--- library_name: peft license: cc-by-nc-4.0 base_model: tlphams/gollm-12.8b-instruct-v2.3 tags: - axolotl - generated_from_trainer model-index: - name: 1d66f576-71bc-4847-8e9a-4aa658c0e23d results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: tlphams/gollm-12.8b-instruct-v2.3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5ec5fd8c3ae45f48_train_data.json ds_type: json format: custom path: /workspace/input_data/5ec5fd8c3ae45f48_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: vermoney/1d66f576-71bc-4847-8e9a-4aa658c0e23d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/5ec5fd8c3ae45f48_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_hf output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d5502f71-712f-4df4-a3ea-7378c03e116f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d5502f71-712f-4df4-a3ea-7378c03e116f warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ```

# 1d66f576-71bc-4847-8e9a-4aa658c0e23d This model is a fine-tuned version of [tlphams/gollm-12.8b-instruct-v2.3](https://huggingface.co/tlphams/gollm-12.8b-instruct-v2.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 1.6990 | | 6.6894 | 0.0001 | 8 | 1.6758 | | 5.6146 | 0.0003 | 16 | 1.4774 | | 5.8447 | 0.0004 | 24 | 1.3944 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1