varevshatyan commited on
Commit
af549a8
1 Parent(s): 3a7d318

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1537.73 +/- 163.46
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7312b902aea7c4cfa83d55415a2a21ad580cb163607e67d292b729dd6a3501e7
3
+ size 129010
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe10c605550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe10c6055e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe10c605670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe10c605700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe10c605790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe10c605820>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe10c6058b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe10c605940>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe10c6059d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe10c605a60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe10c605af0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe10c605b80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fe10c607640>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1680437270174099717,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAzBND5Vhqi+Eiv9PqxVyD/22Ia/OfmbP4Lfgj3DtHS/CDyZP8fCjD97gf8+78k1Puu317+ZW2g/cssOPgUPTz+bARs/OAWuv1JFtD4QCBs/1liOv9qANj+hBoW/UA1PPulsPj/Ojc0+05z1PtMii7/6Nr4+AtqoPuFCGj/rpwZA3Tp5vsltWz1/GZA+/yVyvwuzbD//+9I9QgdfP3a/xD4X2eW/PtCcPQcfaL5UMRfAjt7WPl1707/er/I+MsAOQBt8jb8kGjq/03A2v0gYsr/pbD4/w2kfwNOc9T7TIou/APTiPqRJXj+RMtA+6mYQQBFtvr4FmQVAIH8jvw53qr/oyZs/1PiavswyPT7H2ZA/O8Tdv93gnD2miUI/Dr7vvsi9IL5/I8W/PPJQPt0vuD8hXZS+s9hSv5yJbr/x6ek96Ww+P86NzT7TnPU+0yKLv1Cdm7/P9La8OpsXPw7WFT9ATaK+mCNQv6eXwz3UFYY+AFRzPizhjL8fckO/ADgMP8dthb+Ha1Y/MsEYP0nZDkDcvso/J5Q4vdCJDz9wtATAKtSvvwkr/zvw9Mu+1mxkP+4TrL/Ojc0+0WkFwLKCaz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC1wr21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+lLGvQAAAADHaP+/AAAAAHyJar0AAAAAHYnnPwAAAACovo+9AAAAAK756z8AAAAA3u8HPQAAAACvufq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5qHdtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOBfxz0AAAAA9jXnvwAAAABKewq+AAAAAHUj9z8AAAAA4XaBvAAAAACdsvM/AAAAAHmJNj0AAAAAl4XivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAdFzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDdUbi9AAAAACgW/r8AAAAArxSJPQAAAABMKPk/AAAAAIUBA74AAAAAZbvuPwAAAAAqCY+9AAAAANj4+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaqlg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA90iwvAAAAABL0ey/AAAAAOR19jwAAAAATqr1PwAAAAAQhdk8AAAAAL9K5T8AAAAAPBd+vQAAAAD1NfW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbAqQJXyRWMAWyUTegDjAF0lEdArC5x8QZn+XV9lChoBkdAmDNUOAiFCmgHTegDaAhHQKwwcfHPu5V1fZQoaAZHQJp1iL/CIk9oB03oA2gIR0CsMYr/sE7odX2UKGgGR0CWaFsDW9UTaAdN6ANoCEdArDMDMNc4YXV9lChoBkdAlFODrZ8KHGgHTegDaAhHQKw80gCfYjB1fZQoaAZHQI3xj1RLsa9oB03oA2gIR0CsPss2NvOydX2UKGgGR0CSfPe6qbSaaAdN6ANoCEdArD/llVcUunV9lChoBkdAjOM9t/FzdWgHTegDaAhHQKxBXkMCtA91fZQoaAZHQJF+Qz0pVjtoB03oA2gIR0CsSv72USqVdX2UKGgGR0CU9PytmtheaAdN6ANoCEdArEzwakyk9HV9lChoBkdAmElgiaAnUmgHTegDaAhHQKxOBwPy08h1fZQoaAZHQJFmOQSzw+doB03oA2gIR0CsT4GNJe3QdX2UKGgGR0CRkO72+PBBaAdN6ANoCEdArFktqUNayXV9lChoBkdAkMEoaP0ZnGgHTegDaAhHQKxbKF6Avtd1fZQoaAZHQJaXq8h9srNoB03oA2gIR0CsXEItlI3BdX2UKGgGR0CWpd3n6l+FaAdN6ANoCEdArF3BfD1oQHV9lChoBkdAkgWnRG+bmWgHTegDaAhHQKxnaNDtw711fZQoaAZHQJG++DnNgShoB03oA2gIR0CsaVbJwKjSdX2UKGgGR0COAdJ0W/JvaAdN6ANoCEdArGpvrleWwHV9lChoBkdAj1DJrk8zRGgHTegDaAhHQKxr7hOxjax1fZQoaAZHQJNsx0yP+4toB03oA2gIR0CsdZhi9ZiedX2UKGgGR0CT4qsk6cRUaAdN6ANoCEdArHeYqqfe13V9lChoBkdAlBkTVpblimgHTegDaAhHQKx4ugK4QSV1fZQoaAZHQJT4QCDEm6ZoB03oA2gIR0CsejhY/3WXdX2UKGgGR0CXJBELpiZwaAdN6ANoCEdArIPmDBdld3V9lChoBkdAl0pOnyd4FGgHTegDaAhHQKyF2HlfZ291fZQoaAZHQJcLsan7521oB03oA2gIR0CshzDghr31dX2UKGgGR0CXjvsXBP9DaAdN6ANoCEdArIinGhmGunV9lChoBkdAl4F/hqCYkWgHTegDaAhHQKySekk8ifR1fZQoaAZHQJWJYWUKRdRoB03oA2gIR0CslG5Vn27GdX2UKGgGR0CSkc4iosI3aAdN6ANoCEdArJWNcSoOx3V9lChoBkdAlZUfzWf9P2gHTegDaAhHQKyXC/oJRfp1fZQoaAZHQJb5ZS4vvjRoB03oA2gIR0CsoKSGi5/cdX2UKGgGR0CbsBfwI+nqaAdN6ANoCEdArKLc45tFa3V9lChoBkdAmP6Ju/Dcd2gHTegDaAhHQKyj+TSsr/d1fZQoaAZHQJp3eL9/BnBoB03oA2gIR0CspXnWJ79idX2UKGgGR0CUHjFEy+HraAdN6ANoCEdArK9AF9roGXV9lChoBkdAkwTF8b70nWgHTegDaAhHQKyxPVjI7vJ1fZQoaAZHQJtEsY0l7dBoB03oA2gIR0CsslYfGMn7dX2UKGgGR0CW5oI3R5TqaAdN6ANoCEdArLPJ/LDAJ3V9lChoBkdAllcIEW69TWgHTegDaAhHQKy9gXm/3391fZQoaAZHQJcF+JFb3XZoB03oA2gIR0Csv3TUy57PdX2UKGgGR0CU2w/6fra/aAdN6ANoCEdArMCQfnwG4nV9lChoBkdAlW8QblzU7WgHTegDaAhHQKzCDAYYR/V1fZQoaAZHQJOg+PS2H+JoB03oA2gIR0Csy/cbiqACdX2UKGgGR0CPvlZi/fwaaAdN6ANoCEdArM351eSjg3V9lChoBkdAkBsjibUgCGgHTegDaAhHQKzPH05lvqF1fZQoaAZHQJIMNAmiQDFoB03oA2gIR0Cs0KiVB2OidX2UKGgGR0CSu0qBmPHUaAdN6ANoCEdArNqI3irDInV9lChoBkdAkCAXT3IuG2gHTegDaAhHQKzch2Cdz4l1fZQoaAZHQJRPgBHTZxtoB03oA2gIR0Cs3anG8274dX2UKGgGR0CRcYWgvlEJaAdN6ANoCEdArN8rpNbkfnV9lChoBkdAk1UeuNgjQmgHTegDaAhHQKzo+JO32El1fZQoaAZHQJGFbuBtk4FoB03oA2gIR0Cs6vQoTfzjdX2UKGgGR0CWsX9eQdS3aAdN6ANoCEdArOwQHE/B33V9lChoBkdAlb5wpBomHGgHTegDaAhHQKztkBJZnth1fZQoaAZHQJA+anCO3lVoB03oA2gIR0Cs96ktdzGQdX2UKGgGR0CVZbV3Ux20aAdN6ANoCEdArPmkyP+4snV9lChoBkdAlYMGVu76HmgHTegDaAhHQKz6yexOclR1fZQoaAZHQJV/gxWT5ftoB03oA2gIR0Cs/FArH2h7dX2UKGgGR0CUo7B3A2ycaAdN6ANoCEdArQYQ1FYuCnV9lChoBkdAlgjAYLsru2gHTegDaAhHQK0IFMPBi1B1fZQoaAZHQJYgeLsKLKpoB03oA2gIR0CtCTNmlImPdX2UKGgGR0CUrhIEKVpsaAdN6ANoCEdArQqvMB6rvXV9lChoBkdAlW95kGzKLmgHTegDaAhHQK0UccR15jZ1fZQoaAZHQJWtOaZx7zFoB03oA2gIR0CtFnGknCwbdX2UKGgGR0CZfLWFN+LFaAdN6ANoCEdArReMWEbo83V9lChoBkdAl7aN4JNTLmgHTegDaAhHQK0ZAEs8PnV1fZQoaAZHQJm8QhnrY5FoB03oA2gIR0CtIv1M23rldX2UKGgGR0CY86Ta0x/NaAdN6ANoCEdArST45Jbt7nV9lChoBkdAmUoUBnzxw2gHTegDaAhHQK0mFiVjZth1fZQoaAZHQJdM4AGSpzdoB03oA2gIR0CtJ5Tl90A+dX2UKGgGR0CaBqeBg/keaAdN6ANoCEdArTFccGTs6nV9lChoBkdAl8nXRCx/u2gHTegDaAhHQK0zXIz3yqd1fZQoaAZHQJbIKG0u14RoB03oA2gIR0CtNH7AtWdVdX2UKGgGR0CWLPiA2AG0aAdN6ANoCEdArTX/wmVqvnV9lChoBkdAlui6HCXQdGgHTegDaAhHQK0/tAgPmPp1fZQoaAZHQJblw8hcJMRoB03oA2gIR0CtQaXc580DdX2UKGgGR0CaRHUpd8iOaAdN6ANoCEdArULC+UQkHHV9lChoBkdAmfmXirDIimgHTegDaAhHQK1ENstTUAl1fZQoaAZHQJpc3vG6wt9oB03oA2gIR0CtTeSYPXkHdX2UKGgGR0Cbuh3I+4b0aAdN6ANoCEdArU/W/xlQM3V9lChoBkdAm5yuBlMAWGgHTegDaAhHQK1Q8KJl8PZ1fZQoaAZHQJKT+BPKuCBoB03oA2gIR0CtUm0mUnogdX2UKGgGR0COuOx9G7SRaAdN6ANoCEdArVwmFBY3enV9lChoBkdAlKnHFYMfBGgHTegDaAhHQK1eGqiGnGd1fZQoaAZHQJNlePo3aSNoB03oA2gIR0CtXzo9cKPXdX2UKGgGR0CYIdKB/ZuiaAdN6ANoCEdArWCwYxcmjXV9lChoBkdAliMk12q1gGgHTegDaAhHQK1qcRlHz6J1fZQoaAZHQJppU7NjbztoB03oA2gIR0CtbGb1RLsbdX2UKGgGR0CX8lwwCbMHaAdN6ANoCEdArW2BUBGQS3V9lChoBkdAlH2nGff4y2gHTegDaAhHQK1u+33Hq/x1fZQoaAZHQJsW+51/2CdoB03oA2gIR0CteK6Y/mkndX2UKGgGR0CSgML0Bfa6aAdN6ANoCEdArXqtBt1p03V9lChoBkdAmV9RsuWa+mgHTegDaAhHQK17xoM8YAN1fZQoaAZHQJpNu7SRbKRoB03oA2gIR0CtfUCsOoYOdX2UKGgGR0CV004XoC+2aAdN6ANoCEdArYddiBoVVXV9lChoBkdAmt68GTs6aWgHTegDaAhHQK2JcisXBP91fZQoaAZHQJp85oDgZTBoB03oA2gIR0CtipXp4bCKdX2UKGgGR0CWsdrVe8f3aAdN6ANoCEdArYwXV5KODXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48494934dfd18fc724158510b031512b71ab18a015088dcb4059d31bde06ba2b
3
+ size 56062
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c73e805389b050e5f0886a3495c0816bcb024faa34f8285a8626d4fa02a57b3
3
+ size 56830
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe10c605550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe10c6055e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe10c605670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe10c605700>", "_build": "<function ActorCriticPolicy._build at 0x7fe10c605790>", "forward": "<function ActorCriticPolicy.forward at 0x7fe10c605820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe10c6058b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe10c605940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe10c6059d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe10c605a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe10c605af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe10c605b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe10c607640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680437270174099717, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAzBND5Vhqi+Eiv9PqxVyD/22Ia/OfmbP4Lfgj3DtHS/CDyZP8fCjD97gf8+78k1Puu317+ZW2g/cssOPgUPTz+bARs/OAWuv1JFtD4QCBs/1liOv9qANj+hBoW/UA1PPulsPj/Ojc0+05z1PtMii7/6Nr4+AtqoPuFCGj/rpwZA3Tp5vsltWz1/GZA+/yVyvwuzbD//+9I9QgdfP3a/xD4X2eW/PtCcPQcfaL5UMRfAjt7WPl1707/er/I+MsAOQBt8jb8kGjq/03A2v0gYsr/pbD4/w2kfwNOc9T7TIou/APTiPqRJXj+RMtA+6mYQQBFtvr4FmQVAIH8jvw53qr/oyZs/1PiavswyPT7H2ZA/O8Tdv93gnD2miUI/Dr7vvsi9IL5/I8W/PPJQPt0vuD8hXZS+s9hSv5yJbr/x6ek96Ww+P86NzT7TnPU+0yKLv1Cdm7/P9La8OpsXPw7WFT9ATaK+mCNQv6eXwz3UFYY+AFRzPizhjL8fckO/ADgMP8dthb+Ha1Y/MsEYP0nZDkDcvso/J5Q4vdCJDz9wtATAKtSvvwkr/zvw9Mu+1mxkP+4TrL/Ojc0+0WkFwLKCaz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC1wr21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+lLGvQAAAADHaP+/AAAAAHyJar0AAAAAHYnnPwAAAACovo+9AAAAAK756z8AAAAA3u8HPQAAAACvufq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5qHdtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOBfxz0AAAAA9jXnvwAAAABKewq+AAAAAHUj9z8AAAAA4XaBvAAAAACdsvM/AAAAAHmJNj0AAAAAl4XivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAdFzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDdUbi9AAAAACgW/r8AAAAArxSJPQAAAABMKPk/AAAAAIUBA74AAAAAZbvuPwAAAAAqCY+9AAAAANj4+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaqlg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA90iwvAAAAABL0ey/AAAAAOR19jwAAAAATqr1PwAAAAAQhdk8AAAAAL9K5T8AAAAAPBd+vQAAAAD1NfW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbAqQJXyRWMAWyUTegDjAF0lEdArC5x8QZn+XV9lChoBkdAmDNUOAiFCmgHTegDaAhHQKwwcfHPu5V1fZQoaAZHQJp1iL/CIk9oB03oA2gIR0CsMYr/sE7odX2UKGgGR0CWaFsDW9UTaAdN6ANoCEdArDMDMNc4YXV9lChoBkdAlFODrZ8KHGgHTegDaAhHQKw80gCfYjB1fZQoaAZHQI3xj1RLsa9oB03oA2gIR0CsPss2NvOydX2UKGgGR0CSfPe6qbSaaAdN6ANoCEdArD/llVcUunV9lChoBkdAjOM9t/FzdWgHTegDaAhHQKxBXkMCtA91fZQoaAZHQJF+Qz0pVjtoB03oA2gIR0CsSv72USqVdX2UKGgGR0CU9PytmtheaAdN6ANoCEdArEzwakyk9HV9lChoBkdAmElgiaAnUmgHTegDaAhHQKxOBwPy08h1fZQoaAZHQJFmOQSzw+doB03oA2gIR0CsT4GNJe3QdX2UKGgGR0CRkO72+PBBaAdN6ANoCEdArFktqUNayXV9lChoBkdAkMEoaP0ZnGgHTegDaAhHQKxbKF6Avtd1fZQoaAZHQJaXq8h9srNoB03oA2gIR0CsXEItlI3BdX2UKGgGR0CWpd3n6l+FaAdN6ANoCEdArF3BfD1oQHV9lChoBkdAkgWnRG+bmWgHTegDaAhHQKxnaNDtw711fZQoaAZHQJG++DnNgShoB03oA2gIR0CsaVbJwKjSdX2UKGgGR0COAdJ0W/JvaAdN6ANoCEdArGpvrleWwHV9lChoBkdAj1DJrk8zRGgHTegDaAhHQKxr7hOxjax1fZQoaAZHQJNsx0yP+4toB03oA2gIR0CsdZhi9ZiedX2UKGgGR0CT4qsk6cRUaAdN6ANoCEdArHeYqqfe13V9lChoBkdAlBkTVpblimgHTegDaAhHQKx4ugK4QSV1fZQoaAZHQJT4QCDEm6ZoB03oA2gIR0CsejhY/3WXdX2UKGgGR0CXJBELpiZwaAdN6ANoCEdArIPmDBdld3V9lChoBkdAl0pOnyd4FGgHTegDaAhHQKyF2HlfZ291fZQoaAZHQJcLsan7521oB03oA2gIR0CshzDghr31dX2UKGgGR0CXjvsXBP9DaAdN6ANoCEdArIinGhmGunV9lChoBkdAl4F/hqCYkWgHTegDaAhHQKySekk8ifR1fZQoaAZHQJWJYWUKRdRoB03oA2gIR0CslG5Vn27GdX2UKGgGR0CSkc4iosI3aAdN6ANoCEdArJWNcSoOx3V9lChoBkdAlZUfzWf9P2gHTegDaAhHQKyXC/oJRfp1fZQoaAZHQJb5ZS4vvjRoB03oA2gIR0CsoKSGi5/cdX2UKGgGR0CbsBfwI+nqaAdN6ANoCEdArKLc45tFa3V9lChoBkdAmP6Ju/Dcd2gHTegDaAhHQKyj+TSsr/d1fZQoaAZHQJp3eL9/BnBoB03oA2gIR0CspXnWJ79idX2UKGgGR0CUHjFEy+HraAdN6ANoCEdArK9AF9roGXV9lChoBkdAkwTF8b70nWgHTegDaAhHQKyxPVjI7vJ1fZQoaAZHQJtEsY0l7dBoB03oA2gIR0CsslYfGMn7dX2UKGgGR0CW5oI3R5TqaAdN6ANoCEdArLPJ/LDAJ3V9lChoBkdAllcIEW69TWgHTegDaAhHQKy9gXm/3391fZQoaAZHQJcF+JFb3XZoB03oA2gIR0Csv3TUy57PdX2UKGgGR0CU2w/6fra/aAdN6ANoCEdArMCQfnwG4nV9lChoBkdAlW8QblzU7WgHTegDaAhHQKzCDAYYR/V1fZQoaAZHQJOg+PS2H+JoB03oA2gIR0Csy/cbiqACdX2UKGgGR0CPvlZi/fwaaAdN6ANoCEdArM351eSjg3V9lChoBkdAkBsjibUgCGgHTegDaAhHQKzPH05lvqF1fZQoaAZHQJIMNAmiQDFoB03oA2gIR0Cs0KiVB2OidX2UKGgGR0CSu0qBmPHUaAdN6ANoCEdArNqI3irDInV9lChoBkdAkCAXT3IuG2gHTegDaAhHQKzch2Cdz4l1fZQoaAZHQJRPgBHTZxtoB03oA2gIR0Cs3anG8274dX2UKGgGR0CRcYWgvlEJaAdN6ANoCEdArN8rpNbkfnV9lChoBkdAk1UeuNgjQmgHTegDaAhHQKzo+JO32El1fZQoaAZHQJGFbuBtk4FoB03oA2gIR0Cs6vQoTfzjdX2UKGgGR0CWsX9eQdS3aAdN6ANoCEdArOwQHE/B33V9lChoBkdAlb5wpBomHGgHTegDaAhHQKztkBJZnth1fZQoaAZHQJA+anCO3lVoB03oA2gIR0Cs96ktdzGQdX2UKGgGR0CVZbV3Ux20aAdN6ANoCEdArPmkyP+4snV9lChoBkdAlYMGVu76HmgHTegDaAhHQKz6yexOclR1fZQoaAZHQJV/gxWT5ftoB03oA2gIR0Cs/FArH2h7dX2UKGgGR0CUo7B3A2ycaAdN6ANoCEdArQYQ1FYuCnV9lChoBkdAlgjAYLsru2gHTegDaAhHQK0IFMPBi1B1fZQoaAZHQJYgeLsKLKpoB03oA2gIR0CtCTNmlImPdX2UKGgGR0CUrhIEKVpsaAdN6ANoCEdArQqvMB6rvXV9lChoBkdAlW95kGzKLmgHTegDaAhHQK0UccR15jZ1fZQoaAZHQJWtOaZx7zFoB03oA2gIR0CtFnGknCwbdX2UKGgGR0CZfLWFN+LFaAdN6ANoCEdArReMWEbo83V9lChoBkdAl7aN4JNTLmgHTegDaAhHQK0ZAEs8PnV1fZQoaAZHQJm8QhnrY5FoB03oA2gIR0CtIv1M23rldX2UKGgGR0CY86Ta0x/NaAdN6ANoCEdArST45Jbt7nV9lChoBkdAmUoUBnzxw2gHTegDaAhHQK0mFiVjZth1fZQoaAZHQJdM4AGSpzdoB03oA2gIR0CtJ5Tl90A+dX2UKGgGR0CaBqeBg/keaAdN6ANoCEdArTFccGTs6nV9lChoBkdAl8nXRCx/u2gHTegDaAhHQK0zXIz3yqd1fZQoaAZHQJbIKG0u14RoB03oA2gIR0CtNH7AtWdVdX2UKGgGR0CWLPiA2AG0aAdN6ANoCEdArTX/wmVqvnV9lChoBkdAlui6HCXQdGgHTegDaAhHQK0/tAgPmPp1fZQoaAZHQJblw8hcJMRoB03oA2gIR0CtQaXc580DdX2UKGgGR0CaRHUpd8iOaAdN6ANoCEdArULC+UQkHHV9lChoBkdAmfmXirDIimgHTegDaAhHQK1ENstTUAl1fZQoaAZHQJpc3vG6wt9oB03oA2gIR0CtTeSYPXkHdX2UKGgGR0Cbuh3I+4b0aAdN6ANoCEdArU/W/xlQM3V9lChoBkdAm5yuBlMAWGgHTegDaAhHQK1Q8KJl8PZ1fZQoaAZHQJKT+BPKuCBoB03oA2gIR0CtUm0mUnogdX2UKGgGR0COuOx9G7SRaAdN6ANoCEdArVwmFBY3enV9lChoBkdAlKnHFYMfBGgHTegDaAhHQK1eGqiGnGd1fZQoaAZHQJNlePo3aSNoB03oA2gIR0CtXzo9cKPXdX2UKGgGR0CYIdKB/ZuiaAdN6ANoCEdArWCwYxcmjXV9lChoBkdAliMk12q1gGgHTegDaAhHQK1qcRlHz6J1fZQoaAZHQJppU7NjbztoB03oA2gIR0CtbGb1RLsbdX2UKGgGR0CX8lwwCbMHaAdN6ANoCEdArW2BUBGQS3V9lChoBkdAlH2nGff4y2gHTegDaAhHQK1u+33Hq/x1fZQoaAZHQJsW+51/2CdoB03oA2gIR0CteK6Y/mkndX2UKGgGR0CSgML0Bfa6aAdN6ANoCEdArXqtBt1p03V9lChoBkdAmV9RsuWa+mgHTegDaAhHQK17xoM8YAN1fZQoaAZHQJpNu7SRbKRoB03oA2gIR0CtfUCsOoYOdX2UKGgGR0CV004XoC+2aAdN6ANoCEdArYddiBoVVXV9lChoBkdAmt68GTs6aWgHTegDaAhHQK2JcisXBP91fZQoaAZHQJp85oDgZTBoB03oA2gIR0CtipXp4bCKdX2UKGgGR0CWsdrVe8f3aAdN6ANoCEdArYwXV5KODXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1f3519dd509e052301de2b65c8daf0aba3ee92dbc37b25dab44769d9b83c01e
3
+ size 1008068
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1537.7343715465163, "std_reward": 163.45863935826804, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-02T14:19:03.583586"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1aea54e7b0fb11b13c1c0234c10dbd5352caf66ff55ab2b8fe5440961baaa680
3
+ size 2136