W0216 07:18:15.408000 3038721 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 07:18:15.408000 3038721 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.408000 3038721 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 07:18:15.408000 3038721 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.438000 3423799 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 07:18:15.438000 3423799 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.438000 3423799 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 07:18:15.438000 3423799 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.479000 2129293 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 07:18:15.479000 2129293 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.479000 2129293 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 07:18:15.479000 2129293 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.495000 3054897 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 07:18:15.495000 3054897 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.495000 3054897 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 07:18:15.495000 3054897 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.514000 3423624 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 07:18:15.514000 3423624 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.514000 3423624 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 07:18:15.514000 3423624 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.529000 3053573 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 07:18:15.529000 3053573 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.529000 3053573 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 07:18:15.529000 3053573 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.537000 3425590 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 07:18:15.537000 3425590 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.537000 3425590 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 07:18:15.537000 3425590 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.584000 3046945 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 07:18:15.584000 3046945 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.584000 3046945 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 07:18:15.584000 3046945 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.626000 2148926 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 07:18:15.626000 2148926 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.626000 2148926 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 07:18:15.626000 2148926 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.675000 2698609 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 07:18:15.675000 2698609 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.675000 2698609 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 07:18:15.675000 2698609 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.697000 2187937 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 07:18:15.697000 2187937 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.697000 2187937 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 07:18:15.697000 2187937 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.700000 3420003 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 07:18:15.700000 3420003 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.700000 3420003 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 07:18:15.700000 3420003 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.703000 3045916 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 07:18:15.703000 3045916 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.703000 3045916 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 07:18:15.703000 3045916 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.704000 2269001 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 07:18:15.704000 2269001 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.704000 2269001 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 07:18:15.704000 2269001 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.746000 3054891 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 07:18:15.746000 3054891 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.746000 3054891 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 07:18:15.746000 3054891 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.850000 2267137 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] W0216 07:18:15.850000 2267137 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** W0216 07:18:15.850000 2267137 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0216 07:18:15.850000 2267137 .local/lib/python3.10/site-packages/torch/distributed/run.py:793] ***************************************** PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json Instantiating LlavaQwenForCausalLM model under default dtype torch.bfloat16. You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`. Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 } Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json Instantiating LlavaQwenForCausalLM model under default dtype torch.bfloat16. You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`. Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 } Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices PyTorch: setting up devices loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json Instantiating LlavaQwenForCausalLM model under default dtype torch.bfloat16. You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`. Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 } Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json Loading checkpoint shards: 0%| | 0/5 [00:00', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.98it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.59it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.14it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.99it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.98it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.65it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.96it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.67it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 3.90it/s]loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.92it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.60it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.23it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.02it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } �███ | 2/5 [00:00<00:00, 3.79it/s] Loading checkpoint shards: 40%|████ | 2/5 [00:00<00:00, 4.07it/s] Loading checkpoint shards: 40%|████ | 2/5 [00:00<00:00, 4.04it/s] Loading checkpoint shards: 40%|████ | 2/5 [00:00<00:00, 3.59it/s] Loading checkpoint shards: 40%|████ | 2/5 [00:00<00:00, 3.57it/s] Loading checkpoint shards: 40%|████ | 2/5 [00:00<00:00, 4.11it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.74it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.44it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.16it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.95it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.14it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.96it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.25it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.03it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 4.20it/s]loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 3.91it/s]loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 3.98it/s] Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 3.77it/s]loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } %|████ | 2/5 [00:00<00:00, 3.78it/s] Loading checkpoint shards: 40%|████ | 2/5 [00:00<00:00, 4.33it/s] Loading checkpoint shards: 40%|████ | 2/5 [00:00<00:00, 3.86it/s] Loading checkpoint shards: 40%|████ | 2/5 [00:00<00:00, 3.61it/s] Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 4.49it/s] Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 4.62it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.77it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.45it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 4.21it/s] Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 4.61it/s]loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Loading checkpoint shards: 80%|████████ | 4/5 [00:00<00:00, 4.61it/s] Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 3.78it/s] Loading checkpoint shards: 80%|████████ | 4/5 [00:00<00:00, 4.53it/s] Loading checkpoint shards: 80%|████████ | 4/5 [00:00<00:00, 4.26it/s]loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 4.30it/s]loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Loading checkpoint shards: 80%|████████ | 4/5 [00:00<00:00, 4.75it/s] Loading checkpoint shards: 80%|████████ | 4/5 [00:00<00:00, 4.65it/s] Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 4.01it/s]loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Loading checkpoint shards: 80%|████████ | 4/5 [00:01<00:00, 4.14it/s] Loading checkpoint shards: 80%|████████ | 4/5 [00:00<00:00, 4.24it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.82it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.50it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Loading checkpoint shards: 80%|████████ | 4/5 [00:01<00:00, 3.86it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.59it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.22it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 3.94it/s] Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 4.46it/s] Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 4.42it/s] Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 3.94it/s] Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 3.83it/s] Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 4.47it/s] Loading checkpoint shards: 80%|████████ | 4/5 [00:00<00:00, 4.47it/s] Loading checkpoint shards: 80%|████████ | 4/5 [00:00<00:00, 4.68it/s] Loading checkpoint shards: 80%|████████ | 4/5 [00:00<00:00, 4.60it/s] Loading checkpoint shards: 80%|████████ | 4/5 [00:01<00:00, 4.02it/s] Loading checkpoint shards: 80%|████████ | 4/5 [00:01<00:00, 4.28it/s]loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.48it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.38it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Loading checkpoint shards: 80%|████████ | 4/5 [00:00<00:00, 4.42it/s] Loading checkpoint shards: 80%|████████ | 4/5 [00:00<00:00, 4.77it/s]loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Loading checkpoint shards: 80%|████████ | 4/5 [00:00<00:00, 4.66it/s] Loading checkpoint shards: 80%|████████ | 4/5 [00:01<00:00, 3.92it/s]loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Loading checkpoint shards: 80%|████████ | 4/5 [00:01<00:00, 3.88it/s]loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.72it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.36it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.48it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.14it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Loading checkpoint shards: 80%|████████ | 4/5 [00:00<00:00, 4.56it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.91it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.70it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.90it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.59it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.81it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.56it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.56it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.24it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.81it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.51it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Loading checkpoint shards: 80%|████████ | 4/5 [00:00<00:00, 4.31it/s]loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.94it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.70it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.45it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.13it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.85it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.56it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.14it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.00it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.02it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.85it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.44it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.21it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.82it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.45it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.08it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.88it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.08it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 3.89it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.63it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.24it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/config.json You are using a model of type qwen2_5_vl to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors. Model config LlavaQwenConfig { "architectures": [ "Qwen2_5_VLForConditionalGeneration" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 3584, "image_token_id": 151655, "initializer_range": 0.02, "intermediate_size": 18944, "max_position_embeddings": 128000, "max_window_layers": 28, "model_type": "llava_qwen", "num_attention_heads": 28, "num_hidden_layers": 28, "num_key_value_heads": 4, "rms_norm_eps": 1e-06, "rope_scaling": { "mrope_section": [ 16, 24, 24 ], "rope_type": "default", "type": "default" }, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0.dev0", "use_cache": true, "use_sliding_window": false, "video_token_id": 151656, "vision_config": { "hidden_size": 1280, "in_chans": 3, "model_type": "qwen2_5_vl", "spatial_patch_size": 14, "tokens_per_second": 2 }, "vision_end_token_id": 151653, "vision_start_token_id": 151652, "vision_token_id": 151654, "vocab_size": 152064 } loading weights file model.safetensors from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/model.safetensors.index.json You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Instantiating LlavaQwenForCausalLM model under default dtype torch.bfloat16. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`. Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 } Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Loading checkpoint shards: 0%| | 0/5 [00:00', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Loading checkpoint shards: 20%|██ | 1/5 [00:00<00:01, 3.16it/s]Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Loading checkpoint shards: 40%|████ | 2/5 [00:00<00:00, 3.71it/s]Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 4.00it/s]You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Loading checkpoint shards: 80%|████████ | 4/5 [00:00<00:00, 4.25it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.49it/s] Loading checkpoint shards: 100%|██████████| 5/5 [00:01<00:00, 4.19it/s] All model checkpoint weights were used when initializing LlavaQwenForCausalLM. All the weights of LlavaQwenForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-VL-7B-Instruct. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlavaQwenForCausalLM for predictions without further training. Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file generation_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/generation_config.json Generate config GenerationConfig { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.1, "top_k": 1, "top_p": 0.001 } Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json loading configuration file preprocessor_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/preprocessor_config.json Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. Image processor Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } loading file vocab.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/vocab.json loading file merges.txt from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/merges.txt loading file tokenizer.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer.json loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at None loading file tokenizer_config.json from cache at /fsx_0/user/zhaojiang/models/hub/models--Qwen--Qwen2.5-VL-7B-Instruct/snapshots/6e6556e8ce728c7b3e438d75ebf04ec93403dc19/tokenizer_config.json loading file chat_template.jinja from cache at None Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Processor Qwen2_5_VLProcessor: - image_processor: Qwen2VLImageProcessor { "do_convert_rgb": true, "do_normalize": true, "do_rescale": true, "do_resize": true, "image_mean": [ 0.48145466, 0.4578275, 0.40821073 ], "image_processor_type": "Qwen2VLImageProcessor", "image_std": [ 0.26862954, 0.26130258, 0.27577711 ], "max_pixels": 12845056, "merge_size": 2, "min_pixels": 3136, "patch_size": 14, "processor_class": "Qwen2_5_VLProcessor", "resample": 3, "rescale_factor": 0.00392156862745098, "size": { "longest_edge": 12845056, "shortest_edge": 3136 }, "temporal_patch_size": 2 } - tokenizer: Qwen2TokenizerFast(name_or_path='Qwen/Qwen2.5-VL-7B-Instruct', vocab_size=151643, model_max_length=131072, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'eos_token': '<|im_end|>', 'pad_token': '<|endoftext|>', 'additional_special_tokens': ['<|im_start|>', '<|im_end|>', '<|object_ref_start|>', '<|object_ref_end|>', '<|box_start|>', '<|box_end|>', '<|quad_start|>', '<|quad_end|>', '<|vision_start|>', '<|vision_end|>', '<|vision_pad|>', '<|image_pad|>', '<|video_pad|>']}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151646: AddedToken("<|object_ref_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151647: AddedToken("<|object_ref_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151648: AddedToken("<|box_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151649: AddedToken("<|box_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151650: AddedToken("<|quad_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151651: AddedToken("<|quad_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151652: AddedToken("<|vision_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151653: AddedToken("<|vision_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151654: AddedToken("<|vision_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151655: AddedToken("<|image_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151656: AddedToken("<|video_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 151657: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151658: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151659: AddedToken("<|fim_prefix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151660: AddedToken("<|fim_middle|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151661: AddedToken("<|fim_suffix|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151662: AddedToken("<|fim_pad|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151663: AddedToken("<|repo_name|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), 151664: AddedToken("<|file_sep|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=False), } ) { "processor_class": "Qwen2_5_VLProcessor" } You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151668. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank86]: Traceback (most recent call last): [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank86]: train(attn_implementation="flash_attention_2") [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank86]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank86]: gen_vision_tower = build_gen_vision_tower(model_args) [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank86]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank86]: self.load_model() [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank86]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank86]: self.model = _build_vision_tower(**self.config) [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank86]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank86]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank86]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank86]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank86]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank86]: with _open_file_like(f, "rb") as opened_file: [rank86]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank86]: return _open_file(name_or_buffer, mode) [rank86]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank86]: super().__init__(open(name, mode)) [rank86]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank84]: Traceback (most recent call last): [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank84]: train(attn_implementation="flash_attention_2") [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank84]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank84]: gen_vision_tower = build_gen_vision_tower(model_args) [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank84]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank84]: self.load_model() [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank84]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank84]: self.model = _build_vision_tower(**self.config) [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank84]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank84]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank84]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank84]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank84]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank84]: with _open_file_like(f, "rb") as opened_file: [rank84]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank84]: return _open_file(name_or_buffer, mode) [rank84]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank84]: super().__init__(open(name, mode)) [rank84]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank83]: Traceback (most recent call last): [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank83]: train(attn_implementation="flash_attention_2") [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank83]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank83]: gen_vision_tower = build_gen_vision_tower(model_args) [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank83]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank83]: self.load_model() [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank83]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank83]: self.model = _build_vision_tower(**self.config) [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank83]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank83]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank83]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank83]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank83]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank83]: with _open_file_like(f, "rb") as opened_file: [rank83]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank83]: return _open_file(name_or_buffer, mode) [rank83]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank83]: super().__init__(open(name, mode)) [rank83]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank85]: Traceback (most recent call last): [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank85]: train(attn_implementation="flash_attention_2") [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank85]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank85]: gen_vision_tower = build_gen_vision_tower(model_args) [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank85]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank85]: self.load_model() [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank85]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank85]: self.model = _build_vision_tower(**self.config) [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank85]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank85]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank85]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank85]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank85]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank85]: with _open_file_like(f, "rb") as opened_file: [rank85]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank85]: return _open_file(name_or_buffer, mode) [rank85]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank85]: super().__init__(open(name, mode)) [rank85]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank82]: Traceback (most recent call last): [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank82]: train(attn_implementation="flash_attention_2") [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank82]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank82]: gen_vision_tower = build_gen_vision_tower(model_args) [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank82]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank82]: self.load_model() [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank82]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank82]: self.model = _build_vision_tower(**self.config) [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank82]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank82]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank82]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank82]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank82]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank82]: with _open_file_like(f, "rb") as opened_file: [rank82]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank82]: return _open_file(name_or_buffer, mode) [rank82]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank82]: super().__init__(open(name, mode)) [rank82]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank81]: Traceback (most recent call last): [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank81]: train(attn_implementation="flash_attention_2") [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank81]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank81]: gen_vision_tower = build_gen_vision_tower(model_args) [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank81]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank81]: self.load_model() [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank81]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank81]: self.model = _build_vision_tower(**self.config) [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank81]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank81]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank81]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank81]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank81]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank81]: with _open_file_like(f, "rb") as opened_file: [rank81]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank81]: return _open_file(name_or_buffer, mode) [rank81]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank81]: super().__init__(open(name, mode)) [rank81]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank80]: Traceback (most recent call last): [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank80]: train(attn_implementation="flash_attention_2") [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank80]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank80]: gen_vision_tower = build_gen_vision_tower(model_args) [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank80]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank80]: self.load_model() [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank80]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank80]: self.model = _build_vision_tower(**self.config) [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank80]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank80]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank80]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank80]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank80]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank80]: with _open_file_like(f, "rb") as opened_file: [rank80]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank80]: return _open_file(name_or_buffer, mode) [rank80]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank80]: super().__init__(open(name, mode)) [rank80]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank87]: Traceback (most recent call last): [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank87]: train(attn_implementation="flash_attention_2") [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank87]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank87]: gen_vision_tower = build_gen_vision_tower(model_args) [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank87]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank87]: self.load_model() [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank87]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank87]: self.model = _build_vision_tower(**self.config) [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank87]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank87]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank87]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank87]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank87]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank87]: with _open_file_like(f, "rb") as opened_file: [rank87]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank87]: return _open_file(name_or_buffer, mode) [rank87]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank87]: super().__init__(open(name, mode)) [rank87]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank97]: Traceback (most recent call last): [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank97]: train(attn_implementation="flash_attention_2") [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank97]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank97]: gen_vision_tower = build_gen_vision_tower(model_args) [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank97]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank97]: self.load_model() [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank97]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank97]: self.model = _build_vision_tower(**self.config) [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank97]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank97]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank97]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank97]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank97]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank97]: with _open_file_like(f, "rb") as opened_file: [rank97]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank97]: return _open_file(name_or_buffer, mode) [rank97]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank97]: super().__init__(open(name, mode)) [rank97]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank103]: Traceback (most recent call last): [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank103]: train(attn_implementation="flash_attention_2") [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank103]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank103]: gen_vision_tower = build_gen_vision_tower(model_args) [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank103]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank103]: self.load_model() [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank103]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank103]: self.model = _build_vision_tower(**self.config) [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank103]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank103]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank103]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank103]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank103]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank103]: with _open_file_like(f, "rb") as opened_file: [rank103]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank103]: return _open_file(name_or_buffer, mode) [rank103]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank103]: super().__init__(open(name, mode)) [rank103]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank100]: Traceback (most recent call last): [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank100]: train(attn_implementation="flash_attention_2") [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank100]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank100]: gen_vision_tower = build_gen_vision_tower(model_args) [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank100]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank100]: self.load_model() [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank100]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank100]: self.model = _build_vision_tower(**self.config) [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank100]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank100]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank100]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank100]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank100]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank100]: with _open_file_like(f, "rb") as opened_file: [rank100]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank100]: return _open_file(name_or_buffer, mode) [rank100]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank100]: super().__init__(open(name, mode)) [rank100]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank99]: Traceback (most recent call last): [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank99]: train(attn_implementation="flash_attention_2") [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank99]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank99]: gen_vision_tower = build_gen_vision_tower(model_args) [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank99]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank99]: self.load_model() [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank99]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank99]: self.model = _build_vision_tower(**self.config) [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank99]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank99]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank99]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank99]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank99]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank99]: with _open_file_like(f, "rb") as opened_file: [rank99]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank99]: return _open_file(name_or_buffer, mode) [rank99]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank99]: super().__init__(open(name, mode)) [rank99]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank101]: Traceback (most recent call last): [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank101]: train(attn_implementation="flash_attention_2") [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank101]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank101]: gen_vision_tower = build_gen_vision_tower(model_args) [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank101]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank101]: self.load_model() [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank101]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank101]: self.model = _build_vision_tower(**self.config) [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank101]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank101]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank101]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank101]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank101]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank101]: with _open_file_like(f, "rb") as opened_file: [rank101]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank101]: return _open_file(name_or_buffer, mode) [rank101]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank101]: super().__init__(open(name, mode)) [rank101]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank102]: Traceback (most recent call last): [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank102]: train(attn_implementation="flash_attention_2") [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank102]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank102]: gen_vision_tower = build_gen_vision_tower(model_args) [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank102]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank102]: self.load_model() [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank102]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank102]: self.model = _build_vision_tower(**self.config) [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank102]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank102]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank102]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank102]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank102]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank102]: with _open_file_like(f, "rb") as opened_file: [rank102]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank102]: return _open_file(name_or_buffer, mode) [rank102]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank102]: super().__init__(open(name, mode)) [rank102]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank96]: Traceback (most recent call last): [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank96]: train(attn_implementation="flash_attention_2") [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank96]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank96]: gen_vision_tower = build_gen_vision_tower(model_args) [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank96]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank96]: self.load_model() [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank96]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank96]: self.model = _build_vision_tower(**self.config) [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank96]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank96]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank96]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank96]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank96]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank96]: with _open_file_like(f, "rb") as opened_file: [rank96]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank96]: return _open_file(name_or_buffer, mode) [rank96]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank96]: super().__init__(open(name, mode)) [rank96]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank72]: Traceback (most recent call last): [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank72]: train(attn_implementation="flash_attention_2") [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank72]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank72]: gen_vision_tower = build_gen_vision_tower(model_args) [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank72]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank72]: self.load_model() [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank72]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank72]: self.model = _build_vision_tower(**self.config) [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank72]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank72]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank72]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank72]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank72]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank72]: with _open_file_like(f, "rb") as opened_file: [rank72]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank72]: return _open_file(name_or_buffer, mode) [rank72]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank72]: super().__init__(open(name, mode)) [rank72]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank78]: Traceback (most recent call last): [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank78]: train(attn_implementation="flash_attention_2") [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank78]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank78]: gen_vision_tower = build_gen_vision_tower(model_args) [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank78]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank78]: self.load_model() [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank78]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank78]: self.model = _build_vision_tower(**self.config) [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank78]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank78]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank78]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank78]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank78]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank78]: with _open_file_like(f, "rb") as opened_file: [rank78]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank78]: return _open_file(name_or_buffer, mode) [rank78]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank78]: super().__init__(open(name, mode)) [rank78]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank76]: Traceback (most recent call last): [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank76]: train(attn_implementation="flash_attention_2") [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank76]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank76]: gen_vision_tower = build_gen_vision_tower(model_args) [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank76]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank76]: self.load_model() [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank76]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank76]: self.model = _build_vision_tower(**self.config) [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank76]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank76]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank76]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank76]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank76]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank76]: with _open_file_like(f, "rb") as opened_file: [rank76]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank76]: return _open_file(name_or_buffer, mode) [rank76]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank76]: super().__init__(open(name, mode)) [rank76]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank74]: Traceback (most recent call last): [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank74]: train(attn_implementation="flash_attention_2") [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank74]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank74]: gen_vision_tower = build_gen_vision_tower(model_args) [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank74]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank74]: self.load_model() [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank74]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank74]: self.model = _build_vision_tower(**self.config) [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank74]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank74]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank74]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank74]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank74]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank74]: with _open_file_like(f, "rb") as opened_file: [rank74]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank74]: return _open_file(name_or_buffer, mode) [rank74]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank74]: super().__init__(open(name, mode)) [rank74]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank79]: Traceback (most recent call last): [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank79]: train(attn_implementation="flash_attention_2") [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank79]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank79]: gen_vision_tower = build_gen_vision_tower(model_args) [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank79]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank79]: self.load_model() [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank79]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank79]: self.model = _build_vision_tower(**self.config) [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank79]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank79]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank79]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank79]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank79]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank79]: with _open_file_like(f, "rb") as opened_file: [rank79]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank79]: return _open_file(name_or_buffer, mode) [rank79]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank79]: super().__init__(open(name, mode)) [rank79]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank98]: Traceback (most recent call last): [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank98]: train(attn_implementation="flash_attention_2") [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank98]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank98]: gen_vision_tower = build_gen_vision_tower(model_args) [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank98]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank98]: self.load_model() [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank98]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank98]: self.model = _build_vision_tower(**self.config) [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank98]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank98]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank98]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank98]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank98]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank98]: with _open_file_like(f, "rb") as opened_file: [rank98]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank98]: return _open_file(name_or_buffer, mode) [rank98]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank98]: super().__init__(open(name, mode)) [rank98]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank73]: Traceback (most recent call last): [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank73]: train(attn_implementation="flash_attention_2") [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank73]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank73]: gen_vision_tower = build_gen_vision_tower(model_args) [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank73]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank73]: self.load_model() [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank73]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank73]: self.model = _build_vision_tower(**self.config) [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank73]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank73]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank73]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank73]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank73]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank73]: with _open_file_like(f, "rb") as opened_file: [rank73]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank73]: return _open_file(name_or_buffer, mode) [rank73]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank73]: super().__init__(open(name, mode)) [rank73]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank77]: Traceback (most recent call last): [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank77]: train(attn_implementation="flash_attention_2") [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank77]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank77]: gen_vision_tower = build_gen_vision_tower(model_args) [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank77]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank77]: self.load_model() [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank77]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank77]: self.model = _build_vision_tower(**self.config) [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank77]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank77]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank77]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank77]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank77]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank77]: with _open_file_like(f, "rb") as opened_file: [rank77]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank77]: return _open_file(name_or_buffer, mode) [rank77]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank77]: super().__init__(open(name, mode)) [rank77]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank32]: Traceback (most recent call last): [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank32]: train(attn_implementation="flash_attention_2") [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank32]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank32]: gen_vision_tower = build_gen_vision_tower(model_args) [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank32]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank32]: self.load_model() [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank32]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank32]: self.model = _build_vision_tower(**self.config) [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank32]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank32]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank32]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank32]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank32]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank32]: with _open_file_like(f, "rb") as opened_file: [rank32]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank32]: return _open_file(name_or_buffer, mode) [rank32]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank32]: super().__init__(open(name, mode)) [rank32]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank38]: Traceback (most recent call last): [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank38]: train(attn_implementation="flash_attention_2") [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank38]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank38]: gen_vision_tower = build_gen_vision_tower(model_args) [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank38]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank38]: self.load_model() [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank38]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank38]: self.model = _build_vision_tower(**self.config) [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank38]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank38]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank38]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank38]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank38]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank38]: with _open_file_like(f, "rb") as opened_file: [rank38]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank38]: return _open_file(name_or_buffer, mode) [rank38]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank38]: super().__init__(open(name, mode)) [rank38]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank39]: Traceback (most recent call last): [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank39]: train(attn_implementation="flash_attention_2") [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank39]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank39]: gen_vision_tower = build_gen_vision_tower(model_args) [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank39]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank39]: self.load_model() [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank39]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank39]: self.model = _build_vision_tower(**self.config) [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank39]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank39]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank39]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank39]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank39]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank39]: with _open_file_like(f, "rb") as opened_file: [rank39]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank39]: return _open_file(name_or_buffer, mode) [rank39]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank39]: super().__init__(open(name, mode)) [rank39]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank37]: Traceback (most recent call last): [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank37]: train(attn_implementation="flash_attention_2") [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank37]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank37]: gen_vision_tower = build_gen_vision_tower(model_args) [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank37]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank37]: self.load_model() [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank37]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank37]: self.model = _build_vision_tower(**self.config) [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank37]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank37]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank37]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank37]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank37]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank37]: with _open_file_like(f, "rb") as opened_file: [rank37]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank37]: return _open_file(name_or_buffer, mode) [rank37]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank37]: super().__init__(open(name, mode)) [rank37]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank36]: Traceback (most recent call last): [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank36]: train(attn_implementation="flash_attention_2") [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank36]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank36]: gen_vision_tower = build_gen_vision_tower(model_args) [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank36]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank36]: self.load_model() [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank36]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank36]: self.model = _build_vision_tower(**self.config) [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank36]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank36]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank36]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank36]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank36]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank36]: with _open_file_like(f, "rb") as opened_file: [rank36]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank36]: return _open_file(name_or_buffer, mode) [rank36]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank36]: super().__init__(open(name, mode)) [rank36]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank34]: Traceback (most recent call last): [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank34]: train(attn_implementation="flash_attention_2") [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank34]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank34]: gen_vision_tower = build_gen_vision_tower(model_args) [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank34]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank34]: self.load_model() [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank34]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank34]: self.model = _build_vision_tower(**self.config) [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank34]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank34]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank34]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank34]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank34]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank34]: with _open_file_like(f, "rb") as opened_file: [rank34]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank34]: return _open_file(name_or_buffer, mode) [rank34]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank34]: super().__init__(open(name, mode)) [rank34]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank35]: Traceback (most recent call last): [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank35]: train(attn_implementation="flash_attention_2") [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank35]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank35]: gen_vision_tower = build_gen_vision_tower(model_args) [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank35]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank35]: self.load_model() [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank35]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank35]: self.model = _build_vision_tower(**self.config) [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank35]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank35]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank35]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank35]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank35]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank35]: with _open_file_like(f, "rb") as opened_file: [rank35]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank35]: return _open_file(name_or_buffer, mode) [rank35]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank35]: super().__init__(open(name, mode)) [rank35]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank33]: Traceback (most recent call last): [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank33]: train(attn_implementation="flash_attention_2") [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank33]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank33]: gen_vision_tower = build_gen_vision_tower(model_args) [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank33]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank33]: self.load_model() [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank33]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank33]: self.model = _build_vision_tower(**self.config) [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank33]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank33]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank33]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank33]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank33]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank33]: with _open_file_like(f, "rb") as opened_file: [rank33]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank33]: return _open_file(name_or_buffer, mode) [rank33]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank33]: super().__init__(open(name, mode)) [rank33]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank75]: Traceback (most recent call last): [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank75]: train(attn_implementation="flash_attention_2") [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank75]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank75]: gen_vision_tower = build_gen_vision_tower(model_args) [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank75]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank75]: self.load_model() [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank75]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank75]: self.model = _build_vision_tower(**self.config) [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank75]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank75]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank75]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank75]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank75]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank75]: with _open_file_like(f, "rb") as opened_file: [rank75]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank75]: return _open_file(name_or_buffer, mode) [rank75]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank75]: super().__init__(open(name, mode)) [rank75]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank117]: Traceback (most recent call last): [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank117]: train(attn_implementation="flash_attention_2") [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank117]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank117]: gen_vision_tower = build_gen_vision_tower(model_args) [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank117]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank117]: self.load_model() [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank117]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank117]: self.model = _build_vision_tower(**self.config) [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank117]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank117]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank117]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank117]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank117]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank117]: with _open_file_like(f, "rb") as opened_file: [rank117]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank117]: return _open_file(name_or_buffer, mode) [rank117]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank117]: super().__init__(open(name, mode)) [rank117]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank118]: Traceback (most recent call last): [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank118]: train(attn_implementation="flash_attention_2") [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank118]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank118]: gen_vision_tower = build_gen_vision_tower(model_args) [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank118]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank118]: self.load_model() [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank118]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank118]: self.model = _build_vision_tower(**self.config) [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank118]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank118]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank118]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank118]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank118]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank118]: with _open_file_like(f, "rb") as opened_file: [rank118]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank118]: return _open_file(name_or_buffer, mode) [rank118]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank118]: super().__init__(open(name, mode)) [rank118]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank114]: Traceback (most recent call last): [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank114]: train(attn_implementation="flash_attention_2") [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank114]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank114]: gen_vision_tower = build_gen_vision_tower(model_args) [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank114]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank114]: self.load_model() [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank114]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank114]: self.model = _build_vision_tower(**self.config) [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank114]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank114]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank114]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank114]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank114]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank114]: with _open_file_like(f, "rb") as opened_file: [rank114]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank114]: return _open_file(name_or_buffer, mode) [rank114]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank114]: super().__init__(open(name, mode)) [rank114]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank113]: Traceback (most recent call last): [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank113]: train(attn_implementation="flash_attention_2") [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank113]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank113]: gen_vision_tower = build_gen_vision_tower(model_args) [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank113]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank113]: self.load_model() [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank113]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank113]: self.model = _build_vision_tower(**self.config) [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank113]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank113]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank113]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank113]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank113]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank113]: with _open_file_like(f, "rb") as opened_file: [rank113]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank113]: return _open_file(name_or_buffer, mode) [rank113]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank113]: super().__init__(open(name, mode)) [rank113]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank119]: Traceback (most recent call last): [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank119]: train(attn_implementation="flash_attention_2") [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank119]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank119]: gen_vision_tower = build_gen_vision_tower(model_args) [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank119]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank119]: self.load_model() [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank119]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank119]: self.model = _build_vision_tower(**self.config) [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank119]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank119]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank119]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank119]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank119]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank119]: with _open_file_like(f, "rb") as opened_file: [rank119]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank119]: return _open_file(name_or_buffer, mode) [rank119]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank119]: super().__init__(open(name, mode)) [rank119]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank116]: Traceback (most recent call last): [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank116]: train(attn_implementation="flash_attention_2") [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank116]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank116]: gen_vision_tower = build_gen_vision_tower(model_args) [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank116]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank116]: self.load_model() [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank116]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank116]: self.model = _build_vision_tower(**self.config) [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank116]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank116]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank116]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank116]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank116]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank116]: with _open_file_like(f, "rb") as opened_file: [rank116]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank116]: return _open_file(name_or_buffer, mode) [rank116]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank116]: super().__init__(open(name, mode)) [rank116]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank115]: Traceback (most recent call last): [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank115]: train(attn_implementation="flash_attention_2") [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank115]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank115]: gen_vision_tower = build_gen_vision_tower(model_args) [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank115]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank115]: self.load_model() [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank115]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank115]: self.model = _build_vision_tower(**self.config) [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank115]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank115]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank115]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank115]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank115]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank115]: with _open_file_like(f, "rb") as opened_file: [rank115]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank115]: return _open_file(name_or_buffer, mode) [rank115]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank115]: super().__init__(open(name, mode)) [rank115]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank112]: Traceback (most recent call last): [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank112]: train(attn_implementation="flash_attention_2") [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank112]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank112]: gen_vision_tower = build_gen_vision_tower(model_args) [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank112]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank112]: self.load_model() [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank112]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank112]: self.model = _build_vision_tower(**self.config) [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank112]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank112]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank112]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank112]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank112]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank112]: with _open_file_like(f, "rb") as opened_file: [rank112]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank112]: return _open_file(name_or_buffer, mode) [rank112]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank112]: super().__init__(open(name, mode)) [rank112]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank105]: Traceback (most recent call last): [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank105]: train(attn_implementation="flash_attention_2") [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank105]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank105]: gen_vision_tower = build_gen_vision_tower(model_args) [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank105]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank105]: self.load_model() [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank105]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank105]: self.model = _build_vision_tower(**self.config) [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank105]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank105]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank105]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank105]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank105]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank105]: with _open_file_like(f, "rb") as opened_file: [rank105]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank105]: return _open_file(name_or_buffer, mode) [rank105]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank105]: super().__init__(open(name, mode)) [rank105]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank104]: Traceback (most recent call last): [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank104]: train(attn_implementation="flash_attention_2") [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank104]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank104]: gen_vision_tower = build_gen_vision_tower(model_args) [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank104]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank104]: self.load_model() [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank104]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank104]: self.model = _build_vision_tower(**self.config) [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank104]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank104]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank104]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank104]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank104]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank104]: with _open_file_like(f, "rb") as opened_file: [rank104]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank104]: return _open_file(name_or_buffer, mode) [rank104]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank104]: super().__init__(open(name, mode)) [rank104]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank106]: Traceback (most recent call last): [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank106]: train(attn_implementation="flash_attention_2") [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank106]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank106]: gen_vision_tower = build_gen_vision_tower(model_args) [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank106]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank106]: self.load_model() [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank106]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank106]: self.model = _build_vision_tower(**self.config) [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank106]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank106]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank106]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank106]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank106]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank106]: with _open_file_like(f, "rb") as opened_file: [rank106]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank106]: return _open_file(name_or_buffer, mode) [rank106]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank106]: super().__init__(open(name, mode)) [rank106]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank109]: Traceback (most recent call last): [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank109]: train(attn_implementation="flash_attention_2") [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank109]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank109]: gen_vision_tower = build_gen_vision_tower(model_args) [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank109]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank109]: self.load_model() [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank109]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank109]: self.model = _build_vision_tower(**self.config) [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank109]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank109]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank109]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank109]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank109]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank109]: with _open_file_like(f, "rb") as opened_file: [rank109]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank109]: return _open_file(name_or_buffer, mode) [rank109]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank109]: super().__init__(open(name, mode)) [rank109]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank53]: Traceback (most recent call last): [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank53]: train(attn_implementation="flash_attention_2") [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank53]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank53]: gen_vision_tower = build_gen_vision_tower(model_args) [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank53]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank53]: self.load_model() [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank53]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank53]: self.model = _build_vision_tower(**self.config) [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank53]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank53]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank53]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank53]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank53]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank53]: with _open_file_like(f, "rb") as opened_file: [rank53]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank53]: return _open_file(name_or_buffer, mode) [rank53]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank53]: super().__init__(open(name, mode)) [rank53]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank54]: Traceback (most recent call last): [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank54]: train(attn_implementation="flash_attention_2") [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank54]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank54]: gen_vision_tower = build_gen_vision_tower(model_args) [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank54]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank54]: self.load_model() [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank54]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank54]: self.model = _build_vision_tower(**self.config) [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank54]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank54]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank54]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank54]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank54]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank54]: with _open_file_like(f, "rb") as opened_file: [rank54]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank54]: return _open_file(name_or_buffer, mode) [rank54]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank54]: super().__init__(open(name, mode)) [rank54]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank111]: Traceback (most recent call last): [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank111]: train(attn_implementation="flash_attention_2") [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank111]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank111]: gen_vision_tower = build_gen_vision_tower(model_args) [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank111]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank111]: self.load_model() [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank111]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank111]: self.model = _build_vision_tower(**self.config) [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank111]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank111]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank111]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank111]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank111]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank111]: with _open_file_like(f, "rb") as opened_file: [rank111]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank111]: return _open_file(name_or_buffer, mode) [rank111]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank111]: super().__init__(open(name, mode)) [rank111]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank55]: Traceback (most recent call last): [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank55]: train(attn_implementation="flash_attention_2") [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank55]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank55]: gen_vision_tower = build_gen_vision_tower(model_args) [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank55]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank55]: self.load_model() [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank55]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank55]: self.model = _build_vision_tower(**self.config) [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank55]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank55]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank55]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank55]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank55]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank55]: with _open_file_like(f, "rb") as opened_file: [rank55]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank55]: return _open_file(name_or_buffer, mode) [rank55]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank55]: super().__init__(open(name, mode)) [rank55]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank50]: Traceback (most recent call last): [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank50]: train(attn_implementation="flash_attention_2") [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank50]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank50]: gen_vision_tower = build_gen_vision_tower(model_args) [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank50]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank50]: self.load_model() [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank50]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank50]: self.model = _build_vision_tower(**self.config) [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank50]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank50]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank50]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank50]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank50]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank50]: with _open_file_like(f, "rb") as opened_file: [rank50]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank50]: return _open_file(name_or_buffer, mode) [rank50]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank50]: super().__init__(open(name, mode)) [rank50]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank49]: Traceback (most recent call last): [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank49]: train(attn_implementation="flash_attention_2") [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank49]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank49]: gen_vision_tower = build_gen_vision_tower(model_args) [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank49]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank49]: self.load_model() [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank49]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank49]: self.model = _build_vision_tower(**self.config) [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank49]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank49]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank49]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank49]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank49]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank49]: with _open_file_like(f, "rb") as opened_file: [rank49]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank49]: return _open_file(name_or_buffer, mode) [rank49]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank49]: super().__init__(open(name, mode)) [rank49]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank92]: Traceback (most recent call last): [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank92]: train(attn_implementation="flash_attention_2") [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank92]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank92]: gen_vision_tower = build_gen_vision_tower(model_args) [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank92]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank92]: self.load_model() [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank92]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank92]: self.model = _build_vision_tower(**self.config) [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank92]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank92]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank92]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank92]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank92]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank92]: with _open_file_like(f, "rb") as opened_file: [rank92]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank92]: return _open_file(name_or_buffer, mode) [rank92]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank92]: super().__init__(open(name, mode)) [rank92]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank91]: Traceback (most recent call last): [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank91]: train(attn_implementation="flash_attention_2") [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank91]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank91]: gen_vision_tower = build_gen_vision_tower(model_args) [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank91]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank91]: self.load_model() [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank91]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank91]: self.model = _build_vision_tower(**self.config) [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank91]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank91]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank91]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank91]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank91]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank91]: with _open_file_like(f, "rb") as opened_file: [rank91]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank91]: return _open_file(name_or_buffer, mode) [rank91]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank91]: super().__init__(open(name, mode)) [rank91]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank90]: Traceback (most recent call last): [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank90]: train(attn_implementation="flash_attention_2") [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank90]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank90]: gen_vision_tower = build_gen_vision_tower(model_args) [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank90]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank90]: self.load_model() [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank90]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank90]: self.model = _build_vision_tower(**self.config) [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank90]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank90]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank90]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank90]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank90]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank90]: with _open_file_like(f, "rb") as opened_file: [rank90]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank90]: return _open_file(name_or_buffer, mode) [rank90]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank90]: super().__init__(open(name, mode)) [rank90]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank108]: Traceback (most recent call last): [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank108]: train(attn_implementation="flash_attention_2") [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank108]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank108]: gen_vision_tower = build_gen_vision_tower(model_args) [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank108]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank51]: Traceback (most recent call last): [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank51]: train(attn_implementation="flash_attention_2") [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank51]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank51]: gen_vision_tower = build_gen_vision_tower(model_args) [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank51]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank108]: self.load_model() [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank108]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank108]: self.model = _build_vision_tower(**self.config) [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank108]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank51]: self.load_model() [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank51]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank51]: self.model = _build_vision_tower(**self.config) [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank51]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank108]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank108]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank108]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank108]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank108]: with _open_file_like(f, "rb") as opened_file: [rank108]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank108]: return _open_file(name_or_buffer, mode) [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank51]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank51]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank51]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank51]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank51]: with _open_file_like(f, "rb") as opened_file: [rank51]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank51]: return _open_file(name_or_buffer, mode) [rank108]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank108]: super().__init__(open(name, mode)) [rank108]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank51]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank51]: super().__init__(open(name, mode)) [rank51]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank107]: Traceback (most recent call last): [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank107]: train(attn_implementation="flash_attention_2") [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank107]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank107]: gen_vision_tower = build_gen_vision_tower(model_args) [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank107]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank107]: self.load_model() [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank107]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank107]: self.model = _build_vision_tower(**self.config) [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank107]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank107]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank107]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank107]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank107]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank107]: with _open_file_like(f, "rb") as opened_file: [rank107]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank107]: return _open_file(name_or_buffer, mode) [rank107]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank107]: super().__init__(open(name, mode)) [rank107]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank94]: Traceback (most recent call last): [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank94]: train(attn_implementation="flash_attention_2") [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank94]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank94]: gen_vision_tower = build_gen_vision_tower(model_args) [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank94]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank94]: self.load_model() [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank94]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank94]: self.model = _build_vision_tower(**self.config) [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank94]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank94]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank94]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank94]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank94]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank94]: with _open_file_like(f, "rb") as opened_file: [rank94]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank94]: return _open_file(name_or_buffer, mode) [rank94]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank94]: super().__init__(open(name, mode)) [rank94]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank110]: Traceback (most recent call last): [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank110]: train(attn_implementation="flash_attention_2") [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank110]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank110]: gen_vision_tower = build_gen_vision_tower(model_args) [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank110]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank110]: self.load_model() [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank110]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank110]: self.model = _build_vision_tower(**self.config) [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank110]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank110]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank110]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank110]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank110]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank110]: with _open_file_like(f, "rb") as opened_file: [rank110]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank110]: return _open_file(name_or_buffer, mode) [rank110]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank110]: super().__init__(open(name, mode)) [rank110]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank95]: Traceback (most recent call last): [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank95]: train(attn_implementation="flash_attention_2") [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank95]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank95]: gen_vision_tower = build_gen_vision_tower(model_args) [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank95]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank95]: self.load_model() [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank95]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank95]: self.model = _build_vision_tower(**self.config) [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank95]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank95]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank95]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank95]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank95]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank95]: with _open_file_like(f, "rb") as opened_file: [rank95]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank95]: return _open_file(name_or_buffer, mode) [rank95]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank95]: super().__init__(open(name, mode)) [rank95]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank93]: Traceback (most recent call last): [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank93]: train(attn_implementation="flash_attention_2") [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank93]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank93]: gen_vision_tower = build_gen_vision_tower(model_args) [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank93]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank93]: self.load_model() [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank93]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank93]: self.model = _build_vision_tower(**self.config) [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank93]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank93]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank93]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank93]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank93]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank93]: with _open_file_like(f, "rb") as opened_file: [rank93]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank93]: return _open_file(name_or_buffer, mode) [rank93]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank93]: super().__init__(open(name, mode)) [rank93]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank48]: Traceback (most recent call last): [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank48]: train(attn_implementation="flash_attention_2") [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank48]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank48]: gen_vision_tower = build_gen_vision_tower(model_args) [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank48]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank48]: self.load_model() [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank48]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank48]: self.model = _build_vision_tower(**self.config) [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank48]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank48]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank48]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank48]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank48]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank48]: with _open_file_like(f, "rb") as opened_file: [rank48]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank48]: return _open_file(name_or_buffer, mode) [rank48]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank48]: super().__init__(open(name, mode)) [rank48]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank89]: Traceback (most recent call last): [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank89]: train(attn_implementation="flash_attention_2") [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank89]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank89]: gen_vision_tower = build_gen_vision_tower(model_args) [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank89]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank89]: self.load_model() [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank89]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank89]: self.model = _build_vision_tower(**self.config) [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank89]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank89]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank89]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank89]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank89]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank89]: with _open_file_like(f, "rb") as opened_file: [rank89]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank89]: return _open_file(name_or_buffer, mode) [rank89]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank89]: super().__init__(open(name, mode)) [rank89]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank67]: Traceback (most recent call last): [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank67]: train(attn_implementation="flash_attention_2") [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank67]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank67]: gen_vision_tower = build_gen_vision_tower(model_args) [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank67]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank67]: self.load_model() [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank67]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank67]: self.model = _build_vision_tower(**self.config) [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank67]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank67]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank67]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank67]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank67]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank67]: with _open_file_like(f, "rb") as opened_file: [rank67]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank67]: return _open_file(name_or_buffer, mode) [rank67]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank67]: super().__init__(open(name, mode)) [rank67]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank69]: Traceback (most recent call last): [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank69]: train(attn_implementation="flash_attention_2") [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank69]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank69]: gen_vision_tower = build_gen_vision_tower(model_args) [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank69]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank69]: self.load_model() [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank69]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank69]: self.model = _build_vision_tower(**self.config) [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank69]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank69]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank69]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank69]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank69]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank69]: with _open_file_like(f, "rb") as opened_file: [rank69]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank69]: return _open_file(name_or_buffer, mode) [rank69]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank69]: super().__init__(open(name, mode)) [rank69]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank64]: Traceback (most recent call last): [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank64]: train(attn_implementation="flash_attention_2") [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank64]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank64]: gen_vision_tower = build_gen_vision_tower(model_args) [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank64]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank64]: self.load_model() [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank64]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank64]: self.model = _build_vision_tower(**self.config) [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank64]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank64]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank64]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank64]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank64]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank64]: with _open_file_like(f, "rb") as opened_file: [rank64]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank64]: return _open_file(name_or_buffer, mode) [rank64]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank64]: super().__init__(open(name, mode)) [rank64]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank70]: Traceback (most recent call last): [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank70]: train(attn_implementation="flash_attention_2") [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank70]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank70]: gen_vision_tower = build_gen_vision_tower(model_args) [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank70]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank70]: self.load_model() [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank70]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank70]: self.model = _build_vision_tower(**self.config) [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank70]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank70]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank70]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank70]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank70]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank70]: with _open_file_like(f, "rb") as opened_file: [rank70]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank70]: return _open_file(name_or_buffer, mode) [rank70]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank70]: super().__init__(open(name, mode)) [rank70]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank71]: Traceback (most recent call last): [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank71]: train(attn_implementation="flash_attention_2") [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank71]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank71]: gen_vision_tower = build_gen_vision_tower(model_args) [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank71]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank71]: self.load_model() [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank71]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank71]: self.model = _build_vision_tower(**self.config) [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank71]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank71]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank71]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank71]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank71]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank71]: with _open_file_like(f, "rb") as opened_file: [rank71]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank71]: return _open_file(name_or_buffer, mode) [rank71]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank71]: super().__init__(open(name, mode)) [rank71]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank23]: Traceback (most recent call last): [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank23]: train(attn_implementation="flash_attention_2") [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank23]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank23]: gen_vision_tower = build_gen_vision_tower(model_args) [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank23]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank23]: self.load_model() [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank23]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank23]: self.model = _build_vision_tower(**self.config) [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank23]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank23]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank23]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank23]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank23]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank23]: with _open_file_like(f, "rb") as opened_file: [rank23]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank23]: return _open_file(name_or_buffer, mode) [rank23]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank23]: super().__init__(open(name, mode)) [rank23]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank19]: Traceback (most recent call last): [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank19]: train(attn_implementation="flash_attention_2") [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank19]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank19]: gen_vision_tower = build_gen_vision_tower(model_args) [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank19]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank19]: self.load_model() [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank19]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank19]: self.model = _build_vision_tower(**self.config) [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank19]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank19]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank19]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank19]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank19]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank19]: with _open_file_like(f, "rb") as opened_file: [rank19]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank19]: return _open_file(name_or_buffer, mode) [rank19]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank19]: super().__init__(open(name, mode)) [rank19]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank66]: Traceback (most recent call last): [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank66]: train(attn_implementation="flash_attention_2") [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank66]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank66]: gen_vision_tower = build_gen_vision_tower(model_args) [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank66]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank66]: self.load_model() [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank66]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank66]: self.model = _build_vision_tower(**self.config) [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank66]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank66]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank66]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank66]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank66]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank66]: with _open_file_like(f, "rb") as opened_file: [rank66]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank66]: return _open_file(name_or_buffer, mode) [rank66]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank66]: super().__init__(open(name, mode)) [rank66]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank18]: Traceback (most recent call last): [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank18]: train(attn_implementation="flash_attention_2") [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank18]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank18]: gen_vision_tower = build_gen_vision_tower(model_args) [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank18]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank18]: self.load_model() [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank18]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank18]: self.model = _build_vision_tower(**self.config) [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank18]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank18]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank18]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank18]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank18]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank18]: with _open_file_like(f, "rb") as opened_file: [rank18]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank18]: return _open_file(name_or_buffer, mode) [rank18]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank18]: super().__init__(open(name, mode)) [rank18]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank17]: Traceback (most recent call last): [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank17]: train(attn_implementation="flash_attention_2") [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank17]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank17]: gen_vision_tower = build_gen_vision_tower(model_args) [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank17]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank17]: self.load_model() [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank17]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank17]: self.model = _build_vision_tower(**self.config) [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank17]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank17]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank17]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank17]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank17]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank17]: with _open_file_like(f, "rb") as opened_file: [rank17]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank17]: return _open_file(name_or_buffer, mode) [rank17]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank17]: super().__init__(open(name, mode)) [rank17]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank22]: Traceback (most recent call last): [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank22]: train(attn_implementation="flash_attention_2") [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank22]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank22]: gen_vision_tower = build_gen_vision_tower(model_args) [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank22]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank22]: self.load_model() [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank22]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank22]: self.model = _build_vision_tower(**self.config) [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank22]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank22]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank22]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank22]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank22]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank22]: with _open_file_like(f, "rb") as opened_file: [rank22]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank22]: return _open_file(name_or_buffer, mode) [rank22]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank22]: super().__init__(open(name, mode)) [rank22]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank65]: Traceback (most recent call last): [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank65]: train(attn_implementation="flash_attention_2") [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank65]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank65]: gen_vision_tower = build_gen_vision_tower(model_args) [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank65]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank65]: self.load_model() [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank65]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank65]: self.model = _build_vision_tower(**self.config) [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank65]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank65]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank65]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank65]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank65]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank65]: with _open_file_like(f, "rb") as opened_file: [rank65]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank65]: return _open_file(name_or_buffer, mode) [rank65]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank65]: super().__init__(open(name, mode)) [rank65]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank68]: Traceback (most recent call last): [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank68]: train(attn_implementation="flash_attention_2") [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank68]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank68]: gen_vision_tower = build_gen_vision_tower(model_args) [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank68]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank68]: self.load_model() [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank68]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank68]: self.model = _build_vision_tower(**self.config) [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank68]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank68]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank68]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank68]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank68]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank68]: with _open_file_like(f, "rb") as opened_file: [rank68]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank68]: return _open_file(name_or_buffer, mode) [rank68]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank68]: super().__init__(open(name, mode)) [rank68]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank21]: Traceback (most recent call last): [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank21]: train(attn_implementation="flash_attention_2") [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank21]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank21]: gen_vision_tower = build_gen_vision_tower(model_args) [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank21]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank21]: self.load_model() [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank21]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank21]: self.model = _build_vision_tower(**self.config) [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank21]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank21]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank21]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank21]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank21]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank21]: with _open_file_like(f, "rb") as opened_file: [rank21]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank21]: return _open_file(name_or_buffer, mode) [rank21]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank21]: super().__init__(open(name, mode)) [rank21]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank63]: Traceback (most recent call last): [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank63]: train(attn_implementation="flash_attention_2") [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank63]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank63]: gen_vision_tower = build_gen_vision_tower(model_args) [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank63]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank63]: self.load_model() [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank63]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank63]: self.model = _build_vision_tower(**self.config) [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank63]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank63]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank63]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank63]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank63]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank63]: with _open_file_like(f, "rb") as opened_file: [rank63]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank63]: return _open_file(name_or_buffer, mode) [rank63]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank63]: super().__init__(open(name, mode)) [rank63]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank62]: Traceback (most recent call last): [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank62]: train(attn_implementation="flash_attention_2") [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank62]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank62]: gen_vision_tower = build_gen_vision_tower(model_args) [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank62]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank62]: self.load_model() [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank62]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank62]: self.model = _build_vision_tower(**self.config) [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank62]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank62]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank62]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank62]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank62]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank62]: with _open_file_like(f, "rb") as opened_file: [rank62]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank62]: return _open_file(name_or_buffer, mode) [rank62]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank62]: super().__init__(open(name, mode)) [rank62]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank59]: Traceback (most recent call last): [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank59]: train(attn_implementation="flash_attention_2") [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank59]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank59]: gen_vision_tower = build_gen_vision_tower(model_args) [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank59]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank59]: self.load_model() [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank59]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank59]: self.model = _build_vision_tower(**self.config) [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank59]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank59]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank59]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank59]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank59]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank59]: with _open_file_like(f, "rb") as opened_file: [rank59]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank59]: return _open_file(name_or_buffer, mode) [rank59]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank59]: super().__init__(open(name, mode)) [rank59]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank60]: Traceback (most recent call last): [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank60]: train(attn_implementation="flash_attention_2") [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank60]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank60]: gen_vision_tower = build_gen_vision_tower(model_args) [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank60]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank60]: self.load_model() [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank60]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank60]: self.model = _build_vision_tower(**self.config) [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank60]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank60]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank60]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank60]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank60]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank60]: with _open_file_like(f, "rb") as opened_file: [rank60]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank60]: return _open_file(name_or_buffer, mode) [rank60]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank60]: super().__init__(open(name, mode)) [rank60]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank20]: Traceback (most recent call last): [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank20]: train(attn_implementation="flash_attention_2") [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank20]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank20]: gen_vision_tower = build_gen_vision_tower(model_args) [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank20]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank20]: self.load_model() [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank20]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank20]: self.model = _build_vision_tower(**self.config) [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank20]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank20]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank20]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank20]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank20]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank20]: with _open_file_like(f, "rb") as opened_file: [rank20]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank20]: return _open_file(name_or_buffer, mode) [rank20]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank20]: super().__init__(open(name, mode)) [rank20]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank88]: Traceback (most recent call last): [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank88]: train(attn_implementation="flash_attention_2") [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank88]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank88]: gen_vision_tower = build_gen_vision_tower(model_args) [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank88]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank88]: self.load_model() [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank88]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank88]: self.model = _build_vision_tower(**self.config) [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank88]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank88]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank88]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank88]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank88]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank88]: with _open_file_like(f, "rb") as opened_file: [rank88]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank88]: return _open_file(name_or_buffer, mode) [rank88]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank88]: super().__init__(open(name, mode)) [rank88]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank5]: Traceback (most recent call last): [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank5]: train(attn_implementation="flash_attention_2") [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank5]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank5]: gen_vision_tower = build_gen_vision_tower(model_args) [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank5]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank5]: self.load_model() [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank5]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank5]: self.model = _build_vision_tower(**self.config) [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank5]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank5]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank5]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank5]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank5]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank5]: with _open_file_like(f, "rb") as opened_file: [rank5]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank5]: return _open_file(name_or_buffer, mode) [rank5]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank5]: super().__init__(open(name, mode)) [rank5]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank57]: Traceback (most recent call last): [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank57]: train(attn_implementation="flash_attention_2") [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank57]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank57]: gen_vision_tower = build_gen_vision_tower(model_args) [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank57]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank57]: self.load_model() [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank57]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank57]: self.model = _build_vision_tower(**self.config) [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank57]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank57]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank57]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank57]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank57]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank57]: with _open_file_like(f, "rb") as opened_file: [rank57]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank57]: return _open_file(name_or_buffer, mode) [rank57]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank57]: super().__init__(open(name, mode)) [rank57]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank2]: Traceback (most recent call last): [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank2]: train(attn_implementation="flash_attention_2") [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank2]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank2]: gen_vision_tower = build_gen_vision_tower(model_args) [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank2]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank2]: self.load_model() [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank2]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank2]: self.model = _build_vision_tower(**self.config) [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank2]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank2]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank2]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank2]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank2]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank2]: with _open_file_like(f, "rb") as opened_file: [rank2]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank2]: return _open_file(name_or_buffer, mode) [rank2]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank2]: super().__init__(open(name, mode)) [rank2]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank61]: Traceback (most recent call last): [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank61]: train(attn_implementation="flash_attention_2") [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank61]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank61]: gen_vision_tower = build_gen_vision_tower(model_args) [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank61]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank61]: self.load_model() [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank61]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank61]: self.model = _build_vision_tower(**self.config) [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank61]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank61]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank61]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank61]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank61]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank61]: with _open_file_like(f, "rb") as opened_file: [rank61]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank61]: return _open_file(name_or_buffer, mode) [rank61]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank61]: super().__init__(open(name, mode)) [rank61]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank1]: Traceback (most recent call last): [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank1]: train(attn_implementation="flash_attention_2") [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank1]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank1]: gen_vision_tower = build_gen_vision_tower(model_args) [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank1]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank1]: self.load_model() [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank1]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank1]: self.model = _build_vision_tower(**self.config) [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank1]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank1]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank1]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank1]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank1]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank1]: with _open_file_like(f, "rb") as opened_file: [rank1]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank1]: return _open_file(name_or_buffer, mode) [rank1]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank1]: super().__init__(open(name, mode)) [rank1]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank4]: Traceback (most recent call last): [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank4]: train(attn_implementation="flash_attention_2") [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank4]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank4]: gen_vision_tower = build_gen_vision_tower(model_args) [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank4]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank4]: self.load_model() [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank4]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank4]: self.model = _build_vision_tower(**self.config) [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank4]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank4]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank4]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank4]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank4]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank4]: with _open_file_like(f, "rb") as opened_file: [rank4]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank4]: return _open_file(name_or_buffer, mode) [rank4]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank4]: super().__init__(open(name, mode)) [rank4]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank7]: Traceback (most recent call last): [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank7]: train(attn_implementation="flash_attention_2") [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank7]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank7]: gen_vision_tower = build_gen_vision_tower(model_args) [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank7]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank7]: self.load_model() [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank7]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank7]: self.model = _build_vision_tower(**self.config) [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank7]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank7]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank7]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank7]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank7]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank7]: with _open_file_like(f, "rb") as opened_file: [rank7]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank7]: return _open_file(name_or_buffer, mode) [rank7]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank7]: super().__init__(open(name, mode)) [rank7]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank6]: Traceback (most recent call last): [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank6]: train(attn_implementation="flash_attention_2") [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank6]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank6]: gen_vision_tower = build_gen_vision_tower(model_args) [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank6]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank6]: self.load_model() [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank6]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank6]: self.model = _build_vision_tower(**self.config) [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank6]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank6]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank6]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank6]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank6]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank6]: with _open_file_like(f, "rb") as opened_file: [rank6]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank6]: return _open_file(name_or_buffer, mode) [rank6]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank6]: super().__init__(open(name, mode)) [rank6]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank16]: Traceback (most recent call last): [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank16]: train(attn_implementation="flash_attention_2") [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank16]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank16]: gen_vision_tower = build_gen_vision_tower(model_args) [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank16]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank16]: self.load_model() [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank16]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank16]: self.model = _build_vision_tower(**self.config) [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank16]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank16]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank16]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank16]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank16]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank16]: with _open_file_like(f, "rb") as opened_file: [rank16]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank16]: return _open_file(name_or_buffer, mode) [rank16]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank16]: super().__init__(open(name, mode)) [rank16]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank12]: Traceback (most recent call last): [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank12]: train(attn_implementation="flash_attention_2") [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank12]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank12]: gen_vision_tower = build_gen_vision_tower(model_args) [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank12]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank12]: self.load_model() [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank12]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank12]: self.model = _build_vision_tower(**self.config) [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank12]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank12]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank12]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank12]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank12]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank12]: with _open_file_like(f, "rb") as opened_file: [rank12]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank12]: return _open_file(name_or_buffer, mode) [rank12]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank12]: super().__init__(open(name, mode)) [rank12]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank3]: Traceback (most recent call last): [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank3]: train(attn_implementation="flash_attention_2") [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank3]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank3]: gen_vision_tower = build_gen_vision_tower(model_args) [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank3]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank3]: self.load_model() [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank3]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank3]: self.model = _build_vision_tower(**self.config) [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank3]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank3]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank3]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank3]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank3]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank3]: with _open_file_like(f, "rb") as opened_file: [rank3]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank3]: return _open_file(name_or_buffer, mode) [rank3]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank3]: super().__init__(open(name, mode)) [rank3]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank14]: Traceback (most recent call last): [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank14]: train(attn_implementation="flash_attention_2") [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank14]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank14]: gen_vision_tower = build_gen_vision_tower(model_args) [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank14]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank14]: self.load_model() [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank14]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank14]: self.model = _build_vision_tower(**self.config) [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank14]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank14]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank14]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank14]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank14]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank14]: with _open_file_like(f, "rb") as opened_file: [rank14]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank14]: return _open_file(name_or_buffer, mode) [rank14]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank14]: super().__init__(open(name, mode)) [rank14]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank13]: Traceback (most recent call last): [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank13]: train(attn_implementation="flash_attention_2") [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank13]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank13]: gen_vision_tower = build_gen_vision_tower(model_args) [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank13]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank13]: self.load_model() [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank13]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank13]: self.model = _build_vision_tower(**self.config) [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank13]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank13]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank13]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank13]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank13]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank13]: with _open_file_like(f, "rb") as opened_file: [rank13]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank13]: return _open_file(name_or_buffer, mode) [rank13]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank13]: super().__init__(open(name, mode)) [rank13]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank8]: Traceback (most recent call last): [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank8]: train(attn_implementation="flash_attention_2") [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank8]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank8]: gen_vision_tower = build_gen_vision_tower(model_args) [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank8]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank8]: self.load_model() [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank8]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank8]: self.model = _build_vision_tower(**self.config) [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank8]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank8]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank8]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank8]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank8]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank8]: with _open_file_like(f, "rb") as opened_file: [rank8]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank8]: return _open_file(name_or_buffer, mode) [rank8]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank8]: super().__init__(open(name, mode)) [rank8]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank9]: Traceback (most recent call last): [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank9]: train(attn_implementation="flash_attention_2") [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank9]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank9]: gen_vision_tower = build_gen_vision_tower(model_args) [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank9]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank9]: self.load_model() [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank9]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank9]: self.model = _build_vision_tower(**self.config) [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank9]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank9]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank9]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank9]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank9]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank9]: with _open_file_like(f, "rb") as opened_file: [rank9]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank9]: return _open_file(name_or_buffer, mode) [rank9]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank9]: super().__init__(open(name, mode)) [rank9]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank15]: Traceback (most recent call last): [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank15]: train(attn_implementation="flash_attention_2") [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank15]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank15]: gen_vision_tower = build_gen_vision_tower(model_args) [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank15]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank15]: self.load_model() [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank15]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank15]: self.model = _build_vision_tower(**self.config) [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank15]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank15]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank15]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank15]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank15]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank15]: with _open_file_like(f, "rb") as opened_file: [rank15]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank15]: return _open_file(name_or_buffer, mode) [rank15]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank15]: super().__init__(open(name, mode)) [rank15]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank10]: Traceback (most recent call last): [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank10]: train(attn_implementation="flash_attention_2") [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank10]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank10]: gen_vision_tower = build_gen_vision_tower(model_args) [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank10]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank10]: self.load_model() [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank10]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank10]: self.model = _build_vision_tower(**self.config) [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank10]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank10]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank10]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank10]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank10]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank10]: with _open_file_like(f, "rb") as opened_file: [rank10]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank10]: return _open_file(name_or_buffer, mode) [rank10]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank10]: super().__init__(open(name, mode)) [rank10]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank11]: Traceback (most recent call last): [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank11]: train(attn_implementation="flash_attention_2") [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank11]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank11]: gen_vision_tower = build_gen_vision_tower(model_args) [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank11]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank11]: self.load_model() [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank11]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank11]: self.model = _build_vision_tower(**self.config) [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank11]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank11]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank11]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank11]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank11]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank11]: with _open_file_like(f, "rb") as opened_file: [rank11]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank11]: return _open_file(name_or_buffer, mode) [rank11]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank11]: super().__init__(open(name, mode)) [rank11]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank0]: Traceback (most recent call last): [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank0]: train(attn_implementation="flash_attention_2") [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank0]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank0]: gen_vision_tower = build_gen_vision_tower(model_args) [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank0]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank0]: self.load_model() [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank0]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank0]: self.model = _build_vision_tower(**self.config) [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank0]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank0]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank0]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank0]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank0]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank0]: with _open_file_like(f, "rb") as opened_file: [rank0]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank0]: return _open_file(name_or_buffer, mode) [rank0]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank0]: super().__init__(open(name, mode)) [rank0]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank56]: Traceback (most recent call last): [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank56]: train(attn_implementation="flash_attention_2") [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank56]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank56]: gen_vision_tower = build_gen_vision_tower(model_args) [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank56]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank56]: self.load_model() [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank56]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank56]: self.model = _build_vision_tower(**self.config) [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank56]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank56]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank56]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank56]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank56]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank56]: with _open_file_like(f, "rb") as opened_file: [rank56]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank56]: return _open_file(name_or_buffer, mode) [rank56]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank56]: super().__init__(open(name, mode)) [rank56]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank123]: Traceback (most recent call last): [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank123]: train(attn_implementation="flash_attention_2") [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank123]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank123]: gen_vision_tower = build_gen_vision_tower(model_args) [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank123]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank123]: self.load_model() [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank123]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank123]: self.model = _build_vision_tower(**self.config) [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank123]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank123]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank123]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank123]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank123]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank123]: with _open_file_like(f, "rb") as opened_file: [rank123]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank123]: return _open_file(name_or_buffer, mode) [rank123]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank123]: super().__init__(open(name, mode)) [rank123]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank127]: Traceback (most recent call last): [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank127]: train(attn_implementation="flash_attention_2") [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank127]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank127]: gen_vision_tower = build_gen_vision_tower(model_args) [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank127]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank127]: self.load_model() [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank127]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank127]: self.model = _build_vision_tower(**self.config) [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank127]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank127]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank127]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank127]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank127]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank127]: with _open_file_like(f, "rb") as opened_file: [rank127]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank127]: return _open_file(name_or_buffer, mode) [rank127]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank127]: super().__init__(open(name, mode)) [rank127]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank122]: Traceback (most recent call last): [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank122]: train(attn_implementation="flash_attention_2") [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank122]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank122]: gen_vision_tower = build_gen_vision_tower(model_args) [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank122]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank122]: self.load_model() [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank122]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank122]: self.model = _build_vision_tower(**self.config) [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank122]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank122]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank122]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank122]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank122]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank122]: with _open_file_like(f, "rb") as opened_file: [rank122]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank122]: return _open_file(name_or_buffer, mode) [rank122]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank122]: super().__init__(open(name, mode)) [rank122]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank121]: Traceback (most recent call last): [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank121]: train(attn_implementation="flash_attention_2") [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank121]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank121]: gen_vision_tower = build_gen_vision_tower(model_args) [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank121]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank121]: self.load_model() [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank121]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank121]: self.model = _build_vision_tower(**self.config) [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank121]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank121]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank121]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank121]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank121]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank121]: with _open_file_like(f, "rb") as opened_file: [rank121]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank121]: return _open_file(name_or_buffer, mode) [rank121]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank121]: super().__init__(open(name, mode)) [rank121]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank126]: Traceback (most recent call last): [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank126]: train(attn_implementation="flash_attention_2") [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank126]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank126]: gen_vision_tower = build_gen_vision_tower(model_args) [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank126]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank126]: self.load_model() [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank126]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank126]: self.model = _build_vision_tower(**self.config) [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank126]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank126]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank126]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank126]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank126]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank126]: with _open_file_like(f, "rb") as opened_file: [rank126]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank126]: return _open_file(name_or_buffer, mode) [rank126]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank126]: super().__init__(open(name, mode)) [rank126]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank31]: Traceback (most recent call last): [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank31]: train(attn_implementation="flash_attention_2") [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank31]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank31]: gen_vision_tower = build_gen_vision_tower(model_args) [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank31]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank31]: self.load_model() [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank31]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank31]: self.model = _build_vision_tower(**self.config) [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank31]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank31]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank31]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank31]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank31]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank31]: with _open_file_like(f, "rb") as opened_file: [rank31]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank31]: return _open_file(name_or_buffer, mode) [rank31]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank31]: super().__init__(open(name, mode)) [rank31]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank30]: Traceback (most recent call last): [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank30]: train(attn_implementation="flash_attention_2") [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank30]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank30]: gen_vision_tower = build_gen_vision_tower(model_args) [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank30]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank30]: self.load_model() [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank30]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank30]: self.model = _build_vision_tower(**self.config) [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank30]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank30]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank30]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank30]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank30]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank30]: with _open_file_like(f, "rb") as opened_file: [rank30]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank30]: return _open_file(name_or_buffer, mode) [rank30]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank30]: super().__init__(open(name, mode)) [rank30]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank28]: Traceback (most recent call last): [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank28]: train(attn_implementation="flash_attention_2") [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank28]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank28]: gen_vision_tower = build_gen_vision_tower(model_args) [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank28]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank28]: self.load_model() [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank28]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank28]: self.model = _build_vision_tower(**self.config) [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank28]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank28]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank28]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank28]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank28]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank28]: with _open_file_like(f, "rb") as opened_file: [rank28]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank28]: return _open_file(name_or_buffer, mode) [rank28]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank28]: super().__init__(open(name, mode)) [rank28]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank125]: Traceback (most recent call last): [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank125]: train(attn_implementation="flash_attention_2") [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank125]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank125]: gen_vision_tower = build_gen_vision_tower(model_args) [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank125]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank125]: self.load_model() [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank125]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank125]: self.model = _build_vision_tower(**self.config) [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank125]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank125]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank125]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank125]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank125]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank125]: with _open_file_like(f, "rb") as opened_file: [rank125]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank125]: return _open_file(name_or_buffer, mode) [rank125]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank125]: super().__init__(open(name, mode)) [rank125]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank25]: Traceback (most recent call last): [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank25]: train(attn_implementation="flash_attention_2") [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank25]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank25]: gen_vision_tower = build_gen_vision_tower(model_args) [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank25]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank25]: self.load_model() [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank25]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank25]: self.model = _build_vision_tower(**self.config) [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank25]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank25]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank25]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank25]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank25]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank25]: with _open_file_like(f, "rb") as opened_file: [rank25]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank25]: return _open_file(name_or_buffer, mode) [rank25]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank25]: super().__init__(open(name, mode)) [rank25]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank29]: Traceback (most recent call last): [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank29]: train(attn_implementation="flash_attention_2") [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank29]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank29]: gen_vision_tower = build_gen_vision_tower(model_args) [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank29]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank29]: self.load_model() [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank29]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank29]: self.model = _build_vision_tower(**self.config) [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank29]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank29]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank29]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank29]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank29]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank29]: with _open_file_like(f, "rb") as opened_file: [rank29]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank29]: return _open_file(name_or_buffer, mode) [rank29]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank29]: super().__init__(open(name, mode)) [rank29]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank120]: Traceback (most recent call last): [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank120]: train(attn_implementation="flash_attention_2") [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank120]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank120]: gen_vision_tower = build_gen_vision_tower(model_args) [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank120]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank120]: self.load_model() [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank120]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank120]: self.model = _build_vision_tower(**self.config) [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank120]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank120]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank120]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank120]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank120]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank120]: with _open_file_like(f, "rb") as opened_file: [rank120]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank120]: return _open_file(name_or_buffer, mode) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. [rank120]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank120]: super().__init__(open(name, mode)) [rank120]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank27]: Traceback (most recent call last): [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank27]: train(attn_implementation="flash_attention_2") [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank27]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank27]: gen_vision_tower = build_gen_vision_tower(model_args) [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank27]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank27]: self.load_model() [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank27]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank27]: self.model = _build_vision_tower(**self.config) [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank27]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank27]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank27]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank27]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank27]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank27]: with _open_file_like(f, "rb") as opened_file: [rank27]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank27]: return _open_file(name_or_buffer, mode) [rank27]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank27]: super().__init__(open(name, mode)) [rank27]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank124]: Traceback (most recent call last): [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank124]: train(attn_implementation="flash_attention_2") [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank124]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank124]: gen_vision_tower = build_gen_vision_tower(model_args) [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank124]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank124]: self.load_model() [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank124]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank124]: self.model = _build_vision_tower(**self.config) [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank124]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank124]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank124]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank124]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank124]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank124]: with _open_file_like(f, "rb") as opened_file: [rank124]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank124]: return _open_file(name_or_buffer, mode) [rank124]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank124]: super().__init__(open(name, mode)) [rank124]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank26]: Traceback (most recent call last): [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank26]: train(attn_implementation="flash_attention_2") [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank26]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank26]: gen_vision_tower = build_gen_vision_tower(model_args) [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank26]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank26]: self.load_model() [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank26]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank26]: self.model = _build_vision_tower(**self.config) [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank26]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank26]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank26]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank26]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank26]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank26]: with _open_file_like(f, "rb") as opened_file: [rank26]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank26]: return _open_file(name_or_buffer, mode) [rank26]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank26]: super().__init__(open(name, mode)) [rank26]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank58]: Traceback (most recent call last): [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank58]: train(attn_implementation="flash_attention_2") [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank58]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank58]: gen_vision_tower = build_gen_vision_tower(model_args) [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank58]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank58]: self.load_model() [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank58]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank58]: self.model = _build_vision_tower(**self.config) [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank58]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank58]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank58]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank58]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank58]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank58]: with _open_file_like(f, "rb") as opened_file: [rank58]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank58]: return _open_file(name_or_buffer, mode) [rank58]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank58]: super().__init__(open(name, mode)) [rank58]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank24]: Traceback (most recent call last): [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank24]: train(attn_implementation="flash_attention_2") [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank24]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank24]: gen_vision_tower = build_gen_vision_tower(model_args) [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank24]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank24]: self.load_model() [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank24]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank24]: self.model = _build_vision_tower(**self.config) [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank24]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank24]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank24]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank24]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank24]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank24]: with _open_file_like(f, "rb") as opened_file: [rank24]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank24]: return _open_file(name_or_buffer, mode) [rank24]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank24]: super().__init__(open(name, mode)) [rank24]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank45]: Traceback (most recent call last): [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank45]: train(attn_implementation="flash_attention_2") [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank45]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank45]: gen_vision_tower = build_gen_vision_tower(model_args) [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank45]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank45]: self.load_model() [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank45]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank45]: self.model = _build_vision_tower(**self.config) [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank45]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank45]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank45]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank45]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank45]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank45]: with _open_file_like(f, "rb") as opened_file: [rank45]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank45]: return _open_file(name_or_buffer, mode) [rank45]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank45]: super().__init__(open(name, mode)) [rank45]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank43]: Traceback (most recent call last): [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank43]: train(attn_implementation="flash_attention_2") [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank43]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank43]: gen_vision_tower = build_gen_vision_tower(model_args) [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank43]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank43]: self.load_model() [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank43]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank43]: self.model = _build_vision_tower(**self.config) [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank43]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank43]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank43]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank43]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank43]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank43]: with _open_file_like(f, "rb") as opened_file: [rank43]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank43]: return _open_file(name_or_buffer, mode) [rank43]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank43]: super().__init__(open(name, mode)) [rank43]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank42]: Traceback (most recent call last): [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank42]: train(attn_implementation="flash_attention_2") [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank42]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank42]: gen_vision_tower = build_gen_vision_tower(model_args) [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank42]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank42]: self.load_model() [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank42]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank42]: self.model = _build_vision_tower(**self.config) [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank42]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank42]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank42]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank42]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank42]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank42]: with _open_file_like(f, "rb") as opened_file: [rank42]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank42]: return _open_file(name_or_buffer, mode) [rank42]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank42]: super().__init__(open(name, mode)) [rank42]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank47]: Traceback (most recent call last): [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank47]: train(attn_implementation="flash_attention_2") [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank47]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank47]: gen_vision_tower = build_gen_vision_tower(model_args) [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank47]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank47]: self.load_model() [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank47]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank47]: self.model = _build_vision_tower(**self.config) [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank47]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank47]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank47]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank47]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank47]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank47]: with _open_file_like(f, "rb") as opened_file: [rank47]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank47]: return _open_file(name_or_buffer, mode) [rank47]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank47]: super().__init__(open(name, mode)) [rank47]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank40]: Traceback (most recent call last): [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank40]: train(attn_implementation="flash_attention_2") [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank40]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank40]: gen_vision_tower = build_gen_vision_tower(model_args) [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank40]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank40]: self.load_model() [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank40]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank40]: self.model = _build_vision_tower(**self.config) [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank40]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank40]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank40]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank40]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank40]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank40]: with _open_file_like(f, "rb") as opened_file: [rank40]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank40]: return _open_file(name_or_buffer, mode) [rank40]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank40]: super().__init__(open(name, mode)) [rank40]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank46]: Traceback (most recent call last): [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank46]: train(attn_implementation="flash_attention_2") [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank46]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank46]: gen_vision_tower = build_gen_vision_tower(model_args) [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank46]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank46]: self.load_model() [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank46]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank46]: self.model = _build_vision_tower(**self.config) [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank46]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank46]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank46]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank46]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank46]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank46]: with _open_file_like(f, "rb") as opened_file: [rank46]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank46]: return _open_file(name_or_buffer, mode) [rank46]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank46]: super().__init__(open(name, mode)) [rank46]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank44]: Traceback (most recent call last): [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank44]: train(attn_implementation="flash_attention_2") [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank44]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank44]: gen_vision_tower = build_gen_vision_tower(model_args) [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank44]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank44]: self.load_model() [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank44]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank44]: self.model = _build_vision_tower(**self.config) [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank44]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank44]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank44]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank44]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank44]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank44]: with _open_file_like(f, "rb") as opened_file: [rank44]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank44]: return _open_file(name_or_buffer, mode) [rank44]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank44]: super().__init__(open(name, mode)) [rank44]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank41]: Traceback (most recent call last): [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank41]: train(attn_implementation="flash_attention_2") [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank41]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank41]: gen_vision_tower = build_gen_vision_tower(model_args) [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank41]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank41]: self.load_model() [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank41]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank41]: self.model = _build_vision_tower(**self.config) [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank41]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank41]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank41]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank41]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank41]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank41]: with _open_file_like(f, "rb") as opened_file: [rank41]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank41]: return _open_file(name_or_buffer, mode) [rank41]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank41]: super().__init__(open(name, mode)) [rank41]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' /opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py:622: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank52]: Traceback (most recent call last): [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train_mem.py", line 4, in [rank52]: train(attn_implementation="flash_attention_2") [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/train/train.py", line 1531, in train [rank52]: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/llava_arch.py", line 91, in initialize_vision_modules [rank52]: gen_vision_tower = build_gen_vision_tower(model_args) [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/builder.py", line 43, in build_gen_vision_tower [rank52]: return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 23, in __init__ [rank52]: self.load_model() [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_clip_encoder.py", line 38, in load_model [rank52]: self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config) [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 746, in __init__ [rank52]: self.model = _build_vision_tower(**self.config) [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 734, in _build_vision_tower [rank52]: state_dict = load_clip_visual_state_dict(vision_tower_path) [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 645, in load_clip_visual_state_dict [rank52]: state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) [rank52]: File "/opt/hpcaas/.mounts/fs-036153e63d56f4dc2/home/zhaojiang/interleaved-llava/llava/model/multimodal_encoder/eva_clip/eva_vit.py", line 622, in load_state_dict [rank52]: checkpoint = torch.load(checkpoint_path, map_location=map_location) [rank52]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 1319, in load [rank52]: with _open_file_like(f, "rb") as opened_file: [rank52]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 659, in _open_file_like [rank52]: return _open_file(name_or_buffer, mode) [rank52]: File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/serialization.py", line 640, in __init__ [rank52]: super().__init__(open(name, mode)) [rank52]: FileNotFoundError: [Errno 2] No such file or directory: '/fsx_0/user/zhaojiang/model/Emu2-Gen/vision_tower/pytorch_model.bin' [rank80]:[W216 07:20:08.488850451 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank96]:[W216 07:20:09.054969164 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank72]:[W216 07:20:09.828821737 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank32]:[W216 07:20:09.711527769 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank112]:[W216 07:20:10.418827142 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) W0216 07:20:11.100000 2187937 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2188831 closing signal SIGTERM W0216 07:20:11.101000 2187937 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2188832 closing signal SIGTERM W0216 07:20:11.101000 2187937 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2188833 closing signal SIGTERM W0216 07:20:11.102000 2187937 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2188834 closing signal SIGTERM W0216 07:20:11.102000 2187937 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2188835 closing signal SIGTERM W0216 07:20:11.103000 2187937 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2188836 closing signal SIGTERM W0216 07:20:11.103000 2187937 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2188837 closing signal SIGTERM [rank48]:[W216 07:20:11.724836833 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank104]:[W216 07:20:11.045934263 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) W0216 07:20:11.574000 3423624 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3423878 closing signal SIGTERM W0216 07:20:11.575000 3423624 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3423879 closing signal SIGTERM W0216 07:20:11.575000 3423624 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3423880 closing signal SIGTERM W0216 07:20:11.576000 3423624 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3423881 closing signal SIGTERM W0216 07:20:11.576000 3423624 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3423882 closing signal SIGTERM W0216 07:20:11.577000 3423624 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3423883 closing signal SIGTERM W0216 07:20:11.577000 3423624 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3423884 closing signal SIGTERM [rank64]:[W216 07:20:11.271338347 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank88]:[W216 07:20:11.242239866 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank16]:[W216 07:20:11.363534025 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank56]:[W216 07:20:11.693243703 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank0]:[W216 07:20:11.235131703 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank8]:[W216 07:20:11.370649145 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) W0216 07:20:11.985000 2148926 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2149188 closing signal SIGTERM W0216 07:20:11.986000 2148926 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2149189 closing signal SIGTERM W0216 07:20:11.986000 2148926 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2149190 closing signal SIGTERM W0216 07:20:11.987000 2148926 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2149191 closing signal SIGTERM W0216 07:20:11.987000 2148926 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2149192 closing signal SIGTERM W0216 07:20:11.987000 2148926 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2149193 closing signal SIGTERM W0216 07:20:11.987000 2148926 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2149194 closing signal SIGTERM [rank120]:[W216 07:20:12.631253411 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) W0216 07:20:12.072000 3038721 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3038981 closing signal SIGTERM W0216 07:20:12.073000 3038721 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3038982 closing signal SIGTERM W0216 07:20:12.073000 3038721 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3038983 closing signal SIGTERM W0216 07:20:12.074000 3038721 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3038984 closing signal SIGTERM W0216 07:20:12.074000 3038721 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3038985 closing signal SIGTERM W0216 07:20:12.075000 3038721 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3038986 closing signal SIGTERM W0216 07:20:12.075000 3038721 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3038987 closing signal SIGTERM [rank24]:[W216 07:20:12.453872161 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) [rank40]:[W216 07:20:12.640417863 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator()) W0216 07:20:12.684000 3420003 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3420257 closing signal SIGTERM W0216 07:20:12.685000 3420003 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3420258 closing signal SIGTERM W0216 07:20:12.685000 3420003 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3420259 closing signal SIGTERM W0216 07:20:12.685000 3420003 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3420260 closing signal SIGTERM W0216 07:20:12.686000 3420003 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3420261 closing signal SIGTERM W0216 07:20:12.686000 3420003 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3420262 closing signal SIGTERM W0216 07:20:12.686000 3420003 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3420263 closing signal SIGTERM E0216 07:20:13.066000 2187937 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 0 (pid: 2188830) of binary: /usr/bin/python3.10 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 269, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ llava/train/train_mem.py FAILED ------------------------------------------------------------ Failures: ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-02-16_07:20:11 host : h100-st-p548xlarge-38.ar-ai-use2.hpcaas rank : 80 (local_rank: 0) exitcode : 1 (pid: 2188830) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ W0216 07:20:13.200000 3423799 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3424690 closing signal SIGTERM W0216 07:20:13.201000 3423799 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3424691 closing signal SIGTERM W0216 07:20:13.201000 3423799 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3424692 closing signal SIGTERM W0216 07:20:13.201000 3423799 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3424693 closing signal SIGTERM W0216 07:20:13.202000 3423799 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3424694 closing signal SIGTERM W0216 07:20:13.202000 3423799 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3424695 closing signal SIGTERM W0216 07:20:13.202000 3423799 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3424696 closing signal SIGTERM W0216 07:20:13.287000 3425590 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3425848 closing signal SIGTERM W0216 07:20:13.288000 3425590 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3425849 closing signal SIGTERM W0216 07:20:13.288000 3425590 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3425850 closing signal SIGTERM W0216 07:20:13.289000 3425590 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3425851 closing signal SIGTERM W0216 07:20:13.289000 3425590 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3425852 closing signal SIGTERM W0216 07:20:13.289000 3425590 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3425853 closing signal SIGTERM W0216 07:20:13.289000 3425590 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3425854 closing signal SIGTERM W0216 07:20:13.305000 2267137 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2268051 closing signal SIGTERM W0216 07:20:13.305000 2267137 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2268052 closing signal SIGTERM W0216 07:20:13.306000 2267137 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2268053 closing signal SIGTERM W0216 07:20:13.306000 2267137 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2268054 closing signal SIGTERM W0216 07:20:13.306000 2267137 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2268055 closing signal SIGTERM W0216 07:20:13.306000 2267137 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2268056 closing signal SIGTERM W0216 07:20:13.307000 2267137 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2268057 closing signal SIGTERM srun: error: h100-st-p548xlarge-38: task 10: Exited with exit code 1 srun: Terminating StepId=335426.0 slurmstepd: error: *** STEP 335426.0 ON h100-st-p548xlarge-28 CANCELLED AT 2025-02-16T07:20:13 *** W0216 07:20:13.413000 2267137 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 07:20:13.413000 2148926 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 07:20:13.413000 2267137 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2268051 closing signal SIGTERM W0216 07:20:13.413000 2148926 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2149190 closing signal SIGTERM W0216 07:20:13.413000 3038721 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 07:20:13.413000 2267137 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2268052 closing signal SIGTERM W0216 07:20:13.413000 3420003 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 07:20:13.413000 3425590 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 07:20:13.414000 2267137 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2268053 closing signal SIGTERM W0216 07:20:13.414000 3420003 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3420257 closing signal SIGTERM W0216 07:20:13.414000 3038721 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3038981 closing signal SIGTERM W0216 07:20:13.413000 3054891 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 07:20:13.414000 3425590 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3425848 closing signal SIGTERM W0216 07:20:13.414000 2267137 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2268054 closing signal SIGTERM W0216 07:20:13.413000 2269001 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 07:20:13.414000 3425590 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3425849 closing signal SIGTERM W0216 07:20:13.414000 3420003 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3420261 closing signal SIGTERM W0216 07:20:13.414000 3038721 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3038983 closing signal SIGTERM W0216 07:20:13.414000 2267137 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2268055 closing signal SIGTERM W0216 07:20:13.414000 3423624 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 07:20:13.414000 3054891 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3055151 closing signal SIGTERM W0216 07:20:13.414000 3423799 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 07:20:13.414000 3425590 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3425850 closing signal SIGTERM W0216 07:20:13.414000 2267137 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2268056 closing signal SIGTERM W0216 07:20:13.414000 3420003 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3420262 closing signal SIGTERM W0216 07:20:13.414000 3038721 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3038984 closing signal SIGTERM W0216 07:20:13.414000 2129293 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 07:20:13.414000 3054891 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3055152 closing signal SIGTERM W0216 07:20:13.414000 3423624 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3423879 closing signal SIGTERM W0216 07:20:13.414000 2269001 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2269898 closing signal SIGTERM W0216 07:20:13.415000 2267137 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2268057 closing signal SIGTERM W0216 07:20:13.413000 3054897 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 07:20:13.415000 3425590 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3425852 closing signal SIGTERM W0216 07:20:13.415000 3038721 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3038985 closing signal SIGTERM W0216 07:20:13.415000 3423799 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3424690 closing signal SIGTERM W0216 07:20:13.415000 3054891 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3055153 closing signal SIGTERM W0216 07:20:13.414000 3053573 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 07:20:13.414000 3046945 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 07:20:13.415000 2129293 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2129570 closing signal SIGTERM W0216 07:20:13.415000 3425590 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3425853 closing signal SIGTERM W0216 07:20:13.414000 3045916 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 07:20:13.415000 2269001 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2269899 closing signal SIGTERM W0216 07:20:13.415000 3038721 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3038986 closing signal SIGTERM W0216 07:20:13.415000 3054891 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3055154 closing signal SIGTERM W0216 07:20:13.414000 2698609 .local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py:704] Received Signals.SIGTERM death signal, shutting down workers W0216 07:20:13.415000 3423799 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3424691 closing signal SIGTERM W0216 07:20:13.415000 3053573 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3053829 closing signal SIGTERM W0216 07:20:13.415000 3425590 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3425854 closing signal SIGTERM W0216 07:20:13.415000 3045916 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3046178 closing signal SIGTERM W0216 07:20:13.415000 3054897 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3055154 closing signal SIGTERM W0216 07:20:13.415000 3054891 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3055155 closing signal SIGTERM W0216 07:20:13.415000 2698609 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2698859 closing signal SIGTERM W0216 07:20:13.415000 2129293 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2129571 closing signal SIGTERM W0216 07:20:13.415000 3046945 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3047210 closing signal SIGTERM W0216 07:20:13.415000 3423799 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3424692 closing signal SIGTERM W0216 07:20:13.415000 2269001 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2269900 closing signal SIGTERM W0216 07:20:13.415000 3053573 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3053830 closing signal SIGTERM W0216 07:20:13.416000 3045916 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3046179 closing signal SIGTERM W0216 07:20:13.416000 3054891 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3055156 closing signal SIGTERM W0216 07:20:13.416000 2698609 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2698860 closing signal SIGTERM W0216 07:20:13.416000 3423799 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3424693 closing signal SIGTERM W0216 07:20:13.416000 2269001 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2269901 closing signal SIGTERM W0216 07:20:13.416000 2129293 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2129572 closing signal SIGTERM W0216 07:20:13.416000 3046945 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3047211 closing signal SIGTERM W0216 07:20:13.416000 3045916 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3046180 closing signal SIGTERM W0216 07:20:13.416000 3054891 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3055157 closing signal SIGTERM W0216 07:20:13.416000 3053573 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3053831 closing signal SIGTERM W0216 07:20:13.416000 3423799 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3424694 closing signal SIGTERM W0216 07:20:13.416000 2698609 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2698861 closing signal SIGTERM W0216 07:20:13.416000 3054897 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3055155 closing signal SIGTERM W0216 07:20:13.416000 2129293 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2129573 closing signal SIGTERM W0216 07:20:13.416000 3054891 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3055158 closing signal SIGTERM W0216 07:20:13.416000 3053573 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3053832 closing signal SIGTERM W0216 07:20:13.416000 2269001 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2269902 closing signal SIGTERM W0216 07:20:13.416000 3423799 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3424695 closing signal SIGTERM W0216 07:20:13.416000 2698609 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2698862 closing signal SIGTERM W0216 07:20:13.416000 3045916 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3046181 closing signal SIGTERM W0216 07:20:13.416000 3046945 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3047212 closing signal SIGTERM W0216 07:20:13.416000 3054897 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3055156 closing signal SIGTERM W0216 07:20:13.416000 3423799 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3424696 closing signal SIGTERM W0216 07:20:13.416000 2698609 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2698863 closing signal SIGTERM W0216 07:20:13.416000 3045916 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3046182 closing signal SIGTERM W0216 07:20:13.416000 3053573 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3053833 closing signal SIGTERM W0216 07:20:13.416000 2269001 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2269903 closing signal SIGTERM W0216 07:20:13.416000 2129293 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2129574 closing signal SIGTERM W0216 07:20:13.417000 3045916 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3046183 closing signal SIGTERM W0216 07:20:13.417000 3046945 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3047213 closing signal SIGTERM W0216 07:20:13.417000 2698609 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2698864 closing signal SIGTERM W0216 07:20:13.417000 2129293 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2129575 closing signal SIGTERM W0216 07:20:13.417000 3054897 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3055157 closing signal SIGTERM W0216 07:20:13.417000 3053573 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3053834 closing signal SIGTERM W0216 07:20:13.417000 2269001 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2269904 closing signal SIGTERM W0216 07:20:13.417000 2698609 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2698865 closing signal SIGTERM W0216 07:20:13.417000 3045916 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3046184 closing signal SIGTERM W0216 07:20:13.417000 3046945 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3047214 closing signal SIGTERM W0216 07:20:13.417000 2129293 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2129576 closing signal SIGTERM W0216 07:20:13.417000 3053573 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3053835 closing signal SIGTERM W0216 07:20:13.417000 2698609 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2698866 closing signal SIGTERM W0216 07:20:13.417000 3054897 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3055158 closing signal SIGTERM W0216 07:20:13.417000 3045916 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3046185 closing signal SIGTERM W0216 07:20:13.417000 3046945 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3047215 closing signal SIGTERM W0216 07:20:13.417000 2129293 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 2129577 closing signal SIGTERM W0216 07:20:13.417000 3053573 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3053836 closing signal SIGTERM W0216 07:20:13.418000 3054897 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3055159 closing signal SIGTERM W0216 07:20:13.418000 3046945 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3047216 closing signal SIGTERM W0216 07:20:13.418000 3054897 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3055160 closing signal SIGTERM W0216 07:20:13.418000 3046945 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3047217 closing signal SIGTERM W0216 07:20:13.418000 3054897 .local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py:897] Sending process 3055161 closing signal SIGTERM Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 856, in _invoke_run run_result = self._monitor_workers(self._worker_group) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 387, in _monitor_workers result = self._pcontext.wait(0) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 531, in wait return self._poll() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 861, in _poll self.close() # terminate all running procs File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 572, in close self._close(death_sig=death_sig, timeout=timeout) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 909, in _close handler.proc.wait(time_to_wait) File "/usr/lib/python3.10/subprocess.py", line 1209, in wait return self._wait(timeout=timeout) File "/usr/lib/python3.10/subprocess.py", line 1953, in _wait time.sleep(delay) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 3423624 got signal: 15 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 856, in _invoke_run run_result = self._monitor_workers(self._worker_group) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 387, in _monitor_workers result = self._pcontext.wait(0) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 531, in wait return self._poll() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 861, in _poll self.close() # terminate all running procs File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 572, in close self._close(death_sig=death_sig, timeout=timeout) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 909, in _close handler.proc.wait(time_to_wait) File "/usr/lib/python3.10/subprocess.py", line 1209, in wait return self._wait(timeout=timeout) File "/usr/lib/python3.10/subprocess.py", line 1953, in _wait time.sleep(delay) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 2148926 got signal: 15 srun: error: h100-st-p548xlarge-81: task 12: Exited with exit code 1 srun: error: h100-st-p548xlarge-37: task 9: Exited with exit code 1 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 856, in _invoke_run run_result = self._monitor_workers(self._worker_group) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 387, in _monitor_workers result = self._pcontext.wait(0) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 531, in wait return self._poll() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 861, in _poll self.close() # terminate all running procs File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 572, in close self._close(death_sig=death_sig, timeout=timeout) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 909, in _close handler.proc.wait(time_to_wait) File "/usr/lib/python3.10/subprocess.py", line 1209, in wait return self._wait(timeout=timeout) File "/usr/lib/python3.10/subprocess.py", line 1953, in _wait time.sleep(delay) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 3038721 got signal: 15 srun: error: h100-st-p548xlarge-32: task 4: Exited with exit code 1 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 856, in _invoke_run run_result = self._monitor_workers(self._worker_group) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 387, in _monitor_workers result = self._pcontext.wait(0) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 531, in wait return self._poll() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 861, in _poll self.close() # terminate all running procs File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 572, in close self._close(death_sig=death_sig, timeout=timeout) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 909, in _close handler.proc.wait(time_to_wait) File "/usr/lib/python3.10/subprocess.py", line 1209, in wait return self._wait(timeout=timeout) File "/usr/lib/python3.10/subprocess.py", line 1953, in _wait time.sleep(delay) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 3420003 got signal: 15 srun: error: h100-st-p548xlarge-83: task 14: Exited with exit code 1 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 856, in _invoke_run run_result = self._monitor_workers(self._worker_group) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 387, in _monitor_workers result = self._pcontext.wait(0) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 531, in wait return self._poll() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 861, in _poll self.close() # terminate all running procs File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 572, in close self._close(death_sig=death_sig, timeout=timeout) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 909, in _close handler.proc.wait(time_to_wait) File "/usr/lib/python3.10/subprocess.py", line 1209, in wait return self._wait(timeout=timeout) File "/usr/lib/python3.10/subprocess.py", line 1953, in _wait time.sleep(delay) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 3425590 got signal: 15 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 856, in _invoke_run run_result = self._monitor_workers(self._worker_group) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 387, in _monitor_workers result = self._pcontext.wait(0) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 531, in wait return self._poll() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 861, in _poll self.close() # terminate all running procs File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 572, in close self._close(death_sig=death_sig, timeout=timeout) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 909, in _close handler.proc.wait(time_to_wait) File "/usr/lib/python3.10/subprocess.py", line 1209, in wait return self._wait(timeout=timeout) File "/usr/lib/python3.10/subprocess.py", line 1953, in _wait time.sleep(delay) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 2267137 got signal: 15 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 855, in _invoke_run time.sleep(monitor_interval) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 2269001 got signal: 15 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 855, in _invoke_run time.sleep(monitor_interval) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 2129293 got signal: 15 srun: error: h100-st-p548xlarge-82: task 13: Exited with exit code 1 srun: error: h100-st-p548xlarge-34: task 6: Exited with exit code 1 srun: error: h100-st-p548xlarge-36: task 8: Exited with exit code 1 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 855, in _invoke_run time.sleep(monitor_interval) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 3054897 got signal: 15 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 855, in _invoke_run time.sleep(monitor_interval) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 2698609 got signal: 15 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper srun: error: h100-st-p548xlarge-35: task 7: Exited with exit code 1 return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 855, in _invoke_run time.sleep(monitor_interval) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 3045916 got signal: 15 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 855, in _invoke_run time.sleep(monitor_interval) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 3053573 got signal: 15 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 855, in _invoke_run time.sleep(monitor_interval) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 3046945 got signal: 15 srun: error: h100-st-p548xlarge-28: task 0: Exited with exit code 1 srun: error: h100-st-p548xlarge-84: task 15: Exited with exit code 1 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 856, in _invoke_run run_result = self._monitor_workers(self._worker_group) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py", line 387, in _monitor_workers result = self._pcontext.wait(0) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 531, in wait return self._poll() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 861, in _poll self.close() # terminate all running procs File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 572, in close self._close(death_sig=death_sig, timeout=timeout) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 909, in _close handler.proc.wait(time_to_wait) File "/usr/lib/python3.10/subprocess.py", line 1209, in wait return self._wait(timeout=timeout) File "/usr/lib/python3.10/subprocess.py", line 1953, in _wait time.sleep(delay) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 3423799 got signal: 15 srun: error: h100-st-p548xlarge-31: task 3: Exited with exit code 1 srun: error: h100-st-p548xlarge-29: task 1: Exited with exit code 1 srun: error: h100-st-p548xlarge-30: task 2: Exited with exit code 1 Traceback (most recent call last): File "/home/zhaojiang/.local/bin/torchrun", line 8, in sys.exit(main()) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 919, in main run(args) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/run.py", line 910, in run elastic_launch( File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 260, in launch_agent result = agent.run() File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 137, in wrapper result = f(*args, **kwargs) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 696, in run result = self._invoke_run(role) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 855, in _invoke_run time.sleep(monitor_interval) File "/home/zhaojiang/.local/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 84, in _terminate_process_handler raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) torch.distributed.elastic.multiprocessing.api.SignalException: Process 3054891 got signal: 15 srun: error: h100-st-p548xlarge-80: task 11: Exited with exit code 1 srun: error: h100-st-p548xlarge-33: task 5: Exited with exit code 1 pretrain.sh: 82: python: not found