File size: 9,739 Bytes
02686f7
8160143
 
cc0f8ba
 
8160143
 
 
 
 
cc0f8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02686f7
0649b01
 
8160143
 
 
0649b01
 
8160143
0649b01
8160143
0649b01
 
8160143
0649b01
 
 
8160143
 
 
 
 
 
 
 
0649b01
 
8160143
0649b01
 
 
8160143
 
6623e1e
8160143
0649b01
6623e1e
8160143
0649b01
6623e1e
8160143
 
0649b01
8160143
 
6623e1e
8160143
0649b01
6623e1e
8160143
 
0649b01
8160143
0649b01
8160143
0649b01
8160143
0649b01
 
 
 
8160143
0649b01
 
 
8160143
0649b01
8160143
0649b01
8160143
 
0649b01
8160143
0649b01
 
 
 
8160143
0649b01
 
 
 
 
 
 
 
8160143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0649b01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc0f8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
---
language:
- en
license: apache-2.0
library_name: peft
tags:
- NeurIPS
- NeurIPS LLM Efficiency Challenge
- NeurIPS LLM Efficiency Challenge Winner Model
- Team Upaya
datasets:
- upaya07/NeurIPS-LLM-data
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: Birbal-7B-V1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 62.88
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=upaya07/Birbal-7B-V1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 84.88
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=upaya07/Birbal-7B-V1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.71
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=upaya07/Birbal-7B-V1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 45.46
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=upaya07/Birbal-7B-V1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.53
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=upaya07/Birbal-7B-V1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 41.47
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=upaya07/Birbal-7B-V1
      name: Open LLM Leaderboard
---

# Model Card for Model ID
[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](CODE_LICENSE)
[![Model Weight License](https://img.shields.io/badge/Model%20Weights%20License-Apache_2.0-green.svg)](LICENSE)
[![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/release/python-390/)


- πŸš€πŸš€πŸš€ Our model **Birbal-7B-V1** achieved πŸ† first rank πŸ† in among 80+ global teams in [**NeurIPS Large Language Model Efficiency Challenge: 1 LLM + 1GPU + 1Day**](https://llm-efficiency-challenge.github.io/) organized by Microsoft and Meta.

- πŸ“£ **P.S.:** Please reach out to us, if you would be interested in supporting compute resources. Here are our recent achievements in LLM space: https://upaya.ai/

## Model Details
**Birbal-7B-V1** is fine-tuned on our curated dataset of 200k size for nearly 3 epochs. Our approach for dataset preparation is focused on finding most-relavant examples from large pool of tasks spanning across NLP, Maths, Commonsense, etc. Hence, we expect model to perform well on different tasks including unseen tasks.

### Model Description

- **Project GitHub Page:** https://github.com/Upaya07/NeurIPS-llm-efficiency-challenge
- **Developed by:** ❀️ Team **Upaya** - [Ashvini Kumar Jindal](https://www.linkedin.com/in/ashvini-jindal-26653262/), [Ankur Parikh](https://www.linkedin.com/in/ankurnlpexpert/), [Pawan Rajpoot](https://www.linkedin.com/in/pawanrajpoot/) 
- **Funded by:** self-work
- **Model type:** fine-tuned. It is a PEFT model and can be combined with [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) model.
- **Language(s) (NLP):** English
- **License:** Apache-2.0
- **Finetuned from model:** mistralai/Mistral-7B-v0.1
 
### Model Sources [optional]

- **Repository:** https://github.com/Upaya07/NeurIPS-llm-efficiency-challenge

## Uses

Birbal-7B-V1 is trained with the following format:
```
## Instruction:
<instruction>

## Input:
<input>

## Response:
<response>
```

If a record does not contain any instruction, here is the training format:
```
## Input:
<input>

## Response:
<response>
```

It will performed best if queried in the same way.

### Downstream Use

Birbal-7B-V1 is fine-tuned on our curated dataset that contain examples from large number of tasks spanning across NLP, Maths, QA, etc. Hence, we expect the model to perform well on in general on various kinds of tasks.


## How to Get Started with the Model

It is quite easy! Merge Birbal-7B-V1 peft model with Mistral-7B model and start running inference!

## Training Details

We used [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base model and fine-tuned it on a single RTX 4090 GPU for 24 hours as per the competition rules. Fine-tuning was performed using 4-bit QLoRA.

### Training Data

Here is high-level diagram of our data preparation strategy:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/ot0yJdO6VpKvPYKd-XEuy.png)

Please visit https://huggingface.co/datasets/upaya07/NeurIPS-LLM-data for more details.


#### Training Hyperparameters

Refer to https://github.com/Upaya07/NeurIPS-llm-efficiency-challenge/blob/main/training/axolotl/examples/mistral/nips/nips_02.yml for example set of hyperparams used.


## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Results

| Task | Score |
| ----- |------|
| MMLU - EM | 0.629 |
| MMLU - EM (Robustness) | 0.591 |
| MMLU - EM (Fairness) | 0.596 |
| MMLU Mean Win Rate | 0.417 |
| TruthfulQA - EM | 0.59 |
| TruthfulQA - EM (Robustness) | 0.541 |
| TruthfulQA - EM (Fairness) | 0.492 |
| TruthfulQA Mean Win Rate | 0.75 |
| BIG-bench - EM | 0.330 |
| BIG-bench Mean Win Rate | 0.75 |
| GSM8K - EM | 0.443 |
| GSM8K Mean Win Rate | 0.625 |
| BBQ - EM | 0.738 |
| BBQ Mean Win Rate | 0.25 |
| sam_sum - ROUGE-2 | 0.127 |
| sam_sum - Stereotypes (race) | 0.667 |
| sam_sum - Stereotypes (gender) | 0.447 |
| sam_sum - Representation (race) | 0.458 |
| sam_sum - Representation (gender) | 0.013 |
| sam_sum Mean Win Rate | 0.383 |
| corr2cause - EM | 0.615 |
| corr2cause Mean Win Rate | 0.875 |
| MATH (chain-of-thoughts) - Equivalent (chain of thought) | 0.121 |
| MATH Mean Win Rate | 0.75 |
| ethics_justice - EM | 0.68 |
| ethics_justice - EM (Robustness) | 0.645 |
| ethics_justice - EM (Fairness) | 0.62 |
| ethics_commonsense - EM | 0.41 |
| ethics_commonsense - EM (Robustness) | 0.33 |
| ethics_commonsense - EM (Fairness) | 0.345 |
| ethics_virtue - EM | 0.895 |
| ethics_virtue - EM (Robustness) | 0.865 |
| ethics_virtue - EM (Fairness) | 0.86 |
| ethics_deontology - EM | 0.63 |
| ethics_deontology - EM (Robustness) | 0.585 |
| ethics_deontology - EM (Fairness) | 0.595 |
| ethics_utilitarianism - EM | 0.72 |
| ethics_utilitarianism - EM (Robustness) | 0.6 |
| ethics_utilitarianism - EM (Fairness) | 0.645 |
| ethics Mean Win Rate | 0.55 |
| πŸ”₯ **Score_full** | **0.579** |
| πŸ”₯ **Score_open** | **0.516** |
| πŸ”₯ **Score_hidden** | **0.61** |

#### Top-5 Teams
| Position | Score |
| ----- |------|
| 5th rank | 0.362 |
| 4th rank | 0.371 |
| 3rd rank | 0.381 |
| 2nd rank | 0.424 |
| πŸ”₯ **Ours (1st)** | **0.579** |


## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]


## Training procedure


The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16

### Framework versions


- PEFT 0.6.1
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_upaya07__Birbal-7B-V1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |62.82|
|AI2 Reasoning Challenge (25-Shot)|62.88|
|HellaSwag (10-Shot)              |84.88|
|MMLU (5-Shot)                    |63.71|
|TruthfulQA (0-shot)              |45.46|
|Winogrande (5-shot)              |78.53|
|GSM8k (5-shot)                   |41.47|