--- datasets: - pszemraj/scientific_lay_summarisation-plos-norm language: - en metrics: - bleu - rouge pipeline_tag: summarization --- # Hyperparameters learning_rate=2e-5 per_device_train_batch_size=14 per_device_eval_batch_size=14 weight_decay=0.01 save_total_limit=3 num_train_epochs=3 predict_with_generate=True fp16=True # Training Output global_step=4248, training_loss=2.172659089111788, metrics={'train_runtime': 3371.7912, 'train_samples_per_second': 17.633, 'train_steps_per_second': 1.26, 'total_flos': 1.2884303701396685e+17, 'train_loss': 2.172659089111788, 'epoch': 3.0} # Training Results | Epoch | Training Loss | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len | |:----- |:------------ |:--------------- |:-------- | :------- |:-------- |:--------- |:-------- |:--------- | | 1 | 2.318000 | 2.079500 | 0.128100 | 0.046700 | 0.104200 | 0.104200 | 0.001100 | 20.000000 | | 2 | 2.130000 | 2.043523 | 0.130200 | 0.047400 | 0.105400 | 0.105300 | 0.001300 | 20.000000 | | 3 | 2.047100 | 2.034664 | 0.130700 | 0.047800 | 0.105900 | 0.105900 | 0.001300 | 20.000000 |