--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en-US results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.296010296010296 --- # whisper-tiny-en-US This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.4990 - Wer Ortho: 0.2965 - Wer: 0.2960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 100 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:| | 0.0244 | 0.8969 | 50 | 0.5282 | 0.3012 | 0.3005 | | 0.0178 | 1.7937 | 100 | 0.5213 | 0.2985 | 0.2986 | | 0.0171 | 2.6906 | 150 | 0.5147 | 0.2979 | 0.2967 | | 0.0121 | 3.5874 | 200 | 0.5092 | 0.2925 | 0.2915 | | 0.0071 | 4.4843 | 250 | 0.5057 | 0.3072 | 0.3069 | | 0.0073 | 5.3812 | 300 | 0.5034 | 0.2945 | 0.2941 | | 0.003 | 6.2780 | 350 | 0.5014 | 0.2945 | 0.2934 | | 0.0036 | 7.1749 | 400 | 0.5003 | 0.2972 | 0.2967 | | 0.0034 | 8.0717 | 450 | 0.4997 | 0.2965 | 0.2960 | | 0.0034 | 8.9686 | 500 | 0.4990 | 0.2965 | 0.2960 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1