File size: 2,009 Bytes
2510f9b ece1bda 2510f9b 31cf94a 2510f9b 31cf94a 2510f9b ece1bda 2510f9b 31cf94a 2510f9b ece1bda 2510f9b ece1bda 2510f9b 31cf94a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2817
- Accuracy: 0.7205
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8025 | 0.98 | 27 | 0.6852 | 0.6407 |
| 0.5648 | 1.98 | 54 | 0.7587 | 0.6971 |
| 0.2165 | 2.98 | 81 | 0.6410 | 0.7387 |
| 0.0587 | 3.98 | 108 | 1.9350 | 0.5682 |
| 0.041 | 4.98 | 135 | 0.9925 | 0.7348 |
| 0.013 | 5.98 | 162 | 1.3159 | 0.6980 |
| 0.025 | 6.98 | 189 | 1.4855 | 0.7456 |
| 0.0243 | 7.98 | 216 | 1.4230 | 0.7489 |
| 0.0016 | 8.98 | 243 | 1.2937 | 0.7117 |
| 0.0026 | 9.98 | 270 | 1.2817 | 0.7205 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|