varevshatyan
commited on
Commit
•
af549a8
1
Parent(s):
3a7d318
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1537.73 +/- 163.46
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7312b902aea7c4cfa83d55415a2a21ad580cb163607e67d292b729dd6a3501e7
|
3 |
+
size 129010
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe10c605550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe10c6055e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe10c605670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe10c605700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe10c605790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe10c605820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe10c6058b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe10c605940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe10c6059d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe10c605a60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe10c605af0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe10c605b80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe10c607640>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1680437270174099717,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAzBND5Vhqi+Eiv9PqxVyD/22Ia/OfmbP4Lfgj3DtHS/CDyZP8fCjD97gf8+78k1Puu317+ZW2g/cssOPgUPTz+bARs/OAWuv1JFtD4QCBs/1liOv9qANj+hBoW/UA1PPulsPj/Ojc0+05z1PtMii7/6Nr4+AtqoPuFCGj/rpwZA3Tp5vsltWz1/GZA+/yVyvwuzbD//+9I9QgdfP3a/xD4X2eW/PtCcPQcfaL5UMRfAjt7WPl1707/er/I+MsAOQBt8jb8kGjq/03A2v0gYsr/pbD4/w2kfwNOc9T7TIou/APTiPqRJXj+RMtA+6mYQQBFtvr4FmQVAIH8jvw53qr/oyZs/1PiavswyPT7H2ZA/O8Tdv93gnD2miUI/Dr7vvsi9IL5/I8W/PPJQPt0vuD8hXZS+s9hSv5yJbr/x6ek96Ww+P86NzT7TnPU+0yKLv1Cdm7/P9La8OpsXPw7WFT9ATaK+mCNQv6eXwz3UFYY+AFRzPizhjL8fckO/ADgMP8dthb+Ha1Y/MsEYP0nZDkDcvso/J5Q4vdCJDz9wtATAKtSvvwkr/zvw9Mu+1mxkP+4TrL/Ojc0+0WkFwLKCaz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC1wr21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+lLGvQAAAADHaP+/AAAAAHyJar0AAAAAHYnnPwAAAACovo+9AAAAAK756z8AAAAA3u8HPQAAAACvufq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5qHdtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOBfxz0AAAAA9jXnvwAAAABKewq+AAAAAHUj9z8AAAAA4XaBvAAAAACdsvM/AAAAAHmJNj0AAAAAl4XivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAdFzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDdUbi9AAAAACgW/r8AAAAArxSJPQAAAABMKPk/AAAAAIUBA74AAAAAZbvuPwAAAAAqCY+9AAAAANj4+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaqlg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA90iwvAAAAABL0ey/AAAAAOR19jwAAAAATqr1PwAAAAAQhdk8AAAAAL9K5T8AAAAAPBd+vQAAAAD1NfW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbAqQJXyRWMAWyUTegDjAF0lEdArC5x8QZn+XV9lChoBkdAmDNUOAiFCmgHTegDaAhHQKwwcfHPu5V1fZQoaAZHQJp1iL/CIk9oB03oA2gIR0CsMYr/sE7odX2UKGgGR0CWaFsDW9UTaAdN6ANoCEdArDMDMNc4YXV9lChoBkdAlFODrZ8KHGgHTegDaAhHQKw80gCfYjB1fZQoaAZHQI3xj1RLsa9oB03oA2gIR0CsPss2NvOydX2UKGgGR0CSfPe6qbSaaAdN6ANoCEdArD/llVcUunV9lChoBkdAjOM9t/FzdWgHTegDaAhHQKxBXkMCtA91fZQoaAZHQJF+Qz0pVjtoB03oA2gIR0CsSv72USqVdX2UKGgGR0CU9PytmtheaAdN6ANoCEdArEzwakyk9HV9lChoBkdAmElgiaAnUmgHTegDaAhHQKxOBwPy08h1fZQoaAZHQJFmOQSzw+doB03oA2gIR0CsT4GNJe3QdX2UKGgGR0CRkO72+PBBaAdN6ANoCEdArFktqUNayXV9lChoBkdAkMEoaP0ZnGgHTegDaAhHQKxbKF6Avtd1fZQoaAZHQJaXq8h9srNoB03oA2gIR0CsXEItlI3BdX2UKGgGR0CWpd3n6l+FaAdN6ANoCEdArF3BfD1oQHV9lChoBkdAkgWnRG+bmWgHTegDaAhHQKxnaNDtw711fZQoaAZHQJG++DnNgShoB03oA2gIR0CsaVbJwKjSdX2UKGgGR0COAdJ0W/JvaAdN6ANoCEdArGpvrleWwHV9lChoBkdAj1DJrk8zRGgHTegDaAhHQKxr7hOxjax1fZQoaAZHQJNsx0yP+4toB03oA2gIR0CsdZhi9ZiedX2UKGgGR0CT4qsk6cRUaAdN6ANoCEdArHeYqqfe13V9lChoBkdAlBkTVpblimgHTegDaAhHQKx4ugK4QSV1fZQoaAZHQJT4QCDEm6ZoB03oA2gIR0CsejhY/3WXdX2UKGgGR0CXJBELpiZwaAdN6ANoCEdArIPmDBdld3V9lChoBkdAl0pOnyd4FGgHTegDaAhHQKyF2HlfZ291fZQoaAZHQJcLsan7521oB03oA2gIR0CshzDghr31dX2UKGgGR0CXjvsXBP9DaAdN6ANoCEdArIinGhmGunV9lChoBkdAl4F/hqCYkWgHTegDaAhHQKySekk8ifR1fZQoaAZHQJWJYWUKRdRoB03oA2gIR0CslG5Vn27GdX2UKGgGR0CSkc4iosI3aAdN6ANoCEdArJWNcSoOx3V9lChoBkdAlZUfzWf9P2gHTegDaAhHQKyXC/oJRfp1fZQoaAZHQJb5ZS4vvjRoB03oA2gIR0CsoKSGi5/cdX2UKGgGR0CbsBfwI+nqaAdN6ANoCEdArKLc45tFa3V9lChoBkdAmP6Ju/Dcd2gHTegDaAhHQKyj+TSsr/d1fZQoaAZHQJp3eL9/BnBoB03oA2gIR0CspXnWJ79idX2UKGgGR0CUHjFEy+HraAdN6ANoCEdArK9AF9roGXV9lChoBkdAkwTF8b70nWgHTegDaAhHQKyxPVjI7vJ1fZQoaAZHQJtEsY0l7dBoB03oA2gIR0CsslYfGMn7dX2UKGgGR0CW5oI3R5TqaAdN6ANoCEdArLPJ/LDAJ3V9lChoBkdAllcIEW69TWgHTegDaAhHQKy9gXm/3391fZQoaAZHQJcF+JFb3XZoB03oA2gIR0Csv3TUy57PdX2UKGgGR0CU2w/6fra/aAdN6ANoCEdArMCQfnwG4nV9lChoBkdAlW8QblzU7WgHTegDaAhHQKzCDAYYR/V1fZQoaAZHQJOg+PS2H+JoB03oA2gIR0Csy/cbiqACdX2UKGgGR0CPvlZi/fwaaAdN6ANoCEdArM351eSjg3V9lChoBkdAkBsjibUgCGgHTegDaAhHQKzPH05lvqF1fZQoaAZHQJIMNAmiQDFoB03oA2gIR0Cs0KiVB2OidX2UKGgGR0CSu0qBmPHUaAdN6ANoCEdArNqI3irDInV9lChoBkdAkCAXT3IuG2gHTegDaAhHQKzch2Cdz4l1fZQoaAZHQJRPgBHTZxtoB03oA2gIR0Cs3anG8274dX2UKGgGR0CRcYWgvlEJaAdN6ANoCEdArN8rpNbkfnV9lChoBkdAk1UeuNgjQmgHTegDaAhHQKzo+JO32El1fZQoaAZHQJGFbuBtk4FoB03oA2gIR0Cs6vQoTfzjdX2UKGgGR0CWsX9eQdS3aAdN6ANoCEdArOwQHE/B33V9lChoBkdAlb5wpBomHGgHTegDaAhHQKztkBJZnth1fZQoaAZHQJA+anCO3lVoB03oA2gIR0Cs96ktdzGQdX2UKGgGR0CVZbV3Ux20aAdN6ANoCEdArPmkyP+4snV9lChoBkdAlYMGVu76HmgHTegDaAhHQKz6yexOclR1fZQoaAZHQJV/gxWT5ftoB03oA2gIR0Cs/FArH2h7dX2UKGgGR0CUo7B3A2ycaAdN6ANoCEdArQYQ1FYuCnV9lChoBkdAlgjAYLsru2gHTegDaAhHQK0IFMPBi1B1fZQoaAZHQJYgeLsKLKpoB03oA2gIR0CtCTNmlImPdX2UKGgGR0CUrhIEKVpsaAdN6ANoCEdArQqvMB6rvXV9lChoBkdAlW95kGzKLmgHTegDaAhHQK0UccR15jZ1fZQoaAZHQJWtOaZx7zFoB03oA2gIR0CtFnGknCwbdX2UKGgGR0CZfLWFN+LFaAdN6ANoCEdArReMWEbo83V9lChoBkdAl7aN4JNTLmgHTegDaAhHQK0ZAEs8PnV1fZQoaAZHQJm8QhnrY5FoB03oA2gIR0CtIv1M23rldX2UKGgGR0CY86Ta0x/NaAdN6ANoCEdArST45Jbt7nV9lChoBkdAmUoUBnzxw2gHTegDaAhHQK0mFiVjZth1fZQoaAZHQJdM4AGSpzdoB03oA2gIR0CtJ5Tl90A+dX2UKGgGR0CaBqeBg/keaAdN6ANoCEdArTFccGTs6nV9lChoBkdAl8nXRCx/u2gHTegDaAhHQK0zXIz3yqd1fZQoaAZHQJbIKG0u14RoB03oA2gIR0CtNH7AtWdVdX2UKGgGR0CWLPiA2AG0aAdN6ANoCEdArTX/wmVqvnV9lChoBkdAlui6HCXQdGgHTegDaAhHQK0/tAgPmPp1fZQoaAZHQJblw8hcJMRoB03oA2gIR0CtQaXc580DdX2UKGgGR0CaRHUpd8iOaAdN6ANoCEdArULC+UQkHHV9lChoBkdAmfmXirDIimgHTegDaAhHQK1ENstTUAl1fZQoaAZHQJpc3vG6wt9oB03oA2gIR0CtTeSYPXkHdX2UKGgGR0Cbuh3I+4b0aAdN6ANoCEdArU/W/xlQM3V9lChoBkdAm5yuBlMAWGgHTegDaAhHQK1Q8KJl8PZ1fZQoaAZHQJKT+BPKuCBoB03oA2gIR0CtUm0mUnogdX2UKGgGR0COuOx9G7SRaAdN6ANoCEdArVwmFBY3enV9lChoBkdAlKnHFYMfBGgHTegDaAhHQK1eGqiGnGd1fZQoaAZHQJNlePo3aSNoB03oA2gIR0CtXzo9cKPXdX2UKGgGR0CYIdKB/ZuiaAdN6ANoCEdArWCwYxcmjXV9lChoBkdAliMk12q1gGgHTegDaAhHQK1qcRlHz6J1fZQoaAZHQJppU7NjbztoB03oA2gIR0CtbGb1RLsbdX2UKGgGR0CX8lwwCbMHaAdN6ANoCEdArW2BUBGQS3V9lChoBkdAlH2nGff4y2gHTegDaAhHQK1u+33Hq/x1fZQoaAZHQJsW+51/2CdoB03oA2gIR0CteK6Y/mkndX2UKGgGR0CSgML0Bfa6aAdN6ANoCEdArXqtBt1p03V9lChoBkdAmV9RsuWa+mgHTegDaAhHQK17xoM8YAN1fZQoaAZHQJpNu7SRbKRoB03oA2gIR0CtfUCsOoYOdX2UKGgGR0CV004XoC+2aAdN6ANoCEdArYddiBoVVXV9lChoBkdAmt68GTs6aWgHTegDaAhHQK2JcisXBP91fZQoaAZHQJp85oDgZTBoB03oA2gIR0CtipXp4bCKdX2UKGgGR0CWsdrVe8f3aAdN6ANoCEdArYwXV5KODXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48494934dfd18fc724158510b031512b71ab18a015088dcb4059d31bde06ba2b
|
3 |
+
size 56062
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c73e805389b050e5f0886a3495c0816bcb024faa34f8285a8626d4fa02a57b3
|
3 |
+
size 56830
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe10c605550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe10c6055e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe10c605670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe10c605700>", "_build": "<function ActorCriticPolicy._build at 0x7fe10c605790>", "forward": "<function ActorCriticPolicy.forward at 0x7fe10c605820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe10c6058b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe10c605940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe10c6059d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe10c605a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe10c605af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe10c605b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe10c607640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680437270174099717, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAzBND5Vhqi+Eiv9PqxVyD/22Ia/OfmbP4Lfgj3DtHS/CDyZP8fCjD97gf8+78k1Puu317+ZW2g/cssOPgUPTz+bARs/OAWuv1JFtD4QCBs/1liOv9qANj+hBoW/UA1PPulsPj/Ojc0+05z1PtMii7/6Nr4+AtqoPuFCGj/rpwZA3Tp5vsltWz1/GZA+/yVyvwuzbD//+9I9QgdfP3a/xD4X2eW/PtCcPQcfaL5UMRfAjt7WPl1707/er/I+MsAOQBt8jb8kGjq/03A2v0gYsr/pbD4/w2kfwNOc9T7TIou/APTiPqRJXj+RMtA+6mYQQBFtvr4FmQVAIH8jvw53qr/oyZs/1PiavswyPT7H2ZA/O8Tdv93gnD2miUI/Dr7vvsi9IL5/I8W/PPJQPt0vuD8hXZS+s9hSv5yJbr/x6ek96Ww+P86NzT7TnPU+0yKLv1Cdm7/P9La8OpsXPw7WFT9ATaK+mCNQv6eXwz3UFYY+AFRzPizhjL8fckO/ADgMP8dthb+Ha1Y/MsEYP0nZDkDcvso/J5Q4vdCJDz9wtATAKtSvvwkr/zvw9Mu+1mxkP+4TrL/Ojc0+0WkFwLKCaz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC1wr21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+lLGvQAAAADHaP+/AAAAAHyJar0AAAAAHYnnPwAAAACovo+9AAAAAK756z8AAAAA3u8HPQAAAACvufq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5qHdtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOBfxz0AAAAA9jXnvwAAAABKewq+AAAAAHUj9z8AAAAA4XaBvAAAAACdsvM/AAAAAHmJNj0AAAAAl4XivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAdFzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDdUbi9AAAAACgW/r8AAAAArxSJPQAAAABMKPk/AAAAAIUBA74AAAAAZbvuPwAAAAAqCY+9AAAAANj4+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaqlg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA90iwvAAAAABL0ey/AAAAAOR19jwAAAAATqr1PwAAAAAQhdk8AAAAAL9K5T8AAAAAPBd+vQAAAAD1NfW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbAqQJXyRWMAWyUTegDjAF0lEdArC5x8QZn+XV9lChoBkdAmDNUOAiFCmgHTegDaAhHQKwwcfHPu5V1fZQoaAZHQJp1iL/CIk9oB03oA2gIR0CsMYr/sE7odX2UKGgGR0CWaFsDW9UTaAdN6ANoCEdArDMDMNc4YXV9lChoBkdAlFODrZ8KHGgHTegDaAhHQKw80gCfYjB1fZQoaAZHQI3xj1RLsa9oB03oA2gIR0CsPss2NvOydX2UKGgGR0CSfPe6qbSaaAdN6ANoCEdArD/llVcUunV9lChoBkdAjOM9t/FzdWgHTegDaAhHQKxBXkMCtA91fZQoaAZHQJF+Qz0pVjtoB03oA2gIR0CsSv72USqVdX2UKGgGR0CU9PytmtheaAdN6ANoCEdArEzwakyk9HV9lChoBkdAmElgiaAnUmgHTegDaAhHQKxOBwPy08h1fZQoaAZHQJFmOQSzw+doB03oA2gIR0CsT4GNJe3QdX2UKGgGR0CRkO72+PBBaAdN6ANoCEdArFktqUNayXV9lChoBkdAkMEoaP0ZnGgHTegDaAhHQKxbKF6Avtd1fZQoaAZHQJaXq8h9srNoB03oA2gIR0CsXEItlI3BdX2UKGgGR0CWpd3n6l+FaAdN6ANoCEdArF3BfD1oQHV9lChoBkdAkgWnRG+bmWgHTegDaAhHQKxnaNDtw711fZQoaAZHQJG++DnNgShoB03oA2gIR0CsaVbJwKjSdX2UKGgGR0COAdJ0W/JvaAdN6ANoCEdArGpvrleWwHV9lChoBkdAj1DJrk8zRGgHTegDaAhHQKxr7hOxjax1fZQoaAZHQJNsx0yP+4toB03oA2gIR0CsdZhi9ZiedX2UKGgGR0CT4qsk6cRUaAdN6ANoCEdArHeYqqfe13V9lChoBkdAlBkTVpblimgHTegDaAhHQKx4ugK4QSV1fZQoaAZHQJT4QCDEm6ZoB03oA2gIR0CsejhY/3WXdX2UKGgGR0CXJBELpiZwaAdN6ANoCEdArIPmDBdld3V9lChoBkdAl0pOnyd4FGgHTegDaAhHQKyF2HlfZ291fZQoaAZHQJcLsan7521oB03oA2gIR0CshzDghr31dX2UKGgGR0CXjvsXBP9DaAdN6ANoCEdArIinGhmGunV9lChoBkdAl4F/hqCYkWgHTegDaAhHQKySekk8ifR1fZQoaAZHQJWJYWUKRdRoB03oA2gIR0CslG5Vn27GdX2UKGgGR0CSkc4iosI3aAdN6ANoCEdArJWNcSoOx3V9lChoBkdAlZUfzWf9P2gHTegDaAhHQKyXC/oJRfp1fZQoaAZHQJb5ZS4vvjRoB03oA2gIR0CsoKSGi5/cdX2UKGgGR0CbsBfwI+nqaAdN6ANoCEdArKLc45tFa3V9lChoBkdAmP6Ju/Dcd2gHTegDaAhHQKyj+TSsr/d1fZQoaAZHQJp3eL9/BnBoB03oA2gIR0CspXnWJ79idX2UKGgGR0CUHjFEy+HraAdN6ANoCEdArK9AF9roGXV9lChoBkdAkwTF8b70nWgHTegDaAhHQKyxPVjI7vJ1fZQoaAZHQJtEsY0l7dBoB03oA2gIR0CsslYfGMn7dX2UKGgGR0CW5oI3R5TqaAdN6ANoCEdArLPJ/LDAJ3V9lChoBkdAllcIEW69TWgHTegDaAhHQKy9gXm/3391fZQoaAZHQJcF+JFb3XZoB03oA2gIR0Csv3TUy57PdX2UKGgGR0CU2w/6fra/aAdN6ANoCEdArMCQfnwG4nV9lChoBkdAlW8QblzU7WgHTegDaAhHQKzCDAYYR/V1fZQoaAZHQJOg+PS2H+JoB03oA2gIR0Csy/cbiqACdX2UKGgGR0CPvlZi/fwaaAdN6ANoCEdArM351eSjg3V9lChoBkdAkBsjibUgCGgHTegDaAhHQKzPH05lvqF1fZQoaAZHQJIMNAmiQDFoB03oA2gIR0Cs0KiVB2OidX2UKGgGR0CSu0qBmPHUaAdN6ANoCEdArNqI3irDInV9lChoBkdAkCAXT3IuG2gHTegDaAhHQKzch2Cdz4l1fZQoaAZHQJRPgBHTZxtoB03oA2gIR0Cs3anG8274dX2UKGgGR0CRcYWgvlEJaAdN6ANoCEdArN8rpNbkfnV9lChoBkdAk1UeuNgjQmgHTegDaAhHQKzo+JO32El1fZQoaAZHQJGFbuBtk4FoB03oA2gIR0Cs6vQoTfzjdX2UKGgGR0CWsX9eQdS3aAdN6ANoCEdArOwQHE/B33V9lChoBkdAlb5wpBomHGgHTegDaAhHQKztkBJZnth1fZQoaAZHQJA+anCO3lVoB03oA2gIR0Cs96ktdzGQdX2UKGgGR0CVZbV3Ux20aAdN6ANoCEdArPmkyP+4snV9lChoBkdAlYMGVu76HmgHTegDaAhHQKz6yexOclR1fZQoaAZHQJV/gxWT5ftoB03oA2gIR0Cs/FArH2h7dX2UKGgGR0CUo7B3A2ycaAdN6ANoCEdArQYQ1FYuCnV9lChoBkdAlgjAYLsru2gHTegDaAhHQK0IFMPBi1B1fZQoaAZHQJYgeLsKLKpoB03oA2gIR0CtCTNmlImPdX2UKGgGR0CUrhIEKVpsaAdN6ANoCEdArQqvMB6rvXV9lChoBkdAlW95kGzKLmgHTegDaAhHQK0UccR15jZ1fZQoaAZHQJWtOaZx7zFoB03oA2gIR0CtFnGknCwbdX2UKGgGR0CZfLWFN+LFaAdN6ANoCEdArReMWEbo83V9lChoBkdAl7aN4JNTLmgHTegDaAhHQK0ZAEs8PnV1fZQoaAZHQJm8QhnrY5FoB03oA2gIR0CtIv1M23rldX2UKGgGR0CY86Ta0x/NaAdN6ANoCEdArST45Jbt7nV9lChoBkdAmUoUBnzxw2gHTegDaAhHQK0mFiVjZth1fZQoaAZHQJdM4AGSpzdoB03oA2gIR0CtJ5Tl90A+dX2UKGgGR0CaBqeBg/keaAdN6ANoCEdArTFccGTs6nV9lChoBkdAl8nXRCx/u2gHTegDaAhHQK0zXIz3yqd1fZQoaAZHQJbIKG0u14RoB03oA2gIR0CtNH7AtWdVdX2UKGgGR0CWLPiA2AG0aAdN6ANoCEdArTX/wmVqvnV9lChoBkdAlui6HCXQdGgHTegDaAhHQK0/tAgPmPp1fZQoaAZHQJblw8hcJMRoB03oA2gIR0CtQaXc580DdX2UKGgGR0CaRHUpd8iOaAdN6ANoCEdArULC+UQkHHV9lChoBkdAmfmXirDIimgHTegDaAhHQK1ENstTUAl1fZQoaAZHQJpc3vG6wt9oB03oA2gIR0CtTeSYPXkHdX2UKGgGR0Cbuh3I+4b0aAdN6ANoCEdArU/W/xlQM3V9lChoBkdAm5yuBlMAWGgHTegDaAhHQK1Q8KJl8PZ1fZQoaAZHQJKT+BPKuCBoB03oA2gIR0CtUm0mUnogdX2UKGgGR0COuOx9G7SRaAdN6ANoCEdArVwmFBY3enV9lChoBkdAlKnHFYMfBGgHTegDaAhHQK1eGqiGnGd1fZQoaAZHQJNlePo3aSNoB03oA2gIR0CtXzo9cKPXdX2UKGgGR0CYIdKB/ZuiaAdN6ANoCEdArWCwYxcmjXV9lChoBkdAliMk12q1gGgHTegDaAhHQK1qcRlHz6J1fZQoaAZHQJppU7NjbztoB03oA2gIR0CtbGb1RLsbdX2UKGgGR0CX8lwwCbMHaAdN6ANoCEdArW2BUBGQS3V9lChoBkdAlH2nGff4y2gHTegDaAhHQK1u+33Hq/x1fZQoaAZHQJsW+51/2CdoB03oA2gIR0CteK6Y/mkndX2UKGgGR0CSgML0Bfa6aAdN6ANoCEdArXqtBt1p03V9lChoBkdAmV9RsuWa+mgHTegDaAhHQK17xoM8YAN1fZQoaAZHQJpNu7SRbKRoB03oA2gIR0CtfUCsOoYOdX2UKGgGR0CV004XoC+2aAdN6ANoCEdArYddiBoVVXV9lChoBkdAmt68GTs6aWgHTegDaAhHQK2JcisXBP91fZQoaAZHQJp85oDgZTBoB03oA2gIR0CtipXp4bCKdX2UKGgGR0CWsdrVe8f3aAdN6ANoCEdArYwXV5KODXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1f3519dd509e052301de2b65c8daf0aba3ee92dbc37b25dab44769d9b83c01e
|
3 |
+
size 1008068
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1537.7343715465163, "std_reward": 163.45863935826804, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-02T14:19:03.583586"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1aea54e7b0fb11b13c1c0234c10dbd5352caf66ff55ab2b8fe5440961baaa680
|
3 |
+
size 2136
|