ashvardanian commited on
Commit
eae7164
1 Parent(s): 1894a0d

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - ar
6
+ - hy
7
+ - zh
8
+ - fr
9
+ - de
10
+ - he
11
+ - hi
12
+ - id
13
+ - it
14
+ - ja
15
+ - ko
16
+ - fa
17
+ - pl
18
+ - pt
19
+ - ru
20
+ - es
21
+ - th
22
+ - tr
23
+ - uk
24
+ - vi
25
+ pipeline_tag: feature-extraction
26
+ tags:
27
+ - clip
28
+ - vision
29
+ datasets:
30
+ - sbu_captions
31
+ - visual_genome
32
+ - ChristophSchuhmann/MS_COCO_2017_URL_TEXT
33
+ ---
34
+
35
+ <h1 align="center">UForm</h1>
36
+ <h3 align="center">
37
+ Multi-Modal Inference Library<br/>
38
+ For Semantic Search Applications<br/>
39
+ </h3>
40
+
41
+ ---
42
+
43
+ UForm is a Multi-Modal Modal Inference package, designed to encode Multi-Lingual Texts, Images, and, soon, Audio, Video, and Documents, into a shared vector space!
44
+
45
+ This is model card of the __Multilingual model__ (21 languages) with:
46
+
47
+ * 12 layers BERT (8 layers for unimodal encoding and rest layers for multimodal encoding)
48
+ * ViT-B/16 (image resolution is 224x224)
49
+
50
+ The model was trained on balanced multilingual dataset.
51
+
52
+ If you need English model, check [this](https://huggingface.co/unum-cloud/uform-vl-english).
53
+
54
+ ## Evaluation
55
+
56
+ For all evaluations, the multimodal part was used unless otherwise stated.
57
+
58
+ **Monolingual**
59
+
60
+ | Dataset | Recall@1 | Recall@5 | Recall@10 |
61
+ | :-------- | ------: | --------: | --------: |
62
+ | Zero-Shot Flickr | 0.558 | 0.813 | 0.874 |
63
+ | MS-COCO (train split was in training data) | 0.401 | 0.680 | 0.781 |
64
+
65
+ **Multilingual**
66
+
67
+ [XTD-10](https://github.com/adobe-research/Cross-lingual-Test-Dataset-XTD10)
68
+
69
+ Metric is recall@10
70
+
71
+
72
+ | English | German | Spanish | French | Italian | Russian | Japanese | Korean | Turkish | Chinese | Polish |
73
+ | -------: | -------: | -------: | -------: | -------: | -------: | -------: | -------: | -------: | -------: | ------:|
74
+ | 96.1 | 93.5 | 95.7 | 94.1 | 94.4 | 90.4 | 90.2 | 91.3 | 95.2 | 93.8 | 95.8 |
75
+
76
+
77
+ [COCO-SM](https://github.com/kimihailv/coco-sm/tree/main)
78
+
79
+ For this evaluation only unimodal part was used.
80
+
81
+ Recall
82
+
83
+ | Target Language | OpenCLIP @ 1 | UForm @ 1 | OpenCLIP @ 5 | UForm @ 5 | OpenCLIP @ 10 | UForm @ 10 | Speakers |
84
+ | :-------------------- | -----------: | ------------: | -----------: | -------------:| ------------: | --------------:| -------: |
85
+ | Arabic | 22.7 | **31.7** | 44.9 | **57.8** | 55.8 | **69.2** | 274 M |
86
+ | Armenian | 5.6 | **22.0** | 14.3 | **44.7** | 20.2 | **56.0** | 4 M |
87
+ | Chinese | 27.3 | **32.2** | 51.3 | **59.0** | 62.1 | **70.5** | 1'118 M |
88
+ | English | **37.8** | 37.7 | 63.5 | **65.0** | 73.5 | **75.9** | 1'452 M |
89
+ | French | 31.3 | **35.4** | 56.5 | **62.6** | 67.4 | **73.3** | 274 M |
90
+ | German | 31.7 | **35.1** | 56.9 | **62.2** | 67.4 | **73.3** | 134 M |
91
+ | Hebrew | 23.7 | **26.7** | 46.3 | **51.8** | 57.0 | **63.5** | 9 M |
92
+ | Hindi | 20.7 | **31.3** | 42.5 | **57.9** | 53.7 | **69.6** | 602 M |
93
+ | Indonesian | 26.9 | **30.7** | 51.4 | **57.0** | 62.7 | **68.6** | 199 M |
94
+ | Italian | 31.3 | **34.9** | 56.7 | **62.1** | 67.1 | **73.1** | 67 M |
95
+ | Japanese | 27.4 | **32.6** | 51.5 | **59.2** | 62.6 | **70.6** | 125 M |
96
+ | Korean | 24.4 | **31.5** | 48.1 | **57.8** | 59.2 | **69.2** | 81 M |
97
+ | Persian | 24.0 | **28.8** | 47.0 | **54.6** | 57.8 | **66.2** | 77 M |
98
+ | Polish | 29.2 | **33.6** | 53.9 | **60.1** | 64.7 | **71.3** | 41 M |
99
+ | Portuguese | 31.6 | **32.7** | 57.1 | **59.6** | 67.9 | **71.0** | 257 M |
100
+ | Russian | 29.9 | **33.9** | 54.8 | **60.9** | 65.8 | **72.0** | 258 M |
101
+ | Spanish | 32.6 | **35.6** | 58.0 | **62.8** | 68.8 | **73.7** | 548 M |
102
+ | Thai | 21.5 | **28.7** | 43.0 | **54.6** | 53.7 | **66.0** | 61 M |
103
+ | Turkish | 25.5 | **33.0** | 49.1 | **59.6** | 60.3 | **70.8** | 88 M |
104
+ | Ukranian | 26.0 | **30.6** | 49.9 | **56.7** | 60.9 | **68.1** | 41 M |
105
+ | Vietnamese | 25.4 | **28.3** | 49.2 | **53.9** | 60.3 | **65.5** | 85 M |
106
+ | | | | | | | | |
107
+ | Mean | 26.5±6.4 | **31.8±3.5** | 49.8±9.8 | **58.1±4.5** | 60.4±10.6 | **69.4±4.3** | - |
108
+ | Google Translate | 27.4±6.3 | **31.5±3.5** | 51.1±9.5 | **57.8±4.4** | 61.7±10.3 | **69.1±4.3** | - |
109
+ | Microsoft Translator | 27.2±6.4 | **31.4±3.6** | 50.8±9.8 | **57.7±4.7** | 61.4±10.6 | **68.9±4.6** | - |
110
+ | Meta NLLB | 24.9±6.7 | **32.4±3.5** | 47.5±10.3 | **58.9±4.5** | 58.2±11.2 | **70.2±4.3** | - |
111
+
112
+ NDCG@20
113
+
114
+ | | Arabic | Armenian | Chinese | French | German | Hebrew | Hindi | Indonesian | Italian | Japanese | Korean | Persian | Polish | Portuguese | Russian | Spanish | Thai | Turkish | Ukranian | Vietnamese | Mean (all) | Mean (Google Translate) | Mean(Microsoft Translator) | Mean(NLLB)
115
+ | :------------ | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: |
116
+ | OpenCLIP NDCG | 0.639 | 0.204 | 0.731 | 0.823 | 0.806 | 0.657 | 0.616 | 0.733 | 0.811 | 0.737 | 0.686 | 0.667 | 0.764 | 0.832 | 0.777 | 0.849 | 0.606 | 0.701 | 0.704 | 0.697 | 0.716 ± 0.149 | 0.732 ± 0.145 | 0.730 ± 0.149 | 0.686 ± 0.158
117
+ | UForm NDCG | 0.868 | 0.691 | 0.880 | 0.932 | 0.927 | 0.791 | 0.879 | 0.870 | 0.930 | 0.885 | 0.869 | 0.831 | 0.897 | 0.897 | 0.906 | 0.939 | 0.822 | 0.898 | 0.851 | 0.818 | 0.875 ± 0.064 | 0.869 ± 0.063 | 0.869 ± 0.066 | 0.888 ± 0.064
118
+
119
+ ## Installation
120
+
121
+ ```bash
122
+ pip install uform[torch]
123
+ ```
124
+
125
+ ## Usage
126
+
127
+ To load the model:
128
+
129
+ ```python
130
+ import uform
131
+
132
+ model, processor = uform.get_model('unum-cloud/uform-vl-multilingual-v2')
133
+ ```
134
+
135
+ To encode data:
136
+
137
+ ```python
138
+ from PIL import Image
139
+
140
+ text = 'a small red panda in a zoo'
141
+ image = Image.open('red_panda.jpg')
142
+
143
+ image_data = processor.preprocess_image(image)
144
+ text_data = processor.preprocess_text(text)
145
+
146
+ image_features, image_embedding = model.encode_image(image_data, return_features=True)
147
+ text_features, text_embedding = model.encode_text(text_data, return_features=True)
148
+ joint_embedding = model.encode_multimodal(image=image_data, text=text_data)
149
+ ```
150
+
151
+ To get features:
152
+
153
+ ```python
154
+ image_features, image_embedding = model.encode_image(image_data, return_features=True)
155
+ text_features, text_embedding = model.encode_text(text_data, return_features=True)
156
+ ```
157
+
158
+ These features can later be used to produce joint multimodal encodings faster, as the first layers of the transformer can be skipped:
159
+
160
+ ```python
161
+ joint_embedding = model.encode_multimodal(
162
+ image_features=image_features,
163
+ text_features=text_features,
164
+ attention_mask=text_data['attention_mask']
165
+ )
166
+ ```
167
+
168
+ There are two options to calculate semantic compatibility between an image and a text: [Cosine Similarity](#cosine-similarity) and [Matching Score](#matching-score).
169
+
170
+ ### Cosine Similarity
171
+
172
+ ```python
173
+ import torch.nn.functional as F
174
+
175
+ similarity = F.cosine_similarity(image_embedding, text_embedding)
176
+ ```
177
+
178
+ The `similarity` will belong to the `[-1, 1]` range, `1` meaning the absolute match.
179
+
180
+ __Pros__:
181
+
182
+ - Computationally cheap.
183
+ - Only unimodal embeddings are required, unimodal encoding is faster than joint encoding.
184
+ - Suitable for retrieval in large collections.
185
+
186
+ __Cons__:
187
+
188
+ - Takes into account only coarse-grained features.
189
+
190
+
191
+ ### Matching Score
192
+
193
+ Unlike cosine similarity, unimodal embedding are not enough.
194
+ Joint embedding will be needed and the resulting `score` will belong to the `[0, 1]` range, `1` meaning the absolute match.
195
+
196
+ ```python
197
+ score = model.get_matching_scores(joint_embedding)
198
+ ```
199
+
200
+ __Pros__:
201
+
202
+ - Joint embedding captures fine-grained features.
203
+ - Suitable for re-ranking – sorting retrieval result.
204
+
205
+ __Cons__:
206
+
207
+ - Resource-intensive.
208
+ - Not suitable for retrieval in large collections.
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "text_encoder": {
3
+ "tokenizer_class": "bert",
4
+ "model_type": "bert",
5
+ "dim": 384,
6
+ "context_dim": 768,
7
+ "vocab_size": 250037,
8
+ "padding_idx": 1,
9
+ "num_layers": 12,
10
+ "num_heads": 12,
11
+ "embedding_dim": 256,
12
+ "multimodal_layers_ids": [
13
+ 8,
14
+ 9,
15
+ 10,
16
+ 11
17
+ ],
18
+ "head_one_neuron": false,
19
+ "pooling": "mean",
20
+ "max_position_embeddings": 50,
21
+ "dropout_prob": 0.1
22
+ },
23
+ "image_encoder": {
24
+ "normalization_means": [
25
+ 0.48145466,
26
+ 0.4578275,
27
+ 0.40821073
28
+ ],
29
+ "normalization_deviations": [
30
+ 0.26862954,
31
+ 0.26130258,
32
+ 0.27577711
33
+ ],
34
+ "dim": 768,
35
+ "patch_size": 16,
36
+ "image_size": 224,
37
+ "num_layers": 12,
38
+ "num_heads": 12,
39
+ "embedding_dim": 256,
40
+ "pooling": "cls"
41
+ }
42
+ }
image_encoder.mlpackage/Data/com.apple.CoreML/model.mlmodel ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:101d2a485d7f1fb9b13bb2e9b21017d41e0484c09d7252fa48cd45663bf6a7a0
3
+ size 111239
image_encoder.mlpackage/Data/com.apple.CoreML/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b24c24003fc3acf7635ad22f5c7114e2332dcdc7d0bc54ca0a037c777240646
3
+ size 344067136
image_encoder.mlpackage/Manifest.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "fileFormatVersion": "1.0.0",
3
+ "itemInfoEntries": {
4
+ "690CB1E0-62DD-45EA-948E-FBBD7B246BE6": {
5
+ "author": "com.apple.CoreML",
6
+ "description": "CoreML Model Specification",
7
+ "name": "model.mlmodel",
8
+ "path": "com.apple.CoreML/model.mlmodel"
9
+ },
10
+ "83ED2C72-7659-440D-A7C9-61793559340B": {
11
+ "author": "com.apple.CoreML",
12
+ "description": "CoreML Model Weights",
13
+ "name": "weights",
14
+ "path": "com.apple.CoreML/weights"
15
+ }
16
+ },
17
+ "rootModelIdentifier": "690CB1E0-62DD-45EA-948E-FBBD7B246BE6"
18
+ }
image_encoder.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b764843eeaa20a981f5f1baf19f4fedf33ee0385483fc0d30e15d5aa6ea4912e
3
+ size 87267684
image_encoder.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02b7d4306999f49a70ddfe60e69932428a9c81709bef702f99d9c4380f987645
3
+ size 172100742
image_encoder.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb3c5dc0ecabbafcaab8011112b07ef01d39e006cae25de0b7cc60dc0b42213c
3
+ size 172047072
text_encoder.mlpackage/Data/com.apple.CoreML/model.mlmodel ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b388380d8fdcd0271c9b851c22348453c36463cf43aa3d656b7fa9aa6ea52c42
3
+ size 74060
text_encoder.mlpackage/Data/com.apple.CoreML/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:064e0da61cc46b74a9a5f799c529fcbdb00cb19b6603e152b6ede7e3bdbed017
3
+ size 441322432
text_encoder.mlpackage/Manifest.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "fileFormatVersion": "1.0.0",
3
+ "itemInfoEntries": {
4
+ "09A10422-686F-432D-B684-1B0F05B38FC0": {
5
+ "author": "com.apple.CoreML",
6
+ "description": "CoreML Model Weights",
7
+ "name": "weights",
8
+ "path": "com.apple.CoreML/weights"
9
+ },
10
+ "0C92F7F7-B285-45D6-9DF1-DCC71E38166D": {
11
+ "author": "com.apple.CoreML",
12
+ "description": "CoreML Model Specification",
13
+ "name": "model.mlmodel",
14
+ "path": "com.apple.CoreML/model.mlmodel"
15
+ }
16
+ },
17
+ "rootModelIdentifier": "0C92F7F7-B285-45D6-9DF1-DCC71E38166D"
18
+ }
text_encoder.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4dfc9d14b13c871a55386fdfc9d787446535dcb013c9ccf8c9db0323db3febf
3
+ size 110689743
text_encoder.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:373485cd65cc62c3e41bf623b75171981fe1160e13f84d5f05499e8e2c34e63f
3
+ size 240262678
text_encoder.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:400b19de2ca7380307010f006f2823cd953fa4d63d90ec5d2e572beb2d5dc512
3
+ size 240204124
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff