shimmyshimmer commited on
Commit
449f633
·
verified ·
1 Parent(s): 07797a7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +147 -135
README.md CHANGED
@@ -1,199 +1,211 @@
1
  ---
 
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
124
 
125
- [More Information Needed]
126
 
127
- ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
 
 
 
132
 
 
133
 
 
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
 
 
 
 
 
 
 
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
 
 
 
 
 
 
 
 
 
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
 
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
1
  ---
2
+ base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
3
+ language:
4
+ - en
5
+ license: apache-2.0
6
  library_name: transformers
7
+ tags:
8
+ - deepseek
9
+ - qwen
10
+ - qwen2
11
+ - unsloth
12
+ - transformers
13
  ---
14
 
15
+ ## ***See [our collection](https://huggingface.co/collections/unsloth/deepseek-r1-all-versions-678e1c48f5d2fce87892ace5) for versions of Deepseek-R1 including GGUF and original formats.***
16
 
 
17
 
18
+ # Finetune LLMs 2-5x faster with 70% less memory via Unsloth!
19
+ We have a free Google Colab Tesla T4 notebook for Llama 3.1 (8B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb
20
 
21
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
22
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
23
 
 
24
 
25
+ ## Finetune for Free
26
 
27
+ All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
28
 
29
+ | Unsloth supports | Free Notebooks | Performance | Memory use |
30
+ |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
31
+ | **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
32
+ | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
33
+ | **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb) | 1.8x faster | 60% less |
34
+ | **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
35
+ | **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb) | 2.4x faster | 58% less |
36
+ | **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_3.5_Mini-Conversational.ipynb) | 2x faster | 50% less |
37
+ | **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma2_(9B)-Alpaca.ipynb) | 2.4x faster | 58% less |
38
+ | **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
39
 
40
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai)
 
 
 
 
 
 
41
 
42
+ - This [Llama 3.2 conversational notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) is useful for ShareGPT ChatML / Vicuna templates.
43
+ - This [text completion notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_(7B)-Text_Completion.ipynb) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
44
+ - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
45
 
46
+ ## Special Thanks
47
+ A huge thank you to the DeepSeek team for creating and releasing these models.
48
 
 
 
 
49
 
 
50
 
51
+ ## 1. Introduction
52
 
53
+ We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1.
54
+ DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrated remarkable performance on reasoning.
55
+ With RL, DeepSeek-R1-Zero naturally emerged with numerous powerful and interesting reasoning behaviors.
56
+ However, DeepSeek-R1-Zero encounters challenges such as endless repetition, poor readability, and language mixing. To address these issues and further enhance reasoning performance,
57
+ we introduce DeepSeek-R1, which incorporates cold-start data before RL.
58
+ DeepSeek-R1 achieves performance comparable to OpenAI-o1 across math, code, and reasoning tasks.
59
+ To support the research community, we have open-sourced DeepSeek-R1-Zero, DeepSeek-R1, and six dense models distilled from DeepSeek-R1 based on Llama and Qwen. DeepSeek-R1-Distill-Qwen-32B outperforms OpenAI-o1-mini across various benchmarks, achieving new state-of-the-art results for dense models.
60
 
61
+ <p align="center">
62
+ <img width="80%" src="figures/benchmark.jpg">
63
+ </p>
64
 
65
+ ## 2. Model Summary
66
 
67
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
+ **Post-Training: Large-Scale Reinforcement Learning on the Base Model**
70
 
71
+ - We directly apply reinforcement learning (RL) to the base model without relying on supervised fine-tuning (SFT) as a preliminary step. This approach allows the model to explore chain-of-thought (CoT) for solving complex problems, resulting in the development of DeepSeek-R1-Zero. DeepSeek-R1-Zero demonstrates capabilities such as self-verification, reflection, and generating long CoTs, marking a significant milestone for the research community. Notably, it is the first open research to validate that reasoning capabilities of LLMs can be incentivized purely through RL, without the need for SFT. This breakthrough paves the way for future advancements in this area.
72
 
73
+ - We introduce our pipeline to develop DeepSeek-R1. The pipeline incorporates two RL stages aimed at discovering improved reasoning patterns and aligning with human preferences, as well as two SFT stages that serve as the seed for the model's reasoning and non-reasoning capabilities.
74
+ We believe the pipeline will benefit the industry by creating better models.
75
 
76
+ ---
77
 
78
+ **Distillation: Smaller Models Can Be Powerful Too**
79
 
80
+ - We demonstrate that the reasoning patterns of larger models can be distilled into smaller models, resulting in better performance compared to the reasoning patterns discovered through RL on small models. The open source DeepSeek-R1, as well as its API, will benefit the research community to distill better smaller models in the future.
81
+ - Using the reasoning data generated by DeepSeek-R1, we fine-tuned several dense models that are widely used in the research community. The evaluation results demonstrate that the distilled smaller dense models perform exceptionally well on benchmarks. We open-source distilled 1.5B, 7B, 8B, 14B, 32B, and 70B checkpoints based on Qwen2.5 and Llama3 series to the community.
82
 
83
+ ## 3. Model Downloads
84
 
85
+ ### DeepSeek-R1 Models
86
 
87
+ <div align="center">
88
 
89
+ | **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** |
90
+ | :------------: | :------------: | :------------: | :------------: | :------------: |
91
+ | DeepSeek-R1-Zero | 671B | 37B | 128K | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Zero) |
92
+ | DeepSeek-R1 | 671B | 37B | 128K | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1) |
93
 
94
+ </div>
95
 
96
+ DeepSeek-R1-Zero & DeepSeek-R1 are trained based on DeepSeek-V3-Base.
97
+ For more details regrading the model architecture, please refer to [DeepSeek-V3](https://github.com/deepseek-ai/DeepSeek-V3) repository.
98
 
99
+ ### DeepSeek-R1-Distill Models
100
 
101
+ <div align="center">
102
 
103
+ | **Model** | **Base Model** | **Download** |
104
+ | :------------: | :------------: | :------------: |
105
+ | DeepSeek-R1-Distill-Qwen-1.5B | [Qwen2.5-Math-1.5B](https://huggingface.co/Qwen/Qwen2.5-Math-1.5B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) |
106
+ | DeepSeek-R1-Distill-Qwen-7B | [Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) |
107
+ | DeepSeek-R1-Distill-Llama-8B | [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) |
108
+ | DeepSeek-R1-Distill-Qwen-14B | [Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B) |
109
+ |DeepSeek-R1-Distill-Qwen-32B | [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) |
110
+ | DeepSeek-R1-Distill-Llama-70B | [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B) |
111
 
112
+ </div>
113
 
114
+ DeepSeek-R1-Distill models are fine-tuned based on open-source models, using samples generated by DeepSeek-R1.
115
+ We slightly change their configs and tokenizers. Please use our setting to run these models.
116
 
117
+ ## 4. Evaluation Results
118
 
119
+ ### DeepSeek-R1-Evaluation
120
+ For all our models, the maximum generation length is set to 32,768 tokens. For benchmarks requiring sampling, we use a temperature of $0.6$, a top-p value of $0.95$, and generate 64 responses per query to estimate pass@1.
121
+ <div align="center">
 
 
122
 
 
123
 
124
+ | Category | Benchmark (Metric) | Claude-3.5-Sonnet-1022 | GPT-4o 0513 | DeepSeek V3 | OpenAI o1-mini | OpenAI o1-1217 | DeepSeek R1 |
125
+ |----------|-------------------|----------------------|------------|--------------|----------------|------------|--------------|
126
+ | | Architecture | - | - | MoE | - | - | MoE |
127
+ | | # Activated Params | - | - | 37B | - | - | 37B |
128
+ | | # Total Params | - | - | 671B | - | - | 671B |
129
+ | English | MMLU (Pass@1) | 88.3 | 87.2 | 88.5 | 85.2 | **91.8** | 90.8 |
130
+ | | MMLU-Redux (EM) | 88.9 | 88.0 | 89.1 | 86.7 | - | **92.9** |
131
+ | | MMLU-Pro (EM) | 78.0 | 72.6 | 75.9 | 80.3 | - | **84.0** |
132
+ | | DROP (3-shot F1) | 88.3 | 83.7 | 91.6 | 83.9 | 90.2 | **92.2** |
133
+ | | IF-Eval (Prompt Strict) | **86.5** | 84.3 | 86.1 | 84.8 | - | 83.3 |
134
+ | | GPQA-Diamond (Pass@1) | 65.0 | 49.9 | 59.1 | 60.0 | **75.7** | 71.5 |
135
+ | | SimpleQA (Correct) | 28.4 | 38.2 | 24.9 | 7.0 | **47.0** | 30.1 |
136
+ | | FRAMES (Acc.) | 72.5 | 80.5 | 73.3 | 76.9 | - | **82.5** |
137
+ | | AlpacaEval2.0 (LC-winrate) | 52.0 | 51.1 | 70.0 | 57.8 | - | **87.6** |
138
+ | | ArenaHard (GPT-4-1106) | 85.2 | 80.4 | 85.5 | 92.0 | - | **92.3** |
139
+ | Code | LiveCodeBench (Pass@1-COT) | 33.8 | 34.2 | - | 53.8 | 63.4 | **65.9** |
140
+ | | Codeforces (Percentile) | 20.3 | 23.6 | 58.7 | 93.4 | **96.6** | 96.3 |
141
+ | | Codeforces (Rating) | 717 | 759 | 1134 | 1820 | **2061** | 2029 |
142
+ | | SWE Verified (Resolved) | **50.8** | 38.8 | 42.0 | 41.6 | 48.9 | 49.2 |
143
+ | | Aider-Polyglot (Acc.) | 45.3 | 16.0 | 49.6 | 32.9 | **61.7** | 53.3 |
144
+ | Math | AIME 2024 (Pass@1) | 16.0 | 9.3 | 39.2 | 63.6 | 79.2 | **79.8** |
145
+ | | MATH-500 (Pass@1) | 78.3 | 74.6 | 90.2 | 90.0 | 96.4 | **97.3** |
146
+ | | CNMO 2024 (Pass@1) | 13.1 | 10.8 | 43.2 | 67.6 | - | **78.8** |
147
+ | Chinese | CLUEWSC (EM) | 85.4 | 87.9 | 90.9 | 89.9 | - | **92.8** |
148
+ | | C-Eval (EM) | 76.7 | 76.0 | 86.5 | 68.9 | - | **91.8** |
149
+ | | C-SimpleQA (Correct) | 55.4 | 58.7 | **68.0** | 40.3 | - | 63.7 |
150
 
151
+ </div>
152
 
 
153
 
154
+ ### Distilled Model Evaluation
155
 
 
156
 
157
+ <div align="center">
158
 
159
+ | Model | AIME 2024 pass@1 | AIME 2024 cons@64 | MATH-500 pass@1 | GPQA Diamond pass@1 | LiveCodeBench pass@1 | CodeForces rating |
160
+ |------------------------------------------|------------------|-------------------|-----------------|----------------------|----------------------|-------------------|
161
+ | GPT-4o-0513 | 9.3 | 13.4 | 74.6 | 49.9 | 32.9 | 759 |
162
+ | Claude-3.5-Sonnet-1022 | 16.0 | 26.7 | 78.3 | 65.0 | 38.9 | 717 |
163
+ | o1-mini | 63.6 | 80.0 | 90.0 | 60.0 | 53.8 | **1820** |
164
+ | QwQ-32B-Preview | 44.0 | 60.0 | 90.6 | 54.5 | 41.9 | 1316 |
165
+ | DeepSeek-R1-Distill-Qwen-1.5B | 28.9 | 52.7 | 83.9 | 33.8 | 16.9 | 954 |
166
+ | DeepSeek-R1-Distill-Qwen-7B | 55.5 | 83.3 | 92.8 | 49.1 | 37.6 | 1189 |
167
+ | DeepSeek-R1-Distill-Qwen-14B | 69.7 | 80.0 | 93.9 | 59.1 | 53.1 | 1481 |
168
+ | DeepSeek-R1-Distill-Qwen-32B | **72.6** | 83.3 | 94.3 | 62.1 | 57.2 | 1691 |
169
+ | DeepSeek-R1-Distill-Llama-8B | 50.4 | 80.0 | 89.1 | 49.0 | 39.6 | 1205 |
170
+ | DeepSeek-R1-Distill-Llama-70B | 70.0 | **86.7** | **94.5** | **65.2** | **57.5** | 1633 |
171
 
172
+ </div>
173
 
 
174
 
175
+ ## 5. Chat Website & API Platform
176
+ You can chat with DeepSeek-R1 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com), and switch on the button "DeepThink"
177
 
178
+ We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/)
179
 
180
+ ## 6. How to Run Locally
181
 
182
+ ### DeepSeek-R1 Models
183
 
184
+ Please visit [DeepSeek-V3](https://github.com/deepseek-ai/DeepSeek-V3) repo for more information about running DeepSeek-R1 locally.
185
 
186
+ ### DeepSeek-R1-Distill Models
187
 
188
+ DeepSeek-R1-Distill models can be utilized in the same manner as Qwen or Llama models.
189
 
190
+ For instance, you can easily start a service using [vLLM](https://github.com/vllm-project/vllm):
191
 
192
+ ```shell
193
+ vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --tensor-parallel-size 2 --max-model-len 32768 --enforce-eager
194
+ ```
195
 
196
+ **NOTE: We recommend setting an appropriate temperature (between 0.5 and 0.7) when running these models, otherwise you may encounter issues with endless repetition or incoherent output.**
197
 
198
+ ## 7. License
199
+ This code repository and the model weights are licensed under the [MIT License](https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE).
200
+ DeepSeek-R1 series support commercial use, allow for any modifications and derivative works, including, but not limited to, distillation for training other LLMs. Please note that:
201
+ - DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-14B and DeepSeek-R1-Distill-Qwen-32B are derived from [Qwen-2.5 series](https://github.com/QwenLM/Qwen2.5), which are originally licensed under [Apache 2.0 License](https://huggingface.co/Qwen/Qwen2.5-1.5B/blob/main/LICENSE), and now finetuned with 800k samples curated with DeepSeek-R1.
202
+ - DeepSeek-R1-Distill-Llama-8B is derived from Llama3.1-8B-Base and is originally licensed under [llama3.1 license](https://huggingface.co/meta-llama/Llama-3.1-8B/blob/main/LICENSE).
203
+ - DeepSeek-R1-Distill-Llama-70B is derived from Llama3.3-70B-Instruct and is originally licensed under [llama3.3 license](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct/blob/main/LICENSE).
204
 
205
+ ## 8. Citation
206
+ ```
207
 
208
+ ```
209
 
210
+ ## 9. Contact
211
+ If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).