simonhughes22
commited on
Commit
·
fe02e8c
1
Parent(s):
9afe510
Update README.md
Browse files
README.md
CHANGED
@@ -14,12 +14,8 @@ TODO
|
|
14 |
Pre-trained models can be used like this:
|
15 |
```python
|
16 |
from sentence_transformers import CrossEncoder
|
17 |
-
model = CrossEncoder('
|
18 |
scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])
|
19 |
-
|
20 |
-
#Convert scores to labels
|
21 |
-
label_mapping = ['contradiction', 'entailment', 'neutral']
|
22 |
-
labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
|
23 |
```
|
24 |
|
25 |
## Usage with Transformers AutoModel
|
@@ -28,15 +24,12 @@ You can use the model also directly with Transformers library (without SentenceT
|
|
28 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
29 |
import torch
|
30 |
|
31 |
-
model = AutoModelForSequenceClassification.from_pretrained('
|
32 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
33 |
|
34 |
features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt")
|
35 |
|
36 |
model.eval()
|
37 |
with torch.no_grad():
|
38 |
-
scores = model(**features)
|
39 |
-
label_mapping = ['contradiction', 'entailment', 'neutral']
|
40 |
-
labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
|
41 |
-
print(labels)
|
42 |
```
|
|
|
14 |
Pre-trained models can be used like this:
|
15 |
```python
|
16 |
from sentence_transformers import CrossEncoder
|
17 |
+
model = CrossEncoder('vectara/hallucination_evaluation_model')
|
18 |
scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])
|
|
|
|
|
|
|
|
|
19 |
```
|
20 |
|
21 |
## Usage with Transformers AutoModel
|
|
|
24 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
25 |
import torch
|
26 |
|
27 |
+
model = AutoModelForSequenceClassification.from_pretrained('vectara/hallucination_evaluation_model')
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained('vectara/hallucination_evaluation_model')
|
29 |
|
30 |
features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt")
|
31 |
|
32 |
model.eval()
|
33 |
with torch.no_grad():
|
34 |
+
scores = model(**features)
|
|
|
|
|
|
|
35 |
```
|