File size: 9,574 Bytes
778b7b6
 
 
 
 
 
 
 
 
 
 
 
 
28698b8
778b7b6
 
 
28698b8
778b7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28698b8
 
778b7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28698b8
778b7b6
 
 
 
 
 
28698b8
778b7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28698b8
778b7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28698b8
778b7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn
from transformers.modeling_utils import PreTrainedModel
from transformers.models.luke.modeling_luke import (
    EntityPredictionHead,
    LukeLMHead,
    LukeModel,
)
from transformers.utils import ModelOutput

from .configuration_ubke import UbkeConfig


@dataclass
class UbkeMaskedLMOutput(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    mlm_loss: Optional[torch.FloatTensor] = None
    mep_loss: Optional[torch.FloatTensor] = None
    tep_loss: Optional[torch.FloatTensor] = None
    tcp_loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    entity_logits: Optional[torch.FloatTensor] = None
    topic_entity_logits: torch.FloatTensor = None
    topic_category_logits: Optional[torch.FloatTensor] = None
    last_hidden_state: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    entity_last_hidden_state: torch.FloatTensor = None
    entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


class UbkePreTrainedModel(PreTrainedModel):
    config_class = UbkeConfig
    base_model_prefix = "luke"
    supports_gradient_checkpointing = True
    _no_split_modules = ["LukeAttention", "LukeEntityEmbeddings"]

    def _init_weights(self, module: nn.Module):
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            if module.embedding_dim == 1:  # embedding for bias parameters
                module.weight.data.zero_()
            else:
                module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


class UbkeForMaskedLM(UbkePreTrainedModel):
    _tied_weights_keys = [
        "lm_head.decoder.weight",
        "lm_head.decoder.bias",
        "entity_predictions.decoder.weight",
    ]

    def __init__(self, config: UbkeConfig):
        super().__init__(config)

        self.luke = LukeModel(config)

        if self.config.normalize_entity_embeddings:
            self.luke.entity_embeddings.entity_embeddings = nn.Embedding(
                config.entity_vocab_size,
                config.entity_emb_size,
                padding_idx=0,
                max_norm=1.0,
            )

        self.lm_head = LukeLMHead(config)
        self.entity_predictions = EntityPredictionHead(config)

        self.loss_fn = nn.CrossEntropyLoss()

        # Initialize weights and apply final processing
        self.post_init()

    def tie_weights(self):
        super().tie_weights()
        self._tie_or_clone_weights(
            self.entity_predictions.decoder,
            self.luke.entity_embeddings.entity_embeddings,
        )

    def get_output_embeddings(self) -> nn.Module:
        return self.lm_head.decoder

    def set_output_embeddings(self, new_embeddings: nn.Module):
        self.lm_head.decoder = new_embeddings

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        entity_ids: Optional[torch.LongTensor] = None,
        entity_attention_mask: Optional[torch.LongTensor] = None,
        entity_token_type_ids: Optional[torch.LongTensor] = None,
        entity_position_ids: Optional[torch.LongTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        entity_labels: Optional[torch.LongTensor] = None,
        topic_entity_labels: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, UbkeMaskedLMOutput]:
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        outputs = self.luke(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            entity_ids=entity_ids,
            entity_attention_mask=entity_attention_mask,
            entity_token_type_ids=entity_token_type_ids,
            entity_position_ids=entity_position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=True,
        )

        loss = None

        mlm_loss = None
        logits = self.lm_head(outputs.last_hidden_state)
        if labels is not None:
            labels = labels.to(logits.device)
            mlm_loss = self.loss_fn(
                logits.view(-1, self.config.vocab_size), labels.view(-1)
            )
            if loss is None:
                loss = mlm_loss

        mep_loss = None
        entity_logits = None
        if outputs.entity_last_hidden_state is not None:
            entity_logits = self.entity_predictions(outputs.entity_last_hidden_state)
            if entity_labels is not None:
                mep_loss = self.loss_fn(
                    entity_logits.view(-1, self.config.entity_vocab_size)
                    / self.config.entity_temperature,
                    entity_labels.view(-1),
                )
                if loss is None:
                    loss = mep_loss
                else:
                    loss = loss + mep_loss

        topic_entity_logits = self.entity_predictions(outputs.last_hidden_state[:, 0])
        topic_category_logits = None
        if self.config.num_category_entities > 0:
            topic_category_logits = topic_entity_logits[
                :, -self.config.num_category_entities :
            ]
            topic_entity_logits = topic_entity_logits[
                :, : -self.config.num_category_entities
            ]

        topic_category_labels = None
        if topic_entity_labels is not None and self.config.num_category_entities > 0:
            topic_category_labels = topic_entity_labels[
                :, -self.config.num_category_entities :
            ]
            topic_entity_labels = topic_entity_labels[
                :, : -self.config.num_category_entities
            ]

        tep_loss = None
        if topic_entity_labels is not None:
            num_topic_entity_labels = topic_entity_labels.sum(dim=1)
            if (num_topic_entity_labels > 0).any():
                topic_entity_labels = topic_entity_labels.to(
                    topic_entity_logits.dtype
                ) / num_topic_entity_labels.unsqueeze(-1)
                tep_loss = self.loss_fn(
                    topic_entity_logits[num_topic_entity_labels > 0]
                    / self.config.entity_temperature,
                    topic_entity_labels[num_topic_entity_labels > 0],
                )
                if loss is None:
                    loss = tep_loss
                else:
                    loss = loss + tep_loss

        tcp_loss = None
        if topic_category_labels is not None:
            num_topic_category_labels = topic_category_labels.sum(dim=1)
            if (num_topic_category_labels > 0).any():
                topic_category_labels = topic_category_labels.to(
                    topic_category_logits.dtype
                ) / num_topic_category_labels.unsqueeze(-1)
                tcp_loss = self.loss_fn(
                    topic_category_logits[num_topic_category_labels > 0]
                    / self.config.entity_temperature,
                    topic_category_labels[num_topic_category_labels > 0],
                )
                if loss is None:
                    loss = tcp_loss
                else:
                    loss = loss + tcp_loss

        if not return_dict:
            return tuple(
                v
                for v in [
                    logits,
                    entity_logits,
                    topic_entity_logits,
                    topic_category_logits,
                    outputs.last_hidden_state,
                    outputs.entity_last_hidden_state,
                    outputs.hidden_states,
                    outputs.entity_hidden_states,
                    outputs.attentions,
                ]
                if v is not None
            )

        return UbkeMaskedLMOutput(
            loss=loss,
            mlm_loss=mlm_loss,
            mep_loss=mep_loss,
            tep_loss=tep_loss,
            tcp_loss=tcp_loss,
            logits=logits,
            entity_logits=entity_logits,
            topic_entity_logits=topic_entity_logits,
            topic_category_logits=topic_category_logits,
            last_hidden_state=outputs.last_hidden_state,
            hidden_states=outputs.hidden_states,
            entity_last_hidden_state=outputs.entity_last_hidden_state,
            entity_hidden_states=outputs.entity_hidden_states,
            attentions=outputs.attentions,
        )