Update README.md
Browse files
README.md
CHANGED
@@ -21,3 +21,188 @@ tags:
|
|
21 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
22 |
|
23 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
22 |
|
23 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
# Code To Train Model on Google collab:
|
28 |
+
|
29 |
+
# Installing required packages
|
30 |
+
%%capture
|
31 |
+
```
|
32 |
+
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
33 |
+
from torch import __version__; from packaging.version import Version as V
|
34 |
+
xformers = "xformers==0.0.27" if V(__version__) < V("2.4.0") else "xformers"
|
35 |
+
!pip install --no-deps {xformers} trl peft accelerate bitsandbytes triton
|
36 |
+
```
|
37 |
+
# importing required modules
|
38 |
+
|
39 |
+
```
|
40 |
+
import torch
|
41 |
+
from trl import SFTTrainer
|
42 |
+
from datasets import load_dataset
|
43 |
+
from transformers import TrainingArguments, TextStreamer
|
44 |
+
from unsloth.chat_templates import get_chat_template
|
45 |
+
from unsloth import FastLanguageModel, is_bfloat16_supported
|
46 |
+
```
|
47 |
+
|
48 |
+
# Login to HuggingFace using edit Access token storing in secrets
|
49 |
+
```
|
50 |
+
from huggingface_hub import login
|
51 |
+
from google.colab import userdata
|
52 |
+
hf_token = userdata.get('HF_API_KEY')
|
53 |
+
login(token = hf_token)
|
54 |
+
```
|
55 |
+
|
56 |
+
# Check if a GPU is available
|
57 |
+
|
58 |
+
```
|
59 |
+
import torch
|
60 |
+
|
61 |
+
if torch.cuda.is_available():
|
62 |
+
device = torch.device("cuda")
|
63 |
+
print("GPU is available and being used.")
|
64 |
+
else:
|
65 |
+
device = torch.device("cpu")
|
66 |
+
print("GPU is not available, using CPU.")
|
67 |
+
```
|
68 |
+
|
69 |
+
# Loading model from Hugging Face
|
70 |
+
|
71 |
+
```
|
72 |
+
max_seq_length = 1024
|
73 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
74 |
+
model_name="unsloth/Meta-Llama-3.1-8B-bnb-4bit",
|
75 |
+
max_seq_length=max_seq_length,
|
76 |
+
load_in_4bit=True,
|
77 |
+
dtype=None,
|
78 |
+
)
|
79 |
+
model = FastLanguageModel.get_peft_model(
|
80 |
+
model,
|
81 |
+
r=16,
|
82 |
+
lora_alpha=16,
|
83 |
+
lora_dropout=0,
|
84 |
+
target_modules=["q_proj", "k_proj", "v_proj", "up_proj", "down_proj", "o_proj", "gate_proj"],
|
85 |
+
use_rslora=True,
|
86 |
+
use_gradient_checkpointing="unsloth"
|
87 |
+
)
|
88 |
+
```
|
89 |
+
|
90 |
+
# loading and formating Dataset
|
91 |
+
|
92 |
+
```
|
93 |
+
raw_dataset = load_dataset("viber1/indian-law-dataset", split="train[:1000]")
|
94 |
+
|
95 |
+
# Define a simple prompt template using only Instruction and Response
|
96 |
+
|
97 |
+
alpaca_prompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
98 |
+
|
99 |
+
### Instruction:
|
100 |
+
{}
|
101 |
+
|
102 |
+
### Response:
|
103 |
+
{}"""
|
104 |
+
|
105 |
+
# EOS token for marking the end of each example
|
106 |
+
EOS_TOKEN = tokenizer.eos_token
|
107 |
+
|
108 |
+
# Function to format prompts with only Instruction and Response
|
109 |
+
def formatting_prompts_func(examples):
|
110 |
+
Instruction = examples["Instruction"]
|
111 |
+
Response = examples["Response"]
|
112 |
+
|
113 |
+
# Create a formatted text for each example
|
114 |
+
texts = []
|
115 |
+
for Instruction, Response in zip(Instruction, Response):
|
116 |
+
# Format the text with the prompt template and add the EOS token
|
117 |
+
text = alpaca_prompt.format(Instruction, Response) + EOS_TOKEN
|
118 |
+
texts.append(text)
|
119 |
+
|
120 |
+
return {"text": texts}
|
121 |
+
|
122 |
+
# Apply the formatting function to the dataset
|
123 |
+
dataset = raw_dataset.map(formatting_prompts_func, batched=True)
|
124 |
+
```
|
125 |
+
|
126 |
+
# Using Trainer with low batch sizes, Gradient Checkpointing, LoRA and Quantization
|
127 |
+
|
128 |
+
```
|
129 |
+
trainer=SFTTrainer(
|
130 |
+
model=model,
|
131 |
+
tokenizer=tokenizer,
|
132 |
+
train_dataset=dataset,
|
133 |
+
dataset_text_field="text",
|
134 |
+
max_seq_length=max_seq_length,
|
135 |
+
dataset_num_proc=2,
|
136 |
+
packing=True,
|
137 |
+
args=TrainingArguments(
|
138 |
+
learning_rate=3e-4,
|
139 |
+
lr_scheduler_type="linear",
|
140 |
+
per_device_train_batch_size=1,
|
141 |
+
gradient_accumulation_steps=1,
|
142 |
+
gradient_checkpointing=True,
|
143 |
+
num_train_epochs=1,
|
144 |
+
fp16=not is_bfloat16_supported(),
|
145 |
+
bf16=is_bfloat16_supported(),
|
146 |
+
logging_steps=1,
|
147 |
+
optim="adamw_8bit",
|
148 |
+
weight_decay=0.01,
|
149 |
+
warmup_steps=10,
|
150 |
+
output_dir="output",
|
151 |
+
seed=0,
|
152 |
+
),
|
153 |
+
)
|
154 |
+
```
|
155 |
+
|
156 |
+
# Show current memory stats
|
157 |
+
```
|
158 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
159 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
160 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
161 |
+
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
162 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
163 |
+
```
|
164 |
+
|
165 |
+
# Start Training
|
166 |
+
```
|
167 |
+
trainer_stats = trainer.train()
|
168 |
+
```
|
169 |
+
|
170 |
+
# Show final memory and time stats
|
171 |
+
```
|
172 |
+
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
173 |
+
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
|
174 |
+
used_percentage = round(used_memory /max_memory*100, 3)
|
175 |
+
lora_percentage = round(used_memory_for_lora/max_memory*100, 3)
|
176 |
+
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
|
177 |
+
print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")
|
178 |
+
print(f"Peak reserved memory = {used_memory} GB.")
|
179 |
+
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
|
180 |
+
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
|
181 |
+
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
|
182 |
+
```
|
183 |
+
|
184 |
+
# Finally Saving Trained model and push to HuggingFace
|
185 |
+
```
|
186 |
+
# Merge to 16bit
|
187 |
+
model.save_pretrained_merged("Indian-Law-Llama-3.1-8B", tokenizer, save_method = "merged_16bit",)
|
188 |
+
|
189 |
+
model.push_to_hub_merged("vakodiya/Viber-Indian-Law-Unsloth-Llama-3.1-8B", tokenizer, save_method="merged_16bit", token = hf_token)
|
190 |
+
```
|
191 |
+
|
192 |
+
|
193 |
+
# Model usage with streaming response
|
194 |
+
|
195 |
+
```
|
196 |
+
# alpaca_prompt = Copied from above
|
197 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
198 |
+
inputs = tokenizer(
|
199 |
+
[
|
200 |
+
alpaca_prompt.format(
|
201 |
+
"What is the difference between a petition and a plaint in Indian law?",''
|
202 |
+
)
|
203 |
+
], return_tensors = "pt").to("cuda")
|
204 |
+
|
205 |
+
from transformers import TextStreamer
|
206 |
+
text_streamer = TextStreamer(tokenizer)
|
207 |
+
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
|
208 |
+
```
|