2115005254745483 img loss 1.273406744003296 img loss 1.2624183893203735 img loss 1.2793633937835693 img loss 1.3159079551696777 img loss 1.1318525075912476 img loss 1.2502269744873047 img loss 1.2569798231124878 img loss 1.1620991230010986 img loss 1.1818662881851196 img loss 1.2048053741455078 img loss 1.1166988611221313 img loss 1.3645979166030884 {'loss': 1.2428, 'grad_norm': 0.2224096655845642, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2447216510772705 img loss 1.2383384704589844 img loss 1.169189453125 img loss 1.2915408611297607 img loss 1.2747453451156616 img loss 1.2546906471252441 img loss 1.236479640007019 img loss 1.1525261402130127 img loss 1.1939215660095215 img loss 1.2347246408462524 img loss 1.1753931045532227 img loss 1.2201229333877563 img loss 1.2201508283615112 img loss 1.2710031270980835 img loss 1.2053594589233398 img loss 1.2370017766952515 img loss 1.2226465940475464 img loss 1.2760138511657715 img loss 1.2062784433364868 img loss 1.2208350896835327 img loss 1.3248953819274902 img loss 1.2236926555633545 img loss 1.2452415227890015 img loss 1.3217884302139282 img loss 1.2018113136291504 img loss 1.2112536430358887 img loss 1.2419605255126953 img loss 1.3066431283950806 img loss 1.2942430973052979 img loss 1.20634126663208 img loss 1.2420902252197266 img loss 1.2911300659179688 img loss 1.1724531650543213 img loss 1.2578601837158203 img loss 1.1870555877685547 img loss 1.2464033365249634 img loss 1.2014861106872559 img loss 1.246558427810669 img loss 1.2360410690307617 img loss 1.2375829219818115 img loss 1.267270565032959 img loss 1.2336915731430054 img loss 1.1692036390304565 img loss 1.2569060325622559 img loss 1.2364883422851562 img loss 1.2951984405517578 img loss 1.183732271194458 img loss 1.1771150827407837 img loss 1.140794038772583 img loss 1.2162898778915405 img loss 1.2346159219741821 img loss 1.2411158084869385 img loss 1.2155213356018066 img loss 1.2200437784194946 img loss 1.2001378536224365 img loss 1.1812365055084229 img loss 1.2424951791763306 img loss 1.3144749402999878 img loss 1.243862509727478 img loss 1.216753363609314 img loss 1.2008079290390015 img loss 1.243524193763733 img loss 1.1931703090667725 img loss 1.2156580686569214 img loss 1.2600431442260742 img loss 1.2380260229110718 img loss 1.240096926689148 img loss 1.2197579145431519 img loss 1.2381864786148071 img loss 1.2643654346466064 img loss 1.2468719482421875 img loss 1.1640534400939941 img loss 1.2526262998580933 img loss 1.1626478433609009 img loss 1.2262979745864868 img loss 1.2653758525848389 img loss 1.2659395933151245 img loss 1.2397840023040771 img loss 1.293123483657837 img loss 1.2916903495788574 img loss 1.2226924896240234 img loss 1.2401542663574219 img loss 1.2337677478790283 img loss 1.1948002576828003 img loss 1.2055256366729736 img loss 1.2536687850952148 img loss 1.2736551761627197 img loss 1.1809157133102417 img loss 1.2096707820892334 img loss 1.1356576681137085 img loss 1.223741054534912 img loss 1.2181795835494995 img loss 1.26631760597229 img loss 1.2207657098770142 img loss 1.2002595663070679 img loss 1.255152702331543 img loss 1.2566553354263306 img loss 1.3222057819366455 img loss 1.260056972503662 img loss 1.2709711790084839 img loss 1.2369896173477173 img loss 1.2927573919296265 img loss 1.2164655923843384 img loss 1.240757703781128 img loss 1.1814281940460205 img loss 1.2653483152389526 img loss 1.2410235404968262 img loss 1.2143661975860596 img loss 1.27791166305542 img loss 1.2086986303329468 img loss 1.1680916547775269 img loss 1.2310421466827393 img loss 1.1669189929962158 img loss 1.2713632583618164 img loss 1.196913242340088 img loss 1.1551597118377686 img loss 1.1903696060180664 img loss 1.1974353790283203 img loss 1.2664448022842407 img loss 1.2262290716171265 img loss 1.2402368783950806 img loss 1.1902625560760498 img loss 1.1615456342697144 img loss 1.1720457077026367 img loss 1.1512260437011719 img loss 1.2473785877227783 img loss 1.2420201301574707 img loss 1.2095773220062256 {'loss': 1.2293, 'grad_norm': 0.2886158525943756, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2851464748382568 img loss 1.1907029151916504 img loss 1.2407439947128296 img loss 1.2485747337341309 img loss 1.191030502319336 img loss 1.231522560119629 img loss 1.2413325309753418 img loss 1.2397236824035645 img loss 1.2815814018249512 img loss 1.2351911067962646 img loss 1.1601749658584595 img loss 1.2104606628417969 img loss 1.1916414499282837 img loss 1.2720228433609009 img loss 1.2647340297698975 img loss 1.1889435052871704 img loss 1.2180734872817993 img loss 1.2687456607818604 img loss 1.2252033948898315 img loss 1.1863646507263184 img loss 1.1918662786483765 img loss 1.210294485092163 img loss 1.2107181549072266 img loss 1.234361171722412 img loss 1.2005046606063843 img loss 1.2130775451660156 img loss 1.19492506980896 img loss 1.2154673337936401 img loss 1.187865972518921 img loss 1.2440547943115234 img loss 1.2146201133728027 img loss 1.1904468536376953 img loss 1.2530258893966675 img loss 1.2087299823760986 img loss 1.259192943572998 img loss 1.2103618383407593 img loss 1.2860305309295654 img loss 1.1436623334884644 img loss 1.1846510171890259 img loss 1.177537441253662 img loss 1.2071492671966553 img loss 1.2036817073822021 img loss 1.2102514505386353 img loss 1.2760276794433594 img loss 1.2275373935699463 img loss 1.3150663375854492 img loss 1.2378292083740234 img loss 1.22306227684021 img loss 1.2725152969360352 img loss 1.2470530271530151 img loss 1.1984175443649292 img loss 1.2363344430923462 img loss 1.2511096000671387 img loss 1.2271082401275635 img loss 1.276883602142334 img loss 1.2256964445114136 img loss 1.2403477430343628 img loss 1.1972579956054688 img loss 1.249173641204834 img loss 1.2513103485107422 img loss 1.2170147895812988 img loss 1.2101736068725586 img loss 1.194995641708374 img loss 1.206430435180664 img loss 1.2535641193389893 img loss 1.1832596063613892 img loss 1.2000515460968018 img loss 1.2341609001159668 img loss 1.2855730056762695 img loss 1.218707799911499 img loss 1.208494782447815 img loss 1.3057408332824707 img loss 1.2423827648162842 img loss 1.1466619968414307 img loss 1.2204787731170654 img loss 1.2125662565231323 img loss 1.2104344367980957 img loss 1.163463830947876 img loss 1.2560747861862183 img loss 1.2144010066986084 img loss 1.153674840927124 img loss 1.1776002645492554 img loss 1.1088001728057861 img loss 1.2130345106124878 img loss 1.1988134384155273 img loss 1.2053741216659546 img loss 1.2136495113372803 img loss 1.2292088270187378 img loss 1.215178370475769 img loss 1.240608811378479 img loss 1.2323261499404907 img loss 1.2188268899917603 img loss 1.2387428283691406 img loss 1.2190879583358765 img loss 1.2276010513305664 img loss 1.2753844261169434 img loss 1.2548670768737793 img loss 1.2188748121261597 img loss 1.2268751859664917img loss 1.2495828866958618 img loss 1.2371554374694824 img loss 1.2589787244796753 img loss 1.2227363586425781 img loss 1.2125343084335327 img loss 1.2029030323028564 img loss 1.2614994049072266 img loss 1.2680631875991821 img loss 1.272062063217163 img loss 1.211057186126709 img loss 1.2795727252960205 img loss 1.2033382654190063 img loss 1.2393138408660889 img loss 1.2936410903930664 img loss 1.198828101158142 img loss 1.204079508781433 img loss 1.2266737222671509 img loss 1.262027621269226 img loss 1.2241761684417725 img loss 1.2460812330245972 img loss 1.2039616107940674 img loss 1.172212839126587 img loss 1.2286481857299805 img loss 1.1936676502227783 img loss 1.2711100578308105 img loss 1.245207667350769 img loss 1.1690434217453003 img loss 1.2739522457122803 img loss 1.306132197380066 {'loss': 1.2255, 'grad_norm': 0.2468814104795456, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3583767414093018 img loss 1.2388179302215576 img loss 1.2222355604171753 img loss 1.2869733572006226 img loss 1.314307689666748 img loss 1.4051710367202759 img loss 1.3090673685073853 img loss 1.19716477394104 img loss 1.3391762971878052 img loss 1.393972635269165 img loss 1.3628565073013306 img loss 1.3120875358581543 img loss 1.3393299579620361 img loss 1.3917566537857056 img loss 1.3712800741195679 img loss 1.322091817855835 img loss 1.3516219854354858 img loss 1.2761626243591309 img loss 1.3875864744186401 img loss 1.2878690958023071 img loss 1.2542928457260132 img loss 1.3743643760681152 img loss 1.2999098300933838 img loss 1.3121486902236938 img loss 1.2548049688339233 img loss 1.2939976453781128 img loss 1.2040190696716309 img loss 1.2288644313812256 img loss 1.3841267824172974 img loss 1.3552922010421753 img loss 1.2832298278808594 img loss 1.3116711378097534 img loss 1.3314259052276611 img loss 1.2865204811096191 img loss 1.3558659553527832 img loss 1.3640371561050415 img loss 1.254747748374939 img loss 1.2559245824813843 img loss 1.2460408210754395 img loss 1.400977611541748 img loss 1.2792853116989136 img loss 1.28719162940979 img loss 1.3506306409835815 img loss 1.3451141119003296 img loss 1.2459962368011475 img loss 1.3878943920135498 img loss 1.2856146097183228 img loss 1.335513710975647 img loss 1.3580336570739746 img loss 1.1872555017471313 img loss 1.3021131753921509 img loss 1.3530763387680054 img loss 1.4185563325881958 img loss 1.239877700805664 img loss 1.1990994215011597 img loss 1.3486956357955933 img loss 1.3535611629486084 img loss 1.2560621500015259 img loss 1.490537166595459 img loss 1.2720764875411987 img loss 1.3255996704101562 img loss 1.2767179012298584 img loss 1.2671165466308594 img loss 1.300605058670044 img loss 1.284769058227539 img loss 1.2849154472351074 img loss 1.3382657766342163 img loss 1.30124831199646 img loss 1.3366825580596924 img loss 1.2467457056045532 img loss 1.3616927862167358 img loss 1.4779391288757324 img loss 1.3344043493270874 img loss 1.296765923500061 img loss 1.2815481424331665 img loss 1.418749451637268 img loss 1.2524139881134033 img loss 1.3592404127120972 img loss 1.229353666305542 img loss 1.3018798828125 img loss 1.3774417638778687 img loss 1.2548882961273193 img loss 1.4411076307296753 img loss 1.2973686456680298 img loss 1.3339101076126099 img loss 1.268192172050476 img loss 1.4171169996261597 img loss 1.3141710758209229 img loss 1.2295293807983398 img loss 1.319427251815796 img loss 1.2628196477890015 img loss 1.2687841653823853 img loss 1.320951223373413 img loss 1.4214478731155396 img loss 1.3425688743591309 img loss 1.234783411026001 img loss 1.2992565631866455 img loss 1.2628517150878906 img loss 1.2303524017333984 img loss 1.299040675163269 img loss 1.4154611825942993 img loss 1.2941197156906128 img loss 1.3644232749938965 img loss 1.3632187843322754 img loss 1.3318639993667603 img loss 1.3140102624893188 img loss 1.3356566429138184 img loss 1.267259120941162 img loss 1.333229422569275 img loss 1.2622148990631104 img loss 1.3516572713851929 img loss 1.4071307182312012 img loss 1.2826286554336548 img loss 1.2833980321884155 img loss 1.3628185987472534 img loss 1.2849345207214355 img loss 1.3573631048202515 img loss 1.350180745124817 img loss 1.3537458181381226 img loss 1.2767523527145386 img loss 1.25766122341156 img loss 1.3234525918960571 img loss 1.388875126838684 img loss 1.2733961343765259 img loss 1.2891366481781006 img loss 1.206033706665039 img loss 1.3529912233352661 img loss 1.2332147359848022 {'loss': 1.3141, 'grad_norm': 0.2726256847381592, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2426248788833618 img loss 1.255938172340393 img loss 1.22774338722229 img loss 1.2500474452972412 img loss 1.2622886896133423 img loss 1.220714807510376 img loss 1.25666081905365 img loss 1.2129570245742798 img loss 1.2570167779922485 img loss 1.2944066524505615 img loss 1.290792465209961 img loss 1.2969812154769897 img loss 1.3022396564483643 img loss 1.1950517892837524 img loss 1.296703577041626 img loss 1.2427496910095215 img loss 1.280687689781189 img loss 1.3202109336853027 img loss 1.3754295110702515 img loss 1.4410218000411987 img loss 1.2408721446990967 img loss 1.2091416120529175 img loss 1.393002986907959 img loss 1.231480360031128 img loss 1.3252588510513306 img loss 1.2755706310272217 img loss 1.2639729976654053 img loss 1.3500398397445679 img loss 1.27542245388031 img loss 1.4256335496902466 img loss 1.189816951751709 img loss 1.2396137714385986 img loss 1.2890576124191284 img loss 1.2966688871383667 img loss 1.2302478551864624 img loss 1.2171672582626343 img loss 1.259225606918335 img loss 1.3107235431671143 img loss 1.3556435108184814 img loss 1.26137375831604 img loss 1.2572177648544312 img loss 1.2585338354110718 img loss 1.1823805570602417 img loss 1.2210071086883545 img loss 1.29146146774292 img loss 1.2077693939208984 img loss 1.2112610340118408 img loss 1.3373112678527832 img loss 1.3276987075805664 img loss 1.2550022602081299 img loss 1.217790126800537 img loss 1.1857202053070068 img loss 1.2912129163742065 img loss 1.319879412651062 img loss 1.3865530490875244 img loss 1.2692091464996338 img loss 1.354514241218567 img loss 1.2006529569625854 img loss 1.329111933708191 img loss 1.343428373336792 img loss 1.2929282188415527 img loss 1.2521283626556396 img loss 1.2155452966690063 img loss 1.2669336795806885 img loss 1.2839761972427368 img loss 1.2668617963790894 img loss 1.398659348487854 img loss 1.2264865636825562 img loss 1.251621961593628 img loss 1.1767584085464478 img loss 1.2618731260299683 img loss 1.3064982891082764 img loss 1.2337992191314697 img loss 1.2553155422210693 img loss 1.310250163078308 img loss 1.261690616607666 img loss 1.2464168071746826 img loss 1.2743988037109375 img loss 1.3097957372665405 img loss 1.2410123348236084 img loss 1.2470200061798096 img loss 1.3122220039367676 img loss 1.2003998756408691 img loss 1.2593342065811157 img loss 1.3531543016433716 img loss 1.212207317352295 img loss 1.2801754474639893 img loss 1.344514012336731 img loss 1.2310396432876587 img loss 1.3955894708633423 img loss 1.2062267065048218 img loss 1.3674958944320679 img loss 1.2974064350128174 img loss 1.2259197235107422 img loss 1.3165022134780884 img loss 1.3461414575576782 img loss 1.192971110343933 img loss 1.3506022691726685 img loss 1.3058136701583862 img loss 1.2229498624801636 img loss 1.2042717933654785 img loss 1.3416086435317993 img loss 1.3332184553146362 img loss 1.193202018737793 img loss 1.3513092994689941 img loss 1.3268579244613647 img loss 1.1902583837509155 img loss 1.3154513835906982 img loss 1.2639282941818237 img loss 1.3436083793640137 img loss 1.192373275756836 img loss 1.2709261178970337 img loss 1.200750708580017 img loss 1.226360559463501 img loss 1.3185324668884277 img loss 1.3373277187347412 img loss 1.2854083776474 img loss 1.3383803367614746 img loss 1.3429386615753174 img loss 1.3865402936935425 img loss 1.2579855918884277 img loss 1.381182074546814 img loss 1.1899707317352295 img loss 1.1708077192306519 img loss 1.231950283050537 img loss 1.2931259870529175 img loss 1.310981273651123 img loss 1.2451413869857788 {'loss': 1.277, 'grad_norm': 0.30110666155815125, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2481715679168701 img loss 1.394671082496643 img loss 1.1540813446044922 img loss 1.2854039669036865 img loss 1.1791679859161377 img loss 1.3503018617630005 img loss 1.180274248123169 img loss 1.1955368518829346 img loss 1.1285109519958496 img loss 1.2867639064788818 img loss 1.310577392578125 img loss 1.2136096954345703 img loss 1.2256125211715698 img loss 1.1940678358078003 img loss 1.2966539859771729 img loss 1.1512097120285034 img loss 1.284976601600647 img loss 1.164916753768921 img loss 1.224687933921814 img loss 1.2588008642196655 img loss 1.1939080953598022 img loss 1.3135775327682495 img loss 1.2689045667648315 img loss 1.2600665092468262 img loss 1.2424083948135376 img loss 1.2124089002609253 img loss 1.2821964025497437 img loss 1.2659945487976074 img loss 1.2750988006591797 img loss 1.2439230680465698 img loss 1.2738804817199707 img loss 1.2484461069107056 img loss 1.2665865421295166 img loss 1.313066005706787 img loss 1.254586100578308 img loss 1.2240514755249023 img loss 1.2095508575439453 img loss 1.2321096658706665 img loss 1.2816365957260132 img loss 1.2015938758850098 img loss 1.1610991954803467 img loss 1.2074615955352783 img loss 1.209877610206604 img loss 1.2758625745773315 img loss 1.2449272871017456 img loss 1.2680151462554932 img loss 1.2884565591812134 img loss 1.2929760217666626 img loss 1.2789415121078491 img loss 1.2683019638061523 img loss 1.2743622064590454 img loss 1.2745048999786377 img loss 1.207889199256897 img loss 1.2696093320846558 img loss 1.2373709678649902 img loss 1.3086040019989014 img loss 1.1945319175720215 img loss 1.261499285697937 img loss 1.2529171705245972 img loss 1.2301874160766602 img loss 1.1991679668426514 img loss 1.289233922958374 img loss 1.2846004962921143 img loss 1.270973801612854 img loss 1.2630457878112793 img loss 1.219275951385498 img loss 1.2981058359146118 img loss 1.2484123706817627 img loss 1.334057331085205 img loss 1.2076126337051392 img loss 1.2252434492111206 img loss 1.2281835079193115 img loss 1.243329405784607 img loss 1.2443398237228394 img loss 1.1789207458496094 img loss 1.3724387884140015 img loss 1.2804908752441406 img loss 1.2718193531036377 img loss 1.320336937904358 img loss 1.3093292713165283 img loss 1.2845187187194824 img loss 1.3225388526916504 img loss 1.2819931507110596 img loss 1.2811895608901978 img loss 1.3079630136489868 img loss 1.2609400749206543 img loss 1.2031188011169434 img loss 1.2188167572021484 img loss 1.210275411605835 img loss 1.1863104104995728 img loss 1.2660479545593262 img loss 1.2209714651107788 img loss 1.241673469543457 img loss 1.2856794595718384 img loss 1.2392370700836182 img loss 1.2606964111328125 img loss 1.1970841884613037 img loss 1.2480273246765137 img loss 1.1332162618637085 img loss 1.2696031332015991 img loss 1.3227537870407104 img loss 1.2444851398468018 img loss 1.2238119840621948 img loss 1.190212607383728 img loss 1.2822532653808594 img loss 1.256925106048584 img loss 1.2225499153137207 img loss 1.1974434852600098 img loss 1.190266489982605 img loss 1.2556931972503662 img loss 1.2205549478530884 img loss 1.2633161544799805 img loss 1.2641468048095703 img loss 1.172799825668335 img loss 1.2503265142440796 img loss 1.3053463697433472 img loss 1.2508602142333984 img loss 1.2397698163986206 img loss 1.2056763172149658 img loss 1.3270413875579834 img loss 1.2339417934417725 img loss 1.1299713850021362 img loss 1.1722105741500854 img loss 1.2168737649917603 img loss 1.2034287452697754 img loss 1.1742210388183594 img loss 1.2611546516418457 img loss 1.3193858861923218 {'loss': 1.2469, 'grad_norm': 0.36104536056518555, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3047070503234863 img loss 1.3123397827148438 img loss 1.2718266248703003 img loss 1.3336844444274902 img loss 1.2630170583724976 img loss 1.311869502067566 img loss 1.2553725242614746 img loss 1.339760661125183 img loss 1.255922794342041 img loss 1.2646679878234863 img loss 1.239254355430603 img loss 1.2564730644226074 img loss 1.2640517950057983 img loss 1.2517210245132446 img loss 1.3119544982910156 img loss 1.2490240335464478 img loss 1.3040099143981934 img loss 1.2112449407577515 img loss 1.3195880651474 img loss 1.1915496587753296img loss 1.2447370290756226 img loss 1.2383936643600464 img loss 1.25875723361969 img loss 1.3270739316940308 img loss 1.3804160356521606 img loss 1.201974630355835 img loss 1.2709511518478394 img loss 1.2759432792663574 img loss 1.196174144744873 img loss 1.2829309701919556 img loss 1.2216567993164062 img loss 1.3205960988998413 img loss 1.32164466381073 img loss 1.2590806484222412 img loss 1.3374778032302856 img loss 1.3596577644348145 img loss 1.2177751064300537 img loss 1.310001015663147 img loss 1.360896348953247 img loss 1.275368094444275 img loss 1.2538257837295532 img loss 1.2614681720733643 img loss 1.2789602279663086 img loss 1.2516558170318604 img loss 1.3398507833480835 img loss 1.2600939273834229 img loss 1.224820852279663 img loss 1.2642338275909424 img loss 1.2859948873519897 img loss 1.2771754264831543 img loss 1.2077397108078003 img loss 1.296561598777771 img loss 1.2399967908859253 img loss 1.198542833328247 img loss 1.3231656551361084 img loss 1.280771255493164 img loss 1.2220840454101562 img loss 1.1795778274536133 img loss 1.2513394355773926 img loss 1.3220343589782715 img loss 1.3036459684371948 img loss 1.2722623348236084 img loss 1.300545573234558 img loss 1.2795590162277222 img loss 1.3204941749572754 img loss 1.211651086807251 img loss 1.3157230615615845 img loss 1.1953461170196533 img loss 1.2116565704345703 img loss 1.1934912204742432 img loss 1.225005865097046 img loss 1.2853120565414429 img loss 1.338985562324524 img loss 1.2740914821624756 img loss 1.3949247598648071 img loss 1.3125553131103516 img loss 1.3279861211776733 img loss 1.2235344648361206 img loss 1.2757452726364136 img loss 1.325609803199768 img loss 1.2099239826202393 img loss 1.2228317260742188 img loss 1.2533702850341797 img loss 1.3606871366500854 img loss 1.2655508518218994 img loss 1.196287751197815 img loss 1.304789423942566 img loss 1.2484111785888672 img loss 1.4374791383743286 img loss 1.2617435455322266 img loss 1.2090307474136353 img loss 1.3845242261886597 img loss 1.2797636985778809 img loss 1.2344001531600952 img loss 1.3235433101654053 img loss 1.2671400308609009 img loss 1.1565579175949097 img loss 1.25911545753479 img loss 1.3891631364822388 img loss 1.2405706644058228 img loss 1.2525147199630737 img loss 1.2240886688232422 img loss 1.3218252658843994 img loss 1.2286896705627441 img loss 1.2589918375015259 img loss 1.3208098411560059 img loss 1.2352542877197266 img loss 1.276458978652954 img loss 1.171533465385437 img loss 1.2400686740875244 img loss 1.3079416751861572 img loss 1.3106616735458374 img loss 1.2212108373641968 img loss 1.1522800922393799 img loss 1.333743929862976 img loss 1.2630256414413452 img loss 1.1963367462158203 img loss 1.2509899139404297 img loss 1.398888349533081 img loss 1.3030439615249634 img loss 1.2434351444244385 img loss 1.305265188217163 img loss 1.2242579460144043 img loss 1.2166999578475952 img loss 1.2760772705078125 img loss 1.193572998046875 img loss 1.2608013153076172 img loss 1.265722632408142 {'loss': 1.2714, 'grad_norm': 0.41187649965286255, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2632420063018799 img loss 1.2926181554794312 img loss 1.299354076385498 img loss 1.27835214138031 img loss 1.2788594961166382 img loss 1.2023863792419434 img loss 1.3602585792541504 img loss 1.1717207431793213 img loss 1.2377763986587524 img loss 1.237295150756836 img loss 1.3048025369644165 img loss 1.4063538312911987 img loss 1.1948992013931274 img loss 1.2978380918502808 img loss 1.2127033472061157 img loss 1.3066685199737549 img loss 1.1838661432266235 img loss 1.3006401062011719 img loss 1.2481753826141357 img loss 1.2766326665878296 img loss 1.2490952014923096 img loss 1.2747399806976318 img loss 1.2825584411621094 img loss 1.2082607746124268 img loss 1.2195335626602173 img loss 1.288095235824585 img loss 1.2697895765304565 img loss 1.2554012537002563 img loss 1.2734174728393555 img loss 1.296233057975769 img loss 1.2790855169296265 img loss 1.2942070960998535 img loss 1.2401777505874634 img loss 1.3274668455123901 img loss 1.197652816772461 img loss 1.229757308959961 img loss 1.201048731803894 img loss 1.3028407096862793 img loss 1.2436721324920654 img loss 1.186949372291565 img loss 1.2851017713546753 img loss 1.2187045812606812 img loss 1.436454176902771 img loss 1.381804347038269 img loss 1.2649827003479004 img loss 1.287010669708252 img loss 1.1545486450195312 img loss 1.2812198400497437 img loss 1.1991705894470215 img loss 1.2616868019104004 img loss 1.197563648223877 img loss 1.3154529333114624 img loss 1.3967386484146118 img loss 1.284499168395996 img loss 1.3339322805404663 img loss 1.2353131771087646 img loss 1.234952449798584 img loss 1.319159746170044 img loss 1.3401776552200317 img loss 1.3128992319107056 img loss 1.2327451705932617 img loss 1.2684063911437988 img loss 1.2889511585235596 img loss 1.3264912366867065 img loss 1.1785564422607422 img loss 1.2132034301757812 img loss 1.2278368473052979 img loss 1.1877102851867676 img loss 1.2268942594528198 img loss 1.2777985334396362 img loss 1.2131147384643555 img loss 1.2074694633483887 img loss 1.3227641582489014 img loss 1.3277086019515991 img loss 1.2141900062561035 img loss 1.301788330078125 img loss 1.3796422481536865 img loss 1.2916927337646484 img loss 1.2720342874526978 img loss 1.2453794479370117 img loss 1.3861973285675049 img loss 1.3073067665100098 img loss 1.2519041299819946 img loss 1.2877192497253418 img loss 1.3726731538772583 img loss 1.3110941648483276 img loss 1.283812165260315 img loss 1.2259752750396729 img loss 1.239835500717163 img loss 1.2988529205322266 img loss 1.31560218334198 img loss 1.2828412055969238 img loss 1.288133144378662 img loss 1.2507930994033813 img loss 1.2767027616500854 img loss 1.2437676191329956 img loss 1.3102588653564453 img loss 1.2756469249725342 img loss 1.243647813796997 img loss 1.2363322973251343 img loss 1.2795785665512085 img loss 1.2458884716033936 img loss 1.211159586906433 img loss 1.2672958374023438 img loss 1.3581055402755737 img loss 1.2954729795455933 img loss 1.2301931381225586 img loss 1.3015072345733643 img loss 1.3055094480514526 img loss 1.3350729942321777 img loss 1.2827726602554321 img loss 1.2782520055770874 img loss 1.238389492034912 img loss 1.2369670867919922 img loss 1.2510408163070679 img loss 1.20037841796875 img loss 1.2735824584960938 img loss 1.2887989282608032 img loss 1.3715251684188843 img loss 1.2471522092819214 img loss 1.2863849401474 img loss 1.3255733251571655 img loss 1.2170462608337402 img loss 1.2291278839111328 img loss 1.2516453266143799 img loss 1.3002064228057861 img loss 1.3286044597625732 img loss 1.2448093891143799 {'loss': 1.2718, 'grad_norm': 0.2824884057044983, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.35237455368042 img loss 1.5911105871200562 img loss 1.3356930017471313 img loss 1.6098684072494507 img loss 1.357155203819275 img loss 1.4877530336380005 img loss 1.3890128135681152 img loss 1.4679988622665405 img loss 1.4760432243347168 img loss 1.4840359687805176 img loss 1.3845317363739014 img loss 1.5263642072677612 img loss 1.3848927021026611 img loss 1.4661953449249268 img loss 1.3337258100509644 img loss 1.492895245552063 img loss 1.393722653388977 img loss 1.4328845739364624 img loss 1.4478909969329834 img loss 1.5794126987457275 img loss 1.4261704683303833 img loss 1.4743558168411255 img loss 1.4732367992401123 img loss 1.3316926956176758 img loss 1.2874393463134766 img loss 1.4008122682571411 img loss 1.3846993446350098 img loss 1.3698694705963135 img loss 1.4144337177276611 img loss 1.4704947471618652 img loss 1.416042685508728 img loss 1.3773854970932007 img loss 1.4560282230377197 img loss 1.403376817703247 img loss 1.4392551183700562 img loss 1.418647050857544 img loss 1.3715699911117554 img loss 1.5241265296936035 img loss 1.2570308446884155 img loss 1.5146715641021729 img loss 1.523010015487671 img loss 1.5261578559875488 img loss 1.3747295141220093 img loss 1.5884596109390259 img loss 1.4405524730682373 img loss 1.4758895635604858 img loss 1.4355074167251587 img loss 1.445373773574829 img loss 1.3792706727981567 img loss 1.4382137060165405 img loss 1.4534598588943481 img loss 1.4029053449630737 img loss 1.43112051486969 img loss 1.5597676038742065 img loss 1.4145780801773071 img loss 1.5064198970794678 img loss 1.4715312719345093 img loss 1.4567787647247314 img loss 1.4628269672393799 img loss 1.3588452339172363 img loss 1.3680918216705322 img loss 1.4201821088790894 img loss 1.503818392753601 img loss 1.4570841789245605 img loss 1.5228228569030762 img loss 1.5191086530685425 img loss 1.368743658065796 img loss 1.496214509010315 img loss 1.4936232566833496 img loss 1.4500784873962402 img loss 1.3906580209732056 img loss 1.4544240236282349 img loss 1.429445743560791 img loss 1.4140762090682983 img loss 1.3361533880233765 img loss 1.456092119216919 img loss 1.3763854503631592 img loss 1.3613930940628052 img loss 1.4683328866958618 img loss 1.417892575263977 img loss 1.409030556678772 img loss 1.5454213619232178 img loss 1.4912916421890259 img loss 1.4467346668243408 img loss 1.294433832168579 img loss 1.420315146446228 img loss 1.4299309253692627 img loss 1.4842320680618286 img loss 1.431169867515564 img loss 1.4127429723739624 img loss 1.449553370475769 img loss 1.392174482345581 img loss 1.3756530284881592 img loss 1.4612318277359009 img loss 1.343407392501831 img loss 1.4907609224319458 img loss 1.3568767309188843 img loss 1.5499883890151978 img loss 1.4037727117538452 img loss 1.3780537843704224 img loss 1.4221323728561401 img loss 1.4650598764419556 img loss 1.4090029001235962 img loss 1.5642054080963135 img loss 1.3847376108169556 img loss 1.4281431436538696 img loss 1.4771572351455688 img loss 1.3853565454483032 img loss 1.3939539194107056 img loss 1.2593421936035156 img loss 1.4423748254776 img loss 1.3452708721160889 img loss 1.4814327955245972 img loss 1.411669373512268 img loss 1.4494255781173706 img loss 1.4947057962417603 img loss 1.2647850513458252 img loss 1.3861908912658691 img loss 1.3428314924240112 img loss 1.3434197902679443 img loss 1.4865107536315918 img loss 1.4842034578323364 img loss 1.3532099723815918 img loss 1.3526440858840942 img loss 1.3742194175720215 img loss 1.4960883855819702 img loss 1.4169095754623413 img loss 1.4587342739105225 {'loss': 1.4312, 'grad_norm': 0.375201553106308, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.235276460647583 img loss 1.2243708372116089 img loss 1.314361810684204 img loss 1.2581065893173218 img loss 1.235970139503479 img loss 1.1729243993759155 img loss 1.2264317274093628 img loss 1.257597804069519 img loss 1.2515499591827393 img loss 1.2799506187438965 img loss 1.2923626899719238 img loss 1.1894810199737549 img loss 1.300195336341858 img loss 1.2451300621032715 img loss 1.2255301475524902 img loss 1.19743812084198 img loss 1.2584383487701416 img loss 1.2461984157562256 img loss 1.2429559230804443 img loss 1.2230743169784546 img loss 1.2351624965667725 img loss 1.291461706161499 img loss 1.2008055448532104 img loss 1.2232778072357178 img loss 1.242334246635437 img loss 1.2980632781982422 img loss 1.1437081098556519 img loss 1.2488765716552734 img loss 1.1962440013885498 img loss 1.2365200519561768 img loss 1.2446191310882568 img loss 1.2671931982040405 img loss 1.236400842666626 img loss 1.226555585861206 img loss 1.2727408409118652 img loss 1.2689729928970337 img loss 1.2812055349349976 img loss 1.2357431650161743 img loss 1.3497083187103271 img loss 1.2094073295593262 img loss 1.262310266494751 img loss 1.2359575033187866 img loss 1.253111720085144 img loss 1.2290394306182861 img loss 1.2780511379241943 img loss 1.1945956945419312 img loss 1.213446021080017 img loss 1.1969050168991089 img loss 1.1810798645019531 img loss 1.2090985774993896 img loss 1.2425923347473145 img loss 1.1858147382736206 img loss 1.2162193059921265 img loss 1.2071418762207031 img loss 1.1804875135421753 img loss 1.2438137531280518 img loss 1.2397593259811401 img loss 1.1987414360046387 img loss 1.2758328914642334 img loss 1.305991530418396 img loss 1.1995912790298462 img loss 1.285374402999878 img loss 1.3379558324813843 img loss 1.2212772369384766 img loss 1.3194471597671509 img loss 1.2791715860366821 img loss 1.2860121726989746 img loss 1.241430640220642 img loss 1.2404303550720215 img loss 1.2182235717773438 img loss 1.2434614896774292 img loss 1.2631571292877197 img loss 1.2392921447753906 img loss 1.1742349863052368 img loss 1.2230974435806274 img loss 1.3418538570404053 img loss 1.2482857704162598 img loss 1.1905351877212524 img loss 1.2726976871490479 img loss 1.2585493326187134img loss 1.2048163414001465 img loss 1.228484869003296 img loss 1.2044528722763062 img loss 1.2080198526382446 img loss 1.3196768760681152 img loss 1.27986478805542 img loss 1.284908652305603 img loss 1.2139558792114258 img loss 1.2325979471206665 img loss 1.2140183448791504 img loss 1.2258474826812744 img loss 1.2612659931182861 img loss 1.2544705867767334 img loss 1.2530235052108765 img loss 1.2522251605987549 img loss 1.2152060270309448 img loss 1.2687346935272217 img loss 1.3417069911956787 img loss 1.2169557809829712 img loss 1.2597938776016235 img loss 1.284819483757019 img loss 1.2700541019439697 img loss 1.1706981658935547 img loss 1.22592031955719 img loss 1.2401304244995117 img loss 1.2591187953948975 img loss 1.2846808433532715 img loss 1.22516667842865 img loss 1.2232789993286133 img loss 1.2325448989868164 img loss 1.2238906621932983 img loss 1.2299437522888184 img loss 1.275684118270874 img loss 1.1962498426437378 img loss 1.2285723686218262 img loss 1.2487932443618774 img loss 1.2432289123535156 img loss 1.2753608226776123 img loss 1.2235114574432373 img loss 1.2300610542297363 img loss 1.26004159450531 img loss 1.252382755279541 img loss 1.2228620052337646 img loss 1.2830661535263062 img loss 1.3092055320739746 img loss 1.2122397422790527 img loss 1.2470226287841797 img loss 1.2216930389404297 {'loss': 1.2434, 'grad_norm': 0.2389187216758728, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2908642292022705 img loss 1.2957758903503418 img loss 1.4261001348495483 img loss 1.2946395874023438 img loss 1.3932782411575317 img loss 1.4463328123092651 img loss 1.3864208459854126 img loss 1.3581805229187012 img loss 1.3165721893310547 img loss 1.249084234237671 img loss 1.4117190837860107 img loss 1.3776005506515503 img loss 1.417192816734314 img loss 1.2750362157821655 img loss 1.2590347528457642 img loss 1.2510919570922852 img loss 1.2980988025665283 img loss 1.3576586246490479 img loss 1.352305293083191 img loss 1.2384684085845947 img loss 1.273508071899414 img loss 1.2620162963867188img loss 1.2460821866989136 img loss 1.3604445457458496 img loss 1.3428772687911987 img loss 1.2874822616577148 img loss 1.3492567539215088 img loss 1.291288137435913 img loss 1.4129339456558228 img loss 1.3022249937057495 img loss 1.263474464416504 img loss 1.2621878385543823 img loss 1.2763804197311401img loss 1.2802413702011108 img loss 1.208173394203186 img loss 1.2579759359359741 img loss 1.334194302558899 img loss 1.2851969003677368 img loss 1.5093384981155396 img loss 1.2444911003112793 img loss 1.3197698593139648 img loss 1.369310736656189 img loss 1.3182703256607056 img loss 1.256679892539978 img loss 1.3046278953552246 img loss 1.4598709344863892 img loss 1.211506724357605 img loss 1.2904151678085327 img loss 1.3175525665283203 img loss 1.3653086423873901 img loss 1.3220877647399902 img loss 1.2184861898422241 img loss 1.2214583158493042 img loss 1.334350347518921 img loss 1.308917760848999 img loss 1.2796974182128906 img loss 1.4191813468933105 img loss 1.2885841131210327 img loss 1.4184317588806152 img loss 1.330104112625122 img loss 1.4335542917251587 img loss 1.2851269245147705 img loss 1.350961446762085 img loss 1.4780914783477783 img loss 1.3734763860702515 img loss 1.281145691871643 img loss 1.3155269622802734 img loss 1.3502118587493896 img loss 1.4106284379959106img loss 1.2745078802108765 img loss 1.2800040245056152 img loss 1.2961558103561401 img loss 1.301454782485962 img loss 1.2381218671798706 img loss 1.2683457136154175 img loss 1.373247742652893 img loss 1.2606754302978516 img loss 1.3448816537857056 img loss 1.340129017829895 img loss 1.3486835956573486 img loss 1.4578686952590942 img loss 1.3636194467544556 img loss 1.3470193147659302 img loss 1.4133418798446655 img loss 1.178138017654419 img loss 1.3496944904327393 img loss 1.3297783136367798 img loss 1.4051737785339355 img loss 1.3706724643707275 img loss 1.3300702571868896 img loss 1.3490402698516846 img loss 1.2727296352386475 img loss 1.297393798828125 img loss 1.3141697645187378 img loss 1.2628757953643799 img loss 1.3843191862106323 img loss 1.3982950448989868 img loss 1.3409264087677002 img loss 1.2838003635406494 img loss 1.3374072313308716 img loss 1.3366730213165283 img loss 1.3403650522232056 img loss 1.2132453918457031 img loss 1.3218330144882202 img loss 1.3639369010925293 img loss 1.4160610437393188 img loss 1.283742904663086 img loss 1.3431421518325806 img loss 1.3989917039871216 img loss 1.3305816650390625 img loss 1.381078839302063 img loss 1.3248636722564697 img loss 1.2642502784729004 img loss 1.4882636070251465 img loss 1.4145255088806152 img loss 1.3553355932235718 img loss 1.386168360710144 img loss 1.307084560394287 img loss 1.3754887580871582 img loss 1.3474762439727783 img loss 1.4030817747116089 img loss 1.2562776803970337 img loss 1.2555997371673584 img loss 1.2650429010391235 img loss 1.3474595546722412 img loss 1.316519021987915 img loss 1.3742223978042603 img loss 1.355419397354126 {'loss': 1.3286, 'grad_norm': 0.29460370540618896, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.198588252067566 img loss 1.2672394514083862 img loss 1.258582353591919 img loss 1.2751848697662354 img loss 1.2288039922714233 img loss 1.2756454944610596 img loss 1.2026138305664062 img loss 1.3245289325714111 img loss 1.2628008127212524 img loss 1.2251083850860596 img loss 1.230141520500183 img loss 1.2586486339569092 img loss 1.2390530109405518 img loss 1.2626118659973145 img loss 1.2233632802963257 img loss 1.2417033910751343 img loss 1.2441576719284058 img loss 1.2482249736785889 img loss 1.333099365234375 img loss 1.3861820697784424 img loss 1.2105791568756104 img loss 1.2846050262451172 img loss 1.2001186609268188 img loss 1.2020986080169678 img loss 1.2868732213974 img loss 1.3027578592300415 img loss 1.1993095874786377 img loss 1.2698009014129639 img loss 1.285186529159546 img loss 1.2201292514801025 img loss 1.2731192111968994 img loss 1.3228509426116943 img loss 1.2722641229629517 img loss 1.269979476928711 img loss 1.205481767654419 img loss 1.249428153038025 img loss 1.254116415977478 img loss 1.278464674949646 img loss 1.2789312601089478 img loss 1.238619089126587 img loss 1.4360829591751099 img loss 1.277226448059082 img loss 1.2974869012832642 img loss 1.3051267862319946 img loss 1.2036759853363037 img loss 1.2733999490737915 img loss 1.3496829271316528 img loss 1.2843385934829712 img loss 1.2737915515899658 img loss 1.3156479597091675 img loss 1.343768835067749 img loss 1.2754312753677368 img loss 1.258435606956482 img loss 1.2601851224899292 img loss 1.2932829856872559 img loss 1.3457492589950562 img loss 1.2554482221603394 img loss 1.2547602653503418 img loss 1.3132599592208862 img loss 1.283097505569458 img loss 1.2323354482650757 img loss 1.2547578811645508 img loss 1.3826830387115479 img loss 1.252681016921997 img loss 1.2600903511047363 img loss 1.248860239982605 img loss 1.2614105939865112 img loss 1.3063199520111084 img loss 1.2727296352386475 img loss 1.276723861694336 img loss 1.2013400793075562 img loss 1.3105909824371338 img loss 1.1767499446868896 img loss 1.2525678873062134 img loss 1.2137506008148193 img loss 1.2712677717208862 img loss 1.2998074293136597 img loss 1.2142528295516968 img loss 1.3033891916275024 img loss 1.2685421705245972 img loss 1.253132700920105 img loss 1.2580546140670776 img loss 1.2210230827331543 img loss 1.2216606140136719 img loss 1.2721846103668213 img loss 1.2750728130340576 img loss 1.2312309741973877 img loss 1.2909033298492432 img loss 1.237558126449585 img loss 1.3095568418502808 img loss 1.2754777669906616 img loss 1.2936992645263672 img loss 1.224047303199768 img loss 1.3714444637298584 img loss 1.2457157373428345 img loss 1.2970441579818726 img loss 1.2842499017715454 img loss 1.217698335647583 img loss 1.3589080572128296 img loss 1.2397801876068115 img loss 1.3065261840820312 img loss 1.2511428594589233 img loss 1.3109204769134521 img loss 1.2500168085098267 img loss 1.2691187858581543 img loss 1.2634552717208862 img loss 1.2624564170837402 img loss 1.2291808128356934 img loss 1.2654526233673096 img loss 1.3575359582901 img loss 1.2827904224395752 img loss 1.3580949306488037 img loss 1.3339378833770752 img loss 1.2843198776245117 img loss 1.2865456342697144 img loss 1.331318736076355 img loss 1.304922342300415 img loss 1.1445868015289307 img loss 1.3022551536560059 img loss 1.248848557472229 img loss 1.3077387809753418 img loss 1.3042300939559937 img loss 1.26888906955719 img loss 1.2753334045410156 img loss 1.2910560369491577 img loss 1.267378568649292 img loss 1.3290972709655762 img loss 1.2475651502609253 {'loss': 1.2716, 'grad_norm': 0.33389440178871155, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4740856885910034 img loss 1.4936264753341675 img loss 1.5111690759658813 img loss 1.5543055534362793 img loss 1.495766043663025 img loss 1.5223193168640137 img loss 1.451377511024475 img loss 1.52119779586792 img loss 1.4857934713363647 img loss 1.446763515472412 img loss 1.383949637413025 img loss 1.5120526552200317 img loss 1.51846182346344 img loss 1.4358261823654175 img loss 1.539642095565796 img loss 1.4433029890060425 img loss 1.5020031929016113 img loss 1.40194833278656 img loss 1.4353091716766357 img loss 1.4611279964447021 img loss 1.4156365394592285 img loss 1.4527833461761475 img loss 1.502062201499939 img loss 1.3600841760635376 img loss 1.3460084199905396 img loss 1.600310206413269 img loss 1.4925572872161865 img loss 1.407820463180542 img loss 1.6144349575042725 img loss 1.4169758558273315 img loss 1.3903231620788574 img loss 1.499146819114685 img loss 1.3750172853469849 img loss 1.5546307563781738 img loss 1.4312878847122192 img loss 1.449885606765747 img loss 1.403393030166626 img loss 1.4382163286209106 img loss 1.4108197689056396 img loss 1.4950774908065796 img loss 1.4308801889419556 img loss 1.5746675729751587 img loss 1.302731990814209 img loss 1.4155409336090088 img loss 1.454262614250183 img loss 1.3693842887878418 img loss 1.4386608600616455 img loss 1.3747481107711792 img loss 1.4590057134628296 img loss 1.4333558082580566 img loss 1.429128885269165 img loss 1.3417372703552246 img loss 1.3794656991958618 img loss 1.4720776081085205 img loss 1.5914994478225708 img loss 1.2297680377960205 img loss 1.413684368133545 img loss 1.4587045907974243 img loss 1.3857083320617676 img loss 1.51702082157135 img loss 1.5825021266937256 img loss 1.5154989957809448 img loss 1.4969719648361206 img loss 1.513624906539917 img loss 1.3709319829940796 img loss 1.410151720046997 img loss 1.4749208688735962 img loss 1.5025420188903809 img loss 1.5428112745285034 img loss 1.419039011001587 img loss 1.5064129829406738 img loss 1.3549208641052246 img loss 1.4645016193389893 img loss 1.5533207654953003 img loss 1.584110140800476 img loss 1.513487696647644 img loss 1.5268181562423706 img loss 1.5651229619979858 img loss 1.4820399284362793 img loss 1.3681076765060425 img loss 1.5218479633331299 img loss 1.514830470085144 img loss 1.4414153099060059 img loss 1.431809902191162 img loss 1.4704318046569824 img loss 1.506659984588623 img loss 1.4174597263336182 img loss 1.528716802597046 img loss 1.5205096006393433 img loss 1.465197205543518 img loss 1.5520156621932983 img loss 1.3216460943222046 img loss 1.3693867921829224 img loss 1.5104626417160034 img loss 1.4207955598831177 img loss 1.5936967134475708 img loss 1.4591991901397705 img loss 1.5796046257019043 img loss 1.4361546039581299 img loss 1.5613716840744019 img loss 1.6119962930679321 img loss 1.511812686920166 img loss 1.4283066987991333 img loss 1.5671212673187256 img loss 1.5867705345153809 img loss 1.4429899454116821 img loss 1.5002468824386597 img loss 1.3004173040390015 img loss 1.444760799407959 img loss 1.496925950050354 img loss 1.437303066253662 img loss 1.370180368423462 img loss 1.408006191253662 img loss 1.5047352313995361 img loss 1.4904224872589111 img loss 1.2692558765411377 img loss 1.3834425210952759 img loss 1.4871255159378052 img loss 1.4276098012924194 img loss 1.4835984706878662 img loss 1.5138040781021118 img loss 1.4095733165740967 img loss 1.4114912748336792 img loss 1.4061709642410278 img loss 1.4124009609222412 img loss 1.3528350591659546 img loss 1.5644659996032715 img loss 1.4380236864089966 {'loss': 1.4621, 'grad_norm': 0.4380207657814026, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1889861822128296 img loss 1.3022961616516113 img loss 1.2329422235488892 img loss 1.3353451490402222 img loss 1.2951788902282715 img loss 1.3372269868850708 img loss 1.2107394933700562 img loss 1.3070486783981323 img loss 1.258224368095398 img loss 1.2855799198150635 img loss 1.2785335779190063 img loss 1.3621704578399658 img loss 1.2028982639312744 img loss 1.3112701177597046 img loss 1.266343355178833 img loss 1.353345513343811 img loss 1.3259626626968384 img loss 1.372040867805481 img loss 1.309895396232605 img loss 1.2460333108901978 img loss 1.4056651592254639 img loss 1.340296983718872 img loss 1.2539174556732178 img loss 1.2702395915985107 img loss 1.3135104179382324 img loss 1.3568780422210693 img loss 1.2863869667053223 img loss 1.346215009689331 img loss 1.2748304605484009 img loss 1.3697580099105835 img loss 1.2904175519943237 img loss 1.304483413696289 img loss 1.2803094387054443 img loss 1.2265653610229492 img loss 1.3206934928894043 img loss 1.2554155588150024 img loss 1.366462230682373 img loss 1.3329702615737915 img loss 1.2576441764831543 img loss 1.2715961933135986 img loss 1.2350437641143799 img loss 1.3431280851364136 img loss 1.304106593132019 img loss 1.2955446243286133 img loss 1.373206377029419 img loss 1.330296516418457 img loss 1.2859013080596924 img loss 1.3148326873779297 img loss 1.2585638761520386 img loss 1.3273285627365112 img loss 1.2859058380126953 img loss 1.2114397287368774 img loss 1.4414201974868774 img loss 1.3008553981781006 img loss 1.2688841819763184 img loss 1.2536351680755615 img loss 1.283827304840088 img loss 1.1829302310943604 img loss 1.2611526250839233 img loss 1.2076796293258667 img loss 1.3655412197113037 img loss 1.236400842666626 img loss 1.3268921375274658 img loss 1.2253578901290894 img loss 1.27667236328125 img loss 1.1644201278686523 img loss 1.198770523071289 img loss 1.3254565000534058 img loss 1.2959026098251343 img loss 1.3123468160629272 img loss 1.2300026416778564 img loss 1.242032766342163 img loss 1.2636239528656006 img loss 1.310125708580017 img loss 1.3032718896865845 img loss 1.2771787643432617 img loss 1.323523998260498 img loss 1.2489771842956543 img loss 1.3495395183563232 img loss 1.2646064758300781 img loss 1.3566819429397583 img loss 1.1896494626998901 img loss 1.2037012577056885 img loss 1.2618117332458496 img loss 1.3747985363006592 img loss 1.2752033472061157 img loss 1.2729507684707642 img loss 1.2871801853179932 img loss 1.335616946220398img loss 1.2262063026428223 img loss 1.3769112825393677 img loss 1.212798833847046 img loss 1.2407395839691162 img loss 1.2921072244644165 img loss 1.2582756280899048 img loss 1.2891411781311035 img loss 1.3870691061019897 img loss 1.3607298135757446 img loss 1.248121976852417 img loss 1.286422610282898 img loss 1.3330187797546387 img loss 1.3597197532653809 img loss 1.338439702987671 img loss 1.2718696594238281 img loss 1.3128561973571777 img loss 1.3081492185592651 img loss 1.3740220069885254 img loss 1.238411545753479 img loss 1.1720545291900635 img loss 1.4424355030059814 img loss 1.2847076654434204 img loss 1.2519919872283936 img loss 1.3088085651397705 img loss 1.3310391902923584 img loss 1.2823925018310547 img loss 1.285119891166687 img loss 1.2514162063598633 img loss 1.3087962865829468 img loss 1.330147385597229 img loss 1.273115634918213 img loss 1.2087541818618774 img loss 1.2547882795333862 img loss 1.2685340642929077 img loss 1.2388246059417725 img loss 1.2512779235839844 img loss 1.205517292022705 img loss 1.3558677434921265 img loss 1.2181992530822754 {'loss': 1.2891, 'grad_norm': 0.2162003219127655, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.591672658920288 img loss 1.5721566677093506 img loss 1.6590079069137573 img loss 1.7254481315612793 img loss 1.6744282245635986 img loss 1.66672682762146 img loss 1.62349534034729 img loss 1.5610945224761963 img loss 1.5560698509216309 img loss 1.5483273267745972 img loss 1.596710443496704 img loss 1.7739384174346924 img loss 1.5239511728286743 img loss 1.5513228178024292 img loss 1.4884074926376343 img loss 1.6014283895492554 img loss 1.5746219158172607 img loss 1.5800334215164185 img loss 1.4576956033706665 img loss 1.555098056793213 img loss 1.582795262336731 img loss 1.5888930559158325 img loss 1.6002366542816162 img loss 1.5834555625915527 img loss 1.465888261795044 img loss 1.524878978729248 img loss 1.6000076532363892 img loss 1.5733932256698608 img loss 1.5263484716415405 img loss 1.582037091255188 img loss 1.562711238861084 img loss 1.7097188234329224 img loss 1.5363658666610718 img loss 1.6259102821350098 img loss 1.6530441045761108 img loss 1.5623698234558105 img loss 1.5158611536026 img loss 1.4307786226272583 img loss 1.573180913925171 img loss 1.6315349340438843 img loss 1.5171793699264526 img loss 1.5839968919754028 img loss 1.5372045040130615 img loss 1.5575730800628662 img loss 1.6098500490188599 img loss 1.524878978729248 img loss 1.484812617301941 img loss 1.7123833894729614 img loss 1.5203720331192017 img loss 1.521532654762268 img loss 1.4914079904556274 img loss 1.7087234258651733 img loss 1.4618881940841675 img loss 1.666293978691101 img loss 1.569301724433899 img loss 1.5649155378341675 img loss 1.451149582862854 img loss 1.5793708562850952 img loss 1.5223926305770874 img loss 1.5162577629089355 img loss 1.530617594718933 img loss 1.6254934072494507 img loss 1.4678159952163696 img loss 1.5693882703781128 img loss 1.6218390464782715 img loss 1.7536306381225586 img loss 1.5295926332473755 img loss 1.5266057252883911 img loss 1.5984165668487549 img loss 1.5834280252456665 img loss 1.5019629001617432 img loss 1.478625774383545 img loss 1.6161431074142456 img loss 1.4795317649841309 img loss 1.5818504095077515 img loss 1.5113788843154907 img loss 1.6686309576034546 img loss 1.3960871696472168 img loss 1.4561723470687866 img loss 1.6192690134048462 img loss 1.6095497608184814 img loss 1.5443813800811768 img loss 1.5670465230941772 img loss 1.396135926246643 img loss 1.59255051612854 img loss 1.63918936252594 img loss 1.4612010717391968 img loss 1.450831651687622 img loss 1.6310518980026245 img loss 1.6856735944747925 img loss 1.506614089012146 img loss 1.5592068433761597 img loss 1.582836389541626 img loss 1.632983922958374 img loss 1.5420793294906616 img loss 1.5808756351470947 img loss 1.5899208784103394 img loss 1.436694622039795 img loss 1.5513490438461304 img loss 1.6009632349014282 img loss 1.4288594722747803 img loss 1.5434139966964722 img loss 1.6908191442489624 img loss 1.4952054023742676 img loss 1.5702236890792847 img loss 1.7460581064224243 img loss 1.564984917640686 img loss 1.5401480197906494 img loss 1.6414016485214233 img loss 1.5390418767929077 img loss 1.5388001203536987 img loss 1.5927003622055054 img loss 1.6059223413467407 img loss 1.63032066822052 img loss 1.528627634048462 img loss 1.6551101207733154 img loss 1.6510345935821533 img loss 1.5125572681427002 img loss 1.5143126249313354 img loss 1.7365798950195312 img loss 1.5911271572113037 img loss 1.5520727634429932 img loss 1.5996558666229248 img loss 1.507668375968933 img loss 1.5761505365371704 img loss 1.690527319908142 img loss 1.6679112911224365 img loss 1.5189423561096191 {'loss': 1.5713, 'grad_norm': 1.4427576065063477, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2617841958999634 img loss 1.2702187299728394 img loss 1.3437103033065796 img loss 1.1837161779403687 img loss 1.3398350477218628 img loss 1.2344528436660767 img loss 1.2434265613555908 img loss 1.2453540563583374 img loss 1.285804033279419 img loss 1.2666767835617065 img loss 1.2355400323867798 img loss 1.2077594995498657 img loss 1.285625696182251 img loss 1.2896995544433594 img loss 1.3017889261245728 img loss 1.2388311624526978 img loss 1.2205406427383423 img loss 1.2309331893920898 img loss 1.2843053340911865 img loss 1.2923665046691895 img loss 1.3652194738388062 img loss 1.2526848316192627 img loss 1.2959206104278564 img loss 1.254762053489685 img loss 1.2776826620101929 img loss 1.3144407272338867 img loss 1.2861673831939697 img loss 1.2577183246612549 img loss 1.3073546886444092 img loss 1.197924017906189 img loss 1.2865049839019775 img loss 1.2384772300720215 img loss 1.2799201011657715 img loss 1.3299636840820312 img loss 1.302605152130127 img loss 1.2511032819747925 img loss 1.2119168043136597 img loss 1.2382216453552246 img loss 1.2094062566757202 img loss 1.2686536312103271 img loss 1.3644322156906128 img loss 1.3471980094909668 img loss 1.3463960886001587 img loss 1.2564252614974976 img loss 1.2290947437286377 img loss 1.2142308950424194 img loss 1.2419967651367188 img loss 1.3075059652328491 img loss 1.3342688083648682 img loss 1.2920660972595215 img loss 1.3042325973510742 img loss 1.2428417205810547 img loss 1.3403019905090332 img loss 1.2148756980895996 img loss 1.2522817850112915 img loss 1.218578577041626 img loss 1.2819337844848633 img loss 1.245270013809204 img loss 1.2499946355819702 img loss 1.2553808689117432 img loss 1.3212578296661377 img loss 1.2538998126983643 img loss 1.2181482315063477 img loss 1.2367298603057861 img loss 1.2289040088653564 img loss 1.2628755569458008 img loss 1.25273597240448 img loss 1.2692108154296875 img loss 1.275916337966919 img loss 1.2367463111877441 img loss 1.428419589996338 img loss 1.2547622919082642 img loss 1.2660950422286987 img loss 1.2432278394699097 img loss 1.2925524711608887 img loss 1.2278704643249512 img loss 1.2399051189422607 img loss 1.2872101068496704 img loss 1.3116719722747803 img loss 1.2764604091644287 img loss 1.2499958276748657 img loss 1.2469096183776855 img loss 1.3127106428146362 img loss 1.2727359533309937 img loss 1.2617155313491821 img loss 1.1960086822509766 img loss 1.3226412534713745 img loss 1.209661841392517 img loss 1.2642258405685425 img loss 1.3025506734848022 img loss 1.3331438302993774 img loss 1.2118892669677734 img loss 1.2754039764404297 img loss 1.290851354598999 img loss 1.1776460409164429 img loss 1.2506903409957886 img loss 1.2746303081512451 img loss 1.3776298761367798 img loss 1.188613772392273 img loss 1.2518335580825806 img loss 1.2757697105407715 img loss 1.3060126304626465 img loss 1.2353380918502808 img loss 1.178101897239685 img loss 1.2596092224121094 img loss 1.2901451587677002 img loss 1.2383838891983032 img loss 1.2071517705917358 img loss 1.172628402709961 img loss 1.2765707969665527 img loss 1.2850078344345093 img loss 1.2053027153015137 img loss 1.2150301933288574 img loss 1.1939741373062134 img loss 1.1919907331466675 img loss 1.1891396045684814 img loss 1.2872583866119385 img loss 1.2747513055801392 img loss 1.321662187576294 img loss 1.248340368270874 img loss 1.195931315422058 img loss 1.275061845779419 img loss 1.280225157737732 img loss 1.2645375728607178 img loss 1.21066415309906 img loss 1.3048406839370728 img loss 1.2904287576675415 img loss 1.2394052743911743 {'loss': 1.264, 'grad_norm': 0.5747624635696411, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2896242141723633 img loss 1.3860714435577393 img loss 1.322613000869751 img loss 1.3873133659362793 img loss 1.3739937543869019 img loss 1.4144867658615112 img loss 1.4406133890151978 img loss 1.3652030229568481 img loss 1.4254765510559082 img loss 1.4230505228042603 img loss 1.2987953424453735 img loss 1.4382930994033813 img loss 1.3747284412384033 img loss 1.4355486631393433 img loss 1.3054368495941162 img loss 1.4187642335891724 img loss 1.4447194337844849 img loss 1.5571024417877197 img loss 1.4709473848342896 img loss 1.3448374271392822 img loss 1.2980360984802246 img loss 1.4194670915603638 img loss 1.3094631433486938 img loss 1.5326536893844604 img loss 1.4366347789764404 img loss 1.5378468036651611 img loss 1.3353970050811768 img loss 1.2713799476623535 img loss 1.4667638540267944 img loss 1.3045660257339478 img loss 1.3898255825042725 img loss 1.380868673324585 img loss 1.447635293006897 img loss 1.4487289190292358 img loss 1.4818222522735596 img loss 1.4184483289718628 img loss 1.498667597770691 img loss 1.3422528505325317 img loss 1.2632648944854736 img loss 1.4210320711135864 img loss 1.3864266872406006 img loss 1.366942286491394 img loss 1.4260720014572144 img loss 1.5228391885757446 img loss 1.377441167831421 img loss 1.3984551429748535 img loss 1.3960233926773071 img loss 1.345178246498108 img loss 1.419036626815796 img loss 1.4000275135040283 img loss 1.4854168891906738 img loss 1.4043551683425903 img loss 1.4188742637634277 img loss 1.4294397830963135 img loss 1.4256707429885864 img loss 1.3959604501724243 img loss 1.314937949180603 img loss 1.4809174537658691 img loss 1.359542727470398 img loss 1.5526223182678223 img loss 1.2733887434005737 img loss 1.3640509843826294 img loss 1.4978162050247192 img loss 1.4457708597183228 img loss 1.5258318185806274 img loss 1.54131019115448img loss 1.4056200981140137 img loss 1.4486013650894165 img loss 1.3249496221542358 img loss 1.4577901363372803 img loss 1.367677927017212 img loss 1.4136614799499512img loss 1.253907561302185 img loss 1.3265526294708252 img loss 1.3561078310012817 img loss 1.4163159132003784 img loss 1.4379451274871826 img loss 1.4958319664001465 img loss 1.4022012948989868 img loss 1.3562129735946655 img loss 1.4501687288284302 img loss 1.5269601345062256 img loss 1.4302772283554077 img loss 1.3993269205093384 img loss 1.3550187349319458 img loss 1.4122077226638794 img loss 1.4067838191986084 img loss 1.5233323574066162 img loss 1.3943097591400146 img loss 1.3452603816986084 img loss 1.2596676349639893 img loss 1.4678586721420288 img loss 1.3939441442489624 img loss 1.4268230199813843 img loss 1.3225281238555908 img loss 1.4596703052520752 img loss 1.4386155605316162 img loss 1.3753305673599243 img loss 1.4518849849700928 img loss 1.3076151609420776 img loss 1.4177976846694946 img loss 1.3215605020523071 img loss 1.389402985572815 img loss 1.27219557762146 img loss 1.416196346282959 img loss 1.4592608213424683 img loss 1.3623262643814087 img loss 1.4193238019943237 img loss 1.4065827131271362 img loss 1.3566254377365112 img loss 1.2751801013946533 img loss 1.3219537734985352 img loss 1.2955923080444336 img loss 1.427708387374878 img loss 1.3539570569992065 img loss 1.303678274154663 img loss 1.5070359706878662 img loss 1.4475369453430176 img loss 1.487755537033081 img loss 1.2337546348571777 img loss 1.4769718647003174 img loss 1.4620040655136108 img loss 1.3644979000091553 img loss 1.3550716638565063 img loss 1.5204923152923584 img loss 1.4221259355545044 img loss 1.4001671075820923 img loss 1.3748648166656494 {'loss': 1.4011, 'grad_norm': 0.27831876277923584, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2532105445861816 img loss 1.24087655544281 img loss 1.2501074075698853 img loss 1.256681203842163 img loss 1.2731512784957886 img loss 1.2329232692718506 img loss 1.30747652053833 img loss 1.285539150238037 img loss 1.2124512195587158 img loss 1.277261734008789 img loss 1.2550417184829712 img loss 1.3018330335617065 img loss 1.2749311923980713 img loss 1.22008216381073 img loss 1.290461540222168 img loss 1.296750545501709 img loss 1.241545557975769 img loss 1.2493846416473389 img loss 1.2590147256851196 img loss 1.2639532089233398 img loss 1.2747483253479004 img loss 1.2383553981781006 img loss 1.2645885944366455 img loss 1.2190922498703003 img loss 1.2713401317596436 img loss 1.2390708923339844 img loss 1.2282462120056152 img loss 1.2568858861923218 img loss 1.2359510660171509 img loss 1.2631992101669312 img loss 1.2759987115859985 img loss 1.2549011707305908 img loss 1.2774133682250977 img loss 1.2597497701644897 img loss 1.2556757926940918 img loss 1.2612321376800537 img loss 1.266843557357788 img loss 1.2878862619400024 img loss 1.200914740562439 img loss 1.2974480390548706 img loss 1.2625664472579956 img loss 1.324384331703186 img loss 1.2599709033966064 img loss 1.268125295639038 img loss 1.2545746564865112 img loss 1.2435401678085327 img loss 1.240704894065857 img loss 1.2641851902008057 img loss 1.2116544246673584 img loss 1.2758852243423462 img loss 1.2621179819107056 img loss 1.2764816284179688 img loss 1.296893835067749 img loss 1.2438148260116577 img loss 1.3006609678268433 img loss 1.248647689819336 img loss 1.273168921470642 img loss 1.2815519571304321 img loss 1.2767435312271118 img loss 1.2307287454605103 img loss 1.2343628406524658 img loss 1.2812007665634155 img loss 1.2708914279937744 img loss 1.2120039463043213 img loss 1.2477039098739624 img loss 1.2464630603790283 img loss 1.295553207397461 img loss 1.250435471534729 img loss 1.2922074794769287 img loss 1.2728016376495361 img loss 1.2422069311141968 img loss 1.244436502456665 img loss 1.287562608718872 img loss 1.2652645111083984 img loss 1.286192536354065 img loss 1.248232126235962 img loss 1.2802664041519165 img loss 1.2534157037734985 img loss 1.2860180139541626 img loss 1.2357209920883179 img loss 1.2133469581604004 img loss 1.2287267446517944 img loss 1.269133448600769 img loss 1.2365154027938843 img loss 1.226905345916748 img loss 1.229320764541626 img loss 1.2649033069610596 img loss 1.207047700881958 img loss 1.2345118522644043 img loss 1.2701600790023804 img loss 1.2460129261016846 img loss 1.2385778427124023 img loss 1.2287063598632812 img loss 1.2533327341079712 img loss 1.2428278923034668 img loss 1.2018800973892212 img loss 1.2413749694824219 img loss 1.2514101266860962 img loss 1.215242624282837 img loss 1.23931086063385 img loss 1.2053247690200806 img loss 1.2780168056488037 img loss 1.277716040611267 img loss 1.2406022548675537 img loss 1.2792085409164429 img loss 1.2476469278335571 img loss 1.2450764179229736 img loss 1.2419198751449585 img loss 1.218045949935913 img loss 1.279278039932251 img loss 1.2064738273620605 img loss 1.246710181236267 img loss 1.263141393661499 img loss 1.2249993085861206 img loss 1.2225244045257568 img loss 1.3203225135803223 img loss 1.232475757598877 img loss 1.2976346015930176 img loss 1.2138460874557495 img loss 1.2406234741210938 img loss 1.2217557430267334 img loss 1.2095940113067627 img loss 1.2696689367294312 img loss 1.2448898553848267 img loss 1.2372941970825195 img loss 1.2705204486846924 img loss 1.2566697597503662 img loss 1.3185603618621826 {'loss': 1.2551, 'grad_norm': 0.5057514309883118, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.223582148551941 img loss 1.1949989795684814 img loss 1.3103854656219482 img loss 1.3095225095748901 img loss 1.168897271156311 img loss 1.2335023880004883 img loss 1.305271029472351 img loss 1.2230846881866455 img loss 1.2342323064804077 img loss 1.2035185098648071 img loss 1.2408090829849243 img loss 1.2134666442871094 img loss 1.3014858961105347 img loss 1.2157131433486938 img loss 1.1700142621994019 img loss 1.1914799213409424 img loss 1.3137404918670654 img loss 1.266884684562683 img loss 1.2346370220184326 img loss 1.3029781579971313 img loss 1.1983964443206787 img loss 1.2584666013717651 img loss 1.3272446393966675 img loss 1.2183176279067993 img loss 1.2604117393493652 img loss 1.2446259260177612 img loss 1.2362310886383057 img loss 1.2974128723144531 img loss 1.1736592054367065 img loss 1.2342040538787842 img loss 1.314416527748108 img loss 1.2360479831695557 img loss 1.2281394004821777 img loss 1.1774554252624512 img loss 1.2209573984146118 img loss 1.2631371021270752 img loss 1.158050537109375 img loss 1.2904841899871826 img loss 1.2484554052352905 img loss 1.3192694187164307 img loss 1.1773725748062134 img loss 1.2016702890396118 img loss 1.1233021020889282 img loss 1.2782857418060303 img loss 1.27456533908844 img loss 1.2628072500228882 img loss 1.290157675743103 img loss 1.3070743083953857 img loss 1.2052321434020996 img loss 1.2261075973510742 img loss 1.1957138776779175img loss 1.1529724597930908 img loss 1.274237036705017 img loss 1.1796537637710571 img loss 1.1425682306289673 img loss 1.299599289894104 img loss 1.2989723682403564 img loss 1.3294711112976074 img loss 1.2669305801391602 img loss 1.2338443994522095 img loss 1.2075620889663696 img loss 1.2088114023208618 img loss 1.292728066444397 img loss 1.1974290609359741 img loss 1.1729004383087158 img loss 1.233205795288086 img loss 1.1940559148788452 img loss 1.2370493412017822 img loss 1.2064259052276611 img loss 1.2125484943389893 img loss 1.1797739267349243 img loss 1.222622275352478 img loss 1.3333792686462402 img loss 1.2438921928405762 img loss 1.265520691871643 img loss 1.2417619228363037 img loss 1.2274608612060547 img loss 1.340335726737976 img loss 1.232395887374878 img loss 1.1698591709136963 img loss 1.2059787511825562 img loss 1.3018537759780884 img loss 1.234921932220459 img loss 1.234666347503662 img loss 1.3033102750778198 img loss 1.23606538772583 img loss 1.2385510206222534 img loss 1.2716745138168335 img loss 1.2083408832550049 img loss 1.2675861120224 img loss 1.226631760597229 img loss 1.2373778820037842 img loss 1.2067224979400635 img loss 1.2865129709243774 img loss 1.2545580863952637 img loss 1.3274781703948975 img loss 1.2546708583831787 img loss 1.2268651723861694 img loss 1.3025662899017334 img loss 1.2603468894958496 img loss 1.2555969953536987 img loss 1.2628170251846313 img loss 1.3241474628448486 img loss 1.2569242715835571 img loss 1.1428790092468262 img loss 1.232944130897522 img loss 1.3621842861175537 img loss 1.1477810144424438 img loss 1.2180631160736084 img loss 1.2448649406433105 img loss 1.2054710388183594 img loss 1.2274188995361328 img loss 1.2461926937103271 img loss 1.206397533416748 img loss 1.2666476964950562 img loss 1.2136383056640625 img loss 1.2086751461029053 img loss 1.1733111143112183 img loss 1.1945765018463135 img loss 1.226511836051941 img loss 1.2141070365905762 img loss 1.1552919149398804 img loss 1.2358355522155762 img loss 1.3243556022644043 img loss 1.1722711324691772 img loss 1.2721189260482788 img loss 1.2203245162963867 img loss 1.2502340078353882 {'loss': 1.2395, 'grad_norm': 0.2829134166240692, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3645256757736206 img loss 1.5978018045425415 img loss 1.5268138647079468 img loss 1.5563355684280396 img loss 1.5035611391067505 img loss 1.5761667490005493 img loss 1.3875044584274292 img loss 1.4427727460861206img loss 1.4848014116287231 img loss 1.4540740251541138 img loss 1.4662781953811646 img loss 1.4396287202835083 img loss 1.4638725519180298 img loss 1.5965838432312012 img loss 1.3072994947433472 img loss 1.4961410760879517 img loss 1.5616289377212524 img loss 1.5957958698272705 img loss 1.5231305360794067 img loss 1.3097208738327026 img loss 1.4437147378921509 img loss 1.4348595142364502 img loss 1.359985113143921 img loss 1.4705088138580322 img loss 1.3760353326797485 img loss 1.551831603050232 img loss 1.479580044746399 img loss 1.4235767126083374 img loss 1.703559398651123 img loss 1.4577174186706543 img loss 1.545088529586792 img loss 1.4289815425872803 img loss 1.4736024141311646 img loss 1.4283740520477295img loss 1.4408594369888306 img loss 1.6143982410430908 img loss 1.5781428813934326 img loss 1.4561437368392944 img loss 1.7185102701187134 img loss 1.6109963655471802 img loss 1.5376307964324951 img loss 1.4915741682052612 img loss 1.3954628705978394 img loss 1.484559416770935 img loss 1.4630035161972046 img loss 1.5237220525741577 img loss 1.489914059638977 img loss 1.3611832857131958 img loss 1.4209946393966675 img loss 1.502683162689209 img loss 1.5160421133041382 img loss 1.6184340715408325 img loss 1.4820923805236816 img loss 1.546501636505127 img loss 1.3740181922912598 img loss 1.5678589344024658 img loss 1.4773043394088745 img loss 1.6904314756393433 img loss 1.4049383401870728 img loss 1.5370601415634155 img loss 1.3867288827896118 img loss 1.526867389678955 img loss 1.4394965171813965 img loss 1.4745361804962158 img loss 1.6236556768417358 img loss 1.7471022605895996 img loss 1.5149848461151123 img loss 1.513289213180542 img loss 1.503923773765564 img loss 1.4758599996566772 img loss 1.617942214012146 img loss 1.4215322732925415 img loss 1.4782812595367432 img loss 1.3018041849136353 img loss 1.5313905477523804 img loss 1.409256100654602 img loss 1.5909982919692993 img loss 1.5263726711273193 img loss 1.476098656654358 img loss 1.409826636314392 img loss 1.538422703742981 img loss 1.5743006467819214 img loss 1.56484055519104 img loss 1.491733193397522 img loss 1.6580736637115479 img loss 1.5461593866348267 img loss 1.5221569538116455 img loss 1.681233286857605 img loss 1.5722730159759521 img loss 1.4719443321228027 img loss 1.520982027053833 img loss 1.476330280303955 img loss 1.3292949199676514 img loss 1.4366775751113892 img loss 1.5454508066177368 img loss 1.445586085319519 img loss 1.523943543434143 img loss 1.4646294116973877 img loss 1.4078080654144287 img loss 1.6016196012496948 img loss 1.6661666631698608 img loss 1.443896770477295 img loss 1.4474806785583496 img loss 1.3826500177383423 img loss 1.4699769020080566 img loss 1.4753156900405884 img loss 1.5576485395431519 img loss 1.4550305604934692 img loss 1.687804102897644 img loss 1.729527235031128 img loss 1.4684606790542603 img loss 1.4251430034637451 img loss 1.4804199934005737 img loss 1.551940679550171 img loss 1.6380283832550049 img loss 1.5859811305999756 img loss 1.4448171854019165 img loss 1.4717364311218262 img loss 1.4585518836975098 img loss 1.4735609292984009 img loss 1.5130945444107056 img loss 1.6017061471939087 img loss 1.5151658058166504 img loss 1.542183518409729 img loss 1.538764476776123 img loss 1.6494271755218506 img loss 1.616432785987854 img loss 1.5908207893371582 {'loss': 1.5059, 'grad_norm': 0.4283873736858368, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4666239023208618 img loss 1.4688891172409058 img loss 1.3220281600952148 img loss 1.4264527559280396 img loss 1.5289403200149536 img loss 1.4966884851455688 img loss 1.4139713048934937 img loss 1.3936350345611572 img loss 1.3954218626022339 img loss 1.4735703468322754 img loss 1.3980180025100708 img loss 1.434515118598938 img loss 1.408516526222229 img loss 1.3251535892486572 img loss 1.3940340280532837 img loss 1.4976036548614502 img loss 1.4892102479934692 img loss 1.3839880228042603 img loss 1.3677763938903809 img loss 1.4216254949569702 img loss 1.5740392208099365 img loss 1.478762149810791 img loss 1.4547545909881592 img loss 1.5780246257781982 img loss 1.6133019924163818 img loss 1.5007306337356567 img loss 1.4631823301315308 img loss 1.3992321491241455 img loss 1.4009785652160645 img loss 1.4373103380203247 img loss 1.4145780801773071 img loss 1.3862634897232056 img loss 1.4452053308486938 img loss 1.4426614046096802 img loss 1.342851161956787 img loss 1.395331859588623 img loss 1.460739254951477 img loss 1.4823390245437622 img loss 1.5584853887557983 img loss 1.3892958164215088 img loss 1.5419590473175049 img loss 1.3930195569992065 img loss 1.3238025903701782 img loss 1.458583950996399 img loss 1.487678050994873 img loss 1.6753653287887573 img loss 1.4628206491470337 img loss 1.3676952123641968 img loss 1.5110379457473755 img loss 1.470497965812683 img loss 1.3908666372299194 img loss 1.7699439525604248 img loss 1.5492260456085205 img loss 1.4454667568206787 img loss 1.3137973546981812 img loss 1.4186043739318848 img loss 1.492572546005249 img loss 1.3980820178985596 img loss 1.5818076133728027 img loss 1.472105860710144 img loss 1.5125328302383423 img loss 1.3498581647872925 img loss 1.4582353830337524 img loss 1.5420080423355103 img loss 1.7545455694198608 img loss 1.5360714197158813 img loss 1.3941739797592163 img loss 1.4480210542678833 img loss 1.384493350982666 img loss 1.4324345588684082 img loss 1.4736565351486206 img loss 1.4161397218704224 img loss 1.3727275133132935 img loss 1.4271248579025269 img loss 1.5150320529937744 img loss 1.5118153095245361 img loss 1.5057858228683472 img loss 1.5016515254974365 img loss 1.5492074489593506 img loss 1.4178739786148071 img loss 1.4559376239776611 img loss 1.5333791971206665 img loss 1.3734498023986816 img loss 1.4947082996368408 img loss 1.580005168914795 img loss 1.5096560716629028 img loss 1.4937748908996582 img loss 1.564815640449524 img loss 1.4141868352890015 img loss 1.543629765510559 img loss 1.4766461849212646 img loss 1.4215978384017944 img loss 1.6225894689559937 img loss 1.5303704738616943 img loss 1.5378772020339966 img loss 1.3422389030456543 img loss 1.4059805870056152 img loss 1.4960267543792725 img loss 1.4276916980743408 img loss 1.500049352645874 img loss 1.4898604154586792 img loss 1.423427700996399 img loss 1.4666569232940674 img loss 1.4476523399353027 img loss 1.4128737449645996 img loss 1.535124659538269 img loss 1.4206538200378418 img loss 1.4471503496170044 img loss 1.359750509262085 img loss 1.5973020792007446 img loss 1.5414284467697144 img loss 1.522998571395874 img loss 1.548155426979065 img loss 1.3896852731704712 img loss 1.4577666521072388 img loss 1.6082546710968018 img loss 1.7999051809310913 img loss 1.4067386388778687 img loss 1.5246094465255737 img loss 1.4517874717712402 img loss 1.3119093179702759 img loss 1.4931753873825073 img loss 1.466784119606018 img loss 1.6790659427642822 img loss 1.6241450309753418 img loss 1.421677827835083 img loss 1.451032280921936 img loss 1.4222763776779175 {'loss': 1.4703, 'grad_norm': 0.47206932306289673, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3646233081817627 img loss 1.3191847801208496 img loss 1.2325456142425537 img loss 1.277414083480835 img loss 1.306027889251709 img loss 1.290573000907898 img loss 1.3789680004119873 img loss 1.3256967067718506 img loss 1.2894492149353027 img loss 1.394712209701538 img loss 1.3597934246063232 img loss 1.2956980466842651 img loss 1.2907298803329468 img loss 1.1861361265182495 img loss 1.2825106382369995 img loss 1.2859147787094116 img loss 1.290874719619751 img loss 1.351685881614685 img loss 1.2733585834503174 img loss 1.2820943593978882 img loss 1.3316822052001953 img loss 1.301358699798584 img loss 1.2658276557922363 img loss 1.3389065265655518 img loss 1.2770098447799683 img loss 1.2864134311676025 img loss 1.3761245012283325 img loss 1.2474867105484009 img loss 1.2977464199066162 img loss 1.3372236490249634 img loss 1.3228175640106201 img loss 1.2997115850448608 img loss 1.3075556755065918 img loss 1.2588204145431519 img loss 1.298720359802246 img loss 1.223680853843689 img loss 1.3136481046676636 img loss 1.1856088638305664 img loss 1.2449654340744019 img loss 1.3283833265304565 img loss 1.2346417903900146 img loss 1.3215855360031128 img loss 1.2962902784347534 img loss 1.2671822309494019 img loss 1.341579556465149 img loss 1.2523274421691895 img loss 1.2596508264541626 img loss 1.320321798324585 img loss 1.292988657951355 img loss 1.3202283382415771 img loss 1.2743362188339233 img loss 1.275124192237854 img loss 1.2551932334899902 img loss 1.3207836151123047 img loss 1.31395423412323 img loss 1.3398873805999756 img loss 1.3189024925231934 img loss 1.3777954578399658 img loss 1.2963234186172485 img loss 1.3000190258026123 img loss 1.2755695581436157 img loss 1.2500532865524292 img loss 1.3114137649536133 img loss 1.2534615993499756 img loss 1.2393776178359985 img loss 1.308176040649414 img loss 1.2155615091323853 img loss 1.291150450706482 img loss 1.2342389822006226 img loss 1.3225107192993164 img loss 1.2638038396835327 img loss 1.2313345670700073 img loss 1.2815537452697754 img loss 1.3298553228378296 img loss 1.3643044233322144 img loss 1.3401280641555786 img loss 1.2861027717590332 img loss 1.231468915939331 img loss 1.160663366317749 img loss 1.384825587272644 img loss 1.279565691947937 img loss 1.3759114742279053 img loss 1.4005719423294067 img loss 1.1855616569519043 img loss 1.256578803062439 img loss 1.3064591884613037 img loss 1.2903118133544922 img loss 1.2687336206436157 img loss 1.2010835409164429 img loss 1.3182344436645508 img loss 1.2591854333877563 img loss 1.3309669494628906 img loss 1.2507655620574951 img loss 1.2276546955108643 img loss 1.2430671453475952 img loss 1.3339018821716309 img loss 1.3204725980758667 img loss 1.3397618532180786 img loss 1.3501847982406616 img loss 1.2737442255020142 img loss 1.2664626836776733 img loss 1.32970130443573 img loss 1.3402296304702759 img loss 1.2329235076904297 img loss 1.2887649536132812 img loss 1.396605134010315 img loss 1.396888256072998 img loss 1.3011502027511597 img loss 1.3430218696594238 img loss 1.3155097961425781 img loss 1.346083164215088 img loss 1.2973068952560425 img loss 1.2588870525360107 img loss 1.3773159980773926 img loss 1.3332847356796265 img loss 1.2791802883148193 img loss 1.3876818418502808 img loss 1.3038170337677002 img loss 1.299917459487915 img loss 1.3261568546295166 img loss 1.3625378608703613 img loss 1.3004223108291626 img loss 1.3333832025527954 img loss 1.3048864603042603 img loss 1.2455040216445923 img loss 1.2191920280456543 img loss 1.306721568107605 img loss 1.2058048248291016 {'loss': 1.2968, 'grad_norm': 0.27758437395095825, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.171365737915039 img loss 1.265319585800171 img loss 1.235971450805664 img loss 1.2391695976257324 img loss 1.2574310302734375 img loss 1.16008460521698 img loss 1.2233294248580933 img loss 1.2142574787139893 img loss 1.206745982170105 img loss 1.126619815826416 img loss 1.189385175704956 img loss 1.2697217464447021 img loss 1.1756107807159424 img loss 1.2113738059997559 img loss 1.2247555255889893 img loss 1.3146727085113525 img loss 1.1543906927108765 img loss 1.1967411041259766 img loss 1.2449967861175537 img loss 1.2602283954620361 img loss 1.1998510360717773 img loss 1.2893966436386108 img loss 1.2499604225158691 img loss 1.1831308603286743 img loss 1.3189624547958374 img loss 1.2196857929229736 img loss 1.2661112546920776 img loss 1.2407292127609253 img loss 1.17375910282135 img loss 1.192469596862793 img loss 1.203070044517517 img loss 1.2235028743743896 img loss 1.204016089439392 img loss 1.2532973289489746 img loss 1.267687439918518 img loss 1.2665449380874634 img loss 1.279944896697998 img loss 1.3053003549575806 img loss 1.187959909439087 img loss 1.1738208532333374 img loss 1.226881504058838 img loss 1.1929090023040771 img loss 1.2564500570297241 img loss 1.2682220935821533 img loss 1.2488045692443848 img loss 1.303558349609375 img loss 1.1861519813537598 img loss 1.1730797290802002 img loss 1.2389552593231201 img loss 1.2375568151474 img loss 1.1836225986480713 img loss 1.2284390926361084 img loss 1.2803868055343628 img loss 1.302924394607544 img loss 1.2267048358917236 img loss 1.229675054550171 img loss 1.259113073348999 img loss 1.2217937707901 img loss 1.1821902990341187 img loss 1.233567237854004 img loss 1.1906659603118896 img loss 1.2297756671905518 img loss 1.2481088638305664 img loss 1.2388819456100464 img loss 1.238166332244873 img loss 1.1821403503417969 img loss 1.217526912689209 img loss 1.206214189529419 img loss 1.2580174207687378 img loss 1.1761435270309448 img loss 1.1936299800872803 img loss 1.2032904624938965 img loss 1.1616113185882568 img loss 1.2620410919189453 img loss 1.280268907546997 img loss 1.2850546836853027 img loss 1.2236933708190918 img loss 1.2230173349380493 img loss 1.1765750646591187 img loss 1.269635796546936 img loss 1.2239925861358643 img loss 1.1612212657928467 img loss 1.244135856628418 img loss 1.2329243421554565 img loss 1.23314368724823 img loss 1.3057403564453125 img loss 1.2690296173095703 img loss 1.1710188388824463 img loss 1.250587821006775 img loss 1.2650365829467773 img loss 1.237607479095459 img loss 1.205587387084961 img loss 1.2001683712005615 img loss 1.2648656368255615 img loss 1.2386181354522705 img loss 1.2396793365478516 img loss 1.234161615371704 img loss 1.1859430074691772 img loss 1.1969153881072998 img loss 1.2684426307678223 img loss 1.236202597618103 img loss 1.1529350280761719 img loss 1.2036770582199097 img loss 1.2256615161895752 img loss 1.2084834575653076 img loss 1.2103432416915894 img loss 1.2336435317993164 img loss 1.247719645500183 img loss 1.2141574621200562 img loss 1.1919090747833252 img loss 1.2366236448287964 img loss 1.1442241668701172 img loss 1.2679108381271362 img loss 1.3025028705596924 img loss 1.1740412712097168 img loss 1.1555588245391846 img loss 1.2599276304244995 img loss 1.1929724216461182 img loss 1.227286696434021 img loss 1.257073998451233 img loss 1.3074157238006592 img loss 1.2746566534042358 img loss 1.2002114057540894 img loss 1.2641804218292236 img loss 1.1848429441452026 img loss 1.1690088510513306 img loss 1.148988962173462 img loss 1.346868872642517 {'loss': 1.227, 'grad_norm': 0.5794386267662048, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.537564992904663 img loss 1.3772261142730713 img loss 1.5710406303405762 img loss 1.538806676864624 img loss 1.4195269346237183 img loss 1.4055601358413696 img loss 1.359208583831787 img loss 1.5566763877868652 img loss 1.501836895942688 img loss 1.4079906940460205 img loss 1.4135798215866089 img loss 1.3309924602508545 img loss 1.4092214107513428 img loss 1.395217776298523 img loss 1.367250919342041 img loss 1.5338571071624756 img loss 1.4877654314041138 img loss 1.3179683685302734 img loss 1.3869496583938599 img loss 1.2897342443466187 img loss 1.386870265007019 img loss 1.4746428728103638 img loss 1.4877887964248657 img loss 1.435715913772583 img loss 1.389426350593567 img loss 1.3135629892349243 img loss 1.4298349618911743 img loss 1.3788093328475952 img loss 1.3498835563659668 img loss 1.4168609380722046 img loss 1.3902629613876343 img loss 1.3840388059616089 img loss 1.4040173292160034 img loss 1.3294109106063843 img loss 1.4113538265228271 img loss 1.455838918685913 img loss 1.4424165487289429 img loss 1.34471595287323 img loss 1.3246382474899292 img loss 1.4361568689346313 img loss 1.4521945714950562 img loss 1.5675749778747559 img loss 1.3968075513839722 img loss 1.3476520776748657 img loss 1.36085844039917 img loss 1.3630049228668213 img loss 1.4668899774551392 img loss 1.3698065280914307 img loss 1.2531784772872925 img loss 1.4616280794143677 img loss 1.4520866870880127 img loss 1.3614212274551392 img loss 1.555671215057373 img loss 1.2994053363800049 img loss 1.3389822244644165 img loss 1.4488332271575928 img loss 1.3729010820388794 img loss 1.390384316444397 img loss 1.4519398212432861 img loss 1.3995163440704346 img loss 1.4782826900482178 img loss 1.5231770277023315 img loss 1.3653315305709839 img loss 1.5091348886489868 img loss 1.354021430015564 img loss 1.518429160118103 img loss 1.4259922504425049 img loss 1.5272300243377686 img loss 1.378973364830017 img loss 1.4323456287384033 img loss 1.4627671241760254 img loss 1.5210801362991333 img loss 1.2759652137756348 img loss 1.5078049898147583 img loss 1.4706162214279175 img loss 1.496754765510559 img loss 1.5220757722854614 img loss 1.4493038654327393 img loss 1.5058319568634033 img loss 1.482143759727478 img loss 1.3869942426681519 img loss 1.5480865240097046 img loss 1.5434279441833496 img loss 1.3407824039459229 img loss 1.4147543907165527 img loss 1.4516597986221313 img loss 1.4286609888076782 img loss 1.3003664016723633 img loss 1.4514422416687012 img loss 1.4393937587738037 img loss 1.348172664642334 img loss 1.4568097591400146 img loss 1.4152568578720093 img loss 1.4580576419830322 img loss 1.4236520528793335 img loss 1.3669228553771973 img loss 1.3940749168395996 img loss 1.3669034242630005 img loss 1.4590367078781128 img loss 1.3854259252548218 img loss 1.4439213275909424 img loss 1.365170955657959 img loss 1.5651572942733765 img loss 1.4827979803085327 img loss 1.4334852695465088 img loss 1.3016681671142578 img loss 1.4317165613174438 img loss 1.4577686786651611 img loss 1.33485746383667 img loss 1.3597980737686157 img loss 1.4272836446762085 img loss 1.4589040279388428 img loss 1.4050110578536987 img loss 1.3198399543762207 img loss 1.4909433126449585 img loss 1.403281569480896 img loss 1.480141282081604 img loss 1.4019272327423096 img loss 1.4337553977966309 img loss 1.3315842151641846 img loss 1.472563624382019 img loss 1.4155961275100708 img loss 1.3541162014007568 img loss 1.4529683589935303 img loss 1.4274557828903198 img loss 1.3165302276611328 img loss 1.3523352146148682 img loss 1.4209126234054565 {'loss': 1.4206, 'grad_norm': 0.2501716613769531, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2608665227890015 img loss 1.1914621591567993 img loss 1.1303026676177979 img loss 1.2088226079940796 img loss 1.2378106117248535 img loss 1.225454330444336 img loss 1.3096904754638672 img loss 1.2818514108657837 img loss 1.2101950645446777 img loss 1.2150195837020874 img loss 1.2219271659851074 img loss 1.2052249908447266 img loss 1.2712494134902954 img loss 1.2846382856369019 img loss 1.2525439262390137 img loss 1.2417266368865967 img loss 1.214129090309143 img loss 1.2216142416000366 img loss 1.170212745666504 img loss 1.20731782913208 img loss 1.1960175037384033 img loss 1.302242636680603 img loss 1.206188440322876 img loss 1.2140660285949707 img loss 1.1937013864517212 img loss 1.1799261569976807 img loss 1.2900294065475464 img loss 1.256486177444458 img loss 1.1804368495941162 img loss 1.254610538482666 img loss 1.2069441080093384 img loss 1.225083589553833 img loss 1.1526325941085815 img loss 1.1994585990905762 img loss 1.2446143627166748 img loss 1.1410669088363647 img loss 1.2664566040039062 img loss 1.2366960048675537 img loss 1.1740987300872803 img loss 1.3508118391036987 img loss 1.158128261566162 img loss 1.2797577381134033 img loss 1.193650722503662 img loss 1.2104244232177734 img loss 1.2141132354736328 img loss 1.1828808784484863 img loss 1.0977264642715454 img loss 1.206662893295288 img loss 1.2129284143447876 img loss 1.2471086978912354 img loss 1.2350964546203613 img loss 1.2716784477233887 img loss 1.1694564819335938 img loss 1.1586062908172607 img loss 1.1522295475006104 img loss 1.1946308612823486 img loss 1.403443694114685 img loss 1.274743914604187 img loss 1.2059900760650635 img loss 1.294531226158142 img loss 1.1682536602020264 img loss 1.2466644048690796 img loss 1.1664940118789673 img loss 1.1792521476745605 img loss 1.1947858333587646 img loss 1.2845892906188965 img loss 1.320218801498413 img loss 1.260274887084961 img loss 1.2104374170303345 img loss 1.1756232976913452 img loss 1.1849720478057861 img loss 1.1890079975128174 img loss 1.1940962076187134 img loss 1.2304465770721436 img loss 1.2289966344833374 img loss 1.310547113418579 img loss 1.238623857498169 img loss 1.1878883838653564 img loss 1.2452747821807861 img loss 1.2277634143829346 img loss 1.2987565994262695 img loss 1.2312712669372559 img loss 1.2232146263122559 img loss 1.2054169178009033 img loss 1.1771883964538574 img loss 1.2357442378997803 img loss 1.1714189052581787 img loss 1.1842551231384277 img loss 1.205230474472046 img loss 1.2703927755355835 img loss 1.2358890771865845 img loss 1.2184884548187256 img loss 1.2454708814620972 img loss 1.1956703662872314 img loss 1.2063947916030884 img loss 1.2004902362823486 img loss 1.2802743911743164 img loss 1.216125249862671 img loss 1.2231359481811523 img loss 1.1345579624176025 img loss 1.2519782781600952 img loss 1.222206711769104 img loss 1.1711609363555908 img loss 1.1475380659103394 img loss 1.1988084316253662 img loss 1.2301911115646362 img loss 1.1876142024993896 img loss 1.1897255182266235 img loss 1.3067129850387573 img loss 1.1974366903305054 img loss 1.2617336511611938 img loss 1.1636905670166016 img loss 1.2507022619247437 img loss 1.216897964477539 img loss 1.1689283847808838 img loss 1.2785594463348389 img loss 1.1979272365570068 img loss 1.244077444076538 img loss 1.2891677618026733 img loss 1.2114819288253784 img loss 1.2524076700210571 img loss 1.1504637002944946 img loss 1.1703628301620483 img loss 1.2140753269195557 img loss 1.273131012916565 img loss 1.2111247777938843 img loss 1.1869542598724365 img loss 1.1838676929473877 {'loss': 1.2205, 'grad_norm': 0.24575147032737732, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2114098072052002 img loss 1.3690215349197388 img loss 1.315375566482544 img loss 1.2928646802902222 img loss 1.2138090133666992 img loss 1.214354395866394 img loss 1.1838161945343018 img loss 1.192726492881775 img loss 1.23540461063385 img loss 1.2119078636169434 img loss 1.2027835845947266 img loss 1.129024863243103 img loss 1.2082829475402832 img loss 1.199873685836792 img loss 1.217212438583374 img loss 1.2029292583465576 img loss 1.195758581161499 img loss 1.1901180744171143 img loss 1.304924488067627 img loss 1.2499250173568726 img loss 1.1978038549423218 img loss 1.223179817199707 img loss 1.1795203685760498 img loss 1.2923181056976318 img loss 1.2080045938491821 img loss 1.2178694009780884 img loss 1.2359548807144165 img loss 1.209026575088501 img loss 1.2599735260009766 img loss 1.3569637537002563 img loss 1.2720292806625366 img loss 1.2993322610855103 img loss 1.169256567955017 img loss 1.2199361324310303 img loss 1.2011865377426147 img loss 1.1734421253204346 img loss 1.2055190801620483 img loss 1.2009409666061401 img loss 1.1933825016021729 img loss 1.2743562459945679 img loss 1.278083324432373 img loss 1.2856237888336182 img loss 1.2442519664764404 img loss 1.1983782052993774 img loss 1.240462303161621 img loss 1.187568187713623 img loss 1.2052253484725952 img loss 1.2786678075790405 img loss 1.2350670099258423 img loss 1.1884796619415283 img loss 1.2430351972579956 img loss 1.204100251197815 img loss 1.2290832996368408 img loss 1.219926357269287 img loss 1.1907017230987549 img loss 1.1856834888458252 img loss 1.19771146774292 img loss 1.2089470624923706 img loss 1.1942384243011475 img loss 1.205270767211914 img loss 1.1793861389160156 img loss 1.2789682149887085 img loss 1.2496774196624756 img loss 1.1707944869995117 img loss 1.271035075187683 img loss 1.2341225147247314 img loss 1.2126846313476562 img loss 1.243390679359436 img loss 1.2485851049423218 img loss 1.2252461910247803 img loss 1.2107387781143188 img loss 1.1158727407455444 img loss 1.2440837621688843 img loss 1.2027392387390137 img loss 1.1686033010482788 img loss 1.3154985904693604 img loss 1.2429909706115723 img loss 1.2353489398956299 img loss 1.2525959014892578 img loss 1.2869744300842285 img loss 1.2795454263687134 img loss 1.222842812538147 img loss 1.210060954093933 img loss 1.2202574014663696 img loss 1.2858511209487915 img loss 1.3433661460876465 img loss 1.178201675415039 img loss 1.2086666822433472 img loss 1.2068076133728027 img loss 1.2972831726074219 img loss 1.3415958881378174 img loss 1.2599666118621826 img loss 1.2226941585540771 img loss 1.2565248012542725 img loss 1.2305638790130615 img loss 1.2623945474624634 img loss 1.2012585401535034 img loss 1.2123126983642578 img loss 1.260628342628479 img loss 1.1939970254898071 img loss 1.2131551504135132 img loss 1.250871181488037 img loss 1.2236096858978271 img loss 1.1593765020370483 img loss 1.2078094482421875 img loss 1.1664968729019165 img loss 1.276803970336914 img loss 1.2266178131103516 img loss 1.2161118984222412 img loss 1.1900997161865234 img loss 1.190026879310608 img loss 1.1429742574691772 img loss 1.2650372982025146 img loss 1.1935977935791016 img loss 1.208890676498413 img loss 1.2231135368347168 img loss 1.208458423614502 img loss 1.2059457302093506 img loss 1.1854534149169922 img loss 1.2107672691345215 img loss 1.1989858150482178 img loss 1.186869502067566 img loss 1.24154531955719 img loss 1.138732671737671 img loss 1.172951579093933 img loss 1.2282865047454834 img loss 1.1515926122665405 img loss 1.2125661373138428 {'loss': 1.2245, 'grad_norm': 0.543038010597229, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2944244146347046 img loss 1.2331260442733765 img loss 1.2073802947998047 img loss 1.2983044385910034 img loss 1.2283923625946045 img loss 1.260390281677246 img loss 1.2205740213394165 img loss 1.2661964893341064 img loss 1.2259315252304077 img loss 1.1907824277877808 img loss 1.2407220602035522 img loss 1.227617859840393 img loss 1.2686537504196167 img loss 1.3430880308151245 img loss 1.2640411853790283 img loss 1.4339993000030518 img loss 1.1909112930297852 img loss 1.3143230676651 img loss 1.2766884565353394 img loss 1.2213618755340576 img loss 1.29509437084198 img loss 1.1905838251113892 img loss 1.1903904676437378 img loss 1.3454461097717285 img loss 1.255359172821045 img loss 1.32778799533844 img loss 1.3398669958114624 img loss 1.198673129081726 img loss 1.2806423902511597 img loss 1.2698010206222534 img loss 1.2879899740219116 img loss 1.2271088361740112 img loss 1.297489047050476 img loss 1.3580546379089355 img loss 1.2346199750900269 img loss 1.3057104349136353 img loss 1.2484126091003418 img loss 1.2527320384979248 img loss 1.2406771183013916 img loss 1.2812855243682861 img loss 1.2756423950195312 img loss 1.431128740310669 img loss 1.2909767627716064 img loss 1.2603471279144287 img loss 1.1992367506027222 img loss 1.2462762594223022 img loss 1.233061671257019 img loss 1.3333550691604614 img loss 1.248560905456543 img loss 1.1985483169555664 img loss 1.251813530921936 img loss 1.220656394958496 img loss 1.2522004842758179 img loss 1.327663779258728 img loss 1.2607710361480713 img loss 1.2123558521270752 img loss 1.2330478429794312 img loss 1.3251698017120361 img loss 1.2486140727996826 img loss 1.2196974754333496 img loss 1.2214043140411377 img loss 1.3255054950714111 img loss 1.1957895755767822 img loss 1.2300925254821777 img loss 1.2801947593688965img loss 1.264028549194336 img loss 1.3338693380355835 img loss 1.325398325920105 img loss 1.3149263858795166 img loss 1.2516298294067383 img loss 1.291943907737732 img loss 1.2046699523925781 img loss 1.247049331665039 img loss 1.201062560081482 img loss 1.2582128047943115 img loss 1.2640433311462402 img loss 1.2417339086532593 img loss 1.2094836235046387 img loss 1.2414333820343018 img loss 1.297876000404358 img loss 1.3124701976776123 img loss 1.296189546585083 img loss 1.2827320098876953 img loss 1.2609297037124634 img loss 1.270228624343872 img loss 1.2914680242538452 img loss 1.2477562427520752 img loss 1.2308844327926636 img loss 1.2454591989517212 img loss 1.2740503549575806 img loss 1.2118557691574097 img loss 1.3160812854766846 img loss 1.3181395530700684 img loss 1.337902307510376 img loss 1.1634833812713623 img loss 1.2247158288955688 img loss 1.255222201347351 img loss 1.2942500114440918 img loss 1.2340240478515625 img loss 1.265458345413208 img loss 1.2062419652938843 img loss 1.311361312866211 img loss 1.2556180953979492 img loss 1.3059736490249634 img loss 1.2884855270385742 img loss 1.3346600532531738 img loss 1.2942980527877808 img loss 1.3162018060684204 img loss 1.316360354423523 img loss 1.1691402196884155 img loss 1.2755247354507446 img loss 1.2296158075332642 img loss 1.2258753776550293 img loss 1.246535301208496 img loss 1.2827692031860352 img loss 1.3128349781036377 img loss 1.2740157842636108 img loss 1.2857578992843628 img loss 1.3399125337600708 img loss 1.219296932220459 img loss 1.2731338739395142 img loss 1.3230552673339844 img loss 1.2614256143569946 img loss 1.2773895263671875 img loss 1.2868555784225464 img loss 1.1934592723846436 img loss 1.331544280052185 img loss 1.2317863702774048 {'loss': 1.2665, 'grad_norm': 0.3969196379184723, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2263542413711548 img loss 1.1371686458587646 img loss 1.206041932106018 img loss 1.1839406490325928 img loss 1.2303996086120605 img loss 1.1835964918136597 img loss 1.2585619688034058 img loss 1.1871414184570312 img loss 1.2453323602676392 img loss 1.1506836414337158 img loss 1.1883999109268188 img loss 1.1303242444992065 img loss 1.2064443826675415 img loss 1.1998608112335205 img loss 1.1623865365982056 img loss 1.2426230907440186 img loss 1.194528341293335 img loss 1.3068881034851074 img loss 1.1568535566329956 img loss 1.1596474647521973 img loss 1.262994408607483 img loss 1.2196701765060425 img loss 1.2475557327270508 img loss 1.21512770652771 img loss 1.1655367612838745 img loss 1.1778075695037842 img loss 1.1942495107650757 img loss 1.107909917831421 img loss 1.1887881755828857 img loss 1.18263578414917 img loss 1.2392628192901611img loss 1.2110265493392944 img loss 1.1649597883224487 img loss 1.2282028198242188 img loss 1.1117310523986816 img loss 1.1545028686523438 img loss 1.2080410718917847 img loss 1.1824191808700562 img loss 1.216569423675537 img loss 1.1218594312667847 img loss 1.1818974018096924 img loss 1.1807655096054077 img loss 1.1248059272766113 img loss 1.1651314496994019 img loss 1.2052229642868042 img loss 1.234004020690918 img loss 1.2041845321655273 img loss 1.2197879552841187 img loss 1.2533905506134033 img loss 1.2464081048965454 img loss 1.1887545585632324 img loss 1.1412709951400757 img loss 1.1476472616195679 img loss 1.1517890691757202 img loss 1.1822468042373657 img loss 1.1963543891906738 img loss 1.1885875463485718 img loss 1.2925604581832886 img loss 1.1858668327331543 img loss 1.1744647026062012 img loss 1.1726338863372803 img loss 1.2622287273406982 img loss 1.228872299194336 img loss 1.1441024541854858 img loss 1.1445070505142212 img loss 1.1311438083648682 img loss 1.2768688201904297 img loss 1.2349600791931152 img loss 1.216020941734314 img loss 1.1966736316680908 img loss 1.1402027606964111 img loss 1.1438825130462646 img loss 1.2157585620880127 img loss 1.1420495510101318 img loss 1.2483829259872437 img loss 1.282407283782959 img loss 1.2032133340835571 img loss 1.2354481220245361 img loss 1.220528483390808 img loss 1.2340826988220215 img loss 1.1878937482833862 img loss 1.2011165618896484 img loss 1.1985557079315186 img loss 1.1791075468063354 img loss 1.2056005001068115 img loss 1.1919831037521362 img loss 1.2088496685028076 img loss 1.1495453119277954 img loss 1.2336952686309814 img loss 1.1631824970245361 img loss 1.263005256652832 img loss 1.1872962713241577 img loss 1.1771793365478516 img loss 1.2373521327972412 img loss 1.1225051879882812 img loss 1.1634892225265503 img loss 1.2194652557373047 img loss 1.274402141571045 img loss 1.2314355373382568 img loss 1.2411301136016846 img loss 1.2789777517318726 img loss 1.2118462324142456 img loss 1.158333659172058 img loss 1.2108302116394043 img loss 1.1693779230117798 img loss 1.219743251800537 img loss 1.1985987424850464 img loss 1.2438000440597534 img loss 1.2062650918960571 img loss 1.1933479309082031 img loss 1.2044490575790405 img loss 1.2098309993743896 img loss 1.2230503559112549 img loss 1.1725764274597168 img loss 1.1205477714538574 img loss 1.2111425399780273 img loss 1.2020764350891113 img loss 1.2280449867248535 img loss 1.157392978668213 img loss 1.1909509897232056 img loss 1.2922909259796143 img loss 1.1567180156707764 img loss 1.2618656158447266 img loss 1.187669038772583 img loss 1.1793053150177002 img loss 1.1714900732040405 img loss 1.2281949520111084 img loss 1.2464431524276733 {'loss': 1.199, 'grad_norm': 0.2603389024734497, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.417670488357544 img loss 1.5131398439407349 img loss 1.4087917804718018 img loss 1.4784767627716064 img loss 1.4272562265396118 img loss 1.5817444324493408 img loss 1.4629846811294556 img loss 1.397042155265808 img loss 1.4176194667816162 img loss 1.3668417930603027 img loss 1.4689843654632568 img loss 1.3682879209518433 img loss 1.4493013620376587 img loss 1.4300256967544556 img loss 1.3634629249572754 img loss 1.288841724395752 img loss 1.388231873512268 img loss 1.529509425163269 img loss 1.5530407428741455 img loss 1.4113059043884277 img loss 1.522907018661499 img loss 1.5283623933792114 img loss 1.4358010292053223 img loss 1.5764743089675903 img loss 1.5575133562088013 img loss 1.4591403007507324 img loss 1.3950444459915161 img loss 1.4871078729629517 img loss 1.4461921453475952 img loss 1.4347589015960693 img loss 1.4502345323562622 img loss 1.5356272459030151 img loss 1.4391850233078003 img loss 1.5465655326843262 img loss 1.382230520248413 img loss 1.4216021299362183 img loss 1.339134693145752 img loss 1.345549464225769 img loss 1.4406553506851196 img loss 1.4109890460968018 img loss 1.4292951822280884 img loss 1.4432646036148071 img loss 1.3629366159439087 img loss 1.4418357610702515 img loss 1.4670947790145874 img loss 1.3896584510803223 img loss 1.4479063749313354 img loss 1.6263056993484497 img loss 1.3742889165878296 img loss 1.5292179584503174 img loss 1.3362301588058472 img loss 1.4264839887619019 img loss 1.4492558240890503 img loss 1.4490779638290405 img loss 1.3911032676696777 img loss 1.5088441371917725 img loss 1.4149682521820068 img loss 1.4200704097747803 img loss 1.597269892692566 img loss 1.400357723236084 img loss 1.4150478839874268 img loss 1.485811471939087 img loss 1.3091953992843628 img loss 1.3987945318222046 img loss 1.35991632938385 img loss 1.4836434125900269 img loss 1.50346839427948 img loss 1.4554346799850464 img loss 1.5393866300582886 img loss 1.4928828477859497 img loss 1.4686534404754639 img loss 1.581152081489563 img loss 1.4656630754470825 img loss 1.4781744480133057 img loss 1.6016830205917358 img loss 1.3963773250579834 img loss 1.4299578666687012 img loss 1.5579322576522827 img loss 1.3759551048278809 img loss 1.38572359085083 img loss 1.518567442893982 img loss 1.5383189916610718 img loss 1.4226399660110474 img loss 1.351806879043579 img loss 1.4122862815856934 img loss 1.4252303838729858 img loss 1.5364307165145874 img loss 1.542061686515808 img loss 1.450856328010559 img loss 1.4966063499450684 img loss 1.5875033140182495 img loss 1.396925687789917 img loss 1.3843176364898682 img loss 1.4967976808547974 img loss 1.483339786529541 img loss 1.4368635416030884 img loss 1.3921719789505005 img loss 1.3820749521255493 img loss 1.3667184114456177 img loss 1.305938482284546 img loss 1.5056490898132324 img loss 1.5861736536026 img loss 1.4297620058059692 img loss 1.4409188032150269 img loss 1.4216426610946655 img loss 1.3788059949874878 img loss 1.292292594909668 img loss 1.5250974893569946 img loss 1.3527768850326538 img loss 1.5634292364120483 img loss 1.3629006147384644 img loss 1.4107584953308105 img loss 1.4543898105621338 img loss 1.4403167963027954 img loss 1.4065954685211182 img loss 1.4296753406524658 img loss 1.52969491481781 img loss 1.433982253074646 img loss 1.3613088130950928 img loss 1.5534684658050537 img loss 1.4260774850845337 img loss 1.5093117952346802 img loss 1.4457639455795288 img loss 1.5444467067718506 img loss 1.557534098625183 img loss 1.4063268899917603 img loss 1.416450023651123 img loss 1.420582890510559 {'loss': 1.4492, 'grad_norm': 0.7197667956352234, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.151564598083496 img loss 1.1710577011108398 img loss 1.1371760368347168 img loss 1.278035044670105 img loss 1.181149959564209 img loss 1.0795342922210693 img loss 1.1489313840866089 img loss 1.152059555053711 img loss 1.1892050504684448 img loss 1.2637536525726318 img loss 1.2182105779647827 img loss 1.1726995706558228 img loss 1.1393625736236572 img loss 1.213423490524292 img loss 1.2543654441833496 img loss 1.2026197910308838 img loss 1.2093256711959839 img loss 1.1445621252059937 img loss 1.1717685461044312 img loss 1.2300331592559814 img loss 1.185078501701355 img loss 1.1788196563720703 img loss 1.1396827697753906 img loss 1.2144477367401123 img loss 1.2102787494659424 img loss 1.168632984161377 img loss 1.1718215942382812 img loss 1.2405108213424683 img loss 1.142259120941162 img loss 1.1736595630645752 img loss 1.1555213928222656 img loss 1.1927677392959595 img loss 1.2127701044082642 img loss 1.0842245817184448 img loss 1.1697906255722046 img loss 1.2279024124145508 img loss 1.2535650730133057img loss 1.1406314373016357 img loss 1.1675589084625244 img loss 1.1097875833511353 img loss 1.2186530828475952 img loss 1.1611918210983276 img loss 1.0966237783432007 img loss 1.2708021402359009 img loss 1.2238750457763672 img loss 1.196925401687622 img loss 1.1604528427124023 img loss 1.204364538192749 img loss 1.1372706890106201 img loss 1.1454492807388306 img loss 1.1620452404022217 img loss 1.2137882709503174 img loss 1.151205062866211 img loss 1.1686763763427734 img loss 1.1654486656188965 img loss 1.1756511926651 img loss 1.1857585906982422 img loss 1.212702751159668 img loss 1.2100281715393066 img loss 1.1293185949325562 img loss 1.2225443124771118 img loss 1.1579087972640991 img loss 1.2045153379440308 img loss 1.2164113521575928 img loss 1.1698989868164062 img loss 1.1898727416992188 img loss 1.2207369804382324 img loss 1.210135817527771 img loss 1.3090084791183472 img loss 1.1982002258300781 img loss 1.1525589227676392 img loss 1.2084171772003174 img loss 1.1270958185195923 img loss 1.121781587600708 img loss 1.119407296180725 img loss 1.1232107877731323 img loss 1.1824941635131836 img loss 1.2167099714279175 img loss 1.2346110343933105 img loss 1.2226518392562866 img loss 1.2521333694458008 img loss 1.2420352697372437 img loss 1.2563800811767578 img loss 1.2628586292266846 img loss 1.2194149494171143 img loss 1.2064950466156006 img loss 1.2151955366134644 img loss 1.2331643104553223 img loss 1.2151473760604858 img loss 1.242866039276123 img loss 1.1299794912338257 img loss 1.1732935905456543 img loss 1.2053266763687134 img loss 1.1446871757507324 img loss 1.1590889692306519 img loss 1.2659069299697876 img loss 1.1999794244766235 img loss 1.223315954208374 img loss 1.1512959003448486 img loss 1.1215267181396484 img loss 1.2234777212142944 img loss 1.2184171676635742 img loss 1.256365418434143 img loss 1.2456393241882324 img loss 1.2292461395263672 img loss 1.0982778072357178 img loss 1.233351230621338 img loss 1.2703121900558472 img loss 1.2902770042419434 img loss 1.2356641292572021 img loss 1.156080961227417 img loss 1.1144243478775024 img loss 1.1665756702423096 img loss 1.2235395908355713 img loss 1.2432581186294556 img loss 1.2218191623687744 img loss 1.0948598384857178 img loss 1.2427605390548706 img loss 1.2112176418304443 img loss 1.172965407371521img loss 1.2805715799331665 img loss 1.1010959148406982 img loss 1.260371446609497 img loss 1.1882975101470947 img loss 1.1991928815841675 img loss 1.204910159111023 img loss 1.2222543954849243 img loss 1.252124309539795 {'loss': 1.1924, 'grad_norm': 0.43097835779190063, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2728233337402344 img loss 1.3209984302520752 img loss 1.262377142906189 img loss 1.339201807975769 img loss 1.2695423364639282 img loss 1.2942371368408203 img loss 1.3657232522964478 img loss 1.3317523002624512 img loss 1.2697997093200684 img loss 1.310144305229187 img loss 1.2915019989013672 img loss 1.3440520763397217 img loss 1.347432017326355 img loss 1.2797584533691406 img loss 1.2708754539489746 img loss 1.3572189807891846 img loss 1.2784953117370605 img loss 1.3252512216567993 img loss 1.2243497371673584 img loss 1.2979058027267456 img loss 1.3332860469818115 img loss 1.3372794389724731 img loss 1.377763032913208 img loss 1.316368818283081 img loss 1.366332769393921 img loss 1.2590855360031128 img loss 1.3562195301055908 img loss 1.3586668968200684 img loss 1.301640272140503 img loss 1.320878028869629 img loss 1.323760747909546 img loss 1.4457507133483887 img loss 1.197913408279419 img loss 1.3122973442077637 img loss 1.2300810813903809 img loss 1.3431731462478638 img loss 1.3116512298583984 img loss 1.4291796684265137 img loss 1.2723640203475952 img loss 1.268409252166748 img loss 1.3904321193695068 img loss 1.3491514921188354 img loss 1.2940685749053955 img loss 1.3829600811004639 img loss 1.2298322916030884 img loss 1.3173129558563232 img loss 1.39729642868042 img loss 1.315041422843933 img loss 1.411567211151123 img loss 1.2481430768966675 img loss 1.2975616455078125 img loss 1.2708446979522705 img loss 1.2423151731491089 img loss 1.3004268407821655 img loss 1.3252897262573242 img loss 1.3298078775405884 img loss 1.27167546749115 img loss 1.295021414756775 img loss 1.3546584844589233 img loss 1.3113281726837158 img loss 1.3093862533569336 img loss 1.257004976272583 img loss 1.3011001348495483 img loss 1.3740023374557495 img loss 1.2894176244735718 img loss 1.2471321821212769 img loss 1.2320942878723145 img loss 1.2989434003829956 img loss 1.3026230335235596 img loss 1.4770655632019043 img loss 1.2367095947265625 img loss 1.211830735206604 img loss 1.3410133123397827 img loss 1.3968065977096558 img loss 1.3449732065200806 img loss 1.3493530750274658 img loss 1.3473857641220093 img loss 1.312232255935669 img loss 1.3351566791534424 img loss 1.4078062772750854 img loss 1.2499679327011108 img loss 1.2319674491882324 img loss 1.3019838333129883 img loss 1.355089783668518 img loss 1.2837891578674316 img loss 1.2514170408248901 img loss 1.3458694219589233 img loss 1.2414177656173706 img loss 1.274376392364502 img loss 1.3118858337402344 img loss 1.2994496822357178 img loss 1.3319408893585205 img loss 1.3396233320236206 img loss 1.4133756160736084 img loss 1.336165189743042 img loss 1.2961126565933228 img loss 1.3525925874710083 img loss 1.3781352043151855 img loss 1.4197832345962524 img loss 1.3581088781356812 img loss 1.3700891733169556 img loss 1.3404430150985718 img loss 1.365265130996704 img loss 1.4358925819396973 img loss 1.3557411432266235 img loss 1.2774827480316162 img loss 1.3262970447540283 img loss 1.3088090419769287 img loss 1.494715929031372 img loss 1.3562419414520264 img loss 1.303240418434143 img loss 1.3543336391448975 img loss 1.2942074537277222 img loss 1.2484126091003418 img loss 1.367266058921814 img loss 1.3877075910568237 img loss 1.379774808883667 img loss 1.4518778324127197 img loss 1.4016929864883423 img loss 1.360431432723999 img loss 1.3427213430404663 img loss 1.344628095626831 img loss 1.4729959964752197 img loss 1.4162944555282593 img loss 1.3535797595977783 img loss 1.2780921459197998 img loss 1.3105682134628296 img loss 1.3677668571472168 {'loss': 1.3255, 'grad_norm': 0.2617536783218384, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2735564708709717 img loss 1.283678412437439 img loss 1.2583982944488525 img loss 1.1936520338058472 img loss 1.2573264837265015 img loss 1.2461642026901245 img loss 1.2842317819595337 img loss 1.222599744796753 img loss 1.1991926431655884 img loss 1.3033061027526855 img loss 1.202269196510315 img loss 1.178157091140747 img loss 1.2433981895446777 img loss 1.2824819087982178 img loss 1.2202656269073486 img loss 1.1924461126327515 img loss 1.2321300506591797 img loss 1.1389291286468506 img loss 1.2012795209884644 img loss 1.2509983777999878 img loss 1.3018230199813843 img loss 1.2064155340194702 img loss 1.2433191537857056 img loss 1.2426471710205078 img loss 1.2429331541061401 img loss 1.2800376415252686 img loss 1.2561005353927612 img loss 1.2609148025512695 img loss 1.2357022762298584 img loss 1.2266050577163696 img loss 1.2591599225997925 img loss 1.280700445175171 img loss 1.2607123851776123 img loss 1.2802467346191406 img loss 1.2089815139770508 img loss 1.2190699577331543 img loss 1.3669564723968506 img loss 1.294396996498108 img loss 1.2245744466781616 img loss 1.263275384902954 img loss 1.1968095302581787 img loss 1.1947773694992065 img loss 1.2313995361328125 img loss 1.3320950269699097 img loss 1.3036025762557983 img loss 1.2695835828781128 img loss 1.2133957147598267 img loss 1.157989740371704 img loss 1.2179667949676514 img loss 1.1909282207489014 img loss 1.2248409986495972 img loss 1.1875752210617065 img loss 1.171397089958191 img loss 1.2884191274642944 img loss 1.192308783531189 img loss 1.2317516803741455 img loss 1.305376410484314 img loss 1.4006751775741577 img loss 1.2892649173736572 img loss 1.2204275131225586 img loss 1.217058777809143 img loss 1.1433920860290527 img loss 1.3034788370132446 img loss 1.193451166152954 img loss 1.2633709907531738 img loss 1.275352954864502 img loss 1.1329400539398193 img loss 1.3829652070999146 img loss 1.214531421661377 img loss 1.1737451553344727 img loss 1.1957817077636719 img loss 1.2099360227584839 img loss 1.1997116804122925 img loss 1.2825028896331787 img loss 1.2072651386260986 img loss 1.1548694372177124 img loss 1.2610421180725098 img loss 1.251646876335144 img loss 1.3437045812606812 img loss 1.2397189140319824 img loss 1.2747424840927124 img loss 1.339000940322876 img loss 1.3159573078155518 img loss 1.1504853963851929 img loss 1.2224434614181519 img loss 1.2437593936920166 img loss 1.2025659084320068 img loss 1.2870861291885376 img loss 1.2958767414093018 img loss 1.2636455297470093 img loss 1.2130126953125 img loss 1.2789578437805176 img loss 1.1940704584121704 img loss 1.234964370727539 img loss 1.2103737592697144 img loss 1.2683731317520142 img loss 1.3808237314224243 img loss 1.165076494216919 img loss 1.2280511856079102 img loss 1.303590178489685 img loss 1.2282904386520386 img loss 1.2438502311706543 img loss 1.1480753421783447 img loss 1.366420865058899 img loss 1.2606436014175415 img loss 1.2168127298355103 img loss 1.1918509006500244 img loss 1.2300105094909668 img loss 1.2843608856201172 img loss 1.2068485021591187 img loss 1.2486412525177002 img loss 1.1821839809417725 img loss 1.177519679069519 img loss 1.2294580936431885 img loss 1.3127683401107788 img loss 1.2380249500274658 img loss 1.2588658332824707 img loss 1.2746260166168213 img loss 1.2241358757019043 img loss 1.287696123123169 img loss 1.21944260597229 img loss 1.263688325881958 img loss 1.2909231185913086 img loss 1.292496919631958 img loss 1.2372394800186157 img loss 1.159930944442749 img loss 1.344682216644287 img loss 1.267196536064148 {'loss': 1.2441, 'grad_norm': 0.5291841626167297, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3044236898422241 img loss 1.4339665174484253 img loss 1.297903060913086 img loss 1.3845276832580566 img loss 1.2986643314361572 img loss 1.3288345336914062 img loss 1.3072956800460815 img loss 1.4129186868667603 img loss 1.367309331893921 img loss 1.2488818168640137 img loss 1.4081557989120483 img loss 1.3150142431259155 img loss 1.3271739482879639 img loss 1.2888838052749634 img loss 1.3271136283874512 img loss 1.382657766342163 img loss 1.37850821018219 img loss 1.3643923997879028 img loss 1.511161208152771 img loss 1.4282118082046509 img loss 1.3956488370895386 img loss 1.3492785692214966 img loss 1.3181228637695312 img loss 1.4341005086898804 img loss 1.3682106733322144 img loss 1.3829540014266968 img loss 1.321298360824585 img loss 1.3962293863296509 img loss 1.328386902809143 img loss 1.2814167737960815 img loss 1.3297361135482788 img loss 1.359817385673523 img loss 1.3242958784103394 img loss 1.3121356964111328 img loss 1.2391893863677979 img loss 1.366913080215454 img loss 1.3629730939865112 img loss 1.3625191450119019 img loss 1.3106420040130615 img loss 1.2798222303390503 img loss 1.3276400566101074 img loss 1.3323395252227783 img loss 1.344205379486084 img loss 1.4614590406417847 img loss 1.3736965656280518 img loss 1.2164359092712402 img loss 1.273447871208191 img loss 1.4363741874694824 img loss 1.3206074237823486 img loss 1.333128571510315 img loss 1.3180742263793945 img loss 1.4539291858673096 img loss 1.3869770765304565 img loss 1.3396542072296143 img loss 1.3616445064544678 img loss 1.3825515508651733 img loss 1.3215553760528564 img loss 1.3558512926101685 img loss 1.3606221675872803 img loss 1.3415961265563965 img loss 1.3877464532852173 img loss 1.4582040309906006 img loss 1.3434451818466187 img loss 1.4755581617355347 img loss 1.436672568321228 img loss 1.319990873336792 img loss 1.3946340084075928 img loss 1.4586700201034546 img loss 1.400945782661438 img loss 1.38522207736969 img loss 1.4489389657974243 img loss 1.3469464778900146 img loss 1.277249813079834 img loss 1.3916679620742798 img loss 1.2899938821792603 img loss 1.4712045192718506 img loss 1.3755229711532593 img loss 1.3342554569244385 img loss 1.368618369102478 img loss 1.2448081970214844 img loss 1.371641993522644 img loss 1.4778140783309937 img loss 1.3132438659667969 img loss 1.4606152772903442 img loss 1.2968605756759644 img loss 1.4755831956863403 img loss 1.423998236656189 img loss 1.406410574913025 img loss 1.3102607727050781 img loss 1.313768982887268 img loss 1.3608381748199463 img loss 1.4118374586105347 img loss 1.331489086151123 img loss 1.3788996934890747 img loss 1.3993449211120605 img loss 1.3595385551452637 img loss 1.3863199949264526 img loss 1.337063193321228 img loss 1.3319182395935059 img loss 1.316128134727478 img loss 1.3578342199325562 img loss 1.3473312854766846 img loss 1.3406555652618408 img loss 1.3122024536132812 img loss 1.4096181392669678 img loss 1.318899154663086 img loss 1.4626225233078003 img loss 1.372300386428833 img loss 1.3314231634140015 img loss 1.3046973943710327 img loss 1.3929448127746582 img loss 1.3784191608428955 img loss 1.3421263694763184 img loss 1.3498753309249878 img loss 1.303271770477295 img loss 1.3238158226013184 img loss 1.3342050313949585 img loss 1.4268547296524048 img loss 1.2986629009246826 img loss 1.4024592638015747 img loss 1.426340937614441 img loss 1.1891355514526367 img loss 1.3224902153015137 img loss 1.323555588722229 img loss 1.3294236660003662 img loss 1.3580883741378784 img loss 1.5246855020523071 img loss 1.2473827600479126 {'loss': 1.3585, 'grad_norm': 0.38400235772132874, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.34244704246521 img loss 1.407081127166748 img loss 1.2523819208145142 img loss 1.417964220046997 img loss 1.4449900388717651 img loss 1.3626830577850342 img loss 1.2214350700378418 img loss 1.3189743757247925 img loss 1.2056477069854736 img loss 1.2855050563812256 img loss 1.268379807472229 img loss 1.3261525630950928 img loss 1.278130292892456 img loss 1.3039321899414062 img loss 1.4126652479171753 img loss 1.2725226879119873 img loss 1.308620810508728 img loss 1.3748552799224854 img loss 1.242797613143921 img loss 1.257738471031189 img loss 1.2900856733322144 img loss 1.3574930429458618 img loss 1.379093885421753 img loss 1.4232810735702515 img loss 1.3181016445159912 img loss 1.2432973384857178 img loss 1.3517400026321411 img loss 1.2922886610031128 img loss 1.2364639043807983 img loss 1.3630188703536987 img loss 1.5036966800689697 img loss 1.3950093984603882 img loss 1.3491300344467163 img loss 1.3190616369247437 img loss 1.3700547218322754 img loss 1.338889479637146 img loss 1.396991491317749 img loss 1.287182092666626 img loss 1.3435852527618408 img loss 1.3358467817306519 img loss 1.3274250030517578 img loss 1.3725693225860596 img loss 1.2857301235198975 img loss 1.295249581336975 img loss 1.3602252006530762 img loss 1.2755764722824097 img loss 1.2625732421875 img loss 1.3777024745941162 img loss 1.1399683952331543 img loss 1.3835586309432983 img loss 1.2865588665008545 img loss 1.2848666906356812 img loss 1.2254257202148438 img loss 1.379435658454895 img loss 1.5480464696884155 img loss 1.396274209022522 img loss 1.3226686716079712 img loss 1.3280342817306519 img loss 1.2169431447982788 img loss 1.2567886114120483 img loss 1.2890877723693848 img loss 1.3248817920684814 img loss 1.3117321729660034 img loss 1.2422338724136353 img loss 1.2808916568756104 img loss 1.3529369831085205 img loss 1.3898316621780396 img loss 1.31301748752594 img loss 1.3276945352554321 img loss 1.3050287961959839 img loss 1.2710089683532715 img loss 1.4205330610275269 img loss 1.2786520719528198 img loss 1.3193806409835815 img loss 1.2983118295669556 img loss 1.3292564153671265 img loss 1.2638641595840454 img loss 1.3171945810317993 img loss 1.2168635129928589img loss 1.3530923128128052 img loss 1.3208187818527222 img loss 1.3101882934570312 img loss 1.2274935245513916 img loss 1.2885191440582275 img loss 1.2744958400726318 img loss 1.3345977067947388 img loss 1.3363958597183228 img loss 1.4185559749603271 img loss 1.2962455749511719 img loss 1.2665209770202637 img loss 1.3486779928207397 img loss 1.235684871673584 img loss 1.2845475673675537 img loss 1.3047584295272827 img loss 1.3493626117706299 img loss 1.3606297969818115 img loss 1.274620771408081 img loss 1.305084466934204 img loss 1.3194564580917358 img loss 1.2500689029693604 img loss 1.3504399061203003 img loss 1.381385087966919 img loss 1.3285760879516602 img loss 1.3249030113220215 img loss 1.3674558401107788 img loss 1.280138373374939 img loss 1.3391953706741333 img loss 1.2473125457763672 img loss 1.3981492519378662 img loss 1.262399435043335 img loss 1.3105056285858154 img loss 1.315325379371643 img loss 1.407067060470581 img loss 1.2529610395431519 img loss 1.2404742240905762 img loss 1.3548451662063599 img loss 1.2832168340682983 img loss 1.3904081583023071 img loss 1.2729618549346924 img loss 1.2993017435073853 img loss 1.267870545387268 img loss 1.3724160194396973 img loss 1.4448215961456299 img loss 1.3689748048782349 img loss 1.3686041831970215 img loss 1.27947998046875 img loss 1.2977088689804077 img loss 1.3161872625350952 {'loss': 1.32, 'grad_norm': 0.35260847210884094, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1802177429199219 img loss 1.195660948753357 img loss 1.22663152217865 img loss 1.1467323303222656 img loss 1.2386868000030518 img loss 1.2075294256210327 img loss 1.1931524276733398 img loss 1.2014261484146118 img loss 1.1961930990219116 img loss 1.185390830039978 img loss 1.1911523342132568 img loss 1.2056964635849 img loss 1.1479939222335815 img loss 1.219069480895996 img loss 1.2005670070648193 img loss 1.158772349357605 img loss 1.1683568954467773 img loss 1.177001953125 img loss 1.1598320007324219 img loss 1.1948959827423096 img loss 1.191756248474121 img loss 1.17552649974823 img loss 1.157660961151123 img loss 1.18669855594635 img loss 1.2312456369400024 img loss 1.1787513494491577 img loss 1.1465497016906738 img loss 1.1911065578460693 img loss 1.1978325843811035 img loss 1.2214230298995972 img loss 1.2251276969909668 img loss 1.2692813873291016 img loss 1.2174599170684814 img loss 1.2600769996643066 img loss 1.1356724500656128 img loss 1.1731709241867065 img loss 1.1971588134765625 img loss 1.15303635597229 img loss 1.2139573097229004 img loss 1.1709911823272705 img loss 1.1822718381881714 img loss 1.1721261739730835 img loss 1.2000212669372559 img loss 1.2105435132980347 img loss 1.2373710870742798 img loss 1.2077528238296509 img loss 1.228947401046753 img loss 1.2005754709243774 img loss 1.198256254196167 img loss 1.195401906967163 img loss 1.1973299980163574 img loss 1.2292559146881104 img loss 1.2091649770736694 img loss 1.1831367015838623 img loss 1.200425624847412 img loss 1.243708848953247 img loss 1.186797022819519 img loss 1.2607017755508423 img loss 1.2322263717651367 img loss 1.1956651210784912 img loss 1.2592575550079346 img loss 1.2063287496566772 img loss 1.1733289957046509 img loss 1.2037729024887085 img loss 1.1903904676437378 img loss 1.1483484506607056 img loss 1.1872596740722656 img loss 1.2210708856582642 img loss 1.167358160018921 img loss 1.2210420370101929 img loss 1.1914926767349243 img loss 1.1567744016647339 img loss 1.1697381734848022 img loss 1.198618769645691 img loss 1.2045934200286865 img loss 1.2170219421386719 img loss 1.1456503868103027 img loss 1.1816715002059937 img loss 1.2227721214294434 img loss 1.2608054876327515 img loss 1.2049232721328735 img loss 1.2041233777999878 img loss 1.2170381546020508 img loss 1.1671732664108276 img loss 1.1780352592468262 img loss 1.1797951459884644 img loss 1.153382658958435 img loss 1.1653026342391968 img loss 1.1839948892593384 img loss 1.1710366010665894 img loss 1.2037734985351562 img loss 1.197792887687683 img loss 1.1504347324371338 img loss 1.2053664922714233 img loss 1.187244176864624 img loss 1.169158935546875 img loss 1.1443169116973877 img loss 1.206036925315857 img loss 1.21392822265625 img loss 1.1687513589859009 img loss 1.1910653114318848 img loss 1.1666589975357056 img loss 1.1978851556777954 img loss 1.1728037595748901 img loss 1.1942713260650635 img loss 1.1748335361480713 img loss 1.2357895374298096 img loss 1.21932852268219 img loss 1.139952301979065 img loss 1.215332269668579 img loss 1.23949134349823 img loss 1.1662161350250244 img loss 1.2810369729995728 img loss 1.2581489086151123 img loss 1.1816184520721436 img loss 1.1658357381820679 img loss 1.2064584493637085 img loss 1.173292636871338 img loss 1.2334569692611694 img loss 1.1860008239746094 img loss 1.2075124979019165 img loss 1.1965059041976929 img loss 1.2383915185928345 img loss 1.295249581336975 img loss 1.2435529232025146 img loss 1.2033287286758423 img loss 1.266966462135315 img loss 1.1600978374481201 {'loss': 1.1974, 'grad_norm': 0.3377460539340973, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2422529458999634 img loss 1.2530955076217651 img loss 1.2534749507904053 img loss 1.2472412586212158 img loss 1.2618279457092285 img loss 1.2624619007110596 img loss 1.340192437171936 img loss 1.2627474069595337 img loss 1.3019357919692993 img loss 1.2246153354644775 img loss 1.2168279886245728 img loss 1.2885137796401978 img loss 1.261508584022522 img loss 1.26095712184906 img loss 1.2494170665740967 img loss 1.245247483253479 img loss 1.2549774646759033 img loss 1.2510188817977905 img loss 1.2425774335861206 img loss 1.2431809902191162 img loss 1.2364860773086548 img loss 1.255124568939209 img loss 1.2442941665649414 img loss 1.262237548828125 img loss 1.2836836576461792 img loss 1.2803140878677368 img loss 1.2650585174560547 img loss 1.2415937185287476 img loss 1.209494948387146 img loss 1.253974199295044 img loss 1.2600386142730713 img loss 1.2651375532150269 img loss 1.2105882167816162 img loss 1.2749309539794922 img loss 1.241890549659729 img loss 1.249827265739441 img loss 1.230974793434143 img loss 1.236184000968933 img loss 1.2822022438049316 img loss 1.2473692893981934 img loss 1.2614057064056396 img loss 1.2883096933364868 img loss 1.23294198513031 img loss 1.2278391122817993 img loss 1.269997239112854 img loss 1.1928746700286865 img loss 1.2513550519943237 img loss 1.1806548833847046 img loss 1.273799180984497 img loss 1.2298625707626343 img loss 1.2231898307800293 img loss 1.2447471618652344 img loss 1.2305744886398315 img loss 1.2723817825317383 img loss 1.2468502521514893 img loss 1.288317084312439 img loss 1.2474305629730225 img loss 1.2696102857589722 img loss 1.222733974456787 img loss 1.2324230670928955 img loss 1.2445095777511597 img loss 1.2601650953292847 img loss 1.2799034118652344 img loss 1.2357860803604126 img loss 1.2602481842041016 img loss 1.2745364904403687 img loss 1.2319380044937134 img loss 1.2040002346038818 img loss 1.2365254163742065 img loss 1.2467046976089478 img loss 1.2734436988830566 img loss 1.241929292678833 img loss 1.231806993484497 img loss 1.2664647102355957 img loss 1.2545692920684814 img loss 1.2677541971206665 img loss 1.3029201030731201 img loss 1.2284153699874878 img loss 1.264487862586975 img loss 1.2697263956069946 img loss 1.2326231002807617 img loss 1.2800835371017456 img loss 1.2637267112731934 img loss 1.3051352500915527 img loss 1.195380449295044 img loss 1.2903568744659424 img loss 1.2805007696151733 img loss 1.2366622686386108 img loss 1.2766761779785156 img loss 1.2527793645858765 img loss 1.2535321712493896 img loss 1.2384551763534546 img loss 1.2552297115325928 img loss 1.2505073547363281 img loss 1.2498842477798462 img loss 1.288918375968933 img loss 1.2475078105926514 img loss 1.2527563571929932 img loss 1.2200945615768433 img loss 1.2484511137008667 img loss 1.2620961666107178 img loss 1.2321181297302246 img loss 1.2376861572265625 img loss 1.2525562047958374 img loss 1.2354273796081543 img loss 1.2354322671890259 img loss 1.2509210109710693 img loss 1.2815830707550049 img loss 1.2663493156433105 img loss 1.2650631666183472 img loss 1.2409486770629883 img loss 1.2294692993164062 img loss 1.2083591222763062 img loss 1.2036669254302979 img loss 1.2300453186035156 img loss 1.2341009378433228 img loss 1.2335342168807983 img loss 1.2384147644042969 img loss 1.2682918310165405 img loss 1.2472280263900757 img loss 1.2485425472259521 img loss 1.2242045402526855 img loss 1.2769384384155273 img loss 1.2179378271102905 img loss 1.2624815702438354 img loss 1.2080817222595215 img loss 1.2300165891647339 img loss 1.22890305519104 {'loss': 1.2502, 'grad_norm': 0.22046248614788055, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1670145988464355 img loss 1.2253262996673584 img loss 1.1586521863937378 img loss 1.234739899635315 img loss 1.2618770599365234 img loss 1.226055383682251 img loss 1.160212755203247 img loss 1.2760833501815796 img loss 1.2882018089294434 img loss 1.33162522315979 img loss 1.1664681434631348 img loss 1.3310226202011108 img loss 1.1713981628417969 img loss 1.2780183553695679 img loss 1.2758946418762207 img loss 1.2406758069992065 img loss 1.1687952280044556 img loss 1.3462563753128052 img loss 1.2542400360107422 img loss 1.3239151239395142 img loss 1.3351324796676636 img loss 1.2904529571533203 img loss 1.3113861083984375 img loss 1.1806392669677734 img loss 1.3000439405441284 img loss 1.3101801872253418 img loss 1.2152016162872314 img loss 1.267089605331421 img loss 1.2214998006820679 img loss 1.2496246099472046 img loss 1.1645057201385498 img loss 1.1526485681533813 img loss 1.1984409093856812 img loss 1.2110323905944824img loss 1.356591820716858 img loss 1.282814383506775 img loss 1.1661704778671265 img loss 1.3633846044540405 img loss 1.2538166046142578 img loss 1.2816410064697266 img loss 1.2691601514816284 img loss 1.2569011449813843 img loss 1.30670166015625 img loss 1.1894936561584473 img loss 1.2518856525421143 img loss 1.254412293434143 img loss 1.2255924940109253 img loss 1.2001205682754517 img loss 1.1538227796554565 img loss 1.2104133367538452 img loss 1.3529839515686035 img loss 1.212026596069336 img loss 1.1760320663452148 img loss 1.2559460401535034 img loss 1.2863173484802246 img loss 1.3671895265579224 img loss 1.2546844482421875 img loss 1.3151172399520874 img loss 1.271400809288025 img loss 1.448868989944458 img loss 1.3106319904327393 img loss 1.1832995414733887 img loss 1.2017396688461304 img loss 1.1596815586090088 img loss 1.1950430870056152 img loss 1.2257423400878906 img loss 1.246656060218811 img loss 1.4134221076965332 img loss 1.3215347528457642 img loss 1.3463994264602661 img loss 1.1969722509384155 img loss 1.1885398626327515 img loss 1.2626537084579468 img loss 1.1712404489517212 img loss 1.2600600719451904 img loss 1.188604712486267 img loss 1.3170522451400757 img loss 1.302504539489746 img loss 1.1455585956573486 img loss 1.3335195779800415 img loss 1.1675894260406494 img loss 1.253408432006836 img loss 1.2595634460449219 img loss 1.2232481241226196 img loss 1.167655348777771 img loss 1.2158459424972534 img loss 1.3443572521209717 img loss 1.2022370100021362 img loss 1.321042537689209 img loss 1.2418121099472046 img loss 1.1745136976242065 img loss 1.2982347011566162 img loss 1.2594057321548462 img loss 1.38872230052948 img loss 1.1381449699401855 img loss 1.2205774784088135 img loss 1.255125880241394 img loss 1.1948297023773193 img loss 1.161162257194519 img loss 1.3038952350616455 img loss 1.3208279609680176 img loss 1.297592043876648 img loss 1.218286156654358 img loss 1.3203548192977905 img loss 1.2734066247940063 img loss 1.2704271078109741 img loss 1.1741669178009033 img loss 1.1219724416732788 img loss 1.203707218170166 img loss 1.28871488571167 img loss 1.2417042255401611 img loss 1.2917755842208862 img loss 1.1823747158050537 img loss 1.2879434823989868 img loss 1.2768357992172241 img loss 1.422563076019287 img loss 1.2483432292938232 img loss 1.2246208190917969 img loss 1.21566641330719 img loss 1.2346900701522827 img loss 1.2909835577011108 img loss 1.204972505569458 img loss 1.2548799514770508 img loss 1.2937811613082886 img loss 1.256538987159729 img loss 1.2625069618225098 img loss 1.1650227308273315 img loss 1.1926307678222656 {'loss': 1.2504, 'grad_norm': 0.2353944480419159, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3181238174438477 img loss 1.4311741590499878 img loss 1.1765135526657104 img loss 1.3291791677474976 img loss 1.2228199243545532 img loss 1.3323512077331543 img loss 1.2481205463409424 img loss 1.3467118740081787 img loss 1.342721700668335 img loss 1.2262840270996094 img loss 1.25802481174469 img loss 1.2788721323013306 img loss 1.258531928062439 img loss 1.2461189031600952 img loss 1.2572383880615234 img loss 1.2410372495651245 img loss 1.191845178604126 img loss 1.232692003250122 img loss 1.2186580896377563 img loss 1.2686399221420288 img loss 1.2663781642913818 img loss 1.241147756576538 img loss 1.199173927307129 img loss 1.2805756330490112 img loss 1.2118028402328491 img loss 1.1734025478363037 img loss 1.23153817653656 img loss 1.3098496198654175 img loss 1.232005000114441 img loss 1.3174171447753906 img loss 1.2083423137664795 img loss 1.3170320987701416 img loss 1.2143349647521973 img loss 1.2924045324325562 img loss 1.2185839414596558 img loss 1.3082916736602783 img loss 1.2978460788726807 img loss 1.3116297721862793 img loss 1.1950645446777344 img loss 1.3067506551742554 img loss 1.2341208457946777 img loss 1.2295345067977905 img loss 1.2733707427978516 img loss 1.2902369499206543 img loss 1.24118971824646 img loss 1.2725818157196045 img loss 1.2239941358566284 img loss 1.2039134502410889 img loss 1.254515290260315 img loss 1.2921695709228516 img loss 1.3041012287139893 img loss 1.204805850982666 img loss 1.1740961074829102 img loss 1.332493782043457 img loss 1.2547177076339722 img loss 1.272898554801941 img loss 1.242930293083191 img loss 1.195645809173584 img loss 1.241838812828064 img loss 1.2660770416259766 img loss 1.2949233055114746 img loss 1.3032671213150024 img loss 1.2270115613937378 img loss 1.1253139972686768 img loss 1.1827396154403687 img loss 1.2368007898330688 img loss 1.1622194051742554 img loss 1.2151634693145752 img loss 1.2690849304199219 img loss 1.2103838920593262 img loss 1.3414686918258667 img loss 1.2777202129364014 img loss 1.3003993034362793 img loss 1.2874895334243774 img loss 1.2978532314300537 img loss 1.1834280490875244 img loss 1.2411164045333862 img loss 1.2525782585144043 img loss 1.331336498260498 img loss 1.2884305715560913 img loss 1.3193602561950684 img loss 1.2003387212753296 img loss 1.294777512550354 img loss 1.2821911573410034 img loss 1.1850221157073975 img loss 1.2305045127868652 img loss 1.1980583667755127 img loss 1.2403911352157593 img loss 1.2860796451568604 img loss 1.1793752908706665img loss 1.1818227767944336 img loss 1.185015082359314 img loss 1.3008571863174438 img loss 1.3346112966537476 img loss 1.1563951969146729 img loss 1.3233909606933594 img loss 1.2598329782485962 img loss 1.2300671339035034 img loss 1.3643105030059814 img loss 1.218212366104126 img loss 1.2948200702667236 img loss 1.263603925704956 img loss 1.2308088541030884 img loss 1.2451740503311157 img loss 1.2128418684005737 img loss 1.265261173248291 img loss 1.2454438209533691 img loss 1.347928762435913 img loss 1.3433833122253418 img loss 1.3547370433807373 img loss 1.2618212699890137 img loss 1.3518195152282715 img loss 1.4015233516693115 img loss 1.1823527812957764 img loss 1.1963536739349365 img loss 1.2683236598968506 img loss 1.2820614576339722 img loss 1.152358055114746 img loss 1.2436870336532593 img loss 1.1867817640304565 img loss 1.2591367959976196 img loss 1.2703183889389038 img loss 1.289991855621338 img loss 1.2139812707901 img loss 1.279025673866272 img loss 1.2513670921325684 img loss 1.192091703414917 img loss 1.2818660736083984 {'loss': 1.2573, 'grad_norm': 0.20590940117835999, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4018504619598389 img loss 1.4936671257019043 img loss 1.4629179239273071 img loss 1.4334920644760132 img loss 1.3580576181411743 img loss 1.3179969787597656 img loss 1.3757376670837402 img loss 1.3512665033340454 img loss 1.436885952949524 img loss 1.4686388969421387 img loss 1.4089049100875854 img loss 1.3055484294891357 img loss 1.39823317527771 img loss 1.4042179584503174 img loss 1.324033260345459 img loss 1.421485424041748 img loss 1.371651291847229 img loss 1.3639590740203857 img loss 1.42327082157135 img loss 1.5321391820907593 img loss 1.5488344430923462 img loss 1.3448013067245483 img loss 1.3452483415603638 img loss 1.354633092880249 img loss 1.4284652471542358 img loss 1.5298649072647095 img loss 1.3994263410568237 img loss 1.3404988050460815 img loss 1.46800696849823 img loss 1.3561402559280396 img loss 1.4028264284133911 img loss 1.5132123231887817 img loss 1.353352427482605 img loss 1.3938288688659668 img loss 1.3611714839935303 img loss 1.3105506896972656 img loss 1.302489161491394 img loss 1.4561381340026855 img loss 1.3872296810150146 img loss 1.302293300628662 img loss 1.43913733959198 img loss 1.4571744203567505 img loss 1.5340479612350464 img loss 1.3431521654129028 img loss 1.336288571357727 img loss 1.4109634160995483 img loss 1.3734291791915894 img loss 1.4491136074066162 img loss 1.4567395448684692 img loss 1.2783088684082031 img loss 1.295501708984375 img loss 1.353736162185669 img loss 1.4840044975280762 img loss 1.3844389915466309 img loss 1.37257981300354 img loss 1.4917762279510498 img loss 1.3547779321670532 img loss 1.4027522802352905 img loss 1.2965058088302612 img loss 1.4350178241729736 img loss 1.3882615566253662 img loss 1.4151614904403687 img loss 1.4364944696426392 img loss 1.405241847038269 img loss 1.3462563753128052 img loss 1.5356656312942505 img loss 1.363226056098938 img loss 1.4180524349212646 img loss 1.410019040107727 img loss 1.2411556243896484 img loss 1.3507254123687744 img loss 1.3431198596954346 img loss 1.4162148237228394 img loss 1.429601788520813 img loss 1.4236483573913574 img loss 1.5412132740020752 img loss 1.4318972826004028 img loss 1.3550502061843872 img loss 1.2987855672836304 img loss 1.4336646795272827 img loss 1.2609201669692993 img loss 1.3413957357406616 img loss 1.5155978202819824 img loss 1.4006530046463013 img loss 1.47346031665802 img loss 1.4257124662399292 img loss 1.350997805595398 img loss 1.4852663278579712 img loss 1.33333158493042 img loss 1.3665107488632202 img loss 1.5035935640335083 img loss 1.4109301567077637 img loss 1.5786908864974976 img loss 1.4036163091659546 img loss 1.4029688835144043 img loss 1.3618273735046387 img loss 1.470884084701538 img loss 1.3408509492874146 img loss 1.381469964981079 img loss 1.3648583889007568 img loss 1.46168851852417 img loss 1.4631249904632568 img loss 1.3550015687942505 img loss 1.4834197759628296 img loss 1.4349873065948486 img loss 1.4197137355804443 img loss 1.3884891271591187 img loss 1.4443862438201904 img loss 1.440929889678955 img loss 1.4577860832214355 img loss 1.4108206033706665 img loss 1.2569242715835571 img loss 1.3783886432647705 img loss 1.3665233850479126 img loss 1.3895585536956787 img loss 1.4445364475250244 img loss 1.4133261442184448 img loss 1.5771681070327759 img loss 1.4324698448181152 img loss 1.3312784433364868 img loss 1.3995479345321655 img loss 1.3215863704681396 img loss 1.437835931777954 img loss 1.473578929901123 img loss 1.3950397968292236 img loss 1.5229765176773071 img loss 1.3087068796157837 img loss 1.4316771030426025 {'loss': 1.4039, 'grad_norm': 0.3397376239299774, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.200014591217041 img loss 1.2967628240585327 img loss 1.1785935163497925 img loss 1.1502615213394165 img loss 1.1071743965148926 img loss 1.3148283958435059 img loss 1.198325514793396 img loss 1.1641563177108765 img loss 1.2461681365966797 img loss 1.2842938899993896 img loss 1.1768510341644287 img loss 1.2314649820327759 img loss 1.1382412910461426 img loss 1.2209901809692383 img loss 1.1627953052520752 img loss 1.1200376749038696 img loss 1.2512803077697754 img loss 1.255293846130371 img loss 1.2687737941741943 img loss 1.1525214910507202 img loss 1.22755765914917 img loss 1.2664190530776978 img loss 1.1470413208007812 img loss 1.2185138463974 img loss 1.2529680728912354 img loss 1.2018972635269165 img loss 1.1324375867843628 img loss 1.164515733718872 img loss 1.2405084371566772 img loss 1.2361170053482056 img loss 1.2023390531539917 img loss 1.2456321716308594 img loss 1.1511993408203125 img loss 1.363847017288208 img loss 1.2120006084442139 img loss 1.2072566747665405 img loss 1.193938136100769 img loss 1.188628911972046 img loss 1.1980937719345093 img loss 1.1647391319274902 img loss 1.1570031642913818 img loss 1.1974093914031982 img loss 1.1887030601501465 img loss 1.1566604375839233 img loss 1.192344069480896 img loss 1.1345276832580566 img loss 1.3221008777618408 img loss 1.1408872604370117 img loss 1.2688441276550293 img loss 1.2188994884490967 img loss 1.1676300764083862 img loss 1.2245800495147705 img loss 1.1926233768463135 img loss 1.20371413230896 img loss 1.2208950519561768 img loss 1.2830969095230103 img loss 1.2561869621276855 img loss 1.1724677085876465 img loss 1.2129685878753662 img loss 1.1927077770233154 img loss 1.0990443229675293 img loss 1.235527753829956 img loss 1.249428153038025 img loss 1.1308858394622803 img loss 1.2688966989517212 img loss 1.219870924949646 img loss 1.167053461074829 img loss 1.1786314249038696 img loss 1.2521131038665771 img loss 1.1921766996383667 img loss 1.1952555179595947 img loss 1.222773790359497 img loss 1.239985704421997 img loss 1.1929575204849243 img loss 1.3323163986206055 img loss 1.2705389261245728 img loss 1.3027721643447876 img loss 1.205201506614685 img loss 1.2196459770202637 img loss 1.169416904449463 img loss 1.2483106851577759 img loss 1.2093645334243774 img loss 1.1759469509124756 img loss 1.2092097997665405 img loss 1.2406669855117798 img loss 1.2346960306167603 img loss 1.1583328247070312 img loss 1.2182668447494507 img loss 1.1901918649673462 img loss 1.1288286447525024 img loss 1.152299404144287 img loss 1.3113176822662354 img loss 1.19797682762146 img loss 1.2485431432724 img loss 1.1102893352508545 img loss 1.1376160383224487 img loss 1.1486833095550537 img loss 1.207984209060669 img loss 1.194382667541504 img loss 1.1830363273620605 img loss 1.151650309562683 img loss 1.2686184644699097 img loss 1.1990782022476196 img loss 1.295072317123413 img loss 1.1160064935684204 img loss 1.1931008100509644 img loss 1.1309224367141724 img loss 1.1805989742279053 img loss 1.2483265399932861 img loss 1.166634440422058 img loss 1.2228150367736816 img loss 1.1613184213638306 img loss 1.153842568397522 img loss 1.313140869140625 img loss 1.2207133769989014 img loss 1.3796589374542236 img loss 1.3018903732299805 img loss 1.1268538236618042 img loss 1.197937250137329 img loss 1.1549358367919922 img loss 1.1271164417266846 img loss 1.2328990697860718 img loss 1.1986570358276367 img loss 1.187334656715393 img loss 1.2686201333999634 img loss 1.189359426498413 img loss 1.2442748546600342 img loss 1.264129400253296 {'loss': 1.2077, 'grad_norm': 0.36697447299957275, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4547864198684692 img loss 1.5130398273468018 img loss 1.3773925304412842 img loss 1.3786828517913818 img loss 1.4619243144989014 img loss 1.4532593488693237 img loss 1.3845059871673584 img loss 1.6463605165481567 img loss 1.4920837879180908 img loss 1.4907100200653076 img loss 1.5972669124603271 img loss 1.4124666452407837 img loss 1.3462132215499878 img loss 1.3916079998016357 img loss 1.5534818172454834 img loss 1.4508594274520874 img loss 1.4967176914215088 img loss 1.4219071865081787 img loss 1.580494999885559 img loss 1.415841817855835 img loss 1.373519778251648 img loss 1.3796460628509521 img loss 1.488478422164917 img loss 1.537941813468933 img loss 1.4847604036331177 img loss 1.520015835762024 img loss 1.4906450510025024 img loss 1.3977895975112915 img loss 1.4287636280059814 img loss 1.3895071744918823 img loss 1.4677507877349854 img loss 1.4991915225982666 img loss 1.4189521074295044 img loss 1.4021265506744385 img loss 1.541204810142517 img loss 1.6152201890945435 img loss 1.5142329931259155 img loss 1.4596421718597412 img loss 1.4506676197052002img loss 1.3059333562850952 img loss 1.3960493803024292 img loss 1.3844338655471802 img loss 1.257230281829834 img loss 1.5482500791549683 img loss 1.4137824773788452 img loss 1.3084304332733154 img loss 1.5850750207901 img loss 1.513517141342163 img loss 1.3469480276107788 img loss 1.3909114599227905 img loss 1.4364789724349976 img loss 1.3815884590148926 img loss 1.4458643198013306 img loss 1.416643738746643 img loss 1.417291522026062 img loss 1.599981427192688 img loss 1.4673113822937012 img loss 1.5061274766921997 img loss 1.3653289079666138 img loss 1.565367341041565 img loss 1.476487398147583 img loss 1.4731935262680054 img loss 1.3379623889923096 img loss 1.4350107908248901 img loss 1.3768422603607178 img loss 1.482611894607544 img loss 1.4374886751174927 img loss 1.4357924461364746 img loss 1.3666138648986816 img loss 1.3851523399353027 img loss 1.360377550125122 img loss 1.3606505393981934 img loss 1.3390727043151855 img loss 1.2958519458770752 img loss 1.4899065494537354 img loss 1.4559842348098755 img loss 1.5155625343322754 img loss 1.4378081560134888 img loss 1.3792065382003784 img loss 1.4302233457565308 img loss 1.343911051750183 img loss 1.55245840549469 img loss 1.4530800580978394 img loss 1.5344887971878052 img loss 1.5324312448501587 img loss 1.4822756052017212 img loss 1.403480052947998 img loss 1.4908173084259033 img loss 1.3654685020446777 img loss 1.4926830530166626 img loss 1.5637627840042114 img loss 1.4241122007369995 img loss 1.4701141119003296 img loss 1.5167790651321411 img loss 1.3277472257614136 img loss 1.5704110860824585 img loss 1.6132324934005737 img loss 1.3609788417816162 img loss 1.39384925365448 img loss 1.4182162284851074 img loss 1.6200547218322754 img loss 1.5708087682724 img loss 1.4292328357696533 img loss 1.5630918741226196 img loss 1.4757440090179443 img loss 1.4204907417297363 img loss 1.396503210067749 img loss 1.4684879779815674 img loss 1.3773843050003052 img loss 1.4361884593963623 img loss 1.4601980447769165 img loss 1.4509094953536987 img loss 1.5126173496246338 img loss 1.2892262935638428 img loss 1.5031970739364624 img loss 1.4557632207870483 img loss 1.524267554283142 img loss 1.4870336055755615 img loss 1.3725205659866333 img loss 1.468856930732727 img loss 1.4604042768478394 img loss 1.4157986640930176 img loss 1.3875797986984253 img loss 1.6544073820114136 img loss 1.5547477006912231 img loss 1.45485520362854 img loss 1.3501149415969849 img loss 1.4931023120880127 {'loss': 1.4521, 'grad_norm': 0.3429701626300812, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.444687008857727 img loss 1.4594498872756958 img loss 1.3659883737564087 img loss 1.4771867990493774 img loss 1.462385654449463 img loss 1.5781152248382568 img loss 1.4152634143829346 img loss 1.403728723526001 img loss 1.2501604557037354 img loss 1.3974449634552002 img loss 1.4576334953308105 img loss 1.3785669803619385 img loss 1.4986692667007446 img loss 1.4843801259994507 img loss 1.506032109260559 img loss 1.3484879732131958 img loss 1.320852279663086 img loss 1.3073543310165405 img loss 1.402756929397583 img loss 1.465018391609192 img loss 1.4565212726593018 img loss 1.5085664987564087 img loss 1.4021271467208862 img loss 1.4515912532806396 img loss 1.4112681150436401 img loss 1.326851487159729 img loss 1.4309836626052856 img loss 1.3678094148635864 img loss 1.4980618953704834 img loss 1.4763195514678955 img loss 1.415716528892517 img loss 1.4569631814956665 img loss 1.3949633836746216 img loss 1.3829410076141357 img loss 1.4483160972595215 img loss 1.3145216703414917 img loss 1.4374881982803345 img loss 1.5076501369476318 img loss 1.3470693826675415 img loss 1.4538711309432983 img loss 1.4893461465835571 img loss 1.255440592765808 img loss 1.5285789966583252 img loss 1.411953091621399 img loss 1.5110867023468018 img loss 1.4499380588531494 img loss 1.4065648317337036 img loss 1.408549189567566 img loss 1.4054820537567139 img loss 1.4480410814285278 img loss 1.510180115699768 img loss 1.4084737300872803 img loss 1.5035194158554077 img loss 1.4446853399276733 img loss 1.3888471126556396 img loss 1.426164984703064 img loss 1.469443440437317 img loss 1.3441846370697021 img loss 1.487925410270691 img loss 1.3643507957458496 img loss 1.5947457551956177 img loss 1.3182408809661865 img loss 1.4970749616622925 img loss 1.4514573812484741 img loss 1.4396942853927612 img loss 1.4616376161575317 img loss 1.3679062128067017 img loss 1.2727493047714233 img loss 1.3670392036437988 img loss 1.3561310768127441 img loss 1.41325044631958 img loss 1.2973644733428955 img loss 1.5029641389846802 img loss 1.4848476648330688 img loss 1.3136513233184814 img loss 1.3661742210388184 img loss 1.4594416618347168 img loss 1.527376413345337 img loss 1.396767020225525 img loss 1.2646452188491821 img loss 1.4928628206253052 img loss 1.393123984336853 img loss 1.512277364730835 img loss 1.6209300756454468 img loss 1.4014760255813599 img loss 1.4004034996032715 img loss 1.4749197959899902 img loss 1.4159215688705444 img loss 1.5777909755706787 img loss 1.3413132429122925 img loss 1.5109007358551025 img loss 1.3507353067398071 img loss 1.4548814296722412 img loss 1.3924872875213623 img loss 1.382789969444275 img loss 1.4265503883361816 img loss 1.3022960424423218 img loss 1.5194920301437378 img loss 1.3932795524597168 img loss 1.3476170301437378 img loss 1.3129490613937378 img loss 1.3314566612243652 img loss 1.3672553300857544 img loss 1.527254581451416 img loss 1.4648330211639404 img loss 1.398535966873169 img loss 1.458369493484497 img loss 1.3061975240707397 img loss 1.4743558168411255 img loss 1.4017740488052368 img loss 1.3956034183502197 img loss 1.5084255933761597 img loss 1.3579930067062378 img loss 1.4581658840179443 img loss 1.3731664419174194 img loss 1.4356639385223389 img loss 1.360990285873413 img loss 1.5222229957580566 img loss 1.343993902206421 img loss 1.483822226524353 img loss 1.4500954151153564 img loss 1.466413974761963 img loss 1.4416861534118652 img loss 1.43715238571167 img loss 1.4191431999206543 img loss 1.3659062385559082 img loss 1.504135251045227 img loss 1.4068242311477661 {'loss': 1.4236, 'grad_norm': 0.2708668112754822, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3437970876693726 img loss 1.2750613689422607 img loss 1.2321770191192627 img loss 1.2124061584472656 img loss 1.3699986934661865 img loss 1.4318158626556396 img loss 1.3899401426315308 img loss 1.266635537147522 img loss 1.2839624881744385 img loss 1.3060157299041748 img loss 1.2697639465332031 img loss 1.3276262283325195 img loss 1.3114407062530518 img loss 1.2990188598632812 img loss 1.306164264678955 img loss 1.4009984731674194 img loss 1.3594125509262085 img loss 1.338389277458191 img loss 1.3836820125579834 img loss 1.271636724472046 img loss 1.2594265937805176 img loss 1.3211268186569214 img loss 1.4161583185195923 img loss 1.252147912979126 img loss 1.2784563302993774 img loss 1.3476157188415527 img loss 1.2604191303253174 img loss 1.3690401315689087 img loss 1.3465955257415771 img loss 1.2641512155532837 img loss 1.2924892902374268 img loss 1.3764594793319702 img loss 1.3175654411315918 img loss 1.2796484231948853 img loss 1.3636714220046997 img loss 1.3116769790649414 img loss 1.3911240100860596 img loss 1.285678505897522 img loss 1.3674960136413574 img loss 1.335107684135437 img loss 1.2805286645889282 img loss 1.2781600952148438 img loss 1.3024338483810425 img loss 1.3113908767700195 img loss 1.354509711265564 img loss 1.355994462966919 img loss 1.3231090307235718 img loss 1.2909921407699585 img loss 1.2373864650726318 img loss 1.2704514265060425 img loss 1.2762141227722168 img loss 1.2835639715194702 img loss 1.320674180984497 img loss 1.251633882522583 img loss 1.293678879737854 img loss 1.3262776136398315 img loss 1.2822498083114624 img loss 1.3038115501403809 img loss 1.3431735038757324 img loss 1.2945339679718018 img loss 1.369144320487976 img loss 1.3548728227615356 img loss 1.339239239692688 img loss 1.2859655618667603 img loss 1.293627142906189 img loss 1.2781026363372803 img loss 1.3126417398452759 img loss 1.2411608695983887 img loss 1.3483108282089233 img loss 1.31314218044281 img loss 1.3060158491134644 img loss 1.3673769235610962 img loss 1.3130223751068115 img loss 1.3258392810821533 img loss 1.3570085763931274 img loss 1.356990098953247 img loss 1.314534068107605 img loss 1.3510814905166626 img loss 1.3407723903656006 img loss 1.1812232732772827 img loss 1.3037340641021729 img loss 1.3422322273254395 img loss 1.3376538753509521 img loss 1.2886055707931519 img loss 1.2675812244415283 img loss 1.2778247594833374 img loss 1.3788796663284302 img loss 1.2975904941558838 img loss 1.2494159936904907 img loss 1.1592702865600586 img loss 1.2854595184326172 img loss 1.3563740253448486 img loss 1.2264946699142456 img loss 1.303452730178833 img loss 1.278841495513916 img loss 1.2934625148773193 img loss 1.280393123626709 img loss 1.2537602186203003 img loss 1.3303508758544922 img loss 1.3539687395095825 img loss 1.244971752166748 img loss 1.3471647500991821 img loss 1.3048428297042847 img loss 1.4075602293014526 img loss 1.3594425916671753 img loss 1.2874113321304321 img loss 1.258773684501648 img loss 1.2938982248306274 img loss 1.297514796257019 img loss 1.3249869346618652 img loss 1.3788505792617798 img loss 1.2728413343429565 img loss 1.2856035232543945 img loss 1.2594940662384033 img loss 1.3168867826461792 img loss 1.4594991207122803 img loss 1.3114744424819946 img loss 1.3213220834732056 img loss 1.3226521015167236 img loss 1.327807903289795 img loss 1.3002257347106934 img loss 1.297728180885315 img loss 1.3828932046890259 img loss 1.2588694095611572 img loss 1.3148653507232666 img loss 1.2801138162612915 img loss 1.2757606506347656 img loss 1.2638139724731445 {'loss': 1.3107, 'grad_norm': 0.23152580857276917, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2193485498428345 img loss 1.2461975812911987 img loss 1.273267149925232 img loss 1.1615318059921265 img loss 1.2535490989685059 img loss 1.1204503774642944 img loss 1.2014315128326416 img loss 1.1990103721618652 img loss 1.1739990711212158 img loss 1.1612943410873413 img loss 1.2520384788513184 img loss 1.2005088329315186 img loss 1.229594111442566 img loss 1.1994727849960327 img loss 1.2213313579559326 img loss 1.2252238988876343 img loss 1.1265978813171387 img loss 1.1932919025421143 img loss 1.2186893224716187 img loss 1.157010555267334 img loss 1.2130753993988037 img loss 1.229560136795044 img loss 1.2057390213012695 img loss 1.196333646774292 img loss 1.199233889579773 img loss 1.273192048072815 img loss 1.1556423902511597 img loss 1.2398951053619385 img loss 1.2086790800094604 img loss 1.200478434562683 img loss 1.2213414907455444 img loss 1.2436654567718506 img loss 1.2441505193710327 img loss 1.1496858596801758 img loss 1.1959810256958008 img loss 1.3252476453781128 img loss 1.2298688888549805 img loss 1.3051848411560059 img loss 1.1503558158874512 img loss 1.199617624282837 img loss 1.1736679077148438 img loss 1.2251297235488892 img loss 1.1289819478988647 img loss 1.169645071029663 img loss 1.2523854970932007 img loss 1.2245014905929565 img loss 1.2554477453231812 img loss 1.173795223236084 img loss 1.2043222188949585 img loss 1.184456467628479 img loss 1.1554465293884277 img loss 1.1487534046173096 img loss 1.2340335845947266 img loss 1.1938027143478394 img loss 1.2595471143722534 img loss 1.1771185398101807 img loss 1.1910903453826904 img loss 1.2234935760498047 img loss 1.1825544834136963 img loss 1.2811493873596191 img loss 1.221962332725525 img loss 1.2229995727539062 img loss 1.1932165622711182 img loss 1.2288613319396973 img loss 1.1982101202011108 img loss 1.2275179624557495 img loss 1.200277328491211 img loss 1.2179630994796753 img loss 1.2019357681274414 img loss 1.1898324489593506 img loss 1.207194209098816 img loss 1.1232149600982666 img loss 1.1555765867233276 img loss 1.1789079904556274 img loss 1.1723531484603882 img loss 1.1742037534713745 img loss 1.2062724828720093 img loss 1.2358309030532837 img loss 1.1892971992492676 img loss 1.2683491706848145 img loss 1.1370899677276611 img loss 1.1417406797409058 img loss 1.1416857242584229 img loss 1.1836371421813965 img loss 1.1991370916366577 img loss 1.2394134998321533 img loss 1.1923580169677734 img loss 1.1992645263671875 img loss 1.2402921915054321 img loss 1.1980853080749512 img loss 1.2238470315933228 img loss 1.1801995038986206 img loss 1.1949776411056519 img loss 1.257120966911316 img loss 1.1674362421035767 img loss 1.2591737508773804 img loss 1.2653626203536987 img loss 1.169627070426941 img loss 1.201271891593933 img loss 1.2120013236999512 img loss 1.1607186794281006 img loss 1.1466740369796753 img loss 1.1463664770126343 img loss 1.1615221500396729 img loss 1.160064697265625 img loss 1.2915102243423462 img loss 1.168587327003479 img loss 1.1794941425323486 img loss 1.206896424293518 img loss 1.2714325189590454 img loss 1.1615318059921265 img loss 1.1598478555679321 img loss 1.2719238996505737 img loss 1.1693766117095947 img loss 1.196841835975647 img loss 1.1408894062042236 img loss 1.1278437376022339 img loss 1.2631523609161377 img loss 1.233650803565979 img loss 1.1979472637176514 img loss 1.1929042339324951 img loss 1.1774266958236694 img loss 1.3343346118927002 img loss 1.196596384048462 img loss 1.2596676349639893 img loss 1.2374930381774902 img loss 1.2588250637054443 img loss 1.223860263824463 {'loss': 1.2045, 'grad_norm': 0.21814611554145813, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.301856517791748 img loss 1.3307178020477295 img loss 1.2793642282485962 img loss 1.308685302734375 img loss 1.2250940799713135 img loss 1.250609278678894 img loss 1.3410933017730713 img loss 1.3576228618621826 img loss 1.2830114364624023 img loss 1.2700645923614502 img loss 1.2904446125030518 img loss 1.2977418899536133 img loss 1.3784422874450684 img loss 1.3286970853805542 img loss 1.2732013463974 img loss 1.3177486658096313 img loss 1.247300624847412 img loss 1.3066681623458862 img loss 1.2444870471954346 img loss 1.2359222173690796 img loss 1.2626174688339233 img loss 1.2225596904754639 img loss 1.2636594772338867 img loss 1.3547532558441162 img loss 1.2560468912124634 img loss 1.356277585029602 img loss 1.2352290153503418 img loss 1.2583118677139282 img loss 1.3200123310089111 img loss 1.2931616306304932 img loss 1.282476782798767 img loss 1.2530791759490967 img loss 1.252539038658142 img loss 1.2961807250976562 img loss 1.2525449991226196 img loss 1.2930704355239868 img loss 1.2467962503433228 img loss 1.2936958074569702 img loss 1.2625916004180908 img loss 1.1919422149658203 img loss 1.3524950742721558 img loss 1.4066301584243774 img loss 1.2582759857177734 img loss 1.2567611932754517 img loss 1.3001430034637451 img loss 1.2638460397720337 img loss 1.3076072931289673 img loss 1.3782655000686646 img loss 1.2401385307312012 img loss 1.3464702367782593 img loss 1.2550541162490845 img loss 1.4033868312835693 img loss 1.244572639465332 img loss 1.2868084907531738 img loss 1.282834529876709 img loss 1.281821608543396 img loss 1.328997254371643 img loss 1.304260492324829 img loss 1.3094356060028076 img loss 1.275943636894226 img loss 1.3682513236999512 img loss 1.2158493995666504 img loss 1.2940164804458618 img loss 1.2691853046417236 img loss 1.2154557704925537 img loss 1.3058189153671265 img loss 1.2869582176208496 img loss 1.2856262922286987 img loss 1.2489820718765259 img loss 1.2635128498077393 img loss 1.3080567121505737 img loss 1.2492815256118774 img loss 1.2657103538513184 img loss 1.290228247642517 img loss 1.3106006383895874 img loss 1.3096402883529663 img loss 1.2881982326507568 img loss 1.3137774467468262 img loss 1.344192385673523 img loss 1.2465051412582397 img loss 1.3245368003845215 img loss 1.2746026515960693 img loss 1.2339330911636353 img loss 1.2818657159805298 img loss 1.3078875541687012 img loss 1.256361961364746 img loss 1.2553746700286865 img loss 1.3681665658950806 img loss 1.3164160251617432 img loss 1.3874765634536743 img loss 1.2581305503845215 img loss 1.3121267557144165 img loss 1.2784069776535034 img loss 1.3360247611999512 img loss 1.3638087511062622 img loss 1.3037370443344116 img loss 1.2330659627914429 img loss 1.2424678802490234 img loss 1.371551275253296 img loss 1.2360296249389648 img loss 1.2404102087020874 img loss 1.3333516120910645 img loss 1.2820611000061035 img loss 1.2763421535491943 img loss 1.274472951889038 img loss 1.2759331464767456 img loss 1.2114229202270508 img loss 1.3182140588760376 img loss 1.2673087120056152 img loss 1.2873215675354004 img loss 1.3107190132141113 img loss 1.2435954809188843 img loss 1.29483962059021 img loss 1.2936447858810425 img loss 1.3098615407943726 img loss 1.2431739568710327 img loss 1.2595810890197754 img loss 1.214954137802124 img loss 1.274860143661499 img loss 1.2301853895187378 img loss 1.2437565326690674 img loss 1.27170729637146 img loss 1.233061671257019 img loss 1.2804198265075684 img loss 1.3082059621810913 img loss 1.3515030145645142 img loss 1.3066127300262451 img loss 1.27360200881958 {'loss': 1.287, 'grad_norm': 0.24848611652851105, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2297426462173462 img loss 1.2249706983566284 img loss 1.330832839012146 img loss 1.3442838191986084 img loss 1.28263258934021 img loss 1.3587461709976196 img loss 1.2150148153305054 img loss 1.3863550424575806 img loss 1.3087222576141357 img loss 1.273942470550537 img loss 1.2918765544891357 img loss 1.3399869203567505 img loss 1.3345961570739746 img loss 1.2985649108886719 img loss 1.2279208898544312 img loss 1.3208109140396118 img loss 1.3955484628677368 img loss 1.4053717851638794 img loss 1.321305513381958 img loss 1.3377503156661987 img loss 1.2701958417892456 img loss 1.2809873819351196 img loss 1.368607997894287 img loss 1.2467446327209473 img loss 1.3346869945526123 img loss 1.3434356451034546 img loss 1.2887083292007446 img loss 1.2540514469146729 img loss 1.3009071350097656 img loss 1.4204657077789307 img loss 1.3344405889511108 img loss 1.378851056098938 img loss 1.2653899192810059 img loss 1.2657861709594727 img loss 1.342712163925171 img loss 1.2742992639541626 img loss 1.4526722431182861 img loss 1.3800160884857178 img loss 1.3003867864608765 img loss 1.2572987079620361 img loss 1.2793086767196655 img loss 1.4318124055862427 img loss 1.3799597024917603 img loss 1.3539965152740479 img loss 1.2764451503753662 img loss 1.314309000968933 img loss 1.3246363401412964 img loss 1.2746672630310059 img loss 1.2324955463409424 img loss 1.3183847665786743 img loss 1.3139299154281616 img loss 1.384916067123413 img loss 1.2559456825256348 img loss 1.430965542793274 img loss 1.3004812002182007 img loss 1.3559669256210327 img loss 1.3329172134399414 img loss 1.2822082042694092 img loss 1.2697138786315918 img loss 1.1799499988555908 img loss 1.2743784189224243 img loss 1.372344732284546 img loss 1.3771237134933472 img loss 1.2406327724456787 img loss 1.2583969831466675 img loss 1.235194444656372 img loss 1.3624781370162964 img loss 1.2733120918273926 img loss 1.4379057884216309 img loss 1.322651743888855 img loss 1.4000495672225952 img loss 1.4054795503616333 img loss 1.3096356391906738 img loss 1.1836649179458618 img loss 1.3697441816329956 img loss 1.3742014169692993 img loss 1.3609007596969604 img loss 1.4526809453964233 img loss 1.262274980545044 img loss 1.3712624311447144 img loss 1.216094970703125 img loss 1.3722054958343506 img loss 1.2944211959838867 img loss 1.2866230010986328 img loss 1.3039348125457764 img loss 1.2379355430603027 img loss 1.3667007684707642 img loss 1.268869161605835 img loss 1.364827275276184 img loss 1.2860829830169678 img loss 1.3793156147003174 img loss 1.2851271629333496 img loss 1.2998408079147339 img loss 1.2744451761245728 img loss 1.3712985515594482 img loss 1.3119890689849854 img loss 1.305285096168518 img loss 1.3649258613586426 img loss 1.3610020875930786 img loss 1.3824154138565063 img loss 1.316011667251587 img loss 1.2252224683761597img loss 1.3790494203567505 img loss 1.3349034786224365 img loss 1.3617762327194214 img loss 1.3317327499389648 img loss 1.4550899267196655 img loss 1.3770774602890015 img loss 1.34965980052948 img loss 1.2409714460372925 img loss 1.2894668579101562 img loss 1.381071925163269 img loss 1.2841119766235352 img loss 1.3461254835128784 img loss 1.3554608821868896 img loss 1.3311418294906616 img loss 1.315855622291565 img loss 1.337201714515686 img loss 1.3707753419876099 img loss 1.381611704826355 img loss 1.2407244443893433 img loss 1.2972962856292725 img loss 1.3111737966537476 img loss 1.2975687980651855 img loss 1.3844021558761597 img loss 1.3494226932525635 img loss 1.179887056350708 img loss 1.267351508140564 {'loss': 1.3199, 'grad_norm': 0.3055630624294281, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1888413429260254 img loss 1.2108073234558105 img loss 1.1636236906051636 img loss 1.2484333515167236 img loss 1.2536252737045288 img loss 1.172451376914978 img loss 1.2167772054672241 img loss 1.2362602949142456 img loss 1.2617586851119995 img loss 1.299822211265564 img loss 1.2193835973739624 img loss 1.1888844966888428 img loss 1.276719093322754 img loss 1.1850249767303467 img loss 1.2691833972930908 img loss 1.1966336965560913 img loss 1.233215093612671 img loss 1.224531650543213 img loss 1.2470927238464355 img loss 1.2148430347442627 img loss 1.2388700246810913 img loss 1.204824447631836 img loss 1.2904579639434814 img loss 1.1755919456481934 img loss 1.261680006980896 img loss 1.1455247402191162 img loss 1.1972496509552002 img loss 1.2343708276748657 img loss 1.1105773448944092 img loss 1.2755463123321533 img loss 1.213250994682312 img loss 1.1824331283569336 img loss 1.359883427619934 img loss 1.2039562463760376 img loss 1.2863929271697998 img loss 1.2205162048339844 img loss 1.2261435985565186 img loss 1.1776347160339355 img loss 1.2389302253723145 img loss 1.2014204263687134 img loss 1.1798572540283203 img loss 1.1979411840438843 img loss 1.1649614572525024 img loss 1.2327301502227783 img loss 1.2697495222091675 img loss 1.2895989418029785 img loss 1.2059284448623657 img loss 1.1060510873794556 img loss 1.2143372297286987 img loss 1.1829893589019775 img loss 1.2165926694869995 img loss 1.2206512689590454 img loss 1.2289527654647827 img loss 1.2330842018127441 img loss 1.221382737159729 img loss 1.15180242061615 img loss 1.1888995170593262 img loss 1.2229198217391968 img loss 1.2279572486877441 img loss 1.2200121879577637 img loss 1.2704986333847046 img loss 1.2559655904769897 img loss 1.203749418258667 img loss 1.2049909830093384 img loss 1.2086042165756226 img loss 1.1804176568984985 img loss 1.26152503490448 img loss 1.2367711067199707 img loss 1.236769437789917 img loss 1.2638733386993408 img loss 1.2849273681640625 img loss 1.1985652446746826 img loss 1.2368030548095703 img loss 1.2319780588150024 img loss 1.3301162719726562 img loss 1.2213538885116577 img loss 1.2200783491134644 img loss 1.3095829486846924 img loss 1.2957725524902344 img loss 1.2760238647460938 img loss 1.1750234365463257 img loss 1.18062162399292 img loss 1.188417911529541 img loss 1.1795204877853394 img loss 1.187284231185913 img loss 1.2410467863082886 img loss 1.2103990316390991 img loss 1.2092825174331665 img loss 1.2521549463272095 img loss 1.2339763641357422 img loss 1.2711948156356812 img loss 1.2337250709533691 img loss 1.2373994588851929 img loss 1.2477989196777344 img loss 1.1593801975250244 img loss 1.295573115348816 img loss 1.1978365182876587 img loss 1.262214183807373 img loss 1.2368968725204468 img loss 1.171273946762085 img loss 1.2152866125106812 img loss 1.2409436702728271 img loss 1.2266278266906738 img loss 1.1712697744369507 img loss 1.240701675415039 img loss 1.2235110998153687 img loss 1.274047613143921 img loss 1.1712703704833984 img loss 1.2174745798110962 img loss 1.224787950515747 img loss 1.2088731527328491 img loss 1.2002428770065308 img loss 1.1975595951080322 img loss 1.2797064781188965 img loss 1.2605479955673218 img loss 1.2308804988861084 img loss 1.223917841911316 img loss 1.1884514093399048 img loss 1.195605754852295 img loss 1.1961090564727783 img loss 1.2641956806182861 img loss 1.1740692853927612 img loss 1.2452419996261597 img loss 1.237070918083191 img loss 1.1893872022628784 img loss 1.2174803018569946 img loss 1.2204904556274414 img loss 1.2255892753601074 {'loss': 1.2234, 'grad_norm': 0.25526198744773865, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1606510877609253 img loss 1.1564385890960693 img loss 1.2813866138458252 img loss 1.1218904256820679 img loss 1.177311897277832 img loss 1.1973991394042969 img loss 1.205576777458191 img loss 1.2670637369155884 img loss 1.21682870388031 img loss 1.226632833480835 img loss 1.1550010442733765 img loss 1.151313304901123 img loss 1.17213773727417 img loss 1.210497498512268 img loss 1.254486083984375 img loss 1.2195959091186523 img loss 1.1902722120285034 img loss 1.1741344928741455 img loss 1.2490193843841553 img loss 1.1486471891403198 img loss 1.2168312072753906 img loss 1.1744108200073242 img loss 1.191849946975708 img loss 1.2228407859802246 img loss 1.2883812189102173 img loss 1.2139778137207031 img loss 1.1977543830871582 img loss 1.2276171445846558 img loss 1.1631531715393066 img loss 1.2634321451187134 img loss 1.200645089149475 img loss 1.1970665454864502 img loss 1.2259130477905273 img loss 1.268318772315979 img loss 1.2132877111434937 img loss 1.213867425918579 img loss 1.1943727731704712 img loss 1.2676433324813843 img loss 1.2381442785263062 img loss 1.225167155265808 img loss 1.2514017820358276 img loss 1.1694681644439697 img loss 1.302141547203064 img loss 1.2019809484481812 img loss 1.187894344329834 img loss 1.2845242023468018 img loss 1.244637370109558 img loss 1.2784870862960815 img loss 1.2770533561706543 img loss 1.1793349981307983 img loss 1.195468783378601 img loss 1.2316814661026 img loss 1.2826118469238281 img loss 1.165763258934021 img loss 1.2443163394927979 img loss 1.201596736907959 img loss 1.2750368118286133 img loss 1.2245614528656006 img loss 1.254425048828125 img loss 1.2899301052093506 img loss 1.1995844841003418 img loss 1.2988865375518799 img loss 1.2273162603378296 img loss 1.2076555490493774 img loss 1.2745202779769897 img loss 1.2302850484848022 img loss 1.277408242225647 img loss 1.2647453546524048 img loss 1.2379406690597534 img loss 1.1698254346847534 img loss 1.1687902212142944 img loss 1.228489875793457 img loss 1.232459306716919 img loss 1.1591911315917969 img loss 1.2111411094665527 img loss 1.2676159143447876 img loss 1.3183894157409668 img loss 1.2062911987304688 img loss 1.2715424299240112 img loss 1.2639727592468262 img loss 1.1558160781860352 img loss 1.2119402885437012 img loss 1.2779442071914673 img loss 1.1895596981048584 img loss 1.2828280925750732 img loss 1.2489333152770996 img loss 1.1707851886749268 img loss 1.1943098306655884 img loss 1.1986721754074097 img loss 1.2478077411651611 img loss 1.1403467655181885 img loss 1.2365261316299438 img loss 1.2086842060089111 img loss 1.1622753143310547 img loss 1.2162545919418335 img loss 1.213337779045105 img loss 1.2473711967468262 img loss 1.1770267486572266 img loss 1.2110023498535156 img loss 1.2528762817382812 img loss 1.2325628995895386 img loss 1.1773782968521118 img loss 1.1752166748046875 img loss 1.2445319890975952 img loss 1.2158687114715576 img loss 1.2561405897140503 img loss 1.2314999103546143 img loss 1.2293281555175781 img loss 1.279083251953125 img loss 1.3415322303771973 img loss 1.2603669166564941 img loss 1.253367304801941 img loss 1.2285512685775757 img loss 1.2274410724639893 img loss 1.1627737283706665 img loss 1.208599328994751 img loss 1.2112700939178467 img loss 1.2184605598449707 img loss 1.2856228351593018 img loss 1.3451220989227295 img loss 1.2302813529968262 img loss 1.2032188177108765 img loss 1.2767741680145264 img loss 1.2429202795028687 img loss 1.2722890377044678 img loss 1.2600135803222656 img loss 1.2461869716644287 img loss 1.2445859909057617 {'loss': 1.225, 'grad_norm': 0.23790770769119263, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3252261877059937 img loss 1.2750345468521118 img loss 1.2200546264648438 img loss 1.2897202968597412 img loss 1.1633390188217163 img loss 1.2404829263687134 img loss 1.2042888402938843 img loss 1.307442545890808 img loss 1.2344601154327393 img loss 1.3153965473175049 img loss 1.226732850074768 img loss 1.2355988025665283 img loss 1.2579936981201172 img loss 1.277500867843628 img loss 1.2826497554779053 img loss 1.2246785163879395 img loss 1.3256282806396484 img loss 1.3894602060317993 img loss 1.2749016284942627 img loss 1.3182399272918701 img loss 1.2892082929611206 img loss 1.2929381132125854 img loss 1.279375672340393 img loss 1.3435132503509521 img loss 1.2606401443481445 img loss 1.2337216138839722 img loss 1.330194354057312 img loss 1.2560038566589355 img loss 1.2706279754638672 img loss 1.2306475639343262 img loss 1.3324321508407593 img loss 1.2158794403076172 img loss 1.2042655944824219 img loss 1.2897344827651978 img loss 1.365716814994812 img loss 1.271378993988037 img loss 1.1910531520843506 img loss 1.1735161542892456 img loss 1.2967782020568848 img loss 1.2419347763061523 img loss 1.220357894897461 img loss 1.4002290964126587 img loss 1.3737496137619019 img loss 1.2827024459838867 img loss 1.2457900047302246 img loss 1.3405146598815918 img loss 1.438293695449829 img loss 1.383450984954834 img loss 1.288946509361267 img loss 1.2980674505233765 img loss 1.3298181295394897 img loss 1.2738558053970337 img loss 1.2664897441864014 img loss 1.2638143301010132 img loss 1.3642733097076416 img loss 1.2106176614761353 img loss 1.3414437770843506 img loss 1.345753788948059 img loss 1.227923035621643 img loss 1.3070191144943237 img loss 1.2563490867614746 img loss 1.2962557077407837 img loss 1.2942670583724976 img loss 1.3365553617477417 img loss 1.1805721521377563 img loss 1.2834404706954956 img loss 1.2960832118988037 img loss 1.2642138004302979 img loss 1.3744968175888062 img loss 1.2411835193634033 img loss 1.3568235635757446 img loss 1.3412458896636963 img loss 1.304044246673584 img loss 1.2521793842315674 img loss 1.2130780220031738 img loss 1.3231580257415771 img loss 1.2390193939208984 img loss 1.2667834758758545 img loss 1.3570382595062256 img loss 1.3147004842758179 img loss 1.3678643703460693 img loss 1.3315123319625854 img loss 1.3031433820724487 img loss 1.2665122747421265 img loss 1.228521704673767 img loss 1.3732696771621704 img loss 1.3559881448745728 img loss 1.2790565490722656 img loss 1.4039429426193237 img loss 1.3245569467544556 img loss 1.309192419052124 img loss 1.339307427406311 img loss 1.2124179601669312 img loss 1.3045316934585571 img loss 1.3425203561782837 img loss 1.343822956085205 img loss 1.3152365684509277 img loss 1.2988834381103516 img loss 1.346635103225708 img loss 1.2652571201324463 img loss 1.2911453247070312 img loss 1.260831356048584 img loss 1.332862377166748 img loss 1.264696717262268 img loss 1.2442078590393066 img loss 1.2872297763824463 img loss 1.310716152191162 img loss 1.2717666625976562 img loss 1.2578285932540894 img loss 1.3628464937210083 img loss 1.2614688873291016 img loss 1.3409608602523804 img loss 1.2536414861679077 img loss 1.3379524946212769 img loss 1.316344976425171 img loss 1.286230444908142 img loss 1.3372727632522583 img loss 1.3710951805114746 img loss 1.292920708656311 img loss 1.358742117881775 img loss 1.2716566324234009 img loss 1.2679479122161865 img loss 1.2077678442001343 img loss 1.3199803829193115 img loss 1.287412166595459 img loss 1.2583096027374268 img loss 1.3154515027999878 img loss 1.2799288034439087 {'loss': 1.2915, 'grad_norm': 0.25377705693244934, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3590666055679321 img loss 1.379954218864441 img loss 1.3315385580062866 img loss 1.3306759595870972 img loss 1.3652476072311401 img loss 1.4513392448425293 img loss 1.307035207748413 img loss 1.4623045921325684 img loss 1.3225024938583374 img loss 1.2697691917419434 img loss 1.3776990175247192 img loss 1.3247261047363281 img loss 1.2346439361572266 img loss 1.249426245689392 img loss 1.2856345176696777 img loss 1.2616934776306152 img loss 1.3305624723434448 img loss 1.3202435970306396 img loss 1.3708378076553345 img loss 1.2742695808410645 img loss 1.3208897113800049 img loss 1.4009500741958618 img loss 1.3544533252716064 img loss 1.3411012887954712 img loss 1.3068851232528687 img loss 1.328986406326294 img loss 1.3237533569335938 img loss 1.1798336505889893 img loss 1.309350848197937 img loss 1.2791156768798828 img loss 1.260833501815796 img loss 1.3240272998809814 img loss 1.3076480627059937 img loss 1.4090434312820435 img loss 1.3544535636901855 img loss 1.4369663000106812 img loss 1.3394588232040405 img loss 1.4185301065444946 img loss 1.338263750076294 img loss 1.3246378898620605 img loss 1.3980357646942139 img loss 1.3069591522216797 img loss 1.3451656103134155 img loss 1.3866504430770874 img loss 1.3872069120407104 img loss 1.2880998849868774 img loss 1.372362732887268 img loss 1.3034286499023438 img loss 1.2288930416107178 img loss 1.243877649307251 img loss 1.3425291776657104 img loss 1.291628360748291img loss 1.3430533409118652 img loss 1.3117777109146118 img loss 1.2580506801605225 img loss 1.398314356803894 img loss 1.2037291526794434 img loss 1.3232425451278687 img loss 1.3449102640151978 img loss 1.3888452053070068 img loss 1.278659701347351 img loss 1.4346919059753418 img loss 1.4218218326568604 img loss 1.237144112586975 img loss 1.4007705450057983 img loss 1.3336926698684692 img loss 1.3495427370071411 img loss 1.406745433807373 img loss 1.3505524396896362 img loss 1.30280339717865 img loss 1.3575478792190552 img loss 1.332396149635315 img loss 1.3312238454818726 img loss 1.2690590620040894 img loss 1.3276987075805664 img loss 1.3318204879760742 img loss 1.3339192867279053 img loss 1.2105536460876465 img loss 1.2782871723175049 img loss 1.3154714107513428 img loss 1.3504849672317505 img loss 1.3196792602539062 img loss 1.3046140670776367 img loss 1.3007822036743164 img loss 1.2996042966842651 img loss 1.2915400266647339 img loss 1.2474243640899658 img loss 1.3203184604644775 img loss 1.3610169887542725 img loss 1.1757018566131592 img loss 1.3175325393676758 img loss 1.278865098953247 img loss 1.3570821285247803 img loss 1.2416603565216064 img loss 1.3039276599884033 img loss 1.2961758375167847 img loss 1.2782636880874634 img loss 1.2985477447509766 img loss 1.3342119455337524 img loss 1.43825101852417 img loss 1.3465646505355835 img loss 1.3706319332122803 img loss 1.3658287525177002 img loss 1.2860963344573975 img loss 1.2830283641815186 img loss 1.305408000946045 img loss 1.3744691610336304 img loss 1.2365145683288574 img loss 1.296873927116394 img loss 1.3763412237167358 img loss 1.3349124193191528 img loss 1.3741841316223145 img loss 1.3504903316497803 img loss 1.4091929197311401 img loss 1.331928014755249 img loss 1.3203904628753662 img loss 1.3864493370056152 img loss 1.2394492626190186 img loss 1.3696835041046143 img loss 1.4015320539474487 img loss 1.308968424797058 img loss 1.3381718397140503 img loss 1.4086004495620728 img loss 1.3229855298995972 img loss 1.3850637674331665 img loss 1.3178215026855469 img loss 1.2389112710952759 img loss 1.3711445331573486 {'loss': 1.3274, 'grad_norm': 0.24020308256149292, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2226507663726807 img loss 1.3781254291534424 img loss 1.3458597660064697 img loss 1.3641750812530518 img loss 1.3193745613098145 img loss 1.3046438694000244 img loss 1.354888677597046 img loss 1.3594225645065308 img loss 1.3257725238800049 img loss 1.327635407447815 img loss 1.214524269104004 img loss 1.2773555517196655 img loss 1.398728847503662 img loss 1.3452132940292358 img loss 1.3212803602218628 img loss 1.300208330154419 img loss 1.2326698303222656 img loss 1.4328014850616455 img loss 1.3096202611923218 img loss 1.344927430152893 img loss 1.312035083770752 img loss 1.2264305353164673 img loss 1.4662907123565674 img loss 1.4542220830917358 img loss 1.262359380722046 img loss 1.2916339635849 img loss 1.4077092409133911 img loss 1.3136545419692993 img loss 1.3541686534881592 img loss 1.3431297540664673 img loss 1.3910163640975952 img loss 1.3191665410995483 img loss 1.1833330392837524 img loss 1.3632675409317017 img loss 1.4220097064971924 img loss 1.3185958862304688 img loss 1.226164698600769 img loss 1.338101863861084 img loss 1.3870676755905151 img loss 1.2844219207763672 img loss 1.3529537916183472 img loss 1.2714236974716187 img loss 1.3507291078567505 img loss 1.3196266889572144 img loss 1.3568898439407349 img loss 1.3405375480651855 img loss 1.3803142309188843 img loss 1.3663502931594849 img loss 1.3363770246505737 img loss 1.285000205039978 img loss 1.2329777479171753 img loss 1.3499451875686646 img loss 1.315873146057129 img loss 1.2630326747894287 img loss 1.4103686809539795 img loss 1.3611682653427124 img loss 1.3728419542312622 img loss 1.5119435787200928 img loss 1.2550874948501587 img loss 1.2870793342590332 img loss 1.302422046661377 img loss 1.3116490840911865 img loss 1.233675241470337 img loss 1.2772716283798218 img loss 1.3550282716751099 img loss 1.4769587516784668 img loss 1.4399763345718384 img loss 1.3799166679382324 img loss 1.3143328428268433 img loss 1.3265341520309448 img loss 1.4332129955291748 img loss 1.2282625436782837 img loss 1.378290057182312 img loss 1.2297090291976929 img loss 1.2799782752990723 img loss 1.4180734157562256 img loss 1.3043811321258545 img loss 1.2995678186416626 img loss 1.3522611856460571 img loss 1.3541756868362427 img loss 1.2836936712265015 img loss 1.3862946033477783 img loss 1.348560094833374 img loss 1.2580476999282837 img loss 1.3947428464889526 img loss 1.328390121459961 img loss 1.3129091262817383 img loss 1.2693336009979248 img loss 1.2793655395507812 img loss 1.4527238607406616 img loss 1.4087364673614502 img loss 1.3642748594284058 img loss 1.4152028560638428 img loss 1.3263964653015137 img loss 1.3190393447875977 img loss 1.2952022552490234 img loss 1.3183798789978027 img loss 1.2594246864318848 img loss 1.3330579996109009 img loss 1.332255244255066 img loss 1.266020655632019 img loss 1.198352336883545 img loss 1.4518057107925415 img loss 1.3576159477233887 img loss 1.3434890508651733 img loss 1.272794485092163 img loss 1.3405629396438599 img loss 1.3019545078277588 img loss 1.2354021072387695 img loss 1.4136046171188354 img loss 1.31639564037323 img loss 1.3214479684829712 img loss 1.339862585067749 img loss 1.4259473085403442 img loss 1.4119938611984253 img loss 1.4072630405426025 img loss 1.4011436700820923 img loss 1.3732165098190308 img loss 1.3260916471481323 img loss 1.308680772781372 img loss 1.2024424076080322 img loss 1.2731341123580933 img loss 1.3256648778915405 img loss 1.2868822813034058 img loss 1.2162702083587646 img loss 1.316606044769287 img loss 1.3353358507156372 img loss 1.3861632347106934 {'loss': 1.3313, 'grad_norm': 0.2738172113895416, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6948679685592651 img loss 1.4494558572769165 img loss 1.6864646673202515 img loss 1.4915823936462402 img loss 1.5157363414764404 img loss 1.6509788036346436 img loss 1.3815542459487915 img loss 1.4221584796905518 img loss 1.7183767557144165 img loss 1.527478814125061 img loss 1.4810482263565063 img loss 1.4432908296585083 img loss 1.3668789863586426 img loss 1.5525840520858765 img loss 1.2851133346557617 img loss 1.6540287733078003 img loss 1.580126166343689 img loss 1.4800145626068115 img loss 1.480633020401001 img loss 1.4160770177841187 img loss 1.5333751440048218 img loss 1.4738954305648804 img loss 1.3696568012237549 img loss 1.5010095834732056 img loss 1.5107390880584717 img loss 1.5218727588653564 img loss 1.4643903970718384 img loss 1.6016262769699097 img loss 1.3652385473251343 img loss 1.5753909349441528 img loss 1.4597989320755005 img loss 1.6348291635513306 img loss 1.450574517250061 img loss 1.508012056350708 img loss 1.4630541801452637 img loss 1.62606942653656 img loss 1.4846317768096924 img loss 1.5847232341766357 img loss 1.7079282999038696 img loss 1.6808171272277832 img loss 1.479310393333435 img loss 1.41592276096344 img loss 1.6275886297225952 img loss 1.4566385746002197 img loss 1.590128779411316 img loss 1.3432830572128296 img loss 1.4689964056015015 img loss 1.3968522548675537 img loss 1.3785911798477173 img loss 1.6330968141555786 img loss 1.4411569833755493 img loss 1.4300869703292847 img loss 1.4979298114776611 img loss 1.4845235347747803 img loss 1.5979857444763184 img loss 1.5557256937026978 img loss 1.5093913078308105 img loss 1.5372353792190552 img loss 1.437642216682434 img loss 1.6505942344665527 img loss 1.5186585187911987 img loss 1.5226351022720337 img loss 1.5465055704116821 img loss 1.5228984355926514 img loss 1.524931788444519 img loss 1.6370656490325928 img loss 1.6171354055404663 img loss 1.4632869958877563img loss 1.7017263174057007 img loss 1.5058701038360596 img loss 1.4934583902359009 img loss 1.5284689664840698 img loss 1.4831023216247559 img loss 1.4672257900238037 img loss 1.5030564069747925 img loss 1.462431788444519 img loss 1.4939430952072144 img loss 1.577982783317566 img loss 1.584578275680542 img loss 1.5403600931167603 img loss 1.5005296468734741 img loss 1.5282443761825562 img loss 1.5485568046569824 img loss 1.5836141109466553 img loss 1.481500506401062 img loss 1.443935513496399 img loss 1.4181764125823975 img loss 1.4910295009613037 img loss 1.3929314613342285 img loss 1.5139997005462646 img loss 1.5180203914642334 img loss 1.4340022802352905 img loss 1.5498230457305908 img loss 1.511703610420227 img loss 1.5339075326919556 img loss 1.3582985401153564 img loss 1.521498203277588 img loss 1.5655608177185059 img loss 1.4497697353363037 img loss 1.4754445552825928 img loss 1.510527491569519 img loss 1.5846909284591675 img loss 1.4079569578170776 img loss 1.5889256000518799 img loss 1.540947675704956 img loss 1.4658122062683105 img loss 1.5066392421722412 img loss 1.4156001806259155 img loss 1.5394243001937866 img loss 1.5959492921829224 img loss 1.4520385265350342 img loss 1.5947601795196533 img loss 1.6137645244598389 img loss 1.4843838214874268 img loss 1.3510922193527222 img loss 1.5178945064544678 img loss 1.5199111700057983 img loss 1.6483433246612549 img loss 1.509334683418274 img loss 1.4721261262893677 img loss 1.5069324970245361 img loss 1.5174294710159302 img loss 1.4822001457214355 img loss 1.551092505455017 img loss 1.6104708909988403 img loss 1.453431487083435 img loss 1.5840755701065063 img loss 1.569503664970398 {'loss': 1.5144, 'grad_norm': 0.29895010590553284, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2290292978286743 img loss 1.2820972204208374 img loss 1.2357945442199707 img loss 1.2493339776992798 img loss 1.2400288581848145 img loss 1.2087591886520386 img loss 1.2257428169250488 img loss 1.1883513927459717 img loss 1.2046291828155518 img loss 1.2676334381103516 img loss 1.2487586736679077 img loss 1.2005226612091064 img loss 1.1951653957366943 img loss 1.2041239738464355 img loss 1.179509162902832 img loss 1.2310985326766968 img loss 1.3027082681655884 img loss 1.1955970525741577 img loss 1.287522792816162 img loss 1.2717769145965576 img loss 1.1595791578292847 img loss 1.1969066858291626 img loss 1.154191493988037 img loss 1.1540038585662842 img loss 1.2575863599777222 img loss 1.2674356698989868 img loss 1.1828705072402954 img loss 1.1556309461593628 img loss 1.2258751392364502 img loss 1.2543962001800537 img loss 1.2675727605819702 img loss 1.2029083967208862 img loss 1.1915717124938965 img loss 1.1940428018569946 img loss 1.214525580406189 img loss 1.1911970376968384 img loss 1.212375521659851 img loss 1.1209748983383179 img loss 1.2102749347686768 img loss 1.2533010244369507 img loss 1.2070789337158203 img loss 1.2554590702056885 img loss 1.2566779851913452 img loss 1.2417277097702026 img loss 1.2638940811157227 img loss 1.1965601444244385 img loss 1.3000129461288452 img loss 1.2559852600097656 img loss 1.2887606620788574 img loss 1.2458527088165283 img loss 1.227994441986084 img loss 1.2529200315475464 img loss 1.2711427211761475 img loss 1.1899762153625488 img loss 1.204012393951416 img loss 1.25603187084198 img loss 1.2261974811553955 img loss 1.2281746864318848 img loss 1.2730791568756104 img loss 1.181929588317871 img loss 1.2773669958114624 img loss 1.2637441158294678 img loss 1.201546311378479 img loss 1.3606069087982178 img loss 1.3000932931900024 img loss 1.1915037631988525 img loss 1.245907187461853 img loss 1.2185704708099365 img loss 1.2456943988800049 img loss 1.2360131740570068 img loss 1.181269645690918 img loss 1.2478255033493042 img loss 1.1747486591339111 img loss 1.155900478363037 img loss 1.172006607055664 img loss 1.1868984699249268 img loss 1.2206830978393555 img loss 1.2523666620254517 img loss 1.2902791500091553 img loss 1.2745378017425537 img loss 1.2083958387374878 img loss 1.2363874912261963 img loss 1.2506855726242065 img loss 1.2664579153060913 img loss 1.25559663772583 img loss 1.2360292673110962 img loss 1.2796257734298706 img loss 1.2232612371444702 img loss 1.240192174911499 img loss 1.2263075113296509 img loss 1.1147555112838745 img loss 1.2299270629882812 img loss 1.3276951313018799 img loss 1.3148219585418701 img loss 1.181282639503479 img loss 1.2715110778808594 img loss 1.2200769186019897 img loss 1.201509714126587 img loss 1.1761970520019531 img loss 1.2139368057250977 img loss 1.2135450839996338 img loss 1.2934339046478271 img loss 1.2112095355987549 img loss 1.358405590057373 img loss 1.1845405101776123 img loss 1.2885432243347168 img loss 1.2299110889434814 img loss 1.3248786926269531 img loss 1.2755628824234009 img loss 1.2812213897705078 img loss 1.2093729972839355 img loss 1.1587244272232056 img loss 1.1792552471160889 img loss 1.246248722076416 img loss 1.1973934173583984 img loss 1.1898205280303955 img loss 1.2222661972045898 img loss 1.1824339628219604 img loss 1.2161524295806885 img loss 1.153018832206726 img loss 1.2276091575622559 img loss 1.23221755027771 img loss 1.2010200023651123 img loss 1.3319809436798096 img loss 1.2980806827545166 img loss 1.2047314643859863 img loss 1.2655490636825562 img loss 1.3268959522247314 {'loss': 1.2314, 'grad_norm': 0.19856353104114532, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.161592721939087 img loss 1.2278554439544678 img loss 1.317014217376709 img loss 1.283898949623108 img loss 1.191474199295044 img loss 1.1650745868682861 img loss 1.3418469429016113 img loss 1.1895051002502441 img loss 1.2189459800720215 img loss 1.221353530883789 img loss 1.2044401168823242 img loss 1.1722326278686523 img loss 1.311215877532959 img loss 1.1624314785003662 img loss 1.1825398206710815 img loss 1.1456372737884521 img loss 1.281480312347412 img loss 1.2560917139053345 img loss 1.241696834564209 img loss 1.2288202047348022 img loss 1.2804092168807983 img loss 1.2115700244903564 img loss 1.2190756797790527 img loss 1.2275960445404053 img loss 1.2517942190170288 img loss 1.179299235343933 img loss 1.2500336170196533 img loss 1.1694332361221313 img loss 1.2484126091003418 img loss 1.286736011505127 img loss 1.1938823461532593 img loss 1.2311347723007202 img loss 1.2726387977600098 img loss 1.1848559379577637 img loss 1.2209277153015137 img loss 1.2431910037994385 img loss 1.2047457695007324 img loss 1.2556036710739136 img loss 1.1872318983078003 img loss 1.2258356809616089 img loss 1.2148215770721436 img loss 1.2435119152069092 img loss 1.207329273223877 img loss 1.2006725072860718 img loss 1.1697556972503662 img loss 1.216395616531372 img loss 1.1912305355072021 img loss 1.2832088470458984 img loss 1.2211430072784424 img loss 1.1203186511993408img loss 1.2416472434997559 img loss 1.2026408910751343 img loss 1.1810235977172852 img loss 1.2117400169372559 img loss 1.2804734706878662 img loss 1.241312861442566 img loss 1.2105034589767456 img loss 1.169835090637207 img loss 1.1728594303131104 img loss 1.2869189977645874 img loss 1.183326244354248 img loss 1.2481286525726318 img loss 1.2211453914642334 img loss 1.2103195190429688 img loss 1.2620162963867188 img loss 1.2021219730377197 img loss 1.2205860614776611 img loss 1.1374764442443848 img loss 1.2015407085418701 img loss 1.2367805242538452 img loss 1.2012876272201538 img loss 1.253767490386963 img loss 1.1617265939712524 img loss 1.2482788562774658 img loss 1.275192141532898 img loss 1.1915106773376465 img loss 1.2217241525650024 img loss 1.1645570993423462 img loss 1.1748487949371338 img loss 1.2293685674667358 img loss 1.2148300409317017 img loss 1.325804591178894 img loss 1.2521276473999023 img loss 1.2228435277938843 img loss 1.228201150894165 img loss 1.2686809301376343 img loss 1.2439501285552979 img loss 1.2949986457824707 img loss 1.2645403146743774 img loss 1.1318821907043457 img loss 1.236855149269104 img loss 1.1890658140182495 img loss 1.2706102132797241 img loss 1.185023546218872 img loss 1.1832845211029053 img loss 1.1807256937026978 img loss 1.246957778930664 img loss 1.2362982034683228 img loss 1.2461469173431396 img loss 1.1831845045089722 img loss 1.2380450963974 img loss 1.2442312240600586 img loss 1.217461347579956 img loss 1.1837799549102783 img loss 1.263981580734253 img loss 1.1780505180358887 img loss 1.186438798904419 img loss 1.2392370700836182 img loss 1.2848724126815796 img loss 1.244713306427002 img loss 1.2392126321792603 img loss 1.1886959075927734 img loss 1.235764741897583 img loss 1.25444757938385 img loss 1.2144485712051392 img loss 1.211991310119629 img loss 1.2046887874603271 img loss 1.2361704111099243 img loss 1.2140358686447144 img loss 1.2195320129394531 img loss 1.2119128704071045 img loss 1.258064866065979 img loss 1.282726764678955 img loss 1.2181096076965332 img loss 1.232359766960144 img loss 1.2342333793640137 img loss 1.1861436367034912 img loss 1.2082502841949463 {'loss': 1.2227, 'grad_norm': 0.2245674580335617, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3762518167495728 img loss 1.7079787254333496 img loss 1.489276647567749 img loss 1.5976216793060303 img loss 1.483490228652954 img loss 1.4790863990783691 img loss 1.5780748128890991 img loss 1.4889947175979614 img loss 1.4655259847640991 img loss 1.4320409297943115 img loss 1.4604039192199707 img loss 1.3708348274230957 img loss 1.4888602495193481 img loss 1.4449725151062012 img loss 1.4813954830169678 img loss 1.5640408992767334 img loss 1.385561227798462 img loss 1.3287105560302734 img loss 1.406552791595459 img loss 1.5441020727157593 img loss 1.5804741382598877 img loss 1.4535495042800903 img loss 1.3916380405426025 img loss 1.521896243095398 img loss 1.5113179683685303 img loss 1.4412835836410522 img loss 1.4354172945022583 img loss 1.4142682552337646 img loss 1.4325758218765259 img loss 1.4423176050186157 img loss 1.5667736530303955 img loss 1.3997790813446045 img loss 1.3968403339385986 img loss 1.4184212684631348 img loss 1.5105217695236206 img loss 1.5088553428649902 img loss 1.4922385215759277 img loss 1.491732120513916 img loss 1.3975878953933716 img loss 1.5660783052444458 img loss 1.4414037466049194 img loss 1.5386110544204712 img loss 1.4260443449020386 img loss 1.5338566303253174 img loss 1.5899220705032349 img loss 1.5843874216079712 img loss 1.4239513874053955 img loss 1.5862916707992554 img loss 1.480536699295044 img loss 1.5376580953598022 img loss 1.4943259954452515 img loss 1.6228013038635254 img loss 1.3487770557403564 img loss 1.4744569063186646 img loss 1.5182231664657593 img loss 1.5931421518325806 img loss 1.4970115423202515 img loss 1.506771206855774 img loss 1.52240788936615 img loss 1.493549108505249 img loss 1.5767234563827515 img loss 1.5718342065811157 img loss 1.537431001663208 img loss 1.3975253105163574 img loss 1.4969813823699951 img loss 1.5111089944839478 img loss 1.4260742664337158 img loss 1.5191655158996582 img loss 1.4190735816955566 img loss 1.4120713472366333 img loss 1.3519772291183472 img loss 1.598630428314209 img loss 1.457212209701538 img loss 1.5295002460479736 img loss 1.4781415462493896 img loss 1.525094747543335 img loss 1.5363500118255615 img loss 1.5322411060333252 img loss 1.5574685335159302 img loss 1.503942847251892 img loss 1.5406657457351685 img loss 1.6247944831848145 img loss 1.4352575540542603 img loss 1.6787159442901611 img loss 1.5511773824691772 img loss 1.567365288734436 img loss 1.4816642999649048 img loss 1.5214890241622925 img loss 1.4080431461334229 img loss 1.5340567827224731 img loss 1.4373711347579956 img loss 1.663902997970581 img loss 1.4704176187515259 img loss 1.4994804859161377 img loss 1.7011873722076416img loss 1.609778642654419 img loss 1.504637598991394 img loss 1.482206106185913 img loss 1.429401159286499 img loss 1.4973978996276855 img loss 1.5082308053970337 img loss 1.5661218166351318 img loss 1.4747503995895386 img loss 1.6730802059173584 img loss 1.4831973314285278 img loss 1.55439031124115 img loss 1.5806852579116821 img loss 1.5149348974227905 img loss 1.4503371715545654 img loss 1.4945331811904907 img loss 1.523150086402893 img loss 1.4683588743209839 img loss 1.4174124002456665 img loss 1.376153588294983 img loss 1.4348150491714478 img loss 1.4707149267196655 img loss 1.4876505136489868 img loss 1.477826714515686 img loss 1.4288464784622192 img loss 1.4976285696029663 img loss 1.5443483591079712 img loss 1.4023770093917847 img loss 1.349267840385437 img loss 1.4630168676376343 img loss 1.4220824241638184 img loss 1.5346609354019165 img loss 1.5287939310073853 img loss 1.5617409944534302 {'loss': 1.4955, 'grad_norm': 0.3734647333621979, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2250255346298218 img loss 1.206631064414978 img loss 1.243597388267517 img loss 1.2470346689224243 img loss 1.1475833654403687 img loss 1.2598943710327148 img loss 1.232944369316101 img loss 1.2223031520843506 img loss 1.3202645778656006 img loss 1.2503242492675781 img loss 1.239031195640564 img loss 1.2156473398208618 img loss 1.2123340368270874 img loss 1.1808254718780518 img loss 1.2058969736099243 img loss 1.2128466367721558 img loss 1.189152717590332 img loss 1.2417973279953003 img loss 1.1413019895553589 img loss 1.3026950359344482 img loss 1.248178243637085 img loss 1.2337769269943237 img loss 1.1819334030151367 img loss 1.1731948852539062img loss 1.222938895225525 img loss 1.1844570636749268 img loss 1.2275385856628418 img loss 1.2134182453155518 img loss 1.2335588932037354 img loss 1.1499544382095337 img loss 1.2045024633407593 img loss 1.1875746250152588 img loss 1.2776936292648315 img loss 1.266013741493225 img loss 1.1967177391052246 img loss 1.2375668287277222 img loss 1.2400516271591187 img loss 1.1752421855926514 img loss 1.3149387836456299 img loss 1.2083724737167358 img loss 1.205963134765625 img loss 1.1598403453826904 img loss 1.1942479610443115 img loss 1.2381610870361328 img loss 1.1907905340194702 img loss 1.2478605508804321 img loss 1.2326034307479858 img loss 1.2484480142593384 img loss 1.331915259361267 img loss 1.1537538766860962 img loss 1.303423285484314 img loss 1.2125190496444702 img loss 1.2290328741073608 img loss 1.1705325841903687 img loss 1.2187983989715576 img loss 1.1777886152267456 img loss 1.226479411125183 img loss 1.2172454595565796 img loss 1.2760779857635498 img loss 1.3400517702102661 img loss 1.2046245336532593 img loss 1.2264974117279053 img loss 1.2155168056488037 img loss 1.192334771156311 img loss 1.2166773080825806 img loss 1.1449278593063354 img loss 1.2093799114227295 img loss 1.207122564315796 img loss 1.2482962608337402 img loss 1.1677017211914062 img loss 1.240422010421753 img loss 1.1833319664001465 img loss 1.228251338005066 img loss 1.2097152471542358 img loss 1.175196886062622 img loss 1.204088807106018 img loss 1.1688716411590576 img loss 1.2762765884399414 img loss 1.1960467100143433 img loss 1.1857073307037354 img loss 1.208827257156372 img loss 1.240887999534607 img loss 1.193602204322815 img loss 1.1927486658096313 img loss 1.2190784215927124 img loss 1.2451515197753906 img loss 1.2323076725006104 img loss 1.3044378757476807 img loss 1.238353967666626 img loss 1.2503433227539062 img loss 1.249720573425293 img loss 1.209110975265503 img loss 1.191738486289978 img loss 1.2211440801620483 img loss 1.2087996006011963 img loss 1.2279679775238037 img loss 1.2465596199035645 img loss 1.2809791564941406 img loss 1.2000222206115723 img loss 1.2414073944091797 img loss 1.2809778451919556 img loss 1.206986904144287 img loss 1.1725319623947144 img loss 1.1954941749572754 img loss 1.1708226203918457 img loss 1.279228925704956 img loss 1.1789534091949463 img loss 1.1787365674972534 img loss 1.2345290184020996 img loss 1.1941676139831543 img loss 1.2047795057296753 img loss 1.2228378057479858 img loss 1.2052818536758423 img loss 1.1870286464691162 img loss 1.2198426723480225 img loss 1.208189606666565 img loss 1.1984870433807373 img loss 1.2004551887512207 img loss 1.1924717426300049 img loss 1.246874213218689 img loss 1.2451530694961548 img loss 1.2069435119628906 img loss 1.2327468395233154 img loss 1.154966950416565 img loss 1.229235053062439 img loss 1.1951996088027954 img loss 1.188601016998291 img loss 1.1835228204727173 {'loss': 1.2185, 'grad_norm': 0.2501625418663025, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4598559141159058 img loss 1.378774881362915 img loss 1.437302827835083 img loss 1.4200292825698853 img loss 1.366107702255249 img loss 1.4357839822769165 img loss 1.308671474456787 img loss 1.4022873640060425 img loss 1.4276870489120483 img loss 1.4014488458633423 img loss 1.4174981117248535 img loss 1.4046536684036255 img loss 1.419583797454834 img loss 1.336116909980774 img loss 1.4103678464889526 img loss 1.3506121635437012 img loss 1.3854795694351196 img loss 1.402694821357727 img loss 1.4735544919967651 img loss 1.4720466136932373 img loss 1.3963770866394043 img loss 1.4033039808273315 img loss 1.3192367553710938 img loss 1.3318852186203003 img loss 1.3747259378433228 img loss 1.4156707525253296 img loss 1.4463545083999634 img loss 1.2916816473007202 img loss 1.40288245677948 img loss 1.308205246925354 img loss 1.4120326042175293 img loss 1.4582513570785522 img loss 1.3329204320907593 img loss 1.2991962432861328 img loss 1.2962766885757446 img loss 1.4022419452667236 img loss 1.3267959356307983 img loss 1.3837636709213257 img loss 1.3977760076522827 img loss 1.3908137083053589 img loss 1.3891605138778687 img loss 1.3113250732421875 img loss 1.4307113885879517 img loss 1.3965370655059814 img loss 1.4791914224624634 img loss 1.3836305141448975 img loss 1.4859890937805176 img loss 1.3881288766860962 img loss 1.340627908706665 img loss 1.385195255279541 img loss 1.4178258180618286 img loss 1.2968738079071045 img loss 1.3948274850845337 img loss 1.335198998451233 img loss 1.477644443511963 img loss 1.405170202255249 img loss 1.3744690418243408 img loss 1.427616000175476 img loss 1.2861528396606445 img loss 1.3794281482696533 img loss 1.416289210319519 img loss 1.4445321559906006 img loss 1.3587911128997803 img loss 1.2765244245529175 img loss 1.467162013053894 img loss 1.3416463136672974 img loss 1.360442042350769 img loss 1.4699680805206299 img loss 1.3569799661636353 img loss 1.3885470628738403 img loss 1.3752888441085815 img loss 1.4289180040359497 img loss 1.3371754884719849 img loss 1.3657292127609253 img loss 1.2986493110656738 img loss 1.4013359546661377 img loss 1.3050193786621094 img loss 1.3216625452041626 img loss 1.3515698909759521 img loss 1.4026650190353394 img loss 1.4094799757003784 img loss 1.4291318655014038 img loss 1.4117512702941895 img loss 1.4705125093460083 img loss 1.4823296070098877 img loss 1.3703125715255737 img loss 1.3325583934783936 img loss 1.4036821126937866 img loss 1.288809061050415 img loss 1.3644826412200928 img loss 1.3960992097854614 img loss 1.4054830074310303 img loss 1.444608211517334 img loss 1.5079495906829834 img loss 1.2968897819519043 img loss 1.3711504936218262 img loss 1.3963948488235474 img loss 1.55553138256073 img loss 1.443769931793213 img loss 1.3548160791397095 img loss 1.466665506362915 img loss 1.4873307943344116 img loss 1.3647125959396362 img loss 1.4251707792282104 img loss 1.368131160736084 img loss 1.409074306488037 img loss 1.3556268215179443 img loss 1.4633097648620605 img loss 1.4147287607192993 img loss 1.353757381439209 img loss 1.445192813873291 img loss 1.3264033794403076 img loss 1.4165199995040894 img loss 1.4048161506652832 img loss 1.333208441734314 img loss 1.4264576435089111 img loss 1.4364792108535767 img loss 1.5332621335983276 img loss 1.3314765691757202 img loss 1.3385777473449707 img loss 1.4348245859146118 img loss 1.464150071144104 img loss 1.5139079093933105 img loss 1.40200674533844 img loss 1.4088428020477295 img loss 1.4164769649505615 img loss 1.374372959136963 img loss 1.4046461582183838 {'loss': 1.3938, 'grad_norm': 0.31746673583984375, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2726067304611206 img loss 1.3146958351135254 img loss 1.2339096069335938 img loss 1.3898425102233887 img loss 1.2592198848724365 img loss 1.3086771965026855 img loss 1.2556546926498413 img loss 1.322494387626648 img loss 1.4245144128799438 img loss 1.3133516311645508 img loss 1.3221508264541626 img loss 1.358329176902771 img loss 1.2883728742599487 img loss 1.3024771213531494 img loss 1.2445162534713745 img loss 1.3470431566238403 img loss 1.36985182762146 img loss 1.307757019996643 img loss 1.3668055534362793 img loss 1.2979981899261475 img loss 1.238468050956726 img loss 1.2990849018096924 img loss 1.245116114616394 img loss 1.3292219638824463 img loss 1.2499752044677734 img loss 1.341894268989563 img loss 1.275774359703064 img loss 1.3105132579803467 img loss 1.2800782918930054 img loss 1.3042256832122803 img loss 1.3227834701538086 img loss 1.214491844177246 img loss 1.2749751806259155 img loss 1.3431202173233032 img loss 1.2259557247161865 img loss 1.3763201236724854 img loss 1.2122938632965088 img loss 1.1885437965393066 img loss 1.333158016204834 img loss 1.2325502634048462 img loss 1.3286293745040894 img loss 1.260807991027832 img loss 1.2746269702911377 img loss 1.1945751905441284 img loss 1.3041813373565674 img loss 1.3316760063171387 img loss 1.3190054893493652 img loss 1.3355501890182495 img loss 1.339320421218872 img loss 1.360939621925354 img loss 1.231776237487793 img loss 1.3265156745910645 img loss 1.2589893341064453 img loss 1.2657629251480103 img loss 1.300964117050171 img loss 1.3201940059661865 img loss 1.2285974025726318 img loss 1.29239821434021 img loss 1.3347413539886475 img loss 1.3027355670928955 img loss 1.34615957736969 img loss 1.2637485265731812 img loss 1.279112458229065 img loss 1.2328317165374756 img loss 1.3407857418060303 img loss 1.2468810081481934 img loss 1.1642206907272339 img loss 1.3229706287384033 img loss 1.316100835800171 img loss 1.356870412826538 img loss 1.3846819400787354 img loss 1.3081104755401611 img loss 1.2929751873016357 img loss 1.2658703327178955 img loss 1.2699410915374756 img loss 1.2589764595031738 img loss 1.2985197305679321 img loss 1.2312400341033936 img loss 1.2990483045578003 img loss 1.251451015472412 img loss 1.2967157363891602 img loss 1.2386738061904907 img loss 1.2687737941741943 img loss 1.3108136653900146 img loss 1.310851812362671 img loss 1.3167171478271484 img loss 1.2556921243667603 img loss 1.3074764013290405 img loss 1.354669451713562 img loss 1.2499048709869385 img loss 1.2140593528747559 img loss 1.2161979675292969 img loss 1.2968385219573975 img loss 1.270594596862793 img loss 1.3952292203903198 img loss 1.4104512929916382 img loss 1.256699800491333 img loss 1.3214073181152344 img loss 1.2953075170516968 img loss 1.3464338779449463 img loss 1.2403477430343628 img loss 1.2603766918182373 img loss 1.290960669517517 img loss 1.3593642711639404 img loss 1.2637569904327393 img loss 1.2945798635482788 img loss 1.3119468688964844 img loss 1.2818827629089355 img loss 1.201465368270874 img loss 1.1805676221847534 img loss 1.3118226528167725 img loss 1.3226349353790283 img loss 1.3276880979537964 img loss 1.3811850547790527 img loss 1.237713098526001 img loss 1.3008203506469727 img loss 1.388792872428894 img loss 1.264369249343872 img loss 1.1958783864974976 img loss 1.239908218383789 img loss 1.315184473991394 img loss 1.2787655591964722 img loss 1.282686471939087 img loss 1.3381489515304565 img loss 1.3111624717712402 img loss 1.3289446830749512 img loss 1.3039358854293823 img loss 1.3083053827285767 {'loss': 1.2937, 'grad_norm': 0.3090791702270508, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3511922359466553 img loss 1.393695592880249 img loss 1.419359564781189 img loss 1.3744372129440308 img loss 1.328282356262207 img loss 1.2529658079147339 img loss 1.3624142408370972 img loss 1.3950990438461304 img loss 1.3313329219818115 img loss 1.3261964321136475 img loss 1.417380690574646 img loss 1.482848048210144 img loss 1.3857344388961792 img loss 1.3464677333831787 img loss 1.2941402196884155 img loss 1.3519645929336548 img loss 1.378739595413208 img loss 1.4107744693756104 img loss 1.2858091592788696 img loss 1.3599038124084473 img loss 1.3189948797225952 img loss 1.464410424232483 img loss 1.3941086530685425 img loss 1.4078439474105835 img loss 1.4009555578231812 img loss 1.3599002361297607 img loss 1.4496283531188965 img loss 1.4132916927337646 img loss 1.4899286031723022 img loss 1.456148624420166 img loss 1.313697338104248 img loss 1.3298295736312866 img loss 1.3598157167434692 img loss 1.40297532081604 img loss 1.328935980796814 img loss 1.4760881662368774 img loss 1.4255856275558472 img loss 1.3121618032455444 img loss 1.3870550394058228 img loss 1.443397879600525 img loss 1.3375269174575806 img loss 1.4856127500534058 img loss 1.3931845426559448 img loss 1.3597110509872437 img loss 1.3369241952896118 img loss 1.523132085800171 img loss 1.4177727699279785 img loss 1.4993857145309448 img loss 1.5147602558135986 img loss 1.3944171667099 img loss 1.3282582759857178 img loss 1.4368246793746948 img loss 1.430214285850525 img loss 1.3315668106079102 img loss 1.410346508026123 img loss 1.4782050848007202 img loss 1.4455485343933105 img loss 1.36982262134552 img loss 1.3837828636169434 img loss 1.395534634590149 img loss 1.2884279489517212 img loss 1.3974980115890503 img loss 1.3955013751983643 img loss 1.3109776973724365 img loss 1.4144036769866943 img loss 1.4326642751693726 img loss 1.2893681526184082 img loss 1.3954746723175049 img loss 1.4570019245147705 img loss 1.3308589458465576 img loss 1.4114617109298706 img loss 1.3960024118423462 img loss 1.2750394344329834 img loss 1.3931924104690552 img loss 1.3694360256195068 img loss 1.3912988901138306 img loss 1.3947796821594238 img loss 1.4094268083572388 img loss 1.353463053703308 img loss 1.4204562902450562 img loss 1.3111313581466675 img loss 1.3982293605804443 img loss 1.29867684841156 img loss 1.4960018396377563 img loss 1.4938989877700806 img loss 1.4962985515594482 img loss 1.2413251399993896 img loss 1.5148411989212036 img loss 1.379895567893982 img loss 1.3330568075180054 img loss 1.2863380908966064 img loss 1.3631905317306519 img loss 1.5184677839279175 img loss 1.4103789329528809 img loss 1.4814554452896118 img loss 1.3356291055679321 img loss 1.4766881465911865 img loss 1.2435067892074585 img loss 1.3056950569152832 img loss 1.3770993947982788 img loss 1.3617562055587769 img loss 1.4877365827560425 img loss 1.5482418537139893 img loss 1.4948004484176636 img loss 1.4468281269073486 img loss 1.2888062000274658 img loss 1.4414961338043213 img loss 1.4048092365264893 img loss 1.336656928062439 img loss 1.3895398378372192 img loss 1.4437384605407715 img loss 1.4735066890716553 img loss 1.3769986629486084 img loss 1.484835147857666 img loss 1.5228912830352783 img loss 1.298511266708374 img loss 1.4328449964523315 img loss 1.4691061973571777 img loss 1.4357383251190186 img loss 1.4799511432647705 img loss 1.2580642700195312 img loss 1.4430147409439087 img loss 1.3883087635040283 img loss 1.504996657371521 img loss 1.2631556987762451 img loss 1.4226654767990112 img loss 1.3689464330673218 img loss 1.423280954360962 {'loss': 1.394, 'grad_norm': 0.376638263463974, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2204538583755493 img loss 1.2796014547348022 img loss 1.2256317138671875 img loss 1.2202701568603516 img loss 1.199779987335205 img loss 1.2448365688323975 img loss 1.2130272388458252 img loss 1.2599067687988281 img loss 1.2353229522705078 img loss 1.1564652919769287 img loss 1.2309669256210327 img loss 1.294837236404419 img loss 1.3208427429199219 img loss 1.2056316137313843 img loss 1.2303342819213867 img loss 1.1902217864990234 img loss 1.2126530408859253 img loss 1.1912609338760376 img loss 1.2080236673355103 img loss 1.2129857540130615 img loss 1.27408766746521 img loss 1.1967031955718994 img loss 1.2414644956588745 img loss 1.2192692756652832 img loss 1.2580065727233887 img loss 1.1351656913757324 img loss 1.2071492671966553 img loss 1.276079535484314 img loss 1.1513614654541016 img loss 1.2123119831085205 img loss 1.2133963108062744 img loss 1.2316086292266846 img loss 1.2023435831069946 img loss 1.2482752799987793 img loss 1.2022637128829956 img loss 1.2656065225601196 img loss 1.2389347553253174 img loss 1.195451259613037 img loss 1.2747588157653809 img loss 1.223418116569519 img loss 1.1967873573303223 img loss 1.2150214910507202 img loss 1.2892508506774902 img loss 1.2096585035324097 img loss 1.0919421911239624 img loss 1.3120341300964355 img loss 1.1774872541427612 img loss 1.1688456535339355 img loss 1.1761072874069214 img loss 1.2117466926574707 img loss 1.2450213432312012 img loss 1.18645441532135 img loss 1.268217921257019 img loss 1.1934207677841187 img loss 1.1727415323257446 img loss 1.2426706552505493 img loss 1.2264630794525146 img loss 1.1175371408462524 img loss 1.2430534362792969 img loss 1.2608011960983276 img loss 1.2181066274642944 img loss 1.2589318752288818 img loss 1.3372433185577393 img loss 1.2457396984100342 img loss 1.2775945663452148 img loss 1.220050573348999 img loss 1.1952965259552002 img loss 1.1476166248321533 img loss 1.1781936883926392 img loss 1.3046214580535889 img loss 1.22998046875 img loss 1.1870791912078857 img loss 1.2592854499816895 img loss 1.231933355331421 img loss 1.1874010562896729 img loss 1.1686416864395142 img loss 1.1670658588409424 img loss 1.2005447149276733 img loss 1.1714986562728882 img loss 1.233027696609497 img loss 1.177435278892517 img loss 1.1272497177124023 img loss 1.2065062522888184 img loss 1.1936753988265991 img loss 1.2033981084823608 img loss 1.223008394241333 img loss 1.2702735662460327 img loss 1.1488893032073975 img loss 1.156318187713623 img loss 1.2852901220321655 img loss 1.220766305923462 img loss 1.2400509119033813 img loss 1.116689920425415 img loss 1.1870189905166626 img loss 1.2054251432418823 img loss 1.247384786605835 img loss 1.2088855504989624 img loss 1.282513976097107 img loss 1.3023645877838135 img loss 1.247352123260498 img loss 1.1666373014450073 img loss 1.3330751657485962 img loss 1.1466715335845947 img loss 1.2724342346191406 img loss 1.198692798614502 img loss 1.1873654127120972 img loss 1.284934639930725 img loss 1.2293310165405273 img loss 1.1924920082092285 img loss 1.246208667755127 img loss 1.2612354755401611 img loss 1.2266734838485718 img loss 1.2334904670715332 img loss 1.1923999786376953 img loss 1.218679428100586 img loss 1.1888846158981323 img loss 1.3023629188537598 img loss 1.294585108757019 img loss 1.2613334655761719 img loss 1.1253247261047363 img loss 1.3251335620880127 img loss 1.2488453388214111 img loss 1.3079853057861328 img loss 1.2933993339538574 img loss 1.206674337387085 img loss 1.2569561004638672 img loss 1.234533667564392 img loss 1.2165679931640625 {'loss': 1.223, 'grad_norm': 0.3837198317050934, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3875634670257568 img loss 1.1988674402236938 img loss 1.2315115928649902 img loss 1.2738826274871826 img loss 1.1910185813903809 img loss 1.267122745513916 img loss 1.3125561475753784 img loss 1.2016414403915405 img loss 1.1700544357299805 img loss 1.257951259613037 img loss 1.1769280433654785 img loss 1.2584823369979858 img loss 1.1822803020477295 img loss 1.2272114753723145 img loss 1.2786625623703003 img loss 1.2533917427062988 img loss 1.1454603672027588 img loss 1.1733022928237915 img loss 1.2382311820983887 img loss 1.3669053316116333 img loss 1.313225269317627 img loss 1.179309368133545 img loss 1.2451165914535522 img loss 1.2016351222991943 img loss 1.2051236629486084 img loss 1.1497958898544312 img loss 1.2506630420684814 img loss 1.2684258222579956 img loss 1.3270705938339233 img loss 1.2841808795928955 img loss 1.2129935026168823 img loss 1.2181425094604492 img loss 1.294880747795105 img loss 1.1852174997329712 img loss 1.1787092685699463 img loss 1.1830120086669922 img loss 1.211540937423706 img loss 1.2461458444595337 img loss 1.256811499595642 img loss 1.2260385751724243 img loss 1.241417407989502 img loss 1.2184809446334839 img loss 1.253010630607605 img loss 1.226454257965088 img loss 1.1710268259048462 img loss 1.2445809841156006 img loss 1.2531604766845703 img loss 1.207422137260437 img loss 1.2372292280197144 img loss 1.1966980695724487 img loss 1.1895036697387695 img loss 1.1880924701690674 img loss 1.3137078285217285 img loss 1.2385544776916504 img loss 1.2369203567504883 img loss 1.197246789932251 img loss 1.1640450954437256 img loss 1.1951731443405151 img loss 1.2436527013778687 img loss 1.216568946838379 img loss 1.1628490686416626 img loss 1.1922963857650757 img loss 1.2207574844360352 img loss 1.155369758605957 img loss 1.3304420709609985 img loss 1.1754589080810547 img loss 1.1875990629196167 img loss 1.2086482048034668 img loss 1.260515809059143 img loss 1.174403429031372 img loss 1.3273628950119019 img loss 1.276152491569519 img loss 1.3124220371246338 img loss 1.3231104612350464 img loss 1.2313458919525146 img loss 1.2055702209472656 img loss 1.1874030828475952 img loss 1.390286922454834 img loss 1.2387301921844482 img loss 1.209969401359558 img loss 1.2103123664855957 img loss 1.2086089849472046 img loss 1.1703169345855713 img loss 1.2133737802505493 img loss 1.214315414428711 img loss 1.1975147724151611 img loss 1.2007782459259033 img loss 1.2338471412658691 img loss 1.2547354698181152 img loss 1.2443742752075195 img loss 1.219186544418335 img loss 1.2068666219711304 img loss 1.1980695724487305 img loss 1.135670781135559 img loss 1.1629905700683594 img loss 1.2063902616500854 img loss 1.1370290517807007 img loss 1.136266827583313 img loss 1.212656021118164 img loss 1.2456930875778198 img loss 1.2371011972427368 img loss 1.266151785850525 img loss 1.2339109182357788 img loss 1.1918847560882568 img loss 1.161028265953064 img loss 1.1245826482772827 img loss 1.1309908628463745 img loss 1.136412501335144 img loss 1.291635274887085 img loss 1.221421480178833 img loss 1.231589674949646 img loss 1.191062331199646 img loss 1.1755969524383545 img loss 1.2584575414657593 img loss 1.246468186378479 img loss 1.1925625801086426 img loss 1.2695047855377197 img loss 1.1861305236816406 img loss 1.2205473184585571 img loss 1.2427524328231812 img loss 1.3226488828659058 img loss 1.1284598112106323 img loss 1.1934828758239746 img loss 1.2255598306655884 img loss 1.259587049484253 img loss 1.15220308303833 img loss 1.2572383880615234 img loss 1.1403201818466187 {'loss': 1.2229, 'grad_norm': 0.32889652252197266, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1669813394546509 img loss 1.2285218238830566 img loss 1.259750247001648 img loss 1.213224172592163 img loss 1.1978425979614258 img loss 1.259032964706421 img loss 1.286202311515808 img loss 1.1483043432235718 img loss 1.2206648588180542 img loss 1.183640480041504 img loss 1.2491729259490967 img loss 1.2142051458358765 img loss 1.2947434186935425 img loss 1.2141386270523071 img loss 1.222869634628296 img loss 1.1675761938095093 img loss 1.2295395135879517 img loss 1.1415951251983643 img loss 1.1660077571868896 img loss 1.2218631505966187 img loss 1.1440906524658203 img loss 1.1607391834259033 img loss 1.1783939599990845 img loss 1.2608555555343628 img loss 1.2404619455337524 img loss 1.161496877670288 img loss 1.2305606603622437 img loss 1.2379944324493408 img loss 1.1591943502426147 img loss 1.1442959308624268 img loss 1.190468668937683 img loss 1.2167162895202637 img loss 1.2111365795135498 img loss 1.1967353820800781 img loss 1.1925742626190186 img loss 1.155375361442566 img loss 1.2392916679382324 img loss 1.2006735801696777 img loss 1.1899263858795166 img loss 1.2179043292999268 img loss 1.157970666885376 img loss 1.146129846572876 img loss 1.2489782571792603 img loss 1.3222683668136597 img loss 1.2474632263183594 img loss 1.2336020469665527 img loss 1.1349831819534302 img loss 1.1757299900054932 img loss 1.2214233875274658 img loss 1.2403619289398193 img loss 1.231079339981079 img loss 1.1610199213027954 img loss 1.1104304790496826 img loss 1.1950796842575073 img loss 1.1560275554656982 img loss 1.1442683935165405 img loss 1.191455364227295 img loss 1.192244052886963 img loss 1.240322470664978 img loss 1.133590579032898 img loss 1.156923532485962 img loss 1.250405192375183 img loss 1.2143999338150024 img loss 1.2066645622253418 img loss 1.2240865230560303 img loss 1.1510876417160034 img loss 1.1819905042648315 img loss 1.2085129022598267 img loss 1.1916202306747437 img loss 1.2427089214324951 img loss 1.1222389936447144 img loss 1.1898735761642456 img loss 1.1251888275146484 img loss 1.1793205738067627 img loss 1.2511610984802246 img loss 1.2053474187850952 img loss 1.199512004852295 img loss 1.2282776832580566 img loss 1.1851131916046143 img loss 1.2356369495391846 img loss 1.2457417249679565 img loss 1.2173622846603394 img loss 1.155442714691162 img loss 1.2093288898468018 img loss 1.2571864128112793 img loss 1.1889374256134033 img loss 1.1576541662216187 img loss 1.2087726593017578 img loss 1.1160104274749756 img loss 1.2502918243408203 img loss 1.2474112510681152 img loss 1.2261714935302734 img loss 1.2843914031982422 img loss 1.197389006614685 img loss 1.136319875717163 img loss 1.2452653646469116 img loss 1.1898183822631836 img loss 1.245997428894043 img loss 1.1872613430023193 img loss 1.2456326484680176 img loss 1.2247028350830078 img loss 1.306182622909546 img loss 1.2344377040863037 img loss 1.2538527250289917 img loss 1.2350491285324097 img loss 1.2562251091003418 img loss 1.250030279159546 img loss 1.1709047555923462 img loss 1.2168822288513184 img loss 1.1690609455108643 img loss 1.1428838968276978 img loss 1.167725920677185 img loss 1.2077430486679077 img loss 1.2211331129074097 img loss 1.1419819593429565 img loss 1.2050566673278809 img loss 1.1477069854736328 img loss 1.1839921474456787 img loss 1.1888482570648193 img loss 1.1806567907333374 img loss 1.162466049194336 img loss 1.1726998090744019 img loss 1.1866719722747803 img loss 1.2158774137496948 img loss 1.1662334203720093 img loss 1.0755994319915771 img loss 1.1852749586105347 img loss 1.2695612907409668 {'loss': 1.2016, 'grad_norm': 0.24184416234493256, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2383568286895752 img loss 1.1467227935791016 img loss 1.2728279829025269 img loss 1.312986135482788 img loss 1.1367053985595703 img loss 1.1882673501968384 img loss 1.2366900444030762 img loss 1.2375792264938354 img loss 1.2266836166381836 img loss 1.1881687641143799 img loss 1.2090644836425781 img loss 1.1902967691421509 img loss 1.149720549583435 img loss 1.196663737297058 img loss 1.2406564950942993 img loss 1.152666687965393 img loss 1.2790676355361938 img loss 1.1848235130310059 img loss 1.2273931503295898 img loss 1.2631101608276367 img loss 1.1803028583526611 img loss 1.2820019721984863 img loss 1.1983762979507446 img loss 1.2250535488128662 img loss 1.220009684562683 img loss 1.1520750522613525 img loss 1.1817317008972168 img loss 1.208561897277832 img loss 1.1117656230926514 img loss 1.2208515405654907 img loss 1.2863476276397705 img loss 1.2260760068893433 img loss 1.2612595558166504 img loss 1.1947988271713257 img loss 1.1901365518569946 img loss 1.243579626083374 img loss 1.2998363971710205 img loss 1.167296290397644 img loss 1.115981936454773 img loss 1.152836561203003 img loss 1.2439197301864624 img loss 1.2880916595458984 img loss 1.1687517166137695 img loss 1.1878559589385986 img loss 1.2315601110458374 img loss 1.176988959312439 img loss 1.2705596685409546 img loss 1.1463888883590698 img loss 1.176875352859497 img loss 1.2239569425582886 img loss 1.1724441051483154 img loss 1.1295576095581055 img loss 1.1641753911972046 img loss 1.2498210668563843 img loss 1.2975507974624634 img loss 1.2078607082366943 img loss 1.254326581954956 img loss 1.241088628768921 img loss 1.1866869926452637 img loss 1.1962746381759644 img loss 1.1991090774536133 img loss 1.2520689964294434 img loss 1.1895071268081665 img loss 1.1883281469345093 img loss 1.232118010520935 img loss 1.175850749015808 img loss 1.2641959190368652 img loss 1.1132581233978271 img loss 1.1972450017929077 img loss 1.289829134941101 img loss 1.2247400283813477 img loss 1.2374382019042969 img loss 1.2408180236816406 img loss 1.2487248182296753 img loss 1.231982707977295 img loss 1.2474424839019775 img loss 1.1951042413711548 img loss 1.141566514968872 img loss 1.1617517471313477 img loss 1.3794220685958862 img loss 1.2712879180908203 img loss 1.2027037143707275 img loss 1.3063440322875977 img loss 1.1966722011566162 img loss 1.109892725944519 img loss 1.2337430715560913 img loss 1.2243874073028564 img loss 1.141786813735962 img loss 1.332589864730835 img loss 1.134313941001892 img loss 1.1540035009384155 img loss 1.1845978498458862 img loss 1.2154228687286377 img loss 1.1806509494781494 img loss 1.1548357009887695 img loss 1.2141779661178589 img loss 1.2331852912902832 img loss 1.2207257747650146 img loss 1.1447380781173706 img loss 1.1794025897979736 img loss 1.1421198844909668 img loss 1.2904304265975952 img loss 1.1462020874023438 img loss 1.2301031351089478 img loss 1.20108163356781 img loss 1.2448173761367798 img loss 1.2534863948822021 img loss 1.2327415943145752 img loss 1.1728218793869019 img loss 1.1960468292236328 img loss 1.2179548740386963 img loss 1.1856355667114258 img loss 1.2434651851654053 img loss 1.1733518838882446 img loss 1.2649116516113281 img loss 1.2483030557632446 img loss 1.2340115308761597 img loss 1.1153028011322021 img loss 1.2259224653244019 img loss 1.2843807935714722 img loss 1.2526733875274658 img loss 1.1876163482666016 img loss 1.0817179679870605 img loss 1.2336410284042358 img loss 1.1991832256317139 img loss 1.1666253805160522 img loss 1.2520513534545898 img loss 1.2770363092422485 {'loss': 1.211, 'grad_norm': 0.2355678528547287, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3740464448928833 img loss 1.2523529529571533 img loss 1.2567708492279053 img loss 1.3539574146270752 img loss 1.440283179283142 img loss 1.3115662336349487 img loss 1.2746247053146362 img loss 1.3182373046875 img loss 1.2286884784698486 img loss 1.3826655149459839 img loss 1.2200825214385986 img loss 1.332636833190918 img loss 1.286055564880371 img loss 1.218759298324585 img loss 1.248517632484436 img loss 1.3215911388397217 img loss 1.3007867336273193 img loss 1.3791168928146362 img loss 1.294227123260498 img loss 1.284308671951294 img loss 1.2955989837646484 img loss 1.274991750717163 img loss 1.2203481197357178 img loss 1.3433483839035034 img loss 1.2721515893936157 img loss 1.2643206119537354 img loss 1.2603400945663452 img loss 1.3113406896591187 img loss 1.3197293281555176 img loss 1.2471368312835693 img loss 1.289589762687683 img loss 1.3557366132736206 img loss 1.312218427658081 img loss 1.35238778591156 img loss 1.449472188949585 img loss 1.3535946607589722 img loss 1.2618262767791748 img loss 1.301712989807129 img loss 1.268033742904663 img loss 1.2151650190353394 img loss 1.3042062520980835 img loss 1.2496496438980103 img loss 1.235746145248413 img loss 1.2202204465866089 img loss 1.339848279953003 img loss 1.3017957210540771 img loss 1.4394240379333496 img loss 1.425300121307373 img loss 1.284268856048584 img loss 1.3865281343460083 img loss 1.243738055229187 img loss 1.2484240531921387 img loss 1.2554736137390137 img loss 1.2847715616226196 img loss 1.3148552179336548 img loss 1.2852702140808105 img loss 1.218954086303711 img loss 1.3689255714416504 img loss 1.3147099018096924 img loss 1.489161729812622 img loss 1.3264939785003662 img loss 1.3340115547180176 img loss 1.2767820358276367 img loss 1.1976428031921387 img loss 1.3574026823043823 img loss 1.2393927574157715 img loss 1.2376981973648071 img loss 1.2907260656356812 img loss 1.2449240684509277 img loss 1.3158950805664062 img loss 1.2319780588150024 img loss 1.3009809255599976 img loss 1.28603994846344 img loss 1.262925148010254 img loss 1.3250792026519775 img loss 1.2879873514175415 img loss 1.3516360521316528 img loss 1.29190993309021 img loss 1.2085537910461426 img loss 1.2190494537353516 img loss 1.3658205270767212 img loss 1.2390562295913696 img loss 1.3747788667678833 img loss 1.3025518655776978 img loss 1.2801759243011475 img loss 1.3266299962997437 img loss 1.289903998374939 img loss 1.3320040702819824 img loss 1.2748140096664429 img loss 1.3809325695037842 img loss 1.2659612894058228 img loss 1.2801436185836792 img loss 1.308315634727478 img loss 1.2484673261642456 img loss 1.271643042564392 img loss 1.3222265243530273 img loss 1.3709547519683838 img loss 1.2603577375411987img loss 1.2962567806243896 img loss 1.263804316520691 img loss 1.2261707782745361 img loss 1.4055007696151733 img loss 1.2534042596817017 img loss 1.2371177673339844 img loss 1.3024356365203857 img loss 1.3172918558120728 img loss 1.2818002700805664 img loss 1.3082585334777832 img loss 1.2472119331359863 img loss 1.3686622381210327 img loss 1.3782399892807007 img loss 1.2997758388519287 img loss 1.2952898740768433 img loss 1.2789249420166016 img loss 1.324104905128479 img loss 1.2483649253845215 img loss 1.3525201082229614 img loss 1.3548195362091064 img loss 1.2838518619537354 img loss 1.2222727537155151 img loss 1.2155580520629883 img loss 1.3349778652191162 img loss 1.29117751121521 img loss 1.2566274404525757 img loss 1.3329992294311523 img loss 1.3544602394104004 img loss 1.3382879495620728 img loss 1.2660359144210815 {'loss': 1.299, 'grad_norm': 0.2877136170864105, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2127691507339478 img loss 1.1610596179962158 img loss 1.220992088317871 img loss 1.251299262046814 img loss 1.2532453536987305 img loss 1.2170140743255615 img loss 1.228744387626648 img loss 1.2380211353302002 img loss 1.3717232942581177 img loss 1.2260907888412476 img loss 1.2662776708602905 img loss 1.1912435293197632 img loss 1.126334547996521 img loss 1.2009620666503906 img loss 1.2963364124298096 img loss 1.2740342617034912 img loss 1.2678552865982056 img loss 1.2677828073501587 img loss 1.1618925333023071 img loss 1.1559348106384277 img loss 1.2485193014144897 img loss 1.2989466190338135 img loss 1.1968166828155518 img loss 1.2560005187988281 img loss 1.2351813316345215 img loss 1.1789582967758179 img loss 1.2633719444274902 img loss 1.165290355682373 img loss 1.1762055158615112 img loss 1.2509851455688477 img loss 1.1577627658843994 img loss 1.2032170295715332 img loss 1.209761619567871 img loss 1.1772446632385254 img loss 1.2015501260757446 img loss 1.2165569067001343 img loss 1.3744341135025024 img loss 1.2087836265563965 img loss 1.1572166681289673 img loss 1.207873821258545 img loss 1.3073413372039795 img loss 1.2204359769821167 img loss 1.2176756858825684 img loss 1.1884479522705078 img loss 1.2058656215667725 img loss 1.257699966430664 img loss 1.1881122589111328 img loss 1.2833664417266846 img loss 1.2643829584121704 img loss 1.1861240863800049 img loss 1.1889431476593018 img loss 1.2299467325210571 img loss 1.2259652614593506 img loss 1.2592424154281616 img loss 1.248523235321045 img loss 1.1722521781921387 img loss 1.2687841653823853 img loss 1.2418115139007568 img loss 1.193539023399353 img loss 1.2209184169769287 img loss 1.1905535459518433 img loss 1.2074100971221924 img loss 1.2150369882583618 img loss 1.2146732807159424 img loss 1.1473978757858276 img loss 1.2411056756973267 img loss 1.169932246208191 img loss 1.268722414970398 img loss 1.2311009168624878 img loss 1.1928805112838745 img loss 1.13737952709198 img loss 1.3133413791656494 img loss 1.1873934268951416 img loss 1.25142240524292 img loss 1.2360048294067383 img loss 1.2298932075500488 img loss 1.3344461917877197 img loss 1.1511884927749634 img loss 1.2079092264175415 img loss 1.1748745441436768 img loss 1.2708652019500732 img loss 1.1857397556304932 img loss 1.348168134689331 img loss 1.2417798042297363 img loss 1.212188720703125 img loss 1.2798893451690674 img loss 1.2865604162216187 img loss 1.2824218273162842 img loss 1.2063242197036743 img loss 1.2709394693374634 img loss 1.1985750198364258 img loss 1.2336994409561157 img loss 1.2321819067001343 img loss 1.2091271877288818 img loss 1.2234004735946655 img loss 1.2274187803268433 img loss 1.283663034439087 img loss 1.3108447790145874 img loss 1.2704931497573853 img loss 1.2386311292648315 img loss 1.1942532062530518 img loss 1.2529664039611816 img loss 1.2437288761138916 img loss 1.2106032371520996 img loss 1.2505121231079102 img loss 1.2693367004394531 img loss 1.2020241022109985 img loss 1.1786460876464844 img loss 1.332332968711853 img loss 1.212839126586914 img loss 1.3145811557769775 img loss 1.2128301858901978 img loss 1.2173007726669312 img loss 1.278267502784729 img loss 1.217975378036499 img loss 1.210784912109375 img loss 1.260730504989624 img loss 1.262363314628601 img loss 1.3142677545547485 img loss 1.220352053642273 img loss 1.210307002067566 img loss 1.2352211475372314 img loss 1.2187238931655884 img loss 1.322908639907837 img loss 1.223873496055603 img loss 1.3101719617843628 img loss 1.2013978958129883 img loss 1.2716960906982422 {'loss': 1.2321, 'grad_norm': 0.3342968225479126, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2662944793701172 img loss 1.2673237323760986 img loss 1.2010197639465332 img loss 1.2755345106124878 img loss 1.275977373123169 img loss 1.3452122211456299 img loss 1.2054617404937744 img loss 1.2654672861099243 img loss 1.2110328674316406 img loss 1.3069000244140625 img loss 1.2491188049316406 img loss 1.1946258544921875 img loss 1.1908164024353027 img loss 1.2168947458267212 img loss 1.23433518409729 img loss 1.2240233421325684 img loss 1.3160185813903809 img loss 1.291795015335083 img loss 1.2737102508544922 img loss 1.228564977645874 img loss 1.3163784742355347 img loss 1.2883455753326416 img loss 1.2814149856567383 img loss 1.330708384513855 img loss 1.2761921882629395 img loss 1.1959940195083618 img loss 1.2992424964904785 img loss 1.2241294384002686 img loss 1.3176159858703613 img loss 1.3311926126480103 img loss 1.264219880104065 img loss 1.2668061256408691 img loss 1.2628544569015503 img loss 1.17100989818573 img loss 1.2140274047851562 img loss 1.1710422039031982 img loss 1.224463701248169 img loss 1.1601661443710327 img loss 1.2606918811798096 img loss 1.2250031232833862 img loss 1.300626277923584 img loss 1.3610917329788208 img loss 1.2796528339385986 img loss 1.313314437866211 img loss 1.4060165882110596 img loss 1.2100025415420532 img loss 1.2684153318405151 img loss 1.2919663190841675 img loss 1.2990039587020874 img loss 1.1838442087173462 img loss 1.3867098093032837 img loss 1.2876180410385132 img loss 1.3842908143997192 img loss 1.2519851922988892 img loss 1.274897813796997 img loss 1.1958030462265015 img loss 1.3566313982009888 img loss 1.1809568405151367 img loss 1.2213448286056519 img loss 1.227701187133789 img loss 1.3064913749694824 img loss 1.2546603679656982 img loss 1.2941936254501343 img loss 1.1811840534210205 img loss 1.2884641885757446 img loss 1.233031153678894 img loss 1.2850879430770874 img loss 1.2377119064331055 img loss 1.2699329853057861 img loss 1.245506763458252 img loss 1.2123689651489258 img loss 1.3209564685821533 img loss 1.2602776288986206 img loss 1.214465856552124 img loss 1.1889464855194092 img loss 1.174406886100769 img loss 1.2938698530197144 img loss 1.2716842889785767 img loss 1.246996283531189 img loss 1.3704228401184082 img loss 1.2555640935897827 img loss 1.2215030193328857 img loss 1.2893438339233398 img loss 1.3167035579681396 img loss 1.358946681022644 img loss 1.2459291219711304 img loss 1.2651523351669312 img loss 1.1848971843719482 img loss 1.3207380771636963 img loss 1.2781939506530762 img loss 1.2943025827407837 img loss 1.3249380588531494 img loss 1.19740891456604 img loss 1.2130787372589111 img loss 1.2502961158752441 img loss 1.3023020029067993 img loss 1.288825511932373 img loss 1.1677626371383667 img loss 1.1936057806015015 img loss 1.225060224533081 img loss 1.2301632165908813 img loss 1.3101412057876587 img loss 1.2462360858917236 img loss 1.2624197006225586 img loss 1.3386143445968628 img loss 1.296775460243225 img loss 1.286182165145874 img loss 1.2841520309448242 img loss 1.3093781471252441 img loss 1.2605866193771362 img loss 1.2253090143203735 img loss 1.2595487833023071 img loss 1.123992681503296 img loss 1.367255449295044 img loss 1.238223671913147 img loss 1.292539358139038 img loss 1.2547690868377686 img loss 1.264833688735962 img loss 1.304579257965088 img loss 1.3813759088516235 img loss 1.208014726638794 img loss 1.3894801139831543 img loss 1.3011311292648315 img loss 1.2874373197555542 img loss 1.2756246328353882 img loss 1.2642358541488647 img loss 1.2472851276397705 img loss 1.2459239959716797 {'loss': 1.2649, 'grad_norm': 0.4250263571739197, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4366891384124756 img loss 1.4466427564620972 img loss 1.6247437000274658 img loss 1.5421175956726074 img loss 1.5386061668395996 img loss 1.5493810176849365 img loss 1.5296437740325928 img loss 1.4729955196380615 img loss 1.5989089012145996 img loss 1.4508602619171143img loss 1.5946974754333496 img loss 1.4000214338302612 img loss 1.4781068563461304 img loss 1.5338451862335205 img loss 1.6747794151306152 img loss 1.446141004562378 img loss 1.5456997156143188 img loss 1.4652364253997803 img loss 1.547563910484314 img loss 1.4504427909851074 img loss 1.4916561841964722 img loss 1.5972763299942017 img loss 1.5161172151565552 img loss 1.4009344577789307 img loss 1.294158697128296 img loss 1.557701826095581 img loss 1.538593053817749 img loss 1.597133994102478 img loss 1.6247128248214722 img loss 1.5511939525604248 img loss 1.5508607625961304 img loss 1.4112086296081543 img loss 1.4833792448043823 img loss 1.5172866582870483 img loss 1.4706971645355225 img loss 1.4133923053741455 img loss 1.6112109422683716 img loss 1.5332435369491577 img loss 1.4289311170578003 img loss 1.5154547691345215 img loss 1.5812760591506958 img loss 1.5232244729995728 img loss 1.4606915712356567 img loss 1.441212773323059 img loss 1.5387510061264038 img loss 1.5419306755065918 img loss 1.4252959489822388 img loss 1.4768221378326416 img loss 1.5462234020233154 img loss 1.4489821195602417 img loss 1.727607011795044 img loss 1.6199918985366821 img loss 1.5969655513763428 img loss 1.5741955041885376 img loss 1.3644214868545532 img loss 1.5100922584533691 img loss 1.6571048498153687 img loss 1.4918171167373657 img loss 1.5403707027435303 img loss 1.635357141494751 img loss 1.373167634010315 img loss 1.4358311891555786 img loss 1.4447605609893799 img loss 1.5017467737197876 img loss 1.5684386491775513 img loss 1.7051414251327515 img loss 1.6060633659362793 img loss 1.4046152830123901 img loss 1.5412508249282837img loss 1.3672900199890137 img loss 1.6276851892471313 img loss 1.4619030952453613 img loss 1.604750394821167 img loss 1.4468152523040771 img loss 1.5111985206604004 img loss 1.439611792564392 img loss 1.470577359199524 img loss 1.7031147480010986 img loss 1.4571192264556885 img loss 1.4646271467208862 img loss 1.532813310623169 img loss 1.5609716176986694 img loss 1.5372925996780396 img loss 1.4206548929214478 img loss 1.4245178699493408 img loss 1.6259437799453735 img loss 1.4849745035171509 img loss 1.438026785850525 img loss 1.438514232635498 img loss 1.4861856698989868 img loss 1.3820661306381226 img loss 1.3517251014709473 img loss 1.443088173866272 img loss 1.6554896831512451 img loss 1.4476797580718994 img loss 1.493259072303772 img loss 1.4987332820892334 img loss 1.421030879020691 img loss 1.639140009880066 img loss 1.4758836030960083 img loss 1.6080235242843628 img loss 1.5336930751800537 img loss 1.552568793296814 img loss 1.4934935569763184 img loss 1.5165479183197021 img loss 1.4770745038986206 img loss 1.4710938930511475 img loss 1.4122895002365112 img loss 1.5467584133148193 img loss 1.4700500965118408 img loss 1.460625171661377 img loss 1.6082909107208252 img loss 1.4449048042297363 img loss 1.6027636528015137 img loss 1.5953919887542725 img loss 1.370808482170105 img loss 1.5017586946487427 img loss 1.5178663730621338 img loss 1.6182054281234741 img loss 1.4548343420028687 img loss 1.4861435890197754 img loss 1.5674893856048584 img loss 1.4735108613967896 img loss 1.4740246534347534 img loss 1.452572226524353 img loss 1.426481008529663 img loss 1.573752999305725 img loss 1.620947003364563 {'loss': 1.5106, 'grad_norm': 0.4400283396244049, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2681349515914917 img loss 1.2701419591903687 img loss 1.1642699241638184 img loss 1.2478368282318115 img loss 1.2190485000610352 img loss 1.209773063659668 img loss 1.1904882192611694 img loss 1.1832565069198608 img loss 1.133001685142517 img loss 1.1927542686462402 img loss 1.1856207847595215 img loss 1.2065024375915527 img loss 1.2095869779586792 img loss 1.3455532789230347 img loss 1.210313320159912 img loss 1.2513329982757568 img loss 1.2220009565353394 img loss 1.21107816696167 img loss 1.2853189706802368 img loss 1.1620824337005615 img loss 1.1798242330551147 img loss 1.2513868808746338 img loss 1.1591252088546753 img loss 1.1851381063461304 img loss 1.238546371459961 img loss 1.2398070096969604 img loss 1.1894930601119995 img loss 1.1751006841659546 img loss 1.214537262916565 img loss 1.2434074878692627 img loss 1.198490023612976 img loss 1.2542200088500977 img loss 1.170958399772644 img loss 1.1801763772964478 img loss 1.293081283569336 img loss 1.22711980342865 img loss 1.2266831398010254 img loss 1.168104648590088 img loss 1.2819459438323975 img loss 1.2033675909042358 img loss 1.172361135482788 img loss 1.183021068572998 img loss 1.288236379623413 img loss 1.2431674003601074 img loss 1.220014214515686 img loss 1.1851844787597656 img loss 1.268807291984558 img loss 1.2163623571395874 img loss 1.2429732084274292 img loss 1.1838111877441406img loss 1.149862289428711 img loss 1.230330228805542 img loss 1.1896253824234009 img loss 1.261788010597229 img loss 1.186889410018921 img loss 1.1457288265228271 img loss 1.2699397802352905 img loss 1.2097519636154175 img loss 1.2140989303588867 img loss 1.2669895887374878 img loss 1.2442926168441772 img loss 1.2363157272338867 img loss 1.3447610139846802 img loss 1.2728514671325684 img loss 1.2025779485702515 img loss 1.198191523551941 img loss 1.2869623899459839 img loss 1.201289415359497 img loss 1.2034945487976074 img loss 1.1999839544296265 img loss 1.2164102792739868 img loss 1.2672004699707031 img loss 1.2020158767700195 img loss 1.1978681087493896 img loss 1.3115557432174683 img loss 1.1328116655349731 img loss 1.2032307386398315 img loss 1.1719764471054077 img loss 1.1958162784576416 img loss 1.2368673086166382 img loss 1.1653448343276978 img loss 1.1989859342575073 img loss 1.3463274240493774 img loss 1.3041805028915405 img loss 1.2403405904769897 img loss 1.1936945915222168 img loss 1.2007020711898804 img loss 1.2914148569107056 img loss 1.2534332275390625 img loss 1.2471022605895996img loss 1.2536849975585938 img loss 1.135732650756836 img loss 1.236088514328003 img loss 1.2175536155700684 img loss 1.2352018356323242 img loss 1.220618724822998 img loss 1.2305625677108765 img loss 1.2235831022262573 img loss 1.2142558097839355 img loss 1.2420278787612915 img loss 1.2207380533218384 img loss 1.2009586095809937 img loss 1.1894854307174683 img loss 1.2847766876220703 img loss 1.1252611875534058 img loss 1.211303472518921 img loss 1.2793769836425781 img loss 1.3491946458816528 img loss 1.2002743482589722 img loss 1.1580400466918945 img loss 1.2098183631896973 img loss 1.1671243906021118 img loss 1.2090777158737183 img loss 1.23197340965271 img loss 1.1822508573532104 img loss 1.3334190845489502 img loss 1.212045431137085 img loss 1.188727617263794 img loss 1.195158839225769 img loss 1.3139101266860962 img loss 1.145703673362732 img loss 1.2355574369430542 img loss 1.2973260879516602 img loss 1.2040966749191284 img loss 1.2351480722427368 img loss 1.19115149974823 img loss 1.14192795753479 img loss 1.2647379636764526 {'loss': 1.2214, 'grad_norm': 0.23459777235984802, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4527442455291748 img loss 1.4591752290725708 img loss 1.3893193006515503 img loss 1.3910521268844604 img loss 1.3786485195159912 img loss 1.4658986330032349 img loss 1.377570390701294 img loss 1.39374840259552 img loss 1.5274873971939087 img loss 1.4485539197921753 img loss 1.3785583972930908 img loss 1.4451403617858887 img loss 1.3058465719223022 img loss 1.637001872062683 img loss 1.3468811511993408 img loss 1.5246602296829224 img loss 1.3717416524887085 img loss 1.3750643730163574 img loss 1.4069539308547974 img loss 1.467336893081665 img loss 1.4661281108856201 img loss 1.2754653692245483 img loss 1.3554738759994507 img loss 1.431822419166565 img loss 1.226683259010315 img loss 1.4421769380569458 img loss 1.4230355024337769 img loss 1.4265040159225464 img loss 1.3890599012374878 img loss 1.5210011005401611 img loss 1.4508575201034546 img loss 1.4313198328018188 img loss 1.3860509395599365 img loss 1.3186899423599243 img loss 1.676917314529419 img loss 1.3343042135238647 img loss 1.4062155485153198 img loss 1.496203899383545 img loss 1.4306626319885254 img loss 1.3235087394714355 img loss 1.4705795049667358 img loss 1.3327100276947021 img loss 1.3986563682556152 img loss 1.380954384803772 img loss 1.3727689981460571 img loss 1.273309588432312 img loss 1.423082947731018 img loss 1.3587886095046997 img loss 1.4307695627212524 img loss 1.4043036699295044 img loss 1.4223875999450684 img loss 1.3699182271957397 img loss 1.3777272701263428 img loss 1.463086485862732 img loss 1.2922983169555664 img loss 1.3763872385025024 img loss 1.3989671468734741 img loss 1.4143955707550049 img loss 1.4307137727737427 img loss 1.3937914371490479 img loss 1.5716241598129272 img loss 1.4293787479400635 img loss 1.428321361541748 img loss 1.457872986793518 img loss 1.4131869077682495 img loss 1.360246181488037 img loss 1.3531562089920044 img loss 1.4514424800872803 img loss 1.4417880773544312 img loss 1.4296461343765259 img loss 1.4904252290725708 img loss 1.4229763746261597 img loss 1.5267317295074463 img loss 1.4706225395202637 img loss 1.4631239175796509 img loss 1.415312647819519 img loss 1.4098464250564575 img loss 1.3909087181091309 img loss 1.5622233152389526 img loss 1.5412544012069702 img loss 1.3685799837112427 img loss 1.3836613893508911 img loss 1.3619660139083862 img loss 1.396410346031189 img loss 1.5637242794036865 img loss 1.4094980955123901 img loss 1.4667896032333374 img loss 1.4684075117111206 img loss 1.390209436416626 img loss 1.2962368726730347 img loss 1.4292452335357666 img loss 1.4397790431976318 img loss 1.4753472805023193 img loss 1.2509629726409912 img loss 1.3141136169433594 img loss 1.3094557523727417 img loss 1.4227023124694824 img loss 1.3970067501068115 img loss 1.393332600593567 img loss 1.4553097486495972 img loss 1.4070965051651 img loss 1.5472947359085083 img loss 1.5379337072372437 img loss 1.5353732109069824 img loss 1.403652548789978 img loss 1.5325465202331543 img loss 1.3960365056991577 img loss 1.5256298780441284 img loss 1.4517738819122314 img loss 1.346314549446106 img loss 1.5382965803146362 img loss 1.3374940156936646 img loss 1.3722240924835205 img loss 1.432249665260315 img loss 1.5261975526809692 img loss 1.3738240003585815 img loss 1.4736132621765137 img loss 1.3885178565979004 img loss 1.4219249486923218 img loss 1.408889889717102 img loss 1.3718611001968384 img loss 1.4318397045135498 img loss 1.4457646608352661 img loss 1.49009108543396 img loss 1.375787615776062 img loss 1.466896891593933 img loss 1.3428328037261963 img loss 1.4247047901153564 {'loss': 1.4209, 'grad_norm': 0.2641783058643341, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2194904088974 img loss 1.333661437034607 img loss 1.2664732933044434 img loss 1.3558861017227173 img loss 1.2754672765731812 img loss 1.353076457977295 img loss 1.2534754276275635 img loss 1.2393546104431152 img loss 1.3076578378677368 img loss 1.2973229885101318 img loss 1.2903454303741455 img loss 1.3783732652664185 img loss 1.2705315351486206 img loss 1.414781928062439 img loss 1.279599666595459 img loss 1.337952971458435 img loss 1.230570673942566 img loss 1.3043352365493774 img loss 1.2747135162353516 img loss 1.329962968826294 img loss 1.3676379919052124 img loss 1.413132905960083 img loss 1.3496620655059814 img loss 1.3669285774230957 img loss 1.2784277200698853 img loss 1.337388277053833 img loss 1.3161168098449707 img loss 1.292734146118164 img loss 1.2905524969100952 img loss 1.2892731428146362 img loss 1.24263334274292 img loss 1.2129743099212646 img loss 1.2465733289718628 img loss 1.2480305433273315 img loss 1.3397620916366577 img loss 1.3131729364395142 img loss 1.2397150993347168 img loss 1.2422102689743042 img loss 1.2530596256256104 img loss 1.2376248836517334 img loss 1.3131518363952637 img loss 1.2804813385009766 img loss 1.393833041191101 img loss 1.3080452680587769 img loss 1.2567548751831055 img loss 1.2949644327163696 img loss 1.3761547803878784 img loss 1.2012685537338257 img loss 1.395862102508545img loss 1.2729672193527222 img loss 1.346482753753662 img loss 1.2668840885162354 img loss 1.2578824758529663 img loss 1.4753338098526 img loss 1.2641932964324951 img loss 1.3442176580429077 img loss 1.3789082765579224 img loss 1.3810662031173706 img loss 1.4730631113052368 img loss 1.264976143836975 img loss 1.272590160369873 img loss 1.2541942596435547 img loss 1.1361721754074097 img loss 1.3309326171875 img loss 1.3301522731781006 img loss 1.3293628692626953 img loss 1.3392144441604614 img loss 1.2752623558044434 img loss 1.3698920011520386 img loss 1.2504364252090454 img loss 1.2943652868270874 img loss 1.294334053993225 img loss 1.42586088180542 img loss 1.2760307788848877 img loss 1.3368803262710571 img loss 1.3195998668670654 img loss 1.389222502708435 img loss 1.3060420751571655 img loss 1.3128801584243774 img loss 1.3549107313156128 img loss 1.2763055562973022 img loss 1.2626453638076782 img loss 1.2281372547149658 img loss 1.3633753061294556 img loss 1.227913737297058 img loss 1.230921983718872 img loss 1.250698447227478 img loss 1.4336307048797607 img loss 1.292357325553894 img loss 1.3459957838058472 img loss 1.2611095905303955 img loss 1.3014450073242188 img loss 1.439111590385437 img loss 1.312371015548706 img loss 1.2628659009933472 img loss 1.1622508764266968 img loss 1.3854550123214722 img loss 1.352638840675354 img loss 1.2990728616714478 img loss 1.3194096088409424 img loss 1.3841193914413452 img loss 1.256352424621582 img loss 1.3258135318756104 img loss 1.3015927076339722 img loss 1.2725272178649902 img loss 1.4132596254348755 img loss 1.2684656381607056 img loss 1.315364122390747 img loss 1.236922264099121 img loss 1.3613983392715454 img loss 1.322009801864624 img loss 1.2056479454040527 img loss 1.405715823173523 img loss 1.383188009262085 img loss 1.3005781173706055 img loss 1.4274622201919556 img loss 1.2972856760025024 img loss 1.2956390380859375 img loss 1.4725464582443237 img loss 1.3274245262145996 img loss 1.3589996099472046 img loss 1.4476135969161987 img loss 1.3516982793807983 img loss 1.4216469526290894 img loss 1.2569531202316284 img loss 1.2007355690002441 img loss 1.3497860431671143 img loss 1.214761734008789 {'loss': 1.3111, 'grad_norm': 0.2605559527873993, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2827813625335693 img loss 1.2280876636505127 img loss 1.2762879133224487 img loss 1.19894278049469 img loss 1.2135276794433594 img loss 1.3217344284057617 img loss 1.1476025581359863 img loss 1.1835236549377441 img loss 1.3174337148666382 img loss 1.2416279315948486 img loss 1.368407964706421 img loss 1.2367756366729736 img loss 1.2685333490371704 img loss 1.4200156927108765 img loss 1.2964128255844116 img loss 1.262037992477417 img loss 1.238101601600647 img loss 1.137186884880066 img loss 1.3225314617156982 img loss 1.21339750289917 img loss 1.2660881280899048 img loss 1.3164314031600952 img loss 1.3063561916351318 img loss 1.2818596363067627 img loss 1.2806167602539062 img loss 1.1363961696624756 img loss 1.23130464553833 img loss 1.2897990942001343 img loss 1.261688470840454 img loss 1.1664345264434814 img loss 1.2248693704605103 img loss 1.2474188804626465 img loss 1.2464556694030762 img loss 1.1577500104904175 img loss 1.1519486904144287 img loss 1.2337642908096313 img loss 1.2878307104110718 img loss 1.247092604637146 img loss 1.2813332080841064 img loss 1.2977908849716187 img loss 1.4103106260299683 img loss 1.3065776824951172 img loss 1.2075657844543457 img loss 1.262877106666565 img loss 1.1930406093597412 img loss 1.248516321182251 img loss 1.2287483215332031 img loss 1.197432041168213 img loss 1.2041149139404297 img loss 1.2390049695968628 img loss 1.203249216079712 img loss 1.2141242027282715 img loss 1.3229687213897705 img loss 1.2576340436935425 img loss 1.2164400815963745 img loss 1.30923593044281 img loss 1.277119517326355 img loss 1.3045530319213867 img loss 1.283381700515747 img loss 1.3403810262680054 img loss 1.2790215015411377 img loss 1.2021965980529785 img loss 1.165996789932251 img loss 1.3701729774475098 img loss 1.21237313747406 img loss 1.264453411102295 img loss 1.1363890171051025 img loss 1.121509075164795 img loss 1.3159527778625488 img loss 1.234429955482483 img loss 1.342626929283142 img loss 1.329119086265564 img loss 1.2301025390625 img loss 1.3334909677505493 img loss 1.2599538564682007 img loss 1.2881888151168823 img loss 1.2357497215270996 img loss 1.3387141227722168 img loss 1.4553922414779663 img loss 1.2077538967132568 img loss 1.1801707744598389 img loss 1.2765717506408691 img loss 1.2988734245300293 img loss 1.2102991342544556 img loss 1.290501356124878 img loss 1.2063629627227783 img loss 1.2586777210235596 img loss 1.2676751613616943 img loss 1.2531545162200928 img loss 1.3053879737854004 img loss 1.218991994857788 img loss 1.2924420833587646 img loss 1.2115486860275269 img loss 1.2766376733779907 img loss 1.2939099073410034 img loss 1.2823576927185059 img loss 1.4093340635299683 img loss 1.2410496473312378 img loss 1.295685052871704 img loss 1.302785873413086 img loss 1.1196540594100952 img loss 1.13772714138031 img loss 1.286741018295288 img loss 1.2390422821044922 img loss 1.367241382598877 img loss 1.2731850147247314 img loss 1.3262815475463867 img loss 1.3151054382324219 img loss 1.2128524780273438 img loss 1.2784963846206665 img loss 1.2292464971542358 img loss 1.3085483312606812 img loss 1.164339542388916 img loss 1.1937626600265503 img loss 1.251707911491394 img loss 1.2294248342514038 img loss 1.278312087059021 img loss 1.249541163444519 img loss 1.258564829826355 img loss 1.3563698530197144 img loss 1.1962671279907227 img loss 1.3164887428283691 img loss 1.3127577304840088 img loss 1.2572174072265625 img loss 1.269826889038086 img loss 1.2690999507904053 img loss 1.238393783569336 img loss 1.2622995376586914 {'loss': 1.2595, 'grad_norm': 0.2307288646697998, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6193293333053589 img loss 1.4700113534927368 img loss 1.4658573865890503 img loss 1.4562233686447144 img loss 1.646970510482788 img loss 1.577012538909912 img loss 1.4557907581329346 img loss 1.4206360578536987 img loss 1.4176417589187622 img loss 1.4293428659439087 img loss 1.4284789562225342 img loss 1.3841493129730225 img loss 1.460181474685669 img loss 1.4265990257263184 img loss 1.4684849977493286 img loss 1.4735513925552368 img loss 1.5517984628677368 img loss 1.6370271444320679 img loss 1.453450083732605 img loss 1.5183367729187012 img loss 1.508683443069458 img loss 1.4624959230422974 img loss 1.3626248836517334 img loss 1.4575352668762207 img loss 1.3599677085876465 img loss 1.5283644199371338 img loss 1.572492003440857 img loss 1.4741617441177368 img loss 1.559876799583435 img loss 1.5602692365646362 img loss 1.4590775966644287 img loss 1.451575517654419 img loss 1.527146577835083 img loss 1.4388631582260132 img loss 1.4260262250900269 img loss 1.6020089387893677 img loss 1.3415709733963013 img loss 1.4133728742599487 img loss 1.4867770671844482 img loss 1.5389020442962646 img loss 1.570069670677185 img loss 1.385855793952942 img loss 1.540221095085144 img loss 1.4560010433197021 img loss 1.5569995641708374 img loss 1.5058363676071167 img loss 1.4833900928497314 img loss 1.3768460750579834 img loss 1.445979356765747 img loss 1.4185559749603271 img loss 1.4943153858184814 img loss 1.7121814489364624 img loss 1.4105470180511475 img loss 1.5868209600448608 img loss 1.3946844339370728 img loss 1.5151644945144653 img loss 1.5337857007980347 img loss 1.5099034309387207 img loss 1.5090683698654175 img loss 1.4619876146316528 img loss 1.6065391302108765 img loss 1.6645017862319946 img loss 1.598275065422058 img loss 1.5925936698913574 img loss 1.5621448755264282 img loss 1.4518177509307861 img loss 1.3996942043304443 img loss 1.4789011478424072 img loss 1.336524486541748 img loss 1.341752290725708 img loss 1.632758378982544 img loss 1.452021837234497 img loss 1.4028890132904053 img loss 1.4461692571640015 img loss 1.433410406112671 img loss 1.5122959613800049 img loss 1.4681851863861084 img loss 1.593105673789978 img loss 1.51775324344635 img loss 1.4103224277496338 img loss 1.4781368970870972 img loss 1.5505772829055786 img loss 1.4314409494400024 img loss 1.311227798461914 img loss 1.4959216117858887 img loss 1.4472155570983887 img loss 1.4884331226348877 img loss 1.3601971864700317 img loss 1.5300195217132568 img loss 1.5891705751419067 img loss 1.6529419422149658 img loss 1.5179105997085571 img loss 1.4310182332992554 img loss 1.5735310316085815 img loss 1.521176815032959 img loss 1.4166849851608276 img loss 1.5724860429763794 img loss 1.3136812448501587 img loss 1.40160071849823 img loss 1.4083235263824463 img loss 1.4298161268234253 img loss 1.3258354663848877 img loss 1.6672532558441162 img loss 1.4908559322357178 img loss 1.5005888938903809 img loss 1.547595500946045 img loss 1.434460997581482 img loss 1.3986328840255737 img loss 1.2773579359054565 img loss 1.809831142425537 img loss 1.5018402338027954 img loss 1.4899346828460693 img loss 1.494712233543396 img loss 1.540861964225769 img loss 1.3485219478607178 img loss 1.4053977727890015 img loss 1.4348095655441284 img loss 1.4448925256729126 img loss 1.5108749866485596 img loss 1.5029692649841309 img loss 1.5249836444854736 img loss 1.3221251964569092 img loss 1.541860818862915 img loss 1.508856177330017 img loss 1.482739806175232 img loss 1.4256058931350708 img loss 1.4472613334655762 img loss 1.4577912092208862 {'loss': 1.483, 'grad_norm': 0.2649192810058594, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3748387098312378 img loss 1.3689758777618408 img loss 1.362135648727417 img loss 1.3616360425949097 img loss 1.2984087467193604 img loss 1.3915551900863647 img loss 1.373096227645874 img loss 1.3991074562072754 img loss 1.336854100227356 img loss 1.4442660808563232 img loss 1.341904878616333 img loss 1.3692736625671387 img loss 1.268541932106018 img loss 1.3504843711853027 img loss 1.3692028522491455 img loss 1.313811182975769 img loss 1.2357113361358643 img loss 1.3172378540039062 img loss 1.3570867776870728 img loss 1.33907151222229 img loss 1.269350528717041 img loss 1.363656759262085 img loss 1.3811935186386108 img loss 1.3636162281036377 img loss 1.267157793045044 img loss 1.3654924631118774 img loss 1.3275279998779297 img loss 1.4539917707443237 img loss 1.438046932220459 img loss 1.2337119579315186 img loss 1.3444087505340576 img loss 1.3449797630310059 img loss 1.3894975185394287 img loss 1.336413860321045 img loss 1.315782904624939 img loss 1.367861270904541 img loss 1.4162306785583496 img loss 1.3547917604446411 img loss 1.338397741317749 img loss 1.29486882686615 img loss 1.4024007320404053 img loss 1.3212617635726929 img loss 1.3025832176208496 img loss 1.2884061336517334 img loss 1.3555744886398315 img loss 1.3000156879425049 img loss 1.368730068206787 img loss 1.3479399681091309 img loss 1.2101445198059082 img loss 1.3717390298843384 img loss 1.4128410816192627 img loss 1.2344908714294434 img loss 1.3731131553649902 img loss 1.2516148090362549 img loss 1.3510342836380005 img loss 1.385107398033142 img loss 1.303551435470581 img loss 1.3279719352722168 img loss 1.3632550239562988 img loss 1.3294579982757568 img loss 1.393846035003662 img loss 1.267083764076233 img loss 1.3482134342193604 img loss 1.3904073238372803 img loss 1.2750993967056274 img loss 1.466256856918335 img loss 1.2875866889953613 img loss 1.3299095630645752 img loss 1.2815186977386475 img loss 1.3686556816101074 img loss 1.365177035331726 img loss 1.4083302021026611 img loss 1.4934518337249756 img loss 1.3980542421340942 img loss 1.2664982080459595 img loss 1.2881420850753784 img loss 1.2320712804794312 img loss 1.3609042167663574 img loss 1.3907219171524048 img loss 1.3387181758880615 img loss 1.3643410205841064 img loss 1.4047433137893677 img loss 1.247442603111267 img loss 1.2677488327026367 img loss 1.3436626195907593 img loss 1.3269001245498657 img loss 1.2243674993515015 img loss 1.372496247291565 img loss 1.2799962759017944 img loss 1.364001750946045 img loss 1.3173980712890625 img loss 1.2776947021484375 img loss 1.2709338665008545 img loss 1.3319320678710938 img loss 1.40509831905365 img loss 1.3117468357086182 img loss 1.3395918607711792 img loss 1.3627994060516357 img loss 1.2041106224060059 img loss 1.3426440954208374 img loss 1.231213092803955 img loss 1.3878146409988403 img loss 1.306861162185669 img loss 1.3348381519317627 img loss 1.3317677974700928 img loss 1.3550618886947632 img loss 1.3892215490341187 img loss 1.346483588218689 img loss 1.3251994848251343 img loss 1.3061532974243164 img loss 1.3243108987808228 img loss 1.433689832687378 img loss 1.287757396697998 img loss 1.380287766456604 img loss 1.4191786050796509 img loss 1.3352961540222168 img loss 1.34968900680542 img loss 1.326026439666748 img loss 1.3892961740493774 img loss 1.4155927896499634 img loss 1.2865078449249268 img loss 1.3303239345550537 img loss 1.3764578104019165 img loss 1.2475277185440063 img loss 1.3797622919082642 img loss 1.2112587690353394 img loss 1.2618041038513184 img loss 1.2944295406341553 {'loss': 1.3376, 'grad_norm': 0.2889745831489563, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1953538656234741 img loss 1.182391881942749 img loss 1.1494841575622559 img loss 1.2269001007080078 img loss 1.1355788707733154 img loss 1.1856725215911865 img loss 1.138998031616211 img loss 1.1266257762908936 img loss 1.2285743951797485 img loss 1.2205435037612915 img loss 1.2013676166534424 img loss 1.2557904720306396 img loss 1.2456183433532715 img loss 1.2249377965927124 img loss 1.2591791152954102 img loss 1.26310133934021 img loss 1.2597919702529907 img loss 1.1335303783416748 img loss 1.1577640771865845 img loss 1.2410129308700562 img loss 1.2100389003753662 img loss 1.2329405546188354 img loss 1.2081588506698608 img loss 1.2266900539398193 img loss 1.1731210947036743 img loss 1.1847286224365234 img loss 1.2245862483978271 img loss 1.222022294998169 img loss 1.1365965604782104 img loss 1.242256760597229 img loss 1.195624589920044 img loss 1.1358803510665894 img loss 1.2042138576507568 img loss 1.17864990234375 img loss 1.234850287437439 img loss 1.2263134717941284 img loss 1.2102487087249756 img loss 1.2489783763885498 img loss 1.1977622509002686 img loss 1.200425624847412 img loss 1.2450573444366455 img loss 1.2141971588134766 img loss 1.2384834289550781 img loss 1.2481437921524048 img loss 1.2854887247085571 img loss 1.2008118629455566 img loss 1.172824740409851 img loss 1.1976032257080078 img loss 1.2658528089523315 img loss 1.2136300802230835 img loss 1.1872953176498413 img loss 1.221697211265564 img loss 1.205325961112976 img loss 1.3009145259857178 img loss 1.2274725437164307 img loss 1.170546531677246 img loss 1.19619882106781 img loss 1.2238566875457764 img loss 1.1586910486221313 img loss 1.1925063133239746 img loss 1.1902234554290771 img loss 1.1633354425430298 img loss 1.3358862400054932 img loss 1.1631755828857422 img loss 1.2320497035980225 img loss 1.1630275249481201 img loss 1.1912237405776978 img loss 1.2065365314483643 img loss 1.1899428367614746 img loss 1.2649857997894287 img loss 1.160886287689209 img loss 1.1925842761993408 img loss 1.1303753852844238 img loss 1.1067984104156494 img loss 1.165095567703247 img loss 1.150975227355957 img loss 1.263919472694397 img loss 1.1778972148895264 img loss 1.2102794647216797 img loss 1.2646564245224 img loss 1.1457260847091675 img loss 1.2307922840118408 img loss 1.2240031957626343 img loss 1.2016834020614624 img loss 1.2404574155807495 img loss 1.1981838941574097 img loss 1.2752522230148315 img loss 1.2176824808120728 img loss 1.138369083404541 img loss 1.2016570568084717 img loss 1.1345574855804443 img loss 1.1789699792861938 img loss 1.183362364768982 img loss 1.1903266906738281 img loss 1.2404037714004517 img loss 1.1570957899093628 img loss 1.2014856338500977 img loss 1.1552664041519165 img loss 1.1783576011657715 img loss 1.1991432905197144 img loss 1.212877631187439 img loss 1.1304824352264404 img loss 1.1716089248657227 img loss 1.210529088973999 img loss 1.1574604511260986 img loss 1.1552704572677612 img loss 1.1703156232833862 img loss 1.2030296325683594 img loss 1.2460581064224243 img loss 1.1739518642425537 img loss 1.2208664417266846 img loss 1.2509782314300537 img loss 1.2137707471847534 img loss 1.2190628051757812 img loss 1.278135061264038 img loss 1.152391791343689 img loss 1.227220892906189 img loss 1.2608692646026611 img loss 1.1692484617233276 img loss 1.1864891052246094 img loss 1.21591055393219 img loss 1.3517411947250366 img loss 1.1672794818878174 img loss 1.1682569980621338 img loss 1.2173951864242554 img loss 1.1601812839508057 img loss 1.238477110862732 img loss 1.3003487586975098 {'loss': 1.2042, 'grad_norm': 0.24256977438926697, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3561508655548096 img loss 1.3478467464447021 img loss 1.2460930347442627 img loss 1.2562572956085205 img loss 1.3090018033981323 img loss 1.419400930404663 img loss 1.3488785028457642 img loss 1.2892216444015503 img loss 1.3804932832717896 img loss 1.3633419275283813 img loss 1.3006082773208618 img loss 1.4726043939590454 img loss 1.2780425548553467 img loss 1.4843097925186157 img loss 1.3793717622756958 img loss 1.2497841119766235 img loss 1.273579478263855 img loss 1.2547250986099243 img loss 1.3802685737609863 img loss 1.289275884628296 img loss 1.2800583839416504 img loss 1.3008384704589844 img loss 1.2649025917053223 img loss 1.3830392360687256 img loss 1.393776774406433 img loss 1.1967047452926636 img loss 1.3016153573989868 img loss 1.3008899688720703 img loss 1.3318589925765991 img loss 1.3173836469650269 img loss 1.311315894126892 img loss 1.284423828125 img loss 1.3881335258483887 img loss 1.390445590019226 img loss 1.3014401197433472 img loss 1.2379395961761475 img loss 1.3067257404327393 img loss 1.3195252418518066 img loss 1.3018839359283447 img loss 1.2895177602767944 img loss 1.3408194780349731 img loss 1.215099811553955 img loss 1.2891111373901367 img loss 1.3701348304748535 img loss 1.2462347745895386 img loss 1.3314493894577026 img loss 1.3183196783065796 img loss 1.3882871866226196 img loss 1.3062466382980347 img loss 1.4364553689956665 img loss 1.3148398399353027 img loss 1.3514227867126465 img loss 1.387793779373169 img loss 1.2597328424453735 img loss 1.263558268547058 img loss 1.3460291624069214 img loss 1.416634440422058 img loss 1.4265921115875244 img loss 1.2534483671188354 img loss 1.3133748769760132 img loss 1.2901986837387085 img loss 1.2594236135482788 img loss 1.3310291767120361 img loss 1.3588637113571167 img loss 1.2455421686172485 img loss 1.314940094947815 img loss 1.269169569015503 img loss 1.2819912433624268 img loss 1.3272602558135986 img loss 1.3146103620529175 img loss 1.3888657093048096 img loss 1.353287935256958 img loss 1.3493238687515259 img loss 1.3198277950286865 img loss 1.360194444656372 img loss 1.4283499717712402 img loss 1.2597758769989014 img loss 1.4028676748275757 img loss 1.3144357204437256 img loss 1.2641255855560303 img loss 1.2948765754699707 img loss 1.372911810874939 img loss 1.301061987876892 img loss 1.2996963262557983 img loss 1.2708449363708496 img loss 1.274485468864441 img loss 1.3965590000152588 img loss 1.3118187189102173 img loss 1.2832504510879517 img loss 1.2792803049087524 img loss 1.2818578481674194 img loss 1.3323744535446167 img loss 1.279274344444275 img loss 1.3949803113937378 img loss 1.3099201917648315 img loss 1.3322713375091553 img loss 1.3984795808792114 img loss 1.3330702781677246 img loss 1.2970826625823975 img loss 1.330241084098816 img loss 1.3025641441345215 img loss 1.3356424570083618 img loss 1.3033595085144043 img loss 1.2447887659072876 img loss 1.4470651149749756 img loss 1.270139217376709 img loss 1.4131726026535034 img loss 1.3654706478118896 img loss 1.2331361770629883 img loss 1.3266072273254395 img loss 1.2197914123535156 img loss 1.2648916244506836 img loss 1.366793155670166 img loss 1.3310637474060059 img loss 1.1449334621429443 img loss 1.3074159622192383 img loss 1.2843260765075684 img loss 1.3340046405792236 img loss 1.3858007192611694 img loss 1.255175232887268 img loss 1.350872278213501 img loss 1.2948373556137085 img loss 1.282698392868042 img loss 1.2930643558502197 img loss 1.2073713541030884 img loss 1.2804312705993652 img loss 1.3164948225021362 img loss 1.3318918943405151 {'loss': 1.3184, 'grad_norm': 0.24485988914966583, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.255578637123108 img loss 1.2702031135559082 img loss 1.2381188869476318 img loss 1.2351317405700684 img loss 1.2679193019866943 img loss 1.268813967704773 img loss 1.2369753122329712 img loss 1.2604650259017944 img loss 1.2359941005706787 img loss 1.2164562940597534 img loss 1.250123381614685 img loss 1.251270055770874 img loss 1.275511622428894 img loss 1.2594774961471558 img loss 1.2508833408355713 img loss 1.2500505447387695 img loss 1.2628936767578125 img loss 1.2334117889404297 img loss 1.227738618850708 img loss 1.2647302150726318 img loss 1.2543506622314453 img loss 1.2298237085342407 img loss 1.235174536705017 img loss 1.2602131366729736 img loss 1.260359287261963 img loss 1.300878882408142 img loss 1.2253034114837646 img loss 1.266492247581482 img loss 1.2769207954406738 img loss 1.2604246139526367 img loss 1.2289824485778809 img loss 1.2268331050872803 img loss 1.2172855138778687 img loss 1.2128227949142456 img loss 1.2620468139648438 img loss 1.248545527458191 img loss 1.2540397644042969 img loss 1.2615926265716553 img loss 1.1997286081314087 img loss 1.2469680309295654 img loss 1.254423975944519 img loss 1.250589370727539 img loss 1.2339740991592407 img loss 1.2336746454238892 img loss 1.252261996269226 img loss 1.2166800498962402 img loss 1.2735381126403809 img loss 1.2147620916366577 img loss 1.2156490087509155 img loss 1.264068603515625 img loss 1.2706533670425415 img loss 1.2338606119155884 img loss 1.280918836593628 img loss 1.2375534772872925 img loss 1.2761306762695312 img loss 1.314890742301941 img loss 1.2295479774475098 img loss 1.2351691722869873 img loss 1.2135367393493652 img loss 1.2864990234375 img loss 1.2493537664413452 img loss 1.3212316036224365 img loss 1.2537873983383179 img loss 1.2175511121749878 img loss 1.2523812055587769 img loss 1.2610117197036743 img loss 1.2858721017837524 img loss 1.219804048538208 img loss 1.262000560760498 img loss 1.2344398498535156 img loss 1.2583612203598022 img loss 1.2239625453948975 img loss 1.230772614479065 img loss 1.224323034286499 img loss 1.293047308921814 img loss 1.3016674518585205 img loss 1.2210088968276978 img loss 1.242918848991394 img loss 1.2703566551208496 img loss 1.2282313108444214 img loss 1.2486025094985962 img loss 1.2303502559661865 img loss 1.2434782981872559 img loss 1.2924590110778809 img loss 1.2500766515731812 img loss 1.2723859548568726 img loss 1.2289739847183228 img loss 1.225127935409546 img loss 1.2286531925201416 img loss 1.1995244026184082 img loss 1.2838647365570068 img loss 1.2911903858184814 img loss 1.2508352994918823 img loss 1.2481842041015625 img loss 1.2375774383544922 img loss 1.2513766288757324 img loss 1.241824984550476 img loss 1.2856159210205078 img loss 1.2664927244186401 img loss 1.2449979782104492 img loss 1.2394142150878906 img loss 1.2512367963790894 img loss 1.251369833946228 img loss 1.2537838220596313 img loss 1.2337898015975952 img loss 1.2711703777313232 img loss 1.2262176275253296 img loss 1.2296050786972046 img loss 1.2719677686691284 img loss 1.2810778617858887 img loss 1.2553104162216187 img loss 1.2614858150482178 img loss 1.2626588344573975 img loss 1.2625850439071655 img loss 1.2441174983978271 img loss 1.2024236917495728 img loss 1.2923040390014648 img loss 1.2350362539291382 img loss 1.2424901723861694 img loss 1.2119228839874268 img loss 1.288612723350525 img loss 1.2027543783187866 img loss 1.2220510244369507 img loss 1.2726478576660156 img loss 1.2148655652999878 img loss 1.2875279188156128 img loss 1.23085355758667 img loss 1.2738895416259766 {'loss': 1.2498, 'grad_norm': 0.28388234972953796, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2591956853866577 img loss 1.2620575428009033 img loss 1.276515245437622 img loss 1.2138268947601318 img loss 1.4038060903549194 img loss 1.1818199157714844 img loss 1.3220945596694946 img loss 1.3176078796386719 img loss 1.2705190181732178 img loss 1.2221221923828125 img loss 1.1823720932006836 img loss 1.2180685997009277 img loss 1.218729019165039 img loss 1.2629457712173462 img loss 1.1532554626464844 img loss 1.370757818222046 img loss 1.2456741333007812 img loss 1.199703574180603 img loss 1.2938495874404907 img loss 1.2071737051010132 img loss 1.2881091833114624 img loss 1.2060291767120361 img loss 1.2599215507507324 img loss 1.2651329040527344 img loss 1.2658194303512573 img loss 1.3087934255599976 img loss 1.1756311655044556 img loss 1.2080292701721191 img loss 1.2816617488861084 img loss 1.257819652557373 img loss 1.2684476375579834 img loss 1.1763567924499512 img loss 1.276811957359314 img loss 1.2233421802520752 img loss 1.2055491209030151 img loss 1.3254879713058472 img loss 1.277781367301941 img loss 1.183581829071045 img loss 1.2744711637496948 img loss 1.214845061302185 img loss 1.3582723140716553 img loss 1.1988811492919922 img loss 1.200600504875183 img loss 1.243719458580017 img loss 1.2662999629974365 img loss 1.2341660261154175 img loss 1.261067271232605 img loss 1.3200515508651733 img loss 1.3924782276153564 img loss 1.2843583822250366 img loss 1.212319254875183 img loss 1.262148141860962 img loss 1.3408092260360718 img loss 1.269669771194458 img loss 1.266395926475525 img loss 1.1589982509613037 img loss 1.2074406147003174 img loss 1.3228286504745483 img loss 1.275594711303711 img loss 1.2673664093017578 img loss 1.336837649345398 img loss 1.3711873292922974 img loss 1.142569899559021 img loss 1.194301962852478 img loss 1.182027816772461 img loss 1.3447779417037964 img loss 1.2524105310440063 img loss 1.183047890663147 img loss 1.2547500133514404 img loss 1.2428938150405884 img loss 1.33564031124115 img loss 1.2306641340255737 img loss 1.34245765209198 img loss 1.2893214225769043 img loss 1.277188777923584 img loss 1.2326273918151855 img loss 1.3025486469268799 img loss 1.279833197593689 img loss 1.3025777339935303 img loss 1.163827896118164 img loss 1.26261305809021 img loss 1.2970484495162964 img loss 1.1416622400283813 img loss 1.2063267230987549 img loss 1.2227874994277954 img loss 1.2427409887313843 img loss 1.1639877557754517 img loss 1.3593699932098389 img loss 1.3044785261154175 img loss 1.2290350198745728 img loss 1.1542377471923828 img loss 1.3085839748382568 img loss 1.18125581741333 img loss 1.2567087411880493 img loss 1.21438729763031 img loss 1.2823553085327148 img loss 1.3133893013000488 img loss 1.272102952003479 img loss 1.2838568687438965 img loss 1.2087457180023193 img loss 1.431088924407959 img loss 1.2199400663375854 img loss 1.2693254947662354 img loss 1.197361946105957 img loss 1.250463843345642 img loss 1.2130117416381836 img loss 1.2118518352508545 img loss 1.2259184122085571 img loss 1.2029913663864136 img loss 1.242358922958374 img loss 1.3152036666870117 img loss 1.259880781173706 img loss 1.284982442855835 img loss 1.222421646118164 img loss 1.2858409881591797 img loss 1.2414355278015137 img loss 1.206390380859375 img loss 1.3020052909851074 img loss 1.142865538597107 img loss 1.3315887451171875 img loss 1.218697190284729 img loss 1.2890377044677734 img loss 1.2835053205490112 img loss 1.2654666900634766 img loss 1.3286736011505127 img loss 1.2669237852096558 img loss 1.1587518453598022 img loss 1.2930692434310913 {'loss': 1.2554, 'grad_norm': 0.21000328660011292, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.245957374572754 img loss 1.1367628574371338 img loss 1.2450560331344604 img loss 1.2341551780700684 img loss 1.2123245000839233 img loss 1.2029310464859009 img loss 1.1819404363632202 img loss 1.1893914937973022 img loss 1.2518930435180664 img loss 1.2638458013534546 img loss 1.2504061460494995 img loss 1.1885483264923096 img loss 1.295185923576355 img loss 1.2071008682250977 img loss 1.194850206375122 img loss 1.295824408531189 img loss 1.1671984195709229 img loss 1.2270190715789795 img loss 1.2346000671386719 img loss 1.3295363187789917 img loss 1.2232221364974976 img loss 1.2376750707626343 img loss 1.1511443853378296 img loss 1.2054555416107178 img loss 1.2613070011138916 img loss 1.2005547285079956 img loss 1.2060291767120361 img loss 1.1899261474609375 img loss 1.3324476480484009 img loss 1.2931102514266968 img loss 1.270919680595398 img loss 1.1820502281188965 img loss 1.2088836431503296 img loss 1.1364507675170898 img loss 1.2970472574234009 img loss 1.269910454750061 img loss 1.2632519006729126 img loss 1.1236648559570312 img loss 1.2309669256210327 img loss 1.278359293937683 img loss 1.2867828607559204 img loss 1.199439287185669 img loss 1.189435601234436 img loss 1.258247971534729 img loss 1.277923345565796 img loss 1.3095946311950684 img loss 1.2262489795684814 img loss 1.282050609588623 img loss 1.2173306941986084 img loss 1.3164628744125366 img loss 1.2792549133300781 img loss 1.193385362625122 img loss 1.2767006158828735 img loss 1.1967419385910034 img loss 1.1438713073730469 img loss 1.2268043756484985 img loss 1.1619946956634521 img loss 1.2805700302124023 img loss 1.146427869796753 img loss 1.2785027027130127 img loss 1.3070392608642578 img loss 1.2169933319091797 img loss 1.169989824295044 img loss 1.2835009098052979 img loss 1.2618517875671387 img loss 1.2864127159118652 img loss 1.278820276260376 img loss 1.1871564388275146 img loss 1.3103992938995361 img loss 1.367011547088623 img loss 1.2972052097320557 img loss 1.245276689529419 img loss 1.2700573205947876 img loss 1.3263638019561768 img loss 1.1749708652496338 img loss 1.2723677158355713 img loss 1.2560409307479858 img loss 1.1715846061706543 img loss 1.2965881824493408 img loss 1.211866021156311 img loss 1.289975643157959 img loss 1.2509782314300537 img loss 1.1869133710861206 img loss 1.2442054748535156 img loss 1.250894546508789 img loss 1.2317217588424683 img loss 1.203420639038086 img loss 1.2888391017913818 img loss 1.1532878875732422 img loss 1.263404130935669 img loss 1.1719939708709717 img loss 1.1612238883972168 img loss 1.3138141632080078 img loss 1.252001404762268 img loss 1.3114839792251587 img loss 1.1886638402938843 img loss 1.2722700834274292 img loss 1.1657556295394897 img loss 1.1764652729034424 img loss 1.3292443752288818 img loss 1.2164252996444702 img loss 1.1785407066345215 img loss 1.3068101406097412 img loss 1.2648767232894897 img loss 1.193307876586914 img loss 1.2416090965270996 img loss 1.164994478225708 img loss 1.2928707599639893 img loss 1.1808689832687378 img loss 1.2722764015197754 img loss 1.2800108194351196 img loss 1.2545924186706543 img loss 1.212676763534546 img loss 1.319231629371643 img loss 1.2590858936309814 img loss 1.1840019226074219 img loss 1.2609505653381348 img loss 1.215423822402954 img loss 1.2449915409088135 img loss 1.3714832067489624 img loss 1.2351783514022827 img loss 1.3031387329101562 img loss 1.23860502243042 img loss 1.2664611339569092 img loss 1.2919725179672241 img loss 1.2626731395721436 img loss 1.238354206085205 img loss 1.259047508239746 {'loss': 1.2404, 'grad_norm': 0.4101134240627289, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2158724069595337 img loss 1.4368847608566284 img loss 1.3954598903656006 img loss 1.390034794807434 img loss 1.4432463645935059 img loss 1.3740432262420654 img loss 1.3579756021499634 img loss 1.359790563583374 img loss 1.4717934131622314 img loss 1.511694312095642 img loss 1.4640724658966064 img loss 1.3932130336761475 img loss 1.3996437788009644 img loss 1.4619024991989136 img loss 1.395399808883667 img loss 1.4431357383728027 img loss 1.3052524328231812 img loss 1.324903964996338 img loss 1.3942904472351074 img loss 1.474645733833313 img loss 1.4623277187347412 img loss 1.477527141571045 img loss 1.4929341077804565 img loss 1.326993703842163 img loss 1.2700269222259521 img loss 1.3364473581314087 img loss 1.3629807233810425 img loss 1.4013264179229736 img loss 1.4911282062530518 img loss 1.43831467628479 img loss 1.397111177444458 img loss 1.3571611642837524 img loss 1.434841513633728 img loss 1.2010377645492554 img loss 1.344104290008545 img loss 1.454274296760559 img loss 1.2669938802719116 img loss 1.2359510660171509 img loss 1.4674906730651855 img loss 1.429004192352295 img loss 1.3256921768188477 img loss 1.458877682685852 img loss 1.43636953830719 img loss 1.3476853370666504 img loss 1.3416028022766113 img loss 1.342150330543518 img loss 1.3416506052017212 img loss 1.3118035793304443 img loss 1.3213646411895752 img loss 1.4386823177337646 img loss 1.6010311841964722 img loss 1.3198764324188232 img loss 1.3561793565750122 img loss 1.3394427299499512 img loss 1.4027737379074097 img loss 1.3552336692810059 img loss 1.4151469469070435 img loss 1.4531567096710205 img loss 1.412421703338623 img loss 1.3640767335891724 img loss 1.488635540008545 img loss 1.2448885440826416 img loss 1.3696162700653076 img loss 1.3977086544036865 img loss 1.4212080240249634 img loss 1.2367690801620483 img loss 1.4089630842208862 img loss 1.3706872463226318 img loss 1.3827530145645142 img loss 1.4156121015548706 img loss 1.3529082536697388 img loss 1.3454862833023071 img loss 1.4015446901321411 img loss 1.387357473373413 img loss 1.3592041730880737 img loss 1.4498804807662964 img loss 1.4627288579940796 img loss 1.3821243047714233 img loss 1.3648663759231567 img loss 1.3111350536346436 img loss 1.3006409406661987 img loss 1.4029380083084106 img loss 1.3998907804489136 img loss 1.396710753440857 img loss 1.342323660850525 img loss 1.3961342573165894 img loss 1.3429579734802246 img loss 1.391089916229248 img loss 1.3339283466339111 img loss 1.4337952136993408 img loss 1.4007775783538818 img loss 1.3192557096481323 img loss 1.3718030452728271 img loss 1.431078553199768 img loss 1.383133053779602 img loss 1.2865068912506104 img loss 1.4192941188812256 img loss 1.4135282039642334 img loss 1.3030788898468018 img loss 1.3366183042526245 img loss 1.3997361660003662 img loss 1.3972852230072021 img loss 1.5019594430923462 img loss 1.3239145278930664 img loss 1.3109018802642822 img loss 1.4740718603134155 img loss 1.4142587184906006 img loss 1.2397221326828003 img loss 1.3735328912734985 img loss 1.2431381940841675 img loss 1.3004696369171143 img loss 1.385333776473999 img loss 1.3286468982696533 img loss 1.3170098066329956 img loss 1.3996049165725708 img loss 1.4904311895370483 img loss 1.3019356727600098 img loss 1.3311607837677002 img loss 1.3712223768234253 img loss 1.4316014051437378 img loss 1.4254885911941528 img loss 1.34251070022583 img loss 1.4509602785110474 img loss 1.3739246129989624 img loss 1.2715858221054077 img loss 1.3950001001358032 img loss 1.378105640411377 img loss 1.38419508934021 {'loss': 1.3802, 'grad_norm': 0.25898587703704834, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1782944202423096 img loss 1.2301583290100098 img loss 1.2444804906845093 img loss 1.196481704711914 img loss 1.2978464365005493 img loss 1.195682168006897 img loss 1.2710318565368652 img loss 1.2191609144210815 img loss 1.2090126276016235 img loss 1.2240478992462158 img loss 1.2273168563842773 img loss 1.2398982048034668 img loss 1.2235641479492188 img loss 1.2589527368545532 img loss 1.2711986303329468 img loss 1.257680892944336 img loss 1.2641675472259521 img loss 1.1940439939498901 img loss 1.2313554286956787 img loss 1.211222529411316 img loss 1.2558618783950806 img loss 1.238084316253662 img loss 1.212226152420044 img loss 1.3278625011444092 img loss 1.275216817855835 img loss 1.1633042097091675 img loss 1.2247579097747803 img loss 1.2294726371765137 img loss 1.279884934425354 img loss 1.2050108909606934 img loss 1.2386445999145508 img loss 1.2293647527694702 img loss 1.2325725555419922 img loss 1.2776718139648438 img loss 1.2094478607177734 img loss 1.2191905975341797 img loss 1.214053988456726 img loss 1.2172707319259644 img loss 1.2032564878463745 img loss 1.2180184125900269 img loss 1.192339301109314 img loss 1.2181508541107178 img loss 1.1632527112960815 img loss 1.2510673999786377 img loss 1.2591854333877563 img loss 1.2341725826263428 img loss 1.240825891494751 img loss 1.2413444519042969 img loss 1.216450572013855 img loss 1.2822672128677368 img loss 1.2068920135498047 img loss 1.1634787321090698 img loss 1.1725437641143799 img loss 1.155800700187683 img loss 1.205056071281433 img loss 1.2160991430282593 img loss 1.1856228113174438 img loss 1.1979643106460571 img loss 1.1783504486083984 img loss 1.208962082862854 img loss 1.2391990423202515 img loss 1.1220985651016235 img loss 1.1880501508712769 img loss 1.1890608072280884 img loss 1.2249964475631714 img loss 1.2406275272369385 img loss 1.1989836692810059 img loss 1.3139561414718628 img loss 1.242910385131836 img loss 1.1770009994506836 img loss 1.2566035985946655 img loss 1.2396093606948853 img loss 1.1444698572158813 img loss 1.2630068063735962 img loss 1.2448278665542603 img loss 1.3422129154205322 img loss 1.148922324180603 img loss 1.264535665512085 img loss 1.237810730934143 img loss 1.2634416818618774 img loss 1.163008213043213 img loss 1.1697018146514893 img loss 1.2395724058151245 img loss 1.2219102382659912 img loss 1.1996558904647827 img loss 1.243713140487671 img loss 1.202735424041748 img loss 1.1967880725860596 img loss 1.2232120037078857 img loss 1.2540401220321655 img loss 1.265773057937622 img loss 1.319170355796814 img loss 1.2036304473876953 img loss 1.2027419805526733 img loss 1.1507200002670288 img loss 1.2409275770187378 img loss 1.1989229917526245 img loss 1.1981728076934814 img loss 1.294354796409607 img loss 1.1899864673614502 img loss 1.2524404525756836 img loss 1.3278433084487915 img loss 1.18477201461792 img loss 1.188939094543457 img loss 1.1354154348373413 img loss 1.2016048431396484 img loss 1.2777165174484253 img loss 1.2120517492294312 img loss 1.2329009771347046 img loss 1.1242507696151733 img loss 1.232622504234314 img loss 1.29825758934021 img loss 1.3175427913665771 img loss 1.1808267831802368 img loss 1.2695918083190918 img loss 1.2364219427108765 img loss 1.3237615823745728 img loss 1.1925283670425415 img loss 1.1808850765228271 img loss 1.3007630109786987 img loss 1.280831217765808 img loss 1.2538706064224243 img loss 1.1701914072036743 img loss 1.240911841392517 img loss 1.1865752935409546 img loss 1.2382853031158447 img loss 1.2584965229034424 img loss 1.160955786705017 {'loss': 1.2257, 'grad_norm': 0.1997545063495636, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1739082336425781 img loss 1.2148725986480713 img loss 1.1714282035827637 img loss 1.17250394821167 img loss 1.2830053567886353 img loss 1.1836646795272827 img loss 1.1996656656265259 img loss 1.1983412504196167 img loss 1.1946303844451904 img loss 1.2050602436065674 img loss 1.1706311702728271 img loss 1.2244898080825806 img loss 1.1746392250061035 img loss 1.165933609008789 img loss 1.1579841375350952 img loss 1.1777607202529907 img loss 1.1581001281738281 img loss 1.1766166687011719 img loss 1.2137216329574585 img loss 1.1977885961532593 img loss 1.1925939321517944 img loss 1.1967296600341797 img loss 1.2574183940887451 img loss 1.2051056623458862 img loss 1.2331058979034424 img loss 1.2279831171035767 img loss 1.2083537578582764 img loss 1.196878433227539 img loss 1.1866168975830078 img loss 1.2525460720062256 img loss 1.1930233240127563 img loss 1.2071895599365234 img loss 1.1984742879867554 img loss 1.1707167625427246 img loss 1.200811743736267 img loss 1.2634766101837158 img loss 1.2040822505950928 img loss 1.239855408668518 img loss 1.2136372327804565 img loss 1.2278143167495728 img loss 1.197790503501892 img loss 1.2055402994155884 img loss 1.1805534362792969 img loss 1.1506661176681519 img loss 1.2136915922164917 img loss 1.204100489616394 img loss 1.219743251800537 img loss 1.154526710510254 img loss 1.19420325756073 img loss 1.1723541021347046 img loss 1.18905508518219 img loss 1.1839704513549805 img loss 1.2299962043762207 img loss 1.191390872001648 img loss 1.1915435791015625 img loss 1.2072620391845703 img loss 1.253507375717163 img loss 1.1973237991333008 img loss 1.21066153049469 img loss 1.1470870971679688 img loss 1.2237402200698853 img loss 1.1924643516540527 img loss 1.1686910390853882 img loss 1.2509106397628784 img loss 1.2122669219970703img loss 1.2722601890563965 img loss 1.2403359413146973 img loss 1.1502577066421509 img loss 1.1999298334121704 img loss 1.2071806192398071 img loss 1.1913954019546509 img loss 1.1487245559692383 img loss 1.1328994035720825 img loss 1.178104281425476 img loss 1.1644725799560547 img loss 1.2230846881866455img loss 1.184893012046814 img loss 1.1856982707977295 img loss 1.1861591339111328 img loss 1.1523244380950928 img loss 1.2286840677261353 img loss 1.2150421142578125 img loss 1.2651681900024414 img loss 1.1548871994018555 img loss 1.2553752660751343 img loss 1.228045105934143 img loss 1.1477378606796265 img loss 1.225842833518982 img loss 1.1931025981903076 img loss 1.171019434928894 img loss 1.2127645015716553 img loss 1.2247295379638672 img loss 1.2087643146514893 img loss 1.1726115942001343 img loss 1.1963937282562256 img loss 1.181451439857483 img loss 1.148459792137146 img loss 1.2312740087509155 img loss 1.1718567609786987 img loss 1.1667699813842773 img loss 1.2304341793060303 img loss 1.1568055152893066 img loss 1.2838563919067383 img loss 1.1559723615646362 img loss 1.2506239414215088 img loss 1.2044066190719604 img loss 1.2361379861831665 img loss 1.182063341140747 img loss 1.1717486381530762 img loss 1.2044371366500854 img loss 1.1709285974502563 img loss 1.2311285734176636 img loss 1.1955045461654663 img loss 1.178809642791748 img loss 1.2333869934082031 img loss 1.1279113292694092 img loss 1.2085894346237183 img loss 1.2141263484954834img loss 1.2064719200134277img loss 1.1537549495697021 img loss 1.2215723991394043 img loss 1.1691192388534546 img loss 1.1810052394866943 img loss 1.1741622686386108 img loss 1.2202068567276 img loss 1.1587074995040894 img loss 1.191811442375183 img loss 1.1754965782165527 {'loss': 1.198, 'grad_norm': 0.30927130579948425, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2378528118133545 img loss 1.2829281091690063 img loss 1.2265137434005737 img loss 1.2260394096374512 img loss 1.2236804962158203 img loss 1.1946320533752441 img loss 1.3046023845672607 img loss 1.3685050010681152 img loss 1.2345184087753296 img loss 1.1814079284667969 img loss 1.2242472171783447 img loss 1.2158440351486206 img loss 1.1996099948883057 img loss 1.272025465965271 img loss 1.2922791242599487 img loss 1.2250264883041382 img loss 1.3896687030792236 img loss 1.2040400505065918 img loss 1.1965843439102173 img loss 1.2342863082885742 img loss 1.2317347526550293 img loss 1.2775543928146362 img loss 1.2704823017120361 img loss 1.2917436361312866 img loss 1.2415680885314941 img loss 1.2793030738830566 img loss 1.1950948238372803 img loss 1.2103216648101807 img loss 1.2870047092437744 img loss 1.2186113595962524 img loss 1.3339182138442993 img loss 1.2766411304473877 img loss 1.3174128532409668 img loss 1.2298294305801392 img loss 1.2264187335968018 img loss 1.1557384729385376 img loss 1.246500015258789 img loss 1.2418464422225952 img loss 1.307065486907959 img loss 1.2858514785766602 img loss 1.2454614639282227 img loss 1.218912124633789 img loss 1.1992660760879517 img loss 1.1984806060791016 img loss 1.278013825416565 img loss 1.2746988534927368 img loss 1.2412502765655518 img loss 1.2611302137374878 img loss 1.1372394561767578 img loss 1.203229546546936 img loss 1.2764593362808228 img loss 1.335402011871338 img loss 1.193532943725586 img loss 1.2339990139007568 img loss 1.205195426940918 img loss 1.2058242559432983 img loss 1.4112416505813599 img loss 1.1907355785369873 img loss 1.2422398328781128 img loss 1.2607940435409546 img loss 1.2736320495605469 img loss 1.303758978843689 img loss 1.2858158349990845 img loss 1.2462992668151855 img loss 1.2045819759368896 img loss 1.365667700767517 img loss 1.2729432582855225 img loss 1.2456225156784058 img loss 1.2369619607925415 img loss 1.1793591976165771 img loss 1.2231683731079102 img loss 1.200718879699707 img loss 1.2461000680923462 img loss 1.1202257871627808img loss 1.187728762626648 img loss 1.3100838661193848 img loss 1.3211116790771484 img loss 1.2234941720962524 img loss 1.267629623413086 img loss 1.222808837890625 img loss 1.2447199821472168 img loss 1.330857753753662 img loss 1.2492588758468628 img loss 1.2257390022277832 img loss 1.213311791419983 img loss 1.1575514078140259 img loss 1.2351692914962769 img loss 1.2407745122909546 img loss 1.2858186960220337 img loss 1.2335089445114136 img loss 1.1959216594696045 img loss 1.4433561563491821 img loss 1.2318799495697021 img loss 1.2257541418075562 img loss 1.229302167892456 img loss 1.268201231956482 img loss 1.2115938663482666 img loss 1.2464768886566162 img loss 1.2259100675582886 img loss 1.312312364578247 img loss 1.2677549123764038 img loss 1.160779595375061 img loss 1.250887155532837 img loss 1.247133731842041 img loss 1.2851097583770752 img loss 1.285987377166748 img loss 1.282151460647583 img loss 1.253705620765686 img loss 1.210110068321228 img loss 1.3157172203063965 img loss 1.298916220664978 img loss 1.2289663553237915 img loss 1.1423239707946777 img loss 1.2183793783187866 img loss 1.150810956954956 img loss 1.337949514389038 img loss 1.2725551128387451 img loss 1.2762006521224976 img loss 1.2632282972335815 img loss 1.3010867834091187 img loss 1.2220638990402222 img loss 1.3113751411437988 img loss 1.2386696338653564 img loss 1.2213208675384521 img loss 1.3289389610290527 img loss 1.2389039993286133 img loss 1.2645397186279297 img loss 1.2394351959228516 {'loss': 1.2495, 'grad_norm': 0.5049855709075928, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4556918144226074 img loss 1.4963301420211792 img loss 1.3683886528015137 img loss 1.28739333152771 img loss 1.382189393043518 img loss 1.4389417171478271 img loss 1.4626495838165283 img loss 1.5432766675949097 img loss 1.4044462442398071 img loss 1.3807493448257446 img loss 1.3968818187713623 img loss 1.364998459815979 img loss 1.4213883876800537 img loss 1.3329036235809326 img loss 1.4821819067001343 img loss 1.3553208112716675 img loss 1.446153998374939 img loss 1.2928508520126343 img loss 1.4083106517791748 img loss 1.5327773094177246 img loss 1.3680691719055176 img loss 1.4003623723983765 img loss 1.4583317041397095 img loss 1.3865362405776978 img loss 1.512008786201477 img loss 1.4299596548080444 img loss 1.4628193378448486 img loss 1.5381653308868408 img loss 1.4736305475234985 img loss 1.4219156503677368 img loss 1.4278876781463623 img loss 1.3595322370529175 img loss 1.4455177783966064 img loss 1.4315561056137085 img loss 1.3971266746520996 img loss 1.4881856441497803 img loss 1.4492782354354858 img loss 1.3068006038665771 img loss 1.4850791692733765 img loss 1.5487421751022339img loss 1.4675228595733643 img loss 1.4130327701568604 img loss 1.3219927549362183 img loss 1.357064962387085 img loss 1.4507536888122559 img loss 1.3393162488937378 img loss 1.4454704523086548 img loss 1.3649815320968628 img loss 1.3264349699020386 img loss 1.3791049718856812 img loss 1.413681149482727 img loss 1.5358155965805054 img loss 1.5143612623214722 img loss 1.371488332748413 img loss 1.365394115447998 img loss 1.3848891258239746 img loss 1.3814218044281006 img loss 1.4174867868423462 img loss 1.395331621170044 img loss 1.5718923807144165 img loss 1.417346477508545 img loss 1.5427898168563843 img loss 1.4647141695022583 img loss 1.4887635707855225 img loss 1.6109414100646973 img loss 1.3485139608383179 img loss 1.4634459018707275 img loss 1.4322668313980103 img loss 1.3450530767440796 img loss 1.3168267011642456 img loss 1.4386953115463257 img loss 1.4249097108840942 img loss 1.3977535963058472 img loss 1.3795075416564941 img loss 1.4217549562454224 img loss 1.5066826343536377 img loss 1.3137242794036865 img loss 1.3213062286376953 img loss 1.4391130208969116 img loss 1.393543004989624 img loss 1.4011825323104858 img loss 1.3683488368988037 img loss 1.3999875783920288 img loss 1.2937477827072144 img loss 1.3738025426864624 img loss 1.422869086265564 img loss 1.3491789102554321 img loss 1.4858028888702393 img loss 1.3509666919708252 img loss 1.5147016048431396 img loss 1.4286980628967285 img loss 1.5412685871124268 img loss 1.3934129476547241 img loss 1.5571839809417725 img loss 1.459348201751709 img loss 1.362119197845459 img loss 1.4027040004730225 img loss 1.3439372777938843 img loss 1.3878175020217896 img loss 1.4062711000442505 img loss 1.4284789562225342 img loss 1.4692021608352661 img loss 1.4081461429595947 img loss 1.4235053062438965 img loss 1.4004108905792236 img loss 1.4762238264083862 img loss 1.3531116247177124 img loss 1.3466837406158447 img loss 1.4596006870269775 img loss 1.4004572629928589 img loss 1.4485477209091187 img loss 1.5172011852264404 img loss 1.4057835340499878 img loss 1.5289078950881958 img loss 1.430166482925415 img loss 1.4324594736099243 img loss 1.4964535236358643 img loss 1.3796793222427368 img loss 1.3983746767044067 img loss 1.3589208126068115 img loss 1.4674040079116821 img loss 1.4623545408248901 img loss 1.404162049293518 img loss 1.3994582891464233 img loss 1.4591444730758667 img loss 1.4298499822616577 img loss 1.620592713356018 img loss 1.5254846811294556 {'loss': 1.4243, 'grad_norm': 0.3134625554084778, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1513618230819702 img loss 1.2350996732711792 img loss 1.174131155014038 img loss 1.1715589761734009 img loss 1.2560796737670898 img loss 1.1259315013885498 img loss 1.1216868162155151 img loss 1.1689088344573975 img loss 1.1903300285339355 img loss 1.1658653020858765 img loss 1.2387022972106934 img loss 1.1270214319229126 img loss 1.1791845560073853 img loss 1.1358184814453125 img loss 1.1263989210128784 img loss 1.1744744777679443 img loss 1.1773103475570679 img loss 1.1324366331100464 img loss 1.23466956615448 img loss 1.1520400047302246 img loss 1.25812566280365 img loss 1.2358299493789673 img loss 1.1331398487091064 img loss 1.1564209461212158 img loss 1.2566137313842773 img loss 1.1933172941207886 img loss 1.2341692447662354 img loss 1.1672199964523315 img loss 1.2390484809875488 img loss 1.2543580532073975 img loss 1.2034229040145874 img loss 1.1208919286727905 img loss 1.1365997791290283 img loss 1.1876133680343628 img loss 1.2230424880981445 img loss 1.1814663410186768 img loss 1.2263216972351074 img loss 1.2311347723007202 img loss 1.153768539428711 img loss 1.1776795387268066 img loss 1.1613960266113281 img loss 1.1164582967758179 img loss 1.2717437744140625 img loss 1.1073940992355347 img loss 1.2187856435775757 img loss 1.2410945892333984 img loss 1.1487789154052734 img loss 1.0747133493423462 img loss 1.1935594081878662 img loss 1.193969488143921 img loss 1.176934838294983 img loss 1.2893911600112915 img loss 1.1934945583343506 img loss 1.1745589971542358 img loss 1.1449512243270874 img loss 1.1991544961929321 img loss 1.264516830444336 img loss 1.0275429487228394 img loss 1.222063660621643 img loss 1.1349843740463257 img loss 1.1455579996109009 img loss 1.1686769723892212 img loss 1.1472554206848145 img loss 1.1915168762207031 img loss 1.154951810836792 img loss 1.2004129886627197 img loss 1.2093595266342163 img loss 1.1400301456451416 img loss 1.1294918060302734 img loss 1.179910659790039 img loss 1.193268060684204 img loss 1.216440200805664 img loss 1.1754976511001587 img loss 1.1828311681747437 img loss 1.1725425720214844 img loss 1.1690173149108887 img loss 1.255367636680603 img loss 1.2209478616714478 img loss 1.1937435865402222 img loss 1.2062304019927979 img loss 1.2570648193359375 img loss 1.1475223302841187 img loss 1.2171547412872314 img loss 1.0644495487213135 img loss 1.1925389766693115 img loss 1.1552594900131226 img loss 1.1452445983886719 img loss 1.1663548946380615 img loss 1.1669394969940186 img loss 1.1661758422851562 img loss 1.122984528541565 img loss 1.2270172834396362 img loss 1.2136389017105103 img loss 1.1712406873703003img loss 1.231016993522644 img loss 1.1447150707244873 img loss 1.2358405590057373 img loss 1.1737568378448486 img loss 1.215169906616211 img loss 1.1940664052963257 img loss 1.107195258140564 img loss 1.1533838510513306 img loss 1.150658369064331 img loss 1.3073806762695312 img loss 1.1404976844787598 img loss 1.2419540882110596 img loss 1.1391843557357788 img loss 1.1670997142791748 img loss 1.168806791305542 img loss 1.143309473991394 img loss 1.1802611351013184 img loss 1.1982783079147339 img loss 1.1553605794906616 img loss 1.2702302932739258 img loss 1.1867146492004395 img loss 1.2137768268585205 img loss 1.1637600660324097 img loss 1.262760877609253 img loss 1.1984350681304932 img loss 1.1761425733566284 img loss 1.1889454126358032 img loss 1.231210470199585 img loss 1.1255319118499756 img loss 1.2168469429016113 img loss 1.1099909543991089 img loss 1.1508572101593018 img loss 1.2467468976974487 img loss 1.1497634649276733 {'loss': 1.1826, 'grad_norm': 0.2761279046535492, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2459123134613037 img loss 1.2542386054992676 img loss 1.33075749874115 img loss 1.2496237754821777 img loss 1.3426778316497803 img loss 1.3222969770431519 img loss 1.2887932062149048 img loss 1.3105440139770508 img loss 1.31171452999115 img loss 1.3401926755905151 img loss 1.3947137594223022 img loss 1.3498104810714722 img loss 1.2312891483306885 img loss 1.286234736442566 img loss 1.3552294969558716 img loss 1.2854098081588745 img loss 1.2946503162384033 img loss 1.2808424234390259 img loss 1.3018802404403687 img loss 1.2918061017990112 img loss 1.2365413904190063 img loss 1.2627818584442139 img loss 1.2631773948669434 img loss 1.385891318321228 img loss 1.2783749103546143 img loss 1.280504822731018 img loss 1.2303259372711182 img loss 1.3279502391815186 img loss 1.2980575561523438 img loss 1.2089413404464722 img loss 1.3072595596313477 img loss 1.2946655750274658 img loss 1.3841809034347534 img loss 1.2825448513031006 img loss 1.258357286453247 img loss 1.1938679218292236 img loss 1.2601463794708252 img loss 1.2972133159637451 img loss 1.2584714889526367 img loss 1.2159236669540405 img loss 1.3516271114349365 img loss 1.2516963481903076 img loss 1.234709620475769 img loss 1.34003484249115 img loss 1.2934426069259644 img loss 1.3578284978866577 img loss 1.2251598834991455 img loss 1.3514740467071533 img loss 1.2739307880401611 img loss 1.2647156715393066 img loss 1.2230013608932495 img loss 1.2760168313980103 img loss 1.2261340618133545 img loss 1.249794602394104 img loss 1.3330093622207642 img loss 1.2977184057235718 img loss 1.223254680633545 img loss 1.2469916343688965 img loss 1.2250837087631226 img loss 1.281838297843933 img loss 1.276384711265564 img loss 1.3089101314544678 img loss 1.3043049573898315 img loss 1.3303149938583374 img loss 1.2687453031539917 img loss 1.2842373847961426 img loss 1.2439515590667725 img loss 1.223921537399292 img loss 1.3789466619491577 img loss 1.2685340642929077 img loss 1.2588223218917847 img loss 1.3501650094985962 img loss 1.283489465713501 img loss 1.256809949874878 img loss 1.2629292011260986 img loss 1.3286746740341187 img loss 1.3122048377990723 img loss 1.2672325372695923 img loss 1.1508080959320068 img loss 1.290731430053711 img loss 1.3979634046554565 img loss 1.2249960899353027 img loss 1.3558470010757446 img loss 1.291551947593689 img loss 1.3124274015426636 img loss 1.3788546323776245img loss 1.310660719871521 img loss 1.2574763298034668 img loss 1.3259694576263428 img loss 1.2122867107391357 img loss 1.272745132446289 img loss 1.4838162660598755 img loss 1.3377207517623901 img loss 1.1627402305603027 img loss 1.297158122062683 img loss 1.3368934392929077 img loss 1.2600287199020386 img loss 1.257861614227295 img loss 1.245684027671814 img loss 1.323901891708374 img loss 1.3150519132614136 img loss 1.1924324035644531 img loss 1.3173502683639526 img loss 1.3139832019805908 img loss 1.3094141483306885 img loss 1.2960904836654663 img loss 1.2519363164901733 img loss 1.173780918121338 img loss 1.3635364770889282 img loss 1.2849795818328857 img loss 1.2475166320800781 img loss 1.2490471601486206 img loss 1.2117247581481934 img loss 1.2643765211105347 img loss 1.3242321014404297 img loss 1.2309521436691284 img loss 1.3699661493301392 img loss 1.2718394994735718 img loss 1.203014612197876 img loss 1.3249454498291016 img loss 1.2115086317062378 img loss 1.2650425434112549 img loss 1.3973305225372314 img loss 1.311805009841919 img loss 1.2975246906280518 img loss 1.249229907989502 img loss 1.243964672088623 img loss 1.3221887350082397 {'loss': 1.2862, 'grad_norm': 0.3038354516029358, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.349160075187683 img loss 1.4028748273849487 img loss 1.4076579809188843 img loss 1.425269365310669 img loss 1.4060778617858887 img loss 1.3431859016418457 img loss 1.4288054704666138 img loss 1.3853518962860107 img loss 1.430446743965149 img loss 1.3792861700057983 img loss 1.4377226829528809 img loss 1.3656896352767944 img loss 1.476439356803894 img loss 1.3518478870391846 img loss 1.3154109716415405 img loss 1.3691705465316772 img loss 1.3755236864089966 img loss 1.4071877002716064 img loss 1.345054030418396 img loss 1.307735800743103 img loss 1.2733644247055054 img loss 1.5540357828140259 img loss 1.422838807106018 img loss 1.5144374370574951 img loss 1.4365731477737427 img loss 1.5083425045013428 img loss 1.3319634199142456 img loss 1.465075135231018 img loss 1.377386450767517 img loss 1.433711290359497 img loss 1.457065224647522 img loss 1.414323091506958 img loss 1.43898344039917 img loss 1.3745806217193604 img loss 1.4639688730239868 img loss 1.5227739810943604 img loss 1.3640109300613403 img loss 1.3285918235778809 img loss 1.4066731929779053 img loss 1.4277557134628296 img loss 1.4404041767120361 img loss 1.3595491647720337 img loss 1.4937275648117065 img loss 1.2609785795211792 img loss 1.4234064817428589 img loss 1.403725504875183 img loss 1.305549144744873 img loss 1.305315613746643 img loss 1.3606454133987427 img loss 1.5274146795272827 img loss 1.3961430788040161 img loss 1.3415429592132568 img loss 1.3345386981964111 img loss 1.4510747194290161 img loss 1.4761642217636108 img loss 1.5076812505722046 img loss 1.531176209449768 img loss 1.493881344795227 img loss 1.4661680459976196 img loss 1.3291288614273071 img loss 1.471614956855774 img loss 1.411659598350525 img loss 1.4315464496612549 img loss 1.4158848524093628 img loss 1.3441004753112793 img loss 1.4474217891693115 img loss 1.4076145887374878 img loss 1.4464185237884521 img loss 1.265856385231018 img loss 1.4332215785980225 img loss 1.4507566690444946 img loss 1.388192057609558 img loss 1.4074581861495972 img loss 1.3873937129974365 img loss 1.33327054977417 img loss 1.2588341236114502 img loss 1.4628149271011353 img loss 1.3613249063491821 img loss 1.5004706382751465 img loss 1.4342073202133179 img loss 1.4291436672210693 img loss 1.4350823163986206 img loss 1.523383378982544 img loss 1.4579994678497314 img loss 1.5455739498138428 img loss 1.493495225906372 img loss 1.4524234533309937 img loss 1.363431692123413 img loss 1.5833321809768677 img loss 1.534074306488037 img loss 1.4587725400924683 img loss 1.5184506177902222 img loss 1.5123202800750732 img loss 1.363005518913269 img loss 1.4038807153701782 img loss 1.354849100112915 img loss 1.497892141342163 img loss 1.4371812343597412 img loss 1.4289641380310059 img loss 1.4278416633605957 img loss 1.3848893642425537 img loss 1.4111007452011108 img loss 1.3995553255081177 img loss 1.4014228582382202 img loss 1.308579921722412 img loss 1.314330816268921 img loss 1.3857859373092651 img loss 1.4312535524368286 img loss 1.4321297407150269 img loss 1.3185161352157593 img loss 1.3698704242706299 img loss 1.5848785638809204 img loss 1.4225586652755737 img loss 1.3140370845794678 img loss 1.4930379390716553 img loss 1.4365887641906738 img loss 1.555604338645935 img loss 1.4548869132995605 img loss 1.4655295610427856 img loss 1.5306239128112793 img loss 1.4475232362747192 img loss 1.3373887538909912 img loss 1.406258225440979 img loss 1.4563783407211304 img loss 1.38753080368042 img loss 1.3493696451187134 img loss 1.450305700302124 img loss 1.4761301279067993 {'loss': 1.4175, 'grad_norm': 0.3301562964916229, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2150444984436035 img loss 1.206207275390625 img loss 1.212562084197998 img loss 1.2593703269958496 img loss 1.293460488319397 img loss 1.1676874160766602 img loss 1.3111228942871094 img loss 1.253692388534546 img loss 1.200502634048462 img loss 1.3055717945098877 img loss 1.220522403717041 img loss 1.2007302045822144img loss 1.3024449348449707 img loss 1.3449349403381348 img loss 1.304045557975769 img loss 1.2374591827392578 img loss 1.2077386379241943 img loss 1.3099987506866455 img loss 1.2505302429199219 img loss 1.2837648391723633 img loss 1.1964149475097656 img loss 1.2284293174743652 img loss 1.2799136638641357 img loss 1.2547907829284668 img loss 1.277414083480835 img loss 1.3201847076416016 img loss 1.2371411323547363 img loss 1.2804876565933228 img loss 1.2414082288742065 img loss 1.2132710218429565 img loss 1.2030473947525024 img loss 1.2387115955352783 img loss 1.210669755935669 img loss 1.2635722160339355 img loss 1.2576544284820557 img loss 1.289689302444458 img loss 1.2595512866973877 img loss 1.286306619644165 img loss 1.2049754858016968 img loss 1.285201907157898 img loss 1.1762129068374634 img loss 1.2835692167282104img loss 1.3282067775726318 img loss 1.2852271795272827 img loss 1.25968599319458 img loss 1.2588471174240112 img loss 1.2485270500183105 img loss 1.1690518856048584 img loss 1.2544310092926025 img loss 1.1670401096343994 img loss 1.2655986547470093 img loss 1.2243766784667969 img loss 1.2866331338882446 img loss 1.2544515132904053 img loss 1.3081194162368774 img loss 1.2758114337921143 img loss 1.243903398513794 img loss 1.2717193365097046 img loss 1.2599655389785767 img loss 1.2224040031433105 img loss 1.245021104812622 img loss 1.2693508863449097 img loss 1.253599762916565 img loss 1.2017446756362915 img loss 1.2263636589050293 img loss 1.3374629020690918 img loss 1.2815632820129395 img loss 1.2161527872085571 img loss 1.221388816833496 img loss 1.1844819784164429 img loss 1.2363117933273315 img loss 1.297414779663086 img loss 1.2124440670013428 img loss 1.2861286401748657 img loss 1.2381093502044678 img loss 1.2913473844528198 img loss 1.2179770469665527 img loss 1.2071613073349 img loss 1.230191946029663 img loss 1.218839406967163 img loss 1.2272472381591797 img loss 1.2123435735702515 img loss 1.2243857383728027 img loss 1.2609119415283203 img loss 1.3582979440689087 img loss 1.2876808643341064 img loss 1.2720837593078613 img loss 1.25404953956604 img loss 1.256824016571045 img loss 1.2447896003723145 img loss 1.2374275922775269 img loss 1.2589938640594482 img loss 1.187891960144043 img loss 1.2383044958114624 img loss 1.2031172513961792 img loss 1.1807066202163696 img loss 1.1964430809020996 img loss 1.2021206617355347 img loss 1.2737476825714111 img loss 1.2317559719085693 img loss 1.2480119466781616 img loss 1.2065386772155762 img loss 1.2560737133026123 img loss 1.3329033851623535 img loss 1.3352128267288208 img loss 1.256626009941101 img loss 1.203392505645752 img loss 1.2670263051986694 img loss 1.2435529232025146 img loss 1.2516717910766602 img loss 1.2465242147445679 img loss 1.2208309173583984 img loss 1.213958740234375 img loss 1.281960129737854 img loss 1.2212424278259277 img loss 1.197646141052246 img loss 1.2474132776260376 img loss 1.2651900053024292 img loss 1.2360870838165283 img loss 1.2493245601654053 img loss 1.2878459692001343 img loss 1.2201030254364014 img loss 1.2190585136413574 img loss 1.2066186666488647 img loss 1.2048876285552979 img loss 1.259233832359314 img loss 1.21945059299469 img loss 1.2524441480636597 {'loss': 1.2476, 'grad_norm': 0.25375041365623474, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2604080438613892 img loss 1.2994592189788818 img loss 1.2203304767608643 img loss 1.2544113397598267 img loss 1.2057198286056519 img loss 1.2330421209335327 img loss 1.2662005424499512 img loss 1.2374976873397827 img loss 1.2123438119888306 img loss 1.3062366247177124 img loss 1.171032190322876 img loss 1.1996678113937378 img loss 1.3351231813430786 img loss 1.284835696220398 img loss 1.2389169931411743 img loss 1.235634684562683 img loss 1.1949272155761719 img loss 1.1660245656967163 img loss 1.2319740056991577 img loss 1.2458168268203735 img loss 1.2701143026351929 img loss 1.2558341026306152 img loss 1.2131067514419556 img loss 1.2682020664215088 img loss 1.2272812128067017 img loss 1.279944658279419 img loss 1.2136026620864868 img loss 1.1944522857666016 img loss 1.2174129486083984 img loss 1.21455717086792 img loss 1.2313380241394043 img loss 1.230711579322815 img loss 1.229874849319458 img loss 1.1875823736190796 img loss 1.1731284856796265 img loss 1.2597160339355469 img loss 1.3334566354751587 img loss 1.322393774986267 img loss 1.2524950504302979 img loss 1.2719353437423706 img loss 1.3077130317687988 img loss 1.328104019165039 img loss 1.186597466468811 img loss 1.2269837856292725 img loss 1.3044424057006836 img loss 1.191555380821228 img loss 1.2079263925552368 img loss 1.2556772232055664 img loss 1.176918625831604 img loss 1.2201080322265625 img loss 1.2079854011535645 img loss 1.1797730922698975 img loss 1.1462410688400269 img loss 1.2293037176132202 img loss 1.25165593624115 img loss 1.2045096158981323 img loss 1.1818020343780518 img loss 1.1918666362762451 img loss 1.2439370155334473 img loss 1.2789791822433472 img loss 1.2645481824874878 img loss 1.152661919593811 img loss 1.2612359523773193 img loss 1.2487595081329346 img loss 1.190895438194275 img loss 1.2481335401535034 img loss 1.2890514135360718 img loss 1.3136253356933594 img loss 1.308623194694519 img loss 1.2238588333129883 img loss 1.2129369974136353 img loss 1.1823937892913818 img loss 1.20566725730896 img loss 1.2935311794281006 img loss 1.3525892496109009 img loss 1.2336993217468262 img loss 1.2386181354522705 img loss 1.3238977193832397 img loss 1.1490036249160767 img loss 1.2472797632217407 img loss 1.1959023475646973 img loss 1.180289626121521 img loss 1.2689555883407593 img loss 1.1835123300552368 img loss 1.199238657951355 img loss 1.2510104179382324 img loss 1.1958611011505127 img loss 1.2401293516159058 img loss 1.205453872680664 img loss 1.2440662384033203 img loss 1.239515781402588 img loss 1.2629727125167847 img loss 1.1354544162750244 img loss 1.2307766675949097 img loss 1.1910278797149658 img loss 1.30971097946167 img loss 1.2847546339035034 img loss 1.2567110061645508 img loss 1.3842443227767944 img loss 1.1962306499481201 img loss 1.2825605869293213 img loss 1.1901730298995972 img loss 1.2476812601089478 img loss 1.135021448135376 img loss 1.205911636352539 img loss 1.243546962738037 img loss 1.146330714225769 img loss 1.3085485696792603 img loss 1.2198841571807861 img loss 1.2004146575927734 img loss 1.2553497552871704 img loss 1.161699891090393 img loss 1.2551264762878418 img loss 1.1358258724212646 img loss 1.1814817190170288 img loss 1.1438220739364624 img loss 1.2518789768218994 img loss 1.278191089630127img loss 1.2148735523223877img loss 1.3018913269042969 img loss 1.2746992111206055 img loss 1.2932857275009155 img loss 1.2483043670654297 img loss 1.3328100442886353 img loss 1.2752989530563354 img loss 1.2288808822631836 img loss 1.2698618173599243 img loss 1.3785465955734253 {'loss': 1.2377, 'grad_norm': 0.17920714616775513, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.7696599960327148 img loss 1.7351020574569702 img loss 1.824591040611267 img loss 1.7162753343582153 img loss 1.7120165824890137 img loss 1.7839492559432983 img loss 1.8106896877288818 img loss 1.604650855064392 img loss 1.7568414211273193 img loss 1.8162972927093506 img loss 1.9033962488174438 img loss 1.664339542388916 img loss 1.7664276361465454 img loss 1.9155910015106201 img loss 1.6120123863220215 img loss 1.5503175258636475 img loss 1.6209419965744019 img loss 1.7389289140701294 img loss 1.6429693698883057 img loss 1.766128659248352 img loss 1.5728342533111572 img loss 1.6578009128570557 img loss 1.6844874620437622 img loss 1.5452853441238403 img loss 1.5553224086761475 img loss 1.6480904817581177 img loss 1.59531569480896 img loss 1.569893479347229 img loss 1.8016198873519897 img loss 1.7163329124450684 img loss 1.5538829565048218 img loss 1.5383270978927612 img loss 1.7099614143371582 img loss 1.7015212774276733 img loss 1.6224514245986938 img loss 1.6640645265579224 img loss 1.695834755897522 img loss 1.5772223472595215 img loss 1.694824457168579 img loss 1.6503446102142334 img loss 1.523435354232788 img loss 1.6057270765304565 img loss 1.7151026725769043 img loss 1.623659610748291 img loss 1.7723814249038696 img loss 1.6670939922332764 img loss 1.6099056005477905 img loss 1.6010487079620361 img loss 1.7833738327026367 img loss 1.689491868019104 img loss 1.737515926361084 img loss 1.7655770778656006 img loss 1.8243087530136108 img loss 1.5994832515716553 img loss 1.7713886499404907 img loss 1.706570029258728 img loss 1.6433919668197632 img loss 1.6477917432785034 img loss 1.727611780166626 img loss 1.6772459745407104 img loss 1.5766689777374268 img loss 1.8350881338119507 img loss 1.7365936040878296 img loss 1.765865683555603 img loss 1.7868945598602295 img loss 1.7197010517120361 img loss 1.7162600755691528 img loss 1.8591665029525757 img loss 1.723364233970642 img loss 1.595747470855713 img loss 1.7684282064437866 img loss 1.5576525926589966 img loss 1.6773606538772583 img loss 1.7999675273895264 img loss 1.675927996635437 img loss 1.8460900783538818 img loss 1.6546645164489746 img loss 1.8392854928970337 img loss 1.7515373229980469 img loss 1.8039603233337402 img loss 1.5207444429397583 img loss 1.59873366355896 img loss 1.6505318880081177 img loss 1.7435312271118164 img loss 1.7363210916519165 img loss 1.8110843896865845 img loss 1.5612504482269287 img loss 1.814021348953247 img loss 1.7499459981918335 img loss 1.65548574924469 img loss 1.5339767932891846 img loss 1.7078124284744263 img loss 1.828922986984253 img loss 1.6038786172866821 img loss 1.781334400177002 img loss 1.8938837051391602 img loss 1.6739697456359863 img loss 1.6960645914077759 img loss 1.5826653242111206 img loss 1.6153398752212524 img loss 1.6826447248458862 img loss 1.554735541343689 img loss 1.7142713069915771 img loss 1.7270034551620483 img loss 1.583016037940979 img loss 1.6977933645248413 img loss 1.8449422121047974 img loss 1.576422095298767 img loss 1.5825819969177246 img loss 1.5713579654693604 img loss 1.883573293685913 img loss 1.6545344591140747 img loss 1.5585321187973022 img loss 1.776197075843811 img loss 1.6505190134048462 img loss 1.5427190065383911 img loss 1.6722521781921387 img loss 1.8131681680679321 img loss 1.7116750478744507 img loss 1.5319370031356812 img loss 1.6947722434997559 img loss 1.8652883768081665 img loss 1.621747612953186 img loss 1.5329023599624634 img loss 1.789607048034668 img loss 1.7327381372451782 img loss 1.6690819263458252 img loss 1.8075997829437256 {'loss': 1.6926, 'grad_norm': 0.4389868676662445, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2691245079040527 img loss 1.2699863910675049 img loss 1.1697624921798706 img loss 1.1970198154449463 img loss 1.2063322067260742 img loss 1.2591923475265503 img loss 1.1984267234802246 img loss 1.2384251356124878 img loss 1.2173199653625488 img loss 1.2553507089614868 img loss 1.3222172260284424 img loss 1.2996453046798706 img loss 1.2404394149780273 img loss 1.3539423942565918 img loss 1.1848492622375488 img loss 1.2322206497192383 img loss 1.3821957111358643 img loss 1.3203728199005127 img loss 1.2609390020370483 img loss 1.2811816930770874 img loss 1.2387443780899048 img loss 1.3386683464050293 img loss 1.1926182508468628 img loss 1.2325305938720703 img loss 1.3311455249786377 img loss 1.2275336980819702 img loss 1.3242650032043457 img loss 1.2675654888153076 img loss 1.30631422996521 img loss 1.2852309942245483 img loss 1.267514944076538 img loss 1.289709448814392 img loss 1.2322314977645874 img loss 1.253002405166626 img loss 1.2761753797531128 img loss 1.2803887128829956 img loss 1.2434158325195312 img loss 1.3212965726852417 img loss 1.2717318534851074 img loss 1.2025378942489624 img loss 1.1940733194351196 img loss 1.3426984548568726 img loss 1.246985673904419 img loss 1.169635534286499 img loss 1.1651179790496826 img loss 1.2304267883300781 img loss 1.2245715856552124 img loss 1.1666864156723022 img loss 1.2493557929992676 img loss 1.265680193901062 img loss 1.2326960563659668 img loss 1.2718957662582397 img loss 1.2922595739364624 img loss 1.2763442993164062 img loss 1.222995638847351 img loss 1.21588134765625 img loss 1.199815034866333 img loss 1.4335381984710693 img loss 1.2810407876968384 img loss 1.2315278053283691 img loss 1.368761658668518 img loss 1.3344149589538574 img loss 1.2284497022628784 img loss 1.241593599319458 img loss 1.2993009090423584 img loss 1.3185545206069946 img loss 1.1566301584243774 img loss 1.29081130027771 img loss 1.3284657001495361 img loss 1.2633945941925049 img loss 1.2984237670898438 img loss 1.4038115739822388 img loss 1.2251160144805908 img loss 1.2837040424346924 img loss 1.1883981227874756 img loss 1.3031527996063232 img loss 1.2371768951416016 img loss 1.1942278146743774 img loss 1.218310832977295 img loss 1.3068755865097046 img loss 1.223310947418213 img loss 1.2521711587905884 img loss 1.1866765022277832 img loss 1.2619080543518066 img loss 1.261885404586792 img loss 1.2693443298339844 img loss 1.187143325805664 img loss 1.1687389612197876 img loss 1.2950398921966553 img loss 1.2466909885406494 img loss 1.2309496402740479 img loss 1.272178053855896 img loss 1.2804439067840576 img loss 1.2321372032165527 img loss 1.2493292093276978 img loss 1.3456931114196777 img loss 1.2917312383651733 img loss 1.2160046100616455 img loss 1.2574553489685059 img loss 1.2026408910751343 img loss 1.2941968441009521 img loss 1.1967236995697021 img loss 1.20868718624115 img loss 1.2108933925628662 img loss 1.2841122150421143 img loss 1.3245302438735962 img loss 1.3139750957489014 img loss 1.291130781173706 img loss 1.2421616315841675 img loss 1.2374285459518433 img loss 1.2647268772125244 img loss 1.2215203046798706 img loss 1.1609807014465332 img loss 1.373252034187317 img loss 1.2350504398345947 img loss 1.332648754119873 img loss 1.2166298627853394 img loss 1.333625078201294 img loss 1.2630517482757568 img loss 1.2427036762237549 img loss 1.2569109201431274 img loss 1.1987789869308472 img loss 1.165055751800537 img loss 1.3281776905059814 img loss 1.1838250160217285 img loss 1.3118629455566406 img loss 1.3332602977752686 img loss 1.2811897993087769 {'loss': 1.2592, 'grad_norm': 0.28467196226119995, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.230018138885498 img loss 1.2035017013549805 img loss 1.2182062864303589 img loss 1.3031717538833618 img loss 1.2442381381988525 img loss 1.2620785236358643 img loss 1.2217192649841309 img loss 1.2271819114685059 img loss 1.2431213855743408 img loss 1.2294001579284668 img loss 1.2349308729171753 img loss 1.2706973552703857 img loss 1.2283493280410767 img loss 1.2257843017578125 img loss 1.235971212387085 img loss 1.2586601972579956 img loss 1.253129243850708 img loss 1.2450004816055298 img loss 1.192454218864441 img loss 1.2152637243270874 img loss 1.2222508192062378 img loss 1.2953745126724243img loss 1.21077299118042 img loss 1.205367922782898 img loss 1.2477691173553467 img loss 1.189236044883728 img loss 1.2803425788879395 img loss 1.233642816543579 img loss 1.250239610671997 img loss 1.2171119451522827 img loss 1.1783766746520996 img loss 1.2761132717132568 img loss 1.2424063682556152 img loss 1.2553163766860962 img loss 1.2674850225448608 img loss 1.2324979305267334 img loss 1.2729847431182861 img loss 1.2478461265563965 img loss 1.2703006267547607 img loss 1.2573248147964478 img loss 1.2427754402160645 img loss 1.2567249536514282 img loss 1.1957076787948608 img loss 1.2521591186523438 img loss 1.2165741920471191 img loss 1.261534571647644 img loss 1.2329463958740234 img loss 1.261168360710144 img loss 1.2902230024337769 img loss 1.2319186925888062 img loss 1.2486727237701416 img loss 1.207061529159546 img loss 1.2174887657165527 img loss 1.286573052406311 img loss 1.202397346496582 img loss 1.2202895879745483 img loss 1.2619549036026 img loss 1.2069664001464844 img loss 1.2839590311050415 img loss 1.2334098815917969 img loss 1.2348047494888306 img loss 1.2491297721862793 img loss 1.2156014442443848 img loss 1.1677372455596924 img loss 1.2511630058288574 img loss 1.2856416702270508 img loss 1.2460129261016846 img loss 1.2984428405761719 img loss 1.2372417449951172 img loss 1.1953909397125244 img loss 1.2373055219650269 img loss 1.266892671585083 img loss 1.2056012153625488 img loss 1.2728626728057861 img loss 1.2754253149032593 img loss 1.2382543087005615 img loss 1.267824649810791 img loss 1.2477529048919678 img loss 1.2217031717300415 img loss 1.2814663648605347 img loss 1.262974500656128 img loss 1.3299793004989624 img loss 1.2861942052841187 img loss 1.234583854675293 img loss 1.3175277709960938 img loss 1.2838388681411743 img loss 1.2361844778060913 img loss 1.286935806274414 img loss 1.2915687561035156 img loss 1.1987141370773315 img loss 1.2341644763946533 img loss 1.2323633432388306 img loss 1.2529319524765015 img loss 1.2830713987350464 img loss 1.2194164991378784 img loss 1.2836624383926392 img loss 1.2238805294036865 img loss 1.2418749332427979 img loss 1.1904654502868652 img loss 1.281893253326416 img loss 1.2349708080291748 img loss 1.2614586353302002img loss 1.2172307968139648 img loss 1.2970188856124878 img loss 1.2718547582626343 img loss 1.2411521673202515 img loss 1.2785274982452393 img loss 1.2317723035812378 img loss 1.2650669813156128 img loss 1.27862548828125 img loss 1.2217038869857788 img loss 1.1972675323486328 img loss 1.2204375267028809 img loss 1.2147765159606934 img loss 1.2921628952026367 img loss 1.208914041519165 img loss 1.2699321508407593 img loss 1.1952921152114868img loss 1.299913763999939 img loss 1.2569204568862915 img loss 1.2432526350021362 img loss 1.2130510807037354 img loss 1.2382407188415527 img loss 1.2151806354522705 img loss 1.3141419887542725 img loss 1.225380778312683 img loss 1.3106762170791626 img loss 1.2204679250717163 {'loss': 1.2454, 'grad_norm': 0.25962790846824646, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2956209182739258 img loss 1.2530637979507446 img loss 1.298134446144104 img loss 1.2967288494110107 img loss 1.2184139490127563 img loss 1.3394304513931274 img loss 1.2653030157089233 img loss 1.2938896417617798 img loss 1.280200719833374 img loss 1.2651169300079346 img loss 1.258492112159729 img loss 1.1745132207870483 img loss 1.336715817451477 img loss 1.2786693572998047 img loss 1.2375242710113525 img loss 1.24648916721344 img loss 1.2398827075958252 img loss 1.2520490884780884 img loss 1.2234094142913818 img loss 1.208544135093689 img loss 1.3935927152633667 img loss 1.2415379285812378 img loss 1.1936746835708618 img loss 1.214066982269287 img loss 1.30900239944458 img loss 1.2949281930923462 img loss 1.333314299583435 img loss 1.3227487802505493 img loss 1.2253859043121338 img loss 1.221239686012268 img loss 1.283646821975708 img loss 1.256386399269104 img loss 1.2777063846588135 img loss 1.2248541116714478 img loss 1.2408838272094727 img loss 1.2216293811798096 img loss 1.2205595970153809 img loss 1.1891320943832397 img loss 1.2394262552261353 img loss 1.3773682117462158 img loss 1.2003010511398315 img loss 1.2889808416366577 img loss 1.3057904243469238 img loss 1.3078587055206299 img loss 1.2512946128845215 img loss 1.2992314100265503 img loss 1.34145188331604 img loss 1.2706915140151978 img loss 1.2464033365249634 img loss 1.2534393072128296 img loss 1.2904698848724365 img loss 1.2364892959594727 img loss 1.2879745960235596 img loss 1.202925682067871 img loss 1.2690341472625732 img loss 1.3556153774261475 img loss 1.2108653783798218 img loss 1.2501671314239502 img loss 1.2446668148040771 img loss 1.2567646503448486 img loss 1.2109135389328003 img loss 1.254773497581482 img loss 1.218359351158142 img loss 1.2059149742126465 img loss 1.246909737586975 img loss 1.2206443548202515 img loss 1.2311241626739502 img loss 1.247637391090393 img loss 1.2481087446212769 img loss 1.2398929595947266 img loss 1.2777814865112305 img loss 1.329609751701355 img loss 1.2960079908370972 img loss 1.2587743997573853 img loss 1.2426984310150146 img loss 1.2559469938278198 img loss 1.3060812950134277 img loss 1.2028112411499023 img loss 1.250975251197815 img loss 1.2122381925582886 img loss 1.2730052471160889 img loss 1.3264312744140625 img loss 1.252219557762146 img loss 1.2035280466079712 img loss 1.1834557056427002 img loss 1.2986602783203125 img loss 1.2782396078109741 img loss 1.2212196588516235 img loss 1.304002046585083 img loss 1.2047643661499023 img loss 1.3041625022888184 img loss 1.2871932983398438 img loss 1.2641987800598145 img loss 1.197651743888855 img loss 1.265845775604248 img loss 1.298418402671814 img loss 1.189440131187439 img loss 1.2285122871398926 img loss 1.25348699092865 img loss 1.298129677772522 img loss 1.253528118133545 img loss 1.2049691677093506 img loss 1.238207221031189 img loss 1.2893035411834717 img loss 1.2786576747894287 img loss 1.2365883588790894 img loss 1.261806845664978 img loss 1.2897112369537354 img loss 1.2492496967315674 img loss 1.3032385110855103 img loss 1.2375483512878418 img loss 1.2526633739471436 img loss 1.2217862606048584 img loss 1.254379153251648 img loss 1.227179765701294 img loss 1.1605641841888428 img loss 1.2527529001235962 img loss 1.1547749042510986 img loss 1.221289038658142 img loss 1.2766518592834473 img loss 1.237583875656128 img loss 1.2876341342926025 img loss 1.3328537940979004 img loss 1.2644805908203125 img loss 1.2120389938354492 img loss 1.2243810892105103 img loss 1.3155075311660767 img loss 1.2628523111343384 {'loss': 1.2579, 'grad_norm': 0.21160292625427246, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4416836500167847 img loss 1.330535888671875 img loss 1.4962202310562134 img loss 1.4839023351669312 img loss 1.4673315286636353 img loss 1.3749349117279053 img loss 1.4797040224075317 img loss 1.491682529449463 img loss 1.3128503561019897 img loss 1.4784053564071655 img loss 1.493274211883545 img loss 1.3531744480133057 img loss 1.4797576665878296 img loss 1.336192011833191 img loss 1.2982572317123413 img loss 1.3891154527664185 img loss 1.3568778038024902 img loss 1.3521634340286255 img loss 1.398970127105713 img loss 1.430132269859314 img loss 1.3691375255584717 img loss 1.4659276008605957 img loss 1.4349428415298462 img loss 1.4066426753997803 img loss 1.4053868055343628 img loss 1.3756753206253052 img loss 1.359015703201294 img loss 1.4444209337234497 img loss 1.4529062509536743 img loss 1.5550776720046997 img loss 1.452968716621399 img loss 1.4096319675445557 img loss 1.633175015449524 img loss 1.2815871238708496 img loss 1.442958950996399 img loss 1.3821098804473877 img loss 1.488845944404602 img loss 1.4108550548553467 img loss 1.5040045976638794 img loss 1.3503974676132202 img loss 1.5207988023757935 img loss 1.3753581047058105 img loss 1.4848542213439941 img loss 1.4630340337753296 img loss 1.5033591985702515 img loss 1.5072362422943115 img loss 1.40619957447052 img loss 1.387227177619934 img loss 1.4077626466751099 img loss 1.425869345664978 img loss 1.3334583044052124 img loss 1.4602586030960083 img loss 1.4425760507583618 img loss 1.332223892211914 img loss 1.4616608619689941 img loss 1.4864059686660767 img loss 1.4416358470916748 img loss 1.3997715711593628 img loss 1.3978781700134277 img loss 1.600609540939331 img loss 1.3960566520690918 img loss 1.4095253944396973 img loss 1.4533432722091675 img loss 1.543511986732483 img loss 1.347390055656433 img loss 1.50351881980896 img loss 1.454021692276001 img loss 1.3076368570327759 img loss 1.449459195137024 img loss 1.3646517992019653 img loss 1.4574681520462036 img loss 1.300636887550354 img loss 1.5350983142852783 img loss 1.4499722719192505 img loss 1.4446815252304077 img loss 1.5530697107315063 img loss 1.4411578178405762 img loss 1.506027340888977 img loss 1.4248731136322021 img loss 1.4180848598480225 img loss 1.4181500673294067 img loss 1.469378113746643 img loss 1.4112781286239624 img loss 1.4826825857162476 img loss 1.5087302923202515 img loss 1.4862878322601318 img loss 1.520860195159912 img loss 1.4981589317321777 img loss 1.455374836921692 img loss 1.5206938982009888 img loss 1.4618809223175049 img loss 1.4632697105407715 img loss 1.4471536874771118 img loss 1.4414488077163696 img loss 1.3011915683746338 img loss 1.4616954326629639 img loss 1.3703433275222778 img loss 1.5054316520690918 img loss 1.382778525352478 img loss 1.491121768951416 img loss 1.364408016204834 img loss 1.5480284690856934 img loss 1.5125095844268799 img loss 1.4468977451324463 img loss 1.4907028675079346 img loss 1.3585610389709473 img loss 1.3031295537948608 img loss 1.3844163417816162 img loss 1.342877745628357 img loss 1.3764714002609253 img loss 1.3922407627105713 img loss 1.55673086643219 img loss 1.4351896047592163 img loss 1.4264695644378662 img loss 1.460006833076477 img loss 1.406369924545288 img loss 1.4043887853622437 img loss 1.4746010303497314 img loss 1.404180645942688 img loss 1.3283239603042603 img loss 1.2439498901367188 img loss 1.4580672979354858 img loss 1.4843820333480835 img loss 1.4687743186950684 img loss 1.393072247505188 img loss 1.5573430061340332 img loss 1.4347771406173706 img loss 1.3451682329177856 {'loss': 1.4326, 'grad_norm': 0.25532615184783936, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2508883476257324 img loss 1.2030099630355835 img loss 1.226967215538025 img loss 1.2463278770446777 img loss 1.2183353900909424 img loss 1.2028939723968506 img loss 1.235384464263916 img loss 1.2168015241622925 img loss 1.2590450048446655 img loss 1.2628862857818604 img loss 1.222790241241455 img loss 1.1503052711486816 img loss 1.2260453701019287 img loss 1.1653802394866943 img loss 1.1844819784164429 img loss 1.1691036224365234 img loss 1.2193603515625 img loss 1.2853055000305176 img loss 1.3168468475341797 img loss 1.143477201461792 img loss 1.2381744384765625 img loss 1.275681972503662 img loss 1.2222713232040405 img loss 1.289854645729065 img loss 1.2546992301940918 img loss 1.3032422065734863 img loss 1.2526968717575073 img loss 1.2865636348724365 img loss 1.2023876905441284 img loss 1.2346471548080444 img loss 1.1660021543502808 img loss 1.1979146003723145 img loss 1.2433929443359375 img loss 1.1907907724380493 img loss 1.2447905540466309 img loss 1.2558084726333618 img loss 1.1819156408309937 img loss 1.3435062170028687 img loss 1.257096767425537 img loss 1.283389687538147 img loss 1.2353883981704712 img loss 1.1963989734649658 img loss 1.2147678136825562 img loss 1.2120239734649658 img loss 1.2448208332061768 img loss 1.2183277606964111 img loss 1.2832227945327759 img loss 1.2354183197021484 img loss 1.2563121318817139 img loss 1.2081961631774902 img loss 1.2700623273849487 img loss 1.201314926147461 img loss 1.1781469583511353 img loss 1.1929333209991455 img loss 1.2266219854354858 img loss 1.2586429119110107 img loss 1.225358247756958 img loss 1.1984515190124512 img loss 1.2962862253189087 img loss 1.2915761470794678 img loss 1.244544267654419 img loss 1.2428467273712158 img loss 1.183192491531372 img loss 1.241020917892456 img loss 1.2793853282928467 img loss 1.2320181131362915 img loss 1.2089523077011108 img loss 1.208815574645996 img loss 1.2796186208724976 img loss 1.3347309827804565 img loss 1.2289676666259766 img loss 1.2781490087509155 img loss 1.2139670848846436 img loss 1.206732988357544 img loss 1.1955463886260986 img loss 1.161923885345459 img loss 1.3346030712127686 img loss 1.249309778213501 img loss 1.2315090894699097 img loss 1.235137939453125 img loss 1.24579656124115 img loss 1.2371619939804077 img loss 1.210031270980835 img loss 1.266660451889038 img loss 1.234116792678833 img loss 1.207548975944519 img loss 1.3270046710968018 img loss 1.2479145526885986 img loss 1.217908263206482 img loss 1.2551006078720093 img loss 1.2126595973968506 img loss 1.2133054733276367 img loss 1.2516636848449707 img loss 1.2255138158798218 img loss 1.2492597103118896 img loss 1.2626618146896362 img loss 1.2771333456039429 img loss 1.311214804649353 img loss 1.210782527923584 img loss 1.2948110103607178 img loss 1.2662808895111084 img loss 1.2196309566497803 img loss 1.2489275932312012 img loss 1.2745411396026611 img loss 1.1807780265808105 img loss 1.2152512073516846 img loss 1.2886549234390259 img loss 1.2622746229171753 img loss 1.255348801612854 img loss 1.2250617742538452 img loss 1.2613471746444702 img loss 1.2024494409561157 img loss 1.235632300376892 img loss 1.1612380743026733 img loss 1.2049555778503418 img loss 1.2576234340667725 img loss 1.288119912147522 img loss 1.234351634979248img loss 1.2486634254455566 img loss 1.3335593938827515 img loss 1.1617622375488281 img loss 1.2222025394439697 img loss 1.2848438024520874 img loss 1.2261748313903809 img loss 1.214281439781189 img loss 1.2178170680999756 img loss 1.2534186840057373 img loss 1.232947826385498 {'loss': 1.2375, 'grad_norm': 0.21473804116249084, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2175073623657227 img loss 1.3052723407745361 img loss 1.2415851354599 img loss 1.3065887689590454 img loss 1.2807344198226929 img loss 1.1908782720565796 img loss 1.3030327558517456 img loss 1.2442660331726074 img loss 1.204951524734497 img loss 1.2511324882507324 img loss 1.3013232946395874 img loss 1.2336534261703491 img loss 1.2069460153579712 img loss 1.3006197214126587 img loss 1.1915769577026367 img loss 1.2627571821212769 img loss 1.2325866222381592 img loss 1.2478622198104858 img loss 1.296006441116333 img loss 1.2950356006622314 img loss 1.265041708946228 img loss 1.2408415079116821 img loss 1.3032622337341309 img loss 1.307370662689209 img loss 1.2548214197158813 img loss 1.2650028467178345 img loss 1.249693512916565 img loss 1.3429322242736816 img loss 1.2456765174865723 img loss 1.335465669631958 img loss 1.3123462200164795 img loss 1.3489216566085815 img loss 1.3616576194763184 img loss 1.1858596801757812 img loss 1.2937952280044556img loss 1.2538883686065674 img loss 1.2465771436691284 img loss 1.2515554428100586 img loss 1.2637898921966553 img loss 1.2295242547988892 img loss 1.3347400426864624 img loss 1.2451438903808594 img loss 1.2176079750061035 img loss 1.2306946516036987 img loss 1.255450963973999 img loss 1.2641092538833618 img loss 1.3040802478790283 img loss 1.2544125318527222 img loss 1.231176733970642 img loss 1.263775110244751 img loss 1.2383441925048828 img loss 1.3413670063018799 img loss 1.3232430219650269 img loss 1.2579231262207031 img loss 1.3003755807876587 img loss 1.2309397459030151 img loss 1.206283450126648 img loss 1.2556757926940918 img loss 1.2871290445327759 img loss 1.2649986743927002 img loss 1.3044928312301636 img loss 1.2216641902923584 img loss 1.275951862335205 img loss 1.2694969177246094 img loss 1.3499846458435059 img loss 1.302459955215454 img loss 1.146899700164795 img loss 1.3272656202316284 img loss 1.2857301235198975 img loss 1.1884417533874512 img loss 1.203061819076538 img loss 1.3613232374191284 img loss 1.2548755407333374 img loss 1.2647444009780884 img loss 1.3415884971618652 img loss 1.2198970317840576 img loss 1.2809255123138428 img loss 1.259984016418457 img loss 1.256792426109314 img loss 1.334397554397583 img loss 1.2086868286132812 img loss 1.2767302989959717 img loss 1.273406744003296 img loss 1.241709589958191 img loss 1.2759212255477905 img loss 1.2657495737075806 img loss 1.2757656574249268 img loss 1.2576793432235718 img loss 1.3665109872817993 img loss 1.3062818050384521 img loss 1.3664597272872925 img loss 1.23652982711792 img loss 1.2514129877090454 img loss 1.2266181707382202 img loss 1.3410862684249878 img loss 1.2348965406417847 img loss 1.4077035188674927 img loss 1.2041430473327637 img loss 1.3056373596191406 img loss 1.308040976524353 img loss 1.2837834358215332 img loss 1.1613737344741821 img loss 1.3168343305587769 img loss 1.2966254949569702 img loss 1.2856661081314087 img loss 1.2747962474822998 img loss 1.218422293663025 img loss 1.193690299987793 img loss 1.2425785064697266 img loss 1.2535769939422607 img loss 1.3133506774902344 img loss 1.224748969078064 img loss 1.228118658065796 img loss 1.3146193027496338img loss 1.2229546308517456 img loss 1.4349232912063599 img loss 1.1715683937072754 img loss 1.2321453094482422 img loss 1.2542752027511597 img loss 1.2820243835449219 img loss 1.2329938411712646 img loss 1.3097666501998901 img loss 1.3144429922103882 img loss 1.400863528251648 img loss 1.2580240964889526 img loss 1.22653067111969 img loss 1.4251879453659058 img loss 1.2697956562042236 {'loss': 1.2711, 'grad_norm': 0.2795777916908264, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2201216220855713 img loss 1.2514017820358276 img loss 1.139983892440796 img loss 1.220989465713501 img loss 1.2636299133300781 img loss 1.227791428565979 img loss 1.2128292322158813 img loss 1.2971575260162354 img loss 1.1991223096847534 img loss 1.1926498413085938 img loss 1.2053205966949463 img loss 1.2235221862792969 img loss 1.2136237621307373 img loss 1.1980918645858765 img loss 1.2298848628997803 img loss 1.246659517288208 img loss 1.1912620067596436 img loss 1.1952829360961914 img loss 1.2974779605865479 img loss 1.2883248329162598 img loss 1.222936987876892 img loss 1.1892765760421753 img loss 1.1770846843719482 img loss 1.2789950370788574 img loss 1.1838772296905518 img loss 1.2385066747665405 img loss 1.2714626789093018 img loss 1.2487330436706543 img loss 1.2120879888534546 img loss 1.294954538345337 img loss 1.1814993619918823 img loss 1.2338743209838867 img loss 1.1896919012069702 img loss 1.2058589458465576 img loss 1.2137019634246826 img loss 1.1897186040878296 img loss 1.2233338356018066 img loss 1.188320517539978 img loss 1.2188270092010498 img loss 1.2096655368804932 img loss 1.2469840049743652 img loss 1.2362499237060547 img loss 1.2024892568588257 img loss 1.2276290655136108 img loss 1.219429612159729 img loss 1.1667696237564087 img loss 1.2200534343719482 img loss 1.1933029890060425 img loss 1.1765782833099365 img loss 1.2184128761291504 img loss 1.2093806266784668 img loss 1.228793740272522 img loss 1.2437304258346558 img loss 1.282137155532837 img loss 1.1994829177856445 img loss 1.2007852792739868 img loss 1.2319363355636597 img loss 1.2116222381591797 img loss 1.1628868579864502 img loss 1.2663075923919678 img loss 1.2609095573425293 img loss 1.2056277990341187 img loss 1.1821956634521484 img loss 1.22496497631073 img loss 1.2587324380874634 img loss 1.1978195905685425 img loss 1.170804500579834 img loss 1.247555136680603 img loss 1.2149696350097656 img loss 1.1907265186309814 img loss 1.293124794960022 img loss 1.1839793920516968 img loss 1.189711093902588 img loss 1.2124958038330078 img loss 1.222829818725586 img loss 1.2024122476577759 img loss 1.2834669351577759 img loss 1.2464202642440796 img loss 1.2553523778915405 img loss 1.2255610227584839 img loss 1.2073167562484741 img loss 1.209480881690979 img loss 1.2441058158874512 img loss 1.176090121269226 img loss 1.2036538124084473 img loss 1.2764959335327148 img loss 1.261420488357544 img loss 1.249611735343933 img loss 1.2523504495620728 img loss 1.1973135471343994 img loss 1.191606044769287 img loss 1.1882567405700684 img loss 1.2549713850021362 img loss 1.279578447341919 img loss 1.2711267471313477 img loss 1.1780937910079956 img loss 1.1659083366394043 img loss 1.254110336303711 img loss 1.2744367122650146 img loss 1.2093536853790283 img loss 1.273909091949463 img loss 1.2150577306747437 img loss 1.200969934463501 img loss 1.2130550146102905 img loss 1.211372971534729 img loss 1.2105631828308105 img loss 1.2712881565093994 img loss 1.2467883825302124 img loss 1.2171287536621094img loss 1.2588598728179932img loss 1.1622023582458496 img loss 1.208264946937561 img loss 1.2626053094863892 img loss 1.2151497602462769 img loss 1.1737239360809326 img loss 1.2189762592315674 img loss 1.1871780157089233 img loss 1.1975563764572144 img loss 1.212274432182312 img loss 1.23306143283844 img loss 1.201581358909607 img loss 1.2253577709197998 img loss 1.2860820293426514 img loss 1.2166508436203003 img loss 1.1871159076690674 img loss 1.2470567226409912 img loss 1.1602375507354736 img loss 1.1755765676498413 {'loss': 1.2214, 'grad_norm': 0.2320808321237564, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.189354419708252 img loss 1.2836081981658936 img loss 1.1886794567108154 img loss 1.2545875310897827 img loss 1.279192328453064 img loss 1.2990673780441284 img loss 1.1222813129425049 img loss 1.1822845935821533 img loss 1.2170732021331787 img loss 1.2344756126403809 img loss 1.2643613815307617 img loss 1.1855722665786743 img loss 1.2092841863632202 img loss 1.2677141427993774 img loss 1.3351187705993652 img loss 1.2548575401306152 img loss 1.2321889400482178 img loss 1.3981451988220215 img loss 1.279261827468872 img loss 1.1183274984359741 img loss 1.217233419418335 img loss 1.1187684535980225 img loss 1.2836881875991821 img loss 1.2164883613586426 img loss 1.28243887424469 img loss 1.2041897773742676 img loss 1.1838493347167969 img loss 1.2213664054870605 img loss 1.1617577075958252 img loss 1.3343262672424316 img loss 1.2048578262329102 img loss 1.2219434976577759 img loss 1.2458508014678955 img loss 1.254097819328308 img loss 1.2641701698303223 img loss 1.1505184173583984 img loss 1.2328115701675415 img loss 1.2343391180038452 img loss 1.2063121795654297 img loss 1.2257685661315918 img loss 1.1572750806808472 img loss 1.1969741582870483 img loss 1.1909372806549072 img loss 1.1514620780944824 img loss 1.1919914484024048 img loss 1.2583999633789062 img loss 1.1690915822982788 img loss 1.205532431602478 img loss 1.174433708190918 img loss 1.1775768995285034 img loss 1.2102527618408203 img loss 1.2598713636398315 img loss 1.2273987531661987 img loss 1.2479183673858643 img loss 1.2329120635986328 img loss 1.300228476524353 img loss 1.2487682104110718 img loss 1.1860897541046143 img loss 1.279457688331604 img loss 1.285815715789795 img loss 1.2927279472351074 img loss 1.2287788391113281 img loss 1.155609130859375 img loss 1.2411152124404907 img loss 1.2044432163238525 img loss 1.1693394184112549 img loss 1.2380619049072266 img loss 1.2534141540527344 img loss 1.2620892524719238 img loss 1.1792763471603394 img loss 1.2728217840194702 img loss 1.2034051418304443 img loss 1.2581344842910767 img loss 1.2544684410095215 img loss 1.2952369451522827 img loss 1.2238069772720337 img loss 1.1735540628433228 img loss 1.234796404838562 img loss 1.2426934242248535img loss 1.27056884765625 img loss 1.2759490013122559 img loss 1.1773823499679565 img loss 1.2959952354431152 img loss 1.2756470441818237 img loss 1.1966018676757812 img loss 1.2776830196380615 img loss 1.258771538734436 img loss 1.2572364807128906 img loss 1.2970573902130127 img loss 1.2057340145111084 img loss 1.2943540811538696 img loss 1.214335322380066 img loss 1.2179558277130127 img loss 1.3688006401062012 img loss 1.2067726850509644 img loss 1.1893441677093506 img loss 1.2491841316223145 img loss 1.2045046091079712 img loss 1.4001634120941162 img loss 1.255137324333191 img loss 1.2745144367218018 img loss 1.2849234342575073 img loss 1.2440394163131714 img loss 1.2602837085723877 img loss 1.3076832294464111 img loss 1.2438664436340332 img loss 1.26375150680542 img loss 1.260515809059143 img loss 1.2549095153808594 img loss 1.266401767730713 img loss 1.2491426467895508 img loss 1.2323250770568848 img loss 1.2845637798309326 img loss 1.2767390012741089 img loss 1.2994909286499023 img loss 1.1859285831451416 img loss 1.2323389053344727 img loss 1.275033712387085 img loss 1.2323178052902222 img loss 1.278956651687622 img loss 1.315986156463623 img loss 1.2226704359054565 img loss 1.2106342315673828 img loss 1.221930980682373 img loss 1.2501444816589355 img loss 1.2471121549606323 img loss 1.243720531463623 img loss 1.2039093971252441 {'loss': 1.2384, 'grad_norm': 0.2651495039463043, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1881554126739502 img loss 1.1625785827636719 img loss 1.2979001998901367 img loss 1.2677555084228516 img loss 1.139401912689209 img loss 1.1961997747421265 img loss 1.3782594203948975 img loss 1.2431341409683228 img loss 1.1598554849624634 img loss 1.1293220520019531 img loss 1.2360881567001343 img loss 1.2460846900939941 img loss 1.2411965131759644 img loss 1.2573703527450562 img loss 1.162208914756775 img loss 1.1857980489730835 img loss 1.3073863983154297 img loss 1.3117159605026245 img loss 1.2006208896636963 img loss 1.1545170545578003 img loss 1.150216817855835 img loss 1.2008068561553955 img loss 1.311600923538208 img loss 1.2384679317474365 img loss 1.1841602325439453 img loss 1.2525157928466797 img loss 1.1808232069015503 img loss 1.2125434875488281 img loss 1.190307378768921 img loss 1.2110366821289062 img loss 1.2742069959640503 img loss 1.298989176750183 img loss 1.146643877029419 img loss 1.145660638809204 img loss 1.1855920553207397 img loss 1.3239834308624268 img loss 1.2533509731292725 img loss 1.240435242652893 img loss 1.1705960035324097 img loss 1.2081825733184814 img loss 1.3601521253585815 img loss 1.1161551475524902 img loss 1.2998663187026978 img loss 1.2636346817016602 img loss 1.1983975172042847 img loss 1.2593579292297363 img loss 1.2678478956222534 img loss 1.2557687759399414 img loss 1.2501752376556396 img loss 1.2145192623138428 img loss 1.1676429510116577 img loss 1.151404857635498 img loss 1.2372874021530151 img loss 1.1918967962265015 img loss 1.1875797510147095 img loss 1.2080066204071045 img loss 1.174720048904419 img loss 1.255685806274414 img loss 1.1679623126983643 img loss 1.1712654829025269 img loss 1.2139430046081543 img loss 1.300135612487793 img loss 1.1674458980560303 img loss 1.2600160837173462 img loss 1.2579326629638672 img loss 1.1423277854919434 img loss 1.161996603012085 img loss 1.1136690378189087 img loss 1.2860257625579834 img loss 1.240674614906311 img loss 1.2047882080078125 img loss 1.1893384456634521 img loss 1.1918835639953613 img loss 1.2567598819732666 img loss 1.3209967613220215 img loss 1.23990797996521 img loss 1.1948579549789429 img loss 1.2078919410705566 img loss 1.179159164428711 img loss 1.3370862007141113 img loss 1.2667784690856934 img loss 1.1815179586410522 img loss 1.1942392587661743 img loss 1.2111574411392212 img loss 1.263771653175354 img loss 1.2134671211242676 img loss 1.2667595148086548 img loss 1.1811373233795166 img loss 1.2325119972229004 img loss 1.2187345027923584 img loss 1.2453151941299438 img loss 1.209922432899475 img loss 1.2843985557556152 img loss 1.2678133249282837 img loss 1.2205854654312134 img loss 1.2368276119232178 img loss 1.3142375946044922 img loss 1.237260341644287 img loss 1.237809419631958 img loss 1.2015001773834229 img loss 1.2365974187850952 img loss 1.3323490619659424 img loss 1.3026634454727173 img loss 1.28499436378479 img loss 1.1996283531188965 img loss 1.1831035614013672 img loss 1.1583950519561768 img loss 1.2406896352767944 img loss 1.286559820175171 img loss 1.2670178413391113 img loss 1.136086344718933 img loss 1.2278931140899658 img loss 1.2316772937774658 img loss 1.2356928586959839 img loss 1.2784656286239624 img loss 1.2188949584960938 img loss 1.318432331085205 img loss 1.1855286359786987 img loss 1.2220721244812012 img loss 1.2659118175506592 img loss 1.2409961223602295 img loss 1.2227925062179565 img loss 1.2420427799224854 img loss 1.2086422443389893 img loss 1.2165253162384033 img loss 1.292363166809082 img loss 1.3331389427185059 img loss 1.3978430032730103 {'loss': 1.2294, 'grad_norm': 0.26583337783813477, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2553316354751587 img loss 1.2288093566894531 img loss 1.2931797504425049 img loss 1.1536718606948853 img loss 1.2645390033721924 img loss 1.247531533241272 img loss 1.1407114267349243 img loss 1.1758379936218262 img loss 1.2219232320785522 img loss 1.2270710468292236 img loss 1.159583568572998 img loss 1.2829434871673584 img loss 1.154073715209961 img loss 1.2674449682235718 img loss 1.1836333274841309 img loss 1.1982827186584473 img loss 1.1841061115264893 img loss 1.1674669981002808 img loss 1.2072702646255493 img loss 1.313200831413269 img loss 1.1867789030075073 img loss 1.0677337646484375 img loss 1.1785892248153687 img loss 1.232125997543335 img loss 1.2174137830734253 img loss 1.2366328239440918 img loss 1.2030214071273804 img loss 1.108771800994873 img loss 1.189592957496643 img loss 1.1864629983901978 img loss 1.1983013153076172 img loss 1.2337106466293335 img loss 1.2728934288024902 img loss 1.2173980474472046 img loss 1.2337493896484375 img loss 1.213810920715332 img loss 1.1718953847885132 img loss 1.235540747642517 img loss 1.2328904867172241 img loss 1.1762291193008423 img loss 1.1778960227966309 img loss 1.2036596536636353 img loss 1.1820971965789795 img loss 1.202486276626587 img loss 1.1590867042541504 img loss 1.1595458984375 img loss 1.173670768737793 img loss 1.1582279205322266 img loss 1.1450951099395752 img loss 1.1818041801452637 img loss 1.1875581741333008 img loss 1.1360726356506348 img loss 1.2290159463882446 img loss 1.230111002922058 img loss 1.1960417032241821 img loss 1.2031176090240479 img loss 1.212450385093689 img loss 1.170693278312683 img loss 1.1493841409683228 img loss 1.1876518726348877 img loss 1.2069065570831299 img loss 1.2409886121749878 img loss 1.1806926727294922 img loss 1.276426076889038 img loss 1.134322166442871 img loss 1.2904232740402222 img loss 1.165616750717163 img loss 1.1836026906967163 img loss 1.2300567626953125 img loss 1.2231756448745728 img loss 1.2188457250595093 img loss 1.215235948562622 img loss 1.1601786613464355 img loss 1.1643805503845215 img loss 1.1763657331466675 img loss 1.1957929134368896 img loss 1.2326290607452393 img loss 1.1684750318527222 img loss 1.294734001159668 img loss 1.1935395002365112 img loss 1.2587239742279053 img loss 1.2365363836288452 img loss 1.185790777206421 img loss 1.2344880104064941 img loss 1.1870017051696777 img loss 1.1977500915527344 img loss 1.2064130306243896 img loss 1.2432494163513184 img loss 1.1262025833129883 img loss 1.1690186262130737 img loss 1.2948079109191895 img loss 1.1840226650238037 img loss 1.2083909511566162 img loss 1.152848482131958 img loss 1.2155271768569946 img loss 1.1703145503997803 img loss 1.2124065160751343 img loss 1.2264950275421143 img loss 1.2311636209487915 img loss 1.1861109733581543 img loss 1.2017029523849487 img loss 1.201669692993164 img loss 1.2728145122528076 img loss 1.2563109397888184 img loss 1.1719870567321777 img loss 1.2207428216934204 img loss 1.1595475673675537 img loss 1.1582121849060059 img loss 1.169156789779663 img loss 1.1538045406341553 img loss 1.2137192487716675 img loss 1.1599642038345337 img loss 1.1517541408538818 img loss 1.3232131004333496 img loss 1.3035706281661987 img loss 1.1392273902893066 img loss 1.1744149923324585 img loss 1.1944479942321777 img loss 1.1780211925506592 img loss 1.2308449745178223 img loss 1.2406879663467407 img loss 1.223946452140808 img loss 1.1713979244232178 img loss 1.252267599105835 img loss 1.2630207538604736 img loss 1.2547242641448975 img loss 1.2482717037200928 img loss 1.2163848876953125 {'loss': 1.2043, 'grad_norm': 0.21906930208206177, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2494362592697144 img loss 1.2347255945205688 img loss 1.251327395439148 img loss 1.2034242153167725 img loss 1.258152723312378 img loss 1.2386207580566406 img loss 1.2375465631484985 img loss 1.2488679885864258 img loss 1.28488028049469 img loss 1.2748479843139648 img loss 1.2945342063903809 img loss 1.3021283149719238 img loss 1.1987268924713135 img loss 1.2735108137130737 img loss 1.232203722000122 img loss 1.3059738874435425 img loss 1.2091556787490845 img loss 1.3337613344192505 img loss 1.2196356058120728 img loss 1.292548656463623 img loss 1.254197597503662 img loss 1.2594256401062012img loss 1.2171577215194702 img loss 1.1778665781021118 img loss 1.1924558877944946 img loss 1.2334280014038086 img loss 1.2287412881851196 img loss 1.2044901847839355 img loss 1.209969162940979 img loss 1.2345194816589355 img loss 1.235304594039917 img loss 1.2613041400909424 img loss 1.2273058891296387 img loss 1.2514749765396118 img loss 1.1580358743667603 img loss 1.2292330265045166 img loss 1.3145861625671387 img loss 1.2192732095718384 img loss 1.2300080060958862 img loss 1.239145040512085 img loss 1.233224868774414 img loss 1.1832586526870728 img loss 1.2394300699234009 img loss 1.2044727802276611 img loss 1.2046678066253662 img loss 1.2734348773956299 img loss 1.2774533033370972 img loss 1.2088804244995117 img loss 1.2825047969818115 img loss 1.2204046249389648 img loss 1.232404351234436 img loss 1.2094100713729858 img loss 1.2007503509521484 img loss 1.21567964553833 img loss 1.2114390134811401 img loss 1.2493289709091187 img loss 1.346035122871399 img loss 1.279436707496643 img loss 1.2568575143814087img loss 1.368394136428833 img loss 1.2058508396148682 img loss 1.2433347702026367 img loss 1.2944366931915283 img loss 1.2521589994430542 img loss 1.2102394104003906 img loss 1.2639784812927246 img loss 1.195136308670044 img loss 1.235080599784851 img loss 1.2768863439559937 img loss 1.2755241394042969 img loss 1.2201414108276367 img loss 1.287848711013794 img loss 1.2341673374176025 img loss 1.2922499179840088 img loss 1.401097059249878 img loss 1.1973304748535156 img loss 1.3017208576202393 img loss 1.2525166273117065 img loss 1.296942114830017 img loss 1.2072608470916748 img loss 1.3629984855651855 img loss 1.2870992422103882 img loss 1.2310068607330322 img loss 1.2150245904922485 img loss 1.2690086364746094 img loss 1.2604354619979858 img loss 1.205503225326538 img loss 1.2046667337417603 img loss 1.1773123741149902 img loss 1.2267036437988281 img loss 1.1545288562774658 img loss 1.2509090900421143 img loss 1.2012197971343994 img loss 1.2224209308624268 img loss 1.2207456827163696 img loss 1.2641693353652954 img loss 1.2237627506256104 img loss 1.1901531219482422 img loss 1.2190347909927368 img loss 1.2235840559005737 img loss 1.277413010597229 img loss 1.2400603294372559 img loss 1.1898090839385986 img loss 1.2970118522644043 img loss 1.2127337455749512 img loss 1.2424243688583374 img loss 1.2988154888153076 img loss 1.1955935955047607 img loss 1.2766042947769165 img loss 1.2897590398788452 img loss 1.201179027557373img loss 1.2719545364379883 img loss 1.2489515542984009 img loss 1.1253349781036377 img loss 1.2142728567123413 img loss 1.205256462097168 img loss 1.272030234336853 img loss 1.2466940879821777 img loss 1.2839187383651733 img loss 1.2879014015197754 img loss 1.235747218132019 img loss 1.1755614280700684 img loss 1.2665942907333374 img loss 1.3010358810424805 img loss 1.2160414457321167 img loss 1.2390680313110352 img loss 1.2678476572036743 img loss 1.2145699262619019 {'loss': 1.2435, 'grad_norm': 0.23890073597431183, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1753162145614624 img loss 1.2593512535095215 img loss 1.2595398426055908 img loss 1.3291059732437134 img loss 1.3210266828536987 img loss 1.244211196899414 img loss 1.2819546461105347 img loss 1.2879528999328613 img loss 1.2039752006530762 img loss 1.2599436044692993 img loss 1.2867953777313232 img loss 1.209532380104065 img loss 1.2405331134796143 img loss 1.290969729423523 img loss 1.312879204750061 img loss 1.327867865562439 img loss 1.3327367305755615 img loss 1.3137744665145874 img loss 1.2913148403167725 img loss 1.205668330192566 img loss 1.3917239904403687 img loss 1.237160086631775 img loss 1.3280607461929321 img loss 1.3624144792556763 img loss 1.2569859027862549 img loss 1.2735402584075928 img loss 1.3415547609329224 img loss 1.3208415508270264 img loss 1.3518118858337402 img loss 1.2795021533966064 img loss 1.322080373764038 img loss 1.3424209356307983 img loss 1.3522404432296753 img loss 1.2408647537231445 img loss 1.3098424673080444 img loss 1.4305318593978882 img loss 1.3107850551605225 img loss 1.2086530923843384 img loss 1.2668739557266235 img loss 1.322483777999878 img loss 1.355458378791809 img loss 1.2393906116485596 img loss 1.3468143939971924 img loss 1.3533703088760376 img loss 1.2888526916503906 img loss 1.3080947399139404 img loss 1.2968257665634155 img loss 1.2713251113891602 img loss 1.199094533920288 img loss 1.1842505931854248 img loss 1.2663367986679077 img loss 1.4321208000183105 img loss 1.29265558719635 img loss 1.3558385372161865 img loss 1.4632259607315063 img loss 1.2076618671417236 img loss 1.2199313640594482 img loss 1.236946940422058 img loss 1.229936122894287 img loss 1.2747143507003784 img loss 1.2470768690109253 img loss 1.3031418323516846 img loss 1.2752056121826172 img loss 1.3120096921920776 img loss 1.3298498392105103 img loss 1.426465630531311 img loss 1.3184657096862793 img loss 1.2708766460418701 img loss 1.3414723873138428 img loss 1.364301085472107 img loss 1.2728724479675293 img loss 1.255137324333191 img loss 1.2965903282165527 img loss 1.2619825601577759 img loss 1.2545171976089478 img loss 1.2956767082214355 img loss 1.290960669517517 img loss 1.3207744359970093 img loss 1.274381399154663 img loss 1.346648931503296 img loss 1.3121693134307861 img loss 1.3911817073822021 img loss 1.318185806274414 img loss 1.3228566646575928 img loss 1.3234926462173462 img loss 1.2856075763702393 img loss 1.2557743787765503 img loss 1.2537354230880737 img loss 1.3245372772216797 img loss 1.2146955728530884 img loss 1.253542184829712 img loss 1.1910501718521118 img loss 1.2716602087020874 img loss 1.2380855083465576 img loss 1.2995679378509521 img loss 1.269365668296814 img loss 1.2309573888778687 img loss 1.302729845046997 img loss 1.3574154376983643 img loss 1.363772988319397 img loss 1.23430597782135 img loss 1.2502484321594238 img loss 1.3994395732879639 img loss 1.1965388059616089 img loss 1.4008231163024902 img loss 1.3401323556900024 img loss 1.2820279598236084 img loss 1.3258546590805054 img loss 1.2898685932159424 img loss 1.2957185506820679 img loss 1.3307900428771973 img loss 1.194387435913086 img loss 1.3105783462524414 img loss 1.39988112449646 img loss 1.3277013301849365 img loss 1.283560037612915 img loss 1.268823504447937 img loss 1.3143212795257568 img loss 1.290509819984436 img loss 1.255178451538086 img loss 1.3481544256210327 img loss 1.2598440647125244 img loss 1.1958338022232056 img loss 1.234169363975525 img loss 1.2213228940963745 img loss 1.3980413675308228 img loss 1.307547926902771 img loss 1.2556071281433105 {'loss': 1.2934, 'grad_norm': 0.2425374537706375, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4504921436309814 img loss 1.5075558423995972 img loss 1.4872130155563354 img loss 1.3820778131484985 img loss 1.2823734283447266 img loss 1.5184155702590942 img loss 1.5502026081085205 img loss 1.5241116285324097 img loss 1.4177391529083252 img loss 1.5819497108459473 img loss 1.5719959735870361 img loss 1.5021016597747803 img loss 1.5516793727874756 img loss 1.450684905052185 img loss 1.4299709796905518 img loss 1.3772395849227905 img loss 1.6157532930374146 img loss 1.4375243186950684 img loss 1.5205109119415283 img loss 1.3661246299743652 img loss 1.4758638143539429 img loss 1.4464136362075806 img loss 1.52174711227417 img loss 1.5854321718215942 img loss 1.4362112283706665 img loss 1.4606744050979614 img loss 1.535144567489624 img loss 1.5409184694290161 img loss 1.5542041063308716 img loss 1.369488000869751 img loss 1.4798007011413574 img loss 1.3969405889511108 img loss 1.6324546337127686 img loss 1.454832911491394 img loss 1.4490463733673096 img loss 1.5667916536331177 img loss 1.5378917455673218 img loss 1.4377974271774292 img loss 1.5839645862579346 img loss 1.4740184545516968 img loss 1.507707118988037 img loss 1.4647315740585327 img loss 1.3833649158477783 img loss 1.545292615890503 img loss 1.4639756679534912 img loss 1.5221744775772095 img loss 1.4376896619796753 img loss 1.5861696004867554 img loss 1.5157597064971924 img loss 1.4880404472351074 img loss 1.576472520828247 img loss 1.4957419633865356 img loss 1.5346500873565674 img loss 1.3954123258590698 img loss 1.3800209760665894 img loss 1.5220717191696167 img loss 1.3864452838897705 img loss 1.3868435621261597 img loss 1.558040738105774 img loss 1.5384794473648071 img loss 1.4765650033950806 img loss 1.4748189449310303 img loss 1.524685025215149 img loss 1.4045064449310303 img loss 1.4647661447525024 img loss 1.5409175157546997 img loss 1.4673969745635986 img loss 1.5611793994903564 img loss 1.4662625789642334 img loss 1.6249566078186035 img loss 1.5282032489776611 img loss 1.4347727298736572 img loss 1.5697120428085327 img loss 1.4312325716018677 img loss 1.5219509601593018 img loss 1.383091688156128 img loss 1.4840134382247925 img loss 1.432494044303894 img loss 1.5422275066375732 img loss 1.5622478723526 img loss 1.3976703882217407 img loss 1.5315508842468262 img loss 1.453568935394287 img loss 1.4082133769989014 img loss 1.5811597108840942 img loss 1.5000584125518799 img loss 1.3767834901809692 img loss 1.5160599946975708 img loss 1.5703634023666382 img loss 1.4982812404632568 img loss 1.6023224592208862 img loss 1.4409406185150146 img loss 1.3538905382156372 img loss 1.3721014261245728 img loss 1.4621270895004272 img loss 1.5765396356582642 img loss 1.363002061843872 img loss 1.4896562099456787 img loss 1.4923341274261475 img loss 1.3785754442214966 img loss 1.4669560194015503 img loss 1.4155147075653076 img loss 1.4079374074935913 img loss 1.593514084815979 img loss 1.460906744003296 img loss 1.468253493309021 img loss 1.560014247894287 img loss 1.4417952299118042 img loss 1.4357014894485474 img loss 1.4986149072647095 img loss 1.672554612159729 img loss 1.5444890260696411 img loss 1.3762338161468506 img loss 1.4643579721450806 img loss 1.4191021919250488 img loss 1.463018536567688 img loss 1.5024915933609009 img loss 1.4758960008621216 img loss 1.4836018085479736 img loss 1.3458541631698608 img loss 1.5326660871505737 img loss 1.4270398616790771 img loss 1.556456446647644 img loss 1.4982068538665771 img loss 1.499965786933899 img loss 1.4785830974578857 img loss 1.4878798723220825 img loss 1.6007238626480103 {'loss': 1.4843, 'grad_norm': 0.381000816822052, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1919147968292236 img loss 1.191481113433838 img loss 1.2296301126480103 img loss 1.2200539112091064 img loss 1.2836064100265503 img loss 1.2146282196044922 img loss 1.2690279483795166 img loss 1.2138783931732178 img loss 1.2256792783737183 img loss 1.2265037298202515 img loss 1.2625350952148438 img loss 1.189880132675171 img loss 1.2427480220794678 img loss 1.243113398551941 img loss 1.2162212133407593 img loss 1.2474106550216675 img loss 1.176425814628601 img loss 1.3286259174346924 img loss 1.176509141921997 img loss 1.254020094871521 img loss 1.1652541160583496 img loss 1.1974506378173828 img loss 1.2251986265182495 img loss 1.209136962890625 img loss 1.2167692184448242 img loss 1.3086060285568237 img loss 1.2019188404083252 img loss 1.2529332637786865 img loss 1.1789765357971191 img loss 1.2087751626968384 img loss 1.19585120677948 img loss 1.2097469568252563 img loss 1.2198867797851562 img loss 1.2269281148910522 img loss 1.2331527471542358 img loss 1.1863685846328735 img loss 1.218156099319458 img loss 1.1264235973358154 img loss 1.2139739990234375 img loss 1.2909293174743652 img loss 1.2019964456558228 img loss 1.1843305826187134 img loss 1.239269495010376 img loss 1.2042759656906128 img loss 1.2756141424179077 img loss 1.1977286338806152 img loss 1.3101223707199097 img loss 1.227770447731018img loss 1.1798385381698608 img loss 1.2053359746932983 img loss 1.3377549648284912 img loss 1.272291898727417 img loss 1.2776820659637451 img loss 1.1663734912872314 img loss 1.1975802183151245 img loss 1.228204607963562 img loss 1.2262426614761353 img loss 1.250679612159729 img loss 1.1991058588027954 img loss 1.2840721607208252 img loss 1.2127083539962769 img loss 1.1901495456695557 img loss 1.2503480911254883 img loss 1.2430824041366577 img loss 1.238166332244873 img loss 1.2661665678024292 img loss 1.199446439743042 img loss 1.2663767337799072 img loss 1.1953139305114746 img loss 1.2323623895645142 img loss 1.2158068418502808 img loss 1.241678237915039 img loss 1.2326236963272095 img loss 1.2134052515029907 img loss 1.265333890914917 img loss 1.2173118591308594 img loss 1.2316776514053345 img loss 1.2360643148422241 img loss 1.1980371475219727 img loss 1.1858594417572021 img loss 1.277854323387146 img loss 1.2031221389770508 img loss 1.3115589618682861 img loss 1.222002625465393 img loss 1.2018718719482422 img loss 1.219208002090454 img loss 1.2049707174301147 img loss 1.2196907997131348 img loss 1.1715102195739746 img loss 1.2455806732177734 img loss 1.257814645767212 img loss 1.1788737773895264 img loss 1.202003836631775 img loss 1.2328107357025146 img loss 1.2235475778579712 img loss 1.2063359022140503 img loss 1.2198501825332642 img loss 1.196460247039795 img loss 1.1923764944076538 img loss 1.2466720342636108 img loss 1.2767103910446167 img loss 1.2513923645019531 img loss 1.2848402261734009 img loss 1.1512634754180908 img loss 1.2465072870254517 img loss 1.2487239837646484 img loss 1.2320772409439087 img loss 1.2884960174560547 img loss 1.2399721145629883 img loss 1.258732557296753 img loss 1.2102482318878174 img loss 1.257516860961914 img loss 1.1939926147460938 img loss 1.2254794836044312 img loss 1.1877583265304565 img loss 1.2939649820327759 img loss 1.2335957288742065 img loss 1.2061642408370972 img loss 1.3042380809783936 img loss 1.252838134765625 img loss 1.2282911539077759 img loss 1.2766636610031128 img loss 1.1811491250991821 img loss 1.2004259824752808 img loss 1.1672419309616089 img loss 1.1838539838790894 img loss 1.2034010887145996 img loss 1.2280491590499878 {'loss': 1.2268, 'grad_norm': 0.3140020966529846, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2458233833312988 img loss 1.136449933052063 img loss 1.1809583902359009 img loss 1.2515039443969727 img loss 1.2196056842803955 img loss 1.1895042657852173 img loss 1.1558098793029785 img loss 1.2041757106781006 img loss 1.2563942670822144 img loss 1.1948604583740234 img loss 1.1664941310882568 img loss 1.2370001077651978 img loss 1.190926432609558 img loss 1.1888234615325928 img loss 1.1736799478530884 img loss 1.1871610879898071 img loss 1.2509005069732666 img loss 1.2877943515777588 img loss 1.1984795331954956 img loss 1.29206120967865 img loss 1.3065670728683472 img loss 1.2991513013839722 img loss 1.1691772937774658 img loss 1.201532006263733 img loss 1.2220492362976074 img loss 1.22984778881073 img loss 1.2380082607269287 img loss 1.2640876770019531 img loss 1.263769507408142 img loss 1.1521002054214478 img loss 1.2478110790252686 img loss 1.2248777151107788 img loss 1.171335220336914 img loss 1.1344523429870605 img loss 1.224731206893921 img loss 1.2411584854125977 img loss 1.2021926641464233 img loss 1.2460397481918335 img loss 1.2106547355651855 img loss 1.1840851306915283 img loss 1.2230966091156006 img loss 1.2063241004943848 img loss 1.1988768577575684 img loss 1.184192419052124 img loss 1.2186838388442993 img loss 1.1761327981948853 img loss 1.1723731756210327 img loss 1.2102851867675781 img loss 1.2349870204925537 img loss 1.2059999704360962 img loss 1.1921651363372803 img loss 1.2526772022247314 img loss 1.2579983472824097 img loss 1.1561291217803955 img loss 1.1863086223602295 img loss 1.1774160861968994 img loss 1.2043507099151611 img loss 1.1937087774276733 img loss 1.2622817754745483 img loss 1.2317774295806885 img loss 1.1909630298614502 img loss 1.1734347343444824 img loss 1.1510818004608154 img loss 1.294331431388855 img loss 1.267710566520691 img loss 1.1688207387924194 img loss 1.1619317531585693 img loss 1.1374001502990723 img loss 1.2605242729187012 img loss 1.2150013446807861 img loss 1.2300541400909424 img loss 1.2884562015533447 img loss 1.239933729171753 img loss 1.2166190147399902 img loss 1.1999037265777588 img loss 1.1320276260375977 img loss 1.1986817121505737 img loss 1.1685549020767212 img loss 1.2512092590332031 img loss 1.2234418392181396 img loss 1.1886897087097168 img loss 1.2599008083343506 img loss 1.2002079486846924 img loss 1.2511199712753296 img loss 1.1987659931182861 img loss 1.1668744087219238 img loss 1.1782922744750977 img loss 1.1693918704986572 img loss 1.1764265298843384 img loss 1.153543472290039 img loss 1.2334095239639282 img loss 1.1990941762924194 img loss 1.160733699798584 img loss 1.2199790477752686 img loss 1.2063977718353271 img loss 1.2249670028686523 img loss 1.1606453657150269 img loss 1.1899679899215698 img loss 1.2413828372955322 img loss 1.1521060466766357 img loss 1.2593258619308472 img loss 1.2268651723861694 img loss 1.2924216985702515 img loss 1.2170066833496094 img loss 1.156376838684082 img loss 1.2230240106582642 img loss 1.1993563175201416 img loss 1.2229565382003784 img loss 1.2370823621749878 img loss 1.2302719354629517 img loss 1.1981430053710938 img loss 1.264049768447876 img loss 1.2312006950378418 img loss 1.2423429489135742 img loss 1.2891956567764282 img loss 1.3130009174346924 img loss 1.2428007125854492 img loss 1.2186603546142578 img loss 1.1946595907211304 img loss 1.1522841453552246 img loss 1.2432736158370972 img loss 1.1781556606292725 img loss 1.154488444328308 img loss 1.2002071142196655 img loss 1.250033974647522 img loss 1.3004167079925537 img loss 1.1757837533950806 img loss 1.163370132446289 {'loss': 1.2122, 'grad_norm': 0.24750159680843353, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.405368685722351 img loss 1.5037504434585571 img loss 1.4518468379974365 img loss 1.4669182300567627 img loss 1.5785136222839355 img loss 1.432798147201538 img loss 1.4063860177993774 img loss 1.4601705074310303 img loss 1.3973630666732788 img loss 1.391065239906311 img loss 1.4204727411270142 img loss 1.3277758359909058 img loss 1.437751054763794 img loss 1.5020291805267334 img loss 1.4223039150238037 img loss 1.4318886995315552 img loss 1.328072428703308 img loss 1.4269039630889893 img loss 1.326575756072998 img loss 1.3771315813064575 img loss 1.445780873298645 img loss 1.4280976057052612 img loss 1.3925292491912842 img loss 1.412322759628296 img loss 1.2917146682739258 img loss 1.3375455141067505 img loss 1.2325376272201538 img loss 1.4041370153427124 img loss 1.4260480403900146 img loss 1.4227511882781982 img loss 1.3881884813308716 img loss 1.3396742343902588 img loss 1.4386299848556519 img loss 1.4506018161773682 img loss 1.4509607553482056 img loss 1.3192161321640015 img loss 1.447457194328308 img loss 1.3158773183822632 img loss 1.2797030210494995 img loss 1.3747469186782837 img loss 1.5103296041488647 img loss 1.2801918983459473 img loss 1.2787175178527832 img loss 1.4298866987228394 img loss 1.3809850215911865 img loss 1.4110591411590576 img loss 1.5490132570266724 img loss 1.4269315004348755 img loss 1.4445106983184814 img loss 1.5293920040130615 img loss 1.4955639839172363 img loss 1.4635626077651978 img loss 1.3188574314117432 img loss 1.4257930517196655 img loss 1.4678356647491455 img loss 1.4875328540802002 img loss 1.3703261613845825 img loss 1.4081394672393799 img loss 1.392498254776001 img loss 1.324141263961792 img loss 1.4440282583236694 img loss 1.2864875793457031img loss 1.4023783206939697 img loss 1.5012081861495972 img loss 1.5030834674835205 img loss 1.3880512714385986 img loss 1.4392144680023193 img loss 1.3705010414123535 img loss 1.4607253074645996 img loss 1.5030343532562256 img loss 1.540028691291809 img loss 1.433122992515564 img loss 1.3379905223846436 img loss 1.3111339807510376 img loss 1.32266104221344 img loss 1.4620623588562012 img loss 1.434611201286316 img loss 1.4144366979599 img loss 1.3141436576843262 img loss 1.3656316995620728 img loss 1.4231679439544678 img loss 1.4534457921981812 img loss 1.4238603115081787 img loss 1.221057653427124 img loss 1.4477964639663696 img loss 1.4938979148864746 img loss 1.4420605897903442 img loss 1.3144100904464722 img loss 1.3756722211837769 img loss 1.4440152645111084 img loss 1.4311559200286865 img loss 1.299058437347412 img loss 1.3938905000686646 img loss 1.3959686756134033 img loss 1.304154634475708 img loss 1.4605355262756348 img loss 1.489497423171997 img loss 1.4142248630523682 img loss 1.427214503288269 img loss 1.4647263288497925 img loss 1.3148856163024902 img loss 1.4695334434509277 img loss 1.3883274793624878 img loss 1.6455765962600708 img loss 1.4298144578933716 img loss 1.5449069738388062 img loss 1.3429980278015137 img loss 1.4963966608047485 img loss 1.556636095046997 img loss 1.3872143030166626 img loss 1.4777168035507202 img loss 1.435046911239624 img loss 1.39619779586792 img loss 1.441421627998352 img loss 1.3914159536361694 img loss 1.411741852760315 img loss 1.4552620649337769 img loss 1.5506998300552368 img loss 1.3625524044036865 img loss 1.4502959251403809 img loss 1.3646719455718994 img loss 1.3818973302841187 img loss 1.465716004371643 img loss 1.4790987968444824 img loss 1.5521680116653442 img loss 1.517564296722412 img loss 1.521309494972229 img loss 1.336470127105713 {'loss': 1.4173, 'grad_norm': 0.22834563255310059, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4885138273239136 img loss 1.2192940711975098 img loss 1.4856793880462646 img loss 1.2946346998214722 img loss 1.4504190683364868 img loss 1.4839733839035034 img loss 1.37409245967865 img loss 1.3406822681427002 img loss 1.3314025402069092 img loss 1.5102332830429077 img loss 1.4058278799057007 img loss 1.3988994359970093 img loss 1.4637963771820068 img loss 1.4813443422317505 img loss 1.394870638847351 img loss 1.5051591396331787 img loss 1.487095594406128 img loss 1.3654664754867554 img loss 1.3440006971359253 img loss 1.4248672723770142 img loss 1.4593678712844849 img loss 1.3674649000167847 img loss 1.3330621719360352 img loss 1.3535581827163696 img loss 1.6034685373306274 img loss 1.4299637079238892 img loss 1.3513500690460205 img loss 1.5906970500946045 img loss 1.4224563837051392 img loss 1.3761576414108276 img loss 1.3621761798858643 img loss 1.3518131971359253 img loss 1.3293184041976929 img loss 1.4918614625930786 img loss 1.2568190097808838 img loss 1.3149197101593018 img loss 1.4524807929992676 img loss 1.3321623802185059 img loss 1.5323494672775269 img loss 1.3034191131591797 img loss 1.3969711065292358 img loss 1.443616271018982 img loss 1.4112802743911743 img loss 1.3828798532485962 img loss 1.3488800525665283 img loss 1.5244495868682861 img loss 1.4394842386245728 img loss 1.315653681755066 img loss 1.3998814821243286 img loss 1.5155552625656128 img loss 1.3825700283050537 img loss 1.366320252418518 img loss 1.466518521308899 img loss 1.401459813117981 img loss 1.4773993492126465 img loss 1.3525604009628296 img loss 1.4564881324768066 img loss 1.380752682685852 img loss 1.379391074180603 img loss 1.4452649354934692 img loss 1.3489930629730225 img loss 1.4939687252044678 img loss 1.2568740844726562 img loss 1.4560391902923584 img loss 1.5410059690475464 img loss 1.598946452140808 img loss 1.3181662559509277 img loss 1.351022481918335 img loss 1.3668875694274902 img loss 1.4525974988937378 img loss 1.3746049404144287 img loss 1.3705956935882568 img loss 1.4209773540496826 img loss 1.4538187980651855 img loss 1.395868182182312 img loss 1.328812837600708 img loss 1.550401210784912 img loss 1.4294884204864502 img loss 1.3758834600448608 img loss 1.4617034196853638 img loss 1.3438773155212402 img loss 1.398053765296936 img loss 1.3735677003860474 img loss 1.4378759860992432 img loss 1.3279457092285156 img loss 1.5310388803482056 img loss 1.457904577255249 img loss 1.5102952718734741 img loss 1.4228856563568115 img loss 1.361146330833435 img loss 1.4675062894821167 img loss 1.5487715005874634 img loss 1.3418916463851929 img loss 1.3508728742599487 img loss 1.45282781124115 img loss 1.4649547338485718 img loss 1.4047152996063232 img loss 1.392467737197876 img loss 1.4762531518936157 img loss 1.4955408573150635 img loss 1.393266201019287 img loss 1.550154447555542 img loss 1.4039334058761597 img loss 1.4563242197036743 img loss 1.4873825311660767 img loss 1.4437315464019775 img loss 1.4863507747650146 img loss 1.3894482851028442 img loss 1.4302036762237549 img loss 1.3920743465423584 img loss 1.3982278108596802 img loss 1.3593426942825317 img loss 1.439347743988037 img loss 1.4100381135940552 img loss 1.4717105627059937 img loss 1.3787415027618408 img loss 1.4071108102798462 img loss 1.3079187870025635 img loss 1.3287250995635986 img loss 1.4101392030715942 img loss 1.4118858575820923 img loss 1.574255347251892 img loss 1.5094739198684692 img loss 1.4111418724060059 img loss 1.4420998096466064 img loss 1.5774073600769043 img loss 1.4543812274932861 img loss 1.3041605949401855 {'loss': 1.4179, 'grad_norm': 0.22208090126514435, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2151085138320923 img loss 1.1728055477142334 img loss 1.1242698431015015 img loss 1.1865838766098022 img loss 1.2433252334594727 img loss 1.1523377895355225 img loss 1.1554527282714844 img loss 1.2219536304473877 img loss 1.0814951658248901 img loss 1.134070634841919 img loss 1.1956355571746826 img loss 1.2092454433441162 img loss 1.1848540306091309 img loss 1.151076316833496 img loss 1.2623802423477173 img loss 1.3851569890975952 img loss 1.221840262413025 img loss 1.1029729843139648 img loss 1.0851749181747437 img loss 1.2315466403961182 img loss 1.1347426176071167 img loss 1.2718400955200195 img loss 1.2505264282226562 img loss 1.2405952215194702 img loss 1.2412861585617065 img loss 1.2036117315292358 img loss 1.1605104207992554 img loss 1.1856439113616943 img loss 1.2205561399459839 img loss 1.207742691040039 img loss 1.137319803237915 img loss 1.2024574279785156 img loss 1.256508708000183 img loss 1.1799180507659912 img loss 1.144053339958191 img loss 1.2040256261825562 img loss 1.1252459287643433 img loss 1.181898832321167 img loss 1.2059924602508545 img loss 1.2451894283294678 img loss 1.1393200159072876 img loss 1.202919602394104 img loss 1.2187622785568237 img loss 1.1705589294433594 img loss 1.2592085599899292 img loss 1.1687275171279907 img loss 1.2838958501815796 img loss 1.2111403942108154 img loss 1.1823800802230835 img loss 1.1820259094238281 img loss 1.2202361822128296 img loss 1.1411970853805542 img loss 1.1803337335586548 img loss 1.1781085729599 img loss 1.1080322265625 img loss 1.195146918296814 img loss 1.258736252784729 img loss 1.2002482414245605img loss 1.1704015731811523 img loss 1.1303797960281372 img loss 1.1567606925964355 img loss 1.231841802597046 img loss 1.1315456628799438 img loss 1.1684707403182983 img loss 1.1734123229980469 img loss 1.222979187965393 img loss 1.186842679977417 img loss 1.1329129934310913 img loss 1.1615192890167236 img loss 1.146989107131958 img loss 1.14723539352417 img loss 1.2281595468521118 img loss 1.154583215713501 img loss 1.1994681358337402 img loss 1.2043688297271729 img loss 1.24091374874115 img loss 1.1104732751846313 img loss 1.2784698009490967 img loss 1.2336987257003784 img loss 1.3004450798034668 img loss 1.180898666381836 img loss 1.165641188621521 img loss 1.2158656120300293 img loss 1.177372694015503 img loss 1.208301067352295 img loss 1.1427056789398193 img loss 1.1311750411987305 img loss 1.2519452571868896 img loss 1.2599661350250244 img loss 1.237215280532837 img loss 1.1806284189224243 img loss 1.2148520946502686 img loss 1.2398401498794556 img loss 1.1729087829589844 img loss 1.1542727947235107 img loss 1.2040506601333618 img loss 1.1122276782989502 img loss 1.135421872138977 img loss 1.1858536005020142 img loss 1.2352813482284546 img loss 1.170728325843811 img loss 1.1541426181793213 img loss 1.098360300064087 img loss 1.2604280710220337 img loss 1.2481634616851807 img loss 1.1716456413269043 img loss 1.2617567777633667 img loss 1.2473456859588623 img loss 1.2165685892105103 img loss 1.2053016424179077 img loss 1.2320573329925537 img loss 1.2056705951690674 img loss 1.2169197797775269 img loss 1.2150180339813232 img loss 1.25169837474823 img loss 1.20216965675354 img loss 1.2052806615829468 img loss 1.1464742422103882 img loss 1.1400494575500488 img loss 1.1737903356552124 img loss 1.1939427852630615 img loss 1.1755595207214355 img loss 1.1744797229766846 img loss 1.2076383829116821 img loss 1.243010401725769 img loss 1.1950149536132812 img loss 1.1653242111206055 img loss 1.16116201877594 {'loss': 1.1928, 'grad_norm': 0.22485493123531342, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.373928189277649 img loss 1.3369591236114502 img loss 1.2487062215805054 img loss 1.220137596130371 img loss 1.231818437576294 img loss 1.362485408782959 img loss 1.1944090127944946 img loss 1.3366053104400635 img loss 1.3737224340438843 img loss 1.1983150243759155 img loss 1.3270014524459839 img loss 1.3370505571365356 img loss 1.3386086225509644 img loss 1.3376871347427368 img loss 1.450413465499878 img loss 1.2432317733764648 img loss 1.3175504207611084 img loss 1.3472838401794434 img loss 1.34799063205719 img loss 1.264261245727539 img loss 1.293243646621704 img loss 1.36676824092865 img loss 1.295375108718872 img loss 1.3550164699554443 img loss 1.3438740968704224 img loss 1.3332443237304688 img loss 1.2910668849945068 img loss 1.3664132356643677 img loss 1.2781410217285156 img loss 1.4143089056015015 img loss 1.3349322080612183 img loss 1.3915190696716309 img loss 1.3653504848480225 img loss 1.2677264213562012 img loss 1.4129163026809692 img loss 1.270310401916504 img loss 1.321889877319336 img loss 1.3629382848739624 img loss 1.250893473625183 img loss 1.335192084312439 img loss 1.3246444463729858 img loss 1.2591997385025024 img loss 1.3033922910690308 img loss 1.21596097946167 img loss 1.3063671588897705 img loss 1.304868459701538 img loss 1.356298804283142 img loss 1.3592435121536255 img loss 1.427297830581665 img loss 1.3149992227554321 img loss 1.327773928642273 img loss 1.288630723953247 img loss 1.343036413192749 img loss 1.2321385145187378 img loss 1.2510368824005127 img loss 1.2848743200302124 img loss 1.356136441230774 img loss 1.3001629114151 img loss 1.4446548223495483 img loss 1.2827601432800293 img loss 1.315608024597168 img loss 1.2739986181259155 img loss 1.3139138221740723 img loss 1.329561710357666 img loss 1.45744788646698 img loss 1.3237608671188354 img loss 1.241520643234253 img loss 1.2851684093475342 img loss 1.292061686515808 img loss 1.3978482484817505 img loss 1.3675123453140259 img loss 1.311883807182312 img loss 1.2641842365264893 img loss 1.3775445222854614 img loss 1.3366811275482178 img loss 1.3775795698165894 img loss 1.305860996246338 img loss 1.3949434757232666 img loss 1.2882585525512695 img loss 1.3297195434570312 img loss 1.359775185585022 img loss 1.3684049844741821 img loss 1.422775387763977 img loss 1.3554035425186157 img loss 1.4265402555465698 img loss 1.2984455823898315 img loss 1.3531696796417236 img loss 1.2710024118423462 img loss 1.3776942491531372 img loss 1.4777077436447144 img loss 1.3065932989120483 img loss 1.3553236722946167 img loss 1.3552724123001099 img loss 1.27565336227417 img loss 1.335030198097229 img loss 1.3500639200210571 img loss 1.3562769889831543 img loss 1.373510718345642 img loss 1.375882863998413 img loss 1.3426460027694702 img loss 1.369564175605774 img loss 1.2971712350845337 img loss 1.2913634777069092 img loss 1.2434513568878174 img loss 1.4154688119888306 img loss 1.3625496625900269 img loss 1.3292969465255737 img loss 1.3430927991867065 img loss 1.384874701499939 img loss 1.313232183456421 img loss 1.2603905200958252 img loss 1.4707545042037964 img loss 1.4529911279678345 img loss 1.362210988998413 img loss 1.313650369644165 img loss 1.3537415266036987 img loss 1.371345043182373 img loss 1.341739535331726 img loss 1.4579596519470215 img loss 1.213409185409546 img loss 1.3035510778427124 img loss 1.3418443202972412 img loss 1.3430885076522827 img loss 1.3766505718231201 img loss 1.3403334617614746 img loss 1.2645549774169922 img loss 1.2506792545318604 img loss 1.3705708980560303 {'loss': 1.3311, 'grad_norm': 0.31576967239379883, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2691115140914917 img loss 1.2511463165283203 img loss 1.3493727445602417 img loss 1.410213828086853 img loss 1.2857388257980347 img loss 1.3094043731689453 img loss 1.3365107774734497 img loss 1.4019874334335327 img loss 1.282814383506775 img loss 1.2841551303863525 img loss 1.2065585851669312 img loss 1.1992706060409546 img loss 1.2796077728271484 img loss 1.28994882106781 img loss 1.2637972831726074 img loss 1.3568536043167114 img loss 1.3057079315185547 img loss 1.4973522424697876 img loss 1.2478413581848145 img loss 1.3307100534439087 img loss 1.4134269952774048 img loss 1.30777907371521 img loss 1.3222403526306152 img loss 1.2682074308395386 img loss 1.2155964374542236 img loss 1.3164585828781128 img loss 1.3210281133651733 img loss 1.3790665864944458 img loss 1.1999597549438477 img loss 1.3264691829681396 img loss 1.3797463178634644 img loss 1.2585909366607666 img loss 1.305479884147644 img loss 1.356075644493103 img loss 1.3052012920379639 img loss 1.3039360046386719 img loss 1.3119741678237915 img loss 1.236483097076416 img loss 1.3439724445343018 img loss 1.472285509109497 img loss 1.3774586915969849 img loss 1.319784164428711 img loss 1.404457688331604 img loss 1.3888190984725952 img loss 1.2469691038131714 img loss 1.3215625286102295 img loss 1.3523375988006592 img loss 1.2806919813156128 img loss 1.3270747661590576 img loss 1.2607179880142212 img loss 1.3203370571136475 img loss 1.2964379787445068 img loss 1.3577274084091187 img loss 1.2308043241500854 img loss 1.2870960235595703 img loss 1.3544355630874634 img loss 1.2328541278839111 img loss 1.363874912261963 img loss 1.4878615140914917 img loss 1.2637920379638672 img loss 1.4109158515930176 img loss 1.3450483083724976 img loss 1.280145287513733 img loss 1.287481665611267 img loss 1.3351171016693115 img loss 1.3073325157165527 img loss 1.3534401655197144 img loss 1.3247942924499512 img loss 1.2461004257202148 img loss 1.410624384880066 img loss 1.4121158123016357 img loss 1.278808355331421 img loss 1.2530391216278076 img loss 1.3499819040298462 img loss 1.3348463773727417 img loss 1.284280776977539 img loss 1.4202617406845093 img loss 1.432679295539856 img loss 1.3221033811569214 img loss 1.289446473121643 img loss 1.310106873512268 img loss 1.4019525051116943 img loss 1.2900269031524658 img loss 1.5504047870635986 img loss 1.3253304958343506 img loss 1.3598370552062988 img loss 1.2830102443695068 img loss 1.2912689447402954 img loss 1.3937923908233643 img loss 1.3863825798034668 img loss 1.3695114850997925 img loss 1.3260926008224487 img loss 1.3772953748703003 img loss 1.3618611097335815 img loss 1.274078130722046 img loss 1.2501652240753174 img loss 1.38932204246521 img loss 1.3676954507827759 img loss 1.2858543395996094 img loss 1.4202759265899658 img loss 1.4233943223953247 img loss 1.3511971235275269 img loss 1.410741925239563 img loss 1.334092617034912 img loss 1.1704061031341553 img loss 1.4001556634902954 img loss 1.2577619552612305 img loss 1.3064119815826416 img loss 1.2419556379318237 img loss 1.178673505783081 img loss 1.2481590509414673 img loss 1.2743440866470337 img loss 1.2969995737075806 img loss 1.3175305128097534 img loss 1.247393012046814 img loss 1.3287216424942017 img loss 1.3371840715408325 img loss 1.2884039878845215 img loss 1.2606605291366577 img loss 1.2480826377868652 img loss 1.4002994298934937 img loss 1.3122247457504272 img loss 1.2592190504074097 img loss 1.3499914407730103 img loss 1.2702101469039917 img loss 1.1918282508850098 img loss 1.3900643587112427 img loss 1.3884819746017456 {'loss': 1.3215, 'grad_norm': 0.2962764799594879, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2145071029663086 img loss 1.167398452758789 img loss 1.1731499433517456 img loss 1.2443679571151733 img loss 1.2483041286468506 img loss 1.2823814153671265 img loss 1.2165391445159912 img loss 1.1574666500091553 img loss 1.153220534324646 img loss 1.2481677532196045 img loss 1.2636688947677612 img loss 1.2239813804626465 img loss 1.169616460800171 img loss 1.2138381004333496 img loss 1.237557291984558 img loss 1.1846308708190918 img loss 1.2621484994888306 img loss 1.161621332168579 img loss 1.2034618854522705 img loss 1.2565879821777344 img loss 1.2824076414108276 img loss 1.1768414974212646 img loss 1.1920992136001587 img loss 1.2425216436386108 img loss 1.2125877141952515 img loss 1.1857727766036987 img loss 1.1630884408950806 img loss 1.191138505935669 img loss 1.0962553024291992 img loss 1.1722217798233032 img loss 1.1956905126571655 img loss 1.2128609418869019 img loss 1.2246757745742798 img loss 1.1744091510772705 img loss 1.201587438583374 img loss 1.239295244216919 img loss 1.2407701015472412 img loss 1.168424129486084 img loss 1.175790786743164 img loss 1.2563117742538452 img loss 1.1732515096664429 img loss 1.1055115461349487 img loss 1.1944754123687744 img loss 1.1240347623825073 img loss 1.280842661857605 img loss 1.200148344039917 img loss 1.1175686120986938 img loss 1.2479772567749023 img loss 1.2279565334320068 img loss 1.179334044456482 img loss 1.1844605207443237 img loss 1.2227329015731812 img loss 1.1903283596038818 img loss 1.225809931755066 img loss 1.2549126148223877 img loss 1.2085684537887573 img loss 1.1326501369476318 img loss 1.204358458518982 img loss 1.1760282516479492 img loss 1.127877950668335 img loss 1.1728873252868652 img loss 1.2648199796676636 img loss 1.2080605030059814 img loss 1.2748059034347534 img loss 1.1241552829742432 img loss 1.245866060256958 img loss 1.2315177917480469 img loss 1.2127761840820312 img loss 1.1920639276504517 img loss 1.1655222177505493 img loss 1.1822172403335571 img loss 1.1994893550872803 img loss 1.1690479516983032 img loss 1.186431646347046 img loss 1.2421832084655762 img loss 1.2854723930358887 img loss 1.2413307428359985 img loss 1.2131645679473877 img loss 1.290501594543457 img loss 1.1882710456848145 img loss 1.1473388671875 img loss 1.250611662864685 img loss 1.212766408920288 img loss 1.064855933189392 img loss 1.1817760467529297 img loss 1.192268967628479 img loss 1.2233093976974487 img loss 1.2368381023406982 img loss 1.3253777027130127 img loss 1.177116870880127 img loss 1.1724390983581543 img loss 1.1890815496444702 img loss 1.1951217651367188 img loss 1.1561208963394165 img loss 1.2493047714233398 img loss 1.1950647830963135 img loss 1.2467477321624756 img loss 1.2781028747558594 img loss 1.1360704898834229 img loss 1.2245023250579834 img loss 1.1756099462509155 img loss 1.254534125328064 img loss 1.2005618810653687 img loss 1.1984455585479736 img loss 1.2086801528930664 img loss 1.2577930688858032 img loss 1.1825828552246094 img loss 1.1796568632125854 img loss 1.1951134204864502 img loss 1.1656163930892944 img loss 1.1428478956222534 img loss 1.1767652034759521 img loss 1.211446762084961 img loss 1.2295671701431274 img loss 1.2114558219909668 img loss 1.228129267692566 img loss 1.171033501625061 img loss 1.2110775709152222 img loss 1.2627747058868408 img loss 1.1442091464996338 img loss 1.2411292791366577 img loss 1.198014736175537 img loss 1.2132965326309204 img loss 1.1919901371002197 img loss 1.1478410959243774 img loss 1.1854026317596436 img loss 1.1600016355514526 img loss 1.1716793775558472 {'loss': 1.2026, 'grad_norm': 0.2573455572128296, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1534544229507446 img loss 1.2540174722671509 img loss 1.2610969543457031 img loss 1.2752113342285156 img loss 1.2304024696350098 img loss 1.2305554151535034 img loss 1.2504098415374756 img loss 1.275588035583496 img loss 1.193142294883728 img loss 1.2389968633651733 img loss 1.17586088180542 img loss 1.2344108819961548 img loss 1.2264598608016968 img loss 1.2399965524673462 img loss 1.1844890117645264 img loss 1.1687161922454834 img loss 1.2816615104675293 img loss 1.274488091468811 img loss 1.2236565351486206 img loss 1.152207612991333 img loss 1.2365211248397827 img loss 1.2169049978256226 img loss 1.1793164014816284 img loss 1.2265679836273193 img loss 1.2478251457214355 img loss 1.2773593664169312 img loss 1.164589524269104 img loss 1.1667438745498657 img loss 1.2433222532272339 img loss 1.2829128503799438 img loss 1.2494770288467407 img loss 1.114511251449585 img loss 1.1933839321136475 img loss 1.174222469329834 img loss 1.1879229545593262 img loss 1.1374869346618652 img loss 1.1655783653259277 img loss 1.245941162109375 img loss 1.2145031690597534 img loss 1.2320460081100464 img loss 1.2319256067276 img loss 1.2491083145141602 img loss 1.2688394784927368 img loss 1.2416183948516846 img loss 1.2520267963409424 img loss 1.2622629404067993 img loss 1.195259690284729 img loss 1.1733427047729492 img loss 1.21079421043396 img loss 1.341975450515747 img loss 1.2304500341415405 img loss 1.2699249982833862 img loss 1.141929030418396 img loss 1.2514960765838623 img loss 1.2245067358016968 img loss 1.2053959369659424 img loss 1.2207951545715332 img loss 1.1605175733566284 img loss 1.2348356246948242 img loss 1.2140209674835205 img loss 1.270885944366455 img loss 1.2220417261123657 img loss 1.2135462760925293 img loss 1.226717233657837 img loss 1.24289870262146 img loss 1.286500334739685 img loss 1.2246739864349365 img loss 1.195225715637207 img loss 1.147828459739685 img loss 1.2415974140167236 img loss 1.209967017173767 img loss 1.2137764692306519 img loss 1.1716159582138062 img loss 1.1627171039581299 img loss 1.2153520584106445 img loss 1.1830668449401855 img loss 1.2124913930892944 img loss 1.1962419748306274 img loss 1.1536983251571655 img loss 1.2033213376998901 img loss 1.1794044971466064 img loss 1.3441500663757324 img loss 1.1681760549545288 img loss 1.1726003885269165 img loss 1.181984782218933 img loss 1.228992223739624 img loss 1.1997756958007812 img loss 1.189619779586792 img loss 1.207131266593933 img loss 1.2035497426986694 img loss 1.2334954738616943 img loss 1.1729878187179565 img loss 1.1601951122283936 img loss 1.1728845834732056 img loss 1.2146261930465698 img loss 1.1995034217834473 img loss 1.2198426723480225 img loss 1.257519006729126 img loss 1.1709465980529785 img loss 1.1549657583236694 img loss 1.1780098676681519 img loss 1.2158552408218384 img loss 1.2257732152938843img loss 1.1891837120056152 img loss 1.1759893894195557 img loss 1.1750726699829102 img loss 1.3028979301452637 img loss 1.1944470405578613 img loss 1.2755802869796753 img loss 1.2574970722198486 img loss 1.2058684825897217 img loss 1.1213215589523315 img loss 1.2234700918197632 img loss 1.1958041191101074 img loss 1.2120308876037598 img loss 1.1833629608154297 img loss 1.2063801288604736 img loss 1.2241933345794678 img loss 1.1993414163589478 img loss 1.222878098487854 img loss 1.2625662088394165 img loss 1.2107082605361938 img loss 1.334510087966919 img loss 1.1476001739501953 img loss 1.2282551527023315 img loss 1.2405815124511719 img loss 1.1609852313995361 img loss 1.1920427083969116 {'loss': 1.2145, 'grad_norm': 0.4159426987171173, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5766704082489014 img loss 1.6404414176940918 img loss 1.4939125776290894 img loss 1.4436275959014893 img loss 1.4817988872528076 img loss 1.4041974544525146 img loss 1.4638656377792358 img loss 1.3472403287887573 img loss 1.6653655767440796 img loss 1.537797451019287 img loss 1.575987696647644 img loss 1.455694317817688 img loss 1.3987476825714111 img loss 1.439915418624878 img loss 1.584967851638794 img loss 1.5711548328399658 img loss 1.5378384590148926 img loss 1.5594375133514404 img loss 1.4698647260665894 img loss 1.5285680294036865 img loss 1.3849676847457886 img loss 1.570491909980774 img loss 1.5707825422286987 img loss 1.4608935117721558 img loss 1.4779316186904907 img loss 1.6437945365905762 img loss 1.6894094944000244 img loss 1.4540095329284668 img loss 1.4982506036758423 img loss 1.4024280309677124 img loss 1.4252859354019165 img loss 1.633500337600708 img loss 1.6068923473358154 img loss 1.4375039339065552 img loss 1.4957975149154663 img loss 1.6969807147979736 img loss 1.6393206119537354 img loss 1.508338451385498 img loss 1.492973804473877 img loss 1.5750867128372192 img loss 1.4673222303390503 img loss 1.5845476388931274 img loss 1.5598608255386353 img loss 1.4060051441192627 img loss 1.5737221240997314 img loss 1.4923949241638184 img loss 1.4894897937774658 img loss 1.4898369312286377 img loss 1.3843910694122314 img loss 1.5130441188812256 img loss 1.431769847869873 img loss 1.5267990827560425 img loss 1.520511507987976 img loss 1.4978890419006348 img loss 1.5321446657180786 img loss 1.412880778312683 img loss 1.4200621843338013 img loss 1.373672604560852 img loss 1.6241763830184937 img loss 1.4738860130310059 img loss 1.3744598627090454 img loss 1.5634502172470093 img loss 1.555229663848877 img loss 1.4174686670303345 img loss 1.6085511445999146 img loss 1.4512073993682861 img loss 1.487365484237671 img loss 1.4858067035675049 img loss 1.310097575187683 img loss 1.4275221824645996 img loss 1.4645678997039795 img loss 1.4961403608322144 img loss 1.5836427211761475 img loss 1.415850043296814 img loss 1.470650315284729 img loss 1.6648633480072021 img loss 1.5207573175430298 img loss 1.4610813856124878 img loss 1.3876310586929321 img loss 1.6145625114440918 img loss 1.5114840269088745 img loss 1.4728416204452515 img loss 1.4857364892959595 img loss 1.5332695245742798 img loss 1.3561121225357056 img loss 1.5560013055801392 img loss 1.441511631011963 img loss 1.3888428211212158 img loss 1.4158852100372314 img loss 1.4872764348983765 img loss 1.4748691320419312 img loss 1.3863885402679443 img loss 1.647220492362976 img loss 1.5521671772003174 img loss 1.5107945203781128 img loss 1.5285040140151978 img loss 1.4651274681091309 img loss 1.5020766258239746 img loss 1.6029632091522217 img loss 1.4696158170700073 img loss 1.5523829460144043 img loss 1.6065952777862549 img loss 1.5171836614608765 img loss 1.4349559545516968 img loss 1.6157479286193848 img loss 1.513236403465271 img loss 1.6221482753753662 img loss 1.6148446798324585 img loss 1.5629265308380127 img loss 1.4785031080245972 img loss 1.4050743579864502 img loss 1.681140422821045 img loss 1.4556206464767456 img loss 1.582638144493103 img loss 1.4997409582138062 img loss 1.446716070175171 img loss 1.6665509939193726 img loss 1.544571042060852 img loss 1.5611575841903687 img loss 1.5591508150100708 img loss 1.5464394092559814 img loss 1.4954930543899536 img loss 1.4956177473068237 img loss 1.463291049003601 img loss 1.2809076309204102 img loss 1.3708412647247314 img loss 1.5107777118682861 img loss 1.547333836555481 {'loss': 1.5062, 'grad_norm': 0.326697438955307, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2699370384216309 img loss 1.2071855068206787 img loss 1.149045705795288 img loss 1.1591758728027344 img loss 1.1914373636245728 img loss 1.1941487789154053 img loss 1.1972603797912598 img loss 1.194643497467041 img loss 1.2869970798492432 img loss 1.201463222503662 img loss 1.275808334350586 img loss 1.2625176906585693 img loss 1.2851696014404297 img loss 1.2660460472106934 img loss 1.2343906164169312 img loss 1.2058939933776855 img loss 1.2116849422454834 img loss 1.1946156024932861 img loss 1.2123889923095703 img loss 1.2232717275619507 img loss 1.1818482875823975 img loss 1.147525429725647 img loss 1.2295076847076416 img loss 1.2957159280776978 img loss 1.2474608421325684 img loss 1.1613690853118896 img loss 1.1415891647338867 img loss 1.2273718118667603 img loss 1.261035442352295 img loss 1.2578260898590088 img loss 1.1579748392105103 img loss 1.2196581363677979 img loss 1.1228461265563965 img loss 1.1207036972045898 img loss 1.145040512084961 img loss 1.1940361261367798 img loss 1.3164258003234863 img loss 1.2158584594726562 img loss 1.246286392211914 img loss 1.2057770490646362 img loss 1.2683393955230713 img loss 1.2567253112792969 img loss 1.216572642326355 img loss 1.278616189956665 img loss 1.3105038404464722 img loss 1.272354006767273 img loss 1.2785910367965698 img loss 1.217437982559204 img loss 1.309879183769226 img loss 1.257179856300354 img loss 1.2413820028305054 img loss 1.1487977504730225 img loss 1.1605050563812256 img loss 1.2290058135986328 img loss 1.2751811742782593 img loss 1.247570514678955 img loss 1.2750729322433472 img loss 1.1546598672866821 img loss 1.205135703086853 img loss 1.1478856801986694 img loss 1.3405059576034546 img loss 1.2604165077209473 img loss 1.3103832006454468 img loss 1.1973648071289062 img loss 1.2770209312438965 img loss 1.2232449054718018 img loss 1.261435866355896 img loss 1.2632989883422852 img loss 1.273084044456482 img loss 1.197222113609314img loss 1.1890485286712646 img loss 1.2219200134277344 img loss 1.3269519805908203 img loss 1.2278388738632202 img loss 1.1050573587417603 img loss 1.2382864952087402 img loss 1.239031195640564 img loss 1.2346702814102173 img loss 1.1448158025741577 img loss 1.137353539466858 img loss 1.2331985235214233 img loss 1.2574708461761475 img loss 1.1791338920593262 img loss 1.2294974327087402 img loss 1.214477777481079 img loss 1.2094262838363647 img loss 1.2548240423202515 img loss 1.2379292249679565 img loss 1.2065207958221436 img loss 1.2160109281539917 img loss 1.151634931564331 img loss 1.1790897846221924 img loss 1.196997880935669 img loss 1.1687192916870117 img loss 1.2214733362197876 img loss 1.1736887693405151 img loss 1.1633248329162598 img loss 1.188544511795044 img loss 1.1850354671478271 img loss 1.2913726568222046 img loss 1.2252213954925537 img loss 1.2600525617599487 img loss 1.2990188598632812 img loss 1.2186208963394165 img loss 1.2433726787567139 img loss 1.2185604572296143 img loss 1.2297582626342773 img loss 1.2714580297470093 img loss 1.2130755186080933 img loss 1.234344244003296 img loss 1.2877277135849 img loss 1.1710529327392578 img loss 1.2252477407455444 img loss 1.2050449848175049 img loss 1.2900556325912476 img loss 1.2630846500396729 img loss 1.3788007497787476 img loss 1.3018755912780762 img loss 1.1724185943603516 img loss 1.3774563074111938 img loss 1.1575199365615845 img loss 1.251128077507019 img loss 1.2589515447616577 img loss 1.1819498538970947 img loss 1.2563880681991577 img loss 1.222174048423767 img loss 1.2460083961486816 img loss 1.3221005201339722 {'loss': 1.2272, 'grad_norm': 0.22333794832229614, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4409180879592896 img loss 1.4232934713363647 img loss 1.2851636409759521 img loss 1.4599976539611816 img loss 1.3977402448654175 img loss 1.426824927330017 img loss 1.4525433778762817 img loss 1.7237111330032349 img loss 1.3624520301818848 img loss 1.400897741317749 img loss 1.3840000629425049 img loss 1.5172626972198486 img loss 1.2821534872055054 img loss 1.4886901378631592 img loss 1.4401195049285889 img loss 1.3898309469223022 img loss 1.402552843093872 img loss 1.3110157251358032 img loss 1.4948071241378784 img loss 1.3345929384231567 img loss 1.2912143468856812 img loss 1.3433345556259155 img loss 1.4371106624603271 img loss 1.422899842262268 img loss 1.4753515720367432 img loss 1.2995846271514893 img loss 1.3151289224624634img loss 1.3009382486343384 img loss 1.4519935846328735 img loss 1.342628836631775 img loss 1.372708797454834 img loss 1.34573233127594 img loss 1.4950233697891235 img loss 1.4912829399108887 img loss 1.3979010581970215 img loss 1.515060544013977 img loss 1.4933801889419556 img loss 1.3593151569366455 img loss 1.434341549873352 img loss 1.340358853340149 img loss 1.330870270729065 img loss 1.3920416831970215 img loss 1.3586621284484863 img loss 1.3966920375823975 img loss 1.3870893716812134 img loss 1.3034509420394897 img loss 1.3795310258865356 img loss 1.3355258703231812 img loss 1.3855526447296143 img loss 1.4117217063903809 img loss 1.437721610069275 img loss 1.355186104774475 img loss 1.5464704036712646 img loss 1.5162835121154785 img loss 1.4184406995773315 img loss 1.3679530620574951 img loss 1.441099762916565 img loss 1.5896470546722412 img loss 1.3213526010513306 img loss 1.3696362972259521 img loss 1.456011176109314 img loss 1.4229778051376343 img loss 1.3727049827575684 img loss 1.4039255380630493 img loss 1.3728604316711426 img loss 1.4880526065826416 img loss 1.4434349536895752 img loss 1.4973064661026 img loss 1.3754725456237793 img loss 1.3470391035079956 img loss 1.442834496498108 img loss 1.3470242023468018 img loss 1.4461747407913208 img loss 1.5013537406921387 img loss 1.3410217761993408 img loss 1.487659215927124 img loss 1.5635491609573364 img loss 1.3682286739349365 img loss 1.3572396039962769 img loss 1.43246328830719 img loss 1.4035837650299072 img loss 1.472191333770752 img loss 1.4976969957351685 img loss 1.4558359384536743 img loss 1.4715019464492798 img loss 1.3581148386001587 img loss 1.4856069087982178 img loss 1.3885111808776855 img loss 1.5749422311782837 img loss 1.4213976860046387 img loss 1.4589303731918335 img loss 1.5395869016647339 img loss 1.45261549949646 img loss 1.4517220258712769 img loss 1.4638476371765137 img loss 1.4727036952972412 img loss 1.3689806461334229 img loss 1.3293825387954712 img loss 1.4683901071548462 img loss 1.403025507926941 img loss 1.4832860231399536 img loss 1.3445143699645996 img loss 1.444671392440796 img loss 1.363594889640808 img loss 1.5470932722091675 img loss 1.4833436012268066 img loss 1.4622712135314941 img loss 1.5088406801223755 img loss 1.3866177797317505 img loss 1.432991862297058 img loss 1.344393253326416 img loss 1.300824522972107 img loss 1.4518506526947021 img loss 1.4647704362869263 img loss 1.3412114381790161 img loss 1.4874279499053955 img loss 1.422284722328186 img loss 1.368425726890564 img loss 1.4351449012756348 img loss 1.3065011501312256 img loss 1.5597177743911743 img loss 1.3957302570343018 img loss 1.3340433835983276 img loss 1.3532226085662842 img loss 1.5865113735198975 img loss 1.3339817523956299 img loss 1.3565537929534912 img loss 1.4601467847824097 {'loss': 1.4184, 'grad_norm': 0.2564138174057007, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1948667764663696 img loss 1.2098594903945923 img loss 1.239349365234375 img loss 1.2073501348495483 img loss 1.1228653192520142 img loss 1.2898056507110596 img loss 1.2068979740142822 img loss 1.1278958320617676 img loss 1.2150753736495972 img loss 1.1995384693145752 img loss 1.1766115427017212 img loss 1.2433180809020996 img loss 1.1725870370864868 img loss 1.1712079048156738 img loss 1.190424919128418 img loss 1.1931122541427612 img loss 1.1957645416259766 img loss 1.2100918292999268 img loss 1.2326960563659668 img loss 1.1299926042556763 img loss 1.144230842590332 img loss 1.171048879623413 img loss 1.1336889266967773 img loss 1.265998363494873 img loss 1.1923779249191284 img loss 1.1535593271255493 img loss 1.1655175685882568 img loss 1.1676782369613647 img loss 1.152798056602478 img loss 1.1546677350997925 img loss 1.2338366508483887 img loss 1.2397878170013428 img loss 1.2349011898040771 img loss 1.186561107635498 img loss 1.2231173515319824 img loss 1.1640650033950806 img loss 1.237985610961914 img loss 1.1905021667480469 img loss 1.177629828453064 img loss 1.1451687812805176 img loss 1.2303047180175781 img loss 1.221574306488037 img loss 1.3526324033737183 img loss 1.176322340965271 img loss 1.2023487091064453 img loss 1.1816387176513672 img loss 1.2065093517303467 img loss 1.2757811546325684 img loss 1.172875165939331 img loss 1.2415539026260376 img loss 1.1365711688995361 img loss 1.1612796783447266 img loss 1.2468265295028687 img loss 1.1469898223876953 img loss 1.187546968460083 img loss 1.1602187156677246 img loss 1.2540018558502197 img loss 1.252683162689209 img loss 1.1674230098724365 img loss 1.200368881225586 img loss 1.1425598859786987 img loss 1.2179754972457886 img loss 1.2325177192687988 img loss 1.1957879066467285 img loss 1.1707444190979004 img loss 1.1654024124145508 img loss 1.1867369413375854 img loss 1.2299072742462158 img loss 1.2290905714035034 img loss 1.097051978111267 img loss 1.124420166015625 img loss 1.3014134168624878 img loss 1.158715844154358 img loss 1.1656023263931274 img loss 1.1923630237579346 img loss 1.1970762014389038 img loss 1.1965715885162354 img loss 1.1853725910186768 img loss 1.1718089580535889 img loss 1.1504300832748413 img loss 1.1670546531677246 img loss 1.2423439025878906 img loss 1.1701583862304688 img loss 1.1804546117782593 img loss 1.2852036952972412 img loss 1.15843665599823 img loss 1.1514756679534912 img loss 1.1751619577407837 img loss 1.1767576932907104 img loss 1.2758759260177612 img loss 1.232673168182373 img loss 1.2271969318389893 img loss 1.2682842016220093 img loss 1.254488468170166 img loss 1.1500438451766968 img loss 1.2824697494506836 img loss 1.169248104095459 img loss 1.2222309112548828 img loss 1.1665509939193726 img loss 1.1835044622421265 img loss 1.199184775352478 img loss 1.203108787536621 img loss 1.198686957359314 img loss 1.2549877166748047 img loss 1.2396491765975952 img loss 1.190799355506897 img loss 1.2140262126922607 img loss 1.2782151699066162 img loss 1.159055471420288 img loss 1.1479623317718506 img loss 1.1818968057632446 img loss 1.165747880935669 img loss 1.1497009992599487 img loss 1.1925771236419678 img loss 1.1746262311935425 img loss 1.2045806646347046 img loss 1.1392627954483032 img loss 1.1958496570587158 img loss 1.2447845935821533 img loss 1.254392147064209 img loss 1.2011512517929077 img loss 1.164152979850769 img loss 1.167204737663269 img loss 1.2010215520858765 img loss 1.2282145023345947 img loss 1.2366046905517578 img loss 1.2501752376556396 img loss 1.1292145252227783 {'loss': 1.1973, 'grad_norm': 0.199649378657341, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2932761907577515 img loss 1.201310396194458 img loss 1.2675495147705078 img loss 1.309815764427185 img loss 1.3324030637741089 img loss 1.2283519506454468 img loss 1.2352228164672852 img loss 1.204440712928772 img loss 1.2420601844787598 img loss 1.1997382640838623 img loss 1.2156838178634644 img loss 1.2263685464859009 img loss 1.2925900220870972 img loss 1.341807246208191 img loss 1.2626473903656006 img loss 1.2469842433929443 img loss 1.2740586996078491 img loss 1.1856224536895752 img loss 1.2701945304870605 img loss 1.1922155618667603 img loss 1.2423951625823975 img loss 1.1917471885681152 img loss 1.2502961158752441 img loss 1.1559019088745117 img loss 1.3373864889144897 img loss 1.3053185939788818 img loss 1.2805640697479248 img loss 1.2258274555206299 img loss 1.424576997756958 img loss 1.2344614267349243 img loss 1.295282244682312 img loss 1.2421423196792603 img loss 1.2658506631851196 img loss 1.197715163230896 img loss 1.279829740524292 img loss 1.1889781951904297 img loss 1.2079347372055054 img loss 1.2351635694503784 img loss 1.1863136291503906 img loss 1.1145581007003784 img loss 1.144182801246643 img loss 1.3050665855407715 img loss 1.3078665733337402 img loss 1.2001655101776123 img loss 1.1789964437484741 img loss 1.2409008741378784 img loss 1.2139557600021362 img loss 1.3354610204696655 img loss 1.228196382522583 img loss 1.273203730583191 img loss 1.2025846242904663 img loss 1.2945704460144043 img loss 1.239050269126892 img loss 1.2411015033721924 img loss 1.2092409133911133 img loss 1.2417821884155273 img loss 1.3223997354507446 img loss 1.1593241691589355 img loss 1.2666343450546265 img loss 1.246838092803955 img loss 1.2319329977035522 img loss 1.1902196407318115 img loss 1.3311896324157715 img loss 1.232545256614685 img loss 1.234290361404419 img loss 1.30050528049469 img loss 1.2149994373321533 img loss 1.1944057941436768 img loss 1.0940395593643188 img loss 1.277494192123413 img loss 1.2589545249938965 img loss 1.3090418577194214 img loss 1.3106052875518799 img loss 1.2361968755722046 img loss 1.1873085498809814 img loss 1.273423671722412 img loss 1.242380142211914 img loss 1.2505449056625366 img loss 1.1142847537994385 img loss 1.2402853965759277 img loss 1.316118836402893 img loss 1.2017502784729004 img loss 1.2613295316696167 img loss 1.1619336605072021 img loss 1.2764257192611694 img loss 1.244204044342041 img loss 1.1829586029052734 img loss 1.2340933084487915 img loss 1.1805493831634521 img loss 1.2343701124191284 img loss 1.279849886894226 img loss 1.2490726709365845 img loss 1.2772116661071777 img loss 1.1774191856384277 img loss 1.1851524114608765 img loss 1.251211166381836 img loss 1.2700140476226807 img loss 1.2073920965194702 img loss 1.3291600942611694 img loss 1.2086656093597412 img loss 1.2200855016708374 img loss 1.1783826351165771 img loss 1.3616150617599487 img loss 1.3247231245040894 img loss 1.2474569082260132 img loss 1.3271234035491943 img loss 1.2467139959335327 img loss 1.1665074825286865 img loss 1.3069968223571777 img loss 1.2733229398727417 img loss 1.3114145994186401 img loss 1.2187384366989136 img loss 1.218515396118164 img loss 1.1856625080108643 img loss 1.1648285388946533 img loss 1.306657075881958 img loss 1.3287931680679321 img loss 1.2131479978561401 img loss 1.2921432256698608 img loss 1.2177867889404297 img loss 1.2410078048706055 img loss 1.2109856605529785 img loss 1.169034481048584 img loss 1.2049956321716309 img loss 1.305530071258545 img loss 1.258083701133728 img loss 1.2563223838806152 img loss 1.3500155210494995 {'loss': 1.2445, 'grad_norm': 0.2294350117444992, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5804561376571655 img loss 1.7201752662658691 img loss 1.827306866645813 img loss 1.596980333328247 img loss 1.564618706703186 img loss 1.552303671836853 img loss 1.6936085224151611 img loss 1.7014126777648926 img loss 1.579160213470459 img loss 1.6279876232147217 img loss 1.6493583917617798 img loss 1.6189815998077393 img loss 1.6262720823287964 img loss 1.4994361400604248 img loss 1.610145092010498 img loss 1.4834567308425903 img loss 1.5719703435897827 img loss 1.5670796632766724 img loss 1.6981393098831177 img loss 1.6215070486068726 img loss 1.729559063911438 img loss 1.605354905128479 img loss 1.615017294883728 img loss 1.5064349174499512 img loss 1.6152044534683228 img loss 1.6699086427688599 img loss 1.6735491752624512 img loss 1.8428447246551514 img loss 1.5841631889343262 img loss 1.5370659828186035 img loss 1.4918066263198853 img loss 1.6818221807479858 img loss 1.6570380926132202 img loss 1.8716017007827759 img loss 1.6666396856307983 img loss 1.5638842582702637 img loss 1.5799177885055542 img loss 1.4943970441818237 img loss 1.5288736820220947 img loss 1.5887705087661743 img loss 1.5756564140319824 img loss 1.5170588493347168 img loss 1.508551836013794 img loss 1.60365891456604 img loss 1.6869484186172485 img loss 1.5918134450912476 img loss 1.5821155309677124 img loss 1.4966312646865845 img loss 1.6803640127182007 img loss 1.645434021949768 img loss 1.5149520635604858 img loss 1.6276795864105225 img loss 1.726240634918213 img loss 1.7472306489944458 img loss 1.6625655889511108 img loss 1.574134349822998 img loss 1.6457288265228271 img loss 1.5485271215438843 img loss 1.5808072090148926 img loss 1.707519292831421 img loss 1.5230692625045776 img loss 1.5980355739593506 img loss 1.537529468536377 img loss 1.7745050191879272 img loss 1.537810206413269 img loss 1.5582385063171387 img loss 1.656568169593811 img loss 1.5950433015823364img loss 1.7053924798965454 img loss 1.5574589967727661 img loss 1.680161714553833 img loss 1.6096174716949463 img loss 1.757962703704834 img loss 1.4514185190200806 img loss 1.6218732595443726 img loss 1.661974549293518 img loss 1.6192864179611206 img loss 1.6612573862075806 img loss 1.6894476413726807 img loss 1.6734788417816162 img loss 1.6410243511199951 img loss 1.6201777458190918 img loss 1.5717281103134155 img loss 1.6483032703399658 img loss 1.8661710023880005 img loss 1.66277015209198 img loss 1.6691664457321167 img loss 1.5392926931381226 img loss 1.653169870376587 img loss 1.6777950525283813 img loss 1.581980586051941 img loss 1.606268048286438 img loss 1.6083317995071411 img loss 1.591701626777649 img loss 1.619760274887085 img loss 1.4118762016296387 img loss 1.6929165124893188 img loss 1.5576924085617065img loss 1.640032410621643 img loss 1.6288485527038574 img loss 1.6552298069000244 img loss 1.5194599628448486 img loss 1.5820906162261963 img loss 1.7464585304260254 img loss 1.4427934885025024 img loss 1.6084424257278442 img loss 1.6305553913116455 img loss 1.6078118085861206 img loss 1.650865912437439 img loss 1.515930414199829 img loss 1.6727639436721802 img loss 1.5936894416809082 img loss 1.5152392387390137 img loss 1.6134401559829712 img loss 1.6847862005233765 img loss 1.5436326265335083 img loss 1.610693335533142 img loss 1.6026091575622559 img loss 1.6629985570907593 img loss 1.5620598793029785 img loss 1.526033878326416 img loss 1.6269488334655762 img loss 1.8106046915054321 img loss 1.4753614664077759 img loss 1.4525736570358276 img loss 1.6277912855148315 img loss 1.514035701751709 img loss 1.6435977220535278 {'loss': 1.6154, 'grad_norm': 0.44434523582458496, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.345415711402893 img loss 1.292163610458374 img loss 1.3060041666030884 img loss 1.1861228942871094 img loss 1.247475266456604 img loss 1.2709344625473022 img loss 1.2111213207244873 img loss 1.3190453052520752 img loss 1.2907800674438477 img loss 1.3458422422409058 img loss 1.23212468624115 img loss 1.1935986280441284 img loss 1.2790790796279907 img loss 1.2696865797042847 img loss 1.2702492475509644 img loss 1.152523398399353 img loss 1.2880419492721558 img loss 1.227329134941101 img loss 1.2165451049804688 img loss 1.2403634786605835 img loss 1.253740668296814 img loss 1.1984761953353882 img loss 1.158097267150879 img loss 1.2267450094223022 img loss 1.3105710744857788 img loss 1.213687777519226 img loss 1.1848902702331543 img loss 1.2010602951049805 img loss 1.3260921239852905 img loss 1.1485824584960938 img loss 1.2273181676864624 img loss 1.2354782819747925 img loss 1.2002103328704834 img loss 1.1882301568984985 img loss 1.1264164447784424 img loss 1.2945431470870972 img loss 1.2670563459396362 img loss 1.2088863849639893 img loss 1.2625623941421509 img loss 1.2949845790863037 img loss 1.263440489768982 img loss 1.3146206140518188 img loss 1.1887140274047852 img loss 1.3544660806655884 img loss 1.1636208295822144 img loss 1.135684609413147 img loss 1.2040261030197144 img loss 1.3736062049865723 img loss 1.2233799695968628 img loss 1.2154860496520996 img loss 1.182869791984558 img loss 1.295396327972412 img loss 1.1866209506988525 img loss 1.2437827587127686 img loss 1.2208198308944702 img loss 1.2661919593811035 img loss 1.2063422203063965 img loss 1.184518575668335 img loss 1.230357050895691 img loss 1.2273986339569092 img loss 1.1431546211242676 img loss 1.2396750450134277 img loss 1.3137191534042358 img loss 1.2594608068466187 img loss 1.3109174966812134 img loss 1.2577108144760132 img loss 1.1891920566558838 img loss 1.2065937519073486 img loss 1.131928563117981 img loss 1.2779940366744995 img loss 1.2753229141235352 img loss 1.2070034742355347 img loss 1.1794899702072144 img loss 1.2580976486206055 img loss 1.2650578022003174 img loss 1.2905547618865967 img loss 1.3705365657806396 img loss 1.1882569789886475 img loss 1.277439832687378 img loss 1.2668331861495972 img loss 1.2915868759155273 img loss 1.211983323097229 img loss 1.2770642042160034 img loss 1.3052177429199219 img loss 1.276228666305542 img loss 1.297336459159851 img loss 1.213692307472229 img loss 1.167672038078308 img loss 1.3084046840667725 img loss 1.3155392408370972 img loss 1.1824498176574707 img loss 1.2654485702514648 img loss 1.2416129112243652 img loss 1.295377492904663 img loss 1.213569164276123 img loss 1.2626943588256836 img loss 1.1836082935333252 img loss 1.1964648962020874 img loss 1.1868263483047485 img loss 1.2074604034423828 img loss 1.2750118970870972 img loss 1.274402141571045 img loss 1.2244290113449097 img loss 1.190741777420044 img loss 1.123152732849121 img loss 1.170642614364624 img loss 1.1504793167114258 img loss 1.2647743225097656 img loss 1.3121109008789062 img loss 1.1931357383728027 img loss 1.2415846586227417 img loss 1.2506662607192993 img loss 1.2253258228302002 img loss 1.2394102811813354 img loss 1.2991780042648315 img loss 1.153875708580017 img loss 1.1704202890396118 img loss 1.3330695629119873 img loss 1.224935531616211 img loss 1.2995870113372803 img loss 1.2474125623703003 img loss 1.2594163417816162 img loss 1.246531367301941 img loss 1.2264695167541504 img loss 1.2137056589126587 img loss 1.1256096363067627 img loss 1.2173855304718018 img loss 1.2336628437042236 {'loss': 1.239, 'grad_norm': 0.42831894755363464, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.271710753440857 img loss 1.3142473697662354 img loss 1.3005008697509766 img loss 1.2351893186569214 img loss 1.3238004446029663 img loss 1.2917358875274658 img loss 1.3044532537460327 img loss 1.260812759399414 img loss 1.2932305335998535 img loss 1.2307943105697632 img loss 1.2680920362472534 img loss 1.2150189876556396 img loss 1.2397549152374268 img loss 1.2907313108444214 img loss 1.262350082397461 img loss 1.2632235288619995 img loss 1.3153997659683228 img loss 1.2396801710128784 img loss 1.2743154764175415 img loss 1.2664397954940796 img loss 1.3162485361099243 img loss 1.2178748846054077 img loss 1.2657006978988647 img loss 1.2881767749786377 img loss 1.278275728225708 img loss 1.266739845275879 img loss 1.2560629844665527 img loss 1.2677868604660034 img loss 1.2503122091293335 img loss 1.444170355796814 img loss 1.316884994506836 img loss 1.2761082649230957 img loss 1.337001085281372 img loss 1.2798137664794922 img loss 1.3634370565414429 img loss 1.3281762599945068 img loss 1.349779486656189 img loss 1.2787882089614868 img loss 1.2769744396209717 img loss 1.394348382949829 img loss 1.2700231075286865 img loss 1.2944920063018799 img loss 1.2831772565841675 img loss 1.3213528394699097 img loss 1.219825029373169 img loss 1.3903400897979736 img loss 1.2620904445648193 img loss 1.2457472085952759 img loss 1.16562020778656 img loss 1.2242368459701538 img loss 1.265020728111267 img loss 1.3001850843429565 img loss 1.317758560180664 img loss 1.1704590320587158 img loss 1.250260591506958 img loss 1.2881042957305908 img loss 1.2243812084197998 img loss 1.2836960554122925 img loss 1.322083830833435 img loss 1.22970449924469 img loss 1.3646750450134277 img loss 1.2652345895767212 img loss 1.1954686641693115 img loss 1.267438292503357 img loss 1.2640538215637207 img loss 1.3151345252990723 img loss 1.336524248123169 img loss 1.2524031400680542 img loss 1.3253847360610962 img loss 1.3023772239685059 img loss 1.2960829734802246 img loss 1.3981146812438965 img loss 1.3645936250686646 img loss 1.269659399986267 img loss 1.2588709592819214 img loss 1.3077738285064697 img loss 1.3476053476333618 img loss 1.2761906385421753 img loss 1.2657021284103394 img loss 1.2558444738388062 img loss 1.2801697254180908 img loss 1.292796015739441 img loss 1.1601606607437134 img loss 1.246545672416687 img loss 1.2295238971710205 img loss 1.2405251264572144 img loss 1.2964813709259033 img loss 1.2568644285202026 img loss 1.2501739263534546 img loss 1.261389136314392 img loss 1.2232348918914795 img loss 1.2504132986068726 img loss 1.2335624694824219 img loss 1.2942466735839844 img loss 1.420418381690979 img loss 1.2423959970474243 img loss 1.2646152973175049 img loss 1.3041129112243652 img loss 1.3240734338760376 img loss 1.2772371768951416 img loss 1.2548516988754272 img loss 1.282535433769226 img loss 1.2653955221176147 img loss 1.3393410444259644 img loss 1.3667796850204468 img loss 1.1890894174575806 img loss 1.1846160888671875 img loss 1.2395902872085571 img loss 1.295035719871521 img loss 1.3343759775161743 img loss 1.2600579261779785 img loss 1.2329014539718628 img loss 1.240820288658142 img loss 1.264681100845337img loss 1.3196600675582886 img loss 1.3005361557006836 img loss 1.2524185180664062 img loss 1.3652414083480835 img loss 1.2407554388046265 img loss 1.2681024074554443 img loss 1.2412292957305908 img loss 1.354278326034546 img loss 1.1801338195800781 img loss 1.2704252004623413 img loss 1.2890986204147339 img loss 1.2636570930480957 img loss 1.2293184995651245 img loss 1.299570918083191 {'loss': 1.2793, 'grad_norm': 0.2219298630952835, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3933205604553223 img loss 1.223326325416565 img loss 1.276944637298584 img loss 1.3044871091842651 img loss 1.2881182432174683 img loss 1.2747735977172852 img loss 1.0670828819274902 img loss 1.174875259399414 img loss 1.2878731489181519 img loss 1.2568984031677246 img loss 1.2884833812713623 img loss 1.2505377531051636 img loss 1.3373159170150757 img loss 1.1954259872436523 img loss 1.226182460784912 img loss 1.2013911008834839 img loss 1.2502155303955078 img loss 1.2625048160552979 img loss 1.2578855752944946 img loss 1.137887716293335 img loss 1.16653311252594 img loss 1.2359657287597656 img loss 1.251432180404663 img loss 1.2195382118225098 img loss 1.2277579307556152 img loss 1.2190650701522827 img loss 1.2214878797531128img loss 1.335397481918335 img loss 1.1789393424987793 img loss 1.082579493522644 img loss 1.3138060569763184 img loss 1.1408705711364746 img loss 1.1534514427185059 img loss 1.1714123487472534 img loss 1.2180299758911133 img loss 1.2827694416046143 img loss 1.203080415725708 img loss 1.3143230676651 img loss 1.2608425617218018 img loss 1.1864937543869019 img loss 1.2380647659301758 img loss 1.3803004026412964 img loss 1.2389600276947021 img loss 1.2953004837036133 img loss 1.2559843063354492 img loss 1.2233505249023438 img loss 1.1902976036071777 img loss 1.1333974599838257 img loss 1.2228484153747559 img loss 1.179534912109375 img loss 1.2993706464767456 img loss 1.3622756004333496 img loss 1.2891271114349365 img loss 1.2517623901367188 img loss 1.2427812814712524 img loss 1.1812939643859863 img loss 1.2641876935958862 img loss 1.2749933004379272 img loss 1.3255248069763184 img loss 1.266256332397461 img loss 1.3008060455322266 img loss 1.2798538208007812 img loss 1.2221885919570923img loss 1.1766445636749268 img loss 1.1900734901428223 img loss 1.2425007820129395 img loss 1.2580980062484741 img loss 1.328857183456421 img loss 1.3478370904922485 img loss 1.2623581886291504 img loss 1.295835256576538 img loss 1.3058679103851318 img loss 1.1876741647720337 img loss 1.3084886074066162 img loss 1.3383795022964478 img loss 1.3295047283172607 img loss 1.2509114742279053 img loss 1.328666090965271 img loss 1.218950629234314 img loss 1.1960242986679077 img loss 1.2128136157989502 img loss 1.2418020963668823 img loss 1.1901602745056152 img loss 1.28645658493042 img loss 1.3133751153945923 img loss 1.2536052465438843 img loss 1.2869410514831543 img loss 1.257474660873413 img loss 1.2408533096313477 img loss 1.292015790939331 img loss 1.30466890335083 img loss 1.309403896331787 img loss 1.186777949333191 img loss 1.160990595817566 img loss 1.2330242395401 img loss 1.249508261680603 img loss 1.2746890783309937 img loss 1.232451319694519 img loss 1.298348069190979 img loss 1.1555780172348022 img loss 1.2030977010726929 img loss 1.2805694341659546 img loss 1.2663381099700928 img loss 1.2581638097763062 img loss 1.1571786403656006 img loss 1.343955397605896 img loss 1.363032579421997 img loss 1.494295358657837 img loss 1.3019404411315918 img loss 1.2440322637557983 img loss 1.2575774192810059 img loss 1.286026954650879 img loss 1.3582844734191895 img loss 1.3401334285736084 img loss 1.2981712818145752 img loss 1.29449462890625 img loss 1.2901864051818848 img loss 1.221078634262085 img loss 1.272947907447815 img loss 1.2407848834991455 img loss 1.2436014413833618 img loss 1.213234782218933 img loss 1.254006028175354 img loss 1.3334351778030396 img loss 1.292457938194275 img loss 1.236914038658142 img loss 1.3236109018325806 img loss 1.2543847560882568 {'loss': 1.2557, 'grad_norm': 0.47251254320144653, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1755363941192627 img loss 1.2617796659469604 img loss 1.2574697732925415 img loss 1.179992437362671 img loss 1.239227056503296 img loss 1.2748501300811768 img loss 1.2165110111236572 img loss 1.1681556701660156 img loss 1.2516376972198486 img loss 1.189371943473816 img loss 1.149073600769043 img loss 1.2278246879577637 img loss 1.2351527214050293 img loss 1.2323803901672363 img loss 1.2566111087799072 img loss 1.198954463005066 img loss 1.218595266342163 img loss 1.1620944738388062 img loss 1.1576296091079712 img loss 1.1790015697479248 img loss 1.2849986553192139 img loss 1.2259113788604736 img loss 1.2228057384490967 img loss 1.239530086517334 img loss 1.2098642587661743 img loss 1.1458864212036133 img loss 1.223077654838562 img loss 1.1980736255645752 img loss 1.2306787967681885img loss 1.2061127424240112 img loss 1.2717231512069702 img loss 1.170728325843811 img loss 1.1830118894577026 img loss 1.2786369323730469 img loss 1.2046359777450562 img loss 1.1701741218566895 img loss 1.2425227165222168 img loss 1.1391017436981201 img loss 1.187620997428894 img loss 1.1805140972137451 img loss 1.2693226337432861 img loss 1.1737360954284668 img loss 1.2408981323242188 img loss 1.1930460929870605 img loss 1.2177214622497559 img loss 1.1745030879974365 img loss 1.1674762964248657 img loss 1.25874662399292 img loss 1.2114157676696777 img loss 1.1877455711364746 img loss 1.2042157649993896 img loss 1.1865370273590088 img loss 1.2688947916030884 img loss 1.2259173393249512 img loss 1.257713794708252 img loss 1.2243232727050781 img loss 1.2490049600601196 img loss 1.1294898986816406 img loss 1.1952835321426392 img loss 1.2370901107788086 img loss 1.231776475906372 img loss 1.1658647060394287 img loss 1.2805042266845703 img loss 1.2820583581924438 img loss 1.1885963678359985 img loss 1.238057017326355 img loss 1.2117481231689453 img loss 1.283638596534729 img loss 1.2123658657073975 img loss 1.122736930847168 img loss 1.2129405736923218 img loss 1.2047280073165894 img loss 1.193203330039978 img loss 1.2389864921569824 img loss 1.1996583938598633 img loss 1.2024290561676025 img loss 1.2057656049728394 img loss 1.1987911462783813 img loss 1.3129135370254517 img loss 1.207176685333252 img loss 1.1975054740905762 img loss 1.1469696760177612 img loss 1.214333176612854 img loss 1.2261701822280884 img loss 1.2150304317474365 img loss 1.2043681144714355 img loss 1.2133702039718628 img loss 1.2226569652557373 img loss 1.2527061700820923 img loss 1.1813477277755737 img loss 1.2009280920028687 img loss 1.1915501356124878 img loss 1.1967079639434814 img loss 1.2234337329864502 img loss 1.1884135007858276 img loss 1.1850097179412842 img loss 1.2413487434387207 img loss 1.1811749935150146 img loss 1.1746258735656738 img loss 1.2086988687515259 img loss 1.1878461837768555 img loss 1.1851962804794312 img loss 1.3206743001937866 img loss 1.1474024057388306 img loss 1.1644352674484253 img loss 1.1840766668319702 img loss 1.182524561882019 img loss 1.2260006666183472 img loss 1.2128806114196777 img loss 1.194883942604065 img loss 1.2104212045669556 img loss 1.2226625680923462 img loss 1.237879991531372 img loss 1.2378356456756592 img loss 1.2233049869537354 img loss 1.2184737920761108 img loss 1.1986596584320068 img loss 1.2348196506500244 img loss 1.1637816429138184 img loss 1.2443556785583496 img loss 1.130906343460083 img loss 1.2025048732757568 img loss 1.2822707891464233 img loss 1.2986210584640503 img loss 1.2127481698989868 img loss 1.170844316482544 img loss 1.1920599937438965 img loss 1.1498641967773438 {'loss': 1.2111, 'grad_norm': 0.3546651303768158, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3362195491790771 img loss 1.2456986904144287 img loss 1.3139194250106812 img loss 1.2947423458099365 img loss 1.2884609699249268 img loss 1.3616615533828735 img loss 1.2704088687896729 img loss 1.1746679544448853 img loss 1.2590440511703491 img loss 1.4054944515228271 img loss 1.2822474241256714 img loss 1.299241304397583 img loss 1.2687642574310303 img loss 1.3449046611785889 img loss 1.2543957233428955 img loss 1.2880579233169556 img loss 1.2861740589141846 img loss 1.225574254989624 img loss 1.3979498147964478 img loss 1.2546638250350952 img loss 1.2519203424453735 img loss 1.4056748151779175 img loss 1.1448884010314941 img loss 1.2701301574707031 img loss 1.2198634147644043 img loss 1.3242602348327637 img loss 1.3669551610946655 img loss 1.266667366027832 img loss 1.1986974477767944 img loss 1.2534626722335815 img loss 1.2909469604492188 img loss 1.3897795677185059 img loss 1.3058382272720337 img loss 1.438594937324524 img loss 1.2461299896240234 img loss 1.2068443298339844 img loss 1.4433635473251343 img loss 1.3638088703155518 img loss 1.356330156326294 img loss 1.2134718894958496 img loss 1.2730382680892944 img loss 1.224220633506775 img loss 1.3095715045928955 img loss 1.256282091140747 img loss 1.2769505977630615 img loss 1.2773849964141846 img loss 1.3023074865341187 img loss 1.2313581705093384 img loss 1.2438032627105713 img loss 1.2773112058639526 img loss 1.3260397911071777 img loss 1.2339295148849487 img loss 1.2919155359268188 img loss 1.2088631391525269 img loss 1.2506349086761475 img loss 1.2635700702667236 img loss 1.3017183542251587 img loss 1.3423666954040527 img loss 1.3463568687438965 img loss 1.2142844200134277 img loss 1.3043850660324097 img loss 1.2780537605285645 img loss 1.3273648023605347 img loss 1.246761679649353 img loss 1.3460536003112793 img loss 1.2254561185836792 img loss 1.3128788471221924 img loss 1.2773383855819702 img loss 1.2746446132659912 img loss 1.3105416297912598 img loss 1.2291812896728516 img loss 1.2817856073379517 img loss 1.1678359508514404 img loss 1.3076976537704468 img loss 1.2748180627822876 img loss 1.3535350561141968 img loss 1.3143022060394287 img loss 1.2842535972595215 img loss 1.2851746082305908 img loss 1.2764641046524048 img loss 1.2383716106414795 img loss 1.2793266773223877 img loss 1.361547827720642 img loss 1.2025552988052368 img loss 1.311195969581604 img loss 1.2993875741958618 img loss 1.2749751806259155 img loss 1.2867774963378906 img loss 1.2446764707565308 img loss 1.280342936515808 img loss 1.271104097366333 img loss 1.264204978942871 img loss 1.2260137796401978 img loss 1.1842122077941895 img loss 1.2280222177505493 img loss 1.3038736581802368 img loss 1.214108943939209 img loss 1.3097336292266846 img loss 1.3709708452224731 img loss 1.3914281129837036 img loss 1.2919836044311523 img loss 1.298438549041748 img loss 1.3827402591705322 img loss 1.2440427541732788 img loss 1.3202139139175415 img loss 1.1458090543746948 img loss 1.2674167156219482 img loss 1.2191985845565796 img loss 1.3360073566436768 img loss 1.2823389768600464 img loss 1.2794169187545776 img loss 1.2420467138290405 img loss 1.2350754737854004 img loss 1.236129641532898 img loss 1.3126237392425537 img loss 1.2590596675872803 img loss 1.35187566280365 img loss 1.3049509525299072 img loss 1.215134620666504 img loss 1.2223552465438843 img loss 1.258929967880249 img loss 1.276163935661316 img loss 1.3865888118743896 img loss 1.210392713546753 img loss 1.1917171478271484 img loss 1.2681397199630737 img loss 1.3272089958190918 img loss 1.2609783411026 {'loss': 1.2821, 'grad_norm': 0.3560676574707031, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.154576063156128 img loss 1.2361633777618408 img loss 1.283132553100586 img loss 1.2481659650802612 img loss 1.2042192220687866 img loss 1.3592575788497925 img loss 1.1633827686309814 img loss 1.2288261651992798 img loss 1.1555912494659424 img loss 1.1607993841171265 img loss 1.1096951961517334 img loss 1.1666316986083984 img loss 1.1761471033096313 img loss 1.1942870616912842 img loss 1.1537392139434814 img loss 1.1084208488464355 img loss 1.1994292736053467 img loss 1.1721298694610596 img loss 1.209755539894104 img loss 1.2017778158187866 img loss 1.1777150630950928 img loss 1.301247477531433 img loss 1.18900728225708 img loss 1.1630988121032715 img loss 1.2076412439346313 img loss 1.194263219833374 img loss 1.2582858800888062 img loss 1.1656574010849 img loss 1.2373371124267578 img loss 1.2023872137069702 img loss 1.2593204975128174 img loss 1.2236942052841187 img loss 1.2912687063217163 img loss 1.1317678689956665 img loss 1.1810414791107178 img loss 1.294297695159912 img loss 1.2491238117218018 img loss 1.2129449844360352 img loss 1.173806071281433 img loss 1.2452805042266846 img loss 1.2191543579101562 img loss 1.1740950345993042 img loss 1.2119444608688354 img loss 1.2386502027511597 img loss 1.1313437223434448 img loss 1.1861515045166016 img loss 1.1962379217147827 img loss 1.0960521697998047 img loss 1.242714524269104 img loss 1.0967073440551758 img loss 1.1895928382873535 img loss 1.206146001815796 img loss 1.1422621011734009 img loss 1.1401211023330688 img loss 1.1923223733901978 img loss 1.2197221517562866 img loss 1.1796669960021973 img loss 1.2345890998840332 img loss 1.1943683624267578 img loss 1.145810604095459 img loss 1.177573561668396 img loss 1.2503046989440918 img loss 1.118563175201416 img loss 1.25027334690094 img loss 1.1746183633804321 img loss 1.2253530025482178 img loss 1.1932461261749268 img loss 1.1391974687576294 img loss 1.1689895391464233 img loss 1.1994222402572632 img loss 1.1801913976669312 img loss 1.2125444412231445 img loss 1.2422277927398682 img loss 1.215571403503418 img loss 1.153541088104248 img loss 1.222917914390564 img loss 1.1850032806396484 img loss 1.1886533498764038 img loss 1.1597156524658203 img loss 1.1747188568115234 img loss 1.2133307456970215 img loss 1.1407679319381714 img loss 1.2091476917266846 img loss 1.2324262857437134 img loss 1.1496940851211548 img loss 1.2108604907989502 img loss 1.265744924545288 img loss 1.238623023033142 img loss 1.142767310142517 img loss 1.216590404510498 img loss 1.1556940078735352 img loss 1.1832256317138672 img loss 1.2130849361419678 img loss 1.1825916767120361 img loss 1.234552264213562 img loss 1.1754167079925537 img loss 1.329658031463623 img loss 1.2029881477355957 img loss 1.1764934062957764 img loss 1.1459276676177979 img loss 1.2007273435592651 img loss 1.2317872047424316 img loss 1.1394609212875366 img loss 1.1786730289459229 img loss 1.2624844312667847 img loss 1.1834560632705688 img loss 1.2112349271774292 img loss 1.1518940925598145 img loss 1.1704890727996826 img loss 1.1496342420578003 img loss 1.0576462745666504 img loss 1.1385414600372314 img loss 1.2442352771759033 img loss 1.1787656545639038 img loss 1.180915355682373 img loss 1.2529443502426147 img loss 1.1661396026611328 img loss 1.21408212184906 img loss 1.167625904083252 img loss 1.189530849456787 img loss 1.1969507932662964 img loss 1.2524642944335938 img loss 1.1847724914550781 img loss 1.1127088069915771 img loss 1.1904839277267456 img loss 1.1831812858581543 img loss 1.2264044284820557 img loss 1.2657793760299683 {'loss': 1.1955, 'grad_norm': 0.49586954712867737, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2321832180023193 img loss 1.2093557119369507 img loss 1.212886095046997 img loss 1.241062879562378 img loss 1.1742032766342163 img loss 1.1777900457382202 img loss 1.2542232275009155 img loss 1.1819171905517578 img loss 1.2284390926361084 img loss 1.201291799545288 img loss 1.2238861322402954 img loss 1.2690026760101318 img loss 1.2864652872085571 img loss 1.2526270151138306 img loss 1.1698853969573975 img loss 1.2757478952407837 img loss 1.227807641029358 img loss 1.2039399147033691 img loss 1.220733404159546 img loss 1.2399282455444336 img loss 1.1488360166549683 img loss 1.2057209014892578 img loss 1.1929428577423096 img loss 1.1903016567230225 img loss 1.1330646276474 img loss 1.2450916767120361 img loss 1.2202571630477905 img loss 1.195901870727539 img loss 1.2052319049835205 img loss 1.2069209814071655 img loss 1.1522574424743652 img loss 1.228678584098816 img loss 1.2277538776397705 img loss 1.1804319620132446 img loss 1.285500407218933 img loss 1.237767219543457 img loss 1.2178007364273071 img loss 1.2112476825714111 img loss 1.2010029554367065 img loss 1.2678934335708618 img loss 1.2192339897155762 img loss 1.2271121740341187 img loss 1.1745942831039429 img loss 1.2347707748413086 img loss 1.2580655813217163 img loss 1.1824378967285156 img loss 1.233214259147644 img loss 1.2045682668685913 img loss 1.242361068725586 img loss 1.2222371101379395 img loss 1.1503896713256836 img loss 1.249539852142334 img loss 1.3002887964248657 img loss 1.1710891723632812 img loss 1.223163366317749 img loss 1.2039073705673218 img loss 1.2517169713974 img loss 1.2074588537216187 img loss 1.203128457069397 img loss 1.2830160856246948 img loss 1.1950730085372925 img loss 1.3295128345489502 img loss 1.147881269454956 img loss 1.246472954750061 img loss 1.2540687322616577 img loss 1.1641123294830322 img loss 1.1753240823745728 img loss 1.1634554862976074 img loss 1.2622325420379639 img loss 1.232115387916565 img loss 1.222476840019226 img loss 1.2984808683395386 img loss 1.2806000709533691 img loss 1.2668232917785645 img loss 1.3207435607910156 img loss 1.1174215078353882 img loss 1.2233920097351074 img loss 1.2391427755355835 img loss 1.2747503519058228 img loss 1.115096926689148 img loss 1.2263522148132324 img loss 1.284293532371521 img loss 1.184170126914978 img loss 1.2624965906143188 img loss 1.2458866834640503 img loss 1.247393250465393 img loss 1.2113587856292725 img loss 1.2651078701019287 img loss 1.2705967426300049 img loss 1.2521485090255737 img loss 1.2557764053344727 img loss 1.2072350978851318 img loss 1.241187334060669 img loss 1.1855666637420654 img loss 1.2835884094238281 img loss 1.2749652862548828 img loss 1.1928389072418213 img loss 1.1979154348373413 img loss 1.2490928173065186 img loss 1.2439422607421875 img loss 1.2773021459579468 img loss 1.1828104257583618 img loss 1.2385185956954956 img loss 1.237687587738037 img loss 1.1707605123519897 img loss 1.269865870475769 img loss 1.2019400596618652 img loss 1.217182993888855 img loss 1.238677978515625 img loss 1.2674479484558105 img loss 1.232435703277588 img loss 1.221174716949463 img loss 1.2011501789093018 img loss 1.2705554962158203 img loss 1.1789817810058594 img loss 1.2911897897720337 img loss 1.3417116403579712 img loss 1.2312984466552734 img loss 1.2745168209075928 img loss 1.1762022972106934 img loss 1.180030107498169 img loss 1.255569338798523 img loss 1.2630200386047363 img loss 1.184594988822937 img loss 1.2817764282226562 img loss 1.2959245443344116 img loss 1.2574337720870972 img loss 1.2961704730987549 {'loss': 1.2276, 'grad_norm': 0.45300474762916565, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.290306568145752 img loss 1.2586724758148193 img loss 1.424086093902588 img loss 1.4157013893127441 img loss 1.447373628616333 img loss 1.4687234163284302 img loss 1.3931403160095215 img loss 1.2814319133758545 img loss 1.3173646926879883 img loss 1.324501395225525 img loss 1.4270058870315552 img loss 1.2994390726089478 img loss 1.270310640335083 img loss 1.4472299814224243 img loss 1.4027067422866821 img loss 1.3123220205307007 img loss 1.4352091550827026 img loss 1.482478380203247 img loss 1.3104320764541626 img loss 1.2288888692855835 img loss 1.3639028072357178 img loss 1.5280083417892456 img loss 1.319441795349121 img loss 1.3046135902404785 img loss 1.3510788679122925 img loss 1.3259696960449219 img loss 1.40428626537323 img loss 1.3101191520690918 img loss 1.3667458295822144 img loss 1.3456956148147583img loss 1.4090288877487183 img loss 1.28876531124115 img loss 1.4478375911712646 img loss 1.3771189451217651 img loss 1.3940726518630981 img loss 1.4117846488952637 img loss 1.4188531637191772 img loss 1.521438479423523 img loss 1.4031423330307007 img loss 1.4537699222564697 img loss 1.4856928586959839 img loss 1.397429347038269 img loss 1.2266035079956055 img loss 1.313102126121521 img loss 1.2227301597595215 img loss 1.3905819654464722 img loss 1.3751431703567505 img loss 1.5379658937454224 img loss 1.308681845664978 img loss 1.440382480621338 img loss 1.3303287029266357 img loss 1.3825061321258545 img loss 1.2998745441436768 img loss 1.3802498579025269 img loss 1.3223514556884766 img loss 1.3918439149856567 img loss 1.3222017288208008 img loss 1.3126192092895508 img loss 1.3961869478225708 img loss 1.4374175071716309 img loss 1.2990649938583374 img loss 1.3781386613845825 img loss 1.4529036283493042 img loss 1.4821579456329346 img loss 1.3058409690856934 img loss 1.3247301578521729 img loss 1.3009865283966064 img loss 1.3729559183120728 img loss 1.391312837600708 img loss 1.3853449821472168 img loss 1.3152961730957031 img loss 1.4858921766281128 img loss 1.4068728685379028 img loss 1.4741169214248657 img loss 1.3307359218597412 img loss 1.3863482475280762 img loss 1.4480748176574707 img loss 1.4686325788497925 img loss 1.5400084257125854 img loss 1.4827488660812378 img loss 1.4215689897537231 img loss 1.3526041507720947 img loss 1.3439691066741943 img loss 1.4812477827072144 img loss 1.3818858861923218 img loss 1.3420599699020386 img loss 1.3719288110733032 img loss 1.387478232383728 img loss 1.4103891849517822 img loss 1.3689723014831543 img loss 1.362676739692688 img loss 1.409449815750122 img loss 1.3912345170974731 img loss 1.395789384841919 img loss 1.3185842037200928 img loss 1.44822096824646 img loss 1.3305143117904663 img loss 1.408893346786499 img loss 1.4883445501327515 img loss 1.482648253440857 img loss 1.3482314348220825 img loss 1.3419697284698486 img loss 1.3610081672668457 img loss 1.3268659114837646 img loss 1.3507463932037354 img loss 1.3805469274520874 img loss 1.4472920894622803 img loss 1.301501989364624 img loss 1.3361976146697998 img loss 1.335854411125183 img loss 1.451647162437439 img loss 1.3625900745391846 img loss 1.4665111303329468 img loss 1.485257863998413 img loss 1.3963322639465332 img loss 1.3703396320343018 img loss 1.5512357950210571 img loss 1.3380266427993774 img loss 1.3674848079681396 img loss 1.3236392736434937 img loss 1.3607518672943115 img loss 1.3136688470840454 img loss 1.381377100944519 img loss 1.3419339656829834 img loss 1.3419781923294067 img loss 1.396958589553833 img loss 1.458696961402893 img loss 1.3406296968460083 {'loss': 1.381, 'grad_norm': 0.46080902218818665, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1476882696151733 img loss 1.2252998352050781 img loss 1.167043685913086 img loss 1.1833819150924683 img loss 1.1393764019012451 img loss 1.2182868719100952 img loss 1.2021573781967163 img loss 1.1427878141403198 img loss 1.169309139251709 img loss 1.218451738357544 img loss 1.186319351196289 img loss 1.2179657220840454 img loss 1.2108736038208008 img loss 1.1628329753875732 img loss 1.1698331832885742 img loss 1.1841506958007812 img loss 1.1291135549545288 img loss 1.166959285736084 img loss 1.2241418361663818 img loss 1.1808676719665527 img loss 1.1837037801742554 img loss 1.1630094051361084 img loss 1.1048362255096436 img loss 1.1695094108581543 img loss 1.2036423683166504 img loss 1.279502511024475 img loss 1.16550612449646 img loss 1.1931923627853394 img loss 1.2408995628356934 img loss 1.122230052947998 img loss 1.2349227666854858 img loss 1.1970709562301636 img loss 1.1977962255477905 img loss 1.1830395460128784 img loss 1.300858974456787 img loss 1.2107346057891846 img loss 1.1850284337997437 img loss 1.2419770956039429 img loss 1.241247534751892 img loss 1.299081802368164 img loss 1.2081334590911865 img loss 1.1207956075668335 img loss 1.1684677600860596 img loss 1.2031787633895874 img loss 1.2282452583312988 img loss 1.1450542211532593 img loss 1.2352688312530518 img loss 1.1571972370147705 img loss 1.1299368143081665 img loss 1.1477580070495605 img loss 1.196558952331543 img loss 1.1986900568008423 img loss 1.2618204355239868 img loss 1.1261262893676758 img loss 1.1991710662841797 img loss 1.2214727401733398 img loss 1.2815111875534058 img loss 1.1539525985717773 img loss 1.172742247581482 img loss 1.2394413948059082 img loss 1.3313181400299072 img loss 1.2686728239059448 img loss 1.1670299768447876 img loss 1.1518234014511108 img loss 1.2658116817474365 img loss 1.2527053356170654 img loss 1.1854714155197144 img loss 1.1965833902359009 img loss 1.2055468559265137 img loss 1.1698052883148193 img loss 1.2155704498291016 img loss 1.204003930091858 img loss 1.1760149002075195 img loss 1.1783710718154907 img loss 1.163927674293518 img loss 1.1727027893066406 img loss 1.2033799886703491 img loss 1.1507151126861572 img loss 1.2455812692642212 img loss 1.173928141593933 img loss 1.1321079730987549 img loss 1.1480234861373901 img loss 1.1407665014266968 img loss 1.212619662284851 img loss 1.24393630027771 img loss 1.2313286066055298 img loss 1.2183661460876465 img loss 1.2139803171157837 img loss 1.1771409511566162 img loss 1.231237769126892 img loss 1.1284220218658447 img loss 1.2630724906921387 img loss 1.163314700126648 img loss 1.2097985744476318 img loss 1.1956837177276611 img loss 1.0989675521850586 img loss 1.2237099409103394 img loss 1.145687460899353 img loss 1.1881481409072876 img loss 1.2115808725357056 img loss 1.1390490531921387 img loss 1.2292473316192627 img loss 1.1902979612350464 img loss 1.1437065601348877 img loss 1.281238317489624 img loss 1.2403582334518433 img loss 1.190010905265808 img loss 1.1792932748794556 img loss 1.2453278303146362 img loss 1.152138590812683 img loss 1.1904098987579346 img loss 1.0829790830612183 img loss 1.2075567245483398 img loss 1.1454542875289917 img loss 1.2889187335968018 img loss 1.2005021572113037 img loss 1.2246084213256836 img loss 1.1752984523773193 img loss 1.1998506784439087 img loss 1.1787879467010498 img loss 1.249845266342163 img loss 1.1858736276626587 img loss 1.1608819961547852 img loss 1.1544110774993896 img loss 1.2252120971679688 img loss 1.1803041696548462 img loss 1.3414405584335327 img loss 1.2421211004257202 {'loss': 1.1956, 'grad_norm': 0.2186240553855896, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2124541997909546 img loss 1.202378273010254 img loss 1.277250051498413 img loss 1.2705711126327515 img loss 1.2774755954742432 img loss 1.1961541175842285 img loss 1.2597736120224 img loss 1.239806056022644 img loss 1.2926311492919922 img loss 1.2568371295928955 img loss 1.2709996700286865 img loss 1.2168735265731812 img loss 1.2734895944595337 img loss 1.270188570022583 img loss 1.1947228908538818 img loss 1.2656233310699463 img loss 1.2536779642105103 img loss 1.2901058197021484 img loss 1.2572433948516846 img loss 1.2274538278579712 img loss 1.2566484212875366 img loss 1.3234955072402954 img loss 1.3062390089035034 img loss 1.2621163129806519 img loss 1.2630373239517212 img loss 1.3315300941467285 img loss 1.2381856441497803 img loss 1.2545390129089355 img loss 1.2734601497650146 img loss 1.1931673288345337 img loss 1.2496755123138428 img loss 1.3385798931121826 img loss 1.3114657402038574 img loss 1.2102367877960205 img loss 1.2904762029647827 img loss 1.2572826147079468 img loss 1.2791540622711182 img loss 1.4198089838027954 img loss 1.2550514936447144 img loss 1.2486680746078491 img loss 1.2702560424804688 img loss 1.2512487173080444 img loss 1.250468134880066 img loss 1.2770270109176636 img loss 1.2881155014038086 img loss 1.3130348920822144 img loss 1.2986176013946533 img loss 1.22946035861969 img loss 1.2284691333770752 img loss 1.2876743078231812 img loss 1.2758769989013672 img loss 1.334025263786316 img loss 1.286102056503296 img loss 1.2366183996200562 img loss 1.2575098276138306 img loss 1.233160376548767 img loss 1.3256409168243408 img loss 1.2313237190246582 img loss 1.2572845220565796 img loss 1.313878059387207 img loss 1.2524025440216064 img loss 1.1747063398361206 img loss 1.2845168113708496 img loss 1.221139907836914 img loss 1.2309707403182983 img loss 1.2128511667251587 img loss 1.2469806671142578 img loss 1.1820168495178223 img loss 1.3299869298934937 img loss 1.2538789510726929 img loss 1.2310748100280762 img loss 1.2222450971603394 img loss 1.1615641117095947 img loss 1.2619022130966187 img loss 1.2506325244903564 img loss 1.2661556005477905 img loss 1.2458815574645996 img loss 1.2637428045272827 img loss 1.2716087102890015 img loss 1.2916347980499268 img loss 1.2598474025726318 img loss 1.264229655265808 img loss 1.2409381866455078 img loss 1.3587299585342407 img loss 1.2255761623382568 img loss 1.2629238367080688 img loss 1.2187321186065674 img loss 1.240168809890747 img loss 1.2921042442321777 img loss 1.2338860034942627 img loss 1.2639837265014648 img loss 1.3909121751785278 img loss 1.3113195896148682 img loss 1.2563059329986572 img loss 1.2144514322280884 img loss 1.241145372390747 img loss 1.335823655128479 img loss 1.3471430540084839 img loss 1.1772265434265137 img loss 1.2721061706542969 img loss 1.2697399854660034 img loss 1.2448090314865112 img loss 1.2779736518859863 img loss 1.244754672050476 img loss 1.2817955017089844 img loss 1.2886165380477905 img loss 1.2190592288970947 img loss 1.2525410652160645 img loss 1.2808339595794678 img loss 1.2599315643310547 img loss 1.2204852104187012 img loss 1.2491092681884766 img loss 1.245804786682129 img loss 1.2943451404571533 img loss 1.2711541652679443 img loss 1.2353914976119995 img loss 1.347521424293518 img loss 1.3072528839111328 img loss 1.272038459777832 img loss 1.2652767896652222 img loss 1.2627168893814087 img loss 1.238695502281189 img loss 1.2202590703964233 img loss 1.311561107635498 img loss 1.2963776588439941 img loss 1.320338249206543 img loss 1.286692500114441 img loss 1.2521836757659912 {'loss': 1.264, 'grad_norm': 0.3636675477027893, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4716722965240479 img loss 1.4264107942581177 img loss 1.515305757522583 img loss 1.3546074628829956 img loss 1.4477494955062866 img loss 1.3870270252227783 img loss 1.4622466564178467 img loss 1.5666147470474243 img loss 1.3900730609893799 img loss 1.4730252027511597 img loss 1.3933600187301636 img loss 1.3215618133544922 img loss 1.4233232736587524 img loss 1.534415364265442 img loss 1.395484209060669 img loss 1.4493581056594849 img loss 1.4240731000900269 img loss 1.5344798564910889 img loss 1.4214670658111572 img loss 1.4829128980636597 img loss 1.5352904796600342 img loss 1.5659040212631226 img loss 1.3541920185089111 img loss 1.4408692121505737 img loss 1.3372647762298584 img loss 1.3997348546981812 img loss 1.5423452854156494 img loss 1.5592750310897827 img loss 1.5194411277770996 img loss 1.4906562566757202 img loss 1.4589647054672241 img loss 1.4459174871444702 img loss 1.4752999544143677 img loss 1.4013959169387817 img loss 1.3121976852416992 img loss 1.455735445022583 img loss 1.4758299589157104 img loss 1.5079913139343262 img loss 1.496794581413269 img loss 1.4235974550247192 img loss 1.4477665424346924 img loss 1.4133902788162231 img loss 1.3913172483444214 img loss 1.516935110092163 img loss 1.4049572944641113 img loss 1.3992152214050293 img loss 1.390818476676941 img loss 1.451345682144165 img loss 1.335355281829834 img loss 1.453652024269104 img loss 1.4431483745574951 img loss 1.5215479135513306 img loss 1.3834344148635864 img loss 1.359668254852295 img loss 1.4971157312393188 img loss 1.35984206199646 img loss 1.5530272722244263 img loss 1.4696906805038452 img loss 1.4268383979797363 img loss 1.3787468671798706 img loss 1.6467398405075073 img loss 1.3848567008972168 img loss 1.5616687536239624 img loss 1.3703559637069702 img loss 1.4808346033096313 img loss 1.476176142692566 img loss 1.414071798324585 img loss 1.3908559083938599 img loss 1.4519069194793701 img loss 1.4281818866729736 img loss 1.4694753885269165 img loss 1.472216248512268 img loss 1.5146225690841675 img loss 1.4930211305618286 img loss 1.5043781995773315 img loss 1.3602856397628784 img loss 1.4334355592727661 img loss 1.4517624378204346 img loss 1.4338728189468384 img loss 1.5229430198669434 img loss 1.4942525625228882 img loss 1.4242265224456787 img loss 1.5100605487823486 img loss 1.4624961614608765 img loss 1.4783731698989868 img loss 1.4089350700378418 img loss 1.50460684299469 img loss 1.4995542764663696 img loss 1.4267172813415527 img loss 1.4160090684890747 img loss 1.5678422451019287 img loss 1.3742098808288574 img loss 1.3826000690460205 img loss 1.487774133682251 img loss 1.5013059377670288 img loss 1.5245617628097534 img loss 1.4781919717788696 img loss 1.4373666048049927 img loss 1.401157259941101 img loss 1.535547137260437 img loss 1.3795077800750732 img loss 1.4238221645355225 img loss 1.4734047651290894 img loss 1.4107699394226074 img loss 1.5322548151016235 img loss 1.5762661695480347 img loss 1.3711682558059692 img loss 1.3610213994979858 img loss 1.2408157587051392 img loss 1.3882880210876465 img loss 1.4209930896759033 img loss 1.5091902017593384 img loss 1.4680675268173218 img loss 1.5618926286697388 img loss 1.4199966192245483 img loss 1.4593435525894165 img loss 1.347679615020752 img loss 1.4625493288040161 img loss 1.602782130241394 img loss 1.4660247564315796 img loss 1.392712950706482 img loss 1.3886163234710693 img loss 1.561205506324768 img loss 1.4509385824203491 img loss 1.5242056846618652 img loss 1.3519879579544067 img loss 1.358249545097351 img loss 1.4797078371047974 {'loss': 1.4503, 'grad_norm': 0.37798821926116943, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2199783325195312 img loss 1.1522722244262695 img loss 1.257690191268921 img loss 1.1804243326187134 img loss 1.2342535257339478 img loss 1.2433032989501953 img loss 1.289467453956604 img loss 1.202233910560608 img loss 1.1273187398910522 img loss 1.123387336730957 img loss 1.209094762802124 img loss 1.1354434490203857 img loss 1.1451822519302368 img loss 1.1124662160873413 img loss 1.1634290218353271 img loss 1.1305760145187378 img loss 1.2333157062530518 img loss 1.1839008331298828 img loss 1.1658273935317993 img loss 1.184798002243042 img loss 1.228872537612915 img loss 1.1173694133758545 img loss 1.1634291410446167 img loss 1.269826889038086 img loss 1.1800960302352905 img loss 1.1568807363510132 img loss 1.2651680707931519 img loss 1.2040201425552368 img loss 1.2105495929718018 img loss 1.1792856454849243 img loss 1.1395434141159058 img loss 1.2312910556793213 img loss 1.1859204769134521 img loss 1.1785695552825928 img loss 1.1445419788360596 img loss 1.21173894405365 img loss 1.1859883069992065 img loss 1.2853059768676758 img loss 1.1713788509368896 img loss 1.161161184310913 img loss 1.1820570230484009 img loss 1.2102402448654175 img loss 1.1805648803710938 img loss 1.2788599729537964 img loss 1.2308366298675537 img loss 1.2991472482681274 img loss 1.2118830680847168 img loss 1.199980616569519 img loss 1.2629969120025635 img loss 1.2168976068496704 img loss 1.1768245697021484 img loss 1.2066320180892944 img loss 1.1745355129241943 img loss 1.170682430267334 img loss 1.252253532409668 img loss 1.2083454132080078 img loss 1.246437907218933 img loss 1.1770867109298706 img loss 1.1624202728271484 img loss 1.1543768644332886 img loss 1.226988434791565 img loss 1.1794734001159668 img loss 1.201263189315796 img loss 1.27936589717865 img loss 1.2545466423034668 img loss 1.1749895811080933 img loss 1.1745223999023438 img loss 1.147094964981079 img loss 1.2141557931900024 img loss 1.2604331970214844 img loss 1.1068611145019531 img loss 1.1687439680099487 img loss 1.2480871677398682 img loss 1.1598809957504272 img loss 1.2170445919036865 img loss 1.2109975814819336 img loss 1.1574159860610962 img loss 1.2015392780303955 img loss 1.1317602396011353 img loss 1.1805176734924316 img loss 1.2940622568130493 img loss 1.1998776197433472 img loss 1.1653703451156616 img loss 1.1338989734649658 img loss 1.2136424779891968 img loss 1.191392421722412 img loss 1.1567323207855225 img loss 1.2169482707977295 img loss 1.1192545890808105 img loss 1.1942150592803955 img loss 1.2588409185409546 img loss 1.1682239770889282 img loss 1.1652464866638184 img loss 1.1849454641342163 img loss 1.1726411581039429 img loss 1.1946032047271729 img loss 1.157195806503296 img loss 1.1154433488845825 img loss 1.222907543182373 img loss 1.20928955078125 img loss 1.2476047277450562 img loss 1.175187587738037 img loss 1.1361459493637085 img loss 1.1060988903045654 img loss 1.1273622512817383 img loss 1.2084015607833862 img loss 1.2233527898788452 img loss 1.1686714887619019 img loss 1.1523127555847168 img loss 1.1061255931854248 img loss 1.0560376644134521 img loss 1.180397868156433 img loss 1.1535676717758179 img loss 1.2017122507095337 img loss 1.0832172632217407 img loss 1.1552127599716187 img loss 1.1853289604187012 img loss 1.1634355783462524 img loss 1.2584493160247803 img loss 1.1878221035003662 img loss 1.2412753105163574 img loss 1.3258365392684937 img loss 1.2430365085601807 img loss 1.1188892126083374 img loss 1.1391359567642212 img loss 1.2520716190338135 img loss 1.1410092115402222 img loss 1.187044382095337 {'loss': 1.19, 'grad_norm': 0.19132789969444275, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.335425853729248 img loss 1.405728816986084 img loss 1.3296043872833252 img loss 1.2592700719833374 img loss 1.2773571014404297 img loss 1.3763651847839355 img loss 1.2800073623657227 img loss 1.3164185285568237 img loss 1.3362151384353638 img loss 1.2825064659118652 img loss 1.3358463048934937 img loss 1.2867485284805298 img loss 1.3885266780853271 img loss 1.360446572303772 img loss 1.2505085468292236 img loss 1.3723381757736206 img loss 1.3012880086898804 img loss 1.292163372039795 img loss 1.267777919769287 img loss 1.27926766872406 img loss 1.3085803985595703 img loss 1.3236291408538818 img loss 1.2312812805175781 img loss 1.3161343336105347 img loss 1.292380690574646 img loss 1.2655043601989746 img loss 1.3537112474441528 img loss 1.3332722187042236 img loss 1.3450928926467896 img loss 1.2976584434509277 img loss 1.3820656538009644 img loss 1.2667673826217651 img loss 1.2828967571258545 img loss 1.2981853485107422 img loss 1.2969608306884766 img loss 1.278845191001892 img loss 1.2513351440429688 img loss 1.3615336418151855 img loss 1.3478401899337769 img loss 1.2605949640274048 img loss 1.3051810264587402 img loss 1.2979873418807983 img loss 1.3000357151031494 img loss 1.2883799076080322 img loss 1.395141363143921 img loss 1.3010019063949585 img loss 1.313452959060669 img loss 1.2855331897735596 img loss 1.3083795309066772 img loss 1.2821582555770874 img loss 1.281981348991394 img loss 1.3063695430755615 img loss 1.283158540725708 img loss 1.2507355213165283 img loss 1.2223539352416992 img loss 1.2561922073364258 img loss 1.2906826734542847 img loss 1.2243198156356812 img loss 1.3798072338104248 img loss 1.401206612586975 img loss 1.2927780151367188 img loss 1.312031626701355 img loss 1.2717392444610596 img loss 1.3106924295425415 img loss 1.360227108001709 img loss 1.2345023155212402 img loss 1.2819476127624512 img loss 1.2848060131072998 img loss 1.3095401525497437 img loss 1.3677393198013306 img loss 1.2935295104980469 img loss 1.3712208271026611 img loss 1.1830185651779175 img loss 1.3543328046798706 img loss 1.2904431819915771 img loss 1.3975361585617065 img loss 1.304775595664978 img loss 1.3328566551208496 img loss 1.3789458274841309 img loss 1.2704261541366577 img loss 1.3112306594848633 img loss 1.3647942543029785 img loss 1.308612585067749 img loss 1.254514455795288 img loss 1.265312671661377 img loss 1.26084566116333 img loss 1.4310362339019775 img loss 1.3183536529541016 img loss 1.2975679636001587 img loss 1.216660737991333 img loss 1.2570377588272095 img loss 1.2303129434585571 img loss 1.2025330066680908 img loss 1.4276162385940552 img loss 1.3009796142578125 img loss 1.339857578277588 img loss 1.3109773397445679 img loss 1.3297183513641357 img loss 1.2845821380615234 img loss 1.2770171165466309 img loss 1.2313950061798096 img loss 1.329118013381958 img loss 1.2889389991760254 img loss 1.2077136039733887 img loss 1.3081938028335571 img loss 1.462567687034607 img loss 1.3162367343902588 img loss 1.2780522108078003 img loss 1.3161224126815796 img loss 1.2394306659698486 img loss 1.3522337675094604 img loss 1.388721227645874 img loss 1.2483896017074585 img loss 1.3114581108093262 img loss 1.252840518951416 img loss 1.2501009702682495 img loss 1.2353368997573853 img loss 1.2945970296859741 img loss 1.261807918548584 img loss 1.3942762613296509 img loss 1.2386295795440674 img loss 1.3275203704833984 img loss 1.386231780052185 img loss 1.4460641145706177 img loss 1.3954013586044312 img loss 1.3423296213150024 img loss 1.309249758720398 img loss 1.304772138595581 {'loss': 1.3071, 'grad_norm': 0.4229528307914734, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.209644079208374 img loss 1.2117726802825928 img loss 1.2276023626327515 img loss 1.2142796516418457 img loss 1.181577444076538 img loss 1.2396488189697266 img loss 1.209411382675171 img loss 1.1872791051864624 img loss 1.1669974327087402 img loss 1.2826297283172607 img loss 1.159142017364502 img loss 1.2366279363632202 img loss 1.1858341693878174 img loss 1.22015380859375 img loss 1.2261829376220703 img loss 1.2217994928359985 img loss 1.2348709106445312 img loss 1.2305715084075928 img loss 1.2057541608810425 img loss 1.2290890216827393 img loss 1.2151634693145752 img loss 1.235082983970642 img loss 1.2556343078613281 img loss 1.2697393894195557 img loss 1.21996009349823 img loss 1.1872363090515137 img loss 1.2112706899642944 img loss 1.1818064451217651 img loss 1.2122281789779663 img loss 1.1682413816452026 img loss 1.182749629020691 img loss 1.2535371780395508 img loss 1.1860798597335815 img loss 1.1888412237167358 img loss 1.2107396125793457 img loss 1.1841715574264526 img loss 1.2434128522872925 img loss 1.1995271444320679 img loss 1.2185921669006348 img loss 1.1527019739151 img loss 1.2362136840820312 img loss 1.1549955606460571 img loss 1.1930179595947266 img loss 1.2175052165985107 img loss 1.236030101776123 img loss 1.212634563446045 img loss 1.1859115362167358 img loss 1.2450779676437378 img loss 1.2317306995391846 img loss 1.1995353698730469 img loss 1.2129080295562744 img loss 1.2159870862960815 img loss 1.1537710428237915 img loss 1.243859887123108 img loss 1.160014033317566 img loss 1.205484390258789 img loss 1.229063630104065 img loss 1.1958640813827515 img loss 1.2592284679412842 img loss 1.1861374378204346 img loss 1.1908059120178223 img loss 1.1919258832931519 img loss 1.1990593671798706 img loss 1.2111091613769531 img loss 1.2263541221618652 img loss 1.2124327421188354 img loss 1.172664999961853 img loss 1.2784216403961182 img loss 1.1753616333007812 img loss 1.1932177543640137 img loss 1.1920123100280762 img loss 1.2511951923370361 img loss 1.2814204692840576 img loss 1.192381501197815 img loss 1.2527415752410889 img loss 1.2510831356048584 img loss 1.2197703123092651 img loss 1.2364877462387085 img loss 1.2385717630386353 img loss 1.2406485080718994 img loss 1.1979032754898071 img loss 1.1809290647506714 img loss 1.228881597518921 img loss 1.21744704246521 img loss 1.2058203220367432 img loss 1.2354239225387573 img loss 1.2992486953735352 img loss 1.2139991521835327 img loss 1.216561198234558 img loss 1.1835172176361084 img loss 1.2365202903747559 img loss 1.188331127166748 img loss 1.2479791641235352 img loss 1.2029078006744385 img loss 1.2221450805664062 img loss 1.199937343597412 img loss 1.1893401145935059 img loss 1.2513997554779053 img loss 1.2451419830322266 img loss 1.2009111642837524 img loss 1.2343800067901611 img loss 1.2034306526184082 img loss 1.1738420724868774 img loss 1.1736321449279785 img loss 1.2142257690429688 img loss 1.1909595727920532 img loss 1.1966257095336914 img loss 1.1869497299194336 img loss 1.2245749235153198 img loss 1.1856187582015991 img loss 1.2560021877288818 img loss 1.2527650594711304 img loss 1.2351131439208984 img loss 1.231178879737854 img loss 1.195279598236084 img loss 1.1656407117843628 img loss 1.2443785667419434 img loss 1.1747536659240723 img loss 1.2291876077651978 img loss 1.2056912183761597 img loss 1.2126939296722412 img loss 1.204127550125122 img loss 1.1756517887115479 img loss 1.2143094539642334 img loss 1.235410451889038 img loss 1.2739351987838745 img loss 1.2209888696670532 img loss 1.2150053977966309 {'loss': 1.2135, 'grad_norm': 0.2737012803554535, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1756935119628906 img loss 1.1875841617584229 img loss 1.1488056182861328 img loss 1.249387502670288 img loss 1.2033573389053345 img loss 1.179314136505127 img loss 1.1902412176132202 img loss 1.216521978378296 img loss 1.2129077911376953 img loss 1.2485090494155884 img loss 1.1700371503829956 img loss 1.2126080989837646 img loss 1.1633002758026123 img loss 1.1696208715438843 img loss 1.294055461883545 img loss 1.2026455402374268 img loss 1.2200608253479004 img loss 1.2077977657318115 img loss 1.2084622383117676 img loss 1.2109345197677612 img loss 1.2088953256607056 img loss 1.1564521789550781 img loss 1.1957939863204956 img loss 1.1659133434295654 img loss 1.1909193992614746 img loss 1.1858916282653809 img loss 1.1304658651351929 img loss 1.1851818561553955 img loss 1.173313856124878 img loss 1.2139275074005127 img loss 1.2089141607284546 img loss 1.162418246269226 img loss 1.1940741539001465 img loss 1.1861567497253418 img loss 1.1872638463974 img loss 1.2030314207077026 img loss 1.2480354309082031 img loss 1.167427897453308 img loss 1.168660044670105 img loss 1.1696934700012207 img loss 1.1920145750045776 img loss 1.161451816558838 img loss 1.1812827587127686 img loss 1.290994644165039 img loss 1.1660242080688477 img loss 1.1977182626724243 img loss 1.2162727117538452 img loss 1.2128534317016602 img loss 1.1876513957977295 img loss 1.1952720880508423 img loss 1.175614595413208 img loss 1.213683009147644 img loss 1.180471420288086 img loss 1.195890188217163 img loss 1.2066147327423096 img loss 1.187293291091919 img loss 1.244139552116394 img loss 1.2062911987304688 img loss 1.2014355659484863 img loss 1.1648868322372437 img loss 1.1682593822479248 img loss 1.2169849872589111 img loss 1.237139344215393 img loss 1.1928677558898926 img loss 1.1806771755218506 img loss 1.176340937614441 img loss 1.145328402519226 img loss 1.17612886428833 img loss 1.1913411617279053 img loss 1.202929973602295 img loss 1.1954587697982788 img loss 1.1933271884918213 img loss 1.2057218551635742 img loss 1.2393776178359985 img loss 1.1948890686035156 img loss 1.2427393198013306 img loss 1.1999250650405884 img loss 1.2021002769470215 img loss 1.2214287519454956 img loss 1.1873722076416016 img loss 1.2082648277282715 img loss 1.1596033573150635 img loss 1.1970535516738892 img loss 1.1788591146469116 img loss 1.1631182432174683 img loss 1.2302358150482178 img loss 1.1866850852966309 img loss 1.2594635486602783 img loss 1.1718701124191284 img loss 1.1689412593841553 img loss 1.1817946434020996 img loss 1.2443995475769043 img loss 1.1890283823013306 img loss 1.1536229848861694 img loss 1.1918703317642212 img loss 1.2122732400894165 img loss 1.1892036199569702 img loss 1.1819953918457031 img loss 1.198944091796875 img loss 1.153340220451355 img loss 1.1413038969039917 img loss 1.1438236236572266 img loss 1.223067283630371 img loss 1.188014030456543 img loss 1.1714365482330322 img loss 1.1359260082244873 img loss 1.229365348815918 img loss 1.215932846069336 img loss 1.2273342609405518 img loss 1.1608786582946777 img loss 1.2021459341049194 img loss 1.1609176397323608 img loss 1.2115166187286377 img loss 1.1771812438964844 img loss 1.2166560888290405 img loss 1.160139799118042 img loss 1.180074691772461 img loss 1.2214717864990234 img loss 1.1887308359146118 img loss 1.1883506774902344 img loss 1.1635432243347168 img loss 1.1680428981781006 img loss 1.193799376487732 img loss 1.2283499240875244 img loss 1.2136200666427612 img loss 1.243569016456604 img loss 1.1515406370162964 img loss 1.2253663539886475 {'loss': 1.1943, 'grad_norm': 0.32047590613365173, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2470329999923706 img loss 1.2170352935791016 img loss 1.2071444988250732 img loss 1.175567388534546 img loss 1.2101808786392212 img loss 1.3231422901153564 img loss 1.1875349283218384 img loss 1.255574107170105 img loss 1.2423921823501587 img loss 1.175663948059082 img loss 1.24142587184906 img loss 1.1740500926971436 img loss 1.160125970840454 img loss 1.2098215818405151 img loss 1.217589259147644 img loss 1.2011430263519287 img loss 1.1973457336425781 img loss 1.218966007232666 img loss 1.2148761749267578 img loss 1.285316824913025 img loss 1.275451421737671 img loss 1.3816874027252197 img loss 1.24995756149292 img loss 1.1876084804534912 img loss 1.2055110931396484 img loss 1.1902618408203125 img loss 1.2130539417266846 img loss 1.1852004528045654 img loss 1.2557308673858643 img loss 1.231582522392273 img loss 1.260901689529419 img loss 1.2956058979034424 img loss 1.1786869764328003 img loss 1.2633800506591797 img loss 1.2284255027770996 img loss 1.241245150566101 img loss 1.1634111404418945 img loss 1.1734694242477417 img loss 1.2255549430847168 img loss 1.3556658029556274 img loss 1.1538254022598267 img loss 1.1751788854599 img loss 1.2084625959396362 img loss 1.2054758071899414 img loss 1.169724702835083 img loss 1.1697168350219727 img loss 1.3044401407241821 img loss 1.1780834197998047 img loss 1.177908182144165 img loss 1.2533814907073975 img loss 1.2366111278533936 img loss 1.1735957860946655 img loss 1.1971575021743774 img loss 1.3003164529800415 img loss 1.2208868265151978 img loss 1.2837024927139282 img loss 1.244542121887207 img loss 1.3119382858276367 img loss 1.246458649635315 img loss 1.2400833368301392 img loss 1.1473653316497803 img loss 1.2701563835144043 img loss 1.2461140155792236 img loss 1.1962000131607056 img loss 1.2595700025558472 img loss 1.1491597890853882 img loss 1.1925572156906128 img loss 1.212040662765503 img loss 1.2099703550338745 img loss 1.2501615285873413 img loss 1.2643730640411377 img loss 1.2225598096847534 img loss 1.1767237186431885 img loss 1.1729434728622437 img loss 1.1708465814590454 img loss 1.268932819366455 img loss 1.229529619216919 img loss 1.2965761423110962 img loss 1.2402805089950562 img loss 1.2553563117980957 img loss 1.1912903785705566 img loss 1.2625377178192139 img loss 1.2224702835083008 img loss 1.2395482063293457 img loss 1.1960843801498413 img loss 1.217892050743103 img loss 1.1872581243515015 img loss 1.236497402191162 img loss 1.1675037145614624 img loss 1.2356526851654053 img loss 1.2760952711105347 img loss 1.194236159324646 img loss 1.1961573362350464 img loss 1.3148088455200195 img loss 1.2770737409591675 img loss 1.28704833984375 img loss 1.3002475500106812 img loss 1.218760371208191 img loss 1.2699558734893799 img loss 1.285112738609314 img loss 1.2297283411026 img loss 1.2638956308364868 img loss 1.296019434928894 img loss 1.2402883768081665 img loss 1.2118473052978516 img loss 1.2178571224212646 img loss 1.2724225521087646 img loss 1.208016037940979 img loss 1.238749384880066 img loss 1.3145322799682617 img loss 1.2672269344329834 img loss 1.193648338317871 img loss 1.1927117109298706 img loss 1.211660385131836 img loss 1.2113707065582275 img loss 1.200111985206604 img loss 1.2688320875167847 img loss 1.22998046875 img loss 1.206303596496582 img loss 1.2985397577285767 img loss 1.2166789770126343 img loss 1.2543104887008667 img loss 1.1592159271240234 img loss 1.2432469129562378 img loss 1.2824105024337769 img loss 1.2162388563156128 img loss 1.217281699180603 img loss 1.2419204711914062 {'loss': 1.2296, 'grad_norm': 0.5831295847892761, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2634114027023315 img loss 1.2081773281097412 img loss 1.2383568286895752 img loss 1.2346293926239014 img loss 1.3919252157211304 img loss 1.1731268167495728 img loss 1.1801021099090576 img loss 1.1556230783462524 img loss 1.3541419506072998 img loss 1.161719799041748 img loss 1.21986985206604 img loss 1.2458139657974243 img loss 1.166392207145691 img loss 1.2882694005966187 img loss 1.2444384098052979 img loss 1.1809695959091187 img loss 1.2293087244033813 img loss 1.1877098083496094 img loss 1.217602252960205 img loss 1.26951003074646 img loss 1.2258806228637695 img loss 1.1356967687606812 img loss 1.182708740234375 img loss 1.1935372352600098 img loss 1.1965546607971191 img loss 1.2563698291778564 img loss 1.2365241050720215 img loss 1.147114634513855 img loss 1.1953848600387573 img loss 1.2743713855743408 img loss 1.217913031578064 img loss 1.1013387441635132 img loss 1.2317287921905518 img loss 1.2436001300811768 img loss 1.2787210941314697 img loss 1.2228922843933105 img loss 1.2063214778900146 img loss 1.1609814167022705 img loss 1.2288668155670166 img loss 1.1747715473175049 img loss 1.1911758184432983 img loss 1.1624579429626465 img loss 1.3039344549179077 img loss 1.2015575170516968 img loss 1.1581710577011108 img loss 1.2260797023773193 img loss 1.1828993558883667 img loss 1.1469882726669312 img loss 1.1617722511291504 img loss 1.2192338705062866 img loss 1.2437703609466553 img loss 1.2562806606292725 img loss 1.185435175895691 img loss 1.1815705299377441 img loss 1.2112435102462769 img loss 1.1935068368911743 img loss 1.2159143686294556 img loss 1.1884182691574097 img loss 1.2209064960479736 img loss 1.2427692413330078 img loss 1.2391009330749512 img loss 1.1836799383163452 img loss 1.1893959045410156 img loss 1.1857311725616455 img loss 1.2373476028442383 img loss 1.2099593877792358 img loss 1.227646827697754 img loss 1.3214995861053467 img loss 1.1663089990615845 img loss 1.2023601531982422 img loss 1.2408097982406616 img loss 1.3521794080734253 img loss 1.1995329856872559 img loss 1.1637768745422363 img loss 1.2402600049972534img loss 1.2296913862228394 img loss 1.226270318031311 img loss 1.2367181777954102 img loss 1.2058563232421875 img loss 1.2351194620132446 img loss 1.1586501598358154 img loss 1.2013041973114014 img loss 1.1989234685897827 img loss 1.2120500802993774 img loss 1.1501306295394897 img loss 1.2311533689498901 img loss 1.1867249011993408 img loss 1.2266896963119507 img loss 1.3331787586212158 img loss 1.2341974973678589 img loss 1.2214350700378418 img loss 1.2470594644546509 img loss 1.2449156045913696 img loss 1.2366422414779663 img loss 1.1690561771392822 img loss 1.2296088933944702 img loss 1.2710670232772827 img loss 1.1805790662765503 img loss 1.1871237754821777 img loss 1.1971657276153564 img loss 1.2487599849700928 img loss 1.2392308712005615 img loss 1.2361657619476318 img loss 1.1880003213882446 img loss 1.231243371963501 img loss 1.168495535850525 img loss 1.18024480342865 img loss 1.2699391841888428 img loss 1.1902496814727783 img loss 1.288824439048767 img loss 1.1926727294921875 img loss 1.1925809383392334 img loss 1.2105991840362549 img loss 1.2476263046264648 img loss 1.211950659751892 img loss 1.270128846168518 img loss 1.1642224788665771 img loss 1.179663062095642 img loss 1.245692253112793 img loss 1.1672700643539429 img loss 1.1925806999206543 img loss 1.2442535161972046 img loss 1.3841098546981812 img loss 1.1872650384902954 img loss 1.1869741678237915 img loss 1.2180397510528564 img loss 1.2066303491592407 img loss 1.236023187637329 {'loss': 1.2172, 'grad_norm': 0.2993837893009186, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2420284748077393 img loss 1.2201306819915771 img loss 1.133244514465332 img loss 1.2565436363220215 img loss 1.2122902870178223 img loss 1.2442669868469238 img loss 1.2280069589614868 img loss 1.2637051343917847 img loss 1.183841586112976 img loss 1.1702392101287842 img loss 1.2473869323730469 img loss 1.2201073169708252 img loss 1.2093626260757446 img loss 1.1986435651779175 img loss 1.2175620794296265 img loss 1.181478500366211 img loss 1.2327535152435303 img loss 1.1892741918563843 img loss 1.22089421749115 img loss 1.2052710056304932 img loss 1.2022775411605835 img loss 1.2003231048583984 img loss 1.2493517398834229 img loss 1.2713713645935059 img loss 1.2347055673599243 img loss 1.2206778526306152 img loss 1.167307734489441 img loss 1.183201789855957 img loss 1.2119897603988647 img loss 1.2335189580917358 img loss 1.2133104801177979 img loss 1.2267954349517822 img loss 1.2293801307678223 img loss 1.2180886268615723 img loss 1.2732274532318115 img loss 1.2421633005142212 img loss 1.272073745727539 img loss 1.203231692314148 img loss 1.1801836490631104 img loss 1.2001986503601074 img loss 1.2060056924819946 img loss 1.245612621307373 img loss 1.1635125875473022 img loss 1.1602983474731445 img loss 1.1688556671142578 img loss 1.2477226257324219 img loss 1.237425684928894 img loss 1.1807304620742798 img loss 1.237464427947998 img loss 1.2086776494979858 img loss 1.184835433959961 img loss 1.18510901927948 img loss 1.2008097171783447 img loss 1.1938438415527344 img loss 1.1705979108810425 img loss 1.2500475645065308 img loss 1.173223853111267 img loss 1.2876437902450562 img loss 1.1888458728790283 img loss 1.1669224500656128 img loss 1.197122573852539 img loss 1.2150852680206299 img loss 1.2126655578613281 img loss 1.1621124744415283 img loss 1.2299238443374634 img loss 1.1544151306152344 img loss 1.2047765254974365 img loss 1.2585170269012451 img loss 1.2315524816513062 img loss 1.1866841316223145 img loss 1.1664955615997314 img loss 1.2143926620483398 img loss 1.1896026134490967 img loss 1.2092214822769165 img loss 1.2082256078720093 img loss 1.2352731227874756 img loss 1.2320226430892944 img loss 1.2202622890472412 img loss 1.172096848487854 img loss 1.1604441404342651 img loss 1.2630243301391602 img loss 1.166879653930664 img loss 1.2648804187774658 img loss 1.2201811075210571 img loss 1.2243143320083618 img loss 1.3066813945770264 img loss 1.2970516681671143 img loss 1.3303699493408203 img loss 1.223163366317749 img loss 1.2003021240234375 img loss 1.1791781187057495 img loss 1.3404881954193115 img loss 1.2517260313034058 img loss 1.2582310438156128 img loss 1.2597442865371704 img loss 1.2283445596694946 img loss 1.2490495443344116 img loss 1.190161943435669 img loss 1.2329353094100952 img loss 1.2127727270126343 img loss 1.2177261114120483 img loss 1.2715727090835571 img loss 1.217052936553955 img loss 1.3434975147247314 img loss 1.2312192916870117 img loss 1.1616216897964478 img loss 1.2188736200332642 img loss 1.2386234998703003 img loss 1.2148321866989136 img loss 1.225502848625183 img loss 1.1668105125427246 img loss 1.22039794921875 img loss 1.2086312770843506 img loss 1.2310585975646973 img loss 1.1552633047103882 img loss 1.1212823390960693 img loss 1.2035486698150635 img loss 1.1687016487121582 img loss 1.2009835243225098 img loss 1.1868294477462769 img loss 1.1889137029647827 img loss 1.253744125366211 img loss 1.179276704788208 img loss 1.2079321146011353 img loss 1.2323592901229858 img loss 1.2877525091171265 img loss 1.2417616844177246 img loss 1.179807424545288 {'loss': 1.2164, 'grad_norm': 0.39989015460014343, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2975554466247559 img loss 1.491735816001892 img loss 1.3633573055267334 img loss 1.3597676753997803 img loss 1.3605183362960815 img loss 1.2764724493026733 img loss 1.256489634513855 img loss 1.203040599822998 img loss 1.3467810153961182 img loss 1.3130184412002563 img loss 1.4373700618743896 img loss 1.2480131387710571 img loss 1.3734118938446045 img loss 1.2734317779541016 img loss 1.3341443538665771 img loss 1.2664402723312378 img loss 1.251177191734314 img loss 1.2837318181991577 img loss 1.374030590057373 img loss 1.1573938131332397 img loss 1.2884740829467773 img loss 1.3091883659362793 img loss 1.220164179801941 img loss 1.2503610849380493 img loss 1.3241621255874634 img loss 1.2396053075790405 img loss 1.2462313175201416 img loss 1.24029541015625 img loss 1.250498652458191 img loss 1.3796582221984863 img loss 1.2353371381759644 img loss 1.2850127220153809 img loss 1.338227391242981 img loss 1.3158994913101196 img loss 1.3241550922393799 img loss 1.234321117401123 img loss 1.2799973487854004 img loss 1.1869341135025024 img loss 1.2547645568847656 img loss 1.4592645168304443 img loss 1.3275141716003418 img loss 1.2631056308746338 img loss 1.3367221355438232 img loss 1.3500622510910034 img loss 1.2174432277679443 img loss 1.1730860471725464 img loss 1.4669948816299438 img loss 1.2595036029815674 img loss 1.1657683849334717 img loss 1.2897872924804688 img loss 1.2615612745285034 img loss 1.2862643003463745 img loss 1.216673493385315 img loss 1.3302452564239502 img loss 1.4401280879974365 img loss 1.247842788696289 img loss 1.3482853174209595 img loss 1.3986918926239014 img loss 1.3511775732040405 img loss 1.3113138675689697 img loss 1.2183767557144165 img loss 1.3288236856460571 img loss 1.2889094352722168 img loss 1.3133567571640015 img loss 1.2282193899154663 img loss 1.2802250385284424 img loss 1.2438344955444336 img loss 1.3138885498046875 img loss 1.346095323562622 img loss 1.2630518674850464 img loss 1.3378173112869263 img loss 1.3881319761276245 img loss 1.4108983278274536 img loss 1.2781785726547241 img loss 1.2578682899475098 img loss 1.3461029529571533 img loss 1.2004636526107788 img loss 1.2370414733886719 img loss 1.4530495405197144 img loss 1.306292176246643 img loss 1.322972059249878 img loss 1.4013758897781372 img loss 1.4630639553070068img loss 1.265620470046997 img loss 1.2876346111297607 img loss 1.2864269018173218 img loss 1.3005409240722656 img loss 1.2345632314682007 img loss 1.2937053442001343 img loss 1.2576607465744019 img loss 1.2960262298583984 img loss 1.2805317640304565 img loss 1.3341699838638306 img loss 1.377724528312683 img loss 1.2091522216796875 img loss 1.3552485704421997 img loss 1.3165873289108276 img loss 1.387496829032898 img loss 1.211549162864685 img loss 1.3121687173843384 img loss 1.189170479774475 img loss 1.2728040218353271 img loss 1.2745617628097534 img loss 1.2438926696777344 img loss 1.2636549472808838 img loss 1.2707667350769043 img loss 1.3001635074615479 img loss 1.217911720275879 img loss 1.3671470880508423 img loss 1.231614112854004 img loss 1.193558692932129 img loss 1.3095455169677734 img loss 1.168809413909912 img loss 1.2435673475265503 img loss 1.293596625328064 img loss 1.4265280961990356 img loss 1.3673650026321411 img loss 1.2336444854736328 img loss 1.291599988937378 img loss 1.3537739515304565 img loss 1.3957417011260986img loss 1.2378774881362915 img loss 1.253794550895691 img loss 1.4098211526870728 img loss 1.3448847532272339 img loss 1.4606989622116089 img loss 1.294757604598999 img loss 1.2560503482818604 {'loss': 1.2998, 'grad_norm': 0.578752875328064, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1998920440673828 img loss 1.1761997938156128 img loss 1.2962391376495361 img loss 1.1438134908676147 img loss 1.2549177408218384 img loss 1.3009556531906128 img loss 1.1352839469909668 img loss 1.17794668674469 img loss 1.185789704322815 img loss 1.2590411901474 img loss 1.232215166091919 img loss 1.1946299076080322 img loss 1.216597557067871 img loss 1.143470048904419 img loss 1.2154462337493896 img loss 1.222640872001648 img loss 1.2303558588027954 img loss 1.2745492458343506 img loss 1.1783943176269531 img loss 1.1794319152832031 img loss 1.2715400457382202 img loss 1.1878883838653564 img loss 1.1643011569976807 img loss 1.1762325763702393 img loss 1.1445735692977905 img loss 1.1918730735778809 img loss 1.1220934391021729 img loss 1.1746281385421753 img loss 1.1842741966247559 img loss 1.2346426248550415 img loss 1.2038977146148682 img loss 1.132889747619629 img loss 1.1499725580215454 img loss 1.195451259613037 img loss 1.315368890762329 img loss 1.215498924255371 img loss 1.1777000427246094 img loss 1.162998914718628 img loss 1.2070841789245605 img loss 1.156545639038086 img loss 1.164717197418213 img loss 1.1540559530258179 img loss 1.1709307432174683 img loss 1.1614010334014893 img loss 1.1761277914047241 img loss 1.2643963098526 img loss 1.366629958152771 img loss 1.187395691871643 img loss 1.22285795211792 img loss 1.2904199361801147 img loss 1.273618459701538 img loss 1.2284395694732666 img loss 1.2533118724822998 img loss 1.2214350700378418 img loss 1.1434299945831299 img loss 1.1841706037521362 img loss 1.3117856979370117 img loss 1.2014955282211304 img loss 1.2768645286560059 img loss 1.233199954032898 img loss 1.1758089065551758 img loss 1.1861305236816406 img loss 1.1694751977920532 img loss 1.2190890312194824 img loss 1.1994068622589111 img loss 1.1659351587295532 img loss 1.165716528892517 img loss 1.176835298538208 img loss 1.2296383380889893 img loss 1.226930022239685 img loss 1.3165491819381714 img loss 1.2005071640014648 img loss 1.2425193786621094 img loss 1.2327982187271118 img loss 1.1995327472686768 img loss 1.216602087020874 img loss 1.2413870096206665 img loss 1.1911377906799316 img loss 1.3209037780761719 img loss 1.2521370649337769 img loss 1.1883419752120972 img loss 1.2434591054916382 img loss 1.219500184059143 img loss 1.2602434158325195 img loss 1.229008436203003 img loss 1.1704390048980713 img loss 1.182694673538208 img loss 1.2543067932128906 img loss 1.2387539148330688 img loss 1.166843056678772 img loss 1.1576868295669556 img loss 1.266059398651123 img loss 1.191504955291748 img loss 1.1866779327392578 img loss 1.2052744626998901 img loss 1.1990597248077393 img loss 1.2138937711715698 img loss 1.1423970460891724 img loss 1.3168063163757324 img loss 1.1691689491271973 img loss 1.109809398651123 img loss 1.133283019065857 img loss 1.2419713735580444 img loss 1.212900996208191 img loss 1.2502468824386597 img loss 1.2514015436172485 img loss 1.27384352684021 img loss 1.28803288936615 img loss 1.0847089290618896 img loss 1.093589425086975 img loss 1.2827887535095215 img loss 1.3064581155776978 img loss 1.0714060068130493 img loss 1.156397819519043 img loss 1.2323716878890991 img loss 1.15616774559021 img loss 1.1935551166534424 img loss 1.1222705841064453 img loss 1.1604734659194946 img loss 1.2287110090255737 img loss 1.2111666202545166 img loss 1.1877870559692383 img loss 1.2043452262878418 img loss 1.1258009672164917 img loss 1.1808881759643555 img loss 1.199913501739502 img loss 1.305524468421936 img loss 1.2504315376281738 {'loss': 1.2072, 'grad_norm': 0.5843992233276367, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.33222234249115 img loss 1.5217909812927246 img loss 1.3862279653549194 img loss 1.3822853565216064 img loss 1.4038158655166626 img loss 1.4026910066604614 img loss 1.4509698152542114 img loss 1.3595911264419556 img loss 1.4556881189346313 img loss 1.3747153282165527 img loss 1.2519736289978027 img loss 1.4156304597854614 img loss 1.5099530220031738 img loss 1.4085794687271118 img loss 1.388041377067566 img loss 1.380422830581665 img loss 1.4531395435333252 img loss 1.3958160877227783 img loss 1.4149200916290283 img loss 1.5487675666809082 img loss 1.3698575496673584 img loss 1.3543230295181274 img loss 1.411674976348877 img loss 1.3361481428146362 img loss 1.427193284034729 img loss 1.430641531944275 img loss 1.4670860767364502 img loss 1.3964791297912598 img loss 1.3776366710662842 img loss 1.46377694606781 img loss 1.4104875326156616 img loss 1.4654690027236938 img loss 1.3380825519561768 img loss 1.4226696491241455 img loss 1.4463199377059937 img loss 1.4016629457473755 img loss 1.356147050857544 img loss 1.3563100099563599 img loss 1.400753378868103 img loss 1.3496609926223755 img loss 1.4677574634552002 img loss 1.5395909547805786 img loss 1.4079220294952393 img loss 1.3823750019073486 img loss 1.514251470565796 img loss 1.3575085401535034 img loss 1.2971153259277344 img loss 1.3813893795013428 img loss 1.4542850255966187 img loss 1.299744963645935 img loss 1.5180785655975342 img loss 1.4110844135284424 img loss 1.3881018161773682 img loss 1.3181438446044922 img loss 1.3513387441635132 img loss 1.4524140357971191 img loss 1.429654836654663 img loss 1.4499108791351318 img loss 1.5082398653030396 img loss 1.349732518196106 img loss 1.4858896732330322 img loss 1.3892216682434082 img loss 1.4735451936721802 img loss 1.497495174407959 img loss 1.6120517253875732 img loss 1.463659405708313 img loss 1.3812538385391235 img loss 1.4176136255264282 img loss 1.467028260231018 img loss 1.4459586143493652 img loss 1.5216068029403687 img loss 1.3867467641830444 img loss 1.5955668687820435 img loss 1.412879228591919 img loss 1.3638694286346436 img loss 1.3900964260101318 img loss 1.45793879032135 img loss 1.512513518333435 img loss 1.5064793825149536 img loss 1.4464043378829956 img loss 1.33816397190094 img loss 1.4845330715179443 img loss 1.444150686264038 img loss 1.6604411602020264 img loss 1.5197972059249878 img loss 1.3338879346847534 img loss 1.7364723682403564 img loss 1.3109874725341797 img loss 1.3557612895965576 img loss 1.486099362373352 img loss 1.5231964588165283 img loss 1.4904695749282837 img loss 1.4920865297317505 img loss 1.3625458478927612 img loss 1.5605870485305786 img loss 1.3694096803665161 img loss 1.356675386428833 img loss 1.4053053855895996 img loss 1.3661420345306396 img loss 1.4983586072921753 img loss 1.5587877035140991 img loss 1.5987496376037598 img loss 1.341796636581421 img loss 1.3395525217056274 img loss 1.4268536567687988 img loss 1.4793412685394287 img loss 1.4516125917434692 img loss 1.4221619367599487 img loss 1.4214394092559814 img loss 1.3728028535842896 img loss 1.3169894218444824 img loss 1.4222568273544312 img loss 1.4686533212661743 img loss 1.463274359703064 img loss 1.3774714469909668 img loss 1.4181045293807983 img loss 1.5106481313705444 img loss 1.528867483139038 img loss 1.457028865814209 img loss 1.5100197792053223 img loss 1.3354285955429077 img loss 1.3917691707611084 img loss 1.487524390220642 img loss 1.3233845233917236 img loss 1.3745677471160889 img loss 1.5821173191070557 img loss 1.384730577468872 img loss 1.355310082435608 {'loss': 1.4292, 'grad_norm': 0.32007351517677307, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1873801946640015 img loss 1.2019312381744385 img loss 1.1633213758468628 img loss 1.1657121181488037 img loss 1.1675777435302734 img loss 1.345497488975525 img loss 1.1584618091583252 img loss 1.2271075248718262 img loss 1.143095850944519 img loss 1.2164280414581299 img loss 1.2277660369873047 img loss 1.106160044670105 img loss 1.1985390186309814 img loss 1.1856975555419922 img loss 1.2130675315856934 img loss 1.2047713994979858 img loss 1.1048951148986816 img loss 1.135594129562378 img loss 1.1720250844955444 img loss 1.1015634536743164 img loss 1.153531789779663 img loss 1.2219977378845215 img loss 1.195564866065979 img loss 1.0790774822235107 img loss 1.2298336029052734 img loss 1.1900691986083984 img loss 1.091723084449768 img loss 1.3087425231933594 img loss 1.2205055952072144 img loss 1.1926523447036743 img loss 1.2573684453964233 img loss 1.324245810508728 img loss 1.1684529781341553 img loss 1.1294094324111938 img loss 1.259437918663025 img loss 1.2015562057495117 img loss 1.3309321403503418 img loss 1.2254928350448608 img loss 1.2016245126724243 img loss 1.2868907451629639 img loss 1.227520227432251 img loss 1.1184817552566528 img loss 1.1652361154556274 img loss 1.1761854887008667 img loss 1.2290054559707642 img loss 1.154070496559143 img loss 1.1164005994796753 img loss 1.2936110496520996 img loss 1.2086639404296875 img loss 1.1591377258300781 img loss 1.2225383520126343 img loss 1.161863088607788 img loss 1.2357399463653564 img loss 1.1970653533935547 img loss 1.14760160446167 img loss 1.2726691961288452 img loss 1.3581349849700928 img loss 1.1714359521865845 img loss 1.2159178256988525 img loss 1.1226613521575928 img loss 1.2560341358184814 img loss 1.1824959516525269 img loss 1.3121907711029053 img loss 1.1714454889297485 img loss 1.346540093421936 img loss 1.2151942253112793 img loss 1.1663721799850464 img loss 1.3029074668884277 img loss 1.2581136226654053 img loss 1.1616287231445312 img loss 1.160839319229126 img loss 1.202634572982788 img loss 1.1863915920257568 img loss 1.15933358669281 img loss 1.2464520931243896 img loss 1.284595012664795 img loss 1.1979944705963135 img loss 1.2539148330688477 img loss 1.1551856994628906 img loss 1.1868085861206055 img loss 1.1149990558624268 img loss 1.219703197479248 img loss 1.3288681507110596 img loss 1.2554954290390015 img loss 1.2362059354782104 img loss 1.1255393028259277 img loss 1.2593179941177368 img loss 1.1485228538513184 img loss 1.177472710609436 img loss 1.0766758918762207 img loss 1.2179020643234253 img loss 1.1933008432388306 img loss 1.2211761474609375 img loss 1.273598313331604 img loss 1.2665380239486694 img loss 1.252845048904419 img loss 1.1827318668365479 img loss 1.1857231855392456 img loss 1.1944633722305298 img loss 1.170661449432373 img loss 1.2188994884490967 img loss 1.1459927558898926 img loss 1.2045032978057861 img loss 1.1488628387451172 img loss 1.2673242092132568 img loss 1.1733795404434204 img loss 1.2189128398895264 img loss 1.1617761850357056 img loss 1.1329941749572754 img loss 1.1905784606933594 img loss 1.164292573928833 img loss 1.175643801689148 img loss 1.173776626586914 img loss 1.2334297895431519 img loss 1.2110612392425537 img loss 1.2156814336776733 img loss 1.1625263690948486 img loss 1.1944189071655273 img loss 1.1897711753845215 img loss 1.1298322677612305 img loss 1.3101472854614258 img loss 1.263221025466919 img loss 1.1459589004516602 img loss 1.2456071376800537 img loss 1.139788031578064 img loss 1.2165145874023438 img loss 1.1607928276062012 img loss 1.1879513263702393 {'loss': 1.2011, 'grad_norm': 1.0028845071792603, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.206854224205017 img loss 1.1841038465499878 img loss 1.2411372661590576 img loss 1.2038464546203613 img loss 1.3056972026824951 img loss 1.189683198928833 img loss 1.1448261737823486 img loss 1.2042484283447266 img loss 1.24881112575531 img loss 1.1737884283065796 img loss 1.1718345880508423 img loss 1.1844242811203003 img loss 1.2572115659713745 img loss 1.1678440570831299 img loss 1.2079347372055054 img loss 1.2627942562103271 img loss 1.2077641487121582 img loss 1.270228624343872 img loss 1.1963090896606445 img loss 1.1652445793151855 img loss 1.2033289670944214 img loss 1.228790044784546 img loss 1.2179844379425049 img loss 1.2235113382339478 img loss 1.1950422525405884 img loss 1.1811777353286743 img loss 1.2307840585708618 img loss 1.167012095451355 img loss 1.2471932172775269 img loss 1.2061985731124878 img loss 1.1764435768127441 img loss 1.24089777469635 img loss 1.2427936792373657 img loss 1.2584755420684814 img loss 1.1771267652511597 img loss 1.2730989456176758 img loss 1.2254664897918701 img loss 1.2673368453979492 img loss 1.2180628776550293 img loss 1.2464687824249268 img loss 1.2129452228546143 img loss 1.2199376821517944 img loss 1.2227439880371094 img loss 1.2352101802825928 img loss 1.2628940343856812 img loss 1.1543338298797607img loss 1.1993392705917358 img loss 1.128618836402893 img loss 1.2242670059204102 img loss 1.2185009717941284 img loss 1.1534639596939087 img loss 1.1732937097549438 img loss 1.1956573724746704 img loss 1.2636164426803589 img loss 1.2129313945770264 img loss 1.192854404449463 img loss 1.1976169347763062 img loss 1.1314096450805664 img loss 1.2214233875274658 img loss 1.214786171913147img loss 1.2289817333221436 img loss 1.2006220817565918 img loss 1.2236355543136597 img loss 1.2064872980117798 img loss 1.1772476434707642 img loss 1.1827824115753174 img loss 1.1711628437042236 img loss 1.1933954954147339 img loss 1.2000174522399902 img loss 1.189828634262085 img loss 1.1707606315612793 img loss 1.3023369312286377 img loss 1.2094999551773071 img loss 1.242417573928833 img loss 1.2198330163955688 img loss 1.1862754821777344 img loss 1.1951807737350464 img loss 1.2257533073425293 img loss 1.2261462211608887 img loss 1.233034372329712 img loss 1.206957459449768 img loss 1.216369390487671 img loss 1.2461624145507812 img loss 1.2225478887557983 img loss 1.234295129776001 img loss 1.2380260229110718 img loss 1.1707661151885986 img loss 1.1708879470825195 img loss 1.1745647192001343 img loss 1.2477320432662964 img loss 1.2035212516784668 img loss 1.1624672412872314 img loss 1.1931002140045166 img loss 1.181186556816101 img loss 1.2174665927886963 img loss 1.247037649154663 img loss 1.1902425289154053 img loss 1.2154067754745483 img loss 1.2292373180389404 img loss 1.279388427734375 img loss 1.1884171962738037 img loss 1.1953734159469604 img loss 1.197873830795288 img loss 1.2007187604904175 img loss 1.2363622188568115 img loss 1.2059457302093506 img loss 1.1821550130844116 img loss 1.2771304845809937 img loss 1.2326608896255493 img loss 1.1688522100448608 img loss 1.2261492013931274 img loss 1.1712982654571533 img loss 1.2010688781738281 img loss 1.2410234212875366 img loss 1.246150016784668 img loss 1.2284324169158936 img loss 1.2206820249557495 img loss 1.208320140838623 img loss 1.2423088550567627 img loss 1.2219339609146118img loss 1.2815332412719727 img loss 1.250577449798584 img loss 1.1874555349349976 img loss 1.2202746868133545 img loss 1.225517749786377 img loss 1.3227900266647339 img loss 1.2001270055770874 img loss 1.2821544408798218 {'loss': 1.2137, 'grad_norm': 0.23097744584083557, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6962069272994995 img loss 1.557010293006897 img loss 1.7331219911575317 img loss 1.786848783493042 img loss 1.6931710243225098 img loss 1.7486597299575806 img loss 1.8638858795166016 img loss 1.6964985132217407 img loss 1.701757788658142 img loss 1.8394403457641602 img loss 1.6682146787643433 img loss 1.522591233253479 img loss 1.6613154411315918 img loss 1.7575068473815918 img loss 1.6825071573257446 img loss 1.6922184228897095 img loss 1.6207088232040405 img loss 1.8192657232284546 img loss 1.8755875825881958 img loss 1.875402569770813 img loss 1.590350866317749 img loss 1.7218620777130127 img loss 1.763412594795227 img loss 1.8267930746078491 img loss 1.5407593250274658 img loss 1.6281731128692627 img loss 1.6849265098571777 img loss 1.6843316555023193 img loss 1.7300677299499512 img loss 1.8102611303329468 img loss 1.7985461950302124 img loss 1.6766712665557861 img loss 1.6638513803482056 img loss 1.6467483043670654 img loss 1.8083817958831787 img loss 1.570655345916748 img loss 1.6948716640472412 img loss 1.6965736150741577 img loss 1.628271460533142 img loss 1.5116791725158691 img loss 1.6998099088668823 img loss 1.7251636981964111 img loss 1.7039220333099365 img loss 1.6994343996047974 img loss 1.7301552295684814 img loss 1.6808969974517822 img loss 1.7534918785095215 img loss 1.6094014644622803 img loss 1.736193060874939 img loss 1.837645173072815 img loss 1.834682583808899 img loss 1.6974281072616577 img loss 1.5772560834884644 img loss 1.5703519582748413 img loss 1.6214640140533447 img loss 1.8239895105361938 img loss 1.6003304719924927 img loss 1.6323401927947998 img loss 1.5753931999206543 img loss 1.7225590944290161 img loss 1.5952794551849365 img loss 1.6039928197860718 img loss 1.6626440286636353 img loss 1.6657817363739014 img loss 1.619240403175354 img loss 1.5489799976348877 img loss 1.6662298440933228 img loss 1.7805856466293335 img loss 1.7438527345657349 img loss 1.7894518375396729 img loss 1.5556557178497314 img loss 1.5386990308761597 img loss 1.8239967823028564 img loss 1.69154691696167 img loss 1.7998836040496826 img loss 1.89700448513031 img loss 1.647117018699646 img loss 1.859676480293274 img loss 1.8950605392456055 img loss 1.6552258729934692 img loss 1.606315016746521 img loss 1.7338614463806152 img loss 1.728104829788208 img loss 1.4800142049789429 img loss 1.7517929077148438 img loss 1.6840136051177979 img loss 1.7252990007400513 img loss 1.6462167501449585 img loss 1.7362325191497803 img loss 1.6090070009231567 img loss 1.7680890560150146 img loss 1.683528184890747 img loss 1.6582057476043701 img loss 1.6900335550308228 img loss 1.7131991386413574 img loss 1.5476759672164917 img loss 1.6538840532302856 img loss 1.84665846824646 img loss 1.641658902168274 img loss 1.5723501443862915 img loss 1.9286112785339355 img loss 1.4112628698349 img loss 1.6992840766906738 img loss 1.6738154888153076 img loss 1.6128820180892944 img loss 1.6701246500015259 img loss 2.0924949645996094 img loss 1.7494938373565674 img loss 1.6938565969467163 img loss 1.898209810256958 img loss 1.7990005016326904 img loss 1.5965129137039185 img loss 1.8043614625930786 img loss 1.734006643295288 img loss 1.6731308698654175 img loss 1.7003190517425537 img loss 1.7442933320999146 img loss 1.7965209484100342 img loss 1.5960917472839355 img loss 1.6731468439102173 img loss 1.7016569375991821 img loss 1.6338441371917725 img loss 1.7825454473495483 img loss 1.6639293432235718 img loss 1.6540255546569824 img loss 1.7078661918640137 img loss 1.776360034942627 img loss 1.7514867782592773 {'loss': 1.7011, 'grad_norm': 0.45236948132514954, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2531284093856812 img loss 1.153409481048584 img loss 1.2323499917984009 img loss 1.1709630489349365 img loss 1.2066792249679565 img loss 1.1826035976409912 img loss 1.173466444015503 img loss 1.1979732513427734 img loss 1.1693999767303467 img loss 1.1561923027038574 img loss 1.3038477897644043 img loss 1.2533212900161743 img loss 1.2881083488464355 img loss 1.1985199451446533 img loss 1.274350643157959 img loss 1.1808531284332275 img loss 1.2365789413452148 img loss 1.2255524396896362 img loss 1.2575411796569824 img loss 1.2046253681182861 img loss 1.2155377864837646 img loss 1.1762908697128296 img loss 1.1298900842666626 img loss 1.2273633480072021 img loss 1.1598329544067383 img loss 1.226782202720642 img loss 1.2389140129089355 img loss 1.1737316846847534 img loss 1.2829442024230957 img loss 1.204596757888794 img loss 1.2708244323730469 img loss 1.260282039642334 img loss 1.1865851879119873 img loss 1.2083441019058228 img loss 1.1452786922454834 img loss 1.2970026731491089 img loss 1.215065360069275 img loss 1.189044713973999 img loss 1.3242231607437134 img loss 1.246741771697998 img loss 1.1996119022369385 img loss 1.2094091176986694 img loss 1.2784113883972168 img loss 1.1972289085388184 img loss 1.1775625944137573 img loss 1.2495754957199097 img loss 1.33281409740448 img loss 1.1621512174606323 img loss 1.2326418161392212 img loss 1.3050665855407715 img loss 1.2280137538909912 img loss 1.177428960800171 img loss 1.244341492652893 img loss 1.2318265438079834 img loss 1.2764739990234375 img loss 1.2754703760147095 img loss 1.2165180444717407 img loss 1.1841672658920288 img loss 1.2706555128097534 img loss 1.2453944683074951 img loss 1.208982229232788 img loss 1.2367855310440063 img loss 1.191918134689331 img loss 1.264059066772461 img loss 1.2379276752471924 img loss 1.196328043937683 img loss 1.265644907951355 img loss 1.2259873151779175 img loss 1.2236889600753784 img loss 1.2174214124679565 img loss 1.2295721769332886 img loss 1.2060829401016235 img loss 1.2789982557296753 img loss 1.2502613067626953 img loss 1.2437388896942139 img loss 1.218269944190979 img loss 1.2233400344848633 img loss 1.1674528121948242 img loss 1.2344133853912354 img loss 1.2229598760604858 img loss 1.2568092346191406 img loss 1.2404297590255737 img loss 1.2039995193481445 img loss 1.2195849418640137 img loss 1.1706559658050537 img loss 1.2458587884902954 img loss 1.235379934310913 img loss 1.2451196908950806 img loss 1.2845287322998047 img loss 1.1904959678649902 img loss 1.2107549905776978 img loss 1.2837051153182983 img loss 1.1649738550186157 img loss 1.2314867973327637 img loss 1.185078501701355 img loss 1.2304352521896362 img loss 1.2757412195205688 img loss 1.2397698163986206img loss 1.2744395732879639 img loss 1.242064356803894 img loss 1.1919479370117188 img loss 1.1651270389556885 img loss 1.2032781839370728 img loss 1.243650197982788 img loss 1.2978549003601074 img loss 1.201545000076294 img loss 1.2083299160003662 img loss 1.2572219371795654 img loss 1.1850903034210205 img loss 1.2650507688522339 img loss 1.2303001880645752 img loss 1.2896804809570312 img loss 1.239763855934143 img loss 1.2403744459152222 img loss 1.2251633405685425 img loss 1.2540571689605713 img loss 1.1989896297454834 img loss 1.2400461435317993 img loss 1.1955686807632446 img loss 1.25375235080719 img loss 1.2242039442062378 img loss 1.2309973239898682 img loss 1.2127685546875 img loss 1.2051948308944702 img loss 1.2109897136688232 img loss 1.2684510946273804 img loss 1.2238682508468628 img loss 1.2300752401351929 {'loss': 1.2263, 'grad_norm': 0.4969794750213623, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3070859909057617 img loss 1.3152660131454468 img loss 1.3153836727142334 img loss 1.3064534664154053 img loss 1.3511379957199097 img loss 1.4192860126495361 img loss 1.2052104473114014 img loss 1.2112081050872803 img loss 1.2775228023529053 img loss 1.3730905055999756 img loss 1.3404470682144165 img loss 1.2646483182907104 img loss 1.3533378839492798 img loss 1.2334723472595215 img loss 1.2837129831314087 img loss 1.2928365468978882 img loss 1.3910890817642212 img loss 1.3454949855804443 img loss 1.417986512184143 img loss 1.331302285194397 img loss 1.3528132438659668 img loss 1.352324366569519 img loss 1.2471141815185547 img loss 1.2046699523925781 img loss 1.2981899976730347 img loss 1.3845115900039673 img loss 1.4026386737823486 img loss 1.2361140251159668 img loss 1.3784114122390747 img loss 1.2966670989990234img loss 1.4053503274917603 img loss 1.340989351272583 img loss 1.3728562593460083 img loss 1.403512716293335 img loss 1.251930594444275 img loss 1.2711598873138428 img loss 1.242102861404419 img loss 1.3977339267730713 img loss 1.219529390335083 img loss 1.2464261054992676 img loss 1.2619644403457642 img loss 1.4289872646331787 img loss 1.2976034879684448 img loss 1.321771264076233 img loss 1.2678660154342651 img loss 1.2894293069839478 img loss 1.3437721729278564 img loss 1.305344820022583 img loss 1.3028866052627563 img loss 1.1613107919692993 img loss 1.2914375066757202 img loss 1.2172012329101562 img loss 1.3369228839874268 img loss 1.3154735565185547 img loss 1.3386578559875488 img loss 1.2516090869903564 img loss 1.4020508527755737 img loss 1.3530936241149902 img loss 1.3226855993270874 img loss 1.406378149986267 img loss 1.3166511058807373 img loss 1.4052412509918213 img loss 1.3493868112564087 img loss 1.338509440422058 img loss 1.3632701635360718 img loss 1.3693077564239502 img loss 1.4931813478469849 img loss 1.2585989236831665 img loss 1.2508034706115723 img loss 1.3882423639297485 img loss 1.3781830072402954 img loss 1.332544207572937 img loss 1.3473522663116455 img loss 1.404929280281067 img loss 1.2435367107391357 img loss 1.365761399269104 img loss 1.2808173894882202 img loss 1.2547858953475952 img loss 1.2205736637115479 img loss 1.4282832145690918 img loss 1.3066409826278687 img loss 1.2981137037277222 img loss 1.4223992824554443 img loss 1.3558448553085327 img loss 1.3090921640396118 img loss 1.3208459615707397 img loss 1.374423861503601 img loss 1.3288716077804565 img loss 1.376867413520813 img loss 1.4255077838897705 img loss 1.5039409399032593 img loss 1.3157517910003662 img loss 1.2296994924545288 img loss 1.3654389381408691 img loss 1.3176465034484863 img loss 1.3650275468826294 img loss 1.379285454750061 img loss 1.2760083675384521 img loss 1.3906770944595337 img loss 1.5226002931594849 img loss 1.3718796968460083 img loss 1.2851719856262207 img loss 1.284616470336914 img loss 1.335778832435608 img loss 1.406957745552063 img loss 1.3211454153060913 img loss 1.4370085000991821 img loss 1.2931554317474365 img loss 1.3931145668029785 img loss 1.2700437307357788 img loss 1.3192471265792847 img loss 1.268685221672058 img loss 1.2742016315460205 img loss 1.2666261196136475 img loss 1.2887579202651978 img loss 1.4324891567230225 img loss 1.4486193656921387 img loss 1.2078003883361816 img loss 1.3911820650100708 img loss 1.2939029932022095 img loss 1.2490589618682861 img loss 1.2846508026123047 img loss 1.3286545276641846 img loss 1.2666220664978027 img loss 1.4235138893127441 img loss 1.2391488552093506 img loss 1.342058777809143 img loss 1.3052856922149658 {'loss': 1.327, 'grad_norm': 0.3968660831451416, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2789123058319092 img loss 1.2998729944229126 img loss 1.3038849830627441 img loss 1.2170227766036987 img loss 1.3259896039962769 img loss 1.3845707178115845 img loss 1.2691080570220947 img loss 1.264041781425476 img loss 1.306456208229065 img loss 1.2169275283813477 img loss 1.2150827646255493 img loss 1.362526297569275 img loss 1.2876102924346924 img loss 1.2811893224716187 img loss 1.2805724143981934 img loss 1.2122681140899658 img loss 1.255997896194458 img loss 1.2651476860046387 img loss 1.2678556442260742 img loss 1.2732443809509277 img loss 1.4312916994094849 img loss 1.3354359865188599 img loss 1.2860143184661865 img loss 1.4252041578292847 img loss 1.2708642482757568 img loss 1.2759062051773071 img loss 1.1775444746017456 img loss 1.3313548564910889 img loss 1.3659268617630005 img loss 1.3039861917495728 img loss 1.2435344457626343 img loss 1.2705122232437134 img loss 1.3753877878189087 img loss 1.2387863397598267 img loss 1.3318228721618652 img loss 1.2131203413009644 img loss 1.2678133249282837 img loss 1.2751096487045288 img loss 1.2711730003356934 img loss 1.281002402305603 img loss 1.25498628616333 img loss 1.2739982604980469 img loss 1.348676323890686 img loss 1.3096923828125 img loss 1.2975376844406128 img loss 1.2852219343185425 img loss 1.317441701889038 img loss 1.2936592102050781 img loss 1.3055429458618164 img loss 1.3766605854034424 img loss 1.2952638864517212 img loss 1.2625420093536377 img loss 1.2250864505767822 img loss 1.2904682159423828 img loss 1.2665716409683228 img loss 1.2269599437713623 img loss 1.250967264175415 img loss 1.247306227684021 img loss 1.261575698852539 img loss 1.2840934991836548 img loss 1.3420230150222778 img loss 1.3081161975860596 img loss 1.2824293375015259 img loss 1.3356152772903442 img loss 1.298532247543335 img loss 1.2718604803085327 img loss 1.3416184186935425 img loss 1.3977866172790527 img loss 1.3183218240737915 img loss 1.4296491146087646 img loss 1.318113088607788 img loss 1.2949943542480469 img loss 1.2282254695892334 img loss 1.287832260131836 img loss 1.3786813020706177 img loss 1.3101212978363037 img loss 1.419610619544983 img loss 1.3107597827911377 img loss 1.2826379537582397 img loss 1.3680139780044556 img loss 1.2610937356948853 img loss 1.261023759841919 img loss 1.218394160270691 img loss 1.180407166481018 img loss 1.176714301109314 img loss 1.2322584390640259 img loss 1.3453562259674072 img loss 1.3018741607666016 img loss 1.2476567029953003 img loss 1.3151390552520752 img loss 1.3713151216506958 img loss 1.314056158065796 img loss 1.2864054441452026 img loss 1.286049246788025 img loss 1.240576982498169 img loss 1.3189160823822021 img loss 1.260576844215393 img loss 1.2386317253112793 img loss 1.2878891229629517 img loss 1.3093265295028687 img loss 1.269057035446167 img loss 1.2597436904907227 img loss 1.2922906875610352 img loss 1.2213772535324097 img loss 1.2514921426773071 img loss 1.2877763509750366 img loss 1.2909936904907227 img loss 1.2936818599700928 img loss 1.3476824760437012 img loss 1.2350237369537354 img loss 1.2920814752578735 img loss 1.2356573343276978 img loss 1.2245298624038696 img loss 1.2346723079681396 img loss 1.3303542137145996 img loss 1.3566197156906128 img loss 1.27495276927948 img loss 1.329963207244873 img loss 1.2884281873703003 img loss 1.164303183555603 img loss 1.4148650169372559 img loss 1.2458858489990234 img loss 1.2140315771102905 img loss 1.2821359634399414 img loss 1.194191336631775 img loss 1.3668248653411865 img loss 1.2885326147079468 img loss 1.2618677616119385 {'loss': 1.2886, 'grad_norm': 0.539258599281311, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.186346411705017 img loss 1.1749401092529297 img loss 1.2486085891723633 img loss 1.2641359567642212 img loss 1.2671085596084595 img loss 1.2517666816711426 img loss 1.2382822036743164 img loss 1.2498087882995605 img loss 1.2135968208312988 img loss 1.1956992149353027 img loss 1.2220531702041626 img loss 1.2588703632354736 img loss 1.2348265647888184 img loss 1.2713106870651245 img loss 1.1947845220565796 img loss 1.2230414152145386 img loss 1.239905595779419 img loss 1.1551778316497803 img loss 1.2619307041168213 img loss 1.2279553413391113 img loss 1.2270649671554565 img loss 1.2528514862060547 img loss 1.2698650360107422 img loss 1.2035274505615234 img loss 1.1673001050949097 img loss 1.2163444757461548 img loss 1.3824076652526855 img loss 1.2598732709884644 img loss 1.2348816394805908 img loss 1.2952336072921753 img loss 1.2231767177581787 img loss 1.2142751216888428 img loss 1.27645742893219 img loss 1.2540640830993652 img loss 1.1727135181427002 img loss 1.2361884117126465 img loss 1.1710810661315918 img loss 1.2401762008666992 img loss 1.271098017692566 img loss 1.2408710718154907 img loss 1.2392172813415527 img loss 1.1681911945343018 img loss 1.3158215284347534 img loss 1.2028710842132568 img loss 1.2436288595199585 img loss 1.241999864578247 img loss 1.240447998046875 img loss 1.2563419342041016 img loss 1.2047827243804932 img loss 1.2335259914398193 img loss 1.1907809972763062 img loss 1.201629638671875 img loss 1.1905362606048584 img loss 1.1849429607391357 img loss 1.272276520729065 img loss 1.215712308883667 img loss 1.244638204574585 img loss 1.2758748531341553 img loss 1.2228606939315796 img loss 1.3050802946090698 img loss 1.2476555109024048 img loss 1.2189565896987915 img loss 1.2511268854141235 img loss 1.2325241565704346 img loss 1.3383082151412964 img loss 1.2276854515075684 img loss 1.2304891347885132 img loss 1.2844672203063965 img loss 1.26115882396698 img loss 1.2900656461715698 img loss 1.2534770965576172 img loss 1.2472577095031738 img loss 1.2947900295257568 img loss 1.233975887298584img loss 1.2597030401229858 img loss 1.190805435180664 img loss 1.35056471824646 img loss 1.2492774724960327 img loss 1.3002145290374756 img loss 1.2884533405303955 img loss 1.2050119638442993 img loss 1.2827324867248535 img loss 1.2698523998260498 img loss 1.2761001586914062 img loss 1.2026392221450806 img loss 1.2863367795944214 img loss 1.2939153909683228 img loss 1.246527910232544 img loss 1.237395167350769 img loss 1.199763298034668 img loss 1.223655104637146 img loss 1.2231922149658203 img loss 1.2040714025497437 img loss 1.2935707569122314 img loss 1.2379822731018066 img loss 1.2254549264907837 img loss 1.2708408832550049 img loss 1.2053810358047485 img loss 1.28508722782135 img loss 1.2366796731948853 img loss 1.306114673614502 img loss 1.2392113208770752 img loss 1.2445149421691895 img loss 1.2396581172943115 img loss 1.236126184463501 img loss 1.2443069219589233 img loss 1.2385618686676025 img loss 1.2101836204528809 img loss 1.3261945247650146 img loss 1.2507537603378296 img loss 1.2624034881591797 img loss 1.312722086906433 img loss 1.233402967453003 img loss 1.2863762378692627 img loss 1.3469222784042358 img loss 1.2893818616867065 img loss 1.3165788650512695 img loss 1.1432465314865112 img loss 1.2113697528839111 img loss 1.3282499313354492 img loss 1.213568925857544 img loss 1.295827865600586 img loss 1.2321183681488037 img loss 1.2658718824386597 img loss 1.2195862531661987 img loss 1.1936767101287842 img loss 1.2465254068374634 img loss 1.2074798345565796 {'loss': 1.2448, 'grad_norm': 0.6503810286521912, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1657071113586426 img loss 1.1625611782073975 img loss 1.2282190322875977 img loss 1.1830555200576782 img loss 1.1234111785888672 img loss 1.1938644647598267 img loss 1.058039903640747 img loss 1.208021879196167 img loss 1.1409367322921753 img loss 1.2172257900238037 img loss 1.329302191734314 img loss 1.198028326034546 img loss 1.1686054468154907 img loss 1.178354263305664 img loss 1.1530702114105225 img loss 1.246862769126892 img loss 1.1176930665969849 img loss 1.2467392683029175 img loss 1.1419814825057983 img loss 1.1379659175872803 img loss 1.1433638334274292 img loss 1.104358196258545 img loss 1.2279338836669922 img loss 1.1876475811004639 img loss 1.17905592918396 img loss 1.216373085975647 img loss 1.0854320526123047 img loss 1.1198608875274658 img loss 1.1807352304458618 img loss 1.1298062801361084 img loss 1.177641749382019 img loss 1.2508348226547241 img loss 1.1507256031036377 img loss 1.1812962293624878 img loss 1.1650310754776img loss 1.15737783908844 img loss 1.0953258275985718 img loss 1.1790952682495117 img loss 1.203883171081543 img loss 1.152822494506836 img loss 1.1583003997802734 img loss 1.207378625869751 img loss 1.1746472120285034 img loss 1.193516731262207 img loss 1.2000938653945923 img loss 1.0778274536132812 img loss 1.1700605154037476 img loss 1.2646931409835815 img loss 1.200029730796814 img loss 1.1204642057418823 img loss 1.2083983421325684 img loss 1.1569881439208984 img loss 1.1710278987884521 img loss 1.1388635635375977 img loss 1.1680903434753418 img loss 1.2265429496765137 img loss 1.129668116569519 img loss 1.2890172004699707 img loss 1.2931170463562012 img loss 1.2347875833511353 img loss 1.133248209953308 img loss 1.2011712789535522 img loss 1.1935476064682007 img loss 1.239322304725647 img loss 1.1284421682357788 img loss 1.1648201942443848 img loss 1.1455943584442139 img loss 1.1912016868591309 img loss 1.2314863204956055 img loss 1.2425848245620728 img loss 1.1512306928634644 img loss 1.080924153327942 img loss 1.2278639078140259 img loss 1.1593633890151978 img loss 1.19132399559021 img loss 1.145692229270935 img loss 1.2445474863052368 img loss 1.1655058860778809 img loss 1.2040971517562866 img loss 1.145186424255371 img loss 1.1074395179748535 img loss 1.1611255407333374 img loss 1.2180027961730957 img loss 1.2089903354644775 img loss 1.173426866531372 img loss 1.1948566436767578 img loss 1.1940463781356812 img loss 1.2317707538604736 img loss 1.1418728828430176 img loss 1.2924153804779053 img loss 1.1364206075668335 img loss 1.1045236587524414 img loss 1.1502363681793213 img loss 1.1541354656219482 img loss 1.219481348991394 img loss 1.1225947141647339 img loss 1.1116623878479004 img loss 1.1557857990264893 img loss 1.1282519102096558 img loss 1.1263421773910522 img loss 1.1232199668884277 img loss 1.2316992282867432 img loss 1.1426643133163452 img loss 1.3083305358886719 img loss 1.2157503366470337img loss 1.1943340301513672 img loss 1.1534658670425415 img loss 1.1127376556396484 img loss 1.1769354343414307 img loss 1.2305549383163452 img loss 1.1435449123382568 img loss 1.1533534526824951 img loss 1.2539567947387695 img loss 1.3242629766464233 img loss 1.1849886178970337 img loss 1.0719168186187744 img loss 1.1634410619735718 img loss 1.1484737396240234 img loss 1.1213525533676147 img loss 1.1691416501998901 img loss 1.1913164854049683 img loss 1.1689188480377197 img loss 1.1769336462020874 img loss 1.218682050704956 img loss 1.1271616220474243 img loss 1.2777678966522217 img loss 1.1898530721664429 img loss 1.1276955604553223 {'loss': 1.1773, 'grad_norm': 0.3172319531440735, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4067986011505127 img loss 1.3241820335388184 img loss 1.3368080854415894 img loss 1.3613486289978027 img loss 1.4296272993087769 img loss 1.2734427452087402 img loss 1.3989473581314087 img loss 1.4328783750534058 img loss 1.3331855535507202 img loss 1.398579478263855 img loss 1.4250777959823608 img loss 1.2852849960327148 img loss 1.2863072156906128 img loss 1.4970885515213013 img loss 1.3548121452331543 img loss 1.4304518699645996 img loss 1.3817360401153564 img loss 1.4401662349700928 img loss 1.3287519216537476 img loss 1.3776799440383911 img loss 1.320940375328064 img loss 1.316916823387146 img loss 1.460681438446045 img loss 1.364722490310669 img loss 1.3953160047531128 img loss 1.4053356647491455 img loss 1.3447173833847046 img loss 1.396349310874939 img loss 1.3975027799606323 img loss 1.403200387954712 img loss 1.3738311529159546 img loss 1.4202262163162231 img loss 1.2997881174087524 img loss 1.4122623205184937 img loss 1.4512650966644287 img loss 1.327491283416748 img loss 1.4708211421966553 img loss 1.4233193397521973 img loss 1.3994947671890259 img loss 1.301152229309082 img loss 1.3612102270126343 img loss 1.4226266145706177 img loss 1.3379034996032715 img loss 1.4316685199737549 img loss 1.4028105735778809 img loss 1.3168319463729858 img loss 1.3822814226150513 img loss 1.2745224237442017 img loss 1.3595410585403442 img loss 1.2983509302139282 img loss 1.2881723642349243 img loss 1.3538529872894287 img loss 1.3700308799743652 img loss 1.3769030570983887 img loss 1.493186354637146 img loss 1.3811126947402954 img loss 1.4749799966812134 img loss 1.3625967502593994 img loss 1.3368457555770874 img loss 1.3566919565200806 img loss 1.3658982515335083 img loss 1.3782830238342285 img loss 1.4441007375717163 img loss 1.3441904783248901 img loss 1.412039041519165 img loss 1.251018762588501 img loss 1.3434394598007202 img loss 1.3385239839553833 img loss 1.4148601293563843 img loss 1.3638017177581787 img loss 1.2767541408538818 img loss 1.3857301473617554 img loss 1.293776035308838 img loss 1.3266438245773315 img loss 1.3487458229064941 img loss 1.315025806427002 img loss 1.413215160369873 img loss 1.4362568855285645 img loss 1.3830277919769287 img loss 1.4543379545211792 img loss 1.325627088546753 img loss 1.3948261737823486 img loss 1.2935508489608765 img loss 1.3328704833984375 img loss 1.4434621334075928 img loss 1.4628108739852905 img loss 1.4036362171173096 img loss 1.3627430200576782 img loss 1.365544080734253 img loss 1.3005841970443726 img loss 1.3325543403625488 img loss 1.4020308256149292 img loss 1.4885708093643188 img loss 1.3095295429229736 img loss 1.3794692754745483 img loss 1.4242759943008423 img loss 1.3291682004928589 img loss 1.3135905265808105 img loss 1.3786460161209106 img loss 1.3733792304992676 img loss 1.343059778213501 img loss 1.2622768878936768 img loss 1.4622209072113037 img loss 1.3732761144638062 img loss 1.4295248985290527 img loss 1.3452439308166504 img loss 1.3428566455841064 img loss 1.28591787815094 img loss 1.4448323249816895 img loss 1.4313780069351196 img loss 1.3839424848556519 img loss 1.374092936515808 img loss 1.321439504623413 img loss 1.3417307138442993 img loss 1.3123829364776611 img loss 1.2993916273117065 img loss 1.3613801002502441 img loss 1.353940486907959 img loss 1.3759417533874512 img loss 1.45383882522583 img loss 1.3954441547393799 img loss 1.3676553964614868 img loss 1.439376950263977 img loss 1.2364628314971924 img loss 1.4913166761398315 img loss 1.3221161365509033 img loss 1.4092620611190796 img loss 1.395860195159912 {'loss': 1.3721, 'grad_norm': 0.42722898721694946, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.7646710872650146 img loss 1.4030555486679077 img loss 1.6258357763290405 img loss 1.4347354173660278 img loss 1.9525485038757324 img loss 1.487443447113037 img loss 1.685656189918518 img loss 1.770140290260315 img loss 1.5825892686843872 img loss 1.5397189855575562 img loss 1.5965310335159302 img loss 1.6479843854904175 img loss 1.637386679649353 img loss 1.8026745319366455 img loss 1.6454260349273682 img loss 1.5641684532165527 img loss 1.554465651512146 img loss 1.7208665609359741 img loss 1.7088329792022705 img loss 1.8311372995376587 img loss 1.6782662868499756 img loss 1.7294723987579346 img loss 1.668557047843933 img loss 1.8727871179580688 img loss 1.7222259044647217 img loss 1.6397740840911865 img loss 1.7948622703552246 img loss 1.849129319190979 img loss 1.6124014854431152 img loss 1.6816306114196777 img loss 1.6354275941848755 img loss 1.6277518272399902 img loss 1.7439680099487305 img loss 1.6570650339126587 img loss 1.661753535270691 img loss 1.7760711908340454 img loss 1.6381231546401978 img loss 1.6321934461593628 img loss 1.8911032676696777 img loss 1.7874432802200317 img loss 1.6767725944519043 img loss 1.8953615427017212 img loss 1.802330732345581 img loss 1.7505416870117188 img loss 1.6739410161972046 img loss 1.6108357906341553 img loss 1.7662315368652344 img loss 1.8196526765823364 img loss 1.579676866531372 img loss 1.542979121208191 img loss 1.5944836139678955 img loss 1.6173300743103027 img loss 1.5030639171600342 img loss 1.7641292810440063 img loss 1.7500741481781006 img loss 1.5847516059875488 img loss 1.5558228492736816 img loss 1.4777896404266357 img loss 1.8150594234466553 img loss 1.5104012489318848 img loss 1.580269694328308 img loss 1.5696394443511963 img loss 1.7253146171569824 img loss 1.6031495332717896 img loss 1.8000538349151611 img loss 1.6883610486984253 img loss 1.659015417098999 img loss 1.7254921197891235 img loss 1.6764893531799316 img loss 1.62883460521698 img loss 1.6608954668045044 img loss 1.8428189754486084 img loss 1.716270089149475 img loss 1.8859539031982422 img loss 1.7465429306030273 img loss 1.594042181968689 img loss 1.7521191835403442 img loss 1.7709484100341797 img loss 1.6129590272903442 img loss 1.6418706178665161 img loss 1.6198967695236206 img loss 1.6315728425979614 img loss 1.928997278213501 img loss 1.715855598449707 img loss 1.6544835567474365 img loss 1.5843991041183472 img loss 1.7153056859970093 img loss 1.7302064895629883 img loss 1.6394705772399902 img loss 1.689010500907898 img loss 1.525510549545288 img loss 1.6709474325180054 img loss 1.629334807395935 img loss 1.605802059173584 img loss 1.5996662378311157 img loss 1.6008174419403076 img loss 1.8105889558792114 img loss 1.4885255098342896 img loss 1.7422542572021484 img loss 1.666014552116394 img loss 1.6480257511138916 img loss 1.6848347187042236 img loss 1.5139552354812622 img loss 1.743335485458374 img loss 1.7342641353607178 img loss 1.6392877101898193 img loss 1.701561450958252 img loss 1.615281343460083 img loss 1.6164671182632446 img loss 1.8343636989593506 img loss 1.7252120971679688 img loss 1.7906194925308228 img loss 1.6068671941757202 img loss 1.5266563892364502 img loss 1.7014100551605225 img loss 1.6994611024856567 img loss 1.7204523086547852 img loss 1.885866641998291 img loss 1.603066086769104 img loss 1.727065086364746 img loss 1.8198597431182861 img loss 1.6805497407913208 img loss 1.8178925514221191 img loss 1.7302356958389282 img loss 1.7663427591323853 img loss 1.7744498252868652 img loss 1.7643413543701172 img loss 1.6404128074645996 {'loss': 1.6827, 'grad_norm': 0.2972734272480011, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.420440435409546 img loss 1.46403968334198 img loss 1.5126073360443115 img loss 1.4230644702911377 img loss 1.370357632637024 img loss 1.3832536935806274 img loss 1.4054217338562012 img loss 1.3685096502304077 img loss 1.4199130535125732 img loss 1.4492555856704712 img loss 1.479559302330017 img loss 1.3809335231781006 img loss 1.4533084630966187 img loss 1.3959336280822754 img loss 1.4910589456558228 img loss 1.4407745599746704 img loss 1.456412434577942 img loss 1.4922306537628174 img loss 1.4637119770050049 img loss 1.4165279865264893 img loss 1.539975881576538 img loss 1.480291485786438 img loss 1.4600365161895752 img loss 1.4518940448760986 img loss 1.542761206626892 img loss 1.4376925230026245 img loss 1.6092121601104736 img loss 1.665642261505127 img loss 1.3479923009872437 img loss 1.3538955450057983 img loss 1.5250424146652222 img loss 1.513277292251587 img loss 1.3938277959823608 img loss 1.4022237062454224 img loss 1.4658647775650024 img loss 1.4767472743988037 img loss 1.3584706783294678 img loss 1.47537100315094 img loss 1.4577513933181763img loss 1.5501984357833862 img loss 1.5904165506362915 img loss 1.380083680152893 img loss 1.4166839122772217 img loss 1.5291991233825684 img loss 1.466560959815979 img loss 1.371559977531433 img loss 1.4831584692001343 img loss 1.441286325454712 img loss 1.3691926002502441 img loss 1.369682788848877 img loss 1.5402182340621948 img loss 1.4018146991729736 img loss 1.4892325401306152 img loss 1.485951542854309 img loss 1.4309003353118896 img loss 1.526436686515808img loss 1.4952911138534546 img loss 1.5978367328643799 img loss 1.5512148141860962 img loss 1.41841459274292 img loss 1.4844070672988892 img loss 1.291013479232788 img loss 1.5289385318756104 img loss 1.492002010345459 img loss 1.3511546850204468 img loss 1.3789150714874268 img loss 1.3351291418075562 img loss 1.4002689123153687 img loss 1.439581274986267 img loss 1.3817952871322632 img loss 1.267021894454956 img loss 1.3610138893127441 img loss 1.5788220167160034 img loss 1.4202818870544434 img loss 1.5581663846969604 img loss 1.4514615535736084 img loss 1.4275486469268799 img loss 1.4857679605484009 img loss 1.4523671865463257 img loss 1.3387757539749146 img loss 1.4528559446334839 img loss 1.4643045663833618 img loss 1.4415620565414429 img loss 1.6090025901794434 img loss 1.4533010721206665 img loss 1.4395960569381714 img loss 1.4642871618270874 img loss 1.5481703281402588 img loss 1.4299052953720093 img loss 1.4006893634796143 img loss 1.4143770933151245 img loss 1.5140787363052368 img loss 1.4065101146697998 img loss 1.499393343925476 img loss 1.4793789386749268 img loss 1.3964523077011108 img loss 1.467780351638794 img loss 1.5613758563995361 img loss 1.482681155204773 img loss 1.4294754266738892 img loss 1.5153181552886963 img loss 1.3634655475616455 img loss 1.4263097047805786 img loss 1.3379441499710083 img loss 1.379884958267212 img loss 1.5531675815582275 img loss 1.5216785669326782 img loss 1.2256979942321777 img loss 1.340640902519226 img loss 1.3451184034347534 img loss 1.3657124042510986 img loss 1.5594289302825928 img loss 1.4763123989105225 img loss 1.4361863136291504 img loss 1.5457770824432373 img loss 1.444285273551941 img loss 1.5712828636169434 img loss 1.4408938884735107 img loss 1.369728922843933 img loss 1.3809927701950073 img loss 1.4802453517913818 img loss 1.5214333534240723 img loss 1.3869179487228394 img loss 1.4191296100616455 img loss 1.3642170429229736 img loss 1.4329676628112793 img loss 1.4298192262649536 img loss 1.468413233757019 {'loss': 1.4487, 'grad_norm': 0.2990744709968567, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3090288639068604 img loss 1.2911242246627808 img loss 1.3118962049484253 img loss 1.2253426313400269 img loss 1.2122375965118408 img loss 1.270288348197937 img loss 1.2856979370117188 img loss 1.3376694917678833 img loss 1.3004498481750488 img loss 1.4020379781723022 img loss 1.2054966688156128 img loss 1.3411580324172974 img loss 1.3728512525558472 img loss 1.280414342880249 img loss 1.3437914848327637 img loss 1.2918514013290405 img loss 1.3537943363189697 img loss 1.2500914335250854 img loss 1.3594461679458618 img loss 1.3123317956924438 img loss 1.2651495933532715 img loss 1.2478796243667603 img loss 1.3252261877059937 img loss 1.271514892578125 img loss 1.3019108772277832 img loss 1.3587018251419067 img loss 1.3930743932724 img loss 1.218761682510376 img loss 1.3781449794769287 img loss 1.3411866426467896 img loss 1.2282114028930664 img loss 1.2749285697937012 img loss 1.3886035680770874 img loss 1.351082682609558 img loss 1.3645211458206177 img loss 1.269265055656433 img loss 1.214669942855835 img loss 1.2780430316925049 img loss 1.2285207509994507 img loss 1.2906287908554077 img loss 1.3435224294662476 img loss 1.4062753915786743 img loss 1.3515105247497559 img loss 1.2903752326965332 img loss 1.3721575736999512 img loss 1.281489372253418 img loss 1.3097063302993774 img loss 1.2737582921981812 img loss 1.3032978773117065 img loss 1.3804705142974854 img loss 1.317960500717163 img loss 1.220955729484558 img loss 1.3320767879486084 img loss 1.3817965984344482 img loss 1.323381781578064 img loss 1.4315917491912842 img loss 1.3614697456359863 img loss 1.2814955711364746 img loss 1.2782440185546875 img loss 1.2970852851867676 img loss 1.2424834966659546 img loss 1.313735008239746 img loss 1.3257038593292236 img loss 1.2930102348327637 img loss 1.4004288911819458 img loss 1.3734039068222046 img loss 1.3342108726501465 img loss 1.255751371383667 img loss 1.3950453996658325 img loss 1.237606406211853 img loss 1.3045706748962402 img loss 1.306356430053711 img loss 1.3779350519180298 img loss 1.2028999328613281 img loss 1.259918212890625 img loss 1.256914734840393 img loss 1.4735420942306519 img loss 1.2446836233139038 img loss 1.3394173383712769 img loss 1.344652771949768 img loss 1.3920938968658447 img loss 1.2791316509246826 img loss 1.2653343677520752 img loss 1.2582409381866455 img loss 1.2329248189926147 img loss 1.3303861618041992 img loss 1.345732569694519 img loss 1.2310917377471924 img loss 1.3324750661849976 img loss 1.3881399631500244 img loss 1.325133204460144 img loss 1.2585376501083374 img loss 1.3172310590744019img loss 1.285279631614685 img loss 1.198970079421997 img loss 1.2390416860580444 img loss 1.3001739978790283 img loss 1.2374540567398071 img loss 1.262148380279541 img loss 1.2007343769073486 img loss 1.348288893699646 img loss 1.2405765056610107 img loss 1.1777608394622803 img loss 1.292253851890564 img loss 1.2368807792663574 img loss 1.372158169746399 img loss 1.2476071119308472 img loss 1.3870607614517212 img loss 1.2346941232681274 img loss 1.1918855905532837 img loss 1.3571776151657104 img loss 1.30681312084198 img loss 1.2096214294433594 img loss 1.3410271406173706 img loss 1.36513090133667 img loss 1.243725299835205 img loss 1.4587823152542114 img loss 1.3474650382995605 img loss 1.253135323524475 img loss 1.2883007526397705 img loss 1.3524600267410278 img loss 1.33262300491333 img loss 1.4382003545761108 img loss 1.4069325923919678 img loss 1.424681305885315 img loss 1.4350755214691162 img loss 1.2790181636810303 img loss 1.2506531476974487 {'loss': 1.3076, 'grad_norm': 0.3348464369773865, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.16943359375 img loss 1.2317746877670288 img loss 1.210205078125 img loss 1.202845811843872 img loss 1.2308313846588135 img loss 1.233670711517334 img loss 1.2168391942977905 img loss 1.1692659854888916 img loss 1.1326487064361572 img loss 1.1112372875213623 img loss 1.2674955129623413 img loss 1.182816743850708 img loss 1.2334131002426147 img loss 1.1897985935211182 img loss 1.2356626987457275 img loss 1.2416132688522339 img loss 1.1617474555969238 img loss 1.2689522504806519 img loss 1.1789063215255737 img loss 1.2792603969573975 img loss 1.2322635650634766 img loss 1.2035861015319824 img loss 1.1435178518295288 img loss 1.256306529045105 img loss 1.2333223819732666 img loss 1.2506359815597534 img loss 1.1555097103118896 img loss 1.2548651695251465 img loss 1.1724905967712402 img loss 1.2172558307647705 img loss 1.2501368522644043 img loss 1.1668866872787476 img loss 1.1262644529342651 img loss 1.1522669792175293 img loss 1.2028560638427734 img loss 1.1945594549179077 img loss 1.2714613676071167 img loss 1.1548413038253784 img loss 1.1854356527328491 img loss 1.1496882438659668 img loss 1.1507813930511475 img loss 1.2241237163543701 img loss 1.1862750053405762 img loss 1.1753441095352173 img loss 1.2370142936706543 img loss 1.1922438144683838 img loss 1.2138868570327759 img loss 1.141249179840088 img loss 1.2461068630218506 img loss 1.2021042108535767 img loss 1.152872085571289 img loss 1.205574870109558 img loss 1.2226816415786743 img loss 1.233711838722229 img loss 1.2004806995391846 img loss 1.170780897140503 img loss 1.2448898553848267 img loss 1.2259739637374878 img loss 1.196817398071289 img loss 1.1995128393173218 img loss 1.2298274040222168 img loss 1.2215908765792847 img loss 1.1444790363311768 img loss 1.264270305633545 img loss 1.221685767173767 img loss 1.1704764366149902 img loss 1.1160054206848145 img loss 1.2132914066314697 img loss 1.2212507724761963 img loss 1.2318072319030762 img loss 1.1624094247817993 img loss 1.2446224689483643 img loss 1.2336052656173706 img loss 1.1689547300338745 img loss 1.22391676902771 img loss 1.2106599807739258 img loss 1.2006983757019043 img loss 1.2048519849777222 img loss 1.1726444959640503 img loss 1.225840449333191 img loss 1.2979981899261475 img loss 1.272173285484314 img loss 1.1575167179107666 img loss 1.215575098991394 img loss 1.2181260585784912 img loss 1.1226799488067627 img loss 1.1653892993927002 img loss 1.207625389099121 img loss 1.13612699508667 img loss 1.1608508825302124 img loss 1.209357500076294 img loss 1.3057349920272827 img loss 1.2425657510757446 img loss 1.1458290815353394 img loss 1.2278246879577637 img loss 1.1512237787246704 img loss 1.23459792137146 img loss 1.2514532804489136 img loss 1.1738181114196777 img loss 1.243316888809204 img loss 1.2164607048034668 img loss 1.1907291412353516 img loss 1.1809762716293335 img loss 1.1777832508087158 img loss 1.2102397680282593 img loss 1.2076869010925293 img loss 1.173515796661377 img loss 1.2585872411727905 img loss 1.2685692310333252 img loss 1.188430666923523 img loss 1.2188975811004639 img loss 1.234442949295044 img loss 1.2245981693267822 img loss 1.1887136697769165 img loss 1.2444403171539307 img loss 1.1502541303634644 img loss 1.1496795415878296 img loss 1.2452036142349243 img loss 1.1713056564331055 img loss 1.2526434659957886 img loss 1.1321576833724976 img loss 1.1937992572784424 img loss 1.2424087524414062 img loss 1.187458872795105 img loss 1.1449495553970337 img loss 1.160685420036316 img loss 1.2240829467773438 img loss 1.1988749504089355 {'loss': 1.2032, 'grad_norm': 0.27602618932724, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5758559703826904 img loss 1.508239507675171 img loss 1.5650771856307983 img loss 1.4930567741394043 img loss 1.5407906770706177 img loss 1.4677917957305908 img loss 1.670040488243103 img loss 1.493729829788208 img loss 1.5239161252975464 img loss 1.3787235021591187 img loss 1.4666197299957275 img loss 1.5453704595565796 img loss 1.381942629814148 img loss 1.3648353815078735 img loss 1.4502335786819458 img loss 1.4908292293548584 img loss 1.391184687614441 img loss 1.6674448251724243 img loss 1.514465570449829 img loss 1.4852949380874634 img loss 1.402720332145691 img loss 1.614064335823059 img loss 1.4371874332427979 img loss 1.4860728979110718 img loss 1.4413915872573853 img loss 1.322792887687683 img loss 1.4886234998703003 img loss 1.4743990898132324 img loss 1.4221317768096924 img loss 1.3573728799819946 img loss 1.3413939476013184 img loss 1.362300157546997 img loss 1.382495641708374 img loss 1.478757619857788 img loss 1.8150956630706787 img loss 1.6228766441345215 img loss 1.518829107284546 img loss 1.4771761894226074 img loss 1.468109369277954 img loss 1.5320403575897217 img loss 1.5148556232452393 img loss 1.4994750022888184 img loss 1.4650310277938843 img loss 1.4690121412277222 img loss 1.4102543592453003 img loss 1.4263995885849 img loss 1.4720441102981567 img loss 1.5087182521820068 img loss 1.4170587062835693 img loss 1.5877230167388916 img loss 1.5576694011688232 img loss 1.4738200902938843 img loss 1.597894549369812 img loss 1.458990454673767 img loss 1.472070574760437 img loss 1.4410980939865112 img loss 1.5106831789016724 img loss 1.4468226432800293 img loss 1.5900895595550537 img loss 1.5403028726577759 img loss 1.5413845777511597 img loss 1.3961806297302246 img loss 1.515926718711853 img loss 1.480660319328308img loss 1.3748749494552612 img loss 1.557650089263916 img loss 1.5284291505813599 img loss 1.526276707649231 img loss 1.4476436376571655 img loss 1.520514965057373 img loss 1.4573386907577515 img loss 1.4360949993133545 img loss 1.4998782873153687 img loss 1.4720923900604248 img loss 1.5196157693862915 img loss 1.4148656129837036 img loss 1.474488615989685 img loss 1.601151943206787 img loss 1.5042908191680908 img loss 1.5010502338409424 img loss 1.4153608083724976 img loss 1.5562573671340942 img loss 1.4193462133407593 img loss 1.4966599941253662 img loss 1.4384074211120605 img loss 1.4211394786834717 img loss 1.4652730226516724 img loss 1.4954752922058105 img loss 1.4104650020599365 img loss 1.6553833484649658 img loss 1.4512369632720947 img loss 1.3330821990966797 img loss 1.4058510065078735 img loss 1.3401274681091309 img loss 1.5423213243484497 img loss 1.4654037952423096 img loss 1.3945199251174927 img loss 1.482724666595459 img loss 1.4855188131332397 img loss 1.4823154211044312 img loss 1.5264179706573486 img loss 1.416142225265503 img loss 1.4251092672348022 img loss 1.5276811122894287 img loss 1.511330485343933 img loss 1.569209337234497 img loss 1.5072358846664429 img loss 1.527204155921936 img loss 1.5739390850067139 img loss 1.530159831047058 img loss 1.4049724340438843 img loss 1.5499303340911865 img loss 1.4207769632339478 img loss 1.3638733625411987 img loss 1.5589696168899536 img loss 1.4248831272125244 img loss 1.4054505825042725 img loss 1.500179409980774 img loss 1.4078900814056396 img loss 1.4163669347763062 img loss 1.3945688009262085 img loss 1.530160665512085 img loss 1.561612606048584 img loss 1.4302570819854736 img loss 1.4848073720932007 img loss 1.4978766441345215 img loss 1.4069639444351196 img loss 1.564003586769104 {'loss': 1.4816, 'grad_norm': 0.2809152901172638, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1814956665039062 img loss 1.2265903949737549 img loss 1.2063148021697998 img loss 1.2429519891738892 img loss 1.21710205078125 img loss 1.243443489074707 img loss 1.2067620754241943 img loss 1.26100492477417 img loss 1.326946496963501 img loss 1.1999878883361816 img loss 1.2079111337661743 img loss 1.1137861013412476 img loss 1.1957406997680664img loss 1.2085340023040771 img loss 1.1986994743347168 img loss 1.223853588104248 img loss 1.2356665134429932 img loss 1.1724774837493896 img loss 1.1955074071884155 img loss 1.2272993326187134 img loss 1.2664932012557983 img loss 1.1419965028762817 img loss 1.1643273830413818 img loss 1.2303587198257446 img loss 1.12626051902771 img loss 1.1984003782272339 img loss 1.136833906173706 img loss 1.2633910179138184 img loss 1.2467256784439087 img loss 1.2008289098739624 img loss 1.162042498588562 img loss 1.1402143239974976 img loss 1.1803749799728394 img loss 1.18588125705719 img loss 1.267093539237976 img loss 1.2297691106796265 img loss 1.2549164295196533 img loss 1.162199854850769 img loss 1.1893662214279175 img loss 1.1786915063858032 img loss 1.2851476669311523 img loss 1.2105646133422852 img loss 1.2320479154586792 img loss 1.1362714767456055 img loss 1.15250563621521 img loss 1.2004499435424805 img loss 1.180270791053772 img loss 1.1682007312774658 img loss 1.1933854818344116 img loss 1.1914243698120117 img loss 1.1915526390075684 img loss 1.1857118606567383 img loss 1.1853673458099365 img loss 1.1235005855560303 img loss 1.2132784128189087 img loss 1.221494436264038 img loss 1.167172908782959 img loss 1.289110779762268 img loss 1.1740928888320923 img loss 1.1969647407531738 img loss 1.1483345031738281 img loss 1.1788853406906128 img loss 1.1759535074234009 img loss 1.1807663440704346 img loss 1.1602973937988281 img loss 1.1883591413497925 img loss 1.2476199865341187 img loss 1.1696367263793945 img loss 1.2383569478988647 img loss 1.2346994876861572 img loss 1.2212680578231812 img loss 1.1833066940307617 img loss 1.2527341842651367 img loss 1.1983160972595215 img loss 1.2076653242111206 img loss 1.1700295209884644 img loss 1.2070198059082031 img loss 1.1734684705734253 img loss 1.274021029472351 img loss 1.2287968397140503 img loss 1.1903724670410156 img loss 1.2369283437728882 img loss 1.1939884424209595 img loss 1.172878623008728 img loss 1.1687517166137695 img loss 1.2348912954330444 img loss 1.2148795127868652 img loss 1.145632028579712 img loss 1.2550228834152222 img loss 1.1689958572387695 img loss 1.1684446334838867 img loss 1.193694829940796 img loss 1.2201493978500366 img loss 1.1900417804718018 img loss 1.2491164207458496 img loss 1.1975692510604858 img loss 1.1691203117370605 img loss 1.167479395866394 img loss 1.117316722869873 img loss 1.235686182975769 img loss 1.169485330581665 img loss 1.2049483060836792 img loss 1.2584103345870972 img loss 1.1713272333145142 img loss 1.2040657997131348 img loss 1.1594260931015015 img loss 1.2106789350509644 img loss 1.2667585611343384 img loss 1.1745047569274902 img loss 1.1847474575042725 img loss 1.2132220268249512 img loss 1.1533699035644531 img loss 1.1595208644866943 img loss 1.1752195358276367 img loss 1.2429012060165405 img loss 1.2402797937393188 img loss 1.1514157056808472 img loss 1.2960679531097412 img loss 1.2351226806640625 img loss 1.1568164825439453 img loss 1.1959185600280762 img loss 1.2308917045593262 img loss 1.1924779415130615 img loss 1.1939376592636108 img loss 1.1853864192962646 img loss 1.2343071699142456 img loss 1.2143476009368896 img loss 1.2209757566452026 {'loss': 1.2011, 'grad_norm': 0.27037885785102844, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3238989114761353 img loss 1.3192975521087646 img loss 1.2342849969863892 img loss 1.341489553451538 img loss 1.2477221488952637 img loss 1.2953137159347534 img loss 1.318729043006897 img loss 1.2716041803359985 img loss 1.3322199583053589 img loss 1.3280673027038574 img loss 1.2990458011627197 img loss 1.3789422512054443 img loss 1.37477707862854 img loss 1.277146816253662 img loss 1.27157461643219 img loss 1.3404138088226318 img loss 1.246450662612915 img loss 1.4085317850112915 img loss 1.2629743814468384 img loss 1.2985405921936035 img loss 1.3454546928405762 img loss 1.3801809549331665 img loss 1.3002598285675049 img loss 1.2842776775360107 img loss 1.2526766061782837 img loss 1.3295129537582397 img loss 1.364000916481018 img loss 1.2983654737472534 img loss 1.289218783378601 img loss 1.2808855772018433 img loss 1.2991167306900024 img loss 1.2304906845092773 img loss 1.37277090549469 img loss 1.3884209394454956 img loss 1.2865054607391357 img loss 1.303577184677124 img loss 1.2900123596191406 img loss 1.2290470600128174 img loss 1.3440908193588257 img loss 1.2242867946624756 img loss 1.3437793254852295 img loss 1.2378126382827759 img loss 1.3201005458831787 img loss 1.3715993165969849 img loss 1.3892743587493896 img loss 1.4284688234329224 img loss 1.2866004705429077 img loss 1.2971704006195068 img loss 1.3164945840835571 img loss 1.2839603424072266 img loss 1.2437978982925415 img loss 1.2951233386993408 img loss 1.3168338537216187 img loss 1.2512383460998535 img loss 1.2324116230010986 img loss 1.3859150409698486 img loss 1.2408033609390259 img loss 1.2320293188095093 img loss 1.2600570917129517 img loss 1.4027162790298462 img loss 1.2700271606445312 img loss 1.246345043182373 img loss 1.3357785940170288 img loss 1.3555750846862793 img loss 1.280382513999939 img loss 1.3424925804138184 img loss 1.2609968185424805 img loss 1.323791742324829 img loss 1.2958399057388306 img loss 1.2918400764465332 img loss 1.3667857646942139 img loss 1.3112324476242065 img loss 1.3559647798538208 img loss 1.2776596546173096 img loss 1.2463029623031616 img loss 1.45238196849823 img loss 1.2877819538116455 img loss 1.2400331497192383 img loss 1.3180721998214722 img loss 1.2729277610778809 img loss 1.3363897800445557 img loss 1.2652801275253296 img loss 1.2910947799682617 img loss 1.3007087707519531 img loss 1.2667168378829956 img loss 1.3403124809265137 img loss 1.3698018789291382 img loss 1.3113845586776733 img loss 1.266781210899353 img loss 1.2366646528244019 img loss 1.2424448728561401 img loss 1.294748067855835 img loss 1.357742428779602 img loss 1.4074848890304565 img loss 1.3111717700958252 img loss 1.2433679103851318 img loss 1.2700601816177368 img loss 1.295276403427124 img loss 1.2024755477905273 img loss 1.2385871410369873 img loss 1.3237013816833496 img loss 1.3188762664794922 img loss 1.3038710355758667 img loss 1.332894206047058 img loss 1.2908159494400024 img loss 1.3545135259628296 img loss 1.3765426874160767 img loss 1.2201290130615234 img loss 1.2490079402923584 img loss 1.2690132856369019 img loss 1.2749723196029663 img loss 1.2219176292419434 img loss 1.2834707498550415 img loss 1.295575737953186 img loss 1.2730778455734253 img loss 1.411142110824585 img loss 1.2807402610778809 img loss 1.3237842321395874 img loss 1.3066638708114624 img loss 1.4354490041732788 img loss 1.2457449436187744 img loss 1.267838954925537 img loss 1.2433918714523315 img loss 1.2687944173812866 img loss 1.294669508934021 img loss 1.3481007814407349 img loss 1.278929591178894 img loss 1.3126180171966553 {'loss': 1.303, 'grad_norm': 0.3142671287059784, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3448055982589722 img loss 1.3554757833480835 img loss 1.4002223014831543 img loss 1.4290530681610107 img loss 1.4912619590759277 img loss 1.3099992275238037 img loss 1.483924150466919 img loss 1.377569556236267 img loss 1.3501614332199097 img loss 1.3459614515304565 img loss 1.3066781759262085 img loss 1.447721242904663 img loss 1.477024793624878 img loss 1.388712763786316 img loss 1.468356966972351 img loss 1.279089331626892 img loss 1.3762820959091187 img loss 1.3045117855072021 img loss 1.4803175926208496 img loss 1.40116286277771 img loss 1.4907716512680054 img loss 1.2774815559387207 img loss 1.4354102611541748 img loss 1.4711358547210693 img loss 1.4258941411972046 img loss 1.3864041566848755 img loss 1.3543072938919067 img loss 1.4858810901641846 img loss 1.4316565990447998 img loss 1.4544579982757568 img loss 1.3348634243011475 img loss 1.3664556741714478 img loss 1.3882113695144653 img loss 1.4402921199798584 img loss 1.5224337577819824 img loss 1.403586983680725 img loss 1.4869333505630493 img loss 1.3924784660339355 img loss 1.4997460842132568 img loss 1.4436190128326416 img loss 1.383390188217163 img loss 1.4889038801193237 img loss 1.4160104990005493 img loss 1.3526402711868286 img loss 1.416649341583252 img loss 1.4834867715835571 img loss 1.478766679763794 img loss 1.3412693738937378 img loss 1.4233791828155518 img loss 1.4791260957717896 img loss 1.5090588331222534 img loss 1.5158635377883911 img loss 1.3505569696426392 img loss 1.4945873022079468 img loss 1.366228461265564 img loss 1.4741178750991821 img loss 1.3623570203781128 img loss 1.3029282093048096img loss 1.366788387298584 img loss 1.4665189981460571 img loss 1.4580132961273193 img loss 1.3511165380477905 img loss 1.431496262550354 img loss 1.2254377603530884 img loss 1.4581509828567505 img loss 1.4386590719223022 img loss 1.3460885286331177 img loss 1.448486089706421 img loss 1.4056204557418823 img loss 1.3025054931640625 img loss 1.3928277492523193 img loss 1.4945565462112427 img loss 1.516808271408081 img loss 1.4166276454925537 img loss 1.3332563638687134 img loss 1.4410251379013062 img loss 1.279199242591858 img loss 1.4656503200531006 img loss 1.3561745882034302 img loss 1.4376362562179565 img loss 1.428924798965454 img loss 1.4791468381881714 img loss 1.425648808479309 img loss 1.3611750602722168 img loss 1.385597825050354 img loss 1.4165356159210205 img loss 1.6009775400161743 img loss 1.312699794769287 img loss 1.3707482814788818 img loss 1.4962064027786255 img loss 1.448378086090088 img loss 1.4514338970184326 img loss 1.3669437170028687 img loss 1.3910367488861084 img loss 1.410340428352356 img loss 1.4732320308685303 img loss 1.517825722694397 img loss 1.4091031551361084 img loss 1.5085393190383911 img loss 1.3528974056243896 img loss 1.3570492267608643 img loss 1.3386648893356323 img loss 1.504477858543396 img loss 1.532824158668518 img loss 1.4454262256622314 img loss 1.4239380359649658 img loss 1.3585480451583862 img loss 1.3466734886169434 img loss 1.3902394771575928 img loss 1.4155056476593018 img loss 1.4579819440841675 img loss 1.4044386148452759 img loss 1.341585397720337 img loss 1.4018715620040894 img loss 1.462090253829956 img loss 1.48401939868927 img loss 1.362221121788025 img loss 1.4218990802764893 img loss 1.2972180843353271 img loss 1.3205937147140503 img loss 1.486438274383545 img loss 1.4037718772888184 img loss 1.4169421195983887 img loss 1.4725927114486694 img loss 1.398918867111206 img loss 1.3012170791625977 img loss 1.5026041269302368 img loss 1.4616369009017944 {'loss': 1.4133, 'grad_norm': 0.2267937958240509, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1766799688339233 img loss 1.2506992816925049 img loss 1.254117488861084 img loss 1.2873258590698242 img loss 1.2262920141220093 img loss 1.281960129737854 img loss 1.3381844758987427 img loss 1.248029351234436 img loss 1.2879502773284912 img loss 1.171170711517334 img loss 1.2758489847183228 img loss 1.3010810613632202 img loss 1.3116028308868408 img loss 1.2940196990966797 img loss 1.257543921470642 img loss 1.2014425992965698 img loss 1.2926734685897827 img loss 1.2697608470916748 img loss 1.2600476741790771 img loss 1.3432506322860718 img loss 1.2604598999023438 img loss 1.1721165180206299 img loss 1.320233702659607 img loss 1.2761507034301758 img loss 1.2976090908050537 img loss 1.3478953838348389 img loss 1.3048197031021118 img loss 1.2616329193115234 img loss 1.2931886911392212 img loss 1.29240083694458 img loss 1.2387923002243042 img loss 1.2442137002944946 img loss 1.2789324522018433 img loss 1.2538421154022217 img loss 1.2773990631103516 img loss 1.2562971115112305 img loss 1.2419753074645996 img loss 1.3800877332687378 img loss 1.2607874870300293 img loss 1.3200621604919434 img loss 1.2070956230163574 img loss 1.316667914390564 img loss 1.3008897304534912 img loss 1.3146541118621826 img loss 1.2654263973236084 img loss 1.2252365350723267 img loss 1.2969900369644165 img loss 1.2877706289291382 img loss 1.3757379055023193 img loss 1.3107632398605347 img loss 1.2266063690185547img loss 1.3214032649993896 img loss 1.2467668056488037 img loss 1.4129246473312378 img loss 1.3193027973175049 img loss 1.2796716690063477 img loss 1.3148249387741089 img loss 1.2885048389434814 img loss 1.2078907489776611 img loss 1.373395323753357 img loss 1.2464981079101562 img loss 1.2170474529266357 img loss 1.2733081579208374 img loss 1.23622465133667 img loss 1.3319108486175537 img loss 1.3132271766662598 img loss 1.2803521156311035 img loss 1.2491071224212646 img loss 1.3521291017532349 img loss 1.3866230249404907 img loss 1.3287861347198486 img loss 1.2907501459121704 img loss 1.4043203592300415 img loss 1.237406611442566 img loss 1.3914605379104614 img loss 1.2525436878204346 img loss 1.281687617301941 img loss 1.2277469635009766 img loss 1.2200539112091064 img loss 1.205487847328186 img loss 1.2291407585144043 img loss 1.2616915702819824 img loss 1.2697962522506714 img loss 1.2462317943572998 img loss 1.3050949573516846 img loss 1.2386420965194702 img loss 1.2708038091659546 img loss 1.2057068347930908 img loss 1.2059367895126343 img loss 1.3102824687957764 img loss 1.2917428016662598 img loss 1.2034034729003906 img loss 1.2927329540252686 img loss 1.2548103332519531 img loss 1.2354652881622314 img loss 1.3549047708511353 img loss 1.316097617149353 img loss 1.2232013940811157 img loss 1.357643961906433 img loss 1.2443327903747559 img loss 1.390227198600769 img loss 1.2059671878814697 img loss 1.2582206726074219 img loss 1.2031885385513306 img loss 1.2257579565048218 img loss 1.291732668876648 img loss 1.2225345373153687 img loss 1.207014560699463 img loss 1.2291895151138306 img loss 1.2861486673355103 img loss 1.199623703956604 img loss 1.2725193500518799 img loss 1.3589694499969482 img loss 1.2633270025253296 img loss 1.3446155786514282 img loss 1.2695988416671753 img loss 1.2912273406982422 img loss 1.271544337272644 img loss 1.2453720569610596 img loss 1.2818939685821533 img loss 1.2276743650436401 img loss 1.1643909215927124 img loss 1.2508455514907837 img loss 1.2906690835952759 img loss 1.2769187688827515 img loss 1.2893731594085693 img loss 1.289556860923767 img loss 1.23850679397583 {'loss': 1.2749, 'grad_norm': 0.26757878065109253, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3028833866119385 img loss 1.3641966581344604 img loss 1.2546643018722534 img loss 1.3483264446258545 img loss 1.2730047702789307 img loss 1.3118045330047607 img loss 1.228047251701355 img loss 1.4083830118179321 img loss 1.2731164693832397 img loss 1.3788968324661255 img loss 1.2721755504608154 img loss 1.313474416732788 img loss 1.2600715160369873 img loss 1.3433258533477783 img loss 1.2939382791519165 img loss 1.2476980686187744 img loss 1.3059024810791016 img loss 1.347403645515442 img loss 1.2898919582366943 img loss 1.3024286031723022 img loss 1.293269395828247 img loss 1.2808245420455933 img loss 1.238077163696289 img loss 1.3332059383392334 img loss 1.3241453170776367 img loss 1.3220341205596924 img loss 1.32326078414917 img loss 1.2355308532714844 img loss 1.3585693836212158 img loss 1.4169808626174927 img loss 1.4197901487350464 img loss 1.22397780418396 img loss 1.3174667358398438 img loss 1.3111032247543335 img loss 1.2808127403259277 img loss 1.2739142179489136 img loss 1.3679167032241821 img loss 1.3058316707611084 img loss 1.3121275901794434 img loss 1.2121137380599976 img loss 1.1936651468276978 img loss 1.3410156965255737 img loss 1.314603328704834 img loss 1.2177116870880127 img loss 1.3827039003372192 img loss 1.3026347160339355 img loss 1.2961294651031494 img loss 1.2723240852355957 img loss 1.3125319480895996 img loss 1.342394471168518 img loss 1.2508544921875 img loss 1.278643012046814 img loss 1.2490344047546387 img loss 1.2620264291763306 img loss 1.3442089557647705 img loss 1.3021297454833984 img loss 1.3344863653182983 img loss 1.307321548461914 img loss 1.2555166482925415 img loss 1.3300392627716064 img loss 1.2153010368347168 img loss 1.2952587604522705 img loss 1.3371751308441162 img loss 1.3033077716827393 img loss 1.3214253187179565 img loss 1.2677103281021118 img loss 1.3063863515853882 img loss 1.2871955633163452 img loss 1.3257766962051392 img loss 1.3481944799423218 img loss 1.3707722425460815 img loss 1.2736517190933228 img loss 1.2715853452682495 img loss 1.292270302772522 img loss 1.2901180982589722 img loss 1.2847206592559814 img loss 1.2946555614471436 img loss 1.3186571598052979 img loss 1.2674369812011719 img loss 1.3946682214736938 img loss 1.2859489917755127 img loss 1.3347820043563843 img loss 1.3569310903549194 img loss 1.3284168243408203 img loss 1.2523638010025024 img loss 1.268961787223816 img loss 1.2061980962753296 img loss 1.3254714012145996 img loss 1.337592601776123 img loss 1.2475616931915283 img loss 1.26675546169281 img loss 1.3781903982162476 img loss 1.3766758441925049 img loss 1.216963529586792 img loss 1.229178786277771 img loss 1.3721537590026855 img loss 1.2916921377182007 img loss 1.3702266216278076 img loss 1.2588016986846924 img loss 1.353951096534729 img loss 1.2542377710342407 img loss 1.2695646286010742 img loss 1.3418129682540894 img loss 1.3095893859863281 img loss 1.320741891860962 img loss 1.1975147724151611 img loss 1.2432745695114136 img loss 1.2979379892349243 img loss 1.297329306602478 img loss 1.3281910419464111 img loss 1.276784896850586 img loss 1.2699062824249268 img loss 1.3150558471679688 img loss 1.3575797080993652 img loss 1.3257073163986206 img loss 1.4080003499984741 img loss 1.2811378240585327 img loss 1.3315823078155518 img loss 1.3093891143798828 img loss 1.2871818542480469 img loss 1.277261734008789 img loss 1.3368946313858032 img loss 1.2802928686141968 img loss 1.3343719244003296 img loss 1.2830350399017334 img loss 1.2576392889022827 img loss 1.2568809986114502 img loss 1.260966181755066 {'loss': 1.3015, 'grad_norm': 0.3116932213306427, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2572335004806519 img loss 1.2138599157333374 img loss 1.258622407913208 img loss 1.2185113430023193 img loss 1.1802219152450562 img loss 1.178118109703064 img loss 1.2820537090301514 img loss 1.1805446147918701 img loss 1.2991859912872314 img loss 1.2122855186462402 img loss 1.2166647911071777 img loss 1.2418479919433594 img loss 1.2811758518218994 img loss 1.2435463666915894 img loss 1.251646876335144 img loss 1.2626960277557373 img loss 1.2491049766540527 img loss 1.2704086303710938 img loss 1.1989930868148804 img loss 1.196919322013855 img loss 1.1696878671646118 img loss 1.253504991531372 img loss 1.2323099374771118 img loss 1.1908775568008423 img loss 1.2301584482192993 img loss 1.2629356384277344 img loss 1.2689749002456665 img loss 1.224168062210083 img loss 1.2205501794815063 img loss 1.243402123451233 img loss 1.2861740589141846 img loss 1.1965550184249878 img loss 1.183641791343689 img loss 1.183677077293396 img loss 1.212188482284546 img loss 1.2673500776290894 img loss 1.2265022993087769 img loss 1.2029927968978882 img loss 1.3057912588119507 img loss 1.2270139455795288 img loss 1.2470951080322266 img loss 1.1688593626022339 img loss 1.325225830078125 img loss 1.1971405744552612 img loss 1.1971495151519775 img loss 1.256001353263855 img loss 1.2470123767852783 img loss 1.2186435461044312 img loss 1.2241525650024414 img loss 1.2227745056152344 img loss 1.3319610357284546 img loss 1.2691868543624878 img loss 1.3437550067901611 img loss 1.2329823970794678 img loss 1.282832384109497 img loss 1.1745926141738892 img loss 1.2480677366256714 img loss 1.1961865425109863 img loss 1.174171805381775 img loss 1.2759462594985962 img loss 1.2706750631332397 img loss 1.254163146018982 img loss 1.2269287109375 img loss 1.2329663038253784 img loss 1.2483375072479248 img loss 1.2380751371383667 img loss 1.305092453956604 img loss 1.209991455078125 img loss 1.2306041717529297 img loss 1.25482976436615 img loss 1.1964869499206543 img loss 1.2062592506408691 img loss 1.2074432373046875 img loss 1.2261414527893066 img loss 1.2783875465393066 img loss 1.260697603225708 img loss 1.2237789630889893 img loss 1.2421505451202393 img loss 1.1790817975997925 img loss 1.2375657558441162 img loss 1.2319583892822266 img loss 1.215997576713562 img loss 1.2236279249191284 img loss 1.263621211051941 img loss 1.2744789123535156 img loss 1.243045449256897 img loss 1.2743781805038452 img loss 1.3181030750274658 img loss 1.2212755680084229 img loss 1.2977943420410156 img loss 1.2198750972747803 img loss 1.1910587549209595 img loss 1.274681568145752 img loss 1.1786905527114868 img loss 1.2136626243591309 img loss 1.170027256011963 img loss 1.1959381103515625 img loss 1.2158609628677368 img loss 1.2280062437057495 img loss 1.2776236534118652 img loss 1.2318356037139893 img loss 1.1903787851333618 img loss 1.1964960098266602 img loss 1.2307231426239014 img loss 1.2529892921447754 img loss 1.24687922000885 img loss 1.264565110206604 img loss 1.223792314529419 img loss 1.1742664575576782 img loss 1.2159637212753296 img loss 1.2234948873519897 img loss 1.2761369943618774 img loss 1.2152801752090454 img loss 1.3298077583312988 img loss 1.2937920093536377 img loss 1.2807679176330566 img loss 1.2616689205169678 img loss 1.1695679426193237 img loss 1.2256933450698853 img loss 1.2607799768447876 img loss 1.234046220779419 img loss 1.2245687246322632 img loss 1.2481837272644043 img loss 1.2684597969055176 img loss 1.2883663177490234 img loss 1.1628309488296509 img loss 1.1914558410644531 img loss 1.227587342262268 {'loss': 1.2358, 'grad_norm': 0.2354358434677124, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3304595947265625 img loss 1.2746484279632568 img loss 1.2958933115005493 img loss 1.3051724433898926 img loss 1.2395886182785034 img loss 1.3454591035842896 img loss 1.3181613683700562 img loss 1.2625694274902344 img loss 1.332610011100769 img loss 1.3204597234725952 img loss 1.2963265180587769 img loss 1.2834938764572144 img loss 1.398314118385315 img loss 1.3723253011703491 img loss 1.2853124141693115 img loss 1.3033132553100586 img loss 1.3425029516220093 img loss 1.2639832496643066 img loss 1.3029447793960571 img loss 1.2617708444595337 img loss 1.249345064163208 img loss 1.306485891342163 img loss 1.2604820728302002 img loss 1.3633579015731812 img loss 1.2553842067718506 img loss 1.2529360055923462 img loss 1.2357487678527832 img loss 1.2660645246505737 img loss 1.3486775159835815 img loss 1.2888745069503784 img loss 1.2927364110946655 img loss 1.2850652933120728 img loss 1.3264784812927246 img loss 1.3208650350570679 img loss 1.2655243873596191 img loss 1.2508083581924438 img loss 1.1810520887374878 img loss 1.3396563529968262 img loss 1.2799537181854248 img loss 1.3276562690734863 img loss 1.2478158473968506 img loss 1.305430293083191 img loss 1.2740331888198853 img loss 1.2455193996429443 img loss 1.2971752882003784 img loss 1.3661894798278809 img loss 1.2544550895690918 img loss 1.259427547454834 img loss 1.3314094543457031 img loss 1.2733399868011475 img loss 1.2368606328964233 img loss 1.2882152795791626 img loss 1.376373052597046 img loss 1.2573847770690918 img loss 1.2496298551559448 img loss 1.2322361469268799 img loss 1.3075908422470093 img loss 1.3577401638031006 img loss 1.2525371313095093 img loss 1.2156903743743896 img loss 1.347488522529602 img loss 1.2914432287216187 img loss 1.2982616424560547 img loss 1.2763912677764893 img loss 1.1912732124328613 img loss 1.302919864654541 img loss 1.2448374032974243 img loss 1.3426953554153442 img loss 1.2963085174560547 img loss 1.1716296672821045 img loss 1.3296432495117188 img loss 1.3380615711212158 img loss 1.2472994327545166 img loss 1.212778091430664 img loss 1.3175005912780762 img loss 1.1471447944641113 img loss 1.3204196691513062 img loss 1.3628747463226318 img loss 1.2715591192245483 img loss 1.3356854915618896 img loss 1.244606852531433 img loss 1.1536201238632202 img loss 1.281481146812439 img loss 1.208319902420044img loss 1.2423012256622314 img loss 1.284224510192871 img loss 1.3522228002548218 img loss 1.3981119394302368 img loss 1.2357038259506226 img loss 1.3752267360687256 img loss 1.2229249477386475 img loss 1.3691723346710205 img loss 1.3555176258087158 img loss 1.3515517711639404 img loss 1.2085754871368408 img loss 1.2228827476501465 img loss 1.2394737005233765 img loss 1.262640357017517 img loss 1.3031353950500488 img loss 1.3979610204696655 img loss 1.326194405555725 img loss 1.2591179609298706 img loss 1.1672219038009644 img loss 1.302961826324463 img loss 1.262072205543518 img loss 1.1820366382598877 img loss 1.337201714515686 img loss 1.1908340454101562 img loss 1.2564398050308228 img loss 1.3106238842010498 img loss 1.241222620010376 img loss 1.308906078338623 img loss 1.2002687454223633 img loss 1.2653783559799194 img loss 1.3267676830291748 img loss 1.3139674663543701 img loss 1.2789177894592285 img loss 1.2832578420639038 img loss 1.2198227643966675 img loss 1.3427621126174927 img loss 1.2566139698028564 img loss 1.205910086631775 img loss 1.3002818822860718 img loss 1.2093307971954346 img loss 1.1774834394454956 img loss 1.2647778987884521 img loss 1.2552428245544434 img loss 1.261779546737671 {'loss': 1.2822, 'grad_norm': 0.29271265864372253, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5353329181671143 img loss 1.2756614685058594 img loss 1.5272194147109985 img loss 1.4185669422149658 img loss 1.408964991569519 img loss 1.4799481630325317 img loss 1.4224244356155396 img loss 1.4385931491851807 img loss 1.3275429010391235 img loss 1.4168587923049927 img loss 1.5068411827087402 img loss 1.3803032636642456 img loss 1.2415671348571777 img loss 1.3946435451507568 img loss 1.2535672187805176 img loss 1.5383961200714111 img loss 1.3403356075286865 img loss 1.4458240270614624 img loss 1.3157800436019897 img loss 1.6561949253082275 img loss 1.4441406726837158 img loss 1.490458607673645 img loss 1.549678921699524 img loss 1.4001473188400269 img loss 1.4926248788833618 img loss 1.6546132564544678 img loss 1.5828945636749268 img loss 1.4910253286361694 img loss 1.474373698234558 img loss 1.515214443206787 img loss 1.5749335289001465 img loss 1.4096328020095825 img loss 1.3950893878936768 img loss 1.3152785301208496 img loss 1.4386565685272217 img loss 1.4290289878845215 img loss 1.4090298414230347 img loss 1.4715934991836548 img loss 1.5146085023880005 img loss 1.529841661453247 img loss 1.4831185340881348 img loss 1.420477032661438 img loss 1.3825109004974365 img loss 1.4622761011123657 img loss 1.24381422996521 img loss 1.3763912916183472 img loss 1.4107601642608643 img loss 1.4629651308059692 img loss 1.547959566116333 img loss 1.4591814279556274 img loss 1.4426449537277222 img loss 1.4647469520568848 img loss 1.3142164945602417 img loss 1.4305169582366943 img loss 1.3945553302764893 img loss 1.4375234842300415 img loss 1.5401326417922974 img loss 1.429175853729248 img loss 1.4159858226776123 img loss 1.4945648908615112 img loss 1.3841278553009033 img loss 1.318193793296814 img loss 1.6042935848236084 img loss 1.3563761711120605 img loss 1.48704195022583 img loss 1.5046477317810059 img loss 1.4527363777160645 img loss 1.3167225122451782 img loss 1.3884953260421753 img loss 1.4842485189437866 img loss 1.477773904800415 img loss 1.4849039316177368 img loss 1.5193878412246704 img loss 1.4561755657196045 img loss 1.4593756198883057 img loss 1.3799465894699097 img loss 1.4428879022598267 img loss 1.4485790729522705 img loss 1.5653387308120728 img loss 1.5242074728012085 img loss 1.3765981197357178 img loss 1.4293326139450073 img loss 1.5215147733688354 img loss 1.2833069562911987 img loss 1.440295934677124 img loss 1.418397068977356 img loss 1.4869195222854614 img loss 1.4304022789001465 img loss 1.5660585165023804 img loss 1.4097353219985962 img loss 1.4175540208816528 img loss 1.3846087455749512 img loss 1.4092679023742676 img loss 1.3532822132110596 img loss 1.3344329595565796 img loss 1.4089019298553467 img loss 1.3068112134933472 img loss 1.4261308908462524 img loss 1.439996361732483 img loss 1.407739281654358 img loss 1.5431758165359497 img loss 1.437304139137268 img loss 1.494304895401001 img loss 1.3200931549072266 img loss 1.348120093345642 img loss 1.4643672704696655 img loss 1.4763386249542236 img loss 1.4972668886184692 img loss 1.5502859354019165 img loss 1.4264492988586426 img loss 1.3917365074157715 img loss 1.5134364366531372 img loss 1.3707194328308105 img loss 1.4174290895462036 img loss 1.4637720584869385 img loss 1.4614148139953613 img loss 1.4981811046600342 img loss 1.4054261445999146 img loss 1.324448823928833 img loss 1.5006250143051147 img loss 1.5499156713485718 img loss 1.525215744972229 img loss 1.4170348644256592 img loss 1.4021977186203003 img loss 1.4277218580245972 img loss 1.5355260372161865 img loss 1.3883469104766846 img loss 1.4341729879379272 {'loss': 1.4407, 'grad_norm': 0.28899630904197693, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5866788625717163 img loss 1.568361520767212 img loss 1.75204336643219 img loss 1.5518953800201416 img loss 1.498918056488037 img loss 1.4828964471817017 img loss 1.613134741783142 img loss 1.548710584640503 img loss 1.6584733724594116 img loss 1.6397757530212402 img loss 1.3801300525665283 img loss 1.516849160194397 img loss 1.5499951839447021 img loss 1.6059367656707764 img loss 1.5354737043380737 img loss 1.5505404472351074 img loss 1.476080060005188 img loss 1.8036401271820068 img loss 1.4650092124938965 img loss 1.6581542491912842 img loss 1.4825122356414795 img loss 1.553378701210022 img loss 1.4772820472717285 img loss 1.5185983180999756 img loss 1.5036944150924683 img loss 1.5697667598724365 img loss 1.5912138223648071 img loss 1.5793896913528442 img loss 1.5511600971221924 img loss 1.5646636486053467 img loss 1.412735104560852 img loss 1.5321965217590332 img loss 1.644234538078308 img loss 1.6746268272399902 img loss 1.6202250719070435 img loss 1.5452803373336792 img loss 1.7097898721694946 img loss 1.571621060371399 img loss 1.6416949033737183 img loss 1.608811855316162 img loss 1.6262505054473877 img loss 1.5568286180496216 img loss 1.488510251045227 img loss 1.492946743965149 img loss 1.5953975915908813 img loss 1.4645124673843384 img loss 1.5746632814407349 img loss 1.5865751504898071 img loss 1.6852030754089355 img loss 1.6298463344573975 img loss 1.4889284372329712 img loss 1.4528729915618896 img loss 1.5681802034378052 img loss 1.5390788316726685 img loss 1.5821949243545532 img loss 1.363331913948059 img loss 1.4534627199172974 img loss 1.5999208688735962 img loss 1.5983741283416748 img loss 1.8663434982299805 img loss 1.5823785066604614 img loss 1.638648271560669 img loss 1.5318244695663452 img loss 1.6658269166946411 img loss 1.6808325052261353 img loss 1.5174580812454224 img loss 1.6272273063659668 img loss 1.71137273311615 img loss 1.5850545167922974 img loss 1.5048218965530396 img loss 1.4404990673065186 img loss 1.4889906644821167 img loss 1.5643137693405151 img loss 1.5078202486038208 img loss 1.530250072479248 img loss 1.6212807893753052 img loss 1.5864427089691162 img loss 1.546984314918518 img loss 1.5768401622772217 img loss 1.4534122943878174 img loss 1.7007839679718018 img loss 1.579668402671814 img loss 1.6578385829925537 img loss 1.5902440547943115 img loss 1.6488230228424072img loss 1.5534764528274536 img loss 1.6918128728866577 img loss 1.5383306741714478 img loss 1.4529963731765747 img loss 1.5480625629425049 img loss 1.5653198957443237 img loss 1.5917842388153076 img loss 1.618019938468933 img loss 1.6922937631607056 img loss 1.5752266645431519 img loss 1.4398521184921265 img loss 1.7469865083694458 img loss 1.702714443206787 img loss 1.5295593738555908 img loss 1.6255548000335693 img loss 1.6043517589569092 img loss 1.7140753269195557 img loss 1.5839141607284546 img loss 1.6055539846420288 img loss 1.52829909324646 img loss 1.6185624599456787 img loss 1.5909756422042847 img loss 1.7171778678894043 img loss 1.7481279373168945 img loss 1.613444209098816 img loss 1.5611928701400757 img loss 1.560211420059204 img loss 1.5111793279647827 img loss 1.5733779668807983 img loss 1.5801880359649658 img loss 1.4906067848205566 img loss 1.5784777402877808 img loss 1.5599751472473145 img loss 1.656409740447998 img loss 1.3939318656921387 img loss 1.587073802947998 img loss 1.4368969202041626 img loss 1.5242154598236084 img loss 1.6252003908157349 img loss 1.7633577585220337 img loss 1.5049169063568115 img loss 1.5250266790390015 img loss 1.7652875185012817 {'loss': 1.5777, 'grad_norm': 0.3665626049041748, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2901053428649902 img loss 1.1899961233139038 img loss 1.2552868127822876 img loss 1.35665762424469 img loss 1.235238790512085 img loss 1.3508192300796509 img loss 1.2319153547286987 img loss 1.1449918746948242 img loss 1.3251320123672485 img loss 1.2239230871200562 img loss 1.2908809185028076 img loss 1.3278095722198486 img loss 1.2533143758773804 img loss 1.26836097240448 img loss 1.3021512031555176 img loss 1.1948049068450928 img loss 1.2458839416503906 img loss 1.236762285232544 img loss 1.2275950908660889 img loss 1.2006940841674805 img loss 1.2619884014129639 img loss 1.2520719766616821 img loss 1.2977395057678223 img loss 1.1816003322601318 img loss 1.2719390392303467 img loss 1.2335375547409058 img loss 1.1943774223327637 img loss 1.2239402532577515 img loss 1.2670315504074097 img loss 1.233785629272461 img loss 1.3302124738693237 img loss 1.257523775100708 img loss 1.195464015007019 img loss 1.2795097827911377 img loss 1.2499008178710938 img loss 1.2209413051605225 img loss 1.2298731803894043 img loss 1.2549693584442139 img loss 1.227967619895935 img loss 1.3488305807113647 img loss 1.2028812170028687 img loss 1.1700791120529175 img loss 1.2200756072998047 img loss 1.3378089666366577 img loss 1.2260898351669312 img loss 1.2238080501556396 img loss 1.3249021768569946 img loss 1.239842176437378 img loss 1.2955750226974487 img loss 1.3214964866638184 img loss 1.2993685007095337 img loss 1.2497361898422241 img loss 1.1816117763519287 img loss 1.338202714920044 img loss 1.2110075950622559 img loss 1.3167940378189087 img loss 1.3198648691177368 img loss 1.2493929862976074 img loss 1.2420533895492554 img loss 1.275219440460205 img loss 1.278781533241272 img loss 1.2440518140792847 img loss 1.2213108539581299 img loss 1.2046326398849487 img loss 1.2110154628753662 img loss 1.2853516340255737 img loss 1.1494239568710327 img loss 1.2742336988449097 img loss 1.1757080554962158 img loss 1.2312941551208496 img loss 1.2129751443862915 img loss 1.2381632328033447 img loss 1.3100022077560425 img loss 1.2242615222930908img loss 1.2906360626220703 img loss 1.3044331073760986 img loss 1.2058939933776855 img loss 1.2262303829193115 img loss 1.2449873685836792 img loss 1.2692651748657227 img loss 1.2414226531982422 img loss 1.2516262531280518 img loss 1.2768833637237549 img loss 1.2608683109283447 img loss 1.2979304790496826 img loss 1.3377169370651245 img loss 1.2232719659805298 img loss 1.2996304035186768 img loss 1.262086272239685 img loss 1.2222321033477783 img loss 1.2442755699157715 img loss 1.2190064191818237 img loss 1.2454025745391846 img loss 1.2791600227355957 img loss 1.4071215391159058 img loss 1.2466188669204712 img loss 1.2367520332336426 img loss 1.2595267295837402 img loss 1.2606847286224365 img loss 1.2290678024291992 img loss 1.2380681037902832 img loss 1.2762049436569214 img loss 1.2026646137237549 img loss 1.2784579992294312 img loss 1.2888541221618652 img loss 1.3167908191680908 img loss 1.2311575412750244 img loss 1.2529572248458862 img loss 1.3534282445907593 img loss 1.2519667148590088 img loss 1.2471208572387695 img loss 1.2520849704742432 img loss 1.2770153284072876 img loss 1.1562350988388062 img loss 1.2531895637512207 img loss 1.371204137802124 img loss 1.2523126602172852 img loss 1.3671895265579224 img loss 1.1879488229751587 img loss 1.176387071609497 img loss 1.2561490535736084 img loss 1.360618233680725 img loss 1.2334740161895752 img loss 1.228859305381775 img loss 1.3495984077453613 img loss 1.2725900411605835 img loss 1.2426283359527588 img loss 1.2429933547973633 {'loss': 1.2573, 'grad_norm': 0.2781897783279419, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.378675937652588 img loss 1.453079104423523 img loss 1.5398684740066528 img loss 1.3584078550338745 img loss 1.283595085144043 img loss 1.409613847732544 img loss 1.2748053073883057 img loss 1.4151118993759155 img loss 1.3998318910598755 img loss 1.4068413972854614 img loss 1.4846731424331665 img loss 1.389983892440796 img loss 1.3330206871032715 img loss 1.4497144222259521 img loss 1.4165303707122803 img loss 1.4624675512313843 img loss 1.4119994640350342 img loss 1.466720461845398 img loss 1.4516760110855103 img loss 1.431226372718811 img loss 1.3999311923980713 img loss 1.3746322393417358 img loss 1.4906365871429443 img loss 1.390278697013855 img loss 1.3934117555618286 img loss 1.4390496015548706 img loss 1.286299467086792 img loss 1.4103411436080933 img loss 1.326167345046997 img loss 1.4747837781906128 img loss 1.5092644691467285 img loss 1.3687403202056885 img loss 1.4644386768341064 img loss 1.4078000783920288 img loss 1.545003056526184 img loss 1.2691010236740112 img loss 1.4537503719329834 img loss 1.4514994621276855 img loss 1.530349850654602 img loss 1.418027639389038 img loss 1.4392741918563843 img loss 1.4492264986038208 img loss 1.2449615001678467 img loss 1.3892362117767334 img loss 1.4229025840759277 img loss 1.4960747957229614 img loss 1.3008949756622314 img loss 1.413733959197998 img loss 1.4035260677337646 img loss 1.485767126083374 img loss 1.4885305166244507 img loss 1.4230555295944214 img loss 1.5613304376602173 img loss 1.4761054515838623 img loss 1.5185109376907349 img loss 1.4329264163970947 img loss 1.5217312574386597 img loss 1.3898283243179321 img loss 1.3973103761672974 img loss 1.4850643873214722 img loss 1.4296902418136597 img loss 1.3661168813705444 img loss 1.383183240890503 img loss 1.5272868871688843 img loss 1.4814133644104004 img loss 1.4753066301345825 img loss 1.488520860671997 img loss 1.4735255241394043 img loss 1.4030195474624634 img loss 1.3316361904144287 img loss 1.409250020980835 img loss 1.3709027767181396 img loss 1.4479327201843262 img loss 1.3999050855636597 img loss 1.5484528541564941 img loss 1.3710448741912842 img loss 1.476345419883728 img loss 1.4229867458343506 img loss 1.4821809530258179 img loss 1.4047890901565552 img loss 1.3080192804336548 img loss 1.4610761404037476 img loss 1.5200711488723755 img loss 1.4655547142028809 img loss 1.42009699344635 img loss 1.3635609149932861 img loss 1.3298141956329346 img loss 1.5128525495529175 img loss 1.4205949306488037 img loss 1.324145793914795 img loss 1.408666729927063 img loss 1.4311243295669556 img loss 1.5303465127944946 img loss 1.4953436851501465 img loss 1.4639012813568115 img loss 1.4001364707946777 img loss 1.3457729816436768 img loss 1.491768479347229 img loss 1.5191231966018677 img loss 1.5162702798843384 img loss 1.3603631258010864 img loss 1.52839994430542 img loss 1.4532783031463623 img loss 1.4737143516540527 img loss 1.5015045404434204 img loss 1.450480341911316 img loss 1.555377721786499 img loss 1.5433728694915771 img loss 1.5585957765579224 img loss 1.403867483139038 img loss 1.5314635038375854 img loss 1.342199683189392 img loss 1.4061206579208374 img loss 1.536353349685669 img loss 1.55015230178833 img loss 1.4127243757247925 img loss 1.4734045267105103 img loss 1.4798647165298462 img loss 1.4365687370300293 img loss 1.407759428024292 img loss 1.4215266704559326 img loss 1.472777009010315 img loss 1.413726568222046 img loss 1.3969111442565918 img loss 1.3976696729660034 img loss 1.419975996017456 img loss 1.5729783773422241 img loss 1.4012391567230225 {'loss': 1.435, 'grad_norm': 0.3467086851596832, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2091941833496094 img loss 1.1306370496749878 img loss 1.1618938446044922 img loss 1.1291764974594116 img loss 1.1580040454864502 img loss 1.1691093444824219 img loss 1.1583664417266846 img loss 1.1999907493591309 img loss 1.106539011001587 img loss 1.1721572875976562 img loss 1.1624865531921387 img loss 1.0966662168502808 img loss 1.1461877822875977 img loss 1.1412760019302368 img loss 1.1514354944229126 img loss 1.1295157670974731img loss 1.158281922340393 img loss 1.1803028583526611 img loss 1.0997506380081177 img loss 1.1169648170471191 img loss 1.1501001119613647 img loss 1.140519618988037 img loss 1.1523041725158691 img loss 1.2105168104171753 img loss 1.2045444250106812 img loss 1.1818283796310425 img loss 1.1585372686386108 img loss 1.1379448175430298 img loss 1.2170863151550293 img loss 1.122031807899475 img loss 1.1319040060043335 img loss 1.1148803234100342 img loss 1.2164616584777832 img loss 1.198189377784729 img loss 1.2247072458267212 img loss 1.1483936309814453 img loss 1.2035502195358276 img loss 1.2010504007339478 img loss 1.1149932146072388 img loss 1.1464923620224 img loss 1.2152022123336792 img loss 1.2373892068862915 img loss 1.2960567474365234 img loss 1.2085084915161133 img loss 1.1409821510314941 img loss 1.129274845123291 img loss 1.1804507970809937 img loss 1.2206274271011353 img loss 1.2064974308013916 img loss 1.213649034500122 img loss 1.1807260513305664 img loss 1.166748046875 img loss 1.172660231590271 img loss 1.1646089553833008 img loss 1.1138637065887451 img loss 1.1024487018585205 img loss 1.1125907897949219 img loss 1.1684715747833252 img loss 1.152106523513794 img loss 1.1239980459213257 img loss 1.185699224472046 img loss 1.201541543006897 img loss 1.1612248420715332 img loss 1.1063164472579956 img loss 1.2116516828536987 img loss 1.278266191482544 img loss 1.1809390783309937 img loss 1.1222655773162842 img loss 1.1189420223236084 img loss 1.2053638696670532 img loss 1.1695340871810913 img loss 1.1038663387298584 img loss 1.0985510349273682 img loss 1.1689486503601074 img loss 1.1996192932128906 img loss 1.1555895805358887 img loss 1.147582769393921 img loss 1.1472291946411133 img loss 1.1789003610610962 img loss 1.2295211553573608 img loss 1.1514548063278198 img loss 1.1836199760437012 img loss 1.301168441772461 img loss 1.1758460998535156 img loss 1.209101915359497 img loss 1.1797006130218506 img loss 1.176298975944519 img loss 1.1476935148239136 img loss 1.2065296173095703 img loss 1.123353362083435 img loss 1.1729710102081299 img loss 1.2078843116760254 img loss 1.1269458532333374 img loss 1.1182103157043457 img loss 1.1662431955337524 img loss 1.1154662370681763 img loss 1.1607944965362549 img loss 1.2348709106445312 img loss 1.2088367938995361 img loss 1.2172554731369019 img loss 1.2369072437286377 img loss 1.2830405235290527 img loss 1.1792162656784058 img loss 1.1723886728286743 img loss 1.2291606664657593 img loss 1.190953016281128 img loss 1.1225746870040894 img loss 1.3001251220703125 img loss 1.1299254894256592 img loss 1.1700422763824463 img loss 1.2002503871917725 img loss 1.2079883813858032 img loss 1.1055911779403687 img loss 1.1728636026382446 img loss 1.2639884948730469 img loss 1.1135143041610718 img loss 1.1603062152862549 img loss 1.158591628074646 img loss 1.2007168531417847 img loss 1.1714625358581543 img loss 1.1885629892349243 img loss 1.1441092491149902 img loss 1.1907832622528076 img loss 1.138479232788086 img loss 1.2226053476333618 img loss 1.1455845832824707 img loss 1.1543257236480713 img loss 1.2067114114761353 {'loss': 1.1717, 'grad_norm': 0.41305744647979736, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2672771215438843 img loss 1.467305302619934 img loss 1.2609659433364868 img loss 1.3497483730316162 img loss 1.3536484241485596 img loss 1.2969167232513428 img loss 1.4072462320327759 img loss 1.403982400894165 img loss 1.3296353816986084 img loss 1.2560398578643799 img loss 1.403802514076233 img loss 1.3188433647155762 img loss 1.4066660404205322 img loss 1.4535759687423706 img loss 1.2602336406707764 img loss 1.4084383249282837 img loss 1.2649863958358765 img loss 1.3141354322433472 img loss 1.253334641456604 img loss 1.384345293045044 img loss 1.333534836769104 img loss 1.3715710639953613 img loss 1.308815836906433 img loss 1.4231297969818115 img loss 1.287696123123169 img loss 1.3381050825119019 img loss 1.3968870639801025 img loss 1.3199379444122314 img loss 1.3586623668670654 img loss 1.300154447555542 img loss 1.2712535858154297 img loss 1.4021533727645874 img loss 1.3354512453079224 img loss 1.3861520290374756 img loss 1.3842637538909912 img loss 1.416654348373413 img loss 1.318255066871643 img loss 1.3832229375839233 img loss 1.4141243696212769 img loss 1.410264492034912 img loss 1.374401330947876 img loss 1.3629910945892334 img loss 1.4306503534317017 img loss 1.3715671300888062 img loss 1.4445034265518188 img loss 1.5332554578781128 img loss 1.3002192974090576 img loss 1.262669563293457 img loss 1.42497718334198 img loss 1.3649622201919556 img loss 1.3079251050949097 img loss 1.353009581565857 img loss 1.355474829673767 img loss 1.4041045904159546 img loss 1.337937831878662 img loss 1.3368827104568481 img loss 1.4646918773651123 img loss 1.4928278923034668 img loss 1.3254379034042358 img loss 1.3700581789016724 img loss 1.2833232879638672 img loss 1.3699443340301514 img loss 1.378324031829834 img loss 1.2705835103988647 img loss 1.2741973400115967 img loss 1.4211381673812866 img loss 1.4296448230743408 img loss 1.3943487405776978 img loss 1.3542402982711792 img loss 1.4492324590682983 img loss 1.2442567348480225 img loss 1.323900580406189 img loss 1.3335232734680176 img loss 1.3690264225006104 img loss 1.2338701486587524 img loss 1.3662523031234741 img loss 1.3825504779815674 img loss 1.3923064470291138 img loss 1.4005863666534424 img loss 1.3217177391052246 img loss 1.4282346963882446 img loss 1.5301660299301147 img loss 1.3756529092788696 img loss 1.3399529457092285 img loss 1.4703773260116577 img loss 1.2118065357208252 img loss 1.2965425252914429 img loss 1.3553944826126099 img loss 1.3197860717773438 img loss 1.2765185832977295 img loss 1.4287036657333374 img loss 1.378211498260498 img loss 1.3447538614273071 img loss 1.3931931257247925 img loss 1.3642717599868774 img loss 1.3981364965438843 img loss 1.5026322603225708 img loss 1.4121464490890503 img loss 1.3237537145614624 img loss 1.4313715696334839 img loss 1.3732085227966309 img loss 1.3883675336837769 img loss 1.3309192657470703 img loss 1.3698573112487793 img loss 1.3719006776809692 img loss 1.3132699728012085 img loss 1.2405369281768799 img loss 1.3871811628341675 img loss 1.412595272064209 img loss 1.358368992805481 img loss 1.339231252670288 img loss 1.3778513669967651 img loss 1.330532431602478 img loss 1.4213343858718872 img loss 1.4105546474456787 img loss 1.558944821357727 img loss 1.2841843366622925 img loss 1.404605507850647 img loss 1.2826783657073975 img loss 1.325807809829712 img loss 1.3153975009918213 img loss 1.3584405183792114 img loss 1.4537988901138306 img loss 1.361244797706604 img loss 1.438246488571167 img loss 1.335808515548706 img loss 1.4041197299957275 img loss 1.2740490436553955 {'loss': 1.3628, 'grad_norm': 0.3174680173397064, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2588402032852173 img loss 1.1309345960617065 img loss 1.1658204793930054 img loss 1.143491268157959 img loss 1.2329546213150024 img loss 1.2258503437042236 img loss 1.1796156167984009 img loss 1.2066898345947266 img loss 1.1652460098266602 img loss 1.1824290752410889 img loss 1.1690582036972046 img loss 1.2777258157730103 img loss 1.2049579620361328 img loss 1.2821581363677979 img loss 1.22090482711792 img loss 1.2133095264434814 img loss 1.298060655593872 img loss 1.221453309059143 img loss 1.1903636455535889 img loss 1.2353453636169434 img loss 1.2396074533462524 img loss 1.2439687252044678 img loss 1.2086677551269531 img loss 1.2135109901428223 img loss 1.211090087890625 img loss 1.1887229681015015 img loss 1.1251074075698853 img loss 1.2238956689834595 img loss 1.2355546951293945 img loss 1.1816728115081787 img loss 1.238738775253296 img loss 1.2243107557296753 img loss 1.1722726821899414 img loss 1.1473894119262695 img loss 1.1426641941070557 img loss 1.1969712972640991 img loss 1.256784200668335 img loss 1.2256178855895996 img loss 1.195737600326538 img loss 1.2375867366790771 img loss 1.181910753250122 img loss 1.2044073343276978 img loss 1.220939040184021 img loss 1.225097417831421 img loss 1.204170823097229 img loss 1.271694540977478 img loss 1.1901004314422607 img loss 1.271358847618103 img loss 1.2541109323501587 img loss 1.292605996131897 img loss 1.2050228118896484 img loss 1.120805025100708 img loss 1.1334666013717651 img loss 1.2501388788223267 img loss 1.2029880285263062 img loss 1.27008855342865 img loss 1.2015116214752197 img loss 1.247068166732788 img loss 1.3213584423065186 img loss 1.3277298212051392 img loss 1.2141213417053223 img loss 1.1512991189956665 img loss 1.1569422483444214 img loss 1.1704256534576416 img loss 1.1323533058166504 img loss 1.2235143184661865 img loss 1.1695524454116821 img loss 1.276239037513733 img loss 1.2089176177978516 img loss 1.1858148574829102 img loss 1.2238823175430298 img loss 1.2501213550567627 img loss 1.2308357954025269 img loss 1.1443524360656738 img loss 1.2636600732803345 img loss 1.2107642889022827 img loss 1.2115330696105957 img loss 1.3011322021484375 img loss 1.2275015115737915 img loss 1.198895812034607 img loss 1.1719735860824585 img loss 1.1396253108978271 img loss 1.2341151237487793 img loss 1.2343186140060425 img loss 1.2337050437927246 img loss 1.1917976140975952 img loss 1.1911125183105469 img loss 1.2113844156265259 img loss 1.2681190967559814 img loss 1.2726620435714722 img loss 1.2167983055114746 img loss 1.2354950904846191 img loss 1.295770287513733 img loss 1.1449658870697021 img loss 1.1642252206802368 img loss 1.1995887756347656 img loss 1.2702434062957764 img loss 1.3484669923782349 img loss 1.239995002746582 img loss 1.2250045537948608 img loss 1.189385175704956 img loss 1.1796461343765259 img loss 1.1509464979171753 img loss 1.2059154510498047 img loss 1.191168189048767 img loss 1.2979944944381714 img loss 1.1651378870010376 img loss 1.2209978103637695 img loss 1.1521154642105103 img loss 1.22627854347229 img loss 1.2023003101348877 img loss 1.1733393669128418 img loss 1.2514313459396362 img loss 1.1914551258087158 img loss 1.1408170461654663 img loss 1.2505468130111694 img loss 1.247348666191101 img loss 1.2225251197814941 img loss 1.2660964727401733 img loss 1.171526312828064 img loss 1.1553035974502563 img loss 1.2773351669311523 img loss 1.2172892093658447 img loss 1.1751335859298706 img loss 1.1824594736099243 img loss 1.1771175861358643 img loss 1.2958719730377197 img loss 1.2700403928756714 {'loss': 1.2141, 'grad_norm': 0.547079861164093, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1633992195129395 img loss 1.306359052658081 img loss 1.2199729681015015 img loss 1.3385313749313354 img loss 1.2816681861877441 img loss 1.2100738286972046 img loss 1.3192102909088135 img loss 1.305260419845581 img loss 1.3366860151290894 img loss 1.2647405862808228 img loss 1.2047483921051025 img loss 1.152723789215088 img loss 1.3342983722686768 img loss 1.3101680278778076 img loss 1.2874417304992676 img loss 1.3083696365356445 img loss 1.3024330139160156 img loss 1.22829270362854 img loss 1.3293644189834595 img loss 1.1691031455993652 img loss 1.2680240869522095 img loss 1.3265079259872437 img loss 1.2815293073654175 img loss 1.2328757047653198 img loss 1.2476391792297363 img loss 1.2940796613693237 img loss 1.2691001892089844 img loss 1.3195651769638062 img loss 1.147568702697754 img loss 1.239579439163208 img loss 1.2358397245407104 img loss 1.3079204559326172 img loss 1.2943934202194214 img loss 1.2007554769515991 img loss 1.2807012796401978 img loss 1.2123005390167236 img loss 1.3238513469696045 img loss 1.3851186037063599 img loss 1.2798222303390503 img loss 1.319880723953247 img loss 1.3693413734436035 img loss 1.2520469427108765 img loss 1.165606141090393 img loss 1.222869634628296 img loss 1.3194377422332764 img loss 1.2135200500488281 img loss 1.2234045267105103 img loss 1.4388867616653442 img loss 1.2945313453674316 img loss 1.3696540594100952 img loss 1.265729308128357 img loss 1.311744213104248 img loss 1.3199594020843506 img loss 1.313805103302002 img loss 1.296894907951355 img loss 1.3030083179473877 img loss 1.2272331714630127 img loss 1.2773637771606445 img loss 1.1639423370361328 img loss 1.2486666440963745 img loss 1.3137660026550293 img loss 1.2048008441925049 img loss 1.2259472608566284 img loss 1.2579885721206665 img loss 1.2151962518692017 img loss 1.2216402292251587 img loss 1.3736212253570557 img loss 1.2600677013397217 img loss 1.181252121925354 img loss 1.2535512447357178 img loss 1.3342970609664917 img loss 1.2238519191741943 img loss 1.2968629598617554 img loss 1.2399849891662598 img loss 1.3213822841644287 img loss 1.2695525884628296 img loss 1.2377933263778687 img loss 1.350300908088684 img loss 1.2687809467315674 img loss 1.2980902194976807 img loss 1.2798864841461182 img loss 1.2592871189117432 img loss 1.2327113151550293 img loss 1.231663703918457 img loss 1.2351616621017456 img loss 1.2183914184570312 img loss 1.1686654090881348 img loss 1.324278712272644 img loss 1.2312780618667603 img loss 1.2699766159057617 img loss 1.2567490339279175 img loss 1.2615045309066772 img loss 1.2539608478546143 img loss 1.231055736541748 img loss 1.275087833404541 img loss 1.3267850875854492 img loss 1.3095614910125732 img loss 1.2933562994003296 img loss 1.2039070129394531 img loss 1.1285595893859863 img loss 1.310146689414978 img loss 1.2422664165496826 img loss 1.2585411071777344 img loss 1.1760793924331665 img loss 1.3011318445205688 img loss 1.3045200109481812 img loss 1.2972491979599 img loss 1.333337426185608 img loss 1.2873995304107666 img loss 1.2998409271240234 img loss 1.0996038913726807 img loss 1.2222696542739868 img loss 1.2024978399276733 img loss 1.3051164150238037 img loss 1.3350874185562134 img loss 1.298193335533142 img loss 1.2295074462890625 img loss 1.198140025138855 img loss 1.2629899978637695 img loss 1.2672691345214844 img loss 1.1711863279342651 img loss 1.244219183921814 img loss 1.3510432243347168 img loss 1.3365168571472168 img loss 1.2746599912643433 img loss 1.289946436882019 img loss 1.2382439374923706 img loss 1.204202651977539 {'loss': 1.2666, 'grad_norm': 0.2989145815372467, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.210841417312622 img loss 1.2725903987884521 img loss 1.1715972423553467 img loss 1.1744952201843262 img loss 1.1552480459213257 img loss 1.2197717428207397 img loss 1.178924798965454 img loss 1.2263983488082886 img loss 1.2561895847320557 img loss 1.1471538543701172 img loss 1.251373291015625 img loss 1.1919043064117432 img loss 1.2195370197296143 img loss 1.1562962532043457 img loss 1.1816279888153076 img loss 1.1917692422866821 img loss 1.1325417757034302 img loss 1.2851672172546387 img loss 1.1962664127349854 img loss 1.393593192100525 img loss 1.1656105518341064 img loss 1.1758949756622314 img loss 1.1915154457092285 img loss 1.261553168296814 img loss 1.2142809629440308 img loss 1.147212266921997 img loss 1.2531474828720093 img loss 1.344671607017517 img loss 1.2274950742721558 img loss 1.2292640209197998 img loss 1.1817901134490967 img loss 1.1476385593414307 img loss 1.1528830528259277 img loss 1.2660290002822876 img loss 1.241804838180542 img loss 1.2677687406539917 img loss 1.2383496761322021 img loss 1.1875462532043457 img loss 1.1790800094604492 img loss 1.2879137992858887 img loss 1.2496076822280884 img loss 1.158543586730957 img loss 1.3011921644210815 img loss 1.2391098737716675 img loss 1.2190345525741577 img loss 1.14599609375 img loss 1.2857345342636108 img loss 1.2358413934707642 img loss 1.29669988155365 img loss 1.1976268291473389 img loss 1.134381651878357 img loss 1.2104523181915283 img loss 1.2381905317306519 img loss 1.1902252435684204 img loss 1.2066787481307983 img loss 1.2473244667053223 img loss 1.1554243564605713 img loss 1.2271851301193237 img loss 1.1538089513778687 img loss 1.1886869668960571 img loss 1.272347092628479 img loss 1.1590708494186401 img loss 1.2557296752929688 img loss 1.188396692276001 img loss 1.2011291980743408 img loss 1.2474039793014526 img loss 1.1867355108261108 img loss 1.2000997066497803 img loss 1.3352779150009155 img loss 1.1872403621673584 img loss 1.1138620376586914 img loss 1.2883442640304565 img loss 1.2753989696502686 img loss 1.2326267957687378 img loss 1.2291374206542969 img loss 1.2080296277999878 img loss 1.160698413848877 img loss 1.220994234085083 img loss 1.1804803609848022 img loss 1.1933636665344238 img loss 1.1926943063735962 img loss 1.2270725965499878 img loss 1.2052401304244995 img loss 1.2588820457458496 img loss 1.2093197107315063 img loss 1.1763408184051514img loss 1.1226822137832642 img loss 1.2334002256393433 img loss 1.2849934101104736 img loss 1.240942358970642 img loss 1.1377968788146973 img loss 1.2330249547958374 img loss 1.1672950983047485 img loss 1.1997909545898438 img loss 1.2392933368682861 img loss 1.2460567951202393 img loss 1.230870008468628 img loss 1.1905698776245117 img loss 1.302030086517334 img loss 1.2449190616607666 img loss 1.130244493484497 img loss 1.2075536251068115 img loss 1.1676543951034546 img loss 1.208381175994873 img loss 1.236139178276062 img loss 1.1420618295669556 img loss 1.2046514749526978 img loss 1.2046685218811035 img loss 1.2726380825042725 img loss 1.1975266933441162 img loss 1.1883540153503418 img loss 1.3085397481918335 img loss 1.289376974105835 img loss 1.2831642627716064 img loss 1.2034820318222046 img loss 1.246402621269226 img loss 1.1411445140838623 img loss 1.1715494394302368 img loss 1.1855732202529907 img loss 1.2010315656661987 img loss 1.1231359243392944 img loss 1.185882568359375 img loss 1.1737301349639893 img loss 1.1615612506866455 img loss 1.180966854095459 img loss 1.1500955820083618 img loss 1.2080721855163574 img loss 1.2623573541641235 {'loss': 1.2123, 'grad_norm': 0.31138914823532104, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.241923213005066 img loss 1.2724766731262207 img loss 1.2369822263717651 img loss 1.2572541236877441 img loss 1.2293198108673096 img loss 1.2210110425949097 img loss 1.2457301616668701 img loss 1.2158344984054565 img loss 1.3029096126556396 img loss 1.1671864986419678 img loss 1.2882229089736938 img loss 1.2085018157958984 img loss 1.3035225868225098 img loss 1.2555432319641113 img loss 1.2912400960922241 img loss 1.2981867790222168 img loss 1.2461336851119995 img loss 1.2693703174591064 img loss 1.2458717823028564 img loss 1.2236576080322266 img loss 1.1624892950057983 img loss 1.2001537084579468 img loss 1.2834031581878662 img loss 1.2174240350723267 img loss 1.1896324157714844 img loss 1.2842763662338257 img loss 1.2746814489364624 img loss 1.2901782989501953 img loss 1.2491209506988525 img loss 1.2444933652877808 img loss 1.1869816780090332 img loss 1.2942529916763306 img loss 1.3638980388641357 img loss 1.3219035863876343 img loss 1.2428172826766968 img loss 1.262346625328064 img loss 1.2730880975723267 img loss 1.2311851978302002 img loss 1.2667462825775146 img loss 1.24564528465271 img loss 1.3096401691436768 img loss 1.2856682538986206 img loss 1.143807291984558 img loss 1.1566234827041626 img loss 1.2653834819793701 img loss 1.2745177745819092 img loss 1.2431238889694214 img loss 1.2483335733413696 img loss 1.1692489385604858 img loss 1.2692536115646362 img loss 1.2583664655685425 img loss 1.2958930730819702 img loss 1.2011669874191284 img loss 1.2498657703399658 img loss 1.2382826805114746 img loss 1.1451852321624756 img loss 1.2193342447280884 img loss 1.2613633871078491 img loss 1.199309229850769 img loss 1.2915979623794556 img loss 1.217644214630127 img loss 1.2570692300796509 img loss 1.239196538925171 img loss 1.1867306232452393 img loss 1.3136199712753296 img loss 1.3997389078140259 img loss 1.27377188205719 img loss 1.2613840103149414 img loss 1.1921443939208984 img loss 1.2533878087997437 img loss 1.2162379026412964 img loss 1.2168495655059814 img loss 1.2359998226165771 img loss 1.2506670951843262 img loss 1.3092780113220215 img loss 1.1992601156234741 img loss 1.1794798374176025 img loss 1.1601217985153198 img loss 1.221127986907959 img loss 1.254413366317749 img loss 1.2137342691421509 img loss 1.225075602531433 img loss 1.366381287574768 img loss 1.270140528678894 img loss 1.241258978843689 img loss 1.275827169418335 img loss 1.2754316329956055 img loss 1.279161810874939 img loss 1.2895065546035767 img loss 1.180550217628479 img loss 1.2745634317398071 img loss 1.3079392910003662 img loss 1.2729558944702148 img loss 1.2584285736083984 img loss 1.313658356666565 img loss 1.2297121286392212 img loss 1.2898578643798828 img loss 1.2607332468032837 img loss 1.2192628383636475 img loss 1.167806625366211 img loss 1.32059645652771 img loss 1.1849430799484253 img loss 1.2564319372177124 img loss 1.313252329826355 img loss 1.316526174545288 img loss 1.1872186660766602 img loss 1.515520691871643 img loss 1.188605546951294 img loss 1.2765636444091797 img loss 1.1731480360031128 img loss 1.197925329208374 img loss 1.1551432609558105 img loss 1.2429404258728027 img loss 1.3176028728485107 img loss 1.2920775413513184 img loss 1.2659448385238647 img loss 1.173317790031433 img loss 1.2790234088897705 img loss 1.1687535047531128 img loss 1.1357547044754028 img loss 1.2265710830688477 img loss 1.2125983238220215 img loss 1.251939296722412 img loss 1.1821064949035645 img loss 1.277146816253662 img loss 1.312721610069275 img loss 1.1851048469543457 img loss 1.2937901020050049 {'loss': 1.2483, 'grad_norm': 0.34348416328430176, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.230032205581665 img loss 1.329969048500061 img loss 1.325233817100525 img loss 1.2788366079330444 img loss 1.2282063961029053 img loss 1.2168099880218506 img loss 1.2340772151947021 img loss 1.3018989562988281 img loss 1.2376245260238647 img loss 1.231508493423462 img loss 1.2806371450424194 img loss 1.196131944656372 img loss 1.2721432447433472 img loss 1.2402557134628296 img loss 1.2563844919204712 img loss 1.25104558467865 img loss 1.3279063701629639 img loss 1.38898766040802 img loss 1.243669867515564 img loss 1.28780198097229 img loss 1.3226001262664795 img loss 1.2902363538742065 img loss 1.2567005157470703 img loss 1.271000623703003 img loss 1.196367621421814 img loss 1.2596468925476074 img loss 1.2810643911361694 img loss 1.190342664718628 img loss 1.2682875394821167 img loss 1.264320731163025 img loss 1.2166283130645752 img loss 1.2719147205352783 img loss 1.221177339553833 img loss 1.2883446216583252 img loss 1.2912651300430298 img loss 1.2675888538360596 img loss 1.1980431079864502 img loss 1.345192313194275 img loss 1.2810856103897095 img loss 1.282020926475525 img loss 1.327138900756836 img loss 1.2775802612304688 img loss 1.237597942352295 img loss 1.1614024639129639 img loss 1.2726874351501465 img loss 1.2619329690933228 img loss 1.281913161277771 img loss 1.246677041053772 img loss 1.2181745767593384 img loss 1.2220633029937744 img loss 1.2663904428482056 img loss 1.2547607421875 img loss 1.2058969736099243 img loss 1.3043237924575806 img loss 1.2170345783233643 img loss 1.3323026895523071 img loss 1.246732234954834 img loss 1.193404197692871 img loss 1.2326939105987549 img loss 1.2665247917175293 img loss 1.2112557888031006 img loss 1.409331202507019 img loss 1.3135719299316406 img loss 1.2872403860092163 img loss 1.2271136045455933 img loss 1.2844634056091309 img loss 1.2381089925765991 img loss 1.2906811237335205 img loss 1.3237934112548828 img loss 1.2967829704284668 img loss 1.3096611499786377 img loss 1.1872309446334839 img loss 1.253421425819397 img loss 1.2095937728881836 img loss 1.3024042844772339 img loss 1.2513316869735718 img loss 1.225724220275879 img loss 1.2909975051879883 img loss 1.2717331647872925 img loss 1.2650797367095947 img loss 1.23289954662323 img loss 1.259478211402893 img loss 1.1994051933288574 img loss 1.2856533527374268 img loss 1.2966833114624023 img loss 1.226636290550232 img loss 1.2896955013275146 img loss 1.2303358316421509 img loss 1.1977510452270508 img loss 1.271594524383545 img loss 1.3239150047302246 img loss 1.2690708637237549 img loss 1.2130783796310425 img loss 1.2043360471725464 img loss 1.226590871810913 img loss 1.1987680196762085 img loss 1.206891655921936 img loss 1.2859022617340088 img loss 1.2447036504745483 img loss 1.312676191329956 img loss 1.217378854751587 img loss 1.171851634979248 img loss 1.198873519897461 img loss 1.2829347848892212 img loss 1.305153727531433 img loss 1.2074692249298096 img loss 1.2558695077896118 img loss 1.2339692115783691 img loss 1.2627800703048706 img loss 1.2289402484893799 img loss 1.2375255823135376 img loss 1.3300567865371704 img loss 1.2524722814559937img loss 1.236459493637085 img loss 1.2291181087493896 img loss 1.2415376901626587 img loss 1.268304467201233 img loss 1.2517399787902832 img loss 1.301756501197815 img loss 1.1926989555358887 img loss 1.2328248023986816 img loss 1.2498832941055298 img loss 1.2539080381393433 img loss 1.2542798519134521 img loss 1.3425366878509521 img loss 1.2710634469985962 img loss 1.2946327924728394 img loss 1.2680929899215698 {'loss': 1.259, 'grad_norm': 0.5333755612373352, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3068565130233765 img loss 1.3178324699401855 img loss 1.2318881750106812 img loss 1.289660096168518 img loss 1.3821171522140503 img loss 1.3460677862167358 img loss 1.3857289552688599 img loss 1.3252474069595337 img loss 1.4713114500045776 img loss 1.3604309558868408 img loss 1.3168714046478271 img loss 1.4170459508895874 img loss 1.4053027629852295 img loss 1.3559377193450928 img loss 1.3494861125946045 img loss 1.312530517578125 img loss 1.3205474615097046 img loss 1.3001441955566406 img loss 1.2288845777511597 img loss 1.3223336935043335 img loss 1.1965030431747437 img loss 1.2778981924057007 img loss 1.3369711637496948 img loss 1.3371522426605225 img loss 1.3053861856460571 img loss 1.2814568281173706 img loss 1.303715467453003 img loss 1.3365074396133423 img loss 1.412317156791687 img loss 1.4323445558547974 img loss 1.3568224906921387 img loss 1.3491822481155396 img loss 1.3240565061569214 img loss 1.3883225917816162 img loss 1.3561289310455322 img loss 1.4463618993759155 img loss 1.3484017848968506 img loss 1.290035605430603 img loss 1.3099521398544312 img loss 1.3658989667892456 img loss 1.3678134679794312 img loss 1.2555599212646484 img loss 1.3567582368850708 img loss 1.3201297521591187 img loss 1.3568023443222046 img loss 1.2686703205108643 img loss 1.23680579662323 img loss 1.3050144910812378 img loss 1.2968978881835938 img loss 1.2736544609069824 img loss 1.2617441415786743 img loss 1.3001083135604858 img loss 1.3731845617294312 img loss 1.376814365386963 img loss 1.3250365257263184 img loss 1.2909018993377686 img loss 1.3015427589416504 img loss 1.2238264083862305 img loss 1.3303544521331787 img loss 1.3048264980316162 img loss 1.4226213693618774 img loss 1.3198091983795166 img loss 1.2606014013290405img loss 1.2447774410247803 img loss 1.3702549934387207 img loss 1.3500367403030396 img loss 1.3231830596923828 img loss 1.3332691192626953 img loss 1.391679286956787 img loss 1.3337291479110718 img loss 1.456437587738037 img loss 1.2153511047363281 img loss 1.3681436777114868 img loss 1.3613399267196655 img loss 1.4682530164718628 img loss 1.2443164587020874 img loss 1.3513985872268677 img loss 1.4410558938980103 img loss 1.335210919380188 img loss 1.3046338558197021 img loss 1.1760694980621338 img loss 1.3240406513214111 img loss 1.3513644933700562 img loss 1.304159164428711 img loss 1.3410440683364868 img loss 1.3902302980422974 img loss 1.3425623178482056 img loss 1.427467703819275 img loss 1.1741485595703125 img loss 1.4414817094802856 img loss 1.3672446012496948 img loss 1.2704181671142578 img loss 1.4620290994644165 img loss 1.2630550861358643 img loss 1.352925181388855 img loss 1.360971212387085 img loss 1.2610397338867188 img loss 1.447874903678894 img loss 1.3680055141448975 img loss 1.216045618057251 img loss 1.2981617450714111 img loss 1.267659068107605 img loss 1.2751754522323608 img loss 1.4743598699569702 img loss 1.2515009641647339 img loss 1.2484581470489502 img loss 1.21587336063385 img loss 1.3591606616973877 img loss 1.2425578832626343 img loss 1.2320221662521362 img loss 1.32211434841156 img loss 1.2861741781234741 img loss 1.3445794582366943 img loss 1.2887417078018188 img loss 1.2728193998336792 img loss 1.3666249513626099 img loss 1.4103935956954956 img loss 1.284534215927124 img loss 1.353081226348877 img loss 1.3683580160140991 img loss 1.3524175882339478 img loss 1.3046998977661133 img loss 1.3216063976287842 img loss 1.3381361961364746 img loss 1.2236980199813843 img loss 1.3104536533355713 img loss 1.304329514503479 img loss 1.328364372253418 {'loss': 1.3267, 'grad_norm': 0.26505109667778015, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2795095443725586 img loss 1.239328384399414 img loss 1.2290352582931519 img loss 1.1649718284606934 img loss 1.2150912284851074 img loss 1.2543952465057373 img loss 1.2925126552581787 img loss 1.2533714771270752 img loss 1.2798699140548706 img loss 1.2001503705978394 img loss 1.2090380191802979 img loss 1.236289620399475 img loss 1.2773092985153198 img loss 1.2613109350204468 img loss 1.2179560661315918 img loss 1.2622838020324707 img loss 1.2589545249938965 img loss 1.2046669721603394 img loss 1.2169194221496582 img loss 1.203420877456665 img loss 1.2121846675872803 img loss 1.2434163093566895 img loss 1.11227548122406 img loss 1.2045297622680664 img loss 1.2002185583114624 img loss 1.173356294631958 img loss 1.1586397886276245 img loss 1.2750955820083618 img loss 1.2989628314971924 img loss 1.1885526180267334 img loss 1.2549113035202026 img loss 1.1817560195922852 img loss 1.254913091659546 img loss 1.2263257503509521 img loss 1.268267035484314 img loss 1.2474853992462158 img loss 1.1965413093566895 img loss 1.2787437438964844 img loss 1.235958456993103 img loss 1.3166890144348145 img loss 1.243180274963379 img loss 1.1991640329360962 img loss 1.2156625986099243 img loss 1.1970150470733643 img loss 1.2685489654541016 img loss 1.263801097869873 img loss 1.3499497175216675 img loss 1.1858409643173218 img loss 1.2939469814300537 img loss 1.2602050304412842 img loss 1.173683762550354 img loss 1.2137316465377808 img loss 1.183512568473816 img loss 1.2461965084075928 img loss 1.2867586612701416 img loss 1.223156213760376 img loss 1.169441819190979 img loss 1.249023675918579 img loss 1.2106480598449707 img loss 1.2223083972930908 img loss 1.2977232933044434 img loss 1.2355399131774902 img loss 1.2582733631134033 img loss 1.2060459852218628 img loss 1.189202070236206 img loss 1.289431095123291 img loss 1.206809401512146 img loss 1.253883719444275 img loss 1.238654613494873 img loss 1.1928850412368774 img loss 1.2051082849502563 img loss 1.1998143196105957 img loss 1.1896787881851196 img loss 1.2186025381088257 img loss 1.2887309789657593 img loss 1.250548243522644 img loss 1.2037159204483032 img loss 1.2814555168151855 img loss 1.191711664199829 img loss 1.2433216571807861 img loss 1.2230980396270752 img loss 1.223305583000183 img loss 1.1984004974365234 img loss 1.1934016942977905 img loss 1.261746883392334 img loss 1.2370107173919678 img loss 1.2409913539886475 img loss 1.2311686277389526 img loss 1.1543172597885132 img loss 1.192147135734558 img loss 1.2426952123641968 img loss 1.1885639429092407 img loss 1.2186708450317383 img loss 1.2120367288589478 img loss 1.2655749320983887 img loss 1.2465654611587524 img loss 1.283832311630249 img loss 1.2805423736572266 img loss 1.172081470489502 img loss 1.3088924884796143 img loss 1.204230546951294 img loss 1.2654776573181152 img loss 1.2539324760437012 img loss 1.2198925018310547 img loss 1.1738601922988892 img loss 1.2373154163360596 img loss 1.2394912242889404 img loss 1.1794973611831665img loss 1.282987117767334 img loss 1.180693507194519 img loss 1.27937650680542 img loss 1.2427518367767334 img loss 1.3144782781600952 img loss 1.3394488096237183 img loss 1.2913894653320312 img loss 1.311065912246704 img loss 1.2562721967697144 img loss 1.2226718664169312 img loss 1.1979233026504517 img loss 1.2235488891601562 img loss 1.279833197593689 img loss 1.2382862567901611 img loss 1.2701528072357178 img loss 1.2545419931411743 img loss 1.2194125652313232 img loss 1.2480850219726562 img loss 1.303141474723816 img loss 1.1601955890655518 {'loss': 1.2347, 'grad_norm': 0.8853324055671692, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1570487022399902 img loss 1.1552810668945312 img loss 1.295977234840393 img loss 1.2789976596832275 img loss 1.3051728010177612 img loss 1.2372348308563232 img loss 1.2029881477355957 img loss 1.169460654258728 img loss 1.1857638359069824 img loss 1.223463773727417 img loss 1.2498011589050293 img loss 1.2621294260025024 img loss 1.1760982275009155 img loss 1.155644178390503 img loss 1.2200819253921509 img loss 1.1715940237045288 img loss 1.2111568450927734 img loss 1.201654314994812 img loss 1.1933475732803345 img loss 1.2067618370056152 img loss 1.1749213933944702 img loss 1.2665222883224487 img loss 1.1525530815124512 img loss 1.1978248357772827 img loss 1.2493618726730347 img loss 1.2243437767028809 img loss 1.161252498626709 img loss 1.2346216440200806 img loss 1.1799607276916504 img loss 1.2805798053741455 img loss 1.2166383266448975 img loss 1.3200607299804688 img loss 1.1955065727233887 img loss 1.1651687622070312 img loss 1.1663023233413696 img loss 1.2362045049667358 img loss 1.2366541624069214 img loss 1.1768486499786377 img loss 1.1761868000030518 img loss 1.1181504726409912 img loss 1.1696337461471558 img loss 1.2202939987182617 img loss 1.227616786956787 img loss 1.223818302154541 img loss 1.197364330291748 img loss 1.2592954635620117 img loss 1.1922281980514526 img loss 1.2008541822433472 img loss 1.2383641004562378 img loss 1.2430245876312256 img loss 1.2290704250335693 img loss 1.2526695728302002 img loss 1.1830055713653564 img loss 1.2666015625 img loss 1.1949360370635986 img loss 1.275360345840454 img loss 1.1103324890136719 img loss 1.219008207321167 img loss 1.1730480194091797 img loss 1.2771300077438354 img loss 1.2678698301315308 img loss 1.1498558521270752 img loss 1.271623969078064 img loss 1.2391752004623413 img loss 1.2765440940856934 img loss 1.2661890983581543 img loss 1.2811332941055298 img loss 1.2373826503753662 img loss 1.271114706993103 img loss 1.1885696649551392 img loss 1.2246437072753906 img loss 1.0948076248168945 img loss 1.309247374534607 img loss 1.1424745321273804 img loss 1.3273594379425049 img loss 1.1734808683395386 img loss 1.2043392658233643 img loss 1.2387281656265259 img loss 1.2051856517791748 img loss 1.2534383535385132 img loss 1.2394245862960815 img loss 1.1758801937103271 img loss 1.210323691368103 img loss 1.2013285160064697 img loss 1.128318428993225 img loss 1.2542017698287964 img loss 1.2021061182022095 img loss 1.2245839834213257 img loss 1.2314811944961548 img loss 1.2547463178634644 img loss 1.2071077823638916 img loss 1.2367643117904663 img loss 1.1675227880477905img loss 1.2408058643341064 img loss 1.1841464042663574 img loss 1.2351713180541992 img loss 1.2634177207946777 img loss 1.1931521892547607 img loss 1.2087781429290771 img loss 1.0858290195465088 img loss 1.2354618310928345 img loss 1.2265056371688843 img loss 1.2035558223724365 img loss 1.1978693008422852 img loss 1.2865978479385376 img loss 1.2154500484466553 img loss 1.1550960540771484 img loss 1.2957143783569336 img loss 1.2903811931610107 img loss 1.2226347923278809 img loss 1.1811012029647827 img loss 1.1414217948913574 img loss 1.1633145809173584 img loss 1.3004541397094727 img loss 1.2348426580429077 img loss 1.176887035369873 img loss 1.2906423807144165 img loss 1.2293012142181396 img loss 1.2151753902435303 img loss 1.2695822715759277 img loss 1.1457937955856323 img loss 1.1889221668243408 img loss 1.2351032495498657 img loss 1.1430200338363647 img loss 1.2623471021652222 img loss 1.2786321640014648 img loss 1.2594389915466309 img loss 1.191832423210144 {'loss': 1.2168, 'grad_norm': 0.2933877110481262, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4670383930206299 img loss 1.501621127128601 img loss 1.4976402521133423 img loss 1.5781323909759521 img loss 1.5650172233581543 img loss 1.5369040966033936 img loss 1.5333644151687622 img loss 1.435535192489624 img loss 1.5489789247512817 img loss 1.5337029695510864 img loss 1.5279890298843384 img loss 1.440100908279419 img loss 1.5174676179885864 img loss 1.5618706941604614 img loss 1.5066436529159546 img loss 1.559373140335083 img loss 1.5780361890792847 img loss 1.6530057191848755 img loss 1.5080835819244385 img loss 1.5912948846817017img loss 1.3977967500686646 img loss 1.515849232673645 img loss 1.5501761436462402 img loss 1.5833545923233032 img loss 1.3933157920837402 img loss 1.4148162603378296 img loss 1.4627913236618042 img loss 1.4804619550704956 img loss 1.496732234954834 img loss 1.4268039464950562 img loss 1.5154322385787964 img loss 1.5721827745437622 img loss 1.4667515754699707 img loss 1.3743853569030762 img loss 1.3887569904327393 img loss 1.4833892583847046 img loss 1.6620924472808838 img loss 1.6913437843322754 img loss 1.5264618396759033 img loss 1.514736294746399 img loss 1.5060572624206543 img loss 1.4520676136016846 img loss 1.5390704870224 img loss 1.5429909229278564 img loss 1.4838088750839233 img loss 1.6473411321640015 img loss 1.4270098209381104 img loss 1.5637719631195068 img loss 1.5333926677703857 img loss 1.4686671495437622 img loss 1.4982832670211792 img loss 1.5025726556777954 img loss 1.458355188369751 img loss 1.3158109188079834 img loss 1.4684805870056152 img loss 1.3668032884597778 img loss 1.5477975606918335 img loss 1.635262131690979 img loss 1.464916467666626 img loss 1.5308974981307983 img loss 1.5600082874298096 img loss 1.5380700826644897 img loss 1.4955805540084839 img loss 1.6243492364883423 img loss 1.5337493419647217 img loss 1.5499902963638306 img loss 1.562462568283081 img loss 1.7064615488052368 img loss 1.6041529178619385 img loss 1.5428792238235474 img loss 1.6115268468856812 img loss 1.3999849557876587 img loss 1.4959977865219116 img loss 1.4726746082305908 img loss 1.6573354005813599 img loss 1.4652152061462402 img loss 1.5469309091567993 img loss 1.648765206336975 img loss 1.6184054613113403 img loss 1.7144205570220947 img loss 1.5567342042922974 img loss 1.5472462177276611 img loss 1.4971007108688354 img loss 1.447946310043335 img loss 1.4835773706436157 img loss 1.4817456007003784 img loss 1.5189203023910522 img loss 1.5393548011779785 img loss 1.4859845638275146 img loss 1.5472263097763062 img loss 1.479611873626709 img loss 1.4992384910583496 img loss 1.4625805616378784 img loss 1.5238664150238037 img loss 1.4655468463897705 img loss 1.5647934675216675 img loss 1.6040514707565308 img loss 1.4119877815246582 img loss 1.5249440670013428 img loss 1.6992369890213013 img loss 1.5659270286560059img loss 1.403562307357788 img loss 1.5073667764663696 img loss 1.4735751152038574 img loss 1.6558629274368286 img loss 1.5201256275177002 img loss 1.5975594520568848 img loss 1.517363429069519 img loss 1.4271796941757202 img loss 1.6023160219192505 img loss 1.602047324180603 img loss 1.5447208881378174 img loss 1.5285533666610718 img loss 1.4923481941223145 img loss 1.6174200773239136 img loss 1.5425020456314087 img loss 1.5217331647872925 img loss 1.4724843502044678 img loss 1.6717480421066284 img loss 1.4713075160980225 img loss 1.3755162954330444 img loss 1.3842613697052002 img loss 1.400342583656311 img loss 1.7615809440612793 img loss 1.4035035371780396 img loss 1.4208147525787354 img loss 1.4811161756515503 img loss 1.6445704698562622 {'loss': 1.522, 'grad_norm': 0.5696994662284851, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2477022409439087 img loss 1.2317934036254883 img loss 1.1852527856826782 img loss 1.2962883710861206 img loss 1.2966227531433105 img loss 1.2370595932006836 img loss 1.240384578704834 img loss 1.180315613746643 img loss 1.2873187065124512 img loss 1.2309703826904297 img loss 1.2071259021759033 img loss 1.257188081741333 img loss 1.3004412651062012 img loss 1.2376184463500977 img loss 1.2672172784805298img loss 1.3371833562850952 img loss 1.304297685623169 img loss 1.2406723499298096 img loss 1.2779412269592285 img loss 1.3172650337219238 img loss 1.2315826416015625 img loss 1.2282012701034546 img loss 1.2658599615097046 img loss 1.3123947381973267 img loss 1.193199872970581 img loss 1.2801754474639893 img loss 1.2376213073730469 img loss 1.3183730840682983 img loss 1.2611193656921387 img loss 1.2713959217071533 img loss 1.2575082778930664 img loss 1.3088175058364868 img loss 1.2860902547836304 img loss 1.2796306610107422 img loss 1.2651029825210571 img loss 1.2244765758514404 img loss 1.2734272480010986 img loss 1.304856538772583 img loss 1.1996476650238037 img loss 1.3217253684997559 img loss 1.2677494287490845 img loss 1.1868005990982056 img loss 1.2350863218307495 img loss 1.2846754789352417 img loss 1.2238250970840454 img loss 1.2678658962249756 img loss 1.199617862701416 img loss 1.2293306589126587 img loss 1.2752708196640015 img loss 1.2343478202819824 img loss 1.1718530654907227 img loss 1.2662410736083984img loss 1.215848445892334 img loss 1.3060120344161987 img loss 1.25730299949646 img loss 1.253861904144287 img loss 1.2384393215179443 img loss 1.2988084554672241 img loss 1.2985426187515259 img loss 1.1861664056777954 img loss 1.238220453262329 img loss 1.2770029306411743 img loss 1.2764699459075928 img loss 1.3455755710601807 img loss 1.2311652898788452 img loss 1.29434335231781 img loss 1.2318334579467773 img loss 1.2611804008483887 img loss 1.2345529794692993 img loss 1.3435689210891724 img loss 1.2923083305358887 img loss 1.3682888746261597 img loss 1.279032588005066 img loss 1.3035210371017456 img loss 1.2567739486694336 img loss 1.2173141241073608img loss 1.2396296262741089 img loss 1.2317684888839722 img loss 1.2187694311141968 img loss 1.3271844387054443 img loss 1.2631291151046753 img loss 1.2593481540679932 img loss 1.2906864881515503 img loss 1.2348778247833252 img loss 1.2563940286636353 img loss 1.2199653387069702 img loss 1.2673553228378296 img loss 1.1973177194595337 img loss 1.2057678699493408 img loss 1.1777023077011108 img loss 1.2848132848739624 img loss 1.1883572340011597 img loss 1.2701996564865112 img loss 1.2543226480484009 img loss 1.2729123830795288 img loss 1.2631431818008423 img loss 1.263207197189331 img loss 1.231248140335083 img loss 1.2730118036270142 img loss 1.2412173748016357 img loss 1.2903286218643188 img loss 1.291743516921997 img loss 1.3076088428497314 img loss 1.1695467233657837 img loss 1.2152645587921143 img loss 1.23515784740448 img loss 1.2410610914230347 img loss 1.2951436042785645 img loss 1.2700690031051636 img loss 1.238008975982666 img loss 1.3583862781524658 img loss 1.2411837577819824 img loss 1.2217985391616821 img loss 1.2435226440429688 img loss 1.2649797201156616 img loss 1.245837926864624 img loss 1.2234588861465454 img loss 1.325130820274353 img loss 1.196380615234375 img loss 1.230352759361267 img loss 1.2244077920913696 img loss 1.3112592697143555 img loss 1.2970600128173828 img loss 1.2122418880462646 img loss 1.315292239189148 img loss 1.220239520072937 img loss 1.3471475839614868 img loss 1.254041075706482 {'loss': 1.2584, 'grad_norm': 0.35722893476486206, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5018658638000488 img loss 1.4719164371490479 img loss 1.5860434770584106 img loss 1.546486496925354 img loss 1.536686658859253 img loss 1.550111174583435 img loss 1.5785621404647827 img loss 1.7039438486099243 img loss 1.5731425285339355 img loss 1.5523688793182373 img loss 1.5456775426864624 img loss 1.4726788997650146 img loss 1.6186498403549194 img loss 1.5822044610977173 img loss 1.530348539352417 img loss 1.550162434577942 img loss 1.7202420234680176 img loss 1.6658443212509155 img loss 1.5348001718521118 img loss 1.535422444343567 img loss 1.3884941339492798 img loss 1.6147490739822388 img loss 1.4696036577224731 img loss 1.5166208744049072 img loss 1.623179316520691 img loss 1.4795186519622803 img loss 1.6156105995178223 img loss 1.5022660493850708 img loss 1.490517497062683 img loss 1.5948091745376587 img loss 1.4603536128997803 img loss 1.6422890424728394 img loss 1.568168044090271 img loss 1.506225347518921 img loss 1.546557068824768 img loss 1.5408364534378052 img loss 1.6568458080291748 img loss 1.4139066934585571 img loss 1.6214393377304077 img loss 1.527899146080017 img loss 1.5965631008148193 img loss 1.4504292011260986 img loss 1.4925371408462524 img loss 1.6131199598312378 img loss 1.4788146018981934 img loss 1.5123335123062134 img loss 1.518977403640747 img loss 1.5100557804107666 img loss 1.5620458126068115 img loss 1.5533461570739746 img loss 1.4608566761016846 img loss 1.4811549186706543 img loss 1.5542970895767212 img loss 1.5371015071868896 img loss 1.4581093788146973 img loss 1.4845077991485596 img loss 1.3785935640335083 img loss 1.5564755201339722 img loss 1.456670880317688 img loss 1.5392507314682007 img loss 1.6284593343734741 img loss 1.5084564685821533 img loss 1.4863101243972778 img loss 1.4561225175857544 img loss 1.5258055925369263 img loss 1.477445363998413 img loss 1.7045649290084839 img loss 1.4520561695098877 img loss 1.4391462802886963 img loss 1.5166159868240356 img loss 1.6392406225204468 img loss 1.4268155097961426 img loss 1.5151457786560059 img loss 1.3797850608825684 img loss 1.4448721408843994 img loss 1.4330369234085083 img loss 1.4671568870544434 img loss 1.4259533882141113 img loss 1.6668819189071655 img loss 1.6218739748001099 img loss 1.5081816911697388 img loss 1.4464064836502075 img loss 1.5099022388458252 img loss 1.3950705528259277img loss 1.5006064176559448 img loss 1.591139316558838 img loss 1.4035073518753052 img loss 1.5383132696151733 img loss 1.5794378519058228 img loss 1.6713128089904785 img loss 1.4860479831695557 img loss 1.3900446891784668 img loss 1.586665391921997 img loss 1.5499519109725952 img loss 1.5970255136489868 img loss 1.696215033531189 img loss 1.5917853116989136 img loss 1.5158895254135132 img loss 1.320062279701233 img loss 1.4045771360397339 img loss 1.591370701789856 img loss 1.439674735069275 img loss 1.507365107536316 img loss 1.556161642074585 img loss 1.525465488433838 img loss 1.5349667072296143 img loss 1.673003077507019 img loss 1.4644129276275635 img loss 1.5691155195236206 img loss 1.5015556812286377 img loss 1.642814040184021 img loss 1.4954832792282104 img loss 1.54580819606781 img loss 1.528889536857605 img loss 1.440387487411499 img loss 1.6754887104034424 img loss 1.5109864473342896 img loss 1.5298893451690674 img loss 1.559779405593872 img loss 1.624366283416748 img loss 1.528897762298584 img loss 1.369205117225647 img loss 1.5550235509872437 img loss 1.5655735731124878 img loss 1.4174435138702393 img loss 1.5643848180770874 img loss 1.5440385341644287 img loss 1.5218364000320435 {'loss': 1.5298, 'grad_norm': 0.34828102588653564, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3904756307601929 img loss 1.3831547498703003 img loss 1.3531553745269775 img loss 1.2927995920181274 img loss 1.3605077266693115 img loss 1.3690606355667114 img loss 1.424985647201538 img loss 1.3186359405517578 img loss 1.318102240562439 img loss 1.5240188837051392 img loss 1.3207060098648071 img loss 1.3803021907806396 img loss 1.265989899635315 img loss 1.3935633897781372 img loss 1.3439667224884033 img loss 1.3366330862045288 img loss 1.3412376642227173 img loss 1.351535439491272 img loss 1.3816293478012085 img loss 1.3743380308151245 img loss 1.417783498764038 img loss 1.3765079975128174 img loss 1.4080140590667725 img loss 1.3588148355484009 img loss 1.3405282497406006 img loss 1.4043211936950684 img loss 1.3371803760528564 img loss 1.3167179822921753 img loss 1.3223507404327393 img loss 1.4805725812911987 img loss 1.3412384986877441 img loss 1.3645931482315063 img loss 1.3527166843414307 img loss 1.4784080982208252 img loss 1.3769208192825317 img loss 1.2976791858673096 img loss 1.2758487462997437 img loss 1.3652112483978271 img loss 1.4146469831466675 img loss 1.4783462285995483 img loss 1.38204824924469img loss 1.3300681114196777 img loss 1.392366886138916 img loss 1.3384612798690796 img loss 1.315590739250183 img loss 1.3857166767120361 img loss 1.3110414743423462 img loss 1.4139312505722046 img loss 1.3666281700134277 img loss 1.3377553224563599 img loss 1.273234248161316 img loss 1.3253265619277954 img loss 1.368164300918579 img loss 1.4460923671722412 img loss 1.3108433485031128 img loss 1.4003700017929077 img loss 1.3670237064361572 img loss 1.3522191047668457 img loss 1.254860758781433 img loss 1.316583275794983 img loss 1.3652361631393433 img loss 1.3886131048202515 img loss 1.4141925573349 img loss 1.3298896551132202 img loss 1.3248370885849 img loss 1.354764461517334 img loss 1.3833281993865967 img loss 1.4199167490005493 img loss 1.3167853355407715 img loss 1.3383325338363647 img loss 1.3657790422439575 img loss 1.2625987529754639 img loss 1.3064066171646118 img loss 1.352358102798462 img loss 1.2994532585144043 img loss 1.378621220588684 img loss 1.2988357543945312 img loss 1.4504330158233643 img loss 1.4463025331497192 img loss 1.3149412870407104 img loss 1.3765548467636108 img loss 1.4050287008285522 img loss 1.3489458560943604 img loss 1.3864855766296387 img loss 1.356036901473999 img loss 1.330938696861267 img loss 1.3218739032745361 img loss 1.444342851638794 img loss 1.3682236671447754 img loss 1.3338629007339478 img loss 1.4307172298431396 img loss 1.2953685522079468 img loss 1.3377381563186646 img loss 1.3908860683441162 img loss 1.334561824798584 img loss 1.4132978916168213 img loss 1.3713911771774292 img loss 1.46977698802948 img loss 1.3225215673446655 img loss 1.3255399465560913 img loss 1.3530522584915161 img loss 1.2603400945663452 img loss 1.257360816001892 img loss 1.259323000907898 img loss 1.4306275844573975 img loss 1.32931387424469 img loss 1.2811145782470703 img loss 1.3403637409210205 img loss 1.3259607553482056img loss 1.3181641101837158 img loss 1.3133111000061035 img loss 1.2939345836639404 img loss 1.321146845817566 img loss 1.3139632940292358 img loss 1.4005950689315796 img loss 1.358169436454773 img loss 1.3349506855010986 img loss 1.316759705543518 img loss 1.381253957748413 img loss 1.3582943677902222 img loss 1.3486762046813965 img loss 1.340096116065979 img loss 1.337694525718689 img loss 1.273658275604248 img loss 1.3542225360870361 img loss 1.301858901977539 img loss 1.3216787576675415 img loss 1.2419010400772095 {'loss': 1.3536, 'grad_norm': 0.34452974796295166, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4129053354263306 img loss 1.3515770435333252 img loss 1.4184162616729736 img loss 1.4137524366378784 img loss 1.509994387626648 img loss 1.481852412223816 img loss 1.4485057592391968 img loss 1.404016137123108 img loss 1.57345449924469 img loss 1.415088176727295 img loss 1.3988209962844849 img loss 1.4286669492721558 img loss 1.382770299911499 img loss 1.3773362636566162 img loss 1.4519010782241821 img loss 1.4901316165924072 img loss 1.603949785232544 img loss 1.359584927558899 img loss 1.4098299741744995 img loss 1.6642738580703735 img loss 1.3010762929916382 img loss 1.322077989578247 img loss 1.3516364097595215 img loss 1.4898821115493774 img loss 1.4191917181015015 img loss 1.3916107416152954 img loss 1.3345983028411865 img loss 1.4520455598831177 img loss 1.4295363426208496 img loss 1.4428513050079346 img loss 1.443420648574829 img loss 1.3740907907485962 img loss 1.4634522199630737 img loss 1.3944926261901855 img loss 1.4136470556259155 img loss 1.4130895137786865 img loss 1.3665459156036377 img loss 1.4208056926727295 img loss 1.5173393487930298 img loss 1.4468046426773071 img loss 1.3863548040390015 img loss 1.3314110040664673 img loss 1.3939286470413208 img loss 1.3557034730911255 img loss 1.4826340675354004 img loss 1.4328466653823853 img loss 1.4290344715118408 img loss 1.441395878791809 img loss 1.4514729976654053 img loss 1.4563050270080566 img loss 1.5598056316375732 img loss 1.513105869293213 img loss 1.3649401664733887 img loss 1.4713587760925293 img loss 1.536535382270813 img loss 1.4524544477462769 img loss 1.3926938772201538 img loss 1.4991509914398193 img loss 1.4282978773117065 img loss 1.386077642440796 img loss 1.4218109846115112 img loss 1.6097806692123413 img loss 1.3978537321090698 img loss 1.4476922750473022 img loss 1.4783053398132324 img loss 1.3862024545669556 img loss 1.5814169645309448 img loss 1.4501560926437378 img loss 1.4310109615325928 img loss 1.4622563123703003 img loss 1.4016135931015015 img loss 1.453029990196228 img loss 1.4458677768707275 img loss 1.5708270072937012 img loss 1.3359333276748657 img loss 1.4172428846359253 img loss 1.567587971687317 img loss 1.381919503211975 img loss 1.4299381971359253 img loss 1.5105265378952026 img loss 1.3833798170089722 img loss 1.2791950702667236 img loss 1.6621067523956299img loss 1.400969386100769 img loss 1.3926918506622314 img loss 1.4490784406661987 img loss 1.4140193462371826 img loss 1.395858645439148 img loss 1.4858050346374512 img loss 1.370919942855835 img loss 1.5658036470413208 img loss 1.4573959112167358 img loss 1.3906766176223755 img loss 1.4230107069015503 img loss 1.3763524293899536 img loss 1.3795424699783325 img loss 1.260896921157837 img loss 1.4608243703842163 img loss 1.54494047164917 img loss 1.3784563541412354 img loss 1.4169936180114746 img loss 1.483665943145752 img loss 1.4044057130813599 img loss 1.5159341096878052 img loss 1.473276972770691 img loss 1.5140998363494873 img loss 1.451262354850769 img loss 1.4945778846740723 img loss 1.4297236204147339 img loss 1.5009812116622925 img loss 1.5149394273757935 img loss 1.4049601554870605 img loss 1.4855047464370728 img loss 1.3384841680526733 img loss 1.5103566646575928 img loss 1.3653843402862549 img loss 1.3618210554122925 img loss 1.3095039129257202 img loss 1.4026509523391724 img loss 1.379369854927063 img loss 1.3436378240585327 img loss 1.3465912342071533 img loss 1.2957298755645752 img loss 1.455621361732483 img loss 1.3726524114608765 img loss 1.2963513135910034 img loss 1.427648663520813 img loss 1.391382098197937 {'loss': 1.432, 'grad_norm': 0.2693919539451599, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.146749496459961 img loss 1.1199616193771362 img loss 1.2551801204681396 img loss 1.1746559143066406 img loss 1.1731743812561035 img loss 1.2069332599639893 img loss 1.2532951831817627 img loss 1.2070560455322266 img loss 1.24872624874115 img loss 1.257023811340332 img loss 1.2383779287338257 img loss 1.160325527191162 img loss 1.2624421119689941 img loss 1.2369091510772705 img loss 1.202278971672058 img loss 1.141296625137329 img loss 1.1742252111434937 img loss 1.1986804008483887 img loss 1.2424125671386719 img loss 1.194464921951294 img loss 1.145286202430725 img loss 1.248870849609375 img loss 1.1725149154663086 img loss 1.2494401931762695 img loss 1.2148463726043701 img loss 1.2219451665878296 img loss 1.2328846454620361 img loss 1.1880143880844116 img loss 1.19008207321167 img loss 1.2718017101287842 img loss 1.209564208984375 img loss 1.2001978158950806 img loss 1.1610969305038452 img loss 1.201716661453247 img loss 1.1653598546981812 img loss 1.2075287103652954 img loss 1.2026002407073975 img loss 1.170886516571045 img loss 1.1992977857589722 img loss 1.2171257734298706 img loss 1.222898244857788 img loss 1.2301123142242432img loss 1.1819374561309814 img loss 1.1938319206237793 img loss 1.2634433507919312 img loss 1.225792407989502 img loss 1.2389366626739502 img loss 1.2007120847702026 img loss 1.2246440649032593 img loss 1.2181555032730103 img loss 1.1722075939178467 img loss 1.2000880241394043 img loss 1.15764319896698 img loss 1.1611027717590332 img loss 1.217782974243164 img loss 1.2264617681503296 img loss 1.1814504861831665 img loss 1.2368907928466797 img loss 1.2104296684265137 img loss 1.1427931785583496 img loss 1.2326120138168335 img loss 1.1743086576461792 img loss 1.2325990200042725 img loss 1.120779275894165 img loss 1.1840318441390991 img loss 1.2442108392715454 img loss 1.274564266204834 img loss 1.1722831726074219 img loss 1.2161026000976562 img loss 1.206658959388733 img loss 1.131330966949463 img loss 1.166236162185669 img loss 1.174140214920044 img loss 1.2716187238693237 img loss 1.1921602487564087 img loss 1.134814739227295 img loss 1.1857128143310547 img loss 1.1760637760162354 img loss 1.2369780540466309 img loss 1.184043288230896 img loss 1.1925747394561768 img loss 1.1499340534210205 img loss 1.22714102268219 img loss 1.1658458709716797 img loss 1.171039342880249 img loss 1.215333342552185 img loss 1.1739964485168457 img loss 1.1926478147506714 img loss 1.1882166862487793 img loss 1.1837724447250366 img loss 1.1461433172225952 img loss 1.1843591928482056 img loss 1.1645792722702026 img loss 1.177741527557373 img loss 1.2286609411239624 img loss 1.241408348083496 img loss 1.186169981956482 img loss 1.1690869331359863 img loss 1.185706377029419 img loss 1.176234483718872 img loss 1.181559443473816 img loss 1.2255971431732178 img loss 1.207269310951233 img loss 1.2065988779067993 img loss 1.2513182163238525 img loss 1.1914710998535156 img loss 1.1711978912353516 img loss 1.2240867614746094 img loss 1.1233168840408325 img loss 1.1932268142700195 img loss 1.1686382293701172 img loss 1.1745840311050415 img loss 1.18939208984375 img loss 1.20097017288208 img loss 1.2572903633117676 img loss 1.213143229484558 img loss 1.1549395322799683 img loss 1.2286319732666016 img loss 1.1702098846435547 img loss 1.1819663047790527 img loss 1.1851820945739746 img loss 1.1261811256408691 img loss 1.2111997604370117 img loss 1.253538966178894 img loss 1.199004054069519 img loss 1.1551653146743774 img loss 1.1890099048614502 img loss 1.2067482471466064 {'loss': 1.198, 'grad_norm': 0.300497829914093, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.7445036172866821 img loss 1.794293761253357 img loss 1.5651298761367798 img loss 1.7070225477218628 img loss 1.6422231197357178 img loss 1.6942662000656128 img loss 1.7485482692718506 img loss 1.4563802480697632 img loss 1.7506482601165771 img loss 1.6295586824417114 img loss 1.83245849609375 img loss 1.5532100200653076 img loss 1.720048189163208 img loss 1.6973850727081299 img loss 1.7253642082214355 img loss 1.6093884706497192 img loss 1.5940383672714233 img loss 1.5494205951690674 img loss 1.516131043434143 img loss 1.7505229711532593 img loss 1.7647430896759033 img loss 1.6396504640579224 img loss 1.4996553659439087 img loss 1.7683576345443726 img loss 1.7323267459869385 img loss 1.7207627296447754 img loss 1.6540299654006958 img loss 1.7444567680358887 img loss 1.509285807609558 img loss 1.8772951364517212 img loss 1.7502186298370361 img loss 1.7728936672210693 img loss 1.6774697303771973 img loss 1.6335023641586304 img loss 1.5129345655441284 img loss 1.591513752937317 img loss 1.5686100721359253 img loss 1.6630253791809082 img loss 1.6661381721496582 img loss 1.6263883113861084 img loss 1.6071535348892212 img loss 1.5979440212249756 img loss 1.5658220052719116 img loss 1.6194431781768799 img loss 1.5346707105636597 img loss 1.6364222764968872 img loss 1.647215485572815 img loss 1.557824730873108 img loss 1.6189903020858765 img loss 1.8813668489456177 img loss 1.5975912809371948 img loss 1.7012547254562378 img loss 1.6624974012374878 img loss 1.4804893732070923 img loss 1.8700834512710571 img loss 1.5064740180969238 img loss 1.7419997453689575 img loss 1.5374982357025146 img loss 1.6869083642959595 img loss 1.705769658088684 img loss 1.696999192237854 img loss 1.6318758726119995 img loss 1.682293176651001 img loss 1.673038125038147 img loss 1.6648175716400146 img loss 1.603441834449768 img loss 1.6032899618148804 img loss 1.5612763166427612 img loss 1.655289888381958 img loss 1.5645219087600708 img loss 1.6593137979507446 img loss 1.6647412776947021 img loss 1.6198617219924927 img loss 1.5974751710891724 img loss 1.5036213397979736 img loss 1.6183960437774658 img loss 1.6828027963638306 img loss 1.7533761262893677 img loss 1.6063507795333862 img loss 1.6650875806808472 img loss 1.6759554147720337 img loss 1.4425055980682373 img loss 1.7141040563583374 img loss 1.7664802074432373 img loss 1.6770769357681274 img loss 1.634283185005188 img loss 1.6928532123565674 img loss 1.6217855215072632 img loss 1.6806055307388306 img loss 1.6713234186172485 img loss 1.6757148504257202 img loss 1.6040312051773071 img loss 1.8282533884048462 img loss 1.774370551109314 img loss 1.5878442525863647 img loss 1.6844165325164795 img loss 1.6751197576522827 img loss 1.6451319456100464 img loss 1.9041510820388794 img loss 1.4044708013534546 img loss 1.743762493133545 img loss 1.544143795967102 img loss 1.706113576889038 img loss 1.6174710988998413 img loss 1.886147141456604 img loss 1.7106621265411377 img loss 1.637081265449524 img loss 1.6026170253753662 img loss 1.714964509010315 img loss 1.6275955438613892 img loss 1.6158391237258911 img loss 1.6045633554458618 img loss 1.7080484628677368 img loss 1.5639995336532593 img loss 1.50033438205719 img loss 1.5659067630767822 img loss 1.920974850654602 img loss 1.7422162294387817 img loss 1.571790337562561 img loss 1.6338011026382446 img loss 1.6094313859939575 img loss 1.6346886157989502 img loss 1.4750492572784424 img loss 1.7348361015319824 img loss 1.6267772912979126 img loss 1.6182703971862793 img loss 1.6418051719665527 img loss 1.7112451791763306 {'loss': 1.6543, 'grad_norm': 0.35150885581970215, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2791744470596313 img loss 1.3045555353164673 img loss 1.2178624868392944 img loss 1.2496764659881592 img loss 1.2236881256103516img loss 1.2567038536071777 img loss 1.2006756067276 img loss 1.3159087896347046 img loss 1.1960346698760986 img loss 1.1848920583724976 img loss 1.2233415842056274 img loss 1.2151449918746948 img loss 1.394454836845398 img loss 1.2283724546432495 img loss 1.2528444528579712 img loss 1.2518105506896973 img loss 1.2972142696380615 img loss 1.2268688678741455 img loss 1.250555396080017 img loss 1.232136607170105 img loss 1.2053203582763672 img loss 1.1832841634750366 img loss 1.2988125085830688 img loss 1.3609004020690918 img loss 1.2582310438156128 img loss 1.2355836629867554 img loss 1.2550652027130127 img loss 1.198474407196045 img loss 1.2826056480407715 img loss 1.2027559280395508 img loss 1.3361499309539795 img loss 1.3118391036987305 img loss 1.2363197803497314 img loss 1.2052427530288696 img loss 1.206527590751648 img loss 1.2666583061218262 img loss 1.1536935567855835 img loss 1.2683390378952026 img loss 1.21901273727417 img loss 1.3878992795944214 img loss 1.1603847742080688 img loss 1.178192138671875 img loss 1.3197721242904663 img loss 1.3122183084487915 img loss 1.3186908960342407 img loss 1.2389949560165405 img loss 1.265244960784912 img loss 1.2130439281463623 img loss 1.1883268356323242 img loss 1.2734571695327759 img loss 1.1538662910461426 img loss 1.226305365562439 img loss 1.332983374595642 img loss 1.1845595836639404 img loss 1.3373240232467651 img loss 1.2048276662826538 img loss 1.2855801582336426 img loss 1.1998577117919922 img loss 1.2834951877593994 img loss 1.3415539264678955 img loss 1.1703219413757324 img loss 1.266309142112732 img loss 1.1958086490631104 img loss 1.2383170127868652 img loss 1.3005518913269043 img loss 1.3130782842636108 img loss 1.2136443853378296 img loss 1.198121428489685 img loss 1.2014473676681519 img loss 1.2822072505950928 img loss 1.2548507452011108 img loss 1.2125656604766846 img loss 1.251263976097107 img loss 1.2681210041046143 img loss 1.3241231441497803 img loss 1.3041075468063354 img loss 1.3060698509216309 img loss 1.2254467010498047 img loss 1.1852797269821167 img loss 1.2312908172607422 img loss 1.2717151641845703 img loss 1.2627370357513428 img loss 1.2229219675064087 img loss 1.1794960498809814 img loss 1.2305490970611572 img loss 1.2516098022460938 img loss 1.2752116918563843 img loss 1.2399992942810059 img loss 1.2926979064941406 img loss 1.1955915689468384 img loss 1.1351103782653809 img loss 1.2271199226379395 img loss 1.2455863952636719 img loss 1.229724407196045 img loss 1.2288087606430054 img loss 1.2157334089279175 img loss 1.3347076177597046 img loss 1.1946581602096558 img loss 1.2252790927886963 img loss 1.2295531034469604 img loss 1.3027771711349487 img loss 1.3077839612960815 img loss 1.2413749694824219 img loss 1.3357774019241333 img loss 1.1891376972198486 img loss 1.1885559558868408 img loss 1.2648770809173584 img loss 1.1928300857543945 img loss 1.2534080743789673 img loss 1.2577095031738281 img loss 1.2379192113876343 img loss 1.2962545156478882 img loss 1.3162336349487305 img loss 1.2139571905136108 img loss 1.256721019744873 img loss 1.2987875938415527 img loss 1.256144404411316 img loss 1.2711282968521118 img loss 1.1958450078964233 img loss 1.2668981552124023 img loss 1.3063385486602783 img loss 1.1959245204925537 img loss 1.2139123678207397 img loss 1.2660772800445557 img loss 1.1267141103744507 img loss 1.1442464590072632 img loss 1.2903531789779663 img loss 1.2700209617614746 {'loss': 1.2475, 'grad_norm': 0.45550036430358887, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.826034665107727 img loss 1.602404236793518 img loss 1.6749297380447388 img loss 1.8607568740844727 img loss 1.7065128087997437 img loss 1.6093777418136597 img loss 1.853441834449768 img loss 1.7672410011291504 img loss 1.7691092491149902 img loss 1.6654208898544312 img loss 1.5956776142120361 img loss 1.6769381761550903 img loss 1.7690116167068481 img loss 1.7997336387634277 img loss 1.6527684926986694 img loss 1.602384090423584 img loss 1.731931209564209 img loss 1.732410192489624 img loss 1.62820303440094 img loss 1.764329195022583 img loss 1.6921305656433105 img loss 1.7900972366333008 img loss 1.7837525606155396 img loss 1.7842775583267212 img loss 1.646787405014038 img loss 1.7996752262115479 img loss 1.6944100856781006 img loss 1.6473519802093506 img loss 1.5702732801437378 img loss 1.7585210800170898 img loss 1.5788824558258057 img loss 1.7796473503112793 img loss 1.9239284992218018 img loss 1.8050028085708618 img loss 1.665774941444397 img loss 1.6327223777770996 img loss 1.8394811153411865 img loss 1.691182017326355 img loss 1.641036868095398 img loss 1.6372357606887817 img loss 1.5431145429611206 img loss 1.8009254932403564 img loss 1.7723383903503418 img loss 1.6316697597503662 img loss 2.0110716819763184 img loss 1.7221513986587524 img loss 1.6972275972366333 img loss 1.7747539281845093 img loss 1.7324215173721313 img loss 1.7881276607513428 img loss 1.7523984909057617 img loss 1.8225054740905762 img loss 1.8426231145858765 img loss 1.7919498682022095 img loss 1.6530506610870361 img loss 1.7386319637298584 img loss 1.6371735334396362 img loss 1.808472990989685 img loss 1.7489993572235107 img loss 1.882930040359497 img loss 1.782505989074707 img loss 1.6508276462554932 img loss 1.8515939712524414 img loss 1.6350117921829224 img loss 1.6266897916793823 img loss 1.7690000534057617 img loss 1.5577753782272339 img loss 1.413475751876831 img loss 1.816969871520996 img loss 1.7884645462036133 img loss 1.7201114892959595 img loss 1.7852628231048584 img loss 1.7291810512542725 img loss 1.7031840085983276 img loss 1.840118169784546 img loss 1.5406311750411987 img loss 1.6531800031661987 img loss 1.6380068063735962 img loss 1.8665049076080322 img loss 1.59260892868042 img loss 1.6419094800949097 img loss 1.698014497756958 img loss 1.679082989692688 img loss 1.6436172723770142 img loss 1.8251540660858154 img loss 1.7184784412384033 img loss 1.7304166555404663 img loss 1.6905561685562134 img loss 1.7410378456115723 img loss 1.755136251449585 img loss 1.8698034286499023 img loss 1.7517337799072266 img loss 1.7694183588027954 img loss 1.652849555015564 img loss 1.6360400915145874 img loss 1.7389365434646606 img loss 1.9410291910171509 img loss 1.876704454421997 img loss 1.7300355434417725 img loss 1.8303444385528564 img loss 1.630249261856079 img loss 1.4315121173858643 img loss 1.641821026802063 img loss 1.670214295387268 img loss 1.7288646697998047 img loss 1.5354893207550049 img loss 1.789546251296997 img loss 1.6287082433700562 img loss 1.6123404502868652 img loss 1.7461848258972168 img loss 1.7052921056747437 img loss 1.611997365951538 img loss 1.706976056098938 img loss 1.5592867136001587 img loss 1.7947802543640137 img loss 1.6242307424545288 img loss 1.79451322555542 img loss 1.6716773509979248 img loss 1.6206005811691284 img loss 1.8459781408309937 img loss 1.6860562562942505 img loss 1.737610936164856 img loss 1.8288289308547974 img loss 1.638796091079712 img loss 1.7632925510406494 img loss 1.8339141607284546 img loss 1.8163615465164185 img loss 1.6428351402282715 {'loss': 1.7186, 'grad_norm': 0.6677643656730652, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1957018375396729 img loss 1.2341034412384033 img loss 1.3006384372711182 img loss 1.2546333074569702 img loss 1.2658430337905884 img loss 1.23166823387146 img loss 1.3170886039733887 img loss 1.2641454935073853 img loss 1.313381552696228 img loss 1.1956002712249756 img loss 1.2741491794586182 img loss 1.246559500694275 img loss 1.278072714805603 img loss 1.144090175628662 img loss 1.2248859405517578 img loss 1.2116713523864746 img loss 1.2770612239837646 img loss 1.201723575592041 img loss 1.230700135231018 img loss 1.2176945209503174 img loss 1.262952446937561 img loss 1.2217979431152344 img loss 1.2434202432632446 img loss 1.3220938444137573 img loss 1.1772675514221191 img loss 1.2980473041534424 img loss 1.3311409950256348 img loss 1.266272783279419 img loss 1.2371336221694946 img loss 1.2440885305404663 img loss 1.2104648351669312 img loss 1.3033959865570068img loss 1.2420374155044556 img loss 1.2630901336669922 img loss 1.2659815549850464 img loss 1.2420542240142822 img loss 1.2253519296646118 img loss 1.3423584699630737 img loss 1.2565991878509521 img loss 1.2930824756622314 img loss 1.242412805557251 img loss 1.2582565546035767 img loss 1.2597776651382446 img loss 1.2735416889190674 img loss 1.2200462818145752 img loss 1.2814404964447021 img loss 1.248483657836914 img loss 1.2893919944763184 img loss 1.4229214191436768 img loss 1.2611130475997925 img loss 1.1958003044128418 img loss 1.313767433166504 img loss 1.2365314960479736 img loss 1.2504271268844604 img loss 1.285733699798584 img loss 1.190847396850586 img loss 1.3135097026824951 img loss 1.2722043991088867 img loss 1.2533133029937744 img loss 1.2245080471038818 img loss 1.2662380933761597 img loss 1.359782099723816 img loss 1.2780590057373047 img loss 1.1812022924423218 img loss 1.2610677480697632 img loss 1.2443941831588745 img loss 1.2538295984268188 img loss 1.3156260251998901 img loss 1.2935853004455566 img loss 1.3122518062591553 img loss 1.2816097736358643 img loss 1.2385005950927734 img loss 1.2877922058105469 img loss 1.3455866575241089 img loss 1.2064387798309326 img loss 1.220847487449646 img loss 1.184978723526001 img loss 1.2911982536315918 img loss 1.2733162641525269 img loss 1.239715337753296 img loss 1.2620795965194702 img loss 1.2861783504486084 img loss 1.2434526681900024 img loss 1.2268561124801636 img loss 1.2526657581329346 img loss 1.2802956104278564 img loss 1.2934868335723877 img loss 1.3196147680282593 img loss 1.254220962524414 img loss 1.211454153060913 img loss 1.328635811805725 img loss 1.2643074989318848 img loss 1.2774423360824585 img loss 1.2656357288360596 img loss 1.2139451503753662img loss 1.2381359338760376 img loss 1.2110302448272705 img loss 1.2676690816879272 img loss 1.219093680381775 img loss 1.2195743322372437 img loss 1.3397129774093628 img loss 1.3019187450408936 img loss 1.202289342880249 img loss 1.2627991437911987 img loss 1.1898672580718994 img loss 1.1732577085494995 img loss 1.2364177703857422 img loss 1.2208645343780518 img loss 1.2719240188598633 img loss 1.3691496849060059 img loss 1.2843000888824463 img loss 1.2424448728561401 img loss 1.2647831439971924 img loss 1.3180317878723145 img loss 1.3483620882034302 img loss 1.1859662532806396 img loss 1.3865972757339478 img loss 1.2591552734375 img loss 1.2918353080749512 img loss 1.213809609413147 img loss 1.267719030380249 img loss 1.2936055660247803 img loss 1.319248914718628 img loss 1.258258581161499 img loss 1.438628911972046 img loss 1.26480233669281 img loss 1.286417007446289 img loss 1.2830852270126343 {'loss': 1.263, 'grad_norm': 0.48269325494766235, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2593066692352295 img loss 1.1946749687194824 img loss 1.2509915828704834 img loss 1.2121829986572266 img loss 1.1629981994628906 img loss 1.2250007390975952 img loss 1.2357889413833618 img loss 1.1699280738830566 img loss 1.2310069799423218 img loss 1.2772216796875 img loss 1.166633129119873 img loss 1.2161707878112793 img loss 1.2944320440292358 img loss 1.2286720275878906 img loss 1.2211273908615112 img loss 1.2174174785614014 img loss 1.208251714706421 img loss 1.2254918813705444 img loss 1.2239770889282227 img loss 1.2079651355743408 img loss 1.2419369220733643 img loss 1.2489389181137085 img loss 1.1989353895187378 img loss 1.2600864171981812 img loss 1.2290050983428955 img loss 1.2030582427978516 img loss 1.221206545829773 img loss 1.1941735744476318 img loss 1.1632694005966187 img loss 1.2266076803207397 img loss 1.2456085681915283 img loss 1.1814345121383667 img loss 1.2090716361999512 img loss 1.180387020111084 img loss 1.235656499862671 img loss 1.2408373355865479 img loss 1.2390153408050537 img loss 1.2588059902191162 img loss 1.2148139476776123 img loss 1.206979513168335 img loss 1.2045314311981201 img loss 1.207776665687561 img loss 1.191523790359497 img loss 1.2007769346237183 img loss 1.1502265930175781 img loss 1.2413856983184814 img loss 1.1791660785675049 img loss 1.205160140991211 img loss 1.2093409299850464 img loss 1.2042324542999268 img loss 1.230417013168335 img loss 1.1851643323898315 img loss 1.217486023902893 img loss 1.2675471305847168 img loss 1.2076174020767212 img loss 1.1866573095321655 img loss 1.2633787393569946 img loss 1.1777092218399048 img loss 1.1906137466430664 img loss 1.189378261566162 img loss 1.1977894306182861 img loss 1.1790249347686768 img loss 1.2283769845962524 img loss 1.2301678657531738 img loss 1.2114043235778809 img loss 1.213915467262268 img loss 1.2578904628753662 img loss 1.2155319452285767 img loss 1.243217945098877 img loss 1.1871323585510254 img loss 1.2090984582901 img loss 1.1467050313949585 img loss 1.1598690748214722 img loss 1.3095457553863525 img loss 1.21927011013031 img loss 1.2306270599365234 img loss 1.2485485076904297 img loss 1.2179135084152222 img loss 1.2047765254974365 img loss 1.2139787673950195 img loss 1.195369005203247 img loss 1.2217105627059937 img loss 1.2592302560806274 img loss 1.1944741010665894 img loss 1.172851324081421 img loss 1.217641830444336 img loss 1.1910135746002197 img loss 1.2528603076934814 img loss 1.236956000328064 img loss 1.1883175373077393 img loss 1.1519577503204346 img loss 1.2292499542236328 img loss 1.1978695392608643 img loss 1.2182121276855469 img loss 1.248706579208374 img loss 1.2655577659606934 img loss 1.187366247177124 img loss 1.2224209308624268 img loss 1.2175953388214111 img loss 1.211071491241455 img loss 1.2405117750167847 img loss 1.1926063299179077 img loss 1.2010101079940796 img loss 1.2437183856964111 img loss 1.1761080026626587 img loss 1.2168161869049072 img loss 1.2051069736480713 img loss 1.1855902671813965 img loss 1.2097864151000977 img loss 1.1831556558609009 img loss 1.2653110027313232 img loss 1.2789140939712524 img loss 1.2078816890716553 img loss 1.259947657585144 img loss 1.1860058307647705 img loss 1.1844048500061035 img loss 1.1861765384674072 img loss 1.2120952606201172 img loss 1.2338796854019165 img loss 1.2084980010986328 img loss 1.1848278045654297 img loss 1.203853964805603 img loss 1.203887701034546 img loss 1.1798537969589233 img loss 1.228088617324829 img loss 1.1577190160751343 img loss 1.1702194213867188 img loss 1.2259176969528198 {'loss': 1.2139, 'grad_norm': 0.25993138551712036, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.250258445739746 img loss 1.1923092603683472 img loss 1.274836778640747 img loss 1.3057912588119507 img loss 1.2075221538543701 img loss 1.219845175743103 img loss 1.2874914407730103 img loss 1.2068116664886475 img loss 1.2406128644943237 img loss 1.1997475624084473 img loss 1.1677592992782593 img loss 1.177488088607788 img loss 1.223996639251709 img loss 1.2062656879425049 img loss 1.1806721687316895 img loss 1.2171598672866821 img loss 1.2120227813720703 img loss 1.2333077192306519 img loss 1.2212013006210327 img loss 1.2035051584243774 img loss 1.2596014738082886 img loss 1.1954724788665771 img loss 1.221705436706543 img loss 1.2111040353775024 img loss 1.172806739807129 img loss 1.2015619277954102 img loss 1.2452735900878906 img loss 1.3447699546813965 img loss 1.2578167915344238 img loss 1.1966831684112549 img loss 1.1523816585540771 img loss 1.1846317052841187 img loss 1.2395066022872925 img loss 1.257849931716919 img loss 1.2996747493743896 img loss 1.1935943365097046 img loss 1.1854196786880493 img loss 1.2657084465026855 img loss 1.203102469444275 img loss 1.209498643875122 img loss 1.2435390949249268 img loss 1.2359884977340698 img loss 1.2689332962036133 img loss 1.2214460372924805 img loss 1.2239623069763184 img loss 1.249847412109375 img loss 1.2152893543243408 img loss 1.2360347509384155 img loss 1.182411551475525 img loss 1.2645351886749268 img loss 1.2621101140975952 img loss 1.2357784509658813 img loss 1.2127386331558228 img loss 1.2337974309921265 img loss 1.209979772567749 img loss 1.182390570640564 img loss 1.2351648807525635 img loss 1.239929437637329 img loss 1.2831530570983887 img loss 1.2585773468017578 img loss 1.266012191772461 img loss 1.1901588439941406 img loss 1.2134615182876587 img loss 1.2454583644866943 img loss 1.2431540489196777 img loss 1.1774603128433228 img loss 1.2135690450668335 img loss 1.2420306205749512 img loss 1.2116084098815918 img loss 1.19114089012146 img loss 1.1863449811935425 img loss 1.205518364906311 img loss 1.2052839994430542 img loss 1.245795726776123 img loss 1.238925814628601 img loss 1.2351913452148438 img loss 1.2541322708129883 img loss 1.1988351345062256 img loss 1.2099988460540771 img loss 1.188565969467163 img loss 1.2259907722473145 img loss 1.2402846813201904 img loss 1.2291595935821533 img loss 1.216697335243225 img loss 1.19752836227417 img loss 1.1591020822525024 img loss 1.228381872177124 img loss 1.2310786247253418 img loss 1.2564077377319336 img loss 1.2468925714492798 img loss 1.2296688556671143 img loss 1.2334703207015991 img loss 1.3005962371826172 img loss 1.2469193935394287 img loss 1.2828353643417358 img loss 1.2112945318222046 img loss 1.183225393295288 img loss 1.2475941181182861 img loss 1.2251739501953125 img loss 1.2680625915527344 img loss 1.2309383153915405 img loss 1.2865314483642578 img loss 1.2183692455291748 img loss 1.2424076795578003 img loss 1.2368643283843994 img loss 1.1937052011489868 img loss 1.2169053554534912 img loss 1.231666922569275 img loss 1.2372311353683472 img loss 1.2196184396743774 img loss 1.1686265468597412 img loss 1.2177475690841675 img loss 1.1893892288208008 img loss 1.2224735021591187 img loss 1.2415469884872437 img loss 1.1840909719467163 img loss 1.1891201734542847 img loss 1.2170467376708984 img loss 1.2717201709747314 img loss 1.2220858335494995 img loss 1.2507930994033813 img loss 1.1939743757247925 img loss 1.2120985984802246 img loss 1.1280368566513062 img loss 1.2254196405410767 img loss 1.2038377523422241 img loss 1.2824432849884033 img loss 1.2287300825119019 {'loss': 1.2251, 'grad_norm': 0.29115551710128784, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1796703338623047 img loss 1.1882286071777344 img loss 1.1816033124923706 img loss 1.2264478206634521 img loss 1.1824501752853394 img loss 1.2030760049819946 img loss 1.1579833030700684 img loss 1.1924004554748535 img loss 1.1888989210128784 img loss 1.1609413623809814 img loss 1.1887692213058472 img loss 1.2709499597549438 img loss 1.1561052799224854 img loss 1.306171178817749 img loss 1.1676223278045654 img loss 1.109155535697937 img loss 1.2376024723052979 img loss 1.1278362274169922 img loss 1.1620769500732422 img loss 1.14326810836792 img loss 1.132426381111145 img loss 1.1669031381607056 img loss 1.1509777307510376 img loss 1.1214503049850464 img loss 1.2027575969696045 img loss 1.139540433883667 img loss 1.1870803833007812 img loss 1.1843147277832031 img loss 1.2086215019226074 img loss 1.2342594861984253 img loss 1.1826262474060059 img loss 1.227500557899475 img loss 1.276334524154663 img loss 1.1866096258163452 img loss 1.2086971998214722 img loss 1.1558549404144287 img loss 1.1410610675811768 img loss 1.153862476348877 img loss 1.2529414892196655 img loss 1.1409168243408203 img loss 1.1624187231063843 img loss 1.1641128063201904 img loss 1.1298394203186035 img loss 1.1494777202606201 img loss 1.1267197132110596 img loss 1.1590855121612549 img loss 1.1669641733169556 img loss 1.2110868692398071 img loss 1.202014684677124 img loss 1.2037770748138428 img loss 1.166757345199585 img loss 1.2230194807052612 img loss 1.1867948770523071 img loss 1.2155388593673706 img loss 1.1171528100967407 img loss 1.2535654306411743 img loss 1.1750189065933228 img loss 1.1705396175384521 img loss 1.2177636623382568 img loss 1.2329652309417725 img loss 1.186022162437439 img loss 1.3552905321121216 img loss 1.200598955154419 img loss 1.240425705909729 img loss 1.2235486507415771 img loss 1.2689927816390991 img loss 1.147782564163208 img loss 1.187721848487854 img loss 1.200266718864441 img loss 1.1725993156433105 img loss 1.1828231811523438 img loss 1.189278244972229 img loss 1.1721394062042236 img loss 1.1651079654693604 img loss 1.1913594007492065 img loss 1.1631839275360107 img loss 1.1937212944030762 img loss 1.180816650390625 img loss 1.206945776939392 img loss 1.2004727125167847 img loss 1.2643623352050781 img loss 1.2108510732650757 img loss 1.2232170104980469 img loss 1.1932400465011597 img loss 1.1559032201766968 img loss 1.185423493385315 img loss 1.1490204334259033 img loss 1.1849853992462158 img loss 1.1850969791412354 img loss 1.1657464504241943 img loss 1.2160309553146362 img loss 1.2390620708465576 img loss 1.1598267555236816 img loss 1.1456048488616943 img loss 1.198021650314331 img loss 1.1737949848175049 img loss 1.1556633710861206 img loss 1.1864964962005615 img loss 1.1904047727584839 img loss 1.167280673980713 img loss 1.19712495803833 img loss 1.1566681861877441 img loss 1.2244219779968262 img loss 1.2866356372833252 img loss 1.2249767780303955 img loss 1.1822174787521362 img loss 1.2195318937301636 img loss 1.131380558013916 img loss 1.2334085702896118 img loss 1.1826874017715454 img loss 1.1911594867706299 img loss 1.2029616832733154 img loss 1.1918554306030273 img loss 1.1997065544128418 img loss 1.1666226387023926 img loss 1.2162851095199585 img loss 1.249648094177246 img loss 1.248206615447998 img loss 1.1598236560821533 img loss 1.2594046592712402 img loss 1.1565765142440796 img loss 1.1787265539169312 img loss 1.1755434274673462 img loss 1.1694188117980957 img loss 1.2270587682724 img loss 1.2105669975280762 img loss 1.2052645683288574 img loss 1.172067403793335 {'loss': 1.1908, 'grad_norm': 0.2820545732975006, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.192333459854126 img loss 1.2491480112075806 img loss 1.2465609312057495 img loss 1.1724035739898682 img loss 1.219164490699768 img loss 1.1718382835388184 img loss 1.270078420639038 img loss 1.2082557678222656 img loss 1.2375942468643188 img loss 1.256667137145996 img loss 1.2475992441177368 img loss 1.1738879680633545 img loss 1.159703016281128 img loss 1.2335314750671387 img loss 1.2776058912277222 img loss 1.2061125040054321 img loss 1.2691885232925415 img loss 1.214213252067566 img loss 1.25267493724823 img loss 1.2748217582702637 img loss 1.232665777206421 img loss 1.2823103666305542 img loss 1.1470367908477783 img loss 1.2326538562774658 img loss 1.1735970973968506 img loss 1.2553430795669556 img loss 1.2162816524505615 img loss 1.1657061576843262 img loss 1.2029911279678345 img loss 1.1661213636398315 img loss 1.206312894821167 img loss 1.2118561267852783 img loss 1.2176722288131714 img loss 1.2130982875823975 img loss 1.2049118280410767 img loss 1.1860015392303467 img loss 1.294459342956543 img loss 1.1933561563491821 img loss 1.1850038766860962 img loss 1.1684376001358032 img loss 1.1623890399932861 img loss 1.2776647806167603 img loss 1.1899540424346924 img loss 1.2545764446258545 img loss 1.1807676553726196 img loss 1.2380688190460205 img loss 1.2840064764022827 img loss 1.2151247262954712 img loss 1.2326278686523438 img loss 1.3273348808288574 img loss 1.226486086845398 img loss 1.2275656461715698 img loss 1.1995875835418701 img loss 1.202958345413208 img loss 1.2747224569320679 img loss 1.180396318435669 img loss 1.235113501548767 img loss 1.2818589210510254 img loss 1.255430817604065 img loss 1.1735906600952148 img loss 1.1950420141220093 img loss 1.1799150705337524 img loss 1.2324532270431519 img loss 1.2002760171890259 img loss 1.1729066371917725 img loss 1.2029231786727905 img loss 1.2507121562957764 img loss 1.2287602424621582 img loss 1.14049232006073 img loss 1.223984956741333 img loss 1.2019145488739014 img loss 1.2010016441345215 img loss 1.2723454236984253 img loss 1.1852080821990967 img loss 1.1838643550872803 img loss 1.2705475091934204 img loss 1.1449084281921387 img loss 1.199643611907959 img loss 1.2539602518081665 img loss 1.2528177499771118 img loss 1.2375303506851196 img loss 1.207069754600525 img loss 1.1662400960922241 img loss 1.166502833366394 img loss 1.1795333623886108 img loss 1.1605316400527954 img loss 1.1926891803741455 img loss 1.260048508644104 img loss 1.2514960765838623 img loss 1.2458240985870361 img loss 1.1870625019073486 img loss 1.2272682189941406 img loss 1.2638500928878784 img loss 1.1746749877929688 img loss 1.2712658643722534 img loss 1.2584419250488281 img loss 1.2054662704467773 img loss 1.2226604223251343 img loss 1.1886848211288452 img loss 1.212540864944458 img loss 1.2355445623397827 img loss 1.1836684942245483 img loss 1.2489402294158936 img loss 1.2623487710952759 img loss 1.2358417510986328img loss 1.2448763847351074img loss 1.2152736186981201 img loss 1.1695349216461182 img loss 1.2303617000579834 img loss 1.2162940502166748 img loss 1.2579972743988037 img loss 1.1789641380310059 img loss 1.1922842264175415 img loss 1.2358344793319702 img loss 1.2573633193969727 img loss 1.2056024074554443 img loss 1.2014517784118652 img loss 1.2200279235839844 img loss 1.2083724737167358 img loss 1.2114475965499878 img loss 1.2105438709259033 img loss 1.2634050846099854 img loss 1.1654795408248901 img loss 1.2740478515625 img loss 1.183098316192627 img loss 1.2817476987838745 img loss 1.2132360935211182 img loss 1.2091882228851318 {'loss': 1.2187, 'grad_norm': 0.3083241283893585, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1040232181549072 img loss 1.2006237506866455 img loss 1.2423549890518188 img loss 1.2274043560028076 img loss 1.1376711130142212 img loss 1.130771279335022 img loss 1.1430364847183228 img loss 1.1595379114151 img loss 1.1946558952331543 img loss 1.1731013059616089 img loss 1.094130516052246 img loss 1.2349879741668701 img loss 1.1424591541290283 img loss 1.1447956562042236 img loss 1.167874813079834 img loss 1.096988320350647 img loss 1.2341105937957764 img loss 1.1455992460250854 img loss 1.1433361768722534 img loss 1.0982627868652344 img loss 1.1597888469696045 img loss 1.1994349956512451 img loss 1.1141517162322998 img loss 1.1896976232528687 img loss 1.1457247734069824 img loss 1.2185391187667847 img loss 1.288092851638794 img loss 1.1661794185638428 img loss 1.2562779188156128 img loss 1.1792519092559814 img loss 1.1255325078964233 img loss 1.1424046754837036 img loss 1.1359217166900635 img loss 1.1940730810165405 img loss 1.3302258253097534 img loss 1.2176017761230469 img loss 1.2803363800048828 img loss 1.1247282028198242 img loss 1.1621497869491577 img loss 1.2235677242279053 img loss 1.2091648578643799 img loss 1.189369559288025 img loss 1.159712314605713 img loss 1.1650646924972534 img loss 1.1076252460479736 img loss 1.2220590114593506 img loss 1.2821743488311768 img loss 1.1982369422912598 img loss 1.1407772302627563 img loss 1.2291321754455566 img loss 1.1854952573776245 img loss 1.2089029550552368 img loss 1.1177607774734497 img loss 1.1213778257369995 img loss 1.160592794418335 img loss 1.2412490844726562 img loss 1.1224039793014526 img loss 1.1838302612304688 img loss 1.1919801235198975 img loss 1.2094299793243408 img loss 1.1847795248031616 img loss 1.1884273290634155 img loss 1.0879237651824951 img loss 1.19387948513031 img loss 1.117608904838562 img loss 1.079988718032837 img loss 1.1696696281433105 img loss 1.0641502141952515 img loss 1.1715723276138306 img loss 1.2402265071868896 img loss 1.1357753276824951 img loss 1.1214888095855713 img loss 1.181089162826538 img loss 1.1536020040512085 img loss 1.1254916191101074 img loss 1.2036272287368774 img loss 1.1815394163131714 img loss 1.1728099584579468 img loss 1.1659029722213745 img loss 1.2019169330596924 img loss 1.1979308128356934 img loss 1.1712827682495117 img loss 1.267903208732605 img loss 1.1887155771255493 img loss 1.1925549507141113 img loss 1.2299649715423584 img loss 1.2150936126708984 img loss 1.1782077550888062 img loss 1.2278066873550415 img loss 1.1686328649520874 img loss 1.126080870628357 img loss 1.171648383140564 img loss 1.2327492237091064 img loss 1.2051677703857422 img loss 1.1409920454025269 img loss 1.2024226188659668 img loss 1.2097105979919434 img loss 1.112607479095459 img loss 1.2251150608062744 img loss 1.186228632926941 img loss 1.1801668405532837 img loss 1.1167879104614258 img loss 1.1521650552749634 img loss 1.272977590560913 img loss 1.1809749603271484 img loss 1.192657232284546 img loss 1.196323275566101 img loss 1.2045629024505615 img loss 1.1968353986740112 img loss 1.122267723083496 img loss 1.242043137550354 img loss 1.1452900171279907 img loss 1.1564067602157593 img loss 1.171748399734497 img loss 1.3126366138458252 img loss 1.1700595617294312 img loss 1.1522057056427002 img loss 1.2155050039291382 img loss 1.1735895872116089 img loss 1.1821155548095703 img loss 1.2360661029815674 img loss 1.2936513423919678 img loss 1.1940799951553345 img loss 1.2044196128845215 img loss 1.1576141119003296 img loss 1.2161059379577637 img loss 1.1352618932724 img loss 1.1171232461929321 {'loss': 1.1797, 'grad_norm': 0.3353668749332428, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3505750894546509 img loss 1.2479686737060547 img loss 1.2594027519226074 img loss 1.2541208267211914 img loss 1.2295281887054443 img loss 1.1940953731536865 img loss 1.2693798542022705 img loss 1.229865312576294 img loss 1.186705470085144 img loss 1.1838655471801758 img loss 1.2123832702636719 img loss 1.2412912845611572 img loss 1.3148201704025269 img loss 1.2168004512786865 img loss 1.1785542964935303 img loss 1.2174491882324219 img loss 1.229103684425354 img loss 1.210107684135437 img loss 1.2409026622772217 img loss 1.2960268259048462 img loss 1.2679814100265503 img loss 1.254911184310913 img loss 1.216090202331543 img loss 1.2842183113098145 img loss 1.2228153944015503 img loss 1.190447211265564 img loss 1.2065269947052002 img loss 1.2050530910491943 img loss 1.3736462593078613 img loss 1.2448405027389526 img loss 1.1835615634918213 img loss 1.2290840148925781 img loss 1.1887240409851074 img loss 1.3048486709594727 img loss 1.2567152976989746 img loss 1.2419123649597168 img loss 1.338864803314209 img loss 1.2807925939559937 img loss 1.143288254737854 img loss 1.214202642440796 img loss 1.1852912902832031 img loss 1.1535478830337524 img loss 1.2026607990264893 img loss 1.2375540733337402 img loss 1.3216732740402222 img loss 1.1996264457702637 img loss 1.2654132843017578 img loss 1.2301222085952759 img loss 1.236896276473999 img loss 1.1871753931045532 img loss 1.1659884452819824 img loss 1.2095081806182861 img loss 1.1650882959365845 img loss 1.239771842956543 img loss 1.2743453979492188 img loss 1.2158188819885254 img loss 1.1775643825531006 img loss 1.3309392929077148 img loss 1.3092849254608154 img loss 1.2095558643341064 img loss 1.2117772102355957 img loss 1.2305192947387695 img loss 1.2525913715362549 img loss 1.2143268585205078 img loss 1.2371962070465088 img loss 1.2225531339645386 img loss 1.200542688369751 img loss 1.2451063394546509 img loss 1.301857590675354 img loss 1.2571254968643188 img loss 1.2518401145935059 img loss 1.2184779644012451 img loss 1.2284682989120483 img loss 1.2314980030059814 img loss 1.314161777496338 img loss 1.193217158317566 img loss 1.2867681980133057 img loss 1.2401154041290283 img loss 1.1975858211517334 img loss 1.206851601600647 img loss 1.1931648254394531 img loss 1.2181274890899658 img loss 1.2674108743667603 img loss 1.1801656484603882 img loss 1.3000569343566895 img loss 1.1934860944747925 img loss 1.2134623527526855 img loss 1.3018734455108643 img loss 1.2171318531036377 img loss 1.1596773862838745 img loss 1.3076026439666748 img loss 1.2300987243652344 img loss 1.1670951843261719 img loss 1.2879332304000854 img loss 1.1503452062606812 img loss 1.2784647941589355 img loss 1.1843897104263306 img loss 1.2592442035675049 img loss 1.1978459358215332 img loss 1.249979853630066 img loss 1.2748219966888428 img loss 1.2993468046188354 img loss 1.2230241298675537 img loss 1.2353417873382568 img loss 1.202857255935669 img loss 1.2145156860351562 img loss 1.2319637537002563 img loss 1.2285699844360352 img loss 1.1532244682312012 img loss 1.2132543325424194 img loss 1.262022614479065 img loss 1.2870925664901733 img loss 1.2452551126480103 img loss 1.26447331905365 img loss 1.1314820051193237 img loss 1.4077576398849487 img loss 1.2651828527450562 img loss 1.3106656074523926 img loss 1.248046875 img loss 1.2277511358261108 img loss 1.2481534481048584img loss 1.2026898860931396 img loss 1.206895112991333 img loss 1.2156481742858887 img loss 1.2524933815002441 img loss 1.1826807260513306 img loss 1.2617175579071045 img loss 1.1602141857147217 {'loss': 1.2351, 'grad_norm': 0.2582101821899414, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4728580713272095 img loss 1.4811551570892334 img loss 1.5251438617706299 img loss 1.4491305351257324 img loss 1.4420599937438965 img loss 1.550281286239624 img loss 1.446578860282898 img loss 1.5294499397277832 img loss 1.44399893283844 img loss 1.523895025253296 img loss 1.4413267374038696 img loss 1.45699143409729 img loss 1.3458927869796753 img loss 1.4751522541046143 img loss 1.5397942066192627 img loss 1.4778984785079956 img loss 1.4563558101654053 img loss 1.4989101886749268 img loss 1.4808629751205444 img loss 1.4586117267608643 img loss 1.4973493814468384 img loss 1.4164538383483887 img loss 1.3825770616531372 img loss 1.5328021049499512 img loss 1.4260767698287964 img loss 1.45857572555542 img loss 1.3377068042755127 img loss 1.3746572732925415 img loss 1.3786299228668213 img loss 1.6634565591812134 img loss 1.4159032106399536 img loss 1.4686013460159302 img loss 1.5694204568862915 img loss 1.4721647500991821 img loss 1.530635952949524 img loss 1.6417279243469238 img loss 1.44538152217865 img loss 1.361154317855835 img loss 1.4521870613098145 img loss 1.322482943534851 img loss 1.3737467527389526 img loss 1.4916012287139893 img loss 1.416743516921997 img loss 1.3352218866348267 img loss 1.3793408870697021 img loss 1.5564285516738892 img loss 1.368223786354065 img loss 1.5324221849441528 img loss 1.5561978816986084 img loss 1.5134644508361816 img loss 1.501564621925354 img loss 1.440219759941101 img loss 1.4275972843170166 img loss 1.4558900594711304 img loss 1.6103960275650024 img loss 1.5592877864837646 img loss 1.390981912612915 img loss 1.3797831535339355 img loss 1.373720645904541 img loss 1.357586145401001 img loss 1.4583823680877686 img loss 1.4226040840148926 img loss 1.4205268621444702 img loss 1.4742475748062134 img loss 1.4003748893737793 img loss 1.3986430168151855 img loss 1.4063689708709717 img loss 1.4615893363952637 img loss 1.4145399332046509 img loss 1.4823657274246216 img loss 1.4796074628829956 img loss 1.5198638439178467 img loss 1.4939597845077515 img loss 1.4230369329452515 img loss 1.3604941368103027 img loss 1.5600022077560425 img loss 1.5346848964691162 img loss 1.3677839040756226 img loss 1.4030470848083496 img loss 1.5061787366867065 img loss 1.3476216793060303 img loss 1.5322920083999634 img loss 1.4100040197372437 img loss 1.5555282831192017 img loss 1.6126682758331299 img loss 1.4896451234817505 img loss 1.407263159751892 img loss 1.528208613395691 img loss 1.4909476041793823 img loss 1.4274609088897705 img loss 1.3994214534759521 img loss 1.5860345363616943 img loss 1.511836290359497 img loss 1.3472826480865479 img loss 1.4498980045318604 img loss 1.5545622110366821 img loss 1.3351454734802246 img loss 1.5220046043395996 img loss 1.5038354396820068 img loss 1.5531281232833862 img loss 1.5227757692337036 img loss 1.4583147764205933 img loss 1.6506245136260986 img loss 1.503401517868042 img loss 1.4521089792251587 img loss 1.5846582651138306 img loss 1.6112372875213623 img loss 1.5500407218933105 img loss 1.3532353639602661 img loss 1.438153862953186 img loss 1.484563946723938 img loss 1.3612278699874878 img loss 1.490983247756958 img loss 1.3631454706192017 img loss 1.451109766960144 img loss 1.3819488286972046 img loss 1.3825414180755615 img loss 1.4624961614608765 img loss 1.390602469444275 img loss 1.5580123662948608 img loss 1.3465689420700073 img loss 1.3396655321121216 img loss 1.414617896080017 img loss 1.4451406002044678 img loss 1.4229767322540283 img loss 1.459486722946167 img loss 1.4561940431594849 img loss 1.5186150074005127 {'loss': 1.4615, 'grad_norm': 0.3047480285167694, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.493688941001892 img loss 1.5222057104110718 img loss 1.3646748065948486 img loss 1.4518038034439087 img loss 1.4368268251419067 img loss 1.4114748239517212 img loss 1.4058269262313843 img loss 1.4650787115097046 img loss 1.4006400108337402 img loss 1.494249939918518 img loss 1.506853699684143 img loss 1.4558203220367432 img loss 1.5198988914489746 img loss 1.4106780290603638 img loss 1.4976763725280762 img loss 1.440642237663269 img loss 1.44630765914917 img loss 1.507251262664795 img loss 1.5140711069107056 img loss 1.4491913318634033 img loss 1.5387002229690552 img loss 1.4827369451522827 img loss 1.5281084775924683 img loss 1.606006383895874 img loss 1.5436170101165771 img loss 1.4942927360534668 img loss 1.426653265953064 img loss 1.3810232877731323 img loss 1.432273030281067 img loss 1.372214436531067 img loss 1.455501675605774 img loss 1.3802428245544434 img loss 1.559878945350647 img loss 1.523418664932251 img loss 1.3506665229797363 img loss 1.5602991580963135 img loss 1.4171608686447144 img loss 1.5165488719940186 img loss 1.6142809391021729 img loss 1.303781270980835 img loss 1.4441659450531006 img loss 1.5817612409591675 img loss 1.5154880285263062 img loss 1.450117588043213 img loss 1.4076883792877197 img loss 1.490553617477417 img loss 1.4577387571334839 img loss 1.5512393712997437 img loss 1.479354739189148 img loss 1.5153909921646118 img loss 1.4298080205917358 img loss 1.4949654340744019 img loss 1.4677737951278687 img loss 1.522032618522644 img loss 1.468126893043518 img loss 1.4990346431732178 img loss 1.3890798091888428 img loss 1.400733232498169 img loss 1.4550273418426514 img loss 1.5089716911315918 img loss 1.5091801881790161 img loss 1.6001007556915283img loss 1.5367379188537598 img loss 1.3545126914978027 img loss 1.540178894996643 img loss 1.3919546604156494img loss 1.4778391122817993 img loss 1.4167304039001465 img loss 1.5262242555618286 img loss 1.4917540550231934 img loss 1.529406189918518 img loss 1.4280692338943481 img loss 1.5035256147384644 img loss 1.2894972562789917 img loss 1.4441319704055786 img loss 1.4794007539749146 img loss 1.4903149604797363 img loss 1.539393663406372 img loss 1.3919168710708618img loss 1.44074285030365 img loss 1.5263742208480835 img loss 1.3363165855407715 img loss 1.4703447818756104 img loss 1.3991225957870483 img loss 1.4100182056427002 img loss 1.4883759021759033 img loss 1.4183446168899536 img loss 1.4862006902694702 img loss 1.5225719213485718 img loss 1.394252061843872 img loss 1.59715735912323 img loss 1.5166192054748535 img loss 1.4313114881515503 img loss 1.433787226676941 img loss 1.578936219215393 img loss 1.4519730806350708 img loss 1.357013463973999 img loss 1.4600988626480103 img loss 1.529945969581604 img loss 1.4062105417251587 img loss 1.4550398588180542 img loss 1.4420511722564697 img loss 1.4708683490753174 img loss 1.4855445623397827 img loss 1.4198240041732788 img loss 1.4409717321395874 img loss 1.3886640071868896 img loss 1.5215752124786377 img loss 1.539465069770813 img loss 1.4394139051437378 img loss 1.3967818021774292 img loss 1.4781960248947144 img loss 1.4709722995758057 img loss 1.491882085800171 img loss 1.4255894422531128 img loss 1.455157995223999 img loss 1.337316870689392 img loss 1.4779808521270752 img loss 1.4901753664016724 img loss 1.4325613975524902 img loss 1.4605289697647095 img loss 1.468400478363037 img loss 1.4303452968597412 img loss 1.440564751625061 img loss 1.445224642753601 img loss 1.3920360803604126 img loss 1.5803135633468628 img loss 1.3958983421325684 {'loss': 1.4647, 'grad_norm': 0.3990224003791809, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.8043320178985596 img loss 1.793125867843628 img loss 1.8110857009887695 img loss 1.6661466360092163 img loss 1.7479954957962036 img loss 1.690987229347229 img loss 1.8112668991088867 img loss 1.7730722427368164 img loss 1.65571928024292 img loss 1.7975856065750122 img loss 1.740639328956604 img loss 1.6295011043548584 img loss 1.7206693887710571 img loss 1.8798127174377441 img loss 1.606439232826233 img loss 1.9349055290222168 img loss 1.6132363080978394 img loss 1.5757982730865479 img loss 1.6748560667037964 img loss 1.8224016427993774 img loss 1.8088608980178833 img loss 1.599615454673767 img loss 1.762610673904419 img loss 1.8246204853057861 img loss 1.5949223041534424 img loss 1.6767603158950806 img loss 1.5600523948669434 img loss 1.6253148317337036 img loss 1.694451928138733 img loss 1.7769206762313843 img loss 1.5712850093841553 img loss 1.7307524681091309 img loss 1.580410122871399 img loss 1.8354790210723877 img loss 1.7937650680541992 img loss 1.9718605279922485 img loss 1.7122563123703003 img loss 1.6841461658477783 img loss 1.9111486673355103 img loss 1.8147368431091309 img loss 1.6669337749481201 img loss 1.7353535890579224 img loss 1.5848212242126465 img loss 1.7012457847595215 img loss 1.6848450899124146 img loss 1.6162912845611572 img loss 1.7578651905059814 img loss 1.8225404024124146 img loss 1.8056962490081787 img loss 1.7052052021026611 img loss 1.7117847204208374 img loss 1.6320509910583496 img loss 1.7702040672302246 img loss 1.684180736541748 img loss 1.7360131740570068 img loss 1.91982901096344 img loss 1.6557354927062988 img loss 1.9549366235733032 img loss 1.7115905284881592 img loss 1.8007720708847046 img loss 2.048572301864624 img loss 1.6850005388259888 img loss 1.8417789936065674 img loss 1.729814052581787 img loss 1.5884721279144287 img loss 1.735819935798645 img loss 1.6908482313156128 img loss 1.7655725479125977 img loss 1.7635531425476074 img loss 1.6298385858535767 img loss 1.9732856750488281 img loss 1.8405535221099854 img loss 1.6802725791931152 img loss 1.8607779741287231 img loss 1.6986291408538818 img loss 1.729383945465088 img loss 1.6913636922836304 img loss 1.6382273435592651 img loss 1.8484811782836914 img loss 1.6489177942276 img loss 1.6619080305099487 img loss 1.8143160343170166 img loss 1.6895921230316162 img loss 1.84474515914917 img loss 1.7340580224990845 img loss 1.8303543329238892 img loss 1.8270608186721802img loss 1.7174874544143677 img loss 1.889320731163025 img loss 1.8053476810455322 img loss 1.72749662399292 img loss 1.862859845161438 img loss 1.7581828832626343 img loss 1.7497780323028564 img loss 1.7293500900268555 img loss 1.8129829168319702 img loss 1.8174806833267212 img loss 1.6643061637878418 img loss 1.9242610931396484 img loss 1.6870322227478027 img loss 1.9467313289642334 img loss 1.7291241884231567 img loss 1.6583813428878784 img loss 1.669423222541809 img loss 1.845639944076538 img loss 1.581337809562683 img loss 1.7571557760238647 img loss 1.734424114227295 img loss 1.6439735889434814 img loss 1.728946328163147 img loss 1.6677813529968262 img loss 1.7331222295761108 img loss 1.6795868873596191 img loss 1.756213903427124 img loss 1.7042111158370972 img loss 1.938725471496582 img loss 1.8456296920776367 img loss 2.0424437522888184 img loss 1.8237342834472656 img loss 1.8353277444839478 img loss 1.7021280527114868 img loss 1.605825662612915 img loss 1.740955114364624 img loss 1.7025529146194458 img loss 1.6771684885025024 img loss 1.7829304933547974 img loss 1.7221031188964844 img loss 1.63578200340271 {'loss': 1.7458, 'grad_norm': 0.45076391100883484, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5629674196243286 img loss 1.5374969244003296 img loss 1.6220316886901855 img loss 1.6328455209732056 img loss 1.484290599822998 img loss 1.4062325954437256 img loss 1.5498894453048706 img loss 1.4827677011489868 img loss 1.3567144870758057 img loss 1.4123250246047974 img loss 1.5533373355865479 img loss 1.429226040840149 img loss 1.4927259683609009 img loss 1.4394515752792358 img loss 1.412354588508606 img loss 1.4570825099945068 img loss 1.5616823434829712 img loss 1.541474461555481 img loss 1.5166481733322144 img loss 1.5019488334655762 img loss 1.5158940553665161 img loss 1.4724698066711426 img loss 1.5682387351989746 img loss 1.543580174446106 img loss 1.5145272016525269 img loss 1.6658165454864502 img loss 1.5534873008728027 img loss 1.4936352968215942 img loss 1.4666180610656738 img loss 1.4719417095184326 img loss 1.5215903520584106 img loss 1.4131882190704346 img loss 1.6035526990890503 img loss 1.4972548484802246 img loss 1.3479564189910889 img loss 1.4361058473587036 img loss 1.4918142557144165 img loss 1.5346471071243286 img loss 1.5188497304916382 img loss 1.5739595890045166 img loss 1.6447964906692505 img loss 1.5093251466751099 img loss 1.5066170692443848 img loss 1.3891632556915283 img loss 1.5190893411636353 img loss 1.5566474199295044 img loss 1.4892404079437256 img loss 1.5914150476455688 img loss 1.6580532789230347 img loss 1.4827759265899658 img loss 1.480170726776123 img loss 1.636439561843872 img loss 1.499625325202942 img loss 1.5492252111434937 img loss 1.4373782873153687 img loss 1.5100260972976685 img loss 1.7234116792678833 img loss 1.4453694820404053 img loss 1.4582501649856567 img loss 1.549669623374939 img loss 1.509379267692566 img loss 1.5185819864273071 img loss 1.5096839666366577 img loss 1.5759245157241821 img loss 1.5438873767852783 img loss 1.4805742502212524 img loss 1.3478108644485474 img loss 1.507420301437378 img loss 1.5028986930847168 img loss 1.7663465738296509 img loss 1.6672149896621704 img loss 1.517170786857605 img loss 1.4333288669586182 img loss 1.552215337753296 img loss 1.3976719379425049 img loss 1.5755589008331299 img loss 1.5621966123580933 img loss 1.4957259893417358 img loss 1.428977608680725 img loss 1.525448203086853 img loss 1.5463744401931763 img loss 1.379625678062439 img loss 1.5306802988052368 img loss 1.4637868404388428 img loss 1.479748249053955 img loss 1.4630590677261353 img loss 1.715624213218689 img loss 1.5672920942306519 img loss 1.534108281135559 img loss 1.535871148109436 img loss 1.559570074081421 img loss 1.4334750175476074 img loss 1.6861904859542847 img loss 1.649084448814392 img loss 1.4615923166275024 img loss 1.5709888935089111 img loss 1.6626722812652588 img loss 1.5324445962905884 img loss 1.5750359296798706 img loss 1.4326328039169312 img loss 1.5508373975753784 img loss 1.4043195247650146 img loss 1.521064043045044 img loss 1.553542971611023 img loss 1.5138380527496338 img loss 1.3264213800430298 img loss 1.4204148054122925 img loss 1.4793379306793213 img loss 1.4705586433410645 img loss 1.539528489112854 img loss 1.332457423210144 img loss 1.5748465061187744 img loss 1.338518738746643 img loss 1.5490361452102661 img loss 1.4820390939712524 img loss 1.3737962245941162 img loss 1.4978562593460083 img loss 1.4101407527923584 img loss 1.483651876449585 img loss 1.6074631214141846 img loss 1.5228756666183472 img loss 1.50541353225708 img loss 1.5146574974060059 img loss 1.4978959560394287 img loss 1.4245505332946777 img loss 1.6420544385910034 img loss 1.5112048387527466 img loss 1.7045375108718872 {'loss': 1.5136, 'grad_norm': 0.3263760805130005, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2547622919082642 img loss 1.4301583766937256 img loss 1.2454626560211182 img loss 1.247599482536316 img loss 1.198405146598816 img loss 1.1559638977050781 img loss 1.31683349609375 img loss 1.304379940032959 img loss 1.278714895248413 img loss 1.3056793212890625 img loss 1.2519022226333618 img loss 1.1951700448989868 img loss 1.24727463722229 img loss 1.2055072784423828 img loss 1.2764406204223633 img loss 1.2448433637619019 img loss 1.2081810235977173 img loss 1.19480299949646 img loss 1.24895179271698 img loss 1.2036494016647339 img loss 1.2498013973236084 img loss 1.2824993133544922 img loss 1.2635562419891357 img loss 1.186028003692627 img loss 1.254892349243164 img loss 1.2067310810089111 img loss 1.2424464225769043 img loss 1.208306074142456 img loss 1.1690887212753296 img loss 1.219366431236267 img loss 1.2150455713272095 img loss 1.184557557106018 img loss 1.2669329643249512 img loss 1.2374142408370972 img loss 1.1791027784347534 img loss 1.2440966367721558 img loss 1.2925918102264404 img loss 1.2259705066680908 img loss 1.185615062713623 img loss 1.1910736560821533 img loss 1.2593414783477783 img loss 1.3125264644622803 img loss 1.2606542110443115 img loss 1.1684852838516235 img loss 1.226325273513794 img loss 1.265044093132019 img loss 1.2715479135513306 img loss 1.2678111791610718 img loss 1.2761855125427246 img loss 1.2022981643676758 img loss 1.3039650917053223 img loss 1.272912859916687 img loss 1.2576299905776978 img loss 1.2660999298095703 img loss 1.3174428939819336 img loss 1.2420246601104736 img loss 1.1918092966079712 img loss 1.2319530248641968 img loss 1.2123717069625854 img loss 1.2594823837280273 img loss 1.300758719444275 img loss 1.239702582359314 img loss 1.2422051429748535 img loss 1.2013585567474365 img loss 1.2520952224731445 img loss 1.2863911390304565 img loss 1.1991480588912964 img loss 1.254415512084961 img loss 1.254299521446228 img loss 1.2477003335952759 img loss 1.3015320301055908 img loss 1.2873085737228394 img loss 1.3478127717971802 img loss 1.2284741401672363 img loss 1.2827428579330444 img loss 1.1988874673843384 img loss 1.2262274026870728 img loss 1.3194224834442139 img loss 1.2762744426727295 img loss 1.2725863456726074 img loss 1.2279698848724365 img loss 1.2811554670333862 img loss 1.2966725826263428 img loss 1.3147578239440918 img loss 1.2078471183776855 img loss 1.2461397647857666 img loss 1.2318570613861084 img loss 1.2277488708496094 img loss 1.288175106048584 img loss 1.2960251569747925 img loss 1.2577186822891235 img loss 1.2711776494979858 img loss 1.2155035734176636 img loss 1.2476234436035156 img loss 1.2093114852905273 img loss 1.1345247030258179 img loss 1.2026036977767944 img loss 1.2791420221328735 img loss 1.3014700412750244 img loss 1.2578376531600952 img loss 1.2660006284713745 img loss 1.2355047464370728 img loss 1.2533602714538574 img loss 1.2808529138565063 img loss 1.2675637006759644 img loss 1.2913023233413696 img loss 1.2200473546981812 img loss 1.2367024421691895 img loss 1.2348034381866455 img loss 1.2885429859161377 img loss 1.2171673774719238 img loss 1.22564697265625 img loss 1.2599194049835205 img loss 1.2100653648376465 img loss 1.222506046295166 img loss 1.196359634399414 img loss 1.2440319061279297 img loss 1.1907583475112915 img loss 1.2479722499847412 img loss 1.2848644256591797 img loss 1.186591386795044 img loss 1.199483871459961 img loss 1.1662486791610718 img loss 1.304734706878662 img loss 1.1893867254257202 img loss 1.2208936214447021 img loss 1.3158718347549438 img loss 1.20480477809906 {'loss': 1.2458, 'grad_norm': 0.3262259364128113, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2612698078155518 img loss 1.2217167615890503 img loss 1.2632036209106445 img loss 1.2284821271896362 img loss 1.1866337060928345 img loss 1.3767110109329224 img loss 1.2190704345703125 img loss 1.2422960996627808 img loss 1.248216986656189 img loss 1.2363678216934204 img loss 1.1553926467895508 img loss 1.2321993112564087 img loss 1.21267569065094 img loss 1.2443097829818726 img loss 1.267321228981018 img loss 1.2577046155929565 img loss 1.1880760192871094 img loss 1.2632746696472168 img loss 1.240770697593689 img loss 1.2585601806640625 img loss 1.2394936084747314 img loss 1.2396981716156006 img loss 1.2086560726165771 img loss 1.2272480726242065 img loss 1.1955368518829346img loss 1.389481782913208 img loss 1.3072971105575562 img loss 1.1714320182800293 img loss 1.223863959312439 img loss 1.2753851413726807 img loss 1.1102689504623413 img loss 1.2702364921569824 img loss 1.216413974761963 img loss 1.1871012449264526 img loss 1.2896133661270142 img loss 1.2645337581634521 img loss 1.270236849784851 img loss 1.2647024393081665 img loss 1.2452027797698975 img loss 1.3086330890655518 img loss 1.2243432998657227 img loss 1.2587504386901855 img loss 1.2294775247573853 img loss 1.2422832250595093 img loss 1.2638204097747803 img loss 1.232738733291626 img loss 1.2399845123291016 img loss 1.269885778427124 img loss 1.2360199689865112 img loss 1.1903833150863647 img loss 1.1579941511154175 img loss 1.3027390241622925 img loss 1.3103539943695068 img loss 1.1722476482391357 img loss 1.181272268295288 img loss 1.203406810760498 img loss 1.2147115468978882 img loss 1.1897796392440796 img loss 1.243354082107544 img loss 1.2640247344970703 img loss 1.2401930093765259 img loss 1.228858470916748 img loss 1.318110704421997 img loss 1.2603588104248047 img loss 1.2040386199951172 img loss 1.282926082611084 img loss 1.2247740030288696 img loss 1.2745131254196167 img loss 1.3174817562103271 img loss 1.3216899633407593 img loss 1.3116501569747925img loss 1.1838041543960571 img loss 1.2161939144134521 img loss 1.2487905025482178 img loss 1.2283084392547607 img loss 1.3678505420684814 img loss 1.2633030414581299 img loss 1.2876304388046265 img loss 1.2658337354660034 img loss 1.227293610572815 img loss 1.2166590690612793 img loss 1.2388933897018433 img loss 1.256737232208252 img loss 1.260197401046753 img loss 1.22776460647583 img loss 1.2129369974136353 img loss 1.1859838962554932 img loss 1.3575397729873657 img loss 1.2047888040542603 img loss 1.2083759307861328 img loss 1.2690939903259277 img loss 1.2487181425094604 img loss 1.243722677230835 img loss 1.2952603101730347 img loss 1.313269019126892 img loss 1.2692008018493652 img loss 1.260115146636963 img loss 1.242349624633789 img loss 1.2537057399749756 img loss 1.1945571899414062 img loss 1.316623330116272 img loss 1.3634686470031738 img loss 1.291155457496643 img loss 1.2782796621322632 img loss 1.2966712713241577 img loss 1.2276180982589722img loss 1.2966505289077759 img loss 1.2482165098190308 img loss 1.223589539527893 img loss 1.2752702236175537 img loss 1.295209288597107 img loss 1.1916940212249756 img loss 1.2733283042907715 img loss 1.2731412649154663 img loss 1.2467564344406128 img loss 1.2630757093429565 img loss 1.1353168487548828 img loss 1.2884528636932373 img loss 1.3234814405441284 img loss 1.3054463863372803 img loss 1.282989501953125 img loss 1.195063829421997 img loss 1.2683933973312378 img loss 1.2251861095428467 img loss 1.2966679334640503 img loss 1.2128827571868896 img loss 1.2000954151153564 img loss 1.2768254280090332 {'loss': 1.2495, 'grad_norm': 0.3503306210041046, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5093339681625366 img loss 1.3335907459259033 img loss 1.4314144849777222 img loss 1.3313359022140503 img loss 1.513179898262024 img loss 1.5255202054977417 img loss 1.4282788038253784 img loss 1.459754467010498 img loss 1.4226558208465576 img loss 1.3963981866836548 img loss 1.4617893695831299 img loss 1.3445056676864624 img loss 1.4196858406066895 img loss 1.5247763395309448 img loss 1.3634229898452759 img loss 1.3553305864334106 img loss 1.388152837753296 img loss 1.5623444318771362 img loss 1.5193400382995605 img loss 1.5146085023880005 img loss 1.4594835042953491 img loss 1.3993488550186157 img loss 1.4037549495697021 img loss 1.510068655014038 img loss 1.4113560914993286 img loss 1.451411485671997 img loss 1.320676326751709 img loss 1.384608507156372 img loss 1.5443955659866333 img loss 1.5182135105133057 img loss 1.351163387298584 img loss 1.596352458000183 img loss 1.3974969387054443 img loss 1.365608811378479 img loss 1.5661141872406006 img loss 1.432015299797058 img loss 1.2998898029327393 img loss 1.46013343334198 img loss 1.323289155960083 img loss 1.4576104879379272 img loss 1.5307590961456299 img loss 1.4560668468475342 img loss 1.4426411390304565 img loss 1.4792684316635132 img loss 1.512895941734314 img loss 1.4608792066574097 img loss 1.5184577703475952 img loss 1.405249834060669 img loss 1.3587605953216553 img loss 1.5918323993682861 img loss 1.367091417312622 img loss 1.4827486276626587 img loss 1.2910677194595337 img loss 1.4667710065841675 img loss 1.4160945415496826 img loss 1.4580713510513306 img loss 1.4385703802108765 img loss 1.47795569896698 img loss 1.4990572929382324 img loss 1.3908146619796753 img loss 1.4864346981048584 img loss 1.4182655811309814 img loss 1.4680554866790771 img loss 1.4958897829055786 img loss 1.3294954299926758 img loss 1.4825794696807861 img loss 1.3559069633483887 img loss 1.43501615524292 img loss 1.3559333086013794 img loss 1.3896404504776 img loss 1.623125672340393 img loss 1.4761041402816772 img loss 1.4332458972930908 img loss 1.4119282960891724 img loss 1.4266151189804077 img loss 1.4440339803695679 img loss 1.5025346279144287 img loss 1.3608821630477905 img loss 1.3566938638687134 img loss 1.5206758975982666 img loss 1.538696527481079 img loss 1.4863063097000122 img loss 1.2914469242095947 img loss 1.4389357566833496 img loss 1.448949933052063 img loss 1.578404188156128 img loss 1.502914547920227 img loss 1.33519446849823 img loss 1.4199824333190918 img loss 1.4526275396347046 img loss 1.5269514322280884 img loss 1.4773260354995728 img loss 1.4554479122161865 img loss 1.3680561780929565 img loss 1.4386199712753296 img loss 1.4538884162902832 img loss 1.4447077512741089 img loss 1.4522204399108887 img loss 1.4534657001495361 img loss 1.5349899530410767 img loss 1.430655598640442 img loss 1.4916226863861084 img loss 1.4396289587020874 img loss 1.3548884391784668 img loss 1.4257616996765137 img loss 1.359076738357544 img loss 1.3762106895446777 img loss 1.4102911949157715 img loss 1.4810508489608765 img loss 1.371842622756958 img loss 1.4031819105148315 img loss 1.3666586875915527 img loss 1.4699074029922485 img loss 1.4646830558776855 img loss 1.4185837507247925 img loss 1.3358548879623413 img loss 1.364912509918213 img loss 1.523343563079834 img loss 1.4032386541366577 img loss 1.4072421789169312 img loss 1.4285848140716553 img loss 1.5275769233703613 img loss 1.4007319211959839img loss 1.3078339099884033 img loss 1.3694567680358887 img loss 1.5178359746932983 img loss 1.37929105758667 img loss 1.3629013299942017 {'loss': 1.4373, 'grad_norm': 0.4042629599571228, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2506232261657715 img loss 1.2445300817489624 img loss 1.339337706565857 img loss 1.262772798538208 img loss 1.2783005237579346 img loss 1.2473218441009521 img loss 1.3371590375900269 img loss 1.2714345455169678 img loss 1.2998082637786865 img loss 1.241451621055603 img loss 1.2537648677825928 img loss 1.2747849225997925 img loss 1.3250463008880615 img loss 1.250923991203308 img loss 1.3411251306533813 img loss 1.3239660263061523 img loss 1.2671879529953003 img loss 1.341625690460205 img loss 1.2293869256973267 img loss 1.2493385076522827 img loss 1.2032623291015625 img loss 1.3306732177734375 img loss 1.2642931938171387 img loss 1.3104219436645508 img loss 1.3429656028747559 img loss 1.2457579374313354 img loss 1.2760827541351318 img loss 1.2713253498077393 img loss 1.2920317649841309 img loss 1.2720928192138672 img loss 1.2743191719055176 img loss 1.3213040828704834 img loss 1.188805103302002 img loss 1.3783725500106812 img loss 1.2828487157821655 img loss 1.3381173610687256 img loss 1.3528729677200317 img loss 1.3443763256072998 img loss 1.2632935047149658 img loss 1.30014967918396img loss 1.2651315927505493 img loss 1.2191965579986572 img loss 1.2911146879196167 img loss 1.248610019683838 img loss 1.303596019744873 img loss 1.328244924545288 img loss 1.232751488685608 img loss 1.3090128898620605 img loss 1.3088455200195312 img loss 1.2525758743286133 img loss 1.2369612455368042 img loss 1.2984522581100464 img loss 1.432647466659546 img loss 1.2836205959320068 img loss 1.3293242454528809 img loss 1.3149648904800415 img loss 1.2061811685562134 img loss 1.3903309106826782 img loss 1.2213420867919922 img loss 1.265298843383789 img loss 1.3050695657730103 img loss 1.2139220237731934 img loss 1.2919889688491821 img loss 1.2112419605255127 img loss 1.283064365386963 img loss 1.2774841785430908 img loss 1.2615095376968384 img loss 1.248807668685913 img loss 1.260064959526062 img loss 1.3504078388214111 img loss 1.365344524383545img loss 1.3704415559768677 img loss 1.2214113473892212 img loss 1.3383532762527466 img loss 1.3792611360549927 img loss 1.252276062965393 img loss 1.2277036905288696 img loss 1.1993367671966553 img loss 1.2346644401550293 img loss 1.2933651208877563 img loss 1.3855394124984741 img loss 1.213373064994812 img loss 1.1658532619476318 img loss 1.2753757238388062 img loss 1.4221320152282715 img loss 1.2781108617782593 img loss 1.3889929056167603 img loss 1.2763919830322266 img loss 1.2520675659179688 img loss 1.2848747968673706 img loss 1.2914886474609375 img loss 1.294215440750122 img loss 1.2715860605239868 img loss 1.365883231163025 img loss 1.212048888206482 img loss 1.2437762022018433 img loss 1.2905547618865967 img loss 1.2775777578353882 img loss 1.2576367855072021 img loss 1.2532105445861816 img loss 1.2334102392196655 img loss 1.3398364782333374 img loss 1.211647868156433 img loss 1.267519235610962 img loss 1.2809672355651855 img loss 1.2835372686386108 img loss 1.269930362701416 img loss 1.4992201328277588 img loss 1.2009280920028687 img loss 1.2349486351013184 img loss 1.3546794652938843 img loss 1.2190115451812744 img loss 1.2790850400924683 img loss 1.247722864151001 img loss 1.2695969343185425 img loss 1.3717883825302124 img loss 1.2115871906280518 img loss 1.2199939489364624 img loss 1.2784438133239746 img loss 1.230904459953308 img loss 1.2499583959579468 img loss 1.243883728981018 img loss 1.2949002981185913 img loss 1.2728220224380493 img loss 1.2189536094665527 img loss 1.3443845510482788 img loss 1.5178253650665283 img loss 1.2070149183273315 {'loss': 1.2841, 'grad_norm': 0.3427724242210388, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2464959621429443 img loss 1.2255589962005615 img loss 1.2095437049865723 img loss 1.3309688568115234 img loss 1.1888482570648193 img loss 1.2166856527328491 img loss 1.28197181224823 img loss 1.1557176113128662 img loss 1.2599552869796753 img loss 1.2307939529418945 img loss 1.2333120107650757 img loss 1.2246758937835693 img loss 1.2029030323028564 img loss 1.2577764987945557 img loss 1.355039358139038 img loss 1.248582363128662 img loss 1.2273495197296143 img loss 1.1876602172851562 img loss 1.1996768712997437 img loss 1.2646219730377197 img loss 1.2680355310440063 img loss 1.2199026346206665 img loss 1.2261968851089478 img loss 1.266757845878601 img loss 1.289078950881958 img loss 1.2693610191345215 img loss 1.2565526962280273 img loss 1.2891424894332886 img loss 1.2775001525878906 img loss 1.2030819654464722 img loss 1.2443058490753174 img loss 1.2315654754638672 img loss 1.3191604614257812 img loss 1.313646674156189 img loss 1.3423333168029785 img loss 1.2832787036895752 img loss 1.2225818634033203 img loss 1.1793545484542847 img loss 1.3220869302749634 img loss 1.218530297279358 img loss 1.3203610181808472 img loss 1.2859729528427124 img loss 1.1885188817977905 img loss 1.2697510719299316 img loss 1.1485551595687866 img loss 1.3014748096466064 img loss 1.300285816192627 img loss 1.1392595767974854 img loss 1.3151378631591797 img loss 1.2227482795715332 img loss 1.3491456508636475 img loss 1.1743254661560059 img loss 1.238922119140625 img loss 1.2552964687347412 img loss 1.2127259969711304 img loss 1.287229061126709 img loss 1.2492759227752686 img loss 1.1615129709243774 img loss 1.322195291519165 img loss 1.310407042503357 img loss 1.2841248512268066 img loss 1.2965267896652222 img loss 1.2032935619354248 img loss 1.1904237270355225 img loss 1.317925214767456 img loss 1.1312923431396484 img loss 1.22672700881958 img loss 1.1286430358886719 img loss 1.2333729267120361 img loss 1.3221155405044556 img loss 1.2163176536560059 img loss 1.285525918006897 img loss 1.1952937841415405 img loss 1.2793301343917847 img loss 1.2149765491485596 img loss 1.2653861045837402 img loss 1.3652442693710327 img loss 1.1705173254013062 img loss 1.2322044372558594 img loss 1.222503423690796 img loss 1.3580260276794434 img loss 1.1830635070800781 img loss 1.2302284240722656 img loss 1.2821835279464722 img loss 1.3030245304107666 img loss 1.224555253982544 img loss 1.198694109916687 img loss 1.361020803451538 img loss 1.2541917562484741 img loss 1.3246078491210938 img loss 1.2175445556640625 img loss 1.2695187330245972 img loss 1.298438549041748 img loss 1.236696720123291 img loss 1.2280691862106323 img loss 1.271530032157898 img loss 1.1546248197555542 img loss 1.2907178401947021 img loss 1.244619369506836 img loss 1.18660569190979 img loss 1.2306594848632812 img loss 1.3298723697662354 img loss 1.2121199369430542 img loss 1.231397032737732 img loss 1.2448467016220093 img loss 1.19236159324646 img loss 1.3357659578323364 img loss 1.1922523975372314 img loss 1.2706410884857178 img loss 1.2922616004943848 img loss 1.2212822437286377 img loss 1.1798710823059082 img loss 1.2165533304214478 img loss 1.354131817817688 img loss 1.1694477796554565 img loss 1.1599822044372559 img loss 1.2588717937469482 img loss 1.2970072031021118 img loss 1.174568772315979 img loss 1.3300195932388306 img loss 1.2836735248565674 img loss 1.311793565750122 img loss 1.3322539329528809 img loss 1.2823323011398315img loss 1.3157867193222046 img loss 1.12644624710083 img loss 1.232400894165039 img loss 1.2209091186523438 {'loss': 1.2496, 'grad_norm': 0.25794270634651184, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.418057918548584 img loss 1.2204523086547852 img loss 1.2922991514205933 img loss 1.332955241203308 img loss 1.406805157661438 img loss 1.2691940069198608 img loss 1.3257827758789062 img loss 1.3556855916976929 img loss 1.4310851097106934 img loss 1.3472543954849243 img loss 1.387186884880066 img loss 1.315314531326294 img loss 1.3782551288604736 img loss 1.3297569751739502 img loss 1.3160982131958008 img loss 1.2261371612548828 img loss 1.3441689014434814 img loss 1.3051350116729736 img loss 1.4179507493972778 img loss 1.418028473854065 img loss 1.4230036735534668 img loss 1.3891236782073975 img loss 1.2858432531356812 img loss 1.357608437538147 img loss 1.2918462753295898 img loss 1.2855737209320068 img loss 1.418520450592041 img loss 1.3485362529754639 img loss 1.3825666904449463 img loss 1.3414119482040405 img loss 1.3447624444961548 img loss 1.2699995040893555 img loss 1.3104791641235352 img loss 1.3897414207458496 img loss 1.3951923847198486 img loss 1.2711261510849 img loss 1.2774690389633179 img loss 1.3235366344451904 img loss 1.37832510471344 img loss 1.379404902458191 img loss 1.3667720556259155 img loss 1.3183444738388062 img loss 1.3680851459503174 img loss 1.2947425842285156 img loss 1.316271185874939 img loss 1.3807324171066284 img loss 1.3206716775894165 img loss 1.2555675506591797 img loss 1.4221034049987793 img loss 1.3829251527786255 img loss 1.3108984231948853 img loss 1.337573528289795 img loss 1.3071935176849365 img loss 1.4363446235656738 img loss 1.3626257181167603 img loss 1.3081815242767334 img loss 1.3911480903625488 img loss 1.3952305316925049 img loss 1.31500244140625 img loss 1.2997088432312012 img loss 1.3525750637054443 img loss 1.3300564289093018 img loss 1.3934047222137451 img loss 1.3585880994796753 img loss 1.3535950183868408 img loss 1.4003729820251465 img loss 1.3884997367858887 img loss 1.3037688732147217 img loss 1.3574661016464233 img loss 1.368463397026062 img loss 1.3978861570358276 img loss 1.3585182428359985 img loss 1.320501685142517 img loss 1.2722612619400024 img loss 1.2752975225448608 img loss 1.332750916481018 img loss 1.367682933807373 img loss 1.3691879510879517 img loss 1.271968126296997 img loss 1.3909329175949097 img loss 1.3700381517410278 img loss 1.347678542137146 img loss 1.3693143129348755 img loss 1.3690388202667236 img loss 1.4524590969085693 img loss 1.2433079481124878 img loss 1.3888648748397827 img loss 1.2619283199310303 img loss 1.3115147352218628 img loss 1.2739500999450684 img loss 1.3490198850631714 img loss 1.3131669759750366 img loss 1.3617075681686401 img loss 1.3853051662445068 img loss 1.3772622346878052 img loss 1.2937220335006714img loss 1.5415492057800293 img loss 1.3180458545684814 img loss 1.2101589441299438 img loss 1.3140132427215576 img loss 1.432044267654419 img loss 1.4147944450378418 img loss 1.3450696468353271 img loss 1.3131599426269531 img loss 1.3568562269210815 img loss 1.3551279306411743 img loss 1.3762530088424683 img loss 1.3721230030059814 img loss 1.3669390678405762 img loss 1.3570789098739624img loss 1.363291621208191 img loss 1.3031227588653564 img loss 1.3622100353240967 img loss 1.4780776500701904 img loss 1.3367060422897339 img loss 1.3651096820831299 img loss 1.3319412469863892 img loss 1.413561463356018 img loss 1.4002827405929565 img loss 1.327977180480957 img loss 1.3555123805999756 img loss 1.4039053916931152 img loss 1.3716470003128052 img loss 1.4904159307479858 img loss 1.3923718929290771 img loss 1.3103790283203125 img loss 1.3867840766906738 img loss 1.3354917764663696 {'loss': 1.3502, 'grad_norm': 0.29278892278671265, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2667217254638672 img loss 1.4487874507904053 img loss 1.287237524986267 img loss 1.3776251077651978 img loss 1.2370058298110962 img loss 1.260713815689087 img loss 1.3024555444717407 img loss 1.3037011623382568 img loss 1.3569000959396362 img loss 1.3095192909240723 img loss 1.372361660003662 img loss 1.241052508354187 img loss 1.2956148386001587 img loss 1.2784147262573242 img loss 1.3392986059188843 img loss 1.3360838890075684 img loss 1.2720668315887451 img loss 1.36516273021698 img loss 1.3152570724487305 img loss 1.356030821800232 img loss 1.3367544412612915 img loss 1.3991762399673462 img loss 1.3032128810882568 img loss 1.352466106414795 img loss 1.2499078512191772 img loss 1.2748113870620728 img loss 1.3739582300186157 img loss 1.298820972442627 img loss 1.3001291751861572 img loss 1.2248772382736206 img loss 1.2173248529434204 img loss 1.3670592308044434 img loss 1.2918516397476196 img loss 1.246410846710205 img loss 1.3480945825576782 img loss 1.3491934537887573 img loss 1.375164270401001 img loss 1.3204915523529053 img loss 1.3919570446014404 img loss 1.3401315212249756 img loss 1.3689334392547607 img loss 1.2952135801315308 img loss 1.3606611490249634 img loss 1.350888967514038 img loss 1.2652416229248047 img loss 1.3259963989257812 img loss 1.3052438497543335 img loss 1.2424637079238892 img loss 1.3295073509216309 img loss 1.3140815496444702 img loss 1.3223836421966553 img loss 1.2630577087402344 img loss 1.2334028482437134 img loss 1.2259492874145508 img loss 1.3256502151489258 img loss 1.4834028482437134 img loss 1.3432929515838623 img loss 1.2827732563018799 img loss 1.2798497676849365 img loss 1.3496649265289307 img loss 1.2779667377471924 img loss 1.33304762840271 img loss 1.3390098810195923 img loss 1.2722618579864502img loss 1.3480974435806274 img loss 1.3406397104263306 img loss 1.3595830202102661 img loss 1.3203033208847046 img loss 1.283869981765747 img loss 1.378089189529419 img loss 1.3650380373001099 img loss 1.282341718673706 img loss 1.2647414207458496 img loss 1.32489013671875 img loss 1.2863905429840088 img loss 1.2364919185638428 img loss 1.2402299642562866 img loss 1.3405935764312744 img loss 1.282719373703003 img loss 1.3393372297286987 img loss 1.271514654159546 img loss 1.3083453178405762 img loss 1.3558794260025024 img loss 1.173699975013733 img loss 1.250363826751709 img loss 1.3240342140197754 img loss 1.232380747795105 img loss 1.3114248514175415 img loss 1.200224757194519 img loss 1.341803789138794 img loss 1.2390142679214478 img loss 1.3545914888381958 img loss 1.1809287071228027 img loss 1.4244107007980347 img loss 1.359393835067749 img loss 1.2873725891113281 img loss 1.2472003698349 img loss 1.4220126867294312 img loss 1.2799201011657715 img loss 1.2932857275009155 img loss 1.2506904602050781 img loss 1.2772619724273682 img loss 1.3444265127182007 img loss 1.318740725517273 img loss 1.3612009286880493 img loss 1.2293305397033691 img loss 1.3023475408554077 img loss 1.329075813293457 img loss 1.3939505815505981 img loss 1.328348994255066 img loss 1.2881897687911987 img loss 1.1879781484603882 img loss 1.2671887874603271 img loss 1.3277807235717773 img loss 1.2906181812286377 img loss 1.2466180324554443 img loss 1.3105906248092651 img loss 1.320251226425171 img loss 1.3226546049118042 img loss 1.2811100482940674 img loss 1.3057221174240112 img loss 1.2227380275726318 img loss 1.2837270498275757 img loss 1.2579132318496704 img loss 1.321458339691162 img loss 1.2342784404754639 img loss 1.2918554544448853 img loss 1.1945980787277222 {'loss': 1.3056, 'grad_norm': 0.2629443109035492, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2641347646713257 img loss 1.249247431755066 img loss 1.3395920991897583 img loss 1.5028382539749146 img loss 1.31729257106781 img loss 1.3019989728927612 img loss 1.3050450086593628 img loss 1.345133662223816 img loss 1.373470664024353 img loss 1.318536639213562 img loss 1.3828845024108887 img loss 1.2852262258529663 img loss 1.2256972789764404 img loss 1.290290355682373 img loss 1.3082115650177002 img loss 1.4482080936431885 img loss 1.3174667358398438 img loss 1.3568623065948486 img loss 1.3224719762802124 img loss 1.2947914600372314 img loss 1.4526581764221191 img loss 1.3573009967803955 img loss 1.4116331338882446 img loss 1.3169342279434204 img loss 1.4359182119369507 img loss 1.3405805826187134 img loss 1.2883942127227783 img loss 1.4631990194320679 img loss 1.234006643295288 img loss 1.2481294870376587 img loss 1.3179569244384766 img loss 1.423310399055481 img loss 1.418211579322815 img loss 1.346994161605835 img loss 1.3705618381500244 img loss 1.282475471496582 img loss 1.5015943050384521 img loss 1.4339181184768677 img loss 1.3127754926681519 img loss 1.265344262123108 img loss 1.2092790603637695 img loss 1.4174124002456665 img loss 1.3075050115585327 img loss 1.3654570579528809 img loss 1.358648657798767 img loss 1.2404756546020508 img loss 1.293750286102295 img loss 1.3443800210952759 img loss 1.3311113119125366 img loss 1.403355360031128 img loss 1.3524945974349976 img loss 1.367305874824524 img loss 1.335668921470642 img loss 1.3663430213928223 img loss 1.2268532514572144 img loss 1.2711855173110962 img loss 1.3023550510406494 img loss 1.4567503929138184 img loss 1.3911727666854858 img loss 1.2644808292388916 img loss 1.3348699808120728 img loss 1.361312985420227 img loss 1.3337528705596924 img loss 1.4263746738433838 img loss 1.3266751766204834 img loss 1.2869288921356201 img loss 1.3643423318862915 img loss 1.405306339263916 img loss 1.3059303760528564 img loss 1.3614031076431274 img loss 1.3819420337677002 img loss 1.4085347652435303 img loss 1.3273226022720337 img loss 1.3178964853286743 img loss 1.4348206520080566 img loss 1.3208231925964355 img loss 1.3762844800949097 img loss 1.395259141921997 img loss 1.360341191291809 img loss 1.3185844421386719 img loss 1.3285326957702637 img loss 1.3234140872955322 img loss 1.3533884286880493 img loss 1.2897924184799194 img loss 1.3830674886703491 img loss 1.3564783334732056 img loss 1.3418081998825073 img loss 1.381609320640564 img loss 1.5480748414993286 img loss 1.3210958242416382 img loss 1.3445929288864136 img loss 1.4077194929122925 img loss 1.3425179719924927 img loss 1.290719985961914 img loss 1.3117755651474 img loss 1.361446738243103 img loss 1.3528720140457153 img loss 1.3985174894332886 img loss 1.4160219430923462 img loss 1.4029914140701294 img loss 1.3284907341003418 img loss 1.362583041191101 img loss 1.2654393911361694 img loss 1.4111870527267456 img loss 1.3616178035736084 img loss 1.3844292163848877 img loss 1.2460651397705078 img loss 1.2771334648132324 img loss 1.322386622428894 img loss 1.302135705947876 img loss 1.347510576248169 img loss 1.3749240636825562 img loss 1.3145499229431152 img loss 1.3560913801193237 img loss 1.3059834241867065 img loss 1.3731213808059692 img loss 1.4787747859954834 img loss 1.499660611152649 img loss 1.3479615449905396 img loss 1.3287639617919922 img loss 1.2962369918823242 img loss 1.3789398670196533 img loss 1.3877147436141968 img loss 1.3065237998962402 img loss 1.2986208200454712 img loss 1.4782432317733765 img loss 1.3304588794708252 img loss 1.3627712726593018 {'loss': 1.3485, 'grad_norm': 0.29695674777030945, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5042215585708618 img loss 1.3507277965545654 img loss 1.2078659534454346 img loss 1.2704453468322754 img loss 1.3612990379333496 img loss 1.3793483972549438 img loss 1.418055772781372 img loss 1.3795164823532104 img loss 1.4123642444610596 img loss 1.396340250968933 img loss 1.5907095670700073 img loss 1.3599522113800049 img loss 1.3802952766418457 img loss 1.3517146110534668 img loss 1.3153049945831299 img loss 1.3674037456512451 img loss 1.4493157863616943 img loss 1.3271070718765259 img loss 1.418534517288208 img loss 1.3903708457946777 img loss 1.3122928142547607 img loss 1.315677523612976 img loss 1.4566285610198975 img loss 1.3942949771881104 img loss 1.340050458908081 img loss 1.4464150667190552 img loss 1.4039065837860107 img loss 1.4402529001235962 img loss 1.3484941720962524 img loss 1.3635591268539429 img loss 1.3745033740997314 img loss 1.2906445264816284 img loss 1.3855054378509521 img loss 1.416915774345398 img loss 1.3254152536392212 img loss 1.3318719863891602 img loss 1.3019516468048096 img loss 1.5262891054153442 img loss 1.4056199789047241 img loss 1.4426438808441162 img loss 1.3244316577911377 img loss 1.354114294052124 img loss 1.4051129817962646 img loss 1.4665579795837402 img loss 1.4127116203308105 img loss 1.384742021560669 img loss 1.300680160522461 img loss 1.3552582263946533 img loss 1.4607473611831665 img loss 1.344093918800354 img loss 1.4167530536651611 img loss 1.3676536083221436 img loss 1.3081505298614502 img loss 1.4068914651870728 img loss 1.3488610982894897 img loss 1.369993805885315 img loss 1.3410146236419678 img loss 1.3557703495025635 img loss 1.4164788722991943 img loss 1.4836686849594116 img loss 1.3414130210876465 img loss 1.395753026008606 img loss 1.3368638753890991 img loss 1.391409993171692 img loss 1.362541675567627 img loss 1.3427331447601318 img loss 1.4743354320526123 img loss 1.3119685649871826 img loss 1.5062625408172607 img loss 1.3636215925216675 img loss 1.3554950952529907 img loss 1.4515376091003418 img loss 1.2664180994033813 img loss 1.3325860500335693 img loss 1.4064958095550537 img loss 1.351260781288147 img loss 1.3651363849639893 img loss 1.362589955329895 img loss 1.4044169187545776 img loss 1.4198881387710571 img loss 1.3823254108428955 img loss 1.5384160280227661 img loss 1.3856803178787231 img loss 1.2851608991622925 img loss 1.4569170475006104 img loss 1.393142819404602 img loss 1.3876988887786865 img loss 1.408372163772583 img loss 1.2960761785507202 img loss 1.3042676448822021 img loss 1.5576682090759277 img loss 1.3273539543151855 img loss 1.351668119430542 img loss 1.3712135553359985 img loss 1.4327362775802612 img loss 1.3718798160552979 img loss 1.3667341470718384 img loss 1.378566861152649 img loss 1.417303442955017 img loss 1.5686955451965332 img loss 1.4578312635421753 img loss 1.4211982488632202 img loss 1.4124037027359009 img loss 1.3836311101913452 img loss 1.3511396646499634 img loss 1.503548264503479 img loss 1.4625364542007446 img loss 1.4192469120025635 img loss 1.3590229749679565 img loss 1.3487451076507568 img loss 1.3556559085845947 img loss 1.445349931716919 img loss 1.4017409086227417 img loss 1.3871872425079346 img loss 1.4792081117630005 img loss 1.328460693359375 img loss 1.480839490890503 img loss 1.3388808965682983 img loss 1.404489278793335 img loss 1.452725887298584 img loss 1.2963253259658813 img loss 1.6567641496658325 img loss 1.3283628225326538 img loss 1.4469703435897827 img loss 1.2703880071640015 img loss 1.4178673028945923 img loss 1.3676421642303467 img loss 1.426082730293274 {'loss': 1.3891, 'grad_norm': 0.3824176788330078, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2623659372329712 img loss 1.2362496852874756 img loss 1.3067636489868164 img loss 1.2080492973327637 img loss 1.2991873025894165 img loss 1.2458432912826538 img loss 1.2308287620544434 img loss 1.3014382123947144 img loss 1.3050543069839478 img loss 1.2876102924346924 img loss 1.2707887887954712 img loss 1.211564540863037 img loss 1.1848607063293457 img loss 1.2246413230895996 img loss 1.3072807788848877 img loss 1.278427004814148 img loss 1.2418678998947144 img loss 1.2317025661468506 img loss 1.2289280891418457 img loss 1.1812851428985596 img loss 1.3126676082611084 img loss 1.3844517469406128 img loss 1.2769465446472168 img loss 1.2158944606781006 img loss 1.177469253540039 img loss 1.235332727432251 img loss 1.2604032754898071 img loss 1.2748209238052368 img loss 1.217139720916748 img loss 1.2787197828292847 img loss 1.283668875694275 img loss 1.2562061548233032 img loss 1.2654435634613037 img loss 1.2209811210632324 img loss 1.2701019048690796 img loss 1.2349601984024048 img loss 1.302538514137268 img loss 1.2206671237945557 img loss 1.2084953784942627 img loss 1.2563942670822144 img loss 1.433362603187561 img loss 1.3026123046875 img loss 1.2993061542510986 img loss 1.2999199628829956 img loss 1.307765007019043 img loss 1.254647135734558 img loss 1.2364624738693237 img loss 1.3069835901260376 img loss 1.1942564249038696 img loss 1.2590610980987549 img loss 1.2101147174835205 img loss 1.1980384588241577 img loss 1.268107295036316 img loss 1.3336158990859985 img loss 1.2957762479782104 img loss 1.2389130592346191 img loss 1.271289587020874 img loss 1.2574241161346436 img loss 1.2490442991256714 img loss 1.16033935546875 img loss 1.21544349193573 img loss 1.2648251056671143 img loss 1.303128719329834 img loss 1.2432122230529785 img loss 1.2254141569137573 img loss 1.2375617027282715 img loss 1.185789942741394 img loss 1.2816165685653687 img loss 1.1986626386642456 img loss 1.3228511810302734 img loss 1.277484655380249 img loss 1.2604687213897705 img loss 1.4030481576919556 img loss 1.2560280561447144 img loss 1.2238152027130127 img loss 1.1820753812789917 img loss 1.2496929168701172 img loss 1.257229208946228 img loss 1.2806713581085205 img loss 1.1841485500335693 img loss 1.323211908340454 img loss 1.2048765420913696 img loss 1.213875651359558 img loss 1.328770637512207 img loss 1.2808148860931396 img loss 1.2759854793548584 img loss 1.198904275894165 img loss 1.2180166244506836 img loss 1.1859164237976074 img loss 1.3276312351226807 img loss 1.2256287336349487 img loss 1.1948509216308594 img loss 1.359739899635315 img loss 1.3220089673995972 img loss 1.2898086309432983 img loss 1.288893699645996 img loss 1.2498401403427124 img loss 1.345658540725708 img loss 1.229184865951538 img loss 1.2937517166137695 img loss 1.2473658323287964 img loss 1.2493915557861328 img loss 1.2145614624023438 img loss 1.2511770725250244 img loss 1.3060243129730225 img loss 1.2364122867584229 img loss 1.3674741983413696 img loss 1.2635416984558105 img loss 1.243682622909546 img loss 1.378709077835083 img loss 1.2530120611190796 img loss 1.2577829360961914 img loss 1.2143089771270752 img loss 1.2339966297149658 img loss 1.2326358556747437 img loss 1.231086254119873 img loss 1.2450627088546753 img loss 1.160211205482483 img loss 1.306482195854187 img loss 1.2527430057525635 img loss 1.2625728845596313 img loss 1.2040694952011108 img loss 1.2961170673370361 img loss 1.2299984693527222 img loss 1.218665599822998 img loss 1.2644665241241455 img loss 1.2951549291610718 img loss 1.225536823272705 {'loss': 1.2588, 'grad_norm': 0.26687923073768616, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2930103540420532 img loss 1.2309350967407227 img loss 1.271884560585022 img loss 1.225184440612793 img loss 1.2704925537109375 img loss 1.2669754028320312 img loss 1.2332968711853027 img loss 1.2337288856506348 img loss 1.2451179027557373 img loss 1.271008014678955 img loss 1.2421692609786987 img loss 1.2976775169372559 img loss 1.2310187816619873 img loss 1.3067541122436523 img loss 1.2727231979370117 img loss 1.2398427724838257 img loss 1.2411739826202393 img loss 1.2680394649505615 img loss 1.2416118383407593 img loss 1.2525594234466553 img loss 1.2761821746826172 img loss 1.303121566772461 img loss 1.2616665363311768 img loss 1.3072137832641602 img loss 1.182853102684021 img loss 1.2301775217056274 img loss 1.2712316513061523 img loss 1.2035490274429321 img loss 1.22772216796875 img loss 1.2394003868103027 img loss 1.2588990926742554 img loss 1.2161296606063843 img loss 1.2401186227798462 img loss 1.2139157056808472 img loss 1.2723052501678467 img loss 1.231153130531311 img loss 1.2587850093841553 img loss 1.2264220714569092 img loss 1.2622489929199219 img loss 1.218348741531372 img loss 1.2585291862487793 img loss 1.2457280158996582 img loss 1.3268868923187256 img loss 1.2706855535507202 img loss 1.241851806640625 img loss 1.1544194221496582img loss 1.223731517791748 img loss 1.2722914218902588 img loss 1.2850730419158936 img loss 1.2244658470153809 img loss 1.2106513977050781 img loss 1.3231201171875 img loss 1.307224154472351 img loss 1.2020012140274048 img loss 1.2534624338150024 img loss 1.1770975589752197 img loss 1.2884613275527954 img loss 1.215421199798584 img loss 1.222307562828064 img loss 1.222794771194458 img loss 1.2495307922363281 img loss 1.2489486932754517 img loss 1.2634323835372925 img loss 1.2541967630386353 img loss 1.2520579099655151 img loss 1.240578293800354 img loss 1.1827033758163452 img loss 1.2394022941589355 img loss 1.211434245109558 img loss 1.2432887554168701 img loss 1.2265090942382812 img loss 1.2394424676895142 img loss 1.2293338775634766 img loss 1.2550140619277954 img loss 1.2235265970230103 img loss 1.2361295223236084 img loss 1.2676100730895996 img loss 1.2070586681365967 img loss 1.2356297969818115 img loss 1.2316279411315918 img loss 1.2595452070236206 img loss 1.2203381061553955 img loss 1.2457752227783203 img loss 1.2913649082183838 img loss 1.2346199750900269 img loss 1.2129911184310913 img loss 1.229454755783081 img loss 1.2590678930282593 img loss 1.2284377813339233 img loss 1.2239283323287964 img loss 1.2463693618774414 img loss 1.245368480682373 img loss 1.2387020587921143 img loss 1.2380422353744507 img loss 1.2159738540649414 img loss 1.226426124572754 img loss 1.2161078453063965 img loss 1.2421709299087524 img loss 1.245429277420044 img loss 1.210028052330017 img loss 1.2686306238174438 img loss 1.2432076930999756 img loss 1.2354439496994019 img loss 1.2060893774032593 img loss 1.2438857555389404 img loss 1.2292969226837158 img loss 1.2222212553024292 img loss 1.2352402210235596 img loss 1.2006468772888184 img loss 1.2468804121017456 img loss 1.2127244472503662 img loss 1.172777533531189 img loss 1.187652349472046 img loss 1.2334344387054443 img loss 1.2349544763565063 img loss 1.2851488590240479 img loss 1.274193525314331 img loss 1.2171757221221924 img loss 1.2224003076553345 img loss 1.2356380224227905 img loss 1.2498455047607422 img loss 1.2541046142578125 img loss 1.2087472677230835 img loss 1.27992582321167 img loss 1.2634702920913696 img loss 1.1731433868408203 img loss 1.2546952962875366 img loss 1.249658226966858 {'loss': 1.242, 'grad_norm': 0.22773124277591705, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.246305227279663 img loss 1.2968639135360718 img loss 1.400259256362915 img loss 1.2138822078704834 img loss 1.2558612823486328 img loss 1.3709906339645386 img loss 1.2467951774597168 img loss 1.290287971496582 img loss 1.2872568368911743 img loss 1.2537094354629517 img loss 1.219429850578308 img loss 1.1858314275741577 img loss 1.2095165252685547 img loss 1.244784951210022 img loss 1.279329538345337 img loss 1.2370166778564453 img loss 1.3886500597000122 img loss 1.2966140508651733 img loss 1.2305666208267212 img loss 1.469204306602478 img loss 1.2868413925170898 img loss 1.2671394348144531 img loss 1.4617046117782593 img loss 1.3226617574691772 img loss 1.4132651090621948 img loss 1.2863373756408691 img loss 1.2586416006088257 img loss 1.2992348670959473 img loss 1.2689062356948853 img loss 1.270893931388855 img loss 1.2849643230438232 img loss 1.2776262760162354 img loss 1.3403578996658325 img loss 1.2041466236114502 img loss 1.3201595544815063 img loss 1.2173340320587158 img loss 1.2438808679580688 img loss 1.4068776369094849 img loss 1.1903842687606812 img loss 1.2163540124893188 img loss 1.3511347770690918 img loss 1.317948579788208 img loss 1.286537528038025 img loss 1.3921787738800049 img loss 1.1567996740341187 img loss 1.2532026767730713 img loss 1.334570288658142 img loss 1.2425687313079834 img loss 1.2370021343231201 img loss 1.3550819158554077 img loss 1.1757019758224487 img loss 1.2835553884506226 img loss 1.2196182012557983 img loss 1.2832818031311035 img loss 1.2491520643234253 img loss 1.2591078281402588 img loss 1.2491676807403564 img loss 1.2416653633117676 img loss 1.2111364603042603 img loss 1.271836280822754 img loss 1.2278039455413818 img loss 1.4228284358978271 img loss 1.3221638202667236 img loss 1.4045207500457764 img loss 1.2198950052261353 img loss 1.256263017654419 img loss 1.2379226684570312 img loss 1.2840012311935425 img loss 1.164240837097168 img loss 1.2885538339614868 img loss 1.307108759880066 img loss 1.2759195566177368 img loss 1.2505004405975342 img loss 1.3243770599365234 img loss 1.3215444087982178 img loss 1.2459182739257812 img loss 1.2647223472595215 img loss 1.301887035369873 img loss 1.2781269550323486 img loss 1.290453314781189 img loss 1.2515006065368652 img loss 1.276538372039795 img loss 1.2850385904312134 img loss 1.302003264427185 img loss 1.304687738418579 img loss 1.272410273551941 img loss 1.283262848854065 img loss 1.225938320159912 img loss 1.3665120601654053 img loss 1.3601374626159668 img loss 1.3145231008529663 img loss 1.2471798658370972 img loss 1.2821669578552246 img loss 1.241081714630127 img loss 1.4777191877365112 img loss 1.3358386754989624 img loss 1.3196592330932617 img loss 1.2739391326904297 img loss 1.2484302520751953 img loss 1.3820866346359253 img loss 1.2703436613082886 img loss 1.278879165649414 img loss 1.2337305545806885 img loss 1.2680634260177612 img loss 1.271012544631958 img loss 1.3055740594863892 img loss 1.3514107465744019 img loss 1.3900872468948364 img loss 1.3041703701019287 img loss 1.3470946550369263 img loss 1.3616124391555786 img loss 1.3223196268081665 img loss 1.3086861371994019 img loss 1.3223618268966675 img loss 1.3212530612945557 img loss 1.24453866481781 img loss 1.2854499816894531 img loss 1.3193291425704956 img loss 1.223231554031372 img loss 1.3659309148788452 img loss 1.3452248573303223 img loss 1.300776481628418 img loss 1.2754979133605957 img loss 1.2732257843017578 img loss 1.185438632965088 img loss 1.2846096754074097 img loss 1.2802585363388062 img loss 1.3031337261199951 {'loss': 1.2884, 'grad_norm': 0.2884580194950104, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1752744913101196 img loss 1.1887807846069336 img loss 1.2264591455459595 img loss 1.217260718345642 img loss 1.2777326107025146 img loss 1.2720311880111694 img loss 1.2248096466064453 img loss 1.2262895107269287 img loss 1.200742244720459 img loss 1.2215991020202637 img loss 1.1782543659210205 img loss 1.2330305576324463 img loss 1.179460048675537 img loss 1.200617790222168 img loss 1.1635898351669312 img loss 1.208036184310913 img loss 1.227324366569519 img loss 1.270495891571045 img loss 1.2360761165618896 img loss 1.1883618831634521 img loss 1.1482473611831665 img loss 1.2075366973876953 img loss 1.2230346202850342 img loss 1.2292380332946777 img loss 1.2572888135910034 img loss 1.2220176458358765 img loss 1.257803201675415 img loss 1.218807578086853 img loss 1.244887351989746 img loss 1.2119663953781128 img loss 1.1826810836791992 img loss 1.232550859451294 img loss 1.2087304592132568 img loss 1.277851939201355 img loss 1.1701453924179077 img loss 1.2302565574645996 img loss 1.1736259460449219 img loss 1.181831955909729 img loss 1.2117561101913452 img loss 1.1912014484405518 img loss 1.23231840133667 img loss 1.1545977592468262 img loss 1.1977145671844482 img loss 1.2554157972335815 img loss 1.266762614250183 img loss 1.224829912185669 img loss 1.1311737298965454 img loss 1.257046103477478 img loss 1.1440762281417847 img loss 1.26809823513031 img loss 1.2291772365570068 img loss 1.1927303075790405 img loss 1.269405722618103 img loss 1.2159541845321655 img loss 1.2446496486663818 img loss 1.2582670450210571 img loss 1.1999030113220215 img loss 1.2060612440109253 img loss 1.2531598806381226 img loss 1.2027820348739624 img loss 1.1858248710632324 img loss 1.2069107294082642img loss 1.267992377281189 img loss 1.3163888454437256 img loss 1.224588394165039 img loss 1.2540812492370605 img loss 1.1753931045532227 img loss 1.2777459621429443 img loss 1.1224315166473389 img loss 1.2855993509292603 img loss 1.1339300870895386img loss 1.215064525604248 img loss 1.2462058067321777 img loss 1.1968193054199219 img loss 1.196749210357666 img loss 1.2114536762237549 img loss 1.1867860555648804 img loss 1.3054550886154175 img loss 1.1782959699630737 img loss 1.1526583433151245 img loss 1.206096887588501 img loss 1.161702036857605 img loss 1.2548850774765015 img loss 1.2290054559707642 img loss 1.2271180152893066 img loss 1.257495403289795 img loss 1.2157244682312012 img loss 1.1776180267333984 img loss 1.2263315916061401 img loss 1.2302205562591553 img loss 1.2418125867843628 img loss 1.2823939323425293 img loss 1.1917929649353027 img loss 1.2023539543151855 img loss 1.1902986764907837 img loss 1.188923716545105 img loss 1.2241939306259155 img loss 1.3138624429702759 img loss 1.2100467681884766 img loss 1.1748112440109253 img loss 1.2641962766647339 img loss 1.2552810907363892 img loss 1.2388267517089844 img loss 1.2123351097106934 img loss 1.1541028022766113 img loss 1.1949241161346436 img loss 1.2328510284423828 img loss 1.2284789085388184 img loss 1.2693067789077759 img loss 1.1268227100372314 img loss 1.2523189783096313 img loss 1.2528189420700073 img loss 1.2642210721969604 img loss 1.2284692525863647 img loss 1.306281328201294 img loss 1.2220100164413452 img loss 1.2207088470458984 img loss 1.2687029838562012 img loss 1.246036171913147 img loss 1.3719675540924072 img loss 1.224129557609558 img loss 1.302245020866394 img loss 1.214876651763916 img loss 1.1813528537750244 img loss 1.1648383140563965 img loss 1.2111364603042603 img loss 1.149179458618164 img loss 1.1994247436523438 {'loss': 1.2204, 'grad_norm': 0.24566933512687683, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2744261026382446 img loss 1.2197761535644531 img loss 1.2344204187393188 img loss 1.3068116903305054 img loss 1.2933759689331055 img loss 1.3107000589370728 img loss 1.2868685722351074 img loss 1.1931111812591553 img loss 1.2426203489303589 img loss 1.2461464405059814 img loss 1.202412486076355 img loss 1.277724027633667 img loss 1.2885451316833496 img loss 1.1832093000411987 img loss 1.3380825519561768 img loss 1.254536509513855 img loss 1.186541199684143 img loss 1.2294836044311523 img loss 1.2645000219345093 img loss 1.2640283107757568 img loss 1.2997839450836182 img loss 1.445298433303833 img loss 1.2844552993774414 img loss 1.2447859048843384 img loss 1.2917536497116089 img loss 1.24072265625 img loss 1.3224756717681885 img loss 1.1925376653671265 img loss 1.2823413610458374 img loss 1.3022555112838745 img loss 1.281466007232666img loss 1.3320183753967285 img loss 1.3227487802505493 img loss 1.4099538326263428 img loss 1.2126497030258179 img loss 1.2946712970733643 img loss 1.275133728981018 img loss 1.2184717655181885 img loss 1.2636499404907227 img loss 1.2667725086212158 img loss 1.2965129613876343 img loss 1.2470698356628418 img loss 1.2619171142578125 img loss 1.2510076761245728 img loss 1.3489805459976196 img loss 1.303053617477417 img loss 1.254058599472046 img loss 1.4114124774932861 img loss 1.2823102474212646 img loss 1.2293115854263306 img loss 1.2273428440093994 img loss 1.378059983253479 img loss 1.286472201347351 img loss 1.2433083057403564 img loss 1.2209515571594238 img loss 1.2259132862091064 img loss 1.3885189294815063 img loss 1.3097341060638428 img loss 1.217922568321228 img loss 1.186753749847412 img loss 1.2668190002441406img loss 1.2240298986434937 img loss 1.2329374551773071 img loss 1.2067402601242065 img loss 1.2563223838806152 img loss 1.2708882093429565 img loss 1.360355257987976 img loss 1.2159316539764404 img loss 1.1834043264389038 img loss 1.3632092475891113 img loss 1.1899763345718384 img loss 1.2829216718673706 img loss 1.2848200798034668 img loss 1.2304739952087402 img loss 1.2176717519760132 img loss 1.2931181192398071 img loss 1.2437556982040405 img loss 1.1818727254867554 img loss 1.2462414503097534 img loss 1.2014081478118896 img loss 1.2835992574691772 img loss 1.2412223815917969 img loss 1.2161930799484253 img loss 1.3257644176483154 img loss 1.2581589221954346 img loss 1.231674075126648 img loss 1.2427191734313965 img loss 1.3416835069656372 img loss 1.231483817100525 img loss 1.294356346130371 img loss 1.2541210651397705 img loss 1.2461715936660767 img loss 1.2813557386398315 img loss 1.2605526447296143 img loss 1.226276159286499 img loss 1.2330937385559082 img loss 1.2288870811462402 img loss 1.3043806552886963 img loss 1.3095791339874268 img loss 1.2600796222686768 img loss 1.2362446784973145 img loss 1.250787377357483 img loss 1.2852236032485962 img loss 1.274208903312683 img loss 1.2554954290390015 img loss 1.294298529624939 img loss 1.2320603132247925 img loss 1.3188631534576416 img loss 1.2760834693908691 img loss 1.3508026599884033 img loss 1.2221348285675049 img loss 1.2891639471054077 img loss 1.2487895488739014 img loss 1.2678323984146118 img loss 1.2546155452728271 img loss 1.2556283473968506 img loss 1.2331032752990723 img loss 1.294525384902954 img loss 1.272663950920105 img loss 1.2915818691253662 img loss 1.237661361694336 img loss 1.2088230848312378 img loss 1.178683876991272 img loss 1.2606315612792969 img loss 1.3948761224746704 img loss 1.2747416496276855 img loss 1.3447808027267456 img loss 1.2001276016235352 {'loss': 1.267, 'grad_norm': 0.24569258093833923, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.214884638786316 img loss 1.2362782955169678 img loss 1.286118745803833 img loss 1.2696187496185303 img loss 1.1436803340911865 img loss 1.334906816482544 img loss 1.2694568634033203 img loss 1.2262486219406128 img loss 1.2282500267028809 img loss 1.3264555931091309 img loss 1.2605507373809814 img loss 1.2124334573745728 img loss 1.1726702451705933 img loss 1.2039285898208618 img loss 1.2128604650497437 img loss 1.2524172067642212 img loss 1.1453466415405273 img loss 1.2144675254821777 img loss 1.2103317975997925 img loss 1.155918002128601 img loss 1.2342793941497803 img loss 1.227404236793518 img loss 1.219031572341919 img loss 1.1762508153915405 img loss 1.2745598554611206 img loss 1.2629730701446533 img loss 1.2255465984344482 img loss 1.3199284076690674 img loss 1.2345635890960693 img loss 1.2602821588516235 img loss 1.1878886222839355 img loss 1.225812315940857 img loss 1.2780488729476929 img loss 1.247261881828308 img loss 1.209574580192566 img loss 1.2088228464126587 img loss 1.2269147634506226 img loss 1.1934956312179565 img loss 1.361804485321045 img loss 1.2233541011810303 img loss 1.2285810708999634 img loss 1.2134363651275635 img loss 1.2127403020858765 img loss 1.2652519941329956 img loss 1.1612725257873535 img loss 1.2501695156097412 img loss 1.2495867013931274 img loss 1.1482412815093994 img loss 1.4121745824813843 img loss 1.204615592956543 img loss 1.1399379968643188 img loss 1.1440155506134033 img loss 1.1114161014556885 img loss 1.2027809619903564 img loss 1.1992584466934204 img loss 1.189950704574585 img loss 1.209031581878662 img loss 1.196815013885498 img loss 1.192210078239441 img loss 1.29807448387146 img loss 1.2466022968292236 img loss 1.2361772060394287 img loss 1.218277931213379 img loss 1.2076586484909058 img loss 1.2926135063171387 img loss 1.1834843158721924 img loss 1.15492582321167 img loss 1.1332097053527832 img loss 1.2027651071548462 img loss 1.1736750602722168 img loss 1.1163256168365479 img loss 1.1786409616470337 img loss 1.2421687841415405 img loss 1.2104370594024658 img loss 1.2764053344726562 img loss 1.1919983625411987 img loss 1.222804307937622 img loss 1.2231261730194092 img loss 1.2314181327819824 img loss 1.2181847095489502 img loss 1.1482397317886353 img loss 1.1600074768066406 img loss 1.2339935302734375 img loss 1.2301068305969238 img loss 1.2243072986602783 img loss 1.1932291984558105 img loss 1.3684791326522827 img loss 1.1949784755706787 img loss 1.282926082611084 img loss 1.1488299369812012 img loss 1.1635087728500366 img loss 1.1902940273284912 img loss 1.2525447607040405 img loss 1.2384026050567627 img loss 1.4058432579040527 img loss 1.2357829809188843 img loss 1.2338104248046875 img loss 1.1323741674423218 img loss 1.3200668096542358 img loss 1.156450629234314 img loss 1.2093400955200195 img loss 1.1345915794372559 img loss 1.2091865539550781 img loss 1.1633809804916382 img loss 1.166597604751587 img loss 1.173345923423767 img loss 1.203071117401123 img loss 1.2079505920410156 img loss 1.1745834350585938 img loss 1.2523534297943115 img loss 1.2074388265609741 img loss 1.2368733882904053 img loss 1.2229082584381104 img loss 1.2346773147583008 img loss 1.1909263134002686 img loss 1.173264741897583 img loss 1.2184759378433228 img loss 1.3024730682373047 img loss 1.299681544303894 img loss 1.272979736328125 img loss 1.1498898267745972 img loss 1.1411633491516113 img loss 1.118626594543457 img loss 1.174119234085083 img loss 1.214647650718689 img loss 1.1507974863052368 img loss 1.3776880502700806 img loss 1.2004631757736206 {'loss': 1.2192, 'grad_norm': 0.30397722125053406, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2042975425720215 img loss 1.302222728729248 img loss 1.3016533851623535 img loss 1.2457616329193115 img loss 1.1598865985870361 img loss 1.3092886209487915 img loss 1.2839312553405762 img loss 1.2148973941802979 img loss 1.232110619544983 img loss 1.382077693939209 img loss 1.261465311050415 img loss 1.2101866006851196 img loss 1.2624040842056274 img loss 1.2618646621704102 img loss 1.2014291286468506 img loss 1.3028018474578857 img loss 1.2464630603790283 img loss 1.1342837810516357 img loss 1.2668342590332031 img loss 1.2712953090667725 img loss 1.2527744770050049 img loss 1.2051676511764526 img loss 1.2160682678222656 img loss 1.2984567880630493 img loss 1.2329696416854858 img loss 1.2497308254241943 img loss 1.3211599588394165 img loss 1.3465325832366943 img loss 1.3190199136734009 img loss 1.28629469871521 img loss 1.2610630989074707 img loss 1.2573065757751465 img loss 1.2472951412200928 img loss 1.360170841217041 img loss 1.3316607475280762 img loss 1.1767066717147827 img loss 1.1708046197891235 img loss 1.2770252227783203 img loss 1.2425965070724487 img loss 1.1610183715820312 img loss 1.3711339235305786 img loss 1.3116605281829834 img loss 1.2593618631362915 img loss 1.2175006866455078 img loss 1.1920486688613892 img loss 1.1703429222106934 img loss 1.32400381565094 img loss 1.2990540266036987 img loss 1.2423431873321533 img loss 1.2449593544006348 img loss 1.330356240272522 img loss 1.27739417552948 img loss 1.3365753889083862 img loss 1.301695466041565 img loss 1.2655893564224243 img loss 1.3042172193527222 img loss 1.2479777336120605 img loss 1.2507542371749878 img loss 1.2596166133880615 img loss 1.3055646419525146 img loss 1.30575430393219 img loss 1.2912753820419312 img loss 1.3453487157821655 img loss 1.2806228399276733 img loss 1.3175829648971558 img loss 1.299209475517273 img loss 1.3547581434249878 img loss 1.223366618156433 img loss 1.213976263999939 img loss 1.3590952157974243 img loss 1.3196264505386353 img loss 1.2838977575302124 img loss 1.3471356630325317 img loss 1.2727720737457275 img loss 1.2495129108428955 img loss 1.1823177337646484 img loss 1.2703033685684204 img loss 1.2104370594024658 img loss 1.2232961654663086 img loss 1.2324578762054443 img loss 1.3446470499038696 img loss 1.2434238195419312 img loss 1.3196282386779785 img loss 1.274824857711792 img loss 1.2778029441833496 img loss 1.2150615453720093 img loss 1.2417353391647339 img loss 1.2375990152359009 img loss 1.2753244638442993 img loss 1.2027804851531982 img loss 1.2583469152450562 img loss 1.2754700183868408 img loss 1.2911250591278076 img loss 1.2188395261764526 img loss 1.2661643028259277 img loss 1.239410161972046 img loss 1.207385540008545 img loss 1.227504014968872 img loss 1.2800499200820923 img loss 1.1990158557891846 img loss 1.2820053100585938 img loss 1.2123764753341675 img loss 1.3115581274032593 img loss 1.2717596292495728 img loss 1.358051061630249 img loss 1.3496453762054443 img loss 1.3031291961669922 img loss 1.2484314441680908 img loss 1.275786280632019 img loss 1.1874083280563354 img loss 1.209208369255066 img loss 1.3006038665771484 img loss 1.2994065284729004 img loss 1.2441400289535522 img loss 1.230204463005066 img loss 1.2351348400115967 img loss 1.1955918073654175 img loss 1.2850584983825684 img loss 1.3618062734603882 img loss 1.2145859003067017 img loss 1.1558359861373901 img loss 1.1798827648162842 img loss 1.2226850986480713 img loss 1.2587292194366455 img loss 1.2825255393981934 img loss 1.3302230834960938 img loss 1.234485149383545 img loss 1.2098820209503174 {'loss': 1.2634, 'grad_norm': 0.33542725443840027, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1547858715057373 img loss 1.2072540521621704 img loss 1.3070112466812134 img loss 1.2439625263214111 img loss 1.2153762578964233 img loss 1.2065784931182861 img loss 1.3025033473968506 img loss 1.2728817462921143 img loss 1.1775774955749512 img loss 1.23565673828125 img loss 1.2249096632003784 img loss 1.1782947778701782 img loss 1.2184337377548218 img loss 1.2205950021743774 img loss 1.172654390335083 img loss 1.2195522785186768 img loss 1.260878086090088 img loss 1.212107539176941 img loss 1.2687335014343262 img loss 1.279402256011963 img loss 1.2071789503097534 img loss 1.2518186569213867 img loss 1.2206900119781494 img loss 1.2190240621566772 img loss 1.2234121561050415 img loss 1.2367615699768066 img loss 1.2279571294784546 img loss 1.2739307880401611 img loss 1.277916431427002 img loss 1.2128691673278809 img loss 1.247300386428833 img loss 1.3384076356887817 img loss 1.1699504852294922 img loss 1.164884328842163 img loss 1.1852622032165527 img loss 1.206129789352417 img loss 1.1751973628997803 img loss 1.1533901691436768 img loss 1.2416924238204956 img loss 1.2267669439315796 img loss 1.2172398567199707 img loss 1.2517808675765991 img loss 1.2352418899536133 img loss 1.2270474433898926 img loss 1.1897141933441162 img loss 1.2495559453964233 img loss 1.2349779605865479 img loss 1.2439570426940918 img loss 1.1753153800964355 img loss 1.2193230390548706 img loss 1.3099247217178345 img loss 1.226588249206543 img loss 1.2586700916290283 img loss 1.200397253036499 img loss 1.1820049285888672 img loss 1.3952332735061646 img loss 1.2895758152008057 img loss 1.1823889017105103 img loss 1.2496376037597656 img loss 1.2070385217666626img loss 1.1911375522613525 img loss 1.2443172931671143 img loss 1.1892324686050415 img loss 1.2570438385009766 img loss 1.2055566310882568 img loss 1.2239264249801636 img loss 1.1530189514160156 img loss 1.2695348262786865 img loss 1.2483553886413574 img loss 1.2802404165267944 img loss 1.207343578338623 img loss 1.2013826370239258 img loss 1.2026457786560059 img loss 1.1931136846542358 img loss 1.1288142204284668 img loss 1.2177399396896362 img loss 1.1864045858383179 img loss 1.1884182691574097 img loss 1.1564521789550781 img loss 1.3086888790130615 img loss 1.1442842483520508 img loss 1.2064173221588135 img loss 1.3107237815856934 img loss 1.2692570686340332 img loss 1.2559763193130493 img loss 1.2150276899337769 img loss 1.2890573740005493 img loss 1.2314469814300537 img loss 1.1837303638458252 img loss 1.1897032260894775 img loss 1.1260582208633423 img loss 1.178895354270935 img loss 1.241816520690918 img loss 1.24213445186615 img loss 1.184250831604004 img loss 1.1784391403198242 img loss 1.2080615758895874 img loss 1.2159876823425293 img loss 1.2426353693008423 img loss 1.2099120616912842 img loss 1.167052984237671 img loss 1.2524583339691162 img loss 1.3067126274108887 img loss 1.347411036491394 img loss 1.2188456058502197 img loss 1.1239246129989624 img loss 1.2002525329589844 img loss 1.1388328075408936 img loss 1.1848398447036743 img loss 1.3065216541290283 img loss 1.274274230003357 img loss 1.2339982986450195 img loss 1.1847875118255615 img loss 1.2366331815719604 img loss 1.2322148084640503 img loss 1.2238281965255737 img loss 1.3049466609954834 img loss 1.3215957880020142 img loss 1.2093652486801147 img loss 1.160725474357605 img loss 1.294838309288025 img loss 1.271651029586792 img loss 1.1910154819488525 img loss 1.2099274396896362 img loss 1.2313355207443237 img loss 1.2430038452148438 img loss 1.2442373037338257 img loss 1.1582940816879272 {'loss': 1.2253, 'grad_norm': 0.38926833868026733, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.336077094078064 img loss 1.3395088911056519 img loss 1.275689721107483 img loss 1.3400301933288574 img loss 1.3793177604675293 img loss 1.3985093832015991 img loss 1.418567180633545 img loss 1.2923206090927124 img loss 1.340388536453247 img loss 1.3707327842712402 img loss 1.3374110460281372 img loss 1.4158360958099365 img loss 1.3761324882507324 img loss 1.4369616508483887 img loss 1.354196310043335 img loss 1.3481007814407349 img loss 1.3661513328552246 img loss 1.351159930229187 img loss 1.336698055267334 img loss 1.3406895399093628 img loss 1.3929533958435059 img loss 1.3586817979812622 img loss 1.283528208732605 img loss 1.3803905248641968 img loss 1.4037106037139893 img loss 1.4657026529312134 img loss 1.3830444812774658 img loss 1.3325246572494507 img loss 1.349540114402771 img loss 1.2315021753311157 img loss 1.3830997943878174 img loss 1.3656401634216309 img loss 1.2702699899673462 img loss 1.326371192932129 img loss 1.3166749477386475 img loss 1.4437185525894165 img loss 1.3658469915390015 img loss 1.3130509853363037 img loss 1.378406047821045 img loss 1.432664394378662 img loss 1.3060919046401978 img loss 1.387712001800537 img loss 1.3723164796829224 img loss 1.3880683183670044 img loss 1.3113688230514526 img loss 1.3064799308776855 img loss 1.2567681074142456 img loss 1.4732072353363037 img loss 1.4371600151062012 img loss 1.274433970451355 img loss 1.3536946773529053 img loss 1.3127894401550293 img loss 1.3762856721878052 img loss 1.2517842054367065 img loss 1.3608113527297974 img loss 1.3215492963790894 img loss 1.3747469186782837 img loss 1.4038536548614502 img loss 1.395023226737976 img loss 1.3856476545333862 img loss 1.3257442712783813 img loss 1.3651889562606812 img loss 1.3500913381576538 img loss 1.439928650856018 img loss 1.3891065120697021 img loss 1.4285153150558472 img loss 1.3593891859054565 img loss 1.4040099382400513 img loss 1.3491013050079346 img loss 1.3995190858840942 img loss 1.39949369430542 img loss 1.4724427461624146 img loss 1.3610402345657349 img loss 1.375698447227478 img loss 1.2760565280914307 img loss 1.3466345071792603 img loss 1.4962775707244873 img loss 1.3583409786224365 img loss 1.4062094688415527 img loss 1.331734299659729 img loss 1.3027111291885376 img loss 1.3991302251815796 img loss 1.345099925994873 img loss 1.3403195142745972 img loss 1.3702504634857178 img loss 1.3736169338226318 img loss 1.3460220098495483 img loss 1.4657251834869385 img loss 1.2835413217544556 img loss 1.3248014450073242 img loss 1.2940396070480347 img loss 1.3060240745544434 img loss 1.3680905103683472 img loss 1.3411794900894165 img loss 1.3720344305038452 img loss 1.3629257678985596 img loss 1.320482611656189 img loss 1.3391600847244263 img loss 1.354276180267334 img loss 1.3398165702819824 img loss 1.361420750617981 img loss 1.3591581583023071 img loss 1.377787470817566 img loss 1.4096516370773315 img loss 1.4511773586273193 img loss 1.353910207748413 img loss 1.4009449481964111 img loss 1.4413654804229736 img loss 1.3555271625518799 img loss 1.4306645393371582 img loss 1.4036999940872192 img loss 1.3681695461273193 img loss 1.4666597843170166 img loss 1.3716084957122803 img loss 1.3731950521469116 img loss 1.393261194229126 img loss 1.3696990013122559 img loss 1.3954308032989502 img loss 1.3886703252792358 img loss 1.3424485921859741 img loss 1.289722204208374 img loss 1.4302960634231567 img loss 1.4103093147277832 img loss 1.3592761754989624 img loss 1.4178413152694702 img loss 1.4620168209075928 img loss 1.4084203243255615 img loss 1.4440239667892456 {'loss': 1.3672, 'grad_norm': 0.3524741232395172, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2046040296554565 img loss 1.1773338317871094 img loss 1.1757206916809082 img loss 1.2490752935409546 img loss 1.1555521488189697 img loss 1.2070392370224 img loss 1.256417989730835 img loss 1.2442560195922852 img loss 1.2033348083496094 img loss 1.2344976663589478 img loss 1.206680178642273 img loss 1.169311285018921 img loss 1.2228407859802246 img loss 1.2176945209503174 img loss 1.2169103622436523 img loss 1.271848440170288 img loss 1.2322993278503418 img loss 1.2374881505966187 img loss 1.2396459579467773 img loss 1.273637056350708 img loss 1.1868265867233276 img loss 1.2201570272445679 img loss 1.181840181350708 img loss 1.238870620727539 img loss 1.2403854131698608 img loss 1.2532316446304321 img loss 1.2321094274520874 img loss 1.171436071395874 img loss 1.2667707204818726 img loss 1.215396523475647 img loss 1.216734528541565 img loss 1.2242677211761475 img loss 1.1024243831634521 img loss 1.1961151361465454 img loss 1.1716276407241821 img loss 1.250675916671753 img loss 1.3415491580963135 img loss 1.1888976097106934 img loss 1.2507394552230835 img loss 1.2565447092056274 img loss 1.2104105949401855 img loss 1.2508835792541504 img loss 1.1821998357772827 img loss 1.191990852355957 img loss 1.2495596408843994 img loss 1.241711139678955 img loss 1.2295557260513306 img loss 1.2308058738708496 img loss 1.2069816589355469 img loss 1.2652132511138916 img loss 1.3403550386428833 img loss 1.2409279346466064 img loss 1.2587192058563232 img loss 1.2109779119491577 img loss 1.3533600568771362 img loss 1.219130516052246 img loss 1.1846208572387695 img loss 1.2362511157989502 img loss 1.2144653797149658 img loss 1.2461479902267456 img loss 1.2009657621383667 img loss 1.1790969371795654 img loss 1.1794859170913696 img loss 1.1591384410858154 img loss 1.2244266271591187 img loss 1.133765697479248 img loss 1.2270903587341309 img loss 1.1802823543548584 img loss 1.2468373775482178 img loss 1.1932973861694336 img loss 1.1735824346542358 img loss 1.216155767440796 img loss 1.2384833097457886 img loss 1.2441132068634033 img loss 1.2921810150146484 img loss 1.2782905101776123 img loss 1.1626932621002197 img loss 1.2172651290893555 img loss 1.2003597021102905 img loss 1.2518479824066162 img loss 1.1472421884536743 img loss 1.1938652992248535 img loss 1.2250747680664062 img loss 1.2279887199401855 img loss 1.2352169752120972 img loss 1.1787022352218628 img loss 1.1873382329940796 img loss 1.2193408012390137 img loss 1.2371916770935059 img loss 1.142242670059204 img loss 1.178173542022705 img loss 1.1941368579864502 img loss 1.1340670585632324 img loss 1.2304191589355469 img loss 1.2120692729949951 img loss 1.208085536956787 img loss 1.195145845413208 img loss 1.3381940126419067 img loss 1.3230148553848267 img loss 1.188789963722229 img loss 1.1911835670471191 img loss 1.1874420642852783 img loss 1.2422096729278564 img loss 1.135939598083496 img loss 1.20834219455719 img loss 1.2122893333435059 img loss 1.2000187635421753 img loss 1.2213557958602905 img loss 1.307645559310913 img loss 1.2934982776641846 img loss 1.2048934698104858 img loss 1.2172131538391113 img loss 1.253490686416626 img loss 1.2393289804458618 img loss 1.2131413221359253 img loss 1.2866770029067993 img loss 1.234714150428772 img loss 1.191912055015564 img loss 1.1305280923843384 img loss 1.195960521697998 img loss 1.2100826501846313 img loss 1.2448770999908447 img loss 1.203328013420105 img loss 1.1915338039398193 img loss 1.2458038330078125 img loss 1.2282519340515137 img loss 1.2322959899902344 img loss 1.2268426418304443 {'loss': 1.2196, 'grad_norm': 0.5593644380569458, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2574455738067627 img loss 1.2209895849227905 img loss 1.2497848272323608 img loss 1.250537633895874 img loss 1.2661412954330444 img loss 1.2396167516708374 img loss 1.2299704551696777 img loss 1.269936442375183 img loss 1.3563634157180786 img loss 1.2066254615783691 img loss 1.1918649673461914 img loss 1.249796748161316 img loss 1.3110531568527222 img loss 1.2563400268554688 img loss 1.2712557315826416 img loss 1.2726306915283203 img loss 1.2130005359649658 img loss 1.2510515451431274 img loss 1.3266490697860718 img loss 1.2431230545043945 img loss 1.2022732496261597 img loss 1.3512308597564697 img loss 1.245253562927246 img loss 1.244942307472229 img loss 1.3348145484924316 img loss 1.3139910697937012 img loss 1.2975536584854126 img loss 1.2186501026153564 img loss 1.2148802280426025 img loss 1.2315630912780762 img loss 1.2672685384750366 img loss 1.296399474143982 img loss 1.2635406255722046 img loss 1.3065897226333618 img loss 1.2304617166519165 img loss 1.2856444120407104 img loss 1.2630242109298706 img loss 1.1811586618423462 img loss 1.2058435678482056 img loss 1.3379589319229126 img loss 1.2291282415390015 img loss 1.2819184064865112 img loss 1.2280380725860596 img loss 1.1636102199554443 img loss 1.3173987865447998 img loss 1.274290680885315 img loss 1.2262523174285889 img loss 1.3120640516281128 img loss 1.3185267448425293 img loss 1.2345832586288452 img loss 1.2740846872329712 img loss 1.1768810749053955 img loss 1.287372350692749 img loss 1.2226619720458984 img loss 1.257261872291565 img loss 1.2818388938903809 img loss 1.273506760597229 img loss 1.273309588432312 img loss 1.216404676437378 img loss 1.2769827842712402 img loss 1.229730486869812 img loss 1.2421793937683105 img loss 1.2740789651870728 img loss 1.2899059057235718 img loss 1.2426334619522095 img loss 1.1817314624786377 img loss 1.2573647499084473 img loss 1.2621725797653198 img loss 1.2098273038864136 img loss 1.2978776693344116 img loss 1.2674826383590698 img loss 1.2384766340255737 img loss 1.2926642894744873 img loss 1.2864727973937988 img loss 1.2436864376068115 img loss 1.2410244941711426 img loss 1.3185657262802124 img loss 1.2581371068954468 img loss 1.181059718132019 img loss 1.276831865310669 img loss 1.194770097732544 img loss 1.183815598487854 img loss 1.1976099014282227 img loss 1.2414050102233887 img loss 1.2395950555801392 img loss 1.189100980758667 img loss 1.3396834135055542 img loss 1.2515443563461304 img loss 1.2619775533676147 img loss 1.228983759880066 img loss 1.301654577255249 img loss 1.1820740699768066 img loss 1.1492637395858765 img loss 1.1725785732269287 img loss 1.2866703271865845 img loss 1.2110896110534668 img loss 1.2317875623703003 img loss 1.2610559463500977 img loss 1.2933562994003296 img loss 1.2805473804473877 img loss 1.2242571115493774 img loss 1.236318826675415 img loss 1.2149486541748047 img loss 1.309885025024414 img loss 1.2205328941345215 img loss 1.2403159141540527 img loss 1.2285733222961426 img loss 1.2197089195251465 img loss 1.3413100242614746 img loss 1.2485785484313965 img loss 1.2984989881515503 img loss 1.28257417678833 img loss 1.1605770587921143 img loss 1.364122748374939 img loss 1.206106424331665 img loss 1.265918493270874 img loss 1.2592368125915527 img loss 1.200561285018921 img loss 1.294440507888794 img loss 1.27559232711792 img loss 1.3069019317626953 img loss 1.2781919240951538 img loss 1.3519917726516724 img loss 1.3347500562667847 img loss 1.2208846807479858 img loss 1.190010905265808 img loss 1.2233319282531738 img loss 1.2278486490249634 {'loss': 1.2545, 'grad_norm': 0.5230525135993958, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.457777738571167 img loss 1.5091185569763184 img loss 1.4315377473831177 img loss 1.4936453104019165 img loss 1.662839651107788 img loss 1.4078294038772583 img loss 1.3646725416183472 img loss 1.6043754816055298 img loss 1.459428310394287 img loss 1.500441074371338 img loss 1.510382056236267 img loss 1.5408953428268433 img loss 1.5658868551254272 img loss 1.6157183647155762 img loss 1.3816994428634644 img loss 1.4909422397613525 img loss 1.6185628175735474 img loss 1.567745566368103 img loss 1.4589656591415405 img loss 1.5302386283874512 img loss 1.4425263404846191 img loss 1.512022614479065 img loss 1.3658416271209717 img loss 1.5090057849884033 img loss 1.4423530101776123 img loss 1.5859816074371338 img loss 1.5383317470550537 img loss 1.5861321687698364 img loss 1.4803186655044556 img loss 1.5259315967559814 img loss 1.6134601831436157 img loss 1.6288315057754517 img loss 1.5142542123794556 img loss 1.3741583824157715 img loss 1.5888265371322632 img loss 1.4951061010360718 img loss 1.4435651302337646 img loss 1.5022213459014893 img loss 1.5355679988861084 img loss 1.535723090171814 img loss 1.4386056661605835 img loss 1.426674485206604 img loss 1.4443916082382202 img loss 1.5532442331314087 img loss 1.5025839805603027 img loss 1.4537757635116577 img loss 1.3294111490249634 img loss 1.471260666847229 img loss 1.5355535745620728 img loss 1.5279394388198853 img loss 1.3818352222442627 img loss 1.4920843839645386 img loss 1.5992285013198853 img loss 1.5116814374923706 img loss 1.5380080938339233 img loss 1.5087777376174927 img loss 1.4427580833435059 img loss 1.5328937768936157 img loss 1.587164044380188 img loss 1.6189677715301514 img loss 1.5774972438812256 img loss 1.475714921951294 img loss 1.3511310815811157 img loss 1.4637830257415771 img loss 1.5597800016403198 img loss 1.5196503400802612 img loss 1.4890540838241577 img loss 1.462465524673462 img loss 1.4473763704299927 img loss 1.597126841545105 img loss 1.489347219467163 img loss 1.4259793758392334 img loss 1.4328862428665161 img loss 1.542846441268921 img loss 1.4449570178985596 img loss 1.5424009561538696 img loss 1.4873480796813965 img loss 1.5585696697235107 img loss 1.5190722942352295 img loss 1.5966440439224243 img loss 1.4825589656829834 img loss 1.5997135639190674 img loss 1.4516817331314087 img loss 1.5757945775985718 img loss 1.481147050857544 img loss 1.512003779411316 img loss 1.4655267000198364 img loss 1.4271527528762817 img loss 1.4620505571365356 img loss 1.483275055885315 img loss 1.6334036588668823 img loss 1.3949378728866577 img loss 1.5943009853363037 img loss 1.4873197078704834 img loss 1.440407633781433 img loss 1.5459039211273193 img loss 1.5399035215377808 img loss 1.5083204507827759 img loss 1.5993549823760986 img loss 1.419858694076538 img loss 1.4306082725524902 img loss 1.7246724367141724 img loss 1.4094220399856567 img loss 1.5334019660949707 img loss 1.3202461004257202 img loss 1.416152834892273 img loss 1.5041582584381104 img loss 1.5366097688674927 img loss 1.5772403478622437 img loss 1.410912275314331 img loss 1.5116612911224365 img loss 1.5564725399017334 img loss 1.691097617149353 img loss 1.5546526908874512 img loss 1.482787847518921 img loss 1.5762308835983276 img loss 1.4724200963974 img loss 1.587909460067749 img loss 1.6442945003509521 img loss 1.583331823348999 img loss 1.7533862590789795 img loss 1.472165822982788 img loss 1.6045271158218384 img loss 1.5211613178253174 img loss 1.4778170585632324 img loss 1.5465750694274902 img loss 1.5251659154891968 img loss 1.5168012380599976 {'loss': 1.5103, 'grad_norm': 0.3232543170452118, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1693118810653687 img loss 1.2759089469909668 img loss 1.1822305917739868 img loss 1.189173936843872 img loss 1.2314558029174805 img loss 1.2480196952819824 img loss 1.1413698196411133 img loss 1.2354376316070557 img loss 1.2362377643585205 img loss 1.2108741998672485 img loss 1.2265018224716187 img loss 1.2016384601593018 img loss 1.2210407257080078 img loss 1.2375760078430176 img loss 1.2273927927017212 img loss 1.182319164276123 img loss 1.2764391899108887 img loss 1.2300821542739868 img loss 1.176288366317749 img loss 1.1908639669418335 img loss 1.223044753074646 img loss 1.2014541625976562 img loss 1.135541319847107 img loss 1.2569823265075684 img loss 1.1194112300872803 img loss 1.2917753458023071 img loss 1.1915297508239746 img loss 1.1682361364364624 img loss 1.1812938451766968 img loss 1.2184041738510132 img loss 1.2571617364883423 img loss 1.2515782117843628 img loss 1.1272252798080444 img loss 1.0744144916534424 img loss 1.1839030981063843 img loss 1.2088323831558228 img loss 1.2008806467056274 img loss 1.2415612936019897 img loss 1.2052931785583496 img loss 1.187341570854187 img loss 1.2029050588607788 img loss 1.2640104293823242 img loss 1.1514391899108887 img loss 1.317848801612854 img loss 1.1492804288864136 img loss 1.2333252429962158 img loss 1.2741968631744385 img loss 1.1871833801269531 img loss 1.1968215703964233 img loss 1.1595805883407593 img loss 1.177173376083374 img loss 1.2955641746520996 img loss 1.2697829008102417 img loss 1.2885558605194092 img loss 1.2610352039337158 img loss 1.13493013381958 img loss 1.2723087072372437 img loss 1.189926028251648 img loss 1.1470524072647095 img loss 1.1977834701538086 img loss 1.2225005626678467 img loss 1.4272180795669556 img loss 1.2140272855758667 img loss 1.152910590171814 img loss 1.1837352514266968 img loss 1.2058500051498413 img loss 1.1788161993026733 img loss 1.1760179996490479 img loss 1.1959805488586426 img loss 1.2836625576019287 img loss 1.1451416015625 img loss 1.2089847326278687 img loss 1.188446283340454 img loss 1.2092233896255493 img loss 1.2479969263076782 img loss 1.181286334991455 img loss 1.1336621046066284 img loss 1.2113102674484253 img loss 1.1170215606689453 img loss 1.1557502746582031 img loss 1.2289979457855225 img loss 1.2388924360275269 img loss 1.1679837703704834 img loss 1.21402907371521 img loss 1.1820363998413086 img loss 1.224574327468872 img loss 1.2481658458709717 img loss 1.209470272064209 img loss 1.2383651733398438 img loss 1.2254772186279297 img loss 1.242136001586914 img loss 1.209818720817566 img loss 1.1316691637039185 img loss 1.360959768295288 img loss 1.1730382442474365 img loss 1.2694892883300781 img loss 1.3454538583755493 img loss 1.2202705144882202 img loss 1.1971659660339355 img loss 1.1559070348739624 img loss 1.1672769784927368 img loss 1.226265788078308 img loss 1.1776573657989502 img loss 1.1781587600708008 img loss 1.2683708667755127 img loss 1.2023226022720337 img loss 1.2054399251937866 img loss 1.2155094146728516 img loss 1.2281979322433472 img loss 1.2212870121002197 img loss 1.1071633100509644 img loss 1.1680828332901 img loss 1.174719214439392 img loss 1.1970839500427246 img loss 1.2533676624298096 img loss 1.218116044998169 img loss 1.202560305595398 img loss 1.1350648403167725img loss 1.1787354946136475 img loss 1.2105717658996582 img loss 1.2449040412902832 img loss 1.191235899925232 img loss 1.2205312252044678 img loss 1.2367992401123047 img loss 1.2209243774414062 img loss 1.2505028247833252 img loss 1.1880981922149658 img loss 1.1647287607192993 {'loss': 1.2091, 'grad_norm': 0.2873603105545044, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.4526902437210083 img loss 1.252422571182251 img loss 1.3973406553268433 img loss 1.3528342247009277 img loss 1.412699580192566 img loss 1.40453040599823 img loss 1.2161462306976318 img loss 1.3475178480148315 img loss 1.2853233814239502 img loss 1.4854761362075806 img loss 1.2805135250091553 img loss 1.380684494972229 img loss 1.4120827913284302 img loss 1.4554578065872192 img loss 1.3223013877868652 img loss 1.3673726320266724 img loss 1.488534688949585 img loss 1.2663313150405884 img loss 1.3311309814453125 img loss 1.3973115682601929 img loss 1.4057765007019043 img loss 1.314095377922058 img loss 1.341256022453308 img loss 1.4168734550476074 img loss 1.3783659934997559 img loss 1.3839640617370605 img loss 1.33298921585083 img loss 1.321263074874878 img loss 1.3822451829910278 img loss 1.2773678302764893 img loss 1.301074504852295 img loss 1.2650659084320068 img loss 1.4552671909332275 img loss 1.3202940225601196 img loss 1.381447434425354 img loss 1.462296962738037 img loss 1.3846920728683472 img loss 1.363889217376709 img loss 1.3961589336395264 img loss 1.3268190622329712 img loss 1.4323052167892456 img loss 1.3278694152832031 img loss 1.3851466178894043 img loss 1.2545912265777588 img loss 1.3998442888259888 img loss 1.4875693321228027 img loss 1.444832444190979 img loss 1.495825171470642 img loss 1.338172197341919 img loss 1.4146467447280884 img loss 1.3898005485534668 img loss 1.29802668094635 img loss 1.3117283582687378 img loss 1.2860597372055054 img loss 1.4699692726135254 img loss 1.3190228939056396 img loss 1.3997645378112793 img loss 1.3195734024047852 img loss 1.395769476890564 img loss 1.6071611642837524 img loss 1.285356879234314 img loss 1.3679897785186768 img loss 1.2709145545959473 img loss 1.381792426109314 img loss 1.4020154476165771 img loss 1.3587889671325684 img loss 1.4622896909713745 img loss 1.4200093746185303 img loss 1.4327431917190552 img loss 1.3252702951431274 img loss 1.3272618055343628 img loss 1.44245183467865 img loss 1.2760884761810303 img loss 1.4365140199661255 img loss 1.3247095346450806 img loss 1.2285804748535156 img loss 1.335983395576477 img loss 1.424232006072998 img loss 1.310391902923584 img loss 1.4420133829116821 img loss 1.3448045253753662 img loss 1.36807119846344 img loss 1.2794337272644043 img loss 1.2674806118011475 img loss 1.3661847114562988 img loss 1.337077021598816 img loss 1.4091511964797974 img loss 1.3368370532989502 img loss 1.4195454120635986 img loss 1.407591462135315 img loss 1.4031208753585815 img loss 1.4506875276565552 img loss 1.533525824546814 img loss 1.3831182718276978 img loss 1.3265800476074219 img loss 1.355819821357727 img loss 1.3732300996780396 img loss 1.3041110038757324 img loss 1.295305609703064 img loss 1.3957781791687012 img loss 1.427895426750183 img loss 1.4370273351669312 img loss 1.385644555091858 img loss 1.4126238822937012 img loss 1.3884660005569458 img loss 1.3317139148712158 img loss 1.2975475788116455 img loss 1.3098764419555664 img loss 1.322771430015564 img loss 1.2584832906723022 img loss 1.4570591449737549 img loss 1.5236419439315796 img loss 1.3953535556793213 img loss 1.3025106191635132 img loss 1.3227804899215698 img loss 1.3660527467727661 img loss 1.2870659828186035 img loss 1.381895661354065 img loss 1.42988920211792 img loss 1.3005616664886475 img loss 1.349083423614502 img loss 1.3117259740829468 img loss 1.4220069646835327 img loss 1.4347243309020996 img loss 1.4458783864974976 img loss 1.4404515027999878 img loss 1.3391083478927612 img loss 1.2323787212371826 {'loss': 1.3689, 'grad_norm': 0.34947729110717773, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2336344718933105 img loss 1.1383765935897827 img loss 1.1737797260284424 img loss 1.2560982704162598 img loss 1.1902844905853271 img loss 1.220824956893921 img loss 1.183347225189209 img loss 1.1655683517456055 img loss 1.2321465015411377 img loss 1.3090291023254395 img loss 1.2382102012634277 img loss 1.240121603012085 img loss 1.1817388534545898 img loss 1.1158422231674194 img loss 1.2093660831451416 img loss 1.1971720457077026 img loss 1.1988658905029297 img loss 1.2722896337509155 img loss 1.161782145500183 img loss 1.207582712173462 img loss 1.2115472555160522 img loss 1.2182013988494873 img loss 1.1891191005706787 img loss 1.1758307218551636 img loss 1.241140365600586 img loss 1.1995285749435425 img loss 1.25758695602417 img loss 1.1448081731796265 img loss 1.2369461059570312 img loss 1.155547022819519 img loss 1.2711601257324219 img loss 1.1814720630645752 img loss 1.189273715019226 img loss 1.191178560256958 img loss 1.2535247802734375 img loss 1.1775164604187012 img loss 1.2764532566070557 img loss 1.1867625713348389 img loss 1.1520452499389648 img loss 1.139914631843567 img loss 1.2024321556091309 img loss 1.180472731590271 img loss 1.1961182355880737 img loss 1.2208420038223267 img loss 1.2002111673355103 img loss 1.2667087316513062 img loss 1.1303800344467163 img loss 1.155357837677002 img loss 1.2526100873947144 img loss 1.2712228298187256 img loss 1.1171354055404663 img loss 1.1627321243286133 img loss 1.1913114786148071 img loss 1.1556800603866577 img loss 1.2073729038238525 img loss 1.2547450065612793 img loss 1.2162355184555054 img loss 1.219236969947815 img loss 1.2785849571228027 img loss 1.1662766933441162img loss 1.1829804182052612 img loss 1.210622787475586 img loss 1.26458740234375 img loss 1.240336298942566 img loss 1.192603349685669 img loss 1.2045183181762695 img loss 1.1741474866867065 img loss 1.2133898735046387 img loss 1.2078814506530762 img loss 1.1686712503433228 img loss 1.1593846082687378 img loss 1.1382778882980347 img loss 1.1389893293380737 img loss 1.1579653024673462 img loss 1.1946427822113037 img loss 1.1192915439605713 img loss 1.3044312000274658 img loss 1.2531131505966187 img loss 1.2448575496673584 img loss 1.2140018939971924 img loss 1.1308335065841675 img loss 1.1975191831588745 img loss 1.1737847328186035 img loss 1.1779975891113281 img loss 1.2015247344970703 img loss 1.1827750205993652 img loss 1.2366833686828613 img loss 1.1635444164276123 img loss 1.142313003540039 img loss 1.2378666400909424 img loss 1.2036452293395996 img loss 1.270577073097229 img loss 1.1676310300827026 img loss 1.1928411722183228 img loss 1.1347334384918213 img loss 1.1655912399291992 img loss 1.1987022161483765 img loss 1.175187587738037 img loss 1.143807291984558 img loss 1.173235297203064 img loss 1.129183053970337 img loss 1.1989264488220215 img loss 1.2463804483413696 img loss 1.1968923807144165 img loss 1.2474466562271118 img loss 1.1578729152679443 img loss 1.133588433265686 img loss 1.2066179513931274 img loss 1.1918308734893799 img loss 1.2107839584350586 img loss 1.364604115486145 img loss 1.17021644115448 img loss 1.239173412322998 img loss 1.1943752765655518 img loss 1.1852787733078003 img loss 1.1620445251464844 img loss 1.1781816482543945 img loss 1.243620753288269 img loss 1.114348292350769 img loss 1.1784934997558594 img loss 1.2002609968185425 img loss 1.1175991296768188 img loss 1.217088222503662 img loss 1.2356069087982178 img loss 1.2466731071472168 img loss 1.211592674255371 img loss 1.1678932905197144 img loss 1.177457332611084 {'loss': 1.1984, 'grad_norm': 0.3084929585456848, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.231823205947876 img loss 1.2002819776535034 img loss 1.2324256896972656 img loss 1.2290737628936768 img loss 1.2253799438476562 img loss 1.1541571617126465 img loss 1.3058695793151855 img loss 1.2169599533081055 img loss 1.248878836631775 img loss 1.335222840309143 img loss 1.1726863384246826 img loss 1.3031853437423706 img loss 1.2685734033584595 img loss 1.2113760709762573 img loss 1.2483561038970947 img loss 1.1922909021377563 img loss 1.238550066947937 img loss 1.253943681716919 img loss 1.210571050643921 img loss 1.1904939413070679 img loss 1.2351993322372437 img loss 1.1923061609268188 img loss 1.2531217336654663 img loss 1.2527835369110107 img loss 1.2754732370376587 img loss 1.2125965356826782 img loss 1.2318649291992188 img loss 1.1755743026733398 img loss 1.1841624975204468 img loss 1.1902832984924316 img loss 1.2998487949371338 img loss 1.2154546976089478 img loss 1.2830307483673096 img loss 1.3023297786712646 img loss 1.221588373184204 img loss 1.305220127105713 img loss 1.2458550930023193 img loss 1.2154021263122559 img loss 1.2072645425796509 img loss 1.1873114109039307 img loss 1.2178856134414673 img loss 1.3062556982040405 img loss 1.227067470550537 img loss 1.2461833953857422 img loss 1.2681388854980469 img loss 1.2020263671875 img loss 1.2256001234054565 img loss 1.1868553161621094 img loss 1.1880161762237549 img loss 1.2389713525772095 img loss 1.2864055633544922 img loss 1.261535406112671 img loss 1.210715651512146 img loss 1.2677762508392334 img loss 1.3163073062896729 img loss 1.2326608896255493 img loss 1.2188268899917603 img loss 1.1739859580993652 img loss 1.2627825736999512 img loss 1.242164969444275 img loss 1.222669005393982 img loss 1.2272758483886719 img loss 1.2372652292251587 img loss 1.2736129760742188 img loss 1.2340188026428223 img loss 1.286231279373169 img loss 1.2334206104278564 img loss 1.2922865152359009 img loss 1.232521414756775 img loss 1.267749547958374 img loss 1.335931658744812 img loss 1.3377665281295776 img loss 1.2319972515106201 img loss 1.2046972513198853 img loss 1.3520338535308838 img loss 1.1778414249420166 img loss 1.3047891855239868 img loss 1.279632568359375 img loss 1.3047205209732056 img loss 1.2205151319503784 img loss 1.3233400583267212 img loss 1.2416504621505737 img loss 1.2127513885498047 img loss 1.2427014112472534 img loss 1.256596326828003 img loss 1.2178468704223633 img loss 1.1895779371261597 img loss 1.2543938159942627 img loss 1.3321951627731323 img loss 1.1859369277954102 img loss 1.2650539875030518 img loss 1.3705676794052124 img loss 1.187137246131897 img loss 1.278144121170044 img loss 1.2026561498641968 img loss 1.2553684711456299 img loss 1.2041614055633545 img loss 1.3511433601379395 img loss 1.22247314453125 img loss 1.185236930847168 img loss 1.2449705600738525 img loss 1.2263853549957275 img loss 1.2061020135879517 img loss 1.228257656097412 img loss 1.2822113037109375 img loss 1.2564709186553955 img loss 1.173934817314148 img loss 1.1851685047149658 img loss 1.2581517696380615 img loss 1.251064658164978 img loss 1.2536581754684448 img loss 1.2138886451721191 img loss 1.2019894123077393 img loss 1.1995861530303955 img loss 1.2382467985153198 img loss 1.211323618888855 img loss 1.2226262092590332 img loss 1.1839550733566284 img loss 1.196225881576538 img loss 1.2042195796966553 img loss 1.252678632736206 img loss 1.1869791746139526 img loss 1.2039247751235962 img loss 1.3672574758529663 img loss 1.3197612762451172 img loss 1.2568851709365845 img loss 1.2416924238204956 img loss 1.2618931531906128 {'loss': 1.2414, 'grad_norm': 0.540817141532898, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2117249965667725 img loss 1.1976854801177979 img loss 1.2147449254989624 img loss 1.2053769826889038 img loss 1.2292888164520264 img loss 1.1734129190444946 img loss 1.186688780784607 img loss 1.1633892059326172 img loss 1.1593900918960571 img loss 1.3264639377593994 img loss 1.1899044513702393 img loss 1.1776139736175537 img loss 1.2705315351486206 img loss 1.1991667747497559 img loss 1.1796455383300781 img loss 1.2157388925552368 img loss 1.1604117155075073 img loss 1.2040470838546753 img loss 1.192193627357483 img loss 1.2079050540924072 img loss 1.3040668964385986 img loss 1.0887117385864258 img loss 1.2413161993026733 img loss 1.2013347148895264 img loss 1.2123527526855469 img loss 1.2788375616073608 img loss 1.135765790939331 img loss 1.1716055870056152 img loss 1.125949501991272 img loss 1.1900935173034668 img loss 1.2076307535171509 img loss 1.1490446329116821 img loss 1.2379026412963867 img loss 1.1272255182266235 img loss 1.2982795238494873 img loss 1.2056546211242676 img loss 1.1980013847351074 img loss 1.1608976125717163 img loss 1.221250057220459 img loss 1.2375102043151855 img loss 1.2543014287948608 img loss 1.2478164434432983 img loss 1.2436480522155762 img loss 1.2518951892852783 img loss 1.2181925773620605 img loss 1.2296156883239746 img loss 1.2041051387786865 img loss 1.175607442855835 img loss 1.227396845817566 img loss 1.1805846691131592 img loss 1.2276051044464111 img loss 1.228645920753479 img loss 1.1823488473892212 img loss 1.1905441284179688 img loss 1.2729514837265015 img loss 1.2838481664657593 img loss 1.1803522109985352 img loss 1.1894429922103882 img loss 1.3060187101364136 img loss 1.1688019037246704 img loss 1.2146986722946167 img loss 1.2622408866882324 img loss 1.2245287895202637 img loss 1.257959246635437 img loss 1.1392552852630615 img loss 1.2242125272750854 img loss 1.1901392936706543 img loss 1.1902073621749878 img loss 1.2325557470321655 img loss 1.2002463340759277 img loss 1.2383495569229126 img loss 1.2090587615966797 img loss 1.3070080280303955 img loss 1.1862682104110718 img loss 1.142963171005249 img loss 1.2611768245697021 img loss 1.1716448068618774 img loss 1.2326316833496094 img loss 1.1955755949020386 img loss 1.2420028448104858 img loss 1.2936457395553589 img loss 1.2404186725616455 img loss 1.2384600639343262 img loss 1.1975514888763428 img loss 1.2318798303604126 img loss 1.2542479038238525 img loss 1.2145359516143799 img loss 1.1906414031982422 img loss 1.2355190515518188 img loss 1.2536178827285767 img loss 1.2227619886398315 img loss 1.2285925149917603 img loss 1.2462961673736572 img loss 1.188942551612854 img loss 1.1464086771011353 img loss 1.1905286312103271 img loss 1.1737340688705444 img loss 1.2518818378448486 img loss 1.3165260553359985 img loss 1.3277689218521118 img loss 1.2551705837249756 img loss 1.1256272792816162 img loss 1.1760859489440918 img loss 1.1635868549346924 img loss 1.2152442932128906 img loss 1.143310785293579 img loss 1.24630606174469 img loss 1.3093398809432983 img loss 1.211047887802124 img loss 1.3005149364471436 img loss 1.2305303812026978 img loss 1.2023577690124512 img loss 1.2456767559051514 img loss 1.1784775257110596 img loss 1.2008270025253296 img loss 1.178943157196045 img loss 1.2658193111419678 img loss 1.2861467599868774 img loss 1.1910533905029297 img loss 1.1801801919937134 img loss 1.2262470722198486 img loss 1.2173010110855103 img loss 1.1993918418884277 img loss 1.2399876117706299 img loss 1.1999009847640991 img loss 1.1770503520965576 img loss 1.2649648189544678 img loss 1.2496936321258545 {'loss': 1.2154, 'grad_norm': 0.2932242453098297, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2242320775985718 img loss 1.2605949640274048 img loss 1.2234238386154175 img loss 1.1907442808151245 img loss 1.1663938760757446 img loss 1.212870478630066 img loss 1.243242859840393 img loss 1.18086576461792 img loss 1.2497360706329346 img loss 1.3160396814346313 img loss 1.1302508115768433 img loss 1.1547988653182983 img loss 1.2531335353851318 img loss 1.2123963832855225 img loss 1.2486939430236816 img loss 1.2996799945831299 img loss 1.244327425956726 img loss 1.1542198657989502 img loss 1.3437151908874512 img loss 1.235416054725647 img loss 1.2386012077331543 img loss 1.3060499429702759 img loss 1.2123749256134033 img loss 1.2133476734161377 img loss 1.1830379962921143 img loss 1.2477072477340698 img loss 1.2011457681655884 img loss 1.104918360710144 img loss 1.1741660833358765 img loss 1.180267095565796 img loss 1.1918864250183105 img loss 1.1182650327682495 img loss 1.1484726667404175 img loss 1.244257926940918 img loss 1.204750418663025 img loss 1.191847324371338 img loss 1.3136812448501587 img loss 1.1587460041046143 img loss 1.141549825668335 img loss 1.1642377376556396 img loss 1.277176856994629 img loss 1.169919729232788 img loss 1.2152271270751953 img loss 1.2331022024154663 img loss 1.2257105112075806 img loss 1.2712291479110718 img loss 1.181928038597107 img loss 1.2179312705993652 img loss 1.1811389923095703 img loss 1.1835615634918213 img loss 1.2593084573745728 img loss 1.2177071571350098 img loss 1.2497100830078125 img loss 1.1549270153045654 img loss 1.2130553722381592 img loss 1.1714110374450684 img loss 1.2466130256652832 img loss 1.1032322645187378 img loss 1.1527904272079468 img loss 1.2311044931411743 img loss 1.2271497249603271 img loss 1.1837139129638672 img loss 1.1728912591934204 img loss 1.243070363998413 img loss 1.2919390201568604 img loss 1.2484049797058105 img loss 1.235499382019043 img loss 1.1990822553634644 img loss 1.199196219444275 img loss 1.1836379766464233 img loss 1.1912943124771118 img loss 1.2382065057754517 img loss 1.239794373512268 img loss 1.2761648893356323 img loss 1.1656099557876587 img loss 1.2436169385910034 img loss 1.1919465065002441 img loss 1.2191460132598877 img loss 1.2709732055664062 img loss 1.1308082342147827 img loss 1.170407772064209 img loss 1.2703698873519897 img loss 1.1842104196548462 img loss 1.2405818700790405 img loss 1.2564406394958496 img loss 1.141932487487793 img loss 1.2451071739196777 img loss 1.2755390405654907 img loss 1.211693286895752 img loss 1.2628345489501953 img loss 1.1487979888916016 img loss 1.1824043989181519 img loss 1.2207999229431152 img loss 1.1977920532226562 img loss 1.1914142370224 img loss 1.1882965564727783 img loss 1.1941444873809814 img loss 1.0861161947250366 img loss 1.1779602766036987 img loss 1.2651928663253784 img loss 1.1038382053375244 img loss 1.2162830829620361 img loss 1.2352910041809082 img loss 1.2349880933761597 img loss 1.179015040397644 img loss 1.2610470056533813 img loss 1.1761659383773804 img loss 1.2368465662002563 img loss 1.1996760368347168 img loss 1.222205400466919 img loss 1.2042698860168457 img loss 1.123703956604004 img loss 1.148241400718689 img loss 1.1491961479187012 img loss 1.239742636680603 img loss 1.1514215469360352 img loss 1.2195017337799072 img loss 1.2021801471710205 img loss 1.2416398525238037 img loss 1.2271584272384644 img loss 1.200032114982605 img loss 1.2783958911895752 img loss 1.228911280632019 img loss 1.311611533164978 img loss 1.2085615396499634 img loss 1.144068717956543 img loss 1.2064030170440674 img loss 1.1724390983581543 {'loss': 1.2096, 'grad_norm': 0.1998831331729889, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1795508861541748 img loss 1.1959314346313477 img loss 1.2379202842712402 img loss 1.2625280618667603 img loss 1.2495752573013306 img loss 1.218329668045044 img loss 1.1683661937713623 img loss 1.190143346786499 img loss 1.193618655204773 img loss 1.2424061298370361 img loss 1.2696737051010132 img loss 1.199008584022522 img loss 1.2310140132904053 img loss 1.215227484703064 img loss 1.2381223440170288 img loss 1.2949727773666382 img loss 1.1896510124206543 img loss 1.1659177541732788 img loss 1.2445987462997437 img loss 1.2325893640518188 img loss 1.2198748588562012 img loss 1.2464767694473267 img loss 1.2239704132080078 img loss 1.227758765220642 img loss 1.1905856132507324 img loss 1.259946584701538 img loss 1.2562286853790283 img loss 1.2360390424728394 img loss 1.167148232460022 img loss 1.2020872831344604 img loss 1.2121753692626953 img loss 1.2849273681640625 img loss 1.204981803894043 img loss 1.174403429031372 img loss 1.3003767728805542 img loss 1.1531944274902344 img loss 1.2351735830307007 img loss 1.1601454019546509 img loss 1.1977280378341675 img loss 1.2234203815460205 img loss 1.1965556144714355 img loss 1.1635569334030151 img loss 1.2083162069320679 img loss 1.1806855201721191 img loss 1.280255913734436 img loss 1.2187461853027344 img loss 1.1889033317565918 img loss 1.2060574293136597 img loss 1.1907947063446045 img loss 1.1963305473327637 img loss 1.2386853694915771 img loss 1.164008378982544 img loss 1.2048314809799194 img loss 1.1818976402282715 img loss 1.243467926979065 img loss 1.2092549800872803 img loss 1.146239995956421 img loss 1.148592472076416 img loss 1.1872365474700928 img loss 1.1326041221618652 img loss 1.1985372304916382 img loss 1.1643720865249634 img loss 1.2257040739059448 img loss 1.1936559677124023 img loss 1.271694540977478 img loss 1.1954361200332642 img loss 1.179724931716919 img loss 1.142303705215454 img loss 1.1630481481552124 img loss 1.1794044971466064 img loss 1.1741502285003662 img loss 1.2052325010299683 img loss 1.2966384887695312 img loss 1.214909315109253 img loss 1.2546981573104858 img loss 1.2108535766601562 img loss 1.1478017568588257 img loss 1.2735477685928345 img loss 1.1536308526992798 img loss 1.1670019626617432 img loss 1.1946028470993042 img loss 1.1828398704528809 img loss 1.1881518363952637 img loss 1.27372145652771 img loss 1.2657359838485718 img loss 1.1465784311294556 img loss 1.1281301975250244 img loss 1.1607928276062012 img loss 1.2185503244400024 img loss 1.2734918594360352 img loss 1.2471106052398682 img loss 1.2368582487106323 img loss 1.1571811437606812 img loss 1.221779227256775 img loss 1.2129898071289062 img loss 1.2125163078308105 img loss 1.2582414150238037 img loss 1.2573679685592651 img loss 1.2713021039962769 img loss 1.2606911659240723 img loss 1.2020090818405151 img loss 1.206831693649292 img loss 1.1808772087097168 img loss 1.1650456190109253 img loss 1.3025310039520264 img loss 1.2519062757492065 img loss 1.2857491970062256 img loss 1.2149759531021118 img loss 1.2271162271499634 img loss 1.2546948194503784 img loss 1.2184500694274902 img loss 1.228419303894043 img loss 1.197431206703186 img loss 1.2076642513275146 img loss 1.2782893180847168 img loss 1.2211722135543823 img loss 1.19399893283844 img loss 1.253731608390808 img loss 1.1971935033798218 img loss 1.242207407951355 img loss 1.2112921476364136 img loss 1.272168517112732 img loss 1.269385576248169 img loss 1.2088959217071533 img loss 1.2313450574874878 img loss 1.2404377460479736 img loss 1.2115100622177124 img loss 1.2232946157455444 {'loss': 1.2146, 'grad_norm': 0.32725921273231506, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1821744441986084 img loss 1.2214806079864502 img loss 1.220221757888794 img loss 1.1795878410339355 img loss 1.1811712980270386 img loss 1.216440200805664 img loss 1.1962002515792847 img loss 1.208012580871582 img loss 1.2109826803207397 img loss 1.207839846611023 img loss 1.2329425811767578 img loss 1.207152009010315 img loss 1.1978909969329834 img loss 1.2068085670471191 img loss 1.1625657081604004 img loss 1.187599778175354 img loss 1.171231985092163 img loss 1.1864168643951416 img loss 1.1950972080230713 img loss 1.189404845237732 img loss 1.1662384271621704 img loss 1.163655161857605 img loss 1.2567920684814453 img loss 1.1000261306762695 img loss 1.1846230030059814 img loss 1.1366418600082397 img loss 1.2534191608428955 img loss 1.211150884628296 img loss 1.2187793254852295 img loss 1.223435878753662 img loss 1.2096116542816162 img loss 1.1494832038879395 img loss 1.1763720512390137 img loss 1.18541419506073 img loss 1.1553959846496582 img loss 1.1191790103912354 img loss 1.090211272239685 img loss 1.2023950815200806 img loss 1.1501108407974243 img loss 1.176756739616394 img loss 1.198177695274353 img loss 1.192065715789795 img loss 1.1843295097351074 img loss 1.1923351287841797 img loss 1.1922125816345215 img loss 1.1379015445709229 img loss 1.1790865659713745 img loss 1.2019908428192139 img loss 1.27533757686615 img loss 1.1432851552963257 img loss 1.189185619354248 img loss 1.1964585781097412 img loss 1.2166173458099365 img loss 1.177381157875061 img loss 1.2625319957733154 img loss 1.1645371913909912 img loss 1.1592572927474976 img loss 1.163083553314209 img loss 1.1168780326843262 img loss 1.1745439767837524 img loss 1.1544681787490845 img loss 1.2621045112609863 img loss 1.1851156949996948 img loss 1.187793493270874 img loss 1.221147060394287 img loss 1.1934185028076172 img loss 1.1086069345474243 img loss 1.243786096572876 img loss 1.1522300243377686 img loss 1.1957392692565918 img loss 1.1532478332519531 img loss 1.1821117401123047 img loss 1.2054859399795532 img loss 1.1959196329116821 img loss 1.1981168985366821 img loss 1.2472169399261475 img loss 1.2092516422271729 img loss 1.2376625537872314 img loss 1.0903583765029907 img loss 1.1837666034698486 img loss 1.1684951782226562 img loss 1.2336952686309814 img loss 1.2269495725631714 img loss 1.1464465856552124 img loss 1.2363638877868652 img loss 1.1969971656799316 img loss 1.2385592460632324 img loss 1.311769723892212 img loss 1.1404609680175781 img loss 1.1343739032745361 img loss 1.1113417148590088img loss 1.1144797801971436 img loss 1.233345866203308 img loss 1.2214176654815674 img loss 1.1254992485046387 img loss 1.15018630027771 img loss 1.2194457054138184 img loss 1.1717052459716797 img loss 1.2154489755630493 img loss 1.1686991453170776 img loss 1.1731728315353394 img loss 1.1805126667022705 img loss 1.1775668859481812 img loss 1.2699198722839355 img loss 1.206640601158142 img loss 1.2064049243927002 img loss 1.2269941568374634 img loss 1.1883636713027954 img loss 1.1850064992904663 img loss 1.2041707038879395 img loss 1.2241541147232056 img loss 1.1724928617477417 img loss 1.192448616027832 img loss 1.1603952646255493 img loss 1.1469464302062988 img loss 1.16911780834198 img loss 1.2184138298034668 img loss 1.1990158557891846 img loss 1.2127797603607178 img loss 1.1808297634124756 img loss 1.2424936294555664 img loss 1.2297477722167969 img loss 1.1191880702972412 img loss 1.1597111225128174 img loss 1.176836609840393 img loss 1.1894919872283936 img loss 1.2550004720687866 img loss 1.1738241910934448 {'loss': 1.1892, 'grad_norm': 0.33116528391838074, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2954658269882202 img loss 1.2661981582641602 img loss 1.2089393138885498 img loss 1.2603422403335571 img loss 1.2200605869293213 img loss 1.54469633102417 img loss 1.4361447095870972 img loss 1.236710786819458 img loss 1.2598196268081665 img loss 1.2426962852478027 img loss 1.2970349788665771 img loss 1.207740068435669 img loss 1.277512550354004 img loss 1.191515326499939 img loss 1.2257317304611206 img loss 1.3598742485046387 img loss 1.1751444339752197 img loss 1.211777925491333 img loss 1.263150691986084 img loss 1.3741267919540405 img loss 1.2722222805023193 img loss 1.3264636993408203 img loss 1.3398356437683105 img loss 1.261522650718689 img loss 1.2268482446670532 img loss 1.267848253250122 img loss 1.177014708518982 img loss 1.16067636013031 img loss 1.2693332433700562 img loss 1.2482328414916992 img loss 1.2588070631027222 img loss 1.28169584274292 img loss 1.3250610828399658 img loss 1.3890105485916138 img loss 1.2872036695480347 img loss 1.252697229385376 img loss 1.2944830656051636 img loss 1.1968650817871094 img loss 1.3184959888458252 img loss 1.317210078239441 img loss 1.3440701961517334 img loss 1.3323915004730225 img loss 1.227921485900879 img loss 1.2853351831436157 img loss 1.3071144819259644 img loss 1.377145528793335 img loss 1.287357211112976 img loss 1.2582424879074097 img loss 1.2466883659362793 img loss 1.3382489681243896 img loss 1.3010399341583252 img loss 1.2319482564926147 img loss 1.2646201848983765 img loss 1.242159366607666 img loss 1.2094814777374268 img loss 1.2503658533096313 img loss 1.287225365638733 img loss 1.3310726881027222 img loss 1.37087881565094 img loss 1.2612131834030151 img loss 1.4119884967803955 img loss 1.4404730796813965 img loss 1.2359060049057007 img loss 1.3482874631881714 img loss 1.3234449625015259 img loss 1.311220645904541 img loss 1.2986602783203125 img loss 1.2254383563995361 img loss 1.2814596891403198 img loss 1.2872471809387207 img loss 1.176324725151062 img loss 1.3155786991119385 img loss 1.3074382543563843 img loss 1.3237942457199097 img loss 1.192137598991394 img loss 1.3002036809921265 img loss 1.348496913909912 img loss 1.3717080354690552 img loss 1.44364333152771 img loss 1.3374130725860596 img loss 1.257651686668396img loss 1.237076997756958 img loss 1.2674001455307007 img loss 1.2522361278533936 img loss 1.2742441892623901 img loss 1.2795051336288452 img loss 1.305588960647583 img loss 1.286111831665039 img loss 1.2343978881835938 img loss 1.3077579736709595 img loss 1.2921876907348633 img loss 1.2989270687103271 img loss 1.2289148569107056 img loss 1.36033034324646 img loss 1.3601434230804443 img loss 1.2504535913467407 img loss 1.2572273015975952 img loss 1.3779112100601196 img loss 1.3310779333114624 img loss 1.2643038034439087 img loss 1.2561581134796143 img loss 1.418734073638916 img loss 1.3646559715270996 img loss 1.3148918151855469 img loss 1.293771743774414 img loss 1.2457255125045776 img loss 1.3332927227020264 img loss 1.484323263168335 img loss 1.250935435295105 img loss 1.2544097900390625 img loss 1.203702688217163 img loss 1.254680871963501 img loss 1.3753060102462769 img loss 1.2819762229919434 img loss 1.2927554845809937 img loss 1.2853260040283203 img loss 1.2597376108169556 img loss 1.2422242164611816 img loss 1.2958382368087769 img loss 1.2560479640960693 img loss 1.2389074563980103 img loss 1.3333040475845337 img loss 1.3386282920837402 img loss 1.3421798944473267 img loss 1.294041395187378 img loss 1.2029800415039062 img loss 1.3578709363937378 img loss 1.1952507495880127 {'loss': 1.2895, 'grad_norm': 0.290780246257782, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.6226273775100708 img loss 1.4572030305862427 img loss 1.5500853061676025 img loss 1.5862746238708496 img loss 1.5308600664138794 img loss 1.504662275314331 img loss 1.55319082736969 img loss 1.4941707849502563 img loss 1.4851109981536865 img loss 1.5534096956253052 img loss 1.5630818605422974 img loss 1.509445309638977 img loss 1.5396920442581177 img loss 1.497117519378662 img loss 1.638540506362915 img loss 1.580376148223877 img loss 1.6267380714416504 img loss 1.546935796737671 img loss 1.5779978036880493 img loss 1.5608831644058228 img loss 1.6710416078567505 img loss 1.5560647249221802 img loss 1.5998339653015137 img loss 1.7227909564971924 img loss 1.5567656755447388 img loss 1.5186307430267334 img loss 1.5234462022781372 img loss 1.542839527130127 img loss 1.5705262422561646 img loss 1.5811420679092407 img loss 1.6025646924972534 img loss 1.6409543752670288 img loss 1.4750515222549438 img loss 1.597995400428772 img loss 1.6306508779525757 img loss 1.5078929662704468 img loss 1.4410325288772583 img loss 1.519642949104309 img loss 1.5839906930923462 img loss 1.5336004495620728 img loss 1.5018216371536255 img loss 1.4977234601974487 img loss 1.6010023355484009 img loss 1.5286251306533813 img loss 1.5291399955749512 img loss 1.5081322193145752 img loss 1.6164129972457886 img loss 1.5144206285476685 img loss 1.6077405214309692 img loss 1.5505156517028809 img loss 1.4852505922317505 img loss 1.427254557609558 img loss 1.5688046216964722 img loss 1.577141284942627 img loss 1.469871163368225 img loss 1.634320855140686 img loss 1.503724455833435 img loss 1.529308795928955 img loss 1.4954649209976196 img loss 1.448904275894165 img loss 1.631377100944519 img loss 1.5357609987258911 img loss 1.494297742843628 img loss 1.7688428163528442 img loss 1.5760923624038696 img loss 1.5785714387893677 img loss 1.709704875946045 img loss 1.6142154932022095 img loss 1.6520984172821045 img loss 1.7354843616485596 img loss 1.4623734951019287 img loss 1.6535022258758545 img loss 1.5635665655136108 img loss 1.7340624332427979 img loss 1.6487882137298584 img loss 1.551418662071228 img loss 1.607170581817627 img loss 1.4901529550552368 img loss 1.6519023180007935 img loss 1.4504185914993286 img loss 1.5390897989273071 img loss 1.5897828340530396 img loss 1.600048303604126 img loss 1.5486968755722046 img loss 1.4966830015182495 img loss 1.5631505250930786 img loss 1.6072627305984497 img loss 1.5533843040466309 img loss 1.5719640254974365 img loss 1.5529404878616333 img loss 1.5747781991958618 img loss 1.6007952690124512 img loss 1.5488464832305908 img loss 1.5239704847335815 img loss 1.51278555393219 img loss 1.5708003044128418 img loss 1.4626833200454712img loss 1.485420823097229 img loss 1.577048420906067 img loss 1.490058422088623 img loss 1.5842797756195068 img loss 1.5069924592971802 img loss 1.3842419385910034 img loss 1.6925146579742432 img loss 1.4551265239715576 img loss 1.5371252298355103 img loss 1.4966892004013062 img loss 1.5685105323791504 img loss 1.6122281551361084 img loss 1.5243659019470215 img loss 1.6463249921798706 img loss 1.643293857574463 img loss 1.5285216569900513 img loss 1.6420618295669556 img loss 1.4704563617706299 img loss 1.4535390138626099 img loss 1.5425046682357788 img loss 1.5114878416061401 img loss 1.5037972927093506 img loss 1.62517511844635 img loss 1.7328077554702759 img loss 1.5360121726989746 img loss 1.4395477771759033 img loss 1.5628561973571777 img loss 1.5472251176834106 img loss 1.5535632371902466 img loss 1.5279432535171509 img loss 1.5768014192581177 {'loss': 1.5581, 'grad_norm': 0.48515617847442627, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2279505729675293 img loss 1.2431235313415527 img loss 1.259466528892517 img loss 1.2484123706817627 img loss 1.2869364023208618 img loss 1.270393967628479 img loss 1.2300186157226562 img loss 1.1118582487106323 img loss 1.5088640451431274 img loss 1.2830564975738525 img loss 1.2557165622711182 img loss 1.2883976697921753 img loss 1.253989577293396 img loss 1.2133318185806274 img loss 1.268851637840271 img loss 1.319126844406128 img loss 1.2977007627487183 img loss 1.2539039850234985 img loss 1.379418134689331 img loss 1.2752869129180908 img loss 1.2194868326187134 img loss 1.1463359594345093 img loss 1.2927954196929932 img loss 1.349025011062622 img loss 1.2108285427093506 img loss 1.2366288900375366 img loss 1.2696222066879272 img loss 1.2637981176376343 img loss 1.248578667640686 img loss 1.2941392660140991 img loss 1.3037117719650269 img loss 1.3004837036132812 img loss 1.225262999534607 img loss 1.2125356197357178 img loss 1.1378782987594604 img loss 1.2785876989364624 img loss 1.209592580795288 img loss 1.2248706817626953 img loss 1.296431541442871 img loss 1.321984052658081 img loss 1.32743239402771 img loss 1.2884782552719116 img loss 1.2378554344177246 img loss 1.3056093454360962 img loss 1.1873421669006348 img loss 1.3566936254501343 img loss 1.2253806591033936 img loss 1.3107093572616577 img loss 1.5863871574401855 img loss 1.2335314750671387 img loss 1.2062177658081055 img loss 1.2778667211532593 img loss 1.3418985605239868 img loss 1.2664324045181274 img loss 1.242357850074768 img loss 1.309832215309143 img loss 1.230954647064209 img loss 1.161934494972229 img loss 1.2086018323898315 img loss 1.2631549835205078 img loss 1.2173712253570557 img loss 1.3303707838058472 img loss 1.2203354835510254 img loss 1.2268991470336914 img loss 1.2628421783447266 img loss 1.202196717262268 img loss 1.3638014793395996 img loss 1.3566997051239014img loss 1.261648178100586 img loss 1.1835346221923828 img loss 1.3012712001800537 img loss 1.2973384857177734 img loss 1.308258056640625 img loss 1.1726621389389038 img loss 1.324645757675171 img loss 1.2705602645874023 img loss 1.2559618949890137 img loss 1.2555025815963745 img loss 1.259294867515564 img loss 1.2721093893051147 img loss 1.183182716369629 img loss 1.1852318048477173 img loss 1.2101141214370728 img loss 1.231392741203308 img loss 1.3258947134017944 img loss 1.2321691513061523 img loss 1.3902738094329834 img loss 1.18028724193573 img loss 1.2620866298675537 img loss 1.2898383140563965 img loss 1.266852617263794 img loss 1.3368152379989624 img loss 1.3629363775253296 img loss 1.2494906187057495 img loss 1.2333240509033203 img loss 1.2817710638046265 img loss 1.346229076385498 img loss 1.2073965072631836 img loss 1.139905333518982 img loss 1.2738269567489624 img loss 1.2206226587295532 img loss 1.3756331205368042 img loss 1.2539606094360352 img loss 1.2734121084213257 img loss 1.2678966522216797 img loss 1.1861408948898315 img loss 1.208748459815979 img loss 1.3261374235153198 img loss 1.3420662879943848 img loss 1.2562856674194336 img loss 1.1988167762756348 img loss 1.3187187910079956 img loss 1.2453415393829346 img loss 1.2435836791992188 img loss 1.1850324869155884img loss 1.2106727361679077 img loss 1.2727103233337402 img loss 1.3054585456848145 img loss 1.2819947004318237 img loss 1.3553862571716309 img loss 1.1901811361312866 img loss 1.2828127145767212 img loss 1.2667967081069946 img loss 1.1864488124847412 img loss 1.28506600856781 img loss 1.2618961334228516 img loss 1.4082287549972534 img loss 1.2818958759307861 {'loss': 1.2665, 'grad_norm': 0.5624538064002991, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2345778942108154 img loss 1.1574827432632446 img loss 1.2511924505233765 img loss 1.1628928184509277 img loss 1.190346360206604 img loss 1.262205719947815 img loss 1.1546127796173096 img loss 1.2688220739364624 img loss 1.1903231143951416img loss 1.257927417755127 img loss 1.230510950088501 img loss 1.1744205951690674 img loss 1.2780096530914307 img loss 1.181281566619873 img loss 1.1990885734558105 img loss 1.1736160516738892 img loss 1.2303282022476196 img loss 1.1829807758331299 img loss 1.2260680198669434 img loss 1.2743346691131592 img loss 1.1849181652069092 img loss 1.2532615661621094 img loss 1.159421443939209 img loss 1.173546314239502 img loss 1.1879127025604248 img loss 1.2761121988296509 img loss 1.2430388927459717 img loss 1.1942269802093506 img loss 1.2368805408477783 img loss 1.2342960834503174 img loss 1.2083415985107422 img loss 1.1517126560211182 img loss 1.321118712425232 img loss 1.1879932880401611 img loss 1.1875523328781128 img loss 1.2138432264328003 img loss 1.180924892425537 img loss 1.260546326637268img loss 1.2915691137313843 img loss 1.2693209648132324 img loss 1.1983773708343506 img loss 1.2492519617080688 img loss 1.1783396005630493 img loss 1.1571511030197144 img loss 1.196054458618164 img loss 1.1916944980621338 img loss 1.1747747659683228 img loss 1.2697062492370605 img loss 1.190206527709961 img loss 1.2135117053985596 img loss 1.2245813608169556 img loss 1.23618483543396 img loss 1.1948384046554565 img loss 1.2409638166427612 img loss 1.1799755096435547 img loss 1.3002903461456299 img loss 1.262960433959961 img loss 1.2351603507995605 img loss 1.2131391763687134 img loss 1.1898053884506226 img loss 1.249054193496704 img loss 1.1934934854507446 img loss 1.2385042905807495 img loss 1.1988790035247803 img loss 1.2156703472137451 img loss 1.2025257349014282 img loss 1.2022545337677002 img loss 1.139325737953186 img loss 1.2795124053955078 img loss 1.2468210458755493 img loss 1.216078519821167 img loss 1.257803201675415 img loss 1.2149369716644287 img loss 1.1980990171432495 img loss 1.1663614511489868 img loss 1.3116044998168945 img loss 1.122750997543335 img loss 1.2149475812911987 img loss 1.218932032585144 img loss 1.1514208316802979 img loss 1.204716444015503 img loss 1.2799056768417358 img loss 1.22207510471344img loss 1.1397720575332642 img loss 1.1724125146865845 img loss 1.1981865167617798 img loss 1.1915098428726196 img loss 1.2038002014160156 img loss 1.185814380645752 img loss 1.1977689266204834 img loss 1.2729790210723877 img loss 1.153863549232483 img loss 1.1890302896499634 img loss 1.2569950819015503 img loss 1.3285022974014282 img loss 1.2264838218688965 img loss 1.1748660802841187 img loss 1.172560214996338 img loss 1.263551950454712 img loss 1.1883082389831543 img loss 1.2037270069122314 img loss 1.250253438949585 img loss 1.182112693786621 img loss 1.2264108657836914 img loss 1.1478703022003174 img loss 1.220535159111023 img loss 1.1834852695465088 img loss 1.1723721027374268 img loss 1.1283096075057983 img loss 1.1734386682510376 img loss 1.1900547742843628 img loss 1.2915180921554565 img loss 1.2044391632080078 img loss 1.2159438133239746 img loss 1.1755809783935547 img loss 1.2122617959976196 img loss 1.1902153491973877 img loss 1.2591770887374878 img loss 1.230086088180542 img loss 1.1850368976593018 img loss 1.1903663873672485 img loss 1.1877000331878662 img loss 1.1682782173156738 img loss 1.213499903678894 img loss 1.226668357849121 img loss 1.2610769271850586 img loss 1.2706236839294434 img loss 1.2384213209152222 {'loss': 1.2129, 'grad_norm': 0.2775566875934601, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.5577824115753174 img loss 1.4904215335845947 img loss 1.3551745414733887 img loss 1.2955188751220703 img loss 1.5273669958114624 img loss 1.4766520261764526 img loss 1.3297199010849 img loss 1.4328383207321167 img loss 1.433868169784546 img loss 1.4865546226501465 img loss 1.3715678453445435 img loss 1.33419668674469 img loss 1.5013071298599243 img loss 1.3686257600784302 img loss 1.395957589149475 img loss 1.4658173322677612 img loss 1.5355684757232666 img loss 1.4930611848831177 img loss 1.5161948204040527 img loss 1.4560846090316772 img loss 1.4657323360443115 img loss 1.441717505455017 img loss 1.6516324281692505 img loss 1.5209767818450928 img loss 1.480129361152649 img loss 1.4042229652404785 img loss 1.3663145303726196 img loss 1.4516937732696533 img loss 1.4866894483566284 img loss 1.4417941570281982 img loss 1.4817005395889282 img loss 1.4581929445266724 img loss 1.5522907972335815 img loss 1.3751477003097534img loss 1.4471479654312134 img loss 1.341183066368103 img loss 1.3605923652648926 img loss 1.53447425365448 img loss 1.5639278888702393 img loss 1.4747856855392456 img loss 1.543823003768921 img loss 1.5066956281661987 img loss 1.4087107181549072 img loss 1.4068958759307861 img loss 1.5932745933532715 img loss 1.4734151363372803 img loss 1.571418046951294 img loss 1.605465054512024 img loss 1.3917219638824463 img loss 1.424355387687683 img loss 1.504614233970642 img loss 1.3359721899032593 img loss 1.5638149976730347 img loss 1.4746636152267456 img loss 1.4155970811843872 img loss 1.4624541997909546 img loss 1.4378197193145752 img loss 1.642149806022644 img loss 1.4899065494537354 img loss 1.4870655536651611 img loss 1.5038902759552002 img loss 1.2631042003631592 img loss 1.3870760202407837img loss 1.5360592603683472 img loss 1.4972014427185059 img loss 1.41384756565094 img loss 1.6291126012802124 img loss 1.4551972150802612 img loss 1.4646127223968506 img loss 1.3893190622329712 img loss 1.3787912130355835 img loss 1.4643601179122925 img loss 1.5424526929855347 img loss 1.3982008695602417 img loss 1.4591609239578247 img loss 1.4885157346725464 img loss 1.4567104578018188 img loss 1.459481954574585 img loss 1.4460927248001099 img loss 1.418992519378662 img loss 1.382633924484253 img loss 1.4956609010696411 img loss 1.400828242301941 img loss 1.6669118404388428 img loss 1.5443238019943237 img loss 1.402499794960022 img loss 1.3783934116363525 img loss 1.48884916305542 img loss 1.4794642925262451 img loss 1.3537285327911377 img loss 1.5127007961273193 img loss 1.407834529876709 img loss 1.3338367938995361 img loss 1.2644705772399902 img loss 1.4906965494155884 img loss 1.5036791563034058 img loss 1.494659662246704 img loss 1.433440089225769 img loss 1.3407384157180786 img loss 1.4218535423278809 img loss 1.5007973909378052 img loss 1.46320378780365 img loss 1.3876128196716309 img loss 1.4293420314788818 img loss 1.5111076831817627 img loss 1.4931750297546387 img loss 1.425310730934143 img loss 1.573069453239441 img loss 1.5338464975357056 img loss 1.5505471229553223 img loss 1.4231886863708496 img loss 1.3648473024368286 img loss 1.367530107498169 img loss 1.4353338479995728 img loss 1.411974310874939 img loss 1.3239763975143433 img loss 1.4838011264801025 img loss 1.4363442659378052 img loss 1.522670865058899 img loss 1.442360281944275 img loss 1.424800157546997 img loss 1.4022961854934692 img loss 1.5176554918289185 img loss 1.4904142618179321 img loss 1.63002610206604 img loss 1.483008861541748 img loss 1.4511669874191284 img loss 1.463167428970337 {'loss': 1.4583, 'grad_norm': 0.3592645227909088, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.211608648300171 img loss 1.2485507726669312 img loss 1.3209835290908813 img loss 1.4966195821762085 img loss 1.2262791395187378 img loss 1.2648162841796875 img loss 1.2861955165863037 img loss 1.2617697715759277 img loss 1.4425400495529175 img loss 1.2286123037338257 img loss 1.2738258838653564 img loss 1.2638095617294312 img loss 1.266918659210205 img loss 1.2240443229675293 img loss 1.3450452089309692 img loss 1.3580241203308105 img loss 1.234840750694275 img loss 1.1760950088500977 img loss 1.2336488962173462 img loss 1.2828364372253418 img loss 1.3640989065170288 img loss 1.167978286743164 img loss 1.2205636501312256 img loss 1.3598523139953613 img loss 1.414772391319275 img loss 1.318671703338623 img loss 1.1856703758239746 img loss 1.3315577507019043 img loss 1.2524149417877197 img loss 1.1817253828048706 img loss 1.2880712747573853 img loss 1.22373366355896 img loss 1.2090984582901 img loss 1.2582670450210571 img loss 1.3272005319595337 img loss 1.2884832620620728 img loss 1.2946033477783203 img loss 1.2550499439239502 img loss 1.29483163356781 img loss 1.2417172193527222 img loss 1.2325470447540283 img loss 1.2942861318588257 img loss 1.3098560571670532 img loss 1.2230608463287354 img loss 1.3086076974868774 img loss 1.3885705471038818 img loss 1.2889641523361206 img loss 1.2485231161117554 img loss 1.474124789237976 img loss 1.312932014465332 img loss 1.2298548221588135 img loss 1.2661207914352417 img loss 1.3315598964691162 img loss 1.2786086797714233 img loss 1.3004268407821655 img loss 1.23297119140625 img loss 1.2490938901901245 img loss 1.2823238372802734 img loss 1.2365219593048096 img loss 1.3282501697540283 img loss 1.2285867929458618 img loss 1.3145012855529785 img loss 1.2063769102096558 img loss 1.210950493812561 img loss 1.1326992511749268 img loss 1.413444995880127 img loss 1.2528928518295288 img loss 1.171478271484375 img loss 1.2834419012069702 img loss 1.276974081993103 img loss 1.1825913190841675 img loss 1.2852482795715332 img loss 1.282742977142334 img loss 1.350216031074524 img loss 1.1888458728790283 img loss 1.2662584781646729 img loss 1.28578519821167 img loss 1.2963809967041016 img loss 1.2245773077011108 img loss 1.278180480003357 img loss 1.276888370513916 img loss 1.2714860439300537 img loss 1.3038238286972046 img loss 1.2579870223999023 img loss 1.2676743268966675 img loss 1.274937391281128 img loss 1.2834666967391968 img loss 1.3003082275390625 img loss 1.2392948865890503 img loss 1.2681427001953125 img loss 1.3993288278579712 img loss 1.3122763633728027 img loss 1.1666992902755737 img loss 1.2651357650756836 img loss 1.3181270360946655 img loss 1.2912530899047852 img loss 1.3139793872833252 img loss 1.2408493757247925 img loss 1.2183990478515625 img loss 1.2086387872695923 img loss 1.2059295177459717 img loss 1.1689497232437134 img loss 1.1829572916030884 img loss 1.231565237045288 img loss 1.225559115409851 img loss 1.2375826835632324 img loss 1.2692227363586426 img loss 1.2627071142196655 img loss 1.3005808591842651 img loss 1.2046294212341309 img loss 1.2940330505371094 img loss 1.3204983472824097 img loss 1.187949776649475 img loss 1.2626664638519287 img loss 1.3085190057754517 img loss 1.2853507995605469 img loss 1.200663447380066 img loss 1.1913098096847534 img loss 1.281136155128479 img loss 1.2118462324142456 img loss 1.1949567794799805 img loss 1.3686450719833374 img loss 1.3099658489227295 img loss 1.3201569318771362 img loss 1.2149206399917603 img loss 1.2579963207244873 img loss 1.2209535837173462 img loss 1.2959766387939453 {'loss': 1.2701, 'grad_norm': 0.35912564396858215, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.263964295387268 img loss 1.1829231977462769 img loss 1.29231595993042 img loss 1.2213572263717651 img loss 1.3412052392959595 img loss 1.2701048851013184 img loss 1.2043406963348389 img loss 1.2969279289245605 img loss 1.2653629779815674 img loss 1.218747854232788 img loss 1.1808899641036987 img loss 1.2086963653564453 img loss 1.2567689418792725 img loss 1.2213990688323975 img loss 1.223634958267212 img loss 1.2125444412231445 img loss 1.2614513635635376 img loss 1.2237650156021118 img loss 1.2481085062026978 img loss 1.2775957584381104 img loss 1.2732781171798706 img loss 1.2766234874725342 img loss 1.1848973035812378 img loss 1.2610310316085815 img loss 1.3434032201766968 img loss 1.2850263118743896 img loss 1.244259238243103 img loss 1.2818745374679565 img loss 1.2731107473373413 img loss 1.3551090955734253 img loss 1.230254888534546 img loss 1.268703818321228 img loss 1.3273658752441406 img loss 1.2540431022644043 img loss 1.3027958869934082 img loss 1.293394684791565 img loss 1.1823234558105469 img loss 1.2949275970458984 img loss 1.1873605251312256 img loss 1.1930596828460693 img loss 1.2794368267059326 img loss 1.2836687564849854 img loss 1.2151139974594116 img loss 1.1983591318130493 img loss 1.3091076612472534 img loss 1.2365047931671143 img loss 1.3105324506759644 img loss 1.3078657388687134 img loss 1.3036850690841675 img loss 1.3393913507461548 img loss 1.2535275220870972 img loss 1.2071313858032227 img loss 1.2047516107559204 img loss 1.2469717264175415 img loss 1.3019835948944092 img loss 1.216677188873291 img loss 1.2210960388183594 img loss 1.2661300897598267 img loss 1.252805471420288 img loss 1.1668322086334229 img loss 1.2643426656723022 img loss 1.2415194511413574 img loss 1.3145921230316162 img loss 1.2153370380401611 img loss 1.2779712677001953 img loss 1.2290743589401245 img loss 1.2536418437957764 img loss 1.2668113708496094 img loss 1.2086408138275146 img loss 1.252500295639038 img loss 1.2623382806777954 img loss 1.2873834371566772 img loss 1.2132552862167358 img loss 1.265696406364441 img loss 1.2545028924942017 img loss 1.2982898950576782 img loss 1.2733827829360962 img loss 1.2603768110275269 img loss 1.2310986518859863 img loss 1.1872507333755493 img loss 1.2966660261154175 img loss 1.2676321268081665 img loss 1.2508493661880493 img loss 1.2528066635131836 img loss 1.2482795715332031 img loss 1.3473544120788574 img loss 1.4068577289581299 img loss 1.2885222434997559 img loss 1.2371965646743774 img loss 1.2447031736373901 img loss 1.28342604637146 img loss 1.2204012870788574 img loss 1.2201015949249268 img loss 1.2533752918243408 img loss 1.2536991834640503 img loss 1.2753151655197144 img loss 1.2521967887878418 img loss 1.1920572519302368 img loss 1.1861987113952637 img loss 1.2089506387710571 img loss 1.234961748123169 img loss 1.3411380052566528 img loss 1.2547407150268555 img loss 1.3066085577011108 img loss 1.252806305885315 img loss 1.2668993473052979 img loss 1.309936285018921 img loss 1.2505611181259155 img loss 1.2897838354110718 img loss 1.2852102518081665 img loss 1.2500536441802979img loss 1.2411352396011353 img loss 1.1901509761810303 img loss 1.3452874422073364 img loss 1.2784533500671387 img loss 1.3009089231491089 img loss 1.2272357940673828 img loss 1.2149360179901123 img loss 1.2190780639648438 img loss 1.2590603828430176 img loss 1.2834351062774658 img loss 1.2508283853530884 img loss 1.3128087520599365 img loss 1.2428638935089111 img loss 1.2657692432403564 img loss 1.2853597402572632 img loss 1.2435826063156128 img loss 1.3440698385238647 {'loss': 1.2586, 'grad_norm': 0.5238575339317322, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.3779385089874268 img loss 1.3681275844573975 img loss 1.3379406929016113 img loss 1.3540345430374146 img loss 1.4032683372497559 img loss 1.3638720512390137 img loss 1.3653491735458374 img loss 1.1832317113876343 img loss 1.3112962245941162 img loss 1.28298819065094 img loss 1.484271764755249 img loss 1.3669956922531128 img loss 1.2935791015625 img loss 1.3138158321380615 img loss 1.2945598363876343 img loss 1.398921251296997 img loss 1.5042355060577393 img loss 1.368811011314392 img loss 1.3005576133728027 img loss 1.3704581260681152 img loss 1.2599074840545654 img loss 1.3515279293060303 img loss 1.4409302473068237 img loss 1.3274054527282715 img loss 1.2988834381103516 img loss 1.5459284782409668 img loss 1.3963385820388794 img loss 1.4491130113601685 img loss 1.3545724153518677 img loss 1.3547377586364746 img loss 1.4780906438827515 img loss 1.4823862314224243 img loss 1.319553256034851 img loss 1.301534652709961 img loss 1.3339258432388306 img loss 1.3262684345245361 img loss 1.2976300716400146 img loss 1.444867730140686 img loss 1.4179913997650146 img loss 1.4121521711349487 img loss 1.382694959640503 img loss 1.5168460607528687 img loss 1.3737205266952515 img loss 1.3423413038253784 img loss 1.4450067281723022 img loss 1.4045943021774292 img loss 1.4255194664001465 img loss 1.22903573513031 img loss 1.3425211906433105 img loss 1.4036571979522705 img loss 1.384175419807434 img loss 1.3088802099227905 img loss 1.325845718383789 img loss 1.4016178846359253 img loss 1.3133270740509033 img loss 1.4072853326797485 img loss 1.361000657081604 img loss 1.3350398540496826 img loss 1.3351713418960571 img loss 1.2617580890655518 img loss 1.4349439144134521 img loss 1.2633576393127441 img loss 1.4501588344573975 img loss 1.4058213233947754 img loss 1.452389121055603 img loss 1.4140952825546265 img loss 1.3429791927337646 img loss 1.385231852531433 img loss 1.4664376974105835 img loss 1.3617955446243286 img loss 1.4183592796325684 img loss 1.3540184497833252 img loss 1.3713372945785522 img loss 1.3368655443191528 img loss 1.2663061618804932 img loss 1.3204560279846191 img loss 1.40811026096344 img loss 1.3502579927444458 img loss 1.4064507484436035 img loss 1.3804147243499756 img loss 1.3026230335235596 img loss 1.2740893363952637 img loss 1.3508145809173584 img loss 1.2983670234680176 img loss 1.2745901346206665 img loss 1.3453460931777954 img loss 1.3314862251281738 img loss 1.4049413204193115 img loss 1.3498094081878662 img loss 1.3813469409942627 img loss 1.4468914270401 img loss 1.3698757886886597 img loss 1.372361660003662 img loss 1.3534091711044312 img loss 1.5239239931106567 img loss 1.415412187576294 img loss 1.4394367933273315 img loss 1.3622325658798218 img loss 1.3986302614212036 img loss 1.2836191654205322 img loss 1.3851147890090942 img loss 1.3225561380386353 img loss 1.323370337486267 img loss 1.4012373685836792 img loss 1.4334453344345093 img loss 1.4215233325958252 img loss 1.3790134191513062 img loss 1.4260622262954712 img loss 1.3083627223968506 img loss 1.2556560039520264 img loss 1.425723671913147 img loss 1.536394476890564 img loss 1.3627678155899048 img loss 1.3387609720230103 img loss 1.358954668045044 img loss 1.3529709577560425 img loss 1.3825339078903198 img loss 1.3463042974472046 img loss 1.3241695165634155 img loss 1.3232839107513428 img loss 1.3503190279006958 img loss 1.2698171138763428 img loss 1.4070016145706177 img loss 1.4893285036087036 img loss 1.3492764234542847 img loss 1.3100489377975464 img loss 1.41616952419281 img loss 1.3207396268844604 {'loss': 1.3682, 'grad_norm': 0.30458855628967285, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2477883100509644 img loss 1.273171305656433 img loss 1.2068264484405518 img loss 1.374423623085022 img loss 1.2298166751861572 img loss 1.3062622547149658 img loss 1.2632043361663818 img loss 1.1916403770446777 img loss 1.2182552814483643 img loss 1.2165372371673584 img loss 1.2556880712509155 img loss 1.197029948234558 img loss 1.1629688739776611 img loss 1.3142095804214478 img loss 1.2623447179794312 img loss 1.298325777053833 img loss 1.1999248266220093 img loss 1.2877817153930664 img loss 1.23916494846344 img loss 1.2284023761749268 img loss 1.2609403133392334 img loss 1.179888129234314 img loss 1.3034082651138306 img loss 1.287043571472168 img loss 1.3059039115905762 img loss 1.175118327140808 img loss 1.34508216381073 img loss 1.1818526983261108img loss 1.2099016904830933 img loss 1.2746100425720215 img loss 1.2652733325958252 img loss 1.2270311117172241 img loss 1.363227367401123 img loss 1.1988601684570312img loss 1.258415937423706 img loss 1.2538113594055176 img loss 1.1692482233047485 img loss 1.2410625219345093 img loss 1.2560127973556519 img loss 1.3376773595809937 img loss 1.292154312133789 img loss 1.291994333267212 img loss 1.295255422592163 img loss 1.1995089054107666 img loss 1.2306991815567017 img loss 1.2311878204345703 img loss 1.2569624185562134 img loss 1.2594181299209595 img loss 1.2278839349746704 img loss 1.1543043851852417 img loss 1.2739254236221313 img loss 1.2151917219161987 img loss 1.1679458618164062 img loss 1.1947500705718994 img loss 1.1986584663391113 img loss 1.1972861289978027 img loss 1.3274999856948853 img loss 1.1977020502090454 img loss 1.2622559070587158 img loss 1.2433370351791382 img loss 1.3917239904403687 img loss 1.2803130149841309 img loss 1.2021112442016602 img loss 1.1422348022460938 img loss 1.2420628070831299 img loss 1.271372675895691 img loss 1.1829553842544556 img loss 1.2047423124313354 img loss 1.1817750930786133 img loss 1.24153733253479 img loss 1.2050632238388062 img loss 1.259813666343689 img loss 1.3293203115463257 img loss 1.2199170589447021 img loss 1.2475049495697021 img loss 1.1738122701644897 img loss 1.2591527700424194 img loss 1.243994116783142 img loss 1.2216299772262573 img loss 1.3254773616790771 img loss 1.3316830396652222 img loss 1.2275128364562988 img loss 1.2954096794128418 img loss 1.2787576913833618 img loss 1.3238472938537598 img loss 1.2325799465179443 img loss 1.1937240362167358 img loss 1.2235851287841797 img loss 1.2351083755493164 img loss 1.1853725910186768 img loss 1.1712998151779175 img loss 1.2285022735595703 img loss 1.3349922895431519 img loss 1.2745040655136108 img loss 1.2023733854293823 img loss 1.2159178256988525 img loss 1.3146131038665771 img loss 1.3914154767990112 img loss 1.2293506860733032 img loss 1.2605007886886597 img loss 1.2746200561523438 img loss 1.2659194469451904 img loss 1.337135672569275 img loss 1.303979516029358 img loss 1.2387123107910156 img loss 1.3476006984710693 img loss 1.2763270139694214 img loss 1.2545515298843384 img loss 1.1956455707550049 img loss 1.2928770780563354 img loss 1.2935987710952759 img loss 1.2814478874206543 img loss 1.2260746955871582 img loss 1.2200816869735718 img loss 1.275512456893921 img loss 1.200773000717163 img loss 1.1921441555023193 img loss 1.2525763511657715 img loss 1.2363866567611694 img loss 1.2543379068374634 img loss 1.25164794921875 img loss 1.2444148063659668 img loss 1.262365698814392 img loss 1.2229866981506348 img loss 1.4021756649017334 img loss 1.271877646446228 img loss 1.28426992893219 img loss 1.2811216115951538 {'loss': 1.2516, 'grad_norm': 0.6471648812294006, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.1561312675476074 img loss 1.2326983213424683 img loss 1.1822967529296875 img loss 1.187696099281311 img loss 1.1763200759887695 img loss 1.1306288242340088 img loss 1.2334083318710327 img loss 1.1711149215698242 img loss 1.251718282699585 img loss 1.2123955488204956 img loss 1.212349534034729 img loss 1.2550809383392334 img loss 1.1988110542297363 img loss 1.158814787864685 img loss 1.2062028646469116 img loss 1.148740291595459 img loss 1.2124054431915283 img loss 1.2312343120574951 img loss 1.2710884809494019 img loss 1.1854814291000366 img loss 1.1657123565673828 img loss 1.1656452417373657 img loss 1.2267603874206543 img loss 1.1572881937026978 img loss 1.1522290706634521 img loss 1.1938679218292236 img loss 1.1360963582992554 img loss 1.1800096035003662 img loss 1.2272347211837769 img loss 1.1909263134002686 img loss 1.1862907409667969 img loss 1.1919801235198975 img loss 1.204965353012085 img loss 1.2229903936386108 img loss 1.236520528793335 img loss 1.1775352954864502 img loss 1.1417862176895142 img loss 1.197065830230713 img loss 1.2649544477462769 img loss 1.1625808477401733 img loss 1.1830257177352905 img loss 1.224143385887146 img loss 1.2553105354309082 img loss 1.1761764287948608 img loss 1.1549568176269531 img loss 1.2213314771652222 img loss 1.1735397577285767 img loss 1.1770870685577393 img loss 1.206392765045166 img loss 1.16972815990448 img loss 1.185657262802124 img loss 1.1868515014648438 img loss 1.2175673246383667 img loss 1.2305001020431519 img loss 1.1621900796890259 img loss 1.1440457105636597 img loss 1.2037639617919922 img loss 1.220261812210083 img loss 1.185624361038208 img loss 1.1846301555633545 img loss 1.1722716093063354 img loss 1.1755905151367188 img loss 1.2729761600494385 img loss 1.1936222314834595 img loss 1.212516188621521 img loss 1.1637979745864868 img loss 1.1745389699935913 img loss 1.150997519493103 img loss 1.2143919467926025 img loss 1.1825774908065796 img loss 1.18963623046875 img loss 1.208876371383667 img loss 1.1429667472839355 img loss 1.2565078735351562 img loss 1.1700992584228516 img loss 1.1856142282485962 img loss 1.1772663593292236 img loss 1.169263482093811 img loss 1.190825343132019 img loss 1.181039810180664 img loss 1.2392399311065674 img loss 1.1927146911621094 img loss 1.1686092615127563 img loss 1.2181084156036377 img loss 1.1475613117218018 img loss 1.158522129058838 img loss 1.1795181035995483 img loss 1.1903855800628662 img loss 1.1854875087738037 img loss 1.158808946609497 img loss 1.1563671827316284 img loss 1.1901270151138306 img loss 1.1976721286773682 img loss 1.1693007946014404 img loss 1.1445167064666748 img loss 1.2340933084487915 img loss 1.1957428455352783 img loss 1.1851933002471924 img loss 1.1768510341644287 img loss 1.2234973907470703 img loss 1.2923884391784668 img loss 1.1742470264434814 img loss 1.2239995002746582 img loss 1.1994253396987915 img loss 1.1967782974243164 img loss 1.1849104166030884 img loss 1.195962905883789 img loss 1.2256994247436523 img loss 1.2268511056900024 img loss 1.146686315536499 img loss 1.277656078338623 img loss 1.2117671966552734 img loss 1.1827589273452759 img loss 1.1631193161010742 img loss 1.2080645561218262 img loss 1.1893545389175415 img loss 1.1452298164367676 img loss 1.1612993478775024 img loss 1.188745379447937 img loss 1.1963261365890503 img loss 1.151108980178833 img loss 1.1567928791046143 img loss 1.2206777334213257 img loss 1.2315540313720703 img loss 1.1847524642944336 img loss 1.1488007307052612 img loss 1.1642987728118896 img loss 1.1909332275390625 {'loss': 1.1922, 'grad_norm': 0.4143948256969452, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2642849683761597 img loss 1.2422986030578613 img loss 1.2786368131637573 img loss 1.2811074256896973 img loss 1.099361777305603 img loss 1.273476004600525 img loss 1.2545994520187378 img loss 1.2568809986114502 img loss 1.2974287271499634 img loss 1.2714576721191406 img loss 1.348056674003601 img loss 1.2288748025894165 img loss 1.2735376358032227 img loss 1.29412841796875 img loss 1.2624469995498657 img loss 1.2265783548355103 img loss 1.3419156074523926 img loss 1.2114014625549316 img loss 1.2126680612564087 img loss 1.315304160118103 img loss 1.2627384662628174 img loss 1.2260186672210693 img loss 1.2216897010803223 img loss 1.2409595251083374 img loss 1.3156352043151855 img loss 1.3188008069992065 img loss 1.2979835271835327 img loss 1.2898486852645874 img loss 1.2350540161132812 img loss 1.2366551160812378 img loss 1.3514982461929321 img loss 1.2361541986465454 img loss 1.2563490867614746 img loss 1.2739331722259521 img loss 1.2321546077728271 img loss 1.2434282302856445 img loss 1.284416675567627 img loss 1.3257392644882202 img loss 1.2549346685409546 img loss 1.3338751792907715 img loss 1.2901934385299683 img loss 1.2759912014007568 img loss 1.22994863986969 img loss 1.2272963523864746 img loss 1.2433449029922485 img loss 1.2096023559570312 img loss 1.237151026725769 img loss 1.2496647834777832 img loss 1.2104947566986084 img loss 1.3502390384674072 img loss 1.2356998920440674 img loss 1.2823148965835571 img loss 1.1643720865249634 img loss 1.2651822566986084 img loss 1.1725705862045288 img loss 1.1961208581924438 img loss 1.26383376121521 img loss 1.2641733884811401 img loss 1.2181247472763062 img loss 1.2566139698028564 img loss 1.2942527532577515 img loss 1.2595622539520264 img loss 1.2254714965820312 img loss 1.3023780584335327 img loss 1.1946042776107788 img loss 1.26274836063385 img loss 1.251413106918335 img loss 1.2561854124069214 img loss 1.2689863443374634 img loss 1.232521891593933 img loss 1.2963058948516846 img loss 1.3764491081237793 img loss 1.223080039024353 img loss 1.2920414209365845 img loss 1.2474379539489746 img loss 1.2957518100738525 img loss 1.3150057792663574 img loss 1.1976070404052734 img loss 1.257482886314392 img loss 1.2645753622055054 img loss 1.2158355712890625 img loss 1.3613842725753784 img loss 1.281400203704834 img loss 1.2949855327606201 img loss 1.2420685291290283 img loss 1.237260103225708 img loss 1.1961658000946045 img loss 1.2722471952438354 img loss 1.2930666208267212 img loss 1.2762774229049683 img loss 1.297029733657837 img loss 1.459722638130188 img loss 1.3826380968093872 img loss 1.2577929496765137 img loss 1.1966594457626343 img loss 1.2011809349060059 img loss 1.3745468854904175 img loss 1.174956202507019 img loss 1.2778955698013306 img loss 1.286786437034607 img loss 1.2782539129257202 img loss 1.2923119068145752 img loss 1.2163628339767456 img loss 1.292578935623169 img loss 1.3847832679748535 img loss 1.215156078338623 img loss 1.25050687789917 img loss 1.30333411693573 img loss 1.2223317623138428 img loss 1.2247509956359863 img loss 1.2592161893844604 img loss 1.215624213218689 img loss 1.2633262872695923img loss 1.3634990453720093 img loss 1.2210311889648438 img loss 1.2373586893081665 img loss 1.2695249319076538 img loss 1.2088062763214111 img loss 1.2547521591186523 img loss 1.3048663139343262 img loss 1.3309152126312256 img loss 1.22273588180542 img loss 1.3382773399353027 img loss 1.3224081993103027 img loss 1.1901758909225464 img loss 1.2308486700057983 img loss 1.2823817729949951 img loss 1.2988111972808838 {'loss': 1.2649, 'grad_norm': 0.4587307274341583, 'learning_rate': 0.0001, 'epoch': 0.26} img loss 1.2039555311203003 img loss 1.1962900161743164 img loss 1.132755994796753 img loss 1.2261967658996582 img loss 1.1583296060562134 img loss 1.254280686378479 img loss 1.1486586332321167 img loss 1.1969741582870483 img loss 1.2919443845748901 img loss 1.1517486572265625 img loss 1.2253665924072266 img loss 1.1729812622070312 img loss 1.1752744913101196 img loss 1.2000234127044678 img loss 1.1722359657287598 img loss 1.1957052946090698 img loss 1.2291233539581299 img loss 1.1309291124343872 img loss 1.105655550956726 img loss 1.1146297454833984 img loss 1.3207592964172363 img loss 1.2941925525665283 img loss 1.1259065866470337 img loss 1.1757380962371826 img loss 1.2056496143341064 img loss 1.1538389921188354 img loss 1.1782450675964355 img loss 1.172281265258789 img loss 1.289987564086914 img loss 1.185943603515625 img loss 1.1979186534881592 img loss 1.1982300281524658 img loss 1.171995997428894 img loss 1.253710150718689 img loss 1.2153091430664062 img loss 1.1542401313781738 img loss 1.2200978994369507 img loss 1.1099106073379517 img loss 1.1680793762207031 img loss 1.1966062784194946 img loss 1.1478543281555176 img loss 1.2472662925720215 img loss 1.148392915725708 img loss 1.2099825143814087 img loss 1.147426962852478 img loss 1.296586513519287 img loss 1.2129768133163452 img loss 1.263271689414978 img loss 1.2151334285736084 img loss 1.2257356643676758 img loss 1.2318369150161743 img loss 1.253938913345337 img loss 1.203354835510254 img loss 1.1487329006195068 img loss 1.1657947301864624 img loss 1.2242040634155273 img loss 1.3282078504562378 img loss 1.1779440641403198 img loss 1.1245605945587158 img loss 1.2034307718276978 img loss 1.2040157318115234 img loss 1.144677996635437 img loss 1.298377513885498 img loss 1.31182861328125 img loss 1.2127225399017334 img loss 1.2040841579437256 img loss 1.1915903091430664 img loss 1.2064237594604492 img loss 1.2179796695709229 img loss 1.0914112329483032 img loss 1.1006978750228882 img loss 1.1674765348434448 img loss 1.1232526302337646 img loss 1.1924558877944946 img loss 1.285010814666748 img loss 1.2872101068496704 img loss 1.2262204885482788 img loss 1.1862964630126953 img loss 1.1596463918685913 img loss 1.2351620197296143 img loss 1.1548643112182617 img loss 1.1564180850982666 img loss 1.208016276359558 img loss 1.133845567703247 img loss 1.1490274667739868 img loss 1.2530447244644165 img loss 1.223521113395691 img loss 1.2408559322357178 img loss 1.2567856311798096 img loss 1.184472918510437 img loss 1.2589530944824219 img loss 1.2503981590270996 img loss 1.2114816904067993 img loss 1.1963704824447632 img loss 1.2402995824813843 img loss 1.1675856113433838 img loss 1.1435819864273071 img loss 1.2057549953460693 img loss 1.1099563837051392 img loss 1.258707046508789 img loss 1.2271076440811157 img loss 1.1937370300292969 img loss 1.1374454498291016 img loss 1.1178007125854492 img loss 1.2951545715332031 img loss 1.1729665994644165 img loss 1.2440766096115112 img loss 1.1285741329193115 img loss 1.1259230375289917 img loss 1.121360421180725 img loss 1.197711706161499 img loss 1.2015564441680908 img loss 1.1958637237548828 img loss 1.222327709197998 img loss 1.0824116468429565 img loss 1.2706096172332764 img loss 1.1756033897399902 img loss 1.222165822982788 img loss 1.310539722442627 img loss 1.165363073348999 img loss 1.2032692432403564 img loss 1.1750420331954956 img loss 1.1064872741699219 img loss 1.1738773584365845 img loss 1.14267098903656 img loss 1.1557390689849854 img loss 1.1408907175064087 img loss 1.1861684322357178 {'loss': 1.1952, 'grad_norm': 0.8293220400810242, 'learning_rate': 0.0001, 'epoch': 0.26} [2025-02-19 22:02:16,626] [INFO] [logging.py:128:log_dist] [Rank 0] [Torch] Checkpoint global_step50000 is about to be saved! [2025-02-19 22:02:16,726] [INFO] [logging.py:128:log_dist] [Rank 0] Saving model checkpoint: /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/mp_rank_00_model_states.pt [2025-02-19 22:02:16,726] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/mp_rank_00_model_states.pt... [2025-02-19 22:03:06,303] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/mp_rank_00_model_states.pt. [2025-02-19 22:03:06,500] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt... [2025-02-19 22:03:06,501] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_112_mp_rank_00_optim_states.pt... [2025-02-19 22:03:06,501] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_120_mp_rank_00_optim_states.pt... [2025-02-19 22:03:06,501] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_72_mp_rank_00_optim_states.pt... [2025-02-19 22:03:06,501] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_88_mp_rank_00_optim_states.pt... [2025-02-19 22:03:06,501] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt... [2025-02-19 22:03:06,501] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_48_mp_rank_00_optim_states.pt... [2025-02-19 22:03:06,501] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_56_mp_rank_00_optim_states.pt... [2025-02-19 22:03:06,501] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_96_mp_rank_00_optim_states.pt... [2025-02-19 22:03:06,502] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_80_mp_rank_00_optim_states.pt... [2025-02-19 22:03:06,502] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_24_mp_rank_00_optim_states.pt... [2025-02-19 22:03:06,502] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_32_mp_rank_00_optim_states.pt... [2025-02-19 22:03:06,502] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_40_mp_rank_00_optim_states.pt... [2025-02-19 22:03:06,505] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_64_mp_rank_00_optim_states.pt... [2025-02-19 22:03:06,511] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_104_mp_rank_00_optim_states.pt... [2025-02-19 22:03:06,518] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_16_mp_rank_00_optim_states.pt... [2025-02-19 22:03:06,826] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_56_mp_rank_00_optim_states.pt. [2025-02-19 22:03:06,826] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_56_mp_rank_00_optim_states.pt [2025-02-19 22:03:06,826] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt. [2025-02-19 22:03:06,827] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step50000 is ready now! [2025-02-19 22:03:06,837] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt [2025-02-19 22:03:06,838] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step50000 is ready now! [2025-02-19 22:03:06,841] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_24_mp_rank_00_optim_states.pt. [2025-02-19 22:03:06,842] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_24_mp_rank_00_optim_states.pt [2025-02-19 22:03:06,842] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step50000 is ready now! [2025-02-19 22:03:06,851] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_40_mp_rank_00_optim_states.pt. [2025-02-19 22:03:06,852] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_40_mp_rank_00_optim_states.pt [2025-02-19 22:03:06,852] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step50000 is ready now! [2025-02-19 22:03:06,864] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_72_mp_rank_00_optim_states.pt. [2025-02-19 22:03:06,864] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_72_mp_rank_00_optim_states.pt [2025-02-19 22:03:06,864] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step50000 is ready now! [2025-02-19 22:03:06,864] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_88_mp_rank_00_optim_states.pt. [2025-02-19 22:03:06,865] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_88_mp_rank_00_optim_states.pt [2025-02-19 22:03:06,865] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step50000 is ready now! [2025-02-19 22:03:06,867] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_32_mp_rank_00_optim_states.pt. [2025-02-19 22:03:06,868] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_32_mp_rank_00_optim_states.pt [2025-02-19 22:03:06,868] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step50000 is ready now! [2025-02-19 22:03:06,869] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_112_mp_rank_00_optim_states.pt. [2025-02-19 22:03:06,869] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_112_mp_rank_00_optim_states.pt [2025-02-19 22:03:06,870] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step50000 is ready now! [2025-02-19 22:03:06,880] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_16_mp_rank_00_optim_states.pt. [2025-02-19 22:03:06,880] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_16_mp_rank_00_optim_states.pt [2025-02-19 22:03:06,881] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step50000 is ready now! [2025-02-19 22:03:06,882] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_120_mp_rank_00_optim_states.pt. [2025-02-19 22:03:06,882] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_120_mp_rank_00_optim_states.pt [2025-02-19 22:03:06,882] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step50000 is ready now! [2025-02-19 22:03:06,891] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_104_mp_rank_00_optim_states.pt. [2025-02-19 22:03:06,891] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_104_mp_rank_00_optim_states.pt [2025-02-19 22:03:06,891] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step50000 is ready now! [2025-02-19 22:03:06,892] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_96_mp_rank_00_optim_states.pt. [2025-02-19 22:03:06,892] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_96_mp_rank_00_optim_states.pt [2025-02-19 22:03:06,892] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step50000 is ready now! [2025-02-19 22:03:06,897] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt. [2025-02-19 22:03:06,897] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt [2025-02-19 22:03:06,897] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step50000 is ready now! [2025-02-19 22:03:06,902] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_64_mp_rank_00_optim_states.pt. [2025-02-19 22:03:06,902] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_64_mp_rank_00_optim_states.pt [2025-02-19 22:03:06,902] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step50000 is ready now! [2025-02-19 22:03:06,914] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_80_mp_rank_00_optim_states.pt. [2025-02-19 22:03:06,914] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_80_mp_rank_00_optim_states.pt [2025-02-19 22:03:06,914] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step50000 is ready now! [2025-02-19 22:03:06,952] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_48_mp_rank_00_optim_states.pt. [2025-02-19 22:03:06,953] [INFO] [engine.py:3572:_save_zero_checkpoint] zero checkpoint saved /fsx_0/user/zhaojiang/models/qwen-vl-gen/checkpoint-50000/global_step50000/bf16_zero_pp_rank_48_mp_rank_00_optim_states.pt [2025-02-19 22:03:06,953] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step50000 is ready now! img loss 1.1518361568450928 img loss 1.2406399250030518 img loss 1.1103839874267578 img loss 1.2338290214538574 img loss 1.2328886985778809 img loss 1.1639379262924194 img loss 1.2075536251068115 img loss 1.2043555974960327 img loss 1.2173290252685547 img loss 1.2378393411636353 img loss 1.1651523113250732 img loss 1.159678339958191 img loss 1.1267015933990479 img loss 1.2890194654464722 img loss 1.155409812927246 img loss 1.0533392429351807 img loss 1.2054929733276367 img loss 1.1000010967254639 img loss 1.1501911878585815 img loss 1.1130344867706299 img loss 1.1400623321533203 img loss 1.174080491065979 img loss 1.1650089025497437 img loss 1.2388321161270142 img loss 1.205976963043213 img loss 1.142093300819397 img loss 1.2073692083358765 img loss 1.1750657558441162 img loss 1.1680361032485962 img loss 1.2402286529541016 img loss 1.267719030380249 img loss 1.2030423879623413 img loss 1.154417634010315 img loss 1.225380301475525 img loss 1.2148833274841309 img loss 1.170642375946045 img loss 1.0695527791976929 img loss 1.126971960067749 img loss 1.289048433303833 img loss 1.1600710153579712 img loss 1.2003990411758423 img loss 1.1816766262054443 img loss 1.1871689558029175 img loss 1.154447078704834 img loss 1.126692533493042 img loss 1.1410735845565796 img loss 1.1526615619659424 img loss 1.1421349048614502 img loss 1.237213134765625 img loss 1.1431519985198975 img loss 1.1759626865386963 img loss 1.1192004680633545 img loss 1.1897847652435303 img loss 1.1067572832107544 img loss 1.2076847553253174 img loss 1.202805995941162 img loss 1.1382018327713013 img loss 1.1048301458358765 img loss 1.2222073078155518 img loss 1.123605728149414 img loss 1.1785675287246704 img loss 1.1645058393478394 img loss 1.150591254234314 img loss 1.2489383220672607 img loss 1.1152446269989014 img loss 1.175217628479004 img loss 1.185125708580017 img loss 1.2042187452316284 img loss 1.1650924682617188 img loss 1.1004695892333984 img loss 1.2239302396774292 img loss 1.148528814315796 img loss 1.1310863494873047 img loss 1.2619625329971313 img loss 1.0934492349624634 img loss 1.1579347848892212 img loss 1.1686750650405884 img loss 1.1039469242095947 img loss 1.2324817180633545 img loss 1.157447099685669 img loss 1.233498454093933 img loss 1.0748928785324097 img loss 1.127392292022705 img loss 1.2122703790664673 img loss 1.1319578886032104 img loss 1.161860704421997 img loss 1.1320606470108032 img loss 1.1549676656723022 img loss 1.1610636711120605 img loss 1.2036653757095337 img loss 1.1862484216690063 img loss 1.2335623502731323 img loss 1.216783046722412 img loss 1.2533677816390991 img loss 1.0811920166015625 img loss 1.209672212600708 img loss 1.0741467475891113 img loss 1.2008357048034668 img loss 1.1603167057037354 img loss 1.1532663106918335 img loss 1.2041237354278564 img loss 1.1693134307861328 img loss 1.1859238147735596 img loss 1.2012042999267578 img loss 1.1488091945648193 img loss 1.1163313388824463 img loss 1.1917681694030762 img loss 1.2071740627288818 img loss 1.1532953977584839 img loss 1.1587218046188354 img loss 1.1424531936645508 img loss 1.261853575706482 img loss 1.2299416065216064 img loss 1.153350591659546 img loss 1.216469645500183 img loss 1.1210955381393433 img loss 1.1866726875305176 img loss 1.1981487274169922 img loss 1.113171935081482 img loss 1.1078696250915527img loss 1.124840259552002 img loss 1.1414685249328613 img loss 1.2582895755767822 img loss 1.2181202173233032 img loss 1.1177194118499756 img loss 1.206974983215332 img loss 1.1072949171066284 Upload successful! img loss 1.159847617149353