uwaisasghar commited on
Commit
c0cb965
·
verified ·
1 Parent(s): 9081ab7

End of training

Browse files
README.md ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: segformer-b1-finetuned-segments-sidewalks-6
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # segformer-b1-finetuned-segments-sidewalks-6
14
+
15
+ This model was trained from scratch on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.0400
18
+ - Mean Iou: 0.7845
19
+ - Mean Accuracy: 0.8382
20
+ - Overall Accuracy: 0.9924
21
+ - Accuracy Bkg: 0.9973
22
+ - Accuracy Knife: 0.6791
23
+ - Accuracy Gun: nan
24
+ - Iou Bkg: 0.9924
25
+ - Iou Knife: 0.5766
26
+ - Iou Gun: nan
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 6e-05
46
+ - train_batch_size: 6
47
+ - eval_batch_size: 6
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 30
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bkg | Accuracy Knife | Accuracy Gun | Iou Bkg | Iou Knife | Iou Gun |
56
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:--------------:|:------------:|:-------:|:---------:|:-------:|
57
+ | 0.0094 | 0.1613 | 20 | 0.0278 | 0.7697 | 0.8289 | 0.9917 | 0.9968 | 0.6609 | nan | 0.9917 | 0.5477 | nan |
58
+ | 0.0096 | 0.3226 | 40 | 0.0288 | 0.7684 | 0.8181 | 0.9919 | 0.9974 | 0.6389 | nan | 0.9918 | 0.5450 | nan |
59
+ | 0.0086 | 0.4839 | 60 | 0.0289 | 0.7675 | 0.8143 | 0.9920 | 0.9975 | 0.6311 | nan | 0.9919 | 0.5431 | nan |
60
+ | 0.0081 | 0.6452 | 80 | 0.0288 | 0.7694 | 0.8485 | 0.9912 | 0.9957 | 0.7014 | nan | 0.9911 | 0.5477 | nan |
61
+ | 0.0113 | 0.8065 | 100 | 0.0300 | 0.7690 | 0.8309 | 0.9916 | 0.9967 | 0.6652 | nan | 0.9916 | 0.5464 | nan |
62
+ | 0.0083 | 0.9677 | 120 | 0.0325 | 0.7635 | 0.8051 | 0.9919 | 0.9978 | 0.6123 | nan | 0.9919 | 0.5351 | nan |
63
+ | 0.0087 | 1.1290 | 140 | 0.0303 | 0.7704 | 0.8419 | 0.9915 | 0.9961 | 0.6877 | nan | 0.9914 | 0.5494 | nan |
64
+ | 0.0075 | 1.2903 | 160 | 0.0290 | 0.7645 | 0.8333 | 0.9913 | 0.9962 | 0.6703 | nan | 0.9912 | 0.5378 | nan |
65
+ | 0.0129 | 1.4516 | 180 | 0.0327 | 0.7551 | 0.7845 | 0.9920 | 0.9985 | 0.5705 | nan | 0.9919 | 0.5183 | nan |
66
+ | 0.0087 | 1.6129 | 200 | 0.0285 | 0.7708 | 0.8519 | 0.9912 | 0.9956 | 0.7081 | nan | 0.9911 | 0.5505 | nan |
67
+ | 0.0144 | 1.7742 | 220 | 0.0294 | 0.7675 | 0.8220 | 0.9918 | 0.9971 | 0.6470 | nan | 0.9917 | 0.5433 | nan |
68
+ | 0.0073 | 1.9355 | 240 | 0.0323 | 0.7656 | 0.8140 | 0.9918 | 0.9974 | 0.6306 | nan | 0.9918 | 0.5394 | nan |
69
+ | 0.0071 | 2.0968 | 260 | 0.0297 | 0.7685 | 0.8555 | 0.9910 | 0.9952 | 0.7158 | nan | 0.9909 | 0.5462 | nan |
70
+ | 0.0116 | 2.2581 | 280 | 0.0315 | 0.7680 | 0.8353 | 0.9915 | 0.9963 | 0.6742 | nan | 0.9914 | 0.5447 | nan |
71
+ | 0.0084 | 2.4194 | 300 | 0.0322 | 0.7628 | 0.8066 | 0.9919 | 0.9976 | 0.6156 | nan | 0.9918 | 0.5338 | nan |
72
+ | 0.0107 | 2.5806 | 320 | 0.0293 | 0.7722 | 0.8320 | 0.9918 | 0.9968 | 0.6672 | nan | 0.9917 | 0.5527 | nan |
73
+ | 0.0078 | 2.7419 | 340 | 0.0297 | 0.7681 | 0.8578 | 0.9909 | 0.9951 | 0.7204 | nan | 0.9908 | 0.5455 | nan |
74
+ | 0.0065 | 2.9032 | 360 | 0.0287 | 0.7742 | 0.8419 | 0.9917 | 0.9964 | 0.6874 | nan | 0.9916 | 0.5567 | nan |
75
+ | 0.009 | 3.0645 | 380 | 0.0300 | 0.7732 | 0.8319 | 0.9919 | 0.9969 | 0.6669 | nan | 0.9918 | 0.5546 | nan |
76
+ | 0.008 | 3.2258 | 400 | 0.0303 | 0.7717 | 0.8383 | 0.9916 | 0.9964 | 0.6802 | nan | 0.9915 | 0.5518 | nan |
77
+ | 0.0084 | 3.3871 | 420 | 0.0313 | 0.7670 | 0.8171 | 0.9919 | 0.9973 | 0.6368 | nan | 0.9918 | 0.5423 | nan |
78
+ | 0.0086 | 3.5484 | 440 | 0.0321 | 0.7673 | 0.8119 | 0.9920 | 0.9976 | 0.6261 | nan | 0.9919 | 0.5426 | nan |
79
+ | 0.0061 | 3.7097 | 460 | 0.0292 | 0.7797 | 0.8412 | 0.9921 | 0.9968 | 0.6856 | nan | 0.9920 | 0.5674 | nan |
80
+ | 0.0075 | 3.8710 | 480 | 0.0308 | 0.7751 | 0.8224 | 0.9922 | 0.9975 | 0.6473 | nan | 0.9922 | 0.5580 | nan |
81
+ | 0.0065 | 4.0323 | 500 | 0.0318 | 0.7706 | 0.8140 | 0.9922 | 0.9977 | 0.6302 | nan | 0.9921 | 0.5490 | nan |
82
+ | 0.007 | 4.1935 | 520 | 0.0309 | 0.7716 | 0.8269 | 0.9919 | 0.9971 | 0.6567 | nan | 0.9918 | 0.5514 | nan |
83
+ | 0.0107 | 4.3548 | 540 | 0.0315 | 0.7736 | 0.8288 | 0.9920 | 0.9971 | 0.6604 | nan | 0.9919 | 0.5554 | nan |
84
+ | 0.0094 | 4.5161 | 560 | 0.0300 | 0.7736 | 0.8309 | 0.9919 | 0.9970 | 0.6648 | nan | 0.9919 | 0.5553 | nan |
85
+ | 0.0057 | 4.6774 | 580 | 0.0299 | 0.7779 | 0.8386 | 0.9920 | 0.9968 | 0.6804 | nan | 0.9919 | 0.5639 | nan |
86
+ | 0.0084 | 4.8387 | 600 | 0.0304 | 0.7754 | 0.8404 | 0.9918 | 0.9966 | 0.6843 | nan | 0.9917 | 0.5591 | nan |
87
+ | 0.0068 | 5.0 | 620 | 0.0307 | 0.7721 | 0.8556 | 0.9912 | 0.9955 | 0.7158 | nan | 0.9911 | 0.5531 | nan |
88
+ | 0.0078 | 5.1613 | 640 | 0.0312 | 0.7733 | 0.8608 | 0.9912 | 0.9953 | 0.7263 | nan | 0.9911 | 0.5555 | nan |
89
+ | 0.0075 | 5.3226 | 660 | 0.0341 | 0.7666 | 0.8081 | 0.9921 | 0.9978 | 0.6185 | nan | 0.9920 | 0.5413 | nan |
90
+ | 0.0053 | 5.4839 | 680 | 0.0309 | 0.7733 | 0.8235 | 0.9921 | 0.9974 | 0.6497 | nan | 0.9920 | 0.5546 | nan |
91
+ | 0.0064 | 5.6452 | 700 | 0.0311 | 0.7772 | 0.8427 | 0.9919 | 0.9965 | 0.6889 | nan | 0.9918 | 0.5625 | nan |
92
+ | 0.0063 | 5.8065 | 720 | 0.0319 | 0.7745 | 0.8226 | 0.9922 | 0.9975 | 0.6477 | nan | 0.9921 | 0.5569 | nan |
93
+ | 0.0065 | 5.9677 | 740 | 0.0365 | 0.7623 | 0.7948 | 0.9921 | 0.9983 | 0.5913 | nan | 0.9921 | 0.5325 | nan |
94
+ | 0.0071 | 6.1290 | 760 | 0.0312 | 0.7757 | 0.8321 | 0.9920 | 0.9970 | 0.6672 | nan | 0.9920 | 0.5594 | nan |
95
+ | 0.0086 | 6.2903 | 780 | 0.0310 | 0.7777 | 0.8462 | 0.9918 | 0.9964 | 0.6960 | nan | 0.9918 | 0.5637 | nan |
96
+ | 0.0054 | 6.4516 | 800 | 0.0301 | 0.7792 | 0.8504 | 0.9918 | 0.9963 | 0.7046 | nan | 0.9917 | 0.5666 | nan |
97
+ | 0.0077 | 6.6129 | 820 | 0.0325 | 0.7760 | 0.8233 | 0.9923 | 0.9975 | 0.6490 | nan | 0.9922 | 0.5598 | nan |
98
+ | 0.0082 | 6.7742 | 840 | 0.0317 | 0.7746 | 0.8343 | 0.9919 | 0.9968 | 0.6717 | nan | 0.9918 | 0.5573 | nan |
99
+ | 0.0064 | 6.9355 | 860 | 0.0326 | 0.7766 | 0.8333 | 0.9921 | 0.9970 | 0.6696 | nan | 0.9920 | 0.5612 | nan |
100
+ | 0.0045 | 7.0968 | 880 | 0.0331 | 0.7733 | 0.8177 | 0.9922 | 0.9977 | 0.6378 | nan | 0.9922 | 0.5545 | nan |
101
+ | 0.0066 | 7.2581 | 900 | 0.0325 | 0.7751 | 0.8288 | 0.9921 | 0.9972 | 0.6605 | nan | 0.9920 | 0.5582 | nan |
102
+ | 0.0115 | 7.4194 | 920 | 0.0324 | 0.7773 | 0.8378 | 0.9920 | 0.9968 | 0.6788 | nan | 0.9919 | 0.5626 | nan |
103
+ | 0.0049 | 7.5806 | 940 | 0.0332 | 0.7743 | 0.8301 | 0.9920 | 0.9971 | 0.6632 | nan | 0.9919 | 0.5567 | nan |
104
+ | 0.0093 | 7.7419 | 960 | 0.0345 | 0.7708 | 0.8081 | 0.9923 | 0.9981 | 0.6181 | nan | 0.9923 | 0.5494 | nan |
105
+ | 0.0082 | 7.9032 | 980 | 0.0326 | 0.7752 | 0.8386 | 0.9919 | 0.9966 | 0.6805 | nan | 0.9918 | 0.5586 | nan |
106
+ | 0.0064 | 8.0645 | 1000 | 0.0332 | 0.7741 | 0.8265 | 0.9921 | 0.9972 | 0.6557 | nan | 0.9920 | 0.5561 | nan |
107
+ | 0.0061 | 8.2258 | 1020 | 0.0330 | 0.7766 | 0.8306 | 0.9921 | 0.9972 | 0.6640 | nan | 0.9921 | 0.5611 | nan |
108
+ | 0.0065 | 8.3871 | 1040 | 0.0339 | 0.7748 | 0.8245 | 0.9922 | 0.9974 | 0.6516 | nan | 0.9921 | 0.5575 | nan |
109
+ | 0.0068 | 8.5484 | 1060 | 0.0327 | 0.7769 | 0.8428 | 0.9919 | 0.9965 | 0.6891 | nan | 0.9918 | 0.5619 | nan |
110
+ | 0.0058 | 8.7097 | 1080 | 0.0332 | 0.7762 | 0.8383 | 0.9919 | 0.9967 | 0.6798 | nan | 0.9918 | 0.5606 | nan |
111
+ | 0.0074 | 8.8710 | 1100 | 0.0351 | 0.7732 | 0.8195 | 0.9922 | 0.9976 | 0.6414 | nan | 0.9921 | 0.5543 | nan |
112
+ | 0.0066 | 9.0323 | 1120 | 0.0339 | 0.7786 | 0.8276 | 0.9923 | 0.9975 | 0.6576 | nan | 0.9923 | 0.5650 | nan |
113
+ | 0.004 | 9.1935 | 1140 | 0.0338 | 0.7771 | 0.8349 | 0.9921 | 0.9970 | 0.6728 | nan | 0.9920 | 0.5621 | nan |
114
+ | 0.0118 | 9.3548 | 1160 | 0.0349 | 0.7745 | 0.8197 | 0.9923 | 0.9977 | 0.6418 | nan | 0.9922 | 0.5568 | nan |
115
+ | 0.0063 | 9.5161 | 1180 | 0.0332 | 0.7750 | 0.8336 | 0.9920 | 0.9969 | 0.6702 | nan | 0.9919 | 0.5581 | nan |
116
+ | 0.0061 | 9.6774 | 1200 | 0.0343 | 0.7768 | 0.8245 | 0.9923 | 0.9975 | 0.6515 | nan | 0.9922 | 0.5614 | nan |
117
+ | 0.0067 | 9.8387 | 1220 | 0.0336 | 0.7820 | 0.8308 | 0.9925 | 0.9975 | 0.6641 | nan | 0.9924 | 0.5716 | nan |
118
+ | 0.0067 | 10.0 | 1240 | 0.0324 | 0.7794 | 0.8422 | 0.9920 | 0.9967 | 0.6877 | nan | 0.9920 | 0.5669 | nan |
119
+ | 0.0057 | 10.1613 | 1260 | 0.0333 | 0.7803 | 0.8370 | 0.9922 | 0.9971 | 0.6768 | nan | 0.9921 | 0.5684 | nan |
120
+ | 0.0058 | 10.3226 | 1280 | 0.0325 | 0.7813 | 0.8451 | 0.9921 | 0.9967 | 0.6936 | nan | 0.9920 | 0.5706 | nan |
121
+ | 0.006 | 10.4839 | 1300 | 0.0331 | 0.7786 | 0.8333 | 0.9922 | 0.9972 | 0.6694 | nan | 0.9921 | 0.5650 | nan |
122
+ | 0.0052 | 10.6452 | 1320 | 0.0361 | 0.7772 | 0.8246 | 0.9923 | 0.9976 | 0.6516 | nan | 0.9922 | 0.5622 | nan |
123
+ | 0.005 | 10.8065 | 1340 | 0.0345 | 0.7787 | 0.8359 | 0.9921 | 0.9970 | 0.6747 | nan | 0.9921 | 0.5654 | nan |
124
+ | 0.0057 | 10.9677 | 1360 | 0.0340 | 0.7789 | 0.8376 | 0.9921 | 0.9969 | 0.6782 | nan | 0.9920 | 0.5657 | nan |
125
+ | 0.0048 | 11.1290 | 1380 | 0.0349 | 0.7794 | 0.8263 | 0.9924 | 0.9976 | 0.6549 | nan | 0.9923 | 0.5665 | nan |
126
+ | 0.0059 | 11.2903 | 1400 | 0.0326 | 0.7764 | 0.8539 | 0.9916 | 0.9959 | 0.7118 | nan | 0.9915 | 0.5614 | nan |
127
+ | 0.0043 | 11.4516 | 1420 | 0.0334 | 0.7791 | 0.8406 | 0.9921 | 0.9968 | 0.6845 | nan | 0.9920 | 0.5663 | nan |
128
+ | 0.0044 | 11.6129 | 1440 | 0.0331 | 0.7829 | 0.8391 | 0.9923 | 0.9971 | 0.6811 | nan | 0.9923 | 0.5735 | nan |
129
+ | 0.0062 | 11.7742 | 1460 | 0.0339 | 0.7813 | 0.8369 | 0.9923 | 0.9971 | 0.6767 | nan | 0.9922 | 0.5705 | nan |
130
+ | 0.0062 | 11.9355 | 1480 | 0.0334 | 0.7806 | 0.8417 | 0.9921 | 0.9968 | 0.6865 | nan | 0.9920 | 0.5691 | nan |
131
+ | 0.0052 | 12.0968 | 1500 | 0.0342 | 0.7802 | 0.8354 | 0.9922 | 0.9971 | 0.6736 | nan | 0.9922 | 0.5682 | nan |
132
+ | 0.0049 | 12.2581 | 1520 | 0.0337 | 0.7818 | 0.8418 | 0.9922 | 0.9969 | 0.6868 | nan | 0.9921 | 0.5715 | nan |
133
+ | 0.004 | 12.4194 | 1540 | 0.0347 | 0.7815 | 0.8382 | 0.9923 | 0.9971 | 0.6793 | nan | 0.9922 | 0.5709 | nan |
134
+ | 0.0054 | 12.5806 | 1560 | 0.0346 | 0.7790 | 0.8379 | 0.9921 | 0.9969 | 0.6788 | nan | 0.9920 | 0.5659 | nan |
135
+ | 0.0076 | 12.7419 | 1580 | 0.0332 | 0.7821 | 0.8499 | 0.9920 | 0.9965 | 0.7033 | nan | 0.9920 | 0.5723 | nan |
136
+ | 0.0046 | 12.9032 | 1600 | 0.0346 | 0.7826 | 0.8398 | 0.9923 | 0.9971 | 0.6825 | nan | 0.9922 | 0.5731 | nan |
137
+ | 0.0069 | 13.0645 | 1620 | 0.0324 | 0.7842 | 0.8507 | 0.9922 | 0.9966 | 0.7048 | nan | 0.9921 | 0.5762 | nan |
138
+ | 0.0064 | 13.2258 | 1640 | 0.0342 | 0.7808 | 0.8430 | 0.9921 | 0.9968 | 0.6892 | nan | 0.9920 | 0.5695 | nan |
139
+ | 0.0056 | 13.3871 | 1660 | 0.0336 | 0.7839 | 0.8444 | 0.9923 | 0.9969 | 0.6918 | nan | 0.9922 | 0.5755 | nan |
140
+ | 0.0048 | 13.5484 | 1680 | 0.0352 | 0.7817 | 0.8335 | 0.9924 | 0.9973 | 0.6697 | nan | 0.9923 | 0.5711 | nan |
141
+ | 0.0059 | 13.7097 | 1700 | 0.0345 | 0.7817 | 0.8419 | 0.9922 | 0.9969 | 0.6870 | nan | 0.9921 | 0.5713 | nan |
142
+ | 0.0077 | 13.8710 | 1720 | 0.0353 | 0.7808 | 0.8370 | 0.9923 | 0.9971 | 0.6768 | nan | 0.9922 | 0.5695 | nan |
143
+ | 0.0043 | 14.0323 | 1740 | 0.0355 | 0.7790 | 0.8344 | 0.9922 | 0.9971 | 0.6717 | nan | 0.9921 | 0.5659 | nan |
144
+ | 0.0044 | 14.1935 | 1760 | 0.0362 | 0.7800 | 0.8330 | 0.9923 | 0.9973 | 0.6687 | nan | 0.9922 | 0.5678 | nan |
145
+ | 0.0064 | 14.3548 | 1780 | 0.0355 | 0.7803 | 0.8452 | 0.9920 | 0.9966 | 0.6938 | nan | 0.9919 | 0.5687 | nan |
146
+ | 0.0043 | 14.5161 | 1800 | 0.0364 | 0.7800 | 0.8390 | 0.9922 | 0.9969 | 0.6811 | nan | 0.9921 | 0.5680 | nan |
147
+ | 0.0065 | 14.6774 | 1820 | 0.0368 | 0.7806 | 0.8396 | 0.9922 | 0.9969 | 0.6822 | nan | 0.9921 | 0.5692 | nan |
148
+ | 0.0054 | 14.8387 | 1840 | 0.0359 | 0.7820 | 0.8424 | 0.9922 | 0.9969 | 0.6879 | nan | 0.9921 | 0.5719 | nan |
149
+ | 0.0058 | 15.0 | 1860 | 0.0388 | 0.7790 | 0.8286 | 0.9923 | 0.9974 | 0.6598 | nan | 0.9923 | 0.5657 | nan |
150
+ | 0.005 | 15.1613 | 1880 | 0.0349 | 0.7816 | 0.8490 | 0.9920 | 0.9965 | 0.7016 | nan | 0.9919 | 0.5712 | nan |
151
+ | 0.0039 | 15.3226 | 1900 | 0.0355 | 0.7807 | 0.8342 | 0.9923 | 0.9972 | 0.6711 | nan | 0.9922 | 0.5692 | nan |
152
+ | 0.0052 | 15.4839 | 1920 | 0.0353 | 0.7797 | 0.8386 | 0.9921 | 0.9969 | 0.6803 | nan | 0.9921 | 0.5673 | nan |
153
+ | 0.0065 | 15.6452 | 1940 | 0.0360 | 0.7820 | 0.8371 | 0.9923 | 0.9972 | 0.6771 | nan | 0.9922 | 0.5717 | nan |
154
+ | 0.0052 | 15.8065 | 1960 | 0.0359 | 0.7797 | 0.8418 | 0.9921 | 0.9968 | 0.6869 | nan | 0.9920 | 0.5674 | nan |
155
+ | 0.006 | 15.9677 | 1980 | 0.0354 | 0.7811 | 0.8412 | 0.9922 | 0.9969 | 0.6855 | nan | 0.9921 | 0.5700 | nan |
156
+ | 0.0044 | 16.1290 | 2000 | 0.0375 | 0.7800 | 0.8310 | 0.9923 | 0.9974 | 0.6647 | nan | 0.9923 | 0.5678 | nan |
157
+ | 0.0052 | 16.2903 | 2020 | 0.0376 | 0.7797 | 0.8318 | 0.9923 | 0.9973 | 0.6662 | nan | 0.9922 | 0.5671 | nan |
158
+ | 0.0038 | 16.4516 | 2040 | 0.0368 | 0.7808 | 0.8399 | 0.9922 | 0.9969 | 0.6829 | nan | 0.9921 | 0.5695 | nan |
159
+ | 0.0067 | 16.6129 | 2060 | 0.0373 | 0.7803 | 0.8311 | 0.9924 | 0.9974 | 0.6649 | nan | 0.9923 | 0.5684 | nan |
160
+ | 0.0056 | 16.7742 | 2080 | 0.0370 | 0.7794 | 0.8291 | 0.9923 | 0.9974 | 0.6608 | nan | 0.9923 | 0.5666 | nan |
161
+ | 0.0064 | 16.9355 | 2100 | 0.0371 | 0.7809 | 0.8365 | 0.9923 | 0.9971 | 0.6759 | nan | 0.9922 | 0.5695 | nan |
162
+ | 0.0038 | 17.0968 | 2120 | 0.0367 | 0.7818 | 0.8483 | 0.9921 | 0.9965 | 0.7000 | nan | 0.9920 | 0.5716 | nan |
163
+ | 0.0041 | 17.2581 | 2140 | 0.0366 | 0.7837 | 0.8423 | 0.9923 | 0.9970 | 0.6876 | nan | 0.9922 | 0.5752 | nan |
164
+ | 0.0039 | 17.4194 | 2160 | 0.0370 | 0.7819 | 0.8394 | 0.9923 | 0.9970 | 0.6818 | nan | 0.9922 | 0.5716 | nan |
165
+ | 0.0046 | 17.5806 | 2180 | 0.0366 | 0.7822 | 0.8406 | 0.9923 | 0.9970 | 0.6843 | nan | 0.9922 | 0.5722 | nan |
166
+ | 0.0053 | 17.7419 | 2200 | 0.0376 | 0.7810 | 0.8327 | 0.9924 | 0.9973 | 0.6681 | nan | 0.9923 | 0.5697 | nan |
167
+ | 0.0046 | 17.9032 | 2220 | 0.0374 | 0.7836 | 0.8376 | 0.9924 | 0.9972 | 0.6780 | nan | 0.9923 | 0.5748 | nan |
168
+ | 0.0045 | 18.0645 | 2240 | 0.0385 | 0.7812 | 0.8324 | 0.9924 | 0.9974 | 0.6675 | nan | 0.9923 | 0.5701 | nan |
169
+ | 0.0043 | 18.2258 | 2260 | 0.0380 | 0.7811 | 0.8298 | 0.9924 | 0.9975 | 0.6621 | nan | 0.9924 | 0.5699 | nan |
170
+ | 0.0057 | 18.3871 | 2280 | 0.0355 | 0.7845 | 0.8481 | 0.9922 | 0.9967 | 0.6995 | nan | 0.9921 | 0.5768 | nan |
171
+ | 0.0037 | 18.5484 | 2300 | 0.0377 | 0.7808 | 0.8358 | 0.9923 | 0.9972 | 0.6745 | nan | 0.9922 | 0.5694 | nan |
172
+ | 0.0054 | 18.7097 | 2320 | 0.0361 | 0.7831 | 0.8470 | 0.9922 | 0.9967 | 0.6973 | nan | 0.9921 | 0.5742 | nan |
173
+ | 0.0076 | 18.8710 | 2340 | 0.0376 | 0.7831 | 0.8354 | 0.9924 | 0.9973 | 0.6734 | nan | 0.9923 | 0.5738 | nan |
174
+ | 0.0057 | 19.0323 | 2360 | 0.0370 | 0.7837 | 0.8409 | 0.9923 | 0.9971 | 0.6848 | nan | 0.9923 | 0.5752 | nan |
175
+ | 0.0039 | 19.1935 | 2380 | 0.0371 | 0.7837 | 0.8424 | 0.9923 | 0.9970 | 0.6878 | nan | 0.9922 | 0.5752 | nan |
176
+ | 0.0053 | 19.3548 | 2400 | 0.0380 | 0.7819 | 0.8385 | 0.9923 | 0.9971 | 0.6799 | nan | 0.9922 | 0.5717 | nan |
177
+ | 0.0028 | 19.5161 | 2420 | 0.0373 | 0.7820 | 0.8422 | 0.9922 | 0.9969 | 0.6875 | nan | 0.9921 | 0.5720 | nan |
178
+ | 0.0064 | 19.6774 | 2440 | 0.0377 | 0.7814 | 0.8324 | 0.9924 | 0.9974 | 0.6674 | nan | 0.9923 | 0.5705 | nan |
179
+ | 0.0048 | 19.8387 | 2460 | 0.0383 | 0.7816 | 0.8280 | 0.9925 | 0.9976 | 0.6583 | nan | 0.9924 | 0.5707 | nan |
180
+ | 0.0036 | 20.0 | 2480 | 0.0381 | 0.7829 | 0.8347 | 0.9924 | 0.9974 | 0.6721 | nan | 0.9924 | 0.5734 | nan |
181
+ | 0.0039 | 20.1613 | 2500 | 0.0386 | 0.7816 | 0.8336 | 0.9924 | 0.9973 | 0.6699 | nan | 0.9923 | 0.5710 | nan |
182
+ | 0.0051 | 20.3226 | 2520 | 0.0380 | 0.7825 | 0.8378 | 0.9923 | 0.9972 | 0.6784 | nan | 0.9923 | 0.5727 | nan |
183
+ | 0.0051 | 20.4839 | 2540 | 0.0404 | 0.7802 | 0.8272 | 0.9924 | 0.9976 | 0.6569 | nan | 0.9924 | 0.5681 | nan |
184
+ | 0.0056 | 20.6452 | 2560 | 0.0398 | 0.7803 | 0.8258 | 0.9925 | 0.9977 | 0.6540 | nan | 0.9924 | 0.5682 | nan |
185
+ | 0.005 | 20.8065 | 2580 | 0.0393 | 0.7803 | 0.8266 | 0.9925 | 0.9976 | 0.6555 | nan | 0.9924 | 0.5682 | nan |
186
+ | 0.0044 | 20.9677 | 2600 | 0.0383 | 0.7806 | 0.8333 | 0.9923 | 0.9973 | 0.6694 | nan | 0.9922 | 0.5690 | nan |
187
+ | 0.0056 | 21.1290 | 2620 | 0.0394 | 0.7807 | 0.8308 | 0.9924 | 0.9974 | 0.6641 | nan | 0.9923 | 0.5692 | nan |
188
+ | 0.0039 | 21.2903 | 2640 | 0.0391 | 0.7821 | 0.8340 | 0.9924 | 0.9973 | 0.6707 | nan | 0.9923 | 0.5718 | nan |
189
+ | 0.0042 | 21.4516 | 2660 | 0.0373 | 0.7824 | 0.8439 | 0.9922 | 0.9968 | 0.6911 | nan | 0.9921 | 0.5727 | nan |
190
+ | 0.0039 | 21.6129 | 2680 | 0.0384 | 0.7816 | 0.8405 | 0.9922 | 0.9970 | 0.6840 | nan | 0.9921 | 0.5712 | nan |
191
+ | 0.0052 | 21.7742 | 2700 | 0.0375 | 0.7837 | 0.8396 | 0.9924 | 0.9971 | 0.6820 | nan | 0.9923 | 0.5751 | nan |
192
+ | 0.0066 | 21.9355 | 2720 | 0.0388 | 0.7812 | 0.8371 | 0.9923 | 0.9971 | 0.6770 | nan | 0.9922 | 0.5703 | nan |
193
+ | 0.0042 | 22.0968 | 2740 | 0.0385 | 0.7818 | 0.8379 | 0.9923 | 0.9971 | 0.6786 | nan | 0.9922 | 0.5715 | nan |
194
+ | 0.0057 | 22.2581 | 2760 | 0.0386 | 0.7828 | 0.8402 | 0.9923 | 0.9971 | 0.6833 | nan | 0.9922 | 0.5735 | nan |
195
+ | 0.0048 | 22.4194 | 2780 | 0.0383 | 0.7823 | 0.8435 | 0.9922 | 0.9968 | 0.6901 | nan | 0.9921 | 0.5724 | nan |
196
+ | 0.0042 | 22.5806 | 2800 | 0.0395 | 0.7798 | 0.8350 | 0.9922 | 0.9971 | 0.6729 | nan | 0.9922 | 0.5675 | nan |
197
+ | 0.0068 | 22.7419 | 2820 | 0.0387 | 0.7820 | 0.8360 | 0.9923 | 0.9972 | 0.6748 | nan | 0.9923 | 0.5717 | nan |
198
+ | 0.0067 | 22.9032 | 2840 | 0.0386 | 0.7837 | 0.8391 | 0.9924 | 0.9972 | 0.6810 | nan | 0.9923 | 0.5750 | nan |
199
+ | 0.0053 | 23.0645 | 2860 | 0.0386 | 0.7835 | 0.8421 | 0.9923 | 0.9970 | 0.6872 | nan | 0.9922 | 0.5748 | nan |
200
+ | 0.0047 | 23.2258 | 2880 | 0.0408 | 0.7802 | 0.8263 | 0.9925 | 0.9976 | 0.6550 | nan | 0.9924 | 0.5680 | nan |
201
+ | 0.0053 | 23.3871 | 2900 | 0.0387 | 0.7826 | 0.8338 | 0.9924 | 0.9974 | 0.6701 | nan | 0.9924 | 0.5729 | nan |
202
+ | 0.0034 | 23.5484 | 2920 | 0.0380 | 0.7831 | 0.8375 | 0.9924 | 0.9972 | 0.6778 | nan | 0.9923 | 0.5739 | nan |
203
+ | 0.0059 | 23.7097 | 2940 | 0.0380 | 0.7831 | 0.8406 | 0.9923 | 0.9970 | 0.6842 | nan | 0.9922 | 0.5740 | nan |
204
+ | 0.0041 | 23.8710 | 2960 | 0.0384 | 0.7829 | 0.8386 | 0.9923 | 0.9971 | 0.6801 | nan | 0.9923 | 0.5736 | nan |
205
+ | 0.0036 | 24.0323 | 2980 | 0.0387 | 0.7829 | 0.8351 | 0.9924 | 0.9973 | 0.6729 | nan | 0.9923 | 0.5735 | nan |
206
+ | 0.004 | 24.1935 | 3000 | 0.0391 | 0.7814 | 0.8342 | 0.9924 | 0.9973 | 0.6711 | nan | 0.9923 | 0.5706 | nan |
207
+ | 0.0037 | 24.3548 | 3020 | 0.0405 | 0.7793 | 0.8286 | 0.9923 | 0.9975 | 0.6598 | nan | 0.9923 | 0.5662 | nan |
208
+ | 0.0037 | 24.5161 | 3040 | 0.0394 | 0.7822 | 0.8410 | 0.9922 | 0.9970 | 0.6850 | nan | 0.9922 | 0.5722 | nan |
209
+ | 0.0043 | 24.6774 | 3060 | 0.0398 | 0.7820 | 0.8364 | 0.9923 | 0.9972 | 0.6757 | nan | 0.9923 | 0.5718 | nan |
210
+ | 0.0039 | 24.8387 | 3080 | 0.0394 | 0.7814 | 0.8366 | 0.9923 | 0.9972 | 0.6760 | nan | 0.9922 | 0.5706 | nan |
211
+ | 0.0036 | 25.0 | 3100 | 0.0395 | 0.7818 | 0.8387 | 0.9923 | 0.9971 | 0.6803 | nan | 0.9922 | 0.5713 | nan |
212
+ | 0.0034 | 25.1613 | 3120 | 0.0401 | 0.7802 | 0.8319 | 0.9923 | 0.9973 | 0.6664 | nan | 0.9923 | 0.5681 | nan |
213
+ | 0.0041 | 25.3226 | 3140 | 0.0382 | 0.7830 | 0.8439 | 0.9922 | 0.9969 | 0.6910 | nan | 0.9921 | 0.5738 | nan |
214
+ | 0.005 | 25.4839 | 3160 | 0.0395 | 0.7825 | 0.8360 | 0.9924 | 0.9973 | 0.6748 | nan | 0.9923 | 0.5726 | nan |
215
+ | 0.0052 | 25.6452 | 3180 | 0.0388 | 0.7832 | 0.8371 | 0.9924 | 0.9972 | 0.6770 | nan | 0.9923 | 0.5741 | nan |
216
+ | 0.0043 | 25.8065 | 3200 | 0.0382 | 0.7837 | 0.8427 | 0.9923 | 0.9970 | 0.6885 | nan | 0.9922 | 0.5752 | nan |
217
+ | 0.0058 | 25.9677 | 3220 | 0.0381 | 0.7833 | 0.8434 | 0.9923 | 0.9969 | 0.6900 | nan | 0.9922 | 0.5745 | nan |
218
+ | 0.0081 | 26.1290 | 3240 | 0.0395 | 0.7823 | 0.8343 | 0.9924 | 0.9973 | 0.6712 | nan | 0.9923 | 0.5722 | nan |
219
+ | 0.0047 | 26.2903 | 3260 | 0.0401 | 0.7822 | 0.8322 | 0.9924 | 0.9975 | 0.6669 | nan | 0.9924 | 0.5721 | nan |
220
+ | 0.005 | 26.4516 | 3280 | 0.0395 | 0.7829 | 0.8346 | 0.9924 | 0.9974 | 0.6718 | nan | 0.9924 | 0.5735 | nan |
221
+ | 0.0035 | 26.6129 | 3300 | 0.0391 | 0.7840 | 0.8406 | 0.9924 | 0.9971 | 0.6842 | nan | 0.9923 | 0.5757 | nan |
222
+ | 0.0048 | 26.7742 | 3320 | 0.0393 | 0.7835 | 0.8379 | 0.9924 | 0.9972 | 0.6786 | nan | 0.9923 | 0.5746 | nan |
223
+ | 0.0044 | 26.9355 | 3340 | 0.0400 | 0.7831 | 0.8354 | 0.9924 | 0.9973 | 0.6734 | nan | 0.9923 | 0.5738 | nan |
224
+ | 0.0031 | 27.0968 | 3360 | 0.0401 | 0.7834 | 0.8378 | 0.9924 | 0.9972 | 0.6783 | nan | 0.9923 | 0.5745 | nan |
225
+ | 0.0042 | 27.2581 | 3380 | 0.0403 | 0.7830 | 0.8370 | 0.9924 | 0.9972 | 0.6768 | nan | 0.9923 | 0.5736 | nan |
226
+ | 0.0045 | 27.4194 | 3400 | 0.0400 | 0.7838 | 0.8361 | 0.9925 | 0.9973 | 0.6749 | nan | 0.9924 | 0.5753 | nan |
227
+ | 0.0039 | 27.5806 | 3420 | 0.0390 | 0.7844 | 0.8415 | 0.9924 | 0.9971 | 0.6860 | nan | 0.9923 | 0.5765 | nan |
228
+ | 0.004 | 27.7419 | 3440 | 0.0385 | 0.7842 | 0.8387 | 0.9924 | 0.9972 | 0.6801 | nan | 0.9923 | 0.5760 | nan |
229
+ | 0.0042 | 27.9032 | 3460 | 0.0390 | 0.7841 | 0.8391 | 0.9924 | 0.9972 | 0.6810 | nan | 0.9923 | 0.5759 | nan |
230
+ | 0.0042 | 28.0645 | 3480 | 0.0403 | 0.7835 | 0.8359 | 0.9924 | 0.9973 | 0.6745 | nan | 0.9924 | 0.5747 | nan |
231
+ | 0.0051 | 28.2258 | 3500 | 0.0397 | 0.7840 | 0.8402 | 0.9924 | 0.9971 | 0.6834 | nan | 0.9923 | 0.5758 | nan |
232
+ | 0.0037 | 28.3871 | 3520 | 0.0400 | 0.7838 | 0.8381 | 0.9924 | 0.9972 | 0.6790 | nan | 0.9923 | 0.5752 | nan |
233
+ | 0.0046 | 28.5484 | 3540 | 0.0395 | 0.7837 | 0.8367 | 0.9924 | 0.9973 | 0.6760 | nan | 0.9924 | 0.5751 | nan |
234
+ | 0.0062 | 28.7097 | 3560 | 0.0402 | 0.7837 | 0.8382 | 0.9924 | 0.9972 | 0.6793 | nan | 0.9923 | 0.5751 | nan |
235
+ | 0.0049 | 28.8710 | 3580 | 0.0390 | 0.7841 | 0.8386 | 0.9924 | 0.9972 | 0.6799 | nan | 0.9923 | 0.5759 | nan |
236
+ | 0.004 | 29.0323 | 3600 | 0.0395 | 0.7837 | 0.8353 | 0.9925 | 0.9974 | 0.6733 | nan | 0.9924 | 0.5751 | nan |
237
+ | 0.004 | 29.1935 | 3620 | 0.0394 | 0.7842 | 0.8383 | 0.9924 | 0.9972 | 0.6794 | nan | 0.9924 | 0.5761 | nan |
238
+ | 0.0038 | 29.3548 | 3640 | 0.0395 | 0.7844 | 0.8377 | 0.9925 | 0.9973 | 0.6782 | nan | 0.9924 | 0.5764 | nan |
239
+ | 0.0046 | 29.5161 | 3660 | 0.0398 | 0.7841 | 0.8359 | 0.9925 | 0.9974 | 0.6745 | nan | 0.9924 | 0.5757 | nan |
240
+ | 0.0034 | 29.6774 | 3680 | 0.0398 | 0.7841 | 0.8367 | 0.9925 | 0.9973 | 0.6760 | nan | 0.9924 | 0.5759 | nan |
241
+ | 0.0041 | 29.8387 | 3700 | 0.0397 | 0.7845 | 0.8381 | 0.9924 | 0.9973 | 0.6790 | nan | 0.9924 | 0.5766 | nan |
242
+ | 0.0039 | 30.0 | 3720 | 0.0400 | 0.7845 | 0.8382 | 0.9924 | 0.9973 | 0.6791 | nan | 0.9924 | 0.5766 | nan |
243
+
244
+
245
+ ### Framework versions
246
+
247
+ - Transformers 4.44.2
248
+ - Pytorch 2.4.1+cu121
249
+ - Datasets 3.0.1
250
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/drive/MyDrive/research/checkpoint_b1",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "BKG",
32
+ "1": "Knife",
33
+ "2": "Gun"
34
+ },
35
+ "image_size": 224,
36
+ "initializer_range": 0.02,
37
+ "label2id": {
38
+ "BKG": 0,
39
+ "Gun": 2,
40
+ "Knife": 1
41
+ },
42
+ "layer_norm_eps": 1e-06,
43
+ "mlp_ratios": [
44
+ 4,
45
+ 4,
46
+ 4,
47
+ 4
48
+ ],
49
+ "model_type": "segformer",
50
+ "num_attention_heads": [
51
+ 1,
52
+ 2,
53
+ 5,
54
+ 8
55
+ ],
56
+ "num_channels": 3,
57
+ "num_encoder_blocks": 4,
58
+ "patch_sizes": [
59
+ 7,
60
+ 3,
61
+ 3,
62
+ 3
63
+ ],
64
+ "reshape_last_stage": true,
65
+ "semantic_loss_ignore_index": 255,
66
+ "sr_ratios": [
67
+ 8,
68
+ 4,
69
+ 2,
70
+ 1
71
+ ],
72
+ "strides": [
73
+ 4,
74
+ 2,
75
+ 2,
76
+ 2
77
+ ],
78
+ "torch_dtype": "float32",
79
+ "transformers_version": "4.44.2"
80
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac3683d182a6d491e35a1835e5252c970374065b222ac2903a4f659e0f50da0a
3
+ size 54738404
runs/Sep28_16-45-13_138ff75c98d0/events.out.tfevents.1727542053.138ff75c98d0.277.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b39dbff37852cf3496a3648b48a83acfe1a09974d6d59262d3eecc0c4e03e9f
3
+ size 932461
runs/Sep28_16-45-13_138ff75c98d0/events.out.tfevents.1727543641.138ff75c98d0.277.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8734f3376ee2491965f01db69b2452d47f4109a80eedd26b18d7ca40b3d350e
3
+ size 932494
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97a29226b89d0e0655ae7d54051d5c150d45a443f928bb73479c8f78fcdb7ef2
3
+ size 5240