Token Classification
GLiNER
PyTorch
multilingual
File size: 5,520 Bytes
cdcea14
5428822
596993c
b9618ce
596993c
b9618ce
 
83d8b1a
cdcea14
596993c
 
 
 
 
b9618ce
 
596993c
 
 
 
 
5ab2dd3
 
 
 
 
 
 
b5720ab
5ab2dd3
 
596993c
83d8b1a
596993c
83d8b1a
596993c
 
 
83d8b1a
596993c
 
83d8b1a
596993c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e24f6e
596993c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9618ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: cc-by-nc-4.0
language:
- multilingual
pipeline_tag: token-classification
datasets:
- Universal-NER/Pile-NER-type
library_name: gliner
---

# Model Card for GLiNER-multi

GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.

This version has been trained on the **Pile-NER** dataset (Research purpose). Commercially permission versions are available (**urchade/gliner_smallv2**, **urchade/gliner_mediumv2**, **urchade/gliner_largev2**)

## Links

* Paper: https://arxiv.org/abs/2311.08526
* Repository: https://github.com/urchade/GLiNER

## Available models

| Release | Model Name | # of Parameters | Language | License |
| - | - | - | - | - |
| v0 | [urchade/gliner_base](https://huggingface.co/urchade/gliner_base)<br>[urchade/gliner_multi](https://huggingface.co/urchade/gliner_multi) | 209M<br>209M | English<br>Multilingual | cc-by-nc-4.0 |
| v1 | [urchade/gliner_small-v1](https://huggingface.co/urchade/gliner_small-v1)<br>[urchade/gliner_medium-v1](https://huggingface.co/urchade/gliner_medium-v1)<br>[urchade/gliner_large-v1](https://huggingface.co/urchade/gliner_large-v1) | 166M<br>209M<br>459M | English <br> English <br> English | cc-by-nc-4.0 |
| v2 | [urchade/gliner_small-v2](https://huggingface.co/urchade/gliner_small-v2)<br>[urchade/gliner_medium-v2](https://huggingface.co/urchade/gliner_medium-v2)<br>[urchade/gliner_large-v2](https://huggingface.co/urchade/gliner_large-v2) | 166M<br>209M<br>459M |  English <br> English <br> English | apache-2.0 |
| v2.1 | [urchade/gliner_small-v2.1](https://huggingface.co/urchade/gliner_small-v2.1)<br>[urchade/gliner_medium-v2.1](https://huggingface.co/urchade/gliner_medium-v2.1)<br>[urchade/gliner_large-v2.1](https://huggingface.co/urchade/gliner_large-v2.1) <br>[urchade/gliner_multi-v2.1](https://huggingface.co/urchade/gliner_multi-v2.1) | 166M<br>209M<br>459M<br>209M | English <br> English <br> English <br> Multilingual | apache-2.0 |


## Installation
To use this model, you must install the GLiNER Python library:
```
!pip install gliner
```

## Usage
Once you've downloaded the GLiNER library, you can import the GLiNER class. You can then load this model using `GLiNER.from_pretrained` and predict entities with `predict_entities`.

```python
from gliner import GLiNER

model = GLiNER.from_pretrained("urchade/gliner_multi")

text = """
Cristiano Ronaldo dos Santos Aveiro (Portuguese pronunciation: [kɾiʃˈtjɐnu ʁɔˈnaldu]; born 5 February 1985) is a Portuguese professional footballer who plays as a forward for and captains both Saudi Pro League club Al Nassr and the Portugal national team. Widely regarded as one of the greatest players of all time, Ronaldo has won five Ballon d'Or awards,[note 3] a record three UEFA Men's Player of the Year Awards, and four European Golden Shoes, the most by a European player. He has won 33 trophies in his career, including seven league titles, five UEFA Champions Leagues, the UEFA European Championship and the UEFA Nations League. Ronaldo holds the records for most appearances (183), goals (140) and assists (42) in the Champions League, goals in the European Championship (14), international goals (128) and international appearances (205). He is one of the few players to have made over 1,200 professional career appearances, the most by an outfield player, and has scored over 850 official senior career goals for club and country, making him the top goalscorer of all time.
"""

labels = ["person", "award", "date", "competitions", "teams"]

entities = model.predict_entities(text, labels)

for entity in entities:
    print(entity["text"], "=>", entity["label"])
```

```
Cristiano Ronaldo dos Santos Aveiro => person
5 February 1985 => date
Saudi Pro League => competitions
Al Nassr => teams
Portugal national team => teams
Ballon d'Or => award
UEFA Men's Player of the Year Awards => award
European Golden Shoes => award
UEFA Champions Leagues => competitions
UEFA European Championship => competitions
UEFA Nations League => competitions
Champions League => competitions
European Championship => competitions
```

```python
from gliner import GLiNER

model = GLiNER.from_pretrained("urchade/gliner_multi")

text = """
Это старый-добрый Римантадин, только в сиропе.
"""
# Gold: Римантадин - Drugname, сиропе - Drugform

labels = ["Drugname", "Drugform"]

entities = model.predict_entities(text, labels)

for entity in entities:
    print(entity["text"], "=>", entity["label"])
```

```
Римантадин => Drugname
сиропе => Drugform
```

## Named Entity Recognition benchmark result

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317233cc92fd6fee317e030/Y5f7tK8lonGqeeO6L6bVI.png)

## Model Authors
The model authors are:
* [Urchade Zaratiana](https://huggingface.co/urchade)
* Nadi Tomeh
* Pierre Holat
* Thierry Charnois

## Citation
```bibtex
@misc{zaratiana2023gliner,
      title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer}, 
      author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois},
      year={2023},
      eprint={2311.08526},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```