--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers language: ko --- # kf-deberta-multitask This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. You can check the training recipes on [GitHub](https://github.com/upskyy/kf-deberta-multitask). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["안녕하세요?", "한국어 문장 임베딩을 위한 버트 모델입니다."] model = SentenceTransformer("upskyy/kf-deberta-multitask") embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch # Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["안녕하세요?", "한국어 문장 임베딩을 위한 버트 모델입니다."] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("upskyy/kf-deberta-multitask") model = AutoModel.from_pretrained("upskyy/kf-deberta-multitask") # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results KorSTS, KorNLI 학습 데이터셋으로 멀티 태스크 학습을 진행한 후 KorSTS 평가 데이터셋으로 평가한 결과입니다. - Cosine Pearson: 85.75 - Cosine Spearman: 86.25 - Manhattan Pearson: 84.80 - Manhattan Spearman: 85.27 - Euclidean Pearson: 84.79 - Euclidean Spearman: 85.25 - Dot Pearson: 82.93 - Dot Spearman: 82.86
|model|cosine_pearson|cosine_spearman|euclidean_pearson|euclidean_spearman|manhattan_pearson|manhattan_spearman|dot_pearson|dot_spearman| |:-------------------------|-----------------:|------------------:|--------------------:|---------------------:|--------------------:|---------------------:|--------------:|---------------:| |[kf-deberta-multitask](https://huggingface.co/upskyy/kf-deberta-multitask)|**85.75**|**86.25**|**84.79**|**85.25**|**84.80**|**85.27**|**82.93**|**82.86**| |[ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask)|84.77|85.6|83.71|84.40|83.70|84.38|82.42|82.33| |[ko-sbert-multitask](https://huggingface.co/jhgan/ko-sbert-multitask)|84.13|84.71|82.42|82.66|82.41|82.69|80.05|79.69| |[ko-sroberta-base-nli](https://huggingface.co/jhgan/ko-sroberta-nli)|82.83|83.85|82.87|83.29|82.88|83.28|80.34|79.69| |[ko-sbert-nli](https://huggingface.co/jhgan/ko-sbert-multitask)|82.24|83.16|82.19|82.31|82.18|82.3|79.3|78.78| |[ko-sroberta-sts](https://huggingface.co/jhgan/ko-sroberta-sts)|81.84|81.82|81.15|81.25|81.14|81.25|79.09|78.54| |[ko-sbert-sts](https://huggingface.co/jhgan/ko-sbert-sts)|81.55|81.23|79.94|79.79|79.9|79.75|76.02|75.31|
## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 4442 with parameters: ``` {'batch_size': 128} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 719 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 719, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DebertaV2Model (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @proceedings{jeon-etal-2023-kfdeberta, title = {KF-DeBERTa: Financial Domain-specific Pre-trained Language Model}, author = {Eunkwang Jeon, Jungdae Kim, Minsang Song, and Joohyun Ryu}, booktitle = {Proceedings of the 35th Annual Conference on Human and Cognitive Language Technology}, moth = {oct}, year = {2023}, publisher = {Korean Institute of Information Scientists and Engineers}, url = {http://www.hclt.kr/symp/?lnb=conference}, pages = {143--148}, } ``` ```bibtex @article{ham2020kornli, title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding}, author={Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon}, journal={arXiv preprint arXiv:2004.03289}, year={2020} } ```