unakar commited on
Commit
bfd55b2
·
verified ·
1 Parent(s): c63ef05

Upload 10 files

Browse files
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InternLM2ForCausalLM"
4
+ ],
5
+ "attn_implementation": "eager",
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_internlm2.InternLM2Config",
8
+ "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM",
9
+ "AutoModel": "modeling_internlm2.InternLM2ForCausalLM"
10
+ },
11
+ "bias": false,
12
+ "bos_token_id": 1,
13
+ "eos_token_id": 2,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 2048,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 5504,
18
+ "max_position_embeddings": 32768,
19
+ "model_type": "internlm2",
20
+ "num_attention_heads": 16,
21
+ "num_hidden_layers": 24,
22
+ "num_key_value_heads": 8,
23
+ "pad_token_id": 2,
24
+ "pretraining_tp": 1,
25
+ "rms_norm_eps": 1e-05,
26
+ "rope_scaling": null,
27
+ "rope_theta": 1000000,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.42.3",
31
+ "use_cache": true,
32
+ "vocab_size": 92544
33
+ }
configuration_internlm2.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """ InternLM2 model configuration"""
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
25
+
26
+
27
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
28
+ class InternLM2Config(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
31
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
32
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 32000):
40
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by
41
+ the `inputs_ids` passed when calling [`InternLM2Model`]
42
+ hidden_size (`int`, *optional*, defaults to 4096):
43
+ Dimension of the hidden representations.
44
+ intermediate_size (`int`, *optional*, defaults to 11008):
45
+ Dimension of the MLP representations.
46
+ num_hidden_layers (`int`, *optional*, defaults to 32):
47
+ Number of hidden layers in the Transformer decoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 32):
49
+ Number of attention heads for each attention layer in the Transformer decoder.
50
+ num_key_value_heads (`int`, *optional*):
51
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55
+ by meanpooling all the original heads within that group. For more details checkout [this
56
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
57
+ `num_attention_heads`.
58
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59
+ The non-linear activation function (function or string) in the decoder.
60
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
61
+ The maximum sequence length that this model might ever be used with. InternLM2 supports up to 32768 tokens.
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ pad_token_id (`int`, *optional*):
70
+ Padding token id.
71
+ bos_token_id (`int`, *optional*, defaults to 1):
72
+ Beginning of stream token id.
73
+ eos_token_id (`int`, *optional*, defaults to 2):
74
+ End of stream token id.
75
+ pretraining_tp (`int`, *optional*, defaults to 1):
76
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
77
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism)
78
+ to understand more about it. This value is necessary to ensure exact reproducibility
79
+ of the pretraining results. Please refer to [this
80
+ issue](https://github.com/pytorch/pytorch/issues/76232).
81
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
82
+ Whether to tie weight embeddings
83
+ rope_theta (`float`, *optional*, defaults to 10000.0):
84
+ The base period of the RoPE embeddings.
85
+ rope_scaling (`Dict`, *optional*):
86
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
87
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
88
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
89
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
90
+ these scaling strategies behave:
91
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
92
+ experimental feature, subject to breaking API changes in future versions.
93
+ """
94
+ _auto_class = "AutoConfig"
95
+ model_type = "internlm2"
96
+ keys_to_ignore_at_inference = ["past_key_values"]
97
+
98
+ def __init__( # pylint: disable=W0102
99
+ self,
100
+ vocab_size=103168,
101
+ hidden_size=4096,
102
+ intermediate_size=11008,
103
+ num_hidden_layers=32,
104
+ num_attention_heads=32,
105
+ num_key_value_heads=None,
106
+ hidden_act="silu",
107
+ max_position_embeddings=2048,
108
+ initializer_range=0.02,
109
+ rms_norm_eps=1e-6,
110
+ use_cache=True,
111
+ pad_token_id=0,
112
+ bos_token_id=1,
113
+ eos_token_id=2,
114
+ pretraining_tp=1,
115
+ tie_word_embeddings=False,
116
+ bias=True,
117
+ rope_theta=10000,
118
+ rope_scaling=None,
119
+ attn_implementation=None,
120
+ **kwargs,
121
+ ):
122
+ self.vocab_size = vocab_size
123
+ self.max_position_embeddings = max_position_embeddings
124
+ self.hidden_size = hidden_size
125
+ self.intermediate_size = intermediate_size
126
+ self.num_hidden_layers = num_hidden_layers
127
+ self.num_attention_heads = num_attention_heads
128
+ self.bias = bias
129
+
130
+ if num_key_value_heads is None:
131
+ num_key_value_heads = num_attention_heads
132
+ self.num_key_value_heads = num_key_value_heads
133
+
134
+ self.hidden_act = hidden_act
135
+ self.initializer_range = initializer_range
136
+ self.rms_norm_eps = rms_norm_eps
137
+ self.pretraining_tp = pretraining_tp
138
+ self.use_cache = use_cache
139
+ self.rope_theta = rope_theta
140
+ self.rope_scaling = rope_scaling
141
+ self._rope_scaling_validation()
142
+ self.attn_implementation = attn_implementation
143
+ if self.attn_implementation is None:
144
+ self.attn_implementation = "eager"
145
+
146
+ super().__init__(
147
+ pad_token_id=pad_token_id,
148
+ bos_token_id=bos_token_id,
149
+ eos_token_id=eos_token_id,
150
+ tie_word_embeddings=tie_word_embeddings,
151
+ **kwargs,
152
+ )
153
+
154
+ def _rope_scaling_validation(self):
155
+ """
156
+ Validate the `rope_scaling` configuration.
157
+ """
158
+ if self.rope_scaling is None:
159
+ return
160
+
161
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
162
+ raise ValueError(
163
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
164
+ f"got {self.rope_scaling}"
165
+ )
166
+ rope_scaling_type = self.rope_scaling.get("type", None)
167
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
168
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
169
+ raise ValueError(
170
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
171
+ )
172
+ if (
173
+ rope_scaling_factor is None
174
+ or not isinstance(rope_scaling_factor, (float, int))
175
+ or rope_scaling_factor < 1.0
176
+ ):
177
+ raise ValueError(
178
+ f"`rope_scaling`'s factor field must be a number >= 1, got {rope_scaling_factor} "
179
+ f"of type {type(rope_scaling_factor)}"
180
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 2,
6
+ "transformers_version": "4.42.3"
7
+ }
modeling_internlm2_above_4_38_0.py ADDED
@@ -0,0 +1,1799 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from einops import rearrange
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+ from transformers.activations import ACT2FN
29
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
30
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutputWithPast,
33
+ CausalLMOutputWithPast,
34
+ QuestionAnsweringModelOutput,
35
+ SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
+ )
38
+ from transformers.modeling_utils import PreTrainedModel
39
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
40
+ from transformers.utils import (
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ is_flash_attn_greater_or_equal_2_10,
44
+ logging,
45
+ replace_return_docstrings,
46
+ )
47
+
48
+ try:
49
+ from transformers.generation.streamers import BaseStreamer
50
+ except Exception:
51
+ BaseStreamer = None
52
+
53
+ from .configuration_internlm2 import InternLM2Config
54
+
55
+ try:
56
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
57
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
58
+ except Exception:
59
+ pass
60
+
61
+
62
+ logger = logging.get_logger(__name__)
63
+
64
+ _CONFIG_FOR_DOC = "InternLM2Config"
65
+
66
+
67
+ def _get_unpad_data(attention_mask):
68
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
69
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
70
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
71
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) # pylint: disable=E1102
72
+ return (
73
+ indices,
74
+ cu_seqlens,
75
+ max_seqlen_in_batch,
76
+ )
77
+
78
+
79
+ class InternLM2RMSNorm(nn.Module):
80
+ """InternLM2RMSNorm is equivalent to T5LayerNorm."""
81
+
82
+ def __init__(self, hidden_size, eps=1e-6):
83
+ super().__init__()
84
+ self.weight = nn.Parameter(torch.ones(hidden_size))
85
+ self.variance_epsilon = eps
86
+
87
+ def forward(self, hidden_states):
88
+ input_dtype = hidden_states.dtype
89
+ hidden_states = hidden_states.to(torch.float32)
90
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
91
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
92
+ return self.weight * hidden_states.to(input_dtype)
93
+
94
+
95
+ ALL_LAYERNORM_LAYERS.append(InternLM2RMSNorm)
96
+
97
+
98
+ class InternLM2RotaryEmbedding(nn.Module):
99
+ """Rotary Position Embedding for the InternLM2 model. Credits to the Reddit user /u/lucidrains."""
100
+
101
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
102
+ super().__init__()
103
+ self.scaling_factor = scaling_factor
104
+ self.dim = dim
105
+ self.max_position_embeddings = max_position_embeddings
106
+ self.base = base
107
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
108
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
109
+ # For BC we register cos and sin cached
110
+ self.max_seq_len_cached = max_position_embeddings
111
+
112
+ @torch.no_grad()
113
+ def forward(self, x, position_ids):
114
+ # x: [bs, num_attention_heads, seq_len, head_size]
115
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
116
+ position_ids_expanded = position_ids[:, None, :].float()
117
+ # Force float32 since bfloat16 loses precision on long contexts
118
+ # See https://github.com/huggingface/transformers/pull/29285
119
+ device_type = x.device.type
120
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
121
+ with torch.autocast(device_type=device_type, enabled=False):
122
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
123
+ emb = torch.cat((freqs, freqs), dim=-1)
124
+ cos = emb.cos()
125
+ sin = emb.sin()
126
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
127
+
128
+
129
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
130
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
131
+
132
+ def forward(self, x, position_ids):
133
+ # difference to the original RoPE: a scaling factor is aplied to the position ids
134
+ position_ids = position_ids.float() / self.scaling_factor
135
+ cos, sin = super().forward(x, position_ids)
136
+ return cos, sin
137
+
138
+
139
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
140
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
141
+ Credits to the Reddit users /u/bloc97 and /u/emozilla"""
142
+
143
+ def forward(self, x, position_ids):
144
+ # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
145
+ seq_len = torch.max(position_ids) + 1
146
+ if seq_len > self.max_position_embeddings:
147
+ base = self.base * (
148
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
149
+ ) ** (self.dim / (self.dim - 2))
150
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim))
151
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
152
+
153
+ cos, sin = super().forward(x, position_ids)
154
+ return cos, sin
155
+
156
+
157
+ def rotate_half(x):
158
+ """Rotates half the hidden dims of the input."""
159
+ x1 = x[..., : x.shape[-1] // 2]
160
+ x2 = x[..., x.shape[-1] // 2 :]
161
+ return torch.cat((-x2, x1), dim=-1)
162
+
163
+
164
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): # pylint: disable=unused-argument
165
+ """Applies Rotary Position Embedding to the query and key tensors.
166
+
167
+ Args:
168
+ q (`torch.Tensor`): The query tensor.
169
+ k (`torch.Tensor`): The key tensor.
170
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
171
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
172
+ position_ids (`torch.Tensor`, *optional*):
173
+ Deprecated and unused.
174
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
175
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
176
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
177
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
178
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
179
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
180
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
181
+ Returns:
182
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
183
+ """
184
+ cos = cos.unsqueeze(unsqueeze_dim)
185
+ sin = sin.unsqueeze(unsqueeze_dim)
186
+ q_embed = (q * cos) + (rotate_half(q) * sin)
187
+ k_embed = (k * cos) + (rotate_half(k) * sin)
188
+ return q_embed, k_embed
189
+
190
+
191
+ class InternLM2MLP(nn.Module):
192
+ """MLP for InternLM2 model."""
193
+
194
+ def __init__(self, config):
195
+ super().__init__()
196
+ self.config = config
197
+ self.hidden_size = config.hidden_size
198
+ self.intermediate_size = config.intermediate_size
199
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
200
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
201
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
202
+ self.act_fn = ACT2FN[config.hidden_act]
203
+
204
+ def forward(self, x):
205
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
206
+
207
+ return down_proj
208
+
209
+
210
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
211
+ """
212
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
213
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
214
+ """
215
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
216
+ if n_rep == 1:
217
+ return hidden_states
218
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
219
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
220
+
221
+
222
+ class InternLM2Attention(nn.Module):
223
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
224
+
225
+ def __init__(self, config: InternLM2Config, layer_idx: Optional[int] = None):
226
+ super().__init__()
227
+ self.config = config
228
+ self.layer_idx = layer_idx
229
+ if layer_idx is None:
230
+ logger.warning_once(
231
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
232
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
233
+ "when creating this class."
234
+ )
235
+
236
+ self.hidden_size = config.hidden_size
237
+ self.num_heads = config.num_attention_heads
238
+ self.head_dim = self.hidden_size // self.num_heads
239
+ self.num_key_value_heads = config.num_key_value_heads
240
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
241
+ self.max_position_embeddings = config.max_position_embeddings
242
+ self.rope_theta = config.rope_theta
243
+ self.is_causal = True
244
+
245
+ if (self.head_dim * self.num_heads) != self.hidden_size:
246
+ raise ValueError(
247
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
248
+ f" and `num_heads`: {self.num_heads})."
249
+ )
250
+
251
+ self.wqkv = nn.Linear(
252
+ self.hidden_size,
253
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
254
+ bias=config.bias,
255
+ )
256
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
257
+
258
+ self._init_rope()
259
+
260
+ def _init_rope(self):
261
+ if self.config.rope_scaling is None:
262
+ self.rotary_emb = InternLM2RotaryEmbedding(
263
+ self.head_dim,
264
+ max_position_embeddings=self.max_position_embeddings,
265
+ base=self.rope_theta,
266
+ )
267
+ else:
268
+ scaling_type = self.config.rope_scaling["type"]
269
+ scaling_factor = self.config.rope_scaling["factor"]
270
+ if scaling_type == "linear":
271
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
272
+ self.head_dim,
273
+ max_position_embeddings=self.max_position_embeddings,
274
+ scaling_factor=scaling_factor,
275
+ base=self.rope_theta,
276
+ )
277
+ elif scaling_type == "dynamic":
278
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
279
+ self.head_dim,
280
+ max_position_embeddings=self.max_position_embeddings,
281
+ scaling_factor=scaling_factor,
282
+ base=self.rope_theta,
283
+ )
284
+ else:
285
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
286
+
287
+ def forward(
288
+ self,
289
+ hidden_states: torch.Tensor,
290
+ attention_mask: Optional[torch.Tensor] = None,
291
+ position_ids: Optional[torch.LongTensor] = None,
292
+ past_key_value: Optional[Cache] = None,
293
+ output_attentions: bool = False,
294
+ use_cache: bool = False, # pylint: disable=unused-argument
295
+ cache_position: Optional[torch.LongTensor] = None,
296
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
297
+ bsz, q_len, _ = hidden_states.size()
298
+
299
+ if self.config.pretraining_tp > 1:
300
+ # split qkv_states by tp size
301
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
302
+ qkv_slices = self.wqkv.weight.split(key_value_slicing, dim=0)
303
+ qkv_states = torch.cat(
304
+ [F.linear(hidden_states, qkv_slice) for qkv_slice in qkv_slices], dim=-1 # pylint: disable=E1102
305
+ )
306
+ else:
307
+ qkv_states = self.wqkv(hidden_states)
308
+
309
+ qkv_states = rearrange(
310
+ qkv_states,
311
+ "b q (h gs d) -> b q h gs d",
312
+ gs=2 + self.num_key_value_groups,
313
+ d=self.head_dim,
314
+ )
315
+
316
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
317
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d").transpose(1, 2)
318
+ key_states = qkv_states[..., -2, :].transpose(1, 2)
319
+ value_states = qkv_states[..., -1, :].transpose(1, 2)
320
+
321
+ cos, sin = self.rotary_emb(value_states, position_ids)
322
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
323
+
324
+ if past_key_value is not None:
325
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
326
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
327
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
328
+
329
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
330
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
331
+
332
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
333
+
334
+ if attention_mask is not None: # no matter the length, we just slice it
335
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
336
+ attn_weights = attn_weights + causal_mask
337
+
338
+ # upcast attention to fp32
339
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
340
+ attn_output = torch.matmul(attn_weights, value_states)
341
+
342
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
343
+ raise ValueError(
344
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
345
+ f" {attn_output.size()}"
346
+ )
347
+
348
+ attn_output = attn_output.transpose(1, 2).contiguous()
349
+
350
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
351
+
352
+ if self.config.pretraining_tp > 1:
353
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
354
+ o_proj_slices = self.wo.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
355
+ attn_output = sum(
356
+ [
357
+ F.linear(attn_output[i], o_proj_slices[i]) # pylint: disable=E1102
358
+ for i in range(self.config.pretraining_tp)
359
+ ]
360
+ )
361
+ else:
362
+ attn_output = self.wo(attn_output)
363
+
364
+ if not output_attentions:
365
+ attn_weights = None
366
+
367
+ return attn_output, attn_weights, past_key_value
368
+
369
+
370
+ class InternLM2FlashAttention2(InternLM2Attention):
371
+ """
372
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
373
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
374
+ flash attention and deal with padding tokens in case the input contains any of them.
375
+ """
376
+
377
+ def __init__(self, *args, **kwargs):
378
+ super().__init__(*args, **kwargs)
379
+
380
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
381
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement,
382
+ # that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
383
+ # Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
384
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1)
385
+ # produces a wrong mask (top-left).
386
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
387
+
388
+ def forward(
389
+ self,
390
+ hidden_states: torch.Tensor,
391
+ attention_mask: Optional[torch.LongTensor] = None,
392
+ position_ids: Optional[torch.LongTensor] = None,
393
+ past_key_value: Optional[Cache] = None,
394
+ output_attentions: bool = False,
395
+ use_cache: bool = False,
396
+ cache_position: Optional[torch.LongTensor] = None,
397
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
398
+ if isinstance(past_key_value, StaticCache):
399
+ raise ValueError(
400
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
401
+ "make sure to use `sdpa` in the mean time, and open an issue at "
402
+ "https://github.com/huggingface/transformers"
403
+ )
404
+
405
+ output_attentions = False
406
+
407
+ bsz, q_len, _ = hidden_states.size()
408
+
409
+ qkv_states = self.wqkv(hidden_states)
410
+
411
+ qkv_states = rearrange(
412
+ qkv_states,
413
+ "b q (h gs d) -> b q h gs d",
414
+ gs=2 + self.num_key_value_groups,
415
+ d=self.head_dim,
416
+ )
417
+
418
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
419
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
420
+ key_states = qkv_states[..., -2, :]
421
+ value_states = qkv_states[..., -1, :]
422
+
423
+ query_states = query_states.transpose(1, 2)
424
+ key_states = key_states.transpose(1, 2)
425
+ value_states = value_states.transpose(1, 2)
426
+
427
+ cos, sin = self.rotary_emb(value_states, position_ids)
428
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
429
+
430
+ if past_key_value is not None:
431
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
432
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
433
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
434
+
435
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout
436
+ # [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
437
+ # to be able to avoid many of these transpose/reshape/view.
438
+ query_states = query_states.transpose(1, 2)
439
+ key_states = key_states.transpose(1, 2)
440
+ value_states = value_states.transpose(1, 2)
441
+
442
+ # dropout_rate = self.attention_dropout if self.training else 0.0
443
+ dropout_rate = 0.0
444
+
445
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
446
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
447
+ # cast them back in the correct dtype just to be sure everything works as expected.
448
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
449
+ # in fp32. (InternLM2RMSNorm handles it correctly)
450
+
451
+ input_dtype = query_states.dtype
452
+ if input_dtype == torch.float32:
453
+ if torch.is_autocast_enabled():
454
+ target_dtype = torch.get_autocast_gpu_dtype()
455
+ # Handle the case where the model is quantized
456
+ elif hasattr(self.config, "_pre_quantization_dtype"):
457
+ target_dtype = self.config._pre_quantization_dtype
458
+ else:
459
+ target_dtype = self.wqkv.weight.dtype
460
+
461
+ logger.warning_once(
462
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
463
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
464
+ f" {target_dtype}."
465
+ )
466
+
467
+ query_states = query_states.to(target_dtype)
468
+ key_states = key_states.to(target_dtype)
469
+ value_states = value_states.to(target_dtype)
470
+
471
+ attn_output = self._flash_attention_forward(
472
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
473
+ )
474
+
475
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
476
+ attn_output = self.wo(attn_output)
477
+
478
+ if not output_attentions:
479
+ attn_weights = None
480
+
481
+ return attn_output, attn_weights, past_key_value # pylint: disable=E0606
482
+
483
+ def _flash_attention_forward(
484
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
485
+ ):
486
+ """
487
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
488
+ first unpad the input, then computes the attention scores and pad the final attention scores.
489
+
490
+ Args:
491
+ query_states (`torch.Tensor`):
492
+ Input query states to be passed to Flash Attention API
493
+ key_states (`torch.Tensor`):
494
+ Input key states to be passed to Flash Attention API
495
+ value_states (`torch.Tensor`):
496
+ Input value states to be passed to Flash Attention API
497
+ attention_mask (`torch.Tensor`):
498
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
499
+ position of padding tokens and 1 for the position of non-padding tokens.
500
+ dropout (`float`):
501
+ Attention dropout
502
+ softmax_scale (`float`, *optional*):
503
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
504
+ """
505
+ if not self._flash_attn_uses_top_left_mask:
506
+ causal = self.is_causal
507
+ else:
508
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1.
509
+ # For details, please see the comment in InternLM2FlashAttention2 __init__.
510
+ causal = self.is_causal and query_length != 1
511
+
512
+ # Contains at least one padding token in the sequence
513
+ if attention_mask is not None:
514
+ batch_size = query_states.shape[0]
515
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
516
+ query_states, key_states, value_states, attention_mask, query_length
517
+ )
518
+
519
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
520
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
521
+
522
+ attn_output_unpad = flash_attn_varlen_func( # pylint: disable=E0606
523
+ query_states,
524
+ key_states,
525
+ value_states,
526
+ cu_seqlens_q=cu_seqlens_q,
527
+ cu_seqlens_k=cu_seqlens_k,
528
+ max_seqlen_q=max_seqlen_in_batch_q,
529
+ max_seqlen_k=max_seqlen_in_batch_k,
530
+ dropout_p=dropout,
531
+ softmax_scale=softmax_scale,
532
+ causal=causal,
533
+ )
534
+
535
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) # pylint: disable=E0606
536
+ else:
537
+ attn_output = flash_attn_func( # pylint: disable=E0606
538
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
539
+ )
540
+
541
+ return attn_output
542
+
543
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
544
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
545
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
546
+
547
+ key_layer = index_first_axis( # pylint: disable=E0606
548
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
549
+ )
550
+ value_layer = index_first_axis( # pylint: disable=E0606
551
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
552
+ )
553
+ if query_length == kv_seq_len:
554
+ query_layer = index_first_axis( # pylint: disable=E0606
555
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
556
+ )
557
+ cu_seqlens_q = cu_seqlens_k
558
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
559
+ indices_q = indices_k
560
+ elif query_length == 1:
561
+ max_seqlen_in_batch_q = 1
562
+ cu_seqlens_q = torch.arange(
563
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
564
+ ) # There is a memcpy here, that is very bad.
565
+ indices_q = cu_seqlens_q[:-1]
566
+ query_layer = query_layer.squeeze(1)
567
+ else:
568
+ # The -q_len: slice assumes left padding.
569
+ attention_mask = attention_mask[:, -query_length:]
570
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( # pylint: disable=E0606
571
+ query_layer, attention_mask
572
+ )
573
+
574
+ return (
575
+ query_layer,
576
+ key_layer,
577
+ value_layer,
578
+ indices_q,
579
+ (cu_seqlens_q, cu_seqlens_k),
580
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
581
+ )
582
+
583
+
584
+ # Copied from transformers.models.llama.modeling_llama.LllamaSdpaAttention with Llama->InternLM2
585
+ class InternLM2SdpaAttention(InternLM2Attention):
586
+ """
587
+ InternLM2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
588
+ `InternLM2Attention` as the weights of the module stays untouched. The only changes are on the forward pass
589
+ to adapt to SDPA API.
590
+ """
591
+
592
+ # Adapted from InternLM2Attention.forward
593
+ def forward(
594
+ self,
595
+ hidden_states: torch.Tensor,
596
+ attention_mask: Optional[torch.Tensor] = None,
597
+ position_ids: Optional[torch.LongTensor] = None,
598
+ past_key_value: Optional[Cache] = None,
599
+ output_attentions: bool = False,
600
+ use_cache: bool = False,
601
+ cache_position: Optional[torch.LongTensor] = None,
602
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
603
+ if output_attentions:
604
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"`
605
+ # once this is implemented.
606
+ logger.warning_once(
607
+ "InternLM2Model uses InternLM2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` "
608
+ "does not support `output_attentions=True`. Falling back to the manual attention implementation, "
609
+ "but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. "
610
+ 'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
611
+ )
612
+ return super().forward(
613
+ hidden_states=hidden_states,
614
+ attention_mask=attention_mask,
615
+ position_ids=position_ids,
616
+ past_key_value=past_key_value,
617
+ output_attentions=output_attentions,
618
+ use_cache=use_cache,
619
+ cache_position=cache_position,
620
+ )
621
+
622
+ bsz, q_len, _ = hidden_states.size()
623
+
624
+ qkv_states = self.wqkv(hidden_states)
625
+
626
+ qkv_states = rearrange(
627
+ qkv_states,
628
+ "b q (h gs d) -> b q h gs d",
629
+ gs=2 + self.num_key_value_groups,
630
+ d=self.head_dim,
631
+ )
632
+
633
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
634
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
635
+ key_states = qkv_states[..., -2, :]
636
+ value_states = qkv_states[..., -1, :]
637
+
638
+ query_states = query_states.transpose(1, 2)
639
+ key_states = key_states.transpose(1, 2)
640
+ value_states = value_states.transpose(1, 2)
641
+
642
+ cos, sin = self.rotary_emb(value_states, position_ids)
643
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
644
+
645
+ if past_key_value is not None:
646
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
647
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
648
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
649
+
650
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
651
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
652
+
653
+ causal_mask = attention_mask
654
+ if attention_mask is not None:
655
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
656
+
657
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with
658
+ # custom attn_mask, Reference: https://github.com/pytorch/pytorch/issues/112577.
659
+ if query_states.device.type == "cuda" and causal_mask is not None:
660
+ query_states = query_states.contiguous()
661
+ key_states = key_states.contiguous()
662
+ value_states = value_states.contiguous()
663
+
664
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of
665
+ # an inline conditional assignment in SDPA to support both torch.compile's dynamic shapes and full graph
666
+ # options. An inline conditional prevents dynamic shapes from compiling.
667
+ is_causal = bool(causal_mask is None and q_len > 1)
668
+
669
+ attn_output = torch.nn.functional.scaled_dot_product_attention( # pylint: disable=E1102
670
+ query_states,
671
+ key_states,
672
+ value_states,
673
+ attn_mask=causal_mask,
674
+ dropout_p=0.0,
675
+ is_causal=is_causal,
676
+ )
677
+
678
+ attn_output = attn_output.transpose(1, 2).contiguous()
679
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
680
+
681
+ attn_output = self.wo(attn_output)
682
+
683
+ return attn_output, None, past_key_value
684
+
685
+
686
+ INTERNLM2_ATTENTION_CLASSES = {
687
+ "eager": InternLM2Attention,
688
+ "flash_attention_2": InternLM2FlashAttention2,
689
+ "sdpa": InternLM2SdpaAttention,
690
+ }
691
+
692
+
693
+ # Modified from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->InternLM2
694
+ class InternLM2DecoderLayer(nn.Module):
695
+ """InternLM2 Decoder Layer. This module is a single layer of the InternLM2 model."""
696
+
697
+ def __init__(self, config: InternLM2Config, layer_idx: int):
698
+ super().__init__()
699
+ self.hidden_size = config.hidden_size
700
+ self.layer_idx = layer_idx
701
+
702
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config, layer_idx=layer_idx)
703
+
704
+ self.feed_forward = InternLM2MLP(config)
705
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
706
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
707
+
708
+ def forward(
709
+ self,
710
+ hidden_states: torch.Tensor,
711
+ attention_mask: Optional[torch.Tensor] = None,
712
+ position_ids: Optional[torch.LongTensor] = None,
713
+ past_key_value: Optional[Cache] = None,
714
+ output_attentions: Optional[bool] = False,
715
+ use_cache: Optional[bool] = False,
716
+ cache_position: Optional[torch.LongTensor] = None,
717
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
718
+ """
719
+ Args:
720
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
721
+ attention_mask (`torch.FloatTensor`, *optional*):
722
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
723
+ query_sequence_length, key_sequence_length)` if default attention is used.
724
+ output_attentions (`bool`, *optional*):
725
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
726
+ returned tensors for more detail.
727
+ use_cache (`bool`, *optional*):
728
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
729
+ (see `past_key_values`).
730
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
731
+ """
732
+ residual = hidden_states
733
+
734
+ hidden_states = self.attention_norm(hidden_states)
735
+
736
+ # Self Attention
737
+ hidden_states, self_attn_weights, present_key_value = self.attention(
738
+ hidden_states=hidden_states,
739
+ attention_mask=attention_mask,
740
+ position_ids=position_ids,
741
+ past_key_value=past_key_value,
742
+ output_attentions=output_attentions,
743
+ use_cache=use_cache,
744
+ cache_position=cache_position,
745
+ )
746
+ hidden_states = residual + hidden_states
747
+
748
+ # Fully Connected
749
+ residual = hidden_states
750
+ hidden_states = self.ffn_norm(hidden_states)
751
+ hidden_states = self.feed_forward(hidden_states)
752
+ hidden_states = residual + hidden_states
753
+
754
+ outputs = (hidden_states,)
755
+
756
+ if output_attentions:
757
+ outputs += (self_attn_weights,)
758
+
759
+ if use_cache:
760
+ outputs += (present_key_value,)
761
+
762
+ return outputs
763
+
764
+
765
+ InternLM2_START_DOCSTRING = r"""
766
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
767
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
768
+ etc.)
769
+
770
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
771
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
772
+ and behavior.
773
+
774
+ Parameters:
775
+ config ([`InternLM2Config`]):
776
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
777
+ load the weights associated with the model, only the configuration. Check out the
778
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
779
+ """
780
+
781
+
782
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
783
+ @add_start_docstrings(
784
+ "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
785
+ InternLM2_START_DOCSTRING,
786
+ )
787
+ class InternLM2PreTrainedModel(PreTrainedModel):
788
+ """
789
+ InternLM2 pretraiend model's base class.
790
+ """
791
+
792
+ config_class = InternLM2Config
793
+ base_model_prefix = "model"
794
+ supports_gradient_checkpointing = True
795
+ _no_split_modules = ["InternLM2DecoderLayer"]
796
+ _skip_keys_device_placement = ["past_key_values"]
797
+ _supports_flash_attn_2 = True
798
+ _supports_sdpa = True
799
+ _supports_cache_class = True
800
+ _supports_quantized_cache = True
801
+ _supports_static_cache = True
802
+
803
+ def _init_weights(self, module):
804
+ std = self.config.initializer_range
805
+ if isinstance(module, nn.Linear):
806
+ module.weight.data.normal_(mean=0.0, std=std)
807
+ if module.bias is not None:
808
+ module.bias.data.zero_()
809
+ elif isinstance(module, nn.Embedding):
810
+ module.weight.data.normal_(mean=0.0, std=std)
811
+ if module.padding_idx is not None:
812
+ module.weight.data[module.padding_idx].zero_()
813
+
814
+
815
+ InternLM2_INPUTS_DOCSTRING = r"""
816
+ Args:
817
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
818
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
819
+ it.
820
+
821
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
822
+ [`PreTrainedTokenizer.__call__`] for details.
823
+
824
+ [What are input IDs?](../glossary#input-ids)
825
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
826
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
827
+
828
+ - 1 for tokens that are **not masked**,
829
+ - 0 for tokens that are **masked**.
830
+
831
+ [What are attention masks?](../glossary#attention-mask)
832
+
833
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
834
+ [`PreTrainedTokenizer.__call__`] for details.
835
+
836
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
837
+ `past_key_values`).
838
+
839
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
840
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
841
+ information on the default strategy.
842
+
843
+ - 1 indicates the head is **not masked**,
844
+ - 0 indicates the head is **masked**.
845
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
846
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
847
+ config.n_positions - 1]`.
848
+
849
+ [What are position IDs?](../glossary#position-ids)
850
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
851
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
852
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
853
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
854
+
855
+ Two formats are allowed:
856
+ - a [`~cache_utils.Cache`] instance;
857
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
858
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
859
+ cache format.
860
+
861
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
862
+ legacy cache format will be returned.
863
+
864
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
865
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
866
+ of shape `(batch_size, sequence_length)`.
867
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
868
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
869
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
870
+ model's internal embedding lookup matrix.
871
+ use_cache (`bool`, *optional*):
872
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
873
+ `past_key_values`).
874
+ output_attentions (`bool`, *optional*):
875
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
876
+ tensors for more detail.
877
+ output_hidden_states (`bool`, *optional*):
878
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
879
+ more detail.
880
+ return_dict (`bool`, *optional*):
881
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
882
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
883
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
884
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
885
+ the complete sequence length.
886
+ """
887
+
888
+
889
+ # Modified from transformers.models.llama.modeling_llama.LlamaModel with Llama->InternLM2
890
+ @add_start_docstrings(
891
+ "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
892
+ InternLM2_START_DOCSTRING,
893
+ )
894
+ class InternLM2Model(InternLM2PreTrainedModel):
895
+ """
896
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
897
+
898
+ Args:
899
+ config: InternLM2Config
900
+ """
901
+
902
+ _auto_class = "AutoModel"
903
+
904
+ def __init__(self, config: InternLM2Config):
905
+ super().__init__(config)
906
+ self.padding_idx = config.pad_token_id
907
+ self.vocab_size = config.vocab_size
908
+ self.config = config
909
+
910
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
911
+
912
+ self.layers = nn.ModuleList(
913
+ [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
914
+ )
915
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
916
+
917
+ self.gradient_checkpointing = False
918
+ # Initialize weights and apply final processing
919
+ self.post_init()
920
+
921
+ def get_input_embeddings(self):
922
+ return self.tok_embeddings
923
+
924
+ def set_input_embeddings(self, value):
925
+ self.tok_embeddings = value
926
+
927
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
928
+ def forward(
929
+ self,
930
+ input_ids: torch.LongTensor = None,
931
+ attention_mask: Optional[torch.Tensor] = None,
932
+ position_ids: Optional[torch.LongTensor] = None,
933
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
934
+ inputs_embeds: Optional[torch.FloatTensor] = None,
935
+ use_cache: Optional[bool] = None,
936
+ output_attentions: Optional[bool] = None,
937
+ output_hidden_states: Optional[bool] = None,
938
+ return_dict: Optional[bool] = None,
939
+ cache_position: Optional[torch.LongTensor] = None,
940
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
941
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
942
+ output_hidden_states = (
943
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
944
+ )
945
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
946
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
947
+
948
+ if (input_ids is None) ^ (inputs_embeds is not None):
949
+ raise ValueError(
950
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
951
+ )
952
+
953
+ if self.gradient_checkpointing and self.training and use_cache:
954
+ logger.warning_once(
955
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
956
+ )
957
+ use_cache = False
958
+
959
+ if inputs_embeds is None:
960
+ inputs_embeds = self.tok_embeddings(input_ids)
961
+
962
+ return_legacy_cache = False
963
+ if use_cache and not isinstance(past_key_values, Cache): # kept for BC (non `Cache` `past_key_values` inputs)
964
+ return_legacy_cache = True
965
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
966
+
967
+ if cache_position is None:
968
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
969
+ cache_position = torch.arange(
970
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
971
+ )
972
+ if position_ids is None:
973
+ position_ids = cache_position.unsqueeze(0)
974
+
975
+ causal_mask = self._update_causal_mask(
976
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
977
+ )
978
+
979
+ # embed positions
980
+ hidden_states = inputs_embeds
981
+
982
+ # decoder layers
983
+ all_hidden_states = () if output_hidden_states else None
984
+ all_self_attns = () if output_attentions else None
985
+ next_decoder_cache = None
986
+
987
+ for decoder_layer in self.layers:
988
+ if output_hidden_states:
989
+ all_hidden_states += (hidden_states,)
990
+
991
+ if self.gradient_checkpointing and self.training:
992
+ layer_outputs = self._gradient_checkpointing_func(
993
+ decoder_layer.__call__,
994
+ hidden_states,
995
+ causal_mask,
996
+ position_ids,
997
+ past_key_values,
998
+ output_attentions,
999
+ use_cache,
1000
+ cache_position,
1001
+ )
1002
+ else:
1003
+ layer_outputs = decoder_layer(
1004
+ hidden_states,
1005
+ attention_mask=causal_mask,
1006
+ position_ids=position_ids,
1007
+ past_key_value=past_key_values,
1008
+ output_attentions=output_attentions,
1009
+ use_cache=use_cache,
1010
+ cache_position=cache_position,
1011
+ )
1012
+
1013
+ hidden_states = layer_outputs[0]
1014
+
1015
+ if use_cache:
1016
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1017
+
1018
+ if output_attentions:
1019
+ all_self_attns += (layer_outputs[1],)
1020
+
1021
+ hidden_states = self.norm(hidden_states)
1022
+
1023
+ # add hidden states from the last decoder layer
1024
+ if output_hidden_states:
1025
+ all_hidden_states += (hidden_states,)
1026
+
1027
+ next_cache = next_decoder_cache if use_cache else None
1028
+ if return_legacy_cache:
1029
+ next_cache = next_cache.to_legacy_cache()
1030
+
1031
+ if not return_dict:
1032
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1033
+ return BaseModelOutputWithPast(
1034
+ last_hidden_state=hidden_states,
1035
+ past_key_values=next_cache,
1036
+ hidden_states=all_hidden_states,
1037
+ attentions=all_self_attns,
1038
+ )
1039
+
1040
+ def _update_causal_mask(
1041
+ self,
1042
+ attention_mask: torch.Tensor,
1043
+ input_tensor: torch.Tensor,
1044
+ cache_position: torch.Tensor,
1045
+ past_key_values: Cache,
1046
+ output_attentions: bool,
1047
+ ):
1048
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length
1049
+ # even when the static KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at
1050
+ # each decode steps due to the dynamic shapes. (`recording cudagraph tree for symint key 13`, etc.), which is
1051
+ # VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using `fullgraph=True`.
1052
+ # See more context in https://github.com/huggingface/transformers/pull/29114
1053
+
1054
+ if self.config.attn_implementation == "flash_attention_2":
1055
+ if attention_mask is not None and 0.0 in attention_mask:
1056
+ return attention_mask
1057
+ return None
1058
+
1059
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1060
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1061
+ # to infer the attention mask.
1062
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1063
+ using_static_cache = isinstance(past_key_values, StaticCache)
1064
+
1065
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1066
+ if self.config.attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1067
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1068
+ attention_mask,
1069
+ inputs_embeds=input_tensor,
1070
+ past_key_values_length=past_seen_tokens,
1071
+ is_training=self.training,
1072
+ ):
1073
+ return None
1074
+
1075
+ dtype, device = input_tensor.dtype, input_tensor.device
1076
+ min_dtype = torch.finfo(dtype).min
1077
+ sequence_length = input_tensor.shape[1]
1078
+ if using_static_cache:
1079
+ target_length = past_key_values.get_max_length()
1080
+ else:
1081
+ target_length = (
1082
+ attention_mask.shape[-1]
1083
+ if isinstance(attention_mask, torch.Tensor)
1084
+ else past_seen_tokens + sequence_length + 1
1085
+ )
1086
+
1087
+ if attention_mask is not None and attention_mask.dim() == 4:
1088
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
1089
+ if attention_mask.max() != 0:
1090
+ raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
1091
+ causal_mask = attention_mask
1092
+ else:
1093
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
1094
+ if sequence_length != 1:
1095
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1096
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1097
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
1098
+ if attention_mask is not None:
1099
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1100
+ mask_length = attention_mask.shape[-1]
1101
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
1102
+ padding_mask = padding_mask == 0
1103
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
1104
+ padding_mask, min_dtype
1105
+ )
1106
+ if (
1107
+ self.config.attn_implementation == "sdpa"
1108
+ and attention_mask is not None
1109
+ and attention_mask.device.type == "cuda"
1110
+ and not output_attentions
1111
+ ):
1112
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1113
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1114
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1115
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) # pylint: disable=E1120
1116
+
1117
+ return causal_mask
1118
+
1119
+
1120
+ # Modified from transformers.models.llama.modeling_llama.LlamaForCausalLM
1121
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1122
+ """Causal language model (CLM) for InternLM2."""
1123
+
1124
+ _auto_class = "AutoModelForCausalLM"
1125
+ _tied_weights_keys = ["output.weight"]
1126
+
1127
+ def __init__(self, config):
1128
+ super().__init__(config)
1129
+ self.model = InternLM2Model(config)
1130
+ self.vocab_size = config.vocab_size
1131
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1132
+
1133
+ # Initialize weights and apply final processing
1134
+ self.post_init()
1135
+
1136
+ def get_input_embeddings(self):
1137
+ return self.model.tok_embeddings
1138
+
1139
+ def set_input_embeddings(self, value):
1140
+ self.model.tok_embeddings = value
1141
+
1142
+ def get_output_embeddings(self):
1143
+ return self.output
1144
+
1145
+ def set_output_embeddings(self, new_embeddings):
1146
+ self.output = new_embeddings
1147
+
1148
+ def set_decoder(self, decoder):
1149
+ self.model = decoder
1150
+
1151
+ def get_decoder(self):
1152
+ return self.model
1153
+
1154
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1155
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1156
+ def forward(
1157
+ self,
1158
+ input_ids: torch.LongTensor = None,
1159
+ attention_mask: Optional[torch.Tensor] = None,
1160
+ position_ids: Optional[torch.LongTensor] = None,
1161
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1162
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1163
+ labels: Optional[torch.LongTensor] = None,
1164
+ use_cache: Optional[bool] = None,
1165
+ output_attentions: Optional[bool] = None,
1166
+ output_hidden_states: Optional[bool] = None,
1167
+ return_dict: Optional[bool] = None,
1168
+ cache_position: Optional[torch.LongTensor] = None,
1169
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1170
+ r"""
1171
+ Args:
1172
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1173
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1174
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1175
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1176
+
1177
+ Returns:
1178
+
1179
+ Example:
1180
+
1181
+ ```python
1182
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1183
+
1184
+ >>> model = InternLM2ForCausalLM.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
1185
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
1186
+
1187
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1188
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1189
+
1190
+ >>> # Generate
1191
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1192
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1193
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1194
+ ```"""
1195
+
1196
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1197
+ output_hidden_states = (
1198
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1199
+ )
1200
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1201
+
1202
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1203
+ outputs = self.model(
1204
+ input_ids=input_ids,
1205
+ attention_mask=attention_mask,
1206
+ position_ids=position_ids,
1207
+ past_key_values=past_key_values,
1208
+ inputs_embeds=inputs_embeds,
1209
+ use_cache=use_cache,
1210
+ output_attentions=output_attentions,
1211
+ output_hidden_states=output_hidden_states,
1212
+ return_dict=return_dict,
1213
+ cache_position=cache_position,
1214
+ )
1215
+
1216
+ hidden_states = outputs[0]
1217
+ if self.config.pretraining_tp > 1:
1218
+ output_slices = self.output.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1219
+ logits = [
1220
+ F.linear(hidden_states, output_slices[i]) # pylint: disable=not-callable
1221
+ for i in range(self.config.pretraining_tp)
1222
+ ]
1223
+ logits = torch.cat(logits, dim=-1)
1224
+ else:
1225
+ logits = self.output(hidden_states)
1226
+ logits = logits.float()
1227
+
1228
+ loss = None
1229
+ if labels is not None:
1230
+ # Shift so that tokens < n predict n
1231
+ shift_logits = logits[..., :-1, :].contiguous()
1232
+ shift_labels = labels[..., 1:].contiguous()
1233
+ # Flatten the tokens
1234
+ loss_fct = CrossEntropyLoss()
1235
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1236
+ shift_labels = shift_labels.view(-1)
1237
+ # Enable model parallelism
1238
+ shift_labels = shift_labels.to(shift_logits.device)
1239
+ loss = loss_fct(shift_logits, shift_labels)
1240
+
1241
+ if not return_dict:
1242
+ output = (logits,) + outputs[1:]
1243
+ return (loss,) + output if loss is not None else output
1244
+
1245
+ return CausalLMOutputWithPast(
1246
+ loss=loss,
1247
+ logits=logits,
1248
+ past_key_values=outputs.past_key_values,
1249
+ hidden_states=outputs.hidden_states,
1250
+ attentions=outputs.attentions,
1251
+ )
1252
+
1253
+ def prepare_inputs_for_generation(
1254
+ self,
1255
+ input_ids,
1256
+ past_key_values=None,
1257
+ attention_mask=None,
1258
+ inputs_embeds=None,
1259
+ cache_position=None,
1260
+ use_cache=True,
1261
+ **kwargs,
1262
+ ):
1263
+ past_length = 0
1264
+ if past_key_values is not None:
1265
+ if isinstance(past_key_values, Cache):
1266
+ past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
1267
+ max_cache_length = (
1268
+ torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
1269
+ if past_key_values.get_max_length() is not None
1270
+ else None
1271
+ )
1272
+ cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
1273
+ # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
1274
+ else:
1275
+ cache_length = past_length = past_key_values[0][0].shape[2]
1276
+ max_cache_length = None
1277
+
1278
+ # Keep only the unprocessed tokens:
1279
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1280
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
1281
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1282
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1283
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1284
+ # input_ids based on the past_length.
1285
+ elif past_length < input_ids.shape[1]:
1286
+ input_ids = input_ids[:, past_length:]
1287
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1288
+
1289
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1290
+ if (
1291
+ max_cache_length is not None
1292
+ and attention_mask is not None
1293
+ and cache_length + input_ids.shape[1] > max_cache_length
1294
+ ):
1295
+ attention_mask = attention_mask[:, -max_cache_length:] # pylint: disable=E1130
1296
+
1297
+ position_ids = kwargs.get("position_ids", None)
1298
+ if attention_mask is not None and position_ids is None:
1299
+ # create position_ids on the fly for batch generation
1300
+ position_ids = attention_mask.long().cumsum(-1) - 1
1301
+ position_ids.masked_fill_(attention_mask == 0, 1)
1302
+ if past_key_values:
1303
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1304
+
1305
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1306
+ if inputs_embeds is not None and past_key_values is None:
1307
+ model_inputs = {"inputs_embeds": inputs_embeds}
1308
+ else:
1309
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1310
+ # recompiles graphs as the stride of the inputs is a guard.
1311
+ # Ref: https://github.com/huggingface/transformers/pull/29114
1312
+ # TODO: use `next_tokens` directly instead.
1313
+ model_inputs = {"input_ids": input_ids.contiguous()}
1314
+
1315
+ input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
1316
+ if cache_position is None:
1317
+ cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
1318
+ elif use_cache:
1319
+ cache_position = cache_position[-input_length:]
1320
+
1321
+ model_inputs.update(
1322
+ {
1323
+ "position_ids": position_ids,
1324
+ "cache_position": cache_position,
1325
+ "past_key_values": past_key_values,
1326
+ "use_cache": use_cache,
1327
+ "attention_mask": attention_mask,
1328
+ }
1329
+ )
1330
+ return model_inputs
1331
+
1332
+ @staticmethod
1333
+ def _reorder_cache(past_key_values, beam_idx):
1334
+ reordered_past = ()
1335
+ for layer_past in past_key_values:
1336
+ reordered_past += (
1337
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1338
+ )
1339
+ return reordered_past
1340
+
1341
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, meta_instruction=""):
1342
+ if history is None:
1343
+ history = []
1344
+ if tokenizer.add_bos_token:
1345
+ prompt = ""
1346
+ else:
1347
+ prompt = tokenizer.bos_token
1348
+ if meta_instruction:
1349
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1350
+ for record in history:
1351
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1352
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1353
+ return tokenizer([prompt], return_tensors="pt")
1354
+
1355
+ @torch.no_grad()
1356
+ def chat(
1357
+ self,
1358
+ tokenizer,
1359
+ query: str,
1360
+ history: Optional[List[Tuple[str, str]]] = None,
1361
+ streamer: Optional[BaseStreamer] = None,
1362
+ max_new_tokens: int = 1024,
1363
+ do_sample: bool = True,
1364
+ temperature: float = 0.8,
1365
+ top_p: float = 0.8,
1366
+ meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
1367
+ "- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory "
1368
+ "(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
1369
+ "- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such "
1370
+ "as English and 中文.",
1371
+ **kwargs,
1372
+ ):
1373
+ if history is None:
1374
+ history = []
1375
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1376
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1377
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1378
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["<|im_end|>"])[0]]
1379
+ outputs = self.generate(
1380
+ **inputs,
1381
+ streamer=streamer,
1382
+ max_new_tokens=max_new_tokens,
1383
+ do_sample=do_sample,
1384
+ temperature=temperature,
1385
+ top_p=top_p,
1386
+ eos_token_id=eos_token_id,
1387
+ **kwargs,
1388
+ )
1389
+ outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
1390
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1391
+ response = response.split("<|im_end|>")[0]
1392
+ history = history + [(query, response)]
1393
+ return response, history
1394
+
1395
+ @torch.no_grad()
1396
+ def stream_chat(
1397
+ self,
1398
+ tokenizer,
1399
+ query: str,
1400
+ history: List[Tuple[str, str]] = None,
1401
+ max_new_tokens: int = 1024,
1402
+ do_sample: bool = True,
1403
+ temperature: float = 0.8,
1404
+ top_p: float = 0.8,
1405
+ **kwargs,
1406
+ ):
1407
+ if history is None:
1408
+ history = []
1409
+ """
1410
+ Return a generator in format: (response, history)
1411
+ Eg.
1412
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1413
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1414
+ """
1415
+ if BaseStreamer is None:
1416
+ raise ModuleNotFoundError(
1417
+ "The version of `transformers` is too low. Please make sure "
1418
+ "that you have installed `transformers>=4.28.0`."
1419
+ )
1420
+
1421
+ response_queue = queue.Queue(maxsize=20)
1422
+
1423
+ class ChatStreamer(BaseStreamer):
1424
+ """
1425
+ Streamer used in generate to print words one by one.
1426
+ """
1427
+
1428
+ def __init__(self, tokenizer) -> None:
1429
+ super().__init__()
1430
+ self.tokenizer = tokenizer
1431
+ self.queue = response_queue
1432
+ self.query = query
1433
+ self.history = history
1434
+ self.response = ""
1435
+ self.cache = []
1436
+ self.received_inputs = False
1437
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1438
+
1439
+ def put(self, value):
1440
+ if len(value.shape) > 1 and value.shape[0] > 1:
1441
+ raise ValueError("ChatStreamer only supports batch size 1")
1442
+ elif len(value.shape) > 1:
1443
+ value = value[0]
1444
+
1445
+ if not self.received_inputs:
1446
+ # The first received value is input_ids, ignore here
1447
+ self.received_inputs = True
1448
+ return
1449
+
1450
+ self.cache.extend(value.tolist())
1451
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1452
+ if token.strip() != "<|im_end|>":
1453
+ self.response = self.response + token
1454
+ history = self.history + [(self.query, self.response)]
1455
+ self.queue.put((self.response, history))
1456
+ self.cache = []
1457
+ else:
1458
+ self.end()
1459
+
1460
+ def end(self):
1461
+ self.queue.put(None)
1462
+
1463
+ def stream_producer():
1464
+ return self.chat(
1465
+ tokenizer=tokenizer,
1466
+ query=query,
1467
+ streamer=ChatStreamer(tokenizer=tokenizer),
1468
+ history=history,
1469
+ max_new_tokens=max_new_tokens,
1470
+ do_sample=do_sample,
1471
+ temperature=temperature,
1472
+ top_p=top_p,
1473
+ **kwargs,
1474
+ )
1475
+
1476
+ def consumer():
1477
+ producer = threading.Thread(target=stream_producer)
1478
+ producer.start()
1479
+ while True:
1480
+ res = response_queue.get()
1481
+ if res is None:
1482
+ return
1483
+ yield res
1484
+
1485
+ return consumer()
1486
+
1487
+
1488
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1489
+ @add_start_docstrings(
1490
+ """
1491
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1492
+
1493
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1494
+ (e.g. GPT-2) do.
1495
+
1496
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1497
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1498
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1499
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1500
+ each row of the batch).
1501
+ """,
1502
+ InternLM2_START_DOCSTRING,
1503
+ )
1504
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1505
+ """Sequence Classification Head for InternLM2 Model."""
1506
+
1507
+ def __init__(self, config):
1508
+ super().__init__(config)
1509
+ self.num_labels = config.num_labels
1510
+ self.model = InternLM2Model(config)
1511
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1512
+
1513
+ # Initialize weights and apply final processing
1514
+ self.post_init()
1515
+
1516
+ def get_input_embeddings(self):
1517
+ return self.model.tok_embeddings
1518
+
1519
+ def set_input_embeddings(self, value):
1520
+ self.model.tok_embeddings = value
1521
+
1522
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1523
+ def forward(
1524
+ self,
1525
+ input_ids: torch.LongTensor = None,
1526
+ attention_mask: Optional[torch.Tensor] = None,
1527
+ position_ids: Optional[torch.LongTensor] = None,
1528
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1529
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1530
+ labels: Optional[torch.LongTensor] = None,
1531
+ use_cache: Optional[bool] = None,
1532
+ output_attentions: Optional[bool] = None,
1533
+ output_hidden_states: Optional[bool] = None,
1534
+ return_dict: Optional[bool] = None,
1535
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1536
+ r"""
1537
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1538
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1539
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1540
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1541
+ """
1542
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1543
+
1544
+ transformer_outputs = self.model(
1545
+ input_ids,
1546
+ attention_mask=attention_mask,
1547
+ position_ids=position_ids,
1548
+ past_key_values=past_key_values,
1549
+ inputs_embeds=inputs_embeds,
1550
+ use_cache=use_cache,
1551
+ output_attentions=output_attentions,
1552
+ output_hidden_states=output_hidden_states,
1553
+ return_dict=return_dict,
1554
+ )
1555
+ hidden_states = transformer_outputs[0]
1556
+ logits = self.score(hidden_states)
1557
+
1558
+ if input_ids is not None:
1559
+ batch_size = input_ids.shape[0]
1560
+ else:
1561
+ batch_size = inputs_embeds.shape[0]
1562
+
1563
+ if self.config.pad_token_id is None and batch_size != 1:
1564
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1565
+ if self.config.pad_token_id is None:
1566
+ sequence_lengths = -1
1567
+ else:
1568
+ if input_ids is not None:
1569
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1570
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1571
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1572
+ sequence_lengths = sequence_lengths.to(logits.device)
1573
+ else:
1574
+ sequence_lengths = -1
1575
+
1576
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1577
+
1578
+ loss = None
1579
+ if labels is not None:
1580
+ labels = labels.to(logits.device)
1581
+ if self.config.problem_type is None:
1582
+ if self.num_labels == 1:
1583
+ self.config.problem_type = "regression"
1584
+ elif self.num_labels > 1 and (labels.dtype in (torch.long, torch.int)):
1585
+ self.config.problem_type = "single_label_classification"
1586
+ else:
1587
+ self.config.problem_type = "multi_label_classification"
1588
+
1589
+ if self.config.problem_type == "regression":
1590
+ loss_fct = MSELoss()
1591
+ if self.num_labels == 1:
1592
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1593
+ else:
1594
+ loss = loss_fct(pooled_logits, labels)
1595
+ elif self.config.problem_type == "single_label_classification":
1596
+ loss_fct = CrossEntropyLoss()
1597
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1598
+ elif self.config.problem_type == "multi_label_classification":
1599
+ loss_fct = BCEWithLogitsLoss()
1600
+ loss = loss_fct(pooled_logits, labels)
1601
+ if not return_dict:
1602
+ output = (pooled_logits,) + transformer_outputs[1:]
1603
+ return ((loss,) + output) if loss is not None else output
1604
+
1605
+ return SequenceClassifierOutputWithPast(
1606
+ loss=loss,
1607
+ logits=pooled_logits,
1608
+ past_key_values=transformer_outputs.past_key_values,
1609
+ hidden_states=transformer_outputs.hidden_states,
1610
+ attentions=transformer_outputs.attentions,
1611
+ )
1612
+
1613
+
1614
+ # Copied from transformers.models.llama.modeling_llama.LlamaForQuestionAnswering with Llama->InternLM2
1615
+ @add_start_docstrings(
1616
+ """
1617
+ The InternLM2 Model transformer with a span classification head on top for extractive question-answering tasks like
1618
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1619
+ """,
1620
+ InternLM2_START_DOCSTRING,
1621
+ )
1622
+ class InternLM2ForQuestionAnswering(InternLM2PreTrainedModel):
1623
+ """Question Answering model for InternLM2."""
1624
+
1625
+ base_model_prefix = "transformer"
1626
+
1627
+ def __init__(self, config):
1628
+ super().__init__(config)
1629
+ self.transformer = InternLM2Model(config)
1630
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1631
+
1632
+ # Initialize weights and apply final processing
1633
+ self.post_init()
1634
+
1635
+ def get_input_embeddings(self):
1636
+ return self.transformer.tok_embeddings
1637
+
1638
+ def set_input_embeddings(self, value):
1639
+ self.transformer.tok_embeddings = value
1640
+
1641
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1642
+ def forward(
1643
+ self,
1644
+ input_ids: Optional[torch.LongTensor] = None,
1645
+ attention_mask: Optional[torch.FloatTensor] = None,
1646
+ position_ids: Optional[torch.LongTensor] = None,
1647
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1648
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1649
+ start_positions: Optional[torch.LongTensor] = None,
1650
+ end_positions: Optional[torch.LongTensor] = None,
1651
+ output_attentions: Optional[bool] = None,
1652
+ output_hidden_states: Optional[bool] = None,
1653
+ return_dict: Optional[bool] = None,
1654
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1655
+ r"""
1656
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1657
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1658
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1659
+ are not taken into account for computing the loss.
1660
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1661
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1662
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1663
+ are not taken into account for computing the loss.
1664
+ """
1665
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1666
+
1667
+ outputs = self.transformer(
1668
+ input_ids,
1669
+ attention_mask=attention_mask,
1670
+ position_ids=position_ids,
1671
+ past_key_values=past_key_values,
1672
+ inputs_embeds=inputs_embeds,
1673
+ output_attentions=output_attentions,
1674
+ output_hidden_states=output_hidden_states,
1675
+ return_dict=return_dict,
1676
+ )
1677
+
1678
+ sequence_output = outputs[0]
1679
+
1680
+ logits = self.qa_outputs(sequence_output)
1681
+ start_logits, end_logits = logits.split(1, dim=-1)
1682
+ start_logits = start_logits.squeeze(-1).contiguous()
1683
+ end_logits = end_logits.squeeze(-1).contiguous()
1684
+
1685
+ total_loss = None
1686
+ if start_positions is not None and end_positions is not None:
1687
+ # If we are on multi-GPU, split add a dimension
1688
+ if len(start_positions.size()) > 1:
1689
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1690
+ if len(end_positions.size()) > 1:
1691
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1692
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1693
+ ignored_index = start_logits.size(1)
1694
+ start_positions = start_positions.clamp(0, ignored_index)
1695
+ end_positions = end_positions.clamp(0, ignored_index)
1696
+
1697
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1698
+ start_loss = loss_fct(start_logits, start_positions)
1699
+ end_loss = loss_fct(end_logits, end_positions)
1700
+ total_loss = (start_loss + end_loss) / 2
1701
+
1702
+ if not return_dict:
1703
+ output = (start_logits, end_logits) + outputs[2:]
1704
+ return ((total_loss,) + output) if total_loss is not None else output
1705
+
1706
+ return QuestionAnsweringModelOutput(
1707
+ loss=total_loss,
1708
+ start_logits=start_logits,
1709
+ end_logits=end_logits,
1710
+ hidden_states=outputs.hidden_states,
1711
+ attentions=outputs.attentions,
1712
+ )
1713
+
1714
+
1715
+ # Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->InternLM2
1716
+ @add_start_docstrings(
1717
+ """
1718
+ The InternLM2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1719
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1720
+ """,
1721
+ InternLM2_START_DOCSTRING,
1722
+ )
1723
+ class InternLM2ForTokenClassification(InternLM2PreTrainedModel):
1724
+ """Token classification model for InternLM2."""
1725
+
1726
+ def __init__(self, config):
1727
+ super().__init__(config)
1728
+ self.num_labels = config.num_labels
1729
+ self.model = InternLM2Model(config)
1730
+ if getattr(config, "classifier_dropout", None) is not None:
1731
+ classifier_dropout = config.classifier_dropout
1732
+ elif getattr(config, "hidden_dropout", None) is not None:
1733
+ classifier_dropout = config.hidden_dropout
1734
+ else:
1735
+ classifier_dropout = 0.1
1736
+ self.dropout = nn.Dropout(classifier_dropout)
1737
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1738
+
1739
+ # Initialize weights and apply final processing
1740
+ self.post_init()
1741
+
1742
+ def get_input_embeddings(self):
1743
+ return self.model.tok_embeddings
1744
+
1745
+ def set_input_embeddings(self, value):
1746
+ self.model.tok_embeddings = value
1747
+
1748
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1749
+ def forward(
1750
+ self,
1751
+ input_ids: torch.LongTensor = None,
1752
+ attention_mask: Optional[torch.Tensor] = None,
1753
+ position_ids: Optional[torch.LongTensor] = None,
1754
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1755
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1756
+ labels: Optional[torch.LongTensor] = None,
1757
+ use_cache: Optional[bool] = None,
1758
+ output_attentions: Optional[bool] = None,
1759
+ output_hidden_states: Optional[bool] = None,
1760
+ return_dict: Optional[bool] = None,
1761
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1762
+ r"""
1763
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1764
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1765
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1766
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1767
+ """
1768
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1769
+
1770
+ outputs = self.model(
1771
+ input_ids,
1772
+ attention_mask=attention_mask,
1773
+ position_ids=position_ids,
1774
+ past_key_values=past_key_values,
1775
+ inputs_embeds=inputs_embeds,
1776
+ use_cache=use_cache,
1777
+ output_attentions=output_attentions,
1778
+ output_hidden_states=output_hidden_states,
1779
+ return_dict=return_dict,
1780
+ )
1781
+ sequence_output = outputs[0]
1782
+ sequence_output = self.dropout(sequence_output)
1783
+ logits = self.score(sequence_output)
1784
+
1785
+ loss = None
1786
+ if labels is not None:
1787
+ loss_fct = CrossEntropyLoss()
1788
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1789
+
1790
+ if not return_dict:
1791
+ output = (logits,) + outputs[2:]
1792
+ return ((loss,) + output) if loss is not None else output
1793
+
1794
+ return TokenClassifierOutput(
1795
+ loss=loss,
1796
+ logits=logits,
1797
+ hidden_states=outputs.hidden_states,
1798
+ attentions=outputs.attentions,
1799
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "</s>",
5
+ "unk_token": "<unk>"
6
+ }
tokenization_internlm2.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """Tokenization classes for InternLM."""
19
+ import os
20
+ from shutil import copyfile
21
+ from typing import Any, Dict, List, Optional, Tuple
22
+
23
+ import sentencepiece as spm
24
+ from transformers.tokenization_utils import PreTrainedTokenizer
25
+ from transformers.utils import logging
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
30
+
31
+ PRETRAINED_VOCAB_FILES_MAP = {}
32
+
33
+
34
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
35
+ class InternLM2Tokenizer(PreTrainedTokenizer):
36
+ """
37
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
38
+
39
+ Args:
40
+ vocab_file (`str`):
41
+ Path to the vocabulary file.
42
+ """
43
+
44
+ vocab_files_names = VOCAB_FILES_NAMES
45
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
46
+ model_input_names = ["input_ids", "attention_mask"]
47
+ _auto_class = "AutoTokenizer"
48
+
49
+ def __init__(
50
+ self,
51
+ vocab_file,
52
+ unk_token="<unk>",
53
+ bos_token="<s>",
54
+ eos_token="</s>",
55
+ pad_token="</s>",
56
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
57
+ add_bos_token=True,
58
+ add_eos_token=False,
59
+ decode_with_prefix_space=False,
60
+ clean_up_tokenization_spaces=False,
61
+ **kwargs,
62
+ ):
63
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
64
+ self.vocab_file = vocab_file
65
+ self.add_bos_token = add_bos_token
66
+ self.add_eos_token = add_eos_token
67
+ self.decode_with_prefix_space = decode_with_prefix_space
68
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
69
+ self.sp_model.Load(vocab_file)
70
+ self._no_prefix_space_tokens = None
71
+ super().__init__(
72
+ bos_token=bos_token,
73
+ eos_token=eos_token,
74
+ unk_token=unk_token,
75
+ pad_token=pad_token,
76
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
77
+ **kwargs,
78
+ )
79
+
80
+ @property
81
+ def no_prefix_space_tokens(self):
82
+ if self._no_prefix_space_tokens is None:
83
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
84
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
85
+ return self._no_prefix_space_tokens
86
+
87
+ @property
88
+ def vocab_size(self):
89
+ """Returns vocab size"""
90
+ return self.sp_model.get_piece_size()
91
+
92
+ @property
93
+ def bos_token_id(self) -> Optional[int]:
94
+ return self.sp_model.bos_id()
95
+
96
+ @property
97
+ def eos_token_id(self) -> Optional[int]:
98
+ return self.sp_model.eos_id()
99
+
100
+ def get_vocab(self):
101
+ """Returns vocab as a dict"""
102
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
103
+ vocab.update(self.added_tokens_encoder)
104
+ return vocab
105
+
106
+ def _tokenize(self, text):
107
+ """Returns a tokenized string."""
108
+ return self.sp_model.encode(text, out_type=str)
109
+
110
+ def _convert_token_to_id(self, token):
111
+ """Converts a token (str) in an id using the vocab."""
112
+ return self.sp_model.piece_to_id(token)
113
+
114
+ def _convert_id_to_token(self, index):
115
+ """Converts an index (integer) in a token (str) using the vocab."""
116
+ token = self.sp_model.IdToPiece(index)
117
+ return token
118
+
119
+ def _maybe_add_prefix_space(self, tokens, decoded):
120
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
121
+ return " " + decoded
122
+ else:
123
+ return decoded
124
+
125
+ def convert_tokens_to_string(self, tokens):
126
+ """Converts a sequence of tokens (string) in a single string."""
127
+ current_sub_tokens = []
128
+ out_string = ""
129
+ prev_is_special = False
130
+ for token in tokens:
131
+ # make sure that special tokens are not decoded using sentencepiece model
132
+ if token in self.all_special_tokens:
133
+ if not prev_is_special:
134
+ out_string += " "
135
+ out_string += self.sp_model.decode(current_sub_tokens) + token
136
+ prev_is_special = True
137
+ current_sub_tokens = []
138
+ else:
139
+ current_sub_tokens.append(token)
140
+ prev_is_special = False
141
+ out_string += self.sp_model.decode(current_sub_tokens)
142
+ out_string = self.clean_up_tokenization(out_string)
143
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
144
+ return out_string[1:]
145
+
146
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
147
+ """
148
+ Save the vocabulary and special tokens file to a directory.
149
+
150
+ Args:
151
+ save_directory (`str`):
152
+ The directory in which to save the vocabulary.
153
+
154
+ Returns:
155
+ `Tuple(str)`: Paths to the files saved.
156
+ """
157
+ if not os.path.isdir(save_directory):
158
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
159
+ return
160
+ out_vocab_file = os.path.join(
161
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
162
+ )
163
+
164
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
165
+ copyfile(self.vocab_file, out_vocab_file)
166
+ elif not os.path.isfile(self.vocab_file):
167
+ with open(out_vocab_file, "wb") as fi:
168
+ content_spiece_model = self.sp_model.serialized_model_proto()
169
+ fi.write(content_spiece_model)
170
+
171
+ return (out_vocab_file,)
172
+
173
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
174
+ if self.add_bos_token:
175
+ bos_token_ids = [self.bos_token_id]
176
+ else:
177
+ bos_token_ids = []
178
+
179
+ output = bos_token_ids + token_ids_0
180
+
181
+ if token_ids_1 is not None:
182
+ output = output + token_ids_1
183
+
184
+ if self.add_eos_token:
185
+ output = output + [self.eos_token_id]
186
+
187
+ return output
188
+
189
+ def get_special_tokens_mask(
190
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
191
+ ) -> List[int]:
192
+ """
193
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
194
+ special tokens using the tokenizer `prepare_for_model` method.
195
+
196
+ Args:
197
+ token_ids_0 (`List[int]`):
198
+ List of IDs.
199
+ token_ids_1 (`List[int]`, *optional*):
200
+ Optional second list of IDs for sequence pairs.
201
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
202
+ Whether or not the token list is already formatted with special tokens for the model.
203
+
204
+ Returns:
205
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
206
+ """
207
+ if already_has_special_tokens:
208
+ return super().get_special_tokens_mask(
209
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
210
+ )
211
+
212
+ if token_ids_1 is None:
213
+ return [1] + ([0] * len(token_ids_0)) + [1]
214
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
215
+
216
+ def create_token_type_ids_from_sequences(
217
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
218
+ ) -> List[int]:
219
+ """
220
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
221
+ use of token type ids, therefore a list of zeros is returned.
222
+
223
+ Args:
224
+ token_ids_0 (`List[int]`):
225
+ List of IDs.
226
+ token_ids_1 (`List[int]`, *optional*):
227
+ Optional second list of IDs for sequence pairs.
228
+
229
+ Returns:
230
+ `List[int]`: List of zeros.
231
+ """
232
+ eos = [self.eos_token_id]
233
+
234
+ if token_ids_1 is None:
235
+ return len(token_ids_0 + eos) * [0]
236
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenization_internlm2_fast.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """Tokenization Fast class for InternLM."""
19
+ import os
20
+ from shutil import copyfile
21
+ from typing import Any, Dict, Optional, Tuple
22
+
23
+ from tokenizers import Tokenizer, decoders, normalizers, processors
24
+ from tokenizers.models import BPE
25
+ from transformers.convert_slow_tokenizer import (
26
+ SLOW_TO_FAST_CONVERTERS,
27
+ SentencePieceExtractor,
28
+ SpmConverter,
29
+ )
30
+ from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
31
+ from transformers.utils import logging
32
+
33
+ from .tokenization_internlm2 import InternLM2Tokenizer
34
+
35
+ logger = logging.get_logger(__name__)
36
+
37
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
38
+
39
+
40
+ # Modified from transformers.convert_slow_tokenizer.LlamaConverter
41
+ class InternLM2Converter(SpmConverter):
42
+ """
43
+ Fast tokenizer converter for InternLM2.
44
+ """
45
+
46
+ handle_byte_fallback = True
47
+
48
+ def vocab(self, proto):
49
+ vocab = [
50
+ ("<unk>", 0.0),
51
+ ("<s>", 0.0),
52
+ ("</s>", 0.0),
53
+ ]
54
+ vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
55
+ return vocab
56
+
57
+ def unk_id(self, proto): # pylint: disable=W0613
58
+ unk_id = 0
59
+ return unk_id
60
+
61
+ def decoder(self, replacement, add_prefix_space): # pylint: disable=W0613
62
+ decoders_sequence = [
63
+ decoders.Replace("▁", " "),
64
+ decoders.ByteFallback(),
65
+ decoders.Fuse(),
66
+ ]
67
+ if self.proto.normalizer_spec.add_dummy_prefix:
68
+ decoders_sequence.append(decoders.Strip(content=" ", left=1))
69
+ return decoders.Sequence(decoders_sequence)
70
+
71
+ def tokenizer(self, proto):
72
+ model_type = proto.trainer_spec.model_type
73
+ vocab_scores = self.vocab(proto)
74
+ # special tokens
75
+ added_tokens = self.original_tokenizer.added_tokens_decoder
76
+ for i in range(len(vocab_scores)):
77
+ _, score = vocab_scores[i]
78
+ if i in added_tokens:
79
+ vocab_scores[i] = (added_tokens[i].content, score)
80
+ if model_type == 1:
81
+ raise RuntimeError("InternLM2 is supposed to be a BPE model!")
82
+
83
+ elif model_type == 2:
84
+ _, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
85
+ bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
86
+ tokenizer = Tokenizer(
87
+ BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
88
+ )
89
+ tokenizer.add_special_tokens([added_token for index, added_token in added_tokens.items()])
90
+ else:
91
+ raise Exception(
92
+ "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
93
+ )
94
+
95
+ return tokenizer
96
+
97
+ def normalizer(self, proto):
98
+ normalizers_list = []
99
+ if proto.normalizer_spec.add_dummy_prefix:
100
+ normalizers_list.append(normalizers.Prepend(prepend="▁"))
101
+ normalizers_list.append(normalizers.Replace(pattern=" ", content="▁"))
102
+ return normalizers.Sequence(normalizers_list)
103
+
104
+ def pre_tokenizer(self, replacement, add_prefix_space): # pylint: disable=W0613
105
+ return None
106
+
107
+
108
+ SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter
109
+
110
+
111
+ # Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
112
+ class InternLM2TokenizerFast(PreTrainedTokenizerFast):
113
+ """
114
+ Fast tokenizer for InternLM2.
115
+ """
116
+
117
+ vocab_files_names = VOCAB_FILES_NAMES
118
+ slow_tokenizer_class = InternLM2Tokenizer
119
+ padding_side = "left"
120
+ model_input_names = ["input_ids", "attention_mask"]
121
+ _auto_class = "AutoTokenizer"
122
+
123
+ def __init__(
124
+ self,
125
+ vocab_file,
126
+ unk_token="<unk>",
127
+ bos_token="<s>",
128
+ eos_token="</s>",
129
+ pad_token="</s>",
130
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
131
+ add_bos_token=True,
132
+ add_eos_token=False,
133
+ decode_with_prefix_space=False,
134
+ clean_up_tokenization_spaces=False,
135
+ **kwargs,
136
+ ):
137
+ super().__init__(
138
+ vocab_file=vocab_file,
139
+ unk_token=unk_token,
140
+ bos_token=bos_token,
141
+ eos_token=eos_token,
142
+ pad_token=pad_token,
143
+ sp_model_kwargs=sp_model_kwargs,
144
+ add_bos_token=add_bos_token,
145
+ add_eos_token=add_eos_token,
146
+ decode_with_prefix_space=decode_with_prefix_space,
147
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
148
+ **kwargs,
149
+ )
150
+ self._add_bos_token = add_bos_token
151
+ self._add_eos_token = add_eos_token
152
+ self.update_post_processor()
153
+ self.vocab_file = vocab_file
154
+
155
+ @property
156
+ def can_save_slow_tokenizer(self) -> bool:
157
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
158
+
159
+ def update_post_processor(self):
160
+ """
161
+ Updates the underlying post processor with the current `bos_token` and `eos_token`.
162
+ """
163
+ bos = self.bos_token
164
+ bos_token_id = self.bos_token_id
165
+ if bos is None and self.add_bos_token:
166
+ raise ValueError("add_bos_token = True but bos_token = None")
167
+
168
+ eos = self.eos_token
169
+ eos_token_id = self.eos_token_id
170
+ if eos is None and self.add_eos_token:
171
+ raise ValueError("add_eos_token = True but eos_token = None")
172
+
173
+ single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
174
+ pair = (
175
+ f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
176
+ )
177
+
178
+ special_tokens = []
179
+ if self.add_bos_token:
180
+ special_tokens.append((bos, bos_token_id))
181
+ if self.add_eos_token:
182
+ special_tokens.append((eos, eos_token_id))
183
+ self._tokenizer.post_processor = processors.TemplateProcessing(
184
+ single=single, pair=pair, special_tokens=special_tokens
185
+ )
186
+
187
+ @property
188
+ def add_eos_token(self):
189
+ return self._add_eos_token
190
+
191
+ @property
192
+ def add_bos_token(self):
193
+ return self._add_bos_token
194
+
195
+ @add_eos_token.setter
196
+ def add_eos_token(self, value):
197
+ self._add_eos_token = value
198
+ self.update_post_processor()
199
+
200
+ @add_bos_token.setter
201
+ def add_bos_token(self, value):
202
+ self._add_bos_token = value
203
+ self.update_post_processor()
204
+
205
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
206
+ if not self.can_save_slow_tokenizer:
207
+ raise ValueError(
208
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
209
+ "tokenizer."
210
+ )
211
+
212
+ if not os.path.isdir(save_directory):
213
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
214
+ return
215
+ out_vocab_file = os.path.join(
216
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
217
+ )
218
+
219
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
220
+ copyfile(self.vocab_file, out_vocab_file)
221
+
222
+ return (out_vocab_file,)
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
tokenizer_config.json ADDED
@@ -0,0 +1,1581 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "92352": {
30
+ "content": "E",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": false
36
+ },
37
+ "92353": {
38
+ "content": "F",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "92354": {
46
+ "content": "G",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ },
53
+ "92355": {
54
+ "content": "H",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": false
60
+ },
61
+ "92356": {
62
+ "content": "I",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": false
68
+ },
69
+ "92357": {
70
+ "content": "J",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": false
76
+ },
77
+ "92358": {
78
+ "content": "K",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": false
84
+ },
85
+ "92359": {
86
+ "content": "L",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": false
92
+ },
93
+ "92360": {
94
+ "content": "M",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": false
100
+ },
101
+ "92361": {
102
+ "content": "N",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": false
108
+ },
109
+ "92362": {
110
+ "content": "R",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": false
116
+ },
117
+ "92363": {
118
+ "content": "U",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "92364": {
126
+ "content": "V",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "92365": {
134
+ "content": "W",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "92366": {
142
+ "content": "X",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "92367": {
150
+ "content": "Y",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "92368": {
158
+ "content": "Z",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "92369": {
166
+ "content": "a",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "92370": {
174
+ "content": "b",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "92371": {
182
+ "content": "c",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "92372": {
190
+ "content": "d",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "92373": {
198
+ "content": "e",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "92374": {
206
+ "content": "f",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "92375": {
214
+ "content": "g",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": false
220
+ },
221
+ "92376": {
222
+ "content": "h",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": false
228
+ },
229
+ "92377": {
230
+ "content": "i",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": false
236
+ },
237
+ "92378": {
238
+ "content": "j",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": false
244
+ },
245
+ "92379": {
246
+ "content": "k",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": false
252
+ },
253
+ "92380": {
254
+ "content": "l",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": false
260
+ },
261
+ "92381": {
262
+ "content": "m",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": false
268
+ },
269
+ "92382": {
270
+ "content": "n",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": false
276
+ },
277
+ "92383": {
278
+ "content": "o",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": false
284
+ },
285
+ "92384": {
286
+ "content": "p",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": false
292
+ },
293
+ "92385": {
294
+ "content": "q",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": false
300
+ },
301
+ "92386": {
302
+ "content": "r",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": false
308
+ },
309
+ "92387": {
310
+ "content": "s",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": false
316
+ },
317
+ "92388": {
318
+ "content": "t",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": false
324
+ },
325
+ "92389": {
326
+ "content": "u",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": false
332
+ },
333
+ "92390": {
334
+ "content": "v",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": false
340
+ },
341
+ "92391": {
342
+ "content": "w",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": false
348
+ },
349
+ "92392": {
350
+ "content": "x",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": false
356
+ },
357
+ "92393": {
358
+ "content": "y",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": false
364
+ },
365
+ "92394": {
366
+ "content": "z",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": false
372
+ },
373
+ "92395": {
374
+ "content": "——",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": false
380
+ },
381
+ "92396": {
382
+ "content": "……",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": false
388
+ },
389
+ "92397": {
390
+ "content": "[UNUSED_TOKEN_0]",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": false
396
+ },
397
+ "92398": {
398
+ "content": "[UNUSED_TOKEN_1]",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": false
404
+ },
405
+ "92399": {
406
+ "content": "[UNUSED_TOKEN_2]",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": false
412
+ },
413
+ "92400": {
414
+ "content": "[UNUSED_TOKEN_3]",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": false
420
+ },
421
+ "92401": {
422
+ "content": "[UNUSED_TOKEN_4]",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": false
428
+ },
429
+ "92402": {
430
+ "content": "[UNUSED_TOKEN_5]",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": false
436
+ },
437
+ "92403": {
438
+ "content": "[UNUSED_TOKEN_6]",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": false
444
+ },
445
+ "92404": {
446
+ "content": "[UNUSED_TOKEN_7]",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": false
452
+ },
453
+ "92405": {
454
+ "content": "[UNUSED_TOKEN_8]",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": false
460
+ },
461
+ "92406": {
462
+ "content": "[UNUSED_TOKEN_9]",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": false
468
+ },
469
+ "92407": {
470
+ "content": "[UNUSED_TOKEN_10]",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": false
476
+ },
477
+ "92408": {
478
+ "content": "[UNUSED_TOKEN_11]",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": false
484
+ },
485
+ "92409": {
486
+ "content": "[UNUSED_TOKEN_12]",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": false
492
+ },
493
+ "92410": {
494
+ "content": "[UNUSED_TOKEN_13]",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": false
500
+ },
501
+ "92411": {
502
+ "content": "[UNUSED_TOKEN_14]",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": false
508
+ },
509
+ "92412": {
510
+ "content": "[UNUSED_TOKEN_15]",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": false
516
+ },
517
+ "92413": {
518
+ "content": "[UNUSED_TOKEN_16]",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": false
524
+ },
525
+ "92414": {
526
+ "content": "[UNUSED_TOKEN_17]",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": false
532
+ },
533
+ "92415": {
534
+ "content": "[UNUSED_TOKEN_18]",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": false
540
+ },
541
+ "92416": {
542
+ "content": "[UNUSED_TOKEN_19]",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": false
548
+ },
549
+ "92417": {
550
+ "content": "[UNUSED_TOKEN_20]",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": false
556
+ },
557
+ "92418": {
558
+ "content": "[UNUSED_TOKEN_21]",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": false
564
+ },
565
+ "92419": {
566
+ "content": "[UNUSED_TOKEN_22]",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": false
572
+ },
573
+ "92420": {
574
+ "content": "[UNUSED_TOKEN_23]",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": false
580
+ },
581
+ "92421": {
582
+ "content": "[UNUSED_TOKEN_24]",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": false
588
+ },
589
+ "92422": {
590
+ "content": "[UNUSED_TOKEN_25]",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": false
596
+ },
597
+ "92423": {
598
+ "content": "[UNUSED_TOKEN_26]",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": false
604
+ },
605
+ "92424": {
606
+ "content": "[UNUSED_TOKEN_27]",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": false
612
+ },
613
+ "92425": {
614
+ "content": "[UNUSED_TOKEN_28]",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": false
620
+ },
621
+ "92426": {
622
+ "content": "[UNUSED_TOKEN_29]",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": false
628
+ },
629
+ "92427": {
630
+ "content": "[UNUSED_TOKEN_30]",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": false
636
+ },
637
+ "92428": {
638
+ "content": "[UNUSED_TOKEN_31]",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": false
644
+ },
645
+ "92429": {
646
+ "content": "[UNUSED_TOKEN_32]",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": false
652
+ },
653
+ "92430": {
654
+ "content": "[UNUSED_TOKEN_33]",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": false
660
+ },
661
+ "92431": {
662
+ "content": "[UNUSED_TOKEN_34]",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": false
668
+ },
669
+ "92432": {
670
+ "content": "[UNUSED_TOKEN_35]",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": false
676
+ },
677
+ "92433": {
678
+ "content": "[UNUSED_TOKEN_36]",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": false
684
+ },
685
+ "92434": {
686
+ "content": "[UNUSED_TOKEN_37]",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": false
692
+ },
693
+ "92435": {
694
+ "content": "[UNUSED_TOKEN_38]",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": false
700
+ },
701
+ "92436": {
702
+ "content": "[UNUSED_TOKEN_39]",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": false
708
+ },
709
+ "92437": {
710
+ "content": "[UNUSED_TOKEN_40]",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": false
716
+ },
717
+ "92438": {
718
+ "content": "[UNUSED_TOKEN_41]",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": false
724
+ },
725
+ "92439": {
726
+ "content": "[UNUSED_TOKEN_42]",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": false
732
+ },
733
+ "92440": {
734
+ "content": "[UNUSED_TOKEN_43]",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": false
740
+ },
741
+ "92441": {
742
+ "content": "[UNUSED_TOKEN_44]",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": false
748
+ },
749
+ "92442": {
750
+ "content": "[UNUSED_TOKEN_45]",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": false
756
+ },
757
+ "92443": {
758
+ "content": "[UNUSED_TOKEN_46]",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": false
764
+ },
765
+ "92444": {
766
+ "content": "[UNUSED_TOKEN_47]",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": false
772
+ },
773
+ "92445": {
774
+ "content": "[UNUSED_TOKEN_48]",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": false
780
+ },
781
+ "92446": {
782
+ "content": "[UNUSED_TOKEN_49]",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": false
788
+ },
789
+ "92447": {
790
+ "content": "[UNUSED_TOKEN_50]",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": false
796
+ },
797
+ "92448": {
798
+ "content": "[UNUSED_TOKEN_51]",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": false
804
+ },
805
+ "92449": {
806
+ "content": "[UNUSED_TOKEN_52]",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": false
812
+ },
813
+ "92450": {
814
+ "content": "[UNUSED_TOKEN_53]",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": false
820
+ },
821
+ "92451": {
822
+ "content": "[UNUSED_TOKEN_54]",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": false
828
+ },
829
+ "92452": {
830
+ "content": "[UNUSED_TOKEN_55]",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": false
836
+ },
837
+ "92453": {
838
+ "content": "[UNUSED_TOKEN_56]",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": false
844
+ },
845
+ "92454": {
846
+ "content": "[UNUSED_TOKEN_57]",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": false
852
+ },
853
+ "92455": {
854
+ "content": "[UNUSED_TOKEN_58]",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": false
860
+ },
861
+ "92456": {
862
+ "content": "[UNUSED_TOKEN_59]",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": false
868
+ },
869
+ "92457": {
870
+ "content": "[UNUSED_TOKEN_60]",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": false
876
+ },
877
+ "92458": {
878
+ "content": "[UNUSED_TOKEN_61]",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": false
884
+ },
885
+ "92459": {
886
+ "content": "[UNUSED_TOKEN_62]",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": false
892
+ },
893
+ "92460": {
894
+ "content": "[UNUSED_TOKEN_63]",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": false
900
+ },
901
+ "92461": {
902
+ "content": "[UNUSED_TOKEN_64]",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": false
908
+ },
909
+ "92462": {
910
+ "content": "[UNUSED_TOKEN_65]",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": false
916
+ },
917
+ "92463": {
918
+ "content": "[UNUSED_TOKEN_66]",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": false
924
+ },
925
+ "92464": {
926
+ "content": "[UNUSED_TOKEN_67]",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": false
932
+ },
933
+ "92465": {
934
+ "content": "[UNUSED_TOKEN_68]",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": false
940
+ },
941
+ "92466": {
942
+ "content": "[UNUSED_TOKEN_69]",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": false
948
+ },
949
+ "92467": {
950
+ "content": "[UNUSED_TOKEN_70]",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": false
956
+ },
957
+ "92468": {
958
+ "content": "[UNUSED_TOKEN_71]",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": false
964
+ },
965
+ "92469": {
966
+ "content": "[UNUSED_TOKEN_72]",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": false
972
+ },
973
+ "92470": {
974
+ "content": "[UNUSED_TOKEN_73]",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": false
980
+ },
981
+ "92471": {
982
+ "content": "[UNUSED_TOKEN_74]",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": false
988
+ },
989
+ "92472": {
990
+ "content": "[UNUSED_TOKEN_75]",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": false
996
+ },
997
+ "92473": {
998
+ "content": "[UNUSED_TOKEN_76]",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": false
1004
+ },
1005
+ "92474": {
1006
+ "content": "[UNUSED_TOKEN_77]",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": false
1012
+ },
1013
+ "92475": {
1014
+ "content": "[UNUSED_TOKEN_78]",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": false
1020
+ },
1021
+ "92476": {
1022
+ "content": "[UNUSED_TOKEN_79]",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": false
1028
+ },
1029
+ "92477": {
1030
+ "content": "[UNUSED_TOKEN_80]",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": false
1036
+ },
1037
+ "92478": {
1038
+ "content": "[UNUSED_TOKEN_81]",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": false
1044
+ },
1045
+ "92479": {
1046
+ "content": "[UNUSED_TOKEN_82]",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": false
1052
+ },
1053
+ "92480": {
1054
+ "content": "[UNUSED_TOKEN_83]",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": false
1060
+ },
1061
+ "92481": {
1062
+ "content": "[UNUSED_TOKEN_84]",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": false
1068
+ },
1069
+ "92482": {
1070
+ "content": "[UNUSED_TOKEN_85]",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": false
1076
+ },
1077
+ "92483": {
1078
+ "content": "[UNUSED_TOKEN_86]",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": false
1084
+ },
1085
+ "92484": {
1086
+ "content": "[UNUSED_TOKEN_87]",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": false
1092
+ },
1093
+ "92485": {
1094
+ "content": "[UNUSED_TOKEN_88]",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": false
1100
+ },
1101
+ "92486": {
1102
+ "content": "[UNUSED_TOKEN_89]",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": false
1108
+ },
1109
+ "92487": {
1110
+ "content": "[UNUSED_TOKEN_90]",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": false
1116
+ },
1117
+ "92488": {
1118
+ "content": "[UNUSED_TOKEN_91]",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": false
1124
+ },
1125
+ "92489": {
1126
+ "content": "[UNUSED_TOKEN_92]",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": false
1132
+ },
1133
+ "92490": {
1134
+ "content": "[UNUSED_TOKEN_93]",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": false
1140
+ },
1141
+ "92491": {
1142
+ "content": "[UNUSED_TOKEN_94]",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": false
1148
+ },
1149
+ "92492": {
1150
+ "content": "[UNUSED_TOKEN_95]",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": false
1156
+ },
1157
+ "92493": {
1158
+ "content": "[UNUSED_TOKEN_96]",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": false
1164
+ },
1165
+ "92494": {
1166
+ "content": "[UNUSED_TOKEN_97]",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": false
1172
+ },
1173
+ "92495": {
1174
+ "content": "[UNUSED_TOKEN_98]",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": false
1180
+ },
1181
+ "92496": {
1182
+ "content": "[UNUSED_TOKEN_99]",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": false
1188
+ },
1189
+ "92497": {
1190
+ "content": "[UNUSED_TOKEN_100]",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": false
1196
+ },
1197
+ "92498": {
1198
+ "content": "[UNUSED_TOKEN_101]",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": false
1204
+ },
1205
+ "92499": {
1206
+ "content": "[UNUSED_TOKEN_102]",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": false
1212
+ },
1213
+ "92500": {
1214
+ "content": "[UNUSED_TOKEN_103]",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": false
1220
+ },
1221
+ "92501": {
1222
+ "content": "[UNUSED_TOKEN_104]",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": false
1228
+ },
1229
+ "92502": {
1230
+ "content": "[UNUSED_TOKEN_105]",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": false
1236
+ },
1237
+ "92503": {
1238
+ "content": "[UNUSED_TOKEN_106]",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": false
1244
+ },
1245
+ "92504": {
1246
+ "content": "[UNUSED_TOKEN_107]",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": false
1252
+ },
1253
+ "92505": {
1254
+ "content": "[UNUSED_TOKEN_108]",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": false
1260
+ },
1261
+ "92506": {
1262
+ "content": "[UNUSED_TOKEN_109]",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": false
1268
+ },
1269
+ "92507": {
1270
+ "content": "[UNUSED_TOKEN_110]",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": false
1276
+ },
1277
+ "92508": {
1278
+ "content": "[UNUSED_TOKEN_111]",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": false
1284
+ },
1285
+ "92509": {
1286
+ "content": "[UNUSED_TOKEN_112]",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": false
1292
+ },
1293
+ "92510": {
1294
+ "content": "[UNUSED_TOKEN_113]",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": false
1300
+ },
1301
+ "92511": {
1302
+ "content": "[UNUSED_TOKEN_114]",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": false
1308
+ },
1309
+ "92512": {
1310
+ "content": "[UNUSED_TOKEN_115]",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": false
1316
+ },
1317
+ "92513": {
1318
+ "content": "[UNUSED_TOKEN_116]",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": false
1324
+ },
1325
+ "92514": {
1326
+ "content": "[UNUSED_TOKEN_117]",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": false
1332
+ },
1333
+ "92515": {
1334
+ "content": "[UNUSED_TOKEN_118]",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": false
1340
+ },
1341
+ "92516": {
1342
+ "content": "[UNUSED_TOKEN_119]",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": false
1348
+ },
1349
+ "92517": {
1350
+ "content": "[UNUSED_TOKEN_120]",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": false
1356
+ },
1357
+ "92518": {
1358
+ "content": "[UNUSED_TOKEN_121]",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": false
1364
+ },
1365
+ "92519": {
1366
+ "content": "[UNUSED_TOKEN_122]",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": false
1372
+ },
1373
+ "92520": {
1374
+ "content": "[UNUSED_TOKEN_123]",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": false
1380
+ },
1381
+ "92521": {
1382
+ "content": "[UNUSED_TOKEN_124]",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": false
1388
+ },
1389
+ "92522": {
1390
+ "content": "[UNUSED_TOKEN_125]",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": false
1396
+ },
1397
+ "92523": {
1398
+ "content": "[UNUSED_TOKEN_126]",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": false
1404
+ },
1405
+ "92524": {
1406
+ "content": "[UNUSED_TOKEN_127]",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": false
1412
+ },
1413
+ "92525": {
1414
+ "content": "[UNUSED_TOKEN_128]",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": false
1420
+ },
1421
+ "92526": {
1422
+ "content": "[UNUSED_TOKEN_129]",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": false
1428
+ },
1429
+ "92527": {
1430
+ "content": "[UNUSED_TOKEN_130]",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": false
1436
+ },
1437
+ "92528": {
1438
+ "content": "[UNUSED_TOKEN_131]",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": false
1444
+ },
1445
+ "92529": {
1446
+ "content": "[UNUSED_TOKEN_132]",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": false
1452
+ },
1453
+ "92530": {
1454
+ "content": "[UNUSED_TOKEN_133]",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": false
1460
+ },
1461
+ "92531": {
1462
+ "content": "[UNUSED_TOKEN_134]",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": false
1468
+ },
1469
+ "92532": {
1470
+ "content": "[UNUSED_TOKEN_135]",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": false
1476
+ },
1477
+ "92533": {
1478
+ "content": "[UNUSED_TOKEN_136]",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": false
1484
+ },
1485
+ "92534": {
1486
+ "content": "[UNUSED_TOKEN_137]",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": false
1492
+ },
1493
+ "92535": {
1494
+ "content": "[UNUSED_TOKEN_138]",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": false
1500
+ },
1501
+ "92536": {
1502
+ "content": "[UNUSED_TOKEN_139]",
1503
+ "lstrip": false,
1504
+ "normalized": false,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": false
1508
+ },
1509
+ "92537": {
1510
+ "content": "[UNUSED_TOKEN_140]",
1511
+ "lstrip": false,
1512
+ "normalized": false,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": false
1516
+ },
1517
+ "92538": {
1518
+ "content": "[UNUSED_TOKEN_141]",
1519
+ "lstrip": false,
1520
+ "normalized": false,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": false
1524
+ },
1525
+ "92539": {
1526
+ "content": "[UNUSED_TOKEN_142]",
1527
+ "lstrip": false,
1528
+ "normalized": false,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": false
1532
+ },
1533
+ "92540": {
1534
+ "content": "[UNUSED_TOKEN_143]",
1535
+ "lstrip": false,
1536
+ "normalized": false,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": false
1540
+ },
1541
+ "92541": {
1542
+ "content": "[UNUSED_TOKEN_144]",
1543
+ "lstrip": false,
1544
+ "normalized": false,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": false
1548
+ },
1549
+ "92542": {
1550
+ "content": "[UNUSED_TOKEN_145]",
1551
+ "lstrip": false,
1552
+ "normalized": false,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": false
1556
+ },
1557
+ "92543": {
1558
+ "content": "[UNUSED_TOKEN_146]",
1559
+ "lstrip": false,
1560
+ "normalized": false,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": false
1564
+ }
1565
+ },
1566
+ "auto_map": {
1567
+ "AutoTokenizer": [
1568
+ "tokenization_internlm2.InternLM2Tokenizer",
1569
+ "tokenization_internlm2_fast.InternLM2TokenizerFast"
1570
+ ]
1571
+ },
1572
+ "bos_token": "<s>",
1573
+ "clean_up_tokenization_spaces": false,
1574
+ "decode_with_prefix_space": false,
1575
+ "eos_token": "</s>",
1576
+ "model_max_length": 1000000000000000019884624838656,
1577
+ "pad_token": "</s>",
1578
+ "sp_model_kwargs": null,
1579
+ "tokenizer_class": "InternLM2Tokenizer",
1580
+ "unk_token": "<unk>"
1581
+ }