kimihailv commited on
Commit
8793654
·
verified ·
1 Parent(s): d9b933f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -179
README.md CHANGED
@@ -1,201 +1,81 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
 
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
 
35
 
36
- ## Uses
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
 
 
 
 
 
 
201
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - image-captioning
5
+ - visual-question-answering
6
+ license: apache-2.0
7
+ datasets:
8
+ - X2FD/LVIS-Instruct4V
9
+ - BAAI/SVIT
10
+ - HuggingFaceH4/ultrachat_200k
11
+ language:
12
+ - en
13
+ pipeline_tag: image-to-text
14
+ widget:
15
+ - src: interior.jpg
16
+ example_title: Detailed caption
17
+ output:
18
+ text: "The image showcases a serene and well-lit bedroom. Dominating the scene is a bed, neatly made with a white blanket and a black headboard. Adjacent to the bed, a dresser stands tall, hosting a mirror, a vase, and a flower arrangement. A chair is positioned near the dresser, offering a comfortable spot to sit and relax. The room is adorned with a large window that offers a picturesque view of trees outside. The walls are painted in a soothing shade of white, enhancing the overall ambiance of the space."
19
+ - src: cat.jpg
20
+ example_title: Short caption
21
+ output:
22
+ text: "A white and orange cat stands on its hind legs, reaching towards a wooden table with a white teapot and a basket of red berries. The table is set on a wooden bench, surrounded by orange flowers. The cat's position and actions suggest curiosity and playfulness."
23
  ---
24
 
25
+ <h1 align="center">UForm</h1>
26
+ <h3 align="center">
27
+ Pocket-Sized Multimodal AI<br/>
28
+ For Content Understanding and Generation<br/>
29
+ </h3>
30
 
31
+ ## Description
32
 
33
+ UForm-Gen is a small generative vision-language model primarily designed for Image Captioning and Visual Question Answering. The model consists of two parts:
34
 
35
+ 1. CLIP-like ViT-H/14
36
+ 2. [Qwen1.5-0.5B-Chat](https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat)
37
 
38
+ The model was pre-trained on the internal image captioning dataset and fine-tuned on public instructions datasets: SVIT, LVIS, VQAs datasets.
39
 
40
+ ### Usage
41
 
 
42
 
43
+ The generative model can be used to caption images, answer questions about them. Also it is suitable for a multimodal chat.
44
 
45
+ ```python
46
+ from transformers import AutoModel, AutoProcessor
 
 
 
 
 
47
 
48
+ model = AutoModel.from_pretrained("unum-cloud/uform-gen2-qwen-halfB", trust_remote_code=True)
49
+ processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-qwen-halfB", trust_remote_code=True)
50
 
51
+ prompt = "Question or Instruction"
52
+ image = Image.open("image.jpg")
53
 
54
+ inputs = processor(text=[prompt], images=[image], return_tensors="pt")
55
+ with torch.inference_mode():
56
+ output = model.generate(
57
+ **inputs,
58
+ do_sample=False,
59
+ use_cache=True,
60
+ max_new_tokens=256,
61
+ eos_token_id=151645,
62
+ pad_token_id=processor.tokenizer.pad_token_id
63
+ )
64
 
65
+ prompt_len = inputs["input_ids"].shape[1]
66
+ decoded_text = processor.batch_decode(output[:, prompt_len:])[0]
67
+ ```
68
 
69
+ You can check examples of different prompts in our demo space.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
  ## Evaluation
72
 
73
+ For captioning evaluation we measure CLIPScore and RefCLIPScore¹.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
+ | Model | LLM Size | SQA | MME | MMBench | Average¹ |
76
+ | :---------------------------------- | -------: | -----:| ------:| --------:| --------:|
77
+ | UForm-Gen2-Qwen-halfB | 0.5B | 45.5 | 880.1 | 42.0 | 29.31 |
78
+ | MobileVLM v2 | 1.4B | 52.1 | 1302.8 | 57.7 | 36.81 |
79
+ | LLaVA-Phi | 2.7B | 68.4 | 1335.1 | 59.8 | 42.95 |
80
 
81
+ ¹MME scores were divided by 2000 before averaging.